
Exploring Weakly Labeled Data Across the
Noise-Bias Spectrum

Robert W. H. Fisher

April 2016
CMU-ML-16-101

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Reid Simmons, Chair

Geoffrey Gordon
Carolyn Penstein Rosé

Dieter Fox, University of Washington

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2016 Robert W. H. Fisher

This research was sponsored by the National Science Foundation grant numbers DGE0750271, DGE1252522,
EEC0540865, and IIS1450543.

Keywords: Weakly labeled data, spectral methods, latent variable models

Thanks to all my friends and family for their support, particularly my wife Katherine, without
whom none of this would be possible.

iv

Abstract
As the availability of unstructured data on the web continues to increase, it is

becoming increasingly necessary to develop machine learning methods that rely less
on human annotated training data. In this thesis, we present methods for learning
from weakly labeled data. We present a unifying framework to understand weakly
labeled data in terms of bias and noise and identify methods that are well suited to
learning from certain types of weak labels. To compensate for the tremendous sizes
of weakly labeled datasets, we leverage computationally efficient and statistically
consistent spectral methods. Using these methods, we present results from four di-
verse, real-world applications coupled with a unifying simulation environment. This
allows us to make general observations that would not be apparent when examining
any one application on its own. These contributions allow us to significantly improve
prediction when labeled data is available, and they also make learning tractable when
the cost of acquiring annotated data is prohibitively high.

vi

Acknowledgments
I would chiefly like to acknowledge my advisor Reid Simmons, and the rest of

my thesis committee, Geoff Gordon, Carolyn Rosé, and Dieter Fox. Thanks also to
the many colleagues who have provided valuable contributions to this work. In par-
ticular Tom Kollar, Ankhur Parikh, Maxim Makatchev, Eleanor Avrunin, Max Tom-
linson, Miriam Robinson, Jayant Krishnamurthy, and the entire staff of the Human
Engineering Research Laboratory. Finally thanks to the National Science Founda-
tion Graduate Fellowship program, the Quality of Life Technology Center, and the
American Rewards for College Scientists program for their generous financial sup-
port.

viii

Contents

1 Introduction 1

2 Related Work 5
2.1 Background . 5

2.1.1 Latent Variable Methods . 5
2.1.2 Spectral Hidden Markov Model . 6
2.1.3 Discourse Analysis . 9

2.2 Related Work . 11

3 Methodology 15
3.1 Acquiring Annotated Data . 16

3.1.1 Crowdsourcing . 16
3.1.2 Expert Domains . 18
3.1.3 Personalized Models . 19

3.2 Weakly Labeled Data . 19
3.3 Simulation Environment for Weakly Labeled and Unlabeled Data 23
3.4 Using Bootstrapping and Cross-training for Unlabeled Data 24
3.5 Improving the Quality of Weakly Labeled Data 27

3.5.1 Internal Error Correction for Noisy Data 27
3.5.2 Active Training for Weakly Labeled Data 29
3.5.3 Learning Weights for Weakly Labeled Data 32
3.5.4 A Combined Approach to Improving Data Quality 34

3.6 Overview of Applications . 37

4 InContext Smartphone Application 43
4.1 Introduction . 43
4.2 Dataset . 45
4.3 Weakly Labeled Data . 47
4.4 System Overview . 49

4.4.1 Phone Posture Recognition . 49
4.4.2 Voice Activity Detection . 50
4.4.3 Smoothing of Information Extraction Output 52
4.4.4 Preference Classification . 52
4.4.5 Active Learning . 54

ix

4.5 Results . 56
4.6 Conclusions . 58

5 The Virtual Seating Coach System 59
5.1 Introduction . 59
5.2 The Virtual Seating Coach System . 60
5.3 Weakly Labeled Data . 62
5.4 Spectral Hidden Markov Models . 64
5.5 Decision Trees . 66
5.6 Results . 67
5.7 Conclusions . 69

6 Discourse Analysis 71
6.1 Introduction . 71
6.2 Problem Definition and Dataset . 72
6.3 Approach . 75

6.3.1 Spectral Learning . 76
6.4 Weakly Labeled Data . 77
6.5 Results . 80
6.6 Conclusions . 81

7 MOOC Thread Structure Identification 83
7.1 Introduction . 83
7.2 Weakly Labeled Dataset . 85
7.3 Method . 87
7.4 Results . 89
7.5 Conclusion . 90

8 Conclusions and Future Work 93

Bibliography 97

x

List of Figures

2.1 Graphical Dependencies of a Model Without Latent Variables (Left) and With
(Right) . 5

2.2 Running time of EM compared to spectral method as function of the size of
training set (left [64]) and the number of hidden states (right [14]). The Y axis
obeys a logarithmic scale in both figures. 7

2.3 Discourse Relations in a Two Party Conversation 10

3.1 Some examples of weakly labeled datasets . 22
3.2 Simulated HMM Results in the Noise-Bias Spectrum 25
3.3 Predictive Accuracy of HMM with Bootstrapping and Cross Training with a CRF 27
3.4 Effects of Internal Error Correction . 29
3.5 Effects of Training Weights on Predictive Performance 33
3.6 Combined Data Quality Improvements for Biased Dataset (Left) and Noisy Dataset

(Right) . 35
3.7 Combined Data Quality Improvements for Dataset with Noise and Bias 36
3.8 Empirical Noise and Bias Across Four Applications 38

4.1 The InContext framework . 45
4.2 User interface for data collection . 46
4.3 InContext Data in the Noise-Bias Spectrum . 48
4.4 Comparison of preference classifiers . 56
4.5 Active learning curve . 57

5.1 A researcher demonstrating the use of the Virtual Coach system 61
5.2 Weakly Labeled Virtual Coach Data in the Noise Bias Spectrum 64
5.3 A Decision Tree Showing the Compliance Predictions of a User 67
5.4 Empirical Training Curve . 68

6.1 Overview of all relations occurring in the Penn Discourse Treebank 74
6.2 An example of the latent variable discourse parsing model taken from the Penn

Discourse Treebank Dataset. The relation here is an example of a cause attribu-
tion relation. 75

6.3 Empirical Arrangement of Datasources in the Noise-Bias Spectrum 77
6.4 Empirical results for labeling of implicit relations. 80

7.1 Noise-Bias Spectrum of Weakly Labeled MOOC 86

xi

7.2 Empirical Prediction Results Using Coursera Data 89

xii

List of Tables

3.1 Types of Datasets Created for Simulation Results 34

4.1 The representation of a user’s context . 47
4.2 Voice activity detection features . 51
4.3 Voice activity detection accuracy . 51
4.4 Effects of voice activity detection and phone posture recognition (Information

extraction) . 56

5.1 The features computed using the Virtual Coach sensors 62
5.2 Effects of Data Improvement Methods for the Virtual Coach 69

7.1 MOOC Datasets . 85
7.2 Predictive Precision Results . 90

xiii

xiv

Chapter 1

Introduction

The previous thirty years have represented the most staggering exponential growth of recorded

information in human history. In 1984, only 1,000 computer hosts were connected to the internet.

By 2012 this number had risen to 2.1 billion. In 2004, Facebook was launched in a college

dorm-room. By 2010, 3.5 billion pieces of content were being shared on Facebook in a single

week—by 2011 this number had doubled again to 7 billion pieces of content per week. Data

has become the most valuable commodity of the information age—data in such great volume

that no team of human analysts could ever hope to learn anything significant without the use of

automated data analysis methods. However, the vast majority of data on the web is unstructured

and unlabeled, whereas many state of the art machine learning techniques continue to rely on

human annotated datasets. This leads to unrealized potential, wherein learning algorithms are

training on datasets that account for tiny fractions of the data that is available. To give a concrete

example, we may consider a recently released dataset containing human annotations denoting

the activity of tigers or dogs in high definition video [18]. This dataset contains annotated video,

indicating when the animals are performing specific actions, such as walking or jumping. The

total length of video content in this dataset is two hours, meanwhile, five hours of video footage

is uploaded to YouTube every second. If we could extract a training signal from even one in

every half billion videos on Youtube, we could build a training set that would dwarf the size of a

1

hand-labeled dataset.

In this thesis, we explore a variety of techniques for reducing the need for human supervision

in machine learning, ranging across a variety of real world applications. Fully labeled data has

been shown to be very useful for many learning applications, but labeled examples generally

only represent a tiny fraction of the available volume of data. Unlabeled datasets, on the other

hand, are widely available but are much less useful for most learning tasks. We explore a middle

ground between these two extremes, weakly labeled data, which can be labeled using automated

heuristic methods and subsequently used for training. We introduce the Noise-Bias spectrum

as a framework for formalizing the quality of weakly labeled data. In this space, we identify

the noise of the training labels and the bias of the feature space distribution of the training data

as properties of a weakly labeled dataset. Noise is defined simply using the probability that

training labels differ from the ground truth, and bias is measured using the KullbackLeibler

divergence in the feature space between the weakly labeled data and the testing environment. We

can compensate for noise with the use of Internal Error Correction (IEC), which allows a model

to reclassify points in the training set that are believed to be erroneously labeled. To combat bias,

we can employ density sampling, which will allow us to select training data that most closely

reflects the data the model will be asked to make predictions upon.

We also discuss the use of unlabeled data in learning latent variable models over high dimen-

sions. When using unlabeled data, we investigate some of the classical approaches of bootstrap-

ping and cross-training. Unfortunately in many instances these approaches simply allow a model

to self-reinforce its existing beliefs, limiting the effectiveness of these approaches. However,

unlabeled data can still be quite useful. Often when learning latent variable models, empirical

n-grams must be computed using training data, and using unlabeled data is an extremely effective

way to reduce the sparsity of these matrices.

