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Abstract
Active search studies algorithms that can find all positive examples in an un-

known environment by collecting and learning from labels that are costly to obtain.
They start with a pool of unlabeled data, act to design queries, and get rewarded
by the number of positive examples found in a long-term horizon. Active search is
connected to active learning, multi-armed bandits, and Bayesian optimization.

To date, most active search methods are limited by assuming that the query ac-
tions and rewards are based on single data points in a low-dimensional Euclidean
space. Many applications, however, define actions and rewards in a more complex
way. For example, active search may be used to recommend items that are con-
nected by a network graph, where the edges indicate item (node) similarity. The
active search reward in environmental monitoring is defined by regions because pol-
lution is only identified by finding an entire region with consistently large measure-
ment outcomes. On the other hand, to efficiently search for sparse signal hotspots
in a large area, aerial robots may act to query at high altitudes, taking the average
value in an entire region. Finally, active search usually ignores the computational
complexity in the design of actions, which is infeasible in large problems.

We develop methods to address the disparate issues in the new problems. In a
graph environment, the exploratory queries that reveal the most information about
the user models are different than the Euclidean space. We used a new exploration
criterion called Σ-optimality, which is motivated by a different objective, active sur-
veying, yet empirically performed better due to a tendency to query cluster centers.
We also showed submodularity-based guarantees that justify for greedy application
of various heuristics including Σ-optimality and we performed regret analysis for ac-
tive search with results comparable to existing literature. For active area search for
region rewards, we designed an algorithm called APPS, which optimizes for one-
step look-ahead expected rewards for finding positive regions with high probability.
APPS was initially solved by Monte-Carlo estimates; but for simple objectives, e.g.
to find region with large average pollution concentrations, APPS has a closed-form
solution called AAS that connects to Bayesian quadrature. For active needle search
with region queries using aerial robots, we pick queries to maximize the informa-
tion gain about possible signal hotspot locations. Our method is called RSI and it
reduces to bisection search if the measurements are noiseless and the signal hotspot
is unique. Turning to noisy measurements, we showed that RSI has near-optimal ex-
pected number of measurements, which is comparable to results from compressive
sensing (CS). On the other hand, CS relies on weighted averages, which are harder
to realize than our use of plain averages. Finally, to address the scalability challenge,
we borrow ideas from Thompson sampling, which approximates near-optimal deci-
sions by drawing from the model uncertainty and using greedy decisions accord-
ingly. Our method is conjugate sampling, which allows true computational benefits
when the uncertainty is modeled with sparse or circulant matrices.
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1
Introduction

We study the problem of active search for positive instances with desired properties [Garnett
et al., 2012, Wang et al., 2013]. Active search is like active learning in binary settings [Settles,
2010], but the objective is to recall all positive instances. It assumes a similar paradigm: First,
details about the search domain and the desired properties are provided. Then, an algorithm
or autonomous machine will conduct the search iteratively, where for each step, the algorithm
or machine will select an instance, obtain feedback by querying human or interacting with the
environment at the selected point, and update its internal parameters to improve the next selec-
tions. The iterative process continues until the user quits and, while trials and errors are bound to
happen, the ultimate goal is to maximize the total number of positive instances found in the end.

Autonomous systems operating under this paradigm may be valuable in many applications. For
example, in environmental monitoring, we take samples at various locations to find all polluted
areas and identify their the sources. In an email investigation, we want to retain all emails with
questionable content in order to provide evidence. In social science, we want to find people who
have unique opinions in order to understand them. In search and rescue operations, we want
to locate all human survivors of a disaster in a large area. Active search can help by making
decisions about where to inspect in order to find all relevant information, in a similar manner to
human expert investigations.

Active search focuses on collecting and learning from feedback in a sequential application of
open-loop search. For example, in environmental monitoring by fan-boat, the information from
each search query (i.e., taking measurement at any location) is limited at the chosen location
and maybe its adjacent locations. Therefore, to find all positive readings that indicate pollutions,
we need to actively plan for the next locations to take measurements after obtaining results at
the previous locations. This is different from the passive search in information retrieval context
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Figure 1.1: Active search applications: environmental monitoring, aerial search, public opinion
search, and finding all relevant information.

where the ultimate goal is to retrieve all values whose keywords match the search word [Croft
et al., 2010, Manning et al., 2008]. For our active search in this context, a more relevant task
would be to interactively refine search results in cases where the initial keyword is ambiguous.
We will visit a similar problem in details in Chapter 2.

Another related but different interpretation of active search is recommender systems [Adomavi-
cius and Tuzhilin, 2005, McMahan et al., 2013]. These systems are widely used in online inter-
active marketplaces, where the goal is to provide online customers items that they will likely to
click, i.e. positive items in the prediction of clicks based on the customers’ previous browsing
history. The idea is to model every customer’s preference based on all other customers who have
exhibited similar preferences in their previous browsing history. Even though recommender sys-
tems are built for customer interactions, the algorithms themselves do not usually use interactive
learning or active explorations. As a result, recommender systems are not suitable for use in
active search applications in unknown environments.
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A slightly more complicated approach is reinforcement learning [Sutton and Barto, 1998]. How-
ever, reinforcement learning focuses on finding an optimal strategy after solving many active
search problems in controlled environments, whereas we focus on finding good strategies to
solve new active search problems under lenient assumptions.

1.1 Common Solutions to Active Search Problems

So, how do we solve active search problems? Although active search is a newer concept, there
are many algorithms in related fields that can serve as a good starting point.

Designs of experiments (DOE) [Krause et al., 2008, Montgomery, 2012] are based on the idea that
collecting best quality data is often more useful than collecting more data, especially when data
collection is costly. In our terminology, experiments mean human/environmental interactions.
The goal in experimental designs is usually to reduce the uncertainty in the parameter space of
the model that predicts interaction outcomes (i.e., instance labels in our case). When applied
to active search, once the underlying model is obtained, the positive instances may be directly
observed. In fact, many existing systems are built on the explore-then-commit idea, including
robotic search for radiation sources, a/b testing and adoption of the optimal policy, etc. While
being the most reliable baseline, the idea of explore-then-commit is usually not the most efficient
for finding all positives using as few query interactions as possible.

At the other extreme, Bayesian optimization (BO) [Brochu et al., 2010, Jones et al., 1998,
Mockus, 1974] aims to directly find the global optimum of a black-box function. BO relies
on Bayes priors, which define the scope of the black-box optimization problem (or the active
search problem) via probability distributions that jointly model all possible interaction outcomes
at all queryable instances. The Bayesian view also allows for simulation on the evolution of the
interaction outcomes without interactions actually taking place. This thought process is called
look-ahead modeling. Upon revealing of true interaction outcomes, a posterior model is formed
by reasoning with both empirical evidence and the prior model. Then, new data collection deci-
sions are made based on the current posterior model.

A naive solution to BO chooses queries in order to greedily maximizes the expected improvement
on the maximum value at the query point, in terms of its one-step look-ahead model [Jones
et al., 1998]. Hennig and Schuler [2012], Hernández-Lobato et al. [2016] considered a global
measure of utility also in one-step look-ahead modeling. BO may be used for active search to find
singular positive instances; to further find all positive instances, one must modify the objective
to simultaneously find global optima and stay away from the previously found positive instances
[Vanchinathan et al., 2013].

Further, based on the same Bayesian modeling, active search may be directly approached. Gar-
nett et al. [2012], Wang et al. [2013] use an objective that counts the expected number of positives
in a multi-step look-ahead model, where at every step the algorithm chooses the Bayes-optimal
query according to the look-ahead simulations. A true Bayes-optimal decision is arguably the
best decision, but their computation is often prohibitively slow because they involve infinite-step
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look-ahead modeling. Garnett et al. [2012], Wang et al. [2013] used two-step approximations
and showed good empirical results. Branch-and-bound pruning was used to further increase the
decision speed.

Finally, to combine exploratory DOE and greedy BO for long-term rewards without the com-
plexity of multiple-step look-ahead, recent research focuses on a set of statistical models called
multi-armed bandits (MAB) [Auer, 2003, Bubeck, 2012, Gittins, 1979]. MAB studies the problem
where there is a pool of bandit arms, each of which holds a hidden distribution and can output
a random reward value accordingly if it is chosen to be played. The objective is to accumulate
maximum sums of rewards after finite rounds, assuming each round costs a unit token for any
choice of arm. MAB focuses on guarantees on cumulative regret, which is the gap in expected
cumulative rewards between the optimal choices of arms and the choices from the algorithm.
A meaningful guarantee on cumulative regret should be sub-linear in terms of the number of
play rounds. To obtain guarantees on cumulative regrets, a common solution to MAB problems
usually involves two considerations: exploitation and exploration. Exploitation prefers to greed-
ily choose the best options based on empirical results, similar to the principles in BO, whereas
exploration considers choosing new or under-explored options to reduce model uncertainty like
DOE.

We can adapt MAB strategies for use in active search if we treat each arm as a searchable in-
stance and disallow repeated play of the same arms. We show in [Ma et al., 2015a] that similar
guarantees are obtainable in our choice of model.

1.2 Limitations on Existing Active Search Solutions

However, current research on active search fails to realize the complexity in real applications.
They typically assume that a search action can only apply to an individual arm or a single point,
the following observation will only cover that single point, and a search reward will be assigned
to the same point. In practice, actions may be allowed on a group of points and the search objec-
tive or reward may also be a global pattern defined on a region. Another real-world complexity is
the search domain. Instead of a Euclidean space, instances can be embedded as nodes in a graph
structure. My research is on intuitive algorithms under these circumstances.

To begin with, we study active search on graphs, where the instances are represented as graph
nodes and the pairwise similarity between instances are recorded as graph edges. The edges are
observed a-priori, but the node labels are hidden and only revealed upon queries. For example,
in an email investigation, the links play an important role for the distribution of questionable
content. Active search aims to find all emails that may be positive evidence for a misconduct,
decided by human investigators. Simple application of linear-bandits [Dani et al., 2008] and
Gaussian process-bandits [Srinivas et al., 2010b] will cause undesirable focus on the graph pe-
riphery (i.e., leaf nodes that have long graph traversal distances to most other nodes), where the
uncertainty is the largest according to linearization of the graphical models. However, querying
on the periphery intuitively fails on the promise of model uncertainty reduction.
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Our next application is on active search for patterns defined at a region level. An example is
environmental monitoring by an autonomous fan-boat. While the boat travels and takes point
measurements with its on-board sensors at locations of its choice, identification of real pollution
problems requires consistent measurements in a large region. We label a region as positive if the
mean value in the region exceeds a given threshold with high probability. Another example is
electoral polling where the objective is to find winning states that include a lot of sample points.
We even want to find more complex patterns defined by functionals on regions. However, using
point-based active search may not be the most efficient solution.

We also consider searching for signal hotspots in a large area using aerial robots that take aggre-
gate measurements at high altitudes. Examples of the signal hotspots include radiation sources,
gas leaks, and human survivors of disasters. The measurements are aggregate, taken at high
altitudes with limited spatial resolutions. For simplicity, we consider single-pixel cameras that
record the average values in rectangular regions. Intuitively, a good search algorithm should take
advantage of the increased coverage of measurements at high altitudes, while also pay attention
to the increased noise as the coverage increases. However, the problem of aerial search using
aggregate measurements under rectangular constraints has rarely been discussed before.

Finally, Bayesian approaches for active search and optimization traditionally ignores the com-
plexity of the decision process, assuming that the actual experiments cost much more time and
resources. However, such assumptions may hinder their wider applications in less-expensive ex-
periments. Recent discussions on Thompson sampling suggest that inaccurate, noisy decisions
can also yield reasonable convergence. Despite conceptual simplicity, little real advantage has
been shown for Thompson sampling in either computational or statistical complexity. For exam-
ple, Thompson sampling requires an exact draw from the Bayes posterior distribution, which is
often hard for complex distributions. Can we use Thompson sampling to make fast, inaccurate
draws from approximate posterior sampling, in order to truly speed up the decision process to
choose queries, especially in the above applications?

Table 1.1 summarizes the three components for my PhD thesis.

Table 1.1: Thesis Components

Active search Point rewards Region rewards
Point actions • Active search on graphs [Ma et al.,

2013, 2015a]
• Conjugate sampling [Ma et al.,

2017b]

• Active area search and Pointillism
[Ma et al., 2014, 2015b]

Group actions • Active needle search with region
sensing [Ma et al., 2017a]

• A unified model (future work)
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1.3 Thesis Contributions

1.3.1 Active Search on Graphs

Assume we are given a graph with known edges but unknown node labels; we study the se-
quential design of queries on the node labels for several interconnected problems: to survey the
percentage of positive nodes, to learn (i.e., predict) all the unqueried nodes, and eventually to
search for (i.e., collect) all positive nodes. The objective is to achieve the best task performance
with any query budget, starting with no initial labels and only using information given by the
graph connectivity.

There are many ways to use the information embedded in the graph structure; we assume a prior
distribution on the node values in the family of Gaussian Random Fields (GRFs) [Zhu et al.,
2003a]. For active learning and surveying, we aim to minimize the uncertainty of the posterior
model, using a novel Σ-optimality criterion [Garnett et al., 2012]. For active search of positive
nodes, we aim to minimize cumulative regret, which is the cumulative gap in the node values
between an optimal sequence of query choices and our query choices, using a method called
GP-SOPT that combines GP-UCB [Srinivas et al., 2010b] and Σ-optimality.

On both active learning and surveying, Σ-optimality empirically outperformed a rich set of base-
lines including uncertainty sampling [Settles, 2010], expected error reduction [Zhu et al., 2003b],
D-optimality [Krause et al., 2008], and V -optimality [Ji and Han, 2012]. One explanation we
found was that Σ-optimality tends to query cluster centers, whereas the alternatives tend to query
on the periphery (e.g., leaf nodes) of a graph. We also showed a near-optimal theoretical guar-
antee on the sequential application of D, V , and Σ-optimality. On active search, GP-SOPT also
outperformed GP-UCB, while having comparable theoretical regret bounds.

1.3.2 Active Area Search and Pointillism

We introduce the problem of active area search, which seek to discover regions of a domain
exhibiting desired behavior with limited observations. Unusually, the patterns we consider are
defined by large-scale properties of an underlying function that we can only observe at a lim-
ited number of points. Given a description of the desired patterns (e.g., the average value in
the regions exceeding a given threshold or patterns defined in the form of a classifier taking
functional inputs), we sequentially decide where to query function values to identify as many
regions matching the pattern as possible, with high confidence. Our naive solution, called Ac-
tive Pointillist Pattern Search (APPS), uses Monte-carlo estimation of the expected rewards in
one-step lookahead. For one broad class of models, including finding regions with high average
values, the expected reward of each unobserved point can be computed analytically, yielding an
analytical solution we call Active Area Search (AAS). We demonstrate the proposed algorithms
on three difficult search problems: locating polluted regions in a lake via mobile sensors, fore-
casting winning electoral districts with minimal polling, and identifying vortices in a fluid flow
simulation.
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1.3.3 Active Needle Search with Region Sensing

We consider using aerial robots to search for threats, gas leaks, or human survivors of disas-
ters. Intuitively, search algorithms may increase efficiency by collecting aggregate measurements
summarizing large contiguous regions. However, most existing search methods either ignore the
possibility of such region observations (e.g., Bayesian optimization and multi-armed bandits) or
make strong assumptions about the sensing mechanism that allow each measurement to arbitrar-
ily encode all signals in the entire environment (e.g., compressive sensing), which ignores the
physical limitations of aerial robots with on-board sensors. We model the limitation as region
sensing constraint, which allows only noisy observations of the plain average values in rectan-
gular regions (including single points).

We propose an algorithm that actively collects data to search for sparse signals using region sens-
ing, based on the greedy maximization of information gain. Assuming that the observation noise
is a superstition of standard Gaussian noise at every point in a region, we analyze our algorithm
in 1d and show that it requires Õ(n/µ2+k2) measurements to recover all of k signal locations with
small Bayes error, where µ and n are the signal strength and the size of the (discretized) search
space, respectively. We also show that active designs can be fundamentally more efficient than
passive designs with region sensing, contrasting with the results of Arias-Castro et al. [2013].
We demonstrate the empirical performance of our algorithm on a search problem using satellite
image data and in high dimensions.

1.3.4 Conjugate Sampling

We study conjugate sampling, which is an alternative to Thompson sampling to further speed up
Bayesian decision making by using fast, inaccurate draws from approximate posterior sampling.
Conjugate sampling makes Bayesian optimization decisions in O(

√
κtA) time and with O(n)

excess memory at the same time, where κ is the condition number of the information matrix of
the posterior distribution, n is the dimension of the design space, and tA is the time complexity of
matrix-vector multiplications involving the information matrix. While comparable to Thompson
sampling in general cases, our method yields additional computational benefits, in terms of both
space and time complexity, when we use sparse or circulant information models such as Gaussian
random fields [Ma et al., 2015a] or Gaussian processes with Kronecker-decomposable kernels
[Flaxman et al., 2015, Ma et al., 2014, Wilson and Nickisch, 2015].
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2
Active Search on Graphs

2.1 Introduction

As the world gets increasingly digitized and electronically recorded, how to quickly identify
relevant pieces of information becomes a major issue. Internet search engines are an integral
part of modern life, serving as a probe into the diverse, complex and expanding space of human
digital traces. Despite being successful in many information retrieval tasks, the keyword-based
query mechanism in most search engines may fall short when the targets are characterized by
complex patterns or signatures beyond keywords. For example, financial transactions associated
with illegal activities bear signatures involving multiple factors such as time, location, occupation
of the account owner, etc. In the investigation of organizational misconduct, such as the Enron
scandal, the important leads or evidence, oftentimes buried in a sea of diverse electronic and
paper trails, usually involve information exchange among key individuals and their relationship.
In these situations, keyword-based search may serve as a good starting point, but is certainly far
from completing the task.

Such needs of more general search paradigms have recently motivated several efforts [Garnett
et al., 2012, Vanchinathan et al., 2013, Wang et al., 2013], most of which are related to the
active search framework proposed by Garnett et al. [2012]. Active search is an interactive search
mechanism that begins with the user providing one or few target examples, referred to as seeds,
such as past financial transactions that have been linked to illegal activities. Based on these seeds,
an algorithm figures out what instances the user should examine next and presents them to the
user, who then decides whether the presented instances are relevant or not. Upon receiving this
feedback, the algorithm updates its search strategy accordingly and selects the next instances to
present. The loop continues until the user quits, and the goal is to maximize the total number of
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relevant instances found.

As one can see, active search has close connections to some well-studied machine learning
paradigms. At a first glance, active learning [Settles, 2010] seems the most related because
they both ask for user feedback incrementally and adaptively. However, active learning aims at
improving generalization performances with as few label queries as possible, while active search
is evaluated by how many relevant instances it can find along the way, and therefore must care-
fully balance Exploitation and Exploration (E&E). In contrast, active learning only considers
exploration, which is half of the problem. The E&E trade-off relates active search to stochastic
optimization in the multi-armed bandit setting [Bubeck et al., 2009, Dani et al., 2008, Kleinberg
et al., 2008, Robbins, 1985], where the goal is to find the maximum of an unknown function
using as few function evaluations as possible. However, active search deviates from this setting
in that it selects instances without replacement and is competing with the best subset of instances
rather than the single best.

We investigate active search when the instances are represented by a graph whose edges encode
pairwise similarity among the instances, represented as nodes. Many real-world data are of this
type, such as web pages, citation networks, and e-mail correspondences. For data that are not
naturally represented as graphs, a graph that connects the nearest neighbors of each data point
can still be beneficial because it may reveal useful manifold structures [Belkin and Niyogi, 2001,
Tenenbaum et al., 2000]. We use active search to find positive nodes on the given graph, using
the information that connected nodes tend to have similar labels to improve its efficiency.

2.1.1 Graphs

The main character of graph-based representation of data is that, before collecting actual labels,
all prior features of a data point, represented as a node in the graph, are implicitly characterized
by the connections it has with all other data points, i.e. the graph edges. The graph representa-
tions are, in principle, tangential to the usual tabular representation of data where instances are
separated by rows and features are separated by columns. For simplicity, we only discuss the
graphical properties of data. For example, when making document recommendations, we will
mostly only consider the citation patterns, while ignoring any information on the text of the doc-
uments, such as their topic features. To make the distinctions clear, it is possible to include the
tabular information when building the graphs, i.e., the edges may include the similarity in topics
between two documents, besides their citation links. The difference is that such edge engineer-
ing is done as a preprocessing step, out of the scope of this thesis. A formal treatment may use
Conditional Random Fields (CRFs) [Lafferty et al., 2001], which transforms all types of features
into a graphical model.

Example 2.1 (Graphs). Some datasets are naturally represented by graphs. Ji and Jin [2017]
used coauthorship and citation information to infer communities among statisticians. Figure 2.1
shows a large component in a coauthorship network for statisticians, where an edge is formed if
two authors have coauthored two or more papers in high-profile venues. Names are shown for
nodes with the highest degrees. Nodes are also colored according to a result from community
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detection using Newman’s Spectral Clustering method (NSC) [Newman, 2006]. The communities
can be explained by the researchers’ academic ties and interests. The example shows that using
the connectivity information alone, one may be able to infer useful properties of the nodes.

Figure 2.1: (Partial) coauthorship network for statisticians by Ji and Jin [2017].

On the other hand, it is possible to turn a feature-based database into a graph. In Figure 2.2, we
show the graph constructed from a UCI dataset where the input features are images of 8-by-8-
pixel hand-written digits. The graph is constructed by connecting every data point to its k(= 4)
nearest neighbors, where the distance is taken as the Euclidean distance on the raw pixel values,
represented as 64-dimensional vectors by aligning pixel values in natural sequential orders. In
other words, the weight of the edge between node i and j is

wij = 1{j∈Nk(i)} + 1{i∈Nk(j)} ∈ {0, 1, 2}

where Nk(i) is the index set of the k nearest neighbors for data point i. Here a weight of 0
indicates that the corresponding edge does not exist. To better visualize the resulting graph,
we use the scores of the first two principal components of the graph Laplacian (to be defined in
Section 2.3) as the coordinates of the nodes that represent images. In fact, each cluster represents
a single digit label shown by a small image icon (chosen by our Σ-optimality active learning
criterion).

Besides the demonstrated unsupervised learning results, graphs are also good places to exercise
Semi-Supervised Learning (SSL), which is the problem where part of the graph nodes have actual
class labels, e.g., obtained by active queries. The goal in SSL is to infer the correct labels of the
remaining nodes where the true labels are hidden from the algorithm. While the prediction task
may as well be solved via purely supervised learning, using graphs may improve accuracy by
using the density of the unlabeled data points. A good intuitive solution is label propagation
[Zhu et al., 2003a], which predicts the label of a node by propagating the labels (or predicted
labels) from its neighbors, until reaching a stable solution.
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(a) An example unlabeled graph (b) Exploratory queries by Σ-optimality.

Figure 2.2: Active learning on graphs: given (a) with no labels to start with, we aim to design an
exploratory set (b) to query for the labels in order to correctly classify the remaining nodes.

Beyond SSL, the true question for active search is how to choose the set of nodes to directly
query for their labels, given a querying budget and an objective (e.g., images of a particular
digit). To optimally design for queries, active systems typically require a definition of the family
of models to be considered or a Bayes prior for probable node label distributions. Here, we use
Gaussian Random Fields (GRFs) [Zhu et al., 2003a], which is a natural extension to SSL, which
we will discuss in more details in Section 2.3.

2.1.2 Problems Being Solved

Existing active search approaches [Garnett et al., 2012, Vanchinathan et al., 2013, Wang et al.,
2013] either lack theoretical guarantees or ignore certain graph properties, thereby degrading
empirical performances. We improve on the existing systems by analyzing better exploration
designs for GRFs, the Bayesian prior for label distributions. The problem of active search is
decomposed into two subproblems:

Active learning (exploration) on GRFs. We consider the problem of designing a good active
learning strategy that, under labeling budget constraints, selects which data points to query for
labels that are most helpful for classification on a graph-represented database. We assume that
the node label distribution is modeled by a GRF with known hyper-parameters. The performance
of a specific active learning strategy is measured by the classification accuracy using SSL that is
based on label propagation.

Active search (E&E) with GRFs. We assume that the node labels are binary and we aim to find
all positive nodes, in a sequential querying framework, using as few query points as possible.
Unit reward is granted to every positive query outcome. The performance of an algorithm is
measured by the cumulative reward when the sequential process is stopped at any time step. The
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Figure 2.3: Active search problem on a toy graph

performance is measured by cumulative regret, which is the gap between the maximum cumula-
tive outcomes using the optimal designs and the actual cumulative outcomes using our algorithm.
We hope to obtain no-regret guarantees, where the average cumulative regret converges to zero,
as the number of queries grows to infinity.

2.1.3 Main Contributions

Our main contribution is to show Σ-optimality [Garnett et al., 2012] as a better exploration
criterion with GRFs for active learning, active surveying and active search, with theoretical guar-
antees. We studied in the following aspects to support our claim:

First, a variety of design principles: D-optimality [Krause et al., 2008], V -optimality [Ji and
Han, 2012], and Σ-optimality, can be cast in the framework of greedy Bayes-optimal selection
rules for active learning on GRFs. However, the design principles are global objectives that
measure the entire set of query choices, which may be infeasible to optimize for. We show
that greedy, sequential selection of queries is nearly optimal in the optimality with at least (1 −
1/e)-ratio. This result was previously unknown for V/Σ-optimality, despite they have better
empirical performance. One key insight is that all of the objective functions are monotone and
submodular (i.e., later inclusion of a node always provides a diminished return, given all other
choices unchanged).

As a corollary, we showed that GRFs are suppressor free. In linear regression, an explanatory
variable is called a suppressor if adding it as a new variable enhances correlations between the
old variables and the dependent variable [Walker, 2003]. Suppressors are persistent in real-world
data. We show GRFs to be suppressor-free. Intuitively, this means that with more labels acquired,
the conditional correlation between unlabeled nodes decreases monotonously until their Markov
blanket is formed. That GRFs present natural examples for the otherwise obscure suppressor-free
condition may be interesting.

For practical active learning on graphs, each objective optimizes for a different surrogate objec-
tive, which is unanimously an approximation to the true binary classification objective. More-
over, the GRF prior is a linear relaxation of the true prior distribution that allows only binary
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labeling of nodes. Therefore, the best choice of optimality criterion may not be obvious. We con-
ducted thorough experiments on network graphs as well as nearest-neighbor graphs and showed
that greedy application of Σ-optimality had the best performance in our experiments. The ex-
periments also included other baselines such as mutual information gain [Krause et al., 2008],
uncertainty sampling, and expected error reduction [Settles, 2010, Zhu et al., 2003b].

Active search aims to collect as many positives as quickly. To perform well, a good acquisition
rule needs to consider both exploitation (choosing near proven positive nodes) and exploration
(finding new areas of positive nodes). The common Gaussian Process-Upper Confidence Bound
(GP-UCB) algorithm [Srinivas et al., 2010b] uses marginal variance as the exploration measure.
However, when applied to graphs, it tends to select nodes at the periphery of the graph (e.g.,
leaf nodes) because they have large predictive variance. Yet, the rewards of these nodes reveal
little information about the reward distribution over the whole graph. Instead, we propose a new
method, GP-SOPT, which uses Σ-optimality as the exploration function. The improvement is
visualized in Figure 2.4.
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(b) Choices by GP-SOPT

Figure 2.4: For the toy graph example, choices from (a) direct application of GP-UCB [Valko
et al., 2014, Vanchinathan et al., 2013] versus (b) our vanilla GP-SOPT. We observe that our
method (b) tends to select more from cluster centers, which helps reduce variance of the unob-
served values/rewards, whereas the previous method (a) tends to select on the graph periphery.

We further showed theoretical guarantees for GP-SOPT in terms of cumulative regrets. Cumula-
tive regret measures the difference in the number of positives found between our algorithm and
the optimal active search algorithm given the same number of active search steps. Our guaran-
tee used a newer concept called effective dimensions [Valko et al., 2014] that more accurately
measures the spectral complexity of the graph. Despite better empirical performance, our theo-
retical result is at best comparable to the [Valko et al., 2014], if not worse for constant terms. We
speculate better results if the complexity assumption is measured in other terms; in the current
analysis, it is measured by Shannon entropy (D-optimality) which is an inferior measure of the
true complexity.

Finally, we discussed the connection between Σ-optimality and spectral norm minimization,
which leads to discussions about choosing other prior models on graphs and possible ongoing
acceleration ideas in Chapter 5.
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2.2 Related Work

Settles [2010] provided a general introduction to active learning methods in practice. A few
principled solutions were discussed, including uncertainty sampling, expected error reduction,
variance reduction, etc. The paper was written for active learning, but the ideas are general
enough to other similar settings including regressions, with simple modifications. On the other
hand, there was a lack of graph-based solutions.

A more concrete example was considered by Krause et al. [2008] for sensor placement in a
large area. The measurement values are measured by a Gaussian process (GP) [Rasmussen and
Williams, 2006] and information gain (i.e., D-optimality) is used as the design criterion. One
of the reasons for choosing information gain is to have near-optimal global guarantees on the
final design if the sensors are placed in a sequential greedy manner. Despite the theoretical
motivation, Krause et al. [2008] noted the issue that the outcomes of plain information gain
criteria tend to select queries at the boundary of the environment and provided a fix by altering
the design criterion to use mutual information gain.

When the Bayes prior is limited to GRFs, Ji and Han [2012] proposed greedy variance mini-
mization (which we call V -optimality) as a cheap and high profile surrogate active classification
criterion. To decide which node to query next, the active learning algorithm finds the unla-
beled node which leads to the smallest average predictive variance on all other unlabeled nodes.
Experiments on citation networks were used to justify for the greedy algorithm. However, the
motivation of the objective was little discussed, nor were there any theoretical guarantees. In fact,
we show that V -optimality has the same types of near-optimality global guarantees as [Krause
et al., 2008], when limited to GRFs (as opposed to GPs). Completing the picture, [Krause et al.,
2008] showed a counter-example for similar guarantees of V -optimality in general GPs.

The problem of active surveying and our contribution of Σ-optimality were earlier discussed by
[Garnett et al., 2012]. Here, however, the problems were discussed in low-dimensional Euclidean
spaces where GP priors are more natural choices. Since the solution was based on variance
reduction, like the counter-example in Krause et al. [2008], no global guarantees were provided.
Instead, the authors used a multiple-step look-ahead method accompanied with subtree-pruning
techniques.

On the global optimality for the greedy approaches, a key result from Nemhauser et al. [1978],
shows that any submodular and monotone set function yields a (1 − 1/e) global optimality
guarantee for greedy solutions. Our proof results coincide with Friedland and Gaubert [2011],
but we used different principles and were not restricted to spectral functions.

Garnett et al. [2012] also motivated active search and later Wang et al. [2013] extended the
settings to graphs, where GRF priors were used. Despite decent empirical performance, the so-
lutions, which also used multi-step look-ahead planning with pruning, do not hold any theoretical
guarantees.

Vanchinathan et al. [2013] proposed a GP-based algorithm, GP-SELECT, for sequentially se-
lecting instances with high user scores or ratings (rewards). This algorithm extends the popular

15



GP-UCB algorithm [Auer, 2003, Cox and John, 1997] for stochastic optimization and inherits
nice theoretical guarantees [Srinivas et al., 2010b].

Valko et al. [2014] considered bandit problems where arms correspond to nodes on a graph and
the rewards form a smooth function over the graph. Their algorithm can be viewed as a special
case of GP-UCB with a kernel defined by the inverse of a graph Laplacian (augmented with an
identity matrix). To analyze the performance of their GP-UCB-style algorithm, they propose
the notion of effective dimension of a graph, which can be viewed as a measure of the spectral
decay of the graph kernel, thereby determining, the performance of the algorithm Srinivas et al.
[2010b]. Our solution is different but we also use the effective dimension to analyze our proposed
methods. Other recent developments on active learning and search include Chen et al. [2014],
Gadde and Ortega [2015], Jun and Nowak [2016], Liu et al. [2015], Wang et al. [2016]

2.3 Background

There are many ways to use graph connectivity information. We will explore the idea of using
energy-based models that are generally known as random fields, specifically Gaussian random
fields (GRFs). To build intuitions, we will explain why GRFs naturally leads to label propagation
in Semi-Supervised Learning (SSL) settings. However, our focus in active search requires us to
also pay attention to the uncertainty measures that distinguish GRFs from label propagation.

