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Abstract

As data become more pervasive and computing power increases, the opportunity for transfor-
mative use of data grows. Collecting data from individuals can be useful to the individuals (by
providing them with personalized predictions) and the data collectors (by providing them with
information about populations). However, collecting these data is costly: answering survey items,
collecting sensed data, and computing values of interest deplete finite resources of time, battery
life, money, etc. Dynamically ordering the items to be collected, based on already known infor-
mation (such as previously collected items or paradata), can lower the costs of data collection by
tailoring the information-acquisition process to the individual. This thesis presents a framework
for an iterative dynamic item ordering process that trades off item utility with item cost at data
collection time. The exact metrics for utility and cost are application-dependent, and this frame-
work can apply to many domains. The two main scenarios we consider are (1) data collection
for personalized predictions and (2) data collection in surveys. We illustrate applications of this
framework to multiple problems ranging from personalized prediction to questionnaire scoring to
government survey collection. We compare data quality and acquisition costs of our method to
fixed order approaches and show that our adaptive process obtains results of similar quality at
lower cost.

For the personalized prediction setting, the goal of data collection is to make a prediction based
on information provided by a respondent. Since it is possible to give a reasonable prediction with
only a subset of items, we are not concerned with collecting all items. Instead, we want to order
the items so that the user provides information that most increases the prediction quality, while
not being too costly to provide. One metric for quality is prediction certainty, which reflects how
likely the true value is to coincide with the estimated value. Depending whether the prediction
problem is continuous or discrete, we use prediction interval width or predicted class probability
to measure the certainty of a prediction. We illustrate the results of our dynamic item ordering
framework on tasks of predicting energy costs, student stress levels, and device identification in
photographs and show that our adaptive process achieves equivalent error rates as a fixed order
baseline with cost savings up to 45%.

For the survey setting, the goal of data collection is often to gather information from a
population, and it is desired to have complete responses from all samples. In this case, we want
to maximize survey completion (and the quality of necessary imputations), and so we focus on
ordering items to engage the respondent and collect hopefully all the information we seek, or at
least the information that most characterizes the respondent so imputed values will be accurate.
One item utility metric for this problem is information gain to get a “representative” set of
answers from the respondent. Furthermore, paradata collected during the survey process can
inform models of user engagement that can influence either the utility metric (e.g., likelihood the
respondent will continue answering questions) or the cost metric (e.g., likelihood the respondent
will break off from the survey). We illustrate the benefit of dynamic item ordering for surveys on
two nationwide surveys conducted by the U.S. Census Bureau: the American Community Survey
and the Survey of Income and Program Participation.
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Chapter 1

Introduction

Online data collection from individuals can provide them with personalized predictions (e.g., recommender
systems), in addition to gathering information from populations of interest (e.g., surveys), at scale and at
low cost to the data collectors. However, users do not have the resources to provide all the information we
seek—they cannot answer too many questions that may be difficult to get answers for, and their mobile
devices do not have sufficient battery life to provide constant streams of high-fidelity sensed data. Strate-
gically choosing which feature to obtain next from a particular user, depending on previous responses, can
lower the burden on respondents while still collecting useful information. This idea of dynamic question or-
dering (DQO) can also take into account the varying costs of individual questions—a question can be costly
to answer due to the effort required for a respondent to come up with an answer, the drain on a battery
for sensing a certain measurement, or the likelihood that a respondent will break off from a survey when
presented with the question (among other types of cost). DQO trades off the utility we get from having
an answer to a question against its cost and sequentially requests items in order to make useful, confident
predictions and gather survey data with the resources users are willing and able to provide.

We propose a general framework for dynamically ordering questions, based on previously collected data, to
engage respondents, improving prediction quality and survey completion. Our work considers two scenarios
for data collection from survey-takers. In the first, we want to give the respondent a personalized prediction,
based on information they provide. Since it is possible to give a reasonable prediction with only a subset of
questions, we are not concerned with motivating the user to answer all questions. Instead, we want to order
questions so that the user provides information that most reduces the uncertainty of our prediction, while
not being too burdensome to answer. In the second scenario, our goal is to maximize survey completion
(and the quality of necessary imputations) and so we focus on ordering questions to engage the respondent
and collect hopefully all the information we seek, or at least the information that most characterizes the
respondent so imputed values will be accurate.

1.1 A note on vocabulary

This idea of dynamic question ordering can be applied to a broad number of applications and domains,
and the vocabulary is often specific to each domain, with different terms capturing similar concepts across
applications. In this thesis, rather than enforcing a standard vocabulary across all domains, we will adopt
the domain-specific terminology for each application, keeping in mind that the specific word refers to a more
general idea. Table 1.1 summarizes these equivalent terms, according to which main domain (prediction or
survey-taking) they appear in.

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Equivalent words used for different applications in this thesis.

Meaning Prediction-focused Survey-focused
Information to be collected Feature Question

Time of data collection Test time Survey time
Information provider User/system Respondent

Information cost Cost Burden
Method name FOCUS DQO

1.2 Thesis statement and contributions

Dynamically ordering questions, based on already known information (such as previously answered questions
or paradata), can lower the costs of data collection and prediction by tailoring the information-acquisition
process to the individual. This thesis presents a framework for an iterative dynamic question ordering process
that trades off question utility against question cost at data collection time. The exact metrics for utility
and cost are application-dependent. We compare data quality and acquisition costs of our method to fixed
order approaches and show that our adaptive process obtains results of similar or better quality at lower
cost.

1.2.1 Contributions

The contributions of this thesis center around the development and evaluation of a framework for person-
alized, adaptive data collection for obtaining useful information at low user burden. In this framework,
information is gathered sequentially. At each step of data collection, the information collected up to that
point is used in determining which piece of information will be most helpful, for the particular problem at
hand. Thus, the order in which items are acquired is determined at data collection time and is likely to differ
for each instance of data collection.

First, we develop a general framework for cost-effective dynamic question ordering (DQO) that trades off
question utility against question cost in sequential data collection. Both question utility and question cost
are determined in the context of what information has been collected so far. Therefore, different pieces of
information can provide different levels of usefulness to the purpose of the data collection at different cost
values at different points during data collection. This broad framework encompasses much prior work in
adaptive data collection methods in the fields of machine learning, educational testing and psychometrics,
and survey methodology.

Next, we develop a variety of problem-specific definitions of question utility and question cost to apply
the DQO framework to concrete problems. Because the DQO framework is abstractly defined in terms of
utility and cost, it is general enough to apply to many scenarios. Therefore, the utility and cost metrics need
to be defined before DQO can be applied in practice. Examples of question utility metrics include prediction
quality, information, and respondent engagement. Examples of question cost metrics include user burden,
item nonresponse rate, and item response time.

Finally, we apply the specific instantiations of the DQO framework to several domains: test-time feature
acquisition, with applications in residential energy analysis, health, and ubiquitous computing; questionnaire
scoring, with applications in measuring cultural values; and survey data collection, with applications in two
nationwide surveys conducted by the U.S. Census Bureau. Our experiments illustrate that DQO achieves
similar- or better-quality outcomes (measured in terms of prediction accuracy and certainty, imputation
quality, and survey completion rates) than fixed-order approaches to data collection, while being less costly
to respondents.
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1.3 Outline

The remainder of this dissertation is organized as follows: Chapter 2 covers previous work on adaptive data
collection, in the areas of machine learning, adaptive testing, and survey methodology. Chapter 3 identifies
what gaps remain in the past work and presents a general framework for dynamic question ordering. Chap-
ters 4, 5, and 6 tailor this framework to situations of prediction, questionnaire scoring, and survey-taking,
respectively, along with example applications in domains such as energy, health, ubiquitous computing, po-
litical science, and government surveys. Finally, Chapter 7 concludes the dissertation and gives directions
for future work.
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Chapter 2

Related work

There is a rich literature focusing on adaptively ordering acquisition of information to improve outcomes
while minimizing costs, across multiple fields. For example, test-time feature acquisition in machine learning
considers the problem of adaptively gathering the most influential feature values to make a prediction on a
new test point, whose features can only be acquired at cost. Adaptive testing in educational research and
psychometrics looks at a similar problem of making accurate measurements of an examinee’s skill level using
few questions. Adaptive survey design in survey methodology considers the broader problem of gathering
good-quality data from a population that accurately represents that population.

The following sections summarize past work in these areas and discuss how the work in this thesis
advances prior work.

2.1 Test-time feature acquisition

In standard supervised machine learning approaches, a predictor is learned from training data and used to
make a prediction on a test point. It is assumed that the training data and test points share a common set
of features, but labels are provided for only the training data.

Because labels can be costly to acquire at training time, a large body of related work has focused on
active learning, which strategically selects which unlabeled data to acquire labels for, so as to maximize a
model’s performance while minimizing the cost of data collection (Cohn, Ghahramani, & Jordan, 1996).

Alternatively, it may be features that are costly to acquire at test time (or, equivalently, prediction time,
for deployed systems). For application areas where feature computation time is a bottleneck at test time
(e.g., natural language processing (NLP), computer vision), the primary goal of test-time feature acquisition
is to speed up prediction (e.g., (He, Daumé III, & Eisner, 2013; Strubell, Vilnis, Silverstein, & McCallum,
2015; Weiss & Taskar, 2013)). In other domains, there is an allowable test-time budget of costs other than
time, such as user burden of providing information (e.g., (Early, Mankoff, & Fienberg, 2017; Early, Fienberg,
& Mankoff, 2016)) or the resulting loss in privacy from disclosing information (e.g., (Pattuk, Kantarcioglu,
Ulusoy, & Malin, 2015)).

Feature selection—i.e., choosing at training time a relevant subset of features to include in a model (Guyon
& Elisseeff, 2003)—can cut down on the number of features that must be acquired to make a prediction on
a new instance at test time. However, typically, the main motivations for feature selection are (1) avoiding
overfitting to the training set in high-dimensional problems and (2) generating interpretable models. Some
past work (e.g., (Ballesteros & Bohnet, 2014)) has approached training-time feature selection with the goal of
reducing test-time prediction costs. Other researchers have pointed out that the optimal budget-constrained
set and/or number of features to acquire likely depends on each particular instance. Thus, there is a need
for test-time, dynamic feature selection.

2.1.1 Cost and order at training time; number at test time

One approach to test-time feature selection is learning sequences of features to add, from training data,
and then acquiring features in this order at test time. For example, Strubell et al. (2015) learn an ordering

5
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of features at training time through the use of prefix scores that capture the prediction margin (i.e., how
much more confident the classifier is in the correct prediction than any other). At test time, they then
acquire features in this order, computing prefix scores at each stage until some label is predicted above all
others by a specified margin. They apply this technique to several problems in NLP (part-of-speech tagging,
dependency parsing, and named-entity recognition). A related method is classifier cascades and trees (Xu,
Kusner, Weinberger, Chen, & Chapelle, 2014), which learn at training time cost-sensitive trees or cascades,
where each node is a classifier. At test time each instance is passed through the tree or cascade, evaluating
additional features as necessitated by the tree structure.

While these approaches dynamically decide how many features to acquire in an instance-specific fashion
at test time, they do not determine an instance-specific order in which features are acquired at test time.
As a result, such methods may have to obtain more features than would be necessary to adequately predict
any given instance, just to get the relevant features for that particular instance.

2.1.2 Cost at training time; number and order at test time

A more flexible approach is to decide both order and number of features to acquire at test time. Across
several domains, test-time feature selection has been modeled as a Markov decision process (MDP) (e.g.,
(He, Daumé III, & Eisner, 2012; He et al., 2013; Samadi, Talukdar, Veloso, & Mitchell, 2015; Shi, Steinhardt,
& Liang, 2015; Weiss & Taskar, 2013)). Generally, these methods consider the set of features acquired thus
far to be the states of the MDP, the decision of which feature to acquire next as the action, with a reward
function that reflects how much the inclusion of the next feature improves the prediction (potentially with
a penalty on feature cost). They then learn a policy that chooses which action to take (i.e., feature to add)
based on the current state (i.e., current known set of features), from a set of training data (e.g., (He et al.,
2012, 2013; Samadi et al., 2015; Weiss & Taskar, 2013)).

This is a fairly general approach that has been used quite widely. For example, Shi et al. (2015) take a
similar approach to the problem of constructing heterogeneous sampling algorithms, by considering reward
as the improvement in conditional log-likelihood of the label given the sample. Similarly, in the domain of
recommender systems, the so-called “cold start problem” (Lika, Kolomvatsos, & Hadjiefthymiades, 2014)
is improved by eliciting the most relevant preferences from the user to minimize burden (e.g., (Golbandi,
Koren, & Lempel, 2011; Sun et al., 2013)). This is often done by learning a decision tree from training
data that can be used at prediction time to decide what sequence of ratings to request (e.g., (Golbandi
et al., 2011)). A limitation of such approaches is that they use training data to determine how to ask
questions (even if the sequence of features depends on previously provided answers). This approach can be
inappropriate for a test sample with behavior very different from the training set.

2.1.3 Cost, number, and order at test time

Finally, there are methods that determine a feature order at test time, using the expected quality of the
subsequent prediction to decide which feature to acquire next. For example, Pattuk et al. (2015) formulate
a privacy-aware dynamic feature selection algorithm for classification that sequentially chooses features for
a test instance, according to which will most increase the expected confidence of the next prediction, as long
as including that feature does not violate a privacy constraint. This work is most responsive to the test-time
situation. However, it does not address regression, and because its cost metric is defined mathematically by
the currently known features (i.e., conditional entropy), the method cannot take context-dependent costs
into account.

2.1.4 Summary of key attributes

Table 2.1 summarizes these related works and highlights desired qualities in a test-time feature acquisition
algorithm. A full consideration of the issues would accommodate a variety of prediction algorithms.

Table 2.1’s Column 1 (Prediction Problem) shows that algorithms may predict discrete values (clas-
sification) or continuous values (regression)—past work has focused on classification alone. In the Cost
Metric column, we see that algorithms may assume that all features have equal cost, or they may allow
different features to have different costs, which we refer to as feature-specific costs. Next, algorithms vary
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Table 2.1: A summary of previous work in test-time feature acquisition and our method (FOCUS, top
row). The aspects of test-time feature selection we compare are: whether the type of prediction problem is
classification (C) or regression (R); whether the cost metric for features is Feature-Specific (i.e., different
features can have different costs; X means no cost metric); what is determined at test time (Cost, Order, #
of features); the utility function used (Accuracy or Uncertainty or Margin from next closest class); in what
domains the algorithm has been applied.

Paper
Prediction
Problem

Cost
Metric

Test-time
Utility

Function
Domain

Early et al. (2016) C,R FS C,O,# U
Ubicomp/

mobile/energy
He et al. (2012) C FS X M —
He et al. (2013) C X X A NLP
Strubell et al. (2015) C X # M NLP

Shi et al. (2015) C X X A
Structured
prediction

Weiss and Taskar (2013) C FS # A
Structured
prediction

Xu et al. (2014) C FS X A LTR, MNIST

Samadi et al. (2015) C FS O,# M
Knowledge-
on-demand

Pattuk et al. (2015) C FS O,# U
Information
disclosure

Trapeznikov and Saligrama (2013) C FS # A —
Golbandi et al. (2011)

Sun et al. (2013)
C X X A

Recommender
systems

on what is done at Test Time rather than training time. The optimal number of features needed, the order
of features, and the cost of features may all be determined at test time. If cost is determined at test time,
algorithms may be able to consider context-dependent costs. For example, in a system that makes medical
diagnoses and can request tests (e.g., (Ferrucci, Levas, Bagchi, Gondek, & Mueller, 2013)), it will be less
costly to request an invasive biopsy if a surgery is already scheduled in that area. None of the related works
we identified support context-dependent cost metrics. The Utility Function used to determine the value
of a feature also varies. Examples for feature “quality” include subsequent prediction accuracy (e.g., (He
et al., 2013; Shi et al., 2015; Weiss & Taskar, 2013; Xu et al., 2014)) and subsequent prediction uncertainty
(e.g., (Pattuk et al., 2015)). Finally, the Domain column shows where each relevant approach was applied.

An ideal solution to test-time feature acquisition would accommodate a variety of prediction algorithms,
allow for feature-specific and context-dependent costs, and support multiple options for prediction utility
when requesting information to refine a prediction. Delaying the order determination until test time (rather
than learning it from training data) is a requirement for context-dependent costs (since they are not known
until test time).

2.2 Questionnaire scoring

A popular use of questionnaires is to summarize an individual’s responses into a single score, for a variety of
applications, such as psychology, education, and health. Often, this single score measures an underlying trait,
such as extraversion, intelligence, or cultural values. The questions used to measure the underlying traits
are typically repetitive, to ensure coverage of the trait. This fact can make the questionnaire to measure
the latent beliefs unnecessarily long, which discourages respondents from answering all questions thoroughly.
“Short form” questionnaires choose a subset of questions to ask respondents. This approach uses the same
reduced set of questions for each individual, but different questions may be more informative for certain
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individuals than others.
The background for this problem setting involves the concept of determining scores from questionnaire

responses, ways to reduce the burden of such questionnaires on respondents, ways to personalize the question-
naires to individual respondents, and finally ways to use personalization for cost reduction of questionnaires.
This section first briefly reviews what questionnaire scores are, how they are developed, and what they can
measure. Questionnaire scores can summarize a respondent’s attitudes or measure a hidden trait determined
by the respondent’s answers to a set of questions. However, it can be burdensome for a respondent to answer
potentially many questions.

We discuss past work to reduce the respondent burden of questionnaires through the use of short form
questionnaires that aim to measure the same trait as the full form, but with fewer questions. In addition
to being burdensome, standard questionnaires that administer all items to all respondents in the same
order do not take advantage of the variation among individuals’ answers to questions. We describe how
adaptive testing for personalized questionnaires adapts a survey instrument to the current respondent, by
taking their previous answers (typically summarized as a current estimate) into account when choosing which
test question to administer next. Finally, we discuss related work that has combined cost reduction with
personalization by considering question-specific costs when adapting data collection to individuals.

2.2.1 About questionnaire scoring

Especially in psychology, it is common to analyze questionnaire responses for an individual by calculating
a score or set of scores to measure the respondent’s level of an underlying trait or attitude. One popular
example of a score of such underlying traits is the set of Big Five personality traits, which were developed and
confirmed by a number of research teams (see (Digman, 1990) for a review). Commonly used “long forms”
designed to measure levels of these traits include the 240-item NEO Personality Inventory Revised (NEO-
PI-R) (Costa & McCrae, 1985), the 100-item Trait Descriptive Adjectives (TDA) (Goldberg, 1992), the
100-item International Personality Item Pool (IPIP) (Goldberg, 1999), and the 44-item Big Five Inventory
(BFI) (John, Donahue, & Kentle, 1991).

It is often the case that a single questionnaire will assign multiple scores to the respondent. For example,
the Big Five questionnaires measure five personality traits, and a respondent receives five scores—one for
each trait. We will use the term scale to refer to a group of questions that measure the same trait. The term
score will refer to the numeric measurement of the trait that the responses to the scale questions yield.

2.2.2 Reducing the burden of questionnaires: Short forms

Due to the limited resources (including time, interest, and compensation) of participants, researchers have
sought ways to reduce respondent burden while still measuring a trait of interest. One common approach is
to develop a short form questionnaire to administer to participants. For the Big Five personality traits, the
creators of the 240-item NEO-PI-R and the 100-item IPIP produced shorter versions of their questionnaires
by selecting subsets of items, resulting in the 60-item NEO Five-Factor Inventory (NEO-FFI) (Costa &
McCrae, 1989) and the 50-item IPIP Five-Factor Model (IPIP-FFM) (Goldberg, 1999). Other researchers
have also reduced the number of items in these scales, either by doing a factor analysis of a full questionnaire
(e.g., to select 40 items from the 100-item TDA (Saucier, 1994), or to select 20 items from the 50-item
IPIP-FFM (Donnellan, Oswald, Baird, & Lucas, 2006)) or by hand-selecting a subset of items from each
scale (e.g., choosing one positive- and one negative-weighted item from each scale, from the items in the
BFI (Rammstedt & John, 2007) or from a combination of the BFI and the TDA (Gosling, Rentfrow, &
Swann, 2003)). In the most extreme case, researchers have developed single-item scales: They describe a
trait to a respondent and ask them to place themselves on that scale (e.g., five-item Big Five scales (Aronson,
Reilly, & Lynn, 2006; Bernard, Walsh, & Mills, 2005; Gosling et al., 2003; Woods & Hampson, 2005)).

Experiments of demonstrating the correctness of the shortened scales typically involve administering both
long and short forms to participants, and the developers show that their abbreviated instruments measure
equivalent concepts as the long forms. However, Credé, Harms, Niehorster, and Gaye-Valentine (2012)
have shown that longer personality scales tend to outperform the short forms, in that the longer forms are
better able to explain the established personality dimensions. This shortcoming becomes a problem when
researchers are looking for new personality dimensions to add: The short form overlooks some of the variance



2.2. QUESTIONNAIRE SCORING 9

among individuals that could be captured by the full scale, leading researchers to overestimate the effect of
the new dimension.

2.2.3 Personalizing questionnaires: Adaptive testing

Personalizing a questionnaire allows past responses to influence future questions that will be chosen to be
asked, so that a respondent answers the questions that are most relevant to them. Most work in this area
has been done in the context of testing, where questions measure a respondent’s skill or aptitude level
(e.g., (van der Linden & Glas, 2010)). However, the concept of adapting survey items administered to an
individual can apply to any survey that seeks to measure some trait of the respondent through their answers
to questions.

Aptitude or ability tests seek to estimate an examinee’s achievement through their answers to test ques-
tions. Different questions are more useful for assessing test-takers of different skill levels (e.g., extremely easy
questions are not very helpful in assessing the achievement of a high-scoring individual, just as extremely
difficult questions are not very helpful in assessing the achievement of a low-scoring individual). The goal
of adaptive testing is to find the most relevant questions to ask an examinee to measure their achievement
accurately, without making them answer too many questions. Typically, adaptive testing algorithms use
item response theory (IRT) (Lord, 1980) to consider individual test questions through an item response
function that expresses the probability of a correct answer by an individual at a particular skill level. The
item response function has three parameters: the pseudo-chance score level (how easy it is to guess the
correct answer), item difficulty (how hard it is to answer the question), and discriminating power (how much
the skill level influences question response). In contrast, classical test theory assumes all items contribute
equally to an assessment outcome, for all test-takers. According to Weiss (1982), an IRT-based adaptive
testing framework has the following three components: (1) a way to choose the first item to ask, (2) a way
to score items and choose the next item to ask during test administration, and (3) a way to choose to end
the test, based on an individual’s performance.

For example, Weiss and Kingsbury (1984) introduce adaptive mastery testing to assess a student’s achieve-

ment level θ̂, specifically how the estimated achievement level compares to a “mastery level,” θm. At each
time point, a question is selected which gives the maximum information at the student’s current estimated
mastery level and asked. As the student answers questions, the estimate θ̂ is updated, along with a confi-
dence interval. Once the confidence interval for θ̂ no longer includes θm, the test is finished and the student’s
mastery level is assigned as sufficient or not (depending if θm lies above or below the confidence interval for

θ̂).
Computerized adaptive testing (CAT) approaches use a variety of item selection criteria during the

testing process. One selection criterion popular in the early days of CAT was maximum Fisher information
(e.g., (Birnbaum, 1968)). At the time, computing capabilities were insufficient for Bayesian item selection, so
Owen (1975) proposed using a normal approximation for the true posterior, for the selection criterion of min-
imizing the posterior variance of the estimate of ability θ. Later van der Linden (1998) performed Bayesian
item selection using exact quantities for criteria of maximum posterior expected information, maximum
predicted expected information, minimum predicted expected variance, and maximum predicted posterior
expected information. Because the maximum Fisher information criterion performs best only when the pre-
dicted ability estimate θ̂ is near the true ability θ, alternate selection criteria attempted to generalize better
across the range of possible θ values. Such criteria include the general weighted information criterion, which
weights the information across all possible values of θ (Veerkamp & Berger, 1997); the interval information
criterion, which chooses the maximum information in some confidence interval of θ (Veerkamp & Berger,
1997); and a global information measure that uses Kullback-Leibler item information to measure the distance
between the current estimate and the true value (H.-H. Chang & Ying, 1996).

There has also been a significant body of research studying how to balance the statistical efficiency of an
adaptive testing method (i.e., getting a good estimator while administering a small number of items) with
the practical constraints of an adaptive testing environment, such as item bank management. For example, a
test that is administered to many people has its items refreshed regularly, to avoid issues of released questions
or test-retakers influencing scores of subsequent test-takers. For many adaptive item selection criteria, early
questions, before the estimate for a testee is accurate, will favor items with high discriminating parameters,
for all testees. This means that these items are overexposed and will need to be refreshed frequently, while



10 CHAPTER 2. RELATED WORK

other items are never or rarely asked. Approaches to diversify the initial questions of a CAT procedure
include adding randomization to the item selection process (e.g., (McBride & Martin, 1983; Sympson &
Hetter, 1985; Kingsbury & Zara, 1989; Revuelta & Ponsoda, 1998; Chen, Ankenmann, & Spray, 1999;
Barrada, Olea, Ponsoda, & Abad, 2008)), constraining eligible items to those that have not yet reached an
exposure threshold (e.g., (Revuelta & Ponsoda, 1998; Leung, Chang, & Hau, 2000)), and stratifying items
by discrimination parameter so that items are selected from progressively more discriminating groups of
questions (e.g., (H.-H. Chang & Ying, 1999; H.-H. Chang, Qian, & Ying, 2001; H.-H. Chang & van der
Linden, 2003; Cheng, Chang, & Yi, 2007; H.-H. Chang & Ying, 2008; Cheng, Chang, Douglas, & Guo,
2009)).

Adaptive tests have been shown to be as reliable and valid as conventional tests (with static question
orders), while reducing test length up to 50% (Weiss, 1982; Weiss & Kingsbury, 1984). More recently,
IRT-based adaptive testing has been used for diagnoses of mental health disorders through patient question-
naires (Gibbons, Weiss, Frank, & Kupfer, 2016) and measurements of political knowledge from public opinion
surveys (Montgomery & Cutler, 2013). In both applications, the adaptive method resulted in equivalent or
better outcomes with fewer questions.

These IRT-based approaches require training data to learn the item response parameters for each question.
Most researchers recommend at least 1000 training samples to estimate these parameters (De Ayala, 2013).
When the item response function accurately captures the structure of test questions, IRT-based adaptive
testing approaches are good at modeling how questions inform estimates of respondents’ knowledge. However,
these IRT-based approaches do not consider question cost when selecting a question to ask—they consider
only the impact that question will have on the understanding of that person’s trait estimate.

2.2.4 Cost-effective personalized data collection

Combining the two goals of short form questionnaires (burden reduction) and adaptive testing (personalized
data collection) yields cost-effective personalized data collection: determining which information is most
relevant to collect from a particular individual, while taking into account the cost of acquiring that infor-
mation. Recent past work has considered this problem, chiefly in a machine learning setting of test time
feature acquisition: choosing which (costly) features to acquire to make a prediction on a new test point.
Section 2.1 covers this area in more detail.

In summary, this prior work in questionnaire scoring has looked at scoring questionnaire responses (e.g.,
(Digman, 1990)), reducing survey burden by creating short form questionnaires (e.g., (Stanton, Sinar,
Balzer, & Smith, 2002)), and personalizing tests (which can be considered a type of questionnaire) to a
respondent’s current score estimate (e.g., (Weiss & Kingsbury, 1984)). However, there is a gap when it
comes to cost-effective burden reduction for questionnaire scoring. This thesis fills that gap by personalizing
questionnaire administration to individual respondents, while incorporating question-specific costs into the
question selection rule.

2.3 Surveys

Unlike test-time feature acquisition or questionnaire scoring, the motivation of which is gathering the most
relevant information for a prediction or score, surveys typically have the goal of collecting complete data
from a population.

2.3.1 Respondent burden, respondent engagement, and data quality

Respondent burden in surveys is multi-faceted, with multiple factors influencing what is ultimately a sub-
jective measure for the respondent. Some of these factors are survey length (e.g., number of questions or
estimated time), respondent effort, respondent stress, or frequency of interviews (Bradburn, 1978). A respon-
dent’s perception of the survey task has a significant direct effect on self-reports of survey burden (Fricker,
Yan, & Tsai, 2014). Recent work has demonstrated that telling respondents that they have been screened
into a longer or shorter survey, with a longer or shorter expected time commitment, can influence their
perception of survey burden. Those who were told they were screened into a longer survey reported more
burden than those who also received the longer survey but were not informed of their selection (Yu, Fricker, &
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Kopp, 2015). Reported survey length is one factor that influences a respondent’s decision to begin a survey:
fewer people start surveys that are announced to take more time to complete (e.g., (Walston, Lissitz, &
Rudner, 2006; Marcus, Bosnjak, Lindner, Pilischenko, & Schütz, 2007; Galesic & Bosnjak, 2009)). However,
this phenomenon is not universal (e.g., (Cook, Heath, & Thompson, 2000)). Furthermore, response quality
tends to decrease as the survey progresses (e.g., (Galesic, 2006; Barge & Gehlbach, 2012)).

