
Learning with Staleness

Wei Dai

March 2018
CMU-ML-18-100

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Eric P. Xing, Chair
Gregory R. Ganger

Andrew Pavlo
Joseph E. Gonzalez (UC Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Wei Dai

This research was sponsored by the National Science Foundation award CCF1629559, the Air Force Research Lab-
oratory award FA87501220324, the Office of Naval Research award N000141410684, and the Defense Advanced
Research Project Agency awards FA872105C0003 and FA870215D0002.

Keywords: Large Scale Machine Learning, Distributed Optimization Method, Distributed Sys-
tem, Parameter Server

Dedicated to my parents

for their endless love, support, and encouragement

iv

Acknowledgments
The key person who made all this possible is my advisor, Eric Xing, who has

provided guidance and support throughout my PhD study. I want to especially thank
him for trusting in me and letting me pursue my interests in diverse research topics.
This intellectual freedom has allowed me to find many interesting things to work on,
and I’ve definitely learned a lot more than I would without the broader exploration.

I also want to thank other thesis committee members: Greg Ganger, Andy Pavlo,
and Joseph Gonzalez. They asked me tough questions and gave me lots of advice,
so much that my thesis title has changed entirely after my thesis proposal—for the
better. I want to give a special acknowledgement to Garth Gibson and Phil Gibbons.
They have been two of the pillars in the BigLearning meetings that were really for-
mative for my time at CMU. Many of the ideas in this thesis come from those weekly
meetings that stretched over a remarkable span of 4 years.

I appreciate the helpful discussions and the camaraderie—especially during the
paper deadline seasons—with my collaborators: Jinliang Wei, Abhimanu Kumar,
Qirong Ho, Henggang Cui, Yi Zhou, Hao Zhang, Yu-Xiang Wang, Veeranjaneyulu
Sadhanala, Willie Neiswanger, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Yaoliang
Yu, and Jim Cipar. I have learned so much from all of them, and the heated debate
with some of them are a fond memory of my PhD years.

I want to thank my friends who accompany me through the highs and lows dur-
ing my study. Friends in my PhD class year and in MLD have been a fun bunch,
especially during the late nights leading up to course project and paper deadlines.
Friends at my church, Oakland International Fellowship, and my small group, Psalm
22:27, are my precious connections to the rest of the “normal” world where people
actually do not all do research. I also want to give at shout-out to my housemates
who have colored my life with little dramas and stories. I love you all!

My brother Chia Dai deserves his own paragraph. His world class free food
gathering skill has amazed my office mates and tided me over for more than a few
meals during my study.

Thank you Jesus for opening the door for me to come to CMU, and for bringing
all the wonderful people into my life.

Lastly, I want to thank my parents for their love and support throughout my life,
including the past 11 years away from home in a different country. You have always
challenged me to keep on going when I don’t think I can. This thesis would not be
possible without your continual encouragement. Thank you!

vi

Abstract
A fundamental assumption behind most machine learning (ML) algorithms and

analyses is the sequential execution. That is, any update to the ML model can be
immediately applied and the new model is always available for the next algorithmic
step. This basic assumption, however, can be costly to realize, when the compu-
tation is carried out across multiple machines, linked by commodity networks that
are usually 104 times slower than the memory speed due to fundamental hardware
limitations. As a result, concurrent ML computation in the distributed settings often
needs to handle delayed updates and perform learning in the presence of staleness.

This thesis characterizes learning with staleness from three directions: (1) We
extend the theoretical analyses of a number of classical ML algorithms, including
stochastic gradient descent, proximal gradient descent on non-convex problems, and
Frank-Wolfe algorithms, to explicitly incorporate staleness into their convergence
characterizations. (2) We conduct simulation and large-scale distributed experiments
to study the empirical effects of staleness on ML algorithms under indeterministic
executions. Our results reveal that staleness is a key parameter governing the con-
vergence speed for all considered ML algorithms, with varied ramifications. (3) We
design staleness-minimizing parameter server systems by optimizing synchroniza-
tion methods to effectively reduce the runtime staleness. The proposed optimization
of a bounded consistency model utilizes the additional network bandwidths to com-
municate updates eagerly, relieving users of the burden to tune the staleness level.
By minimizing staleness at the framework level, our system stabilizes diverging op-
timization paths and substantially accelerates convergence across ML algorithms
without any modification to the ML programs.

viii

Contents

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Backgrounds . 3

1.2.1 Iterative-Convergent ML . 3
1.2.2 Data Parallelism and Parameter Server 4
1.2.3 Staleness Trade-offs . 5

1.3 Contributions and Outline . 6

2 Effects of Staleness on Machine Learning 9
2.1 Asynchrony or Not? . 9
2.2 Scope and Methods . 11

2.2.1 Models and Algorithms . 11
2.2.2 Datasets . 16

2.3 Experiments . 17
2.3.1 System Configurations . 17
2.3.2 Simulation Model . 18
2.3.3 Deep Neural Networks with Staleness 18
2.3.4 Staleness and Model Complexity . 20
2.3.5 Gradient Coherence . 25
2.3.6 Matrix Factorization with Staleness . 28
2.3.7 Variational Autoencoder with Staleness 32
2.3.8 Latent Dirichlet Allocation with Staleness 35

2.4 Staleness and ML Algorithms . 38

3 Analysis of Consistency Models 39
3.1 Preliminaries . 39
3.2 Consistency Models for Parameter Servers . 40

3.2.1 Bulk Synchronous Parallel (BSP) . 40
3.2.2 Total Asynchronous Parallel (TAP) . 41
3.2.3 Stale Synchronous Parallel (SSP) . 41
3.2.4 Value-bounded Asynchronous Parallel (VAP) 42

3.3 Theoretical Analysis . 44
3.3.1 SGD for Low Rank Matrix Factorization 44

ix

3.3.2 Preliminaries . 44
3.3.3 Theorems for VAP Consistency . 45
3.3.4 Theorems for SSP Consistency . 46
3.3.5 Comparison of VAP and ESSP . 49

3.4 Bösen System Overview . 50
3.4.1 API and Bounded Staleness Consistency 50
3.4.2 System Architecture . 52

3.5 Evaluation . 54
3.5.1 Experiment Details . 55
3.5.2 System Evaluations . 55
3.5.3 ML Evaluation and Discussions . 57

3.6 Additional Related Work . 58

4 Model Parallel Learning with Staleness 61
4.1 Introduction . 61
4.2 Preliminaries . 63
4.3 Problem Formulation . 64
4.4 Convergence Analysis . 67
4.5 Economical Implementation . 70
4.6 Experiments . 72

4.6.1 Group Lasso . 72
4.6.2 Large-scale Lasso . 74

4.7 Additional Related Work . 75

5 Staleness in Parallel Frank-Wolfe Algorithms 77
5.1 Introduction . 77
5.2 Algorithm . 79
5.3 Analysis . 80

5.3.1 Main convergence results . 81
5.3.2 Effect of parallelism / mini-batching . 83
5.3.3 Convergence with delayed updates . 84

5.4 Experiments . 85
5.4.1 Minibatches of Data . 86
5.4.2 Shared Memory Parallel Workers . 87
5.4.3 Performance gain with asynchronous updates 87
5.4.4 Convergence under unbounded heavy-tailed delay 89

5.5 Additional Related Work . 89
5.6 Conclusion . 90

6 Conclusion and Future Work 93
6.1 Future Work . 95

7 The Debate: Synchronous vs Non-Synchronous Training for Machine Learning 97
7.1 Async Isn’t Aways More Stale than Sync . 99

x

7.2 Computation-to-Communication Ratio . 101
7.3 Staleness and Momentum . 103
7.4 Staleness and the Convergence Dynamics . 104
7.5 Non-synchronous Training Gets to an “Okay” Model Faster than Synchronous

Training . 107
7.6 Staleness’ Effects on the Final Model Quality 109
7.7 Looking to The Future . 113

Appendices 117

A Appendix for Chapter 2 119

B Appendix for Chapter 3 127
B.1 Proof of Theorem 3.1 . 127
B.2 Proof of Theorem 3.4 . 130
B.3 Proof of Theorem 3.5 . 132
B.4 Proof of Theorem 3.2 . 135

C Appendix for Chapter 4 137
C.1 Proof of Theorem 4.1 . 137
C.2 Proof of Theorem 4.2 . 143
C.3 Proof of Lemma 4.1 . 145
C.4 Proof of Example 1 . 148
C.5 Proof of Theorem 4.3 . 151

D Appendix for Chapter 5 153
D.1 Convergence analysis . 153

D.1.1 Primal Convergence . 153
D.1.2 Convergence of the surrogate duality gap 155

D.2 Proofs of other technical results . 160
D.2.1 Pseudocode for the Multicore Shared Memory Architecture 162

D.3 Application to Structural SVM . 164
D.4 Other technical results and discussions . 165

D.4.1 Oracle assumption and heterogeneous blocks 165
D.4.2 Controlling collisions in distributed setting 166
D.4.3 Curvature and Lipschitz Constant . 168
D.4.4 Examples and illustrations . 169
D.4.5 Comparison to parallel block coordinate descent 170

Bibliography 173

xi

xii

List of Figures

1.1 Staleness is both a system and an ML algorithm parameter, and a primary way
that distributed systems and ML algorithms interact. 3

1.2 (a) Illustration of data parallelism. (b) Parameter server topology. Servers and
clients interact via a bipartite topology. Note that this is the logical topology;
physically the servers can collocate with the clients to utilize CPU on all machines. 5

1.3 Illustration of the trade-off due to staleness (x-axis). The system throughput
(iterations per second) generally improves with higher staleness (green curve),
as less synchronization is needed. On the other hand, using more stale version
of the ML model will result in lower quality updates computed in each iteration
of the ML algorithms (blue curve). The goal is to maximize the convergence per
second (red curve) within these complex trade-offs. 6

2.1 Variational Autoencoder (VAE) at training time, assuming continuous input x
and isotropic Gaussian prior p(z) ∼ N (0, I). The encoder qφ(z|x) encodes
inputx to mean µ(x) and variance σ2(x) such that the sample z = µ(x)+σ(x)�
ε is sampled according to distributed qφ(z|x) (ε ∼ N (0, I)). Thanks to the
reparametric trick [76], the loss functions are differentiable with respect to θ, φ
and can be back-propagated throughout to compute the gradient. Minimization
objectives are denoted in dashed blue boxes. In our experiments we use DNNs
as the encoder and the decoder. 16

2.2 The number of batches to reach 95% test accuracy using 1 hidden layer and 1
worker. Each color represents a batch size, while each cluster corresponds to the
maximum staleness in the simulation model. 19

2.3 The number of batches to reach 95% test accuracy using 1 hidden layer and 1
worker, using AMSGrad [122] and varying batch sizes. s = 32 did not converge
and thus not shown. 20

2.4 The number of batches to reach 95% test accuracy using 1 hidden layer and 1
worker, respectively normalized by s = 0. The panel is a normalized counterpart
of Fig. 2.2 . 21

xiii

2.5 The number of batches to reach 92% test accuracy using Deep Neural Networks
with varying numbers of hidden layers under 1 worker. We consider several
variants of SGD algorithms (a)-(e). Note that with depth 0 the model reduces
to multi-class logistic regression (MLR), which is convex. The numbers are
averaged over 5 randomized runs. We omit the bars whenever convergence is
not achieved within the experiment horizon (77824 batches), such as SGD with
momentum at depth 6 and s = 32. We do not include FTRL result due to the
unstable convergence. The unnormalized version is provided in the appendix
(Fig. A.1). 22

2.6 The number of batches to reach 92% test accuracy with Adam and SGD on 1, 8,
16 workers with varying staleness. Each depth is normalized by the staleness 0’s
values, respectively. The numbers are average over 5 randomized runs. Depth
0 under SGD with 8 and 16 workers did not converge within the experiment
horizon (77824 batches) for all staleness values, and is thus not shown. The
unnormalized version is in Appendix (Fig. A.2) 24

2.7 Gradient coherence for DNNs with varying depths (depth 0–6) optimized by the
Adam optimization using 1 worker and no staleness (s = 0). The x-axis is
k = 1, ..., 32. Here we show cosine distance up to 32 batches back. (a) is a
snapshot taken from the first 512 batches, while (b) is taken from 512 batches
starting from batch 25088 after the algorithm has converged. The error bars
around the means represent 1 standard deviation computed from 5 randomized
runs. 26

2.8 Gradient coherence for DNNs with varying depths (depth 0–6) optimized by
SGD using 1 worker and no staleness (s = 0). The x-axis is k = 1, ..., 32. Here
we show cosine distance up to 32 batches back. (a) is a snapshot taken from the
first 512 batches, while (b) is taken from 512 batches starting from batch 25088
after the algorithms have converged (Fig. 2.7(b), Fig. 2.8(b)). The error bars
around the means represent 1 standard deviation computed from 5 randomized
runs. 27

2.9 Convergence of Matrix Factorization (MF) using 4 and 8 workers, with staleness
ranging from 0 to 50. We use the number of batches processed across all workers
as the logical time. Shaded area represents 1 standard deviation around the means
(represented by the curves) computed on 5 randomized runs. 30

2.10 The number of batches to reach training loss of 0.5 for Matrix Factorization (MF)
optimized by SGD. Mean and error bar (representing 1 standard deviation) are
based on 5 randomized runs. 31

2.11 The number of batches to reach training loss of 0.5 for Matrix Factorization
(MF), normalized by the values of staleness 0 of each worker setting, respec-
tively. This is the normalized version of Fig. 2.10. 31

xiv

2.12 The number of batches to reach test loss 130 by Variational Autoencoders (VAEs)
on 1 worker, under staleness 0 to 16. We consider VAEs with depth 1, 2, and 3
(the number of layers in the encoder and the decoder networks). The numbers
of batches are normalized by s = 0 for each VAE depth, respectively. Config-
urations that do not converge to the desired test loss are omitted, such as Adam
optimization for VAE with depth 3 and s = 16. The unnormalized version is
provided in the appendix (Fig. A.5). 33

2.13 Gradient coherence for VAEs with varying depths (depth 1∼3) optimized by
SGD optimization using 1 worker with no staleness (s = 0). The x-axis is k =
1, ..., 32. Here we show cosine distance up to 32 batches back. (a) is a snapshot
taken from the first 512 batches, while (b) is taken from 512 batches starting
from batch 25088 after algorithms have converged. The error bars around the
means represent 1 standard deviation computed from 5 randomized runs. 34

2.14 Convergence of LDA log likelihood using 10 topics with respect to the number of
documents processed by Gibbs sampling, with varying staleness and number of
workers. The shaded regions are 1 standard deviation around the means (curves)
based on 5 randomized runs. 36

2.15 Convergence of LDA log likelihood using 100 topics with respect to the number
of documents processed by Gibbs sampling, with varying staleness and the num-
ber of workers. The shaded regions are 1 standard deviation around the means
(curves) based on 5 randomized runs. 37

3.1 Logical clock is distinct from global time. 40

3.2 An illustration of Bulk Synchronous Parallel (BSP) execution. Worker 2 is
blocked at the end of clock 2 as other workers have not completed and com-
municated updates for clock 2. 41

3.3 An illustration of Stale Synchronous Parallel (SSP) execution with a staleness
bound s = 3. The black and green blocks denote the updates that are visible to
worker 2; the green updates are visible due to read-my-write consistency. The
blue updates are not necessarily visible to worker 2 under SSP. In order to satisfy
SSP constraint, worker 2 is blocked at the end of clock 4 because worker 1 has
not finished clock 1. 42

3.4 An illustration of Eager Stale Synchronous Parallel (ESSP) execution. The exe-
cution is similar to that of SSP (Fig. 3.3), except that updates are communicated
eagerly as shown in the red blocks. 43

3.5 The ordering of the updates for analyzing SSP. 47

xv

3.6 Bösen Parameter Server Architecture. The PS consists of client processes
(bottom) and the server partitions (top). The Bösen client library maintains
cached image of the server parameters Ãp (p indexes the worker processes). The
user application instantiates compute threads, which have access to data parti-
tion Dp, and generates updates ∆(Ãp, Dp) that are buffered by the Bösen client
library. The user program’s access to the parameter cache is modulated by the
consistency manager to ensure bounded staleness conditions. The communica-
tion with the server is performed by background communication threads, sep-
arate from compute threads. The server processes maintain partitioned master
copy of parameters Ai, where i indexes the server threads. 52

3.7 Empirical staleness distribution from matrix factorization. X-axis is (parameter
age - local clock), i.e., the clock differential. Y-axis is the distribution of the
clock differentials observed in parameter reads. Note that in Bulk Synchronous
Parallel (BSP) system such as Map-Reduce, the staleness is always −1. We
use rank 100 for matrix factorization, and each clock is 1% minibatch (i.e., a
minibatch corresponds to 1% of the dataset). The experiment is run on a 64 node
cluster. 56

3.8 Communication and Computation breakdown for LDA for SSP and ESSP with
staleness s = 2, 4, 8. The lower part of the bars are computation, and the upper
part is communication. 56

3.9 ML Convergence. The convergence speed per iteration and per second for LDA
and MF. The y-axes are the training objectives. In the case of LDA the training
objective is log-likelihood, for which higher is better. In the case of MF the train-
ing objective is square loss (the regularization loss is negligible compared with
square loss), for which lower is better. In certain cases for MF the training ob-
jective diverges (i.e., fails to converge), such as SSP s = 5 with 10% minibatch.
In those cases the convergence curves are truncated at the clock that divergence
occurs. 60

4.1 The algorithm msPG under model parallelism and stale synchronism. Machine
i keeps a local model xi(t) that contains stale parameters of other machines (due
to communication delay and network latency). These local models are used to
compute the partial gradient∇if(xi) which is then used to update the parameters
xi(t) in each machine. See Section 4.5 for an economical implementation of
msPG. 66

4.2 Convergence over clock for group lasso under msPG using learning rate η(10)
for staleness s = 0, 10, 20, 30. 73

4.3 Convergence of parameter over clock for group lasso under msPG using learning
rate η∗(αs) for staleness s = 0, 10, 20, 30. 73

4.4 Convergence over clock for group lasso under msPG using learning rate η∗(αs)
for staleness s = 0, 10, 20, 30. The linear convergence on the logrithmic scale is
consistent with the finite length property in Theorem 4.2. 74

4.5 Convergence over clock for large-scale lasso under msPG for staleness s =
0, 1, 3, 5, 7. 75

xvi

4.6 Convergence over wall clock time for large-scale lasso under msPG for staleness
s = 0, 1, 3, 5, 7. 76

4.7 Empirical staleness distribution under staleness s = 0, 1, 3, 5, 7. X-axis is pa-
rameter age - local clock, i.e., the absolute value of clock differential, similar to
Fig. 3.7. Y-axis is the distribution of the clock differentials observed in parameter
reads. s = 0 reduces to Bulk Synchronous Parallel where the empirical staleness
is concentrated at clock differential −1. 76

5.1 Illustration of the AP-BCFW in the distributed (in red) and share-memory set-
tings (in blue). The “cloud” of all worker nodes (or CPU threads) is abstracted
into an oracle that keeps feeding the server (or writing to the memory bus) with
updates from solving possibly approximate (and/or delayed) solutions to (5.2) on
iid uniform random blocks. 79

5.2 Performance improvement with τ for (a) Structual SVM on the OCR dataset [82,
136] and (b) Group Fused Lasso on a synthetic dataset. f ∗ denotes primal op-
timum (the “primal” problem is actually referring to the dual problem in both
cases). The performance metric here is the number of iterations to achieve ε-
suboptimality. 86

5.3 (a) Primal suboptimality vs wall-clock time using 8 workers (T = 8) and various
mini-batch sizes τ . (b) Primal suboptimality vs wall-clock time for varying T
with best τ chosen for each T separately. (c) Speedup via parallelization with
the best τ chosen among multiples of T (T, 2T, ...) for each T . (d) The same
with longer subproblems. 88

5.4 Speedup with parallelization on a synthetic OCR dataset. Left plot shows the
decay of primal suboptimality and the right one shows the speedup. 89

5.5 Average time per data pass in asynchronous and synchronous modes for two
cases: one worker is slow with return probability p (left); workers have return
probabilities (pis) uniformly in [θ, 1] (right). Times normalized separately for
AP-BCFW, SP-BCFW w.r.t. to where workers run at full speed. 90

5.6 Illustrations of the convergence BCFW with delayed updates. On the left, we
have the delay sampled from a Poisson distribution. The figure on the right is for
delay sampled from a Pareto distribution. We run each problem until the duality
gap reaches 0.1. 91

7.1 (Fig. 3 in [36]) Convergence over logical time (work done) under synchronous
training of topic models. 100

7.2 (Fig. 3 in [36]) Convergence over logical time (work done) under synchronous
training (BSP, A-BSP) and non-synchronous (SSP) of topic models. 100

7.3 Illustration of gradient descent at two iterates. 103
7.4 (Fig. 3 in [109]) Explicit momentum µ to achieve the best convergence result. . . 105
7.5 . 106
7.6 (Fig. 3 in [31]) Test accuracies with respect to training time for sync, async

training on 50, 100, and 200 nodes. 107

xvii

7.7 (Fig. 3 in [65]) The computation time vs network waiting time breakdown for
topic model (Latent Dirichlet Allocation) optimized by collapsed Gibbs sampling
under various staleness levels. The experiment runs on 32 VMs (each with 8 cores).108

7.8 (Fig. 13 in [94]) The computation and network waiting time breakdown for
sparse logistic regression optimized by block proximal gradient method under
different maximal delays. The experiment runs on 1000 machines, each with 16
cores. 108

7.9 (Fig. 1 in [31]) The number of epochs (left) and test accuracy (right) of Inception
model trained on ImageNet by varying numbers of workers (x-axis). 109

7.10 Fig. 5.2. Parallel block coordinate Frank Wolfe method applied to structural
SVM on OCR dataset shows different speedup with different convergence thresh-
old. When primal threshold is stringent (e.g., the blue curve), the algorithm does
not scale beyond 50 parallel updates (x-axis). 110

7.11 Twitter feed captured on May 1, 2018. 111

7.12 (Fig. 1 of [73]) . 112

7.13 (Table 1 of [1]) Validation error on ImageNet using ResNet-50. kn denotes mini-
batch size, ranging from 256 (small batch) to large batch (8k). Notice that with
gradual warm-up the error rate is very close to that of the small batch result. . . . 112

7.14 (Fig. 5 of [73]) Test accuracy of small batch (SB) method and large batch (LB)
method that is warm started (“piggybacked”) from the SB estimates at each of
the 100 SB epochs (x-axis). 113

A.1 The number of batches to reach 92% test accuracy using Deep Neural Networks
with varying numbers of hidden layers using 1 worker. We consider several
variants of SGD algorithms (a)-(e). Note that with depth 0 the model reduces
to multi-class logistic regression (MLR), which is convex. MLR generally takes
many more batches to converge because 92% test accuracy is close to the limit
of the model performance, whereas deeper models can easily achieve 95-98%
test accuracy. The error bars represent 1 standard deviation, computed from 5
randomized runs. 120

A.2 The number of batches to reach 92% test accuracy for Adam and SGD on 1, 8,
16 workers with varying staleness. The error bars represent 1 standard deviation
based on 5 randomized runs. Depth 0 under SGD with 8 and 16 workers do not
converge within the experiment horizon (77824 batches) and is thus not shown. . 121

A.3 The number of batches to reach 92% test accuracy for SGD with momentum and
RMSProp on 1, 8, 16 workers with varying staleness. The error bars represent
1 standard deviation based on 5 randomized runs. Both optimizers did not reach
92% test accuracy for all runs with staleness 16 and 32 on worker 8 and 16 within
the experiment horizon (77824 batches), and thus are not shown. 122

xviii

A.4 Gradient coherence for VAEs with varying depths (depth 1∼3) optimized by
Adam optimization using 1 worker with no staleness (s = 0). The x-axis is k =
1, ..., 32. Here we show cosine distance up to 32 batches back. (a) is a snapshot
taken from the first 512 batches, while (b) is taken from 512 batches starting
from batch 25088 after algorithms have converged. The error bars around the
means represent 1 standard deviation computed from 5 randomized runs. 123

A.5 The number of batches to reach test loss 130 by Variational Autoencoders (VAEs)
on 1 worker, under staleness 0 to 16. We consider VAE with depth 1, 2, and 3 (the
number of layers in the encoder and the decoder networks). Configurations that
do not converge to the desired test loss are omitted, such as Adam optimization
for VAEs with depth 3 and s = 16. 124

A.6 Convergence of LDA log likelihood using 50 topics with respect to the number
of documents processed by Gibbs sampling, with varying staleness and the num-
ber of workers. The shaded regions are 1 standard deviation around the means
(curves) based on 5 randomized runs. 125

D.1 Illustration of the signal data used in the Fused Lasso experiments. We show the
original signal (left), the noisy signal given to the algorithm (middle), and the
signal recovered after performing the fused lasso optimization (right). 171

xix

xx

List of Tables

2.1 Overview of the models, algorithms, and dataset in our study. η denotes learning
rate, β1, β2 are parameters associated with the optimizers. α, β in LDA are the
Dirichlet priors for document topic and word topic random variables, respectively. 17

3.1 Bösen Client API. The API is similar to key-value interfaces. The user program
can read parameters via Get and GetRow (batched reads) and make (additive)
updates via Inc and IncRow (batched updates). Since bounded staleness is
defined with respect to logical clock, the user program needs to signal the com-
pletion of a logical unit of work via Clock. 50

xxi

xxii

Chapter 1

Introduction

Machine Learning (ML) is becoming a primary mechanism for extracting information from data,
and the driving force behind many modern applications, such as predictive analysis, personalized
content recommendation, conversational assistant, facial recognition, and autonomous vehicles.
With the surging volume of data from Internet activities and sensor advancements, the available
data for ML consumption in the industry have quickly grown to terabytes and more [29, 153].
Simultaneously, the computation complexity for each data sample increases drastically with the
rise of high dimensional models and deep learning. For example, it is not uncommon to have
models with billions of parameters [87, 107], and some models take billions of floating point
operation to process each sample [130]. Despite the increasing capacity of the computing hard-
ware, no single machine can support training ML at the scale of “Big Data” and “Big Model” in
a reasonable amount of time.

A common approach to large-scale ML resorts to distributed computing, which coordinates many
computers to collectively solve a resource intensive problem. Adapting ML methods to such dis-
tributed settings, however, is highly challenging. In most commodity hardware, the interconnect
between the computing nodes can be up to 104 times slower than the CPU-memory speed within
a computer, which poses significant bottlenecks. This is indeed the main difficulty in scaling
ML from one machine to many. As a result of this fundamental hardware limitation, it becomes
highly inefficient to require concurrent computation across different machines to observe the out-
comes of each computation immediately. In other words, in order for computation to perform
efficiently in the distributed environments, staleness during the execution of ML algorithms is
often inevitable.

Under the sequential execution, there is exactly one version of model parameters at any given
point of the algorithm. This model are updated by the information from the selected data and the
current model (e.g., through gradient information). In distributed settings, however, this is no
longer the case. Since communication over the network is much slower than local memory ac-
cess, it is preferable to store a version of the model locally at each machine, saving the expensive
round trips over the network in computing each updates. For system performance reasons, the
communication model may not always require each local model to update in lock-steps. Con-

1

sequently, the local models can become out of sync. This creates stale models. When these
stale models are used to compute subsequent updates, the updates deviate from what would have
been generated from the “current” model under the sequential setting, and the effects of staleness
compound.

Staleness in ML algorithms is in general not well understood. Most existing theoretical results
characterizing ML algorithms assume the sequential execution model, which may be the reason
that for a long time distributed ML is limited to bulk synchronous parallel computation model
that faithfully reproduce the sequential execution at the expense of system performance [9]. Be-
sides gaps in theoretical understanding, the impacts of staleness on ML algorithms’ behaviors are
not well understood in practice either. Several reasons may have contributed to this. For one, stal-
eness generally co-occurs with asynchrony in distributed systems, which lead to indeterministic
execution that are challenging to profile. Furthermore, the performance of distributed systems
is inherently coupled with the hardware environments, so good performance on one cluster does
not always generalize to other environments. Oftentimes innocuous change in the system config-
urations such as adding more machines or sharing resources with other jobs can have profound
implication on ML algorithms by altering the underlying staleness levels. Unfortunately, these
complex factors can interact in unpredictable ways that are difficult to reproduce, hiding the true
effects of staleness on ML algorithms.

1.1 Thesis Statement

We are interested in iterative-convergent ML algorithms, which repeatedly execute a set of up-
dates to refine the model until certain convergence criteria are met, such as the plateauing of
loss function values. This characterizes most important ML algorithms, such as gradient-based
optimization, coordinate descent, other first order methods like Frank-Wolfe algorithms [50],
sampling methods such as Gibbs sampling [20]. Because they often have simple subproblems
structures, these iterative methods are often the most effective in solving large-scale ML prob-
lems. The iterative nature of these algorithms is indeed the crux of our study of staleness:

Thesis Statement: We can characterize staleness in ma-
chine learning algorithms and design distributed systems to
perform learning efficiently at scale.

In particular, we want to balance the following aspects in our approach to learning with staleness:

• Empirical and Theoretical. Staleness often appears in indeterministic environments, and
its manifestation is highly coupled with the specific choices of the problems, algorithms,
and data. For a complex problem as such, theories can provide the general guidance on
how convergence depends on staleness, while empirical results directly verify the impact of
staleness. We therefore take the complementary approach and seek to understand staleness
both from the empirical angle and with theoretical characterization.

• Algorithms and Systems. An ultimate goal to learn with staleness is to perform learning in

2

ML Algorithms SystemsStaleness

Figure 1.1: Staleness is both a system and an ML algorithm parameter, and a primary way that
distributed systems and ML algorithms interact.

settings where delay is unavoidable, including in the distributed settings. Toward this goal,
we want to both study the algorithmic behaviors as well as designing systems to battle test
our results in realistic environments. The insights gleaned from the algorithmic study also
enable us to improve existing consistency models to be more effective for stale learning.

• Generic and Special Algorithms. ML algorithms exhibit an astounding diversity, and there
is a trade-off: more generic results can cover a broader categories of ML algorithms, while
algorithms and theories developed for a special class of problems can offer sharper charac-
terizations. We aim to balance these approaches in our study and provide a mix of generic
and specific results.

Perhaps not so obvious is the fact that staleness is both a system and an ML algorithm param-
eter Fig. 1.1. Within the distributed systems, staleness offers opportunities to perform system
optimizations such as hiding latency by overlapping communication and computation. From the
ML algorithms stand point, staleness governs the ML convergence and formally enters into the
convergence rates in our theoretical characterization. Furthermore, staleness is a primary way
that ML algorithms interact with the distributed systems: To implement efficient distributed ML
systems, one generally needs to introduce staleness to ML algorithms. Conversely, for ML al-
gorithms to converge correctly and efficiently, the level of staleness normally has to be highly
controlled in the underlying distributed systems. It is a key design knob in achieving a sweet
spot between these trade-offs, and as we will see in the sequel, this can vary quite a bit across
ML models and algorithms.

1.2 Backgrounds

1.2.1 Iterative-Convergent ML

Although ML programs come in many forms, almost all seek a set of parameters (typically a
vector or matrix) to a global model A that best summarizes or explains the input data D as
measured by an explicit objective function such as likelihood or reconstruction loss [20]. Such
problems are usually solved by iterative-convergent algorithms, many of which can be abstracted
as the following form:

A(t) = F (A(t−1),∆(A(t−1), D)), (1.1)

3

where, A(t) is the state of the model parameters at iteration t, and D is all input data. The update
function ∆(·) computes the model updates from data, which are applied through F (·) to form
the model state of the next iteration. This operation repeats itself until A stops changing, i.e.,
converges — known as the fixed-point (or attraction) property in optimization.

As examples, for stochastic gradient (SGD) algorithms, ∆(·) computes the gradient, and F (·)
applies the additive update A(t) = A(t−1) + η∆(A(t−1), Db) where η is the step size and Db is
a subset (mini-batch) of D. Eq. (1.1) can also apply to sampling methods, such as collapsed
Gibbs sampling for topic model (LDA) as well. In this case ∆(·) increments and decrements
the sufficient statistics (the “word-topic” counts) according to the sampled topic assignments
(see Section 2.2.1). The update equation can also express coordinate descent algorithms where
∆ returns updates on a single coordinate or a block of coordinates. F (·) simply overwrite the
existing parameters with the new update: A(t) = ∆(A(t−1), D).

1.2.2 Data Parallelism and Parameter Server

ML programs often assume that the data D are independent and identically distributed (i.i.d);
that is to say, the contribution of each datum Di to the estimate of model parameter A is inde-
pendent of other data Dj

1. This in turn implies the validity of a data-parallel scheme within
each iteration of the iterative convergent program that computes A(t), where data D is split over
different threads and worker machines, in order to compute the update ∆(A(t−1), D) based on
the globally-shared model state from the previous iteration, A(t−1).

In data-parallel ML the data set D is pre-partitioned or naturally stored on worker machines,
indexed by p = 1, ..., P (Fig. 1.2a). Let Dp be the p-th data partition, A(t) be the model param-
eters at clock t, the data-parallel computation executes the following update equation until some
convergence criteria is met:

A(t) = F (A(t−1),
P∑
p=1

∆(A(t−1), Dp))

where ∆(·) now performs computation using full model state A(t−1) on data partition Dp. The
sum of intermediate results from ∆(·) and current model state A(t−1) are aggregated by F (·) to
generate the next model state.

To achieve data-parallel ML computation, we need to (1) make model state A available to all
workers, and (2) accumulate the ∆ updates from workers. A Parameter Server (PS) serves
these needs by providing a distributed shared memory interface (a shared key-value store us-
ing a centralized storage model). The model parameters A are stored on the server, which can
be distributed and thus not limited by a single machine’s memory (Fig. 1.2b). The worker ma-
chines access the entire model state on servers via a key-value interface. This distributed shared
memory provided by the PS can be easily retrofitted to existing single-machine multi-threaded
ML programs, by simply replacing reads/updates to the model parameters with read/update calls

1More precisely, each D is conditionally independent of other Dj given knowledge of the true A.

4

Figure 1.2: (a) Illustration of data parallelism. (b) Parameter server topology. Servers and clients
interact via a bipartite topology. Note that this is the logical topology; physically the servers can
collocate with the clients to utilize CPU on all machines.

to the PS. Because inter-machine communication over networks is several orders of magnitude
slower than CPU-memory communication in both bandwidth and latency, one challenge in im-
plementing an efficient PS is to design consistency models for efficient reads/updates of model
parameters, a central theme in this thesis. In the sequel we will harness the error tolerance of ML
algorithms in our design and implementation of consistency models.

1.2.3 Staleness Trade-offs

Staleness is parameter in both system and ML algorithms, and a point of “negotiation” between
the two (Fig. 1.1). Fig. 1.3 illustrates the general trade-off along the degree of staleness between
ML algorithms and distributed systems. From the system stand point, higher staleness lowers
synchronization requirement, as the ML parameters do not need to be communicated as quickly.
Furthermore, higher staleness also offers more opportunity to perform communication optimiza-
tion, since there is a longer horizon offered by staleness for the distributed systems to reconcile
different model versions on each worker.

On the other hand, from the ML algorithms’ stand point, higher staleness can slow down the
progress made in each iteration, as the updates are computed using more inaccurate models that
do not carry the information from the latest updates. In fact, it is not a priori known whether
algorithms can converge correctly under staleness, which is a subject of the thesis.

It is also important to keep in mind that Fig. 1.3 is for illustration only. The actual ramification
of staleness in general is highly problem-specific. For example, we will see in Chapter 2 that
ML algorithms’ response to staleness is often quite non-linear and possibly not continuous. Sim-
ilarly, while the system throughput is generally easy to measure, systematically mapping out the

5

system throughput along staleness is also impractical, as the communication loads and patterns
are highly dependent on the ML algorithm in question. As a result, it is generally not practical
to obtain the actual convergence per second curve, and the sweet spot in the illustration remains
an ideal to be empirically discovered in a somewhat ad hoc fashion.

Staleness

Convergence
Per Second

Iteration Per
Second (System
Throughput)

ML Progress Per
Iteration

Figure 1.3: Illustration of the trade-off due to staleness (x-axis). The system throughput (itera-
tions per second) generally improves with higher staleness (green curve), as less synchronization
is needed. On the other hand, using more stale version of the ML model will result in lower
quality updates computed in each iteration of the ML algorithms (blue curve). The goal is to
maximize the convergence per second (red curve) within these complex trade-offs.

1.3 Contributions and Outline

We outline the contributions in this thesis below:

• Effects of Staleness on Machine Learning (Chapter 2). Staleness affects different mod-
els differently. Some existing works have been able to take great advantage of staleness,
while others suggest that asynchrony severely impact the convergence and is outperformed
by synchronous updates. Even with the same model there can be different conclusions
about the effect of staleness. In this chapter, we perform simulation studies of the impact
of staleness across 5 different models and 10 algorithms, including optimization, sampling,
and variational inference that is the hybrid of the two. We find that while some algorithms
are more robust to staleness, no ML method is immune to the negative impact of staleness.
In other words, staleness is a key governing parameter of ML convergence. For variants
of stochastic gradient descent algorithms—now a staple in large-scale ML problems, our
results show that even some are much more sensitive to staleness than others. Perhaps

6

surprising, certain level of staleness sometimes can accelerate the convergence speed. The
response to staleness can also be highly non-linear, in which staleness below a certain
threshold makes virtually no impact but precipitates rapid convergence degradation above
certain threshold. For gradient-based methods we further investigate the gradient coher-
ence during the convergence path as a possible explanation for an algorithm’s sensitivity
to staleness.

• Analysis of Consistency Models (Chapter 3). As demonstrated in Chapter 2, staleness
generally has rather significant negative impact on ML algorithms’ convergence. We there-
fore consider a number of consistency models aimed at limiting the empirical staleness.
We begin with existing consistency models such as Bulk Synchronous Parallel (BSP),
Total Asynchronous Parallel (TAP), Staleness Synchronous Parallel (SSP), and propose
Eager Staleness Synchronous Parallel (ESSP) implementation within the SSP. We provide
extensive analyses of ML convergence under these consistency models. Our theoretical
characterization goes beyond the existing correctness guarantees, and make use of empir-
ical staleness level, instead of the worst case staleness. Our theories are consistent with
the empirical study that lower empirical staleness improves convergence. We also offer
bounds on the variance. We implement ESSP on a parameter server system called Bösen,
and show that ESSP substantially reduces the empirical staleness in our profiling. Us-
ing Bösen we show that the lowered staleness indeed leads to better convergence on two
considered applications.

• Model Parallel Learning with Staleness (Chapter 4). Going beyond the effects of stale-
ness in the data parallelism setting, in this chapter we focus on dividing problem by model
coordinates under staleness. In particular, we extend the proximal gradient descent to the
bounded staleness environments. This is advantageous for problems with high dimensions
in which transmitting and storing the entire model can lead to significant network and
memory overheads. Under the model parallel learning framework each worker only needs
to handle a subset of model parameters, and transmitting updates of size linear in the num-
ber of data. In situations such as biological data where the sample size is small relative
to the high dimensional (e.g., hundreds of millions gene interaction features), model par-
allelism offers a compelling alternative to data parallelism. Our theoretical result shows
that under bounded staleness condition model parallel proximal gradient descent converges
correctly to critical points. Importantly, our results do not assume convexity either on the
smooth loss or the non-smooth regularizer, and thus generalizes to virtually all practically
useful objective functions. We support our theoretical results with empirical evaluation of
non-convex Group Lasso and a large-scale Lasso problem solved on 100-node cluster.

• Staleness in Parallel Frank-Wolfe Algorithms (Chapter 5). The classical Frank-Wolfe
(FW) algorithm, first proposed in 1956, is a simple method to solve constrained convex
optimization with differentiable objective function. At each step of the algorithm, FW
considers the linearization of the objective function at the current position and moves to-
wards a minimizer o this linear function over the (compact and convex subset of a vector
space) domain. This simple method has recently witnessed a revival due to its simple sub-
problem structures that are effective for large-scale ML problem. We consider parallelizing

7

the block-coordinate FW algorithm, and our analyses reveals data and problem dependent
quantities that governs the convergence behavior. A notable feature of the algorithms is
that they do not depend on worst-case delay, but only mildly on the expected delay. Our
algorithm is effective for structural SVM and Group Fused Lasso, achieving significant
speedup over competing state-of-the-art synchronous methods.

8

Chapter 2

Effects of Staleness on Machine Learning

Most machine learning (ML) methods are iterative-convergent. Under the sequential execution
paradigm, the updates from the previous iteration are immediately available, before the start of
the next iteration. However, to efficiently perform learning in the distributed settings where the
inter-computer communication is slow, the immediate availability of updates across the network
is no longer practically attainable. In other words, we have to perform learning under staleness.
In this chapter, we attempt to answer some of the fundamental questions about learning with
staleness: How to quantify staleness? To what extent does staleness affect the convergence of
ML algorithms? What is the interplay between model complexity and the effects of staleness?
The revealed insights will guide the system design and implementation, as well as the theoretical
works in the ensuing chapters.

2.1 Asynchrony or Not?

There is a growing body of works studying the behaviors of ML models and algorithms under
non-synchronous execution. These works, however, seem to point to inconsistent conclusions
on whether asynchronous execution helps convergence, measured in the wall clock time to reach
certain model quality. To be sure, there is a broad consensus that lower synchronization results
in lower system overhead, which in turn improves system throughput [31, 32, 36, 65]. It is also
clear that asynchrony can potentially lead to slower convergence per algorithmic iteration, which
may require additional iterations to overcome [31, 38]. Therefore the key trade-off is between
the system throughput and ML progress made per iteration, as illustrated in Fig. 1.3.

Some of these works suggest that the trade-off is a favorable one. That is, the asynchronous exe-
cution does not significantly affect the convergence and benefits from improved system through-
put due to the lower synchronization overheads [36, 43, 120, 131]. At the same time, bounded
asynchrony offers theoretical guarantees not available under fully asynchronous environments [65,
86, 95, 158]. These work also empirically show that the increase in system throughput indeed
outweighs the impact from limited delay. In contrast, there are works suggesting the opposite,

9

that trading synchronous execution for increased throughput is disadvantageous, as asynchrony
severely affects the convergence, leading to degraded model convergence or lower test perfor-
mance [31, 38]. Their empirical results show that it is more beneficial to avoid asynchrony
altogether and instead apply synchronous updates only.

In practice, while it is easy to measure the system throughput, such as the number iterations
per second, it is often difficult to know exactly how much staleness is introduced. Furtermore,
the trade-off between system speed and impact on convergence is a complex one, with a strong
dependency on the specific problem. It is possible that certain models are more robust to stal-
eness. For example, [65, 131] shows that Latent Dirichlet Allocation (LDA), an approach to
topic modeling, via collapsed Gibbs sampling is insensitive to staleness. This is consistent with
the findings in [40, 131, 145, 153]. Similarly, Matrix Factorization (MF) solved by stochastic
gradient descent is also observed to be insensitive to staleness, as shown in [40, 65, 145]. When
solved with alternating direction method of multipliers (ADMM), MF exhibit similar robustness
against staleness [158]. Neither LDA or MF are convex, so convexity is not a prerequisite for
introducing staleness.

While non-convexity does not preclude the use of staleness, for deep neural networks, the evi-
dence is more mixed. On the positive side, [43] provides one of the first large-scale distributed
asynchronous implementation of stochastic gradient descent that successfully speeds up the train-
ing of Deep Neural Networks (DNNs), achieving state of the art results at the time. From the the-
oretical stand point, [95] has shown that, under fairly mild assumptions, asynchronous stochastic
gradient descent can achieves speedup on non-convex functions. These early empirical evidences
and theoretical results, however, are not fully supported by the later empirical observations. [31]
demonstrates that asynchronous training introduces errors in convergence, which require addi-
tional iterations to achieve similar level of accuracy, if achievable at all. The speedup from higher
throughput often does not justify the additional iterations. This reduced training quality is also
observed in [38].

On the whole, these studies reveal isolated instances of convergence behaviors under various stal-
eness levels. They also raise several questions. For one, is it the case that certain class of models
are amenable to staleness, while others, are not? For example, are LDA and MF robust to stal-
eness, while others like Deep Neural Networks, are not? These works also reveal that there is a
potential gap between theory and practice. Existing theories often require convexity [40, 65, 86],
or certain conditions in the early iterations [95], which are generally not followed in practice,
and yet it is still possible to achieve convergence with delayed updates. Theoretical guaran-
tees [95] also may not translate to empirical success [31]. Moreover, there has not been any
systematic study of the effects of staleness on convergence behaviors across a range of models
and algorithms. It is to these questions that we begin our investigation.

10

2.2 Scope and Methods

Through simulation, we aim to provide a broader understanding of the empirical convergence
behaviors of several models and algorithms under staleness.

2.2.1 Models and Algorithms

We want to study a diverse set of models that spans the spectrum from “simple” to “complex”.
Furthermore, we focus on algorithms that lend itself to data parallelism, which are the primary
approaches employed in distributed implementation of ML models.1 In particular we consider,
optimization, sampling, and variational inference that is a hybrid of optimization and sampling
method. Table 2.1 presents the summary of studied models and algorithms. In particular, within
the SGD family, recent works have introduced several variants of SGD that uses gradient his-
tory to scale learning rate or adjust the gradient direction [44, 64, 75, 106]. We explore them
in the context of Multi-class Logistic Regression (MLR), Deep Neural Networks (DNNs), and
Variational Autoencoders (VAEs).

We consider the following models and algorithms. The pseudo-codes assume the Parameter
Server (PS) application programming interface (API) detailed in Table 3.1.

Multi-class Logistic Regression (MLR)

Logistic Regression is a classical method used in large-scale classification [150], natural lan-
guage processing [55, 99], and ad click-through-rate prediction [107] among others. Multiclass
Logistic Regression generalizes LR to multi-way classification, such as the one used as the fi-
nal layer in ImageNet 1000-way classification models [78, 130]. For each observation, MLR
produces a categorical distribution over the label classes. The model stored on the PS has the
size J × d, where d is the input dimension and J is the number of output labels. We can solve
MLR using stochastic gradient descent (SGD). The pseudo-code for MLR implemented against
a distributed shared memory framework (such as parameter server or our simulation) is presented
in Algorithm 1.

Multi-class Logistic Regression (MLR) represents a convex problem with excellent convergence
properties under stochastic gradient descent (SGD) [26]. With (strong) convexity, MLR satisfies
most existing theories of SGD convergence under asynchronous execution [65, 86, 95].

Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs) are neural networks composed of fully connected layers. DNNs
offer the opportunity to increase the model complexity by adding additional layers, and we can

1For a treatment of model parallelism, see Chapter 4 and Chapter 5.