2.3.1 Gaussian Random Fields (GRFs)

We use the Gaussian random fields on graphs as described in [Zhu et al., 2003a]. Let G =
(V,W ) represent an undirected graph with n nodes, where each node vi has an (either known
or unknown) label value fi and each edge wij has a fixed nonnegative weight that reflects the
proximity, similarity, etc, between nodes vi and vj (recall the handwritten digits example in
chapter introduction). The value fi is unknown at first and can be revealed only when it is
queried explicitly. There are two ways to model label observations: one assuming that the labels
are directly observable, while the other assuming that the observations have additive Gaussian
noise:

yi = fi, or yi = fi + ε, where ε ∼ N (0, σ2). (2.1)

The first observation model is equivalent to the second when taking σ → 0.

We relax fi to real values, fi ∈ R,∀i. GRF generates them according to a joint distribution on
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the node values, which we represent by a vector f = (f1, . . . , fn)>, using the energy function

E(f) =
1

2

∑
i∼j

wij(fi − fj)2 +
1

2
ω0

n∑
i=1

(fi − µ̄0)2 (2.2)

=
1

2
(f − µ̄0)>(D−W + ω0I)(f − µ̄0)

=
1

2
(f − µ̄0)>L(f − µ̄0), (2.3)

where “i ∼ j” indicates that node vi is directly connected to vj on the graph and µ̄0 is a
prior mean value, set at the average class proportion of positives. Eq (2.3) puts (2.2) in vec-
tor/matrix forms, where W = (wij)

n
i,j=1 is the weight matrix such that the (i, j)-th element is

wij , D = diag(W1) = diag(
∑

j w1j, . . . ,
∑

j wnj), µ̄0 = (µ̄0, . . . µ̄0)T , and I is the identity ma-
trix. Matrix L = D−W + ω0I is called augmented graph Laplacian matrix. Define C̄ = L̄−1.

GRF prior. The higher the energy E(f) for a choice of f , the more improbable f is to be
generated. This intuition can be modeled by a multivariate normal prior distribution using the
negative energy as its potential,

p(f) =
exp(−E(f))

(2π)
n
2 (det(L̄))

1
2

⇔ log p(f) ' −E(f), (2.4)

where “'” hides the normalization constant that turns (2.4) into a proper probability distribution.

Posterior distribution. GRF describes a world generation process using (2.1)&(2.4). However,
the true values of f is only one draw from the prior distribution. When observations are made
at a set of nodes vs1 , vs2 , . . . , vst , we need to update the Bayes belief to a posterior distribution.
Let St = {s1, . . . , st} ⊂ V be the index set of node queries and let ySt = (ys1 , . . . , yst)

> be the
observation outcomes in the corresponding order; GRF will update its posterior model to

log pt(f) = log p(f | St,ySt) ' log p(f) +
t∑

τ=1

log p(ysτ | fsτ )

' −1

2

∑
i∼j

wij(fi − fj)2 − 1

2
ω0

n∑
i=1

(fi − µ̄0)2 − 1

2σ2

t∑
τ=1

(ysτ − fsτ )2. (2.5)

Notice, (2.5) is a multivariate normal distribution with a different mean vector and a different
covariance matrix.

2.3.2 GRF Posteriors

Posterior Mean Solves Semi-Supervised Learning (SSL)

After obtaining part of the node values, SSL aims to predict the remaining node values. One
natural solution is to use label propagation, which iteratively propagates the known values or
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Figure 2.5: SSL example. Red “+” and blue “©” are the only provided supervisions. The
number on every node is the chance that it belongs to class “+”, predicted by label propagation.

previously propagated values to neighboring nodes. In this way, the final stable node values
will be influenced by the structure of the graph. Mathematically, label propagation uses iterative
assignments to find the stable point in the following,

µi = ysτ , if i = sτ ∈ S,
diµi =

∑
j∼i

wijµj, otherwise,

where i = sτ ∈ S indicates that the node vi is queried at step τ and labeled as ysτ . Labeled
nodes are not changed during the iterative assignments, whereas the remaining nodes keep up-
dating according to the mean value in their neighbors until convergence. It is intuitive that label
propagation must converge when wij ≥ 0,∀i, j, and the solution must observe 0 ≤ µi ≤ 1, ∀i, if
all labels are within [0, 1].

How does label propagation relates to GRFS?

By setting the gradient in the GRF posterior (2.5) to zero, we may find that the posterior mean,
i.e., the max-a-posteriori estimate of the GRF posterior, solves an augmented version of label
propagation, 

( 1

σ2
+ ω0 + di

)
µi =

1

σ2
ysτ +

∑
j∼i

wijµj + ω0µ̄0, if i = sτ ∈ S,

(ω0 + di)µi =
∑
j∼i

wijµj + ω0µ̄0, otherwise,

where if we take σ → 0 and ω0 = 0, the solution will be the exact label propagation.

Thus, GRF posterior distribution can be seen as a full Bayesian extension to label propagation.
Moreover, GRFs additionally provides covariance matrices to measure the full model uncertainty.
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Covariance Matrix

When label propagation makes predictions for SSL, it ignores the certainty of the prediction
itself. For example, a prediction value of µi = 0.5 can mean either an approximation error, if
the node directly connects to two nodes with different labels, or an estimation error, if the result
of 0.5 is due to the node being far from all other labeled nodes. There is no easy way to improve
on the former case unless we change the model that describes node value distributions, i.e., by
changing the graph itself. On the other hand, the latter can be improved if we change the label
queries to be close to µi. For general active learning, we want to choose queries to be close to all
unlabeled nodes.

Since GRF posterior model is a multivariate normal distribution, its covariance matrix is an ef-
fective way to measure how far each node is to the labeled nodes. In fact, the marginal posterior
variance on the node variable fi shows the graph commute time from node vi to any of the la-
beled nodes using random walks [Doyle and Snell, 1984]. Another intuitive analogy uses spring
network systems. If all the graph nodes are masses connected by springs according to the graph
edges, after pinning the queried nodes at their label values, the stiffness of the unlabeled nodes,
i.e., the certainty of the prediction mean, will be inversely proportional to the marginal variance
reflected in (2.5). The farther a node is to the labeled nodes, the less stiff the corresponding
mass is and also the larger its posterior marginal variance becomes. The posterior correlation be-
tween any pair of variables fi, fj can also find analogy in the spring mass system, as how much
displacement one node has if the other node is displaced by a unit distance.

Notice, the prior covariance matrix is properly defined if the augmentation coefficient ω0 >
0. ω0I is considered an augmentation matrix because it effectively builds a weak connection
between every node and the prior mean µ̄0, such that the prior model has full rank.

Explicit Solutions in Matrix Form

For convenience, we can rewrite (2.5) in matrix form. Recall L̄ = D −W + ω0I; let esτ =
(0, . . . , 0, 1, 0, . . . , 0)> be an indicator vector whose nonzero is at index sτ , the posterior distri-
bution becomes

log pt(f) ' −1

2
(f − µ̄0)>L̄(f − µ̄0)−

t∑
τ=1

1

2σ2
(ysτ − fsτ )2

' −1

2
f>

(
L̄ +

1

σ2

t∑
τ=1

esτe
>
sτ

)
f +

(
L̄µ̄0 +

1

σ2

t∑
τ=1

ysτesτ

)
f (2.6)

Let µ(t) and C(t) be the posterior mean vector and covariance matrix, the explicit solution to
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GRF posterior is

µ(t) = C(t)

(
L̄µ̄0 +

1

σ2

t∑
τ=1

ysτesτ

)

C(t) =

(
L̄ +

1

σ2

t∑
τ=1

esτe
>
sτ

)−1

(2.7)

When σ → 0, the posterior distribution has zero covariance on queried variables, but is still
properly defined on the remaining variables. Without loss of generality, assume St corresponds
to the first t nodes in all nodes V ; the corresponding posterior covariance matrix becomes

µ(t) =

(
ySt

−
(
L̄UtUt

)−1
L̄UtStySt

)
, C(t) =

(
0 0

0
(
L̄UtUt

)−1

)
, (2.8)

where Ut = V \ St is the index set of the unlabeled nodes. Notice, µ(t)
Ut

remains nonnegative
because L̄UtSt is the off-diagonal block whose elements are non-positive. In fact, in the appendix
we show that µ(t)

i ∈ [0, 1],∀i ∈ Ut, if the labels allow ysτ ∈ [0, 1],∀sτ ∈ St.

Let C =
(
L̄UtUt

)−1 and C̃ = (L̄Ut+1Ut+1)
−1 and without loss of generality, suppose st is po-

sitioned as the last node. By Shur’s Lemma (or GP-regression update rule [Rasmussen and
Williams, 2006]), the following can be verified,(

C̃ 0
0 0

)
= C− 1

Cst,st
·C:,stCst,:. (2.9)

In general, with σ > 0, similar incremental update rules can be derived by following GP litera-
ture:

µ(t+1) = µ(t) + C(t)
:,st

(
C(t)
st,st + σ2

)−1
(yst − µ(t)

st ) (2.10)

C(t+1) = C(t) −C(t)
:,st

(
C(t)
st,st + σ2

)−1
C(t)
st,:. (2.11)

The above rule also applies to increments with multiple observations (yst , yst+1 , . . . , yst+τ ), if one
replaces the element subscriptions with sub-matrix subscriptions.

Finally, for notation convenience, we may also write the posterior mean and covariance as func-
tions, i.e., µt(vi) = µ

(t)
i and Ct(vi, vj) = C

(t)
i,j . Similarly, the variables or labels may also take

either vector or function forms, i.e., f(vi) = fi and y(vi) = yi.

2.4 Methods for Active Learning and Surveying

We begin introducing new methods with novel exploratory query designs, which solves half of
the problem in active search. Using GRFs, we relax the node labels to real values and build the
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joint distribution of node values as a multivariate normal distribution. Effectively, the problem
is reduced to an optimal design problem, which aims to minimize model uncertainty (using
some measure of the posterior covariance matrix) after collecting a set of queries in a multi-
step lookahead manner. We will examine several surrogate design criteria and motivate our own
version of Σ-optimality.

2.4.1 Minimization on Surrogate Objectives

All of the following surrogate loss functions are defined as a set function R(St), whose input is
St, the set of node indices for the first t queries, and whose output is an objective to be minimized.
All surrogate objectives take the form:

min
St

R(St) s.t. |St| ≤ t, St ⊂ V (2.12)

When can be inferred from context, we use Ut = V \ St to denote the indices of the unlabeled
nodes. Let pt(f) indicate the posterior distribution after selecting the set St with size t.

D-Optimality for Differential Entropy Minimization

To reduce the overall model uncertainty, a natural idea is to decrease the differential entropy
of the full GRF posterior, which causes the full posterior distribution to concentrate around its
posterior mean, i.e., the SSL predictions via label propagation. Minimizing differential entropy
is also known as D-optimality in regression designs, because it minimizes the determinant of the
posterior covariance matrix. According to (2.6),

RD(St) = H(pt(f)) ' 1

2
log det(C(t)),

where the normalization constants are ignored. We use subscript D to indicate D-optimality,
which is a popular choice for exploratory measures in [Gotovos et al., 2013, Krause et al., 2008,
Srinivas et al., 2010a, Valko et al., 2014].

A potential issue is that, while D-optimality aims to reduce the entropy of the paremeters f , its
greedy application is equivalent to selecting nodes with the largest marginal variance:

arg min
s

H(f | ySt∪{s}) = arg maxH(ys | ySt) = arg max
s

Var(ys | ySt).

Greedy application turns D-optimality to a no-step lookahead algorithm; in the early phase of
queries, the optimal solutions may often be found on the boundary of the environment, where the
marginal variance is the largest. Figure 2.6 shows a “successful” application of D-optimality-
based algorithm, where the initial query points are mostly on the boundary of the environment.

When applied to graphs, the issue is more severe, because graphs usually have a larger bound-
ary due to its high intrinsic dimensionality and very different eigenvalue distribution. Figure 2.7
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Figure 2.6: Pathology in D-optimality: many query points are on the boundary of the envi-
ronment before they appear at the center where true exploration should happen. Example from
[Gotovos et al., 2013].

visualizes the choices of greedy D-optimality on DBLP coauthorship graph1. The nodes repre-
sent scholars and the weighted edges are based on the number of papers bearing both scholars’
names. Visualization is due to OpenOrd layout [Martin et al., 2011], where the dense areas in-
dicate graph clusters. The node colors show the true labels based on the research area of the
authors, which is not used by the designs and shown to visually validate our GRF assumption.
Here, D-optimality focuses on the periphery of the graph, choosing many leaf nodes, which is
not ideal for exploration.
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Figure 2.7: D-optimality chooses boundaries (e.g., leaf nodes) in a graph.

1http://www.informatik.uni-trier.de/˜ley/db/
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V-Optimality for `2 Risk Minimization

Another objective is to directly minimize the `2 risk on the independent node predictions. We
use Bayes risk,

RV (St) = E

[
E

[
n∑
i=1

(yi − fi)2

∣∣∣∣∣ ySt

]]
= tr(C(t)), (2.13)

where, for simplicity, the summation is over all nodes including both labeled and unlabeled.
Notice, when σ → 0, the objective is equivalent to summation only on the unlabeled node set,
because by (2.8), we have tr(C(t)) = tr((L̄Ut,Ut)

−1).
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Figure 2.8: V -optimality improves the exploration, but the choices are still not central enough.

Ji and Han [2012] used a similar objective which they call variance minimization. The optimality
may also be calledA-optimality, because f is both the set of model parameters and the prediction
values according to the GRF model.

The greedy application of V -optimality is shown in (2.15), which evaluates global influence of
queries and thus is a true lookahead measure. However, the visualization in Figure 2.8 does not
seem central enough. Can we do better?

Σ-Optimality for Survey Risk Minimization

Besides active learning, a different task we also consider is active surveying. Surveying aims to
determine the proportion of nodes belonging to each class. It usually uses fewer queries than
active learning.
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For active surveying, the Bayes risk is:

RΣ(St) = E

E
( n∑

i=1

yi −
n∑
i=1

fi

)2
∣∣∣∣∣∣ ySt

 = 1>C(t)1, (2.14)

where, for simplicity, the summation is also over all nodes. When σ → 0, the objective is
equivalent to summation only on the unlabeled nodes, because by (2.8), we have 1>C(t)1 =
1>(L̄Ut,Ut)

−11.

Further, we will also consider the application of the Σ-optimality in active learning because
(2.14) is a valid metric on the predictive variance. Surprisingly, although both (2.13) and (2.14)
are approximations of the real objective (the 0/1 risk), greedy reduction of the Σ-optimality
outperformed greedy reduction of the V-optimality in active classification, as well as several
other methods including expected error reduction. In Figure 2.9, we may also visualize that
Σ-optimality indeed explores at the cluster centers, producing the most amount of information
compared to the alternative D/V -optimality.
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Figure 2.9: Σ-optimality finally explores at the cluster centers, visually producing the most ef-
fective designs.

2.4.2 Greedy Application of D, V , and Σ-Optimality

Calculating the global optimum (2.12) with any of the objectives may be intractable. As will be
shown later in the theoretical results, all objectives are submodular set functions and the greedy
sequential update algorithm (Algorithm 2.1) yields a solution that has guaranteed approximation
ratio to the optimum (Theorem 2.2).
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Algorithm 2.1 Greedy subset selection.

Input: Graph Laplacian L̄, objective function R(·), budget T .
Output: A subset ST = {s1, . . . , sT} ⊂ V by greedy selection.
for t = 1, 2, . . . , T do

Find st = arg minv Gt−1(v)
Update posterior distribution by (2.10) and (2.11)

end for

The following applies Algorithm 2.1 to our specific objective functions. At iteration t + 1, with
an already obtained set St, define

Gt(v) = R({s1, . . . , st})−R({s1, . . . , st, v})

Notice R(·) is a function on the posterior covariance matrix. Let C = C(t) = (Ct(vi, vj))
n
i,j=1

and further denote Ct(vi, vj) = ρt(vi, vj)σt(vi)σt(vj). The incremental update rule (2.11) yields

C−C(t+1) = C:,v

(
σ2
t (v) + σ2

)−1
Cv,:.

For D-optimality, we then have,

GD,t(v) = I(f ; y(v)) = H(y(v))−H(y(v) | f) =
1

2
log det(σ2 + σ2

t (v))− log det(σ),

where I(f ; yst) is the mutual information and all measures are with respect to distribution pt−1(f).

We can also put (2.9) inside RΣ(·) and RV (·) to get the following equivalent criteria:

D-optimality : arg max
v∈Ut

GD,t(v) = log det(1 + σ−2σ2
t (v)) 7→ σ2

t (v)

V -optimality : arg max
v∈Ut

GV,t(v) =

∑n
j=1(Ct(v, vj))

2

σ2
t (v) + σ2

7→
∑
v′∈Ut

ρt(v, v
′)2σt(v

′)2,(2.15)

Σ-optimality : arg max
v∈Ut

GΣ,t(v) =
(
∑n

j=1 Ct(v, vj))
2

σ2
t (v) + σ2

7→
∑
v′∈Ut

ρt(v, v
′)σt(v

′). (2.16)

where the right side of the mappings take σ → 0 and are equivalent in terms of having the same
solution for “argmax”.

Remark: Let Gt(v) = g2
t (v), we may generalize the V - and Σ-optimality to a broader class of

λp-optimalities:

(λp-optimality) : arg max
st∈Ut

gpλp,t(v) =
∑
v′∈Ut

(ρt(v, v
′)σt(v

′))
p

where V -optimality corresponds to p = 2 and Σ-optimality p = 1 (up to the same optimizer).
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2.4.3 Comparing the Greedy Applications of the Σ and V-Optimality

Both the V/Σ-optimality are approximations to the 0/1 risk minimization objective. Unfortu-
nately, we cannot theoretically reason why Σ-optimality outperformed V-optimality in our ex-
periments. Nonetheless, some observations may be helpful.

Eq. (2.15) and (2.16) suggest that both the greedy Σ/V-optimality selects nodes that (1) have high
variance and (2) are highly correlated to high-variance nodes, conditioned on the labeled nodes.

The difference between V and Σ-optimality lies in the measure to evaluate global influence.
While V -optimality naturally chooses `2-measure based on the optimal designs for regression
problems, Σ-optimality realizes `1-measure that may be more robust to large values. Since GRFs
are continuous relaxations to the true binary label distribution, approximation errors can influ-
ence design choices. Specially, at the boundary nodes, the (posterior) marginal variance can be
unbounded large. By taking `1-measure for influence, Σ-optimality can obtain additional ro-
bustness against the modeling error. Additional visualizations comparing the choice of V and
Σ-optimality may be found in Appendix A.3.

2.5 Methods for Active Search

Algorithm 2.2 General GP-style Active Search

Input: Graph laplacian L̄, desired number T of nodes to be selected, αt, and σ.
Output: Query selections ST = {s1, . . . , sT}.
for t = 1, . . . , T, do
st := arg maxv∈Ut−1 µt−1(v) + αtgt−1(v).
Query the label yst of st.
Update µt and Ct by (2.10) and (2.11).

end for

We propose active search algorithms follow the general GP-style template in Algorithm 2.2. At
iteration t + 1, Algorithm 2.2 selects the next node to query based on a deterministic selection
rule of the form:

arg max
st∈Ut−1

µt−1(st) + αt · gt−1(st), (2.17)

where µt−1(st) is the usual exploitation term and gt−1(st) encourages exploration, with the two
being balanced by a possibly iteration-dependent parameter at > 0.

Examples from existing literature like the popular GP-UCB algorithm and its extension to active
search, GP-SELECT [Vanchinathan et al., 2013], amount to setting gt(v) = σt(v), the predictive
variance of node v. Although this is a very reasonable choice in many situations, it may lead to
undesirable exploration behaviors on graphs. Under our model assumption, low-degree nodes,
which usually lie at the periphery of a graph, tend to have high predictive variances. Direct
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applications of GP-UCB may result in the selection of many such outliers, which fail to reveal
much information about the reward values of most other nodes at the core of the graph.

Intuitively, a good exploration criterion should favor nodes that have high influences on other
parts of the graph. That is, the knowledge of the function values at these nodes should reveal a
lot about the function values at other nodes. Under our model assumption, this principle naturally
connects with the predictive covariances of a node with others. Research in active learning on
graphs has already made use of predictive covariances to construct better selection rules. Ji and
Han [2012] proposed to select nodes based on their sums of squares of predictive covariances
with other nodes, which is derived from the minimization of squared prediction error, known as
V -optimality in experiment design. Our previous section reviewed that V -optimality can still be
undesirably sensitive to outliers and proposed the Σ-optimality criterion:

g2
t (v) =

(∑
v′∈V Ct(v, v

′)
)2

σ2
t (v) + σ2

, (2.18)

We propose three exploitation-exploration style algorithms with exploration criteria motivated by
Σ-optimality, which are vanilla Σ-optimality and its two variants with an additional parameter
k for theoretical justifications. All algorithms select the next node to query by the general rule
(2.17), but with different exploration terms:

GP-SOPT (Vanilla Σ-Optimality):

gt(v) =
1√

1 + σ2

σ2
t (v)

∑
v′∈V

ρt(v, v
′)σt(v

′).

GP-SOPT.TT (Thresholded Total Covariance):

gt(v) = min

(
kσt(v),

∑
v′∈V

ρt(v, v
′)σt(v

′)

)
.

GP-SOPT.TOPK (Top-k Covariance):

gt(v) = max
B⊂V,|B|=k

∑
v′∈B

ρt(v, v
′)σt(v

′).

As one can see from Figure 2.4, the nodes selected by vanilla GP-SOPT indeed reside in more
central parts of the toy graph than the nodes selected by its competitor, GP-UCB. In a large graph
with many peripheral nodes, we believe that the improved exploration criteria of GP-SOPT and
its variants contribute to a better recall rate of search targets in real graphs.

The reason we propose the latter two variants is to both address proof difficulties and increase
practical robustness.
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2.6 Theoretical Properties

2.6.1 Greedy Variance Reduction

For the general GP model, greedy optimization the `2 risk has no guarantee that the solution can
be comparable to the brute-force global optimum (taking exponential time to compute), because
the objective function, the trace of the predictive covariance matrix, fails to satisfy submodularity
in all cases [Krause et al., 2008]. However, in the special case of GPs with kernel matrix equal to
the inverse of an augmented graph Laplacian, GRFs do provide such theoretical guarantees, both
for V and Σ-optimality. The latter is a novel result.

We reuse G(·) as a set function showing the decrease in various criteria, G(S) = R(∅) − R(S)
for either RV (S) or RΣ(S). The following results concern greedy maximization of G(S):

Theorem 2.2 (Near-optimal guarantee for greedy applications of V/Σ-optimality). In risk reduc-
tion,

G(Ŝ) ≥ (1− 1/e) ·G(S∗), (2.19)

where G(S) = R(∅)−R(S),∀S ⊂ V , for either R(S) = RV (S) or RΣ(S), e is Euler’s number,
Ŝ is the greedy optimizer, and S∗ is the true global optimizer under the constraint |S∗| ≤ |Ŝ|.2

According to Nemhauser et al. [1978], it suffices to show the following properties of G(S):

Lemma 2.3 (Normalization, Monotonicity, and Submodularity). ∀S1 ⊂ S2 ⊂ V, v ∈ V,

G(∅) = 0, (2.20)
G(S2) ≥ G(S1), (2.21)

G
(
S1 ∪ {v}

)
−G(S1) ≥ G

(
S2 ∪ {v}

)
−G(S2). (2.22)

Another sufficient condition for Theorem 2.2, which is itself an interesting observation, is the
suppressor-free condition. Walker [2003] describes a suppressor as a variable, knowing which
will suddenly suppress a strong correlation between the predictors. An example is yi + yj =
yk. Knowing any one of these will suppress correlations between the others. Walker further
states that suppressors are common in regression problems. Das and Kempe [2008] extend the
suppressor-free condition to sets and showed that this condition is sufficient to prove (2.13).
Formally, the condition is:∣∣corr(yi, yj | S1 ∪ S2)

∣∣ ≤ ∣∣corr(yi, yj | S1)
∣∣, ∀vi, vj ∈ V, ∀S1, S2 ⊂ V. (2.23)

In fact, it may be easier to understand (2.23) as a decreasing correlation property. It is well
known for Markov random fields that the labels of two nodes on a graph become independent
if conditioned on their Markov blanket. Here we establish that GRF boasts more than that: the

2 The results (2.20)–(2.19) can be extended to nonuniform node costs. Denote cv as the node cost of v ∈ V . In
this case, a corresponding greedy algorithm maximizes the marginal risk reduction divided by the marginal cost and
the constraint in (2.19) becomes

∑
v∈S∗ cv ≤

∑
v∈Ŝ cv
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correlation between any two nodes decreases as more nodes get labeled, even before a Markov
blanket is formed. To summarize, we have:

Theorem 2.4 (Suppressor-Free Condition). (2.23) holds for pairs of nodes in the GRF model.

2.6.2 Regret Analysis

We present an UCB-style analysis for GP-SOPT.TT and GP-SOPT.TOPK, and an analysis based
on Contal et al. [2014] for GP-SOPT. We combine several results on GP optimization [Contal
et al., 2014, Srinivas et al., 2012, Vanchinathan et al., 2013] and the spectral bandit analysis
[Valko et al., 2014]. To be compatible with GP notations, we use the function form f such that
f(vi) = fi. As in these results, our regret bounds depend on the mutual information between f
and observed values yS at a set S of nodes:

I(yS; f) := H(yS)−H(yS | f),

where H(·) denotes the entropy. If f is drawn from a GP with observation noise distributed
independently as N (0, σ), the mutual information has the following analytical form:

I(yS; f) = I(yS; fS) =
1

2
log |I + σ−2C̄S,S|.

Let
γT := max

S∈V,|S|=T

1

2
log |I + σ−2C̄S,S|,

i.e., the maximum information about f gained by observing T function evaluations. The regrets
of our algorithms depend on the growth rate of γT , which can be linear in T for arbitrary graphs.
However, real-world graphs often possess rich structures, such as clusters or communities, and
practical measures of relevance are often highly correlated with these structures, resulting in
slowly-growing γT . To formalize this intuition, we follow Valko et al. [2014] to consider the
effective dimension:

d∗T := max

{
i | λi ≤

σ−2T

(i− 1) log(1 + T
σ2ω0

)

}
,

where λi is the i-th smallest Eigenvalue of L̃ and λ1 = ω0. The effective dimension is small
when the first few λi’s are small and the rest increase rapidly, as is often the case for graphs with
community or cluster structures. On the contrary, if all the Eigenvalues are small then d∗T may be
linear in T . The following lemma bounds γT in terms of d∗T :

Lemma 2.5. Let T be the total number of rounds. Then

γT ≤ 2d∗T log

(
1 +

T

σ2ω0

)
.
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Proof. By Lemma 7.6 of Srinivas et al. [2012] and the fact that λ−1
i is the i-th largest Eigenvalue

of the kernel K = L̃−1, we have

γT ≤ max
{mi}Ti=1,mi≥0,∑T

i=1mi=T

T∑
i=1

log

(
1 +

mi

σ2λi

)
.

Then by applying the same argument that proves Lemma 6 of Valko et al. [2014], we obtain the
desired result.

Active Search Regret

We bound the cumulative regret of an active search algorithm, which is defined by

RT :=
T∑
t=1

f(v∗t )− f(vt),

where {vt}Tt=1 is the sequence of unique nodes selected by the algorithm and {v∗t }Tt=1 is the
set of optimal choices. For the two proposed UCB-style algorithms, GP-SOPT.TT and GP-
SOPT.TOPK, we give the following bound on their cumulative regrets.

Theorem 2.6. Pick δ ∈ (0, 1). Assume the true function f lies in the RKHS characterized by the
kernel C̄ = (D−W+ω0I)−1 and its RKHS norm is upper-bounded byB, i.e. f>C̄−1f ≤ B2. As-
sume the observation noise εt has zero-mean conditioned on the past and is bounded by σ almost
surely. Let GP-SOPT.TT and GP-SOPT.TOPK use the GP prior with zero mean and covariance

C̄, the Gaussian observation noise model N (0, σ2), and αt :=
√

2B2 + 300γt log3(t/δ). Their
cumulative regrets satisfy

Pr({RT ≤ k
√
c1TαTγT ∀T ≥ 1}) ≥ 1− δ,

where the randomness is over the observation noise and c1 := 8/ω0

log(1+σ−2)
. This implies

RT = Õ(k
√
T (B2

√
d∗T + d∗T ))

with high probability.

This result is easily derived from the regret analysis of the GP-SELECT algorithm proposed
by Vanchinathan et al. [2013] because the exploration terms used by GP-SOPT.TT and GP-
SOPT.TOPK both satisfy σt(v) ≤ st(v) ≤ kσt(v), thereby maintaining the UCB property. Al-
though our regret bounds are k times worse than the GP-SELECT bound, the actual regrets tend
to behave more favorably as we observe in our experiments that after a few tens of rounds, st(v)
becomes smaller than kσt(v) for almost all unqueried nodes, and the two proposed algorithms
usually outperform GP-SELECT.
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2.7 Experiments

2.7.1 Active Learning and Surveying

The active learning heuristics to be compared are:

1. The new Σ-optimality with greedy one-step lookahead applications.
2. V-optimality with greedy one-step lookahead [Ji and Han, 2012].
3. Expected error reduction (EER) [Settles, 2010] with one-step lookahead. Nodes are se-

lected which maximize the average probability margin between the most likely one-vs-all
class and the second most likely one-vs-all class (ŷ(1) − ŷ(2)) in expectation.

4. Uncertainty sampling (Unc) with uncertainty measured by the prediction margin.
5. Mutual information gain (MIG) described in Krause et al. [2008]
6. Random selection with 12 repetitions.

We use GRF/BP model with δ = 0 and β = 1 as our learning model. In such a setting, the
connectivity between different nodes on a graph is strongest and the effect of the outliers is at its
minimum. We feel that these parameters generally yields to better baseline results.

Comparisons are made on the following real-world network graphs or manifold graph embed-
dings.

1. DBLP coauthorship network (DBLP).3 This is a coauthorship graph from the DBLP database.
The nodes represent scholars and the weighted edges are the number of papers bearing both
scholars’ names. The largest connected component has 1711 nodes and 2898 edges. The
node labels were hand assigned in Ji and Han [2012] to one of the four expertise areas of the
scholars: machine learning, data mining, information retrieval, and databases. Each class has
around 400 nodes.

2. Cora citation network (Cora).4 This is a citation graph of 2708 publications, each of which
is classified into one of seven classes by topic. The network has 5429 links. We took its
largest connected component, with 2485 nodes and 5069 undirected and unweighted edges.

3. CiteSeer citation network (CiteSeer).4 This is another citation graph of 3312 publications,
each of which is classified into one of six classes by topic. The network has 4732 links. We
took its largest connected component, with 2109 nodes and 3665 undirected and unweighted
edges.

4. Scikit-learn handwritten digits (digits).5 This is an image classification database published
in the scikit-learn software. The database contains 1797 images of hand written digits (0-9)
with 8 × 8 pixel resolution. Every digit class contains roughly 180 images. We created a
7-nearest neighbor (7-nn) graph using Euclidean distances of raw features and symmetrized
the resulting graph.

5. Isolated Letter Speech Recognition (ISOLETe / ISOLET4).6 This is a UCI benchmark
3http://www.informatik.uni-trier.de/˜ley/db/
4http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
5http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
6http://archive.ics.uci.edu/ml/datasets/ISOLET
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database of human pronunciations of the 26 English letters. For every letter pronunciation,
617 domain-specific features are created. We used the first 4 mini-batches which contain 120
human subjects (ISOLET4). Further, we also looked at a harder problem that distinguishes
letters containing “e” sound (B, C, D, E, G, P, T, V, Z) (ISOLETe). For both problems, we
constructed a 4-nearest neighbor (4-nn) graph using Euclidean distances of raw features and
symmetrized the resulting graph.