As survey response rates have been dropping (e.g., (Porter, 2004; Shih & Fan, 2008)), researchers have
begun looking at how to motivate respondents to fill out these surveys, to avoid having survey results not
represent the full population. Commercial surveys often pay respondents, but compensation does not neces-
sarily ensure thoughtful responses—participants still exhibit satisficing behavior in paid surveys (e.g., (Barge
& Gehlbach, 2012; Kapelner & Chandler, 2010)). Incentivizing respondents with something dependent on
the quality of their answers, like a personalized prediction or calculation, can motivate them to provide
correct data. For example, Angelovska and Mavrikiou (2013) design an online questionnaire that gives the
respondent feedback on their level of procrastination, based on their responses. Their experiments find that
the questionnaire that promises feedback has lower breakoff rates than the standard questionnaire in which
the respondent does not receive personalized feedback. Marcus et al. (2007) find that offering personalized
feedback increased response rates for low-salience surveys but had no significant effect for high-salience sur-
veys. However, not all potential survey respondents react in the same way to changes in survey design. For
example, meta-analyses of incentives and response rates in mail surveys are inconsistent in the effect of the
amount of a prepaid incentive on response rates: Church (1993) found that greater incentive amounts yield
greater increases in response rates, while Fox, Crask, and Kim (1988) found diminishing returns for increased
incentive amounts. Leverage-saliency theory (Groves, Singer, & Corning, 2000; Groves, Presser, & Dipko,
2004) hypothesizes that different people respond to survey requests differently, based on what aspects of the
survey they are interested in (leverage) and how much emphasis the interviewer or survey designers place
on those aspects (saliency).

A promising venue for survey personalization to increase respondent motivation and lower breakoff is by
using paradata (originally “process data” (M. P. Couper, 1998)) collected as the respondent answers an online
survey (e.g., time spent on page, mouse clicks (Kaczmirek, 2008)) to model user engagement (M. P. Couper
et al., 2010). Past work in paradata analysis has focused on how paradata reveal respondents’ survey-taking
process (e.g., (Heerwegh, 2003)), how paradata can identify usability issues in surveys (e.g., (Healey, 2007)),
and how paradata can inform population-level adaptive design (e.g., (M. Couper & Wagner, 2012)). For
example, Bassili and Fletcher (1991) and Heerwegh (2003) showed that participants who take longer to
answer questions about attitudes also tend to change their minds when presented with counterarguments to
their original response. They conclude that people with less attitude stability need more time to come up
with an answer than people who are already confident in their attitudes (Heerwegh, 2003). Paradata about
users’ interactions can also reveal that a survey instrument is not designed well (e.g., Healey (2007)). For
example, drop-down menus in online surveys increased item response times (Healey, 2007). Question length
(e.g., (Bassili & Scott, 1996; Yan & Tourangeau, 2008)) and complexity (e.g., (Wagner-Menghin, 2002;
Yan & Tourangeau, 2008)) also increase response times. Paradata have been used for adaptive survey design
too. For example, paradata have been used for predicting the likelihood that a unit will be interviewed on a
next contact attempt (Groves & Heeringa, 2006; M. Couper & Wagner, 2012) and for analyzing differences
in population estimates as contacts are made (Lundquist & Särndal, 2013).

Survey breakoff is influenced by respondent factors (e.g., demographics), survey design (e.g., topic), and
page and question characteristics (e.g., question type) (Peytchev, 2009). Respondent interest and burden are
negatively and positively, respectively, associated with breakoff, and respondent and survey factors influence
these components too (Galesic, 2006). Furthermore, lower-quality answers (e.g., skipped items) often precede
breakoff (Galesic, 2006). Survey action can be taken to increase user engagement and response rates.

2.3.2 Adaptive survey design

Adaptive survey design (ASD) attempts to improve survey quality (often in terms of achieving a higher re-
sponse rate or lower error) by giving respondents custom survey designs, rather than the same one (Schouten,
Calinescu, & Luiten, 2013; Wagner, 2008). Usually ASD tries to minimize nonresponse, and designs involve
factors like number of follow-ups, which can be costly. The general technique is to maximize survey quality
while keeping costs below a budget. For example, Beaumont, Bocci, and Haziza (2014) adaptively choose
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how many contact attempts to make for a household sampled for a telephone survey by minimizing the
variance of the estimator to determine how much effort to expend (i.e., number of contact attempts) on each
household.

Dynamically ordering questions in a survey, based on answers given to previous questions, can be con-
sidered a type of adaptive survey design. Researchers have chosen a variety of aspects of survey design to
adapt with ASD (see (Tourangeau, Michael Brick, Lohr, & Li, 2017) for a review), including adaptive contact
strategies to schedule call attempts at the time a respondent is most likely to answer (Wagner, 2012), case
prioritization to exert more effort to attain responses from certain households (e.g., (Beaumont et al., 2014;
Wagner et al., 2012)), and stopping rules to determine when to stop collecting information from groups of
respondents whose overrepresentation might bias population-level estimates (e.g., (Lundquist & Särndal,
2013; Särndal & Lundquist, 2014; Särndal & Lundquist, 2014)).

Often in ASD, changes in survey design happen between phases of the survey, where the exact same
survey protocol (e.g., sampling frame, survey mode, measurement conditions) is in place within a phase and
results from that phase inform changes to the protocol for the next phase. Groves and Heeringa (2006)
introduce an approach they call responsive survey design, which uses indicators of the cost and error of
design features to make decisions about how to change the survey design in future phases and then combines
data from all phases into a final estimator. They also introduce the concept of phase capacity—once a stable
estimate has been reached in a design phase, it is unlikely that expending more effort in that phase will
result in a better estimate. Their definition of “effort” focuses on collecting participants for each phase.
They propose the use of error-sensitive indicators to identify when a phase has reached capacity and no more
participants need to be recruited for that phase. This notion of phase capacity could extend to reaching a
stable estimate of a participant’s survey-answering, and no more questions need to be asked.

Previous approaches to ASD that are most related to the work in this thesis are those that choose
respondents to prioritize. Such case prioritization approaches can be considered as choosing to obtain
information, in the unit of a respondent, taking previously acquired information (previous responses or
paradata that have been collected during the survey-taking process) into account. Correspondingly, the
work of this thesis chooses to obtain information, but in the unit of individual answers from respondents,
also taking previously acquired information (answers that have already been given or paradata) into account.

2.4 Summary

The domain-specific approaches reviewed in this section adapt data collection to the concerns of their
field—machine learning techniques for test-time feature acquisition trade off increases to prediction quality
against feature cost, adaptive testing methods choose test items to administer based on information at the
testee’s current skill level (with no question-specific measure of cost), and adaptive survey design approaches
choose changes to make to survey design to improve response rates or representativeness. In the next chapter,
we present a general framework for adaptive data collection that can encompass many of these prior works,
by defining the appropriate utility and cost metrics to quantify how useful and how expensive an item is to
collect, in the context of the information that has already been collected.



Chapter 3

A general framework for question
ordering

Our goal is to personalize question ordering for an individual providing information, depending on our
current knowledge of them. This knowledge could come from answers they have given to previous questions,
as well as information collected through paradata during the information-providing process. Because we do
not know ahead of time the budget for question asking, we present a greedy approach for iterative question
selection: at each time step, choose the question that optimizes a selection criterion; ask that question and
receive an answer; update the current knowledge base; and continue the process until all questions have been
asked, the allowable budget for asking questions is exhausted, or the respondent stops providing answers.

3.1 A criterion for iterative question selection

The question selection rule trades off the expected utility of having an answer to a question (or a set of
questions) with the cost of getting the answer:

q? = arg min
q

(−E[U(q)] + λcq), (3.1)

where q is a question or set of questions, U(q) is the utility of q, cq is the cost of q (which may be context-
dependent and therefore not known until evaluation time), and λ is a tradeoff parameter. We want to
maximize utility while minimizing costs. Figure 3.1 summarizes how this iterative question selection process
works for a sample at test time. Definitions of question utility and cost will vary according to the application
and the purpose of the data collection; here we present an overview of possible interpretations for utility and
cost, which will be expanded for example applications in our experiments in later sections.

This method can be generalized to order modules of related questions, rather than individual questions.
Reasons to present questions in modules rather than purely sequentially include (1) presenting related items
in a group can reduce the cognitive burden required of a respondent to answer the group (e.g., if a set of
questions asks the respondent about various aspects of their commute, as the American Community Survey
does, it will be easier for the respondent to answer those commute-related questions as a unit rather than
scattered throughout the entire questionnaire) (Tourangeau, 1984) and (2) imposing a standard order on
certain questions that are susceptible to order effects (Sudman, Bradburn, & Schwarz, 1996) can ensure that
all participants understand and answer questions in the same way, even when question order is determined
dynamically.

3.1.1 Question utility

Intuitively, question utility captures how “useful” a candidate question is. The exact definition for utility
depends on the application (i.e., what do we value as useful?) and the data (i.e., how can we calculate
this value?). For example, if the application is a prediction task, we can use the impact a question will

13



14 CHAPTER 3. A GENERAL FRAMEWORK FOR QUESTION ORDERING
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Figure 3.1: Our method iteratively increases the set of known items. Step 1: Given a set of known items,
it first calculates the expected utility and cost of acquiring each unknown item. This is repeated for all
unknown items. Step 2: It optimizes for the best combination of utility (as calculated in Steps 1 and 2)
and cost. Step 3: The best next item is acquired. The process can be repeated until the all questions have
been asked or the budget for information collection has been exhausted.

have on the prediction quality as a definition for utility. One aspect of prediction quality is certainty. The
calculation of prediction certainty as a measure of utility will depend on the data and the predictive model
being used: if the value to be predicted is continuous, one measure for prediction certainty is the width of
the prediction interval, where a wider interval means a less certain prediction. The mathematical definition
for the prediction interval width will depend on the predictive model being used. If the value to be predicted
is discrete, one measure for prediction certainty is the distance of the sample from the decision boundary.
Again, calculation for this measure of certainty (the distance from the decision boundary) will depend on
the predictive model.

To be dynamic, these definitions of utility will take into account information already known about the
sample. Such information may come from previously answered questions or paradata collected in the survey
process. Paradata in particular will be helpful for informing a utility function that captures respondent
engagement.

When defining a metric for question utility, it can be challenging to reflect the multiple purposes of a
survey in a single utility function. Large-scale government surveys in particular often have multiple federal
agencies who care about different questions. Developing a composite utility function that meets the needs
of all stakeholders in a multi-purpose survey is important, but also complicated and context-specific, and
a topic for continued work. This thesis illustrates examples of the following utility functions: prediction
certainty (for continuous outputs, in Sections 4.4.4 and 4.4.5, and discrete outputs in Section 4.4.6), total
response variation (Section 5.6), information gain (Sections 6.3 and 6.2), and response likelihood (i.e., the
probability that a respondent will not break off from the survey; Section 6.3).

3.1.2 Question cost

The cost of a question reflects how “difficult” it is to get an answer for that question. Different applications
have different cost measures that are best suited to them. Examples of cost include (1) the amount of
resources needed to answer the question (e.g., time, money, battery, effort), (2) the likelihood that the
question will not be answered (i.e., item nonresponse rate), (3) the likelihood that the question will cause
the respondent to stop the survey (i.e., item breakoff rate), and (4) a combination of multiple types of cost.
These costs can be predefined according to rules or determined empirically from collected data. Respondent
burden in surveys is multi-faceted, with multiple factors influencing what is ultimately a subjective measure
on the respondent (e.g., (Bradburn, 1978; Fricker et al., 2014; Yu et al., 2015)). Thus, it is difficult to
measure the actual burden a question poses to a respondent. Our illustrative applications in Chapters 4,
5, and 6 use simple proxies for respondent burden. However, this framework is general, and so any more
cognitively precise measure can be used, were it available.

When determining question order is deferred to test time, these costs can be context-dependent. That
is, the current situation of data collection can inform the costs of future questions that might be asked. For
example, in a system that makes medical diagnoses and can request tests (e.g., (Ferrucci et al., 2013)), it will
be less costly to request an invasive biopsy if a surgery is already scheduled in that area. Context-dependent
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costs can also be used to address questions that are sensitive to order effects (McFarland, 1981). At response
time, the cost of a dependent question can be assigned to be infinite when its prerequisite question(s) have
not already been asked. Thus, such a question would never minimize the objective in Equation 3.1 and
would never be chosen if the respondent has not already seen questions that need to precede it.

This thesis illustrates examples of the following costs: effort required to answer questions (Section 4.4.4),
battery drain of collecting mobile data (Section 4.4.5), time to compute features (Section 4.4.6), item response
times (Sections 5.6 and 6.3), and item nonresponse rates (Section 6.2).

3.2 Terminating data collection

A key component of computerized adaptive testing procedures is a criterion for determining when to stop
administering test items (Weiss, 1982). Typically, the test is terminated once the estimate about the testee is
certain enough (e.g., (Weiss & Kingsbury, 1984; Kamakura & Balasubramanian, 1989)). A similar stopping
criterion could be used for prediction-guided DQO, but most often surveys aim for complete response. In
that case, it is advantageous to ask questions as long as the respondent is willing to answer them. One
exception could be for longitudinal surveys, where respondent attrition is partly due to panel fatigue (Laurie
& Scott, 1999). Terminating a panel survey before completion would reduce respondent burden and could
increase willingness to participate in future surveys.

3.3 Assumptions and requirements

Most generally, this approach requires only definitions of question utility and cost and ways to calculate
the expected utility of each candidate question given what is known. In practice, a training set of question
responses is needed: measures of utility often depend on statistical properties of samples and estimators,
and distributions of question responses need to be known to calculate expected values.

3.4 Relationship to prior work

The generality of this framework means that much of the prior work in adaptive data collection presented in
Chapter 2 can be expressed in the DQO framework. Given appropriate definitions for utility and cost, any
method that gathers information in stages has a representation in DQO. For example, all of the computerized
adaptive testing (CAT) methods in Section 2.2.3 can be expressed as DQO variants by using whatever item
selection criterion the CAT algorithm (simple functions like maximum Fisher information (e.g., (Birnbaum,
1968)), maximum global information (e.g., (H.-H. Chang & Ying, 1996)), minimum variance (e.g., (van der
Linden, 1998)), etc.; or more complex rules incorporating randomization (e.g., (Barrada et al., 2008)),
item stratification (e.g., (H.-H. Chang & Ying, 1999)), etc.) uses as the utility metric. None of the CAT
approaches considered question-specific costs, which can be translated into DQO by setting costs for all
items to zero.

Categories of methods discussed in Chapter 2 that cannot be subsumed as special cases of the DQO
framework include those that do not sequentially gather information and use that information for subsequent
item requests. For example, adaptive contact strategies that optimally schedule call attempts to improve
response probability (e.g., (Wagner et al., 2012)) do not fit into the DQO framework, since there is no
incremental collection of data that inform later pieces of information to gather. Similarly, the test-time
feature acquisition approaches that essentially learn rules for feature order at training time (the sequence-
learning approach (e.g., (Strubell et al., 2015)) or the Markov decision process approach (e.g., (He et al.,
2012)) cannot be described using the DQO framework since the mechanism for acquiring information is
determined at training time and is not updated as data are gathered at collection time.

Table 3.1 summarizes if and how the previous work covered in Chapter 2 can be represented in the DQO
framework. When decisions about data collection are made at collection time, it is often possible to define
utility and cost functions to reproduce the method with DQO. One exception is the work on using adaptive
survey design to decide when to stop data collection (Lundquist & Särndal, 2013; Särndal & Lundquist, 2014;
Särndal & Lundquist, 2014)—although the decision of when to continue or stop gathering survey responses is
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technically made at data collection time, the procedure for choosing the stop time is fixed prior to collection
time (e.g., ending data collection once the response rate in a subgroup reaches a threshold). Thus, as data
are collected, response rates (or other indicators) are monitored until a prespecified condition is met and
data collection is terminated.
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Table 3.1: If and how previous work can fit into the dynamic question ordering framework. When decisions about data collection are made at collection
time, it is often possible to define utility and cost functions to reproduce the method with DQO.

Category Paper Decision being made Decision time Utility Cost

Test-time
feature
acquisition

(He et al., 2012)

Feature to acquire

Pre-collection
(He et al., 2013) Pre-collection
(Weiss & Taskar, 2013) Pre-collection
(Xu et al., 2014) Pre-collection
(Samadi et al., 2015) Pre-collection
(Shi et al., 2015) Pre-collection
(Strubell et al., 2015) Pre-collection
(Pattuk et al., 2015) Collection Prediction uncertainty Privacy

Computerized
adaptive
testing

(Birnbaum, 1968)

Question to ask Collection

Maximum Fisher information

0

(Weiss & Kingsbury, 1984) Max info, min posterior variance
(H.-H. Chang & Ying, 1996) Max global info
(van der Linden, 1998) Max posterior expected info
(McBride & Martin, 1983) Max info + random
(H.-H. Chang & Ying, 1999) Stratified max info
(Leung et al., 2000) Content-restricted max info

Adaptive
survey
design

(Groves & Heeringa, 2006) Protocol to use Collection Phase capacity
Survey effort
(e.g., time)

(Wagner et al., 2012) Cases to prioritize Pre-collection
(Wagner, 2012) Contact schedule Pre-collection
(Schouten et al., 2013) Interviewer assignment Pre-collection
(Lundquist & Särndal, 2013) Stopping collection Collection
(Särndal & Lundquist, 2014) Stopping collection Collection
(Särndal & Lundquist, 2014) Stopping collection Collection
(Beaumont et al., 2014) Contact schedule Pre-collection
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Chapter 4

Prediction-guided question ordering

Here we consider the scenario in which a user is providing information to receive a personalized prediction
based on the information they provide. We assume a predictive model has already been developed from a
training set, and we want to make a prediction on a new test point. In this setting, it is likely that not all
features will be needed to make a reasonable prediction. Therefore, we want to ask the most cost-effective
set of questions that will maximize prediction quality while minimizing collection costs. Additionally, in this
scenario, users receive a direct benefit (i.e., the personalized prediction) and are inherently motivated to
provide information. On the other hand, feedback in the form of sequential predictions can influence their
decision to continue providing information, if they feel that they have received a useful enough prediction.

When features are being collected to refine a prediction, a natural utility metric to use for test-time
feature selection (Equation 3.1) is one that reflects how an additional feature f contributes to the quality of
the subsequent prediction. An ideal solution would accommodate a variety of prediction algorithms, allow
for feature-specific and context-dependent costs, and support multiple options for prediction utility when
requesting information to refine a prediction. Delaying the order determination until test time (rather than
learning it from training data) is a requirement for context-dependent costs (since they are not known until
test time).

We developed an approach to test-time Feature Ordering with Cost and Uncertainty Score (FOCUS)
that has all of these key properties. A basic assumption of our approach is that it is being applied in the
context of supervised machine learning. In addition, we assume that feature cost is only an issue at test (or
more generally deployment) time—at training time, the complete set of features associated with each label is
assumed to be available. Finally, although not required, our approach benefits from a prediction algorithm
that is robust to making predictions when not all features are available (predictions on partial information).

FOCUS is an instantiation of the question ordering framework from Chapter 3, where the utility of a
feature is defined to be the certainty of the subsequent prediction made using all known features plus the
newly acquired feature. We chose to optimize for prediction certainty due to past work demonstrating the
importance of giving people estimates of certainty along with predictions (e.g., (Hirschberg et al., 2011)).
Prediction certainty is available in most prediction algorithms and reflects how likely the true value is to
coincide with the estimated value. For example, in regression, a prediction interval width indicates the range
of values the true value is likely to fall within (Weisberg, 2014). A narrower prediction interval corresponds to
a more certain prediction. For classification, certainty can often be formulated as distance from the decision
boundary. However, certainty can be easily replaced with another utility metric (e.g., prediction error) in
the question ordering framework.

As shown in Figure 3.1, FOCUS operates iteratively at prediction time. Given an instance with known
(dark green) and unknown (white) features, it first calculates the expected value of a feature (Step 1) for all
features that are not known. Next it calculates the best next feature by optimizing a function that combines
the prediction value of each feature with its cost (Step 2). The new feature is acquired (Step 3) and the
process repeats. At any iteration, a prediction can be made.

Whether or not the prediction at each step is shown to the user will depend on the application. For
example, if the application is gathering information from sensors with no user input, it does not make sense
to display the sequential predictions to the user. In this case the algorithm may stop when costs become
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too high, all features are acquired, or accuracy achieves a certain threshold. This can be determined on an
application-by-application basis. On the other hand, if the user is answering questions to get a personalized
prediction, then showing them the partial predictions can keep them engaged in answering questions and
help them to decide if continuing to answer questions is valuable to their goals.

4.1 The FOCUS algorithm

FOCUS assumes that a model trained on all feature values is available and that, for a new test point, we
want to provide the best (and lowest cost) prediction possible, given that feature values are costly to acquire.
As shown in Figure 3.1, FOCUS sequentially estimates the value of each feature (Step 1) and selects a next
feature to ask (Steps 2 and 3).

4.1.1 Calculating the utility of a feature f

In Step 1 of FOCUS, the expected utility of a feature is calculated. Since the true next prediction uncertainty
depends on the actual value for the next feature that is acquired, we cannot directly calculate E[U(f)].
However, we can break this down into two parts.

Calculating U(f), the prediction utility for a specific possible value of feature f , depends on the exact
nature of the prediction problem. U(f) takes as input a feature vector containing the known features plus a
hypothetical value r for feature f . Typically, utility is calculated by making a partial prediction using those
values and estimating prediction accuracy, uncertainty, etc

This is repeated for all values r that are in the range of potential values R for f (Step 1 of Figure 3.1).
If a feature is continuous, we pick bins appropriate for the values that appear in the training set, and then
the midpoint for each bin for feature f is used as the set of values f can take on.

There have been several approaches to making predictions under partial information, and FOCUS is
compatible with any of them. Reduced-feature models use only features whose values are known in making
predictions. These models may be calculated at training time (e.g., (Xu et al., 2014)) or dynamically
constructed at test time (e.g., (Friedman, Kohavi, & Yun, 1996)). Another option is to impute missing values
and use the full-feature model on the combination of known and estimated features to make a prediction.
Hybrid approaches combine reduced-feature modeling with imputation (e.g., (Saar-Tsechansky & Provost,
2007)). However, in the end, FOCUS is agnostic about how predictions are made and how U is defined.

4.1.2 Calculating the expected prediction utility of a feature f

Given a way to calculate U(f), E[U(f)] can easily be defined. We calculate the expected utility of a prediction
that includes feature f by taking a weighted average of the utility calculated for each possible value of f :

E[U(f)] =
∑
r∈R

p(zf = r)U(zf :=r), (4.1)

where p(zf = r), the probability that the f -th feature’s value is r, is calculated empirically from the training
set, and the notation zf :=r means that the f -th component of feature vector z is replaced with the value r.
Algorithm 2 in Appendix A summarizes this process in pseudocode.

This process is then repeated for all unknown features.

4.1.3 Optimizing for the best next feature

In its middle step (for each iteration), FOCUS optimizes for utility of the next feature, penalized by the cost
of that feature. Our selection rule, illustrated in Step 2 of Figure 3.1, trades off the expected utility of the
next prediction, for each candidate feature, with the cost of that feature:

f? = arg min
f /∈K

(−E[U(f)] + λcf ) , (4.2)

where E[U(f)] is the expected utility calculated in Step 1 of FOCUS, and λ controls how much weight we
give to the cost c for each feature. Algorithm 3 summarizes this process in pseudocode.
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As with utility, cost is calculated in a problem-specific fashion, based on the feature vector of currently
known features. This allows the cost function to consider context-dependent information such as the values
of other features that are already known. Cost could be measured in time necessary to acquire a feature,
either computationally or due to dependencies; direct impact on the user such as interrupting her to ask a
question; or indirect impact on the user such as drawing down the battery life of her phone.

4.2 Regression: Predicting continuous values

Our first two applications (predicting household energy consumption and predicting student stress levels)
involve predicting continuous values, so we use prediction interval width to measure uncertainty: a narrower
prediction interval corresponds to a more certain prediction. Because we are imputing missing features to
make predictions with partial information, we use the measurement error model (MEM) (Fuller, 2009) to
capture error associated with estimated features. Unlike traditional regression models, MEMs do not assume
we observe each component xf exactly—there is an error δf associated with the estimation:

zf = xf + δf , where E[δf |xf ] = 0.

Prediction ŷ still depends on the true, unobserved value x:

ŷ = β̂T x̄ = β̂(z̄ − δ̄),

where β̂ ∈ Rd+1 is the parameter vector learned on the training set X (recall that all feature values are
known at training time). The notation x̄, z̄, δ̄ means vectors x, z have a 1 appended to them and δ a 0 to
account for the constant term in the regression. Let X̄ extend this notion to the training matrix: X̄ = [1nX].

We can calculate a 100(1− α)% prediction interval for a new point z as

ŷ ± tn−d−1;α/2
√
σ̂2
(
1 + z̄T (X̄T X̄)−1z̄ + δ̄T (X̄T X̄)−1δ̄

)
, (4.3)

where the δ̄T (X̄T X̄)−1δ̄ term accounts for error from estimated features and tn−d−1;α/2 is the value at which
a Student’s t distribution with n− d− 1 degrees of freedom has cumulative distribution function value α/2.
We can estimate δ from training data by calculating the error of predicting each feature with k-NN, from
the other features. We also estimate σ̂2, the regression variance, from training data.

When using prediction certainty as the measure of feature utility (where feature utility means how much a
feature will influence the prediction quality), a more certain prediction (i.e., a more useful feature) will have
a smaller prediction interval width than a less certain prediction. Thus, in this case, we want to minimize
prediction interval width (equivalent to minimizing uncertainty, or maximizing certainty/utility), so we use
the negative prediction interval width as the utility measure for Equation 3.1, which then reduces to

f? = arg min
f

(E[W (f)] + λcf ), (4.4)

where E[W (f)] is the expected prediction interval width of the next prediction that includes feature f .

4.3 Classification: Predicting discrete values

The utility metric used to measure prediction uncertainty for regression, the prediction interval width, is not
applicable for classification. However, we can define a measure of prediction uncertainty that is appropriate
for classification. For classification, the probability that a test instance belongs to a particular class is the
certainty of its prediction—a lower class probability—means a less certain prediction. More generally, class
probability can be seen as the distance from the decision boundary—when a point is farther from the decision
boundary, the prediction is more certain.
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4.4 Applications and experiments

To demonstrate the usefulness of FOCUS for cost-effective interactive predictions, we implemented it for
several prediction algorithms and applications. First, we consider the case of providing personalized energy
estimates for prospective tenants, where feature cost reflects how much effort a user must exert to provide
answers about their energy-consuming habits and their new potential home. Next, we use FOCUS to make
momentary predictions of stress in college students, where feature cost includes both battery drain from
turning on mobile sensors in addition to the cost of interrupting the user to ask for feature values. In this
example, we also consider context-dependent costs, in particular, the fact that the cost turning on a sensor
at the expense of draining the battery is no longer an issue when the phone is charging. Finally, we apply
FOCUS to the classification problem of identifying devices in photos to support opportunistic interactions
with low user burden.

4.4.1 Methods

For each of these applications, we compare the quality and cost of successive predictions obtained with our
method, FOCUS, with a variety of cost penalties λ, to that of a fixed-order baseline, which we call Fixed
Selection. This baseline acquires features in the order of forward selection on the training data (resulting
in an identical ordering for all samples). Forward selection is a greedy approximation to feature selection,
which starts with an empty feature set and iteratively adds the feature that minimizes error to the predictive
model (Harrell, 2001; Tropp, 2004).

In this problem, we make predictions when there are features that are still unknown (i.e., not yet supplied
by the user). In all three applications, we use imputation to estimate values for these unknown features before
making a prediction at that stage in data collection. To make these imputations, we use k-nearest neighbors
(k-NN) (Cover & Hart, 1967) as follows: First, we find the k points in the training set that are nearest to the
test point, restricted to the features that are already known. Next, we estimate the value for each unknown
feature in the test point as the mean or mode (depending whether the feature is continuous or discrete)
of that feature in the k-nearest neighbors (see Algorithm 1 in Appendix A). Finally, we use this complete
feature vector, which contains both known and imputed values, to make a prediction at the current step.

We simulate progressive addition of features by hiding values for “unknown” features (i.e., pretending
their values are truly unknown since we have not yet asked for and acquired their values), using FOCUS
to choose a feature to acquire at each step, and unveiling that feature’s value once it has been “asked” and
“answered.”

4.4.2 Performance metrics

Our validation measures performance at each stage of feature acquisition (i.e., number of collected features)
in terms of prediction certainty, error, and cost. Certainty and cost are defined as part of the FOCUS
optimization objective (Equation 4.2).

Prediction certainty

Depending on whether the prediction is continuous or discrete, we use prediction interval width (Section 4.2)
or predicted class probability (Section 4.3) to measure the certainty of a prediction made at each stage of
feature acquisition.

Prediction cost

Prediction cost is defined as the total cost of all features acquired up to each point in feature acquisition.
Cost is application-dependent, and the applications we describe here use costs related to user burden, battery
drain, and computation time. The specific cost metrics used for each application are discussed in more detail
in the following sections.
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Prediction error

For error, we use mean absolute error for regression and zero-one loss for classification (i.e., a sample incurs an
error of 0 if its predicted value matches the true value and 1 otherwise) to compare our successive predictions
to the true values. This is a conservative metric for error since it compares only a single predicted value to
the true value (rather than taking into account the uncertainty associated with the prediction). For example,
this metric will incur error when the true value is not the exact midpoint of a prediction interval, even when
the true value does lie within the prediction interval.