11

Algorithm 1 SGD and its variants on parameter server. Parameter server API is introduced in
detailed in Section 3.4.1. Advanced step size scaling in variants of SGD is handled in PS.
Require: Objective Function f(·), learning rate η, model parameters x0 stored in (simulated)

parameter server PS.
1: for each minibatch Dm on worker p do
2: x

(t)
p ← PS.Get(’x’) // Read model x(t)

p

3: g← ∇Dmf(x
(t)
p) // Compute gradient on the minibatch

4: // For SGD, increment by −ηg; otherwise let PS handle step size
5: PS.Inc(‘x’, −g)
6: PS.Clock()
7: end for

use this tuning knob to study the interactions between model complexity and staleness. DNNs
are also a type of latent space model, where neurons in the hidden layers are in principle uniden-
tifiable, which can pose challenge to asynchronous execution. Our DNNs have 1 to 6 hidden
layers, with 256 neurons in each layer. We use rectified linear units (ReLU) for nonlinearity after
each hidden layer [111]. The pseudo-code, similar to MLR, is presented in Algorithm 1.

Latent Dirichlet Allocation (LDA)

Topic Model, or more specifically, Latent Dirichlet Allocation (LDA), is an unsupervised method
to uncover hidden semantics (“topics”) from a group of documents, each represented as a multi-
set of tokens (bag-of-words). In LDA each tokenwij (j-th token in the i-th document) is assigned
with a latent topic zij from totallyK topics. We use Gibbs sampling to infer the topic assignments
zij

2. With Dirichlet priors α, β, LDA withK topics assumes the following generative model [58]:

φk ∼ Dirichlet(β) Sample topic word distribution for each topic k = {1, ..., K}
θi ∼ Dirichlet(α) Sample document topic distribution for each document i

zij|θi ∼ Discrete(θi) Sample topic zi ∈ {1, ..., K} for each token j in document i
wij|zij,φzij ∼ Discrete(φzij) Sample word from topic word distribution φzij

We measure the model quality using log likelihood, defined as

log p(w, z) = log p(w|z) + log p(z) (2.1)

Let W be the number of vocabularies, nwk be the number of word w assigned topic k, n(·)
k be the

number of tokens assigned topic k, nik be the number of tokens assigned to topic k in document

2For the distributed implementation in Chapter 3, we use the SparseLDA variant in [147] which is also used in
YahooLDA [6] that we compare with in the sequel.

12

i, and ni(·) be the number of tokens in document i, we can write

log p(w|z) = K
[

log Γ(Wβ)−W log Γ(β)
]

+
K∑
k=1

[W∑
w=1

log Γ(nwk + β)− log Γ(n
(·)
k +Wβ)

]
log p(z) = D

[
log Γ(Kα)−K log Γ(α)

]
+

D∑
i=1

[K∑
k=1

log Γ(nik + α)− log Γ(ni(·) +Kα)
]

, where Γ is the usual gamma function.

The Gibbs sampling step involves three sets of parameters, known as sufficient statistics: (1)
document-topic vector θi ∈ RK where θik the number of topic assignments within document i to
topic k = 1...K; (2) word-topic vector φw ∈ RK where φwk is the number of topic assignments
to topic k = 1, ..., K for word (vocabulary) w across all documents; (3) φ̃ ∈ RK where φ̃k =∑W

w=1 φwk is the number of tokens in the corpus assigned to topic k. The corpus (wij, zij) is
partitioned to worker nodes (i.e each node has a set of documents), and θi is computed on-the-fly
before sampling tokens in document i. φw and φ̃ are stored as rows in PS. The pseudo-code is
presented in Algorithm 2.

Algorithm 2 Distributed LDA via Gibbs Sampling on parameter server
Require: wij, zij partitioned to workers; φw stored in PS; number of topics K and dirichlet

priors: α, β.
1: for iteration t = 1→ T do
2: for each document i and token j in data partition p do
3: φwij ← PS.Get(‘φwij’)
4: k1 ← zij
5: k2 ← Gibbs(θi, φwij , φ̃, α, β)
6: if k1 6= k2 then
7: PS.Inc(‘φwij ,k1’,-1)
8: PS.Inc(‘φwij ,k2’,+1)
9: PS.Inc(‘φ̃k1’,-1)

10: PS.Inc(‘φ̃k2’,+1)
11: update θi based on k1, k2

12: end if
13: end for
14: PS.Clock()
15: end for

LDA is a well studied model in the (bounded) asynchronous literature [65, 131]. It is an important
model with many applications [22]. Using Gibbs sampling on LDA we will study an instance of
sampling method under staleness.

13

Matrix Factorization (MF)

Matrix factorization (MF) is commonly used in recommender systems, such as recommending
movies to users on Netflix. Given a matrix D ∈ RM×N which is partially filled with observed
ratings from M users on N movies, MF factorizes D into two factor matrices L and R such that
their product approximates the ratings: D ≈ LRT , where matrix L ∈ RM×r and R ∈ RN×r, and
r � min(M,N) is the user-specified rank which determines the model size (along with M and
N). The `2-penalized optimization problem is:

min
L,R

∑
(i,j)∈Dobs

||Dij −
K∑
k=1

LikRkj||2 + λ(||L||2F + ||R||2F)

where || · ||F is the Frobenius norm and λ is the regularization parameter. The stochastic gradient
updates for each observed entry Dij ∈ Dobs are

Li∗ ← Li∗ + 2η(eijR
>
∗j −

λ

ni
Li∗)

R∗j ← R∗j + 2η(eijL
>
i∗ −

λ

mj

R∗j)
(2.2)

where Li∗, R∗j are row and column of L,R respectively. eij := Dij − Li∗R∗j , and Li∗R∗j is
the vector product. ni :=

∑M
j=1 I(Dij 6= 0) is the number of non-zero elements in row i of the

data matrix D, and mj to denote the number of non-zeros in column j of D. Note that here we
absorb constants such as |Dobs| into the learning rate η. The parameter settings are presented
in Table 2.1.

We partition observations D to P workers and solve MF via stochastic gradient descent (SGD).
The pseudo-code for MF implemented on our PS is presented in Algorithm 3.

MF is another commonly studied model in the distributed ML literature [65, 74, 79]. While it is
non-convex, it is bi-convex which can have a simpler problem structure than general non-convex
problems. MF can also be considered as an embedding model in which the parameters of the
model are the embeddings for each users and items, and thus each update will only be sparsely
applied to the relevant embedding vectors.

Variational Auto-Encoder (VAE)

Variational Autoencoder (VAE) is an unsupervised model that leverages deep neural networks to
construct (non-linear) encoding and decoding functions, in which the encoder function embed
objects x into a latent code z [76]. Fig. 2.1 gives the “mathematical architecture” or VAE. In
particular, the inputs to the VAE training include both the data feature x and a random sample
ε, which has implication on the gradient behaviors. It represents an interesting hybrid of opti-
mization and sampling method, and the optimization is performed over data input and random
samples of variables. We will explore this further in the sequel.

14

Algorithm 3 Matrix Factorization via SGD
Require: Learning rate schedule ηt, factor matricies L and R stored in PS. Let nj,mj denotes

the number of non-zero entries in row j of D, respectively.
1: for iteration t = 1→ T do
2: for each observed entry Dij in data partition p do
3: Li ← PS.Get(‘Li’) // Li is i-th row of L
4: Rj ← PS.Get(‘Rj’) //Rj is j-th row ofR
5: eij = −2(Dij −Li ·RT

j)

6: Lgrad = (eijRj + 2λ
ni
Li)

7: Rgrad = (eijL
T
i + 2λ

mj
Rj)

8: PS.Inc(‘Li’, −ηtLgrad)
9: PS.Inc(‘Rj’, −ηtRgrad)

10: end for
11: PS.Clock()
12: end for

Algorithm 4 SGD and its variants on parameter server. Advanced step size scaling in variants
of SGD is handled in PS.
Require: φ, θ stored in parameter server (PS), learning rate η and other optimization parameters.

1: for each minibatch Dm on worker p do
2: θ

(t)
p ,φ

(t)
p ← PS.Get(’x’) // Read model parameters

3: g← ∇θ,φL(φ
(t)
p ,θ

(t)
p |Dm, ε) // Compute gradient on the minibatch

4: // For SGD, increment by −ηg; otherwise let PS handle step size
5: PS.Inc(‘x’, −g)
6: PS.Clock()
7: end for

15

\texttt{Sample}\quad \epsilon
\sim
\mathcal{N}(0,\mathbf{I})

p_{\theta}(\hat{\ma
thbf{x}}|\mathbf{z})

Encoder

Decoder

\mathcal{KL}\big[\m
athcal{N}(\mu(\mat
hbf{x}),\sigma^2(\m
athbf{x})) ||
\mathcal{N}(0,
\mathbf{I})\big]

Figure 2.1: Variational Autoencoder (VAE) at training time, assuming continuous input x and
isotropic Gaussian prior p(z) ∼ N (0, I). The encoder qφ(z|x) encodes input x to mean µ(x)
and variance σ2(x) such that the sample z = µ(x) + σ(x) � ε is sampled according to dis-
tributed qφ(z|x) (ε ∼ N (0, I)). Thanks to the reparametric trick [76], the loss functions are
differentiable with respect to θ, φ and can be back-propagated throughout to compute the gradi-
ent. Minimization objectives are denoted in dashed blue boxes. In our experiments we use DNNs
as the encoder and the decoder.

Both the VAE encoder and decoders are DNNs with 1∼3 layers, each with 256 units furnished
with rectified linear function for non-linearity. The model quality is measured by the training
objective value, defined on a mini-batch of data Dm = {xi}|Dm|i=1 as:

L(φ,θ;Dm) :=

|Dm|∑
i=1

−KL
[
N (µ(xi), σ2(xi))||N (0, I)

]
+ log pθ(x

i|zi)

≈
|Dm|∑
i=1

D∑
d=1

1

2

[
1 + log((σid)

2)− (µid)
2 − (σid)

2
]

+ ||xi − x̂i||2 + const

where we sum over D dimensions to obtain KL divergence, and x̂ is the reconstructed sample.
Note that ≈ is based on the unbiased estimates using a single sample zi, which is what we use in
the experiments.

2.2.2 Datasets

We use the following datasets in our study:

• MNIST [90] is a popular benchmark for deep learning models. It is an image dataset
of hand-written digits. The version we use has 50,000 training samples and 10,000 test
samples. The image resolution is 28 by 28. In our experiments we convert each image into
a 784-dimensional feature.

16

• 20 NewsGroup [123] is a text corpus consisting of news articles from 20 news categories.
There are in total 11269 documents, 1.3 million tokens, and 61188 unique vocabularies in
the corpus. Since LDA is an unsupervised method, we ignore the text category labels in
the dataset and consider only the words.

• MovieLens 1M [61] is a movie rating dataset collected from the MovieLens website.3 We
consider the subset of 1 million ratings made by 6040 users on 3952 movies. The ratings
are made on a 5-star scale (integer 1-5), and each user has at least 20 ratings. In our MF
experiments we scale the ratings to {-1,-0.5,0,0.5,1} instead.

Model Algorithms Key Parameters Dataset

DNN, MLR

SGD η = 0.01

MNIST[90]

SGD with
Momentum[117]

η = 0.01, momentum=0.9

Adam[75] η = 0.001, β1 = 0.9, β2 =
0.999

AdaDelta[155] η = 0.01
RMSProp[64] η = 0.01, decay=0.9,

momentum=0
FTRL[106] η = 0.01
AMSGrad[122] η = 0.01, β1 = 0.9, β2 =

0.999
LDA Gibbs Sampling α = 0.1, β = 0.1 20 NewsGroup[123]
MF SGD rank=5, λ = 0.0001 MovieLens1M [61]
VAE VI4 Optimization parameters

same as MLR/DNN
MNIST[90]

Table 2.1: Overview of the models, algorithms, and dataset in our study. η denotes learning rate,
β1, β2 are parameters associated with the optimizers. α, β in LDA are the Dirichlet priors for
document topic and word topic random variables, respectively.

2.3 Experiments

2.3.1 System Configurations

All experiments are conducted on machines configured with 16-core Intel Xeon and 64GB of
memory running Ubuntu 16.04. MLR, DNNs, and VAEs are implemented in TensorFlow [2]
version 1.5. MF and LDA are implemented in Python.

3http://movielens.org
4Variational Inference

17

2.3.2 Simulation Model

We simulate the multi-worker settings on single machine. For each simulated worker we main-
tain a model parameter version similar to the local cache in distributed implementations [65,
145]. For each worker p its local model always receives the update from itself at the end of
each iteration. For updates sent to other workers, we apply a uniformly random delay. Specif-
ically, let utp be the update generated at iteration t by worker p. For each worker p′ 6= p, our
delay model applies a delay rtp,p′ ∼ Categorical(1, 2, .., S), where S is the maximum delay and
Categorical() is the categorical distribution placing equal weights on each integer. Under this
delay model, update utp shall arrive at worker p′ at the start of iteration t + rtp,p′ . The theoreti-
cal average delay under this model is P−1

2P
S where P is the number of workers.5 Since model

versions on each worker are symmetrical, we use the first worker’s model to evaluate the model
quality. Finally, in the simulation study we are most interested in measuring convergence against
logical time, and wall clock time is in general not material as the simulation on single machine
is not optimized for performance.

2.3.3 Deep Neural Networks with Staleness

We begin with DNNs optimized by SGD and its variants using a minimal architecture with one
hidden layer. Moreover, we use only 1 worker so that for staleness 0 we recover the sequential
setting. Fig. 2.2 shows the number of batches needed to reach 95% test accuracy for 6 SGD
variants: SGD, SGD with momentum, Adam, RMSProp, Adagrad, and FTRL. We vary batch
sizes (colors) and maximum staleness (clusters). The error bars represent 1 standard deviation,
obtained from 5 runs with randomized initialization. We also consider two additional SGD vari-
ants: AdaDelta and AMSGrad. Fig. 2.3 shows the AMSGrad result, while AdaDelta was not
able to reach 95% test error under all settings and is not shown here.6 We now make several
observations:

• Convergence speeds under sequential execution differ for different optimization algorithms.
At staleness 0 (s = 0), we recover the sequential setting. It is clear that different SGD con-
verges at very different speed, with Adam and RMSProp being the fastest (i.e., lowest
number of of minibatches), and SGD and FTRL the slowest. Both SGD and FTRL can be
sensitive to the initial learning rate, which we only tuned to the highest order of magnitude
that still converges under staleness 0 (Table 2.1).

• Staleness has uneven impacts on different SGD variants. For example, Adam, SGD with
Momentum, RMSProp, and AMSGrad are highly sensitive to the staleness. Staleness
generally increases the number of batches needed to reach target test accuracy, and the
increase can be substantial. On the other hand, SGD, Adagrad, and FTRL appear to be
robust to the staleness. In the case of FTRL staleness appears to lower the number of

5We defer different delay models to future work.
6Due to its poor performance, we will not consider AdaDelta in subsequent experiments.

18

s=0 s=2 s=4 s=8 s=16 s=32
0

1000

2000

3000

4000

5000

6000
batch 32

batch 64

batch 128

s=0 s=2 s=4 s=8 s=16 s=32
0

2000

4000

6000

8000

10000

12000

14000

s=0 s=2 s=4 s=8 s=16 s=32
0

2000

4000

6000

8000

10000

12000

14000

16000

SGD with Momentum SGD

s=0 s=2 s=4 s=8 s=16 s=32
0

500

1000

1500

2000

2500

(a) (b)

RMSProp(c) (d)Adam

s=0 s=2 s=4 s=8 s=16 s=32
0

1000

2000

3000

4000

5000

6000

7000

(e) Adagrad (f) FTRL

s=0 s=2 s=4 s=8 s=16 s=32
0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

B
a
tc

h
e
s

to
 R

e
a
ch

9
5

%
 T

e
st

 A
cc

u
ra

cy

Figure 2.2: The number of batches to reach 95% test accuracy using 1 hidden layer and 1 worker.
Each color represents a batch size, while each cluster corresponds to the maximum staleness in
the simulation model.

batches necessary, potentially due to the implicit momentum created by staleness [109],
and momentum is helpful for convergence as evident in Fig. 2.2(a).

19

s=0 s=2 s=4 s=8 s=16 s=32
0

5000

10000

15000

20000

25000

30000
batch 32

batch 64

batch 128

AMSGrad

Figure 2.3: The number of batches to reach 95% test accuracy using 1 hidden layer and 1 worker,
using AMSGrad [122] and varying batch sizes. s = 32 did not converge and thus not shown.

• Batch size has limited effect on the number of batches needed to converge. It is true that
larger batch sizes reduces the number of batches to convergence, but only very mildly. For
example, when increasing batch size 4 folds (from 32 to 128), the number of batches to
convergence is reduced by at most ∼50% in the case of Adam and RMSProp. In all other
cases the reduction is only a small fraction. In other words, larger batch size will require
more samples to be processed to reach convergence.

These experiments also help us to answer the question: how do we measure staleness for SGD?
We may consider measuring the staleness in terms of the number of data being processed, or the
percentage of the dataset that is processed. However, as our experiments suggest, they are not the
most direct way to quantify staleness for SGD. As discussed earlier, larger batch sizes generally
require many more data samples to be processed to reach the same model quality. If we use the
number of data samples being processed to quantify staleness, then s = 32 for batch size of 32
should have similar effect as s = 8 for batch size of 128. That, however, is not what we observe.
Fig. 2.4 shows the number of batches to reach 95% test accuracy, normalized by s = 0 for each
batch size. It shows how staleness degrades the performance. We can see that, for most SGD
variants, the response to staleness, once normalized by s = 0, is similar across batch sizes. This
indicates that the number of batches, rather than the number of data samples processed, is a good
proxy measure for staleness and progress for SGD algorithms. We therefore will consider only
batch size 32, and use the number of batches as the measure for a unit of work and staleness in
subsequent experiments.

2.3.4 Staleness and Model Complexity

Under the sequential setting, model complexity can often lead to optimization difficulty. For
example, before residual learning, the depth of convolutional neural networks were generally

20

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

SGD with Momentum SGD(a) (b)

RMSProp(c) (d)Adam

(e) Adagrad (f) FTRL

s=0 s=2 s=4 s=8 s=16 s=32
0

1

2

3

4

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0

2

4

6

8

10

12

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy
batch 32

batch 64

batch 128

s=0 s=2 s=4 s=8 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
5

%
 T

e
st

 A
cc

u
ra

cy

Figure 2.4: The number of batches to reach 95% test accuracy using 1 hidden layer and 1 worker,
respectively normalized by s = 0. The panel is a normalized counterpart of Fig. 2.2

limited by optimization challenges [63]. Does this optimization difficulty compound with the
effect of staleness, which we have shown to have negative impact on convergence?

DNNs are suitable test beds to study this question. By changing the number of hidden layers, we

21

SGD with Momentum SGD(a) (b)

RMSProp(c) (d)Adam

(e) Adagrad

s=0 s=16 s=32
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

2

4

6

8

10

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5

10

15

20

25

30

35
N

o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy
Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

1

2

3

4

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Figure 2.5: The number of batches to reach 92% test accuracy using Deep Neural Networks
with varying numbers of hidden layers under 1 worker. We consider several variants of SGD
algorithms (a)-(e). Note that with depth 0 the model reduces to multi-class logistic regression
(MLR), which is convex. The numbers are averaged over 5 randomized runs. We omit the bars
whenever convergence is not achieved within the experiment horizon (77824 batches), such as
SGD with momentum at depth 6 and s = 32. We do not include FTRL result due to the unstable
convergence. The unnormalized version is provided in the appendix (Fig. A.1).

22

can control the model complexity, as each hidden layer introduces an additional set of weights
and non-linearity. In fact, for depth 0 (no hidden layer), we recover MLR, which is convex.
We consider depth 0–6. Fig. 2.5 shows the number of batches needed to reach 92% test accu-
racy, under 1 worker, for varying depths and optimizers, each depth normalized by staleness 0,
respectively.7

The convergence time for both SGD with momentum and RMSProp exhibits a high variance,
which is shown in the unnormalized plot in the Appendix (Fig. A.3). Moreover, the variance in
convergence speed is higher with the increasing staleness and the number of workers, which can
be observed in Fig. A.2 (the unnormalized version of Fig. 2.5) in the Appendix. Focusing on
SGD, Adam, and Adagrad in Fig. 2.5, we make a number of observations:

• For each depth, staleness generally increases convergence difficulty, manifested in the
higher number of batches needed to reach the same test accuracy. The only exception
is SGD, where staleness creates implicit momentum which actually speeds up the conver-
gence [109].

• Higher staleness disproportionately impacts deeper networks than shallower ones. In par-
ticular, SGD, Adam, and Adagrad exhibit highly consistent patterns where the staleness-
induced convergence difficulties increases with increasing depth.

• MLR (Depth 0) is much more robust to staleness than deeper networs. This is likely due
to the (strong) convexity of MLR, which often leads to more coherent gradients between
mini-batches. We will revisit this point in the sequel.

Fig. 2.6 shows the number of batches to convergence under Adam and SGD on 1, 8, 16 simu-
lated workers, respectively normalized by staleness 0’s values. The unnormalized version is in
Appendix (Fig. A.2). SGD with momentum and RMSProp did not reach 92% test accuracy for
all runs with staleness 16 and 32 on worker 8 or 16 (Fig. A.3), and thus we focus our observations
on Adam and SGD:

• Compared with the single worker setting, multiple workers magnify the effect of staleness.
For example, depth 3 under Adam needs 4x more batches to converge under s = 32 on a
single worker, compared with s = 0. That multiple increases to 20x with 16 workers.

• With more workers, the variance in convergence also increases, which leads to the less
consistent patterns in Adam optimization with 8 and 16 workers. We refer interested reader
to the appendix (Fig. A.2) for the plot of the unnormalized convergence.

• MLR (depth 0) convergence difficulties caused by staleness increase under multi-worker
such that reaching 92% is sometimes not possible within the experiment horizon. For
example, Adam optimization on 16 workers under staleness 32 failed to achieve the target
test accuracy, and similarly for SGD optimization on 8 and 16 workers across all staleness
levels.

7We pick 92% test accuracy as target instead of the 95% test accuracy due to the limited model capacity of MLR,
which can only achieve test accuracy about 92.7%.

23

(a) Adam (1 worker)

Adam (8 workers)

(b)

(c)

(e) Adam (16 workers)

SGD (1 worker)

(d) SGD (8 workers)

(f) SGD (16 workers)

s=0 s=16 s=32
0

2

4

6

8

10

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0

5

10

15

20

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Figure 2.6: The number of batches to reach 92% test accuracy with Adam and SGD on 1, 8, 16
workers with varying staleness. Each depth is normalized by the staleness 0’s values, respec-
tively. The numbers are average over 5 randomized runs. Depth 0 under SGD with 8 and 16
workers did not converge within the experiment horizon (77824 batches) for all staleness values,
and is thus not shown. The unnormalized version is in Appendix (Fig. A.2)

24

In light of these findings, we will focus on SGD and Adam in the subsequent experiments for
several reasons: (1) They represent two very distinct responses to staleness. SGD is highly robust
to staleness, while Adam is quite sensitive; (2) They have stable convergence under staleness and
deeper architectures, which is not shared by other optimizers such as RMSProp and SGD with
momentum. This is an important characteristics for our study as high variance results can be
difficult to interpret (e.g. RMSProp); (3) The simplicity of SGD can be instrumental for our
understanding, with the added benefit that SGD is well understood with a wealth of existing
analyses. Adam, on the other hand, is an advanced gradient method that makes use of gradient
history to modify the gradient updates. The diversity of these two methods can potentially reveal
further insights; (4) SGD and Adam are two of the most commonly used optimization schemes.

2.3.5 Gradient Coherence

To better understand how model complexity interacts with staleness, we consider cosine distance
to measure gradient coherence across the batches:

cosine dist(u,v) := 1− cos(θu,v)

= 1− u · v
||u||2||v||2

, where θu,v is the angle between u,v. Cosine distance ranges from 0 to 2. A value greater
than 1 implies θu,v > π. We want to measure cosine dist(gt, gt−k) for k = 1, 2, ... which
can indicate how quickly the gradient changes directions. Furthermore, this quantity is easy to
measure empirically. In our experiments we compute the gradients on the first 1000 samples in
the dataset in each iteration to serve as an estimate for the full gradient.

Fig. 2.7 and Fig. 2.8 show the profile of gradient coherence for Adam and SGD under sequential
execution (1 worker, s = 0). Specifically, we compute the cosine distances between the current
gradient gt and gt−1, ..., gt−32 for DNNs with depth 0–6 optimized by Adam (Fig. 2.7) and SGD
(Fig. 2.8). Fig. 2.7(a) and Fig. 2.8(a) are snapshots at the beginning of the algorithm while
Fig. 2.7(b) and Fig. 2.8(b) are taken after the model has already converged. We make a number
of observations:

• MLR (depth 0) exhibits much lower cosine distance (and hence much higher gradient co-
herence) across the mini-batches, compared with DNNs (depth 1, 3, 6). This is consistent
with the fact that MLR is (strongly) convex, while all DNNs are non-convex. Convex
functions do not have saddle points or other critical points except global optima, which
generally leads to a more consistent gradient directions.

• The cosine distances in both Fig. 2.7 and Fig. 2.8 largely remain below 1, implying that the
gradients are positively correlated: 〈gt, gt−k〉 > 0. This may have theoretical implications,
which we leave to the future work.

25

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0
Depth 0

Depth 1

Depth 3

Depth 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Depth 0

Depth 1

Depth 3

Depth 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gradient Coherence: DNN with Adam on 1 worker (batch 25088~25600)

Gradient Coherence: DNN with Adam on 1 worker (batch 0~512)

Figure 2.7: Gradient coherence for DNNs with varying depths (depth 0–6) optimized by the
Adam optimization using 1 worker and no staleness (s = 0). The x-axis is k = 1, ..., 32. Here
we show cosine distance up to 32 batches back. (a) is a snapshot taken from the first 512 batches,
while (b) is taken from 512 batches starting from batch 25088 after the algorithm has converged.
The error bars around the means represent 1 standard deviation computed from 5 randomized
runs.

26

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Depth 0

Depth 1

Depth 3

Depth 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Depth 0

Depth 1

Depth 3

Depth 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gradient Coherence: DNN with SGD on 1 worker (batch 25088~25600)

Gradient Coherence: DNN with SGD on 1 worker (batch 0~512)

Figure 2.8: Gradient coherence for DNNs with varying depths (depth 0–6) optimized by SGD
using 1 worker and no staleness (s = 0). The x-axis is k = 1, ..., 32. Here we show cosine dis-
tance up to 32 batches back. (a) is a snapshot taken from the first 512 batches, while (b) is taken
from 512 batches starting from batch 25088 after the algorithms have converged (Fig. 2.7(b),
Fig. 2.8(b)). The error bars around the means represent 1 standard deviation computed from 5
randomized runs.

27

• For DNNs (depth > 0), gradient coherence decreases with increasing model complexity,
for both Adam (Fig. 2.7) and SGD (Fig. 2.8). This is evident from the fairly consistent
increase of cosine distance with the increasing depth. The increase is not linear, however.
In the case of SGD there is a substantial gap in cosine distance between depth 1 and depth
3. while in the case of Adam the gap is much smaller.

• In the case of Adam, the cosine distances are high at the beginning of the algorithm
(Fig. 2.7(a)) for DNNs (depth > 0). The low gradient coherence at the beginning of Adam
optimization may be the reason that staleness significantly impacts Adam’s convergence,
especially for deeper architectures, as observed in Fig. 2.4. In particular, for depth 3 and 6,
some of the cosine distances even exceed 1, indicating an opposite direction of gradients
across batches.

• In the case of SGD applied to DNNs (depth> 0), the gradient coherence actually decreases
after the algorithm has converged, with the exception of the initial batches (gt−1 gt−5).
This is consistent with the common understanding that gradients close to the optima are
generally less coherent than gradients far away from the optima or any critical point.

• In the case of Adam applied to DNNs (depth > 0), the gradient coherence improves drasti-
cally (i.e. lower cosine distances) after the algorithm has reached convergence (Fig. 2.7(b)).
This does not imply that the gradient at close to optimum is more coherent, as we have ob-
served the opposite in the case of SGD (see the last point). However, Adam performs
a moving averaging over the gradient history, so it is likely that while gradient of each
batch is not coherent, the average exhibits more coherence. Additionally, coordinates with
higher variances are scaled to have smaller effective learning rate, minimizing their im-
pacts on coherence. These are possible reasons that Adam exhibits lower cosine distance
at convergence than SGD (Fig. 2.7(b) vs Fig. 2.8(b)).

We conclude our investigation of MLR and DNNs by noting that staleness in general negatively
impacts the convergence. Furthermore, the impact couples with other factors, including the
model complexity, the optimization methods, and the number of workers, among others. Stale-
ness also increases the variance of convergence. When the variance is modest, we observe that
the effects of staleness are overall consistent.

There are cases where modest staleness creates implicit momentum that actually accelerates
the convergence, as observed in SGD, Adagrad, and FTRL optimization. This phenomenon,
however, is largely limited to simpler models (e.g., MLR and depth 1 DNNs), low staleness
settings (e.g., s = 16), or fewer workers (e.g., 1 worker). The negative impact of staleness
quickly dominates with the increasing level of staleness and model complexity, and we are back
to the regime where convergence difficulties increase quickly with the staleness levels.

2.3.6 Matrix Factorization with Staleness

We now turn to Matrix Factorization (MF) solved by SGD. MF is similar to DNNs in that they
are both non-convex (though MF is bi-convex). They are different in that MF updates are sparse

28

as each observation will only generate gradients updating a small subset of the model parameters
(Eq. (2.2)). We use batch size of 25000 samples, which is 2.5% of the MovieLens dataset (1
million samples). Therefore, every 40 batches is 1 full pass over the data. We study staleness
ranging up to s = 50 on 8 workers, which can be as stale as 8.75 data passes (50 × 2.5% × 7).
We track the following scaled loss function for convergence:

1

|D|
∑

(i,j)∈Dobs

||Dij −
K∑
k=1

LikRkj||2 + λ(||L||2F + ||R||2F)

where |D| is the number of observations in the training dataset.

Fig. 2.9 shows the convergence against the number of batches for staleness 0–50 using 4 and
8 workers. Fig. 2.10 shows the number of batches to reach training loss of 0.5 on 4 and 8
workers under staleness 0 to 50. Fig. 2.11 shows the same metrics but normalized by the values
of staleness 0 of each worker setting, respectively. We make a number of observations:

• Staleness has a larger impact on 8 workers than 4 workers, as can be seen in the growth of
the number of batches to convergence in Fig. 2.11. In fact, the convergence slow-down in
terms of the number of batches (normalized by the convergence for s = 0) on 8 workers is
more than twice of the slow-down on 4 workers. For example, in Fig. 2.11 the slow-down
at s = 15 is 3.4, but the slow down at the same staleness level on 8 workers is 8.2. This
can be explained by the fact that additional workers amplifies the effect of staleness by
(1) creating updates that will be subject to staleness, and (2) missing updates from other
workers that are subject to staleness. In the sequel we will see how the number of workers
amplify the effective staleness in theoretical analyses.

• Higher staleness leads to a higher variance in convergence. This is the most directly re-
flected in the convergence curves (Fig. 2.9). Furthermore, the number of workers also
affects variance, given the same staleness level. For example, MF with 4 workers incur
very low standard deviation up to staleness 20. In contrast, MF with 8 workers already
exhibits a large variance at staleness 15. The amplification of staleness from increasing
number of workers is similar to the previous bullet point.

• Staleness negatively impacts convergence. For both 4 workers and 8 workers setting, the
number of batches needed to reach a certain training loss increases—quite consistently.
This is consistent with the observations in DNNs (Section 2.3.4). Moreover, the increase
in convergence difficulty is often non-linear in the level of staleness, such as the large jump
from s = 15 to s = 20 on 4 workers, and from s = 30 to s = 40 on 8 workers.

• On 4 workers, there is a slight speedup when applying staleness 5, compared with staleness
0. This is consistent with the observation in the case of DNNs, where modest level of
staleness creates a helpful momentum that accelerates the convergence for certain SGD
optimization and its variants (Fig. 2.4).

The results from MF are quite consistent with those from DNNs. We continue to see that stale-
ness negatively impacts the convergence, and its effects are amplified by the number of workers.
Staleness also introduces higher variance in the convergence, similar to the case of DNNs.

29

(a)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 0

s = 5

s = 10

s = 15

MF(4 workers)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 20

s = 30

s = 40

s = 50

MF (4 workers)(b)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 0

s = 5

s = 10

s = 15

MF (8 workers)(c)

0 100 200 300 400 500 600 700 800
Num Batches

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 L

o
ss

s = 20

s = 30

s = 40

s = 50

(d) MF (8 workers)

Figure 2.9: Convergence of Matrix Factorization (MF) using 4 and 8 workers, with staleness
ranging from 0 to 50. We use the number of batches processed across all workers as the logical
time. Shaded area represents 1 standard deviation around the means (represented by the curves)
computed on 5 randomized runs.

30

num workers=4 num workers=80
100
200
300
400
500
600
700
800

Nu
m

 B
at

ch
es

 to
 R

ea
ch

Tr
ai

ni
ng

 L
os

s 0
.5

s = 0
s = 5
s = 10
s = 15

s = 20
s = 30
s = 40
s = 50

Figure 2.10: The number of batches to reach training loss of 0.5 for Matrix Factorization (MF)
optimized by SGD. Mean and error bar (representing 1 standard deviation) are based on 5 ran-
domized runs.

num workers=4 num workers=80
2
4
6
8

10
12
14
16

No
rm

al
ize

d
Nu

m
 B

at
ch

es
to

 R
ea

ch
 T

ra
in

in
g

Lo
ss

 0
.5

s = 0
s = 5
s = 10
s = 15

s = 20
s = 30
s = 40
s = 50

Figure 2.11: The number of batches to reach training loss of 0.5 for Matrix Factorization (MF),
normalized by the values of staleness 0 of each worker setting, respectively. This is the normal-
ized version of Fig. 2.10.

31

2.3.7 Variational Autoencoder with Staleness

Variational Autoencoders (VAEs), unlike MLR, DNNs and MF, are generally solved by varia-
tional inference methods that make use of a combination of optimization and sampling (Algo-
rithm 4). Due to this unique hybrid, VAE’s solution path has two sources of stochasticity: (1) the
randomized mini-batch of data, and (2) the random variables independently sampled to generate
gradient updates. We use symmetric encoder and decoder architecture, and therefore L hidden
layer implies L hidden layers in the encoder network and L hidden layers in the decoder net-
work, for a combined 2L weight layers. We use test loss 130 as the convergence target, which is
empirically chosen based on the convergence curves (not shown).

Fig. 2.12 shows the number of batches to reach test loss 130 by Variational Autoencoders (VAEs)
on 1 worker, under staleness 0 to 16 and 4 SGD variants. We consider VAEs with depth 1, 2,
and 3 (the number of layers in the encoder and decoder networks). The number of batches are
normalized by s = 0 for each VAE depth, respectively. We make a number of observations:

• Staleness increases convergence difficulty for most considered scenarios. This trend is
most prominent in SGD and Adam, and mildly present in Adagrad. SGD with momentum
exhibits a high variance (Fig. A.5 in the appendix) and thus does not show a consistent
trend.

• Deeper VAE exhibits much higher sensitivity to staleness, especially in comparison with
DNNs (Fig. 2.4). This is the case even considering that VAE with depth 3 has 6 weight
layers, which has comparable number of model parameters and network architecture to
DNNs with 6 layers. For example, when optimized by the Adam optimizer, VAEs with
depth 3 under s = 8 requires 17.5x more batches to converge than under s = 0. On the
other hand, DNNs with 6 layers optimized by the Adam optimizer takes only <5x more
batches to converge under s = 16 than under s = 0 (Fig. 2.5). This high sensitivity of
Adam on VAE is a robust phenomenon, since the error bars in the unnormalized plots
(Fig. A.5 in the appendix).

• Adagrad interestingly is not able to reach the target test loss (it only reaches∼136.3 within
the experiment window). This is likely due to two factors: (1) Adagrad shrinks learning
rate more aggressively than SGD and Adam. With higher level of stochasticity in VAEs
(due to the additional sampling stochasticity) this may lead to overly-diminished learning
rates. (2) VAE with depth 1 has limited model capacity compared with depth 2 and 3.
While deeper networks are more challenging to optimize, they can achieve lower loss when
properly optimized. The trade-off may lead to the phenomenon that Adagrad reaches target
test loss with depth 2 and 3 but not 1.

Similar to DNNs (Section 2.3.5), we investigate the gradient coherence during the convergence.
Fig. 2.13 shows the gradient coherence of VAEs with varying depths optimized by SGD on 1
worker with no staleness (s = 0). (We provide a similar plot for the Adam optimizer in the
appendix Fig. A.4). Here are a number of observations:

• Similar to DNNs, deeper architecture’s higher sensitivity to staleness (Fig. 2.12(a)) is con-

32

s=0 s=2 s=4 s=8 s=16
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

Depth 1

Depth 2

Depth 3

(a) SGD

s=0 s=2 s=4 s=8 s=16
0

10

20

30

40

50

60

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(b) Adam

s=0 s=2 s=4 s=8 s=16
0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(c) SGD with Momentum

s=0 s=2 s=4 s=8 s=16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 N

u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

(d) Adagrad

Figure 2.12: The number of batches to reach test loss 130 by Variational Autoencoders (VAEs)
on 1 worker, under staleness 0 to 16. We consider VAEs with depth 1, 2, and 3 (the number
of layers in the encoder and the decoder networks). The numbers of batches are normalized by
s = 0 for each VAE depth, respectively. Configurations that do not converge to the desired test
loss are omitted, such as Adam optimization for VAE with depth 3 and s = 16. The unnormalized
version is provided in the appendix (Fig. A.5).

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Depth 1

Depth 2

Depth 3

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Depth 1

Depth 2

Depth 3

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Gradient Coherence: VAE with SGD on 1 worker (batch 0~512)

Gradient Coherence: VAE with SGD on 1 worker (batch 25088~25600)(b)

(a)

Figure 2.13: Gradient coherence for VAEs with varying depths (depth 1∼3) optimized by SGD
optimization using 1 worker with no staleness (s = 0). The x-axis is k = 1, ..., 32. Here we show
cosine distance up to 32 batches back. (a) is a snapshot taken from the first 512 batches, while
(b) is taken from 512 batches starting from batch 25088 after algorithms have converged. The
error bars around the means represent 1 standard deviation computed from 5 randomized runs.

34

sistent with the lower gradient coherence observed in Fig. 2.13(a).

• The cosine distance is rather stable across the time steps k, both for the initial phase of the
algorithm (Fig. 2.13(a)) and after convergence (Fig. 2.13(b)). This is largely similar to the
observation for DNNs (Fig. 2.8). However, the magnitude is much larger in the case of
VAEs than DNNs. For example, after convergence has taken place, the cosine distances
are generally around 0.8 ∼ 1 for VAEs, whereas the largest magnitude for DNNs is around
0.5 (Fig. 2.8). This is consistent with the previous findings that VAEs are more sensitive to
staleness than DNNs, given the same depths. The lower gradient coherence is due to the
additional source of stochasticity from sampling.

• Unsurprisingly, at the beginning of the algorithm, the gradient coherence exhibits a clear
gap between various depths, with depth 1 the lowest and depth 3 the highest. This is sim-
ilar to the findings from DNNs. However, after convergence, this differences vanishes,
resulting in similar level of cosine distances across varying depths. The same pattern can
be observed for VAE optimized by Adam (Fig. A.4 in the appendix). This may be a unique
property of gradients derived from variational inference. Indeed, after the algorithms have
largely converged, the primary source in the variance of gradients comes from the stochas-
ticity in sampling, which is independent of the model architecture. As a result, the gradient
coherence becomes independent of the depths of the networks.

VAEs reveal interesting similarity and differences compared with MLR, DNNs, and MF. Like
MLR, DNNs, and MF, VAE’s convergence is negatively impacted by staleness, to a higher de-
gree than DNNs of comparable model capacity. The higher sensitivity to staleness due to the
increasing depths of the model can be explained by the lower gradient coherence, similar to
DNNs. On the other hand, the gaps in gradient coherence due to different depths of the network
vanish after convergence happens. This appears to be a unique property due to the variational
inference that introduces sampling in the optimization routine.

2.3.8 Latent Dirichlet Allocation with Staleness

All previous models rely on variants of SGD optimization. We now turn to Latent Dirichlet
Allocation (LDA) and apply Gibbs sampling, which is the predominant method to estimate LDA
parameters and variables.

A key hyperparameter in LDA is the number of topics K, and the model size is linear in K. We
use D

num iterations×P as the batch size, where D is the number of documents, P is the number of
workers, and num iterations = 10. In this way we clock 10 times for each data pass, regardless
of the number of workers. Given this iteration schedule, the maximum staleness s = 20 implies
that updates can be up to 2 data passes behind.

Fig. 2.14 and Fig. 2.15 show the convergence of LDA log likelihood using 10 and 100 topics,
respectively, with respect to the number of documents processed by Gibbs sampling, with varying
staleness and the number of workers. We make a number of observations:

35

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15 1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15
Lo

g
 L

ik
e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

(a) LDA (10 topics, 2 workers)

1e5

(b) LDA (10 topics, 4 workers)

(c)

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15 1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

1.60

1.55

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

Lo
g
 L

ik
e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

(d)LDA (10 topics, 8 workers) LDA (10 topics, 16 workers)

Figure 2.14: Convergence of LDA log likelihood using 10 topics with respect to the number of
documents processed by Gibbs sampling, with varying staleness and number of workers. The
shaded regions are 1 standard deviation around the means (curves) based on 5 randomized runs.

• Unlike SGD-based algorithms, the convergence curves of Gibbs sampling are highly smooth,
even under high staleness and large number of workers. This can be attributed to the log
likelihood objective function, which is the sum over many terms (Eq. (2.1)). Since in each
sampling we only change the count statistics nik, n

w
k based on a portion of the corpus, the

objective value will generally change smoothly.

• Staleness levels under a certain threshold (s ≤ 10 all result to convergence, following in-
distinguishable log likelihood trajectory, regardless of the number of topics (K = 10, 100)
or the number of workers (2–16 workers). Also, there is very minimal variance in those
trajectories. However, for higher levels of staleness (s ≥ 15), Gibbs sampling fails to con-
verge to the same asymptote. The convergence trajectories are distinct, and are sensitive
to the number of topics and the number of workers. There appears to be a “phase transi-
tion” at a certain staleness level, possibly independent of number of workers and number

36

(a) LDA (100 topics, 2 workers) (b) LDA (100 topics, 4 workers)

(c) (d)LDA (100 topics, 8 workers)

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2
Lo

g
 L

ik
e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7

1e5

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g
 L

ik
e
lih

o
o
d

1e7

0 1 2 3 4 5
Number of Documents

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7
LDA (100 topics, 16 workers)

Figure 2.15: Convergence of LDA log likelihood using 100 topics with respect to the number
of documents processed by Gibbs sampling, with varying staleness and the number of workers.
The shaded regions are 1 standard deviation around the means (curves) based on 5 randomized
runs.

of topics, that creates two distinct categories of convergence behaviors.8

• The way convergence fails is also interesting. All failures reach certain apex in log like-
lihood, before degrading in a linear fashion. The value of the inflection point appears to
be influenced by the number of workers, as evident in Fig. 2.15. There is also a point at
log likelihood value around−1.8× 107 where the failure cases depart from the converging
cases. Prior to that point the convergence trajectories are virtually indistinguishable. These
warrant further investigation into the dynamics of Monte Carlo Markov Chain (MCMC)
and are beyond the scope of this thesis.

8We leave the investigation into such a transition as future work.

37

2.4 Staleness and ML Algorithms

Staleness is a key parameter that governs the convergence of all the studied ML models and al-
gorithms, and possibly all ML algorithms that are based on fixed point iterations. The effects
of staleness are also highly problem dependent. In Deep Neural Networks, the staleness slows
down deeper models much more than shallower counterparts. When DNNs reduce to MLR, a
convex objective, staleness in most parts has minimal effects. For problems with more complex
structures like Variational Autoencoders, the convergence slow down due to staleness is much
more prominent. Certain stochastic algorithms are also much more sensitive to staleness than
others. For example, Adam optimization performs well under low staleness, but can be drasti-
cally slowed down by high staleness. SGD, on the contrary, are overall robust against staleness,
though its absolute convergence speed is not excellent compared with Adam and other advanced
learning rate schedules. Outside of optimization, Gibbs sampling on Latent Dirichlet Allocation
(LDA) appears to be highly resistant to staleness up to a certain level, and then undergoes a rapid
degradation.

The implications for distributed ML systems are clear from our findings. To achieve actual
speed-up, as measured by the wall clock time to convergence, in ML convergence, any dis-
tributed ML system needs to overcome the slow-down from staleness. In other words, they must
carefully trade off between system throughput gains against the negative impacts of staleness.
Many ML methods indeed demonstrate certain robustness against low staleness, which should
offer optimization opportunities for system designs. Furthermore, it is paramount to implement
the system in a way that minimizes the staleness, such as using a more suitable communication
protocol or network bandwidth management. We shall explore some of these ideas in the sequel,
as well as providing further theoretical understanding of the impacts of staleness on classes of
ML algorithms.

38

Chapter 3

Analysis of Consistency Models

In distributed systems, a consistency model is a contract specifying the system behaviors which
programmers can use to reason the distributed execution. These consistency models are usually
defined in terms of the ordering of the operations, such as read and update operations. Conven-
tional consistency models ranges from strong consistency (reader always gets all the previous
updates) to the very weak eventual consistency (reader will get some of the updates but no guar-
antee on which ones or any), with various models in between. Consistency models are critical in
distributed system design as they offer trade-offs between consistency, system performance, and
availability.

A key idea to achieve efficient large-scale distributed ML is to carefully trade off parameter
consistency for increased parameter read throughput (and thus faster algorithm execution), in a
manner that guarantees the final output of an ML algorithm is still correct (meaning that it has
reached a locally-optimal answer). This is possible because ML algorithms are error-tolerant:
ML algorithms will converge to a local optimum even when there are errors in the algorithmic
procedure itself (such as stochasticity in randomized methods).

In this chapter we present the consistency models commonly used in data parallel ML. We pro-
vide extensive analysis of the ML convergence behaviors under the studied consistency models,
beyond the existing correctness guarantees. We then use the gleaned insights to improve a con-
sistency model to enables ML programs to reach their solution more quickly.

3.1 Preliminaries

Due to the iterative nature of ML algorithms, ML programs have natural logical clocks, such as a
mini-batch or an iteration of the algorithm. Most of the consistency models are defined according
to this logical clock, distinct from the global wall clock time (Fig. 3.1).