6. Face pose recognition (pose).7 This is a database that regresses semantic information from
images. 687 pictures of the same sculpture face were taken with different face poses and
lighting conditions. The goal is to reconstruct the face poses (2-dimensional: left-right and
up-down). To solve the problem, we constructed a 7-nearest neighbor (7-nn) graph using
Euclidean distances of the first 240 principal components and symmetrized the resulting
graph.

To summarize, our pool of databases aims to cover most of Table 2.1

Table 2.1: Datasets and Experiments Overview

Model Type \ Task Classification & Survey Regression
Network graphs DBLP, Cora, CiteSeer N/A
Manifold graph embed-
dings of the Euclidean
space

digits, ISOLET4, ISOLETe pose

2.7.2 Network Graphs

Classification. For active classification, Figure 2.10 shows the prediction accuracy of the un-
labeled nodes using only the labels from the nodes that each active learning queries, except for
the first common seed node which was assigned at random. Every curve shows the mean and its
standard error after 12 runs.

On all three datasets, Σ-optimality outperforms other methods by a large margin especially dur-
ing the first five to ten queries. The runner-up, EER, catches up to Σ-optimality in some cases,
but (1) it is an order slower to evaluate, (2) it requires query results immediately before the next
query, whereas both V-optimality and Σ-optimality do not, and (3) it does not have theoretical
guarantees.

The win of Σ-optimality over V-optimality has been intuitively explained as Σ-optimality having
better exploration ability and robustness against outliers. That all three active learning algorithms
win over random selection validates the effectiveness of the GRF model which assumes node
labels cluster according to graph clusters.

We also noticed that MIG and Unc methods do not perform significantly better than random.
This is because both heuristics tend to query mostly outliers on the graph.

7http://isomap.stanford.edu/datasets.html
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(a) DBLP coauthorship, 4 classes.
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(b) Cora citation, 7 classes.
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(c) CiteSeer citation, 6 classes.
Figure 2.10: Classification accuracy vs the number of queries. Model is GRF/BP with δ = 0.

Surveying. We also performed real-world experiments on the root-mean-square-error (RMSE)
of the class proportion estimations, which is the survey risk that the Σ-optimality minimizes. The
Σ-optimality beats the V-optimality (Figure 2.11).

With the survey experiments, the objective is ‖Êŷ − π‖2/
√
C on unlabeled set u, where ŷ is

the vector of prediction means in different one-vs-alls, C is the number of classes and π is the
C-dimensional true class distribution of unlabeled nodes. Every curve shows the mean and its
standard error after 12 random initializations.

2.7.3 Manifold Graph Embeddings of the Euclidean Space

Detailed data preprocessing. To embed the Euclidean features from the databases digits, ISO-
LETe, ISOLET4, and pose in graphs, we used k-nearest neighbor graphs using the Euclidean
distance. In digits, we created a 7-nearest neighbor graph based on the Euclidean distance of
raw features, i.e. the concatenation of 64 image pixel gray values. The graph was further sym-
metrized by removing the direction information (and also doubling the edge weight if an edge
was originally bi-directional). The resulting graph contain 1797 nodes and 8727 edges. Visual
inspection shows that the resulting graph fits the labels well.

In both ISOLETe and ISOLET4, we found the 4-nearest neighbor graph based also on Euclidean
distances of raw features, which is the 617 dimensional domain-specifc features. The graphs
were further symmetrized in the same manner. The resulting graph for ISOLETe contains 2160
nodes and 6337 edges and for ISOLET4 6238 nodes and 18662 edges. Visual inspection shows
that the resulting graphs are moderately difficult: while some classes are separated from other
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Figure 2.11: Survey RMSE, ‖Êŷ − π‖2/
√
C, on unlabeled set u. Model is GRF/BP with δ = 0.

classes by sparse cuts, about half of the nodes are close to nodes of other classes in graph dis-
tances.

Classification results.

Figure 2.12 shows the prediction accuracy of the unlabeled nodes using only the labels from
the nodes that each active learning queries, except for the first common seed node which was
assigned at random. Every curve shows the mean and its standard error after 12 runs. MIG and
EER were excluded in comparison because they are slow to run.

On all three manifold graph embeddings of the Euclidean space, Σ-optimality again outperforms
other methods by a large margin, while all baseline methods yield to acceptable classification
accuracies. We reason that this result follows the spectral and cut similarity between manifold
graph embeddings and the network graphs in previous experiments. Specifically, we observed
that in the 2D layouts of these manifold graphs, graph clusters have purer labels and there are
also smaller and less important clusters that distract the heuristics.

Regression. Finally, we performed a graph regression experiment on the pose database. To
create a manifold graph embedding, we used the 7-nearest neighbor graph based on the 240
principal components of face images that come with the database we downloaded. Then we
symmetrized the resulting graph. There are 698 nodes and 2562 edges on this graph. The validity
of this graph is checked as we recover a 2-dimensional (2D) Euclidean space layout of our graph
similar to the Isomap method [Tenenbaum et al., 2000]. The relative positions of the recovered
2D coordinates agree with the relative yaws and pitches of the original face poses.

Figure 2.13 show the RMSE of the 2D pose predictors of all unlabeled nodes based on the 2D pose
labels queried by various active learning heuristics. The curves are averaged after 12 runs from
different randomly sampled starting nodes. The error bars show the standard error of the mean.

34



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Σ−opt
V−opt
Rand
Unc

(a) digits, 7-nn, 10 classes.
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(b) ISOLETe, 4-nn, 9 classes.
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(c) ISOLET4, 4-nn, 26 classes.
Figure 2.12: Classification accuracy vs the number of queries. Model is GRF/BP with δ = 0.

V-optimality outperforms Σ-optimality and both outperformed random selection. The result is
similar to what we have seen in the simulation. An explanation is that for active regression
problems, V-optimality directly minimizes the corresponding risk and thus is the best-performing
heuristic.

2.7.4 Active Search

We conduct experiments on three graph data sets that were studied by Wang et al. [2013]. We
briefly summarize them below.

5000 Populated Places. The nodes of this graph are 5000 concepts in the dbpedia8 ontology
marked as populated places. Each place is supported by a Wikipedia page, and an undirected
edge is created between two places if either one of their two Wikipedia pages links to the other.
There can be multiple edges between two places. The dbpedia ontology divides populated places
into five categories: administrative regions, countries, cities, towns and villages. The 725 admin-
istrative regions are selected as targets while all the others are considered irrelevant.

Citation Network. This dataset consists of 14,117 papers in top Computer Science venues
available on citeseer. The graph is created by adding an undirected edge between two papers if
either one cites the other. The 1844 NIPS papers are chosen as targets.

Wikipedia Pages on Programming Languages. A total of 5,271 Wikipedia pages related to
programming languages are the nodes of this graph, and an undirected edge exists between two
pages if they are linked together. Wang et al. [2013] performed topic modeling and chose the

8www.dbpedia.org
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Figure 2.13: Regression RMSE vs the number of queries on the pose 7-nn graph. Lower is better.
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(c) Citation Network

Figure 2.14: Recall v.s. Percentage of labels queried

202 pages related to objective oriented programming as the targets, treating all the others as
irrelevant.

As demonstrated by Wang et al. [2013], the three graphs and their target label distributions exhibit
qualitative differences and thus serve as good benchmarks. The citation network has many small
components and target nodes appear in many of them, while the Wikipedia graph has large hubs
and most target nodes reside in one of them. The graph of populated places lies in between these
two extremes, with components of various sizes containing target nodes.

On all of the three data sets we compare two of the proposed methods: GP-SOPT.TT and GP-
SOPT against GP-SELECT (GP-UCB without replacement) and the active search algorithm
(AS-on-Graph) by Wang et al. [2013]. We only evaluate GP-SOPT.TOPK on the 5000 pop-
ulated places data due to its heavy computation. For each dataset we perform 5 experiments,
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each with a randomly chosen target node as the seed. For the proposed methods and GP-
SELECT, the main tuning parameters are the exploration-exploitation trade-off parameter αt
and the observation noise variance σ2. For GP-SOPT.TT and GP-SOPT.TOPK there is addition-
ally the thresholding parameter k. We consider the following values for them. Populated Places:
αt ∈ {4, 2, 1, 0.1, 0.01, 0.001}, σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈ {200, 400, 800}. Wikipedia:
αt ∈ {0.1, 0.01, 0.001}, σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈ {200, 400, 800}. Citation Network:
αt ∈ {1, 10−1, 10−2, 10−3, 10−4}, σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈ {400, 800, 1600}. Although
in theory αt should be iteration-dependent, we find that a fixed value often performs well in
practice. On all data sets we set the kernel regularization parameter ω0 = 0.01. The AS-on-
Graph algorithm has several parameters, and we only tune the exploration-exploitation trade-off
parameter α. It is set to 0.1 on Populated Places and Citation Network, and 0.0001 on Wikipedia,
which are the best performing values. Other parameters are set based on Wang et al. [2013].

Results are in Figure 2.14, where we plot the recall, i.e., the percentage of targets found by
the algorithms, versus the percentage of the whole data set queried. More specifically, for each
algorithm we obtain its mean recall curve over the top 15% (except for AS-on-Graph) parameter
combinations in each experiment, as judged by the area under the recall curve. We then plot the
median, maximum and minimum over the five experiments in Figure 2.14.

The three proposed methods clearly outperform AS-on-Graph and GP-SELECT on Populated
Places, while all methods perform equally well on Wikipedia. We think this has to do with
the underlying graph structure and target distribution. As mentioned before, target nodes in the
Populated Places graph are spread over sub-graphs of various sizes, and therefore exploration
strategies do make a difference. We observe that the proposed methods tend to select high-
degree nodes in the first few iterations, thereby gaining much information, while GP-SELECT
initially selects low-degree nodes. In contrast, most target nodes in the Wikipedia graph reside
in one large component, and therefore less exploration is needed. In fact, the best values for αt
are very small, suggesting that an exploitation-only strategy is good enough for this data. On
Citation Network, most methods perform well except that GP-SELECT performs quite poorly
in one experiment. This may again indicate GP-SELECT is less robust in the presence of many
low-degree nodes.

2.8 Discussions

In this chapter, we discuss active search on a graph with known structure. Each node bears
a reward, which is unknown at first but can be noisily observed upon query. An active search
algorithm aims to accumulate as large a sum of rewards from the queried nodes as possible under
limited budgets. We assume that the node rewards vary smoothly along the graph.

Popular Bayesian UCB-style algorithms [Srinivas et al., 2012, Valko et al., 2014, Vanchinathan
et al., 2013] use the marginal standard deviation as their exploration criterion, leading to the
undesirable tendency of selecting peripheral nodes on a graph. Instead, we consider Σ-optimality
on graphs, which can more efficiently reduce the variance of the reward function estimate by
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sampling cluster centers. We show the advantage of our method in experiments with real graphs
and provide a theoretical guarantee on the cumulative regret.

One interesting future direction is deriving tighter regret bounds for the proposed methods that
match their empirical performances. We imagine it may be possible to bound the regret directly
by the difference in Σ-optimality (Bayes survey risks, RΣ), which may have better properties
than differential information gain, γT on graphs. On the other hand, γT is based on D-optimality,
which may be have severe issues with graphs (Figure 2.7).

GRFs are only one possible way to extend label propagation in SSL. They connect to unnormal-
ized graph Laplacians. On the other hand, normalized graph Laplacians give different properties
that may be empirically interesting to test. Further, an ideal model of the graph, including both
the edge features and regularizations, should be learned or transferred from experiments in simi-
lar domains. Learning the graph structure is a different but rich topic [Lafferty et al., 2001, Smola
and Kondor, 2003].

Additionally, we make the following observation on the spectral aspect of Σ-optimality. An-
alyzing the spectrum of a graph Laplacian may yield even more convincing arguments on the
generalization of active learning. Besides, extracting the smallest eigenvalues and their corre-
sponding eigenvectors is easier to scale than computing the full inverse of an augmented graph
Laplacian.

2.8.1 Spectral Observations

Many exploration heuristics can be written as a function of the spectral difference between the
current model and one-step look-ahead posterior model. Let Ct be the covariance matrix with de-
creasingly sorted eigen-values λ2

t = (λ2
t,(1), . . . , λ

2
t,(n))

>, and Ct+1 and λ2
t+1 to be their posterior

counterparts after observing a node, v. A score based on spectral difference is then,

st(v) = h−1

(
n∑
k=1

h
(
λt,(j)

)
−

n∑
k=1

h
(
λt+1,(j)

))
s.t. h′(s) > 0,∀s > 0,

where the difference inside h−1(·) is nonnegative, because we can prove using induction and defi-
nition of eigen-vectors, for example with j = 1 and qt+1,(1) being the eigen-vector corresponding
to λt+1,(1) in the posterior model, λ2

t,(j) − λ2
t+1,(1) ≥ 〈qt+1,(1),ct+1(v)〉2/(σ2

n−σ2
t+1(v)) ≥ 0.

Case 1. h(s) = −log(s), st(v) =
√

1 + σ2
t (v)/σ2

n. This heuristic adds biases to maximize the
differential information gain of the joint distribution of node values, turns out to pay too much
attention to the graph periphery, which actually prevents information gathering in the true prob-
lem against intuition. Precisely, differential entropy is sensitive to tails of the distribution, which
happens to be the place of the biggest model mismatch of our GRF models.

Case 2. h(s) = s2, st(v) =
√

tr(Ct)− tr(Ct+1) =
√
‖ct(v)‖22/(σ2

t (v)+σ2
n). This criterion resembles

V-optimality, which though alleviates the situation by adding independence assumptions on the
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nodes and measuring the sum of the marginal variances, cannot completely address the selection
bias at graph peripheries, because the self-variance term usually dominates the sum of squares of
‖ct(v)‖2

2.

Case 3. h(s) = sp, p→∞, λmax(Ct)− λmax(Ct+1). This heuristic aims to globally control the
posterior marginal variances of every node, by upper-bounding them by λ2

max. Indeed, for any
node k and any covariance matrix C, Ckk = e>k Cek ≤ max v>Cv/v>v = λ2

max(C).

Our intuition is that Sigma-optimality connects to this criterion via approximations. First, as-
suming that the principal eigen-vector of Ct is qt, then λ2

max(Ct+1 | v) ≈ λ2
max(Ct)− 〈qt,ct(v)〉2

(σ2
t (v)+σ2

n)

and, compounding the square-root operator, st(v) ≈ 1
2λmax(Ct)

ct(v)>qt√
σt(v)2+σ2

n

.

Realize that C−1
0 = D−A + ω0I has its smallest eigen-vector (with respect to ω0) very close to

1
n
1, that same vector carries to be q0 for the largest eigen-value of C0. At this point, st(v) is our

Sigma-optimality up to a selection-independent constant.

In fact, this approximation can be valid for larger t’s. Further break the graph down to different
(relatively isolated) connected components, where each individual component is relatively un-
explored, and therefore contains a principal eigen-vector, relative to the component, which will
approximate qt,(c) ≈ 1C , where c is the rank of this eigen-vector and C the subset of nodes of
this connected component. The more under-explored the component is, the more likely that qt,(c)
becomes the principal eigen-vector, qt and also qt,(c) gets close to 1C .

In the meantime, every column on the current covariance matrix ct(v) will also reflect indepen-
dence between these (relatively isolated) components. Thus, the inner product can be roughly
approximated as, q>t ct(v) ≈ 1>C ct(v)+1>C̄ 0 = 1>ct(v), where C̄ is the complement of C. Again,
Sigma-optimality approximates the difference of the spectral norm between prior and one-step
look-ahead covariance matrices.
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George Seurat, Femmes au bord de l’eau, 1885-86. 3
Active Area Search and Pointillism

3.1 Introduction

Consider a function containing interesting patterns that are defined only over a region of space.
For example, if you view the direction of wind as a function of geographical location, it defines
fronts, vortices, and other weather patterns, but those patterns are defined only in the aggregate.
If we can only measure the direction and strength of the wind at point locations, we then need to
infer the presence of patterns over broader spatial regions.

Many other real applications also share this feature. For example, an autonomous environmental
monitoring vehicle with limited onboard sensors needs to strategically plan routes around an area
to detect harmful plume patterns on a global scale [Valada et al., 2012]. In astronomy, projects
like the Sloan Digital Sky Survey [Eisenstein et al., 2011] search the sky for large-scale objects
such as galaxy clusters. Biologists investigating rare species of animals must find the ranges
where they are located and their migration patterns [Brown et al., 2014]. We aim to use active
learning to search for such global patterns using as few local measurements as possible.

Traditionally, active learning assumes that a label is associated with each observable data point,
which may be revealed upon querying. Traditional active search then aims to maximize the
number of positively-labeled points that can be collected, given a finite query budget. Here,
however, the labels are instead defined by the presence of specific patterns over broader spatial
regions. While we allow (noisy) observations of the values of the smooth underlying function at
any feasible point locations, the function in fact turns into an auxiliary function because it does
not directly define rewards. Instead, our goal is to identify the most number of positive regions
where positive patterns can be inferred, given any finite budget of point observations.
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Since we aim to search for positive patterns over broader spatial regions, the point query strategy
will be very different from plain active search for positive points. This bears some resemblance to
the artistic technique known as pointillism, where the painter creates small and distinct dots each
of a single color, but when viewed as a whole they reveal a scene. Pointillist paintings typically
use a denser covering of the canvas, but in our setting, “observing a dot” is expensive. Therefore,
we make fewer observations in order to uncover interesting regions as quickly as possible.

To simplify discussions, we assume the pool of regions that are feasible to contain positive pat-
terns are predefined. In the common scenario, it includes a set of sliding windows of equal sizes
that cover the entire navigable space with reasonable overlaps. Some applications use other nat-
ural definition of regions. The patterns, on the other hand, can be either simple or complex,
depending on the application:

Active Area Search (AAS). We search for simple patterns that are defined on the average value
of the smooth auxiliary function in a region. Positive labels are assigned to regions where the
average value is larger than a predefined threshold, with high probability.1 AAS is useful in the
example of environmental monitoring with mobile sensors. The variability of the sensors and
environmental conditions on a river mean that no single sensor reading will ever be sufficient
to identify a significant pollution issue. Instead, real pollution issues are identified by a set
of regions within a certain region that have a large average value. Although a boat gives us the
capability to take a measurement anywhere, it does not provide the sensing bandwidth to monitor
every location all the time. Besides, sensing cost dominates travel cost in many cases.2 Therefore
we need an algorithm to sequentially choose sensing locations with a goal of identifying polluted
regions.

Active Pointillist Pattern Search (APPS). We search for complex patterns that are defined by
a classifier that takes functional inputs. Since the classifier operates under uncertainty when
we have incomplete observation of the function in the region, positive labels are assigned when
the classifier has a sufficiently high probability output. In applications, APPS allows us to find
vortices by selecting point locations to observe the corresponding wind flow vectors. APPS can
be viewed as a generalization of AAS, by allowing arbitrary classifiers rather simple thresholds
of the function average.

Functional Probit Models (FPMs). AAS is a special case of APPS, where the classifier is
formed by a probit link function of a linear functional of the underlying function that produces
observations. We call the family of models Functional Probit Models (FPMs), which is a slight
generalization of AAS.

Mathematically, we assume that the low-level responses of point queries comes from a random
function with a Gaussian process (GP) prior [Rasmussen and Williams, 2006], whose hyperpa-
rameters are externally designed. This assumption allows to infer region patterns with incomplete

1 Theoretically, the true average value is never obtainable because it requires complete observation of every point
value in the region using infinite sensing budget.

2 A typical dissolved oxygen sensor requires about one minute for the reading to settle down after moving
[Valada et al., 2012], which is enough time for the small boat to travel end-to-end in the areas we’ve considered so
far. Similarly, any application requiring in situ lab analysis of samples would have this property.

42



AAS
(large region
average)

FPMs
(closed-form
solutions)

APPS
(any classifier
taking functional
inputs, Monte-
Carlo solutions)

Figure 3.1: Region patterns with increasing complexity.

observation. We accomplish active area search by sequentially selecting point locations to ob-
serve so as to approximately maximize expected reward for identifying positive patterns. We also
have closed-form solutions and insights when the patterns are simple, such as AAS or FPMs.

3.1.1 Related Work

Our concept of active pattern search falls under the broad category of active learning [Settles,
2010], where we seek to sequentially build a training set to achieve some goal as fast as possible.
Our focus solely on finding positive (“interesting”) regions, rather than attempting to learn to
discriminate accurately between positives and negatives, is similar to the problem previously
described as active search [Garnett et al., 2012]. In previous work on active search, however, it
has been assumed that the labels of interest can be revealed directly. In active pattern search, on
the other hand, the labels are never revealed but must be inferred via a provided classifier. This
indirection increases the difficulty of the search task considerably.

In Bayesian optimization [Brochu et al., 2010, Osborne et al., 2009], we seek to find the global
optimum of an expensive black-box function. Bayesian optimization provides a model-based
approach where a Gaussian process (GP) prior is placed on the objective function, from which
a simpler acquisition function is derived and optimized to drive the selection procedure. In
[Tesch et al., 2013], the authors extend this idea to optimizing a latent function from binary
observations. Our proposed active pattern search also uses a Gaussian process prior to model the
unknown underlying function and derives an acquisition function from it, but differs in that we
seek to identify entire regions of interest, rather than finding a single optimal value.

Another intimately related problem setup is that of multi-arm bandits [Auer et al., 2002], with
more focus on analysis of the cumulative reward over all function evaluations. Originally, the
goal was to maximize the expectation of a random function on a discrete set; a variant considers
the optimization in continuous domains [Kroemer et al., 2010, Niranjan et al., 2010]. However,
like Bayesian optimization, multi-arm bandit problems usually do not consider discriminating a
regional pattern.

Level set estimation [Gotovos et al., 2013, Low et al., 2012], rather than finding optima of a
function, seeks to select observations so as to best discriminate the portions of a function above
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and below a given threshold. This goal, though related to ours, aims to directly map a portion of
the function on the input space rather than seeking out instances of patterns. LSE algorithms can
be used to attempt to find some simple types of patterns (say, areas with high mean), but even
then its learning goal underperforms in the mismatched search objective, and it does not attempt
more complex models.

3.2 Problem Formulation

There are three key components of the APPS framework: a function f which maps input covari-
ates to data observations, a predetermined set of regions wherein instances of function patterns
are expected, and a classifier that evaluates the salience of the pattern of function values in each
region. We define f : Rm → R to be the function of interest,3 which can be observed at any
location x ∈ Rm to reveal a noisy observation y. We assume the observation model

y = f(x) + ε, where ε
iid∼ N (0, σ2

n).

We suppose that a set of regions where matching patterns might be found is predefined, and will
denote these Ā = {Aj ⊂ Rm : j = 1, . . . , k}. Finally, for each region A, we assume a classifier
hA which evaluates f on A and returns the probability that it matches the target pattern, which
we call salience:

hA(f) = h(f ; θA) ∈ [0, 1],

where θA is the set of parameters including both the location of A and other necessary variables
that define the region pattern classifier. The mathematical interpretation of hA is similar to a
functional of f . Classifier forms are typically the same for all regions with different parameters.

In the example of AAS, positive labels are assigned to regions where the average value is above
a predefined threshold τ . In this case, θA = (A, τ) and the region labels are defined by,

hA(f) = 1{ 1
|A|

∫
x∈Af(x) dx>τ}. (3.1)

Figure 3.2 demonstrates AAS in a 1d environment where the regions are line segments and the
labels are defined by the average values.

A slight generalization of AAS is a FPM. Here, the classifier is formed by a probit link function of
a weighted integral of the underlying function that produces observations. A probit link function
uses the cumulative distribution function of the standard normal, Φ(a) =

∫ a
−∞

1√
2π

exp{−u2

2
} du.

Let the set of classifier parameters be θA = (wA(·), τ, c), where wA(·) is a weight function that
is nonzero only when x ∈ A, τ is a scalar, c > 0 is a scale variable; the functional probit model
is defined as

hA(f) = Φ

(
1

c

[∫
wA(x)f(x) dx− τ

])
, (3.2)

which is equivalent to AAS classifier if we take c→ 0.
3For clarity, in this and the next sections we will focus on scalar-valued functions f . The extension to vector-

valued functions is straightforward; we consider such a case in Section 3.6.3.
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Figure 3.2: Problem definition given full knowledge of the underlying function f(x). For AAS,
positive labels are given to regions where the average value is above a predefined threshold.

3.2.1 Region Rewards with Incomplete Function Observations

Unfortunately, in general, we will have little knowledge about f other than the limited observa-
tions made at our selected set of points. Classifiers which take functional inputs (such as our
assumed hA) generally do not account for uncertainty in their inputs, which should be inversely
related to the number of observed data points. We thus must consider the probability that hA(f)
is high enough, marginalized across the range of functions f that might match our observations.
As is common in nonparametric Bayesian modeling, we model f with a Gaussian process (GP)
prior; we assume hyperparameters, including prior mean and covariance functions, are set by
domain experts. Given a dataset D = {(xi, yi) : i = 1, . . . , t}, we define

f ∼ GP(µ, κ); f | D ∼ GP(µf |D, κf |D), (3.3)

to be a given GP prior and its posterior conditioned on D, respectively. (Formal discussions are
in Section 3.2.2.) Since f is a random variable, we can obtain the marginal probability that A is
salient,

P (A | D) = Ef
[
hA(f) | D

]
. (3.4)

We then define a matching region as one whose marginal probability passes a given threshold
1− α. Unit reward is assigned to each matching region A:

r(A | D) = 1{P (A|D)>1−α}. (3.5)

Similar to active search [Garnett et al., 2012], active area search aims to maximize the cumulative
reward at the end of a fixed number of queries. Additionally, we assume that unit reward can be
collected at the same region only once. As soon as a region is flagged as potentially matching
(i.e., its marginal probability exceeds 1 − α), it will be immediately flagged for further review
and no longer considered during the run. Additionally, we assume that the data resulting from
this investigation will not be made immediately available during the course of the algorithm;
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(b) Reward by inference with GP sampling

Figure 3.3: Given incomplete observations, true region pattern is never known to us. However,
we may draw smooth functions from GP — shown as the three solid lines inside the shaded
envelope in (b), which allow us to assign rewards rA = 1 if the probability is sufficiently high.

rather the classifiers hA will be trained offline. For example, if the algorithm is being used to run
autonomous sensors and scientists collect separate data to follow up on a matching region, these
assumptions allow the autonomous sensors to continue in parallel with the human intervention,
and avoid the substantial complexity of incorporating a completely different modality of data
into the modeling process. Making different assumptions would lead to interesting extensions to
our algorithms that we do not consider here. As a result, the immediate reward of every point
measurement is

rt(Dt) =
∑
A∈At

r(A | Dt), where At = {A : r(A | Dτ ) = 0,∀τ < t}, (3.6)

and we aim to maximize the cumulative reward

R(DT ) =
T∑
t=1

rt(Dt) =
k∑
j=1

1{∃τ≤t s.t. P (Aj |Dτ )>1−α}.

Remark 3.1. Active search aims to find all positive subjects instead of the global optimum. If we
allow repeated rewards, as soon as one positive region is found, a greedy solution could simply
refuse to collect more data in the positive regions so as to abuse the current rewards, because
our reward is binary. Although the greedy solution may also choose to collect in other regions in
order to maximize the expected sum of rewards, the pathology in the established positive regions
will unavoidably influence the designs in their neighboring regions in a negative way. We will
show more in our analysis in Section 3.4.

Another issue of reward abuse may happen when we make repeated tests about the label of a
region in different query time steps. This may lead to inferior precision for the discovery of true
positive regions or an increased false discovery rate. A classical fix is to notice that the distribu-
tion of maximum value in a set of variables and to apply O(log(t)) multiplicative corrections to
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the standard deviation at step t as a safety margin. Alternatively, one may choose to use smaller
and different α for each time step. We unfortunately did not consider such rigorousness, but only
showed that the precision in our experiments remain empirically high.

3.2.2 Closed-Form GP Models and Rewards in AAS or FPMs

It is useful to express the GP posterior (3.3) for completeness. Further, when the classifier is as
simple as AAS (3.1) or FPMs (3.2), we may express the actual reward (3.5) in closed-form in
terms of the collected data. The way to achieve closed-form solutions is to realize that GP is
closed under linear transformation of variables, including AAS and FPMs.

First, a Gaussian process (GP) is a statistical process to draw smooth random functions, where
the outputs corresponding to every set of inputs (including sets with only one element) have a
joint Gaussian distribution with parameters given by the input. A GP f(x) is characterized by
two (prior) function parameters, a mean function µ(x) and a kernel function κ(x, x′). The kernel
function is also known as covariance function, because it defines the second moment of a GP. On
the other hand, a GP is fully defined by its first two moments through the prior mean and kernel
functions. Let x1, . . . , xn ∈ Rm,∀n ≥ 1 be any combination of any number of input points.
Define X = (x1, . . . , xn)> and we further overload

µ(X) =

µ(x1)
. . .
µ(xn)

 , and κ(X,X) =

κ(x1, x1) . . . κ(x1, xn)
. . . . . . . . .

κ(xn, x1) . . . κ(xn, xn)

 ,

the corresponding outputs from a GP always have joint distribution,(
f(x1), . . . , f(xn)

)> ∼ N (µ(X), κ(X,X)
)
,

where X = (x1, . . . , xn)>,∀x1, . . . , xn ∈ Rm,∀n ≥ 1.

An example of GP would have zero-mean and square-exponential kernel:

µ(x) = 0, κ(x, x′) = σ2
f exp

{
−‖x− x

′‖2

2`2

}
,

where σf , ` > 0 are called hyper-parameters. Other forms of kernel functions are allowed,
as long as the resulting covariance matrix is always symmetric and positive-definite for any
combination of input points x1, . . . , xn.

Next, we aim to derive the closed-form solutions for the reward with incomplete observations.
Notice that (3.1)&(3.2) define the reward by (weighted) integral of the function f and that GP
is closed under any linear functionals, we may extend the input space to allow such linear func-
tionals:

〈f, δx〉 = f(x), 〈f, 1
|A|1{A}〉 =

1

|A|

∫
x∈A

f(x) dx, 〈f, wA〉 =

∫
wA(x)f(x) dx,
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where δx is a Dirac delta function that represents the original point evaluation in the functional
space. We will only use the more general form of the linear functionals and overload f(A) =
〈f, wA〉.

Let ψ ∈ Ψ be a unified representation in the extended space. Now, the GP prior mean and kernel
functions extend to

µ̄(ψ) =

{
µ̄(x) if ψ = δx,

µ̄(wA) =
∫
µ̄(x)wA(x) dx if ψ = A,

κ̄(ψ, ψ′) =


κ̄(x, x′) if ψ = δx, ψ

′ = δx′ ,

κ̄(A, x′) =
∫
κ̄(x, x′)wA(x) dx if ψ = A,ψ′ = δx′ ,

κ̄(A,A′) =
∫∫
κ̄(x, x′)wA(x)wA′(x

′) dx dx′ if ψ = A,ψ′ = A′.

After collecting a set of measurements at X = (x1, . . . , xn)> and observing their outcomes as
y = (y1, . . . , yn), the posterior distribution is a conjugate GP with the following new mean and
kernel functions:

µ(ψ | D) = µ̄(ψ) + κ̄(ψ,X)V̄(X,X)−1y,

κ(ψ, ψ′ | D) = κ̄(ψ, ψ′)− κ̄(ψ,X)V̄(X,X)−1κ̄(X, ψ′), (3.7)

where V̄(X,X) = κ̄(X,X) + σ2
nI is the prior covariance matrix for the noisy observations.

Define marginal variance σ2(ψ | D) = κ(ψ, ψ | D). When ψ = ψ′ = A, the posterior dis-
tribution can be efficiently computed by reusing (partial) integrals of the kernel function at the
corresponding region:

µ(A | D) =

∫
µ̄(x)wA(x) dx+

[∫
κ̄(x,X)wA(x) dx

]
V̄(X,X)−1y,

σ2(A | D) =

∫∫
κ̄(x, x′)wA(x)wA(x′) dx dx′

−
[∫

κ̄(x,X)wA(x) dx

]
V̄(X,X)−1

[∫
κ̄(X, x′)wA(x′) dx′

]
.