4.4.3 Overview of results

Figure 4.1 illustrates the cost savings of FOCUS (solid lines) over the baseline (dashed lines) when various
numbers of additional features have been provided for each of our three validation applications. The left
plot (Figure 4.1a) shows that, as the cost penalty λ increases, the cost savings of FOCUS over the baseline
also increases. As expected, increasing the cost tradeoff parameter λ favors asking inexpensive features near
the beginning of the test-time feature acquisition process. The right plot (Figure 4.1b) shows that, for a
fixed λ and with increasing numbers of additional features, FOCUS also maintains its cost advantage over
the baselines, for all three applications.
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Figure 4.1: Charts showing impact on cost (y axis) of λ and number of features, for FOCUS (solid lines)
and the Fixed Selection baseline (dashed lines).

To summarize the trajectories of prediction cost, uncertainty, and error, we calculate areas under the
curve for each of the metrics as each feature is added. Smaller values are better because they mean the
algorithm spent less time in high cost, uncertainty, and error. Table 4.1 lists these values for FOCUS with
seven different values of cost penalty λ, ranging from zero to one, and for the baseline. As expected, due to
the two terms in the selection rule (uncertainty and cost), cost decreases as the penalty on cost increases,
and uncertainty tends to increase as the cost penalty increases. There is no pattern in how error changes as λ
increases. The baseline (Fixed Selection) error is often lower than FOCUS. This result is not surprising, due
to the error-minimizing criterion of forward selection. FOCUS with a nonzero λ always has significantly lower
cost than the baseline. Prediction uncertainty is sometimes lower with FOCUS than baseline (particularly
for low values of λ). The metric that suffers the most with FOCUS, relative to the baseline, is error because
it was not included in the optimization.

The following subsections discuss the specific problems, data, and results for each application in more
detail.
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Table 4.1: Areas under the curve for the cost, uncertainty, and error metrics from FOCUS, with a variety of
cost penalties λ, and the Baseline (Fixed Selection): smaller values mean the algorithm spent less time in
high uncertainty, error, and cost. Ideally, FOCUS will have lower cost and similar uncertainty as Baseline.
This is shown in black. Numbers marked with ? show where FOCUS was significantly lower than baseline
at the α = 0.05 level. Numbers in red, marked with †, indicate where FOCUS did significantly worse than
baseline (higher cost, uncertainty, or error) at the α = 0.05 level.

Method
RECS StudentLife Device ID

Cost Uncert. Error Cost Uncert. Error Cost Uncert. Error

F
O

C
U

S
,
λ

=

0 1340.25† 41.376? 12.457 71.182? 22.897 5.770 94.788? 1.935 4.815
.00001 1175.42? 41.375? 12.444 70.924? 22.898 5.769 87.647? 1.939† 5.241
.0001 936.338? 41.371? 12.649† 70.030? 22.898 5.771 87.601? 1.940† 5.259
.001 891.130? 41.430? 12.578† 66.704? 22.899 5.775† 87.638? 1.936 5.296†

.01 885.000? 41.446 12.704† 63.303? 22.929 5.795† 82.001? 1.936 5.463†

.1 885.000? 41.446 12.704† 61.303? 22.958 5.800† 80.547? 1.936 5.574†

1 885.000? 41.446 12.704† 61.303? 22.958 5.800† 80.000? 1.926 5.333†

Baseline 1250.000 41.447 11.722 81.000 22.898 5.705 105.000 1.928 4.796

4.4.4 Predicting energy usage for prospective tenants

Selecting energy-efficient homes is important for renters, because in many climates energy costs can be a
significant burden, and the choice of infrastructure influences energy consumption far more than in-home
behavior (Dietz, Gardner, Gilligan, Stern, & Vandenbergh, 2009). However, there is a paucity of informa-
tion available about expected energy costs pre-lease signing. Calling a utility to ask about prior costs may
give incomplete or misleading information (since occupant behavior can influence energy usage as much as
100% (Seryak & Kissock, 2003)), and a carbon calculator typically requires users to answer (prohibitively)
many questions that may require considerable research to answer. We can lower user burden by (1) learning
the relationship between household features (home infrastructure and occupant behavior) and energy use
from established datasets, such as the Residential Energy Consumption Survey (RECS) (U.S. Energy In-
formation Administration, 2009), and then (2) using FOCUS to strategically select which instance-specific
features are needed to make a confident prediction for a new household.

Background

Bottom-up methods for modeling residential energy consumption use features of individual households (Swan
& Ugursal, 2009). Household features may include macroeconomic indicators, as well as occupant-specific
features (e.g., (Douthitt, 1989; Kaza, 2010)). For example, Douthitt (1989) examines fuel consumption for
space heating in Canada, using household-specific values for occupant demographics, the housing structure,
and fuel cost. Kaza (2010) uses the Residential Energy Consumption Survey (RECS) to estimate energy
usage from low-level housing characteristics, with a quantile regression approach to separate the effects of
variables on homes with different patterns of energy consumption.

The RECS dataset is our focus as well. RECS consists of data from 12,000 households across the United
States, with energy consumption by fuel type (e.g., electricity, natural gas) and around 500 features of each
home and its occupants. We restrict our use of RECS to electricity prediction in a single climate zone where
energy consumption is variable due to cold weather, giving us a subset of 2470 homes.

Cost metric

In Early et al. (2017), we assign cost using a three point scale: some features are free (available in rental
advertisements), while the remainder are either low cost (e.g., number of occupants) or high cost (e.g., age
of heating equipment). Free features are included in all predictions since they have no cost. Here, we use a
more nuanced eight-point feature cost scale based on difficulty of acquiring a feature. Zero-cost features are
“free” (i.e., extractable from a rental listing); 1-2 are occupant-related; and 3-7 are unit-related (may require
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a site visit and/or research). Table 4.2 lists the cost categories and an example feature in each. Table B.1
in Appendix B lists the cost categories for all features in the RECS 2009 dataset. Table 4.3 justifies our
choice of “free” features (i.e., features extractable from rental advertisements) by showing how frequently
those features appear in the database of Rent Jungle, an online rental search platform1.

Table 4.2: Feature cost reflects how difficult it is to acquire a value for a feature. Note that the cost of a
feature might vary by home: for example, if a listing included pictures of the kitchen, a user could see the
door arrangement of the refrigerator from the listing (cost 3). If there were no pictures, then it would be an
easily visible feature (cost 5).

Cost Method of answering Example feature from RECS
0 Extractable from listing Number of bedrooms
1 User probably already knows If someone stays home during the day
2 Might have to check current home Size of TV
3 Could find in rental listing, or call for easy answer Washing machine in home
4 Look up online Year housing unit was built
5 Easily visible during visit High ceilings
6 Requires more effort to find out during visit Type of glass in windows
7 Requires visit + looking something up Age of heating equipment

Table 4.3: The features we define as extractable (i.e., “free”) appear in most of the listings on Rent Jungle.
Geographic features associated with the city, zip code, or state include climate zone and whether the area is
urban or rural, among others.

Feature Presence in Rent Jungle
Number of bedrooms 85%
Number of full bathrooms 57%
Studio apartment 85%
City or zip code 99%
State 100%

Experimental setup

We first divide RECS into training (90%) and testing (10%) sets. At training time, we use forward se-
lection (Tropp, 2004) on a randomly selected subset of 20% of the training data to choose 30 higher-cost
features to add to the free features for prediction. We use ten-fold cross validation on the remainder of the
training data to learn regression weights.

At test time, the goal is to make a prediction on a new test point and acquire costly features as needed
to improve the prediction. We use FOCUS on each test point to obtain features in the order that optimizes
the FOCUS objective (Equation 4.2).

Results

The regression model using FOCUS had significantly lower costs than the baseline for all values of λ except
0 with equivalent or better uncertainty (Table 4.1). For λ = .001, FOCUS yielded an average of 45% savings
in cost compared to the baseline as features were added to the prediction. As expected, FOCUS performed
worse in terms of error than the baseline did, since FOCUS optimizes prediction uncertainty, rather than
error, when determining a test-specific feature order. In contrast, the baseline was chosen by optimizing

1http://www.rentjungle.com
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prediction error on the training set. However, for this application in particular, it is more important that
predicted energy costs fall inside the window of uncertainty (which the definition of a prediction interval
ensures) than that they have an accurate dollar value (Hirschberg et al., 2011).

Conclusion

These results for energy prediction using RECS illustrate that the FOCUS method for adaptively selecting
features to acquire at test time can provide predictions of similar quality (in terms of certainty and accuracy)
at up to a 45% lower cost than a fixed order approach.

This application of predicting energy usage could assist prospective tenants in their decision making while
searching for a rental unit. A system that implements FOCUS for energy usage predictions could collect
information about a renter’s energy habits and the infrastructure of rental units they are considering. The
experiments using FOCUS in this application assumed that a user would be able to answer the next question
asked. However, in a real-world setting such as an energy prediction system for prospective tenants, a user
might not know the value of a feature. For example, a prospective tenant might be interested in getting an
energy usage estimate for a rental unit before visiting the unit. In this case, they could provide information
about their energy consumption habits (e.g., preferred indoor temperature) even if they could not yet provide
information about the rental infrastructure (e.g., number of windows). FOCUS can be extended to this
case by offering users a “don’t know” option for answering questions and removing unknown features from
consideration in later iterations.

Another consideration for such a system is context-dependent costs—in our experiments, we assume that
unit-related features are the most expensive since they may require a site visit. However, if a user is currently
viewing an apartment, it becomes much less expensive to ask them to gather information for that unit since
they are already on site. Finally, a real-world implementation of such a system where multiple people can
potentially gather information to be shared across multiple users offers the opportunity for crowdsourcing.
Unit-level information crowdsourced in this way would likely remain relevant for a fairly long time, since
feature values will change only when the landlord upgrades the property. Crowdsourced information could
be less expensive than in our current formulation of feature costs, but it is likely that not all units will be
equally visited and reported on. Incentivizing users to provide information for under-visited rental units
could be incorporated into the information-acquisition strategy.

4.4.5 Predicting student stress levels

Knowing a user’s stress level at an upcoming point in time allows for automatic suggestions or reminders to
help them manage stressful situations. We want to predict momentary stress reports from college students,
given an assortment of data such as demographic information, depression, sleep habits, and deadlines (Wang
et al., 2014). This task has redundant features with various costs. For example, we can ask a student to
fill out a survey to measure their anxiety, or we can use phone sensors to measure length of sleep. The first
method incurs the cost of interrupting the person (potentially at a bad time), the second the cost of draining
the phone battery. Our goal is to arrive at a “good” (low-uncertainty) prediction for stress levels without
exhausting too many resources by strategically selecting which features to obtain.

This application differs from the (simpler) personalized energy problem in the previous section in several
key ways: (1) We want to predict momentary stress levels, rather than a single value constant across time, as
in the energy prediction example. (2) We include a new type of cost: battery life. (3) We consider context-
dependent costs: for example, when a user’s phone is charging, turning on sensors is no longer prohibitively
expensive.

Background

Biologically meant as a mechanism for survival, stress can become harmful if sustained for long periods of
time (Moberg, 2000), with individual-level health and societal-level economic consequences (Kalia, 2002).
College students face a unique and significant type of stress, partly because of their transition between
dependent child and independent adult (e.g., (Ross, Niebling, & Heckert, 1999)).

It is possible to estimate stress from physiological and physical signals, like skin conductance, brain activ-
ity, and pupil dilation (e.g., (Sharma & Gedeon, 2012)). However, these physiological measurements often
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require unwieldy, task-specific instrumentation. However, more accessible signals that could be measured in
a lightweight fashion (from mobile phone data) are also associated with stress, like movement, heart rate,
sleep length, and social activity (e.g., (P. Ferreira, Sanches, Höök, & Jaensson, 2008; Hudd et al., 2000;
Misra & McKean, 2000)).

For example, Affective Health (P. Ferreira et al., 2008) senses bodily reactions (such as movement and
heart rate) and visualizes them in real time, giving users the opportunity to connect their activities to their
mental state. The StudentLife project (Wang et al., 2014) collected smartphone data from 48 graduate and
undergraduate students over the course of an academic term and included self-reported stress, which was
correlated with other factors such as GPA2. Participants in the Student Life project provided nearly 1600
self-reports of stress levels, with individuals providing between 3 and 269 responses. Each self-report of stress
is on a scale of 1 (least stressed) to 5 (most stressed). Figure 4.2 illustrates the number of stress reports and
average stress levels for each participant.
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Figure 4.2: StudentLife participants’ average stress (x axis and color) and number of stress reports (y axis)
over the ten-week data collection period.

The StudentLife dataset is our focus as well, but we restrict our analysis to predicting stress. Our goal is
to reduce the burden on users of answering experience sampling questions (the current approach to measuring
stress in the StudentLife project) by substituting other features when the impact on prediction would be
minimal. Thus, we use self-reports of stress at various time points as our response variable.

Cost metrics

The cost of acquiring features depends on battery drain (low for sensors like detecting light or if the phone
is charging and high for sensors like the accelerometer and microphone (e.g., (D. Ferreira, Kostakos, &
Dey, 2015; Lu et al., 2010))) and costly interruption of the user (asking for amount of sleep or upcoming
deadlines). Some of these costs are context-dependent : e.g., if a phone is charging, battery drain from
turning on mobile sensors is no longer an impediment to gathering those features. Table 4.4 summarizes

2The StudentLife dataset is available online at http://studentlife.cs.dartmouth.edu/dataset.html

http://studentlife.cs.dartmouth.edu/dataset.html
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the cost categories (Low-cost sensor measurements, more expensive High-cost sensor measurements, and the
most expensive interruption of the User to provide information) of each feature and which feature costs are
context-dependent.

Experimental setup

As in the energy application, we used linear regression to predict stress reports. However, rather than
using feature selection to choose a subset of features from a larger set, we used previous research findings to
extract features relevant to stress (e.g., (Hudd et al., 2000; Misra & McKean, 2000)), along with some current
context: time of day, sleep length, exercise length, length of time until next deadline, number of upcoming
deadlines, current activity (stationary or in motion), current audio (silent or noisy), if the phone is currently
in a dark environment, and if the phone is currently charging. We assume that time of day is freely available.
We assign three additional cost categories: lower-cost sensors (i.e., light detection and charging); higher-cost
sensors (i.e., accelerometer to measure activity and microphone to measure audio); and highest-cost user
interruption (to ask questions about lengths of sleep and exercise and upcoming deadlines).

We restricted our dataset to users who provided stress, deadline, and exercise information, resulting in
a total of 660 individual stress reports. We used 80% of these stress self-reports for training (i.e., learning
regression weights) and the remaining 20% for testing with FOCUS.

Results

The regression model confirms several well-known properties of stress. For example, exercise is negatively
correlated with stress, and number of deadlines is positively correlated with stress. Table 4.4 summarizes
the predictor learned on the training set. As with the prior dataset, our approach results in predictions
that are more certain (i.e., have narrower prediction interval widths) than the baseline, Fixed Selection,
while being similarly accurate. Stress prediction is shown with red lines in Figure 4.1 (which shows cost
improvement of FOCUS over baseline). Accuracy levels did not differ significantly for stress predictions for
any of the combinations of values shown in Figure 4.1. Prediction certainty decreased slightly for λ after
n = 5. On average, FOCUS yielded 23% savings in cost compared to the baseline as features were added to
the prediction.

Table 4.4: Information about the linear model to predict stress from sensed and user-provided data in
StudentLife. The middle columns explain the cost of features (how costly, and if a feature’s cost is context-
dependent). The rightmost columns give the regression weights of the features in the linear model for stress
prediction.

Feature
Cost Linear model

Cost category Context-dependent? Regression weight p-value
Intercept — — -0.5401 0.1471
Time of day Free No -0.0295 0.7950
Sleep User No 0.6187 0.2281
Exercise User No -0.1151 0.2912
Time to deadline User No -0.0401 0.8559
Number of deadlines User No 0.2625 0.1137
Currently moving? High-cost sensor Yes -0.0226 0.8868
Currently silent? High-cost sensor Yes 0.0479 0.6125
Currently dark? Low-cost sensor Yes -0.0864 0.2117
Currently charging? Low-cost sensor No 0.0492 0.5649

An important question is whether context-dependent feature costs have an impact on feature ordering. To
answer this, we divided the test data into stress reports that were given when the phone was charging (20% of
the reports) and those that were given when it was not plugged in. Feature order should differ in those cases,
since sensor feature cost is zero when the phone is charging. Figure 4.3 shows how frequently each feature was



4.4. APPLICATIONS AND EXPERIMENTS 29

chosen in each position, for the charging and noncharging contexts, when cost penalty parameter λ equals
1. The battery-draining sensors are in the last four columns. When the phone is charging (Figure 4.3a),
the sensed features tend to be added before the user-answered features and without regard for the relative
cost of acquiring sensed features (top right 4x4 corner). When the phone is not charging (Figure 4.3b),
features tend to be asked in order of increasing cost—most inexpensive sensed features first (top right 2x2
corner), followed by more expensive sensed features (middle 2x2 section), and finally by the most expensive
user-provided features.
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(a) When phone is not charging, sensed features are more
likely to be added in order of increasing cost (the low-
cost sensor features are added before the high-cost sensor
features, shown by the block structure in the bottom right
corner).
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(b) When the phone is charging, acquiring sensor features
is no longer expensive, and so sensed features (last four
columns) are requested more uniformly (bottom right cor-
ner) since there is no distinction between low- and high-
cost sensors.

Figure 4.3: Heatmaps showing how frequently features were chosen in each position, for the two cases for
context-dependent costs: when the phone is not charging and when it is charging. Color indicates frequency;
x axis indicates feature type; y axis represents feature order.

Conclusion

As in the energy prediction application, FOCUS also provided similar quality predictions for momentary
stress at lower cost than the fixed order baseline. The relative cost savings of FOCUS over Fixed Selection
for the stress prediction application (an average of 23%) are less than those in the energy prediction example
(an average of 45%). The lesser savings for stress prediction probably occur because the stress prediction
model has fewer features (9) and fewer cost categories (3) than the energy prediction model (30 features and
8 cost categories), so FOCUS has a greater variety of features with different utilities and costs to select from
for the energy prediction model.

A valuable result from the stress prediction FOCUS setup is the exploration of context-dependent costs,
where a feature’s cost can take on different values according to the context in which the feature is being
collected. Context-dependent costs are chosen differently in different settings, and FOCUS supports this
flexibility that reflects the actual test-time costs of features.

4.4.6 Identifying devices in photographs

Correctly identifying a device (e.g., printer, projector) in an image can support opportunistic mobile interac-
tion with that device by automatically installing the necessary drivers without forcing the user into a manual
setup. Real-time interaction speeds are crucial in this setting to make the opportunistic interaction seem
truly seamless, but often image classification algorithms require computing expensive (i.e., time-consuming)
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features that can slow down the classification. The device identification problem can take advantage of other,
less time-consuming features, like location and camera orientation to assist in prediction. User input (e.g.,
desired use of a device, such as printing or projecting) can also inform the prediction, at the cost of user
inconvenience and time.

We use a dataset of images, camera orientations, photo locations, and device capabilities (i.e., “can
print,” “can scan”, “can copy,” “can fax,” and “can laser-cut,” for this dataset) to classify new images as
particular devices (de Freitas et al., 2016). We illustrate the usefulness of FOCUS for this device classification
task with decision trees and show that using FOCUS to select a dynamic subset of features to acquire at
test time results in fewer expensive feature acquisitions while still correctly classifying devices.

Background

Multiple groups have considered how smartphones can be used to control physical devices, with a variety of
device identification and control mechanisms. Examples include laser pointers (e.g., (Beigl, 1999)), external
cameras (e.g., (Budde et al., 2013) with Kinect), and magnetometers (e.g., (Wu, Pan, Zhang, Li, & Wu,
2010)). For the case of smartphone-taken images, past work explores directly identifying appliances labeled
with fiducial markers (e.g., (Liu, McEvoy, Kimber, Chiu, & Zhou, 2006)) or using image recognition to
identify a pictured device (e.g., (T.-H. Chang & Li, 2011)). Snap-To-It (de Freitas et al., 2016) allows users
to interact with new devices by taking a picture with their phones and using both the content and context
of the image to identify the pictured device and connect to it.

Snap-To-It is our focus as well, and we also use image content and context (location and camera ori-
entation) to classify devices, as well as user input about intended device use. As in Snap-To-It, we use
the Scale-Invariant Feature Transform (SIFT) algorithm to extract features from images and compare SIFT
features from two images for matches—a higher number of matches means that the images are more simi-
lar (Lowe, 1999). It is possible to compute the SIFT features for the 90 reference images ahead of time, but
at prediction time, the SIFT features for the image the user takes must be calculated and then compared to
the reference images to check for the highest match. Our experiments show that calculating SIFT matches
for a new image, against precomputed SIFT features for all 90 reference images takes, on average, 2.80
seconds, which can destroy the “real-time” feel of a service like Snap-To-It. Asking for user input is also
expensive. Therefore, our goal is to give confident device predictions for images with few time-consuming
SIFT match operations and overall low inconvenience on the user.

Cost metrics

We assume that image location and orientation are freely available when the picture is taken. We assign
two additional cost categories for the remaining features: medium (SIFT matching) and high (asking the
user about their desired use for the device (e.g., “print,” “laser-cut”)). Although additional context could
be relevant (such as whether PowerPoint is running and a projector is in the room), the Snap-To-It dataset
did not include this information.

Experimental setup

The Snap-To-It dataset is pre-divided into “reference” and “testing” subsets. The reference dataset contains
five images for each of 18 appliances, taken from different angles. These appliances have printing, scanning,
copying, faxing, and laser-cutting capabilities. There are 108 images (six of each appliance) in the testing
set. We used the reference set to construct a decision tree for image classification. Then we used this decision
tree to classify test images, computing the SIFT matches and user questioning as determined to be necessary
with FOCUS.

Results

We first constructed a decision tree on the Snap-To-It reference set, using MATLAB’s implementation of the
Classification and Regression Tree (CART) algorithm. CART is a top-down algorithm that repeatedly splits
nodes of the tree (starting with all samples at the root), according to whichever binary split most decreases
the “mixture” among classes in the leaves, measured by the Gini impurity (Breiman, Friedman, Stone, &
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Olshen, 1984). The decision tree learned was able to optimally classify the reference set using only 7 of the
90 reference images, so we discarded the rest.

Device identification performance is shown with blue lines in Figure 4.1 (which shows cost improvement
of FOCUS over baseline). On average, FOCUS yielded 29% savings in cost compared to the baseline as
features were added to the prediction. In comparison to the baseline, accuracy was significantly worse only
at n = 10− 11 for λ = .001.

Conclusion

This application of FOCUS to real-time device identification illustrates that FOCUS improves the cost-
effectiveness of feature acquisition for classification (e.g., identifying a device in a photograph), as well as
regression (e.g., predicting energy consumption in Section 4.4.4 and stress in Section 4.4.5).

These experiments on Snap-To-It illustrate two valuable ways of cutting down time-consuming test-time
image comparisons. First, using a decision tree to classify instances reduced the potential image comparison
space from 90 to 7. de Freitas et al. (2016) used heuristics from image location and orientation to reduce
the space of potential matches, but an algorithmic approach can expand the impact of such filtering beyond
human-extractable patterns. Second, using test-time feature acquisition can further reduce the number of
costly feature acquisitions on test instances that can be confidently classified without obtaining all features.

4.5 Conclusion and future work

Making real-time, personalized predictions is an important opportunity for ubiquitous computing applica-
tions. However, gathering information from users at test time can be costly, especially when not all pieces of
information may be relevant for a particular user at a particular time. We have demonstrated the cost-saving
value of dynamically acquiring features for test-time prediction on a variety of applications and algorithms.
On all three validation datasets, FOCUS effectively lowered prediction costs (by reducing the number of
additional, costly features to acquire), without sacrificing prediction quality for most values of n and λ. The
FOCUS framework’s ability to support context-dependent costs (illustrated in the stress prediction example
on the StudentLife dataset in Section 4.4.5) allows for richer, more realistic interpretations of feature cost,
which may not be fixed for all test instances.

A limitation of our work is our simplistic measure of costs for all of our predictions. A more detailed
look at cost could account for real users’ perception of question cost (estimated via item response times or
response rates) or the exact battery drain of various sensors on the particular model of phone being used.

Furthermore, future work should explore how to connect the end-user experience to choosing a value
for the cost penalty λ. This tradeoff is likely application-specific. Additionally, individual users are more
or less inclined to provide information and comply with a computer system (Davis, Bagozzi, & Warshaw,
1989). Thus, determining a user-specific value for the tradeoff parameter λ would further personalize the
data collection process by ensuring that the utility-cost tradeoff is appropriate for an individual. This
personalization could happen by adapting the value of λ used as information is collected, based on additional
information collected about the user. For example, if a user responds to information requests much more
quickly than other users, that fast user may be experiencing less burden for each information request and
may be more likely to comply with more burdensome information requests. Thus, a lower value of λ (i.e.,
emphasizing item cost less in the FOCUS objective in Equation 4.2) could be used for that user.

Future work can also compare the relationship and performance of dynamic question ordering to existing
paradigms of learning to make decisions, such as reinforcement learning. In Chapter 2, we pointed out
that because reinforcement learning-based methods (e.g., Markov decision processes (MDPs)) for test-time
feature acquisition learn a policy for acquiring features at training time, it is not possible to incorporate
context-dependent costs, which are not known until data collection time, into the policy. For applications
without context-dependent costs, comparing DQO to an MDP could show how closely a DQO ordering
matches the MDP’s policy for acquiring information and the outcome trajectories (e.g., cost and prediction
quality as features are obtained) for the two approaches. For applications with context-dependent costs,
recent work on contextual MDPs (Hallak, Di Castro, & Mannor, 2015) could be used, where the different
scenarios that lead to different feature costs would be the context for the MDP.
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In the stress prediction example, we considered battery charging state (i.e., whether or not the phone
was currently charging) as a simple binary influencer for context-dependent costs (with cost set to 0 when
the phone was charging). However, more nuanced contexts could take into account the current percentage of
remaining battery power, the current drain on the battery based on what applications are currently running
(e.g., (D. Ferreira, Ferreira, Goncalves, Kostakos, & Dey, 2013; Min et al., 2015)), or the expected time-to-
next-charge (e.g., (Banerjee, Rahmati, Corner, Rollins, & Zhong, 2007; Ravi, Scott, Han, & Iftode, 2008)).
It would also make sense for this application to consider the influence of user context on the cost of asking
them a question. For example, if a user’s calendar indicates they are currently in a meeting, it may not be
a good time to acquire a feature that requires user input.

Similarly, some cost metrics might take into account whether features are “shared” for multiple needs.
For example, if someone answers a stress EMA multiple times in one day, the “day-level” features (e.g.,
time spent sleeping the previous night) can be shared across predictions. Lowering the cost of such a shared
feature (e.g., by dividing the total cost of the feature across all instances it is expected to be used) could lead
to its being selected for acquisition sooner. However, this manipulation of feature cost will need to balance
the benefit lowering the cost so much that the feature is asked earlier with the risk of that costly feature’s
earlier appearance prompting a user to stop providing information sooner than if that feature maintained
its higher cost in the FOCUS selection process.

Another aspect worth considering in test-time feature acquisition is feature confidence, especially when
the same value can be obtained through different methods, with different costs and accuracies. For example,
in the StudentLife case we used user-provided sleep lengths as one of the predictors for stress, but it is
also possible to estimate sleep length and quality by sensing. By incorporating feature confidence into the
selection criterion, we could decide whether we are confident “enough” about a value for a less costly feature
to avoid acquiring a more expensive estimation of the same value.

Finally, it might be interesting to explore user- and context-specific metrics for prediction quality. Thus,
the current needs of a user (in terms of accuracy) might be factored in to choices about which features are
worth acquiring.



Chapter 5

Questionnaire scoring

In this chapter, we consider the problem of asking questions to measure an underlying trait, such as a
personality trait, in a respondent. The final outcome of this problem (making a measurement for the latent
trait) is similar to that in the previous chapter (making a prediction), but the way in which these outputs are
generated differ for the two problem settings. In the prediction-making setting, a predictive model is learned
that relates features (input) to a target variable (output) from training data, using methods in statistics or
machine learning. Once this predictive model has been learned from training data, it can be used to make
a prediction from feature values for a new test sample. In contrast, in the questionnaire-scoring setting,
a formula for calculating a measurement from question responses is determined, using techniques from the
social sciences (e.g., (DeVellis, 2016)). Once this questionnaire-scoring formula has been determined, it
can be used to make a measurement from responses for a new individual. This chapter explores question
ordering for this questionnaire-scoring setting.

5.1 Introduction and background

A popular use of questionnaires is to summarize an individual’s responses into a single score, for a variety
of applications, such as psychology, education, and health. Often, this single score measures an underlying
trait, such as extraversion, intelligence, or cultural values. The questions used to measure the underlying
traits are typically repetitive, to ensure coverage of the trait. This fact can make the questionnaire to
measure the latent beliefs unnecessarily long, which discourages respondents from answering all questions
thoroughly. “Short form” questionnaires choose a subset of questions to ask respondents. This approach
uses the same reduced set of questions for each individual, but different questions may be more informative
for certain individuals than others. Dynamically choosing which question to ask next, based on previous
information gathered about the respondent, can reduce the length and burden of the survey in a way that
is personalized to the individual, while still gathering information about the relevant latent factors and
estimating appropriate scores. In this section, we present a dynamic question-ordering scheme for assigning
scores to respondents based on their responses to a questionnaire. Our approach is personalized to the
individual answering the questionnaire and trades off the utility of having an answer to a potential new
question with the cost of that question to select a cost-effective item.