We use the term “worker” to denote a logical computing unit, which can be a thread or a machine
or other suitable computing devices.

39

Figure 3.1: Logical clock is distinct from global time.

A key concept in our study is the staleness. In the sequential execution, any update to parameters
is immediately visible to the subsequent computation. Under the distributed execution, however,
it is highly inefficient to enforce such a requirement. Therefore, when the model parameters are
shared and updated by multiple workers, there are pending updates generated by one worker that
are not visible to all workers. This is the staleness inevitable in distributed ML execution. Stale-
ness, however, does not necessarily leads to inconsistent views of the shared model parameters.
In the sequel we will see that some consistency models like Bulk Synchronous Parallel maintain
globally consistent parameter views through global synchronization points which communicate
and apply these pending updates all at once to all workers.

It is also possible that the staleness leads to inconsistent views of the shared parameters. The
insight is that, to an iterative-convergent ML algorithm, inconsistent parameter reads have essen-
tially the same effect as errors due to the algorithmic procedure — implying that convergence to
local optima can still happen even under inconsistent reads, provided the the degree of inconsis-
tency is carefully controlled.

3.2 Consistency Models for Parameter Servers

We now introduce the consistency models commonly used in distributed ML execution.

3.2.1 Bulk Synchronous Parallel (BSP)

The Bulk Synchronous Parallel (BSP) model, one of the most commonly used synchronization
models, requires all workers to see the updates from all other workers in previous clocks before
proceeding to the next clock. This is illustrated in Fig. 3.2. This guarantees that all workers have
a consistent view of the shared model parameters at the beginning of each clock. Note that this
is not the same as sequential execution, as updates produced in the current clock is not visible in
the current clock, but only become available in the next clock.

Even though BSP is conceptually simple, it faces certain challenges. First, because the updates
generated in a clock is usually communicated after the computation ends, and the next clock
cannot start until a worker has received all other workers’ updates, the communication in general

40

Figure 3.2: An illustration of Bulk Synchronous Parallel (BSP) execution. Worker 2 is blocked
at the end of clock 2 as other workers have not completed and communicated updates for clock
2.

does not overlap with the computation and can block the computation. Furthermore, BSP re-
quires the workers to move in lock steps, which can suffer when one of the workers is a straggler.
This is a common problem especially in a large cluster, and is well-documented [134]. Frame-
works that uses BSP include MapReduce frameworks such as Hadoop [8] and Spark [154] and
certain key-value stores [116]. Certain distributed graph computation engines such as GraphLab [101]
and Pregel [102] also employs BSP.

3.2.2 Total Asynchronous Parallel (TAP)

Under total asynchronous parallel (TAP) execution, all workers run at their own pace. This
eliminates any opportunity for blocking and can fully overlap computation with communication
(since computation can proceed without any requirement on the updates being communicated).
However, since there can be arbitrary delays in the network, it is difficult to reason the correctness
of ML programs. In fact, some TAP systems assumes some bounds on the update delay in
order to derive theoretical correctness [120]. Certain systems indeed employ TAP execution [6,
100] with some empirical success. These systems rely on implicitly bounded delays during the
execution which is not part of the formal system specification.

3.2.3 Stale Synchronous Parallel (SSP)

Stale Synchronous Parallel (SSP) is a class of bounded-staleness consistency models. SSP inter-
polates between BSP and TAP by providing a looser but still bounded staleness guarantee. Given
P workers, SSP assigns each worker a clock cp that is initially zero. Then, each worker repeats
the following operations: (1) perform computation using shared parameters x stored in the PS,
(2) make additive or communicative updates u to the PS, and (3) advance its own clock cp by

41

1. SSP allows the fastest worker to be ahead of the slowest worker by no more than staleness
clocks. In other words, given a worker at logical clock c, reading any parameter must return a
value that includes all updates computed before and at clock c − s − 1, where s is the staleness
threshold. Fig. 3.3 illustrates the SSP execution. SSP subsumes both BSP (staleness s = 0) and
TAP (s = ∞). For a given network condition and size of shared parameters, small staleness
blocks computation more often, but maintains less stale parameter views, while large staleness
in general reduces wait time for communication. By tuning the staleness bound, SSP can trade
off between parameter freshness and system throughput.

Figure 3.3: An illustration of Stale Synchronous Parallel (SSP) execution with a staleness bound
s = 3. The black and green blocks denote the updates that are visible to worker 2; the green
updates are visible due to read-my-write consistency. The blue updates are not necessarily visible
to worker 2 under SSP. In order to satisfy SSP constraint, worker 2 is blocked at the end of clock
4 because worker 1 has not finished clock 1.

Eager Stale Synchronous Parallel (ESSP)

There are multiple update communication strategies that meet the SSP condition. For example,
the communication can occur lazily, only when the computation is blocked. We present Eager
SSP (ESSP) as a class of implementations that eagerly propagate the updates to reduce empirical
staleness beyond what is required by SSP. Fig. 3.4 illustrates the execution under ESSP. ESSP
does not provide new guarantees beyond SSP, but in the sequel we will show that by reducing
the average staleness ESSP achieves faster convergence, both theoretically and empirically.

3.2.4 Value-bounded Asynchronous Parallel (VAP)

Value-bounded Asynchronous Parallel (VAP) is an idealized consistency model that approxi-
mates the strong consistency by bounding the difference in magnitude between the strongly con-
sistent view of values on the parameter server and the actual parameter views on the workers.

42

Figure 3.4: An illustration of Eager Stale Synchronous Parallel (ESSP) execution. The execution
is similar to that of SSP (Fig. 3.3), except that updates are communicated eagerly as shown in
the red blocks.

Formally, let x represent all model parameters, and assume that each worker in the ML algorithm
produces additive updates (x ← x + u, where u is the update).1 Given P workers, we say that
an update u is in transit if u has been seen by P − 1 or fewer workers — in other words, it is yet
visible by all workers. Conversely, update u is no longer in transit once seen by all workers. The
VAP requires the following condition:

VAP condition: Let up,c be the updates from worker p in clock c that are in transit, and
up :=

∑
i up,i. VAP requires that, whenever any worker performs a computation involving

the model variables x, the condition ||
∑

p up||∞ ≤ vthr holds for a specified (and possibly time-
varying) value bound parameter vthr for all workers p, where ||a||∞ := maxj aj is the max-norm.
In other words, the aggregated in-transit updates from all workers cannot be too large.

The VAP condition is difficult to be directly implemented efficiently in practice: before any
worker can perform computation on x, it must ensure that the in-transit updates from all other
workers sum to at most vthr component-wise due to the max-norm. This poses a chicken-and-egg
conundrum: for a worker to ensure the VAP condition holds, it needs to know the updates from
all other workers — which, in general, requires the same amount of communication as strong
consistency. While it may be possible to resort to clock-based mechanism to approximate VAP,
direct implementation of VAP is difficult to achieve for a generic PS.

1This is common in algorithms such as gradient descent (u being the gradient) and certain sampling methods.

43

3.3 Theoretical Analysis

In this section, we theoretically analyze VAP and ESSP, and show how they affect ML algorithm
convergence. Since ESSP maintains the same guarantees as SSP, our ESSP results naturally
extend to the SSP settings. The detailed proofs are presented in the appendix. We ground our
analysis on stochastic gradient descent (SGD), as SGD and its variants are the main algorithms
for large-scale optimization programs. Our results characterize the convergence of SGD under
VAP and ESSP.

3.3.1 SGD for Low Rank Matrix Factorization

We present SGD in the context of a matrix factorization (MF) problem. MF involves decom-
posing an N × M matrix D into two low rank matrices L ∈ RN×K and R ∈ RK×M such
that LR ≈ D gives the prediction of missing entries in D, where K � min{M,N} is a user-
specified rank. Section 2.2.1 provides an overview of MF formulation and the SGD updates.
Since L,R are being updated by each gradient, we store them in the parameter server to allow
all workers access them and make additive updates. The data Dobs are partitioned into worker
nodes and stored locally. See Algorithm 3 for further details.

3.3.2 Preliminaries

We consider the problem in the online learning framework. At each step t the algorithm plays a
parameter estimate xt, and afterwards a loss is revealed ft(x), which depends on the loss function
and the presented data. The familiar empirical risk minimization problem minx

∑
i fi(x) can be

cast to the online learning setting by observing that SGD algorithm simply iterates through the
data and receives losses for each data based on the current parameter estimate xt, analogous to
the online learning framework.

In this online learning framework we are interested in the difference between the actual incurred
loss and the loss achieved by the best possible static parameter estimate x∗. We formalize this
notion as regret, defined over a sequence X = {x1, x2, ..., xT}:

R[X] :=
T∑
t=1

ft(xt)︸ ︷︷ ︸
actual incurred loss

− inf
x

T∑
t=1

ft(x)︸ ︷︷ ︸
loss by best static predictor

=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗)

where we assume the sequence length T . When the regret grows sublinearly, such as R[X] =

O(
√
T), then we have the average loss at each step (each datum) R(X)

T
→ 0 asymptotically.

44

3.3.3 Theorems for VAP Consistency

We formally establish VAP computation model as follows: given P workers that produce updates
at regular intervals which we call “clocks”, and let up,c ∈ Rn be the update from worker p at clock
c applied to the system state x ∈ Rn via x ← x + up,c. Consider the update sequence ût that
orders the updates based on the global time-stamp they are generated. We can define “real-time
sequence” x̂t as

x̂t := x0 +
t∑

t′=1

ût′

assuming all workers start from the agreed-upon initial state x0. (Note that x̂t is different from the
parameter server view as the updates from different workers can arrive the server in a different
order due to the network.) Let x̆t be the noisy view some worker w sees when generating update
ût, i.e., ût := G(x̆t) for some function G. The VAP condition guarantees

||x̆t − x̂t||∞ ≤ vt =
v0√
t

(3.1)

where we require the value bound vt to shrink over time from the initial bound v0. Notice that
x̆t − x̂t is exactly the updates in transit with respect to worker w. We make mild assumptions to
avoid pathological cases.2 We now present the main theorems for SGD under VAP consistency.
Theorem 3.1 (SGD under VAP, convergence in expectation). Given convex function f(x) =∑T

t=1 ft(x) such that components ft are also convex. We search for minimizer x∗ via stochas-
tic gradient descent on each component ∇ft with step-size η̆t close to ηt = η√

t
such that the

update ût = −η̆t∇ft(x̆t) is computed on noisy view x̆t. The VAP bound follows the decreas-
ing vt described above. Under suitable conditions (ft are L-Lipschitz and bounded diameter
D(x‖x′) ≤ F 2),

R[X] :=
T∑
t=1

ft(x̆t)− f(x∗) = O(
√
T)

and thus R[X]
T
→ 0 as T →∞.

Theorem 3.1 implies that the worker’s noisy VAP view x̆t converges to the global optimum x∗,
as measured by f , in expectation at the rate O(T−1/2). The analysis is similar to that in [65], but
we use the real-time sequence x̂t as our reference sequence and VAP condition instead of SSP.
The proof is presented in Appendix. Loosely speaking, Theorem 3.1 shows that VAP execution
is unbiased. We now present a new bound on the variance of the convergence.

2To avoid pathological cases where a worker is delayed indefinitely, we assume that each worker’s updates are
finitely apart in sequence ût. In other words, all workers generate updates with a sufficient frequency. For SGD, we
further assume that each worker updates its step-sizes sufficiently often that the local step-size η̆t = η√

t−r for some
bounded drift r ≥ 0 and thus η̆t is close to the global step size schedule ηt = η√

t
.

45

Theorem 3.2 (SGD under VAP, bounded variance). Assuming f(x), η̆t, and vt similar to theo-
rem 3.1 above, and further assume that f(x) has bounded and invertible Hessian, Ω∗ defined at
optimal point x∗. Let Var t := E[x̆2

t]− E[x̆t]2, and ğt = ∇ft(x̆t) be the gradient, then:

Var t+1 = Var t − 2cov(x̂t,E∆t [ğt]) +O(δt) (3.2)
+O(η̆2

t ρ
2
t) +O∗δt (3.3)

near the optima x∗. The covariance cov(a, b) := E[aTb] − E[aT]E[b] uses inner product.
δt = ||δt||∞ and δt = x̆t − x̂t. ρt = ||x̆t − x∗||. ∆t is a random variable capturing the
randomness of update ût = −ηtğt conditioned on x̂t (see the appendix).

cov(x̂t,E∆t [ğt]) ≥ 0 in general as the change in x̂t and average gradient E∆t [ğt] are of the same
direction. Theorem 3.2 implies that under VAP the variance decreases in successive iterations for
sufficiently small δt, which can be controlled via VAP threshold vt. However, the VAP condition
requires tight synchronization as δt → 0. This motivates our following analysis of the SSP
model.

3.3.4 Theorems for SSP Consistency

We return to the (p, c) indexing such that up,c is the update generated by worker p at clock c.
Under the SSP worker p at clock c only has access to a noisy view x̃p,c of the system state (x̃ is
different from x̆, the noisy view in VAP). Update up,c = G(x̃p,c) is computed on the noisy view
x̃p,c for some function G(·). Assuming all workers start from the agreed-upon initial state x0, the
SSP condition is:

SSP Bounded-Staleness (formal): For a fixed staleness parameter s, the noisy state x̃p,c is
equal to

x̃p,c = x0 +

[
c−s−1∑
c′=1

P∑
p′=1

up′,c′

]
︸ ︷︷ ︸

guaranteed pre-window updates

+

 ∑
(p′,c′)∈Sp,c

up′,c′

︸ ︷︷ ︸

best-effort in-window updates

,

for some Sp,c ⊆ Wp,c = {1, ..., P}×{c− s, ..., c+ s−1} which is some subset of updates in the
2s window issued by all P workers during clock c − s to c + s − 1. The noisy view consists of
(1) guaranteed pre-window updates for clock 1 to c − s − 1 (the black updates in Fig. 3.3), and
(2) best-effort updates indexed by Sp,c (the red updates in Fig. 3.4).3 We introduce a clock-major
index t (Fig. 3.5):

x̃t := x̃(t mod P),bt/P c ut := u(t mod P),bt/P c

3In contrast to [65], we do not assume read-my-write.

46

and analogously for St and Wt. We can now define a reference sequence (distinct from x̂t in
VAP) which we informally refers to as the “true” sequence:

xt = x0 +
t∑

t′=0

ut′ (3.4)

The sum loops over workers (t mod P) and clocks bt/P c . Notice that this sequence is distinct
to the server view.

Figure 3.5: The ordering of the updates for analyzing SSP.

Given the update sequence, we now present the main theorems for SSP.
Theorem 3.3 (SGD under SSP, convergence in expectation [65], Theorem 1). Given convex
function f(x) =

∑T
t=1 ft(x) with suitable conditions as in Theorem 3.1, we use gradient descent

with updates ut = −ηt∇ft(x̃t) generated from noisy view x̃t and ηt = η√
t
. Then

R[X] :=
T∑
t=1

ft(x̃t)− f(x∗) = O(
√
T)

and thus R[X]
T
→ 0 as T →∞.

Theorem 3.3 is the SSP counterpart of Theorem 3.1 for VAP. The analysis of Theorem 3.3 only
uses the worst-case SSP bounds. However, in practice many updates are much less stale than the
SSP bound, which we empirically verify in the sequel.

We now use moment statistics to further characterize the convergence. We begin by decomposing
x̃t. Let ūt := 1

P (2s+1)

∑
t′∈Wt

||ut′||2 be the average of `2 norm of the updates. We can write the
noisy view x̃t as

x̃t = xt + ūtγt (3.5)

where γt ∈ Rd is a vector of random variables whose randomness lies in the network communi-
cation. Note that the decomposition in Eq. (3.5) is always possible since ūt = 0 iff ut′ = 0 for

47

all updates ut′ in the 2s window. Given the SSP condition and L, the Lipschitz constant such that
ft are L-Lipschitz, we can bound ūt and γt:
Lemma 3.1. ūt ≤ η√

t
L and γt := ||γt||2 ≤ P (2s+ 1).

Therefore µγ = E[γt] and σγ = var(γt) are well-defined. We now provide an non-asymptotic
exponential tail-bound characterizing convergence in finite steps.
Theorem 3.4 (SGD under SSP, convergence in probability). Given convex function f(x) =∑T

t=1 ft(x) such that components ft are also convex. We search for minimizer x∗ via gradi-
ent descent on each component ∇ft under SSP with staleness parameter s and P workers. Let
ut := −ηt∇tft(x̃t) with ηt = η√

t
. Under suitable conditions (ft are L-Lipschitz and bounded

divergence D(x||x′) ≤ F 2), we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ 2

2η̄Tσγ + 2
3
ηL2(2s+ 1)Pτ

}
where R[X] :=

∑T
t=1 ft(x̃t)− f(x∗), and η̄T = η2L4(lnT+1)

T
= o(T).

This means that R[X]
T

converges to O(T−1/2) in probability with an exponential tail-bound. Also
note that the convergence is faster for smaller µγ and σγ . This key result implies that the rate of
convergence is faster when there is less staleness and when the degree of staleness across time is
more concentrated (smaller variance). Therefore if the underlying implementation can system-
atically reduce the staleness, the average empirical staleness will be small and concentrated on
small staleness values. This theoretical result is consistent with the intuition that less staleness is
better. We point out that this result demonstrates that convergence quality depends on the runtime
staleness distributions, manifested in µγ, σγ , and not simply the maximal bound on the staleness
(the staleness parameter s). In that sense this is a stronger statement than the worst-case bounds
in Theorem 3.3.

To derive the variance bounds, we need a few mild assumptions on the staleness γt:
Assumption 3.1. γt are i.i.d. random variable with well-defined mean µγ and variance σγ .
Assumption 3.2. γt is independent of xt and ut.

Assumption 1 is satisfied by Lemma 3.1, while Assumption 2 is valid since γt are only influ-
enced by the computational load and network bandwidth at each machine, which are themselves
independent of the actual values of the computation (ut and xt). We now present an SSP variance
bound.
Theorem 3.5 (SGD under SSP, decreasing variance). Given the setup in Theorem 3.4 and as-
sumption 1-2. Further assume that f(x) has bounded and invertible Hessian Ω∗ at optimum x∗
and γt is bounded. Let Var t := E[x̃2

t]− E[x̃t]2, gt = ∇ft(x̃t), ηt be the learning rate, then for x̃t
near the optima x∗ such that ρt = ||x̃t − x∗|| and ξt = ||gt|| − ||gt+1|| are small:

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt) (3.6)
+O(η2

t ρ
2
t) +O∗γt (3.7)

48

where covariance cov(a, b) := E[aTb] − E[aT]E[b] uses inner product. O∗γt are high order
(≥ 5th) terms involving γt = ||γt||∞. ∆t is a random variable capturing the randomness of
update ut conditioned on xt.

where ∆t is defined in the Appendix. As argued before, cov(xt,E∆t [gt]) ≥ 0 in general. There-
fore the theorem is a key stability result that implies that Var t monotonically decreases when
SGD is close to an optimum (small ρt and ξt). This is important to ensure that the convergence
will experience decreasing fluctuation from both the algorithm and system delays.

3.3.5 Comparison of VAP and ESSP

From Theorem 3.2 and 3.5 we see that both VAP and (E)SSP generally decrease the variance of
the model parameters over iterations. However, VAP convergence is much more sensitive to its
tuning parameter (the VAP threshold) than (E)SSP, whose tuning parameter is the staleness s.
This is evident from the O(δt) term in Eq. 3.3, which is bounded by the VAP threshold. In con-
trast, (E)SSP’s variance only involves staleness γt in high order terms O∗γt (Eq. 3.7), where γt is
bounded by the SSP staleness parameter (Lemma 3.1). This implies that staleness-induced vari-
ance vanishes quickly in (E)SSP. The main reason for (E)SSP’s weak dependency on staleness is
because it “factors in” the SGD step size: as the algorithm approaches an optimum, the updates
automatically become more fine-grained (i.e. their magnitude decreases), which is conducive for
lowering variance. On the other hand, the VAP threshold forces a minimum size on updates, and
without adjusting this threshold accordingly, the VAP updates cannot become more fine-grained.

An intuitive analogy is that of postmen: VAP is like a postman who only ever delivers mail
above a certain weight threshold δ. (E)SSP, on the other hand, is like a postman who delivers
mail late, but no later than s days. Intuitively, the (E)SSP postman is more reliable than the
VAP postman due to his regularity. The only way for the VAP postman to be reliable, is to
decrease the weight threshold. This is important when the algorithm approaches convergence,
because the algorithm’s updates become diminishingly small. However, there are two drawbacks
to decreasing δ: first, much like step-size tuning, it must be done at a carefully controlled rate
— this requires either specific knowledge about the ML problem, or a sophisticated, automatic
scheme (that may also be domain-specific). Second, as δ decreases, VAP can produce more
frequent communication and reduce the throughput.

In contrast to VAP, ESSP does not suffer as much from these drawbacks, because: (1) the SSP
family has a weaker theoretical dependency on the staleness threshold (than VAP does on its
value-bound threshold), thus it is usually unnecessary to decrease the staleness as the ML algo-
rithm approaches convergence. This is evidenced by [65], which achieved stable convergence
even though they did not decrease staleness gradually during ML algorithm execution. (2) Be-
cause ESSP proactively pushes out fresh parameter values, the empirical distribution of stale
reads usually exhibit very low staleness, regardless of the actual staleness threshold used, a sub-
ject we shall revisit in the sequel. Hence, fine-grained tuning of the staleness threshold is rarely
necessary under ESSP.

49

Get(key)
Read a parameter indexed by key.
GetRow(row key)
Read a row of parameters indexed by row key.
A row consists of a static group of parameters.
Inc(key, delta)
Increment the parameter key by delta.
IncRow(row key, deltas)
Increment the row row key by deltas.
Clock()
Signal end of iteration.

Table 3.1: Bösen Client API. The API is similar to key-value interfaces. The user program can
read parameters via Get and GetRow (batched reads) and make (additive) updates via Inc and
IncRow (batched updates). Since bounded staleness is defined with respect to logical clock, the
user program needs to signal the completion of a logical unit of work via Clock.

3.4 Bösen System Overview

The theory suggests that an ESSP implementation using eager parameter updates should out-
perform a SSP implementation using stalest parameters, when network bandwidth is sufficient.
To verify this, we implement ESSP in Parameter Server framework (Section 1.2.2) called Bösen.
Bösen is a parameter server (PS) with bounded staleness parallel (Section 3.2.3).4 Because Bösen
also satisfies bounded staleness model’s requirements, Bösen inherits the formal convergence
guarantees, and enjoys high iteration throughput that is better than Bulk Synchronous Parallel
and close to Totally Asynchronous Parallel (TAP) systems.

3.4.1 API and Bounded Staleness Consistency

Bösen PS consists of a client library and parameter server partitions (Figure 3.6). The client
library provides the Application Programming Interface (API) for reading/updating model pa-
rameters, while the PS partition stores and maintains the model parameters. In terms of usage,
Bösen closely follows other key-value stores: once a ML program process is linked against the
client library, any thread in that process may read/update model parameters concurrently. The
user runs a Bösen ML program by invoking as many server partitions and ML application com-
pute processes (which use the client library) as needed, across multiple machines.

4“The system is named after the piano maker Bösendorfer.

50

Bösen Client API

Bösen’s API abstracts consistency management and networking operations away from applica-
tion, and presents a simple key-value interface (Table 3.1). The application may use Get()
read parameters, and Inc() to increment the parameter by some delta. To signal progress with
respect to logical clock, the client application invokes Clock() at the end of a unit of work.
Each thread is considered a worker and calls Clock() separately. We use the term “clock” and
“iteration” interchangeably in this chapter. In order to exploit locality in ML applications and
thus amortize the overhead of operating on concurrent data structures and network messaging,
Bösen allows applications to statically partition the parameters into batches called rows. A row is
a set of parameters that are usually accessed together. A row can also be the unit of communica-
tion between client and server: RowGet() is provided to read a row by its key, and RowInc()
applies a set of deltas to multiple elements in a row. ML applications can use one of the built-in
dense and sparse row data types, or customize the row data structure for maximal flexibility. A
row of parameters can flexibly represent different objects in ML applications. For example, in
LDA, rows are word-topic vectors. In MF, rows in a table are rows in the factor matrices.

Bounded Staleness Consistency

Bösen client library maintains model parameter cache Ã on each worker machine locally to avoid
repeated remote reads of the model parameters A on the server. These synchronization of model
replicas are maintained by consistency managers on the worker nodes (client library) and the
server. Together they enforce consistency requirements on the local parameter image Ã, thus
ensuring correct ML program execution even under the worst-case delays. The ML program’s
tolerance to staleness is specified as the staleness threshold s, a non-negative integer defined by
the user.

The consistency manager works by blocking client process worker threads when reading param-
eters, until the local model image Ã has been updated to meet the consistency requirements.
Bounded staleness puts constraints on parameter age; Bösen will block if Ã is older than the
worker’s current iteration by s or more (i.e., cp − Age(Ã) > s), where cp is the worker’s clock.
Ã’s age is defined as the largest iteration such that all updates generated at and before that it-
eration are reflected in Ã. The resulting effect is that a GET issued by a worker at clock cp is
guaranteed to observe all updates generated in clock [0, cp − s− 1].

Bulk Synchronous Parallel (BSP). When the staleness threshold is set to 0, bounded staleness
consistency reduces to the classic BSP model. The BSP model is a gold standard for correct
ML program execution; it requires all updates computed in previous iterations to be made visible
before the current iteration starts. A conventional BSP implementation may use a global syn-
chronization barrier; Bösen’s consistency manager achieves the same result by requiring calls to
PS.Get() and PS.GetRow() at iteration t to reflect all updates, made by any thread, before
its (t−1)-th call to PS.Clock(). Otherwise, the call to PS.Get() or PS.GetRow() blocks
until the required updates are received.

51

3.4.2 System Architecture

Parameter Server Process

Consistency
Manager

Parameter Store

Worker Process

Application
Computation

Client Library

Parameter
Cache

Consistency
Manager

Update
Buffer

Communication
Thread

...

... ... Data
Partition

Thread

Updates

Model
Parameters

Current
parameters

Parameter
Updates

Figure 3.6: Bösen Parameter Server Architecture. The PS consists of client processes (bot-
tom) and the server partitions (top). The Bösen client library maintains cached image of the
server parameters Ãp (p indexes the worker processes). The user application instantiates com-
pute threads, which have access to data partition Dp, and generates updates ∆(Ãp, Dp) that are
buffered by the Bösen client library. The user program’s access to the parameter cache is mod-
ulated by the consistency manager to ensure bounded staleness conditions. The communication
with the server is performed by background communication threads, separate from compute
threads. The server processes maintain partitioned master copy of parameters Ai, where i in-
dexes the server threads.

We now describes Bösen’s system architecture and focus on its realization of the bounded stale-
ness consistency.

Client Library

The client library provides access to the model parameters A. This can come from the locally
cached version Ã, or from the server when Ã does not satisfy the staleness requirement. This
is done through three components (Fig. 3.6): (1) a parameter cache that caches a partial or
complete image of the model, Ã, at the client, in order to serve read requests made by compute
threads; (2) an update buffer that buffers updates applied by compute threads via PS.Inc() and
PS.RowInc(); (3) a group of client communication threads (distinct from compute threads)
that perform synchronization of the local model cache and buffered updates with the servers’
master copies, concurrently as the compute threads execute the application algorithm.

52

The parameters cached at a client are hash partitioned among the client communication threads.
Each client communication thread needs to access only its own parameter partition when reading
the computed updates and applying up-to-date parameter values to minimize lock contention.
The client parameter cache and update buffer allow concurrent reads and writes from worker
threads. Similar to [37], the cache and buffer use static data structures, and pre-allocate memory
for repeatedly accessed parameters to minimize the overhead of maintaining a concurrent hash
table.

In each compute process, locks are needed for shared access to parameters and buffered update
entries. The buffered updates are coalesced since they are commutative and associative. In order
to amortize the runtime cost of concurrency control, we allow applications to define parameter
key ranges we call rows (Section 3.4.1). Parameters in the same row share one lock for access to
their parameter caches, and one lock for access to their update buffers.

When serving read requests (Get() and RowGet()) from worker threads, the client parameter
cache is searched first. A read request is sent to the server processes only if either the requested
parameter is not in the cache or the cached parameter’s age does not satisfy the staleness require-
ment. The reading compute thread blocks until the parameter’s staleness is within the threshold.
When writes are invoked by the application thread, updates are inserted into the update buffer,
and, optionally, the client’s own parameter cache is also updated.

Once all compute threads in a client process have called PS.Clock() to signal the end of a
unit of work (e.g. an iteration), the client communication threads release buffered model updates
to servers.

Server Partitions

The master copy of the model’s parameters, A, is hash partitioned, and each partition is assigned
to one server thread. The server threads may be distributed across multiple server processes and
physical machines. As model updates are received from client processes, the addressed server
thread updates the master copy of its model partition. When a client read request is received,
the corresponding server thread registers a callback for that request; once a server thread has
applied all updates from all clients for a given clock, it walks through its callbacks and sends the
up-to-date model parameter values.

Ensuring Bounded Staleness

Bounded staleness is ensured by coordination of clients and server partitions using clock mes-
sages. When a client request a table-row for the first time, it registers a callback on the server.
This is the only time the client makes read request to the server. Subsequently, when a server ta-
ble’s clock advances from getting the clock tick from all clients, it pushes out the table-rows to the
respective registered clients. This differs from the SSPTable in [65] where the server passively
sends out updates upon client’s read request (which happens each time a client’s local cache
becomes too stale). The callback mechanism exploits the fact that computation threads often

53

revisit the same parameters in iterative-convergent algorithms, and thus the server can push out
table-rows to registered clients without clients’ explicit request. Our server-push model causes
more eager communication as specified in ESSP.

More specifically, on an individual client, as soon as all updates generated before and in iteration
t are sent to server partitions and no more updates before or in that iteration can be generated
(because all compute threads have advanced beyond that iteration), the client’s communication
threads send an client clock message to each server partition, indicating that “all updates gener-
ated before and in iteration t by this client have been made visible to this server partition”. Note
that this assumes reliable ordered message delivery, which is the case in most existing networks.

After a server partition sends out all dirty parameters modified in iteration t, it sends an server
clock message to each client communication thread, indicating that ‘all updates generated before
and in iteration t in the parameter partition have been made visible to this client”. Upon receiving
such a clock message, the client communication thread updates the age of the corresponding
parameters and permits the relevant blocked compute threads to proceed on reads, if any.

Fault Tolerance

Bösen provides fault tolerance by checkpointing the server model partitions; in the event of a
failure, the entire system is restarted from the last checkpoint. A valid checkpoint contains the
model state strictly right after iteration t — the model state includes all model updates generated
before and during iteration t, and excludes all updates after the t-th PS.Clock() call by any
worker thread. With bounded staleness, clients may asynchronously enter new iterations and
begin sending updates; thus, whenever a checkpointing clock event is reached, each server model
partition will copy-on-write to protect the checkpoint’s parameter values until that checkpoint has
been successfully copied externally. Since taking a checkpoint can be slow, a checkpoint will not
be created for every iteration, or even every few iterations. A good estimate of the amount of time
between taking checkpoints is

√
2TsTf/N [148], where Ts is the mean time to save a checkpoint,

N is the number of machines involved and Tf is the mean time to failure (MTTF) of a machine,
typically estimated as the inverse of the average fraction of machines that fail each year.

As Bösen targets offline batch training, restarting the system (disrupting its availability) is not
critical. With tens or hundreds of machines, such training tasks typically complete in hours or
tens of hours. Considering the MTTF of modern hardware, it is not necessary to create many
checkpoints and the probability of restarting is low. In contrast, a replication-based fault toler-
ance mechanism inevitably costs 2× or even more memory on storing the replicas and additional
network bandwidth for synchronizing them.

3.5 Evaluation

We show that ESSP improves the speed and quality of convergence (compared with SSP) for
collapsed Gibbs sampling in topic model and stochastic gradient descent (SGD) in matrix fac-

54

torization. Furthermore, ESSP is robust against the staleness setting, relieving the user from
worrying about the additional tuning parameter s. Since (E)SSP subsumes both BSP and fully
asynchronous consistency, we approximate these consistency with varying staleness level. As
discussed in Section 3.2.4, we do not evaluate VAP model due to the difficulty in directly imple-
menting VAP model.

3.5.1 Experiment Details

ML Models and algorithms: We use the sparsified collapsed Gibbs sampling in [147] for LDA
topic modeling, and SGD for matrix factorization [77]). Unless stated otherwise, we use rank
K = 100 and regularization parameter λ = 0.1. Both algorithms are implemented using Bösen’s
interface. We use log-likelihood as the measure of training quality for LDA, and the squared loss
without the `2-penalized loss as the objective for MF. To speed up convergence, the step size for
MF is chosen to be as large as possible while the algorithm still converges with staleness 0.

Datasets: For topic model: New York Times (N = 100m tokens, V = 100k vocabularies, and
K = 100 topics). We use 50% of the dataset as the minibatch size in each Clock() call. For
Matrix factorization: Netflix dataset (480k by 18k matrix with 100m nonzeros.) We use 1% and
10% of the whole data as the minibatch size in each Clock() call.

Compute cluster: Matrix factorization experiments were run on 64 nodes, each with 2 cores
and 16GB RAM, connected via 1Gbps ethernet. LDA experiments were run on 8 nodes, each
with 64 cores and 128GB memory, connected via 1Gbps ethernet.

3.5.2 System Evaluations

Empirical Staleness. We offer a brief system evaluation to help understand the ensuing ML
evaluations. To demonstrate how our ESSP implementation reduces the staleness of parame-
ter read, we empirically measure the runtime staleness of parameter reads during an execution.
Fig. 3.7 shows the distribution of parameter runtime staleness observed in matrix factorization
run with SSP and ESSP communication protocols. We measure the runtime staleness using
clock differential. When a worker reads a parameter, the read parameters reflect updates from
other worker 0 or more clocks behind.5 Clock differential is defined as this (non-positive) clock
difference.

Under SSP, the distribution of clock differentials is nearly uniform, because SSP “waits until the
last minute” to update the local parameter cache. On the other hand, ESSP initiates commu-
nication to updates the local parameter caches via its eager communication, which reduces the
negative tail in clock differential distribution. This improved staleness profile is ESSP’s most

5For simplicity, we do not consider reads containing updates from future clocks from other workers.

55

salient advantage over SSP, and is the foundation of the improved performance observed in sub-
sequent evaluations.

Figure 3.7: Empirical staleness distribution from matrix factorization. X-axis is (parameter age
- local clock), i.e., the clock differential. Y-axis is the distribution of the clock differentials
observed in parameter reads. Note that in Bulk Synchronous Parallel (BSP) system such as Map-
Reduce, the staleness is always −1. We use rank 100 for matrix factorization, and each clock is
1% minibatch (i.e., a minibatch corresponds to 1% of the dataset). The experiment is run on a 64
node cluster.

Figure 3.8: Communication and Computation breakdown for LDA for SSP and ESSP with stale-
ness s = 2, 4, 8. The lower part of the bars are computation, and the upper part is communication.

56

Computation v.s. Communication. We now turn to analyze the time breakdown between
computation and communication. We consider the breakdown from the worker perspective: the
time a worker spent on the actual ML computation is the computation time, while the time a
worker is spent on waiting for the communication is considered the communication time. Im-
portantly, communication that takes place in the background (in parallel to the computation) is
hidden in this accounting. This breakdown definition captures well the communication overheads
encountered when going from a single worker implementation to a multi-worker one.

Fig. 3.8 shows the breakdown of communication and computation time for varying staleness for
LDA to reach a pre-defined training quality. There are two important observations: (1) The com-
putation time for ESSP is shorter than that for SSP for all considered staleness settings. This is
because computation of ESSP utilizes fresher parameters (see Fig. 3.7) and thus the computation
makes more progress per iteration and thus requires fewer iterations. (2) The communication
time for ESSP is significantly lower than that for SSP under all considered settings. By sending
updates preemptively, ESSP not only reduces the staleness but also reduces the chance of client
workers being blocked to wait for the updates. Essentially, ESSP is a more pipelined version of
SSP. Both factors—more effective computation and lower communication wait time—contribute
to the overall convergence per wall clock time, as evident in Fig. 3.8 under all considered settings.
We will revisit this overall reduction of wall clock time in the sequel.

3.5.3 ML Evaluation and Discussions

We now turn to the evaluation of ML training convergence, which is the crux of our theoretical
analyses. Fig. 3.9 shows the objective over clock and wall clock time for LDA and matrix factor-
ization, for a wide range of staleness values. Since clock measures the logical work, convergence
per clock reveals how much algorithmic progress the computation makes in the same amount of
work. This isolates the convergence properties from the system throughput issues. Convergence
per wall clock time (in seconds), on the other hand, measures the ultimate goal of training: to
reach the optimal solution as quickly as possible. This measure factors in both the algorithmic
progress as well as the system throughput.

We do not consider test performance, which depends on many other factors such as the suitability
of the specified model and the distribution drift between training and test data, all of which can
compound the study of ML convergence. For MF due to the small minibatch sizes (1% and 10%
of the whole dataset) we consider higher staleness (s = 100, 10) such that the program can miss
updates for up to one full pass over the dataset.

We study the results from the following perspectives:

Convergence per clock: Convergence per clock shows the algorithmic progress per unit work
of computation. We study the convergence per clock for LDA and MF (with minibatch sizes at
1% and 10% of the dataset) in the left column of Fig. 3.9. Under all studied scenarios, ESSP
executions converge comparably to or faster than SSP counterparts. This speed-up is due to
the reduced staleness as evident in the staleness profile (Fig. 3.7). This is also consistent with

57

the preceding theoretical analyses that, under SSP, computation using fresher model parameters
achieves faster convergence (see Theorem 3.4).

Convergence per wall clock time: Compared with the per clock convergence, convergence
over wall clock time (Fig. 3.9 right column) factors in the system throughput, which “separates
out” the curves in convergence per clock plots. For both SSP and ESSP, higher staleness incurs
lower communication wait time, which improves system throughput up to certain staleness val-
ues. Furthermore, ESSP executions converge comparably to or faster than the SSP counterparts
with respect to wall clock time. In particular, for LDA with staleness 8, ESSP reduces the time to
reach objective function value−7.32×109 by 4.04x. As discussed earlier, there are primarily two
sources for this speed-up: (1) Faster convergence per clock, and (2) higher system throughput
due to the pipelining effect of ESSP that reduces stalling due to communication (Section 3.5.2).
As a result, the gaps between ESSP and SSP convergence over wall clock time widen compared
with the per clock convergence speed.

Robustness to Staleness: One challenge in applying SGD algorithms is the sensitivity to step
size. Step sizes that are too small lead to slow convergence, while step sizes that are too large
cause divergence. The problem of step size tuning is aggravated in the distributed settings, where
staleness could aggregate the updates in a non-deterministic manner, causing unpredictable per-
formance (dependent on network congestion and the machine speeds, for example). In the case
of MF, SSP diverges under high staleness (such as s = 5, 10 for MF with 10% minibatch), as
staleness effectively increases the step size. However, ESSP is robust across all investigated stal-
eness values due to the concentrated staleness profiles (Fig. 3.7) that are insensitive to the actual
staleness bound s. For some high SSP staleness, such as s = 15 for MF with 1% minibatch, the
convergence is “shaky” due to the variance introduced by staleness. ESSP produces lower vari-
ance for all staleness settings, consistent with our theoretical analyses. This improvement largely
removes the need for user to tune the staleness parameter introduced in SSP, making algorithms
much more robust under SSP execution.

In summary, our analyses and experiments show that ESSP combines the strengths of VAP and
SSP: (1) ESSP achieves strong theoretical properties comparable to VAP; (2) ESSP can be effi-
ciently implemented, with excellent empirical performance on two ML applications: matrix com-
pletion using SGD, and topic modeling using sampling. We also show that ESSP achieves higher
throughput than SSP, thanks to system optimizations exploiting ESSP’s aggressive scheduling.

3.6 Additional Related Work

Existing software that is tailored towards distributed (rather than merely single-machine paral-
lel), scalable ML can be roughly grouped into two categories: general-purpose, programmable li-
braries or frameworks such as GraphLab [101] and Parameter Servers (PSes) [65, 93], or special-

58

purpose solvers tailored to specific categories of ML applications: CCD++ [151] for matrix fac-
torization, Vowpal Wabbit for regression/classification problems via stochastic optimization [85],
and Yahoo LDA as well as Google plda for topic modeling [142].

As discussed in Chapter 1, the primary differences between the general-purpose frameworks (in-
cluding this work) and the special-purpose solvers are: (1) The former are user-programmable
and can be extended to handle arbitrary ML applications, while the latter are non-programmable
and restricted to predefined ML applications; (2) Because the former must support arbitrary ML
programs, their focus is on improving the “systems” code (notably, communication and synchro-
nization protocols) to increase the efficiency of all ML algorithms, particularly through the care-
ful design of consistency models (e.g., the graph consistency in GraphLab and the iteration/value-
bounded consistency in PSes) — in contrast, the special-purpose systems combine both system
code improvements and algorithmic (i.e. mathematical) improvements tailor-made for their spe-
cific category of ML applications.

In [93], the authors propose and implement a PS consistency model that has similar theoretical
guarantees to the ideal VAP model presented in this chapter. However, we note that their imple-
mentation does not strictly enforce the conditions of their consistency model. Their theoretical
analyses assume zero latency for transmission over network in the implementation, while in a
real cluster, there could be arbitrarily long network delay. In their system, reads do not wait for
delayed updates, so a worker may compute with highly inconsistent parameters in the case of
congested network.

On the wider subject of Big Data, Hadoop [8] and Spark [154] are popular programming frame-
works which ML applications have been developed on. To our knowledge, there is no work
showing that Hadoop or Spark have superior ML algorithm performance compared to frame-
works designed for ML like GraphLab and PSes (let alone the special-purpose solvers). The
main difference is that Hadoop/Spark only feature strict consistency, and do not support flexible
consistency models like graph- or bounded-consistency; but Hadoop and Spark ensure program
portability, reliability and fault tolerance at a level that GraphLab and PSes have yet to match.

59

Figure 3.9: ML Convergence. The convergence speed per iteration and per second for LDA
and MF. The y-axes are the training objectives. In the case of LDA the training objective is log-
likelihood, for which higher is better. In the case of MF the training objective is square loss (the
regularization loss is negligible compared with square loss), for which lower is better. In certain
cases for MF the training objective diverges (i.e., fails to converge), such as SSP s = 5 with
10% minibatch. In those cases the convergence curves are truncated at the clock that divergence
occurs. 60

Chapter 4

Model Parallel Learning with Staleness

In previous chapters we have explored data parallel algorithms in which the dataset is partitioned
to concurrently executing workers who read and update the entire model parameters. They do not
address the high dimensional problem that may incur substantial memory and network overheads
in storing and transmitting the undivided model to distributed workers.

In this chapter, we consider an alternative approach to dividing a large ML problem in stale set-
tings. Instead of dividing the data, we partition the model parameters so that each worker updates
and maintain a subset of model coordinates. In this way, we only need to transmit O(D) amount
of data, where D is the size of dataset.1 Our framework extends the proximal gradient descent
into distributed model parallel setting, and covers many important problems such as Lasso, (`1-
penalized) logistic regression, support vector machines, among others. Importantly, our results
do not assume convexity on the model (both smooth loss and the non-smooth regularizer), and
thus applies to non-convex problems such as Group Lasso. We support our theoretical analyses
with large-scale experiments on a 100 node cluster with the Lasso application.

4.1 Introduction

Many machine learning and statistics problems fit into the general composite minimization
framework:

minx∈Rd
1
n

∑n
i=1 fi(x) + g(x), (4.1)

where the first term is typically a smooth empirical risk over n training samples and the sec-
ond term g is a nonsmooth regularizer that promotes structures. Popular examples under this
framework include:

• Lasso: least squares loss fi(x) = (yi − a>i x)2 and `1 norm regularizer g(x) = ‖x‖1;

1For problems such as biology dataset, D (e.g., the number of patients) is usually much smaller than the model
dimension (e.g., billions of gene interaction features).

61

• Logistic regression: logistic loss fi = log(1 + exp(−yia>i xi));

• Boosting: exponential loss fi(x) = exp(−yia>i x);

• Support vector machines: hinge loss fi(x) = max{0, 1 − yia
>
i x} and (squared) `2 norm

regularizer g(x) = ‖x‖2
2.

Over the years there is also a rising interest in using nonconvex losses (mainly for robustness
to outliers) and nonconvex regularizers (mainly for smaller bias in feature selection and support
estimation), see e.g. [45, 104, 129, 144, 152, 156, 157, 162].

Due to the apparent importance of the composite minimization framework and the rapidly grow-
ing size in both model dimension and sample volume, there is a strong need to develop a practical
parallel system that can solve the problem in (4.1) efficiently and in a scale that is impossible for
a single machine [4, 8, 19, 48, 65, 94, 100, 154]. Existing systems can roughly be divided into
three categories: bulk synchronous [8, 140, 154], (totally) asynchronous [19, 100], and partially
asynchronous (also called stale synchronous in this work) [4, 19, 48, 65, 94, 137]. The bulk syn-
chronous parallel mechanism (BSP) forces synchronization barriers so that the worker machines
can stay on the same page to ensure correctness. However, in a real deployed parallel system
BSP usually suffers from the straggler problem, that is, the performance of the whole system is
bottlenecked by the slowest worker machine. On the other hand, asynchronous systems achieve
much greater throughputs, although at the expense of potentially losing the correctness of the al-
gorithm. The stale synchronous parallel (SSP) mechanism is a compromise between the previous
two mechanisms: it allows the worker machines to operate asynchronously, as long as they are
not too far apart. SSP is particularly suitable for machine learning applications, where iterative
algorithms robust to small errors are usually used to find an appropriate model. This view is also
practiced by many recent works building on the SSP mechanism [4, 40, 48, 65, 94, 96, 120].

Existing parallel systems can also be divided into data parallel and model parallel. In the former
case, one usually distributes the computation involving each component function fi in (4.1) into
different worker machines. This is suitable when n � d, i.e. large data volume but moderate
model size. A popular algorithm for this case is the stochastic gradient algorithm and its proximal
versions [4, 48, 65, 94], under the SSP mechanism. In contrast, model parallel refers to the
regime where d� n, i.e. large model size but moderate data volume. This is the case for many
computational biology and health care problems, where collecting many samples can be very
expensive but for each sample we can relatively cheaply take a large number of measurements
(features). As a result we need to partition the model x into different (disjoint) blocks and
distribute them among many worker machines. The proximal gradient [25, 53] or its accelerated
version [14] is again a natural candidate algorithm due to its nice ability of handling nonsmooth
regularizers. However, such proximal gradient algorithm has not been investigated under SSP
mechanism for model parallelism, although some other types of asynchronous algorithms are
studied before (see Section 4.7). The main goal of this work is to fill in this important gap.