Finally, for AAS, the probability of positive outcome is the cumulative density function:

P (A | D) = Pr

(
1

|A|

∫
x∈A

f(x) dx > τ

∣∣∣∣ D) = Φ

(
µ(A | D)− τ
σ(A | D)

)
.

For FPMs, the probability of positive outcome also has closed-form solutions because of the
conjugacy between probit models and Gaussian distributions. Let u = 1

c
[
∫
wA(x)f(x) dx − τ ],
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the solution is

P (A | D) = E
[
Φ

(
1

c

[∫
wA(x)f(x) dx− τ

]) ∣∣∣∣ D]
=

∫
Φ(u)N

(
u

∣∣∣∣ µ(A | D)− τ
c

,
σ2(A | D)

c2

)
du

= Φ

(
µ(A | D)− τ√
σ2(A | D) + c2

)
. (3.8)

When the linear functional is wA(x) = 1
|A|1{A}(x), the FPM reward is effectively the reward of

a noisy observation of the inferred function average, with noise variance c2. As c → 0, FPMs
become equivalent to AAS. In the later discussions, we will use the more general form of linear
models and define{

ν2(x | D) = σ2(x | D) + σ2
n

ν2(A | D) = σ2(A | D) + c2
⇒ P (A | D) = Φ

(
µ(A | D)− τ
ν(A | D)

)
.

The actual reward is binary depending on the probability output of the inference. Recall (3.5)&(3.6):

r(A | D) = 1{P (A|D)>1−α}, and rt(Dt) =
∑
A∈At

r(A | Dt).

3.3 Method: Greedy Maximization of Expected Rewards

An ideal Bayesian solution would attempt to maximize the expected reward at the end of a fixed
number of queries, similar to [Garnett et al., 2012] . Directly optimizing that goal involves an
exponential lookahaed process. However, this can be approximated by a greedy search like the
one we perform. Closed-form solutions may also be derived for AAS and FPM models.

We now write the greedy criterion our algorithm seeks to optimize. In a sequential querying
manner where the first t query steps collect a dataset Dt = {(xτ , yτ ) : τ = 1, . . . , t}, define the
remaining search subjects as At = {A : P (A | Dτ ) ≤ 1 − α, ∀τ < t}. We aim to greedily
maximize the sum of rewards over all the regions in At in expectation,

xt+1 = arg max
x∗

Eỹ∗
∑
A∈At

[r(A | Dt ∪ {(x∗, ỹ∗)}) | x∗, Dt], (3.9)

where Dt ∪ {(x∗, ỹ∗)} is the (random) dataset augmented with x∗ and its lookahead observation
ỹ∗, which is simulated under the GP posterior.

A more careful examination of the GP model can yield a straight-forward sampling method. This
method, in the following, turns out to be quite useful in APPS problems with rather complex
classifiers. Section 3.3.1 introduces closed-form solution for simple classifiers.
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At each step, given the collected observations Dt and any potential input location x∗, we can
assume the distribution of possible observations ỹ∗ as

ỹ∗ | x∗, Dt ∼ N
(
µf |Dt(x∗), κf |Dt(x∗, x∗) + σ2

)
. (3.10)

Conditioned on an observation value ỹ∗, we can update our GP model to include the new observa-
tion (x∗, ỹ∗), which further affects the marginal distribution of region classifier outputs and thus
the probability this region is matching. With D̃∗ = Dt ∪

{
(x∗, ỹ∗)

}
as the updated dataset, we

define r(A | D̃∗) to be the updated reward of region A. The utility of this proposed location x∗
for region A is thus measured by the expected reward function, marginalizing out the unknown
observation value ỹ∗:

uA(x∗ | Dt) = Eỹ∗
[
r(A | D̃∗) | x∗, Dt

]
= Eỹ∗|x∗,Dt 1{P (A|Dt∪{(x∗,ỹ∗)})>1−α} (3.11)

Finally, in active pointillist pattern search, we select the next observation location x∗ by consid-
ering its expected reward over the remaining regions:

xt+1 = arg max
x∗

u(x∗ | Dt) = arg max
x

∑
A∈At

uA(x∗ | Dt). (3.12)
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(b) Rewards on the lookahead dataset.

Figure 3.4: Sampling-based solution to greedily maximize expected reward. For any point x∗:
Step 1. sample possible observations ỹ∗. Step 2. for each sampled observation, estimate the
reward assuming that the lookahead dataset Dt ∪ {(x∗, ỹ∗)} is the true collected dataset.

For the most general definition of the region classifier hA, the basic algorithm is to compute
(3.11) and thus (3.12) via sampling at two stages:

1. Sample the outer variable ỹ∗ in (3.11) according to (3.10).
2. For every draw of ỹ∗, sample enough of (f | D̃∗) to compute the marginal reward P (A | D̃∗)

in (3.4), in order to obtain one draw for the expectation in (3.11).
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To speed up the process, we can evaluate (3.12) for a subset of possible x∗ ∈ X̃ values as long
as a good action is likely to be contained in the set.

3.3.1 Closed-Form Solutions to Utility Functions with AAS and FPMs

To derive the closed-form solution with AAS and FPMs, we start with the closed-form solution to
the reward function (3.8) on the lookahead dataset, D̃∗ = Dt ∪ {(x∗, ỹ∗)}, where ỹ∗ is randomly
sampled from GP posterior, as

r(A | D̃∗) = 1{P (A|D̃∗)>1−α}, where P (A | D̃∗) = Φ

(
µ(A | D̃∗)− τ
ν(A | D̃∗)

)
.

Fix A and Dt and let{
µA = µ(A | Dt), σA = σ(A | Dt), νA = ν(A | Dt) =

√
σ2
A + c2,

µ̃A = µ(A | D̃∗), σ̃A = σ(A | D̃∗), ν̃A = ν(A | D̃∗) =
√
σ̃2
A + c2,

the expected utility (3.11) of a new observation x∗ on region A is

uA(x∗ | Dt) = Eỹ∗r(A | D̃∗) = Pr

[
Φ

(
µ̃A − τ
ν̃A

)
> 1− α

]
, (3.13)

where we may realize from (3.7) that µ̃A is a random variable that depends on the realization of
both x∗ and ỹ∗, whereas σ̃A is fixed and only depends on the choice of x∗. In fact, fixing x∗,
Eq 3.7 shows that µ̃A has a linear relation with (ỹ∗ | x∗), which leads to a marginal Gaussian
distribution if we integrate out ỹ∗. The marginal distribution have the form

µ̃A ∼ N (µA, s̃
2),

where the marginal mean equals to the current-step mean and the variance is denoted by s̃2 =
s̃2(x∗, A | Dt), which depends on x∗ and A. Before we discuss the closed-form solution for s̃2,
define inverse cumulative distribution function of the standard normal as Q(1 − α) = inf{x :
Φ(x) ≥ 1− α}, we may rewrite the utility (3.13) as

uA(x∗ | Dt) = Pr

[
µ̃A − τ
ν̃A

> Q(1− α)

]
= Pr

[
µ̃A − µA
|s̃| >

−µA + τ + ν̃AQ(1− α)

|s̃|

]
= Φ

(
µA − τ − ν̃AQ(1− α)

|s̃|

)
. (3.14)

To solve for ν̃A and s̃ in (3.14), notice that the lookahead variance ν̃2
A (or σ̃2

A) given x∗ can be
computed by (3.7) in the same way that ν2

A (or σ2
A) is computed given the previous collection of
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data points x1, . . . , xt. To express s̃2, notice the rule of total variance with fixed x∗ and Dt is

Var (f(A)) = EVar [f(A) | ỹ∗] + VarE[f(A) | ỹ∗]
⇔ σ2

A = σ̃2
A + s̃2 ⇔ ν2

A = ν̃2
A + s̃2,

where the equivalence is due to σ̃2
A (or ν̃2

A) being constant for any realization of ỹ∗.

As a result, there is only one free parameter between ν̃A and s̃ in (3.14), where all the other
variables, µA, τ, νA are independent of the choice of x∗. Further, both s̃2 and ν̃2

A (or σ̃2
A) can be

solved using the same closed-form GP posterior solution (3.7). For convenience in later analysis,
we define:

ρ∗A = ρ(x∗, A | Dt) =
κ(x∗, A | Dt)

ν(x∗ | Dt)ν(A | Dt)

= Corr

(
ỹ∗,

∫
wA(x)f(x) dx+ εc

∣∣∣∣ x∗, Dt

)
,

where εc ∼ N (0, c2) results from the margin of probit transformation in FPMs, which is also
an effective additive noise for region integrals (i.e., c = 0 for exact AAS). Straight-forward
computation via (3.7) shows that

ν̃2
A = (1− ρ∗A2)ν2

A, and s̃ = ρ∗AνA. (3.15)

Then, we may rewrite (3.14) with only one free variable ρ∗A that depends on the choice of x∗, as

uA(x∗ | Dt) = Φ

(
µA − τ − νA

√
1− ρ∗A2Q(1− α)

|ρ∗AνA|

)

= Φ

(
Q(1− α)

RA −
√

1− ρ∗A2

|ρ∗A|

)
, (3.16)

where the other variables that are independent of x∗ are summarized by

RA =
Q(P (A | Dt))

Q(1− α)
=

µA−τ
νA

Q(1− α)
,

which is an exploitation measure that indicates how close a region is to positive rewards in its
current state. For any α < 0.5 such that Q(1−α) > 0, reward is assigned if and only if RA ≥ 1,
i.e., RA < 1,∀A ∈ At.

3.4 Analysis of the Closed-Form Greedy Solutions

The analytical solution (3.16) to the greedy maximization of expected rewards (3.11) with AAS
and FPMs enables us to further study the theory behind the exploration/exploitation tradeoff of
APPS in nontrivial cases, assuming:
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1. the region pattern classifier is defined by AAS (3.1) or FPMs (3.2);
2. the regions are spatially separated such that every point query only affects the inference

outcome of the region that contains the point;
3. only regions A ∈ At where positive reward has not been assigned are considered.

Particularly, Assumption 2 allows us to ignore the effect a data point has on regions other than
its own and consider every region independently. We will answer two questions in this case:

1. which region will be explore next, and
2. what location will be queried for that region.

We start with the closed-form solution (3.16), which depends on RA and |ρ∗A|.
On the one hand, RA depends only on collected data Dt and A, i.e., RA is a measure of the
current state. Notice that for any 1 − α > 0.5, we have Q(1 − α) > 0, which suggests that
RA is positively related to the current mean estimate of the region integral. In fact, RA is an
exploitation measure which indicates how close a region is to positive reward in its current state,
using the ratio between the quantile statistic of the region classifier output and the minimum
quantile for reward assignment. Given that A ∈ At has not been assigned positive reward, we
may assume RA < 1.

On the other hand, ρ∗A = ρ(x∗, A | Dt) further depends on the choice of x∗ and is a measure of

the quality of x∗. By (3.15), ρ∗A =
√

1− ν̃2A
ν2A

, the measure of point choice only depends on the
one-step lookahead variance reduction of the estimate of the region integral

∫
wA(x)f(x) dx+εc.

Considering every region independently, the design problem then reduces to optimizing ρ∗A by
choosing x∗ so as to maximize (3.16). At this step, it is possible to take partial derivatives to find
the maximimum ρ∗A for (3.16). However, the analysis can be made easier if one realizes that,
assuming RA < 1, maximizing (3.16) is equivalent to minimizing the slope of the line joining
the following two points P ,R in R2:

P =
(
|ρ∗A|,

√
1− ρ∗A2

)
, R =

(
0, RA

)
.

In Figure 3.5(a), one can observe that the slope of the line can always be made smaller by either
increasing |ρ∗A| = |ρ(x∗, A | Dt)|, which results in moving the P point to the right along the arc
of the unit circle, or movingR up.

With the help of Figure 3.5, we can conclude for regions that do not currently have a reward that

1. Fix the region A, uA(x∗, D) is maximized by simply choosing the location that maximizes
|ρ∗A| = |ρ(x∗, A | Dt)|. See Figure 3.5a.

2. Similarly, if two regions have equal marginal probability of matching the desired pattern RA,
then a region with a larger |ρ∗A| will be selected. See Figure 3.5a.

3. Comparing different regions, if two regions can be equally explored (i.e. they have the same
|ρ∗A| value, e.g., resulting from both region having the same number of collected measure-
ments at the same relative locations), then the region with the larger marginal probability of
a matching outcome RA will be selected. Figure 3.5b illustrates the comparison.
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Figure 3.5: Illustration of selection criterion on independent regions. The solid red line with
prime labels is preferred in each plot; it has a smaller slope.

4. In general, APPS will simultaneously consider both point 2 & 3 (i.e., exploitation and explo-
ration), illustrated by Figure 3.5c.

Notice, through Figure 3.5, it can also be inferred that any region that has already been assigned
reward will haveRA ≥ 1, the optimal solution would take ρ∗A = 0 and let the slope to be negative
infinity. I.e., the optimal solution at regions with positive patterns (with at least 1−α probability
where α < 0.5) is to refuse collecting new observations. This observation further suggests that
active search should not allow repeated rewarding of the same region, which is consistent with
our discussion in Remark 3.1.

3.4.1 Equivalent Solution for Separated Regions

Since Figure 3.5 suggests that for every region A ∈ At where RA < 1, the optimal solution is to
choose observation x∗ with the largest |ρ∗A| in order to reduce the variance in the estimate of the
region integral, we may have the following alternative method that also greedily maximizes the
expected reward (3.9), assuming that the regions are well-separated and the observation inside
one region only affects the inference at the same region.
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Figure 3.6: When regions are well-separated, maximizer for greedy expected reward must choose
from the points that minimize the variance of the lookahead region integrals.
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The alternative solution has two steps (illustrated in Figure 3.6):

1. For every region, optimize query location to minimize the variance of the region integral;
2. Choose the final design by evaluating (3.16) at the selected locations from Step 1.

3.4.2 Connection to Bayesian Quadrature, Σ-Optimality, and GP-SOPT

The problem of choosing locations to minimize the variance of region integral is studied in
Bayesian quadrature, also known as Bayesian Monte Carlo Rasmussen and Ghahramani [2003].

Plain region integral is also connected to the problem active surveying (Section 2.4.1), which
studies how to obtain the average value of a population. In this case, the population is all points
in a region. As a result, minD σ

2(A,A′ | D) =
∫∫
κ(x, x′ | D)wA(x)wA(x′) dx dx′ is the

Σ-optimality in active surveying problems (2.14).

When c→ 0, the solution to lookahead reduction of the variance of region integral uses

s̃ = ρ∗AνA =
κ(x∗, A | Dt)

ν(x∗ | Dt)
=

∫
κ(x∗, x | Dt)

σ(x∗ | Dt)
wA(x) dx

=

∫
ρ∗A(x∗, x | Dt)σ(x | Dt)wA(x) dx,

which is related to the greedy application of Σ-optimality, though the original Σ-optimality fo-
cuses on application in Gaussian random fields where ρ(x∗, x | Dt) ≥ 0 is guaranteed. With a
GP, such sign guarantees may not hold.

Finally, even though greedy maximization of expected reward also boasts exploitation/exploration
tradeoff, it has a different from than the tradeoff in multi-armed bandits. A typical solution for
multi-armed bandits is GP-UCB Srinivas et al. [2010a], or its application with thresholding out-
comes Locatelli et al. [2016] and with asynchronous application with variance estimates Zhong
et al. [2017]. The basic greedy criterion is equivalent to

max
x∗

µ(A | Dt) + βtν(A | Dt). (3.17)

Notice (3.17) cannot be used to select points because the criterion only depends on region statis-
tics. To choose point observations in independent regions, one fix is to measure exploration via
the change in Σ-optimality similar to the GP-SOPT algorithm (2.18), as

xt+1 = arg max
x∗

µ(A | Dt) + βts̃(x∗, A | Dt) = arg max
x∗

νA(Q(1− α)RA + βtρ
∗
A). (3.18)

Comparing (3.18) with the greedy solution to our utility function for region A (3.16), one may
realize that both criteria are positively related to RA and ρ∗A, yet they take different forms. Direct
application of GP-SOPT ignores the binary observation outcome, which is more important in our
region search problems.
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3.5 Simulations

We used a list of simulated experiments to demonstrate properties and performance of AAS.
More interestingly, we provide intuition about the behavior of AAS in multi-region cases, which
we really care about.

In all simulations, the input space was the 2-dimensional Euclidean space and our function was
generated from a GP whose prior mean was constant zero and whose prior covariance was the
following isotropic square exponential kernel:

κ(x, x′) = σ2
f exp

{
− 1

2`2
(x− x′)>(x− x′)

}
(3.19)

where σ2
f and ` were set at different values in different cases to make the simulated problems

interesting. Further, actual observations were simulated with additive noise ε ∼ N (0, σ2
n).

3.5.1 One Region Synthetic Data

(a) Sampling locations (b) Posterior estimation

Figure 3.7: One region search. Samples are selected in hope that with posterior distributions, the
integral over the entire unit square is greater than 1 with probability at least 0.8.
The first demonstration/experiment was performed on a 2-dimensional unit square which con-
tains only one region. The parameters used to generate the observations in (3.19) are ` =
0.33, σ2

f = 1/(2π`2) = 1.212, σ2 = 0.12. We purposefully made the problem difficult, so that
AAS can run for a longer time period, by keeping the a priori variance of the integral over the
region small, only roughly κ̄(A,A) = 0.7372. As a result, the region is not guaranteed to have
high average values with high probabilities. We kept sampling function values on a 33×33 dense
grid until the average value in the unit square region is greater than the threshold τ = 1. AAS is
expected to sequentially sample observations until it believes that the regional average is greater
than τ with probability at least 1− α = 0.8.

Figure 3.7 (a) visualizes the sampling locations determined by AAS in a sequential order. After
these updates, the posterior marginal bandwidth of every point is shown in (b) and the gray mesh
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at level 1.0 serves as a reference showing that the integral of the function, under posterior distri-
bution, has high possibility to be greater than the threshold. The behavior of AAS is consistent
with our analysis in Section 3.4. Before the algorithm terminates when it verifies that the region
is significantly interesting, AAS explores locations which yield the maximal possible decrease of
the variance of the integral once sampled, similar to experimental designs in BQ. The intuition is
that function values at these points are usually unexplored and may become the best bet to attain
a reward.

3.5.2 Multi-Region Synthetic Data

In this experiment, we simulated random GPs on a 2-D space which is externally split into 10×10
unit square regions. The goal was to find as many interesting regions as possible. Similar to
before, a region may be flagged and rewarded if the posterior average function value on this
region is greater than τ = 1 with probability at least 1− α = 0.8.

To allow interactions between regions, we chose a larger length scale for the prior GP.4 The
parameters selected are ` = 1, σ2

f = 1, σ2
n = 0.12. The prior variance of the integral over any

region is κ̄(A,A) = 0.9242,∀A ∈ Ā (roughly 14% regions are interesting). An illustration is
in Figure 3.8(a), where the color of a region indicates the average function value in that region.
Level sets of the function value are also plotted in (a).

The rest of Figure 3.8 compare the following algorithms

• Active area search (AAS): Our proposed method.

• Level set estimation (LSE): Gotovos et al. [2013] proposed this theoretically justified algo-
rithm for level set estimations, which is to determine the region in the input space where the
function value is close to h. We hope that by finding level sets for h = τ and recognizing even
higher/lower regions, interesting regions may be discovered. Several other parameters were
set as β

1/2
t = 3, ε = 0.1. (The original paper also set βt fixed and broke theoretical guarantees

in experiments.)

• Uncertainty sampling (UNC): Seo et al. [2000] used UNC to map the function value over the
entire input space. UNC explores locations that have high marginal variance in the posterior
distribution. The samples are sparse but blind to outcomes.

• Random sampling (RAND) serves as a baseline. It picks locations at random.

From these plots, we can see that AAS samples locations that are both sparse yet concentrate in
regions which are more likely to have high average. It favors points on the boundary of multiple
regions. It also explores new locations reasonably. The superiority of AAS in interesting region
discovery is obvious.

4In reality, training can be done offline with pilot data. We usually match the order of region diameter and GP
length scale when designing regions for preliminary real-world experiments.
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LSE gives the second-best performance. While searching for level sets, LSE can identify positive
regions inside. However, LSE is not aimed for this problem and thus it is hard to pin down which
threshold and tolerance to ask for in LSE. Further, LSE may be too wasteful to precisely map the
level set, and the observations that LSE makes may not lead to discovery of interesting regions.
Finally, LSE may sometimes be pessimistic because of its theoretical guarantees and is sensitive
to boundaries.

Finally UNC and RAND are the worst because they are generic and unspecific to the objective.

3.5.3 Repeated Experiments
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Figure 3.8: Multi-region. Shared color bar. (a) shows both function values and region averages.
(b-e) show the first 25 locations sampled by different strategies (black dots). Gray scale indicate
marginal variance. Red/green curves in region centers show the posterior tail distribution of the
region averages. Red regions are reported.

We repeated our last experiment for 10 times with different functions generated through the same
parameters. We report recall in Figure 3.9. Precision is a function of 1− α which is the same in
all experiments so it is not reported. The curves indicate the average percent of positive regions
reported given different query budgets. Standard error of the average is also reported.

Figure 3.9 shows that AAS outperformed other methods by a large margin. With 20 observations,
AAS was able to discover half of the interesting regions. Notice in Figure 3.8, with 25 points,
most parts of the function space remain gray even for UNC. The success of AAS mainly attributes
to its relevancy to the objective.

LSE performed second best, about 60% as efficient as AAS. It can be observed from Figure 3.8
that LSE also biases towards areas near interesting regions. In contrast, neither UNC or RAND
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Figure 3.9: Repeated experiments on 10× 10 regions

utilize sampling budgets efficiently. RAND is slightly better in the beginning because of its ran-
domness yet UNC improves towards the end because it avoids the “coupon collector’s problem.”

3.6 Empirical Evaluation

We now turn to an empirical evaluation of our framework, in three different settings and with
three different classifiers. Code and data for these experiments is available online.5

Precision plots are available in the appendix for completeness. Precision is determined primarily
by the classifier and 1− α, and thus does not vary much across methods.

3.6.1 Environmental Monitoring (Linear Classifier)

In order to analyze the performance of APPS with the MTC, we ran it on a real environmental
monitoring dataset and compared to baseline algorithms. Valada et al. [2012] used small (60 cm)
autonomous fan-powered boats to collect dissolved oxygen (DO) readings in a pond, with the
goal of finding regions that are low in dissolved oxygen, an indicator of poor water quality. The
data used in our experiment comes from a pond approximately 150 meters wide and 50 meters
long. The mobile robots have a cell-phone module that records the time and location of every
measurement. Because of physical limitations, the measurement reading does not stabilize for
about one minute. Therefore, in data collection, the boat was moved back and forth in a single
location, in the hope that the noise would cancel by averaging these measurements.

In order to verify our methods, we borrowed data from Valada et al. [2012], comprising 16 960
location/DO value pairs, and fit a GP model by maximizing the likelihood of the prior parameters

5https://github.com/AutonlabCMU/ActivePatternSearch/
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(a) data in one run and true matching regions
(black) (b) APPS collected data and posterior region probability

Figure 3.10: Illustration of dataset and APPS selections for one run. A point marks the location
of a measurement whose value is also reflected in its color. Every grid box is a region whose
possibility of matching is reflected on gray-scale.

on 500 random samples seven times, taking the median of the learned hyperparameter values. We
used a squared-exponential kernel with a learned length scale. We defined regions by covering
the map with many windows of size comparable to the GP length scale, and used MTC parameters
b = −9, c = −100. Data points and classifier probability outputs for the ground truth are shown
in Figure 3.10a, which also shows the learned length scale (roughly 3 meters).

We then repeated the following experiment: we randomly sampled 6 000 points at a time from
data points not used for GP parameter training, and randomly selected 10 of these 6 000 points
to form an initial training set D. We then used several competing methods to sequentially make
further queries until 300 total observations were obtained. The considered algorithms were: APPS

with analytical solutions, APPS with one draw of z∗ at each candidate location, AAS in Ma et al.
[2014] with analytical solutions, AAS with sampling, the level set estimation (LSE) algorithm of
Gotovos et al. [2013] with parameters βt = 6.25 and ε = 0.1, uncertainty sampling (UNC), and
random selection (RAND). Each algorithm chose queries based on its own criterion; the quality
of queried points was evaluated by the MTC classifier with the above parameters and was then
compared with true region labels that were computed by MTC using all 6 000 data points. A
70% marginal probability was chosen to be required for a region to be classified as matching
(1− α = 0.7).

Figure 3.11 reports the mean and standard error of the recall of matching regions over 15 repeti-
tions of this experiment. APPS and AAS with both analytical solutions and sampling performed
equally well here. The similarity between APPS and AAS is also expected because in linear
problems, the choice of c is a fine-tuning problem, which does not show its impact on this real
dataset. Notice that AAS is not able to handle any other classifier-based setting; this is the core
contribution of APPS. To understand why analytical solutions were similar to sampling, notice
that the data collection locations have to be constrained to those actually recorded, which makes
it easier to obtain a near-optimal decision.
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Figure 3.11: Recall curves for pond monitoring experiment. Color bands show standard errors
after 15 runs.

The second group in performance ranking is the LSE method. We attempted to boost its perfor-
mance by selecting its parameters to directly optimize the area under its recall curve, which was,
in a sense, cheating. On further analysis of its query decisions, we saw LSE making, for the most
part, qualitatively similar selection decisions to APPS. LSE will stop collecting data in a region if
there is enough confidence, but does not specifically try to push regions over the threshold, and
so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interesting to observe that RAND was initially
better than, but later crossed by UNC. In the beginning, since UNC is purely explorative, its
reward uniformly remained low across multiple runs, whereas in some runs RAND queries can
be lucky enough to concentrate around matching regions. At a later phase, RAND faces the
coupon collector’s problem and may select redundant boring observations, when UNC keeps
making progress at a constant rate.

Figure 3.10b illustrates the selection locations for our APPS method. This plot shows that our
APPS method can obtain reasonable data to both explore the available space and gain enough
information around the matching regions.

Remark 3.2. In the example of environmental monitoring, we assumed that sensing is expensive
relative to the cost of motion. This is reasonable in this case because of hysteresis in the sensor. It
must remain stationary for awhile to collect an accurate measurement. In the case of our actual
data, it was not collected that way. the boat moved continuously. This brings up two issues:

1. Can we correct for the hysteresis in the data set we used.
2. In cases where the assumption does not hold, how might we correctly choose experiments

when the travel cost is significant. In the case of either assumption (cheap travel, expensive
sensing or expensive travel, expensive sensing) the optimal solution could be written down
as a POMDP (e.g. as is described in Garnett et al. [2012]), but that would be intractable to
solve in general. In the case of cheap travel we were able to present a good greedy algorithm

61



that is tractable. In the case of expensive travel, it remains an interesting open question
whether a good greedy algorithm exists.

3.6.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official who wishes to determine which races
will be won, lost, or might go either way. As surveying likely voters is relatively expensive, we
would like to do so with as few surveys as possible.

In a simple model of this problem, the problem of finding races which will be won is a natural
fit to a classifier of the form hg(f) = Φ

(
w>f(Ξg) + bg

)
. Our function f maps from the voting

precincts in the state to the vote share of a given party in that district, with a covariance kernel
defined by demographic similarity and geographic proximity. To account for multiple races
taking place in each district (e.g., state and national legislators), we duplicate each precinct with
a flag for the type of election. If g is the set of all precincts participating in a particular race and
wg is some constant c times the voting population of each precinct, then w>f(Ξg) gives c times
the total vote portion for the given party in that election. In a simple model which ignores turnout
effects, the probability of winning a race is essentially 1 if the underlying proportion is greater
than 0.5 and 0 otherwise; this can be accomplished by setting c to some fairly large constant,
say 100, and b = −1

2
c. (An equally simple model that nonetheless more thoroughly accounts for

unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsylvania election returns [Ansolabehere
and Rodden]. For each voting precinct in the dataset, we used the 2010 Decennial Census [United
States Census Bureau, 2010] to obtain a total population count and percentages of the population
for gender, race, age, and housing type categories; we also added an (x, y) location based on a
Lambert conformal conic projection of point in the precinct, and used these features in a squared-
exponential kernel. The data for each precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representatives, Pennsylvania House of Represen-
tatives, and Pennsylvania State Senate races; the demographic/geographic kernel was multiplied
by a positive-definite covariance matrix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on full 2008 election data.

Given the kernel, we set up experiments to predict 2010 races based on surveying an individual
voting precinct at a time. For simplicity, we assume that a given voting precinct can be thoroughly
surveyed (and ignore turnout effects, voters changing their minds over time, and so on); thus
observations were made with the true vote share. We seeded the experiment with a random 10
(out of 16 226) districts observed; APPS selected from a random subset of 100 proposals at each
step. We again used 1− α = 0.7.

Figure 3.12 shows the mean and standard errors of 15 runs. APPS outperforms both random
and uncertainty sampling here, though in this case the margin over random sampling is much
narrower. This is probably because the portion of regions which are positive in this problem is
much higher, so more points are informative.
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Figure 3.12: Recalls for election prediction. Color bands show standard errors after 15 runs.

Uncertainty sampling is in fact worse than random here, which is not too surprising because
the purely explorative nature of UNC is even worse on the high dimensional input space of this
problem.

LSE and AAS are not applicable to this problem, as they have no notion of weighting points (by
population).

3.6.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying the task of identifying vortices in a
vector field based on limited observations of flow vectors. Linear classifiers are insufficient for
this problem,6 so we will demonstrate the flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-scale simulation of a turbulent fluid in
three dimensions over time in the Johns Hopkins Turbulence Databases7 [Perlman et al., 2007].
Following Sutherland et al. [2012], we aim to recognize vortices in two-dimensional slices of the
data at a single timestep, based on the same small training set of 11 vortices and 20 non-vortices,
partially shown in Figure 3.13(a).

Recall that hg assigns probability estimates to the entire function class F confined to region
g. Unlike the previous examples, it is insufficient to consider only a weighted integral of f .
Instead, though, we can consider the average flow across sectors (angular slices from the cen-
ter) of our region as building blocks in detecting vortices. We count how many sectors have
clockwise/counter-clockwise flows to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector, we take the integral of the inner
product between the actual flow vectors and a template. The template is an “ideal” vortex,

6The set of vortices is not convex: consider the midpoint between a clockwise vortex and its identical counter-
clockwise case.

7http://turbulence.pha.jhu.edu
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but with larger weights in the center than the periphery. This produces a K-dimensional
summary statistic Lg(f) for each region.

2. Next, we improve robustness against different flow speeds in the data by scaling Lg(f) to
have maximum entry 1, and flip its sign if its mean is negative. Call the result L̃g(f).

3. Finally, we feed the normalized L̃g(f) vector through a 2-layer neural network of the form

hg(f) = σ

(
wout

K∑
i=1

σ
(
winL̃g(f)i + bin

)
+ bout

)
,

where σ is the logistic sigmoid function.

Lg(f) | D obeys a K-dimensional multivariate normal distribution, from which we can sample
many possible Lg(f), which we then normalize and pass through the neural network as described
above. This gives samples of probabilities hg, whose mean is a Monte Carlo estimate of (3.4).
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Figure 3.13: (a): Positive (top) and negative (bottom) training examples for the vortex classifier.
(b): The velocity field used; each arrow is the average of a 2 × 2 square of actual data points.
Background color shows the probability obtained by each region classifier on the 200 circled
points; red circles mark points selected by one run of APPS initialized at the green circles.

We used K = 4 sectors, and the weights in the template were fixed such that the length scale
matches the distance from the center to an edge. The network was optimized for classification
accuracy on the training set. We then identified a 50×50-pixel slice of the data that contains two
vortices, some other “interesting” regions, and some “boring” regions, mostly overlapping with
Figure 11 of Sutherland et al. [2012]; the region, along with the output of the classifier when
given all of the input points, is shown in Figure 3.13(b). We then ran APPS, initialized with 10
uniformly random points, for 200 steps. We defined the regions to be squares of size 11 × 11
and spaced them every 2 points along the grid, for 400 total regions. We again thresholded at
1− α = 0.7. We evaluate (3.4) via a Monte Carlo approximation: first we took 4 samples of z∗,
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Figure 3.14: Mean recalls over the search process on the vortex experiment. Color bands show
standard errors after 15 runs.

and then 15 samples from the posterior of f over the window for each z∗. Furthermore, at each
step we evaluate a random subset of 80 possible candidates x∗.