We validate our approach for the application of assigning scores of cultural values to individuals. Our first
validation is on a dataset of responses to an international survey (World Values Survey Association, 2015),
in which we simulate question ordering on the complete dataset. Our second validation is a live deployment
of our question-ordering method on an online experimental platform (Reinecke & Gajos, 2015). For both
validation cases, we compare our dynamic question-ordering process to two baselines: a fixed-order long form
that asks all questions in the same order for all individuals and a short form that calculates scores with only
a subset of the full question set (all respondents receive the same subset of questions). These validations
demonstrate that a dynamic question-ordering procedure can obtain estimates of equal or better quality
at up to 40% burden reduction to respondents than a fixed-order long form. Additionally, the dynamic
procedure allows for the possibility of asking willing respondents more questions than a fixed short form,
thereby improving relative performance.

33
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5.1.1 Summary of related work

Past work in questionnaire scoring (covered in Section 2.2) has looked at scoring questionnaire responses
(e.g., (Digman, 1990)), reducing survey burden by creating short form questionnaires (e.g., (Stanton et al.,
2002)), and personalizing tests (which can be considered a type of questionnaire) to a respondent’s current
score estimate (e.g., (Weiss & Kingsbury, 1984)). However, there is a gap when it comes to cost-effective
burden reduction for questionnaire scoring. To fill this gap, we adapt the framework of Early et al. (2016)
since it iteratively trades off the utility, or usefulness, of the next feature to acquire against its cost. We
replace their prediction-specific utility metric with a utility metric that reflects how much a new question is
expected to contribute to the estimate of a questionnaire score.

Our dynamic question-ordering (DQO) approach to survey scoring is innovative compared to past work in
several ways. Compared to the prevalent burden-reducing approach of short form questionnaires, DQO allows
for a personalized short version for an individual. Personalized question sets often outperform a generic form
applied to all respondents. DQO also offers the possibility for a respondent to continue answering questions
beyond the short form, which improves the quality of the score estimate. Compared to adaptive testing
approaches, DQO considers the costs of individual questions when determining which questions to ask.
Questions are not always equally burdensome, and it may be more fruitful to ask a lower-cost question that
may be slightly less useful than a costlier question. DQO addresses this utility-cost tradeoff. Finally, our
DQO method for questionnaire scoring is lightweight in terms of data and computation requirements, in
contrast to item response theory-based adaptive testing approaches (De Ayala, 2013) and Markov decision
process-based approaches to feature ordering (Kakade, 2003).

Although DQO is derived from the framework presented by Early et al. (2016), this section makes
several contributions over that work. First, we are considering a new problem, questionnaire scoring rather
than prediction, in a new domain (calculation of cultural values). As a result, we use a new item utility
metric that relates to the application of questionnaire scoring (this chapter’s focus) rather than generic
prediction (the focus of (Early et al., 2016)). We use empirically determined costs for items based on
the behavior of questionnaire respondents rather than categorizing item costs a priori. Furthermore, we
compare the performance of the dynamically ordered questionnaire to that of a separately developed short
form, since the short form is the prevalent burden-reducing approach. Finally, we deploy a dynamically
ordered questionnaire and collect data from participants, rather than only simulating the item acquisition
process on existing datasets.

5.2 Survey, scales, and data

In this section, we first lay out the requirements for a survey that uses dynamic question ordering to obtain
low-cost scores. The remainder of this section focuses on an example of a survey that meets these require-
ments, which we later use to validate our dynamic question-ordering method. We introduce the World Values
Survey (WVS) and present the cultural values that this survey can measure. Finally, we develop an N -item
short form questionnaire that can measure the same values using only a subset of questions from the full
scale. We demonstrate that allowing each short form to be adapted to the individual (i.e., each short form
can select a different subset of N items for scale estimation) can achieve more accurate estimates of the
cultural values than the fixed short form questionnaire that uses the same N items from all individuals.

5.2.1 Requirements

Our method for dynamic question ordering for questionnaire scoring (presented in the following section) has
three main requirements of a survey.

First, it relies on historical data to learn distributions of answers. The number of historical data samples
that are necessary depends on the complexity of the response distributions. In our experiments, we found
that using as few as 250 training samples gave similar performance as using the full WVS dataset for training.
Although this number would be high for something like a user study, data of this sort are easily available
for many validated scales that are used in HCI research (e.g., datasets from online personality tests1). Such

1http://personality-testing.info/ rawdata/

http://personality-testing.info/_rawdata/
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data can also be collected inexpensively using websites like Mechanical Turk, depending on how specific the
study population is.

Second, the question selection criterion we use for this problem involves the contribution that a question
makes to the score calculation, so the method also requires that the survey have a score that can be calculated
from responses to questions. This scoring mechanism exists independently of the question-ordering procedure.
Typically, domain experts develop such scales and their scoring mechanisms (e.g., the User Burden Scale
developed by HCI researchers (Suh, Shahriaree, Hekler, & Kientz, 2016)), and we intentionally leave scale
development to these domain experts. The question selection criterion we use on the WVS dataset could
apply to other surveys for score calculations, with no adjustments.

Finally, while not a requirement specific to the dynamic question ordering, respondent motivation is
useful for any survey, to encourage participation.

We chose the World Values Survey (WVS) for illustration of our method due to (1) the availability of
a large historical set of responses, (2) the existence of previously defined and validated scales that used
WVS questions to measure individuals’ cultural values, and (3) the appeal of cultural values measurement to
motivate respondents to participate in our study (to receive feedback such as “Your values are most similar
to those of people living in Spain and least similar to those of people living in Norway.”).

5.2.2 About the World Values Survey

The World Values Survey (WVS), started in 1981 as the European Values Survey, collects people’s attitudes
and opinions about cultural values, across the globe (World Values Survey Association, 2015). The question-
naire is developed by an international team of social scientists and elicits respondents’ opinions on politics
(e.g., “Would you say this is a very/fairly good or fairly/very bad way of governing this country: Having
a strong leader who does not have to bother with parliament and elections?”), gender roles (e.g., “Do you
strongly agree or disagree: A university education is more important for a boy than a girl?”), religion (e.g.,
“Do you strongly agree or disagree: The only acceptable religion is my religion”), technology (e.g., “All
things considered, would you say the world is better off, or worse off, because of science and technology?”),
etc. Wave 6 of the WVS was conducted from 2010 to 2014 and gathered 90,350 responses from 60 countries.
Figure 5.1 shows how many responses there were from each country.

The full questionnaire has around 400 questions, but some questions are country-specific and not appli-
cable to or asked of all respondents. The data are available online in a comma-delimited ASCII file and in
the formats of several statistical packages 2.

5.2.3 Measuring cultural values on the World Values Survey

Sociologists, political scientists, economists, and other social scientists have studied the relationship between
economic development, democratic institutions, and cultural values (e.g., (Lipset, 1959; Dahl, 1997)). One
example comes from Inglehart and Welzel (Inglehart & Welzel, 2010; Welzel, 2013), who identified two
types of cultural values that distinguish societies from one another. They then developed two scales to
measure these cultural values using questions from the WVS. Sacred-vs.-Secular Values indicate to what
extent a respondent departs from “sacred authority” (religion, country, group norms). The secular values
scale comprises four sub-indices: defiance, agnosticism, relativism, and skepticism. Each sub-index has three
component questions. For example, the “agnosticism” sub-index asks a respondent how important religion
is in their life, how frequently they attend religious services, and whether or not they consider themselves
a religious person. Obedient-vs.-Emancipative Values measure how much a person supports freedom of
choice. Like the secular values scale, the emancipative values scale also has four three-item sub-indices:
autonomy, equality, choice, and voice. Both measures range from zero to one, where higher values mean
the person has stronger secular or emancipative values. Nations with high economic output and secular
societies (e.g., Sweden) tend to score higher on both scales than nations with lower economic output and
religious/traditional societies (e.g., Jordan). There is intra-society variation in individual scores that are
related to income, education, and gender, but these contributing factors are not as predictive as nationality
in characterizing an individual’s cultural values.

2www.worldvaluessurvey.org/WVSDocumentationWV6.jsp

www.worldvaluessurvey.org/WVSDocumentationWV6.jsp
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Figure 5.1: Most countries had around 1000–1500 responses to Wave 6 of the WVS. Three countries had
2500 or more responses: India (5659 responses), South Africa (3531), and Russia (2500). Three countries
had fewer than 1000 responses: Trinidad (999), Poland (966), and New Zealand (841).

Inglehart and Welzel (Inglehart & Welzel, 2010; Welzel, 2013) used the WVS to identify questions and
scaling formulas to measure secular values and emancipative values. Each score is calculated from responses
to 12 relevant items by converting each response to a value between 0 and 1 (e.g., “Strongly agree”→ 0,
“Agree”→ 0.33, “Disagree”→ 0.67, “Strongly disagree”→ 1; “Yes”→ 0, “No”→ 1) and then averaging these
converted responses. The exact process for converting question responses to scale values is detailed in the
appendix of Welzel’s book (Welzel, 2013).

In our experiments, we consider both the emancipative and the secular values scales from the WVS. That
is, we perform all our experiments twice, once on the 12 questions that are used to calculate the emancipative
values score and once on the 12 questions that are used for the secular values score.

5.3 Illustrating the benefit of adaptive forms

In this section, we show that allowing different respondents to answer different questions can achieve better
scores than a standard subset of questions that are asked of all respondents. We first develop a short
form questionnaire that asks all respondents the same subset of N questions. Short forms are the most
prevalent method for estimating scores with lower respondent burden (see related work in Section 2.2.2).
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Next, we compare the performance of this fixed short form to an optimal adaptive short form that also uses
N questions per respondent but allows a different subset of questions for each respondent (the subset of
questions that achieves the lowest-error score estimate for an individual). The optimal adaptive short form
achieves better-quality scores than the fixed short form 81 – 90% of the time (and equal-quality scores the
rest of the time). This result suggests that allowing individuals to answer different subsets of questions,
based on their previous answers, can outperform a single short form in which all respondents receive the
same subset of questions. This optimal adaptive short form requires knowing the answers to questions a
priori, which is clearly impossible for the practical case of gathering responses from an individual. Section 5.4
will develop a practical method for choosing one question at a time, without needing to know answers to
questions before those questions have been asked.

5.3.1 Developing a short form questionnaire

To identify a relevant and representative subset of questions for the short form condition, we did a factor anal-
ysis of the 12 questions in each scale of cultural values. Factor analysis aims to discover relationships among
variables by expressing them as linear combinations of a latent space. That is, observed values (questionnaire
responses, in our case) can be explained by the lower-dimensional space (the latent factors) (Bartholomew,
Steele, Galbraith, & Moustaki, 2008). For this reason, factor analysis is often used to find latent factors that
underlie a set of observations.

For the cultural values factor analysis, the models with four latent factors best reconstructed the item
correlations from the full set of questions on a held-out validation set, so we used the four-factor models
rather than a model with more or fewer items. Figure 5.2 is a heatmap of the factor weights for the factor
analyses of the two scales (one for secular values, one for emancipative values), where the color of each cell
indicates the weight of a question (y axis) on a latent factor (x axis). Warmer colors (red, orange, yellow)
indicate higher factor weights, meaning that a question heavily contributes to a factor. As Figure 5.2 shows,
the four-factor models make sense intuitively because questions from each sub-index (adjacent groups of
questions on the y axis) score highly on separate factors. Recall that, for the cultural values scales, each
sub-index consists of three related questions (such as the three questions about religion in a respondent’s life
for the agnosticism sub-index of the secular values scale). For the short form questionnaire, we retained the
most highly weighted question in each factor (which resulted in one question per sub-index) and discarded
the rest. Thus, the short form has four questions for each scale rather than the original 12.
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Figure 5.2: Factor weights for all questions in each scale. It makes intuitive sense that related questions
would rank highly on each factor.

5.3.2 Comparing a fixed short form to an adaptive short form

We then compared how well these four-item short forms could recreate the scores computed from the full
question sets (12 questions for each scale). We also compared the performance of this fixed short form to



38 CHAPTER 5. QUESTIONNAIRE SCORING

that of an optimal adaptive short form for each individual, to illustrate the potential benefit of adapting
questions to respondents. The fixed short form is fixed because it uses the same four items to compute a
score, for all individuals. In contrast, the optimal adaptive short form is adaptive because it allows any
subset of four items for each individual. It is optimal because it achieves the lowest error for each individual.
That is, it gives a lower bound on the error of a four-item scale. To find the optimal set of four items for
each respondent, we calculated scores for all possible subsets of four items and chose the subset that yielded
the score nearest the score obtained from the full set of items. This personalized process permits different
subsets of items to be chosen for each respondent, but it requires knowing the answers for all questions.

We performed these comparisons on 10% of the WVS dataset, for both emancipative and secular values
scales. Table 5.1 summarizes the performance of the fixed short form and the optimal adaptive short
form. The first two rows give the mean absolute errors (with standard deviations in parentheses) for the
emancipative and secular score estimates from both types of short forms. For both scales, the optimal
adaptive short form yields lower-error scores, with less variance in the error among the test set, than the
fixed short form. The final row of Table 5.1 presents how frequently the fixed short form (from the factor
analysis) resulted in the same score estimate as the optimal adaptive short form. The fixed short form is
optimal on only 9.5% and 18.9% of the test set. This frequency is higher than what would be expected by
chance performance of the fixed short form (since there are

(
12
4

)
= 495 potential four-item subsets from which

the optimal adaptive form can choose). However, these results illustrate the potential for improvement from
allowing individual respondents to use a personalized short form rather than imposing a generically accurate
short form on all respondents.

Emancipative Secular
Fixed short form 0.102 (0.076) 0.085 (0.070)
Optimal adaptive

short form
0.009 (0.013) 0.015 (0.014)

Percentage fixed short
form is optimal

9.53% 18.87%

Table 5.1: A four-item short form used for all individuals does not perform as well as an optimal adaptive
four-item short form that can be personalized to the individual. The first two rows show mean absolute
errors (the average of the absolute value of the difference between predicted scores and the true scores) and
standard deviations for both emancipative and secular values scales. The final row shows the fraction of the
time that the fixed short form achieved the same minimum error as the optimal adaptive short form.

5.4 A procedure for dynamically ordering survey questions

To take advantage of this performance improvement from personalizing the set of questions to the individual
and cost reduction from using fewer questions than the full scale, we present a method that sequentially
selects which question to ask a respondent next, depending on how useful that question is expected to be
to the subsequent score estimate and how much that question costs. This method is an instantiation of the
question-ordering framework in Chapter 3. For this application of questionnaire scoring, we want to quickly
identify a subset of questions that most influence the respondent’s score. Because the score is calculated as
an average of values in the same interval, we can assemble the most “influential” items by maximizing the
variance of the items. That is, we want to choose the next question that will maximize the variance of the
answers we already have and the answer to that question. We substitute item variance as the utility measure
in the DQO framework.

While different questions can influence the score in different ways, they also have different costs. At an
abstract level, “cost” can be defined as the chance that a question will not be answered—for this reason,
high-cost questions are risky to ask because they might not be answered and might even convince the
respondent to drop out of the survey. Two easily measurable metrics for question costs are item response
rates (how frequently the question is answered) and response times (how long it takes to answer the question).
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In addition to considering the information from previously provided information, our question-ordering
procedure will also take into account the costs of individual questions.

We adapt the test-time feature ordering framework from Early et al. (2016) to this questionnaire-scoring
setting. That feature ordering procedure sequentially chooses features to acquire by trading off the utility of
a feature, defined in terms of its usefulness to the prediction problem, with its cost. The measure of utility
used for the applications in that paper was prediction certainty: how likely a prediction is to coincide with
the true value. For this application of questionnaire scoring, we want to quickly identify a subset of questions
that most influence the respondent’s score. Because the score is calculated as an average of values in the
same interval, we can assemble the most “influential” items by maximizing the variance of the items. That
is, we want to choose the next question that will maximize the variance of the answers we already have and
the answer to that question. For example, if a respondent has answered several items that indicate a high
score value (e.g., for emancipative values, they have already answered that they strongly support gender
equality in politics and that they think abortion is always acceptable), it will be more “surprising” to get
a low-scoring answer (e.g., given their previous responses, they probably also think divorce is acceptable,
which wouldn’t change their emancipative score much). Thus, an answer with high variance compared to
the already given answers would most change the score (since the score is calculated as a simple average of
all responses). We substitute item variance as the utility measure in the FOCUS framework (Early et al.,
2016).

Because this approach takes previously provided information (i.e., already answered questions) into
account, the utility of a candidate question q involves not only the answer for that question but also the
answers to all previously answered questions. In the following notation, we will denote the answers from a
d-item questionnaire in the vector x ∈ Rd. We will let xq indicate the q-th item of x (i.e., the answer to
question q), and xK indexes the known items of x (i.e., answers to all previously asked questions).

Given a set of known question responses in xK, computing the actual utility of question q requires knowing
its answer before it has even been asked, which is not possible. Instead, we compute the expected value of
the utility by taking an average of all possible outcomes (the actual utility for each possible answer r ∈ Rq
to question q), weighted by the probability of those outcomes occurring. We can calculate the utility for
each potential answer r to question q by assuming the answer to q is r and calculating the utility using all
previously provided answers in xK, along with answer r to question q:

E[U(q)] =
∑
r∈Rq

p(xq = r)U(xK ∪ {r}), (5.1)

where p(xq = r) is the probability that the answer to question q is r and is calculated empirically from a
training set (i.e., p(xq = r) is the fraction of respondents in the training set that answered r to question
q), and the notation U(xK ∪ {r}) means calculating the utility of an answer set consisting of all the known
answers (in xK) and the possible answer r to question q. For example, one question on the emancipative
values scale is “Do you consider it especially important for children to learn independence at home?” A
“yes” answer means the respondent has a higher emancipative values score than a “no” answer (“yes” is
coded as 1, while “no” is coded as 0). When calculating the expected utility of this question, we would first
calculate the utility of the answered questions, along with a hypothetical “yes” answer to the independence
question, and weight this value by the fraction of “yes” answers in the training set. Next, we would calculate
the utility of the answered questions, along with a hypothetical “no” answer and weight this value by the
fraction of “no”s in the training set. The final expected value is the sum of these quantities, for the two
possible answers.

The final question selection rule balances maximizing the utility of asking a new question q with minimiz-
ing the cost cq of asking that new question, for all questions that have not yet been answered. Mathematically,
the question selection criterion is

q? = arg min
q/∈K

(−E[U(q)] + λcq), (5.2)

where q is a question, K indexes known questions (i.e., questions that have already been answered), E[U(q)]
is the expected utility of q, cq is the cost of q, and λ ∈ R is a tradeoff parameter. This tradeoff parameter λ
controls how much importance is given to question cost in the question selection: When λ = 0, cost is not
considered at all and Equation 3.1 reduces to maximizing question utility alone (this is equivalent to the
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case when all questions have equal costs). As λ increases, more weight is given to question cost until the
least expensive question will be chosen, regardless of its expected utility.

When we have no prior information about a respondent (i.e., no questions have been answered yet), we
randomly choose the initial question.

5.5 Determining question costs

Before this dynamic question-ordering algorithm can be implemented, we need to know the cost of each
question. Due to the importance of completion time in respondents’ decisions to answer a survey (Crawford,
Couper, & Lamias, 2001), we use response time as the measure of question cost. Because the WVS dataset
does not include timing information, we ran the survey on Amazon Mechanical Turk to gather response
times for each question. We recruited 100 Mechanical Turk workers to take a survey with all 24 cultural
values questions. Each question was asked on a separate page, and we tracked how long participants spent
on each page before submitting an answer. Our estimated completion time for the survey was five minutes,
and participants were compensated $1.00.

Ninety-nine respondents answered all questions. The remaining person answered 23 of the 24 questions.
To calculate average response times for each question, we first removed outliers, defined to be points that
were more than three standard deviations away from the mean response time for that question. We assume
that these unusually time-consuming instances were due to participants’ getting distracted, rather than
their taking up to 25 minutes to answer a single question. Excluding these outliers, the average total time
to answer all questions was 3.5 minutes (standard deviation (SD) 1.2 minutes). Average response times for
each question ranged from 5.4 seconds (SD 4.0) to 37.9 seconds (SD 35.0). Figure 5.3a plots response times
for the questions in the survey. These response times are correlated with the length of the question, as
Figure 5.3b illustrates: Longer questions typically take more time to read and answer. Tables B.2 and B.3
in Appendix B list the costs (item response times) for the questions for the secular and emancipative values
scales.
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(b) Question response times and question lengths.

Figure 5.3: Average response times in seconds for each question. Question response time is correlated with
question length.

We used the average question response times as question costs for our experiments on question ordering3.

3We also winsorized outliers, by setting response times above the 95th percentile for each question to the 95th percentile
value. This resulted in average times per question that were on average only 0.46 seconds different from the outlier removal
strategy and did not significantly change the results. In the remainder of the paper we report on results from excluding the
outliers when calculating the mean response times.
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5.6 Experiments

To illustrate the effectiveness of this dynamic question-ordering method for questionnaire scoring, we imple-
mented it on survey responses, both historical and live, and compared the performance of DQO to a standard
fixed-order long form and a standard short form. We first used a pre-collected international survey to simu-
late results of partial scoring under our question-ordering method. Then we deployed our questionnaire on
a platform for online studies that attracts participants across the world.

To test the benefit of our dynamic question-ordering approach, we compare four conditions for collecting
responses and calculating scores: (1) a fixed-order long form that asks all questions in a standardized order
and calculates the scores from these responses, (2) a short form that asks a subset of questions and calculates
scores from these responses, (3) a dynamically ordered form that asks all questions, but the order for each
respondent is determined via our DQO method, and (4) an adaptively ordered oracle that asks all questions
and selects the next question according to which will most reduce the error of the subsequent score (which
requires knowing the answers to all questions before they have been asked). For the conditions that ask all
questions, we can recover the score results at any point in the process, by calculating scores using all questions
asked up until that point. The fixed-order long form was determined by taking the order in which questions
were asked in the standard questionnaire form in the WVS and applying this order to all respondents. The
short form gives all respondents the same four-item subsets of questions determined by the factor analysis
to capture the most information in the individual responses (Section 5.3.1). The adaptively ordered oracle
can choose questions in a different order for each respondent. It is an oracle in the sense that, since it selects
the next question according to what will most reduce the actual error, it must know all of the answers to the
questions before selecting which one to acquire next. The oracle provides a lower bound on score error—it
is impossible for any iterative question selection scheme to achieve lower error than this oracle.

5.6.1 Performance metrics

The goal of our dynamic question-ordering approach is to quickly obtain representative answers that result
in accurate scores at low cost. To measure these quantities, we calculated three values at each point in the
question-asking process: the variance of responses provided so far, the error of the current score estimate
compared to the final score, and the total cost of all questions asked so far. We get a trajectory of the values
for each of these metrics at each point in the question-asking process (from when no questions have been
asked to when all questions have been asked), for each test sample. We then can take the mean and variance
of these metrics across all test samples to see how well the method generalizes across individuals. We can
consider the metrics at each point to reflect how well a question ordering would have done, if a respondent
broke off at that point in the survey.

Answer representativeness: Variance of responses

The variance of answers collected for an individual indicates how well the current set of answers captures
the variation in that individual’s values. Because we know the answer to a question once it has been
provided, we can determine the actual variance of the answers given up to that point—i.e., this metric is the
actual measure of utility for the chosen question q?. The question selection criterion (Equation 3.1) uses the
expected value of this quantity to choose a question to ask next, before its answer is known. Answer variance
is a heuristic for the diversity of a person’s score, and the question selection criterion seeks to maximize the
expected variance. Thus, we would expect actual variance to be high. However, a more important metric
for evaluating score quality is the error of the current estimate.

Score accuracy: Error of current score estimate

We define error as the absolute value of difference between the current estimate and the final estimate for the
score. Because the final estimate is the average of the complete set of responses that have all been converted
to values in the interval [0, 1], we can estimate scores from partial responses as the average of responses that
have been obtained up to that point. Thus, the error of an estimate yt obtained after t questions have been
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answered is

errt = |yt − y| =

∣∣∣∣∣∣1t
∑
q∈Kt

xq −
1

d

d∑
q=1

xq

∣∣∣∣∣∣ , (5.3)

where y is the true score, Kt indexes all questions that have been answered at point t, and there are d
total questions. The error for a single estimate is not guaranteed to decrease as more answers are provided
(consider, e.g., a three-question case with answer values 0, 0.5, and 1: The final estimate is 0.5, but both
question-ordering schemes starting with the 0.5 answer result in the sequence of errors 0, 0.5, 0). However,
due to the often related nature of answers (since the scale is designed to measure an individual’s values along
a single dimension), errors tend to decrease as questions are answered.

Cost of questions asked

The successive cost is defined as the sum of the costs of all questions asked up to the current time. Because
all costs (item response times) are positive, this metric increases as more questions are answered.

5.6.2 Questionnaire scoring and question ordering on the World Values Survey
dataset

We began by simulating the question-asking and -answering process on the pre-collected World Values
Survey dataset by hiding the answers to questions until they were selected in the question-ordering pro-
cess and “asked.” Once a question was “answered,” we unveiled its value. We used 90% of the 90,350
responses as training data, to calculate empirical probabilities of question responses and to determine the
fixed-order baseline. On the remaining 10% of the dataset, we considered responses individually and applied
our question-ordering procedure to choose questions to ask.

Figure 5.4 plots the error, cost, and variance as questions are answered for emancipative values (left
column) and secular values (right column), for our dynamically ordered questionnaire (DQO) with a variety
of cost penalties λ, the oracle, and the two baselines: the fixed-order long form and the four-item short form.
For the methods that use all questions (DQO, Oracle, and Fixed order), the lines meet once all 12 questions
have been answered because then all the methods have the same information.

The first row of Figure 5.4 shows that the dynamically ordered questionnaire tends to have lower error
than the fixed-order long form, particularly when few questions have been answered. The dynamically
ordered form reaches similar error as the four-question short form once four to six questions have been
answered. Beyond that number, the long forms usually have lower error than the short form since they are
gathering more information. The oracle almost always has the lowest error, due to its omniscient error-
minimizing selection rule. The oracle’s errors near the end of data collection sometimes exceed those of
the other methods due to the greedy, single-question lookahead, question acquisition rule of the oracle (see
Section 5.6.1 for an example).

The middle row of Figure 5.4 shows that, as expected, costs are lower when higher penalties λ are placed
on question cost in the DQO item selection rule. Particularly when cost is penalized, the dynamically
ordered questionnaire has lower cost than the short form, even when the dynamic form asked more than
four questions (the number in the short form). In the emancipative values calculation, the oracle has a
similar cost trajectory to the methods that do not strongly penalize question cost. In contrast, the oracle
for the secular values calculation has higher cost than the other question orderings. This illustrates that
error-reducing questions are sometimes more costly (as happens for the secular values), but not always so
(emancipative values).

The last row of Figure 5.4 illustrates the variance of items as questions are asked. Due to the selection
criterion of DQO, the items most expected to increase variance are chosen near the beginning, with overall
item variance decreasing as more questions are answered. Variance is highest when there is no or little
penalty on question cost, because then the variance-maximizing term dominates the question selection rule
in Equation 3.1. It makes sense that the oracle would have low variance, since the oracle sequentially selects
questions that result in low-error score estimates—the oracle first chooses the single question whose numeric
value is nearest the overall score (the mean of all answers) and continues to add questions that yield a mean
near the final score.
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These results on the simulated dataset illustrate the usefulness of DQO, in terms of score error and cost
to the respondent: DQO yields lower-error score estimates with few questions than the fixed-order long form,
while maintaining a lower cost, especially for higher cost penalties λ. Additionally, DQO allows for a willing
respondent to continue answering questions beyond the number in the short form, which lowers the score
estimate error compared to the short form. It remains to be seen how respondents will respond to a survey
with dynamically ordered questions, which is the setting our next experiment addresses.

5.7 Questionnaire scoring and question ordering:
Live on LabintheWild

To assess the effect of question ordering on survey respondents, we deployed a live implementation of a survey
with our dynamic question-ordering algorithm to a population of Internet users. Since the simulation results
showed that λ = 0.01 achieved lower-cost estimates with no decrease in performance, we used this value for
the cost tradeoff parameter in the deployment. Our deployment platform was LabintheWild (Reinecke &
Gajos, 2015), which recruits Internet users from across the world to complete studies. LabintheWild partic-
ipants are not financially compensated but instead receive personalized feedback based on their responses.

Our study attracted 853 participants from 67 unique countries. 48% of respondents were from the
United States. Table 5.2 summarizes participants’ countries. 50.2% of these participants were female, and
the average age was 28.4 (SD 11.8).

Country Number of responses Percentage
United States 431 48.3%
United Kingdom 53 5.9%
Canada 48 5.4%
Australia 45 5.0%
Finland 23 2.6%
Sweden 20 2.2%
Germany 19 2.1%
Netherlands 19 2.1%
Singapore 16 1.8%
France 12 1.3%
Spain 12 1.3%
Others 194 21.7%

Table 5.2: Participant countries for the LabintheWild deployment.