More specifically, we make the following contributions: 1). We propose msPG, an extension
of the proximal gradient algorithm to the new model parallel and stale synchronous setting. 2).
We provide a rigorous analysis of the convergence properties of msPG. Under a very general

62

condition that allows both nonsmooth and nonconvex functions we prove in Theorem 4.1 that
any limit point of the sequence generated by msPG is a critical point. Then, inspired by the re-
cent Kurdyka-Łojasiewicz (KŁ) inequality [10, 12, 23, 25, 80], we further prove in Theorem 4.2
that the whole sequence of msPG in fact converges to a critical point, under mild technical as-
sumptions that we verify for many familiar examples. Lastly, relating msPG to recent works on
inexact proximal gradient (on a single machine), we provide, under the new model parallel and
SSP setting, a simple proof of the usual sublinear O(1/t) rate of convergence (assuming con-
vexity). We remark our technical contributions with comparison to related work after each main
results. 3). Building on the recent parameter server framework [65, 94], we give an economical
implementation of msPG that completely avoids storing local full models in each worker ma-
chine. The resulting implementation only requires storing the partitioned data (with size O(ndi)
for di assigned parameters) and communicating a vector of length n in each iteration. 4). We
corroborate our theoretical findings with controlled numerical experiments.

4.2 Preliminaries

We collect here some useful definitions that will be needed in our later analysis.

Since we consider a proper and closed2 function h : Rd → (−∞,+∞] that may not be smooth
or convex, we need a generalized notion of “derivative”.
Definition 4.1 (Subdifferential and critical point, [126]). The Frechét subdifferential ∂̂h of h at
x ∈ domh is the set of u such that

lim inf
z 6=x,z→x

h(z)−h(x)−u>(z−x)
‖z−x‖ ≥ 0, (4.2)

while the (limiting) subdifferential ∂h at x ∈ domh is the graphical closure of ∂̂h:

{u : ∃xk → x, h(xk)→ h(x),uk ∈ ∂̂h(xk)→ u}. (4.3)

The critical points of h are crith := {x : 0 ∈ ∂h(x)}.

Pleasantly, when h is continuously differentiable or convex, the subdifferential ∂h and critical
points crith coincide with the usual notions.
Definition 4.2 (Distance and projection). The distance function to a closed set Ω ⊆ Rd is defined
as:

distΩ(x) := miny∈Ω ‖y − x‖, (4.4)

and the metric projection onto Ω is:

projΩ(x) := argminy∈Ω ‖y − x‖. (4.5)
2An extended real-valued function h is proper if its domain domh := {x : h(x) <∞} is nonempty; it is closed

iff its sublevel sets {x : h(x) ≤ α} is closed for all α ∈ R.

63

Note that projΩ is always a singleton iff Ω is convex.
Definition 4.3 (Proximal map, e.g. [126]). A natural generalization of the metric projection
using a closed and proper function h is (with parameter η > 0):

proxηh(x) := argminz h(z) + 1
2η
‖z− x‖2, (4.6)

where ‖ · ‖ is the usual Euclidean norm.

If h decreases slower than a quadratic function (in particular, when h is bounded below), its
proximal map is well-defined for all (small) η. For convex h, the proximal map is always a
singleton while for nonconvex h, the proximal map can be set-valued. In the latter case we also
abuse the notation proxηh(x) for an arbitrary element from that set. The proximal map is the key
component of the popular proximal gradient algorithms [14, 25, 53].
Definition 4.4 (KŁ function, [24, 80]). A function h is called KŁ if for all x̄ ∈ dom ∂h there
exist λ > 0 and a neighborhood X of x̄ such that for all x ∈ X ∩ [x : h(x̄) < h(x) < h(x̄) + λ]
the following inequality holds

ϕ′ (h(x)− h(x̄)) · dist∂h(x)(0) ≥ 1, (4.7)

for some desingularizing function ϕ : [0, λ) → R+, 0 7→ 0, is continuous, concave, and has
continuous and positive derivative ϕ′ on (0, λ).
Remark 4.1. For many functions one can have ϕ(s) := s1−θ, θ ∈ (0, 1]. The KŁ inequality
(Eq. (4.7)) then becomes dist∂h(x)(0) ≥ (1 − θ)−1|h(x) − h(x̄)|θ. For strongly convex function
h that is differentiable, we can have θ = 1

2
and recovers the usual dist∂h(x)(0)2 = ||∇h(x)||2 ≥

2|h(x)− h(x̄)|, where x̄ is the global minimizer.

The KŁ functions ensures that one can reparameterize the range of the function such that the
resulting function has a kink in the critical points crith and is steep around crith. This charac-
terization of functions precludes pathological cases such as indefinite oscillation generating de-
scent paths of infinite length in descent algorithms. The KL inequality (4.7) is also an important
tool to bound the trajectory length of a dynamical system (see [24, 80] and the references therein
for some historic developments). It has recently been used to analyze discrete-time algorithms
in [3] and proximal algorithms in [10, 11, 25]. Quite conveniently, most practical functions, in
particular, “definable” functions and convex functions under certain growth condition, are KŁ.

For a more detailed discussion of KŁ functions, including many familiar examples, see [25,
Section 5] and [11, Section 4].

4.3 Problem Formulation

We consider the composite minimization problem:

minx∈Rd F (x), where F (x) = f(x) + g(x). (P)

Usually f is a smooth loss function and g is a regularizer that promotes structure. We consider the
model parallel scenario, that is, we decompose the d model parameters into p disjoint groups,

64

and designate one worker machine for each group. Formally, consider the decomposition Rd =
Rd1 × Rd2 × · · · × Rdp , x = (x1, x2, . . . , xp), and let ∇if : Rd → Rdi be the partial gradient
of f on the i-th factor space (machine). Clearly, xi,∇if(x) ∈ Rdi and

∑p
i=1 di = d. The i-th

machine is responsible for the i-th factor xi ∈ Rdi , however, we also allow machine i to keep
a local copy xi ∈ Rd of the full model parameter. This is for the convenience of evaluating the
partial gradient ∇if : Rd → Rdi , and we will discuss in Section 4.5 how to implement this in
an economical way. Note that unlike the data parallel setting, we do not consider explicitly
distributing the computation of the gradient∇if .

We extend the proximal gradient algorithm [25, 53] to solve the composite problem (P) under
the new model parallel setting, and we require the following standard assumptions for our con-
vergence analysis.
Assumption 4.1. Regarding the functions f, g in (P):

1. They are bounded from below;
2. The function f is differentiable and the gradients ∇f , ∇if are Lipschitz continuous with

constant Lf and Li, respectively. Set L =
∑p

i=1 Li;
3. The function g is closed, and separable, i.e., g(x) =

∑p
i=1 gi(xi).

The first assumption simply allows us to have a finite minimum value and is usually satisfied in
practice. The second assumption (smoothness) is critical in two aspects: (1) It allows us to upper
bound f by its quadratic expansion at the current iterate—a standard step in the convergence
proof of gradient type algorithms:

∀x,y ∈ Rd, f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ L
2
‖x− y‖2. (4.8)

(2) It allows us to bound the inconsistencies in different machines due to asynchronous updates.
The separable assumption is what makes model parallelism interesting and feasible. We remark
that both the second assumption (smoothness) and the third assumption (separability) can be
relaxed using techniques in [15] and [152], respectively. For brevity we do not pursue these
extensions here. Note that we do not assume convexity on either f or g, and g need not even be
continuous.

The separability assumption above on g implies that

proxηg(x) =
(
proxηg1(x1), . . . , proxηgp(xp)

)
. (4.9)

Let us introduce the update operator (on machine i):

Ui(x
i)=Ui(x

i, xi) :=proxηgi(xi − η∇if(xi))− xi, (4.10)

i.e. machine i computes the i-th part of the gradient using its local model xi, updates its parameter
xi in charge using step size η, and finally applies the proximal map of the component function
gi. In a real large scale parallel system, the communication delay among machines and the
unexpected shut down of machines are practical issues that bottlenecks the performance of the
system, and hence a more relaxed synchronization protocol than full synchronization is needed.
Consider a global clock shared by all machines and denote Ti the set of active clocks when

65

Figure 4.1: The algorithm msPG under model parallelism and stale synchronism. Machine i
keeps a local model xi(t) that contains stale parameters of other machines (due to communication
delay and network latency). These local models are used to compute the partial gradient∇if(xi)
which is then used to update the parameters xi(t) in each machine. See Section 4.5 for an
economical implementation of msPG.

machine i computes an update, and I{t∈Ti} as the indicator function of the event t ∈ Ti. Formally,
the t-th iteration on machine i can be written as:

msPG

∀i, xi(t+ 1) = xi(t) + I{t∈Ti}Ui(x

i(t)),

(local) xi(t) =
(
x1(τ i1(t)), . . . , xp(τ

i
p(t))

)
,

(global) x(t) =
(
x1(t), . . . , xp(t)

)
,

That is, machine i only performs its update operator at its active clocks. The local full model
xi(t) assembles all components from other machines, and is possibly a delayed version of the
global model x(t), which assembles the most up-to-date component in each machine. Note that
the global model is introduced for our analysis, and is not accessible in a real implementation.
More specifically, τ ij(t) ≤ t models the communication delay among machines: when machine
i conducts its t-th update it only has access to xj(τ ij(t)), a delayed version of the component
xj(t) on the j-th machine. We will refer to the above updates as msPG (for model parallel, stale
synchronous, Proximal Gradient). Figure 4.1 illustrates the main idea of msPG.

In a practical distributed system, communication among machines is much slower than local
computations, and the performance of a synchronous system is often bottlenecked at the slowest
machine, due to the need of synchronization in every step. The delays τ ij(t) and active clocks Ti
that we introduced in msPG aim to address such issues.

To establish convergence for msPG we obviously need some control over the delay τ ij(t) and the
active clocks Ti, for otherwise some machines may not make progress at all. For our convergence
analyses, we need the following assumptions:
Assumption 4.2. The delay and skip frequency satisfy:

1. ∀i, ∀j,∀t, 0 ≤ t− τ ij(t) ≤ s;
2. ∀i, ∀t, τ ii (t) = t;
3. ∀i, ∀t, Ti ∩ {t, t+ 1, · · · , t+ s} 6= ∅.

Intuitively, the first assumption guarantees that the information machine i gathered from other
machines at the t-th iteration are not too obsolete (bounded by at most s clocks apart). The

66

second assumption (τ ii (t) ≡ t) is natural since the i-th worker machine is maintaining xi hence
would always have the latest copy. The third assumption requires each machine to update at
least once in every s+ 1 iterations. We remark that these assumptions are very natural and have
been widely adopted in previous works [4, 19, 48, 65, 92, 96, 137]. They are also in some sense
unavoidable: one can construct instances such that msPG do not converge if these assumptions
are violated. Clearly, when s = 0 (no delay) our framework reduces to the bulk synchronous
proximal gradient algorithm.

4.4 Convergence Analysis

In this section, we conduct detailed analysis of the model parallel stale synchronous proximal
gradient algorithm msPG. Our first result is as follows:
Theorem 4.1 (Asymptotic consistency). Let Assumption 4.1 and 4.2 hold, and apply msPG to
problem (P). If the step size η < (Lf + 2Ls)−1, then the global model and local models satisfy:

1.
∑∞

t=0 ‖x(t+ 1)− x(t)‖2 <∞;
2. lim

t→∞
‖x(t+ 1)− x(t)‖ = 0, lim

t→∞
‖x(t)− xi(t)‖ = 0;

3. The limit points ω({x(t)}) = ω({xi(t)}) ⊆ critF .
Remark 4.2. Our bound on the step size η is natural: If s = 0, i.e., there is no asynchronism
then we recover the standard step size rule η < 1/Lf (we can increase η by another factor of
2, had convexity on g been assumed). As staleness s increases, we need a smaller step size to
“damp” the system to still ensure convergence. The factor L :=

∑p
i=0 Li is a measurement of

the degree of “dependency” among worker machines.

The proof is non-trivial and can be found in Section C.1. The first assertion of the above the-
orem states that the global sequence x(t) has square summable successive differences, while
the second assertion implies that both the successive difference of the global sequence and the
inconsistency between the local sequences and the global sequence diminish as the number of it-
erations grows. These two conclusions provide a preliminary stability guarantee for msPG. The
third assertion further justifies msPG by showing that, without convexity assumption on either
f of g, any limit point it produces is necessarily a critical point. Of course, when F is convex,
any critical point is globally optimal.

The closest result to Theorem 4.1 we are aware of is [19, Proposition 7.5.3], where essentially
the same conclusion was reached but under the much more restrictive assumption that g is an
indicator function of a product convex set. In contrast, our result allows g to be a convex function
such as the `1 norm that is widely used to promote sparsity. Furthermore, we allow g to be any
closed separable function (convex or not), covering the many recent nonconvex regularization
functions in machine learning and statistics (see e.g. [45, 104, 156, 157]). We also note that the
proof of Theorem 4.1 (for nonconvex g) involves significantly new ideas beyond those of [19].

We note that the existence of limit points can be guaranteed, for instance, if {x(t)} is bounded
or the sublevel set {x | F (x) ≤ α} is bounded for all α ∈ R. However, we have yet to prove
that the sequence {x(t)} generated by msPG does converge to one of the critical points. In fact,

67

in the model parallel setting with delays and skips, it is already a nontrivial task to argue that
the objective values {F (x(t))} do not diverge to infinity. This is in sharp contrast with the bulk
synchronous setting where it is trivial to guarantee the objective values to decrease (by using a
sufficiently small step size). This is where we need some further assumptions.
Assumption 4.3 (Sufficient Decrease). There exists α > 0 such that the global model x(t)
generated by msPG (for problem (P)) satisfies: for all large t,

F (x(t+ 1)) ≤ F (x(t))− α‖x(t+ 1)− x(t)‖2. (4.11)

The sufficient decrease assumption is automatically satisfied in many descent algorithms, e.g.,
the proximal gradient algorithm. However, in the stale synchronous parallel setting, it is highly
nontrivial to satisfy the sufficient decrease assumption because of the complication due to com-
munication delays and update skips. Note also that none of the worker machines actually has ac-
cess to the global sequence x(t), so even verifying the sufficient decrease property is not trivial.
To simplify the presentation, we first analyze the performance of msPG using the KŁ inequality
and taking the sufficient decrease property for granted, and later we we will give some verifiable
conditions to justify this simplification.
Assumption 4.4. F is a KŁ function.

As we mentioned in the end of Section 4.2, most practical functions (including all functions
in this thesis) are KŁ. Hence, this is a very mild assumption. Armed with these additional
assumptions, we can strengthen the convergence properties in Theorem 4.1 for msPG:
Theorem 4.2 (Finite Length). Let Assumption 4.1, 4.2, 4.3 and 4.4 hold, and apply msPG to
problem (P). If the step size η < (Lf + 2Ls)−1 and {x(t)} is bounded, then∑∞

t=0 ‖x(t+ 1)− x(t)‖ <∞, (4.12)
∀i = 1, . . . , p,

∑∞
t=0 ‖xi(t+ 1)− xi(t)‖ <∞. (4.13)

Furthermore, {x(t)} and {xi(t)}, i = 1, ..., p, converge to the same critical point of F .

The proof is in Section C.2. Compared with the first assertion in Theorem 4.1, we now have
the successive differences to be absolutely summable (instead of square summable). The former
property is usually called finite length in dynamical systems. It is a significantly stronger property
as it immediately implies that the whole sequence is Cauchy hence convergent, whereas we
cannot get the same conclusion from the square summable property in Theorem 4.1.3 We note
that local maxima are excluded from being the limit in Theorem 4.2, thanks to Assumption 4.3.
Also, the boundedness assumption on {x(t)} is easy to satisfy, for instance, when F has bounded
sublevel sets. We refer to [11, Remark 3.3] for more conditions that guarantee the boundedness.
Needless to say, if F is convex, then the whole sequence in Theorem 4.2 converges to a global
minimizer.

We now provide some justifications on Assumption 4.3. For simplicity we assume all worker
machines perform updates in each time step t:

3A simple example would be the sequence x(t) =
∑t
k=1

1
k , whose successive difference is square summable

but clearly x(t) does not converge. Consequently, x(t) is not absolutely summable.

68

Assumption 4.5. ∀i = 1, · · · , p,∀t, t ∈ Ti.

Note that Assumption 4.5 is commonly adopted in the analysis of many recent parallel systems
[4, 40, 48, 65, 94, 96, 120].

We will replace the sufficient decrease property in Assumption 4.3 with the following key prop-
erty that turns out to be easier to verify:
Assumption 4.6 (Proximal Lipschitz). The update operators Ui, i = 1, ..., p are eventually Lip-
schitz continuous, i.e., for all large t and small learning rate η > 0:

‖Ui(xi(t+1))−Ui(xi(t))‖≤Ciη‖xi(t+1)−xi(t)‖, (4.14)

where Ci ≥ Li, i = 1, ..., p, are positive constants.

The proximal Lipschitz assumption is motivated by the special case where g ≡ 0 and hence
∆η(x) = −η∇f(x) is η-Lipschitz, thanks to Assumption 4.1.2. As we have seen in previ-
ous sections, Lipschitz continuity plays a crucial role in our proof where a major difficulty is
to control the inconsistencies among different worker machines due to communication delays.
Similarly here, the proximal Lipschitz property, as we show next, allows us to remove the suffi-
cient decrease property in Assumption 4.3—the seemingly strong assumption that we needed in
proving our main result Theorem 4.2.

Equipped with this assumption, we can now justify Assumption 4.3. (Proof is in Section C.3.)
In the sequel, we denote C =

∑p
i=1Ci ≥ L.

Lemma 4.1. Assume ∀t, i, t ∈ Ti. Let the step size η < ρ−1
4Cρ

√
ρ−1

√
ρs+1−1

for any ρ > 1 and all Ui, i =

1, ..., p be proximal-Lipschitz continuous, then the sequences {x(t)} and {xi(t)}, i = 1, ..., p,
have finite length.

Hence it is sufficient to further characterize Assumption 4.6, which turns out to be a mild con-
dition. Instead of giving a very technical justification, we give here some popular examples
where Assumption 4.6 holds (proof in Section C.4). Some of these will also be tested in our
experiments.
Example 4.1. Assume ∀t, i, t ∈ Ti, then Assumption 4.6 holds for the following cases (modulo a
technical condition on the 1-norm):

• g ≡ 0 (no regularization), g = ‖ · ‖0 (nonconvex 0-norm), g = ‖ · ‖1 (1-norm), g = ‖ · ‖2

(squared 2-norm);
• elastic net g = ‖ · ‖1 + ‖ · ‖2 and its nonconvex variation g = ‖ · ‖0 + ‖ · ‖2;
• non-overlapping group norms g = ‖ · ‖0,2 and g = ‖ · ‖0,2 + ‖ · ‖2.

Further for this non-skip case (∀t, i, t ∈ Ti), msPG can be cast as an inexact proximal gradient
algorithm (IPGA), which, together with the finite length property in Theorem 4.2, provide new
insights on the nature of staleness in real parallel systems. It also allows us to easily obtain the
usual O(1/t) rate of convergence of the objective value.

Let us introduce an error term e(t) =
(
e1(t), . . . , ep(t)

)
, with which we can rewrite the global

sequence of msPG as:

∀i, xi(t+1)= proxηgi (xi(t)−η∇if(x(t))+ei(t)) , (4.15)

69

where ei(t) = η[∇if(x(t)) −∇if(xi(t))]. This alternative representation of msPG falls under
the IPGA in [127], where e(t) is the (gradient) error at iteration t. Note, however, that the error
e(t) is not caused by computation but by communication delay and network latency, which only
presents itself in a real stale synchronous parallel system. For convex functions F , [127] showed
that the convergence rate of the objective value of IPGA can be controlled by the summability of
the error magnitude ‖e(t)‖. Interestingly, our next result proves that the finite length property in
Theorem 4.2 immediately implies the summability of the errors ‖e‖, even for nonconvex func-
tions f and g. Moreover, for convex F , this also leads to the usual O(1/t) rate of convergence in
terms of the objective value.
Theorem 4.3 (Global rate of convergence). If the finite length property in Theorem 4.2 holds,
then

1.
∑∞

t=0 ‖e(t)‖ <∞;
2. F (1

t

∑t
k=1 x(k))− inf F ≤ O (t−1).

The proof is in Section C.5. Intuitively, if the error e(t) decreases (slightly) faster than O(1/t),
then the rate of convergence of msPG is not affected even under the model parallel and stale
synchronous setting (provided F is convex). To the best of our knowledge, this is the first deter-
ministic rate of convergence result in the model parallel and stale synchronous setting.

4.5 Economical Implementation

In this section, we show how to economically implement msPG for the widely used linear
models:

minx∈Rd f(Ax) + g(x), (4.16)

where A ∈ Rn×d. Typically f : Rn → R is the likelihood function and g : Rd → R is
the regularizer (we absorb the regularization constant into g). Each row of A corresponds to
a sample point and we have suppressed the labels in classification or responses in regression.
Support vector machines, Lasso, logistic regression, boosting, etc. all fit under this framework.
Our interest here is when the model dimension d is much higher than the number of samples n
(d can be up to hundreds of millions and n can be up to millions). This is the usual setup in many
computational biology and health care problems.

A naive implementation of msPG might be inefficient in terms of both network communication
and parameter storage. First, Each machine needs to communicate with every other machine, to
exchange the latest block of parameters. If using a peer-to-peer network topology, the resulting
connections will be too dense and crowded when the system holds hundreds of machines. We
resolve this issue by adopting the parameter server system advocated in previous works [65, 94],
that is, we dedicate a specific server (which can span a set of machines if needed) to store the
key parameters (will be specified later) and let each worker machine to communicate only with
the server. There is a second advantage for this master-slave network topology, as we shall see
momentarily.

70

Second, each machine needs to keep a local copy of the full model (i.e. xi(t) in msPG), which
can incur a very expensive storage cost when the dimension is high. This is where the linear
model structure in (4.16) comes into help. Note that the local models xi(t) are kept solely for the
convenience of evaluating the partial gradient ∇if : Rd → Rdi . For some problems such as the
Lasso, a seemingly easy workaround is to pre-compute the Hessian H = A>A and distribute the
corresponding row blocks of H to each worker machine. This scheme, however, is problematic
in the high dimensional setting: the pre-computation of the Hessian can be very costly, and each
row block of H has a very large size (di × d).

Instead, we use the column partition scheme [e.g. 27, 124], namely, we partition the matrix A
into p column blocks A = [A1, . . . , Ap] and distribute the block Ai ∈ Rn×di to machine i. Now
the local update computed by machine i at the t-th iteration can be rewritten as

Ui(x
i(t))=proxηgi

(
xi(t)−ηA>i f ′(Axi(t))

)
−xi(t) (4.17)

Since machine i is in charge of updating the i-th block xi(t) of the global model, to compute the
local update (4.17) it is sufficient to have the matrix-vector product Axi(t). For simplicity we
initialize ∀i, xi(0) ≡ 0, then we have the following cumulative form:

Axi(t) =

p∑
j=1

Aj[x
i(t)]j =

p∑
j=1

τ ij (t)∑
k=0

AjI{k∈Tj}Uj(x
j(k))︸ ︷︷ ︸

∆j(k)

,

where recall that when machine i conducts its t-th iteration it only has access to a delayed copy
xj(τ

i
j(t)) of the parameters in machine j. Since this matrix-vector product is needed by every

machine to conduct their local updates in (4.17), we aggregate ∆j(t) ∈ Rn on the parameter
server whenever it is generated and sent by the worker machines. In details, the worker machines
first pull this aggregated matrix-vector product (denoted as N) from the server to conduct the
local computation (4.17) in an economical way (by replacing Axi(t) in (4.17) with N). Then
machine i performs the simple update:

xi(t+ 1) = xi(t) + Ui(x
i(t)). (4.18)

Note that machine i does not maintain or update other blocks of parameters xj(t), j 6= i. Lastly,
machine i computes and sends the vector ∆i(t) = AiUi(x

i(t)) ∈ Rn to the server, and the server
immediately performs the aggregation:

N← N + ∆i(t). (4.19)

We summarize the above economical implementation in Algorithm 1, where N denotes the ag-
gregation of individual matrix-vector products ∆ on the server. The storage cost for each worker
machine is O(ndi) (for storing Ai). Each iteration requires two matrix-vector products that cost
O(ndi) in the dense case, and the communication of a length n vector between the server and the
worker machines.

71

Algorithm 5 Economic Implementation of msPG
1: For the server:
2: while recieves update ∆i from machine i do
3: N← N + ∆i

4: end while
5: while machine i sends a pull request do
6: send N to machine i
7: end while
8: For machine i at active clock t ∈ Ti:
9: pull N from the server

10: Ui ← proxηgi
(
xi − ηA>i f ′(N)

)
− xi

11: send ∆i = AiUi to the server
12: update xi ← xi + Ui

4.6 Experiments

4.6.1 Group Lasso

We first test the convergence properties of msPG via a non-convex Lasso problem with the group
regularizer ‖ · ‖0,2, which takes the form

minx
1
2
‖Ax− b‖2 + λ

∑20
i=1 I(‖xi‖ = 0), (4.20)

Here A ∈ R1000×2000,b ∈ R1000, and x ∈ R2000 is divided into 20 equal groups of features.
Matrix A is generated from N (0, 1) with normalized columns. We set b = Ax̃ + ε, where ε
is generated from N (0, 10−2) and x̃ is a normalized vector with 8 non-zero groups of features
generated from N (0, 1). For the non-zero groups of x̃, we set the corresponding γi = 10−4, and
for the remaining groups we set γi = 10−2.

We implement msPG on four cores with each core assigned five group of features. Each core
stores the corresponding column blocks of A.

We use 4 machines (cores) with each handling five groups of coordinates, and consider staleness
s = 0, 10, 20, 30, respectively. To better demonstrate the effect of staleness, we let machines
only communicate when exceeding the maximum staleness. This can be viewed as the worst
case communication scheme and a larger s brings more staleness into the system. We set the
learning rate to have the form η(αs) = 1/(Lf + 2Lαs), α > 0, that is, a linear dependency on
staleness s as suggested by Theorem 4.1. Then we run Algorithm 5 with different staleness and
use η(10) and η∗(αs), where η∗(αs) is the largest step size we tuned for each s that achieves a
stable convergence. We track the global model x(t) and plot the results in Figure 4.2, Fig. 4.3,
and Fig. 4.4. Note that with the large step size η(0) all instances (with nonzero staleness) diverge
hence are not presented. With η(10) (Figure 4.2), the staleness does not substantially affect
the convergence in terms of the objective value. We note that the objective curves converge to

72

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s=0

s=10

s=20

s=30

Number of Iterations

O
b

je
c
ti
v
e

 V
a

lu
e

Figure 4.2: Convergence over clock for group lasso under msPG using learning rate η(10) for
staleness s = 0, 10, 20, 30.

0 50 100 150 200 250 300 350 400 450 500 550
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

s=0, αs=0

s=10, αs=0.094

s=20, αs=0.25

s=30, αs=0.45

Clock

O
b

je
c
ti
v
e

 V
a

lu
e

Figure 4.3: Convergence of parameter over clock for group lasso under msPG using learning
rate η∗(αs) for staleness s = 0, 10, 20, 30.

slightly different minimal values due to the non-convexity of problem (4.20). With η∗(αs) (Fig-
ure 4.3), it can be observed that adding a slight penalty αs on the learning rate suffices to achieve
a stable convergence, and the penalty grows as s increases, which is intuitive since a larger stal-
eness requires a smaller step size to offset the inconsistency. In particular, for s = 10 the best
convergence is comparable to the bulk synchronized case s = 0. (Figure 4.4) further shows
the asymptotic convergence behavior of the global model x(t) under the step size η∗(αs). It is
clear that a linear convergence is eventually attained, which confirms the finite length property
in Theorem 4.2.

73

0 500 1000 1500 2000 2500 3000
−14

−12

−10

−8

−6

−4

−2

0

s=0 αs=0

s=10 αs=0.094

s=20 αs=0.25

s=30 αs=0.45

Clock

Figure 4.4: Convergence over clock for group lasso under msPG using learning rate η∗(αs) for
staleness s = 0, 10, 20, 30. The linear convergence on the logrithmic scale is consistent with the
finite length property in Theorem 4.2.

4.6.2 Large-scale Lasso

Next, we verify the time and communication efficiency of msPG via an l1 norm Lasso problem
with very high dimensions, taking the form

minx
1
2
‖Ax− b‖2

2 + λ‖x‖1. (4.21)

We generate A ∈ Rn×d of size n = 106 and d = 108 as follows:

Data Generation. We generate the data column-wise. Starting from first column, we randomly
pick 104 samples to have non-zero in column 1 and sample each value from Uniform(−1, 1). We
normalize it such that the `2-norm of the column is 1. We denote these values as v1 ∈ Rn. To
generate column i, with probability 0.5 we randomly pick a new set of samples to have non-zero
values at column i (otherwise we use the same samples from column i − 1). This simulates
the correlations between each column. Once the samples are chosen, we assign values from
Unif(−1, 1). vi is again normalized. We generate ground truth regressor β ∈ Rd from N (0, 1)
with 1% non-zero entries, and obtain the regressed value from b = Aβ where A, the design
matrix, is the conctenation of v1, ..., v108 .

We implement Algorithm 5 on Petuum [40, 65] — a stale synchronous parallel system which
eagerly updates the local parameter caches via stale synchronous communications. The sys-
tem contains 100 computing nodes and each is equipped with 16 AMD Opteron processors and
16GB RAM linked by 1Gbps ethernet. We fix the learning rate η = 10−3 and consider maximum
staleness s = 0, 1, 3, 5, 7, respectively. Figure 4.5 shows that per-iteration progress is virtually
indistinguishable among various staleness settings, which is consistent with the previous exper-
iment with group lasso. Figure 4.6 shows that system throughput is significantly higher when
we introduce staleness. This is due to lower synchronization overheads, which offsets any po-
tential loss due to staleness in progress per iteration. We also track the distributions of staleness
during the experiments, where we record in N the clocks of the freshest updates that accumulate

74

0 5 10 15 20 25 30 35
2

4

6

8

10

12

14
x 10

4

number of iterations

ob
je
ct
iv
e
va
lu
e

Objectivevs Iteration

s=0

s=1

s=3

s=5

s=7

Clock

O
b

je
c
ti
v
e

 V
a

lu
e

Figure 4.5: Convergence over clock for large-scale lasso under msPG for staleness s =
0, 1, 3, 5, 7.

from all the machines. Then whenever a machine pulls N from the server, it compares its local
clock with these clocks and records the clock differences. Figure 4.7 shows the distributions
of staleness under different maximal staleness settings. Observe that bulk synchronous (s = 0)
peaks at staleness 0 by design, and the distribution concentrates in small staleness area due to
the eager communication mechanism of Petuum. It can be seen that a small amount of staleness
is sufficient to relax the communication bottlenecks without affecting the iterative convergence
rate much.

4.7 Additional Related Work

The stale synchronous parallel system dates back to [18, 19, 137, 138], where it is also referred
to as partially asynchronous system. These work consider using stale synchronous systems to
solving different kinds of optimization problems with allowing machines to skip updates during
the process. Asymptotic convergence of partially asynchronous gradient descent algorithm for
solving unconstrained smooth optimization is established in [19], with its stochastic version
being analyzed in [138]. Asymptotic convergence of partially asynchronous gradient projection
algorithm for solving smooth optimization with convex constraint is established in [19], and a
“B-step” linear convergence is further established in [137] with an error bound condition. Linear
convergence of partially asynchronous algorithm for finding the fixed point of maximum norm
contraction mappings is established in [18, 47].

Another series of work focus on SSP systems where machines are not allowed to skip updates
[92, 94]. In their settings, The system imposes an upper bound on the maximum clock differ-
ence between machines. Asymptotic convergence is established for proximal gradient algorithm
for data parallelism [93] and for block coordinate descent [92] with a smooth objective and
convex regularizer. Other works consider stochastic algorithms on stale synchronous system.

75

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

10

11
x 10

4

seconds

ob
je
ct
iv
e
va
lu
e

Objectivevs Seconds

s=0

s=1

s=3

s=5

s=7

Seconds

O
b

je
c
ti
v
e

 V
a

lu
e

Figure 4.6: Convergence over wall clock time for large-scale lasso under msPG for staleness
s = 0, 1, 3, 5, 7.

0 1 2−3 4−5 6−7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

staleness

p
er
ce
nt
ag
e

StalenessDistributions

s = 0
s = 1
s = 3
s = 5
s = 7

Staleness

P
e

rc
e

n
ta

g
e

{-1,0} -2 {-3,-4} {-5,-6} {-6,-7}

Figure 4.7: Empirical staleness distribution under staleness s = 0, 1, 3, 5, 7. X-axis is parameter
age - local clock, i.e., the absolute value of clock differential, similar to Fig. 3.7. Y-axis is
the distribution of the clock differentials observed in parameter reads. s = 0 reduces to Bulk
Synchronous Parallel where the empirical staleness is concentrated at clock differential −1.

[65] proposes an SSP system for stochastic gradient descent, and establishes O(1/
√
k) regret

bound under bounded diameter and bounded sub-gradient assumption. [48, 120] consider a de-
layed stochastic gradient descent algorithm. Linear convergence to a neighborhood of optimum
is established with strong convexity assumption in [48] and with additional bounded gradient
assumption in [120]. [4] proposes a distributed delayed dual averaging and mirror descent algo-
rithm, and establishes O(1/

√
k) regret bound under standard stochastic assumptions.

76

Chapter 5

Staleness in Parallel Frank-Wolfe
Algorithms

The classical Frank-Wolfe (FW) algorithm [50] has witnessed a surge of interest recently, due
to the simple subproblem structure that can scale to large dataset [5, 34, 68, 69]. For example,
FW is the state-of-the-art method for structural SVMs [82], whose dual problem yields a large
number of variables that renders classical projected gradient descent intractable. Although FW
is known for more than half a century, there was not parallelizable. In this chapter, we consider
a class of problems that exhibit block-separable structure optimized by FW, and characterize the
convergence behaviors by staleness and problem-dependent quantities.

5.1 Introduction

The FW algorithm iteratively minimizes a smooth function f (typically convex) over a compact
convex set M ⊂ Rm. Unlike methods based on projection, FW uses just a linear oracle that
solves minx∈M 〈x, g〉, which can be much simpler and faster than projection.

This feature underlies the great popularity of FW, which has by now witnessed several exten-
sions such as regularized FW [28, 60, 160], linearly convergent special cases [54, 81], stochastic
versions [62, 83, 115], and a randomized block-coordinate FW [82].

Despite this progress, parallel and distributed FW variants are barely known. We fill this gap and
develop new asynchronous FW algorithms, for the particular setting where the constraint setM
is block-separable; thus, we solve

min
x

f(x) s.t. x = [x(1), ..., x(n)] ∈
n∏
i=1

Mi, (5.1)

whereMi ⊂ Rmi (1 ≤ i ≤ n) is a compact convex set and x(i) are coordinate partitions of x.
This setting for FW was considered in [82], who introduced the Block-Coordinate Frank-Wolfe
(BCFW) method.

77

Such problems arise in many applications, notably, structural SVMs [82], routing [88], group
fused lasso [7, 21], trace-norm based tensor completion [97], reduced rank nonparametric re-
gression [49], and structured submodular minimization [70], among others.

A standard approach to solve (5.1) is via block-coordinate (gradient) descent (BCD), which forms
a local quadratic model for a block of variables, and then solves a projection subproblem [16,
113, 125]. However, for many problems, including the ones noted above, projection can be
expensive (e.g., projecting onto the trace norm ball, onto base polytopes 52), and in some cases
even computationally intractable [35].

Frank-Wolfe methods excel in such scenarios as they rely only on linear oracles that solve
mins∈M〈s,∇f(·)〉. ForM =

∏
iMi, this breaks into the n independent problems

min
s(i)∈Mi

〈s(i),∇(i)f(x)〉, 1 ≤ i ≤ n, (5.2)

where∇(i) denotes the gradient w.r.t. coordinates x(i). It is obvious that these n subproblems can
be solved in parallel (an idea dating back to at least as early as 88). However, having to update
all the coordinates at each iteration is expensive, hampering the use of FW on big-data problems.

This drawback is partially ameliorated by BCFW [82], which randomly selects a block Mi at
each iteration and performs FW updates. But these updates are strictly sequential, and do not
take advantage of modern multicore architectures or of distributed clusters.

Contributions. Our main contributions are the following:

• Asynchronous Parallel block-coordinate Frank-Wolfe algorithms (AP-BCFW) for both shared-
memory and distributed settings. Moreover, AP-BCFW depends only (mildly) on the expected
delay, therefore is robust to stragglers and faulty worker threads.

• An analysis of the primal and primal-dual convergence of AP-BCFW and its variants for any
minibatch size and potentially unbounded maximum delay. When the maximum delay is actu-
ally bounded, we show stronger results using results from load-balancing on max-load bounds.

• Insightful deterministic conditions under which minibatching provably improves the conver-
gence rate for a class of problems (sometimes by orders of magnitude).

• Experiments that demonstrate on real data how our algorithm solves a structural SVM problem
several times faster than the state-of-the-art.

In short, our results contribute towards making FW more attractive for big-data applications. To
add perspective, we compare our methods to closely related works below; we refer the reader
to [51, 69, 82, 159] for additional notes and references.

Notation. We briefly summarize our notation now. The vector x ∈ Rm denotes the parameter
vector, possibly split into n coordinate blocks. For block i = 1, ..., n, Ei ∈ Rm×mi is the projec-
tion matrix which projects x ∈ Rm down to x(i) ∈ Rmi; thus x(i) = Eix. The adjoint operatorE∗i
maps Rmi → Rm, thus x[i] = E∗i x(i) is x with zeros in all dimensions except x(i) (note the sub-
script x[i]). We denote the size of a minibatch by τ , and the number of parallel workers (threads)
by T . Unless otherwise stated, k denotes the iteration/epoch counter and γ denotes a stepsize.

78

Parameter server
or

Shared memory bus

Send block updates

Write a block to bus

Broadcast new parameters

Read a block from bus

Worker nodes
or

CPU threads

Figure 5.1: Illustration of the AP-BCFW in the distributed (in red) and share-memory settings
(in blue). The “cloud” of all worker nodes (or CPU threads) is abstracted into an oracle that
keeps feeding the server (or writing to the memory bus) with updates from solving possibly
approximate (and/or delayed) solutions to (5.2) on iid uniform random blocks.

Finally, Cτ
f (and other such constants) denotes some curvature measure associated with function

f and minibatch size τ . Such constants are important in our analysis, and will be described in
greater detail in the main text.

5.2 Algorithm

In this section, we present an asynchronous parallel block-coordinate Frank-Wolfe algorithm
(AP-BCFW) to solve (5.1). Our algorithm is designed to run fully asynchronously on either a
shared-memory multicore architecture or on a distributed system.

For the shared-memory model, the computational work is divided amongst worker threads, each
of which has access to a pool of coordinates that it may work on, as well as to the shared param-
eters. This setup matches the system assumptions in [98, 114, 125], and most modern multicore
machines permit such an arrangement.

On a distributed system, the parameter server [39, 94] broadcasts the most recent parameter
vector periodically to each worker and workers keep sending updates to the parameter vector
after solving the subroutines corresponding to a randomly chosen parameter. In either setting,
we do not wait for slower workers or synchronize the parameters at any point of the algorithm,
therefore many updates sent from the workers could be calculated based on a delayed parameter.

For convenience, we treat the pool of all workers as a single “cloud” oracleO that keeps sending
updates of form {i, s(i)} to the server, where i selects a block and s(i) is an approximate solution
to (5.2) at the current parameter. Moreover, we assume that

A1. The sequence of i from O is sampled i.i.d. uniformly from {1, 2, ..., n}.

Assumption A1 is critical as it ensures Step 2 in the algorithm is an unbiased approximation
of the batch FW. This assumption allows the workers to be arbitrarily heterogeneous as long as
they each sample blocks i.i.d. uniformly and the time for each worker to produce s(i) does not

1We bound the probability of collisions in Appendix D.4.2.

79

Algorithm 6 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (distributed)

Input: An initial feasible x(0), mini-batch size τ , a “Cloud” oracle O satisfying Assumptions
A1, A2.
0. Broadcast x(0) to all workers in O.
for k = 1,2,. . . (k is the iteration number) do

1. Keep receiving (i, s(i)) from O until we have τ disjoint blocks (overwrite if collision1).
Denote the index set by S.
2. Update x(k) = x(k−1) + γk

∑
i∈S(s[i] − x(k−1)

[i]) with γk = 2nτ
τ2k+2n

or via line-search.
3. Broadcast x(k) (or just x(k) − x(k−1)) to O.
4. Break if converged.

end for
Output: x(k).

depend on the block index i. Admittedly, this could be troublesome for some applications with
heterogeneous blocks, we describe ways to enforce A1 in Appendix D.4.1.

An advantage of this oracle abstraction is its potential applicability well beyond the per-worker
i.i.d. scheme. In practice, each worker might only have access to a small subset of [n] and
might be doing sequential sampling with periodic reshuffling. At the aggregate level, however,
the oracle assumptions might still be reasonable approximations, especially if the number of
workers T is large.

Both distributed and shared-memory settings can be captured under this oracle as is illustrated in
Figure 5.1. Pseudocode of our scheme is given in Algorithm 6.

5.3 Analysis

The three key questions pertaining to Algorithm 6 are:

• Does it converge?

• How fast? How much faster than BCFW (τ = 1)?

• How do delayed updates affect the convergence?

We answer the first two questions in Sections 5.3.1 and 5.3.2. Specifically, we show that AP-
BCFW converges at a O(1/k) rate. Our analysis reveals that the speedup of AP-BCFW over
BCFW via parallelization is problem dependent. Intuitively, we show that speedups due to mini-
batching (τ > 1) depend on the average “coupling” of the objective function f across different
coordinate blocks. For example, if f has a block symmetric diagonally dominant Hessian, then
AP-BCFW converges τ/2 times faster. We address the third question in Section 5.3.3, where we
establish convergence results that depend only mildly on the “expected” delay κ. The bound is
proportional to κ when we allow the delay to grow unboundedly, and proportional to

√
κ when

the delay is bounded by a small κmax.

80

5.3.1 Main convergence results

We begin by defining a few quantities needed for our analysis. The first key quantity—also key to
the analysis of several other FW methods—is the notion of curvature. Since AP-BCFW updates
a subset of coordinate blocks at a time, we define set curvature for an index set S ⊆ [n] as

C
(S)
f := sup

x∈M,s(S)∈M(S),

γ∈[0,1],
y=x+γ(s[S]−x[S])

2

γ2

(
f(y)− f(x)− (5.3)

〈y(S) − x(S),∇(S)f(x)〉
)
.

For index sets of size τ , we define the expected set curvature over a uniform choice of subsets as

Cτ
f := ES:|S|=τ [C

(S)
f] =

(
n
τ

)−1
∑

S⊂[n],|S|=τ
C

(S)
f . (5.4)

These curvature definitions are closely related to the global curvature constant Cf of [69] and
the coordinate curvature C(i)

f and product curvature C⊗f of [82]. Lemma 5.1 makes this relation
more precise.
Lemma 5.1 (Curvature relations). Suppose S ⊆ [n] with cardinality |S| = τ and i ∈ S. Then,

i) C
(i)
f ≤ C

(S)
f ≤ Cf ;

ii) 1
n
C⊗f = C1

f ≤ Cτ
f ≤ Cn

f = Cf .

How the expected set curvature Cτ
f scales with τ is critical to bounding the speedup we can

expect over BCFW; we provide a detailed analysis of this speedup in Section 5.3.2.

The next key object is an approximate linear minimizer. As in [69, 82], we also allow the core
computational subroutine that solves (5.2) to yield an approximate minimizer s(i). Formally, we
assume:

A2. There is a constant δ ≥ 0, such that for every k ≥ 1, the chosen minibatch S ⊂ [n] of size
τ and the corresponding blocks s(S) := (s(i))i∈S from O obey

E
[
〈s(S),∇(S)f

(k)〉 − min
s′∈M(S)

〈s′,∇(S)f
(k)〉
]
≤
δγkC

τ
f

2
. (5.5)

where the expectation is taken over the random sequence of minibatch indices and corre-
sponding updates from O in the entire history up to step k.

Assumption A2 is strictly weaker than what is required in [69, 82], as we only need the ap-
proximation to hold in expectation. With these definitions in hand, we are ready to state our
convergence result.
Theorem 5.1 (Primal Convergence). Say we use a “Cloud” oracle O that generates a sequence
of updates satisfying A1 and A2. Then, for each k ≥ 0, the iterations in Algorithm 6 and its line
search variant obey

E[f(x(k))]− f(x∗) ≤ 2nC
τ2k+2n

,

where C = nCτ
f (1 + δ) + f(x(0))− f(x∗).

81

At a first glance, the n2Cτ
f term in the numerator might seem bizarre, but as we will see in the

next section, Cτ
f can be as small as O(τ

n2). This is the scale of the constant one should keep
in mind to compare the rate to other methods, e.g., coordinate descent. Also note that so far
this convergence result does not explicitly work for delayed updates, which we will analyze in
Section 5.3.3 separately via the approximation parameter δ from (5.5).

For FW methods, one can also easily obtain a convergence guarantee in an appropriate primal-
dual sense. To this end, we introduce our version of the surrogate duality gap [69]; we define
this as

g(x) := max
s∈M
〈x− s,∇f(x)〉 (5.6)

=
n∑
i=1

max
s(i)∈M(i)

〈x(i) − s(i),∇(i)f(x)〉 =
n∑
i=1

g(i)(x).

To see why (5.6) is actually a duality gap, note that since f is convex, the linearization f(x) +
〈s− x,∇f(x)〉 is always smaller than the function evaluated at any s, so that

g(x) ≥ 〈x− x∗,∇f(x)〉 ≥ f(x)− f(x∗).

This duality gap is obtained for “free” in batch FW, but not in BCFW or AP-BCFW. Here, we
only have an unbiased estimate n

|S|
∑

i∈S g
(i)(x). For large τ , this estimate is close to g(x) with

high probability (McDiarmid’s Inequality), and can still be useful as a stopping criterion.
Theorem 5.2 (Primal-Dual Convergence). Assume O satisfies A1 and A2. Define the expected
surrogate duality gap gk := Eg(x(k)) and weighted average ḡk := 2

K(K+1)

∑K
k=1 kgk for the

sequence of parameters x(k) in Algorithm 6. Then for every K ≥ 1, there exists k∗ ∈ [K] such
that

gk∗ ≤ ḡK ≤
6nC

τ 2(K + 1)
,

with the same C in Theorem 5.1.