Figure 3.14 shows recall curves of active pattern search, uncertainty sampling, and random se-
lection, where for the purpose of these curves we call the true label the output of the classifier
when all data is known, and the proposed label is true if Tg > 1 − α at that point of the search
(evaluated using more Monte Carlo samples than in the search process, to gain assurance in our
evaluation but without increasing the time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and random selection. As in Section 3.6.1,
uncertainty sampling was initially bad but later surpassed random selection, for the same reason.

3.7 Conclusions

We have introduced the general active area pattern search problem, where we seek to discover
specific local patterns exhibited by an underlying smooth function with a limited observation
budget. We proposed a framework built on Bayesian decision theory for the sequential active
selection of observations so as to maximize the expected number of matching locations discov-
ered at termination. We derived analytical forms for the required quantities for a broad class of
models, and demonstrated the method’s efficacy across three very different settings, using two
different analytical classifier forms and one based on sampling.

We assumed that sensing is expensive relative to the cost of motion. In the case of environmental
monitoring, this is reasonable because of hysteresis in the sensor. It must remain stationary for
awhile to collect an accurate measurement. This brings up two future research questions: (1) Can
we correct for the hysteresis in the data set we used? (2) In cases where the assumption does not
hold, how might we correctly choose experiments when the travel cost is significant. It remains
an open question whether a good greedy algorithm exists. One could include travel costs in the
utility function and apply greedy maximization of the augmented utility. However, I speculate
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that such an algorithm would not perform near-optimal, because it requires multi-step lookaheads
and surveying Σ-objectives are not known to be submodular for a general GP. Besides, the utility
function is to maximize the sum of expected reward, rather than a single region.
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4
Active Needle Search with Region Sensing

4.1 Introduction

Active needle search describes the problem where an agent is given a target to search for in
an unknown environment and actively makes data-collection decisions so as to locate the target
as quickly as possible. Examples of this setting include using aerial robots to detect gas leaks,
radiation sources, and human survivors of disasters. The statistical principles for efficient designs
of measurements date back to Gergonne [1815], but the growing trend to apply automated search
systems in a variety of environments and with a variety of constraints has drawn much research
attention recently, due to the need to address the disparate aspects of new applications.

One possibility in such active search scenarios we aim to explore, inspired by the robotic aerial
search setting but with statistical insights that we hope to generalize, is the opportunity to take
aggregate measurements that summarize large contiguous regions of space. For example, an
aerial robot carrying a radiation sensor will sense a region of space whose area depends on its
altitude. How can such a robot dynamically trade off the ability to make noisier observations of
larger regions of space against making higher-fidelity measurements of smaller regions?

To simplify the discussion, we will limit such region sensing observations to reveal the aver-
age value of an underlying function on a rectangular region of space, corrupted by independent
observation noise. Noisy binary search is a simple realization of active search using such an
observation scheme. This mechanism turns out to be sufficiently informative in the cases that we
analyze to offer insights into a variety of search problems.

The ability to make aggregate region measurements in noisy environments has rarely been con-
sidered in previous work. Bayesian optimization, which has been used for localization of sparse
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signals [Carpin et al., 2015, Hernández-Lobato et al., 2014, Jones et al., 1998, Ma et al., 2015a],
usually considers only point measurements of an objective function. Notice that point observa-
tions can be considered in our framework if the allowed region sensing actions are constrained
to be arbitrarily small. On the other extreme, compressive sensing [Candès and Wakin, 2008,
Donoho, 2006, Wainwright, 2009], considers scenarios where every measurement can reveal
information about the entire environment through linear projection with arbitrary coefficients.
This is not always a realistic assumption, as for example for an aerial robot, which can only
sense its immediate vicinity. Between the two extremes, Abbasi-Yadkori [2012], Carpentier and
Munos [2012], Haupt et al. [2009], Jedynak et al. [2012], Rajan et al. [2015], Yue and Guestrin
[2011] considered policies for search where observations can be made on any arbitrary subset
of the search space, including discontiguous subsets, which is also often incompatible with the
constraints in physical search systems.

Another assumption we make, common for example in compressive sensing, is sparsity. We
assume that there are only a small number of strong signals in the environment; our goal is to re-
cover these signals. Sparsity is necessary for the definition of active search problems; otherwise,
for dense or weak signals, there is usually no better search approach than simply exhaustively
mapping the entire space.

In addition to applicability in real search settings, sparsity has unique mathematical properties
when considered alongside region sensing. In unconstrained sensing, Arias-Castro et al. [2013]
discovered a paradox that active compressive sensing (that is, the ability to adaptively select
observations based on previously collected data) does not improve detection efficiency beyond
logarithmic terms over random compressive sensing. This limitation is seen also when consid-
ering theoretical detection rates for active compressive sensing methods [Abbasi-Yadkori, 2012,
Carpentier and Munos, 2012, Haupt et al., 2009]. However, we show that active learning can
in fact offer significant improvements in detection rates when observations are constrained to
contiguous regions.

We propose an algorithm we call Region Sensing Index (RSI) that actively collects data to search
for sparse signals using only noisy region sensing measurements. RSI is based on greedy maxi-
mization of information gain. Although information gain is a classic principle, we believe that its
use in the recovery of sparse signals is novel and a good fit for robotic applications. We show that
RSI uses Õ(n/µ2 +k2) measurements to recover all of k true signal locations with small Bayes er-
ror, where µ and n are the signal strength and the size of the search space, respectively, assuming
unit noise per measurement (Theorem 4.4). The number of measurements with RSI is compa-
rable with the rates offered by unconstrained compressive sensing, even though our constraints
seem strong (i.e., region sensing loses all spatial resolution inside the region of measurement).
Furthermore, we show that all passive designs under our contiguous region sensing constraint in
1d search spaces are fundamentally worse, with efficiency no better than sequential scanning of
every point location, however strong the signals are. These results provide evidence to promote
the use of and research into active methods.
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4.1.1 Demo Active Needle Search

To demonstrate the desired properties of an active search algorithm, we simulated an active
search scenario using a satellite image (Figure 4.1) where the objectives are all of the blue pixels.
This demo directly simulates search and rescue in open areas based on life jacket colors or
communication signals and also share similarities with gas leaks or radiation detection, where
real data is usually sensitive or expensive.

In this demo, the objectives are found as the roof of a building, circled near the center of the
satellite image. We used the scalar values due to an affine transformation from the original RGB

values with a predefined matrix that separates the objective blue color and most other colors. The
distribution of pixel values is shown in Figure 4.1(c).
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Figure 4.1: Demo active search on a satellite image.

The active search algorithm controls a mobile sensor that is a single-pixel camera that records the
average values in any chosen square regions. For simplicity, the side length of a feasible region
must be a power of 2 and for every region size, we only consider the set of square regions that
cover the entire search space with no gaps or overlaps. As a result, every larger region contains
4 regions of the next smaller size. The construction of the feasible regions resembles a spatial
pyramid [Lazebnik et al., 2006].

Figure 4.2 shows the sequential measurement choices of RSI and their outcomes in a blue-to-
yellow color scheme. RSI starts with measurements using region sizes that balances fidelity and
coverage, so as to maximize measurement efficiency. Then, after the 7th measurement where
a large outcome is observed, RSI is expected to investigate at subregion levels which have high
probability to contain the a signal source. However, by the 19th measurement, further evidence
indicates an overall low likelihood for the signal to originate from the subregions and RSI decides
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(d) Step 19, negative evidence.
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(f) Step 36, found signal hotspot.

Figure 4.2: A desirable sequence of measurement designs realized by RSI. Only region averages
are observed and their values are reflected in a blue-to-yellow color scheme.

to continue scanning at the optimal region size. Finally, with merely 36 measurements, RSI

successfully locates one true signal source. In comparison, the image contains 36 000 pixel
points.

As one can see, there are several properties for active needle search with region sensing:

1. The signals are usually significantly strong to allow information to be generated from aggre-
gate region measurements.

2. The noise is artificial, used to model the decrease in information one can obtain from a mea-
surement as the region size increases. We can start by approximating the noise as spatially
independent when the region is large, though in the demo, we took the estimated standard
deviation from the true average values at a feasible size (see Table 4.1).

3. On the other hand, the noise is constant across time-steps. I.e., repeating a measurement does
not provide any new information. An efficient algorithm should be robust to noise modeling
errors. For example, a Bayesian solution may decide to visit a region with less evidence when
the alternatives are equally bad, due to model errors.

4. It is desirable to have upper bounds on the number of experiments. The bounded number
should decrease as the Signal-to-Noise Ratio (SNR) increases, until O(log n), realizable by
noiseless bisection search, where n is the size of the search domain.

We will propose and examine Region Sensing Index (RSI) for these properties.
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Table 4.1: Signal and noise in demo experiment

Region size 1×1 2×2 4×4 8×8 16×16 32×32 64×64

Average in regions with
needles (otherwise zero)

1.10 0.95 0.74 0.38 0.14 0.05 0.02

Standard deviation of re-
gion averages

0.06 0.06 0.05 0.04 0.03 0.02 0.01

SNR (row1 ÷ row2) 17.73 16.30 14.43 9.29 4.71 2.51 1.33

4.1.2 Related Work

Arias-Castro et al. [2013] proved that the minimax sample complexity1 for any (i.e., potentially
adaptive) algorithm to recover k sparse signal locations is at least Ω( n

µ2
), analyzing the problem in

terms of the mean-squared error in the recovery of the underlying signal values. The authors also
showed that a passive random design, combined with a nontrivial inference algorithm, e.g., Lasso
[Wainwright, 2009] or the Dantzig selector [Candes and Tao, 2007], can have similar recovery
rates (up to O(log n) terms). This result was presented as a paradox, suggesting that the folk
statement that active methods have better sample complexity is not always true. Here we show
that active search can make a substantial difference in recovery rates when the measurements are
subject to the physically plausible constraint of region sensing, especially if the physical space
has low dimensions.

Malloy and Nowak [2014] presented the first active search algorithm that achieves the minimax
sample complexity for general k ≥ 1. The complexity is the largest value among O( n

µ2
), O(k),

andO(log n). The algorithm is called Compressive Adaptive Sense and Search (CASS) and it can
be adapted to region sensing in one-dimensional physical spaces. CASS directly extends bisection
search, by allocating different sensing budgets to measurements at different bisection levels so
as to minimize the cumulative error rates. Interestingly, CASS is provably rate-optimal even
considering other sensing mechanisms that assign different weights to different points, which
effectively encode localization information in every measurement. That information turned out
to be negligible for the model that is considered by the authors and similar to ours.

However, CASS may fail if the repeated measurements of the same regions do not contain per-
fectly independent noise. It also has the limitation that it requires knowledge of the sensing bud-
get a-priori, yet produces no signal localization results until the very last measurements at the
lowest level. Our paper addresses these practical issues with a redesigned active search algorithm
using the Bayesian approach, which compares evidence instead of blindly trust the assumptions,
and we use Shannon-information criteria, which implies bisection search in noiseless one-sparse
cases.

Braun et al. [2015] also used Shannon-information criteria for active search but did not analyze
their sample complexity under noisy measurements. Jedynak et al. [2012], Rajan et al. [2015]

1Sample complexity is equivalent to the number of measurements.
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studied a similar search problem where the “regions” are relaxed to any unions of disjoint subsets.

4.2 Problem Formulation

Consider a discrete space that is the Cartesian product of one-dimensional grids, X =
∏d

i=1[ni];
[n] = {1, . . . , n}. Let n =

∏
ni be the total number of points in X (here the product symbol

is the arithmetic rather than the Cartesian product). We presume there is a latent real-valued
nonnegative vector β ∈ Rn that represents the vector of true signals at all locations in X . We
further assume that β is sparse: it has value µ > 0 on k � n locations in X and has value
0 elsewhere. We consider making observations related to β through rectangular region sensing
measurements, defined by

yt = x>t β + εt, s.t. xtj = wt1j∈At , εt ∼ N (0, σ2
t ).

Here xt ∈ Rn is a sensing vector that has support on At ⊆ X , a rectangular subset of X . We as-
sume that the sensing vector has equal weight wt across its support. The resulting measurement,
yt, is equal to the mean value of β on At corrupted by independent Gaussian noise with variance
σ2
t . Note that selecting At suffices to specify the measurement location.

In 1d search environments, At may be any interval of [n], and the corresponding design takes
the form xt = (0, . . . , 0, wt, . . . , wt, 0, . . . , 0)>. In higher search dimensions, we consider only
regions that are contained in a hierarchical spacial pyramid [Lazebnik et al., 2006], i.e., a se-
quence of increasingly finer grid boxes with dyadic side lengths to cover the space at multiple
resolutions.

(a) Sparse signal vector, with n points, of which
k(� n) are nonzero with value µ(� 0).

(b) Measurement vector corresponding to a re-
gion, with uniform weight wt = 1√

‖xt‖0
inside.

(c) Smaller regions have larger sensing weights. (d) CS-type measurements infeasible because
nonuniform weights encode location information.

Figure 4.3: Visualization of sparse signals and region sensing measurements in a 1d environment.
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Our goal is to choose a sequence of designs X = {xt}Tt=1 so as to discover the support of β with
high confidence. Given a particular confidence, we will measure sample complexity by assuming
‖xt‖2 = 1 and σt ≡ 1 for each measurement and count the total number of measurements re-
quired to achieve that confidence, T . Letting ‖xt‖2 = 1 implies wt = 1√

‖xt‖0
, which can be seen

as a relaxed notion of the region average, because the signal strength of a region measurement,
which is µwt, still decreases as the region size ‖xt‖0 increases.

Remark 4.1. In fact, the most important measure for developing algorithms and comparing
rates is the Signal-to-Noise Ratio (SNR) of an aggregate measurement. In this sense, our model
has an alternative explanation with physical basis. It is equivalent to directly measuring the
plain average in a region, if we assume that every point has an independent standard Gaussian
noise that perturbs the observed average in the aggregate (similar to our discussion in the demo
experiment).

To show the equivalence, for any region with size at = ‖xt‖0, the new model assigns measure-
ment weight w̃t = 1

at
to every point inside the region and expects to observe a mean of µ

at
per

true signal hotspot in the region. As for noise, due to spatial independence, the final observed
noise follows a Gaussian distribution with standard deviation σ̃t = 1√

at
. The final SNR of this

measurement is µw̃t
σ̃t

= µ√
at

, which equals to the SNR with the same region in our original model.

The measure of T is made to be comparable with another common choice of sample complexity,
the Frobenius norm of the entire design ‖X‖2

F , when the rows of X are normalized [Arias-
Castro et al., 2013]. However, the normalization is often overlooked in classical compressive
sensing, which allows algorithms to cheat in region sensing by making an enormous number of
measurements of small weight and changing the sensing locations frequently. Another measure
of complexity is to measure both ‖X‖2

F and the number of location changes simultaneously
[Malloy and Nowak, 2014]. However, our discretized counting of measurements is conceptually
simpler.

Our analysis is Bayesian and we will analyze performance in expectation, with prior β ∼ π0(β),
a uniform distribution on the model class, Sµ

(
n
k

)
, which includes all k-sparse models with µ

signal strength among n locations (i.e., it has
(
n
k

)
possible outcomes). The Bayes risk will be

measured by the expected Delta loss, ε̄T = 1
k
E|S∆ŜT |, where ŜT is the best estimator of the k

signal locations after T measurements and ∆ is the symmetric difference operator on a pair of
sets.

4.3 Proposed Methods

We note that region sensing loses all spatial resolution inside the region of measurement. Here
we borrow ideas from noisy binary search, which has a similar property, and use information
gain (IG) to drive the observation process. We name our algorithm Region Sensing Index (RSI,
Algorithm 4.1). Like other active learning algorithms, RSI is a combination of an inference
subroutine that constantly updates the distribution of β using the collected data and a design
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Algorithm 4.1 Region Sensing Index (RSI)
Require: π0(k, n, µ), T or ε, and the unknown β∗

Ensure: Ŝt // (4.4)
1: for t = 1, 2, . . . do
2: pick xt = arg maxx∈X I(β; y | x, πt−1) // (4.2)&(4.3)
3: observe yt = x>t β

∗ + εt
4: update πt(β) ∝ πt−1(β)p(yt | β,xt−1) // (4.1)
5: find (ε̄t, Ŝt) = arg min|Ŝ|=k

1
k
E
[
|Ŝ∆S| | πt

]
// (4.4)

6: break if t ≥ T or ε̄t < ε, if either is defined
7: end for

subroutine that chooses the next region to sense based on the latest information from the inference
subroutine.

The inference subroutine. We use exact Bayesian inference with a uniform prior π0(β) on the
model class Sµ

(
n
k

)
. Denote the outcome of the first t measurements as Dt = {(xτ , yτ ) : 1 ≤

τ ≤ t}. Even though Dt contains a dependent sequence of data collections, where xτ depends
on Dτ−1,∀τ , Bayesian inference decomposes into a series of efficient updates:

π(β | Dt) ∝ π(β)p(Dt | β)

= π0(β)
∏t

τ=1

(
p(xτ | Dτ−1)p(yτ | β,xτ )

)
∝ π0(β)

∏t
τ=1 p(yτ | β,xτ ), (4.1)

where p(xτ | Dτ−1) is the design without knowledge of the true β and thus dropped. Define
πt(β) = π(β | Dt); the updates have the form πt(β) ∝ πt−1(β)p(yt | β,xt) = πt−1(β)φ(yt −
x>t β), where φ is the standard normal pdf.

The design subroutine. The next sensing vector, xt+1 ∈ X , is chosen to maximize the IG:

I(β; y | x, πt) = H(y | x, πt)− E
[
H(y | x,β) | πt

]
, (4.2)

which is the difference between the entropy of the marginal distribution, p(y | x, πt) =
∫
φ(y −

x>β)πt(β) dβ, and the expected entropy of the conditional distribution, p(y | β; x) = φ(y −
x>β). The latter, i.e., the conditional distribution for any realization of β, has fixed entropy:
log
√

2πe. Meanwhile, the marginal entropy has no closed-form solutions; instead, we use nu-
merical integration.

The numerical integration is rather straightforward, because the marginal density function is
analytical. From now on, we will assume that (x, A, a, wx) correspond to the same design (its
sensing vector, its locations, its region size, and its sensing weight per coordinate, respectively).
Define two new variables, λ = µwx(= µ/√a) and γ = x>β/λ, and one new parameter p =
(p0, . . . , pk)

> in (4.3). The goal is to change the variable of the integration for the marginal
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Algorithm 4.2 Region Sensing Index-Any-k (RSI-A)
Require: n, µ, ε, and the unknown β∗

Ensure: Ŝ
1: initialize Ŝ = ∅, β̂ = 0
2: for k = 1, 2, . . . , do
3: infer π0(β(k)) ∝∏t

τ=1 p(yτ | β(k) + β̂,xτ ),
∀β(k) ∈ {µ1j : j 6∈ Ŝ}

4: call Ŝ(k) = RSI (π0, ε,β
∗ − β̂)

5: aggregate Ŝ = ∪c≤kŜ(c) and β̂ =
∑

̂∈Ŝ µ̂̂1̂ .2

6: end for

density function of y to:

p(y | x, πt) =

∫
πt(β)φ(y − x>β) dβ

=
∑k

c=0
pc φ(y − cλ) = p(y | λ,p),

where pc = Pr(γ = c) =
∑

β:x>β=cλ
πt(β). (4.3)

Notice, γ only has a finite number of choices: γ = |A∩S| ∈ {0, . . . , k}, where S is the nonzero
support of β, because both x and β are constant on their respective supports (xj = wx, ∀j ∈ A
and βj = µ,∀j ∈ S). We then numerically evaluate H(y | x, πt) = H(y | λ,p) with the
obtained (4.3).

The Bayes estimator of signal locations. We pick the k-sparse set ŜT to minimize the poste-
rior risk:

min
|Ŝ|=k

1

k
E
[
|Ŝ∆S| | πT

]
=

1

k

∑
ı̂∈Ŝ

E
(
1{βı̂=0} | πT

)
, (4.4)

where βı̂ is the ı̂-th element of β. In other words, RSI picks the top k locations where the
posterior marginal expectation is the largest. When k = 1, this is equivalent to picking β̂T =
arg max πT (β). Otherwise, (4.4) yields the smallest Bayes risk ε̄(DT ) given any collected data
DT .

4.3.1 Accelerations

In practice, holding
(
n
k

)
models in memory can be infeasible if k is large, we can instead recover

the support of β element-wise by repeatedly applying RSI assuming k = 1. After the posterior
distribution πt(β(1)) converges to a point-mass distribution at the most-likely one-sparse model
with sufficient confidence, we report its location and move on by removing the reported point

2In real world experiments, we additionally estimate µ̂̂ using a point measurement on the inferred signal location
for better modeling.
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from the search and recomputing the posterior distributions using the uniform prior, π0(β(2)), on
the new class, Sµ

(
n−1

1

)
.

We call this alternative algorithm Region Sensing Index-Any-k (RSI-A, Algorithm 4.2) and use
it in our simulations so that the computational cost is no longer exponential in k. Notice, our
analysis is for the unmodified RSI; the statistical disadvantage of RSI-A is no more than O(k),
multiplicatively.

When implementing RSI-A, we also avoid unnecessary numerical integration (4.2), if the region
is guaranteed to have inferior IG, indicated by its p vector (4.3), which is easier to compute.
We use the fact that I(γ; y | p, λ) with fixed λ > 0 is concave in the probability simplex
∆k = {p ∈ [0, 1]k+1 : p>1 = 1}. Under k = 1 approximation, the region whose marginal
probability p1 =

∑
x>β>0 π(β) is closest to 0.5 will provably have the largest IG among all

regions of the same size. Thus, we find the region with the highest IG in two steps: (1) compare
the p1 value for all regions for every region size and (2) evaluate the IG of only these regions
with the best p1 values (closest to 0.5) in their region sizes.

4.4 Theoretical Analysis in 1D

The analysis is cleanest when the search space is 1d, where the regions can be any integer in-
tervals that subset [1, n]. Without loss of generality (WLOG), assume n is a multiple of k and
n ≥ 2k. Our goal is to find the smallest number of measurements, T , to guarantee a small Bayes
risk ε̄T = 1

k
E|S∆ŜT | ≤ ε. Table 4.2 summarizes our analysis. The sample complexity is best

appreciated assuming µ� 1, k � n, and ε = O(1). A typical choice is ε = 1/2, i.e., the number
of measurements to guarantee that half of the signal support can be recovered on average.

4.4.1 Baseline Results

Here we provide lower bounds on sample complexity. We show that under region-sensing
constraints, all passive methods require T ≥ Ω(n) measurements and active methods require
T ≥ Ω(n/µ2 + k). When µ � 1, active methods have significant potential for improvement
over passive methods using region sensing, which contradicts with the view in unconstrained
compressive sensing by Arias-Castro et al. [2013], Soni and Haupt [2014].

Theorem 4.2 (Limits of any passive methods using region sensing). Assume β has prior π0

(uniform random on Sµ
(
n
k

)
). Any passive method with T noiseless region measurements on 1d

must incur Bayes risk ε̄T ≥ n−k
n−1

(1− 2T
n

). To guarantee ε̄T ≤ ε, T ≥ n
2
(1− n−1

n−kε) is required.

The proof is due to model identifiability, neglecting observation noise. More details can be found
in the appendix. It applies to any µ ≥ 0 and particularly µ→∞.

Theorem 4.3 (Limits of any methods, [Arias-Castro et al., 2013]). Assume β has a slightly
different prior, π̃0, that includes each location in X in the support of β independently with prob-
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Table 4.2: Conditions and conclusions for sample complexity.

Design
Type

Region
Sensing

Algorithm
Prior for

Bayes Risk
Min T to Guarantee
ε̄T = 1

k
E|S∆ŜT | ≤ ε

Sample
Complexity∗

passive yes
(any) π0

(µ→∞)
Theorem 4.2

Θ(n)
Point sensing Corollary B.2

active
no (any) π̃0

T ≥ 4n
µ2

(1− ε)2

(Theorem 4.3)
Ω( n

µ2
)†

yes
CASS [2014]

max risk
(incl. π0)

T ≤ 20 n
µ2

log(8k
ε

)

+2k log2(n
k
)

Õ( n
µ2

+ k)‡

RSI (ours) π0

T̄ε ≤ 50( n
µ2

+ k2

9
)

log2(2
ε
) log(n

ε
)

(Theorem 4.4)
Õ( n

µ2
+ k2)‡

∗ Assume ε = O(1) and k � n.
† Compared with unconstrained sensing, bisection search obeys region sensing but also
requires Ω(log2(n) + k) measurements.
‡ log(n) terms are left out. T̄ε is defined differently; see Section 4.4.2 for details.

ability k/n. Any method (including active and non-region-sensing) must have ε̄T ≥ 1 − µ
2

√
T/n.

To guarantee ε̄T ≤ ε, T ≥ 4n
µ2

(1− ε)2 is required.

The proof can be found under Theorem 3 of [Arias-Castro et al., 2013]. Arias-Castro et al. [2013]
gave a minimax risk with similar terms by modifying π̃0 to a least favorable prior on all models
that are at most k-sparse. However, we only study Bayes risk for technical convenience.

When using Theorem 4.3 for reference, notice the difference between π̃0 and π0 that the former
additionally treats the sparsity to be a random variable k̃ with expectation k. From concentration
inequalities, |k̃−k| ≤ O(

√
k), with high probability. While k̃ and k are not directly comparable,

Theorem 4.3 is still a useful baseline. Under region-sensing constraints, the number of measure-
ments must also be at least Ω(k) to allow visits to most of the nonzero locations at least once, in
a nontrivial draw of S where the signals are separated.

With respect to Theorem 4.2, the point sensing or any non-repeating region sensing will achieve
the optimal sample complexity (up to constant factors, see Appendix A for more details). For
Theorem 4.3, the CASS method published by Malloy and Nowak [2014] for active sensing with
region constraints3 acheives a nearly optimal rate in theory. Table 4.2 contains a detailed sum-
mary of the sample complexities of several algorithms, including our own.

3 The original result in Malloy and Nowak [2014] is stronger; it considers the maximum probability of support
recovery mistakes, P (S 6= Ŝ) ≤ δ, for any S that are k-sparse and any signals with at least µ strength.
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4.4.2 Main Result

For technical convenience, we directly express our main result in terms of the expected number
of measurement that are actually taken so as to realize ε̄(DT ) ≤ ε for a given threshold ε in an
experiment. Taking T = Tε as a random variable, the expected number of actual measurements is
different from the pre-determined sampling budget that an algorithm fully consumes to guarantee
a desirable averaged risk (see Section 4.4.1). However, it is a comparable alternative in Bayesian
analysis, used by e.g., Kaufmann et al. [2012], Lai and Robbins [1985]. When the objective is
constant ε = O(1), our result implies a deterministic budget requirement of the same order of
complexity, T ≤ ε−1

2 ETε2 , where ε2 = ε
2
, by direct application of Markov’s inequality.

Theorem 4.4 (Sample complexity of RSI). In active search for k sparse signals with strength
µ in 1d physical space of size n ≥ 2k (WLOG, assume n is a multiple of k), given any ε > 0
as tolerance of posterior Bayes risk, RSI using region sensing has bounded expected number of
actual measurements,

T̄ε = E[min{T : ε̄(DT ) ≤ ε}]

≤ 50
( n
µ2

+
k2

9

)
log2

(2

ε

)
log
(n
ε

)
= Õ

( n
µ2

+ k2
)
,

where the expectation is taken over the prior distribution and sensing outcomes.

4.4.3 Proof Sketch

The proof for Theorem 4.4 hinges on an observation that the information gain (IG) where RSI

makes measurements is consistently large, before active search terminates with minimal Bayes
risk. For example, the IG of any measurement in binary search with k = 1 and noiseless obser-
vations is always O(log(2)). However, IG is harder to approximate when the observations are
noisy. Therefore, we first show an intuitive lower bound for IG. Recall notations from (4.3).

Proposition 4.5. The IG score of a region sensing design has lower bounds with respect to its
design parameters (λ,p), as

I(γ; y | λ,p) ≥ 2qcq̄c

(
2Φ
(λ

2

)
− 1
)2

≥ 1

12
min{qc, q̄c}min{λ2, 32}, ∀1 ≤ c ≤ k,

where qc = Pr(γ ≥ c) =
∑

κ≥c pκ, q̄c = 1− qc, and Φ(u) is the standard normal cdf.

The proof uses Pinsker’s inequality and is given in Section B in the appendix. Notice using the
common choice of Jensen’s inequality will give bounds in the opposite direction. To formalizes
our observation that the IG is bounded:
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Lemma 4.6. WLOG, assume n is a multiple of k and n ≥ 2k. At any step, if the current Bayes
risk ε̄(D) > ε, we can always find a region A of size at most n

k
, such that λ2 ≥ µ2

a
= kµ2

n
and

ε
2
≤ E[γ | D] ≤ 1− ε

2
(we call this Condition E), which further yields

I(γ; y | λ,p) ≥ I∗ε =
ε

25k
min

{k2µ2

n
, 32
}
. (4.5)

The way to find the region A that satisfies Condition E is given in Lemma B.5 in the appendix.
The reason that Condition E is sufficient for (4.5) can be derived from Proposition 4.5 for k = 1
and Lemma B.6 in the appendix for k > 1.

Eq (4.5) shows the minimum decrease in the model entropy in expectation after each measure-
ment, starting from the maximum entropy of a uniform prior distribution, k log(n). However,
the posterior entropy can never be negative, which implies a bound on the expected number of
times that (4.5) can be applied, i.e. the expected number of measurements to reach ε Bayes risk
is 25 log(n)

ε
( n
µ2

+ k2

9
). Lemma D.5 in the appendix shows some additional improvements to obtain

the logarithmic dependency of ε in Theorem 4.4.

4.5 Simulation Studies

We evaluated RSI or its approximation RSI-A when k > 1. Other baseline algorithms include:

• CASS (compressive adaptive sense and search) [Malloy and Nowak, 2014]: a branch-and-
bound algorithm that traverses the region hierarchy from top to down using pre-allocated
budgets per level. We count each xi as ‖xi‖2

2 region sensing measurements (rounded up to
the next integer).

• Point sensing: a passive design that uses exhaustive point measurements on all locations.

• CS (compressive sensing) [Donoho, 2006]: a non-region-sensing design that draws xt ∼
N (0, I) and rescales ‖xt‖2

2 to 1. CS then solves a convex optimization problem to infer the
nonzero signals, by minimizing

∑
t ‖yt − x>t β‖2

2 + λ‖β‖1 s.t. β ≥ 0, where λ is chosen
to produce exactly k nonzero coefficients using the Lasso regularization path.

We picked n = 1024 and various k (sparsity) and d (the dimension of the physical space) anno-
tated below the plots. In the d = 5 case, we chose the region space to be the Cartesian product
of [4]5 and allowed regions from a spatial pyramid [Lazebnik et al., 2006] of granularity 45, 25,
and 15. Each method was run with 200 repetitions to find its average performance.

Figure 4.4(a) compares the recall rates of the algorithms as they progressed in a 1d search for
a single true signal of strength µ = 16. RSI was the most efficient, finding the correct location
in 50% of the cases with as few as T = 20 measurements. CASS was comparable only at the
step points when all the allocated budgets were used, due to its rather rigid designs. We drew
multiple curves for CASS to reflect this fact; the turning points were at T = 28 and 56 for
ε = 0.5 and 0.85, respectively. CS was less effective compared with CASS with equal budgets
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Figure 4.4: Sensing efficiency. (a) Average search progresses as more measurements are taken.
(b-d) Minimum sample size T in different SNR scenarios to guarantee ε̄T < 0.5.

(e.g., ‖X‖2
F = 52 > 28 for ε = 0.5) which agrees with the analysis in Arias-Castro et al.

[2013]. Point sensing was the least efficient, using T = n/2 = 512 measurements, which was
worse than the other methods by a factor of Ω̃(µ2) (ignoring logarithmic terms). Notice, due to
non-identifiability, any passive designs would have equal or worse rates.