5.7.1 Implementing a dynamically ordered questionnaire

We implemented our dynamic question-ordering algorithm on the SurveyGizmo platform4. SurveyGizmo’s
“professional” subscription option offers a “custom scripting” feature, using php-like SurveyGizmo functions.
These functions support retrieving answers to questions, determining which questions have been answered,
and jumping to a specified page of a survey, among other functionality. Our implementation in SurveyGizmo
involved creating a script to run between pages. This script (1) pulls the responses to previously answered
questions, (2) calculates the expected value of each question that might be asked next (from Equation 5.1),
(3) combines the expected value of each feature with its cost and selects the optimal question to ask next
(Equation 3.1), and (4) jumps to the page of the next question. Each question was displayed on its own page
for two reasons: (1) to allow the jump-to-page SurveyGizmo function to achieve the question ordering and
(2) to allow us to calculate response times for individual questions. The full survey contains 24 questions
used for determining cultural values (12 questions for each of the secular and emancipative values scales)
and an additional 15 demographic questions.

4http://www.surveygizmo.com

http://www.surveygizmo.com
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On the final page of the questionnaire, we gave the respondent feedback on their cultural values scores,
in terms of what country they were most and least similar to, overall and for the secular and emancipative
values separately. We explained the meaning of the two scales and told respondents if they scored low, in
the middle, or high on each scale and gave an example answer they gave that contributed to their score on
that scale. Respondents also had an opportunity to give us feedback about their survey-taking experience
or thoughts on their results in a comment box on the last page.

5.7.2 Results of deploying the survey to LabintheWild

With the live deployment, we can analyze the performance trajectories as we did for the WVS (Section 5.6.2)
and also the feedback that participants gave after completing the questionnaire and receiving their cultural
values scores. Figure 5.5 plots the error, cost, and variance metrics for the LabintheWild results, for the
question orders given by DQO (with λ = 0.01 for the deployment) and the two baselines: the short form
and fixed-order long form. As in the previous section’s WVS simulation, DQO yields score estimates that
cost less than the fixed-order long forms while maintaining similar accuracy. Furthermore, DQO can achieve
lower error than the short form, if a respondent is willing to answer a few more questions than are in the
short form. While these overall trends hold across both WVS and LabintheWild validations, there are some
differences. In the WVS dataset, the emancipative values error trajectory (Figure 5.4a) was higher for the
fixed-order long form (dashed black line) than DQO (solid blue lines). In the LabintheWild dataset, the
fixed-order long form and DQO yield similar emancipative values error trajectories. This behavior may
be due to the difference in score distribution among responses in the WVS dataset (emancipative values:
0.41 ± 0.18, secular values: 0.36 ± 0.17) and responses in our LabintheWild dataset (emancipative values:
0.72±0.15, secular values: 0.61±0.17). These differences are caused by the overrepresentation of the United
States in our deployment.

On the final page of the survey, on which respondents received their results and explanations, there was
an optional free-response question where they could give feedback on their survey-taking experience. Most
respondents left this field blank. The 33 responses for feedback mostly fell into the following categories: 8
respondents commented that the survey was “interesting” or “great” (e.g., “Very interesting! I like that
you shared connections between viewpoints.”); 4 requested more information about scores (e.g., “I want to
know how my score compares to the country I live in...Also, maybe a little bit more about Slovenia, which
I had closest values for in both cases? I mean, there’s always google but right now it’s just a word and
it takes a little research to get the ‘taste’ of a country, you know?”); 5 clarified their answers (e.g., “I’m
a new international student who just arrived a new county for about 2 months. In the case, the question
asked which country I am currently living in is kinda biased, as I am not sure what to actually fill in.”); 5
suggested new questions (e.g., “I think there should be more questions about: 1. Family, how important are
your family and friends and how much do you trust family over friends. 2. Food, how important is food for
you, is there a better cook then your mother ? Do you rather eat out or stay in. 3. Social, do you hang out
with mainly boys, girls or a mix. Do you prefer to stay at home with friends or got out. 4. Man vs woman;
who do you think is more intelligent / more likely to give up / who do you trust more as for instance your
driving instructor?”); 3 reflected on how the questions could be interpreted and answered differently from
different people (e.g., “It seems that some of the questions are not ‘pure’ measures of cultural values—for
example, the faith in police force question would depend heavily on the actual PD where the person lives.
Two people with identical cultural values might answer very differently if one of them lives in a city with a
corrupt police department.”). Figure 5.6 shows the most common words in the feedback.
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(d) Secular values: Successive cost.
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(e) Emancipative values: Successive variance.
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(f) Secular values: Successive variance.

Figure 5.4: Results from simulation with the WVS dataset: Plots of successive error, cost, and variance as
questions are asked, for our dynamic question-ordering procedure (DQO, with several cost penalties λ) as
well as two baselines, a fixed-order long form and a short form that asks only four questions.
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(d) Secular values: Successive cost.
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(e) Emancipative values: Successive variance.
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(f) Secular values: Successive variance.

Figure 5.5: Results from live deployment on LabintheWild: Plots of successive error, cost, and variance
as questions are asked, for our dynamic question-ordering procedure (DQO) as well as two baselines, a
fixed-order long form and a short form that asks only four questions.
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Figure 5.6: A word cloud of the most common words participants used in their responses to an optional
free-text field for survey feedback.

Respondents gave no indication that they found the dynamically ordered form confusing or disorienting.
While the questionnaire did have related and similar questions that would have been presenting sequentially
in a fixed-order form (e.g., asking all religion-related questions in a row), it is possible that these questions had
low enough cognitive burden (Tourangeau, 1984) that it did not trouble participants to skip among unrelated
questions. This aspect of the feasibility of dynamic question ordering is likely application-dependent—some
questionnaires have sections of questions that are very related and easier to answer if such questions are
grouped together.

5.8 Conclusion and future work

Being able to quickly understand users’ questionnaire responses, with low burden on users, is important for
researchers who want to understand participants’ attitudes and values. In this chapter, we demonstrated that,
unlike previous approaches that try to decrease cost uniformly across all participants (by asking everyone the
same subset of questions in a short form), allowing the subset of questions to be adapted to the individual
can improve performance. We developed a method that leverages previously provided information from a
user to select which question is best to ask next, trading off the expected usefulness of that question against
its cost. This method requires a predetermined mechanism to calculate scores from responses and a relatively
small set of training data that captures distributions of responses.

Our experimental results illustrate the benefits of DQO in several ways. First, allowing each respon-
dent to receive a personalized set of questions yields improvement over using the same subset of questions
for all respondents, as is the approach of using short forms. Our experiments comparing the score perfor-
mance of standard N -item short forms to personalized N -item short forms found that the personalized form
outperforms the uniform short form for up to 90% of respondents (Section 5.3). Because this comparison
required considering all possible subsets of N items to determine the “optimal” adaptive short form, we
developed a feasible heuristic for iteratively selecting questions to ask. With this iterative approach, it is not
necessary to know the entire budget (e.g., number of questions, amount of burden) upfront. Our question
selection rule (Equation 3.1) is based on the intuition that the most useful question to ask next is the one
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that is likely to change the subsequent score. This question selection rule also incorporates a penalty on
question cost, since it may be more beneficial to ask a question that has lower cost but is (slightly) less
useful than a costlier question (especially if that costlier question might prompt the respondent to break off
from the questionnaire). In the simulated experiments on 9,035 responses from the World Values Survey
dataset (Section 5.6.2), we found that DQO has lower error (on average, DQO outperforms fixed-order long
forms until 50-70% of questions have been asked) and lower cost (up to a 40% cost reduction, depending
on cost parameter λ) than the fixed-order long forms. A live deployment that gathered 853 responses on
the LabintheWild platform yielded similar results for DQO outperforming the baseline of the fixed-order
long form (Section 5.7.2). Furthermore, the dynamic procedure allows the questionnaire administrator to
continue asking questions beyond a short form’s capacity, when a respondent is willing to spend more time
or effort answering questions, resulting in improved score estimates. These results are likely to be even more
pronounced in longer surveys, where breakoff is more likely (Peytchev, 2009).

The DQO approach presented here can be widely applied to any questionnaire that results in a score
for each respondent (cultural values, in this application). The method requires historical data to learn
distributions of question responses. We found that as few as 250 training samples achieved similar perfor-
mance as using 90% of the WVS dataset (approximately 80,000 responses) to learn these distributions. In
the case where precollected training data are not available, it would be relatively inexpensive to collect a
sufficient number of responses using a crowdworking platform like Mechanical Turk. DQO is ideal for the
questionnaire-scoring case where the accuracy of the short form is too low and the cost of the long form
is too high. If respondents answer all questions anyway, the order in which those questions are asked does
not matter (except for the case where the order of questions affects how respondents interpret and answer
questions (McFarland, 1981)).

In this application, we validated our dynamic question-ordering approach on a survey with two scales
to calculate two types of cultural values of the respondent: secular and emancipative values. We treated
these two scales individually, first dynamically ordering the questions associated with the first scale and then
dynamically ordering the questions associated with the second scale. However, a more nuanced approach for
multiple-scale questionnaires could choose items from the different scales in tandem, rather than doing one
scale at a time. Often, scales in the same survey are related, and we can take advantage of these relationships
to achieve even better cost performance. We could incorporate multiple scales into the item selection rule
by learning relationships between scores and all questions (not just the questions that explicitly define each
score) and modifying the utility function so that each question’s utility includes its effect on all scales.
Incorporating this additional information will further reduce the burden on respondents (since all questions
can influence all scores), particularly for longer dynamically ordered questionnaires compared to the longer
fixed orders.

A topic for additional personalization is considering respondent-specific values for the cost tradeoff pa-
rameter λ. Questionnaire burden is a subjective phenomenon (e.g., (Bradburn, 1978; Yu et al., 2015)),
and some individuals are more willing than others to spend time and effort answering questions. Adapting
the value of λ to an individual, based on their behavior in answering the first few questions or background
information (e.g., demographics) that is prior knowledge, can ensure that the utility-cost tradeoff makes
sense for the individual who is providing information.

Another extension is to use prior information to initialize the first question to ask, rather than randomly
selecting it (as we did). For example, an online survey could identify a respondent’s location (country or
region) from their IP address and initially select a question that is most likely to differentiate respondents
in that country. Furthermore, if the questionnaire is part of a series (since many online research sites offer
multiple questionnaires, e.g., (Reinecke & Gajos, 2015)), prior information from a respondent’s previous
surveys can inform the choice of first question.

Additionally, we can consider information that can be automatically collected while the user is taking
the survey, along with the information the user provides. For example, paradata collected as the respondent
answers an online survey (e.g., time spent on page, mouse clicks (Kaczmirek, 2008)) can be used to model
user engagement, with survey action taken to increase engagement and response rates (M. P. Couper et al.,
2010).
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5.9 Summary: Question ordering for single-output data collection

This chapter and the previous chapter explored ways to perform adaptive data collection when the purpose
of collecting data is to make a single assessment from the collected data. First, in Chapter 4, we considered
prediction in the classical machine learning sense, where adaptive data collection is performed when gathering
feature values, to make a prediction on a new test point. Then, in this chapter, we considered questionnaire
scoring, where adaptive data collection is performed when asking a respondent questions, to measure a latent
trait. In both cases, we considered the mechanism for prediction-making to be fixed before the adaptive
collection procedure began—i.e., the predictive model and questionnaire-scoring rules had already been
determined from preexisting, complete training data. We then sequentially used the impact a new feature or
question would have on the final assessment, trading off this utility against the cost of each potential piece of
information, to determine which piece of information to acquire next. In the following chapter we consider
how to perform adaptive data collection when there is no single prediction or measurement to be made as
the goal of the data collection.
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Chapter 6

Data collection-focused question
ordering

In the previous two chapters, the goal was to gather information for making predictions and we saw that not
all information was necessary to make a good-quality prediction. Therefore, dynamically ordering features
to acquire could move the most useful (in terms of high utility and low cost) to the beginning of data
collection and not expend the resources to acquire all features. In contrast, surveys are typically concerned
with gathering complete information from a population. However, survey respondents are not always willing
to take the time or effort to fill out complete surveys, as evidenced by declining response rates (e.g., (Porter,
2004; Shih & Fan, 2008)) and breakoffs partway through surveys (e.g., (Horwitz, Tancreto, Zelenak, &
Davis, 2012)). Thus, there are two scenarios for survey-focused dynamic question ordering that we consider:
(1) modeling user engagement and ordering questions in ways that will keep users motivated to complete the
survey, and (2) collecting the information that most characterizes the respondent so that if they do drop out
of the survey, imputed values for their unanswered questions will be accurate. Furthermore, some surveys do
have prediction goals (e.g., predicting if a respondent is in the labor force, for the employment rate estimate
in the Current Population Survey (U.S. Bureau of the Census, 2006)), so the prediction-guided question
ordering from the previous chapter could also apply to these scenarios.

Any statistics-based approach to dynamic question ordering of the sort we consider here would seem to
run counter to traditional arguments that questionnaires should have a fixed structure for all respondents
and when the same quantities, e.g., unemployment or poverty, are measured by surveys over time. Just over
thirty years ago, the cognitive aspects of survey methodology (CASM) movement, e.g., see (Jabine, Straf,
Tanur, & Tourangeau, 1984; Sudman et al., 1996; Tanur, 1992), made the argument that this traditional
approach to survey design shackled respondents and often prevented them from providing the very answers
that the survey methodologists sought for their questions, e.g., see (Suchman & Jordan, 1990; Tanur, 1992).
We believe our approach reopens the door to the arguments raised by that movement, but in a very different
manner, and somehow survey statisticians will ultimately need to blend the lessons from the CASM movement
with the needs for cost-driven dynamic ordering. One important problem is that order effects (Sudman et al.,
1996) can influence how people interpret and answer certain questions, leading to inconsistent data across
respondents who received questions in different orders. However, not all questions are susceptible to order
effects, and it is possible to constrain dynamically ordered questionnaires to respect relative orderings among
sensitive questions.

In this chapter, we consider two large-scale surveys conducted by the U.S. Census Bureau: the Ameri-
can Community Survey (ACS) and the Survey of Income and Program Participation (SIPP). Because such
surveys have multiple goals and complex designs, we begin by looking at each aspect of dynamic question
ordering separately: ordering questions to predict a survey outcome, ordering questions to improve impu-
tation quality of unanswered questions, and ordering questions to improve user engagement and response
rates.

51
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6.1 Moving from population-level adaptation to respondent-level
adaptation

Typical adaptive survey designs are adaptive at the population level—they choose what survey protocol to
use between phases of data collection (e.g., (Groves & Heeringa, 2006)); they decide how much effort to
expend on making contact for a survey (e.g., (Beaumont et al., 2014; Calinescu, Bhulai, & Schouten, 2013)),
sometimes using paradata about contact attempts (e.g., (M. Couper & Wagner, 2012; Lundquist & Särndal,
2013; Sauermann & Roach, 2013)); they assign subsamples to fixed subsets of questions (e.g., (Gonzalez &
Eltinge, 2008)). Dynamically ordering questions for a single respondent, based on their previously answered
questions, can also be considered an adaptive survey design. It is this aspect of respondent-level adaptation
that we are studying.

As in the previous chapter on predicted-guided question ordering, we consider iteratively asking questions
to a single respondent, trading off how useful the question is against how costly its answer is to obtain.
Whereas in Chapter 4, a feature’s utility reflected how useful it was to the subsequent prediction, here
we define a question’s utility in terms of how it influences the respondent’s engagement or the quality of
imputations for unknown values.

6.1.1 Using paradata to model user engagement

Information collected about the survey process, known as paradata (originally “process data” (M. P. Couper,
1998)), can indicate a respondent’s engagement with and understanding of the questionnaire they are an-
swering. Paradata can include interviewer-collected data like response times, changing answers, returning to
earlier questions in the survey, clicking help buttons, etc. Past work in paradata analysis has focused on how
paradata reveal respondents’ survey-taking process, how paradata can identify usability issues in surveys,
and how paradata can inform population-level adaptive design. For example, Bassili and Fletcher (1991)
andHeerwegh (2003) showed that participants who take longer to answer questions about attitudes also tend
to change their minds when presented with counterarguments to their original response. They conclude that
people with less attitude stability need more time to come up with an answer than people who are already
confident in their attitudes. Paradata about users’ interactions can also reveal that a survey instrument is
not designed well, as Healey (2007) illustrated by finding that drop-down menus in online surveys increased
item response times; question length (e.g., (Bassili & Scott, 1996; Yan & Tourangeau, 2008)) and com-
plexity (e.g., (Wagner-Menghin, 2002; Yan & Tourangeau, 2008)) also increase response times. Paradata
have been used for adaptive survey design too; in particular, for predicting the likelihood that a unit will
be interviewed on a next contact attempt (Groves & Heeringa, 2006; M. Couper & Wagner, 2012) and for
analyzing differences in population estimates as contacts are made (Lundquist & Särndal, 2013).

6.2 Application to the Survey of Income and Program Participa-
tion

Our first application, on the Survey of Income and Program Participation (SIPP), considers ordering ques-
tions to predict a survey outcome and ordering questions to improve imputation quality of unanswered
questions. Conducted by the U.S. Census Bureau, SIPP collects data on income, employment, and social
program participation and eligibility from households (U.S. Bureau of the Census, 2014b). The SIPP is de-
signed as a longitudinal national panel survey, where each panel is a representative sample of 14,000 to 52,000
households, contacted yearly for three to five consecutive years. Each household interview is conducted in
person, via a computer-assisted personal interviewing (CAPI) instrument, and aims to get self-reports from
all household members at least 15 years old. In addition to demographic information, interviews ask respon-
dents for their participation in various social programs, financial situation, and employment status, in the
previous calendar year. The chief goal of SIPP is to understand household program eligibility and partici-
pation and to assess the effectiveness of social programs like Supplemental Security Income, Supplemental
Nutrition Assistance Program, Temporary Assistance for Needy Families, and Medicaid. Using participation
in each program of interest as the prediction of interest could guide a DQO approach.
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The unique design of SIPP allows us to explore four facets of our DQO framework. First, we determine
individual question orderings to optimize response quality (survey completion and imputation quality).
Second, we determine question orderings to optimize the quality of predictions of respondents’ participation
in each social program of interest. It is very likely that not all questions are necessary to predict participation,
and DQO could reduce respondent burden (interview length) while still collecting the information the Census
Bureau needs. Third, we consider the effect of this respondent-level adaptation on population-level estimates.
Finally, we use the longitudinal nature of SIPP: data from prior interviews can be used as “background”
information in subsequent interviews.

6.2.1 Data

In our experiments, we use the SIPP Synthetic Beta (SSB), a synthetic dataset created by first multiply-
imputing missing values in the SIPP Gold Standard File and then multiply-imputing replacement values for
actual responses to preserve privacy (Benedetto, Stinson, & Abowd, 2013). The SSB combines SIPP data
with administrative records from sources like the Internal Revenue Service. These data from administrative
records are not asked of a respondent and can be considered initializing information when selecting questions
to ask. A downside of the SSB is that household structure is not preserved—each respondent is treated as a
separate entity. Though there are spouse links for female-male married couples, this information is insufficient
to recover a household structure which may include same-sex married couples, unmarried partners, children,
other relatives, and other household members.

Defining question costs

In this case study, we use item nonresponse rates as a proxy for question burden. We calculate item
nonresponse rates as the fraction of respondents for whom a value to a particular survey item had to be
imputed, using publicly available SIPP data1. We consider data from administrative records in the SSB to
be “free,” since no household had to answer questions to get those values.

6.2.2 Prediction-guided question ordering

Here we consider the scenario in which a user is providing information to receive a personalized prediction
based on the information they provide. We assume a predictive model has already been developed from a
training set, and we want to make a prediction on a new test point. In this setting, it is likely that not all
features will be needed to make a reasonable prediction. Therefore, we want to ask the most cost-effective set
of questions that will maximize prediction quality while minimizing collection costs. When features are being
collected to refine a prediction, a natural utility metric to use for test-time feature selection (Equation 3.1) is
one that reflects how an additional feature f contributes to the quality of the subsequent prediction. Here we
define the utility of a feature to be the certainty of the subsequent prediction made using all known features
plus the newly acquired feature.

For this setting in the SSB, we took a respondent’s participation in a program (food stamps) as the
prediction of interest to guide the selection of questions for a particular individual. We compared trajectories
of prediction cost (sum of the costs of all questions asked up to a point) and prediction error (fraction of test
samples that were incorrectly predicted, based on the information acquired up to that point) for DQO and a
fixed-order baseline that acquired features in the order in which questions are asked in the SIPP interview.
Figure 6.1 shows that DQO yields lower-cost predictions at similar accuracy to the fixed-order baseline.

6.2.3 Entropy-based question ordering

A prediction-guided approach to dynamic question ordering, as in Section 4, is only reasonable when the
goal of information gathering is to make a prediction. Now we consider how to dynamically order questions
in a way that most characterizes the respondent so that if they do drop out of the survey, imputed values for
their unanswered questions will be accurate. To measure the amount of information expected to be contained
in answers to potential questions that might be asked next, we use conditional entropy as the measure of

1http://thedataweb.rm.census.gov/ftp/sipp ftp.html

http://thedataweb.rm.census.gov/ftp/sipp_ftp.html
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(a) As the cost penalty λ increases, the cost savings from
DQO increase, compared to the fixed-order baseline.

(b) DQO has similar prediction error as the fixed-order
baseline.

Figure 6.1: Charts showing impact on cost and prediction error (y axis) of λ and number of features, for
DQO (solid lines) and the fixed-order baseline (dashed lines).

utility. Entropy measures the information in a random variable X. If this random variable can take on one
of D possible values, its entropy is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (6.1)

Conditional entropy measures the information in a random variable Y , when the value of another variable
X is already known:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x). (6.2)

In the experiments in this section, we used conditional entropy to measure question utility for the DQO
question selection rule (Equation 3.1). We ordered questions and calculated performance metrics for the
DQO-ordered questions with a variety of cost penalties λ, a random order selected for each respondent, and
a fixed-order baseline according to the order in which these questions are asked in the SIPP interview. At
each point in the question-asking process, we calculated the cost and imputation error. Cost is defined as
the sum of the costs (nonresponse rates) for all questions asked thus far. Imputation error is defined as
the number of incorrect imputed values for yet-unanswered questions. We imputed values for unanswered
questions by using k-nearest neighbors (k-NN) to find the points in the training dataset nearest to the current
respondent and predicting unknown values as the mode of those values among the nearest neighbors. This
is not the method used for imputation in the SIPP (U.S. Bureau of the Census, 2014b).

Figures 6.2 and 6.3 show the costs (Fig. 6.2a and 6.3a) and imputation errors (Fig. 6.2b and 6.3b) as
questions are asked in the SIPP for the DQO-ordered sets, a random question ordering, and the fixed-order
baseline.

Long-term survey collection

The SIPP is a longitudinal survey, with respondents being interviewed over a period of four years. The
previous section considered only a single time point in the interview. In this section, we look at ordering
questions asked of a respondent throughout their entire participation in the SIPP.
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(a) As the cost penalty λ increases, the cost savings from
DQO increase, compared to the fixed-order baseline.

(b) DQO has lower imputation error than the fixed-order
baseline.

Figure 6.2: Charts showing impact on cost and imputation error (y axis) of λ and number of features, for
DQO (solid lines) and the fixed-order baseline (dashed lines).

(a) As the cost penalty λ increases, the cost savings from
DQO increase, compared to the fixed-order baseline.

(b) DQO has lower imputation error than the fixed-order
baseline.

Figure 6.3: (Same plot as Figure 6.2, but with error bars) Charts showing impact on cost and imputation
error (y axis) of λ and number of features, for DQO (solid lines) and the fixed-order baseline (dashed lines).

Simulating breakoff in survey collection

Next, we simulated survey breakoff at the presentation of each question by randomly choosing if a respondent
would “break off” from the survey, with probability according to the cost of the current question. If the
person did break off, their responses to that question and all remaining questions would be left blank.

Figure 6.5 plots the cost (Fig. 6.5a) and imputation error (Fig. 6.5b) trajectories for DQO with several
cost penalties λ, the random ordering for each respondent, and the fixed-order baseline. DQO consistently
attains lower imputation error than the fixed-order baseline and the random ordering. The imputation error is
similar for all DQO orderings, regardless of the cost penalty. The cost penalty does affect the cost trajectory,
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(a) DQO is similarly or less costly than the fixed-order
baseline.

(b) DQO has lower imputation error than the fixed-order
baseline.

Figure 6.4: Charts showing impact on cost and imputation error (y axis) of λ and number of features, for
DQO (solid lines) and the fixed-order baseline (dashed lines).

with higher cost penalties resulting in lower cost trajectories. Figure 6.6 re-plots these results, with more
focus given to breakoff rates when each number of questions has been asked: the color of line segments in
the plot represents when at least 75% (green), 50-75% (blue), and fewer than 50% (red) of respondents have
answered that number of questions. DQO consistently attains lower imputation error than the fixed-order
baseline and the random ordering. The imputation error is similar for all DQO orderings, regardless of cost
penalty. The cost penalty does affect the cost trajectory, with higher cost penalties resulting in lower cost
trajectories.

(a) As the cost penalty λ increases, the cost savings from
DQO increase, compared to the fixed-order baseline.

(b) DQO has lower imputation error than the fixed-order
baseline.

Figure 6.5: Charts showing impact on cost and imputation error (y axis) of λ and number of features, for
DQO (circles) and the fixed-order baseline (squares). The size of each marker reflects how many respondents
reached that far in the survey.
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(a) As the cost penalty λ increases, the cost savings from
DQO increase, compared to the fixed-order baseline.

(b) DQO has lower imputation error than the fixed-order
baseline.

Figure 6.6: Charts showing impact on cost and imputation error (y axis) of λ and number of features, for
DQO (solid lines) and the fixed-order baseline (dashed line). The color of each segment reflects how many
respondents reached that far in the survey: at least 75% answered questions in green, 50-75% answered
questions in blue, and fewer than 50% answered questions in red.

Figure 6.7 illustrates the nonresponse rates for the different methods: Figure 6.7a plots the average
nonresponse rate for each question (fraction of respondents who answered each question before dropping
out), and Figure 6.7b plots the average nonresponse rate for each respondent (fraction of questions each
respondent answered before dropping out). For both types of nonresponse, DQO performs similarly to the
fixed-order baseline when λ = 0, slightly worse when λ = 0.1, 1.0, and better when λ = 10. Figure 6.8 shows
individual item nonresponse rates, compared to the fixed-order baseline. This plot illustrates how DQO can
achieve lower nonresponse (i.e., higher values in the plot of “baseline item nonresponse rate” − “DQO item
nonresponse rate”) for later items in the survey, since those items might be asked earlier and therefore are
less likely to suffer from dropout.

Figure 6.9 plots the final imputation error for each method. Final imputation error is the total number
of missing values that were incorrectly imputed (via k-NN) for a respondent once that respondent stops
providing answers. For this metric, all variants of DQO outperform the fixed-order baseline. Even though
some of the DQO orderings have higher nonresponse rates than the fixed-order baseline (Figure 6.7), DQO
tends to choose the most informative questions near the beginning so imputation quality does not suffer even
when a respondent drops out before completing the survey.

Bias and variance of survey estimates To compare performance in terms of the quality of final survey
estimates (e.g., population means), we set the DQO orderings and the fixed orderings to have 16% breakoff
rates (the average breakoff rate for web surveys (Manfreda & Vehovar, 2002)). We ran multiple imputation to
get multiple sets of imputations for the values missing due to dropout (Rubin, 2004), using the SAS multiple
imputation procedure with a fully conditional specification (Van Buuren, Brand, Groothuis-Oudshoorn,
& Rubin, 2006) to model each variable to be imputed. The k-NN-based imputation error metric used
earlier in this section measured how closely imputed values for yet-unanswered questions from one individual
respondent matched the true values for that respondent. In contrast, this multiple imputation approach
captures the uncertainty associated with each variable (across the multiple sets of imputations) and therefore
can gives better estimates at the population level. After multiply imputing values for the dropout cases, we
calculated the bias and variance of the resulting survey estimates. Table 6.1 shows that the estimates from
DQO have bias and variance lower than or similar to those from the standard SIPP order. However, the
differences between the DQO and SIPP orders are not statistically significantly different.



58 CHAPTER 6. DATA COLLECTION-FOCUSED QUESTION ORDERING

(a) The cost penalty λ affects the item nonresponse rates
in DQO.

(b) The cost penalty λ also affects the respondent nonre-
sponse rates in DQO.

Figure 6.7: Plots showing nonresponse rates for each question (fraction of respondents who did not answer a
question, due to dropout) and each respondent (fraction of questions each respondent did not answer when
they broke off): lower values are better.

Table 6.1: Bias and variance of final survey estimates for SIPP order and DQO orders. Bias was calculated
as the (absolute value of the) difference between the calculated survey estimates (which include imputed
values) and the true values (from the complete data). Variance was calculated as the variance of survey
estimates, across the multiply-imputed datasets. For both metrics, means and standard errors are given
across the survey variables.

Method Bias Variance
SIPP order 0.063± 0.194 0.013± 0.056
DQO, λ = 0 0.034± 0.111 0.005± 0.023
DQO, λ = 0.1 0.047± 0.103 0.007± 0.031
DQO, λ = 1.0 0.051± 0.146 0.012± 0.054
DQO, λ = 10 0.024± 0.063 0.001± 0.004

6.2.4 Limitations

The SIPP Synthetic Beta (SSB) dataset has several downsides. First, household structure is not pre-
served—each respondent is treated as a separate entity. Though there are spouse links for female-male
married couples, this information is insufficient to recover a household structure which may include same-sex
married couples, unmarried partners, children, other relatives, and other household members. Second, be-
cause the SSB is synthetic and fully imputed, it does not have any information on when respondents break
off from the survey. However, since we simulated breakoff as proportional to question cost (measured as
item nonresponse rate), we expect our breakoff-related results to hold for the case of known breakoff when
breakoff probability is the cost metric.