The applications that we explore are quite computationally difficult due to the high volume

of training data afforded by the use of weakly labeled data, coupled with the propensity towards

local optima in optimization created by the latent variable approach. Fortunately, a class of al-

2

gorithms known as spectral methods are uniquely equipped to deal with both of these problems.

Spectral methods are statistically consistent, meaning they are not susceptible to local optima,

and in practice they are orders of magnitude faster than other comparable methods. Using spec-

tral methods, coupled with weakly labeled and unlabeled data, we will present results from a

variety of applications.

In the personalized healthcare space, we discuss the virtual seating coach, a platform that

monitors the pressure relief habits of power wheelchair users. We present a personalized learning

algorithm that uses GPS, accelerometer, temperature, time of day, and day of the week to identify

contexts in which a user is most likely to conduct pressure relief, allowing us to intelligently

remind users to perform exercises in situations that are most convenient.

In the natural language processing domain, we consider textual discourse parsing. Discourse

parsing is the process of discovering inter-sentential relations of a document, for instance when

one unit of text provides evidence for a claim made elsewhere. For this task, we leverage large

unlabeled and weakly labeled datasets, allowing us to significantly outperform traditional fully

supervised parsers.

Related to the discourse parsing application, we also consider learning response relations

of posts between students participating in a Massively Online Open Course (MOOC). As the

number of students in a MOOC grows, it becomes increasingly difficult for faculty and paid

instructors to provide all of the academic support needed by the students. This means it is vital

to encourage students to support one another. By applying our discourse parsing methods to

conversations between students, we are able to identify the structure of forum threads, which

could be used to identify productive conversations or potentially helpful student mentors.

In each of these applications, the use of weakly labeled and unlabeled data allows us to

achieve significant performance gains. In some of these applications, such as textual discourse

parsing, large labeled datasets exist, but our approaches significantly outperform fully supervised

methods. In other applications, such as learning response relations in a MOOC, labeled datasets

do not exist—all but necessitating the use of weakly labeled data. We identify the position in

3

the Noise-Bias spectrum for each source of weakly labeled training data across each application.

Coupled with experiments using simulated training data, we are able to make several generaliz-

able observations regarding the efficacy of using weakly labeled training data in various points

of the Noise-Bias spectrum and the best methods to use for each region. Taken together, these

results represent a significant contribution towards reducing the need for human annotation, in

an age when unlabeled data is becoming ever more prevalent.

4

Chapter 2

Related Work

2.1 Background

2.1.1 Latent Variable Methods

Latent variable models, such as Hidden Markov Models and Conditional Random Fields, have

long been used successfully in many difficult prediction and modeling tasks, particularly when

observations appear in continuous sequences. For example, we may have a sequence of observed

symptoms from a patient in the hospital, while the underlaying condition of the patient’s health

remains unobserved. By explicitly assuming the existence of these hidden states, we can improve

predictive capability without needing to statistically model the joint distribution of the entire

sequence of observations.

Figure 2.1.1 provides an illustrative example of latent variable models, using the symptoms

Figure 2.1: Graphical Dependencies of a Model Without Latent Variables (Left) and With (Right)

5

of a patient in a hospital as observed variables. Without latent variable models, the 4 symptom

variables we observe are dependent on one another, so we must model the joint distribution

P (Runny Nose, Sore Throat, Fever, Aches). However, if we assume the existence of a latent

variable that indicates if the patient has the flu, these variables become conditionally independent

given the flu variable. This simplifies the problem computationally when compared to working

with the joint distribution, but this model is also significantly more expressive than one that

assumes each variable is strictly independent.

Unfortunately, introducing latent variables to our representation significantly complicates

the optimization problem entailed in learning from data. Due to the many possible ways we

may credit empirical observations to unobserved latent variables, this optimization space include

many local optima that can make traditional approaches like Expectation-Maximization ineffec-

tive. Fortunately, spectral methods, which are not prone to local optima, have been developed in

recent years for many different latent variable models.

2.1.2 Spectral Hidden Markov Model

The addition of weakly labeled and unlabeled data can result in an exponential increase in the

size of our training sets. This can lead to intractable computational requirements for large scale

problems, such as mining text data from the web. This necessitates the use of more computa-

tionally efficient optimization procedures. There has recently been growing interest in a breed

of algorithms based on spectral decomposition, which are well suited to training with unlabeled

data. Spectral algorithms utilize matrix factorization algorithms such as Singular Value Decom-

position and rank factorization to discover low-rank decompositions of matrices or tensors of

empirical moments. Spectral algorithms tend to be much faster—sometimes orders of magni-

tude faster—than competing approaches, which makes them ideal for tackling large datasets.

Figure 2.1.2 compares the running time of a spectral method and an Expectation Maximization

(EM) approach. The left figure shows that when training a Hidden Markov Model (HMM), EM

6

Figure 2.2: Running time of EM compared to spectral method as function of the size of training
set (left [64]) and the number of hidden states (right [14]). The Y axis obeys a logarithmic scale
in both figures.

runs in exponential time as a function of training set size, while the spectral method is roughly

linear with regards to the number of examples in the dataset [64]. This results in a maximal

running time of 33 minutes for the EM algorithm, and just 1 second for the spectral method.

Similarly, the right figure shows that EM runs exponentially in the number of hidden variable

states when training a Probabilistic Context-Free Grammar (PCFG) [14]. The worst case run-

ning time discrepancy in this case is 187 hours with EM and 9 hours with a spectral method.

This tremendous discrepancy in running time compared to traditional methods allows us to

overcome the increase in training set size required to include unlabeled and weakly labeled data

in our training sets. Spectral methods also have an additional benefit of statistical consistency,

meaning that they avoid local optima during training. This often results in a slight increase in

classification accuracy, on top of the exponential decrease in running time [14].

Spectral methods have been developed for a variety of tasks, including topic modeling, Prob-

abilistic Context Free Grammars (PCFG), data clustering, and Hidden Markov Models (HMMs).

In this section, we will describe the spectral learning process for a Hidden Markov Model, which

is an approach we will use for many sequential learning problems encountered in this thesis.

One of the first algorithms for spectral learning of HMMs was introduced in [32], and this is the

7

approach described in this section.

Our specified model requires learning three parameters: the initial state distribution ~π, the

state transition matrix T , and the observation matrix, Oij , for observation i and latent state j.

These parameter matrices define the model completely, but are difficult to learn directly. Instead,

the spectral formulation of the model has us learning the observable operators of the model in a

reduced dimensionality subspace. If we define the matrix Ax as

Ax = Tdiag(Ox,1...Ox,m)

Then the following equality holds:

Pr[x1...xt] = ~1TmAxt ...Ax1~π

Using this formulation of the model, we need to learn the matrixAx and the vector ~π. To compute

these parameters, we use the unigram, bigram, and trigram probability matrices. We denote the

unigram matrix as P1, the bigram matrix as P2,1, and the trigram matrix as P3,x,1, with one trigram

matrix for each value of x. Define these matrices as follows:

[P1]i = Pr[x1 = i]

[P2,1]ij = Pr[x2 = i, x1 = j]

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j] ∀x

Spectral latent variable models utilize subspace identification to learn the model dynamics

in a reduced dimensionality space. If we assume that the dimensionality of this subspace is no

less than the rank of the parameter matrices O and T , then the model learned in the subspace is

equivalent to the model from the original feature space. There are different methods of projecting

the data into this subspace, but one convenient approach is to take the left Singular Values of the

8

bigram matrix P2,1. We denote this subspace transformation matrix as U ∈ Rn×m. If we denote

the subspace model parameters as πU , TU , and AU , these parameters can be easily learned using

factorization over the fully observable matrices defined above. Proofs of all equalities given in

this section are available in [32].

π̂U = UTP1

ÂU = UTP3,x,1(U
TP2,1)

+ ∀x

We see here that computing the parameters of the spectral HMM only requires a series of

matrix operations and the computation of the singular values of the bigram matrix—meaning the

parameters can be computed extremely quickly, particularly on parallel or distributed hardware.

However, the empirical n-gram matrices can be very sparse for high-dimensional problems, even

in the reduced dimensionality subspace. And yet, if class labels are not included as part of the

observation space, then unlabeled data can be used to compute the empirical unigram, bigram,

and trigrams. For applications with large volumes of unlabeled data, such as text parsing appli-

cations, this approach can yield stable and accurate estimates of the empirical n-grams.

2.1.3 Discourse Analysis

Discourse parsing is a fundamental task in natural language processing that entails the discovery

of the latent relational structure in a multi-sentence piece of text. Unlike semantic and syntactic

parsing, which are used for single sentence parsing, discourse parsing is used to discover inter-

sentential relations in longer pieces of text. Without discourse, parsing methods can only be used

to understand documents as sequences of unrelated sentences. Discourse relations may include

explanatory, contradictory, or elaboration relations. Figure 2.1.3 shows some possible discourse

relations between utterances occurring in a conversation between a student and a teacher.

Discourse parsing can be reduced to three separate tasks. First, the text must be decomposed

9

Figure 2.3: Discourse Relations in a Two Party Conversation

into elementary discourse units, or EDUs, which may or may not coincide with sentence bound-

aries. The EDUs are often independent clauses that may be connected with conjunctions. After

the text has been partitioned into EDUs, the discourse structure must be identified. This requires

us to identify all pairs of EDUs that will be connected with some discourse relation. These re-

lational links induce the skeletal structure of the discourse parse tree. Finally, each connection

identified in the previous step must be labeled using a known set of relations. Examples of these

discourse relations include concession, causal, and instantiation relations. In some frameworks,

such as the Penn Discourse Treebank (PDTB), only adjacent discourse units are connected with

a discourse relation, yielding parse sequences rather than parse trees. In other approaches, such

as Rhetorical Structure Theory (RST) more complex discourse structures are permitted.