Figure 4.4(b) extends the comparison on the full spectrum of SNR, 1/4 < µ < 1024, showing the
minimum number of measurements T to guarantee constant Bayes risk ε̄T < 0.5. RSI led the
comparison, showing a sample complexity of Õ(n/µ2) when µ is small and Õ(1) when µ is large.
CASS also had a similar trend. CS ignores the region sensing constraints and was inferior to RSI.
Notice CS also has a minimum sample complexity, but in order to meet the incoherence condi-
tions for Lasso sparsistency [Candes and Tao, 2007, Raskutti et al., 2010, Wainwright, 2009],
the rank of the covariance matrix of the measurements X>SXS must be at least k. Point sensing
and other passive region sensing would always require at least Ω(n) measurements regardless
of µ. Figure 4.4(c-d) show similar conclusions with other choices of k and d. The number of
measurements was largely unaffected by k > 1 if µ is low, which supports the first term of Theo-
rem 4.4, which is Õ(n/µ2). Comparisons between CS and RSI in high dimensions (d > 1) depend
on how region constraints are defined. In our high-dimensional simulations, the region choices
were rather limiting for RSI, giving more advantage to the unconstrained CS when µ is large.
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4.6 Real World Dataset

We performed active needle search with region sensing constraints on 221 satellite image patches
of 512 × 512 pixels each, cropped from National Agriculture Imagery Program (NAIP).4 The
objectives are all pixels with the same blue color as the objectives in the demo image (Figure 4.1)
and we used a similar transformation from the RGB values for every measurement. We picked
a threshold such that the number of objective pixels in every cropped environment ranges from
0 to 220, with a distribution shown in Figure 4.5. For stability in the evaluation active search
performance, we reported only on the 61 environments with at least 10 objective pixels, even
though the signal and noise statistics are estimated from all of the 221 images.
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Figure 4.5: Distribution of the number of objective pixels in different experiments. For stability,
we reported only on the 61 experiments with at least 10 objective pixels (right of the red bar).

Table 4.3 shows the signal and noise of region measurements at different sizes, estimated from
the entire batch of 221 images. The estimated SNRs are similar to our estimates in the demo
example. Intuitively, the SNR is roughly unchanged with small region sizes because of spatial
correlation at smaller scales, but inversely proportional to the square-root of the region size
as the regions become larger, as the pixel values are roughly independent at larger scales (see
Remark 4.1). This leads to favors in choosing larger sizes, as our theoretical analysis predicts.
We additionally computed the IG for every measurement at step 0, where the distribution of
signal locations is uniform and thus p(x>β > 0) only depends on the size of a region. The
region size with the largest IG will be the first chosen region, which is also a usual choice in
subsequent measurements if RSI-A decides to sequentially scan in unexplored areas.

Besides RSI-A, other algorithms under comparison include random point sensing, CS [Donoho,
2006], CASS [Malloy and Nowak, 2014], and its modifications we call CASS*. Among these
methods, Point sensing and CS are passive methods, while all the others are active methods. CS

further breaks region sensing constraints, for it allows arbitrary weights simultaneously assigned
to all points in the search space.

The modifications to CASS are necessary because vanilla CASS relies on repeated measurements
in large regions to reduce the effective noise for the final inference. However, with the image
dataset, repeated measurements yield identical outcomes. It is thus impossible to allocation

4https://lta.cr.usgs.gov/node/300
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Table 4.3: Signal and noise in NAIP dataset

Region size 1×1 2×2 4×4 8×8 16×16 32×32 64×64 128×128

Average in regions with
needles (otherwise zero)

1.33 1.20 0.96 0.59 0.24 0.07 0.02 0.00

Standard deviation of re-
gion averages

0.16 0.14 0.12 0.11 0.09 0.07 0.06 0.05

SNR (row1 ÷ row2) 8.48 8.41 7.66 5.55 2.71 0.90 0.29 0.00
Initial IG (4.2)&(4.3) 2e-7 8e-7 3e-6 6e-6 9e-6 4e-6 2e-6 1e-14

sensing budgets correctly and any high probability conclusions via CASS are invalid. To fully
represent the branch-and-bound ideas that motivate CASS, we used a modified cass* by fixing the
sparsity parameter k to a larger value, in order to fully use the sensing budget, and only measured
the same regions once. CASS* starts with a 4k-partition of the entire search environment and
measures each of the partitions to find the top k regions. Then, in each epoch it repeatedly splits
the chosen k regions into 4k subregions of the next smaller size, measures the 4k subregions, and
keeps only the top k subregions, until the subregions become single-point regions.
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Figure 4.6: Performances on 221 NAIP image crops.

Figure 4.6 compares the recall rate of positive signal sources (there are between 10 and 220
objective pixels in every image) against the budget used in sequential executions of active search.
RSI-A achieved the best performance, finding on average 60% blue pixels with as few as 1700
measurements (0.5% of the total number of feasible observations). CASS performed worse, as it
could not repeat measurements in large regions to control noise or always branch into the same
subregions. CASS* performance highly depended on the parameter choices and produced results
only near the end of the experiment. This is due to the very nature its epoch-based approach.
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CS did poorly, probably due to the fact the signals were not truly independent (a blue object can
contain multiple pixels). According to Table 4.3, signal sources often appear in 4 × 4 clusters.
While we only assumed sparsity in a manner that signal sources are spatially independent, RSI-A

effectively used the additional clustering properties of signal sources, while CS ignored them.

4.7 Conclusions

Region sensing is a new setting motivated by robotic search operations where aggregate mea-
surements on spatially contiguous regions are used and where signal sparsity is assumed, that
is, the true values in the search space are either zero in most cases or significantly greater than
zero at a few signal source hotspots. We model every measurement to be the average value
in a rectangular region, perturbed by an additive Gaussian noise that comes from averaging of
independent standard Gaussian noises in individual point values. This is equivalent to using a
weighted average with uniform `-2 norm and standard Gaussian noise, which we did in order to
be comparable with the existing literature.

We proposed algorithms RSI and RSI-A using information-theoretic principles and demonstrated
their effectiveness in choosing larger regions at early stages to improve search efficiency. RSI also
comes with a guarantee on the expected number of measurements to find all signal locations, on
the order of Õ(n/µ2 + k2), where n is the size of the search domain, µ is the signal-to-noise ra-
tio of the true signal hotspots, k is the number of signal hotspots, and additional log(n) factors
are hidden. Our complexity guarantee is near-optimal and it provides another example showing
that active search approaches perform significantly better than passive approaches. In contrast
with the unconstrained sensing in Arias-Castro et al. [2013], the passive alternatives under region
sensing constraints can never use less than O(n) measurements. RSI-A is an greedy approxima-
tion to RSI in order to improve its scalability with large n and large k. We experimented RSI-A

with real satellite images to show its empirical usefulness.

In higher dimensions, the analysis may be harder, especially for passive baselines. The number
of subregions generated by intersecting the measurement regions may be harder to count, unless
measurement regions are restricted to grid regions in a spatial pyramid (such that any pair of
regions is either nested or disjoint). On the other hand, it may be possible to improve the bound
from k2 to k, using mathematical techniques. We also want to establish frequentist analysis in
the future.

The travel time of active needle search robots are not considered. Here, unlike active area search,
the travel distance can be empirically efficient (e.g. in the demo search in Figure 4.2). The
empirical efficiency is due to tie-breaking if the robot decides to explore new areas with equal
information gains by the smallest (i.e., nearest) choices, as well as locality when larger obser-
vations lead to investigations in subregions. (In contrast, smaller observations show negative
evidence and are usually ignored in the first pass of active search.) However, trajectory planning
can be further optimized to improve locality with guarantees, e.g., using a space-filling curve.
Finally, such trajectory may also be useful when we want to generalize the measurement model
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beyond the single-pixel camera. With multi-pixel sensing models, the information may be harder
to compute and I speculate a better approach based on reinforcement learning, while imitating
RSI-A, which uses less information, as a starting point.
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5
Conjugate Sampling

5.1 Introduction

Bayesian optimization studies the global optimization of black-box systems. It assumes that
for every design of input, the system will respond with a noisy outcome, while incurring cost.
The objective is to optimally design the inputs so as to obtain global optimization as quickly as
possible. Since little is known about the black-box system, Bayesian optimization assumes it is a
random function drawn from a given prior distribution, according to which design choices can be
optimized. It is widely applied in hyperparameter tuning, a/b testing, and scientific experiments
[Kandasamy et al., 2015, Snoek et al., 2012, Tesch et al., 2013]. The problem of active search is
directly connected to and can often solved by modified application of Bayesian optimization.

There are a variety of solutions for Bayesian optimization, for example expected improvement
[Jones et al., 1998], upper-confidence-bound [Niranjan et al., 2010], elimination rules [Even-Dar
et al., 2006]. Notably, Thompson [1933] has recently rekindled research attention because of its
conceptual simplicity and good empirical performance [Chapelle and Li, 2011].

At each step, Thompson sampling draws a random function from the posterior distribution of the
black-box function, which comes from Bayesian inference given the collected evidence in pre-
vious steps, and then chooses the design that maximizes the expected reward, i.e., the outcome
value in our case, assuming that the true function is the sampled function. When integrating
out the randomness of the function draw, Thompson sampling effectively chooses a design ac-
cording to the marginal probability that the chosen design is indeed the optimal design, under
the posterior distribution with current information. Thanks to its flexibility, the idea of Thomp-
son sampling can also be applied to complex design objectives, e.g., predictive entropy search
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[Hernández-Lobato et al., 2014], reinforcement learning [Osband et al., 2016], and combinatorial
optimization [Gopalan et al., 2014].

However, the conceptual simplicity does not directly generate computational benefits. For ex-
ample, we consider linear models of the black-box function, e.g., Gaussian processes (GP) [Ras-
mussen and Williams, 2006] and Bayesian linear regressions (BLR). Both types of models induce
multivariate normal distributions on any set of design choices; to sample from the posterior dis-
tribution, the naive approach will first perform Cholesky decomposition on the kernel matrix
of feasible designs (in GP) or the covariance matrix (in BLR) and then sample in the resulting
principal directions. This step has O(n3) time complexity and O(n2) space complexity, where
n×n is the size of the matrix being decomposed. Caching previous decompositions and running
rank-one updates as new evidence arrives can reduce the time complexity to O(n2) per iteration,
but the space complexity remains the same.

Instead, we consider an iterative algorithm we call conjugate sampling that approximately draws
from the posterior multivariate normal distribution a sample point, which is then used to choose
the optimal design for the next step. The method is inspired by conjugate gradient descent
[Hestenes and Stiefel, 1952, Sachdeva and Vishnoi, 2013], which solves a linear system with a
positive-definite (PD) design matrix by minimizing its equivalent quadratic form using a very
small number of matrix-vector multiplications (MVMs). Similarly, we can also approximately
draw a sample point from the corresponding multivariate normal distribution by accumulating
the conjugate gradient directions. Due to its iterative nature, the method only uses O(n) extra
memory space, in addition to mA, the storage of the precision matrix A itself. The total time
complexity is O(ktA), where k = O(

√
κA) is square-root of the condition number of A and

tA is the time for MVM. Conjugate sampling is beneficial when the precision matrix is sparse
or structured. In the example by Flaxman et al. [2015], Wilson and Nickisch [2015] and also in
our experiments where a Gaussian process (GP) in D ≥ 2 dimensions has Kronecker-product
structures, mA ∼ O(Dn

2
D + n) � O(n2) and tA ∼ O(Dn

D+1
D + n) � O(n2). Considering√

κA ∼ O(
√
n) if proper prior conditioning is provided, the time complexity can still be reduced.

To measure the empirical performance of Bayesian optimization, we use cumulative regret [Bubeck
et al., 2012], which is the cumulative difference in terms of the expected outcome between the
ideal experiment using the optimal design and the chosen experiment at each step. There have
been much theoretical analysis for Thompson sampling [Agrawal and Goyal, 2013a,b, Kauf-
mann et al., 2012, Russo and Van Roy, 2014] since the empirical findings from [Chapelle and
Li, 2011]. However, a negative from Lattimore and Szepesvari [2016] suggest that Thompson
sampling may not be optimal when the feasible design choices are finite and non-uniformly dis-
tributed. It may be interesting to see if another approximate sampling algorithm like conjugate
sampling can have similarly good performance, even though it does not always sample from the
exact posterior.
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Table 5.1: Complexity of Posterior Sampling

Method Time Space

Thompson sampling (naive) O(n3), fixed O(n2), dense
Thompson sampling (online) O(n2), fixed O(n2), dense

Low-rank approximation O(k2tA) O(kn)
PerturbOpti Orieux et al. [2012] O(ktA) O(n)

Conjugate sampling O(ktA) O(n)

We may take k = O(
√
κA). The space complexity subtracts the storage of A itself.

PerturbOpti assumes the ability to sample from the prior distribution and likelihood noise.

5.2 Related Work

Our novelty lies in applying conjugate sampling to bandit problems. Conjugate sampling itself
has been studied in different contexts before.

Parker and Fox [2012] has a nice overview of conjugate sampling based on the work of Schneider
and Willsky [2003], with further theoretical and empirical insights. Their main algorithm is sim-
ilar to ours, which is an one-line adaptation of conjugate gradient linear solver, using either the
covariance matrix or the inverse covariance matrix as its coefficient matrix. One common issue
with conjugate methods is the loss of orthogonality or also called conjugacy due to numerical
errors in finite precision mathematics. A unique insight from Parker and Fox [2012] shows that
conjugate sampling loses conjugacy before the corresponding conjugate gradient linear solver
converges. As a result, conjugate sampling can only realize covariance matrices that approxi-
mate extreme or well-separated eigenvalue-eigenvector pairs. In their experiments, Parker and
Fox [2012] showed that conjugate sampling performed well for Gaussian processes in 1d or
Gaussian random fields based on the connectivity pattern in a 2d lattice grid. However, their GP
experiments conducted in 1d environments. We extend the GP experiments in high-dimensional
environments using Kronecker-decomposition of square-exponential kernels for fast matrix op-
erations.

At its core, conjugate sampling realizes a low-rank approximation of the covariance matrix, with-
out explicit eigendecompositions. An alternative is to compute the explicit low-rank approxima-
tions using Lanczos algorithms. Parker and Fox [2012] showed a connection between conjugate
sampling and Lanczos algorithms, which allows for computation of the `2-orthogonal bases for
Lanczos algorithms under the same complexity with a larger constant. However, an additional
multiplicative order of k (the rank) is required in both time and space complexity to realize any
of the advanced reothogonalization or spectral manipulation techniques, such as the IRAM algo-
rithm in ARPACK for solving large-scale eigenvalue problems [Lehoucq and Sorensen, 1996].
In practice, ARPACK can be much slower.

Some other work lies between vanilla conjugate sampling and exact Lanczos. Chow and Saad
[2014] focused on a few preconditioner for generic matrices. Since our matrix is Kronecker-
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decomposable, we may efficiently obtain exact eigendecompositions. Simpson et al. [2008] used
the covariance matrix realized by conjugate sampling to obtain the full likelihood of a Gaus-
sian model, including its normalizing constant which involves log-determinant of the covariance
matrix. This results in a novel application to sample hyper-parameters of a GP model using
Metropolis-Hasting. Aune et al. [2013] implemented several Lanczos algorithms including con-
jugate sampling in GPU to show their computational efficiency compared to Cholesky decompo-
sition. Li and Marlin [2016] used conjugate sampling for end-to-end Gaussian process learning.
In particular, Li and Marlin [2016] use `2 orthogonal bases for irregular time series regression,
while in our paper, we use A orthogonal bases, which may converge more quickly, for Thompson
sampling.

Orieux et al. [2012] studies a slightly different setting where the inverse covariance matrix is a
sum of other matrices that allow fast MVMs. As it turned out, the experiments we considered
in this work appreciate the same form. Their algorithm is called Perturbation-Optimization (Per-
turbOpti), which first draws from the component inverse covariance matrices, e.g., the prior and
likelihood noise, then solves an optimization problem involving the inverse covariance matri-
ces. This solution separates the sampling and optimization steps, both realizable via conjugate
methods. It achieved similar efficiency and appeared even more robust to numerical issues in our
experiments, but it also hides away the numerical challenges when sampling from the prior or
the likelihood noise.

5.3 Problem Formulation

We consider two types of Bayesian models: Gaussian processes (GP) and Bayesian linear regres-
sion (BLR); both models can have the same form of multivariate normal posterior distribution,

− log p(θ | xτ , yτ ,∀τ ≤ t) ' 1

2
θ>Aθ − θ>b, or equivalently, θ ∼ N (A−1b,A−1), (5.1)

where A is a symmetric and positive-definite (PD) matrix.

For BLR, we optimize the black-box function y = x>θ + ε, ∀x ∈ Rn s.t. ‖x‖2 ≤ 1, where ε ∼
N (0, σ2

n) is the observation noise. We assume a priori that θ ∼ N (0,Θ−1), where Θ is a known
information matrix. After observing the function values at x1, . . . ,xt with outcomes y1, . . . , yt,
respectively, the posterior distribution of θ becomes (5.1) where A = Θ + 1

σ2
n

∑t
τ=1 xτx

>
τ and

b = 1
σ2
n

∑t
τ=1 xτyτ . Sampling-based Bayesian optimization then chooses the next observation

by sampling θ̃ ∼ p(θ | xτ , yτ ,∀τ ≤ t) and choosing xt+1 ∈ {x : ‖x‖2 ≤ 1} that maximizes the
expected outcome, x>t+1θ̃.

For GP, the black-box function is modeled a priori by f : [0, 1]D → R that is generated from a
GP with zero mean and a given kernel function κ(·, ·), denoted by f ∼ GP(0, κ(·, ·)), such that
for any number of variables, x1, . . . ,xn, the outcomes f = (f(x1), . . . , f(xn))> always jointly
assume a multivariate normal distribution with zero mean and covariance matrix K, whereKij =
κ(xi,xj). LetN (0, σ2

n) be the observation noise. After observing f at x1, . . . ,xt with outcomes
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y1, . . . , yt, respectively, the posterior GP is given such that for any set of points x∗1, . . . ,x
∗
n, the

function values have multivariate normal distribution with mean vector and covariance matrix,

µ = K>∗ (K + σ2
nI)−1y, Σ = K∗∗ −K>∗ (K + σ2

nI)−1K∗, (5.2)

where the elements at (i, j) location in K∗∗,K∗,K are κ(x∗i ,x
∗
j), κ(xi,x

∗
j), κ(xi,xj), respec-

tively [Rasmussen and Williams, 2006].

If we further assume that the set of feasible designs are fixed throughout Bayesian optimization
as {x∗1, . . .x∗n} and let sτ ∈ {1, . . . , n},∀1 ≤ τ ≤ t be the indicator variable such that xτ = x∗sτ ,
direct computation reveals that the posterior has the same formula as (5.1) with A = K−1

∗∗ +
1
σ2
n

∑t
τ=1 sτs

>
τ , b = 1

σ2
n

∑t
τ=1 sτyτ , where each sτ ∈ Rn is the corresponding indicator vector

of index sτ . This formulation is most useful if the prior kernel matrix K−1
∗∗ is easily invertible,

e.g., when it is a Kronecker product of 1d kernel matrices [Flaxman et al., 2015].

The problem then is how to sample efficiently from (5.1) using only matrix-vector multiplication
between A and any vector θ in an efficient manner. Sampling-based Bayesian optimization will
then choose the next design location to maximize expected reward based on the obtained sample
point.

5.4 Conjugate Sampling

In this section, we present the algorithm to draw one sample point θ ∈ Rn from (5.1), where
A ∈ Rn×n is a symmetric and positive-definite (PD) matrix. Denote ‖θ‖2

A = θ>Aθ to be
the squared A-norm of θ. We assume that the posterior mean of (5.1), µ = A−1b, is solved
separately (e.g., also using Algorithm 5.1 in a separate run); our goal is to approximate the
posterior distribution with similar time and space complexity. Without loss of generality, we set
b = 0 to find z̃ ∼ N (0,A−1) such that θ̃ = µ + z̃ ∼ (5.1).

Algorithm 5.1 shows the steps to draw one sample point θ̃. It borrows the conjugate directions
which are used to solve Axk = c for random c ∼ N (0, I). We analyze the case when kmax = n.
The key idea is to realize the following from standard conjugate gradient descent literature:

Theorem 5.1. The conjugate directions, denoted in matrix form by P = (p1, . . . ,pk) are A-
orthogonal, such that P>AP = D, where D = diag(‖p1‖2

A, . . . , ‖pk‖2
A) is positive-definite.

We skip the proof of Theorem 5.1 by Saad [2003] but only clarify that normally orthogonality
requires computing inner products with all previous vectors. However, since the Krylov subspace
Kk = {c,Ac, . . . ,Ak−1c} is a power series, we only need to orthogonalize with respect to the
last 2 variables. Further A-orthogonality is available using only 1 matrix-vector products for
every variable via Algorithm 5.1.

Our method then follows by sampling ξ ∼ N (0,D−1) and assigning z̃ = Pξ =
∑k

k′=1 ξk′pk′ ,
which has distribution N (0,PD−1P>). There are different cases that produce different distri-
butions.
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Algorithm 5.1 Conjugate Sampling Based on Ax = c

Input MVM operator A, vector c ∼ N (0, I), and scalar ε > 0.
Let x0 = 0, p0 = r0 = c−Ax0, z0 = 0.
for k = 0, . . . , kmax − 1 do

perform line search xk+1 = xk + αkpk, where αk =
r>k rk
d2k

, d2
k = p>k Apk

accumulate random variables zk+1 = zk + 1
dk
ξkpk, where ξk

iid∼ N (0, 1)
compute residual (i.e., negative gradient) rk+1 = rk − αkApk
if ‖rk+1‖2 ≤ ε then

break
else

find conjugate direction pk+1 = rk+1 + βkpk, where βk =
r>k+1rk+1

r>k rk

end if
end for
output solution x = xk+1, sample z̃ = zk+1

Case 1. Exact sampling if A has distinct eigenvalues and almost surely Algorithm 5.1 runs for n
steps. In this case P has full rank and Theorem 5.1 suggests A = P−>DP−1 = (PD−1P>)−1.

Case 2. Approximate sampling if some eigenvalues of A have multiplicity greater than 1 and
Kk cannot grow to Rn. An example is A = I, the identity matrix, which allows the gradient at
any location to point directly to the origin and any gradient-based methods to converge in one
step with p1 = c. In this example, z̃ = ξ1p1 is a resampled variable in the same direction (or
its opposite) as c ∼ N (0, I). As a result, the angular distribution of z̃ is the same as an exact
sample z ∼ N (0, I), but the radial density of the marginal distribution will be different: the
exact random variable should allow ‖z‖2

2 ∼ χ2
n, but the obtained distribution has ‖z̃‖2

2 ∼ χ2
1. The

resulting covariance matrix will still be diagonal, but the values will be underestimated n times.
In general, if A has unique eigenvalues 0 < λ1 < · · · < λk with multiplicity d1, . . . , dk, respec-
tively, then the covariance matrix of the approximate sample will keep the same eigenvectors but
change the eigenvalues from { 1

λ1
, . . . , 1

λk
} of an exact sample to { 1

λ1d1
, . . . , 1

λkdk
}, respectively.

To adjust for the bias in the covariance matrix, when approximation is not good in matrix 2-norm
(notice good approximation may use less than n iterations if A−1 has low rank), upscaling often
helps. However, it is unclear what optimal ratios are. In our simulations, we simply took the
upscale ratio of z̃ =

√
n/(k+1)zt+1. Better approaches may require additional estimation of the

approximation error [Parker and Fox, 2012].

Finally, to draw one sample point z̃ =
∑k

k′=1 ξk′pk′ , where ξk
iid∼ N (0, 1), one can keep a

running sum of each component without remembering the full matrix P, which reduces the
space complexity to O(n), in addition to the (hopefully efficient) storage of A.
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5.5 Simulations

5.5.1 BLR Experiments

For BLR models, we randomly drew Rn 3 θ∗ ∈ N (0, I) and used Bayesian optimization to
maximize x>θ∗, s.t. ‖x‖2 ≤ 1. Each observation has independent standard Gaussian noise,
σn = 1. We also used N (0, I) as our prior for θ and chose designs according to xt = θ̃t/‖θ̃t‖2,
where θ̃t is a sample from the posterior distribution at step t. The simulation was repeated 100
times.
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Figure 5.1: Cumulative regret against the number of function observations. BLR with n = 100.

Figure 5.1 shows that for n = 100, conjugate sampling with one gradient step (kmax = 1,
called Conjugate*-1)1 was comparable with Thompson sampling, both in terms of computational
complexity and statistical complexity. The key role that the one-step conjugate sampling plays
is to scale each random vector by how much the corresponding direction has been explored,
finding balance between exploration and exploitation. At step t, the coefficient matrix becomes
A = I +

∑
i<t xix

>
i . By resampling, the actual random vector along the same direction of an

initially proposed variable c has
√
n‖c‖2/‖c‖A expected norm, whereas a standard normal variable

onRn has norm
√
n. Exploration is thus encouraged in underexplored directions, because c is

away from eigenvectors of large eigenvalues, realizing small ‖c‖A.

Other kmax(> 1) resulted in similar performance. Conjugate*-18 shows the result of an experi-
ment with sufficiently large kmax, where conjugate sampling realized an average of k = 18 MVM
steps. We also included the random selection method (it yielded large regrets) and a typical theo-
retical rate of optimal cumulative regrets on the order of O(

√
T log T ), which indicates that both

conjugate and Thompson sampling converged [Niranjan et al., 2010].

1 The star variant of conjugate sampling applied the
√

n/(k+1) upscaling step to overcome larger approximation
errors, as we discussed under Case 2: Approximate Sampling.
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To further examine the key factors of exploitation, we simplified conjugate sampling to an
Online-ε-Greedy type algorithm. Similar to Conjugate*-1, this method also draws iid explo-
ration variables c. However, unlike Conjugate*-1, the rescaling is not based on the draw of c, but

instead takes a fixed form such that every random variable is uniformly scaled by
√

trace(A−1)
n

which ensures that the expected norm meets that of Conjugate*-1. The result of Online-ε-Greedy
suggests that exploration on BLR can be rather simple, but nontrivial, as long as the strength of
exploration strikes the right balance at the current time step. In contrast, ε-Greedy performed
much worse when the scaling is fixed at 1, which is the choice in Online-ε-Greedy when A = I
at the initial step.

5.5.2 GP Experiments

For GP models, we generated functions on the input space [0, 1]D whereD = 1 or 3, respectively,
and with square-exponential kernel κ(x,x′) = σ2

f exp{− 1
2`2
‖x− x′‖2

2} where ` = 0.3 and σf =
1. The feasible designs are chosen from a Cartesian grid of points with nd points along dimension
d. For D = 1, we chose n = 101 grid points; for D = 3, the environment is a Cartesian product
of n = 4 × 5 × 6 = 120. The function values at these n points, f∗ = (f ∗(x1), . . . , f ∗(xn))>,
form a multivariate normal distribution with zero mean and kernel matrix K∗∗.

With proper indexing, K∗∗ and K−1
∗∗ can be decomposed by a Kronecker product of 1d matrices,

K−1
∗∗ = ⊗dK−1

(d), where K(d) is a smaller and easily invertible nd × nd kernel matrix built only
using the dth coordinate of the input. Per discussion under (5.2), after choosing observations
from the Cartesian grid points, such a prior allows for easy computation of the posterior inverse
covariance matrix,

A = K−1
∗∗ = ⊗dK−1

(d) + diag{
∑
τ

1

σ2
n

sτ}, (5.3)

which enables fast sampling approaches using conjugate sampling. Further, Kronecker decom-
position allows easy computation of Cholesky decomposition K∗∗ = LL> via L = ⊗dL(d),
where K(d) = L(d)L

>
(d) is the Cholesky decomposition on the Kronecker components. This al-

lows us to use preconditioned conjugate sampling, which equivalently operates on Â = L>AL
with ĉ = L>c and transforms the result back as z = Lẑ. Notice the matrix L is computed only
once and may be efficiently stored in its decomposed form.

The form (5.3) also allowed an alternative solution from Orieux et al. [2012], called Perturbed
Optimizatoin (PerturbOpti). A simplified version of the algorithm suggests that when the inverse
covariance matrix is an additive form of various components A =

∑
j Aj , instead of directly

drawing from z ∼ N (0,A−1), which may computationally be infeasible, we can equivalently
draw from each component cj ∼ N (0,A−1

j ) and solve an optimization problem:

z ∼ N (0,A−1) ⇔ z = A−1(
∑
j

Ajzj) s.t. zj ∼ N (0,A−1
j ).

The resulting distribution is identical to the original distribution, because, from the right hand
side, Var(z) = A−1

∑
j(AjA

−1
j Aj)A

−1 = A−1. In our example, (5.3) appreciates the given
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form. Assuming that we can solve for K∗∗ = LL> a-priori, then PerturbOpti directly samples
z0 ∼ N (0,K∗∗) and zτ ∼ N (0, σ2

n). A sample from the correct posterior distribution can
be solved via Az = K−1

∗∗ z0 +
∑

τ σ
−2
n zτesτ . Notice that when inverting A is infeasible due

to space or time complexity, the final optimization problem typically requires conjugate gradient
descent to accelerate. This solution has the same order of time and space complexity as conjugate
sampling and can be more robust against numerical instabilities, if the drawing from the prior
and noise model are available.

One-Dimensional GP
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Figure 5.2: Cumulative regret with respect to the number of function observations. GP with
square exponential kernel with ` = 0.3 on n = 101 uniformly spaced grid points in [0, 1].
Methods below the dashed dark line had comparable regrets.

With n = 101 gird points on [0, 1] interval with ` = 0.3, the prior kernel matrix is nearly singular.
For numerical stability, we added a diagonal jitter with 10−6 magnitude. Figure 5.2 shows the
cumulative regret of various bandit solutions. The baseline Thompson sampling had an averaged
total regret of 161.2 after 10 100 steps. Using an equivalent sampling approach, PerturbOpti per-
formed nearly identical. Conjugate sampling, both with and without preconditioning, performed
similarly to Thompson sampling, using any sufficiently large kmax. When preconditioned by
the prior L (such that the initial coefficient matrix becomes an identity matrix), the PCGsamp-
10 algorithm used on average k = 10 MVM iterations to converge per decision step, before
achieving the stopping criterion of ε = 10−5. Simultaneously, the realized covariance matrix of
the random variable from the conjugate vectors could approximate 98% of the actual posterior
covariance matrix, measured by the 2-norm of the difference between both matrices. Without
preconditioning, the Conjugate-42 algorithm needed k = 42 MVM steps on average to meet the
same stopping criterion and was able to realize the posterior covariance matrix with even smaller
error. Notice, similar to Parker and Fox [2012], we used matrix-2-norm as our measure of matrix
approximation error. This allowed us to approximate the matrix with fewer iterations (k < n)
when the covariance matrix is sufficiently low-rank.
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To further study the sensitivity of exploration, we repeated the experiment with reduced kmax.
With PCGSamp*-1, we only took an iid random variable and used conjugate sampling to find
the proper scale along the realized direction. This achieved relatively small regret, because the
average cumulative regret is smaller than the dashed line, which indicates a typical theoretical
regret bound of O(

√
T log T ). Without preconditioning, convergence requires more iterations.

We also implemented Online-ε-greedy that ignores the smoothness of a GP function. It did not
converge as well.

High-Dimensional Kronecker-Decomposable GP
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Figure 5.3: Cumulative regret with respect to the number of function observations. GP with
square exponential kernel with ` = 0.3 on n = 3× 4× 5 uniformly spaced Cartesian grid points
in [0, 1]3. Methods below the dashed dark line had comparable regrets.

In higher dimensions, the square-exponential kernel matrix from Cartesian grid points can be
Kronecker-decomposed. As a result, MVM operation with prior Ā becomes much more feasible,
particularly in terms of space complexity. It is thus desirable to perform conjugate sampling
for bandits in high-dimensional GPs. Our experiment was in 3d with n = 3 × 4 × 5 = 120
Cartesian grid points. We took kernel lengthscale ` = 0.3. Contrary to the one-dimensional GP,
the resulting kernel matrix is not singular, as the grid points are sparser. No diagonal jitter was
introduced, since they also break Kronecker-decomposability.