Relation with FW and BCFW: The above convergence guarantees can be thought of as an
interpolation between BCFW and batch FW. If we take τ = 1, they give exactly the convergence
guarantee for BCFW [82, Theorem 2], and if we take τ = n, we can drop f(x(0)) − f(x∗) from
C (with a small modification in the analysis) and recover the classic batch guarantee as in [69].

Dependence on initialization: Unlike classic FW, the convergence rate of our method depends
on the initialization. When h0 := f(x(0))− f(x∗) ≥ nCτ

f and τ 2 < n, the convergence is slower
by a factor of n

τ2
. The same concern was also raised in [82] with τ = 1. We can actually remove

the f(x(0))− f(x∗) from C as long as we know that h0 ≤ nCτ
f . By Lemma 5.1, the expected set

curvatureCτ
f increases with τ , so the fast convergence region becomes larger when we increase τ .

In addition, if we pick τ 2 > n, the rate of convergence is not affected by initialization anymore.

Speedup: The reader may have noticed the n2Cτ
f term in the numerator. This is undesirable as

n can be large (for instance, in structural SVM n is the total number of data points). The saving
grace in BCFW is that when τ = 1, Cτ

f is as small as O(n−2) (see 82, Lemmas A1 and A2), and
it is easy to check that the dependence on n is the same even for τ > 1. What really matters is

82

how much speedup one can achieve over BCFW, and this relies critically on how Cτ
f depends on

τ . Analyzing this dependence is our main focus in the next section.

5.3.2 Effect of parallelism / mini-batching

To understand when mini-batching is meaningful and to quantify its speedup, below we take a
more careful look at the expected set curvature Cτ

f . In particular, we analyze and present a set of
insightful conditions that govern its dependence on τ . The key idea is to quantify how strongly
different coordinate blocks interact with each other.

To begin, assume that there exists a positive semidefinite matrix H such that for any x, y ∈M

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
1

2
(y − x)TH(y − x). (5.7)

The matrix H may be viewed as a generalization of the gradient’s Lipschitz constant (a scalar)
to a matrix. For quadratic functions f(x) = 1

2
xTQx + cTx, we can take H = Q. For twice

differentiable functions, we can choose H ∈ {K | K � ∇2f(x), ∀x ∈M}.

Since x = [x1, . . . , xn] (we write xi instead of x(i) for brevity), we separate H into n × n
blocks; so Hij represents the block corresponding to xi and xj such that we can take the product
xTi Hijxj . Now, we define a boundedness parameter Bi for every i, and an incoherence condition
with parameter µij for every block coordinate pairMi,Mj such that

Bi = sup
xi∈Mi

xTi Hiixi, µij = sup
xi∈Mi,xj∈Mj

xTi Hijxj,

B = Ei∼Unif([n])Bi, µ = E(i,j)∼Unif({(i,j)∈[n]2,i6=j})µij.

Using these quantities, we obtain the following bound on the expected set-curvature.
Theorem 5.3. Cτ

f ≤ 4(τB + τ(τ − 1)µ) for any τ ∈ [n].

It is clear that when the incoherence term µ is large, the expected set curvature Cτ
f is proportional

to τ 2, and when µ is close to 0, then Cτ
f is proportional to τ . In other words, when the interaction

between coordinates block is small, one gains from parallelizing BCFW. This is analogous to the
situation in parallel coordinate descent [98, 125] and we will compare the rate of convergence
explicitly with them in Appendix D.4.5.
Corollary 1. Consider a matrix M with Bi on the diagonal and µij on the off-diagonal. If M is
symmetric diagonally dominant (SDD), i.e., the sum of absolute off-diagonal entries in each row
is no greater than the diagonal entry, then Cτ

f is proportional to τ .

The above result depends on the parameters B and µ. In Appendix D.4.4, we provide two
concrete examples (multi-class classification with structural SVM and graph fused lasso) where
we can express B and µ as problem-dependent quantities and provide explicit upper bounds of
Cτ
f . In both examples, we show that choosing larger τ yields faster convergence (at least up to

some point).

83

5.3.3 Convergence with delayed updates

Often due to the delays in communication, some updates pushed back by workers are calculated
based on delayed parameters that were broadcast earlier. Dropping these updates or enforcing
synchronization will create a huge system overhead especially when the size of the minibatch is
small. Ideally, we want to just accept the delayed updates as if they were correct, and broadcast
new parameters to workers without locking the updates. The question is, does this idea work?

In this section, we model delays from updates to be i.i.d. from an unknown distribution that can
depend on k, but not on blocks. Under these assumptions, we show that the effect of delayed
updates can be treated as an approximate oracle that satisfies A2 in (5.5) with some specific
constant δ that depends on the expected delay κ and the maximum delay parameter κmax (when
it exists). This allows us to invoke results in Section 5.3.1 to establish convergence for delayed
updates. The results also depend on the following diameter and gradient Lipschitz constant for a
norm ‖ · ‖

D
(S)
‖·‖ = sup

x,y∈M(S)

‖x− y‖,

L
(S)
‖·‖ = sup

x,y∈M,y=x+s
‖s‖≤γ,
s∈span(M(S))

1

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉),

Dτ
‖·‖ = max

S⊂[n]

∣∣|S|=τD(S)
‖·‖ , and Lτ‖·‖ = max

S⊂[n]||S|=τ
L

(S)
‖·‖ .

Theorem 5.4 (Delayed Updates as Approximate Oracle). For each norm ‖ · ‖ of choice, let Dτ
‖·‖

and Lτ‖·‖ be defined above. Let the a random variable of delay be κ and let κ := Eκ be the
expected delay from any worker. Moreover, assume that the algorithm drops any updates with
delay greater than k/2 at iteration k. Then for the version of the algorithm without line-search,
the delayed oracle will produce s ∈M(S) such that (5.5) holds with

δ = 4κτL1
‖·‖D

1
‖·‖D

τ
‖·‖/(C

τ
f). (5.8)

Furthermore, if we assume that there is a κmax such that P(κ ≤ κmax) = 1 for all k, then (5.5)

holds with δ = cn,τκmax

4τL1
‖·‖D

1
‖·‖ED

κτ
‖·‖

Cτf
where

cn,τκmax =

3 logn

log(n/(τκmax))
if κmaxτ < n/ log n,

O(log n) if κmaxτ = O(n log n),
(1+o(1))τκmax

n
if κmaxτ � n log n.

(5.9)

The results above imply that AP-BCFW (without line-search) converges in both primal optimality
and in duality gap according to Theorems 5.1 and 5.2 with the same O(1/k) rate. Comparing
to versions that solve (5.2) exactly, the delayed version has an additional additive factor in the
numerator of form

4nκτL1
‖·‖D

1
‖·‖D

τ
‖·‖ or O

(
τL1
‖·‖D

1
‖·‖EDκτ

‖·‖ log n
)

84

with the additional assumption that κmax = O(n log n/τ).

Note that (5.8) depends on the expected delay rather than the maximum delay, and as k → ∞
we allow the maximum delay to grow unboundedly. This allows the system to automatically
deal with heavy-tailed delay distributions and sporadic stragglers. When we do have a small
bounded delay, we produce stronger bounds (5.9) with a multiplier that is either a constant (when
τκmax = O(n1−ε) for any ε > 0), proportional to log n (when τκ ≤ n) or proportional to τκmax

n

(when τκ is large). The whole expression often has sublinear dependence on the expected delay
κ. For instance, we prove in the appendix the following:
Lemma 5.2. When ‖ · ‖ is Euclidean norm

EDκτ
‖·‖ ≤ D

dEκτe
‖·‖ ≤

√
dEκeDτ

‖·‖.

The bound is proportional to
√
κ when κ = Ω(1). This is strictly better than [114] which

has quadratic dependence on κmax and [98] which has exponential dependence on κmax. Our
mild κmax dependence for the cases τκmax > n suggests that the (5.9) remains proportional to√
κ even when we allow the maximum delay parameter to be as large as n/τ or larger without

significantly affecting the convergence. Note that this allows some workers to be delayed for
several data passes.

Observe that when τ = 1, where the results reduces to a lock-free variant for BCFW, δ becomes
proportional to L1

‖·‖[D
1
‖·‖]

2/C1
f . This is always greater than 1 (see e.g., 69, Appendix D) but

due to the flexibility of choosing the norm, this quantity corresponding to the most favorable
norm is typically a small constant. For example, when f is a quadratic function, we show that
C1
f = L1

‖·‖[D
1
‖·‖]

2 (see Appendix D.4.3). When τ > 1, τL1
‖·‖D

1
‖·‖D

τ
‖·‖/C

τ
f is often O(

√
τ) for an

appropriately chosen norm. Therefore, (5.8) and (5.9) are roughly in the order of O(κ
√
τ) and

O(
√
κτ) respectively.2

Lastly, we remark that κ and τ are not independent. When we increase τ , we update the param-
eters less frequently and κ gets smaller. In a real distributed system, with constant throughput in
terms of the number of oracles that are solved per second from all workers. If the average delay
is a fixed number in clock time specified by communication time. Then τκ is roughly a constant
regardless how τ is chosen.

5.4 Experiments

In this section, we experimentally demonstrate performance gains from the three key features of
our algorithm: minibatches of data, parallel workers, and asynchrony.

2For details, see our discussion in Appendix D.4.3

85

5.4.1 Minibatches of Data

We conduct simulations to study the effect of mini-batch size τ , where larger τ implies greater
degrees of parallelism as each worker can solve one or more subproblems in a mini-batch. In
our simulation, we re-use the structural SVM setup from [82] for a sequence labeling task on a
subset of the OCR dataset [136] (n = 6251, d = 4082). The dual problem has block-separable
probability simplex constraint therefore allowing us to run AP-BCFW, and each subproblem can
be solved efficiently using the Viterbi algorithm (more details are included in Appendix D.3).
The speedup on this dataset is shown in Figure 5.2(a). For this dataset, we use λ = 1 with
weighted averaging and line-search throughout (no delay is allowed). We measure the speedup
for a particular τ > 1 in terms of the number of iterations (Algorithm 6) required to converge
relative to τ = 1, which corresponds to BCFW. Figure 5.2(a) shows that AP-BCFW achieves
linear speedup for mini-batch size up to τ ≈ 50. Further speedup is sensitive to the convergence
criteria.

In our simulation for Group Fused Lasso, we generate a piecewise constant dataset of size (n =
100, d = 10, in Eq. D.2) with Gaussian noise. We use λ = 0.01 and a primal suboptimality
threshold as our convergence criterion. At each iteration, we solve τ subproblems (i.e. the mini-
batch size). Fig. 5.2(b) shows the speed-up over τ = 1 (BCFW). Similar to the structural SVM,
the speedup is almost perfect for small τ (τ ≤ 55) but tapers off for large τ to varying degrees
depending on the convergence thresholds.

(a) Structural SVM (n=6251)

0 20 40 60 80 100
0

20

40

60

80

100

τ

s
p

e
e

d
u

p
 o

v
e

r
τ=

1 primal threshold=f
*
+0.02

primal threshold=f
*
+0.04

primal threshold=f
*
+0.06

y=x

0 20 40 60 80 100
0

20

40

60

80

100

τ

s
p

e
e

d
u

p
 o

v
e

r
τ=

1 primal threshold=f
*
+0.01

primal threshold=f
*
+0.05

primal threshold=f
*
+0.10

y=x

(b) Graph Fused Lasso (n=100)

Figure 5.2: Performance improvement with τ for (a) Structual SVM on the OCR dataset [82, 136]
and (b) Group Fused Lasso on a synthetic dataset. f ∗ denotes primal optimum (the “primal”
problem is actually referring to the dual problem in both cases). The performance metric here is
the number of iterations to achieve ε-suboptimality.

86

5.4.2 Shared Memory Parallel Workers

We implement AP-BCFW for the structural SVM in a multicore shared-memory system using
the full OCR dataset (n = 6877). All shared-memory experiments were implemented in C++
and conducted on a 16-core machine with Intel(R) Xeon(R) CPU E5-2450 2.10GHz processors
and 128G RAM. We first fix the number of workers at T = 8 and vary the mini-batch size
τ . Fig. 5.3(a) shows the absolute convergence (i.e. the convergence per second). We note that
AP-BCFW outperforms single-threaded BCFW under all investigated τ , showing the efficacy of
parallelization. The optimal τ for a given number of workers (T) depends on both the dataset
(how “coupled” are the coordinates) and also system implementations (how costly is the syn-
chronization).

Since speedup for a given T depends on τ , we search for the optimal τ across multiples of T to
find the best speedup for each T . Fig. 5.3(b) shows faster convergence of AP-BCFW over BCFW

(T = 1) when T > 1 workers are available. It is important to note that the x-axis is wall-clock
time rather than the number of epochs.

Fig. 5.3(c) shows the speedup with varying T . AP-BCFW achieves near-linear speed up for
smaller T . The speed-up curve tapers off for larger T for two reasons: (1) Large T incurs
higher system overheads, and thus needs larger τ to utilize CPU efficiently; (2) Larger τ incurs
errors as shown in Fig. 5.2(a). If the subproblems were more time-consuming to solve, the
affect of system overhead would be reduced. We simulate harder subproblems by simply solving
them m ∼Uniform(5, 15) times instead of just once. The speedup is nearly perfect as shown
in Fig. 5.3(d). Again, we observe that a more generous convergence threshold produces higher
speedup, suggesting that resource scheduling could be useful (e.g., allocate more CPUs initially
and fewer as algorithm converges).

We repeated the experiment on a larger synthetic dataset with n = 103155, d = 4082 created
from the above mentioned OCR data as follows: for each of the 6877 words, generate 15 words
with noisy images for characters, where the noise is introduced by flipping the bits of the im-
ages with probability 0.05 independently. The speedup with parallelization, shown in Fig. 5.4,
essentially follows the same pattern as it did in Fig. 5.3(b)(c) for original data.

5.4.3 Performance gain with asynchronous updates

We compare AP-BCFW3 with a synchronous version of the algorithm (SP-BCFW) where the
server assigns τ/T subproblems to each worker, then waits for and accumulates the solutions
before proceeding to the next iteration. We simulate workers of varying slow-downs in our
shared-memory setup by assigning a return probability pi ∈ (0, 1] to each worker wi. After
solving each subproblem, worker wi reports the solution to the server with probability pi. Thus,
a worker with pi = 0.8 will drop 20% of the updates on average corresponding to 20% slow-
down.

3The version that has no delayed updates, but allows workers to asynchronously solve subproblems within each
mini-batch.

87

time (s)
0 1 2 3 4

p
ri

m
a

l s
u

b
o

p
tim

a
lit

y

10
-4

10
-3

10
-2

10
-1

Primal vs time

== T
== 2T
== 3T
== 5T
BCFW

(a)

time (s)
0 1 2 3 4 5 6

p
ri

m
a

l s
u

b
o

p
tim

a
lit

y

10
-4

10
-3

10
-2

10
-1

Primal vs time

T=1
T=2
T=4
T=8

(b)

Speedup vs T(c)

T
0 5 10

sp
ee

du
p

0

2

4

6

8

10

12

14 primal threshold = f* + 0.005
primal threshold = f* + 0.001
y=x

T
0 5 10

sp
ee

du
p

0

2

4

6

8

10

12

14 primal threshold = f* + 0.005
primal threshold = f* + 0.001
y=x

(d)

Figure 5.3: (a) Primal suboptimality vs wall-clock time using 8 workers (T = 8) and various
mini-batch sizes τ . (b) Primal suboptimality vs wall-clock time for varying T with best τ chosen
for each T separately. (c) Speedup via parallelization with the best τ chosen among multiples of
T (T, 2T, ...) for each T . (d) The same with longer subproblems.

We use T = 14 workers for the experiments in this section. We first simulate the scenario with
just one straggler with return probability p ∈ (0, 1] while the other workers run at full speed
(p = 1). Fig. 5.5(a) shows that the average time per effective datapass (over 20 passes and 5
runs) of AP-BCFW stays almost unchanged with slowdown factor 1/p of the straggler, whereas
it increases linearly for SP-BCFW. This is because AP-BCFW relies on the average available
worker processing power, while SP-BCFW is only as fast as the slowest worker.

Next, we simulate a heterogeneous environment where the workers have varying speeds. While
varying a parameter θ ∈ [0, 1], we set pi = θ + i/T for i = 1, . . . , T . Fig. 5.5(b) shows that
AP-BCFW slows down only by a factor of 1.4 compared to the no-straggler case. Assuming that
the server and worker each take about half the (wall-clock) time on average per epoch, we would
expect the run time to increase by 50% if the average worker speed halves, which is the case if
θ = 0 (i.e., 1

θ
→∞). Thus, a factor of 1.4 is reasonable. The performance of SP-BCFW is almost

88

time (s)
0 10 20 30 40

pr
im

al
 s

ub
op

tim
al

ity

10 -4

10 -3

10 -2

10 -1

Primal vs time

T=1
T=2
T=4
T=8

T
0 5 10

sp
ee

du
p

0

2

4

6

8

10

12

14

Speedup vs T

primal threshold = f* + 1e-3
primal threshold = f* + 1e-4
y=x

Figure 5.4: Speedup with parallelization on a synthetic OCR dataset. Left plot shows the decay
of primal suboptimality and the right one shows the speedup.

identical to that in the previous experiment as its speed is determined by the slowest worker. Our
experiments show that AP-BCFW is robust to stragglers and system heterogeneity.

5.4.4 Convergence under unbounded heavy-tailed delay

In this section, we illustrate the mild effect of delay on convergence by randomly drawing an
independent delay variable for each worker. For simplicity, we use τ = 1 (BCFW) on the group
fused lasso problem from Section 5.4.1. We sample κ using either a Poisson distribution or a
heavy-tailed Pareto distribution (round to the nearest integer). The Pareto distribution is chosen
with shape parameter α = 2 and scale parameter xm = κ/2 such that Eκ = κ and Varκ = ∞.
During the experiment, at iteration k, any updates that were based on a delay greater than k/2
are dropped (as our theory stipulates). The results are shown in Figure 5.6. Observe that for both
cases, the impact of delay is rather mild. With expected delays up to 20, the algorithm only takes
fewer than twice as many iterations to converge.

5.5 Additional Related Work

BCFW and Structural SVM. Our algorithm AP-BCFW extends and generalizes BCFW to paral-
lel computation. Our analysis follows the structure in [82], but uses different stepsizes that must
be carefully chosen. Our results contain BCFW as a special case. [82] primarily focus on more
explicit (and stronger) guarantee for BCFW on structural SVM, while we mainly focus on a more
general class of problems; the particular subroutine needed by structural SVM requires special
treatment though (see Appendix D.3).

Parallelization of sequential algorithms. The idea of parallelizing sequential optimization

89

5 10 15 20
−1

0

1

2

3

4

5

6

1/p (Slowdown factor)

tim
e
pe
r
ef
f.
da
ta
pa
ss

async
sync

5 10 15 20
−1

0

1

2

3

4

5

6

1/θ (Slowdown factor)

tim
e
pe
r
ef
f.
da
ta
pa
ss

async
sync

(a) (b)

Figure 5.5: Average time per data pass in asynchronous and synchronous modes for two cases:
one worker is slow with return probability p (left); workers have return probabilities (pis) uni-
formly in [θ, 1] (right). Times normalized separately for AP-BCFW, SP-BCFW w.r.t. to where
workers run at full speed.

algorithms is not new. It dates back to [139] for stochastic gradient methods; more recently
[91, 98, 125] study parallelization of BCD. The conditions under which these parallel BCD
methods succeed, e.g., expected separable overapproximation (ESO), and coordinate Lipschitz
conditions, bear a close resemblance to our conditions in Section 5.3.2, but are not the same
due to differences in how solutions are updated and what subproblems arise. In particular, our
conditions are affine invariant. We provide detailed comparisons to parallel coordinate descent
in Appendix D.4.5.

Asynchronous algorithms. Asynchronous algorithms that allow delayed parameter updates
have been proposed earlier for stochastic gradient descent [114] and parallel BCD [98]. We
propose the first asynchronous algorithm for Frank-Wolfe. Our asynchronous scheme not only
permits delayed minibatch updates, but also allows the updates for coordinate blocks within
each minibatch to have different delays. Therefore, each update may not be a solution of (5.2)
for any single x. Moreover, we obtain strictly better dependence on the delay parameter than
predecessors (e.g., an exponential improvement over [98]) possibly due to a sharper analysis.

Other related work. While preparing our manuscript, we discovered the preprint [17] which
also studies distributed Frank-Wolfe. We note that [17] focuses on Lasso type problems and
communication costs, and hence, is not directly comparable to our results.

5.6 Conclusion

In this chapter, we propose an asynchronous parallel generalization of the block-coordinate
Frank-Wolfe method [82], analyze its convergence and provide intuitive conditions under which

90

Epoch
0 200 400 600 800 1000

D
ua

lit
y

ga
p

10-2

10-1

100

101

102

103

No delay
Expected Delay = 2
Expected Delay = 5
Expected Delay = 10
Expected Delay = 20

Epoch
0 500 1000 1500

D
ua

lit
y

ga
p

10-2

10-1

100

101

102

103

No delay
Expected Delay = 2
Expected Delay = 5
Expected Delay = 10
Expected Delay = 20

Figure 5.6: Illustrations of the convergence BCFW with delayed updates. On the left, we have
the delay sampled from a Poisson distribution. The figure on the right is for delay sampled from
a Pareto distribution. We run each problem until the duality gap reaches 0.1.

it has a provable speed-up over BCFW. We also show that the method is resilient to delayed
updates in the distributed setting. The convergence bound depends only linearly on the expected
delay and possibly sublinearly if the delay is bounded, yielding an exponential improvement over
the dependence on the same parameter in parallel coordinate descent [98]. The asynchronous
updates allow our method to be robust to stragglers and node failure as the speed of AP-BCFW

depends on average worker speed instead of the slowest. We demonstrate the effectiveness of
the algorithm in structural SVM and Group Fused Lasso with both controlled simulation and
real-data experiments on a multi-core workstation. For the structural SVM, it leads to a speed-
up over the state-of-the-art BCFW by an order of magnitude using 16 parallel processors. As a
projection-free FW method, we expect our algorithm to be very competitive in large-scale con-
strained optimization problems, especially when projections are expensive. Future work includes
analysis for the strongly convex setting, the non-convex setting and ultimately releasing a general
purpose software package for practitioners to deploy in Big Data applications.

91

92

Chapter 6

Conclusion and Future Work

In this thesis, we approach learning with staleness from three inter-dependent directions:

• Theoretical Analyses. We extend the theoretical analyses of a number of classical ML
algorithms. Our theoretical results paint the overall picture that many Machine Learn-
ing (ML) algorithms indeed work under limited staleness, under both data parallelism and
model parallelism, consistent with the notion that iterative-convergent ML methods are
error-tolerant [146]. In particular, (1) for stochastic gradient descent under data paral-
lelism, we show in Chapter 3 that Stale Synchronous Parallel (SSP), a bounded staleness
consistency model, achieves better convergence with lower empirical staleness. This cap-
tures the intuition that lower run time staleness should help convergence, even under the
same maximum staleness bound. This dependency on runtime staleness was not revealed
in previous analyses that only considers worst-case staleness. Additionally, our results
shows that the variance is decreasing when close to optimum. (2) For proximal gradient
descent, we show in Chapter 4 that it converges when parallelized over the model pa-
rameters (i.e., model parallelism). Our analyses apply to non-convex objective functions,
for both the smooth part and the non-smooth regularizer term. This includes most prac-
tical ML problems in large-scale settings, such as regularized logistic regression, boost-
ing, and deep learning models. (3) For Frank-Wolfe algorithms, we show in Chapter 5
that block-coordinate Frank-Wolfe algorithms can achieve speed-up, when block updates
are executed in parallel following the model parallelism paradigm. Our analyses reveal
problem-dependent quantities (i.e. the objective function and the dataset) that governs the
acceleration over sequential execution. Furthermore, the parallel algorithm is only mildly
dependent on expected staleness, instead of the worst-case delay.

• Empirical Evaluation. We conduct simulation and large-scale distributed experiments
to study the empirical effect of staleness on ML algorithms under complex conditions.
In Chapter 2 we perform simulation study on 5 models: Multi-class Logistic Regres-
sion, Deep Neural Networks, Matrix Factorization, Variational Auto-encoder, and Latent
Dirichlet Allocation (LDA), solved by 10 algorithms, including stochastic gradient descent
(SGD) and variants, variational inference, and Gibbs sampling. Each algorithm’s sensitiv-

93

ity to staleness is highly variable. For example, among the SGD variants, methods using
advanced step size tuning are generally much more susceptible to staleness. Perhaps sur-
prisingly, limited staleness can sometimes accelerate convergence for SGD. The sensitivity
to staleness is subject to the specific model, with more slowdown for more complex mod-
els (e.g., deeper DNNs). Gradient coherence–which is easy to evaluate at runtime–offers
a possibly explanation for the impact of staleness. Collapsed Gibbs sampling for LDA ex-
hibit highly non-linear response to staleness, in which staleness below a certain threshold
makes virtually no impact, but precipitates rapid convergence degradation above certain
threshold. And while some algorithms are more robust to staleness, no ML method is im-
mune to the negative impact of staleness. In Chapter 4 and Chapter 5, our experiments cor-
roborate with the theoretical analyses of proximal gradient descent and block-coordinate
Frank-Wolfe algorithms, achieving convergence and speed up. We consider Group Lasso,
structural SVM, and Lasso. In particular, the speed-up can be sensitive to the convergence
criteria, where higher requirements on model quality can result in more limited speed-up.

• Staleness-Minimizing Systems. Using the insights gleaned from our empirical and the-
oretical analyses, we design staleness-minimizing Parameter Server systems in Chapter 3
that optimizes the synchronization mechanisms to effectively control the runtime stale-
ness. Bösen, our Parameter Server, supports Eager Stale Synchronous Parallel (ESSP)
synchronization mechanism, which is an optimized implementation of the existing Stale
Synchronous Parallel (SSP), a bounded staleness consistency model. By utilizing the ad-
ditional network capacity to communicate early before reaching the maximum staleness
bound, Bösen effectively reduces the runtime staleness, and the profiling of runtime stale-
ness distribution shows that most parameter reads concentrate on low staleness regime, in
contrast to a lazy communication under SSP that incurs substantial high staleness param-
eter reads. Moreover, ESSP implementation also significantly reduces the network wait
time experienced by ML applications, because most communication occurs before reach-
ing the maximum staleness bounds and thus does not block computation. We show that
our system stabilizes diverging optimization paths such as experienced by SGD on Ma-
trix Factorization, and substantially accelerates convergence due to the lowered staleness
for Gibbs sampling on LDA and SGD on MF. By using ESSP, the users are relieved of
the burden to tune the staleness level, as the runtime staleness is no longer sensitive to
the user-specified maximum staleness. Our experiments demonstrate similar convergence
paths regardless of the staleness parameter.

Our results support the conclusion that staleness is a fundamental governing parameter for most,
if not all, ML algorithms, with diverse manifested effects among the considered algorithms.
Furthermore, we demonstrate that we can design systems that minimizes the effects of staleness
by optimizing the synchronization mechanism.

94

6.1 Future Work

There are still a number of interesting open problems at the intersection of staleness, ML algo-
rithms, and systems:

• Currently it is difficult to know a priori which models and algorithms are robust to stal-
eness, or even how staleness would affect convergence under different configurations of
models, algorithms, and network conditions. Is it possible to device an indicator that can
be efficiently evaluated empirically for each problem so that the system can auto-adjust the
staleness level accordingly, or even dynamically during the algorithm runtime? This would
eliminate the need to have trial runs with varying staleness that may or may not lead to de-
sired convergence. Our initial results around gradient coherence is promising, but further
research is needed to generalize this concept of coherence to non-gradient methods.

• How do we theoretically characterize the convergence behaviors for sampling methods un-
der staleness? Our results from Gibbs sampling on LDA suggest that there is a threshold
such that below the threshold the staleness has virtually no effect. However, when stal-
eness is above the threshold, the convergence fails completely. It may be interesting to
understand such behavior from posterior contraction perspective [135].

• Currently we are treating the staleness of all parameters uniformly. How can we prioritize
more “important” parameters to communicate over others? [145] uses absolute magnitude
and relative magnitude of change as the heuristics to estimate parameter importance, which
works well for LDA but not for MF. Is there a more principled way to prioritize parameters
to synchronize?

• There are a new class of algorithms and statistical methods that require minimal synchro-
nization [72, 112, 128]. Those methods generally requires only single or very few synchro-
nization steps, in contrast to the algorithms considered in this thesis. Since communication
strictly enhances the capacity of the system, it would be interesting to consider if we can
blend in the two approaches. For example, is it possible that, when the staleness is high, the
algorithm would become to be more similar to the embarrassingly parallel approach, but
when the bandwidth is available, the algorithm can take advantage of those communication
opportunity. This would be especially useful for performing ML on the edge where low
power devices with extremely limited bandwidth are mixed with more powerful gateway
computers.

95

96

Chapter 7

The Debate: Synchronous vs
Non-Synchronous Training for Machine
Learning

We end the thesis with an informal discussion examining the broader arguments against or in
support of non-synchronous ML execution.

Distributed ML has garnered a substantial attention in the past 10 years. Google trend shows that
“Big Data” continues to be a subject of interest into 2018, even as the interest in cloud computing
subsides:

The problem of synchronous and non-synchronous training has broad implications. For one, ML
computation is bound to grow substantially, with increasing industry adoption at larger scales.
There will be a lot of opportunity for savings and consequently a surging demand for compu-
tational efficiency, much like what happened to the move from disk-based Hadoop computation
to Spark’s in-memory computation, or the web stack moving from lower performing scripting
languages (e.g. Python / Ruby on Rails) to Go and Node.js.

Another reason that non-synchronous vs synchronous is fundamental is that they result in very
different system design, which can be non-trivial to alter afterwards. For example, non-synchronous

97

systems generally have different abstraction than synchronous ones, such as restricting client-
side updates to be commutative and associative, or requiring additional control on synchroniza-
tion such as the staleness parameter [40, 65] or push and pull primitives [93]. Once the system
gains adoption, change as fundamental as the execution model is very unlikely—it is highly non-
trivial to integrate Spark, a synchronous system, with a non-synchronous abstraction. It requires
significant extension to Spark’s existing semantics [57]. The two synchronization paradigms
also lead to divergent system optimization. For example, in non-synchronous system it is ad-
vantageous to communicate early which improves the quality of stale shared parameters [145].
In contrast, for synchronous systems, sending out updates before reaching the end of an itera-
tion does not advance the execution whatsoever, but can actually adversely create larger network
traffic leading to network congestion.

Because distributed ML involves both ML configurations like learning rate and momentum, as
well as system runtime properties such as network throughput, non-synchronous training often
needs extensive tuning to work. In fact, there are papers devoted to extensive parameter tuning in
training algorithms to adapt to distributed settings [1, 59]. This reminds me of the development
of deep learning, which for a long time is only available for those who master the “tricks” needed
to get it to work. There’s a reason why we have books with title Efficient BackProp in Neural
Networks: Tricks of the Trade [89]. But over the years, due to the overwhelming amount of em-
pirical results and years of tuning, the network architecture designs become more standardized,
with much much more predictable performance. The need for “tricks” does not go away com-
pletely, but they have been largely simplified and standardized. This also does not mean that we
understand everything about neural nets. In fact, as far as I know we do not yet have a good grasp
of things like “internal covariate shift” that batch normalization claims to solve. But nonetheless,
we got deep learning to work on a variety of supervised learning tasks, especially in image and
speech, sometimes with jaw dropping performance.

In contrast to deep learning, the progress in distributed ML world is not as satisfying. There
is still fundamentally contradictory results on whether asynchrony helps or hurts the overall
training speed. There are simply too many tuning knobs in a distributed execution. If ML
models are already hard to reproduce, distributed ML, with myriad of less controllable hardware
performance, system implementation, and interference from other concurrent workloads, makes
it much more daunting to compare results across different papers. As a result, in the distributed
ML world we are still very much like deep learning in 2012: we hear about high profile success
stories in distributed ML, but applying distributed ML under a different circumstance can be hit
or miss. There is a lack of systematic understanding of the empirical behaviors.

A goal of this discussion is to expose the factors that are often hidden or coupled together. By
doing this, I hope to frame the synchronous vs non-synchronous debate more clearly. Along the
way I will also touch on the many gaps in our understanding that future research may fill in.

98

7.1 Async Isn’t Aways More Stale than Sync

A common misconception is that if a system is not synchronous, then the workers are more out of
sync. In some sense this is true, because non-synchronous systems allow different model copies
on the workers to be different, whereas in synchronous systems they are exactly the same. But
this view overlooks a key tuning parameter, namely, the size of workload in each clock. For
example, consider the following scenario: a non-synchronous system clocks at 4x the rate of a
synchronous system, as measured by the number of data processed:

(a) Non-synchronous execution with high clock rate

(b) Synchronous execution with low clock rate

Now, if the non-synchronous system keeps all workers within 1 clock of each other, then which
one is more out of sync? Assuming the updates are not scaled differently based on the clock rate,
the workers in the non-synchronous system actually miss fewer updates than the synchronous
system! To see this, simply observe that in the non-synchronous system there are always fewer
pending updates not observed by the model when each data is processed. By the same reasoning,
we can see that just because a system is fully asynchronous, it is not necessarily more stale
than the synchronous system. Asynchronous execution simply means that the system makes
best effort to synchronize, which, depending on the network and system implementation, can
sometimes have very low staleness!

99

Exploiting Bounded Staleness [36] offers a pretty insightful comparison along this line between
fully synchronous execution and stale synchronous execution. The result? Clock rate matters.
The paper defines work per clock (WPC) as the number of unit workloads between each clock.
For synchronous systems (slack = 0) lower clock rate (higher WPC) indeed converges much
more slowly, as seen in Fig. 7.1. Notice that the x-axis is the work done, which is the same as
the number of data passes (iterations). The paper then compares synchronous systems (A-BSP)
with non-synchronous one (SSP):

Figure 7.1: (Fig. 3 in [36]) Convergence over logical time (work done) under synchronous
training of topic models.

Figure 7.2: (Fig. 3 in [36]) Convergence over logical time (work done) under synchronous
training (BSP, A-BSP) and non-synchronous (SSP) of topic models.

Fig. 7.2 shows a comparison between synchronous and non-synchronous training with different
work per clock. The x-axis is the number of data passes (iterations). Notice that it takes roughly
the same time to reach objective value −9.5 × 108 for the green curve (wpc=4, slack=0, syn-
chronous), the blue, and the red curves (non-synchronous). In other words, by controlling the
clock rate and limiting the degree of staleness, the algorithm makes similar level of progress
under synchronous and non-synchronous settings per unit of computation.

100

The moral of the story is that distributed execution is complex and can sometimes behave in sur-
prising ways. It is not enough to compare synchronous against non-synchronous execution. It’s
probably more helpful to consider the “effective staleness”, which captures the actual staleness
experienced during the run time, for both synchronous and non-synchronous training. If all ML
parameters are kept fixed, effective staleness can be measured by:

Effective Staleness: For a training instance di used in up-
date u which is computed based on model xt and is applied
to model xt′ , the effective staleness for di is the number of
data used in all the updates committed between t and t′, in-
cluding those in update u.

This definition can be applied to both synchronous and non-synchronous training. Note that it’s
important to keep the ML parameters fixed. For example, batch size in stochastic gradient descent
algorithms can affect the relationship between the number of data processed and the effective
staleness level, as discussed in Section 2.3.3.) Many theoretical works consider staleness similar
to our definition, such as [105, 161], but for some reason this key quantity is rarely considered
in empirical analyses. In fact, I’m not aware of any work besides [40, 161] that tracks any form
of empirical staleness. This kind of metric is quite fundamental to understanding distributed ML
systems. If you think about it, most distributed systems that support latency sensitive workloads
would measure response latency [42, 84]. ML workloads clearly are latency sensitive in the
sense that latency causes more stale models which slows convergence. So why shouldn’t “ML
latency” be properly characterized in distributed ML systems?

7.2 Computation-to-Communication Ratio

Given the lack of explicit empirical staleness in the literature, we sometimes have to resort to
proxy measurements to give us a sense of the runtime staleness. One useful metric to consider is
the computation-to-communication ratio. Loosely speaking, if that ratio is high, then we know
that the system can process a lot of data per second (and generating updates to the model) for a
given communication capacity (e.g., bandwidth), leading to higher staleness. Even though this
ratio is seldom, if ever, explicitly measured, we can sometimes make reasonable guesses.

One prominent work championing asynchronous training for deep learning is Project Adam [32],
which is a system optimized for CPU computation. (They divide the models so that they can fit
in L3 cache, and they even build assembly kernels in order to access both row major and column
major memory efficiently!) They train a standard model with 5 convolutional layers followed
by 3 fully connected layers on the full ImageNet dataset which has 15 million images in 22000
categories. Using fully asynchronous execution, they train 570 billion “connections” per second
in their largest experiment, which is run on 108 computers, each with 16 Intel Xeon CPU cores.
Out of the 108 nodes, 88 are workers while the rest are parameter servers.

This may seem like an impressive processing power, but, on the same model and dataset, GeePS [38]

101

achieves higher throughput than the whole 108-node cluster used in Project Adam with just 4 ma-
chines, each with a NVIDIA Tesla K20C GPU. Using 16 of those machines achieve more than
5x the total throughput of Project Adam.

It’s not really a surprise that GPU cluster achieves higher throughput than CPU cluster. But as-
suming the network capacity is similar, using GPU cluster can seriously increase the computation-
to-communication ratio.

We can dig deeper into the network capacity of these systems. GeePS nodes are connected via
40 Gbps Ethernet, with 12 Gbps measured throughput via iperf. On the other hand, each node in
Project Adam has two 10 Gbps NIC and 1 Gbps interface, for a total 21 Gbps bandwidth. Adam
might have slightly better network, but the two network setups seem to have pretty comparable
throughput per node on paper. Moreover, both GeePS and Project Adam uses parameter server
to mediate their communication, which incurs total model synchronization traffic linear in the
number of worker nodes. However, Project Adam additionally performs model partition, so each
worker actually only hosts 1/4 of a model, reducing the communication load. Both systems send
the error vector instead of the full gradient matrix for the fully connected layers. (This massively
reduces the size of communication fromO(nm) toO(n+m) where n,m are the number of input
and output dimensions, respectively, of fully connected layers.) All considered, I’d say Project
Adam likely can communicate the model updates more quickly due to the model partition, al-
though at the end of the day, it is difficult to know the effective staleness in an asynchronous
system, because those systems generally forgo the control of synchronization to the system per-
formance and arbitrary network conditions, without any measurement of the empirical staleness.

Given these contexts, we can examine their experiences with synchronous vs asynchronous train-
ing. GeePS states that “while synchronization delays can be largely eliminated, as expected,
convergence is much slower with the more asynchronous models because of reduced training
quality.” Their result shows that much more data (2x to 3x more) need to be processed to reach
the same accuracy. That completely eliminate any throughput gain with asynchrony. While 2x
to 3x sounds like a lot, they are in line with our findings (see Fig. 2.5).

Project Adam, on the other hand, does not provide comparison between asyn and sync, but it
shows that it converges to 29% top-1 accuracy in 10 days on 48 worker machines, compared with
∼24% top-1 accuracy achieved by GeePS on 16 GPU nodes. Overall, based on the throughput
numbers discussed earlier, the training time seems to suggest that Project Adam does not need to
process much more images to compensate for async execution. In fact, asynchronous with pos-
sibly smaller batch sizes might have helped reduce the number of images needed to be processed
to reach the same test accuracy due to the momentum effect and generalization from small batch
training, which we will discuss later.

So does staleness really hurt training by increasing the number of iterations to reach the same
model quality? One way to understand this seemingly contradictory results from the two works is
to consider the computation-to-communication ratio. GeePS with 16 GPU nodes has 5x compu-
tation power than the largest cluster setup in Project Adam, whereas Project Adam enjoys higher
communication capacity relative to the size of the (partitioned) model. So overall Project Adam
probably has a much lower computation-to-communication ratio. Therefore it is highly possible

102

that Project Adam has a lower runtime staleness than GeePS even though GeePS is synchronous
whereas Project Adam is async. The dichotomy of synchronous vs async simply does not capture
the effective staleness that’s the main driver of convergence slowdown in distributed training.

One important factor we have overlooked so far is the choice of ML algorithms. Adam uses
stochastic gradient descent (SGD), while GeePS uses SGD with momentum. Staleness interacts
with algorithms in strange ways, as we shall see shortly.

7.3 Staleness and Momentum

Staleness alters ML algorithms in ways that we do not yet fully understand. In general, we see
that it slows down convergence as staleness introduces additional noise in during convergence.
However, in certain cases moderate level of staleness actually helps, as observed in our earlier
experiments (e.g. Fig. 2.2(a,b,f)).

This phenomenon can be explained by implicit momentum. A simple intuition is that by using
the stale version of the model, which hasn’t reflected the updates from other workers, the updates
may attempt to correct what other unseen gradients have already corrected. To illustrate, consider
this simple 1D function in Fig. 7.3. After step t, we are much closer to the optimum, and therefore
the gradient at wt+1 is of the same direction but smaller in magnitude than that at wt. However,
if a concurrent worker does not see the update at t and still thinks that the current parameter is
at wt, then it may generate a large gradient that can be viewed as momentum. (Note that the
“gradient” here is really the negative of gradient).

Figure 7.3: Illustration of gradient descent at two iterates.

Another way to understand implicit momentum is that because the stale models are a model from
an earlier step, there is “memory” built in to any non-synchronous system. The memory is what

103

enables most of modern SGD variants. For example, momentum SGD uses the following update:

wt+1 = wt + µ(wt − wt−1)− ηtgt

where wt is our model parameters at time step t and gt is the gradient, and ηt is the learning
rate while µ is the momentum parameter, often set to 0.9. As you can see, the momentum is
computed by using the past parameter from history wt−1. Other SGD variants such as Adam,
RMSProps, FTRL all uses gradient history in some way.

The Asynchrony Begets Momentum paper [109] elegantly shows that under some assumption of
the staleness distribution (namely, that the staleness is geometrically distributed), asynchronous
execution basically corresponds to adding an implicit momentum term to the SGD algorithm.

They demonstrate the effect of implicit momentum empirically using a simple experiment: Since
for each problem setting there is an optimal level of momentum, if asynchrony generates implicit
momentum, then the optimal explicit momentum µ in the algorithm must be reduced. This is
indeed what they find using CaffeNet on Cifar10 and ImageNet dataset (Fig. 7.4).

They further show, in Omnivore [59], that the system can tune the degree of asynchrony by
measuring the optimal explicit momentum empirically. If the explicit momentum is zero, then
the implicit momentum from asynchrony is likely higher than optimal, and thus they can reduce
asynchrony to improve convergence.

Although the papers may lack many details of the experiments, such as the target test accuracy at
convergence, or training time (especially in [109]), these works mark some of the rare cases when
the degree of asynchrony (which is directly related to staleness) is more explicitly considered.

The momentum view of SGD under the staleness explains well why asynchrony can sometimes
speed up the convergence for SGD algorithms. For example, in Project Adam which uses SGD
without momentum, the limited asynchrony can be beneficial. On the other hand, for GeePS
which uses SGD with momentum, it is possible that their momentum parameter at the default
0.9 is too high for the level of staleness, considering that the cluster consists of high throughput
GPU nodes. It is actually quite fascinating to see how staleness, which is usually considered as
a system parameter, can implicitly modify the ML algorithm parameters!

7.4 Staleness and the Convergence Dynamics

So far we have considered staleness as having an uniform impact throughout the convergence
process. However, gradient methods have very different dynamics at the beginning of the training
(when the parameter estimate is far away from the optima) vs toward the end (when the parameter
estimate is close to the optima). These different dynamics interact with staleness and bring the
already complex effects of staleness to the next level.

Let’s start with the initial phase of optimization. When the parameter estimate is far away from
the optima, for most functions this usually results in gradients with large magnitudes. For in-
tuition, Fig. 7.3 can serve as a good (albeit simplistic) mental picture. Deep neural nets are

104

Figure 7.4: (Fig. 3 in [109]) Explicit momentum µ to achieve the best convergence result.

actually quite difficult to optimize. Back in the “old days” when good initialization schemes for
deep neural nets weren’t available or popularized, the initial gradient dynamics can be highly
unpredictable and difficult to control [56]. A common failure mode during the initial phase of
SGD were due to large gradients pushing parameters to really undesirable regimes where gra-
dient dynamics stall or diverge. In the diverging case SGD generates even larger gradients that
can severely overshoot (in the right direction). Non-synchronous execution, with the aforemen-
tioned implicit momentum or other forces that are not yet well understood, can bring back those
nightmares.

Let’s pause here and consider what staleness does during the initial phase of the training. If we
have a function that is convex or “simple” like Fig. 7.5 (left), then slightly different verions of
the model do not drastically change the direction and magnitude of the gradient. However, for
more complex functions such as Fig. 7.5 (right), perturbation of the model due to staleness can

105

potentially lead to very different gradients. Indeed, that is what we observe in Section 2.3.5 that
gradient coherence along the convergence path is low for a more complex function.

Figure 7.5

Given the challenges caused by staleness during the initial phase of convergence it’s perhaps not
surprising that there are quite a few warm-up strategies or tricks people use for distributed SGD.
In Revisiting distributed synchronous SGD [31] the authors run RMSProp with momentum to
optimize Inception architecture using 50–200 machines, each with a K40 GPU. Although they
do not report any learning rate or momentum parameter, they empirically find that it is necessary
to clip gradients by the global norm (so that the norm of the gradient does not exceed a pre-
defined threshold) to stabilize convergence under the asynchronous setting. (They report that
synchronous settings do not need gradient clipping.)

Examples of using tricks during the initial phase of asynchronous training abound. Omnivore
[59] also trains the Inception network on ImageNet with momentum SGD under asynchronous
setting. During the initial warm-up phase, they use only synchronous training until the network
reaches 50% training accuracy before switching to asynchronous mode. The Distbelief system
[43] also uses 10 hours synchronous SGD to warm start their acoustic neural net model before us-
ing asynchronous SGD (“Downpour SGD”) and the distributed L-BFGS trainer (“Sandblaster”).
Outside of neural nets, the Parameter Server Consistency paper [40] shows that matrix factoriza-
tion optimized by SGD can diverge when staleness is high.

We note that these stability issues in the beginning phase of SGD training are not reported in
Project Adam, possibly due to low staleness or lower learning rate (not reported). GeePS also
does not report the need for warm start, though the parallelism is likely low due to well controlled
staleness and possibly low number of machines (not reported in the paper).

106

All considered, the common practice of warm start in non-synchronous training strongly suggests
that non-synchronous training is challenging during the initial phase of the SGD training.