Some relations are induced by specific connective words in the text. For example, a contrast

relation may be explicitly revealed by the conjunction but. Sentence (1) demonstrates an explicit

relation with two EDUs, connected by a coordinating connective.

(1) “The rapid expansion of the Bitcoin market initially led to huge gains, but recent

electronic attacks of prolific banking services have resulted in a catastrophic free-fall

of the digital currency’s value”.

Simple classifiers using only the text of the discourse connective with POS tags can find

explicit relations with high accuracy [43]. For comparison, sentence (2) shows an example of the

10

more difficult implicit relation. In this sentence, two EDUs are connected with an explanatory

relation, shown in bold, although the connective word does not occur in the text.

(2) “But a few funds have taken other defensive steps. Some have raised their cash

positions to record levels. [BECAUSE] High cash positions help buffer a fund when

the market falls.”

Many relations can be expressed in either implicit or explicit forms, however some relations,

such as response relations, only occur implicitly. Most discourse parsing methods are primarily

devoted to the more difficult problem of learning implicit relations. However, explicit relations

identified with a simple classifier make for a high volume dataset with very little noise, although

this type of training data will only represent a biased region of the feature space due to the

exclusion of implicit relations.

2.2 Related Work

Researchers have been working with weakly labeled data for decades, although the notion of

weakness is often confined to noise in the training data labels. The generalized expectation cri-

teria was introduced as one of the early efforts to exploit the specific structure of weakly labeled

data using expectation constraints [46]. This work demonstrated that weakly labeled data can

be made much more useful when it is not simply used as labeled data. Similar approaches us-

ing weakly labeled data have been successfully employed for tasks ranging from visual object

classification [6] to logical relation extraction from unstructured text [51]. An increasingly pop-

ular source of weakly labeled data is crowdsourcing, in which paid annotators remotely perform

labeling micro-tasks for clients. Research has shown that the effectiveness of these services is

extremely sensitive to the design of the micro-task being performed and the incentive levels of-

fered to annotators [38]. These labels are also inherently noisy, with some researchers suggesting

that getting a higher volume of noisier labels from annotators is more desirable for all parties in-

volved [39], because of validation tools such as inter-annotator agreement. Unfortunately, this

11

kind of approach is non-viable for tasks that require a high level of annotator expertise.

In this thesis, we will be examining four applications in detail. The first application is deter-

mining smartphone interruptibility. Researchers have been studying interruptibility in the field

of human-computer interaction for many years. This research was initially in the domain of

desktop computers, when multi-tasking applications began introducing irritating interruptions to

users while they worked. Early research focused on using only information about the state of

the user’s software to determine interruptibility [60], but more recent work has instead been us-

ing sensors to perceive the user’s environment in order to achieve context-aware interruptibility

[26, 30]. The growing popularity of mobile devices has reinvigorated interest in determining

interruptibility. Many users have a consistent internal model of when and why they want their

mobile device turned on [68], but many of us often forget to change the device’s settings at the

appropriate times. For many users, autonomously learning their preferences requires the ability

to sense factors in the user’s current environment. To achieve this, many previous context-aware

systems have required users to place wearable sensors around their body [29, 65]. However,

modern smartphones, like the Apple iPhone or Google’s Android platform, feature an array of

useful sensors that can allow us to circumvent the need for specialized hardware. Only a small

number of systems have been designed to leverage the power of these new hardware platforms

when predicting interruptibility [57].

In the next application, we extend the ideas from smartphone interruptibility to build a sys-

tem to help prevent pressure ulcers for power-wheelchair users. There has been some previous

work utilizing machine learning to predict patient behavior in healthcare applications, but rarely

with the fine level of granularity of an interruptibility system. For instance, one author used

statistical machine learning techniques with patient data to predict which subjects suffering from

coronary artery disease would be likely to comply with pharmaceutical guidelines for managing

cholesterol levels [20]. These predictions were based primarily on demographic data, and did

not give indications as to which contexts and circumstances would lead to non-compliance for

a subject. There has also been quite a bit of work using machine learning to predict health care

12

outcomes and complications, but this work has not been focused on understanding or altering

patient behavior to improve outcomes [16, 66].

We then turn to the task of discourse parsing with the Penn Discourse Treebank (PDTB).

There has been quite a bit of work concerning fully supervised relation classification with the

PDTB [22, 44, 69]. Semi-supervised relation classification is much less common however. One

recent example of an attempt to leverage unlabeled data appears in [28], which showed that

moderate classification accuracy can be achieved with very small labeled datasets. However, this

approach is not competitive with fully supervised classifiers when more training data is available.

Recently there has also been some work to use Conditional Random Fields (CRFs) to represent

the global properties of a parse sequence [23, 34], though this work has focused on the RST-

DT corpus, rather than the PDTB. In addition to requiring a fully supervised training set, most

existing discourse parsers use non-spectral optimization that is often slow and inexact. However,

there has been some work in other parsing tasks to employ spectral methods in both supervised

and semi-supervised settings [15, 52]. Spectral methods have also been applied very successfully

in many non-linguistic domains [8, 25, 32].

Finally, we extend the discourse parsing framework to analyze discussions between students

in an online course. Education research has demonstrated that characteristics of dialogue and

discourse between students can be used to evaluate the effectiveness of the discussion and predict

student outcomes [1, 48, 58]. However, these approaches often either rely on human supplied

dialogue tags, or fully supervised discourse parsers that require large, labeled datasets. As such,

these systems show great promise on the domains in which they are deployed, but they are often

not generalizable.

Throughout this work, we leverage spectral methods to combat our large, weakly labeled

datasets. Spectral methods have become a very popular topic in machine learning research.

Based on eigenvector decomposition, such as is used in Singular Value Decomposition (SVD)

and Principle Component Analysis (PCA), spectral methods can give optimal results for many

optimization tasks using a small fraction of the computation required by comparable algorithms.

13

Spectral algorithms exist for learning latent-variable PCFG’s [13], dynamical systems [9], and

Hidden Markov Models [32]. From an applications standpoint, spectral methods have been used

to estimate a student’s aptitude for key tasks in a classroom setting [21], for dependency parsing

of natural language text [19], and for image segmentation and classification tasks [50].

14

Chapter 3

Methodology

In this chapter, we introduce the broad principles that motivate this thesis. We begin by discussing

the most common current approach to machine learning, learning with fully labeled data. We

will briefly consider some of the ways that fully labeled data can be acquired, and discuss some

circumstances in which human annotated data is either undesirable or completely inviable. Next

we will discuss the most prominent alternative to fully labeled data considered in this work,

weakly labeled data. Weakly labeled data consists of examples that have somehow been labeled

or organized in a fashion that does not meet the gold standards of human annotated data. These

datasets can often be acquired through autonomous heuristics and have the potential to be much

larger than a hand labeled dataset. We leverage the notions of bias and noise as metrics to

measure the quality of weakly labeled data and present a simulated framework with which to

explore the noise-bias spectrum. We then present introductory, simulated results to motivate the

ideas described in the remainder of the thesis. Throughout this work, we utilize spectral latent

variable models, a class of algorithms that are well positioned to deal with the unique challenges

inherent in working with large volumes of weakly labeled and unlabeled data.

15

3.1 Acquiring Annotated Data

Human annotated data continues to be the gold standard in quality for prediction, structure-

learning, and language annotation tasks. However, when dealing with large datasets, annotation

becomes the most significant bottleneck in an analysis pipeline. Hiring a team of devoted human

annotators can yield datasets containing millions of labeled examples—for instance with part

of speech tagging in the Penn Treebank [54]. Unfortunately the time and financial investments

required to create such a dataset are prohibitive for most applications, and even the largest such

datasets pale in comparison to the overwhelming volume of unlabeled data freely available on-

line. In recent years, crowdsourcing techniques have become increasingly popular methods to

acquire annotated data. By utilizing large, distributed networks of annotators, these approaches

can produce labeled datasets much larger than what is capable with a small, professional team of

experts, potentially at the cost of label quality. This places crowdsourced data firmly in the realm

of weakly labeled data. Noise in label noise could be very common, depending on the difficulty

of the task, and bias may be introduced if annotators are able to select only a subset of tasks to

complete. Throughout this section, we will identify some of the challenges of acquiring labels

from human annotators, in particular for some applications in which crowdsourcing is not viable.

3.1.1 Crowdsourcing

Crowdsourcing represents perhaps the most promising method of labeling and organizing un-

structured data for large-scale use in machine learning analysis. These systems can be parti-

tioned into service-driven and community driven platforms. Each with its own advantages and

disadvantages.

With a service driven platform, such as Amazon’s Mechanical Turk, a client contracts human

workers to label, segment, or otherwise annotate units of data. This approach has been used

successfully to create datasets for machine translation, identify spatial usage of social network,

and to simply encourage anonymous volunteers to go out and perform a good deed. In general,

16

the more expertise a task requires of the annotator the more expensive an individual annotation

will become and fewer annotators will become available. Additionally, many clients of service

driven crowdsourcing platforms complain that their annotators prefer to produce annotations as

quickly as possible, leading to compromised work quality compared to in-house professional

annotators—which generally requires the client to request multiple labels for each datapoint in

order to measure inter-annotator agreement.