Both Thompson sampling and PerturbOpti [Orieux et al., 2012] had smallest cumulative regrets.
This shows that PerturbOpti produces robust sample points comparable to direct sampling via
(online) Cholesky factorization used in Thompson sampling. In fact, we used dense matrix
solvers because the scale of the problem is rather small. Even so, PerturbOpti used only half
the time that Thompson sampling required, probably due to our toolkit choices. Thompson sam-
pling was implemented with choldate package2 whereas the optimization step in PerturbOpti was

2 https://github.com/jcrudy/choldate
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directly solved by a standard linear algebra package. However, on the other hand, PerturbOpti
separates the subproblem of sampling and optimization, which limits its ability for extensions.

Conjugate sampling also showed signs of convergence, despite larger constants and variance.
Conjugate-326 is the result of vanilla conjugate sampling without preconditioning. To reach
a stopping criterion of less than ε = 10−5, Conjugate-326 used k = 326 MVM iterations on
average. Even though k > n, the realized covariance matrix is still closing the gap of approxi-
mation PD−1P> ≈ A−1 in matrix 2-norm, similar to the observations in Parker and Fox [2012].
However, the quality of final approximation is rather poor, leaving a gap of

‖PD−1P> −A−1‖2

‖A−1‖2

≈ 0.7,

at most times during the experiment. The realized covariance matrix also has a smaller trace. One
plausible explanation is that a Kronecker-product matrix has a rather concentrated eigenvalue dis-
tribution compared to kernel matrix in 1d. The spectral distribution of Kronecker-product is more
similar to an identity matrix than a square-exponential kernel matrix on dense grid points: the
latter has only few large eigenvalues and is easy to approximate in matrix 2-norms. Regardless,
using vanilla conjugate sampling, our experiment showed a seemingly no-regret convergence
close to Thompson sampling (even though with larger variance).

Using LL> from the prior as our preconditioner, PCGSamp also showed no-regret convergence
below the dashed line. PCGSamp*-38 used fewer iterations and realized a covariance matrix that
had similar (poor) estimation quality as vanilla conjugate sampling. Since the approximation has
errors, we experimented with different choices of c in hope that the sampled variable behaves
similarly in expectation. We showed the result when ĉ ∼ N (0,K∗∗) based on the prior distribu-
tion. Because samples are generated in the Krylov subspace of matrix powers. It is unclear to us
why this choice empirically performed better than the alternatives.

Finally, PCGSamp*-1 realized (preconditioned) conjugate sampling with kmax = 1 and iid
initial ĉ. Despite different behavior of conjugate sampling with Kronecker-product matrices,
PCGSamp*-1 performed consistently well relative to the baseline Thompson/PerturbOpti sam-
pling, showing signs of no-regret convergence under the dashed line of theoretical rates. The
experiment with PCGSamp*-1 resonates with our assumption that exact Thompson sampling
may neither be necessary nor optimal. In fact, when GP is viewed as a linear system with dis-
crete pool of designs, Lattimore and Szepesvari [2016] showed that Thompson sampling can be
arbitrary suboptimal, because exploration and exploitation are fundamentally contradicting with
each other and the optimal solution may only be found via full system optimization.

5.6 Conclusions

We showed conjugate gradient sampling as a cheap iterative alternative to Thompson sampling
for multi-armed bandits and Bayesian optimization. Based on linear algebra, aggregating the
conjugate vectors in a conjugate gradient linear solver produces a multivariate normal random
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variable, whose covariance matrix approximates the inverse of the coefficient matrix. The solu-
tion only uses Matrix-Vector Multiplications (MVMs) involving the coefficient matrix, which is
very useful in Bayesian settings where the coefficient matrix (i.e., the desired inverse covariance
matrix) has simple forms, e.g., the sum of a sparse GRF prior matrix (or a decomposable GP
prior matrix) and other low-rank or diagonal likelihood matrices. Further, as an iterative sam-
pler, experiments showed that the realized sample covariance matrix quickly converged to the
true covariance matrix in 2-norm, with superlinear speed, when the true covariance matrix had
low ranks. On the other hand, conjugate sampling may suffer greater numerical stabilities than
conjugate gradient descent when the eigenvalues of the covariance matrix form dense clusters.

When applied to multi-armed bandits or Bayesian optimization, conjugate sampling performed
comparably to Thompson sampling, while using less orders of time and space complexity when
cheap MVMs are available. Experiments were conducted both when conjugate sampling yielded
a correct sample (GP in 1d) and when it could only produce approximate samples (BLR and GP in
3d). In the latter case, the sampled variable usually needs additional scaling to maintain the same
level of exploration. Beyond direct application of conjugate sampling, we also experimented with
reduced-iteration sampling, e.g. PCGSamp*-1 that uses only one MVM iteration to properly
scale an iid exploration variable (in preconditioned spaces) and Online-ε-Greedy which further
simplifies to truly iid sampling. These experiments may be a starting point to help us understand
what properties are more important in exploration and how to realize them efficiently. In a
similar line, even though exact Thompson sampling is often preferable in many cases, Lattimore
and Szepesvari [2016] showed that Thompson sampling may not yield the minimal regret in
linear environments when the decision pool is finite; the true optimal solution requires system
optimization that also considers the constraints.

In retrospect, Orieux et al. [2012] provided an alternative Perturbation-Optimization (Pertur-
bOpti) solution that directly solves for the posterior sampling problems in our experiments. Per-
turbOpti separates the sampling and optimization problems, which empirically improves numer-
ical stability. It may be a desirable algorithm to also accelerate Bayesian optimization (we are
unfamiliar with such use cases prior to this work). However, it should be clear that PerturbOpti
requires the ability to directly sample from all sub-components of the posterior model and uses
conjugate gradient methods to truly have their advantage. It is also more difficult to extend
PerturbOpti due to its modular design.

On the other hand, our conjugate sampling is designed with different principles than Orieux et al.
[2012]. We directly draw samples based on implicit low-rank approximations of the covariance
matrix itself and iteratively produce results. We may extend conjugate sampling to construct
other uncertainty measures for exploration. For example, we may use conjugate vectors to ap-
proximate V-optimality for GRFs (Section 2.4), so that we can find better alternatives to UCB
in large graphs. Garnett et al. [2012], Wang et al. [2013] used the covariance matrix for other
purposes as well. We view conjugate sampling as a cheap alternative to explicit low-rank decom-
position, which can be realized by IRAM in ARPACK. Expressing full decomposition requires
additionalO(k) multiplicative time and space complexity to allow additional reorthogonalization
or restarting. It is a future direction to find other quantities that may also be well-approximated
without the additional k factor.
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The numerical error from finite precision mathematics showed several influences in our exper-
iments. When the matrix is near identity with many clustered eigenvalues, conjugate sampling
loses conjugacy very quickly. Further, only one eigenvector can be realized in a cluster of eigen-
values, leaving the others exposed as approximation error in matrix 2-norm. Ideally, it is desir-
able to use preconditioners to spread out the eigenvalues. When preconditioning is infeasible, we
must find proper distributions for the initial variable c, such that the expected covariance matrix
after integrating out c may match the objective matrix. We may also upscale the random variable
for the same purpose.

The optimal initialization of c may be hard to find when conjugate sampling does not realize the
desired covariance matrix, e.g., in our experiment with GP in 3d. In a simpler case, e.g., for BLR
with iid prior, we followed suggestions from Parker and Fox [2012] to take c = (±1, . . . ,±1)>

in order to reduce variance. The choice with GP in 3d is empirically taken. As the Krylov
subspace is a power space, it is unclear how to propose initial distributions to be closest to the
true distribution that we aim to sample. For example, the same variable in Orieux et al. [2012]
may not yield the best solution. Our future work includes better understanding of the role of c in
the final covariance estimation when the covariance matrix has large and clustered eigenvalues
that cause numerical instabilities.
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6
Conclusions

We study in the general topic of active search, where an algorithm explores in an unknown envi-
ronment, collects and learns from human or environmental interactions, and ultimately search for
all positive examples as quickly as possible under limited interaction budgets. It has applications
in environmental monitoring, social science, and search and rescue.

There have been many paradigms that may adapt to active search problems, e.g., designs of
experiments, Bayesian optimization, and multi-armed bandits. However, these studies usually
focus on low-dimensional feature space, where each action can only apply to a single point and
each reward will be assigned to the same point. On the other hand, real-world applications may
require active search on graphs, with rewards defined on the patterns in group of points, and
queries conducted on the aggregate statistics in a region containing multiple points.

In active search on graphs, each node bears a reward, which is unknown at first but can be noisily
observed upon query. The aim is to accumulate as large a sum of rewards from the queried nodes
as possible under limited budgets. We assume that the graph is known and the node rewards
vary smoothly along the graph. The node values are relaxed to real values and modeled with
a Gaussian random field prior, which naturally extends label propagation solutions from semi-
supervised learning.

Popular GP-UCB-style algorithms use the marginal standard deviation as their exploration cri-
terion, leading to the undesirable tendency of selecting peripheral nodes on a graph, e.g., leaf
nodes. Instead, we propose to use variance minimization in GRF posteriors. We analyzed V -
optimality from Ji and Han [2012] and Σ-optimality from Garnett et al. [2012] and proposed
a novel use of Σ-optimality in active learning and bandit exploration, despite Σ-optimality be-
ing originally designed for active surveying. We call our method GP-SOPT, which modifies
GP-UCB by using Σ-optimality as its exploration criterion. We also made several theoretical
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contributions, including the global optimality of greedy application of V/Σ-optimality and re-
gret analysis for a thresholded variant of GP-SOPT. Empirical evaluations justified Σ-optimality
in active learning, active surveying, and active search.

Active area search is a new problem, wherein we wish to identify regions in a continuous space
with large average function value. In comparison to typical active learning objectives, this setting
is somewhat unusual in that we cannot observe the labels directly. Instead we must infer the
labels from observations of a continuous ancillary function. Further, we were able to generalize
the problem to active pointillist pattern search, where the goal is to discover specific local patterns
exhibited in the regions.

Our approach is to model the function using a Gaussian process and use Bayesian quadrature to
infer its average value on the regions of interest. With this setup, we were able to derive a simple
expected reward maximization strategy for the active area search problem. Our solution extends
to the more complex active pointillist pattern search problem, if the anticipated region pattern
can be described as a functional probit model. For the more general region patterns, we relied
on Monte-Carlo sampling which empirically showed good promises with moderate number of
samples. We used active search for three applications: water quality measurements in a pond,
election results prediction, and vortex detection in a fluid flow experiment.

Active needle search for sparse signals with region sensing is motivated by applications where
aerial robots are used to detect gas leaks, radiation sources, and human survivors of disasters.
Aerial robots are able to sense a region of space whose area depends on their operating altitude.
The question we ask is how such a robot can dynamically trade off the ability to make noisier
observations of larger regions of space against making higher-fidelity measurements of smaller
regions.

We make the simplification that the robots carry a single-pixel camera that records the average
value inside a rectangular region of space, corrupted by independent observation noise. We call
this observation scheme a region sensing constraint, under which, the spacial information inside
each region is unattainable. However, efficient solutions can still be found, e.g., using binary
search when the observations are noiseless. We use similar principles for noisy binary search
and propose an algorithm called Region Sensing Index (RSI). Further, we theoretically show that
RSI performs near-optimally in 1d search domains and fundamentally faster than passive sensing.
The number of measurements is comparable to compressive sensing, despite compressive sensing
being incompatible with region sensing constraints. Empirical results on satellite images also
showed the efficiency using RSI.

Finally, because many active search methods involve GPs or GRFs, we explored the ability to
accelerate Bayesian optimization designs in these domains. We were inspired by the re-emerging
popularity of Thompson sampling for approximately optimal designs. However, Thompson sam-
pling does not directly yield computational benefits, despite their conceptual simplicity in that
only a single point needs to be drawn from the posterior distribution.

Instead, we considered an iterative algorithm we call conjugate sampling that approximately
draws from the posterior multivariate normal distribution in GPs or GRFs. We take advantage of
the sparsity in their inverse covariance matrices, which are an additive sum of low-rank matrices
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and Kronecker-decomposable matrices for GPs or sparse adjacency matrices for GRFs. In such
way, fast approximate samples can be generated with little time and space complexity, while
Bayesian optimization still efficiently converges. We work to apply conjugate sampling in large-
scale Bayesian optimization problems and make novel discoveries.

6.1 Future Work

6.1.1 Active Search on Graphs

While our current solution is able to find efficient queries in moderately-sized graphs (e.g., us-
ing only 10 data points to realize classification on UCI hand-written dataset of a few thousand
points/graph nodes), the true power of active search should enable graphs with millions of nodes,
e.g. recommending products from the entire catalog book or identifying new classes in ImageNet
dataset. Classical designs require the full covariance matrix, which is infeasible to obtain. We
may use conjugate sampling to realize D or V -optimality in large graphs, which allows for ap-
proximate applications of GP-UCB or GP-VOPT (Section 2.5). Just as spectral clustering via
low-rank approximation is a good way to inspect node properties using only graph connectivity,
using approximate GP-UCB or GP-VOPT may also yield novel discoveries on large graphs.

We used Gaussian random fields as a generative model for the node label distribution on a graph,
which is related to the unnormalized graph Laplacian. However, true node labels are binary and
their distribution is infeasible to apply inference with. While allowing feasible posterior infer-
ence, the continuous relaxation via GRFs also brings errors, particularly in variance estimation.
Nodes on the boundary of the graph with low degrees (e.g. leaf nodes) tend to have both large
variance and large errors in their variance estimate. One plausible explanation for the improved
performance by Σ-optimality is that it is more robust to this kind of modeling errors. Alterna-
tively, we may consider using the more common V -optimality with normalized graph Laplacian
matrices. In our preliminary experiments, normalizing graph Laplacian matrices generated slight
better performance for V -optimality, but could not fill the performance gap between Σ and V -
optimality.

The optimal generative model should be faithful to the true node label distributions. In real world
graphs, edges have features. It is thus possible to learn a linear combination of features to best
connect the resulting graph to the node labels. Seeing the weights in the linear combination
as hyperparameters, a full Bayesian solution should also optimize for the hyperparameters to
maximize the full likelihood of the observed node labels. Again, for large graphs, the normalizing
constant, which includes log-determinant of the (augmented) graph Laplacian is hard to compute.
Luckily, we may again turn to approximations via conjugate sampling methods [Simpson et al.,
2008].

Finally, D, V , and Σ-optimality use (or approximate) functions based on the spectrum of the
GRF posterior covariance matrix. We may explore other spectral functions as alternatives for
better exploration in active search.
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6.1.2 Scientific Applications

Scientific experiments is a classical area that requires optimal designs of experiments. Tradi-
tional, fMRI experiments use a fixed sequence of stimuli; it may be challenging for humans to
quickly interpret necessary connections between stimuli and brain patterns, especially in real-
time environments. Automatic selection of stimuli, on the other hand, may greatly improve
efficiency in many fMRI or similar experiments. In Lorenz et al. [2016], Bayesian optimization
was used to search for stimuli that evoke a desired target brain state in fMRI studies. This is
a search-like objective in high-dimensional environments and it presents opportunities for other
active search solutions, e.g., with graph formulations.

6.1.3 Robotic Applications

Both active area search (Chapter 3) and active needle search (Chapter 4) study robotic applica-
tions. We may extend the discussions to similar problems. For example, in robotic surgery, we
may conduct active search for areas of tumors, blood vessels, etc. The location of the robotic
arms cannot be accurately sensed and the organ environment may not be fully modeled. Instead,
one may use stiffness feedback from interaction with the organs to identify landmarks and the
arm position. Further, it is even possible to sense tumors directly by stiffness when the objective
is to cut them. However, how can we efficiently find the stiff regions?

Ayvali et al. [2016], Nichols and Okamura [2015] discussed approaches based on Bayesian op-
timization via expected improvements or UCB. These are good algorithms that explains explo-
ration/exploitation tradeoff, but not designed for the true objective that is to search for positive
regions. It is intuitive to apply active area search directly in these applications, in a similar
fashion to the environmental monitoring experiment.

On the other hand, we may extend active needle search with aerial robots using multi-pixel
cameras. Here, direct calculation of information gain using the joint output distribution may be
infeasible. Instead, we may fix the traveling path as a space-covering curve (Figure 6.1) and
at every step only decide whether the robot should travel to next area, a subregion, or a super-
region. The space-covering curve is a fractal curve, which recurses itself at shorter scales. As a
result, traveling along the curve at various scales eventually surveys the entire space.

Figure 6.1: Space-covering curve as a fixed travel path for active needle search. Subsampling at
fixed intervals realizes the same patterns at a larger scale. (From Wikipedia by Tó campos1.)
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Now that we model active needle search with aerial robots as a sequential decision process along
the space-covering curve, we may also apply reinforcement learning (RL) to find the optimal
solution, using recurrent neural networks to memorize the history of previous measurements as
the states. The RL solution relies on many repeated experiments, which are realizable using
satellite images. The RL approach may also be initialized by imitating RSI-A.

For both active area search and active needle search, we assume that the travel time is much
smaller than the time necessary to take an measurement. This is reasonable for environmental
monitoring and gas leak detection because of hysteresis in the sensors. The sensor must remain
stationary for a while to collect an accurate measurement. In the case of our actual data, the
sensor moves continuously. It brings up two issues: 1. can we correct for the hysteresis in the
dataset and 2. in cases where the assumption does not hold, how might we correctly choose ex-
periments when the travel cost is significant? For active needle search, using the space-covering
curve may become a solution to minimize traveling distance. For active area search, a simple
solution may not be found. Instead, one could include travel cost in the utility function and apply
greedy optimization for the expected reward per unit of travel distance, planning for a few steps
at a time. However, it is not known whether such a strategy may be empirically or theoretically
optimal.

6.1.4 Unified Models for Region Queries and Region Rewards

While we discussed using point sensing for region rewards and using region sensing for sparse
point rewards, it may be tempting to combine both region sensing and region rewards, assuming
that the regions for queries are different from regions for rewards. An immediate application is
in recommender systems if one has to pay to reveal a customer’s entire history, while the goal is
to maximize sale of a set of products. Moreover, unified models can also be desirable for model
robotic applications.

One general approach may involve using a bipartite graph formulation where there are two types
of nodes: queryable nodes and reward nodes, as well as edges showing their connections. How-
ever, a bipartite graph is different from the general graph that we discussed for active search,
in that the subgraph structure, which includes a source node and its closest nodes up to a small
degree, may reveal important information about the property of the node. Recently, Deffer-
rard et al. [2016], Kipf and Welling [2016] used neural networks to encode the subgraph in the
neighborhood of every node as side information for the inference of node properties. The neu-
ral encoding papers usually encode neighborhood using random walk sampling. We may also
use more general sampling-based approaches like Thompson sampling for the design of optimal
queries.

6.1.5 Active Search in Computation Graph Environment

Besides active search in physical environments, search has a special meaning in computation
graphs [Hart et al., 1968]. Search in physical environments is connected to search in computation
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graphs. For example, Monte-Carlo Tree Search (MCTS) can be viewed as a sampling-based
bandit solution to find the optimal trajectory in a computation tree. Using neural networks as
prior, MCTS allowed for the design of AlphaGo [Silver et al., 2016] which advanced the state
of artificial intelligence in complex game plays. Recent interests in computation graphs and
machine learning also allowed for successes in AI Texas Hold’em [Brown and Sandholm, 2017],
combinatorial optimization [Vinyals et al., 2015], etc. Our solutions in active search realize
relaxed versions of binary classification problems. It may be interesting to explore active search
in computation graphs or other complex binary systems.
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A
Active Search on Graphs Proofs

A.1 Submodularity of Σ-Optimality

Our results apply to any step in GRF posterior covariance matrix (2.7) and extend to GPs whose
inverse covariance matrix meets Proposition A.1.

Proposition A.1. L satisfies the following. 1

# Textual description Mathematical expression

pA.1.1 L has proper signs. lij ≥ 0 if i = j and lij ≤ 0 if i 6= j.
pA.1.2 L is undirected and connected. lij = lji∀i, j and

∑
j 6=i(−lij) > 0.

pA.1.3 Node degree no less than number of edges. lii ≥
∑

j 6=i(−lij) =
∑

j 6=i(−lji) > 0, ∀i.
pA.1.4 L is nonsingular and positive-definite. ∃i : lii >

∑
j 6=i(−lij) =

∑
j 6=i(−lji) > 0.

Although the properties of V-optimality fall into the more general class of spectral functions
(Friedland and Gaubert [2011]), we have seen no proof of either the suppressor-free condition or
the submodularity of Σ-optimality on GRFs.

Lemma A.2. For any L satisfying (pA.1.1-4), L−1 ≥ 0 entry-wise.2

Proof. Suppose L = D − W = D(I − D−1W ), with D = diagL. According to (pA.1.1),

1Property pA.1.4 holds after the first query is done or when the regularizor δ > 0 in (2.3).
2In the following, for any vector or matrix A, A ≥ 0 always stands for A being (entry-wise) nonnegative.
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D ≥ 0, W ≥ 0 and D−1W ≥ 0. Furthermore, by (pA.1.3),

0 ≤ D−1W ≤
( wij∑

k wik

)N
i,j=1

,

and so the matrix norm ‖D−1W‖∞ ≤ 1. Thus, any eigenvalue λk and its corresponding eigen-
vector vk of D−1W needs to satisfy |λk|‖vk‖∞ = ‖D−1Wvk‖∞ ≤ ‖vk‖∞, i.e. |λk| ≤ 1,∀k =
1, ..., N .

When L is nonsingular, (I − D−1W ) is invertible, i.e., has no zero eigenvalue. Hence, |λk| <
1,∀k = 1, ..., N and limn→∞(D−1W )n = 0. The latter yeilds the convergence of Taylor expan-
sion,

L−1 = [I +
∑∞

r=1(D−1W )r]D−1.

It suffices to observe that every term on the right hand side (RHS) is nonnegative.

Corollary A.3. The GRF prediction operator L−1
u Lul maps yS ∈ [0, 1]|S| to ŷu = −L−1

u LulyS ∈
[0, 1]|u|. When L is singular, the mapping is onto.

Proof. For yS = 1,
(
Lu, Lul

)
· 1 ≥ 0 and L−1

u ≥ 0 imply
(
I, L−1

u Lul
)
· 1 ≥ 0, i.e. 1 ≥

−L−1
u Lul1 = ŷu.

As both Lu ≥ 0 and −Lul ≥ 0, we have yS ≥ 0⇒ ŷu ≥ 0 and yS ≥ y′S ⇒ ŷu ≥ ŷ′u.

Lemma A.4. Suppose L =
(
L11 L12 S21 L22

)
, then L−1 −

(
L−1

11 0
0 0

)
≥ 0 and is positive-

semidefinite.

Proof. When L is nonsingular, by the block matrix inversion theorem,

L−1 −
(
L−1

11 0
0 0

)
=

(
L−1

11 (−L12)
I

)
(L22 − L21L

−1
11 L12)−1

(
(−L21)L−1

11 , I
)

By assumption (pA.1.4), L−1 is positive-definite, so is its lower right principal submatrix (L22−
L21L

−1
11 L12)−1. Thus, L−1 −

(
L11 0
0 0

)
is positive-semidefinite.

By Lemma A.2, L−1 ≥ 0 and this implies that its lower right (L22 − L21L
−1
11 L12)−1 ≥ 0. The

submatrix L11 also satisfies (pA.1.1-4) and by Lemma 1, L−1
11 ≥ 0. By the sign rule (pA.1.1),

(−L12) = (−L21)T ≥ 0. Now that every term on the right side of (A.1) is nonnegative, the left
side also has to be so.

As a corollary, the monotonicity in (2.21) for both R(·) = RV (·) or RΣ(·) can be shown.

Both proofs for submodularity in (2.22) and Theorem 2.4 result from more careful execution
of matrix inversions. We first state the key property in these executions of matrix inversions and
then prove both results.
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Proposition A.5. Without loss of generality, let u = V − S = {1, . . . , k} and v = vk. Partition
the matrix:

L(V−S) =

(
L(V−S∪{v}) L(V−S∪{v}),{v}

L{v},(V−S∪{v}) L{v}

)
:=

(
A b
bT c

)
By the block matrix inversion theorem,(

C d
dT e

)
:=

(
A b
bT c

)−1

=

(
A−1 0

0 0

)
+

(
A−1bbTA−1

c−bTA−1b
−A−1b

c−bTA−1b
−bTA−1

c−bTA−1b
1

c−bTA−1b

)
.

Proof. submodularity in (2.22) for R∆(·). Adopting the notations in Proposition A.5,

L−1
(V−S) − L−1

(V−S−{v}) =

(
A b
bT c

)−1

−
(
A−1 0

0 0

)
=

(
−A−1b

1

)
1

c− bTA−1b

(
−bTA−1, 1

)
For V-optimality,

R∆(S ∪ {v})−R∆(S) = tr
(
−L−1

(V−S−{v}) + L−1
(V−S)

)
=

((−bT )A−1)(A−1(−b)) + 1

c− (−b)TA−1(−b) .

As every term on the RHS has been written as nonnegative entry-wise, by taking submatri-
ces/vectors of consistant rows/columns ofA and−b, the values of (−bT )A−1 and (−bT )A−1(−b)
decrease.

Notice that both A and b correspond to (V − S ∪ {v}). Thus, as S grows, A and b shrink in size,
R∆(S ∪ {v})−R∆(S) diminishes.

For Σ-optimality,

R∆(S ∪ {v})−R∆(S) = 1T ·
(
−L−1

(V−S−{v}) + L−1
(V−S)

)
· 1 =

((−bT ) · A−1 · 1)2

c− (−b)TA−1(−b) .

Similar arguments hold.

Proof. Theorem 2.4. Adopt the notations in Proposition A.5. Dividing the vector d by the
diagonal number e yields ∀i 6= k:

cov(yi, yk|S)

Var(yk|S)
=

(L−1
(V−S1))ik

(L−1
(V−S1))kk

=
1

e
· di =

(−A−1b)i
c− bTA−1b

/
1

c− bTA−1b
= (A−1(−b))i.

That −b ≥ 0 and A−1 ≥ 0 leads to A−1(−b)T ≥ Ã−1(−b̃) ≥ 0 if Ã and b̃ are subsets of
consistent columns/rows (Lemma A.4), i.e.,

(L−1
(V−S))ik

(L−1
(V−S))kk

≥
(L−1

(V−S∪S2))ik

(L−1
(V−S∪S2))kk

≥ 0 ∀i 6= k 6∈ S ∪ S2.

Similarly, reordering the indices,
(L−1

(V−S))ik

(L−1
(V−S))ii

≥
(L−1

(V−S∪S2))ik

(L−1
(V−S∪S2))ii

≥ 0. It suffices to multiply both

sides of the above.
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A.2 Active Search Regret Bound

We start by stating the following result.

Theorem A.6 (Theorem 6, Srinivas et al. [2012]). Let δ ∈ (0, 1). Assume the observation noises
are uniformly bounded by σn and f has RKHS norm B with kernel C̄, which is equivalent to
f>L̄f ≤ B2. Define αt =

√
2B2 + 300γt log(t/δ)3, then

Pr (∀t, ∀v ∈ V, |µt(v)− f(v)| ≤ αt+1σt(v)) ≥ 1− δ.

We use this result to bound our instantaneous regrets.

Lemma A.7. Conditioned on the high-probability event in Theorem A.6, the following bound
holds:

∀t, rt := f(v∗t )− f(vt) ≤ 2αtkσt−1(vt),

where v∗t is the node with the t-th globally largest function value and vt is node selected at round
t.

Proof. At round t there are two possible situations. If v∗t was picked at some earlier round,
the definition of v∗t implies that there exists some t′ < t such that v∗t′ has not been picked yet.
According to our selection rule, the fact that st(v) ≥ σt(v), and Theorem A.6, the following
holds:

µt−1(vt) + αtst−1(vt) ≥ µt−1(v∗t′) + αtst−1(v∗t′)

≥ µt−1(v∗t′) + αtσt−1(v∗t′) ≥ f(v∗t′) ≥ f(v∗t ).

If v∗t has not been picked yet, a similar argument gives

µt−1(vt) + αtst−1(vt) ≥ µt−1(v∗t ) + αtst−1(v∗t ) ≥ f(v∗t ).

Thus we always have

f(v∗t ) ≤ µt−1(vt) + αtst−1(vt)

≤ f(vt) + αtσt−1(v − t) + αtst−1(vt)

≤ f(vt) + 2αtkσt−1(vt).

Lemma A.8 (Lemma 5.4, Srinivas et al. [2012]). Let αt be defined as in Theorem A.6 and c1

be defined as in Theorem 2.6. Conditioned on the high probability event of Theorem A.6, the
following holds:

∀T ≥ 1,
T∑
t=1

r2
t ≤ αTk

2c1I(yvT ; fvT ) ≤ αTk
2c1γT .

Finally, Cauchy-Schwarz inequality yields RT ≤
√
T
∑T

t=1 r
2
t ≤ k

√
Tc1αTγT .
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A.3 Visualization of the Node Choices in Real Graphs

To gain insights of the empirical behavior of Σ- and V-optimality, it is helpful to layout the graphs
on the 2D plane and visually inspect the choices of various heuristics. We use the OpenOrd
toolbox [Martin et al., 2011] in the Gephi software3 for this purpose.
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(b) V-optimality

Figure A.1: digits 7-nn undirected graph. Labels show the sequence of queries. Colors suggest
true (but unseen) class labels.

Figure A.1 shows the first few choices of the Σ- and V-optimality in the manifold embedding for
digits. It is clear that V-optimality made a mistake taking its second query whereas Σ-optimality
is able to better balance cluster size over uncertainty to avoid exploiting valueless small clusters.

Figure A.2 contrasts the first few choices of the Σ- and V-optimality in the manifold embedding
for ISOLETe. The outside of the 2D layout are peripheral points. Notice that the queries for
Σ-optimality stays in the central parts of the graph whereas the V-optimality goes after outliers
(especially query 9, 10, 16).

An easier network graph is the Cora citation graph. In Figure A.3, sparse cuts are prevalent and
they highly correlates to class margins. Σ-optimality look for clusters at the right size whereas
the clusters queried by V-optimality are too small.

Finally, DBLP coauthorship graph is a noisier (and harder) classification problem (Figure A.4).
Similar to the ISOLETe 4-nn undirected graph, we can infer that Σ-optimality picks better nodes
because it has more queries in the denser regions in the central part of the graph, whereas V-
optimality clearly picks many outliers.

3https://gephi.org/
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Figure A.2: ISOLETe 4-nn undirected graph. Labels are the order of queries. Colors mean
classes.
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Figure A.3: Cora citation graph. First 10 queries. Colors mean classes.
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Figure A.4: DBLP coauthorship graph. First 20 queries. Colors mean classes.
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B
Active Needle Search Proofs

B.1 Theoretical Properties for Passive Sensing

Theorem B.1 (Theorem 4.2 in the main document; limits of any passive methods using region
sensing). Assume β has prior π0 (uniform random on Sµ

(
n
k

)
). Any passive method with T noise-

less region measurements on 1D must incur Bayes risk ε̄T ≥ n−k
n−1

(1− 2T
n

); to guarantee ε̄T ≤ ε,
it requires T ≥ n

2
(1− n−1

n−kε).

Proof. We count the number of non-identifiability models with T noiseless observations, partic-
ularly when T < n

2
.

An aggregate measurement on region [ai, bi) ⊂ [1, n + 1) cannot identify the sparse support
inside [ai, bi) (or its complement), unless it intersects with another aggregate measurement.
Should two measurement regions intersect, the model is still non-identifiable inside the inter-
section, set differences, and the complement of the union of both. To find out the set of all
disjoint subsets where the model is non-identifiable given any passive design with m region
measurements, {[ai, bi) ⊂ [1, n + 1) : i = 1, . . . ,m}, we simply sort the unique end points as
c1 < · · · < cp ∈ {ai, . . . , am} ∪ {b1, . . . , bm}, where p ≤ 2m, and use the following set of p
elementary subsets:{

[cj, cj+1)︸ ︷︷ ︸
Cj

: j = 1, . . . , p− 1
}
∪
{

[cp, n+ 1) ∪ [1, c1)︸ ︷︷ ︸
Cp

}
, (B.1)

where the last subset is created to ensure that the number of sparse supports in the full set equals
k. Notice, (B.1) is also the largest set of disjoint subsets that can be created using intersections,
unions, and complements on the regions of measurements.
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We will continue our discussion assuming that the measurements are made on the subsets con-
tained in (B.1). When the observations are noiseless, (B.1) is a superior design than the original
design, whose outcomes can be inferred as

x>[ai,bi)β =

p−1∑
j=1

cj+1 − cj
bi − ai

x>[cj ,cj+1)β.