As a side note, the optimization difficulty during the initial phase of SGD is not unique for non-
synchronous training. Synchronous execution with large mini-batch sizes (which is often needed
to keep many machines busy) can also be tricky during the warm-up phase. Training ImageNet in
1 Hour [1] trains ResNet50 on ImageNet dataset with momentum SGD under fully synchronous
settings. One of their key findings is that careful learning rate schedule during the first 5 passes
over the dataset is needed. Without that the final accuracy appears to be lower (though that may
be corrected with more epochs of training before shrinking the learning rate by 10x, judging
from Fig. 2 of [1]). Nonetheless, all of their experiments converge successfully, so it seems that
synchronous training does not have as severe stability issues as the non-synchronous cases.

7.5 Non-synchronous Training Gets to an “Okay” Model Faster
than Synchronous Training

Once the initial convergence dynamics is under control, non-synchronous training usually can
get to regions close to the optima more quickly than synchronous ones, in terms of wall clock
time. For example, in the Revisiting distributed synchronous SGD paper [31], we can examine
the convergence curves with 50, 100, and 200 GPU workers (Fig. 7.6).

Figure 7.6: (Fig. 3 in [31]) Test accuracies with respect to training time for sync, async training
on 50, 100, and 200 nodes.

The curves only capture the later part of the convergence when the model approaches optima.
Notice how the blue curve (async) dominates green curves (sync) until the last part approaching
high accuracy. (We ignore the red curves which use backup servers that speed up synchronous
execution quite a lot in their experiment setup.)

The main reason for this is that non-synchronous training usually enjoys a much higher through-
put than synchronous training, because non-synchronous training incurs lower synchronization
overheads. Fig. 7.7 and Fig. 7.8 shows the breakdown between network waiting time and the
compute time over varying staleness level, where higher staleness / maximal delays imply looser
synchronization. We see very consistently that relaxing synchronization reduces communication
wait time:

107

Figure 7.7: (Fig. 3 in [65]) The computation time vs network waiting time breakdown for topic
model (Latent Dirichlet Allocation) optimized by collapsed Gibbs sampling under various stale-
ness levels. The experiment runs on 32 VMs (each with 8 cores).

Figure 7.8: (Fig. 13 in [94]) The computation and network waiting time breakdown for sparse
logistic regression optimized by block proximal gradient method under different maximal delays.
The experiment runs on 1000 machines, each with 16 cores.

This is really the main reason for doing non-synchronous training—to reduce communication
overheads. Fundamentally, synchronous training is bad for the network, because synchronous
training utilizes network in bursty fashion, leaving network idle during the computation. By
introducing non-synchronous execution, the communication can happen more or less indepen-
dently from the computation (especially for a well design system like Bösen [145]), which is
really what we want from the system perspective.

Before we move on, notice how the computation time increases, perhaps ever so slightly, as
staleness increases, in both Fig. 7.7 and Fig. 7.8. That’s because higher staleness increases the
number of iterations needed to reach the same model quality. For LDA (Fig. 7.7) and logistic

108

regression (Fig. 7.8) their response to staleness is very mild, unlike deep neural networks. Thus
more staleness wins (up to some point)!

By the virtue of higher system throughput and implicit momentum, non-synchronous training is
usually effective during the phase of finding the neighborhood of an optima. But to get to the
highest model quality is subject to the intricate convergence dynamics at close to the optima,
which we now consider.

7.6 Staleness’ Effects on the Final Model Quality

Perhaps the most mysterious part of learning with staleness is how it affects the final model
quality. There are a number of factors at play here. To begin with, let’s consider the gradient
dynamics. Generally speaking, if the gradient is high during the initial phase of training, when we
are approaching the optima (or, in the case of non-convex problem, more likely, saddle points),
the gradients “level off”. (Imagine a river that slows down when it exits the mountains and enters
expansive plains.) At close to the optima, the gradients become smaller, and more “diffused”, or
less coherent. To approach the optima as closely as possible, we need to fight against variance.
SGD is unbiased, but it has higher variance than full batch gradient descent even in the sequential
settings because we use only a small portion of the dataset to compute gradient estimates rather
than the full dataset. Even in the sequential settings, there are many works on reducing the
variance towards convergence [71, 121].

By adding staleness, we introduce another source of stochasticity and variance to the mix. Theo-
retically analyzing variance in non-synchronous settings is highly challenging, as evident in my
own work [40]. But empirically we see that asynchrony indeed can slow down the convergence
towards the end. For example, Fig. 7.6 shows that non-synchronous training results in lower
accuracy. Revisiting distributed synchronous SGD [31] demonstrates that for both synchronous
and asynchronous settings the accuracy degrades to some degree with the increasing number of
workers / parallelism (Fig. 7.9).

Figure 7.9: (Fig. 1 in [31]) The number of epochs (left) and test accuracy (right) of Inception
model trained on ImageNet by varying numbers of workers (x-axis).

Beyond SGD, parallelism indeed makes convergence to high precision more challenging. For
example, our work [143] applies parallel block coordinate Frank Wolfe methods to structural

109

SVM on an OCR dataset. The speed up is quite sensitive to the convergence criteria (Fig. 7.10).
Speedup decreases when the convergence criteria becomes more stringent, limiting the degree of
parallelism.

Figure 7.10: Fig. 5.2. Parallel block coordinate Frank Wolfe method applied to structural SVM
on OCR dataset shows different speedup with different convergence threshold. When primal
threshold is stringent (e.g., the blue curve), the algorithm does not scale beyond 50 parallel
updates (x-axis).

It may seem that staleness is bad if the goal is to get a high quality model. However, the story isn’t
that simple. In some cases staleness actually improves the generalization ability of the resulting
models.

Project Adam is a prominent example. It shows that async training not only attains the perfor-
mance of models trained by synchronous updates, but can actually surpass it! They demonstrate
it on MNIST dataset, stating that “we believe that our accuracy improvement arises from the
asynchrony in Adam which adds a form of stochastic noise while training that helps the models
generalize better when presented with unseen data. In addition, it is possible that the asynchrony
helps the model escape from unstable local minima to potentially find a better local minimum.”
This statement presents a few puzzles.

The first part of the statement seems to refer to the regularizing effects of staleness. The ba-
sic idea is that because staleness introduces an additional source of variance, as we explained
earlier, staleness prevents the optimization to achieve lower training loss and therefore prevents
overfitting the training data.

To see how this can possibly help, we must point out that regularization has been a key factor in
deep neural nets’ success. For example, the famous dropout is an algorithmic procedure widely
used to prevent overfitting, mostly by the massive fully connected layers [133, 141]. Similarly,
batch normalization [67] also regularizes neural nets and helps generalization [41]. All these are
in addition to the common L1, L2 regularization used to reign in neural nets.

110

So can the variance introduced by staleness actually help improve generalization? Possibly, if we
have just the right amount of staleness. All regularization needs tuning to perform well, and it is
not hard to imagine that very high staleness can lead to models that are next to useless. It’s very
likely that Project Adam has just the right amount of staleness to get it to work well. Whether this
implicit regularization is truly there and can be leveraged consistently for other models remains
to be seen. Perhaps there are more literature out there supporting this point that I’m not aware of.
But in any case, it would take more evidence to shed light on the regularizing effects of staleness.

Another thing is that it is not clear whether the better generalization performance in Project Adam
is due to staleness’ regularizing effect, or it finding a better minima, which leads us to the second
part of Project Adam’s statement.

The second part of Project Adam’s statement is that asynchrony helps escape worse local minima.
Again, to my knowledge the literature around this aspect of asynchronous training is quite sparse.
However, this is related to a larger topic that is currently hotly debated: small vs large batch
training.

The batch size debate stems from the need to increase parallelism efficiently. Larger batches
allow more GPUs or machines to process in parallel, whereas smaller batch training usually
causes higher overheads with parallel training.

Those on the side of small mini-batch argues that models trained by smaller mini-batches gener-
alize better to test dataset than those trained by large batches (Fig. 7.11)

Figure 7.11: Twitter feed captured on May 1, 2018.

In this camp, Generalization Gap and Sharp Minima [73] offers a good characterization of the
optima reached by large batches. It shows that both small and large batch optimization can
reach similar training accuracy, implying that it is not the optimization challenge that causes
generalization gap. However, the curvatures around the optima discovered by small batch and
large batch methods are very different. Larger batches lead to the so-called “sharp minima”,
i.e., certain directions around the minima increase very quickly. In contrast, the small batch
optimization can generally escape those minima and discover “flat minima” around which the
functional surface is flat everywhere. This is because small batch has higher variance under the
linear scaling of learning rate [66]. This is linked to the oft-observed phenomenon that small
minibatch generalizes better [89, 103]. Fig. 7.12 gives an intuitive view of how sharp minima
hurts the solution’s generalization capability.

On the other side of the debate, Training ImageNet in 1 Hour [1] provides extensive experiments
to demonstrate that with careful warm start and other tricks, large batch training can attain gen-

111

Figure 7.12: (Fig. 1 of [73])

eralization error very close to that of small batch training [1], as shown in Fig. 7.13, although
ResNet-50 is the only model they train.

Figure 7.13: (Table 1 of [1]) Validation error on ImageNet using ResNet-50. kn denotes mini-
batch size, ranging from 256 (small batch) to large batch (8k). Notice that with gradual warm-up
the error rate is very close to that of the small batch result.

Even though the jury is still out for the small vs large batch size debate, a key concept that
emerges from those works is that stochastic noise in highly non-convex problem works in very
different ways than in the traditional convex settings. In convex optimization stochastic noise is
a nuisance that slows down convergence because we “cheap out” on computing the full gradient
carefully. However, in the non-convex world, the objective function is fraught with many local
optima and critical points which have similar objective values [33, 132], but with very different
curvatures around them. Therefore stochastic noise can actually be helpful in escaping those
sharp critical points.

This might be the reason that non-synchronous training leads to better generalization than syn-
chronous ones in the case of Project Adam vs GeePS. If it were true that larger batch size in
fact leads to worse generalization, non-synchronous training would be a viable way to keep the
batch size small. Namely, by treating each worker’s update as independent (small) batches, we
avoid the need to aggregate gradients cluster-wide to form batches of size linear in the number of
workers. This immediately introduces two sources of stochasticity: one from the smaller batch
size that exhibit higher variance than larger batches, and the other from asynchrony. Both may

112

be proven useful under the right tuning and a proper understanding of the underlying staleness
model of the system.

All these seem to suggest that noisy gradient (from small batches) and stable gradients (from
large batches) really are solving two different problems, and might be able to work in concert.
The small batch gradients help escape the poor critical points surrounded by sharp curvatures,
while large batch gradients can help find the best solution once we reach the neighborhood of
“flat surface” around a (good) critical point. That is indeed what Generalization gap and sharp
minima [73] shows: large batch training can improve small batch results once the parameter
estimates are in the good areas (Fig. 7.14).

Figure 7.14: (Fig. 5 of [73]) Test accuracy of small batch (SB) method and large batch (LB)
method that is warm started (“piggybacked”) from the SB estimates at each of the 100 SB epochs
(x-axis).

How does that impact the design of distributed training? Perhaps the level of asynchrony should
not be static throughout the training, but we can allow more conservative and synchronous train-
ing at certain stages of the optimization (e.g., the beginning and the end), while keeping the
middle part asynchronous? Is synchronous vs non-synchronous even the right division?

7.7 Looking to The Future

Despite all the challenges, it is clear that distributed large-scale training is here to stay. The model
complexity and data sizes lead to computational demands that outpace the capacity of CPU and
GPU alike, and building distributed systems is generally a cheaper and more accessible option
than specialized supercomputers. The industry has already widely adopted distributed training,
both synchronous and non-synchronous [1, 29, 105]. To go from here, I’d like to highlight a
number of directions that can improve the way we understand and leverage non-synchronous
training in distributed ML systems.

• Treat staleness as a continuum, not a binary synchronous vs non-synchronous divide.
As ML computation grows, so will the need to make it more efficient. The quest for large
scale computing will continue to demand staleness control, whether sync or non-sync. As
discussed earlier, very large batch sizes, even if it’s synchronous training, still introduces

113

staleness that may adversely impact the trained models, such as their generalization ca-
pability. On the other hand, non-synchronous training has substantial system advantages,
and opens up a whole world of possibilities on staleness control. And there are evidences
to believe that non-synchronous training is indeed better on some models or under some
convergence regime. ML training generally responds to parameter changes smoothly, such
as batch size and learning rate. The evidence in this thesis and other works [59, 65] suggest
that ML algorithms’ responses to staleness are usually smooth, and thus we have a good
reason to treat staleness as a continuum, not a binary decision. Creating a more general
notion of staleness that applies to both synchronous and asynchronous training would be a
good step in this direction.

• Better understanding of staleness’ effects. The community needs to move beyond under-
standing model performance under some unknown staleness distribution based on what-
ever the underlying system and hardware we happen to use. Either we instrument the
system to monitor the runtime staleness distribution explicitly, or we explicitly control the
underlying staleness (via system design or simulation). Without decoupling algorithmic
behavior from system properties, we will continue to have more folklore than scientific
understanding. This emphasis on empirical evidence is paramount when the convergence
is difficult to analyze theoretically or to get a tight bound under asynchrony. The distributed
ML community can take a page from the deep learning development that has turned neural
networks into an ML staple even though we do not have as much theoretical understanding
as many of us would like.

• Design systems to satisfy staleness level. Most non-synchronous systems do not main-
tain any control on staleness nor even monitor it [43, 59]. Just like how key-value stores
are designed to minimize various delay bound (e.g., 99% tail latency), distributed ML
training should be designed to satisfy certain latency bounds, deterministically or proba-
bilistically [13]. Together with better understanding of ML convergence under staleness,
this will enable much more predictable ML training under staleness.

• Better Programming Interface. Spark’s [154] initial success in industry was perhaps
more due to its clean and interactive interface than its in-memory performance. Before
Spark came along part of the Hadoop community already moved to Scalding [30], which
is a vast improvement over Hadoop’s verbose syntax. Compared with Scalding, Spark
further consolidates the multiple tasks into a single driver program that makes it easy to
program much more complex MapReduce stages. If the non-synchronous engines can of-
fer an expressive and well-defined high level programming model / interface for users to
express both synchronous and non-synchronous workloads, it would gain adoption more
easily especially with the promise of performance gains (that are hopefully relatively pre-
dictable with the aforementioned efforts). Many ML researchers have already developed
their algorithms on Spark, even though Spark incurs substantial overheads [108]. A good
interface and implementation of non-synchronous system would go a long way in serving
the large-scale ML research community.

For now, non-synchronous ML training on large-scale distributed system is still difficult to use
for most ML practitioners. But perhaps in a few years’ time the community will be able to get

114

much better understanding of staleness’ impact on convergence, and offer ML practitioners better
systems that monitor and mitigate those impacts.

115

116

Appendices

117

Appendix A

Appendix for Chapter 2

119

SGD with Momentum SGD(a) (b)

RMSProp(c) (d)Adam

(e) Adagrad
s=0 s=16 s=32

0

1000

2000

3000

4000

5000

6000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

35000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

35000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

FTRL

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy
Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

(f)

Figure A.1: The number of batches to reach 92% test accuracy using Deep Neural Networks
with varying numbers of hidden layers using 1 worker. We consider several variants of SGD
algorithms (a)-(e). Note that with depth 0 the model reduces to multi-class logistic regression
(MLR), which is convex. MLR generally takes many more batches to converge because 92%
test accuracy is close to the limit of the model performance, whereas deeper models can easily
achieve 95-98% test accuracy. The error bars represent 1 standard deviation, computed from 5
randomized runs.

120

(a) Adam (1 worker)

Adam (8 workers)

(b)

(c)

(e) Adam (16 workers)

SGD (1 worker)

(d) SGD (8 workers)

(f) SGD (16 workers)

s=0 s=16 s=32
0

1000

2000

3000

4000

5000

6000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Depth 0

Depth 1

Depth 2

Depth 3

Depth 6

s=0 s=16 s=32
0

2500

5000

7500

10000

12500

15000

17500

20000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

10000

20000

30000

40000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

10000

20000

30000

40000

50000

60000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

10000

20000

30000

40000

50000

60000

70000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

Figure A.2: The number of batches to reach 92% test accuracy for Adam and SGD on 1, 8, 16
workers with varying staleness. The error bars represent 1 standard deviation based on 5 ran-
domized runs. Depth 0 under SGD with 8 and 16 workers do not converge within the experiment
horizon (77824 batches) and is thus not shown.

121

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

2500

5000

7500

10000

12500

15000

17500

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

2500

5000

7500

10000

12500

15000

17500

20000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy
(a) SGD with Momentum (1 worker)

SGD with Momentum (8 workers)

(b)

(c)

(e)

RMSProp (1 worker)

(d) RMSProp (8 workers)

(f) RMSProp (16 workers)

s=0 s=16 s=32
0

5000

10000

15000

20000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

 9
2

%
 T

e
st

 A
cc

u
ra

cy

s=0 s=16 s=32
0

5000

10000

15000

20000

25000

30000

N
u
m

 B
a
tc

h
e
s

to
R

e
a
ch

9
2

%
T
e
st

A
cc

u
ra

cy

SGD with Momentum (16 workers)

Figure A.3: The number of batches to reach 92% test accuracy for SGD with momentum and
RMSProp on 1, 8, 16 workers with varying staleness. The error bars represent 1 standard devi-
ation based on 5 randomized runs. Both optimizers did not reach 92% test accuracy for all runs
with staleness 16 and 32 on worker 8 and 16 within the experiment horizon (77824 batches), and
thus are not shown.

122

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Depth 1

Depth 2

Depth 3

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Depth 1

Depth 2

Depth 3

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b)

Gradient Coherence: VAE with Adam on 1 worker (batch 0~512)

Gradient Coherence: VAE with Adam on 1 worker (batch 25088~25600)

Figure A.4: Gradient coherence for VAEs with varying depths (depth 1∼3) optimized by Adam
optimization using 1 worker with no staleness (s = 0). The x-axis is k = 1, ..., 32. Here we show
cosine distance up to 32 batches back. (a) is a snapshot taken from the first 512 batches, while
(b) is taken from 512 batches starting from batch 25088 after algorithms have converged. The
error bars around the means represent 1 standard deviation computed from 5 randomized runs.

123

(a) SGD (b) Adam

(c) SGD with Momentum (d) Adagrad

s=0 s=2 s=4 s=8 s=16
0

5000

10000

15000

20000

25000

30000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

Depth 1

Depth 2

Depth 3

s=0 s=2 s=4 s=8 s=16
0

10000

20000

30000

40000

50000

60000

70000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

s=0 s=2 s=4 s=8 s=16
0

10000

20000

30000

40000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

s=0 s=2 s=4 s=8 s=16
0

10000

20000

30000

40000

50000

60000

70000

N
u
m

 B
a
tc

h
e
s

to
 R

e
a
ch

 T
e
st

 L
o
ss

 1
3

0

Figure A.5: The number of batches to reach test loss 130 by Variational Autoencoders (VAEs) on
1 worker, under staleness 0 to 16. We consider VAE with depth 1, 2, and 3 (the number of layers
in the encoder and the decoder networks). Configurations that do not converge to the desired test
loss are omitted, such as Adam optimization for VAEs with depth 3 and s = 16.

124

(a) LDA (50 topics, 2 workers) (b) LDA (50 topics, 4 workers)

(c) (d) LDA (50 topics, 16 workers)

0 1 2 3 4 5
Number of Documents

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g
 L

ik
e
lih

o
o
d

1e7

s = 0

s = 1

s = 2

s = 5

s = 10

s = 15

s = 20

0 1 2 3 4 5
Number of Documents

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7

1e5

0 1 2 3 4 5
Number of Documents

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2 1e7

0 1 2 3 4 5
Number of Documents

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g
 L

ik
e
lih

o
o
d

1e7

LDA (50 topics, 8 workers)

Figure A.6: Convergence of LDA log likelihood using 50 topics with respect to the number of
documents processed by Gibbs sampling, with varying staleness and the number of workers. The
shaded regions are 1 standard deviation around the means (curves) based on 5 randomized runs.

125

126

Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 3.1

Theorem 3.1 (SGD under VAP, convergence in expectation). Given convex function f(x) =∑T
t=1 ft(x) such that components ft are also convex. We search for minimizer x∗ via stochas-

tic gradient descent on each component ∇ft with step-size η̆t close to ηt = η√
t

such that the
update ût = −η̆t∇ft(x̆t) is computed on noisy view x̆t. The VAP bound follows the decreas-
ing vt described above. Under suitable conditions (ft are L-Lipschitz and bounded diameter
D(x‖x′) ≤ F 2),

R[X] :=
T∑
t=1

ft(x̆t)− f(x∗) = O(
√
T)

and thus R[X]
T
→ 0 as T →∞.

Proof. We will use real-time sequence x̂t defined by

x̂t := x0 +
t∑

t′=1

ût′

R[X] =
T∑
t=1

ft(x̆t)− f(x∗)

≤
T∑
t=1

〈∇ft(x̆t), x̆t − x∗〉 (ft are convex)

=
T∑
t=1

〈ğt, x̆t − x∗〉

127

where ğt := ∇ft(x̆t). From Lemma A.1 below we have

R[X] ≤
T∑
t=1

1

2
η̆t||ğt||2 +

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
+ 〈x̆t − x̂t, ğt〉

We now bound each term:

T∑
t=1

1

2
η̆t||ğt||2 ≤

T∑
t=1

1

2
η̆tL

2 (Lipschitz assumption)

=
T∑

t=r+1

1

2

η√
t− r

L2 + const (r > 0 is the finite clock drift in VAP)

=
1

2
ηL2

T∑
t=r+1

1√
t− r

+ const

≤ 1

2
ηL2

∫ T

t=r+1

1√
t− r

dt+ const

≤ 1

2
ηL2(
√
T − r − 1) + const

= O(
√
T)

where the clock drift comes from the fact that η̆t is not exactly ηt = η√
t

in VAP.

T∑
t=1

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
=
D(x∗||x̂1)

η̆1

− D(x∗||x̂T+1)

η̆T
+

T∑
t=2

[
D(x∗||x̂t)

(
1

η̆t
− 1

η̆t−1

)]

≤ F 2

η
+ 0 +

F 2

η

T∑
t=2

[√
t− k −

√
t− r

]
(clock drift)

≤ F 2

η
+
F 2

η

∫ T

t=max(k,r)

(√
t− k −

√
t− r

)
dt+ const

=
F 2

η
+
F 2

η

[
(t− k)3/2 − (t− r)3/2

]T
max(k,r)

+ const

=
F 2

η
+
F 2

η

[
(T − k)3/2 − (T − r)3/2

]
+ const

=
F 2

η
+
F 2

η

[(
T

3
2 +

3

2
kT

1
2 +O(

√
T)

)
−
(
T

3
2 +

3

2
rT

1
2 +O(

√
T)

)]
+ const (binomial expansion)

= O(
√
T)

128

T∑
t=1

〈x̆t − x̂t, ğt〉 ≤
T∑
t=1

||x̆t − x̂t||2||ğt||2

≤
T∑
t=1

√
dvtL (using eq.(2) from main text)

=
√
dL

T∑
t=1

v0√
t

=
√
dLv0

√
T = O(

√
T)

Together, we have R[X] ≤ O(
√
T) as desired.

Lemma A.1 For x∗, x̆t ∈ X , and X = Rd,

〈ğt, x̆t − x∗〉 =
1

2
η̆t||ğt||2 +

D(x∗||x̂t)−D(x∗||x̂t+1)

η̆t
+ 〈x̆t − x̂t, ğt〉

where D(x||x′) := 1
2
||x− x′||2.

Proof.

D(x∗||x̂t)−D(x∗||x̂t+1) =
1

2
||x∗ − x̂t + x̂t − x̂t+1||2 −

1

2
||x∗ − x̂t||2

=
1

2
||x∗ − x̂t + η̆tğt||2 −

1

2
||x∗ − x̂t||2

=
1

2
η̆t||ğt||2 − η̆t〈x̂t − x∗, ğt〉

Divide both sides by η̆t gets the desired answer.

Lemma 3.1. ūt ≤ η√
t
L and γt := ||γt||2 ≤ P (2s+ 1).

Proof. ||ut||2 = ||−ηt∇ft||2 ≤ η√
t
L since f isL-Lipschitz. Therefore ūt = 1

P (2s+1)

∑
t′∈Wt

||ut′||2 ≤
η√
t
L since |Wt| ≤ P (2s+ 1).

If ūt = 0, then γt = 0 and the lemma holds trivially. For ūt > 0. γt = 1
ūt

(x̃t−xt) = 1
ūt

∑
t′∈St ut′ .

Thus ||γt||2 = 1
ūt
||
∑

t′∈St ut′||2 ≤ 1
ūt

∑
t′∈St ||ut′||2 ≤

1
ūt

∑
t′∈Wt

||ut′ ||2 = P (2s+ 1).

129

B.2 Proof of Theorem 3.4

Theorem 3.4 (SGD under SSP, convergence in probability). Given convex function f(x) =∑T
t=1 ft(x) such that components ft are also convex. We search for minimizer x∗ via gradi-

ent descent on each component ∇ft under SSP with staleness parameter s and P workers. Let
ut := −ηt∇tft(x̃t) with ηt = η√

t
. Under suitable conditions (ft are L-Lipschitz and bounded

divergence D(x||x′) ≤ F 2), we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ 2

2η̄Tσγ + 2
3
ηL2(2s+ 1)Pτ

}
where R[X] :=

∑T
t=1 ft(x̃t)− f(x∗), and η̄T = η2L4(lnT+1)

T
= o(T).

Proof. From lemma A.1, substitute x̆t with x̃t we have

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉

=
T∑
t=1

1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+ 〈x̃t − xt, g̃t〉

≤ ηL2
√
T +

F 2

η

√
T +

T∑
t=1

〈ūtγt, g̃t〉

≤ ηL2
√
T +

F 2

η

√
T +

T∑
t=1

η√
t
L2γt

Where the last step uses the fact

〈ūtγt, g̃t〉 ≤ ūt||γt||2||g̃t||2
≤ γt

η√
t
L2 (Lemma 4)

Dividing T on both sides,

R [X]

T
− ηL2

√
T
− F 2

η
√
T
≤

∑T
t=1

η√
t
L2γt

T
(B.1)

Let at := η√
t
L2(γt − µγ). Notice that at zero-mean, and |at| ≤ ηL2 maxt(γt) ≤ ηL2(2s + 1)P .

Also, 1
T

∑T
t=1 var(at) = 1

T

∑T
t=1

η2

t
L4σγ <

η2L4σγ
T

(lnT + 1) = η̄Tσγ where η̄T = η2L4(lnT+1)
T

.

130

Bernstein’s inequality gives, for τ > 0,

P

(∑T
t=1

η√
t
L2γt − η√

t
L2µγ

T
≥ τ

)
≤ exp

{
−Tτ 2

2η̄Tσγ + 2
3
ηL2(2s+ 1)Pτ

}
(B.2)

Note the following identity:
b∑
i=a

1√
i
≤ 2
√
b− a+ 1 (B.3)

Thus
1

T

T∑
t=1

η√
t
L2µγ ≤

2ηL2µγ√
T

(B.4)

Plugging eq. B.1 and B.4 to eq. B.2, we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ 2

2η̄Tσγ + 2
3
ηL2(2s+ 1)Pτ

}

We need the following Lemma to prove Theorem 2 and 6.

Lemma A.2 Let Ω∗ be the hessian of the loss at optimum x∗, then

gt := ∇f(x̃t) = (x̃t − x∗)Ω∗ +O(ρ2
t)

for x̃t close to the optimum such that O(ρt) = O(||x̃t − x∗||) is small. Here Ω∗ = ∇2f(x)|x=x∗

is the Hessian at the optimum

Proof. Using Taylor’s theorem and expanding around x∗,

f(x̃t) = f(x∗) + (x̃t − x∗)T ∇f(x)|x=x∗

+
1

2
(x̃t − x∗)TΩ∗(x̃t − x∗) +O(||x̃t − x∗||3)

= f(x∗) +
1

2
(x̃t − x∗)TΩ∗(x̃t − x∗) +O(||x̃t − x∗||3)

where the last step uses∇f(x) = 0 at x∗. Taking gradient w.r.t. x̃t,

∇f(x̃t) = (x̃t − x∗)TΩ∗ +O(||x̃t − x∗||2)

= (x̃t − x∗)TΩ∗ +O(ρ2
t)

131

B.3 Proof of Theorem 3.5

Theorem 3.5 (SGD under SSP, decreasing variance). Given the setup in Theorem 3.4 and as-
sumption 1-2. Further assume that f(x) has bounded and invertible Hessian Ω∗ at optimum x∗
and γt is bounded. Let Var t := E[x̃2

t]− E[x̃t]2, gt = ∇ft(x̃t), ηt be the learning rate, then for x̃t
near the optima x∗ such that ρt = ||x̃t − x∗|| and ξt = ||gt|| − ||gt+1|| are small:

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt) (3.6)
+O(η2

t ρ
2
t) +O∗γt (3.7)

where covariance cov(a, b) := E[aTb] − E[aT]E[b] uses inner product. O∗γt are high order
(≥ 5th) terms involving γt = ||γt||∞. ∆t is a random variable capturing the randomness of
update ut conditioned on xt.

Proof. We write eq. 3 from the main text as x̃t = xt + δt with δt = ūtγt. Conditioned on xt, we
have

p(x̃t|xt)dx̃t = p(Vt(δt, xt))dVt (B.5)

where Vt is a random variable representing the state of δt conditioned on xt. We can express
Ex̃t [f(x̃t)] in terms of Ext for any function f() of x̃t:

Ex̃t [f(x̃t)] =

∫
x̃t
f(x̃t)p(x̃t)dx̃t

=

∫
x̃t

∫
xt
f(x̃t)p(x̃t|xt)p(xt)dxtdx̃t (using eq. B.5)

=

∫
xt

∫
Vt

f(x̃t)p(Vt(δt, xt))dVtdxt

= Ext
[
EVt [f(x̃t)]

]
(B.6)

Similarly, we have
Ex̃t+1 [f(x̃t+1)] = Ext+1

[
EVt+1 [f(x̃t+1)]

]
(B.7)

In the same vein, we introduce random variable ∆, conditioned on xt:

p(xt+1|xt)dxt+1 = p(∆t(ut, xt))d∆t (B.8)

since xt+1 = xt + ut (eq. 2 in the main text). Here ∆ is a random variable representing the state
of ut conditioned on xt. Analogous to eq. B.6, we have

Ext+1 [f(xt+1)] = Ext [E∆t [f(xt+1)]] (B.9)

for some function f() of xt+1. There are a few facts we will use throughout:

Ext
[
h(xt, ūt)EVt [γt]

]
= Ext [h(xt, ūt)]EVt [γt] (since γt⊥xt, ūt) (B.10)

Ext
[
E∆t [xTt g(ut)]

]
= Ext

[
xTt E∆t [g(ut)]

]
(∆t conditioned on xt) (B.11)

E∆t [ūt+1] = ūt+1 (B.12)

132

where h(xt, ūt) is some function of xt and ūt, and similarly for g(). Eq. B.12 follows from ūt+1

being an average over the randomness represented by ∆t. We can now expand Var t:

Var t = Ex̃t [x̃2
t]− (Ex̃t [x̃t])2

= Ext [EVt [x̃2
t]]− (Ext [EVt [x̃t]])2 (using eq. B.6)

= Ext [EVt [x2
t + δ2

t + 2xTt δt]]− (Ext [EVt [xt + δt]])
2 (B.13)

We expand each term:

Ext [EVt [x2
t + δ2

t + 2xTt δt]]
= Ext [x2

t + EVt [δ2
t] + 2xTt EVt [δt]]

= Ext [x2
t] + Ext [ū2

tEVt [γ2
t]] + 2Ext [xTt ūtEVt [γt]]

= Ext [x2
t] + Ext [ū2

t]EVt [γ2
t] + 2Ext [xTt ūt]EVt [γt]

(Ext [EVt [xt + δt]])
2

= (Ext [xt + EVt [δt]])2

= (Ext [xt + ūtEVt [γt]])2

= (Ext [xt] + Ext [ūt]EVt [γt]])2

= Ext [xt]2 + Ext [ūt]
2EVt [γt]2 + 2Ext [xTt]Ext [ūt]EVt [γt]

Therefore

Var t = Ext [x2
t] + Ext [ū2

t]EVt [γ2
t] + 2Ext [xTt ūt]EVt [γt]

− Ext [xt]2 − Ext [ūt]
2EVt [γt]2 − 2Ext [xTt]Ext [ūt]EVt [γt]

(B.14)

Following similar procedures, we can write Var t+1 as

Var t+1 = Ext+1 [x2
t+1] + Ext+1 [ū2

t+1]EVt+1 [γ2
t+1]

+ 2Ext+1 [xTt+1ūt+1]EVt+1 [γt+1]

− Ext+1 [xt+1]2 − Ext+1 [ūt+1]2EVt+1 [γt+1]2

− 2Ext+1 [xTt+1]Ext+1 [ūt+1]EVt+1 [γt+1]

(B.15)

We tackle each term separately:

Ext+1 [x2
t+1] = Ext

[
E∆t [(xt + ut)2]

]
(using eq. B.9, 2 main text)

= Ext [x2
t] + Ext

[
E∆t [u2

t]
]

+ 2Ext
[
xTt E∆t [ut]

]
(using eq. B.11)

133

2Ext+1 [xTt+1ūt+1]EVt+1 [γt+1]

= 2Ext
[
E∆t [(xt + ut)T ūt+1]

]
EVt+1 [γt+1] (using eq. B.9, 2 main text)

= 2Ext
[
E∆t [xTt ūt+1]

]
EVt+1 [γt+1]

+ 2Ext
[
E∆t [uTt ūt+1]

]
EVt+1 [γt+1]

= 2Ext
[
xTt ūt+1

]
EVt+1 [γt+1] (using eq. B.11 and B.12)

+ 2Ext
[
E∆t [uTt ūt+1]

]
EVt+1 [γt+1]

−Ext+1 [xt+1]2 = −Ext
[
E∆t [xt + ut]

]2
= −Ext [xt]2 − Ext

[
E∆t [ut]

]2 − 2Ext [xTt]Ext
[
E∆t [ut]

]

− 2Ext+1 [xTt+1]Ext+1 [ūt+1]EVt+1 [γt+1]

= −2Ext
[
E∆t [(xt + ut)T]

]
Ext
[
E∆t [ūt+1]

]
EVt+1 [γt+1]

= −2Ext
[
E∆t [uTt]

]
Ext [ūt+1]EVt+1 [γt+1]− 2Ext [xTt]Ext [ūt+1]EVt+1 [γt+1]

Assuming stationarity for γt, and thus γ̄ := EVt [γt] = EVt+1 [γt+1], we have

Var t+1 − Var t = 2
{
Ext
[
xTt E∆t [ut]

]
− Ext [xTt]Ext

[
E∆t [ut]

]}
− 2

{
Ext [xTt (ūt − ūt+1)γ̄]− Ext [xTt]Ext [(ūt − ūt+1)γ̄]

}
+
{
Ext
[
E∆t [u2

t]
]

+ Ext+1 [ū2
t+1]EVt+1 [γ2

t+1]− Ext
[
E∆t [ut]

]2
− Ext [ūt+1]2γ̄2 − Ext [ū2

t]EVt [γ2
t] + Ext [ūt]

2EVt [γ2
t]

+2Ext
[
E∆t [uTt ūt+1]

]
γ̄ − 2Ext

[
E∆t [uTt]

]
Ext [ūt+1]γ̄

}
= 2cov(xt,E∆t [ut]) +O(ηtξt) +O(η2

t ρ
2
t) +O∗

where ξt = ||gt|| − ||gt+1|| and O∗ are higher order terms. In the last step we use the fact that
||gt|| = O(ρt) (lemma A.2) and thus ||ut|| = ηt||∇f(xt)|| and ūt are both O(ηtρt). Notice that
cov(v1,v2) := E[vT1 v2]− E[vT1]E[v2] uses inner product. Thus,

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt) +O(η2
t ρ

2
t) +O∗ (B.16)

134

B.4 Proof of Theorem 3.2

Theorem 3.2 (SGD under VAP, bounded variance). Assuming f(x), η̆t, and vt similar to theo-
rem 3.1 above, and further assume that f(x) has bounded and invertible Hessian, Ω∗ defined at
optimal point x∗. Let Var t := E[x̆2

t]− E[x̆t]2, and ğt = ∇ft(x̆t) be the gradient, then:

Var t+1 = Var t − 2cov(x̂t,E∆t [ğt]) +O(δt) (3.2)
+O(η̆2

t ρ
2
t) +O∗δt (3.3)

near the optima x∗. The covariance cov(a, b) := E[aTb] − E[aT]E[b] uses inner product.
δt = ||δt||∞ and δt = x̆t − x̂t. ρt = ||x̆t − x∗||. ∆t is a random variable capturing the
randomness of update ût = −ηtğt conditioned on x̂t (see the appendix).

Proof. The proof is similar to the proof of Theorem 6. Starting off with x̆t = x̂t + δt, we define
Vt, ∆t analogously. We have

Var t = Ex̂t [x̂2
t] + Ex̂t [EVt [δ2

t]] + 2Ex̂t [x̂Tt EVt [δt]]

− Ex̂t [x̂t]2 − Ex̂t [EVt [δ2
t]]− 2Ex̂t [x̂t]Ex̂Tt [EVt [δt]]

Similar algebra as in Theorem 6 leads to

Var t+1 − Var t = 2cov(x̂t,E∆t [ût]) + 2cov(x̂t,EVt [δt]− E∆t [EVt+1 [δt+1]])

+O(δ2
t) +O(η̆2

t ρ
2
t) +O(η̆tδt) +O∗

= −2cov(x̂t,E∆t [ğt]) +O(δt) +O(η̆2
t ρ

2
t) +O∗δt

where δt = ||δt||∞. This is the desired result in the theorem statement.

135

136

Appendix C

Appendix for Chapter 4

C.1 Proof of Theorem 4.1

Theorem 4.1 (Asymptotic consistency). Let Assumption 4.1 and 4.2 hold, and apply msPG to
problem (P). If the step size η < (Lf + 2Ls)−1, then the global model and local models satisfy:

1.
∑∞

t=0 ‖x(t+ 1)− x(t)‖2 <∞;
2. lim

t→∞
‖x(t+ 1)− x(t)‖ = 0, lim

t→∞
‖x(t)− xi(t)‖ = 0;

3. The limit points ω({x(t)}) = ω({xi(t)}) ⊆ critF .

Proof. Recall that (t)+ = max{t, 0} is the positive part of t. We start from bounding the differ-
ence between the global model x and the local model xi (on any machine i). Indeed, at iteration

137

t, by the definition of the global and local models in msPG:

‖x(t)− xi(t)‖ =

√√√√ p∑
j=1

‖xj(t)− xj(τ ij(t))‖2

(triangle inequality) ≤

√√√√√ p∑
j=1

 t−1∑
k=τ ij (t)

‖xj(k + 1)− xj(k)‖

2

(Assumption 4.2.1) ≤

√√√√√ p∑
j=1

 t−1∑
k=(t−s)+

‖xj(k + 1)− xj(k)‖

2

(C.1)

=

∥∥∥∥∥∥
(t−1∑
k=(t−s)+

‖x1(k + 1)− x1(k)‖, · · · ,
t−1∑

k=(t−s)+

‖xp(k + 1)− xp(k)‖
)∥∥∥∥∥∥

=

∥∥∥∥∥∥
t−1∑

k=(t−s)+

(
‖x1(k + 1)− x1(k)‖, · · · , ‖xp(k + 1)− xp(k)‖

)∥∥∥∥∥∥
(triangle inequality) ≤

t−1∑
k=(t−s)+

∥∥∥(‖x1(k + 1)− x1(k)‖, · · · , ‖xp(k + 1)− xp(k)‖
)∥∥∥

=
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖,

where in the last equality we used the following property of the Euclidean norm:

‖x‖ = ‖(x1, . . . , xp)‖ = ‖(‖x1‖, . . . , ‖xp‖)‖. (C.2)

Equation (C.2) bounds the inconsistency between the global model and the local models. We
will repeatedly use it in the following, as it provides a bridge to jump from the global model and
the local models back and forth.

Next we bound the progress of the global model x(t). If t ∈ Ti (i.e., machine i updates at
iteration t), then using the definition of the update operator Ui(xi(t)) in Equation (4.10) we can
rewrite xi(t+ 1) as

xi(t+ 1) = proxηgi
(
xi(t)− η∇if(xi(t))

)
, (C.3)

where we recall the proximal map proxηgi from Definition 4.3. Thus, for all z ∈ Rdi:

gi
(
xi(t+ 1)

)
+

1

2η

∥∥xi(t+ 1)− xi(t) + η∇if
(
xi(t)

)∥∥2 ≤ gi
(
z
)

+
1

2η

∥∥z − xi(t) + η∇if
(
xi(t)

)∥∥2
.

(C.4)

138

Substituting with z = xi(t) and simplifying yields

gi
(
xi(t+ 1)

)
− gi

(
xi(t)

)
≤ − 1

2η
‖xi(t+ 1)− xi(t)‖2 −

〈
∇if

(
xi(t)

)
, xi(t+ 1)− xi(t)

〉
.

(C.5)

(If gi is convex, we can replace 1
2η

with 1
η
.) Note that if t 6∈ Ti, then xi(t + 1) = xi(t) hence

Equation (C.5) still trivially holds. On the other hand, Assumption 4.1.2 implies

f
(
x(t+ 1)

)
− f

(
x(t)

)
≤ 〈x(t+ 1)− x(t),∇f

(
x(t)

)
〉+

Lf
2
‖x(t+ 1)− x(t)‖2. (C.6)

Adding Equation (C.6) and Equation (C.5) (for all i) and recalling F (x) = f(x) +
∑

i gi(xi),
we have

F
(
x(t+ 1)

)
− F

(
x(t)

)
≤1

2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+

p∑
i=1

〈
xi(t+ 1)− xi(t),∇if(x(t))−∇if

(
xi(t)

)〉
(Cauchy-Schwarz) ≤1

2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+

p∑
i=1

‖xi(t+ 1)− xi(t)‖ · ‖∇if(x(t))−∇if
(
xi(t)

)
‖

(Assumption 4.1.2) ≤1
2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+

p∑
i=1

‖xi(t+ 1)− xi(t)‖ · Li‖x(t)− xi(t)‖

(Equation (C.2)) ≤1
2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+

p∑
i=1

Li‖xi(t+ 1)− xi(t)‖ ·
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖

(Assumption 4.1.2) ≤1
2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+ L‖x(t+ 1)− x(t)‖ ·
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖ (C.7)

(ab ≤ a2+b2

2
) ≤1

2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+
L

2

t−1∑
k=(t−s)+

[
‖x(k + 1)− x(k)‖2 + ‖x(t+ 1)− x(t)‖2

]
≤1

2
(Lf + Ls− 1/η)‖x(t+ 1)− x(t)‖2

+
L

2

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖2.

139

Summing the above inequality from m to n− 1 we have

F
(
x(n)

)
− F

(
x(m)

)
≤1

2
(Lf + Ls− 1/η)

n−1∑
t=m

‖x(t+ 1)− x(t)‖2

+
L

2

n−1∑
t=m

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖2

≤1
2
(Lf + 2Ls− 1/η)

n−1∑
t=m

‖x(t+ 1)− x(t)‖2.

Therefore, as long as η < 1/(Lf + 2Ls), letting m = 0 we deduce

n−1∑
t=0

‖x(t+ 1)− x(t)‖2 ≤ 2

1/η − Lf − 2Ls
[F
(
x(0)

)
− F

(
x(n)

)
]

≤ 2

1/η − Lf − 2Ls
[F
(
x(0)

)
− inf

z
F (z)].

By Assumption 4.1.1, F is bounded from below hence the right-hand side is finite and indepen-
dent of n. Letting n goes to infinity completes the proof of Item 1.

Item 2 follows immediately from Item 1 and (C.2), whence it is clear that for all i the limit points
satisfy ω({x(k)}) = ω({xi(k)}).

To prove Item 3, let x∗ be a limit point of {x(t)}t, i.e., there exists a subsequence x(tm) → x∗.
Since the objective function F is closed we know x∗ ∈ domF . To show x∗ ∈ critF we need to
exhibit a sequence say x(km + 1) such that1

x(km + 1)→ x∗, F (x(km + 1))→ F (x∗), 0← u(km + 1) ∈ ∂F (x(km + 1)). (C.8)

This is the most difficult part of the proof, and the argument differs substantially from previous
work (e.g. [19]).

We first prove the subdifferential goes to zero. Observe from Assumption 4.2.3 that the iterations
{t, t ∈ Ti} when machine i updates is infinite. Let t̂ ∈ Ti and by the optimality condition of
xi(t̂+ 1) in Equation (C.3):

− 1
η

[
xi(t̂+ 1)− xi(t̂) + η∇if

(
xi(t̂)

)]
∈ ∂gi(xi(t̂+ 1)), (C.9)

1Technically, from Definition 4.1 we should have the Frechét subdifferential ∂̂F in Equation (C.8), however, a
usual diagonal argument allows us to use the more convenient (limiting) subdifferential.

140

i.e. there exists ui(t̂+ 1) ∈ ∂gi(xi(t̂+ 1)) such that

‖ui(t̂+ 1) +∇if(x(t̂+ 1))‖ ≤‖ui(t̂+ 1) +∇if(x(t̂))‖
+ ‖∇if(x(t̂+ 1))−∇if(x(t̂))‖

(Equation (C.9), Assumption 4.1.2) ≤
∥∥∥ 1
η
(xi(t̂+ 1)− xi(t̂) +∇if

(
xi(t̂)

)
−∇if

(
x(t̂)

)∥∥∥
+ Li‖x(t̂+ 1)− x(t̂)‖

(triangle inequality, Assumption 4.1.2) ≤ 1
η
‖xi(t̂+ 1)− xi(t̂)‖+ Li‖xi(t̂)− x(t̂)‖

+ Li‖x(t̂+ 1)− x(t̂)‖

(Equation (C.2)) ≤ 1
η
‖xi(t̂+ 1)− xi(t̂)‖+ Li

t̂∑
k=(t̂−s)+

‖x(k + 1)− x(k)‖.