6.2.5 Conclusion

We can capitalize on the relationships among survey responses when dynamically ordering questions to collect
the most informative data first, so that if a respondent drops out before finishing the survey, imputation
quality will be good. Additionally, when such a method for dynamic question ordering takes breakoff
probability into account when ordering questions, breakoffs will be delayed until after the most relevant
information is collected. Although this approach means that certain items are more likely to be unanswered
(i.e., high-cost items), the dynamic process collects enough low-cost information from the respondent before
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Figure 6.8: The offset of item nonresponse rates from the baseline’s: positive values mean a method has
lower item nonresponse rate than the fixed-order baseline. The first ten items come from administrative
records and are therefore “free” (they are not asked during the interview).

they break off, so that imputation quality is higher than a fixed order for the questions. Furthermore,
even when DQO and standard question orders are fixed to have the same amount of breakoff, DQO collects
information such that final survey estimates have bias and variance that are less than or similar to those of
estimates from a fixed question order.

Simulated breakoff on the SSB, in Section 6.2.3, shows the potential of DQO to gather relevant information
from respondents prior to breakoff. The next step is to work with survey data that records actual instances
of breakoff from respondents, which we do in our next application on the American Community Survey.

6.3 Application to the American Community Survey

For the mandatory American Community Survey (ACS), the goal is to gather complete statistics on the
U.S. population, and follow-up with nonrespondents is expensive. Each year 3.54 million households receive
mailed surveys to answer anywhere between 77 and 347 questions, depending on the number of household
occupants (U.S. Bureau of the Census, 2016). The survey takes, on average, 40 minutes to complete and
54% of homes return theirs (U.S. Bureau of the Census, 2014a). The Census Bureau calls nonrespondents
for telephone interviews and then samples nonrespondents for home interviews. Each in-person case takes
134 minutes, and in 2012 this amounted to 129,000 person-hours per month (Griffin & Nelson, 2014). In
addition to being expensive, in-person interviews can bias survey results, if nonresponse adjustment weights
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Figure 6.9: Final imputation error (number of incorrectly imputed values once the respondent finishes
(including by dropping out)) the survey: lower values are better.

are not allocated correctly (U.S. Bureau of the Census, 2014a).

The Census Bureau tested shifting the mail survey online and found similar data quality for Internet and
mail return (Horwitz et al., 2012). Furthermore, while overall response rates were similar, online surveys
had higher item response rates for earlier questions and more blank responses for later questions than paper
surveys (Horwitz et al., 2012). Dynamically ordering survey questions in the online form could ensure that
even if households do not complete the survey, they answer the most informative questions before breaking
off.

The online mode for the ACS also collects paradata as respondents complete the survey. These paradata
include clicked links (including navigation buttons, responses, help buttons), timestamps, field values, errors,
invalid logins, timeouts, logouts (Horwitz et al., 2012). Such paradata could be used to model user engage-
ment, understanding, and willingness to respond, as another component for dynamic question ordering to
increase response rate.

6.3.1 The ACS online mode

The Internet questionnaire for the ACS has four main sections to collect information from a respondent. The
first section of the survey establishes the roster for the household: which people live at the sampled address.
The survey first asks the respondent to list the people who live or stay at their address. Several subsequent
questions prompt the respondent to add forgotten names or remove additional names (e.g., people who are
away for more than two months, such as a college student). Once the roster of relevant inhabitants has
been finalized, the second section of the survey asks about who owns or rents the home, the relationships
of the other household members to this reference person, and demographic information on all inhabitants
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(sex, date of birth, Hispanic origin, and race). Next, the third section of the survey collects information
about the housing unit, such as the year it was built, how much electricity cost in the past month, and
if a household member has a mortgage on the home. Finally, the fourth section asks detailed questions
for each member of the household, such as place of birth, income in the past year, and the length of their
commute from home to work. These detailed person questions are asked for one occupant, then the next,
etc. Between each person, there is a “person select” (“pselect”) screen on which the respondent can select
for which household occupant they will answer the questions next2. Once a respondent has completed all the
household questions and detailed person questions for each household occupant, they have the opportunity
to review (and possibly edit) their answers before submitting the survey.

If a respondent wishes to complete the survey at a later time, they can save their answers and log out. In
order to log in again, they need to enter a four-digit code they received upon their first login to the survey.
At the time that the data used in this chapter were collected, it was not possible to reset the code if the
respondent forgot or lost it. Therefore, respondents who logged out before completing the survey and later
tried to log in without their code received a “failed login” error and could not access the survey again. The
current implementation of the online ACS prompts respondents to answer a security question when they
first log in to the survey so that they can recover access to the survey if they log in later without their code.

Paradata in the online ACS

In addition to collecting respondents’ answers to survey questions, the online mode of the ACS also passively
collects information about their progress in the survey, paradata. These paradata log events in the survey
process: logins, logouts, field changes, hyperlink clicks, etc. Each event has a timestamp, a household
identifier, the page of the survey on which it occurred, the text for any error messages that occurred, and
information about a respondent’s device (type of device, operating system, browser) when they logged in to
the survey.

We have response data and paradata from the online respondents in the June through September 2016
panels of the ACS3.

6.3.2 Breakoff in the online ACS

A response is considered “complete” if the respondent reaches at least the presummary screen (the page where
they can review their answers). If a respondent stops answering questions before this point (and therefore
does not answer all the questions they are meant to answer), their response is considered a “breakoff.” Of
the 325,000 respondents in our four-month dataset, 36,630 (11.27%) broke off before completing the entire
questionnaire.

Related work on breakoff in online surveys

Past work has identified factors that can influence breakoff in survey design, page and question character-
istics, and respondent characteristics (Peytchev, 2009). Features of the survey design, such as a progress
indicator that shows respondents how much of the survey they have completed so far, also affect breakoff.
When progress is shown early in the survey, respondents are more likely to break off (Peytchev, 2009).
“Encouraging” feedback (i.e., feedback that the respondent is proceeding quickly through the survey) makes
respondents less likely to break off (Conrad, Couper, Tourangeau, & Peytchev, 2010). Page and question
characteristics that are related to breakoff include open questions and long questions, which increase the risk
of breakoff, as well as pages that begin a new section of the survey (Peytchev, 2009).

Finally, demographic characteristics of respondents can be associated with survey breakoff. For example,
members of these groups disproportionately break off from surveys: people with low education levels (a proxy
for cognitive sophistication) (Peytchev, 2009), people of color (Peytchev, 2011), men (Peytchev, 2011), and
younger respondents (“younger” as defined by age (Peytchev, 2009; McCutcheon, al Baghal, & Tsabutashvili,
2013) and by seniority, for college students (Peytchev, 2011)).

2The ACS is designed so that one person may fill it out for the household if they know all of the requested information, but
they also can consult with other household members or have multiple people in the household complete parts of it.

3Because this is a partial dataset (online self-respondents from four months of ACS data collection), it is not possible to
assess the external validity of these results using the standard Census approach of replicate weights.
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Additionally, there has been evidence that people who are likely to break off from a survey are also
more likely to be nonrespondents, and vice versa (Peytchev, 2011). Thus, the following demographic groups
that are disproportionately nonrespondents may also be more likely to break off from surveys: low-income
people (Goyder, Warriner, & Miller, 2002; Van Goor & Rispens, 2004), elderly people (Kaldenberg, Koenig,
& Becker, 1994), people of color (Johnson, O’Rourke, Burris, & Owens, 2002; Groves et al., 2009; Peytchev,
2011; Keeter, Kennedy, Dimock, Best, & Craighill, 2006), men (Peytchev, 2011; Gray, Campanelli, Deepc-
hand, & Prescott-Clarke, 1996), and people with low education levels (Hauser, 2005; Keeter et al., 2006).

Furthermore, breakoff and response time are tightly connected. Peytchev (2009) found that “respondent
behavior as time spent on the first question was significantly associated with risk of breakoff, with each
standard deviation slower responding resulting in 34% higher risk of breakoff.” Thus, factors that influence
response time can also influence breakoff rates. For example, question length (Bassili & Scott, 1996; Yan
& Tourangeau, 2008), question complexity (Wagner-Menghin, 2002; Yan & Tourangeau, 2008), and drop-
down menus (Healey, 2007) increase item response times. Respondents who complete an online survey on a
smartphone can take more time to complete the survey and are more likely to break off than respondents
who used a computer (Lambert & Miller, 2015).

6.3.3 Results on the ACS

First, we examine differences between the populations of people who broke off compared to those who
completed the survey. Then, we look at characteristics of questionnaire pages and their breakoff rates. Next,
we analyze how respondent characteristics, page characteristics, and respondent behavior influence breakoff
page-by-page. Finally, we experiment with adaptively ordering questions for individuals, to reduce and delay
breakoff.

Respondent characteristics and their effect on breakoff

The ACS form grows in length with the number of household members, since the detailed person questions
are asked for each occupant. Furthermore, complex household structures involving, for example, unrelated
people such as roommates or boarders increase the difficulty for the respondent to complete the form.
Table 6.2 shows the number and percentages of breakoffs and complete responses for households of various
sizes. Breakoff rates increase as household size, and therefore questionnaire length, increase. Table 6.3 shows
breakoff and completion rates for the most prevalent household structures (collections of individuals and their
relationships to one another) in the ACS dataset. The breakoff rates by household structure are influenced
by the household size (larger household structures have greater breakoff), as well as the relationships between
household members. For example, the “reference + spouse” and “reference + unmarried partner” household
structures both contain two people, but “reference + spouse” has a 7.61% breakoff rate, compared to the
11.58% breakoff rate of “reference + unmarried partner.” Presumably spouses know one another better than
unmarried partners, which could explain the higher completion rate in households containing only spouses
compared to those containing only unmarried partners. Table 6.4 shows the breakoff counts for households
with and without nonrelatives living together. Most households contain only relatives living together, but the
4.85% of households containing nonrelatives have a 25.92% breakoff rate, compared to the 10.52% breakoff
rate for those households containing only related people.

Device usage also differed across the completion conditions. Each time a respondent logs in to the online
ACS instrument, information about the device the respondent is using to access the website is logged in the
paradata. Table 6.5 shows how many respondents logged in to the survey instrument one, two, and three
or more times, as well as the number of respondents whose logins were not recorded. 5.17% of respondents
did not have their logins recorded properly, and these respondents broke off from the survey at a higher rate
(27.38%) than the respondents whose logins were recorded correctly (10.39% breakoff). Perhaps the technical
issues that caused these respondents’ logins not to be recorded properly also caused technical glitches to the
survey instrument that made it challenging for these respondents to complete the survey. Tables 6.6a and 6.6b
focus on the respondents whose logins were recorded correctly and show how frequently respondents used
computers (desktops and laptops), mobile devices (smartphones, tablets, e-readers, etc.), and other devices
(PlayStations, smart TVs, etc.) to access the online ACS form. The most prevalent device was computers,
then mobile devices—80.13% of single-session respondents used computers, and 19.86% used mobile devices.
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Table 6.2: Complex household structures, with multiple people, have higher incidences of breakoff than
simple household structures.

Number of household members Breakoff Complete
1 3426 (4.92) 66210 (95.08)
2 11180 (9.05) 112400 (90.95)
3 7630 (14.20) 46110 (85.80)
4 7428 (15.85) 39440 (84.15)
5 3983 (19.78) 16150 (80.22)
6 1638 (23.33) 5383 (76.67)
7+ 1351 (32.71) 2779 (67.29)
Total 36630 (11.27) 288400 (88.73)

Table 6.3: Complex household structures (multiple people, unrelated people such as roommates or boarders,
etc.) have higher incidences of breakoff than simple household structures. This table shows the most frequent
household structures and their breakoff and completion rates.

Household structure Breakoff Complete
Reference + spouse 6764 (7.61) 82090 (92.39)
Reference + spouse + child(ren) 12000 (13.63) 76030 (86.37)
Reference 3741 (5.34) 66280 (94.66)
Reference + child(ren) 2689 (12.63) 18610 (87.37)
Reference + unmarried partner 1410 (11.58) 10770 (88.42)
Reference + nonrelative(s) 2091 (24.31) 6510 (75.69)
Others 7936 (21.99) 28150 (78.01)
Total 36630 (11.27) 288400 (88.73)

Mobile respondents broke off at higher rates than computer respondents, in agreement with past work (e.g.,
(Lambert & Miller, 2015))—15.39% of single-session mobile respondents broke off, compared to 9.53% of
single-session computer respondents. For respondents who spent multiple sessions on the survey, we look at
the first and last devices they used to access the survey in Table 6.6b. Most multi-session respondents used
the same type of device for their first and final logins (80.68% used computers first and last, and 14.33%
used mobile devices first and last), and those who switched devices were more likely to switch from a mobile
device to a computer than vice versa (1.96% of respondents whose first login was on a computer had their
final login on a mobile device, and 19.02% of respondents whose first login was on a mobile device had their
final login on a computer). Breakoff rates were lowest for respondents whose first and final sessions were on
a computer.

Breakoff patterns by respondent demographic group in the online ACS agree with most trends found in
previous work. Tables of breakoff and completion status by these demographic groups appear in Appendix C.
One demographic characteristic of breakoffs that was not reproduced in this ACS dataset is the past finding
that men are more likely to break off than women (Peytchev, 2011). Table C.1 shows the numbers of
breakoff and complete responses from women and men—slightly more women than men were respondents
for the survey (52.20% of respondents were women), and women broke off at a higher rate than men (12.37%
breakoff for women, 9.78% breakoff for men). Remaining demographics and breakoff were observed in
accordance with prior work. Table C.2 shows that older respondents completed the survey at higher rates
than younger respondents (McCutcheon et al., 2013; Peytchev, 2009, 2011). Tables C.4 and C.3 show that
nonwhite and Hispanic respondents, respectively, were more likely to break off than white and non-Hispanic
respondents (Peytchev, 2011). Table C.5 shows that respondents with higher education levels completed the
survey at greater rates than respondents with lower education levels (Peytchev, 2009). Finally, Table C.6
shows that low-income respondents were more likely to break off than higher-income respondents (Peytchev,
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Table 6.4: Complex household structures (multiple people, unrelated people such as roommates or boarders,
etc.) have higher incidences of breakoff than simple household structures. This table shows the completion
status for households with and without nonrelatives.

Household structure Breakoff Complete
No unrelated household members 32540 (10.52) 276700 (89.48)
Unrelated household members 4089 (25.92) 11680 (74.08)
Total 36630 (11.27) 288400 (88.73)

Table 6.5: Number of logins to the online ACS, by breakoff or complete status. Percentages of each login
category that are breakoffs or completes are in parentheses. More people who break off do so after one login
than multiple logins.

Number of sessions Breakoff Complete
Missing 4604 (27.38) 12210 (72.62)
1 27170 (10.69) 226900 (89.31)
2 2749 (8.59) 29240 (91.41)
3+ 2112 (9.51) 20100 (90.49)
Total 36630 (11.27) 288400 (88.73)

2009; Goyder et al., 2002; Van Goor & Rispens, 2004).

In our analyses of breakoff from the online ACS, we do not include these demographic variables because
the respondent does not provide this information until partway through the questionnaire. Thus, this
information is unknown until a respondent reaches these questions (and always unknown, for a large portion
of respondents who break off).

We can use paradata collected from the online ACS form to track how frequently respondents changed
their answers. Table 6.7 shows completion rates by number of total field changes respondents made. Most
respondents made zero or few field changes: 37.92% made no field changes, 26.28% made one, 16.34% made
two, 16.36% made three through five, and only 3.11% made six or more field changes. Higher field change
counts (up to a point) are associated with higher completion rates: 15.61% of respondents with no field
changes broke off, and this breakoff percentage decreased down to 5.82% among respondents who made five
field changes. This observation is partly due to the fact that people who complete the survey typically visit
more pages than people who break off and therefore have more opportunities to make field changes. However,
a high number of field changes can indicate confusion with the survey questions or instructions and therefore
precede breakoff (e.g., 40.96% of the respondents with over 15 field changes broke off).

Page characteristics and their effect on breakoff

Next, we consider characteristics of pages and questions that might influence breakoff. Figure 6.10 shows
the fraction of respondents who reached the n-th page in the online ACS questionnaire. The fractions of
respondents are scaled using the number of people who should have reached a page, based on the number of
people living in the household. Due to more complex screening rules, the universe for some pages changes
and thus those pages are underestimated in terms of fraction (e.g., the question about births in the past year
is asked only about women age 15 to 50). Table 6.8 lists the top ten pages on which respondents broke off.

Most pages in the online ACS questionnaire display a single multiple-choice question, which is answered
with radio buttons or checkboxes (Figure 6.11). Some pages have more complicated questions or formats,
which can affect respondent behavior. We include variables to indicate when pages have open questions
(Figure 6.12), questions with drop-down menus for answer choices (Figure 6.13), multiple questions (Fig-
ure 6.14), or a question that indicates that a new section is approaching (Figure 6.15), all of which have been
shown to influence breakoff (e.g., (Peytchev, 2009)). Eight of the top ten breakoff pages in Table 6.8 fall into
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Table 6.6: Device category used to complete the online ACS form, by breakoff or complete status, for single-
and multi-session survey behavior. The most popular device type was a computer, and computer respondents
had the lowest breakoff rates.

(a) Single-session respondents.

Device type Breakoff Complete
Computer 19400 (9.53) 184200 (90.47)
Mobile 7767 (15.39) 42690 (84.61)
Other 1 (5.00) 19 (95.00)
Total 27170 (10.69) 226900 (89.31)

(b) Multi-session respondents.

First-Last device Breakoff Complete
Computer-computer 3664 (8.38) 40070 (91.62)
Computer-mobile 92 (10.54) 781 (89.46)
Mobile-computer 177 (9.70) 1647 (90.30)
Mobile-mobile 927 (11.93) 6841 (88.07)
Other 1 (20.00) 4 (80.00)
Total 4861 (8.97) 49340 (91.03)

at least one category of these more complicated question types: “pselect,” “wages,” and “employeetype” all
indicate an upcoming section of the survey, “worklocal” and “wagesamt” have open questions, “worklocal”
and “dateofbirth” have multiple questions on their pages, and “dateofbirth” and “placeofbirth” have answer
options presented on drop-down menus.
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Table 6.7: Counts of respondent field changes by completion type. Percentages of each field change count
category that are breakoffs or completes are in parentheses. Many people who broke off made no field
changes before breaking off. Increasing field changes are associated with higher completion rates, up until a
respondent makes ten or more field changes.

Number of field changes Breakoff Complete
0 19230 (15.61) 104000 (84.39)
1 8801 (10.30) 76620 (89.70)
2 4258 (8.02) 48860 (91.98)
3 2064 (7.05) 27190 (92.95)
4 1002 (6.38) 14700 (93.62)
5 479 (5.82) 7751 (94.18)
6-10 571 (6.30) 8495 (93.70)
11-15 102 (13.84) 635 (86.16)
>15 120 (40.96) 173 (59.04)
Total 36630 (11.27) 288400 (88.73)

Table 6.8: Top 10 pages on which respondents broke off on the online ACS.

Page Number of breakoffs Percentage of breakoffs
pselect 4502 12.29
worklocal 2349 6.413
wagesamt 1991 5.435
dateofbirth 1898 5.181
placeofbirth 1704 4.652
wages 1301 3.552
vrfyincome 1102 3.008
worklastweek 968 2.643
employeetype 759 2.072
insurance 720 1.966
All others 19340 52.79
Total 36630 100
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Figure 6.10: Fraction of respondents who reached each page in the online ACS survey. The major sections of
the survey are indicated with thick vertical dashed lines—the roster setup (when a respondent indicates how
many people live in the household and who they are), the person questions on the roster section (when the
respondent gives basic demographics, such as sex and date of birth, about each person on the roster), the
household questions (“HH ?s”), and the detailed person questions (“Person ?s”). Thinner vertical dashed
lines in the person questions section indicate which person questions are in that section.

Figure 6.11: Most pages in the online ACS have one multiple-choice question, such as this question that asks
whether a household member speaks a language other than English at home.
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Figure 6.12: Some questions ask respondents to enter information without answer choices, such as this open
question about occupants in the household.

Figure 6.13: Some questions ask respondents to enter their answer with a drop-down menu, such as this
question about a household member’s date of birth.
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Figure 6.14: Some pages in the ACS include multiple questions, such as this page with seven sub-questions
about the facilities available in the residence.
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Figure 6.15: Some pages in the ACS alert respondents that a new section of questions is upcoming. For
example, this “pselect” question asks a respondent to choose a household member about whom to answer a
detailed set of questions next. This page was the most popular page on which respondents broke off from
the online ACS (12.29% of breakoffs occurred on the pselect page).
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Page-by-page estimates of breakoff probabilities

We use survival analysis (e.g., (Klein & Moeschberger, 2005)) to study when respondents break off from
the survey and the factors that influence breakoff. Because the event we observe is discrete (the page a
respondent breaks off on), we use a discrete hazard survival model (Cox, 1972; Allison, 1982) for this task.

We follow the approach of Peytchev (2009) to analyze breakoff, including both respondent-specific vari-
ables and page-specific variables:

ln

(
Piq

1− Piq

)
= αq + βTXi(q), (6.3)

where Piq is the probability that respondent i breaks off on page q, αq is the baseline hazard of breaking off
on page q, β is a vector of weights, and Xi(q) is a vector of variables for respondent i on page q.

Our model has one page-invariant variable, the number of household members in a respondent’s household
(“nper”)—this value is constant across all survey pages the respondent visits. We also include page-varying,
respondent-invariant variables, like characteristics of a page (whether it is in the setup, roster, household, or
person section of the survey) and the question(s) on the page (e.g., if the page asks an open question or has
multiple questions). Additionally, we include variables that are both respondent-varying and page-varying,
like the cumulative number of field changes a respondent has made up to a point (“field chg ct”) and the
offset between their actual time spent on a survey page and the median time that all respondents spent on
that page (“pt offset”).

The screening rules for certain questions and sections in the ACS mean that respondents can reach pages
at different points in the survey. For example, only respondents who first answer that their home is part
of a condominium reach the subsequent page that asks if there is a condominium fee. Therefore, page q in
our model indicates the q-th page that a respondent reaches, and not any specific page. The page-varying
variables, like page type and question type on the page, capture some specifics about the particular page
and questions a respondent sees at page q.

We consider only those respondents with one login4 and learn two survival analysis models, one for
computer respondents (Table 6.9) and one for mobile respondents (Table 6.10). Most trends of how variables
influence breakoff hold across the computer and mobile models. A respondent is slightly more likely to break
off on a page where they have spent more time than most respondents. Compared to one-person households,
respondents answering for multiple-person households are more likely to break off, with larger effects for
larger household sizes (the difference between one- and two-person households is not significant). High
numbers of field changes indicate a greater likelihood of breakoff than no field changes. Of the question type
variables, a question indicating that a new section of the survey is beginning makes the biggest impact on
breakoff likelihood—computer and respondents are 50 and 24 times, respectively, more likely to break off on
a page with a section question than on a page without a section question. Open questions and drop-down
questions are also associated with higher breakoff, for both computer and mobile respondents. Computer
respondents are more likely to break off on a page with multiple questions than a page with a single question,
but mobile respondents are less likely to break off on a page with multiple questions.

6.3.4 Dynamic question ordering on ACS

We perform DQO on a test set of ACS data, for computer and mobile respondents. For this application of
DQO, we use respondent engagement, defined as the probability that a respondent would continue the survey
on a particular page, as the utility metric for DQO. We used item response time as the cost metric in DQO.
We simulate breakoff by having a respondent break off at a particular point in data collection, according
to the predicted breakoff probability calculated from the survival analysis model. For this simulation of
breakoff, we restrict our test sets to 1000 respondents who completed the survey on each device type, so we
have complete data and can simulate answering questions in any order. We compare completion rates for
the dynamically ordered form to those for a fixed-order form that asks questions in the order of the standard
ACS questionnaire.

Table 6.11 shows the number of breakoffs for the dynamically ordered forms, with three values of tradeoff
parameter λ, and the fixed-order form. For both computer and mobile respondents, DQO resulted in fewer

4At the time that these data were collected, it was not possible for respondents who logged out from the survey and forgot
their login codes to reset their codes or access the survey later to complete it.
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Table 6.9: Survival analysis model for computer respondents.

Parameter Category β Standard error Chi-Square Pr > ChiSq Hazard ratio
pt offset ctns 0.00287 4.35e-05 4375 <.0001 1.003
nper 2 0.06402 0.03424 3.497 0.0615 1.066
nper 3 0.3967 0.0382 107.9 <.0001 1.487
nper 4 0.4777 0.03991 143.3 <.0001 1.612
nper 5 0.6913 0.04723 214.3 <.0001 1.996
nper 6 0.8242 0.06429 164.3 <.0001 2.28
nper >6 1.179 0.07386 255 <.0001 3.253
field chg ct 1 0.01481 0.02466 0.3607 0.5481 1.015
field chg ct 2 0.09235 0.03409 7.34 0.0067 1.097
field chg ct 3-4 0.1814 0.04271 18.04 <.0001 1.199
field chg ct 5-10 0.6513 0.07172 82.46 <.0001 1.918
field chg ct >10 2.562 0.1578 263.5 <.0001 12.96
page type setup -6.196 0.3704 279.9 <.0001 0.002
page type roster demos -3.017 0.3504 74.15 <.0001 0.049
page type household -2.473 0.3539 48.85 <.0001 0.084
page type person -2.322 0.3583 41.99 <.0001 0.098
open q 1 0.9557 0.02218 1857 <.0001 2.601
multi q 1 0.4971 0.05031 97.65 <.0001 1.644
dropdown q 1 1.469 0.03894 1423 <.0001 4.344
sec q 1 3.915 0.03941 9869 <.0001 50.13

breakoffs than the fixed-order form. Additionally, Table 6.12 shows that, on the cases where DQO did still
result in breakoff, the breakoffs in the DQO-ordered form happened, on average, several questions later than
the breakoff on the fixed-order form.

Figures 6.16a and 6.16b plot the cost trajectories (cumulative time spent on the survey) as successive
pages in the questionnaire are reached for computer and mobile respondents, for DQO and fixed orders. In
these plots, the DQO orders (solid lines) are higher than the fixed orders (dashed lines) since the reduced
and delayed breakoffs for DQO mean that respondents are spending more time on the survey.
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(a) Computer respondents.
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(b) Mobile respondents.

Figure 6.16: Cumulative time spent on the survey vs. page number.
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Table 6.10: Survival analysis model for mobile respondents.

Parameter Category β Standard error Chi-Square Pr > ChiSq Hazard ratio
pt offset ctns 0.00352 0.0001404 629.8 <.0001 1.004
nper 2 0.01136 0.05075 0.0501 0.8229 1.011
nper 3 0.428 0.05375 63.41 <.0001 1.534
nper 4 0.4957 0.05552 79.7 <.0001 1.642
nper 5 0.7327 0.06179 140.6 <.0001 2.081
nper 6 0.9498 0.07679 153 <.0001 2.585
nper >6 1.178 0.08801 179.2 <.0001 3.249
field chg ct 1 0.00813 0.03307 0.0605 0.8057 1.008
field chg ct 2 0.06415 0.04531 2.004 0.1569 1.066
field chg ct 3-4 0.2148 0.05366 16.02 <.0001 1.24
field chg ct 5-10 0.5017 0.09589 27.38 <.0001 1.652
field chg ct >10 1.697 0.32 28.12 <.0001 5.457
page type setup -6.174 0.7378 70.04 <.0001 0.002
page type roster demos -2.33 0.7252 10.32 0.0013 0.097
page type household -1.749 0.7293 5.752 0.0165 0.174
page type person -1.776 0.7335 5.861 0.0155 0.169
open q 1 0.204 0.0314 42.23 <.0001 1.226
multi q 1 -0.1839 0.07916 5.398 0.0202 0.832
dropdown q 1 0.7457 0.06147 147.1 <.0001 2.108
sec q 1 3.189 0.05981 2843 <.0001 24.27

Table 6.11: The DQO-ordered questionnaires had fewer instances of breakoff than the fixed-order question-
naire.

Device type λ =0.000 λ =0.005 λ =0.010 Fixed
Computer 150 144 144 176
Mobile 101 109 99 119

6.3.5 Limitations

Because the dataset used for these experiments was a convenience sample and not sampled to be repre-
sentative of the entire population, we cannot claim that these results will generalize beyond this set of
self-respondents on the online ACS questionnaire. For example, there are fewer Hispanic and nonwhite
respondents in our dataset than in the U.S. population (7.6% of respondents in this sample are Hispanic,
compared to 17.1% of the U.S. population, and 84.2% of respondents in this sample are white, compared
to 76.1% of the U.S. population). The Internet self-respondents in this sample are also more educated than
the general population: 27.0% of respondents have terminal bachelors degrees, and 19.8% have graduate
degrees, compared to 19.0% bachelors degrees and 11.6% graduate degrees in the full population5.

Furthermore, the dynamic ordering procedure was not tested on actual respondents and instead was
simulated by reordering already collected data. The cognitive effects of reordering questions in a complex
questionnaire like the ACS need to be explored. For example, the survival analysis models for breakoff in
Section 6.3.3 show that respondents are highly likely to break off on pages with questions indicating a new
section of the survey is beginning. Delaying these questions (or rewording them not to mention a new survey
section) might delay breakoff, since respondents will not explicitly be told about the upcoming section of
the survey. However, changing or delaying these questions could also cause respondents to be confused or
frustrated if they cannot understand the structure of the questionnaire and their progress toward the end.