For applications in which significant resources can be devoted to annotation tasks that re-

quire little expertise, service driven crowd-funding can be an excellent way to acquire small-to-

medium sized labeled datasets quickly. However, both of these constraints can prove restrictive

in many applications. An alternative is community driven crowdsourcing, in which volunteers

from across the web can volunteer their time, expertise, or personal data. Wikipedia is per-

haps the most well-known such platform, and it has been shown that Wikipedia articles contain

fewer errata on average than the Encyclopedia Brittanica (however, those errors in Wikipedia

tend to much more egregious and are occasionally committed maliciously) [27]. Community

driven crowdsourcing has also been used in more specialized applications, such as the Tiramisu

platform which tracks public buses in realtime by monitoring location data from users of the

application [72]. Similarly, Google leverages location data from users of its Android mobile to

improve predictions of traffic conditions on the road.

The disadvantages of community driven crowdsourcing are twofold. First, we face significant

privacy concerns when a user’s data is being collected and analyzed without their knowledge.

Although consent is generally collected through End User License Agreements, research has

shown that only a small fraction of users read through the details of these agreements. The second

major concern with community driven crowd-funding is the need for a large community—which

introduces a quandary when a platform requires user data to provide a valuable service, but

requires a valuable service to attract users. Companies with large install bases, such as Google,

Facebook, and Apple view their user data as one of their most valuable assets, an asset that is

unavailable to smaller operations. Also, while services such as Wikipedia are a testament to the

17

potential of crowdsourcing, history has shown that the vast majority of crowdsourcing platforms

invariably fail to establish a significant user base.

There are also some crowdsourcing services that exist somewhere between service driven

and community driven, such as Duolingo, which allows its users to access foreign language

educational material in exchange for selling the translations they produce to outside sources.

These platforms can operate by providing a service to users, which they may be willing to pay

for with their efforts or personal data. A platform like this requires non-monetary incentive for

users to participate, which restricts this approach to a relatively small set of applications.

With the right conditions, crowd-sourced methods can produce tremendously sized datasets

with varying levels of structural annotation. However, significant resources or an established

user-base are required to successfully crowd-source a dataset. This represents a significant limi-

tation for the portability of these platforms, leaving many applications to rely on in-house anno-

tators.

3.1.2 Expert Domains

For some applications, the expertise required to supply annotations greatly restricts the volume

of labeled training data that may be acquired. For example, if we wish to determine whether a

time series of blood pressure readings for a congestive heart patient is abnormal, we would need

a cardiac physician or other qualified clinician. This makes crowdsourcing services infeasible,

and greatly adds to the cost of in-house annotation. There have been some recorded instances

in which crowdsourcing difficult problems with relatively uninformed participants can lead to

viable prediction. Examples include estimating the commercial viability of a film based on

its theatrical trailer [7], predicting odds of presidential candidates winning elections using a

Las Vegas style betting system [11], and determining protein folding sequences [36]. In hese

instances, many thousands of non-expert volunteers must participate to produce a prediction for

a single datapoint, which makes this approach nonviable in high volume applications, such as

18

healthcare or education.

3.1.3 Personalized Models

Another class of applications in which annotated data is difficult to acquire are personalized mod-

els, such as recommendation systems or personalized healthcare support. In the most extreme

case, a separate model may need to be trained for each user, which implies that we must rely on a

single—potentially uncooperative—annotator. Approaches such as collaborative filtering seek to

leverage users with similar interests to train a model for an individual. However, these models as-

sume that the user is willing to provide some information about their preferences, such as ratings

for products or services. Many users may be unwilling to provide this information, leaving us

only with weakly labeled and unlabeled signals derived from observations of their activity—such

as viewing habits through a streaming service, or usage patterns for a smartphone.

3.2 Weakly Labeled Data

In many applications, we may wish to consider data that lies somewhere between data that has

been fully annotated by a human and data that has no annotations or demarcated structure. In

particular, data that has been partially or fully labeled using an intermediate, automated heuristic

can benefit from the volume of unlabeled data and the usefulness of fully labeled data. In this

section, we will consider weakly labeled data, meaning data that has been annotated in some

way, but does not meet the gold standard of human annotated data.

For example, imagine that we wish to train an image processing algorithm to detect the

presence of various mammals in photographs. We could scrape all images from a cat enthusiast

website and declare that all of these images contain the presence of a cat. Alternatively, we could

use a separately trained model to predict the presence of animals in a random set of training

images. We would not expect either of these sources of training data to work particularly well

19

in real world conditions, but next we will consider the specific characteristics that make them

undesirable for training.

To speak more precisely about weakly labeled data, we propose two simple metrics to mea-

sure the quality of a training set. The first, and most obvious, is label noise, referring to the

percentage of time the weak label assigned to a training point correctly reflects the true la-

bel—according to a human expert. Returning to the examples given in the previous paragraph,

the cat images would likely have very little labeling noise if the assumption holds that most im-

ages on a cat enthusiast website contain cats. In the second scenario, in which predicted labels

from another algorithm are used, the amount of noise would be proportional to the predictive

accuracy of the model used, which presumably would be quite high in a difficult task such as

visual entity recognition. If we denote a dataset, X , with a set of weak labels, Ŷ , and denote Y

as the set of ground truth labels for this data, our measure of noise is simply the empirical mean

accuracy of the labels in the dataset.

Noise(X) =
1

n

n∑
i=1

I(ŷi = yi)

The second metric of data weakness is bias, that is, how accurately the distribution of the

training data over the feature space reflects the distribution we will be evaluating against. By

measuring bias in the feature space, we are also able to detect bias in the label space—assuming

that classes are cleanly separated in the feature space. Returning to the previous examples, the

cat images would be extremely biased, because they only reflect a single predicted class taken

from a very small subset of the set of all possible images. The bootstrapped images could have

very low bias in the feature space, but may show bias in the labels assigned to them. Under

this formulation, unlabeled data becomes weakly labeled when bootstrapping is applied to it. To

formalize the notion of bias, we refer to the empirical Kullback-Leibler divergence (KL diver-

gence) of a training data set compared to the testing set or equivalent deployment environment.

For training set X and testing set X ′, we can define the empirical KL-divergence as follows:

20

DKL(X||X ′) =
∑
xi∈X′

P ([x ∈ X] = xi)log
P ([x ∈ X] = xi)

P ([x′ ∈ X ′] = xi)

It should be noted that in sparse, high-dimensional spaces, the preceding estimate will suggest

an inaccurately high level of divergence. To compensate, we may conduct the KL divergence es-

timate in a subspace generated by Singular Value Decomposition (SVD) or Principle Component

Analysis (PCA). Alternatively, we may wish to create a continuous estimate of the feature space

distributions using a non-parametric Kernel Density Estimate (KDE), which would allow us to

employ the continuous definition of the Kullback-Leibler divergence. This continuous estimate

could be computed in the original space, or in a reduced dimensional subspace.

In using these two metrics to measure bias we seek to maintain a balance between expres-

sivity and simplicity in our definition of weak data. We shall see that this spectrum captures

a very wide variety of weakness in data, although one could imagine many different types of

problematic datasets that do not conform to these definitions. For example, we may have noise

in the feature space, the labels of the training data may be noiseless indications of an attribute

that is related—but not equivalent to—the label we are interested in, or we may see a significant

volume of missing attributes in the training data. However, in this work we will restrict ourselves

to the definition of noise and bias given above, in the hopes of presenting the simplest framework

that is able to describe a wide variety of weak datasets.

For any given training set, we can plot that set in a two dimensional space, where one axis

represents the percentage of labels in the training set that are incorrect, and the other axis rep-

resents the KL divergence of the training set, measuring bias. Figure 3.2 shows what we might

expect to see if we use this space to plot the two training sets described in the image mammal

detection task. We also denote the ideal training set, with no noise and no bias, in the upper right

of the plot.

The framework presented here is quite simple, which also allows it to be quite general. We

could cast most conceivable training sets into this space, either empirically or hypothetically.

21

0.5

0

1.0

0

Ideal Training Set

Cat Photos

Bootstrapped Labels

Decreasing Noise
P (ŷ 6= y)

D
ec

re
a
si

n
g

B
ia

s

(K
L
-D

iv
er

ge
n
ce

)

Figure 3.1: Some examples of weakly labeled datasets

This framing device also raises some interesting questions regarding weakly labeled data. Ob-

viously some portions of this space are more desirable than others, but at which point does

learning become intractable? Are there specific techniques we can employ with certain types of

weak data that can alleviate some of the problems with the training data? Do different training

models perform better or worse with weak data?

In the following chapters we will address some of these questions through work with syn-

thetic experiments and several real world applications. First, we will introduce some of the tools

at our disposal to deal with the challenges inherent in these learning tasks. We will first con-

sider one of the practical side effects of incorporating weakly labeled and unlabeled data into

our training sets: the significant increase in the size of our training sets. In the next section, we

introduce spectral methods, a class of algorithms that are unusually well suited to dealing with

large, partially labeled training sets.

22

3.3 Simulation Environment for Weakly Labeled and Unla-

beled Data

To further explore the effects of bias and noise in weakly labeled data, we have created a sim-

ulation that allows us to control these parameters and determine the best methods for a given

learning environment. In this section, we present the basic parameters used to generate sequen-

tial training data with latent behavior.

We will begin with a simple binary prediction task with a linear model. In particular, we

will have d total features, xi...xd. Each feature also has a corresponding coefficient ci, which is

unobserved in the training data. The label for a given training point is induced by the following

summation:

yi = I

(
0 ≤

d∑
i=1

cixi

)

Each xi ∼ N(µi, 1), where each µi and ci are themselves drawn from N(0, 1). We now con-

sidering adding noise and bias to an artificially generated training set. A given noise level

p = P (ŷ = y) can be easily created by independently changing the labels in the training set

according to a coin of bias p. To achieve a desired KL divergence, we can add noise εi ∼ (0, σ2)

to each mean µi after generating the testing set, but before generating the training set. In this

case, the KL divergence between the testing and training set will be proportional to σ2.