(C.10)

We now use a chaining argument to remove the condition t̂ ∈ Ti above. For each t 6∈ Ti let t̂i
be the largest element in {k ≤ t : k ∈ Ti}. Thanks to Assumption 4.2.3 t̂i always exists and
t − t̂i ≤ s. Therefore, for any t 6∈ Ti, since xi(t + 1) = xi(t̂i + 1) we can certainly choose
ui(t+ 1) ∈ ∂gi(xi(t+ 1)) to coincide with ui(t̂i + 1) ∈ ∂gi(xi(t̂i + 1)). Then:

‖ui(t+ 1) +∇if(x(t+ 1))− ui(t̂i + 1)−∇if(x(t̂i + 1))‖
= ‖∇if(x(t+ 1))−∇if(x(t̂i + 1))‖

(triangle inequality) ≤
t∑

k=t̂i+1

‖∇if(x(k + 1))−∇if(x(k))‖

(Assumption 4.2.3) ≤
t∑

k=(t−s+1)+

‖∇if(x(k + 1))−∇if(x(k))‖

(Assumption 4.1.2) ≤ Li

t∑
k=(t−s+1)+

‖x(k + 1)− x(k)‖. (C.11)

Combining the two separate cases in Equation (C.10) and Equation (C.11) above we have for all
t:

‖u(t+ 1) +∇f(x(t+ 1))‖ ≤ (
√
p/η + 2L)

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖, (C.12)

where of course u(t + 1) =
(
u1(t + 1), . . . , up(t + 1)

)
∈ ∂g(x(t + 1)) and we artificially

introduce
√
p for convenience of subsequent proof. Therefore, from Item 2 we deduce

lim
t→∞

dist∂F (x(t+1))(0)→ 0. (C.13)

141

Next we deal with the function value convergence in Equation (C.8). For any t̂i ∈ Ti, using
Equation (C.4) with z = x∗i we have

gi(xi(t̂i + 1)) +
1

2η

∥∥xi(t̂i + 1)− xi(t̂i) + η∇if
(
xi(t̂i)

)∥∥2

≤ gi
(
x∗i
)

+
1

2η

∥∥x∗i − xi(t̂i) + η∇if
(
xi(t̂i)

)∥∥2
,

which, after rearrangement, yields

gi(xi(t̂i + 1)) ≤gi
(
x∗i
)

+
1

2η
‖x∗i − xi(t̂i)‖2 − 1

2η
‖xi(t̂i + 1)− xi(t̂i)‖2

+ 〈x∗i − xi(t̂i + 1),∇if(xi(t̂i))〉

=gi
(
x∗i
)

+
1

2η
‖x∗i − xi(t̂i)‖2 − 1

2η
‖xi(t̂i + 1)− xi(t̂i)‖2

+ 〈x∗i − xi(t̂i + 1),∇if(x∗)〉
+ 〈x∗i − xi(t̂i + 1),∇if(xi(t̂i))−∇if(x∗)〉. (C.14)

We wish to deduce from the above inequality that gi(xi(t̂i + 1)) → g(x∗i), but we need a uni-
formization device to remove the dependence on i (hence removing the condition t̂i ∈ Ti).
Observing from Item 2 that

lim
m→∞

max
t∈[tm−s,tm+s]

‖x(t+ 1)− x∗‖ → 0, lim
m→∞

max
t∈[tm−s,tm+s]

‖xi(t+ 1)− x∗‖ → 0. (C.15)

By Assumption 4.2.3, [tm − s, tm + s] ∩ Ti 6= ∅ for all i, using Item 2 again and the Lipschitz
continuity of∇f , we deduce from Equation (C.14) that

lim sup
m→∞

max
t∈[tm−s,tm+s]∩Ti

gi(xi(t+ 1)) ≤ gi(x
∗
i). (C.16)

Since each machine must update at least once on the intervals [tm − s, tm] and [tm, tm + s], let
t̂im be the largest element of [tm − s, tm] ∩ Ti. Then from the previous inequality we have

lim sup
m→∞

max
t∈[t̂im,tm+s]∩Ti

gi(xi(t+ 1)) ≤ gi(x
∗
i). (C.17)

Since gi(xi(t+ 1)) = gi(xi(t)) if t 6∈ Ti and t̂im ∈ Ti, it follows that

max
t∈[tm,tm+s]

gi(xi(t+ 1)) ≤ max
t∈[t̂im,tm+s]∩Ti

gi(xi(t+ 1)), (C.18)

hence

lim sup
m→∞

max
t∈[tm,tm+s]

gi(xi(t+ 1)) ≤ gi(x
∗
i). (C.19)

Choose any sequence km such that km ∈ [tm, tm + s]. Since x(tm)→ x∗, from Item 2 it is clear
that

x(km + 1)→ x∗. (C.20)

142

From Equation (C.19) we know for all i, lim supm→∞ gi(xi(km + 1)) ≤ gi(x
∗
i) while using

closedness of the function gi we have

lim inf
m→∞

gi(xi(km + 1)) ≥ gi(x
∗
i)

, and thus in fact

lim
m→∞

gi(xi(km + 1)) = gi(x
∗
i)

Since f is continuous, we know

lim
m→∞

F (x(km + 1)) = F (x∗). (C.21)

Lastly, combining Equation (C.13), Equation (C.20) and Equation (C.21), it follows from Defi-
nition 4.1 that x∗ ∈ critF .

C.2 Proof of Theorem 4.2

Theorem 4.2 (Finite Length). Let Assumption 4.1, 4.2, 4.3 and 4.4 hold, and apply msPG to
problem (P). If the step size η < (Lf + 2Ls)−1 and {x(t)} is bounded, then∑∞

t=0 ‖x(t+ 1)− x(t)‖ <∞, (4.12)
∀i = 1, . . . , p,

∑∞
t=0 ‖xi(t+ 1)− xi(t)‖ <∞. (4.13)

Furthermore, {x(t)} and {xi(t)}, i = 1, ..., p, converge to the same critical point of F .

Our proof requires the following simple uniformization of the KŁ inequality in Definition 4.4:
Lemma C.1 (Uniformized KŁ inequality, [25, Lemma 6]). Let h be a KŁ function and Ω ⊂
domh be a compact set. If h is constant on Ω, then there exist ε, λ > 0 and a function ϕ as in
Definition 4.4, such that for all x̄ ∈ Ω and all x ∈ {x ∈ Rd : distΩ(x) < ε} ∩ [x : h(x̄) <
h(x) < h(x̄) + λ], one has

ϕ′(h(x)− h(x̄)) · dist∂h(x)(0) ≥ 1.

The proof of this Lemma is the usual covering argument.

Proof of Theorem 4.2. We first show that if the global sequence has finite length (i.e. (4.12))
then the local sequences also have finite lenggth (i.e. (4.13)). Indeed,

‖xi(t+ 1)− xi(t)‖ ≤‖xi(t+ 1)− x(t+ 1)‖+ ‖x(t+ 1)− x(t)‖+ ‖x(t)− xi(t)‖

(Equation (C.2)) ≤‖x(t+ 1)− x(t)‖ +
t∑

k=(t+1−s)+

‖x(k + 1)− x(k)‖

+
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖.

143

Therefore, summing from t = 0 to t = n:

n∑
t=0

‖xi(t+ 1)− xi(t)‖ ≤
n∑
t=0

 t∑
k=(t+1−s)+

‖x(k + 1)− x(k)‖ +
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖

≤ (2s+ 1)

n∑
t=0

‖x(t+ 1)− x(t)‖.

Letting n tend to infinity we have (4.12) =⇒ (4.13).

From Theorem 4.1 we know the limit points of {x(t)} and {xi(t)}, i = 1, . . . , p, coincide, and
they are critical points of F .

The only thing left to prove is the finite length property of the global sequence x(t). If for all
large t we have x(t+ 1) = x(t) then the conclusion is trivial. On the other hand, we can remove
all iterations t with x(t + 1) = x(t), without affecting the length of the trajectory. Thus, in
the following we assume for all (large) t we have x(t + 1) 6= x(t). Thanks to Assumption 4.3
and Assumption 4.1.1, it is then clear that the objective value F (x(t)) is strictly decreasing to
a limit F ∗. Since {x(t)} is assumed to be bounded, the limit point set Ω := ω({x(t)}) is
nonempty and compact. Obviously for any x∗ ∈ Ω we have F (x∗) = F ∗. Fix any ε > 0,
clearly for t sufficiently large we have2 distΩ(x(t)) ≤ ε. We now have all ingredients to apply
the uniformized KŁ inequality in Lemma C.1, which implies that for all sufficiently large t, there
exists a continuous and concave function ϕ (with additional properties listed in Definition 4.4)
such that

ϕ′
(
F (x(t))− F ∗

)
· dist∂F (x(t))(0) ≥ 1. (C.22)

Since ϕ is concave, we obtain

∆t,t+1 := ϕ
(
F (x(t))− F ∗

)
− ϕ

(
F (x(t+ 1))− F ∗

)
≥ ϕ′

(
F (x(t))− F ∗

)(
F (x(t))− F (x(t+ 1))

)
(Assumption 4.3, Equation (C.22)) ≥ α‖x(t+ 1)− x(t)‖2

dist∂F (x(t))(0)
. (C.23)

It is clear that the function ϕ (composed with F) serves as a Lyapunov function. To proceed, we
need to upper bound the subdifferential ∂F (x(t)), which has been painstakingly dealt with in the
proof of Theorem 4.1.

Using the inequality 2
√
ab ≤ a + b for positive numbers we obtain from Equation (C.23): for t

sufficiently large,

2‖x(t+ 1)− x(t)‖ ≤ δ
α

∆t,t+1 + 1
δ
dist∂F (x(t))(0),

2This is true for any bounded sequence, and we provide a proof for completeness: Suppose not, then there exists
ε > 0 such that for all n there exists a t ≥ n such that distΩ(x(t)) > ε. Thus, we can extract a subsequence
{x(tm)} such that distΩ(x(tm)) > ε. However, since {x(t)} is bounded, we can extract a further subsequence, say
{x(tmn

)}, that converges, i.e. distΩ(x(tmn
))→ 0, contradiction.

144

where δ > 0 will be fixed later. Summing the above inequality over t from m (sufficiently large)
to n:

2
n∑

t=m

‖x(t+ 1)− x(t)‖ ≤
n∑

t=m

δ

α
∆t,t+1 +

n∑
t=m

1

δ
dist∂F (x(t))(0)

(telescoping and Equation (C.12)) ≤ δ
α
ϕ
(
F (x(m))− F ∗

)
+

n∑
t=m

√
p/η + 2L

δ

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖

≤ δ

α
ϕ
(
F (x(m))− F ∗

)
+

(2s+ 1)(
√
p/η + 2L)

δ

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖

+
(2s+ 1)(

√
p/η + 2L)

δ

n∑
t=m

‖x(t+ 1)− x(t)‖.

Setting δ = (2s+ 1)(
√
p/η + 2L) and rearranging:

n∑
t=m

‖x(t+ 1)− x(t)‖ ≤
(2s+ 1)(

√
p/η + 2L)

α
ϕ
(
F (x(m))− F ∗

)
+

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖

Since the right-hand side is finite and does not depend on n, letting n tend to infinity completes
our proof for Equation (4.12).

C.3 Proof of Lemma 4.1

Lemma 4.1. Assume ∀t, i, t ∈ Ti. Let the step size η < ρ−1
4Cρ

√
ρ−1

√
ρs+1−1

for any ρ > 1 and all Ui, i =

1, ..., p be proximal-Lipschitz continuous, then the sequences {x(t)} and {xi(t)}, i = 1, ..., p,
have finite length.

Follow the same argument of equation (C.2), one can bound ‖xi(t)− xi(t+ 1)‖ similarly as

‖xi(t)− xi(t+ 1)‖ ≤
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖. (C.24)

145

Proof.

‖xi(t)− xi(t+ 1)‖2 =

p∑
j=1

‖xj(τ ij(t))− xj(τ ij(t+ 1))‖2

≤
p∑
j=1

τ ij (t+1)−1∑
k=τ ij (t)

‖xj(k + 1)− xj(k)‖

2

≤
p∑
j=1

 t∑
k=(t−s)+

‖xj(k + 1)− xj(k)‖

2

,

and the rest of the proof is completely similar to Eq. (C.1).

Since Assumption 4.6 holds for all t > tL, we prove the lemma by considering two complemen-
tary cases.

Case 1: There exists a t̂ > tL such that

t̂∑
k=(t̂−s)+

‖x(k + 1)− x(k)‖ ≤
√
ρs+1 − 1
√
ρ− 1

‖x(t̂+ 1)− x(t̂)‖

Case 2: For all t > tL case 1 fails.

We will show that case 1 leads to the sufficient decrease property in Assumption 4.3 for all large
t, case 2 leads to the finite length of the models.

Case 1: t̂ exists.

We start by proving the following lemma.
Lemma C.2. With Assumption 4.6 and the existence of t̂. Set η−1 > 4Cρ

ρ−1

√
ρs+1−1
√
ρ−1

, then it holds

for all t > t̂ that

‖x(t̂+ 1)− x(t̂)‖ ≤ √ρ‖x(t̂+ 2)− x(t̂+ 1)‖.

146

Proof. Using the inequality ‖a‖2
2 − ‖b‖2

2 ≤ 2‖a‖‖a− b‖, we have for all t > t̂ > tL

‖x(t+ 1)− x(t)‖2
2 − ‖x(t+ 2)− x(t+ 1)‖2

2

≤ 2 ‖x(t+ 1)− x(t)‖ ‖(x(t+ 1)− x(t))− (x(t+ 2)− x(t+ 1))‖

(no skip of update) = 2 ‖x(t+ 1)− x(t)‖

∥∥∥∥∥
p∑
i=1

Ui(x
i(t))−

p∑
i=1

Ui(x
i(t+ 1))

∥∥∥∥∥
≤ 2 ‖x(t+ 1)− x(t)‖

p∑
i=1

∥∥Ui(xi(t))− Ui(xi(t+ 1))
∥∥

(Assumption 4.6) ≤ 2 ‖x(t+ 1)− x(t)‖

(
p∑
i=1

Ciη‖xi(t)− xi(t+ 1)‖

)

(equation (C.24)) ≤ 2 ‖x(t+ 1)− x(t)‖

 p∑
i=1

Ciη

 t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

= 2Cη ‖x(t+ 1)− x(t)‖

 t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

 (C.25)

Now we use an induction argument. Since there exists t̂ > tL such that
∑t̂

k=(t̂−s)+ ‖x(k + 1) −
x(k)‖ ≤

√
ρs+1−1
√
ρ−1
‖x(t̂+ 1)− x(t̂)‖, then set t = t̂ in the above inequality, we obtain

∥∥x(t̂+ 1)− x(t̂)
∥∥2

2
−
∥∥x(t̂+ 2)− x(t̂+ 1)

∥∥2

2
≤ 2Cη

√
ρs+1 − 1
√
ρ− 1

∥∥x(t̂+ 1)− x(t̂)
∥∥2

2

(choice of η) ≤
(

1− 1

ρ

)∥∥x(t̂+ 1)− x(t̂)
∥∥2
.

After rearranging terms we conclude ‖x(t̂ + 1) − x(t̂)‖ ≤ √ρ‖x(t̂ + 2) − x(t̂ + 1)‖. Now we
assume this relationship holds up to t (t > t̂), then (C.25) becomes

‖x(t+ 1)− x(t)‖2
2 − ‖x(t+ 2)− x(t+ 1)‖2

2 ≤ 2Cη

√
ρs+1 − 1
√
ρ− 1

‖x(t+ 1)− x(t)‖2
2

(choice of η) ≤
(

1− 1

ρ

)
‖x(t+ 1)− x(t)‖2

2

we obtain ‖x(t+ 1)− x(t)‖ ≤ √ρ‖x(t+ 2)− x(t+ 1)‖. This completes the lemma.

With this bound, inequality (C.7) can be further bounded for t > t̂ as

F
(
x(t+ 1)

)
− F

(
x(t)

)
≤1

2
(Lf − 1/η)‖x(t+ 1)− x(t)‖2

+ L‖x(t+ 1)− x(t)‖ ·
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖.

≤− α‖x(t+ 1)− x(t)‖2,

147

where

α ≥ η−1 − Lf
2

−
L
√
ρ(1−√ρs)
1−√ρ

(C > L, ρ > 1) ≥ 2Lρ

ρ− 1

√
ρs+1 − 1
√
ρ− 1

−
L(
√
ρs+1 − 1)
√
ρ− 1

− Lf
2

≥
L(
√
ρs+1 − 1)
√
ρ− 1

(
2ρ

ρ− 1
− 1)− Lf

2

(L > Lf , ρ > 1) > 0,

This proves the sufficient decrease for all t > t̂ of the objective value. Hence, the finite length
property of the models follows from Theorem 4.2.

Case 2: t̂ does not exist

In this case we have for all t > tL it holds that
∑t

k=(t−s)+ ‖x(k + 1)− x(k)‖ ≥
√
ρs+1−1
√
ρ−1
‖x(t +

1)− x(t)‖. Set D =
√
ρs+1−1
√
ρ−1

and sum the inequality over t from tL to n yields

n∑
k=tL

‖x(k + 1)− x(k)‖ < 1

D

n∑
t=tL

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

<
s+ 1

D

n∑
t=(tL−s)+

‖x(t+ 1)− x(t)‖ ,

which after rearranging terms becomes

(1− s+ 1

D
)

n∑
t=tL

‖x(t+ 1)− x(t)‖ ≤ s+ 1

D

tL−1∑
t=(tL−s)+

‖x(t+ 1)− x(t)‖ .

Since D =
√
ρs+1−1
√
ρ−1

> s+ 1 for ρ > 1 and tL is finite, the right hand side of the above inequality
is finite, and the left hand side has positive coefficient. Thus the above inequality implies

n∑
t=0

‖x(t+ 1)− x(t)‖ < +∞.

Enlarge n→∞ gives the finite length property of the global model. By the proof of Section C.2,
we know the finite length of global model implies the finite length of all local models.

C.4 Proof of Example 1

We proof case by case, and the scaled version γg(x), γ > 0 trivially follows from the same
argument.

148

Cases g = 0, g = 1
2
‖ · ‖2:

When g = 0, the update operator in Eq. (4.10) becomes Ui(xi(t)) = −η∇if(xi(t)), which is
ηLi Lipschitz due to Assumption 4.1.2 .

When g = 1
2
‖ · ‖2, the update operator becomes for i = 1, ..., p

Ui(x
i(t)) = proxη1

2
‖·‖22

(xi(t)− η∇if(xi(t)))− xi(t) = − 1

1 + η−1

(
xi(t) +∇if(xi(t))

)
.

With which we have

‖Ui(xi(t+ 1))− Ui(xi(t))‖ ≤
1

1 + η−1
‖(xi(t+ 1)− xi(t)) + (∇if(xi(t+ 1))−∇if(xi(t)))‖

≤ η(1 + Li)‖xi(t+ 1)− xi(t)‖

Cases g = ‖ · ‖0, ‖ · ‖0 + ‖ · ‖2, ‖ · ‖0,2, ‖ · ‖0,2 + ‖ · ‖2: For the non-overlapping group norms,
we assign each machine a subset of groups of coordinates.

Consider g = ‖ · ‖0, its proximal map on i-th coordinate can be expressed as

proxηgi(zi) =

{
zi, if |zi| >

√
2η

0, otherwise

The mapping contains a hard threshold, i.e., it filters out those coordinates with magnitude less
than

√
2η. This implies that any change of the support set of proxηgi(zi) will induce a jump of

magnitude of at least
√

2η. On the other hand, the second assertion of Theorem 4.1 imply that
lim
t→∞
‖xi(t+ 2)− xi(t+ 1)‖ = 0, which by local update can be expressed as

lim
t→∞
‖proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− proxηgi(xi(t)− η∇if(xi(t)))‖ = 0.

Hence by the above equation and the jump of proximal map, the support Ω of proxηgi(xi(t) −
η∇if(xi(t))) (i.e., xi(t + 1)) must remain stable for all t sufficiently large. Moreover, the prox-
imal map reduces to identity operator on the support set Ω. Thus, for all t sufficiently large we
have

‖Ui(xi(t+ 1))− Ui(xi(t))‖ =‖proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− xi(t+ 1)

− proxηgi(xi(t)− η∇if(xi(t)))− xi(t)‖
(support on Ω) =‖[proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− xi(t+ 1)

− proxηgi(xi(t)− η∇if(xi(t)))− xi(t)]Ω‖
(proxηg is identity on Ω) ≤ ‖η∇if(xi(t))− η∇if(xi(t+ 1))‖

≤ ηLi‖xi(t+ 1)− xi(t)‖.

Hence the operator is eventually O(η) Lipschitz.

149

Next we consider (without loss of generality) g = ‖ · ‖0 + λ
2
‖ · ‖2 where λ > 0. The proximal

map on i-th coordinate is

proxηgi(zi) =

{
zi, if |zi| >

√
2(η + η2λ)

0, otherwise

Thus, the mapping also contains a hard threshold. Following similar argument as previous case,
we conclude that the support Ω of proxηgi(xi(t)−η∇if(xi(t))) (i.e., xi(t+1)) must remain stable
for all t sufficiently large, and the proximal map reduces to identity operator on Ω. Consequently,
the operator Ui(xi(t)) is O(η) Lipschitz for all t large.

The proof of group norms g = ‖ · ‖0,2, ‖ · ‖0,2 + ‖ · ‖2 then follows by realizing that the proximal
maps have hard threshold on group support.

Cases g = ‖ · ‖1, ‖ · ‖1 + ‖ · ‖2 with eventual stable support set of {x(t)}:

For these two cases we assume that the support set of {x(t)} remains unchanged for all large t.

We just need to consider g = ‖ · ‖1 + λ
2
‖ · ‖2, λ ≥ 0. Its proximal map on vector zi has the form

proxηg(zi) = 1
1+ηλ

sgn(zi) (|zi| − η)+ .

Since the support set Ω of x(t) (i.e. proxηg (xi(t)− η∇if(xi(t)))) is assumed to be stable after
some tL, the above soft-thresholding operator ensures that |xi(t) − η∇if(xi(t))|Ω > η for all
large t, and we obtain

Ui(x
i(t)) = [xi(t+ 1)− xi(t)]Ω = [proxηg

(
xi(t)− η∇if(xi(t))

)
− xi(t)]Ω

= (1 + ηλ)−1
[
−η∇if(xi(t))− ηsgn

(
xi(t)− η∇if(xi(t))

)]
Ω
− ηλ

1 + ηλ
[xi(t)]Ω

On the other hand, Theorem 4.1.2 and the Lispchitz gradient of f implies

lim
t→∞

∥∥[xi(t+ 1)− η∇if(xi(t+ 1))
]
−
[
xi(t)− η∇if(xi(t))

]∥∥ = 0.

Then [sgn(xi(t)−η∇if(xi(t))]Ω must eventually remain constant, since otherwise the condition
|xi(t) − η∇if(xi(t))|Ω > η will induce a change of |xi(t) − η∇if(xi(t)| to be at least 2η and
violate the above asymptotic condition. In summary, for all large t we have

Ui(x
i(t)) = (1 + ηλ)−1

[
−η∇if(xi(t))− Const

]
Ω
− ηλ

1 + ηλ
[xi(t)]Ω

which further implies that

‖Ui(xi(t+ 1))− Ui(xi(t))‖ ≤‖(1 + ηλ)−1
[
η∇if(xi(t+ 1))− η∇if(xi(t))

]
Ω

+
ηλ

1 + ηλ
[xi(t+ 1)− xi(t)]Ω‖

≤ηLi‖xi(t+ 1)− xi(t)‖+ ηλ‖xi(t+ 1)− xi(t)]‖
≤η(Li + λ)‖xi(t+ 1)− xi(t)‖.

150

C.5 Proof of Theorem 4.3

Theorem 4.3 (Global rate of convergence). If the finite length property in Theorem 4.2 holds,
then

1.
∑∞

t=0 ‖e(t)‖ <∞;
2. F (1

t

∑t
k=1 x(k))− inf F ≤ O (t−1).

Proof. For the first assertion, note that for any n:

n∑
t=0

‖e(t)‖ =η
n∑
t=0

||
(
∇1f(x1(t))−∇1f(x(t)),

. . . , ∇pf(xp(t))−∇pf(x(t))
)
||

(triangle inequality, Assumption 4.1.2) ≤η
n∑
t=0

p∑
i=1

Li‖x(t)− xi(t)‖

(Equation (C.2)) ≤η
n∑
t=0

(
p∑
i=1

Li

)
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖

=Lη
n∑
t=0

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖

≤Lsη
n−1∑
t=0

‖x(t+ 1)− x(t)‖ .

Letting n tend to infinity we obtain

∞∑
t=0

‖e(t)‖ ≤ Lsη
∞∑
t=0

‖x(t+ 1)− x(t)‖ <∞.

For the second assertion, we first recall from [127] that the inexact proximal gradient algorithm
in Equation (4.15) has the following bound, provided that F is convex:

F

(
1

t

t∑
k=1

x(k)

)
− F ∗ ≤ (‖x(0)− x∗‖+ 2At)

2

2tη
, where At =

t∑
k=0

η‖e(k)‖.

The second assertion thus follows from the first one (assuming convexity).

151

152

Appendix D

Appendix for Chapter 5

D.1 Convergence analysis

We provide a self-contained convergence proof in this section. The skeleton of our convergence
proof follow closely from [82] and [69]. There are a few subtle modification and improvements
that we need to add due to our weaker definition of approximate oracle call that is nearly cor-
rect only in expectation. The delayed convergence is new and interesting for the best of our
knowledge, which uses a simple result in “load balancing” [110].

Note that for the cleanness of the presentation, we focus on the primal and primal-dual con-
vergence of the version of the algorithms with pre-defined step sizes and additive approximate
subroutine, it is simple to extend the same analysis for line-search variant and multiplicative
approximation.

D.1.1 Primal Convergence

Lemma D.1. Denote the gap between current f(x(k)) and the optimal f(x∗) to be h(x(k)). The
iterative updates in Algorithm 6 (with arbitrary fixed stepsize γ or by the line search) obey

Eh(x(k+1)) ≤ (1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτ
f .

where the expectation is taken over the joint randomness all the way to iteration k + 1.

Proof. Let x := x(k) for notational convenience. We prove the result for Algorithm 6 first.
Apply the definition of C(S)

f and then apply the definition of the additive approximation in (5.5),

153

to get

f(x
(k+1)
line−search) ≤ f(x(k+1)

γ) = f(x+ γ
∑
i∈S

(s[i] − x[i]))

≤ f(x) + γ
∑
i∈S

〈s[i] − x[i],∇[i]f(x)〉+
γ2

2
C

(S)
f

= f(x) + γ〈s[S] − x[S],∇[S]f(x)〉+
γ2

2
C

(S)
f

Subtract f(x∗) on both sides we get:

h(x(k+1)) ≤ h(x(k)) + γ〈s[S] − x(k)
[S] ,∇[S]f(x(k))〉+

γ2

2
C

(S)
f

Now take the expectation over the entire history then apply (5.5) and definition of the surrogate
duality gap (5.6), we obtain

Eh(x(k+1)) ≤Eh(x(k)) + E
{
γ〈s[S] − x(k)

[S] ,∇[S]f(x(k))〉
}

+ E
γ2

2
C

(S)
f

=Eh(x(k)) + γE
{
〈s[S],∇[S]f(x(k))〉 − min

s∈M(S)
〈s,∇[S]f(x(k))〉

}
− γE

{
〈x(k)

[S] ,∇[S]f(x(k))〉 − min
s∈M(S)

〈s,∇[S]f(x(k))

}
+
γ2

2
Cτ
f

≤Eh(x(k)) +
γ2δ

2
Cτ
f − γExkES|xk

∑
i∈S

g(i)(x(k)) +
γ2

2
Cτ
f

=Eh(x(k)) +
γ2δ

2
Cτ
f − γExk

τ

n
g(x(k)) +

γ2

2
Cτ
f (D.1)

≤(1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτ
f .

The last inequality follows from the property of the surrogate duality gap g(x(k)) ≥ h(x(k)) due
to the fact that g(x) ≥ f(x)− f ∗(·). This completes the proof of the descent lemma.

Now we are ready to state the proof for Theorem 5.1.

Proof of Theorem 5.1. We follow the proof in Theorem C.1 in [82] to prove the statement for
Algorithm 6. The difference is that we use a different and carefully chosen sequence of step size.

Take C = h0 + n(1 + δ)Cτ
f , and denote Eh(x(k)) as hk for short hands. The inequality in

Lemma D.1 simplifies to

hk+1 ≤
(

1− γτ

n

)
hk +

γ2

2n
C.

Now we will prove hk ≤ 2nC
τ2k+2n

for γk = 2nτ
τ2k+2n

by induction. The base case k = 0 is trivially
true since C > h0. Assuming that the claim holds for k, we apply the induction hypothesis and

154

the above inequality is reduced to

hk+1 ≤ (1− γτ

n
)hk +

γ2

2n
C ≤ 2nC

τ 2k + 2n

[
1− γτ

n
+
τ 2k + 2n

2n

γ2

2n

]
=

2nC

τ 2k + 2n

[
τ 2k + 2n

τ 2k + 2n
− 2nτ

τ 2k + 2n
· τ
n

+
(2nτ)2

4n2(τ 2k + 2n)

]
=

2nC

τ 2k + 2n
· τ

2k + 2n− τ 2

τ 2k + 2n
≤ 2nC

τ 2k + 2n
· τ

2k + 2n− τ 2 + τ 2

τ 2k + 2n+ τ 2

=
2nC

τ 2(k + 1) + 2n
.

This completes the induction and hence the proof for the primal convergence for Algorithm 6.

D.1.2 Convergence of the surrogate duality gap

Proof of Theorem 5.2. We mimic the proof in [82, Section C.3] for the analogous result closely,
and we will use the same notation for hk and C as in the proof for primal convergence, moreover
denote gk = Eg(x(k)) First from (D.1) in the proof of Lemma D.1, we have

hk+1 ≤ hk −
γτ

n
gk +

γ2

2n
C.

Rearrange the terms, we get

gk ≤
n

γτ
(hk − hk+1) +

γC

2τ
. (D.2)

The idea is that if we take an arbitrary convex combination of {g1, ..., gK}, the result will be
within the convex hull, namely between the minimum and the maximum, hence proven the ex-
istence claim in the theorem. By choosing weight ρk := k/SK where normalization constant
SK = K(K+1)

2
and taking the convex combination of both side of (D.2), we have

E(min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
n

τ

K∑
k=1

ρk(
hk
γk
− hk+1

γk
) +

K∑
k=0

ρkγk
C

2τ

=
n

τ
(
h0ρ0

γ0

− hK+1
ρk
γk

) +
n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1

− ρk
γk

) +
K∑
k=0

ρkγk
C

2τ

≤ n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1

− ρk
γk

) +
K∑
k=0

ρkγk
C

2τ
(D.3)

155

Note that ρ0 = 0, so we simply dropped a negative term in last line. Applying the step size
γk = 2nτ/(τ 2k + 2n), we get

ρk+1

γk+1

− ρk
γk

=
k + 1

SK

τ 2(k + 1)2n

2nτ
− k

SK

τ 2k + 2n

2nτ

=
1

2nSKτ

[
τ 2(k + 1)2 + 2n(k + 1)− τ 2k2 − 2nk

]
=
τ 2(2k + 1) + 2n

2nSKτ
.

Plug the above back into (D.3) and use the bound hk+1 ≤ 2nC/(τ 2(k + 1) + 2n), we get

E(min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
nC

τ 2SK

K−1∑
k=0

τ 2(2k + 1) + 2n

2n

2n

τ 2(k + 1) + 2n
+

K∑
k=0

k

SK

2nτ

τ 2k + 2n

C

2τ

=
nC

τ 2SK

[
K−1∑
k=0

(1 +
τ 2k

τ 2(k + 1) + 2n
) +

K∑
k=1

kτ 2

(τ 2k + 2n)

]

≤ nC

τ 2SK
[2K +K] =

2nC

τ 2(K + 1)
· 3.

This completes the proof for K ≥ 1.

Proof of Convergence with Delayed Gradient The idea is that we are going to treat the up-
dates calculated from the delayed gradients as an additive error and then invoke our convergence
results that allow the oracle to be approximate. We will first present a lemma that we will use for
the proof of Theorem 5.4.
Lemma D.2. Let x ∈ M, ‖ · ‖ be a norm, Diam(M)‖·‖ ≤ D, L be the gradient Lipschitz
constant of f with respect to the given norm ‖ · ‖, which has a dual norm ‖ · ‖∗. Moreover, let x̃
be at most κ steps away from x and the largest stepsize in the past κ steps, and

s∗ := argmin
s∈M

〈s,∇f(x)〉

s̃ := argmin
s∈M

〈s,∇f(x̃)〉

Then, we have
〈s̃− x,∇f(x)〉 ≤ 〈s∗ − x,∇f(x)〉+ γκD2L

Proof. Because s̃ minimizes 〈s,∇f(x̃)〉 over s ∈M and s∗ is feasible, we can write

〈s∗ − s̃,∇f(x̃)〉 ≥ 0.

Using this and Hölder’s inequality, we can write

〈s̃− x,∇f(x)〉 − 〈s∗ − x,∇f(x)〉 ≤ 〈s̃− s∗,∇f(x)−∇f(x̃)〉
≤ ‖s̃− s∗‖‖∇f(x̃)−∇f(x)‖∗
≤ DL‖x̃− x‖.

156

It remains to bound ‖x̃− x‖.

‖x̃− x‖ =

∥∥∥∥∥x̃− x̃−
κ∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ ≤ γκmax
i
‖s−i − x−i‖ ≤ γκD,

where we used the fact that x is at most κ steps away from x̃. Assume γ−i is the stepsize used
and 〈s−i, x−i〉 are the actual updates that had been performed in the nearest ith parameter update
before we get to x.

The second lemma that we need is the following.
Lemma D.3. Let M be a convex set. Let x0 ∈ M. Let m be any positive integer. For i =
1, ...,m, let xi = xi−1 + γi(si − xi−1) for some 0 ≤ γi ≤ 1 and si ∈ M. Then there exists an
s ∈M and γ ≤

∑m
i=1 γi, such that xm = γ(s− x0) + x0.

Proof. We prove by induction. When m = 1, s = s1 and γ = γ1. Assume for any m = k − 1,
that the claim holds assume the condition is true, then by the recursive formula,

xk = xk−1 + γk(sk − xk−1)

= x0 + γ(s− x0) + γk[sk − x0 − γ(s− x0)]

= x0 − (γ + γk − γkγ)x0 + (γ − γkγ)s+ γksk

= x0 + (γ + γk − γkγ)

[
γ − γkγ

γ + γk − γkγ
s+

γk
γ + γk − γkγ

sk − x0

]
= x0 + (γ + γk − γkγ)(s′ − x0)

Note that s′ is a convex combination of sk and s therefore by convexity s′ ∈ M. Substitute
γ ≤

∑k−1
i=1 γi, we get

γ + γk − γkγ ≤
k∑
i=1

γi.

This completes the inductive proof for all m.

The third Lemma that we will need is the following characterization of the expected “max load”
in randomized load balancing.
Lemma D.4 ([110, 119]). Suppose m balls are thrown independently and uniformly at random
into n bins. Then, the maximum number of balls in a bin Y satisfies

EY ≤

3 logn

log(n/m)
if m < n/ log n,

c′ log n if m < cn log n,

m
n

+O(
√

2m
n

log n) if m� n log n.

where c′ is a constant that depends only on c.

157

Proof of Theorem 5.4. The proof involves a sharpening of the Lemma D.2 for the BCFW and
minibatch setting, where x ∈ M = M(1) × ... ×M(n) is a product domain. The proof idea is
to exploit this property. Let the current update be on coordinate block index subset S. For each
j ∈ S, let the corresponding worker be delayed by κj steps, and the corresponding parameter
vector be x̃. κj is a random variable.

As in the proof of Lemma D.2, we can bound the suboptimality of the approximate subroutine
for solving problem j:

Suboptimality(s̃j) ≤ 〈s̃j − s∗j ,∇jf(x̃)−∇jf(x)〉 ≤ ‖s̃j − s∗j‖‖∇jf(x̃)−∇jf(x)‖∗

≤ D
(j)
‖·‖L

(j)
‖·‖‖x̃− x‖ = D

(j)
‖·‖L

(j)
‖·‖

∥∥∥∥∥
κj∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ (D.4)

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−i ‖(s−i − x−i)‖

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−iD
τ
‖·‖ ≤ κjγ−κjD1

‖·‖L
1
‖·‖D

τ
‖·‖.

Let κ := Eκj , take expectation on both sides we get

E Suboptimality(s̃j) ≤ E(κjγ−κj)D1
‖·‖L

1
‖·‖D

τ
‖·‖

Repeat the same argument for each i ∈ S, we get

E Suboptimality(s̃) ≤ E(κjγ−κj)τD1
‖·‖L

1
‖·‖D

τ
‖·‖.

To put it into the desired format in (5.5), we solve the following inequality for δ

γδCτ
f

2
≥ E(κjγ−κj)τDτ

‖·‖D
1
‖·‖L

1
‖·‖

we get

δ ≥ 2τ

Cτ
f

E
(
κjγ−κj
γ

)
Dτ
‖·‖D

1
‖·‖L

1
‖·‖.

By the specification of the stepsizes, we can calculate for each k,

γ−κj
γ

=
τ 2k + 2n

τ 2(max(k − κj, 0)) + 2n
.

Note that we always enforce κj to be smaller than k
2

(otherwise the update is dropped), we
can therefore upper bound E(

κjγ−κj
γ

) by 2κ. This gives us the the first bound (5.9) on δ in
Theorem 5.4.

To get the second bound on δ, we start from (D.4) and bound ‖x̃ − x‖ differently. Let S be
the set of τκj coordinate blocks that were updated in the past κj iterations. In the cases where
fewer than τκj blocks were updated, just arbitrarily pick among the coordinate blocks that were

158

updated 0 times so that |S| = τκj . x̃ − x is supported only on S. Suppose coordinate block
i ∈ S is updated by m times, as below

x̃(i) =
m∑
j=1

γj(sj − [xj](i))

for some sequence of 0 ≤ γ1, ..., γm ≤ 1 and s1, ..., sm ∈Mi and recursively [xj](i) = [xj−1](i)+
γj(sj − [xj−1](i)) (x0 = x). Apply Lemma D.3 for each coordinate block, we know that there
exist s(i) ∈Mi in each block i ∈ S such that

x̃(i) = x(i) + γ(i)(s(i) − x(i))

with
γ(i) ≤

∑
j∈ iterations where i is updated

γj ≤ mγmax. (D.5)

Note that s(i) ∈ Mi for each i ∈ S implies that their concatenation s(S) ∈ MS . Also γmax ≤
γ−κj . Therefore

‖x̃− x‖ =

∥∥∥∥∥∑
i∈S

γ(i)(s(i) − x(i))

∥∥∥∥∥ ≤ mγmax‖s(S) − x(S)‖ ≤ Y γ−κjD
τκj
‖·‖

where Y is a random variable that denotes the number of updates received by the most updated
coordinate block (the maximum load). Apply a previously used argument to get γ−κj < 2γ, take
expectation on both sides, to get the following by the law of total expectations and (D.5)

E‖x̃− x‖ ≤ E
(
Y γ−κjD

τκj
‖·‖

)
= E

[
E
(
Y γ−κjD

τκj
‖·‖

∣∣∣κj)] = E
[
γ−κjD

τκj
‖·‖ E (Y |κj)

]
≤ 2γE

[
D
τκj
‖·‖ E (Y |κj)

]
(D.6)

This expectation is taken over the entire history of minibatch choice and delay associated with
each update. When we condition on κj , the conditional expectation of Y becomes the load-
balancing problem.

By Lemma D.4 when κmaxτ ≤ n
logn

, it follows from (D.6) that

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖

3 log n

log(n/κjτ)
≤ 3 log n

log[n/(τκmax)]
2γEDκjτ

‖·‖ .

When κmaxτ < cn log n,

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖ O(log n) ≤ O(log n)2γEDκjτ

‖·‖ .

When κmaxτ � n log n, then

E‖x̃− x‖ ≤ (1 + o(1))
τκmax

n
2γEDκjτ

‖·‖ .

Repeating the above results for each block j ∈ S, and summing them up leads to an upper bound
for

γδCτf
2

and the proof of (5.9) is complete by solving for δ.

159

D.2 Proofs of other technical results

Relationship of the curvatures.

Proof of Lemma 5.1. C(S)
f ≤ Cf follows from the fact that

〈y(S) − x(S),∇(S)f(x)〉 = 〈y[S] − x[S],∇f(x)〉,

and s[S] ∈ M. In other words, the arg sup of (5.3) is a feasible solution in the sup to compute
the global Cf . Similar argument holds for the proof C(i)

f ≤ C
(S)
f as i ∈ S.

In the second part,

Cτ
f =

1(
n
τ

) ∑
T⊂[n],|T |=τ

C
(T)
f .

We can use C(S)
f ≥ Cf (j) from the first inequality of the lemma, to get the inequality below.

Cτ
f =

1(
n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(T)
f ≥ 1(

n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(j)
f =

1(
n
τ

) ∑
j∈[n]

(
n

τ

)
τ

n
C

(j)
f =

τ

n
C⊗f ≥

1

n
C⊗f

The relaxation of Cτ
f to Cf is trivial since C(T)

f ≤ Cf holds for any T ⊆ [n] from the first part of
the lemma.

Bounding Cτ
f using expected boundedness and expected incoherence

Proof of Theorem 5.3. By Definition of H, for any x, z ∈M, γ ∈ [0, 1]

f(x+ γ(z − x)) ≤ f(x) + γ(z − x)T∇f(x) +
γ2

2
(z − x)TH(z − x).

Rearranging the terms we get

2

γ2

[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ (z − x)TH(z − x)

The definition of set curvature (5.3) is written in an equivalent notation with z = x[Sc] + s[S] and
y = x + γ(z − x) = x + γ(s[S] − x[S]). So we know the support of z − x is constrained to be
within the coordinate blocks S.

160

Plugging this into the definition of (5.3) we get an analog of Equation (2.12) in [68] for C(S)
f .

C
(S)
f = sup

x,z∈M,γ∈[0,1]
z(Sc)−x(Sc)=0

2

γ2

[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ sup

x,z∈M,
z(Sc)−x(Sc)=0

(z − x)TH(z − x) = sup
x,z∈M,
z(Sc)−x(Sc)=0

sT(S)Hs(S)

≤ sup
w∈M(S)

(2wT)HS(2w) = 4

{
sup

wi∈M(i)∀i∈S

∑
i∈S

wTi Hiiwi +
∑

i,j∈S,i6=j

wTi Hiiwj

}

≤ 4

{∑
i∈S

sup
wi

wTi Hiiwi +
∑

i,j∈S,i6=j

sup
wi,wj

wTi Hiiwj

}
≤ 4(

∑
i∈S

Bi +
∑

i,j∈S,i6=j

µij).

Take expectation for all possible S of size τ and we obtain the lemma statement.

Proof of the example with sublinear dependence of κ

Proof of Lemma 5.2. We first show that a continuous extension of Dθ
‖·‖ is concave in θ

Dθ
‖·‖ = max

S⊂[n]||S|=θ
sup

x,y∈M(S)

‖x− y‖

= max
S⊂[n]||S|=θ

sup
x,y∈M(S)

√∑
i∈S

‖x(i) − y(i)‖2

=

√
max

S⊂[n]||S|=θ

∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

The supremum is obtained by sorting and the function in the square root is concave function
of θ, when we extend the support of this function to R+ through linear interpolation. By the
composition theorem, the square root of that is also a concave function in τ . We call this function
D̃θ
‖·‖. Note that D̃θ

‖·‖ = Dθ
‖·‖ when θ ∈ [n] such that if we take expectation over the any discrete

distribution over θ, their expectations are the same. It follows from Jensen’s inequality that

EDκτ
‖·‖ = ED̃κτ

‖·‖ ≤ D̃Eκτ
‖·‖

≤ D
dEκτe
‖·‖

=

√
max

S⊂[n]

∣∣|S|=dEκτe
∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

≤
√
dEκeDτ

‖·‖.

161

Proof of specific examples

Proof of Example D.1. First of all,H = λATA. Since all columns ofA have the same magnitude√
2/n. By the Holder’s inequality and the 1-norm constraint in every block, we know Bi = 2

n2λ

for any i therefore B = 2
n2λ

. Secondly, by well-known upper bound for the area of the spherical
cap, which says for any fixed vector z and random vector a on a unit sphere in Rd,

P(|〈z, a〉| > ε‖z‖) ≤ 2e
−dε2

2 ,

we get

P(µij > 2

√
20 log d

d
) ≤ 2

d10
.

Take union bound over all pairs of labels we get the probability as claimed.

Proof of Example D.2. The matrix DTD is tridiagonal with 2 on the diagonal and−1 on the off-
diagonal. If we vectorize U by concatenating u = [u1; ...;un−1], the Hessian matrix for u will be
H = ΠId ⊗ (DTD)ΠT where Π is some permutation matrix. Without calculating it explicitly,
we can express

uTSHSuS = uTS (DT ⊗ 1d)(D
T ⊗ 1d)

TuS

=
∑
i∈S

uTi

DT

:,i

DT
:,i
...
DT

:,i

 [D:,i D:,i . . . D:,i

]
ui +

∑
i,j∈S,i6=j

uTi

DT

:,i

DT
:,i
...
DT

:,i

 [D:,j D:,j . . . D:,j

]
uj.

We note that for any |i − j| ≥ 2, the second term is 0. Apply the constraint that ‖ui‖2 ≤ λ and
the fact that the `2 operator norm of

[
D:,j D:,j . . . D:,j

]
is
√

2d, we getBi = 2λ2d. Similarly,
2(n− 2) nonzero obeys µij = λ2d. This allows us to obtain an upper bound

Cτ
f ≤ 4

[
2τλ2d+

2(n− 2)τ(τ − 1)

(n− 2)(n− 1)
λ2d

]
≤ 16τλ2d.

which scales with τ .

D.2.1 Pseudocode for the Multicore Shared Memory Architecture

We present pseudocode for the multicore shared memory setting here. It is the same except that
each worker becomes a thread, the network buffer of servers become the a data structure, the
workers’ network buffer becomes the shared parameter vector and the workers can write to the
data structure or the shared parameter vector directly.

162

Algorithm 7 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Shared mem-
ory)

————————SERVER THREAD———————
Input: An initial feasible x(0), mini-batch size τ , number of workers T .
0. Write x(0) to shared memory. Declare a container (a queue or a stack).
for k = 1,2,... (k is the iteration number.) do

1. Keep popping the container until we have τ updates on τ disjoint blocks. Denote the
index set by S.
2. Set step size γ = 2nτ

τ2k+2n
.