At this point, it is easy to see that the minimum sample size to guarantee that the signals can be
fully identifiable in the worst case is T ≥ n

2
; the necessary (and sufficient) condition is to have

|Cj| = 1,∀j = 1, . . . , p, which requires 2T ≥ p ≥ n.

For ε > 0, we compute the expected Delta-risk given any fixed design which yields p elementary
subsets as shown in (B.1). Let nj = |Cj|, j = 1, . . . , p. If the model β distributes kj supports in
subset Cj , respectively, then on any region where nj > kj > 0, the inference algorithm can only
make a random guess, e.g., for the first kj elements. Let βCj be the signal vector on subset Cj ,
the conditional expected error on this subset is:

E
[
|βCj∆β̂Cj | | kj

]
=

kj∑
ej=1

(
nj−kj
ej

)(
kj

kj−ej

)(
nj
kj

) ej =

kj∑
ej=1

(
nj−kj−1
ej−1

)(
kj

kj−ej

)(
nj
kj

) (nj − kj)

=

(
nj−1
kj−1

)(
nj
kj

) (nj − kj) =
kj(nj − kj)

nj
.

The total risk conditioned on all of kj : j = 1, . . . , p is:

E
[
|β∆β̂| | k1, . . . , kp

]
=

p∑
j=1

E
[
|βCj∆β̂Cj | | kj

]
=

p∑
j=1

kj(nj − kj)
nj

.

Using the law of total expectation assuming β to be uniformly distributed, we can compute the
expected error of the given passive design as

E|β∆β̂| =
∑

k1+···+kp=K

(∏p
j=1

(
nj
kj

)(
n
K

) )(
p∑
j=1

kj(nj − kj)
nj

)

=

p∑
j=1

∑
k1+···+kp=K

∏p
j′=1

(nj′
kj′

)(
n
K

) kj(nj − kj)
nj

=

p∑
j=1

∑
k1+···+kp=K

(nj − 1)
(
nj−2
kj−1

)∏
j′ 6=j

(nj′
kj′

)(
n
K

)
=

p∑
j=1

(nj − 1)
(
n−2
K−1

)(
n
K

) =
(n− p)

(
n−2
K−1

)(
n
K

) =
K(n−K)

n(n− 1)
(n− p) ≤ K

(n−K)(n− 2T )

n(n− 1)

(B.2)
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To guarantee E|β∆β̂| ≤ Kε, by solving (B.2) ≤ Kε, a passive design requires a minimal sample
size of

T ≥ p

2
≥ n

2

(
1− n− 1

n−Kε
)
.

Corollary B.2. Using noiseless region-sensing observations, a passive design in 1D with T ≤ n
2

region measurements achieves the optimal average-case Delta-risk, if and only if it can separate
the search space into 2m disjoint subsets using intersections, unions, and complements of the
measurement regions. The following example is adapted from Gray code:

t x>

1 0 0 0 0 1 1 1 1
2 0 0 1 1 1 1 0 0
3 0 1 1 0 0 0 0 0
4 0 0 0 0 0 1 1 0
· · · · · · (the pattern cycles)

Proof. To minimize (B.2), it is sufficient to find passive designs where p = 2T , given that
the region aggregate measurements are noiseless. The expected risk of (B.2) turns out to be
independent of the sizes of each elementary subset Cj (which one can verify with a minimal
example where n = 4, K = 2, and p = 2), which suggests that all designs that yield p = 2T
have the same average-case Delta-risk with noiseless region aggregate measurements.

Notice that the Gray-code design may not be optimal when the measurements are noisy. For this
reason, we also included point sensing in our main paper, which yields the same order of sample
complexity and performs better when the measurement noise is large.

B.2 Theoretical Properties for Active Sensing

The main goal of this section is to show that our main algorithm, Region Sensing Index (RSI),
has the sample complexity guarantees show as Theorem 4.4 in the main paper. The main paper
includes a proof sketch with three major steps. We show their details in 3 respective subsections.

B.2.1 Basic Properties of Information Gain (IG)

Recall that the observation model is yt = x>t β + εt, where β ∈ Sµ
(
n
k

)
, β ∼ πt, and εt ∼

N (0, σ2
t ). Omitting the time index t in this subsection, the information gain (IG) to be maximized
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in every step is defined as

I(β; y | x, π) = H(y | x, π)− E[H(y | x,β) | π]

⇔ I(γ; y | λ,p) = H(y | λ,p)−H(ε), (B.3)

where f(y | λ,p) =
K∑
c=0

pcφ(y − cλ)

λ = µwx, γ =
x>β

λ
,

pc = Pr(γ = c) =
∑

β:x>β=cλ

πt(β).

There are two basic properties: Lemma B.3 that is both directly applied in Section 4.3.1 Ac-
celerations and indirectly used in the later proof sketch; and Proposition B.4 that appears as
Proposition 4.5 in the main paper.

Basic Property 1

Lemma B.3 (Concavity and monotonicity). I(γ; y | λ,p) is concave in p ∈ RK+1
+ , which

includes the convex simplex of ∆K = {p ∈ [0, 1]K+1 : p>1 = 1}, if 0 < λ < ∞ remains
constant. On the other hand, I(γ; y | λ,p) with fixed p ∈ ∆K is monotone-increasing as λ
increases.

Proof. Concavity and monotonicity can be verified using derivatives. Notice the second term in
(B.3) is constant. Here are the equations for the first term as well as its first and second order
derivatives, omitting the dependency on p and λ for simplicity:

H(y;λ,p) = −
∫
f(y) log f(y)dy,

∂H(y;λ,p) = −
∫ (

1 + log f(y)
)
∂f(y) dy,

∂2H(y;λ,p) = −
∫ (

∂f(y)∂f(y)>

f(y)
+
(
1 + log f(y)

)
∂2f(y)

)
dy

Part 1. To show concavity in p(≥ 0), let φλ(y) = (φ(y), φ(y − λ), . . . , φ(y −Kλ))> and write
out the gradient and the Hessian of H(y;λ,p) with respect of p as:

∂H(y;λ,p)

∂p>
= −

∫ ∞
−∞

(
1 + log f(y)

)
φλ(y) dy

∂2H(y;λ,p)

∂p∂p>
= −

∫ ∞
−∞

1

f(y)
φλ(y)φλ(y)>dy
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Notice φλ(y)φλ(y)> is a PSD Gram matrix, which is preserved under integration. Further, the
integral returns a PD matrix if the distribution is not degenerate (λ > 0 and pk > 0 for at least
two distinct ks)

Part 2.1 For monotonicity in λ(> 0), in the case when K = 1, the derivative with respect to λ is
∂H(y)

∂λ
= −

∫ (
1 + log f(y)

)
· p1φ(y − λ) · (y − λ) dy

= −p1

∫
log f(y) · φ(y − λ) · (y − λ) dy

= −p1

∫
log f(y + λ) · φ(y) · (y) dy, (B.4)

where the first line removes constant integrals and the second shifts the variable. In order to show
that (B.4) is nonnegative, pair up y and −y for y > 0 and notice that, by assuming λ > 0,

φ(y + λ) ≤ φ(−y + λ)⇒ f(y + λ) ≤ f(−y + λ).

The bigger λ, the larger derivative it has.

Part 2.2 In general when K ≥ 1, we can write out the derivative as

∂H(y;λ,p)

∂λ
= −

∫ ∞
−∞

(
1 + log f(y)

) K∑
k=0

pkφ(y − kλ)(y − kλ)k dy

= −
K∑
k=1

∫ ∞
−∞

(1 + log f(y))
K∑
t=k

ptφ(y − tλ)(y − tλ) dy (B.5)

Define hk(y) =
∑K

t=k ptφ(y − tλ); we have

0 = −hk(y) log hk(y)
∣∣∣∞
−∞

=

∫ ∞
−∞

(1 + log hk(y))
K∑
t=k

ptφ(y − tλ)(y − tλ) dy (B.6)

Consider each term of k in (B.5) and add the corresponding terms from (B.6); using `k =∑k−1
s=0 psφ(y − sλ), we get

∂H(y;λ,p)

∂λ
= −

K∑
k=1

∫ ∞
−∞

log

(
1 +

`k(y)

hk(y)

)
K∑
t=k

φ(y − tλ)(y − tλ) dy. (B.7)

The only remaining task is to show that rk(y) = `k(y)
hk(y)

is monotone decreasing with respect to
y, which is sufficient to guarantee that (B.7) ≥ 0, due to the odd symmetry of the remaining
integrand parts around y = tλ. Take the derivative of rk(y) with respect to y:

r′k(y) =
`′k(y)hk(y)− `k(y)h′k(y)

h2
k(y)

=

∑
s<k≤t pspt

(
φ′s(y)φt(y)− φs(y)φ′t(y)

)
h2
k(y)

=
∑
s<k≤t

pspt
φ2
t (y)

h2
k(y)

(
φs(y)

φt(y)

)′
=
∑
s<k≤t

pspt
φ2
t (y)

h2
k(y)

(
φs(y)

φt(y)

)
· (sλ− tλ) ≤ 0,

where to simplify notations, we denote the composite function φs(y) = φ(y−sλ). The inequality
is strict if λ > 0 and pk 6= 0 for at least two k ∈ {0, . . . , K}.

117



Basic Property 2

Proposition B.4 (Proposition 4.5 in the main document; a lower bound for the IG of a design).
The IG score of a region sensing design has lower bounds with respect to its design parameters
(λ,p), as

I(γ; y | λ,p) ≥ 2qcq̄c(2Φ(λ
2
)− 1)2 ≥ 1

12
min{qc, q̄c}min{λ2, 32}, ∀1 ≤ c ≤ K, (B.8)

where qc = P (γ ≥ c) =
∑

κ≥c pκ, q̄c = 1− qc, and Φ(u) is the standard normal cdf.

Proof of Proposition B.4. To show (B.8), first inequality: Pick any 1 ≤ c ≤ K; let v = 1γ≥c
and v̂ = 1y>(c−1/2)λ be two binary truncations of the original variables, γ and y, respectively.
These truncations lose information:

I(γ; y | p, λ) ≥ I(v; v̂ | p, λ) = EvK
(
(v̂ | v) ‖ v̂

)
≥ 2

∑
v0∈{0,1}

P (v = v0) sup
v̂0

∣∣P (v̂ = v̂0 | v = v0)− P (v̂ = v̂0)
∣∣︸ ︷︷ ︸

,δ̂(v0,v̂0)

2
, (B.9)

where K(· ‖ ·) is the Kullback–Leibler divergence and the second line comes from Pinsker’s
inequality.

Consider any realization of v = v0 and choose v̂0 = v0; using the rule of total probability and
direct calculation,

δ̂(v0, v0) =
∣∣∣P (v̂ = v0 | v = v0)− P (v = v0)P (v̂ = v0 | v = v0)− P (v 6= v0)P (v̂ = v0 | v 6= v0)

∣∣∣
= P (v 6= v0)

∣∣∣P (v̂ = v0 | v = v0)− P (v̂ = v0 | v 6= v0)
∣∣∣

≥ P (v 6= v0)
[
Φ
(λ

2

)
−
(

1− Φ
(λ

2

))]
= P (v 6= v0)

(
2Φ
(λ

2

)
− 1
)
, (B.10)

where Φ(λ
2
) is a lower bound on the probability of correct estimation, based on the worst-case

draw of γ such that y cannot be more than λ
2

away from γ in the direction that leads to estimation
errors. Taking (B.10) to (B.9) yields the first part of the result.

To show (B.8), second inequality: So far we have shown an analytical lower bound for I(γ; y |
λ,p). To make the result even more interpretable, we can further numerically evaluate the Gaus-
sian tail distribution, to find two constants, C1 and C2, such that

Φ(x)− 1

2
=

∫ x

0

φ(u) du =

∫ x

0

1√
2π
e−

u2

2 du ≥ C1 min{x,C2}.

Since Φ(x) is monotone-increasing, we can fix C2 to find the worst difference quotient, Φ(x)/x,
∀x ∈ (0, C2]. In fact, we can directly assignC1 ≤ Φ(C2)/C2, because φ(u) is monotone-decreasing
as u increases. We choose C2 = 3

2
and C1 = 1√

12
, which yields(

2Φ
(λ

2

)
− 1
)2

≥ 1

12
min

{
λ2, 32

}
.
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Proposition B.5 (An upper bound for the IG of a design). When K = 1 and WLOG p1 ≤ 1
2
,

the upper bound of IG derived from Jensen’s inequality and max-entropy principle is I(γ; y |
λ,p) ≤ 1

2
p1λ

2, which is on the same order of (B.8) when λ < O(1). In the λ � 1 case, the IG
is naturally upper-bounded by a Bernoulli experiment with noiseless observation, H(B(p1)) =
−p1 log(p1)− (1−p1) log(1−p1) = Õ(p1). Therefore, Proposition B.4 is a good approximation
to the true IG in all scenarios. (See Figure B.1 for an empirical visualization.) The general upper
bound is not tight for general k > 1.

Proof. The upper bound can be shown by Jensen’s inequality and max-entropy principle. It is
also tight when k = 1. Omitting p and λ,

I(γ; y) = I(γ; γ + ε) = H(γ + ε) +H(γ + ε | γ) = H(γ + ε)−H(ε).

We only need to find the largest entropy for H(γ + ε) given p and λ. By Jensen’s inequality,
under the same mean and variance, a normal distribution has the largest entropy, where we have:

E(γ+ε) = E(γ)+E(ε) = p1λ, σ2
mar = Var(γ+ε) = Var(γ)+Var(ε)+2Cov(γ, ε) = p1λ

2+1.

We can then use a normal distribution with the above mean and variance as a upper bound to:

I(γ; y) = H(γ + ε)−H(ε) ≤ 1

2
log(2πeσ2

mar)−
1

2
log(2πe) =

1

2
log(1 + p1λ

2) ≤ 1

2
p1λ

2
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information gain

Figure B.1: Level sets of IG I(γ; y | λ, p1) for different values of p1 and λ, when k = 1. The
thin lines below each true value indicate IG upper bounds (Proposition B.5) and the dashed lines
are the phase-changing lower bound from Proposition B.4. The phase-changing bound is more
useful because it produces insights about optimal region selection, usually at the point of phase-
change, whereas the upper bound is non-informatively linear in the log-log plot.
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B.2.2 Minimum Information Gain of the Chosen Region in Each Iteration

This subsection aims to formalize the main observation in our main paper, which is that the
information gain of all of the chosen measurements from RSI remain consistently large, before
active search terminates with minimal Bayes risk. This observation implies a constant speed
at which the model uncertainty can be reduced in expectation, leading to the upper bounds on
sample complexity in Section B.2.3.

Recall that the Bayes risk is defined by ε̄t = min|Ŝ|=k
1
k
E[|Ŝ∆S| | πt], where ∆ is the symmetric

set difference operator. If we include the Bayes inference rule πt(β) ∝ π0(β)
∏t

τ=1 p(y | xτ ,β),
we can see that ε̄t is essentially a function of the collected dataDt = {(xτ , yτ ) : 1 ≤ τ ≤ t}. The
following lemma paraphrases Lemma 4.6 in the main document, with the time index t omitted.

Lemma B.6 (Minimum IG of the chosen regions). WLOG, assume n is a multiple of 2k. At any
step, given the data collection outcomes D and the current Bayes risk ε̄(D), we can always find
a region A of size at most n

k
, such that λ2 ≥ µ2

a
= kµ2

n
and ε̄(D)

2
≤ E[γA | D] ≤ 1− ε̄(D)

2
(we call

it Condition E), which further yields

I(γ; y | λ,p) ≥ I∗ε̄ = ε̄(D)
25k

min{kλ2, 32} ≥ ε̄(D)
25k

min{k2µ2
n
, 32}. (B.11)

Condition E

Lemma B.6 states the result in two steps: (a) the fact that the posterior model after collecting
data D still has large Bayes risk implies the existence of a very informative region that satisfies
Condition E and (b) sensing on this region indeed yields nontrivial information, measured in
terms of IG (B.11). We will split the proof into these two steps, accordingly.

Lemma B.7 (A region that satisfies Condition E). In 1d search with unit `2-norm measurements,
WLOG, assume n is a multiple of 2k. At any step, given the collected data D and the current
Bayes risk ε̄(D):

1. There always is a region B of size no larger than n
k

, such that λ2
B ≥ µ2

|B| = kµ2

n
and E[γB |

D] ≥ ε̄(D)
2

2. There always is a subregion A ⊂ B that satisfies Condition E:

λ2
A ≥

kµ2

n
and

ε̄(D)

2
≤ E[γA | D] ≤ 1− ε̄(D)

2

Proof. Part 1. Suppose the current minimizer of the posterior Bayes risk is Ŝ = Ŝ(D) =
arg maxS′

∑
̂∈S′ E[β̂ | D]. Evenly split the domain into K disjoint and contiguous regions

and take their largest disjoint and contiguous subsets that do not intersect with Ŝ. There are at
most G ≤ 2K such sets; let them be B1, . . . , BG. We use γ(Bg) =

∑
j∈Bg 1>j β to denote the

120



corresponding region latent variables in a region Bg. The region B = arg maxBg′ E[γ(Bg′) | D]
yields

E[γ(B) | D] ≥
∑G

g′=1 E[γ(Bg′) | D]

2K
=
K − E[γ(Ŝ) | D]

2K
=
ε̄(D)

2
,

due to the additivity,
∑

g γ(Bg) + γ(Ŝ) =
∑

j∈[n] 1
>
j β = K.

Part 2. Let A ⊂ B be the smallest contiguous subset such that E[γ(A) | D] ≥ ε̄(D)
2

. Notice the
maximum certainty of any point in j ∈ A ⊆ X \ Ŝ is

E[βj | D] ≤ min
̂∈Ŝ

(1− E[β̂ | D]) ≤ 1− ε̄(D).

We then use the additivity of expectation to obtain

E[γ(A) | D] ≤ E[γ(A\{j}) | D]+E[βj | D] <
ε̄(D)

2
+(1−ε̄(D)) = 1− ε̄(D)

2
, ∀j ∈ A, i.e., j 6∈ Ŝ.

IG of the Chosen Region

The following obtains Lemma B.8 with additive terms of K2. It provides advantages over the
straight-forward calculation in the main paper (which yields results with multiplicative factors of
K).

Lemma B.8 (Maximum IG when the outcome expectation is bounded). For any design on K-
sparse models, if there exists 0 < ε̄ < 1 and a design (x, A, λ, γ) such that ε̄

2
≤ Eγ ≤ 1 − ε̄

2
,

where γ = x>β is latent variable of signal counts in the measurement region, then the informa-
tion of the experiment is lower-bounded by

I(γ; y | p, λ) ≥ ε̄

25K
min{Kλ2, 32}

Proof. We use the fact that IG is concave in p and we only check the vertices of the simplex of
feasible probabilities to find its lower bound:

pk ≥ 0, k = 1, . . . , K, (Constraint H1, . . . , HK);∑K
k=1 pk ≤ 1, (Constraint H0);∑K
k=1 kpk ≥ ε̄

2
, (Constraint E1);∑K

k=1 k(1− pk) ≥ ε̄
2
, (Constraint E2),

where p0 = 1 − ∑K
k=1 pk can be decided explicitly. All vertices of the simplex, including

infeasible vertices, can be found by solving K linear systems constructed from the (K + 3)
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linear constraints. Since E1 and E2 cannot be satisfied simultaneously for any ε̄ < 1, we can
enumerate all the remaining vertices and write out their respective nonzero values:

pk = 1, from ∩k′ 6=k Hk′ ;
pk + p` = 1, kpk + `p` = ε̄

2
, from ∩k′ 6=k,` Hk′ ∩ E1;

pk + p` = 1, kpk + `p` = 1− ε̄
2
, from ∩k′ 6=k,` Hk′ ∩ E2.

The first row is infeasible when ε̄ > 0. We then bound the IG for the other rows. Without loss
of generality, assume ` < k. Then, all feasible cases require ` = 0 and yield min{pk, p`} ≥ ε̄

2k
.

Using Proposition 4.5,

I(v;u | p, λ) ≥ ε̄

25K
min{K2λ2, 32} ≥ ε̄

25K
min{Kλ2, 32}.

Proof of Lemma B.6. The design from Lemma B.7 satisfies both Condition E and λ ≥ Kµ2

n
,

where we can then apply Lemma B.8 to obtain the conclusion.

B.2.3 The Proof of Theorem 4.4

Lemma B.6 implies that the entropy in the posterior distribution,H(β | πt) = −∑β πt(β) log πt(β),
decreases at least by I∗ε with every measurement in expectation, starting with H(β | π0) ≤
k log n. Since the posterior entropy cannot be negative, RSI must terminates in finite times in
expectation.

Theorem B.9 (Theorem 4.4 in the main document; sample complexity of RSI). In active search
of k sparse signals with strength µ in 1d physical space of size n(≥ 2k), given any ε > 0 as
tolerance of posterior Bayes risk, RSI using region sensing has bounded expected number of
actual measurements before stopping,

T̄ε = E[min{T : ε̄(DT ) ≤ ε}] ≤ 50
( n
µ2

+
k2

9

)
log2

(2

ε

)
log
(n
ε

)
= Õ

( n
µ2

+ k2
)
,

where the expectation is taken over the prior distribution and sensing outcomes.

The Simple Approach

Definition B.10 (Stopping time). Define Tε = minT {ε̄(DT ) ≤ ε} to be a random stopping
time for an experiment to first yield less than ε posterior risk, ε̄(Dτ ) = 1

K
E[S∆Ŝ | Dτ ] ≤ ε.

Tε = Tε(τ) can be determined given τ .

Lemma B.11 (Simple Expectations on the Number of Measurements for Small Errors). Given
any ε1 > 0, t0 ≥ 0, and the first t0 data collection outcomes Dt0 , the expected number of
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additional measurements before the RSI stops with posterior risk less than ε1 is bounded in terms
of H0 = H(β | π0) and Iε1 defined in Lemma B.6, as

E(Tε1 − Tε0 | Dt0) ≤
H0

Iε1
≤ 25H0

ε
max

{ n

kµ2
,
k

9

}
.

Remark B.12. By taking t0 = 0 and H0 ≤ k log n, Lemma B.11 implies

T̄ε ≤
25 log(n)

ε1
max

{ n
µ2
,
k2

9

}
.

Proof of Lemma B.11. Let t = t0 + s for any s ≥ 0 and Dt be the random variable for the data
collection outcomes until step t. According to Lemma B.6,

(Tε1 | Dt) > t ⇒ H(β | Dt)− Ey
[
H(β | Dt ∪ {x, y}) | Dt,xt+1

]
≥ Iε1

⇒ H(β | Dt) ≥ Iε1 + Ey
[
H(β | Dt ∪ {x, y}) | Dt,xt+1

]

Taking expectation over

{Dt : (Tε1 | Dt) > t,Dt0} = {Dt : ε̄(Dt′) > ε1,∀t′ ≤ t,Dt0}

yields

E
[
H(β | Dt) | Tε1 > t,Dt0

]
≥ Iε1 + E

[
H(β | Dt+1) | Tε1 > t,Dt0

]
, (B.12)

where the expectation is taken over (Dt | Dt0 , Tε1 > t) and (Dt+1 | Dt0 , Tε1 > t), respectively.

Next, we hope to apply Lemma B.6 at step (t + 1), but we have to make sure that the condition
still holds, which is not directly implied by (B.12). To guarantee the conditions, we divide Dt+1

into two cases and use the nonnegativity of entropy to relax the second case,

E
[
Ht+1(β) | Tε1 > t,Dt0

]
= P

(
Tε1 > t+ 1 | Tε1 > t,Dt0

)
E
[
Ht+1(β) | Tε1 > t+ 1, Dt0

]
+ P

(
Tε1 = t+ 1 | Tε1 > t,Dt0

)
E
[
Ht+1(β) | Tε1 = t+ 1, Dt0

]
≥ P

(
Tε1 > t+ 1 | Tε1 > t,Dt0

)
E
[
Ht+1(β) | Tε1 > t+ 1, Dt0

]
.
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We can then iterate beginning with t = t0 as

E
[
Ht0(β) | Dt0

]
≥ P

(
Tε1 > t0 | Dt0

)
E
[
Ht0(β) | Tε1 > t0, Dt0

]
≥ P

(
Tε1 > t0 | Dt0

)(
Iε1 + P

(
Tε1 > t0 + 1 | Tε1 > t0, Dt0

)
E
[
Ht0+1(β) | Tε1 > t0 + 1, Dt0

])

= P
(
Tε1 > t0 | Dt0

)
Iε1 + P

(
Tε1 > t0 + 1 | Dt0

)
E
[
Ht0+1(β) | Tε1 > t0 + 1, Dt0

]
≥ P

(
Tε1 > t0 | Dt0

)
Iε1 + P

(
Tε1 > t0 + 1 | Dt0

)(
Iε1+

+ P
(
Tε1 > t0 + 2 | Tε1 > t0 + 1, Dt0

)
E
[
Ht0+2(β) | Tε1 > t0 + 2, Dt0

])
≥ P

(
Tε1 > t0 | Dt0

)
Iε1 + P

(
Tε1 > t0 + 1 | Dt0

)
Iε1

+ P
(
Tε1 > t0 + 2 | Dt0

)
E
[
Ht0+2(β) | Tε1 > t0 + 2, Dt0

]
≥ . . .

≥ Iε1

∞∑
s=0

P
(
Tε1 > t0 + s | Dt0

)
= Iε1E

(
Tε1 − Tε0 | Dt0

)
,

which leads to the conclusion given E[Ht0(β) | Dt0 ] = H(β | Dt0) = H0.

The Complex Approach

Lemma B.13 (Max entropy given Bayes error). For a K-sparse model, β ∈ S
(
n
K

)
, given ε̄ ≥

1
K

∑
j∈Ŝ P (βj = 0) = 1

K
E|S∆Ŝ|, the posterior entropy is at most

H(β) ≤ KH(B(ε̄)) +Kε̄ log n, (B.13)

≤ K

2r
(
2r log 2 + log n

)
, if ε̄ ≤ 1

2r
,∀r = 0, 1, 2, . . . (B.14)

whereH(B(ε̄)) = −ε̄ log ε̄−(1− ε̄) log(1− ε̄) is denoted as the entropy of a Bernoulli experiment
with ε̄ success rate.

Proof. Part 1. Let S = {S1, . . . , SK} be the set of supports of the random variable β that is
modeled by the posterior distribution given the history data that leads to the current state. We
can compute the expectation as

K∑
k=0

kP (|S∆Ŝ| = k) = E|Ŝ∆S| ≤ Kε̄. (B.15)
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Define pk = pk(Ŝ) = P (|S∆Ŝ| = k); the total entropy can be bounded:

H(β) = −
K∑
k=0

∑
S:|S∆Ŝ|=k

π(βS) log π(βS) (B.16)

≤ −
K∑
k=0

pk log

(
pk(

K
K−k

)(
n−K
k

)) (B.17)

≤ −
K∑
k=0

pk log pk +
K∑
k=0

pk log

(
K

k

)
+

K∑
k=0

kpk log n (B.18)

= −
K∑
k=0

pk log pk +
K∑
k=0

pk log

(
K

k

)
+Kε̄ log n (B.19)

where (B.16) separate the joint probabilities into (K + 1) groups according to their values of
|S∆Ŝ|. Inside every group, (B.17) realizes a uniform distribution, which maximizes the entropy
given any value of group marginal probability, pk. We then relax the number of combination by
log
(

x
K−k

)
≤ (K − k) log x, which yields (B.18). From there, we use the condition, reformulated

as (B.15), to obtain (B.19).

The next step uses the principle of maximum entropy to realize the optimizer for (B.19), when
the moments are bounded by (B.15). The Lagrangian of the constrained optimization is

L(p; c, ρ) = −
K∑
k=0

pk log pk +
K∑
k=0

pk log

(
K

k

)
+ c

(
K∑
k=0

pk − 1

)
+ ρ

(
K∑
k=0

kpk −Kε̄
)
.

Setting the derivatives to zero yields

0 =
∂L

∂pk
= − log pk + log

(
K

k

)
+ 1 + c+ kρ ⇒ pk ∝

(
K

k

)
(eρ)k,

which implies that pk is the probability of k outcomes in a binomial distribution with K rounds
and an iid outcome probability of p = 1

1+e−ρ
in each round. Since the expectation of the total out-

come is Kε̄, we have p = ε̄. Given the max-entropy binomial distribution and let (X1, . . . , XK)
to be the outcome of each round; the entropy of their sum is upper bounded by the sum of their
marginal entropies, which is K times the entropy of H(ε̄). So, we proved (B.13).

Part 2. To move forward to (B.14), we need an interim result when ε̄ ≤ 1
2
:

H(ε̄) ≤ −2ε̄ log ε̄ ⇒ H(β) ≤ −2Kε̄ log ε̄+Kε̄ logN, (B.20)

To show the interim result, let `(ε̄) = −ε̄ log ε̄ + (1 − ε̄) log(1 − ε̄); its derivatives are `′(ε̄) =
− log ε̄ − log(1 − ε̄) − 2 and `′′(ε̄) = −1

ε̄
+ 1

1−ε̄ . The concavity of `(ε̄) in 0 ≤ ε̄ ≤ 1
2

where
`′′(ε̄) ≤ 0 and `(0) = `(1

2
) = 0 yield `(ε̄) ≥ 0, i.e., H(ε̄) ≤ −2ε̄ log ε̄,∀0 ≤ ε̄ ≤ 1

2
.

Finally, (B.14) trivially holds when r = 0. Otherwise, substitute ε̄ ≤ 2−r with r ≥ 1 in (B.20)
yields the final conclusion.
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Proof of the final theorem. Let εr = 2−r and Tεr = minT {ε̄(DT ) ≤ εr}, for r = 0, 1, . . . , dlog2(1
ε
)e.

From Lemma B.11, we have

E(Tεr+1 − Tεr | Dt, Tεr ≤ t) ≤ H(β | Dt)

I∗εr+1

. (B.21)

We can use Lemma B.6 with εr+1 = 2−r−1 to show

I∗εr+1
≥ εr+1

25k
min

{k2µ2

n
, 9
}
≥ 1

50k2r
min

{k2µ2

n
, 9
}

and Lemma B.13 with ε̄(Dt) ≤ εr = 2−r to bound

H(β | Dt) ≤
k

2r
(2r log 2 + log n).

Put both bounds to (B.21) to get

E(Tεr+1 − Tεr | Dt, Tεr ≤ t) ≤ 50 max
{ n
µ2
,
k2

9

}
(2r log 2 + log n).

Notice the right side is independent of Dt and t, using linearity of expectations,

E(Tεr+1 − Tεr) ≤ 50 max
{ n
µ2
,
k2

9

}
(2r log 2 + log n),

which further implies, using R = dlog2
1
ε
e < 1 + log2

1
ε
,

ETε ≤
R−1∑
r=0

E
(
Tεr+1 − Tεr

)
≤ 50 max

{
n

µ2
,
k2

9

} R−1∑
r=0

(2r log 2 + log n)

≤ 50 max

{
n

µ2
,
k2

9

}
R((R− 1) log 2 + log n)

≤ 50 max

{
n

µ2
,
k2

9

}
log2

2

ε
log

n

ε
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Peter Auer, Nicoló Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235–256, 2002. 43

Erlend Aune, Jo Eidsvik, and Yvo Pokern. Iterative numerical methods for sampling from high
dimensional gaussian distributions. Statistics and Computing, 23(4):501–521, 2013. 88

Elif Ayvali, Rangaprasad Arun Srivatsan, Long Wang, Rajarshi Roy, Nabil Simaan, and Howie
Choset. Using bayesian optimization to guide probing of a flexible environment for simul-
taneous registration and stiffness mapping. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 931–936. IEEE, 2016. 102

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In NIPS, volume 14, pages 585–591, 2001. 10
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