We now wish to extend this model to incorporate sequential, latent information, For each

datapoint in a sequence, we include a hidden state hi ∈ [1, N]. We now have N parameters

for each feature, meaning xi ∼ µji for the ith feature, whenever the hidden state has value j.

Additionally, rather than using 0 as the summation threshold when determining the label, we use

δj ∼ N(0, 1) whenever the hidden state has value j. The hidden state is assigned according to a

randomly chosen initial state distribution π and transition probability matrix T . Just as with the

non-sequential model, we can add noise or bias to the training data in this setting by randomly

adjusting labels or adding noise to the training data generation parameters. We can also modify

23

the model so that each latent state has a different noise rate pi. Experiments with simulated data

indicate that this does not dramatically impact results, compared to using a global noise rate p.

Unless otherwise noted, each sequence generated is of length 20.

Using data generated from this model, we can see initial findings on the effects of weakly

labeled data in the noise-bias spectrum. Figure 3.2 shows the predictive accuracy of an HMM

trained with data from the sequential simulation model, trained over 10,000 iterations varying the

noise, P (Ŷ = Y), and the KL divergence between the testing set and training set. The training

in these experiments included a 200 dimensional feature space, with 1 million training examples.

Unsurprisingly, extremely weak data, i.e. P (Ŷ = Y) < 0.6 or KL divergence above 0.8,

results in a model that underperforms compared to a naive baseline that randomly assigns labels.

With no noise or bias, the model attains a maximum classification accuracy above 0.90. We see

here that label noise appears to have a much more significant detrimental impact on performance

than feature space bias. Without noise, a KL divergence of 0.8 leads to 0.756 prediction accuracy.

On the other hand, a model with no bias and 0.60 noise rate yields a model with predictive

accuracy 0.61.

We will continue to refer to this simulation model as we explore methods to reduce the impact

of noise and bias in our weakly labeled data. Next we will consider some of the classical methods

of turning unlabeled data into weakly labeled data, bootstrapping and cross-training.

3.4 Using Bootstrapping and Cross-training for Unlabeled Data

The polar opposite of fully labeled data is fully unlabeled data. The web is rife with unstruc-

tured text, image, and video data. Unfortunately, this data also tends to be the least informative.

Bootstrapping is one of the oldest and most well-known methods for trying to utilize unlabeled

data. In its most basic form, bootstrapping entails training a learning algorithm using a small set

of labeled data, and then using the algorithm’s predictions to assign labels to an unlabeled set. In

general, labels should only be assigned when a model shows sufficient certainty with regards to

24

Figure 3.2: Simulated HMM Results in the Noise-Bias Spectrum

25

an example’s label. Information theoretic entropy is a common and useful metric for measuring

certainty. A classifier with a low entropy distribution over the predicted classes can be thought

of as more certain about its prediction compared to a classifier with high entropy. The definition

of entropy for discrete prediction is given below.

H(X) = −P (Y = 1)log2[P (Y = 1)]− P (Y = 0)log2[P (Y = 0)]

After a model is trained on labeled data, any examples in which the model’s entropy falls

below a given threshold, ψ, are labeled using the model’s prediction, and that example is added

to the training pool. This process is then repeated over several iterations with the newly labeled

data added to the training set after each iteration. A common criticism regarding bootstrapping

says that it is difficult for the model to generalize, as this process may simply reinforce existing

errors committed by the model. A slightly alternative approach is that of cross-training. In this

approach, two competing models are each trained separately on a shared set of labeled training

data. The models then predict labels of unlabeled data, as in bootstrapping, but then the predicted

labels from model A are fed to model B, and vice versa. The argument in favor of cross-training

suggests that if we use two models that make independent errors, we can benefit from the best

of both methods and avoid the self-reinforcement sometimes seen with bootstrapping. Figure

3.3 shows simulated results with bootstrapping and cross-training with data generated by the se-

quential simulation model described in section 3.3. In these tests the HMM is cross-trained with

a Conditional Random Field (CRF). These tests were conducted with 200 dimensional feature

space and 1,500 labeled examples without noise or bias. Figure 3.3 shows the effect of adding

up to 1 million unlabeled training examples. We see that both bootstrapping and cross-training

produce increased accuracy, though only by magnitudes of 0.01 and 0.02 respectively. As such,

the performance of bootstrapping and cross-training are underwhelming compared to tests using

weakly labeled datasets of similar sizes.

26

Number of Unlabeled Training Examples #105
0 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

0.752

0.754

0.756

0.758

0.76

0.762

0.764

0.766

0.768

0.77

0.772

Bootstrapping
Cross-Training

Figure 3.3: Predictive Accuracy of HMM with Bootstrapping and Cross Training with a CRF

3.5 Improving the Quality of Weakly Labeled Data

Fundamentally, weakly labeled data affords us the opportunity to access large volumes of training

data, at the cost of increased noise and bias. In this section, we will discuss methods to minimize

the negative impact that noise and bias cause during training, allowing us to move closer towards

high volume, high quality datasets.

3.5.1 Internal Error Correction for Noisy Data

As we have seen, bootstrapping can have limited effectiveness for prediction in high dimensional

space. In this section, we present a related concept that is uniquely effective for dealing with cer-

tain types of weakly labeled data. When using bootstrapping with unlabeled data, achieving

improvements in predictive capability requires the model to generalize based on prior observa-

tions. This is possible in some circumstances, but often the model simply reinforcements what

it already believes. Instead, we may present the model with two seemingly contradictory labeled

27

data-points and ask which point we would relabel given the rest of the data. In this case, we are

not asking the model to generalize, but instead to detect anomalies based on prior experiences,

which is a more tractable problem.

In this section we introduce the notion of Internal Error Correction (IEC), in which a model

may choose to relabel samples in a training set, if the model believes with sufficiently high

certainty that a label is incorrect. This approach is particularly well suited to dealing with weakly

labeled data that is noisy. Similar to bootstrapping, information theoretic entropy of the label

prediction distribution is a convenient metric for labeling.

To conduct Internal Error Correction, we propose a procedure similar to cross validation. We

begin by training the classifier on all labeled and weakly labeled data except for one held out

weakly labeled training datapoint. We then compute the entropy of the classifier’s predictions

for the one left out example. If that entropy is below a threshold, ψ, and the predicted label

disagrees with the label presented in the dataset, we modify the label of that example for future

training. We repeat this procedure until all training data has been evaluated, and then retrain the

classifier one last time with the corrected training data.

To evaluate this method in an ideal environment, we conducted tests with the simulated data

described in section 3.3. We conducted these tests using the simulation model, and trained a

Hidden Markov Model. The predictive accuracy with and without IEC is shown as a function of

noise rate in figure 3.5.1. We observe that the beneficial effects of IEC are most significant when

the rate of noisy labels in the training data is high. By the time the ratio of correct labels surpasses

90%, we no longer see statistically significant results. Internal Error Correction appears to be

best suited to instances in which the noise rate is between 60% and 75%. In this range, the

classifier without IEC initially fails to even surpass a random baseline. In the 70%-80% noise

range, we see an improvement of predictive accuracy of 4-5 percentage points.

Similar to bootstrapping, we can also consider a cross-training style approach, in which a

second classifier is used to conduct correction of the labels. We see a modest improvement in a

dataset in which 65% of the labels are correct by training a CRF to conduct error correction. In

28

Label Noise
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

B
in

ar
y

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

0.4

0.5

0.6

0.7

0.8

0.9

1
HMM without IEC
HMM with IEC

Figure 3.4: Effects of Internal Error Correction

this instance, accuracy increases from 77.5% to 78.7%, which is a significantly smaller increase

in performance than we see when cross-training with bootstrapping. These results indicate that

internal error correction is much less sensitive to data that is labeled in correspondence with the

model’s existing beliefs. This further suggests that the advantage of error correction is a reduction

in contradictory training data, rather than any sort of novel discovery about the learning task.

3.5.2 Active Training for Weakly Labeled Data

Active learning is a paradigm of machine learning in which training data is actively chosen

from a given source of data based upon various metrics of desirability, as opposed to traditional

learning environments in which data is utilized in a static ordering [63]. In some formulations

of active learning, we are given access to a labeling oracle, which will supply us with a noise-

free label for any datapoint that is selected. This scenario can be used to represent access to

a human annotator, for instance. However, in this section we will be considering the use of

29

active learning to determine which subset of a weakly labeled dataset is suitable for training, and

which subsets should be discarded or reclassified using Internal Error Correction. For weakly

labeled datasets of limited size, this process can be thought of us partitioning a dataset according

to quality thresholds. For larger sources of weakly labeled data, such as natural language on

the web, we can instead treat the data source as if it were a continuous stream, in which each

datapoint or sequence is evaluated separately.

Throughout the literature, uncertainty sampling is the most common metric for conducting

active learning. In this framework, datapoints that the model has the most difficulty classifying

are selecting for training, most often using entropy over the predicted class distribution to mea-

sure uncertainty. Intuitively, this allows the model to select training examples that will be the

most informative. If we are dealing with a discrete classification problem with a datapoint X

with classes Y ∈ [1, c] and p̂(Yi) represents the model’s predicted probability that Yi is the true

label for X , then the uncertainty metric for this datapoint is as follows:

H(X) = −
c∑
i=1

p̂(Yi) log p̂(Yi)

As a result of selecting training data with maximum uncertainty, this method will choose

datapoints for training that will have the largest impact on the model’s learned parameters. If the

incoming data is weakly labeled, however, this can present complications. If the data source is

highly noisy, an incorrect label on an uncertain datapoint may cause significant damage to pre-

dictive accuracy by pushing the learned parameters away from optimal values. If the data source

is biased, the datapoint may positively improve performance, but that performance gain may not

be reflected in the deployment environment. To improve the usefulness of active learning, we

will consider other metrics for data selection found in the literature.