5Source: U.S. Census Bureau, 2015 American Community Survey 1-Year Estimates, accessed at factfinder.census.gov.

factfinder.census.gov
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Table 6.12: Compared to the fixed-order questionnaire, DQO delayed breakoff by several questions.

Device type λ =0.000 λ =0.005 λ =0.010
Computer 2.364 3.435 2.875
Mobile 0.849 1.171 1.453

6.3.6 Conclusion

In this application to the American Community Survey, we first modeled the relationship between respondent
behavior (captured in paradata from the online survey instrument), page and question characteristics, and
breakoff probability. Then we simulated adaptively ordering questions by using the DQO framework with
utility defined as the probability that a respondent will answer a question on a page and cost defined as the
time to answer a question. We found that, in this simulation, the DQO orderings had fewer instances of
breakoff and more questions answered before breakoff than the fixed-order form that asked questions in the
order of the standard ACS questionnaire.

6.4 Other potential survey applications

In this section, we elaborate on particular problems DQO could solve in other surveys. All surveys in
this section are administered in computerized modes in which DQO would be possible. Some surveys,
such as the Current Population Survey and the National Crime Victimization Survey, have predictions as
goals (identifying employment status or classifying incidents of victimization) and can directly incorporate
a prediction-motivated approach to DQO, as in Section 4.4.4. Other surveys, like the American Community
Survey (ACS) and National Health Interview Survey, have the broad goal of collecting information on a
population. DQO in these surveys would need to focus on maximizing information gain or respondent
engagement, calculated from previously provided answers and paradata. National surveys are complicated,
due to complex sampling requirements (e.g., oversampling certain populations) and multi-purpose goals (e.g.,
adding supplemental modules to core surveys).

Typically, statistical agencies already have strategies for handling nonresponse, and the current protocol
could influence DQO. For example, the Census Bureau defines several categories of nonresponse in the ACS:
households that answer basic demographic and housing questions, but not any detailed person questions,
are considered “sufficient partial” responses who are not contacted for follow-up. Households that do not
answer the basic questions are “insufficient partial” responses and are contacted for follow-up (U.S. Bureau
of the Census, 2014a; Clark, 2014). Thus, Census might want to apply DQO within sections of the survey:
first order questions in the basic subset, to ensure that more people will become at least sufficient partial
responses, if not complete. Then, once a household’s sufficient partial status is confirmed, the survey can
continue with the detailed person questions.

6.4.1 Current Population Survey

The Current Population Survey (CPS) is a monthly survey of 60,000 households across the United States,
jointly sponsored by the U.S. Census Bureau and Bureau of Labor Statistics (U.S. Bureau of the Census,
2006). Selected households are in the survey for four consecutive months, out of the survey for eight
months, and then back in the survey for four months. The chief purpose of the CPS is to estimate the
U.S. unemployment rate for the past month, and the majority of the official survey is devoted to this task.
Respondents answer a battery of questions related to their work status in the past week to determine if
they were employed, unemployed, or not in the labor force. There are over 200 questions in the labor force
portion of the items. Not all of these questions apply to every household, so the current version of the CPS
uses predefined skip patterns to avoid asking irrelevant questions. Augmenting the rule-based skip patterns
with dynamic question ordering derived from statistical properties of the respondent could further lower
respondent burden.
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Various survey sponsors add supplemental question modules to the CPS (e.g., the Tobacco Use Supple-
ment, sponsored by the National Cancer Institute), which may also benefit from dynamic question ordering.
The number of supplements is heavily restricted, due to not wanting to overburden respondents with too
many questions and detract from the main purpose of the survey—estimating employment rate (U.S. Bureau
of the Census, 2006). Using dynamic question ordering within or between modules could effectively select
items to ask of populations of interest, thereby reducing the effective number of questions respondents must
answer and increasing the potential for supplemental questions on the CPS.

6.4.2 National Health Interview Survey

The largest U.S. health survey, the National Health Interview Survey (NHIS) is administered in person
to about 35,000 households each year (National Center for Health Statistics, 2014). The main purpose of
the NHIS is to collect health information, at the household, family, and individual levels. Currently, the
NHIS uses predefined skip patterns to advance respondents through the survey, but a statistical approach
to question ordering could enhance the survey. Like the CPS, the NHIS has supplements to the main
survey sponsored by other agencies. Supplemental questions are often asked in their own modules but
are occasionally interspersed into the NHIS Core. As a CAPI-conducted survey, the NHIS could feasibly
incorporate dynamic question ordering into its interview procedure.

The structure of the NHIS designates one person from a household as the “household respondent” who
provides information for all members in the household (even for multi-family households). This type of
proxy reporting is more likely to have errors than self-reports (Sudman et al., 1996), and so a dynamic
question-ordering procedure would need to consider the impact of uncertain provided values when choosing
which question to ask next.

The NHIS oversamples underrepresented populations, like black, Hispanic, and Asian people, to obtain
more precise estimates for these populations (National Center for Health Statistics, 2014). With this goal
in mind, DQO for the NHIS could consider the accuracy of imputed values for questions that are not yet
asked, with thresholds for allowable imputation error. Such thresholds could be population-specific, with
minorities’ having lower allowable error thresholds, to ensure that more complete data are collected from
these populations.

6.4.3 National Crime Victimization Survey

Every year the U.S. Census Bureau, on behalf of the Bureau of Justice Statistics, administers the National
Crime Victimization Survey (NCVS) to 90,000 households (Bureau of Justice Statistics, 2014). Occupants
of sampled households are interviewed every six months over three years. In interviews, respondents report
victimizations in the previous six months. The interview is always conducted in a computerized mode (CAPI
or CATI), with the first interview in person, so dynamic question ordering is possible in this computerized
setting.

The NCVS collects detailed information about each incident reported by a respondent to classify incidents
into fine-grained categories of crime (e.g., “Robbery – attempted with injury”). The current NCVS design
asks a respondent a set of questions regarding each incident they report and uses answers to these questions to
classify the crime, rather than directly asking respondents for the crime category (Bureau of Justice Statistics,
2014). As such, this survey has a per-individual prediction problem at its core (labeling an incident as a
type of crime), and could benefit from the prediction-guided DQO process set forth in Chapter 4.

DQO could further benefit the NCVS because, especially as households complete the survey multiple
times, respondents recognize that reporting an incident results in an extended set of questions. This full
questioning takes place for each individual report, including repeat victimizations (e.g., domestic violence).
To speed up the interview, participants are likely to underreport victimization, to avoid lengthy subsets of
questions for each report. By reducing the number of questions to categorize incidents and using previously
provided information to help in question ordering for repeat incidents, DQO could reduce the number of
questions in the entire survey, making it less burdensome for respondents to provide complete reports.



76 CHAPTER 6. DATA COLLECTION-FOCUSED QUESTION ORDERING

6.5 Conclusion and future work

Dynamic question ordering—i.e., choosing which question to ask a survey respondent next, depending on
their answers to previous questions—can improve survey quality in two key ways. First, giving participants
personalized question orders can engage them and motivate them to complete the survey. Second, eliciting
the most relevant information for a particular respondent upfront can improve the quality of imputations for
unanswered questions if the respondent breaks off before completing the questionnaire. For some surveys, the
goal is only to estimate a value for each respondent. In this case, it is not even necessary for the participant
to answer all questions—it is sufficient for them to answer a subset that will ensure a confident prediction.

This chapter adapted the DQO framework to two U.S. Census Bureau surveys and suggested ways to
apply DQO to several other computerized national surveys. DQO sequentially considers which question
to ask a respondent next, based on their previous answers, trading off the expected utility of having an
answer to that question with the cost of asking that question. Thus, adaptive DQO to any particular survey
requires defining both the utility and the cost of survey questions. The definition of “utility” for an answer
depends on the survey and its purpose. Examples include information gain, response probability, (negative)
breakoff probability, or certainty of the subsequent prediction. Similarly, the definition of question “cost”
also depends on the survey. Examples include difficulty to the user of answering the question, (negative)
likelihood of answering (since respondents may be reluctant to respond to sensitive questions, even if they
are easy to answer), or breakoff rates of individual questions.

In this chapter on survey data collection, we illustrated the DQO framework on two surveys. First,
we considered the Survey of Income and Program Participation (SIPP). We selected subsequent questions
that maximized conditional entropy to get a “representative” set of answers from participants early on,
trading off conditional entropy (utility) against item nonresponse rate (cost). We simulated survey breakoff
and found that, compared to the standard SIPP question order, the dynamic order delays breakoff, better
recovers values for unanswered items that must be imputed, and achieves better-quality survey estimates
(lower bias and variance). Next, we considered the American Community Survey (ACS). The online mode of
the ACS includes a rich set of paradata, tracking respondents’ actions as they progress through the Internet
questionnaire. We used these paradata to predict the likelihood of a respondent’s breaking off on a certain
page in the survey, given their previous behavior, and applied DQO, using respondent engagement (utility)
and item response time (cost) to choose a question ordering for each respondent. Compared to the standard
ACS question order, the dynamic order reduces and delays breakoff and therefore recovers more complete
information from respondents. Finally, we discussed ways that dynamic question ordering could improve
quality in computerized national surveys, focusing on unique aspects of each survey that DQO must take
into account.

As more surveys move online or to computerized modes, dynamic question ordering can improve survey
results at scale and at low cost to the data collectors. DQO trades off the utility from having an answer to a
question with its cost and sequentially requests feature values in order to make useful, confident predictions
and gather survey data with the resources users are willing and able to provide.

Although the supposed neutrality of the survey as an impartial data collection tool means that all
respondents have the same (or very similar) survey experiences, this rigid structure can also hinder the
natural flow of information that occurs in a conversation (Suchman & Jordan, 1990). Often for a participant,
a particular event influences their answers for multiple questions. However, unless a direct question about
this event appears in the survey, they have to answer many repetitive questions that could have been avoided
in a conversation. Learning a latent structure of participants’ answers in a survey could be a step toward
uncovering these hidden events that determine the answers to multiple questions, and DQO could use this
knowledge to guide question selection as well.

The cognitive aspects of survey methodology movement that originated in the 1980s (Jabine et al., 1984;
Tanur, 1992) raised issues with the traditional approach to survey questionnaire design, which keeps order
fixed for all respondents and which measures the same quantities at different points in time. The need to
reduce respondent burden and to keep respondents engaged in online surveys is raising a complementary set
of issues that are now being addressed under the rubric of adaptive survey design. These two perspectives
do need to be reconciled in some fashion.

Given typical survey respondents’ disengagement from surveys and declining survey response rates, maybe
a new paradigm of survey collection, in which respondents get something useful to them out of answering a
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survey, could motivate participants to provide complete and accurate responses (e.g., (Marcus et al., 2007;
Angelovska & Mavrikiou, 2013)). However, one clear downside to this approach is that giving respondents
information that comes from the survey they are currently answering contaminates their response. For exam-
ple, suppose that a person is answering questions about their energy-using habits to receive a personalized
energy estimate, as in Section 4.4.4. Their current estimate for natural gas consumption is higher than
they would like, and the next question asks for their preferred temperature in the winter. Because they do
not want their estimate for natural gas usage to climb even higher, the respondent gives an optimistically
low value for preferred temperature. The uncertainty associated with these predictions can also influence a
user’s decision to continue answering questions: once a participant feels that their given prediction is certain
enough, they may stop answering questions. Depending on the purpose of the survey (namely, whether its
chief goal is to provide information to or to collect information from the respondent), this type of breakoff
may or may not be bad.
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Chapter 7

Conclusion and future work

Thesis statement Dynamically ordering questions, based on already known information (such as previ-
ously answered questions or paradata), can lower the costs of data collection and prediction by tailoring the
information-acquisition process to the individual. This thesis presents a framework for an iterative dynamic
question ordering process that trades off question utility against question cost at data collection time. The
exact metrics for utility and cost are application-dependent. We compare data quality and acquisition costs
of our method to fixed-order approaches and show that our adaptive process obtains results of similar or
better quality at lower cost.

7.1 Conclusion

This thesis presented a general framework for dynamically ordering questions, based on previously collected
data, to engage respondents, improving prediction quality and survey completion. Our work considered
two broad scenarios for data collection from users, systems, or survey respondents. In the first, we want
to give the respondent a personalized prediction (Chapter 4) or score (Chapter 5), based on information
they provide. Since it is possible to give a reasonable value with only a subset of questions, we are not
concerned with motivating the user to provide values for all items. Instead, we want to order questions
so that the user provides information that most improves the quality of our prediction or score, while not
being too burdensome to answer. In the second scenario, our goal is to gather complete and accurate data
(Chapter 6). Thus, we want to maximize survey completion (and the quality of necessary imputations).
Therefore, we focus on ordering questions to engage the respondent and collect hopefully all the information
we seek, or at least the information that most characterizes the respondent so that imputed values will be
accurate.

In Chapter 4, we presented the FOCUS method (an instantiation of the DQO framework, using prediction
certainty as the measure of item utility) for prediction-focused data collection. When gathering information
to make a prediction, not all pieces of information may be relevant for a particular user at a particular time.
Dynamically acquiring features for test-time prediction can reduce the costs of data collection while still
maintaining the quality of the predictions, by adaptively selecting the most relevant features for a particular
test sample. On all three validation datasets, FOCUS effectively lowered prediction costs (by reducing the
number of additional, costly features to acquire), without sacrificing prediction quality for most values of n,
the number of collected features, and λ, the utility-cost tradeoff parameter. The FOCUS framework’s ability
to support context-dependent costs (illustrated in the stress prediction example on the StudentLife dataset
in Section 4.4.5) allows for richer, more realistic interpretations of feature cost, which may not be fixed for
all test instances.

Chapter 5 considered a similarly output-focused data collection task, but for the application of scoring
questionnaires to give a measurement of an underlying trait, such as intelligence or cultural values. We used
the DQO framework to leverage previously provided information from a user to select which question is
best to ask next, trading off the expected usefulness of that question (influence on the final score estimate)
against its cost (response time). In simulated experiments on the pre-collected World Values Survey as well
as a live deployment on the LabintheWild online experimental platform, we found that DQO achieves lower
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error and lower cost than a fixed-order long form. Furthermore, DQO allows the questionnaire administrator
to continue asking questions beyond a fixed short form’s capacity, when a respondent is willing to spend
more time or effort answering questions, resulting in improved score estimates relative to a short form.

Finally, Chapter 6 explored DQO in the survey-taking setting, where the goal is to collect complete and
accurate information on a population. We illustrated how DQO can improve survey quality in two ways, on
two different surveys. First, eliciting the most relevant information for a particular respondent upfront can
improve the quality of imputations for unanswered questions if the respondent breaks off before completing
the questionnaire. We illustrated this benefit on the Survey of Income and Program Participation (SIPP) by
trading off the maximum conditional entropy of a new question (utility) against that question’s nonresponse
rate (cost). We simulated survey breakoff and found that, compared to the standard SIPP question order,
the dynamic order delays breakoff, better recovers values for unanswered items that must be imputed, and
achieves better quality survey estimates (lower bias and variance). Second, giving participants personalized
question orders can engage them and motivate them to complete the survey. We illustrated this benefit on
the Internet questionnaire for the American Community Survey (ACS). We used ACS paradata to predict
the likelihood of a respondent’s breaking off on a certain page in the survey, given their previous behavior,
and applied DQO, using respondent engagement (utility) and item response time (cost) to choose a question
ordering for each respondent. Compared to the standard ACS question order, the dynamic order delays
breakoff and recovers more complete information from respondents.

7.2 Future work

One key area for future research in adaptive, cost-effective data collection is to combine multiple goals
in data collection. The work presented in this thesis used a single objective in ordering questions for a
respondent—improving the quality of a prediction, increasing the information content in a set of responses,
or engaging a respondent—but many real-world data collection problems have multiple simultaneous goals.
For example, an intelligent personal assistant wants to manage a user’s schedule while monitoring their
activity and also making recommendations and needs to collect data from various sources (sensors, the
Internet, the user, etc.) to meet all these goals. Large-scale government surveys are often co-sponsored by
multiple federal agencies who want information from different survey modules (e.g., questions about health
status versus questions about income). In both of these examples, data need to be collected in a way that
adequately meets all subgoals without exhausting a shared budget.

Applying dynamic data collection to other domains will also further research in this area. The general-
izability of this dynamic item ordering framework means that it often cannot be directly applied to a new
problem without domain-specific adjustments. Different communities care about different aspects of data
collection, and addressing those concerns is necessary for realistic solutions in those communities. These
practical considerations highlight facets of the framework that also apply to other situations. For example,
the concept of context-dependent costs is relevant to mobile sensing applications where the battery context of
a sensor (e.g., smartphone) influences the practical cost consideration of different features to gather can also
apply to the concern about order effects in survey methodology. When people interpret questions differently
in different orders, survey researchers often recommend standard orders for certain questions (Sudman et al.,
1996). This constrained order can be enforced in a dynamic ordering by considering the cost of a dependent
question to be infinite in the context of its prerequisite question(s) not being asked yet.

Another area for future work is in scaling up data collection. The applications in this thesis considered
all potential items that might be acquired next when calculating the utility-cost objective in Equation 3.1.
When there are very many items that can be collected, performing this calculation for every remaining item
at each step in data collection can be time-consuming. In this case, being strategic about covering the search
space can reduce the computation time to a reasonable amount. For example, if the set of items is structured
in a way that some items will always be worse than others, then the calculations can be made over a reduced
set of items. Alternatively, reusing or making inexpensive updates to previous calculations could also reduce
the computation time for selecting a new item.

The work in this thesis on dynamic question ordering is just one aspect of the larger field of cost-effective
data collection. The results of the DQO framework for dynamic data collection in both prediction and
survey collection illustrate the cost-saving benefit of tailoring data collection to an individual data point and
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considering the usefulness of different pieces of information for the task at hand when choosing which to
acquire next. This work in cost-effective test-time data collection is also related to paradigms of training-
time data collection, such as active learning and online learning. The applications presented in this thesis
all relied on complete training data to understand the data (e.g., learn a predictive model, distributions
of responses, breakoff probabilities). Relaxing this requirement and making use of adaptive data collection
methods from the start (without needing complete training data) will further the cost savings in all stages
of data collection.

There are always limits to data collection, whether they are of time, money, battery, bandwidth, privacy,
etc. Strategically working within these limits, using cost-effective data collection, ensures that useful data
can still be gathered.
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Saucier, G. (1994). Mini-Markers: A brief version of Goldberg’s unipolar Big-Five markers. Journal of
Personality Assessment , 63 (3), 506–516.

Sauermann, H., & Roach, M. (2013). Increasing web survey response rates in innovation research: An
experimental study of static and dynamic contact design features. Research Policy , 42 (1), 273–286.

Schouten, B., Calinescu, M., & Luiten, A. (2013). Optimizing quality of response through adaptive survey
designs. Survey Methodology , 39 (1), 29–58.

Seryak, J., & Kissock, K. (2003). Occupancy and behavioral effects on residential energy use. In Proceedings
of the Solar Conference (pp. 717–722).

Sharma, N., & Gedeon, T. (2012). Objective measures, sensors and computational techniques for stress
recognition and classification: A survey. Computer Methods and Programs in Biomedicine, 108 (3),
1287–1301.

Shi, T., Steinhardt, J., & Liang, P. (2015). Learning where to sample in structured prediction. In AISTATS.

Shih, T.-H., & Fan, X. (2008). Comparing response rates from web and mail surveys: A meta-analysis. Field
Methods, 20 (3), 249–271.

Stanton, J. M., Sinar, E. F., Balzer, W. K., & Smith, P. C. (2002). Issues and strategies for reducing the
length of self-report scales. Personnel Psychology , 55 (1), 167–194.

Strubell, E., Vilnis, L., Silverstein, K., & McCallum, A. (2015). Learning dynamic feature selection for fast
sequential prediction. arXiv preprint arXiv:1505.06169 .

Suchman, L., & Jordan, B. (1990). Interactional troubles in face-to-face survey interviews (with discussion).
Journal of the American Statistical Association, 85 (409), 232–253.

www.worldvaluessurvey.org


88 References

Sudman, S., Bradburn, N. M., & Schwarz, N. (1996). Thinking about answers: The application of cognitive
processes to survey methodology. San Francisco: Jossey-Bass.

Suh, H., Shahriaree, N., Hekler, E. B., & Kientz, J. A. (2016). Developing and validating the user burden
scale: A tool for assessing user burden in computing systems. In Proceedings of the 2016 CHI conference
on human factors in computing systems (pp. 3988–3999).

Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G., & Zha, H. (2013). Learning multiple-question decision
trees for cold-start recommendation. In Proceedings of the sixth ACM international conference on web
search and data mining (pp. 445–454).

Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A
review of modeling techniques. Renewable and Sustainable Energy Reviews, 13 (8), 1819–1835.

Sympson, J. B., & Hetter, R. D. (1985). Controlling item-exposure rates in computerized adaptive testing.
In Proceedings of the 27th annual meeting of the military testing association (pp. 973–977).

Tanur, J. M. (1992). Questions about questions: Inquiries into the cognitive bases of surveys. New York:
Russell Sage Foundation.

Tourangeau, R. (1984). Cognitive sciences and survey methods. In T. B. Jabine, M. L. Straf, J. M. Tanur, &
R. Tourangeau (Eds.), Cognitive aspects of survey methodology: Building a bridge between disciplines
(pp. 73–100). Washington, DC: National Academies Press.

Tourangeau, R., Michael Brick, J., Lohr, S., & Li, J. (2017). Adaptive and responsive survey designs:
A review and assessment. Journal of the Royal Statistical Society: Series A (Statistics in Society),
180 (1), 203–223.

Trapeznikov, K., & Saligrama, V. (2013). Supervised sequential classification under budget constraints. In
AISTATS (pp. 581–589).

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information Theory , 50 (10), 2231–2242.

U.S. Bureau of the Census. (2006). Design and methodology: Current Population Survey.
U.S. Bureau of the Census. (2014a). American Community Survey: Design and methodology.
U.S. Bureau of the Census. (2014b). Survey of Income and Program Participation. Retrieved 2016-02-05,

from www.census.gov/programs-surveys/sipp

U.S. Bureau of the Census. (2016). American Community Survey. Retrieved 2016-02-22, from http://

www2.census.gov/programs-surveys/acs/methodology/questionnaires/2016/quest16.pdf

U.S. Energy Information Administration. (2009). Residential Energy Consumption Survey 2009. www.eia

.gov/consumption/residential/data/2009/.
Van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C., & Rubin, D. B. (2006). Fully conditional specifi-

cation in multivariate imputation. Journal of Statistical Computation and Simulation, 76 (12), 1049–
1064.

van der Linden, W. J. (1998). Bayesian item selection criteria for adaptive testing. Psychometrika, 63 (2),
201–216.

van der Linden, W. J., & Glas, C. A. W. (Eds.). (2010). Elements of adaptive testing. Springer.
Van Goor, H., & Rispens, S. (2004). A middle class image of society. Quality and Quantity , 38 (1), 35–49.
Veerkamp, W. J. J., & Berger, M. P. F. (1997). Some new item selection criteria for adaptive testing.

Journal of Educational and Behavioral Statistics, 22 (2), 203–226.
Wagner, J. R. (2008). Adaptive survey design to reduce nonresponse bias (Unpublished doctoral dissertation).

University of Michigan.
Wagner, J. R. (2012). Adaptive contact strategies in telephone and face-to-face surveys. In Survey research

methods (Vol. 7, pp. 45–55).
Wagner, J. R., West, B. T., Kirgis, N., Lepkowski, J. M., Axinn, W. G., & Ndiaye, S. K. (2012). Use

of paradata in a responsive design framework to manage a field data collection. Journal of Official
Statistics, 28 (4), 477.

Wagner-Menghin, M. M. (2002). Towards the identification of non-scalable personality questionnaire re-
spondents: Taking response time into account. Psychological Test and Assessment Modeling , 44 (1),
62.

Walston, J. T., Lissitz, R. W., & Rudner, L. M. (2006). The influence of web-based questionnaire presentation
variations on survey cooperation and perceptions of survey quality. Journal of Official Statistics, 22 (2),
271–291.

www.census.gov/programs-surveys/sipp
http://www2.census.gov/programs-surveys/acs/methodology/questionnaires/2016/quest16.pdf
http://www2.census.gov/programs-surveys/acs/methodology/questionnaires/2016/quest16.pdf
www.eia.gov/consumption/residential/data/2009/
www.eia.gov/consumption/residential/data/2009/


References 89

Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., . . . Campbell, A. T. (2014). StudentLife:
Assessing mental health, academic performance and behavioral trends of college students using smart-
phones. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous
computing (pp. 3–14).

Weisberg, S. (2014). Applied linear regression (4th ed.). New York: Wiley.
Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psycho-

logical Measurement , 6 (4), 473–492.
Weiss, D. J., & Kingsbury, G. G. (1984). Application of computerized adaptive testing to educational

problems. Journal of Educational Measurement , 21 (4), 361–375.
Weiss, D. J., & Taskar, B. (2013). Learning adaptive value of information for structured prediction. In

Advances in neural information processing systems (pp. 953–961).
Welzel, C. (2013). Freedom rising: Human empowerment and the quest for emancipation. Cambridge

University Press.
Woods, S. A., & Hampson, S. E. (2005). Measuring the Big Five with single items using a bipolar response

scale. European Journal of Personality , 19 (5), 373–390.
Wu, J., Pan, G., Zhang, D., Li, S., & Wu, Z. (2010). MagicPhone: Pointing & interacting. In Proceedings of

the 2010 ACM conference on pervasive and ubiquitous computing adjunct publication (pp. 451–452).
Xu, Z. E., Kusner, M. J., Weinberger, K. Q., Chen, M., & Chapelle, O. (2014). Classifier cascades and trees

for minimizing feature evaluation cost. Journal of Machine Learning Research, 15 (1), 2113–2144.
Yan, T., & Tourangeau, R. (2008). Fast times and easy questions: The effects of age, experience and question

complexity on web survey response times. Applied Cognitive Psychology , 22 (1), 51–68.
Yu, E. C., Fricker, S., & Kopp, B. (2015). Can survey instructions relieve respondent burden? In AAPOR.



90 References



Appendix A

Algorithms

Algorithm 1 Estimating values z for still-unknown features

Input: X ∈ Rn×d, x ∈ Rd,K ⊆ {1, ..., d}, k ∈ Z+

Output: z ∈ Rd
1: function estimate features(X,x,K, k)
2: zK ← xK . Copy over the known features
3: I ← get knn(X:,K, zK, k) . Index zK’s kNNs
4: for f ∈ {1, ..., d} \ K do . For all unknown f
5: zf ← mean(XI,f ) . Estimate zf from kNNs’ values for feature f
6: end for
7: return z
8: end function

Algorithm 2 Calculating the expected prediction uncertainty for each candidate feature

Input: K ⊆ {1, ..., d}, z ∈ Rd, feat ranges, feat proportions, model
Output: E ∈ Rd

1: function Expected uncertainty(K, z, feat ranges, feat proportions, model)
2: E ← 0d

3: for f ∈ {1, ..., d} \ K do . For all unknown f
4: R← feat ranges{f}, u← 0|R|

5: for ` ∈ {1, ..., |R|} do . For each value f can take on
6: z̄ ← z, z̄f ← R` . f -th feature is assigned
7: u` ← calculate uncertainty(z̄,model)
8: end for
9: p← feat proportions{f}

10: Ef ← pTu . Expectation of prediction uncertainty
11: end for
12: return E
13: end function
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Algorithm 3 Dynamically choosing a question ordering A and making a sequence of predictions ŷ at the
current feature values and estimates as feature values are provided

Input: X ∈ Rn×d, x ∈ Rd, K ⊆ {1, ..., d}, feat ranges, feat proportions, λ ∈ R, c ∈ Rd, model
Output: A ⊆ {1, ..., d}, ŷ ∈ R|A|+1

1: function DQO all(X, x, K, k, δ, α, feat ranges, feat proportions, β̂, σ̂2, λ, c)
2: A ← {}, ŷ ← {}
3: for i ∈ {1, ..., d− |K|} do
4: z ← estimate features(X,x,K)
5: ŷi ← predict(z,model) . Predict on features and estimates
6: E ← Expected uncertainty(

X, K, z, feat ranges, feat proportions, model)
7: f? ← arg min

f /∈K
(Ef + λ · cf )

8: A ← A∪ {f?},K ← K ∪ {f?}
9: zf? ← xf? . Ask and receive value for f?

10: end for
11: z ← estimate features(X,x,K)
12: ŷd−|K|+1 ← predict(z,model) . Make final prediction
13: return A, ŷ
14: end function



Appendix B

Experiment details

B.1 Residential Energy Consumption Survey

The results presented in this thesis come from the 2009 Residential Energy Consumption Survey (RECS)
microdata, which are available online1. The 2015 RECS dataset was recently released and is also available
online2.

The cost categories assigned to all the features in RECS are presented in Table B.1. Explanations for
the meanings of the cost categories are given in Table 4.2.

Table B.1: Feature cost categories for all RECS variables.