3. Write sparse updates x(k) = x(k−1) + γ
∑

i∈S(s[i] − x(k−1)
[i]) into the shared memory.

if converged then
Broadcast STOP signal to all threads and break.

end if
end for
Output: x(k).
———————–WORKER THREADS———————
while no STOP signal received do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (5.2).
c. Push {i, s(i)} to the container.

end while

The above pseudo code can be further simplified when τ = 1. In particular, we do not need a
server any more. Each worker can simply write to the shared memory bus. The probability of
two workers writing to the same block is small as we analyzed in Section D.4.2. The algorithm
essentially lock-free as in [114] modulo requiring the updates of each coordinate block to be
atomic. [114] is stronger in that it allows each scalar addition to be atomic.

There is an additional restriction due to the fixed predefined sequence of step sizes, which in fact
requires a centralized shared counter that is atomic, so that no two threads have simultaneously
the same k. In practice, we can simply choose a fixed sequence of stepsize for each worker
separately.

163

Algorithm 8 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Lock-Free
Shared-Memory)

Input: An initial feasible x(0), number of workers T , a centralized counter.
0. Write x(0) to shared memory.
————INDEPENDENTLY ON EACH THREAD———–
while not converged do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (5.2).
c. Read centralized counter for k. Set step size γ = 2n

k+2n
.

d. Add γ(s(i) − x(i)) to block i of the shared memory.
e. Increment the counter k = k + 1.

end while
——————————————————————-
if converged then

Output: x(k). and break.
end if

D.3 Application to Structural SVM

We briefly review structural SVMs and show how to solve the associated convex optimization
problem using our AP-BCFW method.

In structured prediction setting, the task is to predict a structured output y ∈ Y , given x ∈ X .
For example, x could be the pixels in the picture of a word, y could be the sequence of characters
in the word. A feature map φ : X ×Y → Rd encodes compatibility between inputs and outputs.
A linear classifier parameter w is learned from data so that argmaxy∈Y〈w, φ(x,y)〉 gives the
output for an input x. Suppose we have the training data {xi,yi}ni=1 to learn w. Define ψi(y) :=
φ(xi,yi)−φ(xi, y) and let Li(y) := L(yi,y) denote the loss incurred by predicting y instead of
the correct output yi. The classifier parameter w is learned by solving the optimization problem

min
w,ξ

λ

2
‖w‖2 +

1

n

n∑
i=1

ξi (D.7)

s.t 〈w, ψi(y)〉 ≥ L(yi,y)− ξi ∀i,y ∈ Y(xi).

We solve the dual of this problem using our method. We introduce some more notation to formu-
late the dual. Denote Yi := Y(xi), the set of possible labels for xi. Note that |Yi| is exponential
in the length of label yi. Let m =

∑
i=1 |Yi|. Let A ∈ Rd×m denote a matrix whose m columns

are given by { 1
λn
ψi(y) | i ∈ [n],y ∈ Yi}. Let b ∈ Rm be a vector given by the entries

164

{ 1
n
Li(y) | i ∈ [n],y ∈ Yi}. The dual of (D.7) is given by

min
α∈Rm

f(α) :=
λ

2
‖Aα‖2 − bTα (D.8)

s.t
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n], α ≥ 0

The primal solution w can be retrieved from the dual solution α from the relation w = Aα
obtained from KKT conditions. Also note that the domainM of (D.8) is exactly the product of
simplicesM = ∆|Y1| × · · · ×∆|Yn|.

The subproblem in equation (5.2) takes a well-known form in the Frank-Wolfe setup for solving
(D.8). The gradient is given by

∇f(α) = λATAα− b = λATw − b

whose (i,y)-th component is given by 1
n

(〈w, ψi(y)〉 − Li(y)). Define Hi(y; w) := Li(y) −
〈w, ψi(y)〉 so that the (i,y)-th component of the gradient is − 1

n
Hi(y; w). In the subproblem

(5.2), the domain M(i) is the simplex ∆Yi and the block gradient ∇(i)f(α) is linear. So, the
objective is minimized at a corner of the simplexM(i) and the optimum value is simply given by
miny∇(i)f(α) which can be rewritten as maxyHi(y; w). Further, the corner can be explicitly
written as the indicator vector ey∗i ∈ M(i) where y∗i = argmaxyHi(y; w). It turns out that this
maximization problem can be solved efficiently for several problems. For example, when the
output is a sequence of labels, a dynamic programming algorithm like Viterbi can be used.

As mentioned before, m is too large to update the dual variable α directly. So, we make an
update to the primal variable w = Aα instead. The Block-Coordinate Frank-Wolfe update for
the i-th block maybe written as αk+1

(i) = αki + γ(si − αk(i)) where γ is the step-size. Recalling

that the optimal si is ey∗i , by multiplying the previous equation by Ai, we arrive at w
(k+1)
i =

wk
i + γ(Ai,y∗i − w

(k)
i) where w

(k)
i := Aiα(i). From this definition of w

(k)
i , the primal update

is obtained by noting that w(k) =
∑

i w
(k)
i . Explicitly, the primal update is given by w(k+1) =

wk + γ(Ai,y∗i −w
(k)
i). Note that Ai,y∗i = 1

λn
ψ(y

∗
i). This Block-Coordinate version can be easily

extended to AP-BCFW. In our shared memory implementation, for OCR dataset, we do the
line search computation and w

(k)
i update step on the workers instead of the server because these

computations turn out to be expensive enough to make the server the bottleneck even for modest
number of workers.

D.4 Other technical results and discussions

D.4.1 Oracle assumption and heterogeneous blocks

Recall that our results rely on the oracle assumption thatO provides updates that are iid uniform
over [n] (Assumption A1). We discuss the implications and limitations of this assumption and
then propose possible solutions.

165

Consider the setting where O consists of T possibly heterogeneous workers and each worker
samples iid from [n]. As we discussed before, A1 holds under the additional condition that the
time needed to complete one subroutine solve for Block i by Worker j does not depend on i.

Consider the simple example due to an anonymous reviewer: Let τ = 1, T = 2 and there are a
total of two blocks. Block 1 takes only a millisecond an Block 2 takes a year to solve for both
workers. In this case, the first update received by the server is with probability 3/4 for Block 1
and only 1/4 for Block 2.

This could potentially limit the use of our parallel algorithm for applications such as structured
predictions where sentences having different lengths, or cases where there are different sparsity
level over data points/constraints depending on how we formulate the problem.

This is in fact not a problem unique to us, Assumption A1 is implicitly required in most existing
analysis for asynchronous stochastic algorithms [e.g., 98, 114]. As a result, they all share the
same woe. One could argue that parallelization is the wrong problem to address when block
subroutines significantly differ with each other. Efforts should be spent on perhaps solving the
expensive subproblem in parallel. But still, even mild heterogeneity over blocks invalidates our
convergence result.

Henceforth, we propose two simple ways to address this issue and discuss their pros and cons.

Padding: A naive solution is to per-calculate the time-complexity with respect to each block
and inject artificial time padding on each user such that all blocks have the same time
complexity.

Pre-select S: An alternative is to let the server randomly choose a coordinate subset S of size
τ , and the workers can only work on S, either by independently sample from S or work on
whichever that is not available.

Neither of the two solutions is completely satisfactory. The padding approach ensures all results
in the paper to hold including those for the delayed oracles, but inevitably, the time to complete
each block now depends on the most expensive block. The second approach has milder depen-
dence on the worst block, in fact it depends only on the time for the fastest worker to solve the
slowest problem in each chosen S. However, it requires sending an updated parameter to all
workers in every iteration. It could still be robust to heterogeneous workers when τ is several
times larger than T , and when workers work asynchronously within the mini-batch, we prove in
Proposition D.1 that the number of collisions is small.

Fully asynchronous parallelism over blocks with heterogeneous blocks without dependence on
the slowest block remains an important open problem.

D.4.2 Controlling collisions in distributed setting

In the distributed setting, different workers might end up working on the same slot.

166

In Algorithm 6, different workers may end up working on the same coordinate block and the
server will drop a number of updates in case of collision. The following proposition shows that
for this potential redundancy is not excessive is small and for a large range of τ , we also show
additional strong concentration to its mean.
Proposition D.1. In the distributed asynchronous update scheme above:

i) The expected number of subroutine calls from all workers to complete each iteration is
τ +

∑τ−1
i=1

i
n−i .

ii) If 0.02n < τ < 0.6n, with probability at least 1 − exp(−n/60), no more than 2τ random
draws (2τ subroutine calls in total from all workers) suffice to complete each iteration.

Proof. The first claim is the well-known coupon collector problem.

The second claim requires an upper bound of the expectation. In expectation, we need n
n−k balls

to increase the unique count from k to k + 1. So in expectation we need

1 +
n

n− 1
+

n

n− 2
+ ...+

n

n− τ + 1
= τ +

τ−1∑
i=1

i

n− i

≤ τ +
1 + 2 + · · ·+ (τ − 1)

n− τ + 1
= τ +

τ(τ − 1)

2(n− τ + 1)
< τ

[
1 +

1

2(n/τ − 1)

]
.

To see the second claim, first defined ft to be the number of non-empty bins after t random ball
throws, which can be consider as a function of the t iid ball throws X1, X2, ..., Xt. It is clear that
if we change only one of the Xi, ft can be changed by at most 1. Also, note that the probability
that any one bin being filled is 1− (1− 1

n
)t, so Eft = n

[
1−

(
1− 1

n

)t]
.

By the McDiarmid’s inequality, P [ft < Eft − ε] ≤ exp
[
−2ε2

t

]
. Take t = 2τ , and ε = Ef2τ − τ ,

then

P [f2τ < τ] ≤ exp

−1

τ

(
n

[
1−

(
1− 1

n

)2τ
]
− τ

)2
 ≤ exp

[
−1

τ

(
n
[
1− e−

2τ
n

]
− τ
)2
]

= exp

[
−n · n

τ

(
1− e−

2τ
n − τ

n

)2
]
≤ exp [−Cn],

whereC is some constant which is the smaller of the two evaluations of the function n
τ

(
1− e− 2τ

n − τ
n

)2

at τ = 0.02n and τ = 0.6n (where the function is concave between the two). As a matter of fact,
C can be taken as 1

60
.

Let gτ be the number of balls that one throws that fills τ bins, the result is proven by noting that

P(gτ ≤ 2τ) = P(f2τ ≥ τ) ≥ 1− exp [−Cn].

167

D.4.3 Curvature and Lipschitz Constant

In this section, we illustrate the relationship between the coordinate curvature constant, coordi-
nate gradient Lipschitz conditions, and work out the typical size of the constants in Theorem 5.4.
For the sake of discussion, we will focus on the quadratic function f(x) = xTAx

2
+ bTx. We start

by showing that for quadratic function. The constant that one can get via choosing a specific
norm can actually match the curvature constant. To be completely explicit, we define gradient
Lipschitz constant L‖·‖ with respect to a norm ‖ · ‖, this requires that for any x, y,

‖∇f(y)−∇f(x)‖∗ ≤ L‖x− y‖.

where ‖ · ‖∗ is the dual norm.
Proposition D.2. For quadratic functions with Hessian A � 0, there exists a norm ‖ ·‖ such that
the curvature constant Cf = [D‖·‖]

2L‖·‖.

Proof. We will show that this norm is simply the A-norm, ‖ ·‖A =
√

(·)TA(·). The upper bound
Cf ≤ [D‖·‖A]2L‖·‖A is a direct application of the result in [69, Appendix D]. To show a lower
bound it suffices to construct s, x ∈M, γ ∈ [0, 1] and y = γs+ (1− γ)x such that

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉) = [D‖·‖A]2L‖·‖A .

For quadratic functions,

2

γ2
[f(y)− f(x)− 〈y − x,∇f(x)〉] =

1

2
(y − x)TA(y − x) =

1

γ2
‖y − x‖2

A

Take γ = 1 and y, x on the boundary of M such that ‖y − x‖A = D‖·‖A , as a result, we get
Cf ≥ D‖·‖A]2. It remains to show that the gradient Lipschitz constant with respect to A-norm is
1, which directly follows from the Taylor expansion.

Similar arguments work for C(i)
f and C(S)

f under the same norm. Clearly, this means that the
corresponding restriction of the subset domain has Ai,i-norm or A(S)-norm.

We now consider the approximation constants due to the delays in Theorem 5.4, and work out
more explicit bounds for quadratic functions and carefully chosen norm. Recall that the simple
bound (5.8) has constant δ in the order of

κτL1
‖·‖D

1
‖·‖D

τ
‖·‖

Cτ
f

.

Suppose we use the A-norm, then L1
‖·‖ = Lτ‖·‖ = 1, and Cτ

f = [Dτ
‖·‖]

2, the bound can be reduced
to

δ = O(
τD1
‖·‖

Dτ
‖·‖

) = O(κ
√
τ).

168

where the last step requires Mi to be all equivalent and A to be block-diagonal with identical
A(i).

Similarly the strong bound (5.9) has constant δ in the order of

δ = Õ

(
τL1
‖·‖D

1
‖·‖D

κτ
‖·‖

Cτ
f

)
= Õ

(
τD1
‖·‖D

κτ
‖·‖

[Dτ
‖·‖]

2

)
= Õ(

√
κτ)

Again, the last step requires a strong assumption thatMi to be all equivalent and A to be block-
diagonal with identical diagonal blocks. While these calculations only apply to specific case
of a quadratic function with a lot of symmetry, we conjecture that in general the flexibility of
choosing the norm will allow the ratio of these boundedness constants and Cτ

f to be a well-
controlled constant and the typical dependence on the system parameter τ and κ should stay
within the same ball park.

D.4.4 Examples and illustrations

In this section, we now derive specific instances of the Theorem 5.3 for the structural SVM and
Group Fused Lasso. For the structural SVM, a simple generalization of [82, Lemmas A.1, A.2]
shows that in the worst case, using τ > 1 offers no gain at all. Fortunately, if we consider more
specific problems, using larger τ does yield faster convergence. We provide two such examples
below.
Example D.1 (Structural SVM for multi-label classification (with random data)). We de-
scribe the application to structural SVMs in detail in Section D.3 (please see this section for
details on notation). Here, we describe the convergence rate for this application. According to
[149], the compatibility function φ(x, y) for multiclass classification will be [0, ..., 0, xT , 0, ...0]T/λn
where the only nonzero block that we fill with the feature vector is the (y)th block. So ψi(xi, j) =
φ(xi, yi) − φ(xi, j) looks like [0, ..., 0, xTi , 0 , ...0, −xTi , 0, ...0]T/λn. This already ensures that
B = 2

n2λ
provided xi lie on a unit sphere. Suppose we have K classes and each class has

a unique feature vector drawn randomly from a unit sphere in Rd; furthermore, for simplicity

assume we always draw τ < K data points with τ distinct labels1µ ≤
√

c log d
d

2
n2λ

, for some

constant c. In addition, if d ≥ τ 2
√
c log d, then with high probability

Cτ
f ≤

8τ + 8τ 2
√

c log d
d

n2λ
= O

(cτ

n2λ

)
,

which yields a convergence rate O(R
2

λτk
), where R :=

maxi∈[n],y∈Yi ‖ψi(y)‖2 using notation from Lemmas A.1 and A.2 of [82].

This analysis suggests that a good rule-of-thumb is that we should choose τ to be at most the
number of categories for the classification. If each class is a mixture of random draws from the
unit sphere, then we can choose τ to be the underlying number of mixture components.

1This is an oversimplification but it offers a rough rule-of-thumb. In practice, Cτf should be in the same ballpark
as our estimate here.

169

Example D.2 (Group Fused Lasso). The Group Fused Lasso aims to solve (typically for q = 2)

min
X

1
2
‖X − Y ‖2

F + λ‖XD‖1,q, q > 1, (D.9)

where X, Y ∈ Rd×n, and column yt of Y is an observed noisy d-dimensional feature vector at
time 1 ≤ t ≤ n. The matrix D ∈ Rn×(n−1) is the differencing matrix that takes the difference of
feature vectors at adjacent time points (columns). The formulation aims to filter the trend that
has some piecewise constant structures. The dual to (D.9) is

max
U
− 1

2
‖UDT‖2

F + trUDTY T

s.t. ‖U:,t‖p ≤ λ, ∀t = 1, ..., n− 1,

where p is conjugate to q, i.e., 1/p + 1/q = 1. This block-constrained problem fits our struc-
ture (5.1). For this problem, we find that B ≤ 2λ2d and µ ≤ 2λ2d/(n− 1), which yields

Cτ
f ≤ 16τλ2d.

Consequently, the rate of convergence becomes O(n
2λ2d
τk

). In this case, batch FW will have a
better rate of convergence than BCFW.2

Example D.3 (Structural SVM worst-case bound). For structural SVM with arbitrary data (in-
cluding even pathological/trivial data), using notation from Lemmas A.1 and A.2 of [82], define
R := maxi∈[n],y∈Yi ‖ψi(y)‖2. Then we can provide an upper bound

B, µ ≤ R2

λn2
=⇒ Cτ

f ≤
4τ 2R2

λn2
. (D.10)

In this case, for any τ = 1, ..., n, the rate of convergence will be the same O(R
2

λk
).

An illustration for the group fused lasso Figure D.1 shows a typically application for group
fused lasso (filtering piecewise constant multivariate signals whose change poitns are grouped
together).

D.4.5 Comparison to parallel block coordinate descent

With some understanding on Cτ
f , we can now explicitly compare the rate of convergence in

Theorem 5.1 with parallel BCD [98, 125] under the assumption of µ = O(B/τ) — a fair and
equally favorable case to all of these methods. We acknowledge that more general treatments of
ESO property in more recent extensions of [125] in a similar flavor as our (5.7) (see e.g., [118])
but similar results are not available for the asynchronous version. To facilitate comparison, we

2Observe that Cτf does not have an n2 term in the denominator to cancel out the numerator. This is because the
objective function is not appropriately scaled with n like it does in the structural SVM formulation.

170

Figure D.1: Illustration of the signal data used in the Fused Lasso experiments. We show the
original signal (left), the noisy signal given to the algorithm (middle), and the signal recovered
after performing the fused lasso optimization (right).

will convert the constants in all three methods to block coordinate gradient Lipschitz constant
Li, which obeys

f(x+ s[i]) ≤ f(x) + 〈s[i],∇f(x)〉+ Li‖s[i]‖2, (D.11)

for any x ∈M, s(i) ∈Mi. Observe that Bi ≤ 4Lidiam(Mi)
2 = Li maxx∗i ,xi∈Mi

‖xi − x∗i ‖2, so

B ≤ 1

n

∑
i

Li max
xi,x∗i
‖xi − x∗i ‖ (D.12)

≤ 1

n

∑
i

Li max
x
‖x− x∗‖2 = Ei(Li)R2 (D.13)

where R := maxx ‖x − x∗‖. The rate of convergence for the three methods (with τ oracle calls
considered as one iteration) are given below.

Method Rate

AP-BCFW (Ours) Op

(
nEi(Li)R2

τk

)
P-BCD3 Op

(
nEi(Li)R2

τk

)
AP-BCD4 Op

(
nmaxi LiR

2

τk

)

The comparison illustrates that these methods have the same O(1/k) rate and almost the same
dependence on n and τ despite the fact that we use a much simpler linear oracle. Nothing
comes for free though: Nesterov acceleration does not apply for Frank-Wolfe based methods in

3In [125, Theorem 19]
4In [98, Theorem 3]

171

general, while a careful implementation of parallel coordinate descents can achieve O(1/k2) rate
without any full-vector interpolation in every iteration [46]. Also, Frank-Wolfe methods usually
need additional restrictive conditions or algorithmic steps to get linear convergence for strongly
convex problems.

These facts somewhat limits the applicability of our method to cases when projection can be
computed as efficiently as (5.2). However, as is surveyed in [69], there are many interesting
cases when (5.2) is much cheaper than projections, e.g., projection onto a nuclear norm ball
takes O(n3) while (5.2) takes only O(n2).

Lastly, we note that in the fully asynchronous setting, we obtained an exponential improvement
on the dependence of delay comparing to that in [98]. It is unclear whether this is a unique
property of the block-coordinate Frank-Wolfe algorithm or similar results can be obtained for
projection based block-coordinate descent.

172

Bibliography

[1] Accurate, large minibatch sgd: Training imagenet in 1 hour. xviii, 98, 107, 111, 112, 113

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–
283, 2016. URL https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf. 17

[3] P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of descent methods
for analytic cost functions. SIAM Journal on Optimization, 16(2):531–547, 2005. 64

[4] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Ad-
vances in Neural Information Processing Systems 24, pages 873–881. 2011. 62, 67, 69,
76

[5] Damla S Ahipasaoglu, Peng Sun, and Michael J Todd. Linear convergence of a modified
frank–wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimisa-
tion Methods and Software, 23(1):5–19, 2008. 77

[6] Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexan-
der J. Smola. Scalable inference in latent variable models. In WSDM, pages 123–132,
2012. 12, 41

[7] Carlos M Alaı́z, Álvaro Barbero, and José R Dorronsoro. Group fused lasso. In Artificial
Neural Networks and Machine Learning–ICANN 2013, pages 66–73. Springer, 2013. 78

[8] Apache. Apache hadoop. https://hadoop.apache.org/, . 41, 59, 62

[9] Apache. Apache mahout. http://mahout.apache.org/, . 2

[10] Hedy Attouch and Jerome Bolte. On the convergence of the proximal algorithm for nons-
mooth functions involving analytic features. Mathematical Programming, 116(1-2):5–16,
2009. ISSN 0025-5610. 63, 64

[11] Hedy Attouch, Jerome Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternat-
ing minimization and projection methods for nonconvex problems: An approach based
on the Kurdyka-Łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–
457, 2010. 64, 68

173

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[12] Hedy Attouch, Jerome Bolte, and BenarFux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and
regularized Gauss-Seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.
63

[13] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and Ion
Stoica. Quantifying eventual consistency with pbs. The VLDB Journal, 23(2):279–302,
2014. 114

[14] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Img. Sci., 2(1):183–202, 2009. 62, 64

[15] Amir Beck and Marc Teboulle. Smoothing and first order methods: A unified framework.
SIAM Journal on Optimization, 22(2):557–580, 2012. 65

[16] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013. 78

[17] Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan, and
Fei Sha. Distributed Frank-Wolfe algorithm: A unified framework for communication-
efficient sparse learning. CoRR, abs/1404.2644, 2014. 90

[18] Dimitri P. Bertsekas and John N. Tsitsiklis. Convergence rate and termination of asyn-
chronous iterative algorithms. In Proceedings of the 3rd International Conference on
Supercomputing, pages 461–470, 1989. 75

[19] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989. 62, 67, 75,
140

[20] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387310738. 2, 3

[21] Kevin Bleakley and Jean-Philippe Vert. The group fused Lasso for multiple change-point
detection. arXiv preprint arXiv:1106.4199, 2011. 78

[22] David M. Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. JMLR, 3:
993–1022, 2003. 13

[23] Jerome Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nons-
mooth subanalytic functions with applications to subgradient dynamical systems. SIAM
Journal on Optimization, 17:1205–1223, 2007. 63

[24] Jéróme Bolte, Aris Danilidis, Olivier Ley, and Laurent Mazet. Characterizations of
Łojasiewicz inequalities and applications: Subgradient flows, talweg, convexity. Transac-
tions of the American Mathematical Society, 362(6):3319–3363, 2010. 64

[25] Jerome Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized mini-
mization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):
459–494, 2014. 62, 63, 64, 65, 143

[26] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004. ISBN 0521833787. 11

174

[27] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2010. 71

[28] Kristian Bredies, Dirk A Lorenz, and Peter Maass. A generalized conditional gradient
method and its connection to an iterative shrinkage method. Computational Optimization
and Applications, 42(2):173–193, 2009. 77

[29] K Canini, T Chandra, E Ie, J McFadden, K Goldman, M Gunter, J Harmsen, K LeFevre,
D Lepikhin, TL Llinares, et al. Sibyl: A system for large scale supervised machine learn-
ing. Technical Talk, 2012. 1, 113

[30] Antonios Chalkiopoulos. Programming MapReduce with Scalding. Packt Publishing Ltd,
2014. 114

[31] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981, 2016. xvii, xviii, 9, 10, 106, 107, 109

[32] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI
14), pages 571–582, Broomfield, CO, October 2014. USENIX Association. ISBN
978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/chilimbi. 9, 101

[33] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann Le-
Cun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics,
pages 192–204, 2015. 112

[34] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Transactions on Algorithms (TALG), 6(4):63, 2010. 77

[35] Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L Bartlett. Ex-
ponentiated gradient algorithms for conditional random fields and max-margin markov
networks. JMLR, 9:1775–1822, 2008. 78

[36] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhi-
manu Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons,
Garth A. Gibson, and Eric P. Xing. Exploiting bounded staleness to speed up
big data analytics. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 37–48, Philadelphia, PA, June 2014. USENIX Association. ISBN
978-1-931971-10-2. URL https://www.usenix.org/conference/atc14/
technical-sessions/presentation/cui. xvii, 9, 100

[37] Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-
Kucharsky, Qirong Ho, Gregory R Ganger, Phillip B Gibbons, Garth A Gibson, et al.
Exploiting iterative-ness for parallel ml computations. In SoCC, pages 1–14. ACM, 2014.
53

[38] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-specialized parameter

175

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/atc14/technical-sessions/presentation/cui
https://www.usenix.org/conference/atc14/technical-sessions/presentation/cui

server. In Proceedings of the Eleventh European Conference on Computer Systems,
page 4. ACM, 2016. 9, 10, 101

[39] Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong
Ho, and Eric P Xing. Petuum: a framework for iterative-convergent distributed ML.
arXiv:1312.7651, 2013. 79

[40] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and Eric P. Xing.
Analysis of high-performance distributed ml at scale through parameter server consistency
models. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015. 10,
62, 69, 74, 98, 101, 106, 109

[41] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convolutional
neural networks for raw waveforms. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017. IEEE, 2017. 110

[42] Jeff Dean. Achieving rapid response times in large online services. In Berkeley AMPLab
Cloud Seminar, 2012. 101

[43] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and An-
drew Y. Ng. Large scale distributed deep networks. In NIPS, 2012. 9, 10, 106, 114

[44] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research, 12:
2121–2159, 2011. 11

[45] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association, 96(456):1348–1360,
2001. 62, 67

[46] Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate de-
scent. SIAM Journal on Optimization, 25(4):1997–2023, 2015. 172

[47] H.R. Feyzmahdavian and M. Johansson. On the convergence rates of asynchronous iter-
ations. In 2014 IEEE 53rd Annual Conference on Decision and Control, pages 153–159,
2014. 75

[48] H.R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal gradient method
with linear convergence rate. In 2014 IEEE International Workshop on Machine Learning
for Signal Processing. 62, 67, 69, 76

[49] Rina Foygel, Michael Horrell, Mathias Drton, and John D Lafferty. Nonparametric re-
duced rank regression. In NIPS’12, pages 1628–1636, 2012. 78

[50] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956. 2, 77

[51] Robert M. Freund and Paul Grigas. New analysis and results for the frank–wolfe method.
Mathematical Programming, 155(1):199–230, 2014. ISSN 1436-4646. 78

[52] Satoru Fujishige and Shigueo Isotani. A submodular function minimization algorithm
based on the minimum-norm base. Pacific Journal of Optimization, 7(1):3–17, 2011. 78

176

[53] Masao Fukushima and Hisashi Mine. A generalized proximal point algorithm for certain
non-convex minimization problems. International Journal of Systems Science, 12(8):989–
1000, 1981. 62, 64, 65

[54] Dan Garber and Elad Hazan. A linearly convergent conditional gradient algorithm with
applications to online and stochastic optimization. arXiv:1301.4666, 2013. 77

[55] Alexander Genkin, David D. Lewis, and David Madigan. Large-scale bayesian logistic
regression for text categorization. Technometrics, page 2007. 11

[56] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Aistats, volume 9, pages 249–256, 2010. 105

[57] Joseph E Gonzalez, Peter Bailis, Michael I Jordan, Michael J Franklin, Joseph M Heller-
stein, Ali Ghodsi, and Ion Stoica. Asynchronous complex analytics in a distributed
dataflow architecture. arXiv preprint arXiv:1510.07092, 2015. 98

[58] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):
5228–5235, 2004. 12

[59] Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, and Christopher Ré. Omni-
vore: An optimizer for multi-device deep learning on cpus and gpus. arXiv preprint
arXiv:1606.04487, 2016. 98, 104, 106, 114

[60] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algo-
rithms for norm-regularized smooth convex optimization. Mathematical Programming,
152(1-2):75–112, 2015. ISSN 0025-5610. 77

[61] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (TiiS), 2016. 17

[62] Elad Hazan and Satyen Kale. Projection-free online learning. In ICML’12, 2012. 77

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. arXiv preprint arXiv:1512.03385, 2015. 21

[64] Geoffrey Hinton. Neural networks for machine learning. http://www.cs.toronto.
edu/˜tijmen/csc321/slides/lecture_slides_lec6.pdf, 2012. 11, 17

[65] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gib-
bons, Garth A. Gibson, Greg Ganger, and Eric Xing. More effective distributed ml via a
stale synchronous parallel parameter server. In Advances in Neural Information Process-
ing Systems (NIPS) 26, pages 1223–1231. 2013. URL http://media.nips.cc/
nipsbooks/nipspapers/paper_files/nips26/631.pdf. xviii, 9, 10, 11,
13, 14, 18, 45, 46, 47, 49, 53, 58, 62, 63, 67, 69, 70, 74, 76, 98, 108, 114

[66] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Advances in Neural
Information Processing Systems, pages 1729–1739, 2017. 111

[67] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 110

[68] Martin Jaggi. Sparse convex optimization methods for machine learning. PhD thesis,

177

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/631.pdf
http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/631.pdf

Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20013, 2011, 2011. 77,
161

[69] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
ICML’13, pages 427–435, 2013. 77, 78, 81, 82, 85, 153, 168, 172

[70] Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflection methods for user-friendly sub-
modular optimization. In NIPS’13, pages 1313–1321, 2013. 78

[71] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–
323, 2013. 109

[72] Michael I Jordan et al. On statistics, computation and scalability. Bernoulli, 19(4):1378–
1390, 2013. 95

[73] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. arXiv preprint arXiv:1609.04836, 2016. xviii, 111, 112, 113

[74] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A Gibson, and Eric P
Xing. Strads: a distributed framework for scheduled model parallel machine learning. In
Proceedings of the Eleventh European Conference on Computer Systems, page 5. ACM,
2016. 14

[75] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 11, 17

[76] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. xiii, 14, 16

[77] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. IEEE Computer, 42(8):30–37, 2009. 55

[78] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep
convolutional neural networks. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bot-
tou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1106–1114. 2012. URL http://books.nips.cc/papers/files/
nips25/NIPS2012_0534.pdf. 11

[79] Abhimanu Kumar, Alex Beutel, Qirong Ho, and Eric P Xing. Fugue: Slow-worker-
agnostic distributed learning for big models on big data. In Proceedings of the Seven-
teenth International Conference on Artificial Intelligence and Statistics, pages 531–539,
2014. 14

[80] Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. Annales
de l’institut Fourier, 48(3):769–783, 1998. 63, 64

[81] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe
optimization variants. In NIPS’15, pages 496–504, 2015. 77

[82] Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate Frank-Wolfe optimization for structural svms. In ICML’13, pages 53–61, 2013.
xvii, 77, 78, 81, 82, 86, 89, 90, 153, 154, 155, 169, 170

178

http://books.nips.cc/papers/files/nips25/NIPS2012_0534.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_0534.pdf

[83] Jean Lafond, Hoi-To Wai, and Eric Moulines. Convergence analysis of a stochastic
projection-free algorithm. arXiv:1510.01171, 2015. 77

[84] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010. 101

[85] J Langford, L Li, and A Strehl. Vowpal wabbit online learning project, 2007. 59

[86] John Langford, Er J. Smola, and Martin Zinkevich. Slow learners are fast. In In NIPS,
pages 2331–2339, 2009. 9, 10, 11

[87] Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado,
Jeff Dean, and Andrew Ng. Building high-level features using large scale unsupervised
learning. In International Conference in Machine Learning, 2012. 1

[88] Larry J LeBlanc, Edward K Morlok, and William P Pierskalla. An efficient approach
to solving the road network equilibrium traffic assignment problem. Transportation Re-
search, 9(5):309–318, 1975. 78

[89] Y LeCun, L Bottou, G Orr, and K Muller. Efficient backprop in neural networks: Tricks
of the trade (orr, g. and müller, k., eds.)[j]. Lecture Notes in Computer Science, 1524. 98,
111

[90] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998. 16, 17

[91] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P Xing.
On model parallelization and scheduling strategies for distributed machine learning. In
NIPS’14, pages 2834–2842, 2014. 90

[92] Mu Li, David G Andersen, and Alexander Smola. Distributed delayed proximal gradient
methods. Big Learning NIPS Workshop, 2013. 67, 75

[93] Mu Li, Li Zhou Zichao Yang, Aaron Li Fei Xia, David G. Andersen, and Alexander
Smola. Parameter server for distributed machine learning. NIPS workshop, 2013. 58, 59,
75, 98

[94] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In OSDI, volume 14, pages 583–598, 2014. xviii, 62,
63, 69, 70, 75, 79, 108

[95] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochas-
tic gradient for nonconvex optimization. In Advances in Neural Information Processing
Systems, pages 2737–2745, 2015. 9, 10, 11

[96] Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism
and convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015. 62,
67, 69

[97] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for es-
timating missing values in visual data. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(1):208–220, 2013. 78

179

[98] Ji Liu, Stephen J Wright, Christopher Ré, and Victor Bittorf. An asynchronous parallel
stochastic coordinate descent algorithm. JMLR, 2014. 79, 83, 85, 90, 91, 166, 170, 171,
172

[99] Jun Liu, Jianhui Chen, and Jieping Ye. Large-scale sparse logistic regression. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 547–556. ACM, 2009. 11

[100] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island, California,
July 2010. 41, 62

[101] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and data
mining in the cloud. PVLDB, 2012. 41, 58

[102] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0032-2. 41

[103] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural net-
works. arXiv preprint arXiv:1804.07612, 2018. 111

[104] Rahul Mazumder, Jerome H. Friedman, and Trevor Hastie. Sparsenet: Coordinate descent
with nonconvex penalties. Journal of the American Statistical Association, 106(495):
1125–1138, 2011. 62, 67

[105] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous
distributed online learning. In Advances in Neural Information Processing Systems, pages
2915–2923, 2014. 101, 113

[106] H Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence
theorems and l1 regularization. In International Conference on Artificial Intelligence and
Statistics, pages 525–533, 2011. 11, 17

[107] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian
Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan
Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy Kubica. Ad
click prediction: a view from the trenches. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2013. 1, 11

[108] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what cost? In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015. 114

[109] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets mo-
mentum, with an application to deep learning. In Communication, Control, and Comput-
ing (Allerton), 2016 54th Annual Allerton Conference on, pages 997–1004. IEEE, 2016.
xvii, 19, 23, 104, 105

180

[110] Michael Mitzenmacher. The power of two choices in randomized load balancing. Parallel
and Distributed Systems, IEEE Transactions on, 12(10):1094–1104, 2001. 153, 157

[111] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010. 12

[112] Willie Neiswanger, Chong Wang, and Eric Xing. Asymptotically exact, embarrassingly
parallel mcmc. arXiv preprint arXiv:1311.4780, 2013. 95

[113] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012. 78

[114] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS’11, pages 693–701, 2011.
79, 85, 90, 163, 166

[115] Hua Ouyang and Alexander G Gray. Fast stochastic Frank-Wolfe algorithms for nonlinear
SVMs. In SDM, 2010. 77

[116] Russell Power and Jinyang Li. Piccolo: building fast, distributed programs with parti-
tioned tables. In Proceedings of the 9th USENIX conference on Operating systems design
and implementation, OSDI’10, pages 1–14, Berkeley, CA, USA, 2010. USENIX Associ-
ation. 41

[117] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999. 17

[118] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling ii: Expected
separable overapproximation. arXiv preprint arXiv:1412.8063, 2014. 170

[119] Martin Raab and Angelika Steger. Balls into bins - a simple and tight analysis. In Random-
ization and Approximation Techniques in Computer Science, pages 159–170. Springer,
1998. 157

[120] Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS, pages 693–701, 2011. 9,
41, 62, 69, 76

[121] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine
learning, pages 314–323, 2016. 109

[122] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. In International Conference on Learning Representations, 2018. xiii, 17, 20

[123] Jason Rennie. 20 newsgroups. http://qwone.com/ jason/20Newsgroups/. 17

[124] P. Richtárik and M. Takáč. Distributed Coordinate Descent Method for Learning with Big
Data. arXiv, 2013. 71

[125] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data opti-
mization. Mathematical Programming, pages 1–52, 2015. 78, 79, 83, 90, 170, 171

[126] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer, 1997. 63, 64

181

[127] Mark Schmidt, Nicolas L. Roux, and Francis R. Bach. Convergence rates of inexact
proximal-gradient methods for convex optimization. In Advances in Neural Information
Processing Systems 24, pages 1458–1466. 2011. 70, 151

[128] Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I
George, and Robert E McCulloch. Bayes and big data: The consensus monte carlo algo-
rithm. International Journal of Management Science and Engineering Management, 11
(2):78–88, 2016. 95

[129] Yiyuan She. Thresholding-based iterative selection procedures for model selection and
shrinkage. Electronic Journal of Statistics, 3:384–415, 2009. 62

[130] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 11

[131] Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic models.
Proc. VLDB Endow., 3(1-2):703–710, September 2010. ISSN 2150-8097. 9, 10, 13

[132] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016. 112

[133] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 2014. 110

[134] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last re-
ducer. In Proceedings of the 20th international conference on World wide web, WWW
’11, pages 607–614, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0632-4. doi:
10.1145/1963405.1963491. URL http://doi.acm.org/10.1145/1963405.
1963491. 41

[135] Jian Tang, Zhaoshi Meng, Xuanlong Nguyen, Qiaozhu Mei, and Ming Zhang. Under-
standing the limiting factors of topic modeling via posterior contraction analysis. In In-
ternational Conference on Machine Learning, pages 190–198, 2014. 95

[136] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In
NIPS’04, pages 25–32. MIT Press, 2004. xvii, 86

[137] Paul Tseng. On the rate of convergence of a partially asynchronous gradient projection
algorithm. SIAM Journal on Optimization, 1(4):603–619, 1991. 62, 67, 75

[138] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 31
(9):803–812, 1986. 75

[139] John N Tsitsiklis, Dimitri P Bertsekas, Michael Athans, et al. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE Transactions on Au-
tomatic Control, 31(9), 1986. 90

[140] Leslie G. Valiant. A bridging model for parallel computation. Communications of ACM,
33(8):103–111, 1990. 62

[141] Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization.
In Advances in Neural Information Processing Systems, pages 351–359, 2013. 110

182

http://doi.acm.org/10.1145/1963405.1963491
http://doi.acm.org/10.1145/1963405.1963491

[142] Yi Wang, Hongjie Bai, Matt Stanton, Wen-Yen Chen, and Edward Y. Chang. Plda: Parallel
latent dirichlet allocation for large-scale applications. In Proceedings of the 5th Interna-
tional Conference on Algorithmic Aspects in Information and Management, AAIM ’09,
pages 301–314, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02157-2. 59

[143] Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai, Willie Neiswanger, Suvrit Sra, and
Eric P Xing. Parallel and distributed block-coordinate frank-wolfe algorithms. 2016. 109

[144] Zhaoran Wang, Han Liu, and Tong Zhang. Optimal computational and statistical rates
of convergence for sparse nonconvex learning problems. The Annals of Statistics, 42(6):
2164–2201, 2014. 62

[145] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R Ganger,
Phillip B Gibbons, Garth A Gibson, and Eric P Xing. Managed communication and
consistency for fast data-parallel iterative analytics. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, pages 381–394. ACM, 2015. 10, 18, 95, 98, 108

[146] E.P. Xing, Q. Ho, W. Dai, Jin-Kyu Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and
Y. Yu. Petuum: A new platform for distributed machine learning on big data. Big Data,
IEEE Transactions on, PP(99):1–1, 2015. doi: 10.1109/TBDATA.2015.2472014. 93

[147] Limin Yao, David Mimno, and Andrew McCallum. Efficient methods for topic model
inference on streaming document collections. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’09, pages 937–
946, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-9. 12, 55

[148] John W. Young. A first order approximation to the optimum checkpoint interval. Commun.
ACM, 17(9):530–531, September 1974. ISSN 0001-0782. doi: 10.1145/361147.361115.
URL http://doi.acm.org/10.1145/361147.361115. 54

[149] Chun-Nam John Yu and Thorsten Joachims. Learning structural svms with latent vari-
ables. In ICML’09, pages 1169–1176. ACM, 2009. 169

[150] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie, Jung-
Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, et al. Feature
engineering and classifier ensemble for kdd cup 2010. KDD Cup, 2010. 11

[151] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems. In ICDM, pages
765–774, 2012. 59

[152] Yaoliang Yu, Xun Zheng, Micol Marchetti-Bowick, and Eric P. Xing. Minimizing non-
convex non-separable functions. In The 17th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), 2015. 62, 65

[153] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng, Eric Po Xing, Tie-
Yan Liu, and Wei-Ying Ma. Lightlda: Big topic models on modest computer clusters. In
Proceedings of the 24th International Conference on World Wide Web, pages 1351–1361.
ACM, 2015. 1, 10

[154] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. pages 10–10, 2010. 41, 59, 62, 114

183

http://doi.acm.org/10.1145/361147.361115

[155] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012. 17

[156] Cun-Hui Zhang. Nearly unbaised variable selection under minimax concave penalty. An-
nals of Statistics, 38(2):894–942, 2010. 62, 67

[157] Cun-Hui Zhang and Tong Zhang. A general theory of concave regularization for high-
dimensional sparse estimation problems. Statistical Science, 27(4):576–593, 2012. 62,
67

[158] Ruiliang Zhang and James T. Kwok. Asynchronous distributed admm for consensus opti-
mization. In ICML, 2014. 9, 10

[159] Xinhua Zhang, Yaoliang Yu, and Dale Schuurmans. Accelerated training for matrix-norm
regularization: A boosting approach. In NIPS’12, pages 2915–2923, 2012. 78

[160] Xinhua Zhang, Yao-Liang Yu, and Dale Schuurmans. Polar operators for structured sparse
estimation. In NIPS’13, pages 82–90, 2013. 77

[161] Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang, and Eric P. Xing. On convergence of
model parallel proximal gradient algorithm for stale synchronous parallel system. In The
19th International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.
101

[162] Yunzhang Zhu, Xiaotong Shen, and Wei Pan. Simultaneous grouping pursuit and feature
selection over an undirected graph. Journal of the American Statistical Association, 108
(502):713–725, 2013. 62

184

	1 Introduction
	1.1 Thesis Statement
	1.2 Backgrounds
	1.2.1 Iterative-Convergent ML
	1.2.2 Data Parallelism and Parameter Server
	1.2.3 Staleness Trade-offs

	1.3 Contributions and Outline

	2 Effects of Staleness on Machine Learning
	2.1 Asynchrony or Not?
	2.2 Scope and Methods
	2.2.1 Models and Algorithms
	2.2.2 Datasets

	2.3 Experiments
	2.3.1 System Configurations
	2.3.2 Simulation Model
	2.3.3 Deep Neural Networks with Staleness
	2.3.4 Staleness and Model Complexity
	2.3.5 Gradient Coherence
	2.3.6 Matrix Factorization with Staleness
	2.3.7 Variational Autoencoder with Staleness
	2.3.8 Latent Dirichlet Allocation with Staleness

	2.4 Staleness and ML Algorithms

	3 Analysis of Consistency Models
	3.1 Preliminaries
	3.2 Consistency Models for Parameter Servers
	3.2.1 Bulk Synchronous Parallel (BSP)
	3.2.2 Total Asynchronous Parallel (TAP)
	3.2.3 Stale Synchronous Parallel (SSP)
	3.2.4 Value-bounded Asynchronous Parallel (VAP)

	3.3 Theoretical Analysis
	3.3.1 SGD for Low Rank Matrix Factorization
	3.3.2 Preliminaries
	3.3.3 Theorems for VAP Consistency
	3.3.4 Theorems for SSP Consistency
	3.3.5 Comparison of VAP and ESSP

	3.4 Bösen System Overview
	3.4.1 API and Bounded Staleness Consistency
	3.4.2 System Architecture

	3.5 Evaluation
	3.5.1 Experiment Details
	3.5.2 System Evaluations
	3.5.3 ML Evaluation and Discussions

	3.6 Additional Related Work

	4 Model Parallel Learning with Staleness
	4.1 Introduction
	4.2 Preliminaries
	4.3 Problem Formulation
	4.4 Convergence Analysis
	4.5 Economical Implementation
	4.6 Experiments
	4.6.1 Group Lasso
	4.6.2 Large-scale Lasso

	4.7 Additional Related Work

	5 Staleness in Parallel Frank-Wolfe Algorithms
	5.1 Introduction
	5.2 Algorithm
	5.3 Analysis
	5.3.1 Main convergence results
	5.3.2 Effect of parallelism / mini-batching
	5.3.3 Convergence with delayed updates

	5.4 Experiments
	5.4.1 Minibatches of Data
	5.4.2 Shared Memory Parallel Workers
	5.4.3 Performance gain with asynchronous updates
	5.4.4 Convergence under unbounded heavy-tailed delay

	5.5 Additional Related Work
	5.6 Conclusion

	6 Conclusion and Future Work
	6.1 Future Work

	7 The Debate: Synchronous vs Non-Synchronous Training for Machine Learning
	7.1 Async Isn't Aways More Stale than Sync
	7.2 Computation-to-Communication Ratio
	7.3 Staleness and Momentum
	7.4 Staleness and the Convergence Dynamics
	7.5 Non-synchronous Training Gets to an ``Okay'' Model Faster than Synchronous Training
	7.6 Staleness' Effects on the Final Model Quality
	7.7 Looking to The Future

	Appendices
	A Appendix for Chapter 2
	B Appendix for Chapter 3
	B.1 Proof of thm:vapexpectation
	B.2 Proof of thm:sgdtail
	B.3 Proof of thm:sspvar
	B.4 Proof of thm:vapvar

	C Appendix for Chapter 4
	C.1 Proof of thm:limitcon
	C.2 Proof of thm:finite
	C.3 Proof of Lemma 4.1
	C.4 Proof of Example 1
	C.5 Proof of thm:rate

	D Appendix for Chapter 5
	D.1 Convergence analysis
	D.1.1 Primal Convergence
	D.1.2 Convergence of the surrogate duality gap

	D.2 Proofs of other technical results
	D.2.1 Pseudocode for the Multicore Shared Memory Architecture

	D.3 Application to Structural SVM
	D.4 Other technical results and discussions
	D.4.1 Oracle assumption and heterogeneous blocks
	D.4.2 Controlling collisions in distributed setting
	D.4.3 Curvature and Lipschitz Constant
	D.4.4 Examples and illustrations
	D.4.5 Comparison to parallel block coordinate descent

	Bibliography