Density sampling is an alternate metric that selects training data based on its probability of

occurrence in a target distribution. This approach allows us to exclude training data that would

be unlikely to occur in a testing environment. This is particularly useful in instances in which

30

the training and testing sets come from differing distributions, such as biased, weakly labeled

data sources. This method requires an estimate for the distribution of the feature space in the

deployment environment. If we can access a small to medium size dataset taken from the same

source as our testing data, we can easily compute a non-parametric Kernel Density Estimate

(KDE) of the distribution this data was sampled from. Kernel Density Estimation constructs the

estimated distribution as a mixture of functions, such as Gaussians. The KDE is built using an

estimation set and each datapoint in the estimation set contributes to the kernel function. The

estimation set does not require labels, and if the estimation set is labeled, using it to build a

KDE does not preclude us from also using this data during training or parameter evaluation. The

accuracy of a KDE is very sensitive to a bandwidth parameter, h, that determines how much

each estimation point affects the kernel function. For a Gaussian kernel, heuristic estimates of h

depending on the empirical variance of the estimation set have proven to be very effective. Once

a sufficient KDE has been established for the deployment environment, we may evaluate the

probability of observing a weakly labeled datapoint in deployment. If the estimation set consists

of datapoints x1...xn, and Kh() represents the kernel function with bandwidth h, then the KDE

probability estimate for a new datapoint X is defined as:

f̂(X) =
1

n

n∑
i=1

Kh(X − xi)

Selecting training data that maximizes this function allows us to combat bias by discarding

training data that is unlikely to be observed during evaluation. A probability threshold can be

selected proportional to the size of the weakly labeled datasets. Given a stream of heavily biased

data with little noise, this method can yield very large, high quality training sets.

These two metrics each have certain advantages and disadvantages. Uncertainty sampling can

have a large impact on a model’s parameters, but the effects may be dampened during testing if

the training data is highly biased. Density sampling ensures that the training data is representative

of the testing data, but the datapoints selected may not present the model with new information.

31

We can combine the benefits of both approaches by using a hybrid metric, Density-Weighted

Uncertainty Sampling (DWU). For a datapoint X , the Density Weighted Uncertainty measure is

defined as follows:

DWU(X) = f̂(X) + bH(X)

In this equation b is a real valued parameter that allows us to control our preference for density

weighting versus uncertainty sampling. The optimal value for b will be sensitive to the noise and

bias of the weakly labeled training set. In particular for noisy training sets, uncertainty sampling

has the potential to diminish the performance of the model, so we may wish to use a smaller

value for b.

Another closely related metric is density-weighted certainty sampling (DCS), in which we

use the reciprocal of the certainty term. We may wish to use this modified form if we are working

with weak labels that are themselves the product of a classifier, and we would like to select those

datapoints that the model is most certain about. In this special case, we have a direct estimate of

the likelihood that a datapoint is noisy. In other instances, we prefer the more general form of

density-weighted uncertainty sampling.

3.5.3 Learning Weights for Weakly Labeled Data

Compared to traditional supervised learning, weakly labeled data provides us with much larger

training datasets, at the cost of data quality. In many instances, we will wish to use a mixture

of weakly labeled datasets from multiple sources with a smaller hand labeled training set. In

these instances, the volume of weakly labeled data can overwhelm the labeled data. A training

procedure that does not give special consideration to the effects of weakly labeled data will learn

a model that favors the larger weakly labeled datasets over the smaller labeled dataset, which

can result in lower performance than a model trained using only the fully labeled dataset. To

ensure that the labeled data is fully utilized during training, we introduce training weights for

32

Ratio of (Sum of Weights of Weak data) / (Sum of Weights of Labeled Data)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pr
ed

ic
tio

n
A

cc
ur

ac
y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
15% Noise Rate
30% Noise Rate

Figure 3.5: Effects of Training Weights on Predictive Performance

each datapoint. For weakly labeled data, the optimal weight of the datapoints may depend on the

noise and bias of the weak data source, as well as the total volume of weak data. A convenient

method of controlling for dataset size is to constrain the total sum of weakly labeled weight

compared to labeled weight. In particular, we will select a value Wr to maximize predictive

accuracy on a labeled parameter validation dataset.

Wr =

∑
xi∈Labeled wi∑
xj∈Weak wj

This formula allows us to assign different weights to each point in a dataset, but it is often

sufficient to assign uniform weights to all datapoints for a given source.

Figure 3.5 demonstrates the effect of weight parameter selection on predictive accuracy us-

ing the simulation environment introduced in section 3.3. These results were obtained using a

spectral HMM trained with 1,000 labeled examples and 10,000 weak examples using uniform

33

Dataset Noise Rate KL-Divergence Size
Labeled Training 0 0 500
Weak (Biased) 0 0.4 2,000
Weak (Noisey) .3 0 2,000

Weak (Noisy and Biased) 0.3 0.4 2,000
Parameter Validation 0 0 150

Testing 0 0 2,000

Table 3.1: Types of Datasets Created for Simulation Results

label noise. Internal Error Correction and density-weighted uncertainty sampling have both been

applied. Predictive accuracy was then computed with 1,000 randomly generated datasets for

each value of Wr. Figure 3.5 shows similar behavior for datasets with differing noise rates. In

particular, we see peak accuracy in the rangeWr ∈ [0.5, 1], with accuracy dropping precipitously

before settling asymptotically at a lower performance value than we began with. The asymptotic

point in these curves roughly reflects the model’s performance when trained using only weakly

labeled data. Fortunately, in the region of the parameter space where the optimal value of Wr is

likely to lie, these curves are convex. This allows us to use simple methods of selecting Wr such

as binary search or gradient descent. Models trained with weak datasets including bias, rather

than noise, produce similarly shaped training curves, with differing global optima.

Through these experimental results, we indeed observe that the optimal value of Wr for a

given datasource depends on the noise, bias, and volume of the training set. If we assume a

uniform or unknown distribution of noise and bias in a weak dataset, we have no reason to assign

different weights to different datapoints from a given source. This means that each datapoint

from a source of size d will have weight Wr

d
.

3.5.4 A Combined Approach to Improving Data Quality

We now present the effects of using every method for leveraging weakly labeled data described

in this section with experiments conducted in the simulation environment introduced in section

3.3.

34

Percentage of Weakly Labeled Data Used
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ed

ic
tio

n
A

cc
ur

ac
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Bias

Uncertainty Sampling
Density Weighted Uncertainty Sampling

Percentage of Weakly Labeled Data Used
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ed

ic
tio

n
A

cc
ur

ac
y

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Noise

Uncertainty Sampling
Density-Weighted Uncertainty Sampling

Figure 3.6: Combined Data Quality Improvements for Biased Dataset (Left) and Noisy Dataset
(Right)

For each experiment, a training set, parameter validation set, and testing set were created,

along with one of three types of weakly labeled data: 1) noisy data, 2) biased data, or 3) noisy &

biased data. Table 3.1 shows the parameters used to generate each of these types of datasets. For

each of the three types of weakly labeled data, 1,000 experiments were conducted, and results

were averaged across all trials. Figures 3.6 and 3.7 present the results of these experiments.

Each experiment begins with a spectral HMM trained using the labeled dataset. Internal Error

Correction is then performed on the weakly labeled dataset. The data is then sorted according

to either the uncertainty sampling active learning metric or the density-weighted uncertainty

sampling metric, and the top data points are used for training with percentiles ranging from 0 to

100. After training using the weakly labeled data, Internal Error Correction is applied once more,

and the process repeats for a second iteration. The parameters b and Wr are selected using the

parameter validation set, and the density weighting KDE is also constructed using the validation

set.

There are several observations that can be made with regards to these empirical results. The

parameter, b, which controls the preference for uncertainty sampling in density-weighted uncer-

tainty sampling, decreases monotonically with added noise and bias. Density weighting dampens

the effects of bias in a data source, so it is sensible that smaller values of b would perform best

35

Percentage of Weakly Labeled Data Used
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ed

ic
tio

n
A

cc
ur

ac
y

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Noise & Bias

Uncertainty Sampling
Density-Weighted Uncertainty Sampling

Figure 3.7: Combined Data Quality Improvements for Dataset with Noise and Bias

in those instances. With noisy data, uncertainty sampling may introduce unnecessary error, also

causing smaller values for b to be selected. The parameter Wd similarly decreases monotonically

with noise and bias, as the quality of the weakly labeled dataset worsens. We also observe that

when noise is present in the dataset, using the entire weakly labeled dataset actually reduces

performance. In figure 3.7, the data is being selected according to the active learning metric,

meaning that as we go from using 80% of data to 100% of data, we are the 20% of weakest data

according to our data selection metrics. This effect does not happen with data that is only bi-

ased, as the most biased data does not improve prediction, but also does not significantly hinder

prediction either.

It is also worth noting that predictive accuracy is closely tied to the correctness of the learned

latent space. In the experiments shown in figure 3.7, when the model’s predictive accuracy is at

its lowest (below 65%) the number of learned latent states matches the correct number of latent

states in only 72% of experiments. On the other hand, in experiments in which the predictive

36

accuracy exceeds 80%, the correct number of latents states is learned 91% of the time.

Figures 3.6 and 3.7 show direct comparisons between standard uncertainty sampling and

density-weighted uncertainty sampling. Using density-weighting always improves performance

on average, but those effects are magnified when dealing with significant bias in the training set.