Cost Feature
0 Census Region
0 Census Division
0 Reportable states and groups of states
0 Type of housing unit
0 Heating degree days in 2009, base temperature 65F
0 Cooling degree days in 2009, base temperature 65F
0 Heating degree days, 30-year average 1981-2010, base 65F
0 Cooling degree days, 30-year average 1981-2010, base 65F
0 Building America Climate Region
0 AIA Climate Zone, based on average temperatures from 1981 - 2010
0 Housing unit in Census Metropolitan Statistical Area or Micropolitan Statistical Area
0 Housing unit classified as urban or rural by Census
0 Housing unit is owned, rented, or occupied without payment of rent
3 Housing unit part of condominium or cooperative
4 Year housing unit was built
4 Year range when housing unit was built
1 Year range when household moved in
3 Converted 2-4 unit apartment building
5 Converted 2-4 unit apartment building was originally a single-family house
5 Converted 2-4 unit apartment building more like single family house or apartment building
3 Number of floors in a 5+ unit apartment building
3 Number of apartment units in a 5+ unit apartment building
5 Major outside wall material
6 Major roofing material

Continued on next page

1https://www.eia.gov/consumption/residential/data/2009/
2https://www.eia.gov/consumption/residential/data/2015/
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

0 Studio apartment
3 Number of floors in an apartment
3 Number of stories in a single-family home
3 Addition to a mobile home
0 Number of bedrooms
0 Number of full bathrooms
3 Number of half bathrooms
3 Number of rooms other than bedroom(s) and bathroom(s)
3 Total number of rooms in the housing unit
3 Basement in housing unit
6 Housing unit over a crawl space
6 Housing unit over a concrete slab
3 Finished basement
3 Number of finished rooms in the basement
3 Heating used in basement
3 All or partial basement heating
6 Portion of the basement which is heated
3 Cooling used in basement
3 All or partial basement cooling
6 Portion of the basement which is cooled
3 Portion of basement exclusively used by housing unit in apartment building with 2-4 units
3 Attic in housing unit
3 Finished attic
3 Number of finished rooms in the attic
3 Heating used in attic
3 All or partial attic heating
6 Portion of the attic which is heated
3 Cooling used in attic
3 All or partial attic cooling
6 Portion of the attic which is cooled
3 Portion of attic exclusively used by housing unit in apartment building with 2-4 units
3 Attached garage
3 Size of attached garage
3 Location of attached garage
3 Heating used in attached garage
3 Cooling used in attached garage
3 Detached garage or carport
3 Size of detached garage or carport
5 Outlet within 20 feet of vehicle parking
3 Number of stoves (one appliance with cooktop and an oven)
5 Fuel used by most-used stove
5 Number of separate cooktops
5 Fuel used by most-used separate cooktop
5 Number of separate ovens
5 Fuel used by separate oven
1 Frequency of oven use
5 Self-cleaning oven
5 Continuous or manual cleaning cycle for most-used oven
1 Microwave oven used
1 Microwave used for defrosting
5 Outdoor grill used

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

5 Fuel used by outdoor grill
5 Built-in indoor grill used
5 Fuel used by built-in indoor grill
1 Toaster used
1 Frequency hot meals are cooked
1 Most-used cooking fuel
1 Coffee maker used
3 Number of refrigerators used
3 Door arrangement of most-used refrigerator
3 Size of most-used refrigerator
3 Defrosting type of most-used refrigerator
3 Through-the-door ice and water on most-used refrigerator
7 Age of most-used refrigerator
7 Energy Star most-used refrigerator
7 Most-used refrigerator replaced by this household in the last 4 years
7 Assistance for replacing most-used refrigerator
7 Year of assistance for most-used refrigerator
3 Door arrangement of second most-used refrigerator
3 Size of second most-used refrigerator
3 Defrosting type of second most-used refrigerator
7 Number of months second most-used refrigerator used in 2009
7 Age of second most-used refrigerator
7 Energy Star second most-used refrigerator
3 Door arrangements of third most-used refrigerator
3 Size of third most-used refrigerator
3 Defrosting type of third most-used refrigerator
7 Number of months third most-used refrigerator used in 2009
7 Age of third most-used refrigerator
7 Energy Star third most-used refrigerator
3 Separate freezer used
3 Number of separate freezers used
5 Type of most-used freezer
5 Size of most-used freezer
3 Defrosting type for most-used freezer
7 Age of most-used freezer
7 Most-used freezer replaced by this household in the last 4 years
7 Assistance for replacing most-used freezer
7 Year of assistance for most-used freezer
5 Type of second most-used freezer
5 Size of second most-used freezer
3 Defrosting type for second most-used freezer
7 Age of second most-used freezer
3 Dishwasher used
1 Frequency dishwasher used
7 Age of dishwasher
7 Energy Star dishwasher
7 Dishwasher replaced by this household in the last 4 years
7 Assistance for replacing dishwasher
7 Year of assistance for dishwasher
3 Clothes washer used in home
5 Top or front loading clothes washer used in home

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

1 Frequency clothes washer used
1 Water temperature used for clothes washer wash cycle
1 Water temperature used for clothes washer rinse cycle
7 Age of clothes washer
7 Energy Star clothes washer
7 Clothes washer replaced by this household in the last 4 years
7 Assistance for replacing clothes washer
7 Year of assistance for the clothes washer
3 Clothes dryer used in home
5 Fuel used by clothes dryer
1 Frequency clothes dryer used
7 Age of clothes dryer
1 Number of televisions used
2 Size of most-used TV
2 Display type of most-used TV
2 Cable box or satellite box connected to the most-used TV
2 DVR built into the cable box or satellite box connected to the most-used TV
2 Separate DVR connected to the most-used TV
2 Digital converter box connected to the most-used TV
2 Video game console connected to the most-used TV
2 Combo VCR/DVD connected to the most-used TV
2 VCR connected to the most-used TV
2 DVD player connected to the most-used TV
2 Home theater system connected to the most-used TV
2 Other set-top box connected to the most-used TV
2 Size of second most-used TV
2 Display type of second most-used TV
2 Cable box or satellite box connected to the second most-used TV
2 DVR built into the cable box or satellite box connected to the second most-used TV
2 Separate DVR connected to the second most-used TV
2 Digital converter box connected to the second most-used TV
2 Video game console connected to the second most-used TV
2 Combo VCR/DVD connected to the second most-used TV
2 VCR connected to the second most-used TV
2 DVD player connected to the second most-used TV
2 Home theater system connected to the second most-used TV
2 Other set-top box connected to the second most-used TV
2 Size of third most-used TV size
2 Display type of third most-used TV
2 Cable box or satellite box connected to the third most-used TV
2 DVR built into the cable box or satellite box connected to the third most-used TV
2 Separate DVR connected to the third most-used TV
2 Digital converter box connected to the third most-used TV
2 Video game console connected to the third most-used TV
2 Combo VCR/DVD connected to the third most-used TV
2 VCR connected to the third most-used TV
2 DVD player connected to the third most-used TV
2 Home theater system connected to the third most-used TV
2 Other set-top box connected to the third most-used TV
1 Computer used at home
1 Number of computers used

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

1 Most-used computer - desktop or laptop
1 Monitor type of most-used computer
1 Turn off most-used computer when not in use
1 Sleep or standby mode for most-used computer when not in use
1 Second most-used computer - desktop or laptop
1 Monitor type of second most-used computer
1 Turn off second most-used computer when not in use
1 Sleep or standby mode for second most-used computer when not in use
1 Third most-used computer - desktop or laptop
1 Monitor type of third most-used computer
1 Turn off third most-used computer when not in use
1 Sleep or standby mode for third most-used computer when not in use
1 Internet access at home
1 Dial-up internet access
1 DSL or Fiber Optic internet access
1 Cable internet access
1 Satellite internet access
1 Wireless internet in home
1 Number of printers used
1 Separate fax machine used
1 Separate copy machine used
6 Well water pump used
6 Automotive block or engine heater or battery blanket used
6 Evaporative cooler used
1 Large heated aquarium used
1 Stereo equipment used
1 Cordless telephone used
1 Answering machine used
2 Number of rechargeable tools and appliances used
1 Charging patterns for rechargeable tools and appliances
1 Chargers for rechargeable tools and appliances left plugged into wall
2 Number of rechargeable electronic devices used
1 Charging patterns for rechargeable electronic devices
1 Chargers for rechargeable electronic devices left plugged into wall
5 Space heating equipment used
5 No space heating equipment, or unused space heating equipment
5 Unused space heating equipment type
5 Fuel for unused space heating equipment
3 Type of main space heating equpiment used
3 Main space heating fuel
3 Routine service or maintenance performed on main space heating equipment
7 Age of main space heating equipment
7 Main space heating equipment replaced by this household in the last 4 years
7 Assistance for replacing or maintaining main space heating equipment
7 Year of assistance for main space heating equipment
3 Main space heating equipment heats other homes, business, or farm
5 Secondary space heating equipment used
5 Heat pump used for secondary space heating
5 Central warm-air furnace used for secondary space heating
5 Fuel used by warm-air furnace for secondary space heating
5 Hot water system used for secondary space heating

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

5 Fuel used by hot water system for secondary space heating
5 Built-in electric units used for secondary space heating
5 Pipeless furnace used for secondary space heating
5 Fuel used by pipeless furnace for secondary space heating
5 Built-in room heaters used for secondary space hearing
5 Fuel used by built-in electric units for secondary space heating
5 Heating stove used for secondary space heating
5 Fuel used by heating stove for secondary space heating
5 Portable electric heaters used for secondary space heating
5 Portable kerosene heaters used for secondary space heating
5 Fireplace used for secondary space heating
5 Fuel used by fireplace for secondary space heating
5 Flue on gas fireplace
1 Frequency gas fireplace used
5 Cooking stove used for secondary space heating
5 Fuel used by cooking stove for secondary space heating
5 Other equipment used for secondary space heating
5 Fuel used by other secondary space heating equipment
6 Portion of space heating provided by main space heating equipment
5 Number of rooms heated
5 Thermostat(s) for heating equipment
5 Number of thermostats
5 Programmable main thermostat
1 Programmable thermostat lowers temperature at night
1 Programmable thermostat lowers temperature during the day
1 Temperature when someone is home during the day (winter)
1 Temperature when no on is home during the day (winter)
1 Temperature at night (winter)
1 Humidifier used
1 Number of months humidifier used in 2009
6 Number of tankless water heaters
6 Number of storage water heaters
6 Type of main water heater
6 Fuel used by main water heater
6 Main water heater is used by more than one housing unit
6 Main water heater size (if storage tank)
7 Main water heater age
6 Blanket around the main water heater (if storage tank)
7 Assistance for purchasing the water heater blanket
7 Year of the assistance for purchasing the water heater blanket
6 Type of secondary water heater
6 Fuel used by secondary water heater
6 Secondary water heater size (if storage tank)
6 Secondary water heater age
3 Air conditioning equipment used
3 No air conditioning equipment, or unused air conditioning equipment
5 Type of unused air conditioning equipment
5 Type of air conditioning equipment used
5 Ducts for space heating and air conditioning
5 Central air conditioner is a heat pump
5 Central air conditioner cools other homes, business, or farm

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

7 Routine service or maintenance performed on central air conditioner
7 Age of central air conditioner
7 Central air conditioner replaced by this household in the last 4 years
7 Assistance for maintaining or replacing central air conditioner
7 Year of assistance for central air conditioner
5 Number of rooms cooled
1 Frequency central air conditioner used in summer 2009
5 Thermostat for central air conditioner
5 Programmable thermostat for central air conditioner
1 Programmable thermostat adjusts temperature at night
1 Programmable thermostat adjusts temperature during the day
1 Temperature when someone is home during the day (summer)
1 Temperature when no on is home during the day (summer)
1 Temperature at night (summer)
5 Number of window/wall air conditioning units used
7 Age of most-used window/wall air conditioning unit
7 Energy Star most-used window/wall air conditioning unit
7 Most-used window/wall air conditioning unit replaced by this household in the last 4 years
7 Assistance for most-used window/wall air conditioning unit
7 Year of assistance for most-used window/wall air conditioning unit
1 Frequency most-used window/wall air conditioning unit used in summer 2009
5 Number of ceiling fans used
1 Frequency most-used ceiling fan used in summer 2009
5 Housing unit shaded from sun by large trees
1 Dehumidifier used
1 Number of months dehumidifier used in 2009
5 High ceilings
5 Cathedral ceilings
3 Swimming pool
3 Heated swimming pool
6 Fuel used for heating swimming pool
3 Hot tub used
6 Fuel used for heating hot tub
1 Number of lights turned on 12 or more hours during a typical summer day
2 Number of energy-efficient bulbs for lights turned on 12 or more hours during a typical summer day
1 Number of lights turned on 4 to 12 hours during a typical summer day
2 Number of energy-efficient bulbs for lights turned on 4 to 12 hours during a typical summer day
1 Number of lights turned on 1 to 4 hours during a typical summer day
2 Number of energy-efficient bulbs for lights turned on 1 to 4 hours during a typical summer day
1 Number of outdoor lights left on all night
2 Number of energy-efficient bulbs for outdoor lights left on all night
2 Number of outdoor lights left on all night that use natural gas
6 Energy-efficient bulbs installed by this household
7 Assistance for energy-efficient light bulbs
7 Year of assistance for energy-efficient light bulbs
5 Sliding glass doors in heated areas
6 Number of sliding glass doors in heated areas
6 Number of windows in heated areas
6 Type of glass in most windows
6 Windows replaced by this household
7 Assistance for window replacement

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

7 Year of assistance for window replacement
6 Level of insulation (respondent reported)
6 Insulation added by this household
6 Year of added insulation
7 Assistance for added insulation
7 Year of assistance for added insulation
6 Is home too drafty in the winter? (respondent reported)
6 Caulking or weather stripping by this household
6 Year of caulking or weather stripping
7 Assistance for caulking or weather stripping
7 Year of assistance for caulking or weather stripping
6 Home energy audit
6 Year of home energy audit
7 Assistance for home energy audit
7 Year of assistance for home energy audit
3 Electricity is used in home
3 Natural gas is used in home
3 Propane is used in home
3 Fuel oil is used in home
3 Kerosene is used in home
3 Wood is used in home
3 Solar is used in home
3 Other fuel is used in home
3 Electricity used for space heating
3 Electricity used for secondary space heating
3 Electricity used for air conditioning
3 Electricity used for water heating
3 Electricity used for cooking
3 Electricity used, other than for space heating, water heating, air conditioning, or cooking
3 Natural gas used for space heating
3 Natural gas used for secondary space heating
3 Natural gas used for water heating
3 Natural gas used for cooking
3 Natural gas used, other than for space heating, water heating, or cooking
3 Propane used for space heating
3 Propane used for secondary space heating
3 Propane used for water heating
3 Propane used for cooking
3 Propane used, other than for space heating, water heating, or cooking
3 Fuel oil used for space heating
3 Fuel oil used for secondary space heating
3 Fuel oil used for water heating
3 Fuel oil used, other than for space heating or water heating
3 Kerosene used for space heating
3 Kerosene used for secondary space heating
3 Kerosene used for water heating
3 Kerosene used, other than for space heating or water heating
3 Wood used for space heating
3 Wood used for secondary space heating
3 Wood used for water heating
3 Wood used, other than for space heating or water heating

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

3 Solar used for space heating
3 Solar used for secondary space heating
3 Solar used for water heating
3 Solar used, other than for space heating or water heating
3 Other fuel used for space heating
3 Other fuel used for secondary space heating
3 Other fuel used for water heating
3 Other fuel used for cooking
5 Renewable on-site system used
6 Renewable on-site system connected to the grid
3 Who pays for electricity used for space heating
3 Who pays for electricity used for water heating
3 Who pays for electricity used for cooking
3 Who pays for electricity used for air conditioning
3 Who pays for electricity used for lighting and other appliances
3 Follow up for ‘other’ payment of electricity
3 Who pays for natural gas for space heating
3 Who pays for natural gas for water heating
3 Who pays for natural gas for cooking
3 Who pays for natural gas for other uses
3 Follow up for ‘other’ payment of natural gas
3 Who pays for fuel oil
3 Follow up for ‘other’ payment of fuel oil
3 Who pays for propane
3 Follow up for ‘other’ payment of propane
3 Propane delivered
3 Kerosene delivered to home
3 Kerosene purchased ‘cash and carry’
3 Wood logs used
3 Wood scraps used
3 Wood pellets used
3 Type of wood used other than logs, pellets, or scraps
7 Cords of wood used in 2009
7 Cords of wood used in 2009 (if more than 5)
1 Household fuel bills include fuel used for non-household purposes
1 Sex of householder
1 Employment status of householder
1 Householder lives with spouse or partner
1 Householder is Hispanic or Latino
1 Householder’s Race
1 Highest education completed by householder
1 Number of household members
1 Age of householder
1 Age category of second household member
1 Age category of third household member
1 Age category of fourth household member
1 Age category of fifth household member
1 Age category of sixth household member
1 Age category of seventh household member
1 Age category of eighth household member
1 Age category of ninth household member

Continued on next page
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Table B.1 – RECS feature cost categories, continued from previous page
Cost Feature

1 Age category of tenth household member
1 Age category of eleventh household member
1 Age category of twelfth household member
1 Age category of thirteenth household member
1 Age category of fourteenth household member
1 Home-based business or service
1 Household member at home on typical week days
1 Household member(s) telecommutes or teleworks
1 Number of telecommuting days per month
1 Any activities that use an unusual amount of energy
1 Household members received employment income in 2009
1 Household members received retirement income in 2009
1 Household members received Supplemental Security income in 2009
1 Household members received welfare payments or cash assistance in 2009
1 Household members received investment income in 2009
1 Household members received other regular income in 2009
2 2009 gross household income
2 Household income at or below 100% of poverty line
2 Household income at or below 150% of poverty line
3 Housing unit in public housing authority
3 Lower rent due to Federal, State, or Local housing program
1 Household receives food stamps or WIC assistance
4 Total square footage (includes all attached garages, all basements, and finished/heated/cooled attics)
6 Total square footage (includes heated/cooled garages, all basements, and finished/heated/cooled attics)
6 Total heated square footage
6 Total unheated square footage
6 Total cooled square footage
6 Total uncooled square footage
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B.2 World Values Survey

The results presented in this thesis come from the Wave 6 of the World Values Survey (WVS), available
online3.

We determined the cost, defined as item response times, for the WVS questions used in the secular and
emancipative values scales (Tables B.2 and B.3) by conducting an experiment with 100 crowdworkers on
Amazon Mechanical Turk.

Table B.2: Question costs (response times) for secular values scale on the World Values Survey.

Question Response time (s)
Make parents proud 10.98
Greater respect for authority 16.41
Proud of nationality 6.54
Importance of religion 6.17
Religious service attendance 8.07
Religious person 6.30
Justifiable: avoiding fare 13.24
Justifiable: cheating on taxes 7.37
Justifiable: accepting a bribe 7.87
Confidence in armed forces 8.14
Confidence in police 7.42
Confidence in courts 5.43

Table B.3: Question costs (response times) for emancipative values scale on the World Values Survey.

Question Response time (s)
Independence impt for children 6.53
Imagination impt for children 7.12
Obedience impt for children 5.79
Gender eq: job 9.52
Gender eq: education 8.35
Gender eq: political leader 6.61
Justifiable: homosexuality 8.71
Justifiable: abortion 6.55
Justifiable: divorce 6.69
Aims: say in jobs 37.92
Aims: say in gov’t decisions 16.12
Aims: freedom of speech 10.41

3www.worldvaluessurvey.org/WVSDocumentationWV6.jsp

www.worldvaluessurvey.org/WVSDocumentationWV6.jsp
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B.3 SIPP Synthetic Beta

The results presented in this thesis come from Version 6.02 of the SIPP Synthetic Beta (SSB). The SSB is
available for research upon application to the U.S. Census Bureau4.

We determined the cost, defined as item nonresponse rates, for items in the SSB from publicly available
SIPP data5. Items in the SSB that come from administrative records data (from the Social Security Admin-
istration) rather than the SIPP questionnaire have item nonresponse rates of 0. Table B.4 lists the cost for
each SSB item.

Table B.4: Nonresponse rates for items in the SIPP Synthetic Beta. Some items come from administrative
records from the Social Security Administration, which has information on respondents’ earnings, benefits,
etc. These items have zero cost, since respondents do not need to provide answers in the SIPP survey.

Question Nonresponse rate (%)
Age 0
Respondent has valid Social Security Number 0
Home equity 0
Eligible for aged spouse benefit 0
Eligible for retirement benefit 0
Eligible for widowed spouse benefit 0
Non-housing financial wealth 0
Received aged spouse benefit 0
Received retirement benefit 0
Received widowed spouse benefit 0
Received Supplementary Security Income (SSI) benefits 0
Diagnostic code used to determine eligibility for SSI disability benefits 0
Type of SSI benefit received 0
Total earnings 0
Total personal income 0
Gender 0.002
Received workers compensation 0.026
Own a home 0.030
Received public assistance payments 0.031
Disability prevents work 0.038
Received veterans compensation or pension benefits 0.072
Received SNAP / food stamps 0.136
Enrolled in defined benefit pension plan 0.279
Weeks with pay 1.035
Occupation category 1.339
Education category 1.364
Field of bachelors degree 1.598
Race 1.813
Has kids 2.511
Health insurance coverage 3.170
Hispanic 3.202
Life insurance ownership 3.640
Enrolled in defined contribution pension plan 4.104
Disability limits work 5.515
On layoff (without pay) 5.956
Left a job because of layoff 5.956
Total usual weekly hours worked at all jobs 6.379

Continued on next page

4https://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
5http://thedataweb.rm.census.gov/ftp/sipp ftp.html

https://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
http://thedataweb.rm.census.gov/ftp/sipp_ftp.html
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Table B.4 – SSB item costs, continued from previous page
Question Nonresponse rate (%)
Health insurance coverage from employer 6.708
Foreign born 6.929
Currently enrolled in college 7.549
Currently enrolled in high school 8.614
Industry category 17.440

B.4 American Community Survey

The results presented in this thesis come from data (responses and paradata) collected June through Septem-
ber 2016, on the online mode of the American Community Survey (ACS).

We determined the cost, defined as time (in seconds) that respondents spent on a page in the online ACS
questionnaire. Table B.5 lists the cost for each page in the ACS.

Table B.5: Median item response times for pages in the online ACS.

Page type Page Median time on page (s)
login login 8
setup address 6
setup liveu 5
setup live 6
setup business 6
setup pin 35
setup resp name 26
setup roster a 30
setup roster b 10
setup add 1 18
setup roster c 9
setup add 2 18
setup away now 10
setup remove one 7
setup another home 7
setup another home who 7
setup more than 2 6
setup roster check 5
setup ref per 13
roster demos relationship 6
roster demos sex 3
roster demos dateofbirth 18
roster demos hispanic 4
roster demos race 6
household typeofunit 16
household yearbuilt 13
household whenmovedin 19
household acres 5
household agrsales 8
household rooms 42
household facilities 15
household compuse 15

Continued on next page
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Table B.5 – ACS page times, continued from previous page
Page type Page Median time on page (s)
household netaccess 12
household netsub 20
household vehicles 9
household heatingfuel 12
household elecpay 8
household elecamt 21
household elecinc 14
household gasuse 5
household gaspay 7
household gasamt 10
household gasinc 12
household waterpay 5
household wateramt 26
household waterinc 8
household ofueluse 6
household ofuelpay 8
household ofuelamt 16
household ofuelinc 9
household foodstamps 7
household condo 4
household condofee 7
household condofeeamt 9
household tenure 11
household monthrent 8
household meals 4
household propvalue 18
household taxes 17
household propinsurance 17
household mortgage 12
household mortgageamt 14
household mortgagetax 8
household mortgageinsurance 6
household 2ndmortgage 7
household 2ndmortgageamt 11
household mobilehometax 31
household hunitstatus 21
person pselect 7
person placeofbirth 12
person citizenship 13
person yearofentry 12
person attendschool 7
person whatgrade 8
person highestlevel 13
person fieldofdegree 17
person ancestry 15
person language 4
person whatlanguage 6
person englishprof 5
person residencelastyear 5
person addresslastyear 20
person insurance 18

Continued on next page
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Table B.5 – ACS page times, continued from previous page
Page type Page Median time on page (s)
person deaf 4
person blind 4
person difficultyconcent 5
person difficultywalk 4
person difficultydress 3
person difficultyerrand 5
person marriedstatus 5
person pmarried 4
person widow 4
person divorce 3
person numberofmarriages 4
person yearofmarriage 9
person birth 4
person grandchildrenhome 5
person grandparentsresp 7
person lengthofresp 9
person veteranstat 5
person periodofservice 13
person vadisability 6
person disabilityrate 4
person worklastweek 6
person worklocal 55
person transporttowork 6
person numberofriders 7
person timeleftforwork 14
person mintowork 8
person fiftymoreweeks 9
person weeksworked 13
person hoursworked 10
person anywork 6
person layoff 4
person tempabsent 5
person recalltowork 4
person activelookforwork 5
person couldwork 9
person lastworked 9
person employeetype 18
person employer 13
person militaryemployer 4
person typeofbusiness 12
person businessclass 7
person typeofwork 11
person duties 16
person wages 10
person wagesamt 20
person selfemp 6
person selfempamt 15
person interest 7
person interestamt 21
person socialsecurity 5
person socialsecurityamt 37

Continued on next page
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Table B.5 – ACS page times, continued from previous page
Page type Page Median time on page (s)
person ssi 4
person ssiamt 16
person publicasst 4
person publicasstamt 15
person retirement 4
person retirementamt 26
person otherincome 6
person otherincomeamt 20
person totalincome 8
person vrfyincome 7
person estincome 14
person finishedperson 4



Appendix C

Demographic characteristics and
breakoff statistics on the online ACS

Breakoff patterns by respondent demographic group in the online ACS agree with most trends found in
previous work. One demographic characteristic of breakoffs that was not reproduced in this ACS dataset
is the past finding that men are more likely to break off than women (Peytchev, 2011). Table C.1 shows
the numbers of breakoff and complete responses from women and men—slightly more women than men
were respondents for the survey (52.20% of respondents were women), and women broke off at a higher
rate than men (12.37% breakoff for women, 9.78% breakoff for men). Remaining demographics and breakoff
were observed in accordance with prior work. Table C.2 shows that older respondents completed the survey
at higher rates than younger respondents (McCutcheon et al., 2013; Peytchev, 2009, 2011). Tables C.4
and C.3 show that nonwhite and Hispanic respondents, respectively, were more likely to break off than white
and non-Hispanic respondents (Peytchev, 2011). Table C.5 shows that respondents with higher education
levels completed the survey at greater rates than respondents with lower education levels (Peytchev, 2009).
Finally, Table C.6 shows that low-income respondents were more likely to break off than higher-income
respondents (Peytchev, 2009; Goyder et al., 2002; Van Goor & Rispens, 2004).

Table C.1: Counts of respondent sex by completion type. Percentages of each sex that are breakoffs or
completes are in parentheses. More women than men were respondents, and women broke off at a higher
percentage than men.

Sex Breakoff Complete
Missing 503 (78.35) 139 (21.65)
Male 15120 (9.78) 139600 (90.22)
Female 21000 (12.37) 148700 (87.63)
Total 36630 (11.27) 288400 (88.73)
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Table C.2: Counts of respondent age by completion type. Percentages of each age category that are breakoffs
or completes are in parentheses. Older respondents completed the survey at higher rates than younger
respondents.

Age Breakoff Complete
Missing 2504 (64.84) 1358 (35.16)
<18 135 (31.54) 293 (68.46)
18-34 7926 (12.52) 55400 (87.48)
35-49 11060 (12.43) 77920 (87.57)
50-64 10110 (9.84) 92680 (90.16)
65+ 4893 (7.45) 60770 (92.55)
Total 36630 (11.27) 288400 (88.73)

Table C.3: Counts of respondent Hispanic origin by completion type. Percentages of each category that are
breakoffs or completes are in parentheses. Non-Hispanic respondents completed the survey at higher rates
than Hispanic respondents.

Hispanic origin Breakoff Complete
Missing 3304 (71.58) 1312 (28.42)
Hispanic 4276 (17.43) 20260 (82.57)
Not Hispanic 29050 (9.82) 266900 (90.18)
Total 36630 (11.27) 288400 (88.73)

Table C.4: Counts of respondent race by completion type. Percentages of each race that are breakoffs
or completes are in parentheses. White respondents completed the survey at higher rates than nonwhite
respondents.

Race Breakoff Complete
Missing 3693 (67.32) 1793 (32.68)
Not white 6738 (14.63) 39310 (85.37)
White 26200 (9.58) 247300 (90.42)
Total 36630 (11.27) 288400 (88.73)

Table C.5: Counts of respondent education by completion type. Percentages of each education level that are
breakoffs or completes are in parentheses. Respondents with higher education levels completed the survey
at greater rates than respondents with lower education levels.

Education Breakoff Complete
Missing 10480 (92.01) 910 (7.99)
≤HS 6461 (10.30) 56260 (89.70)
Some college 9114 (9.22) 89700 (90.78)
Bachelors 6455 (7.36) 81210 (92.64)
Grad school 4125 (6.40) 60350 (93.60)
Total 36630 (11.27) 288400 (88.73)
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Table C.6: Counts of respondent income category by completion type. Percentages of each income category
that are breakoffs or completes are in parentheses. Respondents with higher incomes completed the survey
at greater rates than lower-income respondents.

Income ($) Breakoff Complete
Missing 26000 (63.78) 14760 (36.22)
Loss 37 (5.62) 622 (94.39)
0 1079 (6.50) 15510 (93.50)
1-19,999 2805 (5.10) 52150 (94.90)
20,000-49,999 3128 (3.54) 85150 (96.46)
50,000-69,999 1386 (3.12) 42960 (96.87)
70,000-99,999 1079 (2.98) 35180 (97.02)
100,000+ 1122 (2.60) 42100 (97.40)
Total 36630 (11.27) 288400 (88.73)
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