We can also observe that when a dataset is biased, but contains no noise, prediction accuracy

increases monotonically with additional weakly labeled data, although active learning allows a

model to learn with less data in these instances. However, when noise is introduced, we see that

performance eventually dips below that of the fully supervised classifier. Figure 3.7 shows the

most difficult training environment, when the weakly labeled dataset is both noisy and biased.

Looking at these results, along with Figure 3.5, we see that some combination of weighting

and active learning is required to outperform the fully supervised classifier. We also see that

additionally incorporating Internal Error Correction allows us to achieve a 21 percentage point

improvement over the fully supervised baseline, using only an additional 650 datapoints.

Throughout these simulated experiments, we observe that there is no single solution for

weakly labeled data. Weakly labeled datasets in the real world often contain a mixture of

noise and bias, requiring us to employ a mixture of different techniques to better leverage these

datasets. In the subsequent chapters, we will present a variety of challenging applications using

weakly labeled data from across the noise-bias spectrum. As we will see, the fundamental tools

presented in this chapter will allow us to significantly outperform fully supervised models using

little to no expensive labeled training data.

3.6 Overview of Applications

In subsequent chapters we will highlight four applications in which we are able to extensively

leverage weakly labeled data. In this section we will briefly introduce each application, and

describe how its data sources fit into the noise-bias spectrum. To give some insight for the reader

into each problem, we used the labeled testing data for each application to empirically determine

37

0.5 0

1.
0

0.
0

InContext
Virtual Coach
Discourse Analysis

MOOC Thread Structure

Decreasing Noise
P (ŷ 6= y)

D
ec

re
as

in
g

B
ia

s

(K
L
-D

iv
er

g
en

ce
)

Figure 3.8: Empirical Noise and Bias Across Four Applications

the KL-divergence and noise rate of each source of weakly labeled data, though this information

was not used at any point during model training. Figure 3.8 gives a high-level overview of where

each application fits in the spectrum.

The first application is the InContext system for mobile devices [24]. This system monitors

contextual features from a mobile device, including GPS location, time of day, and day of week,

as well as information taken from accelerometer and audio signals. This information is then

combined with an individual’s phone usage history to develop a predictive model to determine

whether the individual would prefer to have their phone ringer sounded or silenced in the cur-

rent context. For evaluation purposes, a prototype application was deployed amongst several

volunteers that periodically provided ground truth responses for their preference in various con-

texts. The primary source of weakly labeled data in this application is the hardware ringer switch

present on the phone. Unlike many types of weakly labeled data, this data source actually repre-

sents a curve through the noise-bias spectrum rather than a single point. This curve is a function

38

of t, the time since the user changed the setting of the hardware ringer switch. As the hardware

setting becomes more stale, the quality of labels inferred from the switch become weaker. The

noise and bias of the hardware switch as a label proxy was computed using the user’s ground

truth labels. It is quite intuitive that the noise of these labels would increase with time, but stale

hardware settings also tend to occur often while the user is sleeping, which is a context not rep-

resented in the labeled data, leading to increased bias as well. Figure 3.8 shows three average

noise-bias values for varying values of t in minutes, specifically t < 10, 10 ≤ t < 150, and

150 ≤ t, represented by the leftmost three stars in figure 3.8. Empirically, we see a significant

increase in noise, and a slight increase in bias as a function of t. A second source of weakly

labeled data was the user’s responses to incoming phone calls, represented by the lower right

star in the figure. These labels were relatively noise free, but were biased by the distribution of

incoming phone calls received by the user, which did not cover all contexts the user was likely

to visit. The datasets involved in this application are significantly smaller than the other appli-

cations, reducing the need for spectral methods. Instead, a relatively simple nearest neighbors

approach is combined with internal error correction to yield an average accuracy above 95%.

The second application is the Virtual Coach smart wheelchair platform [25]. Similar to the

InContext system, the goal in this application is to determine a user’s preferences given contex-

tual information. In this case, we wish to determine if a user of a power wheelchair would be

willing to perform a pressure relief exercise in a given context. Pressure relief exercises can take

several minutes to complete, and require the user to remain stationary on even ground—making

them potentially very disruptive for the user. However, these exercises must be completed quite

regularly to prevent potentially fatal pressure ulcers. Users of the Virtual Coach periodically

receive prompts from the system to perform pressure relief, and the system monitors if a user

complies with the prompt or not. These responses are taken as ground truth, and thus do not

exhibit noise or bias. Furthermore, the user is able to set their notification preferences at any

time, which provides us with a weak signal very similar to the hardware ringer switch seen with

the InContext application. Similarly, the quality of this signal degrades with time since the user

39

set the software preferences, and the leftmost three squares in figure 3.8 represent this curve.

In general users of the Virtual Coach were less likely to set their preferences than users of In-

Context, leading to a significant increase in noise, and a slight increase in bias. Users were also

periodically prompted to indicate to the system if they would be willing to perform a pressure

relief exercise in their current context. These answers are shown as the rightmost box in figure

3.8. This labels demonstrate some noise, and the user’s responses did not alway correspond to

their actual reactions to pressure relief prompts, but also shows significant bias because many of

the periodic prompts were ignored by the users—leaving only a subset of contexts represented

by the user responses. The dataset for this application is significantly larger and noisier than

InContext, allowing us to leverage a spectral, latent-variable model. Combining this model with

internal error correction allows us to achieve a predictive accuracy of 94%.

The third application consists of labeling implicit discourse relations as described in section

2.1.3. In this application, the Penn Discourse Treebank was used to provide a labeled set of

testing and training data from across the Wall Street Journal [54]. In addition, implicit relations

are identified from unlabeled data across the web. Implicit relations can be identified quite ac-

curately using very simple methods. These relations are represented by the rightmost circle in

figure 3.8. The implicit relations are almost completely noise free, but suffer from significant

bias, as not all relations have implicit forms, and those that do may have significant lexical dif-

ferences between their implicit and explicit forms. As such, we see that this data source is the

least noisy, but the second most biased of all data sources across all applications. In addition,

bootstrapped labels taken from unlabeled text were added to the training set, represented by the

left-most circle. These labels were taken from Wall Street Journal articles, and showed very little

bias, however, this was the noisiest data source of all applications, due to the intrinsic difficulty

of discourse relation classification. The enormous size of this dataset all but requires a spectral

approach. Additionally, the large, biased implicit relations dataset lends itself very well to active

sampling, resulting in an average predictive accuracy of 49%.

The final application discussed is determining the response structure of threads seen in forums

40

taken from Massively Open Online Courseware (MOOCs). The goal here is to determine which

pairs of posts in a thread share a response relation, wherein the second post in the pair represents

a direct response to the first. This application uses two sources of weakly labeled data. The first

is based on structured comments, wherein a user can post a response directly to another post in

a thread. This source of data is represented by the leftmost triangle in figure 3.8, which shows

that this is amongst the weakest sources of data across all applications. The comment pairs

were highly biased because they only represent positive examples of response relations, and the

lexical structure of comments is often quite different from unstructured posts. The comment

structures were also highly noisy, as users would often use the comment system to make general

observations unrelated to the post upon which they were commenting, making this data source

one of the most ideal use cases for internal error correction. The second data source for this

application is based upon the observation that the second post in a thread is nearly always a

direct response to the first. This data source is represented by the rightmost triangle, which we

see suffers from very little bias and noise. By combing our tools for improving weakly labeled

data with the spectral, latent variable method we achieve a maximum predictive accuracy of 92%.

Taken together, these applications incorporate weakly labeled from all across the noise-bias

spectrum. As we will see, in several instances we can use tools to offset the negative impact

of weakly labeled data, allowing us to significantly outperform fully supervised classifiers that

require costly hand-labeled data.

41

42

Chapter 4

InContext Smartphone Application

4.1 Introduction

With the proliferation of mobile devices, interruptibility has become a defining problem. Users

often forget to change the settings on their mobile devices throughout the day, which results in

inappropriate interruptions or important notifications being missed [49]. However, modern mo-

bile devices are being outfitted with broad sensing suites and relatively powerful computational

capabilities, giving those devices the ability to monitor and adapt to changing social contexts.

In this chapter, we describe the InContext smartphone application, which uses a combination

of weakly labeled data, signal processing, active learning, and supervised machine learning to

create a personalized policy for changing a user’s ringtone autonomously. This application lever-

ages a smartphone’s GPS, accelerometer, microphone, proximity sensor, and computing power

to identify similar contexts and act according to the user’s observed historical preferences. The

techniques being used in this application could be applied in any setting in which we wish to

personalize an instrumented system—as we shall see with the Virtual Coach smart wheelchair

system in the subsequent chapter.

There are several practical and theoretical challenges involved in building such a system. On a

practical level, the system should be able to operate using only those sensors found in a standard

43

smartphone, without requiring the user to wear additional instrumentation. Furthermore, the

power consumption of the system must be such that the user can continue to use his or her phone

throughout the day, which limits the computational complexity of the methods we may use. On

a theoretical level, a variety of latent variables, which the onboard sensors cannot observe, may

factor into users’ preferences in different contexts. Also, because the system is being designed

to reduce the intrusiveness of the device, unnecessary or inappropriate queries of the user should

be avoided.

An overview of the InContext system is shown in Figure 4.1. We use information extraction

algorithms on the phone’s sensor data to build a representation of the user’s current context.

In particular, we use a voice activity detection algorithm on audio data and a phone posture

recognition algorithm on accelerometer and proximity sensor data, as well as features that do not

require pre-processing such as GPS data and timestamps. Given a representation of the current

context, we passively monitor the user’s changes to their hardware ringer setting, as well as

their responses to incoming calls. These signals represent this application’s weakly labeled data

sources, because users may have forgotten to change their ringer setting, or they may be basing

their decision to accept a call on latent factors. For users who consistently change their ringer

setting according to their preferences, the model trained on the weakly labeled data is sufficient.

However, we also allow the system to use an active learning framework to select contexts in

which to query the user about their true preferences in cases where the system has significant

uncertainty about the correct setting in the current context. Unlike other applications in which

we use active learning to select the most useful subset of a weakly labeled dataset, in this case

we are using these techniques to minimize the invasiveness of the system.

Most previous attempts to determine user interruptibility, in mobile as well as desktop ap-

plications, have relied on active user input to determine their preferences [10, 31, 67]. Some of

this work has explicitly considered the user’s current interruptibility when deciding whether to

issue prompts for input[57], but all of these systems perform poorly with users who are often

unwilling or unable to respond to queries.

44

Raw
sensor data Representation

of context

Personalized
model of

interruptibility

User’s
environment

Smartphone
sensors

Information
extraction

Reinforcement
learning

Active learning
queries

Figure 4.1: The InContext framework

Our system expands on previous work in two central ways. First, we incorporate weakly

labeled data by allowing the system to learn about users by passively observing their day-to-day

behavior with their phone, such as when they change the ringer setting or respond to incoming

calls. This allows us to learn an effective model using either a small number of questions or no

questions at all. Secondly, we leverage a new metric for actively learning, one not previously

used in the application of interruptibility. While most existing systems have issued questions to

the user based on uncertainty sampling [41], we propose the use of density-weighted uncertainty

sampling [62], as described in section 3.5.2, which considers how representative the current

context is of other contexts in the user’s data-set, in addition to the system’s uncertainty about

the current user preference. Unlike the other applications described in this thesis, the datasets

for this application were relatively small, reducing the need for spectral methods, allowing us

to achieve positive results using simpler classifiers. We discovered that this approach allows us

to attain an aggregate classifications accuracy of 96%, while requiring fewer queries of the user

than previous approaches.

4.2 Dataset

Data was collected over a seven-day period from five volunteers using iPhone brand smartphones.

The data collected included readings from the phone’s 3-axis accelerometer, GPS unit, micro-

phone, proximity sensor, timestamp records as well as user activity and responses to incoming

45

Figure 4.2: User interface for data collection

phone calls. The state of the user’s hardware ringer switch (on or off) was also collected with

every sample. Data was read from the sensors for only a ten-second period once every ten min-

utes, in order to preserve the phone’s battery life. Under these conditions, we estimated that our

system is able to run for 23 hours continuously on an iPhone 4 handset, or 19 hours continuously

on an iPhone 3GS. For purposes of system evaluation, each user was also queried approximately

once every two hours to provide their true preference for the ringer setting in the current context.

In addition, each user was also permitted to provide their current preference to the system at any

time, which would postpone the next prompt for user input by two hours. The graphical user

interface is shown in Figure 4.2.

After the raw data was collected, it was passed through information extraction algorithms on

board the smartphone, and the output of those algorithms was stored. The details of the informa-

tion extraction are provided in section 4.4. In particular, we represented a user’s context using

seven core pieces of information, described in Table 4.1. We have done our best to minimize

the invasiveness of the system on the user’s privacy by encrypting or deleting data as much as

possible. Although some private information is collected, previous work suggests that most users

are willing to divulge some private information in return for services with high utility [67].

There are other modes of data which could be collected on a smartphone but were not used

in this study. For instance, only one of our users reported keeping their smartphone calendar

up-to-date, so calendar events were not collected in our dataset. Additionally, we did not record

46

Context feature Details
Phone posture A number in the set {0, 1, 2}

indicating if the phone is
0: Resting on table
1: In user’s hand

2: In pocket or bag
Voice Activity A bit indicated the presence of human speech

Sound level A number in the set {0, 1, 2} indicating
if the sound level is quiet, average, or high.

Hour An integer in 0-23 indicating the hour of the day
Weekday An integer in 1-7 indicating the day of the week
Location The latitude and longitude of the current location.

These numbers are hashed using a secret key
before being recorded to preserve privacy.

Ringer switch The current setting of the hardware ringer switch.

Table 4.1: The representation of a user’s context

the identity of incoming callers at the request of several of our study participants.

4.3 Weakly Labeled Data

Figure 4.3 indicates where the weakly labeled data for this application fall in the noise-bias

spectrum. The two sources of weakly labeled data are taken from the phone’s hardware ringer

switch, and the user’s responses to incoming calls.

As discussed in section 3.6, the hardware ringer switch does not represent a single point in

the noise-bias spectrum, but rather a curve. This signal becomes weaker as the user goes longer

without changing their hardware ringer switch. Figure 4.3 shows this curve represented at three

different intervals of time, t, in minutes. This source of weakly labeled data shows very little bias,

what little bias is present is likely accounted for by data collected at night when user preferences

are not collected. However, the noise of this signal increases significantly with t. It is also worth

noting that the weakness of the hardware switch labels varied significantly between users. In

one user, the switch nearly represented ground truth, while another user hardly ever changed

the ringer setting, despite indicating varying preferences though the labeled data. For users with

47

0.5 0

1.
0

0.
0

t < 10

10 ≤ t < 150
150 ≤ t

Hardware switch curve

Call responses

Decreasing Noise
P (ŷ 6= y)

D
ec

re
as

in
g

B
ia

s

(K
L
-D

iv
er

ge
n
ce

)

Figure 4.3: InContext Data in the Noise-Bias Spectrum

particularly noisy ringer settings, using some labeled data to train a model allows us to leverage

internal error correction as described in section 3.5.1, which significantly reduces the confusion

caused by the noisy data. For some users we see that even when t = 0, the hardware switch

may be not reflect the user’s true preferences. This may be due to the switch being accidentally

flipped while in a pocket or purse, but we also observed several instances of the switch being

rapidly toggled on and off, likely due to idle handling of the phone by the user.

The second source of data is collected from user’s responses to incoming phone calls. When a

call comes in, we collect all relevant contextual data and monitor whether the user accepts the call

or not. This signal shows very little noise, though there were some instances in which the user’s

response did not coincide with their stated preference. An explanation for these discrepancies

may be the identity of the caller, which the system was unaware of. This data source does

also demonstrate some bias, as many users received phone calls only during relatively narrow

windows of time through the day.

48

Because these data sources show relatively little bias, we use active learning to minimize the

invasiveness of the system when collecting labeled data, rather than filtering irrelevant biased

data. For the user that showed significant noise in the hardware switch signal, internal error

correction is an ideal tool for offsetting this noise.

4.4 System Overview

This section describes the primary components of the InContext system. The first subsections

present the information extraction algorithms for phone posture recognition and voice activity

detection, as well as the smoothing routine applied to the output of both. Next, we describe the

techniques we evaluated for predicting a user’s preferences using only the weakly labeled data.

Finally, we describe our use of density-weighted uncertainty sampling to select the contexts in

which we wish to issue active queries for the user’s preferences.

4.4.1 Phone Posture Recognition

Previous work has shown that having knowledge of the user’s physical activities can be used to

help determine interruptability [29]. However, accurately classifying a user’s activity generally

requires one or more accelerometers placed at known locations around a user’s body. With a

mobile phone, a user may carry the phone in their pocket, purse, or on their belt, so we do not

have a known reference point from which to conduct activity recognition. Instead, we simplify

the problem to trying to estimate the current physical posture of the device itself. In this task,

we wish to determine if the phone is resting on a flat surface, if it is being actively held by the

user, or if it is placed in a pocket, purse, backpack, etc. To address this problem, we collected

labeled data from these three classes, using the 3-axis accelerometer and the proximity sensor

of the phone. The data was divided into overlapping half-second frames, with the sample mean

and variance of the accelerometer axes recorded for each frame. The number of times that the

49

proximity sensor was triggered over the half-second was also recorded. A linear support vector

machine was then trained to differentiate these classes, attaining 91.4% accuracy over 89 test

samples.

4.4.2 Voice Activity Detection

Audio data was collected from the smartphone devices at a sample rate of 8192Hz. Ten seconds

of audio was recorded, and this signal was broken into 20 half-second samples. For each of these

samples, a Fast Fourier Transform is used to extract 16 features, presented in Table 4.2. We

empirically compared multiple classifiers for use in the voice activity detection task. A support

vector machine with a linear kernel and a Gaussian mixture model were both trained on labeled

audio samples to differentiate audio samples containing human speech from samples that do not

contain speech. Although previous work has shown this approach to be effective at the voice

activity detection task [37, 55], there is one complication that arises in a mobile devices applica-

tion: the device may be in a user’s pocket or handbag when the sample is collected, resulting in a

significantly dampened signal and many false-negative predictions by the classifier. Because we

are able to detect when the phone is in a pocket using the accelerometers and proximity sensor,

we train a second speech detection classifier for this scenario. A linear support vector machine

and Gaussian mixture model were also trained in this instance, with a new set of trained weights

to account for the dampened signal.

The performance of the classifiers with the phone in and out of a pocket is shown in Table

4.3. The testing set included many noisy audio samples without voice activity, such as music and

sounds of car traffic. Based on these results, the linear support vector machine was selected for

deployment in the InContext application.

50

Feature Description
1 Fourier mean The sample mean of the magnitudes of

all Fourier coefficients in the sample.
2 Fourier variance The sample variance of the magnitudes

of all the Fourier coefficients.
3 Total signal power The sum of the squared magnitudes

of all the Fourier coefficients
4 Mid-range power The sum of the squared magnitudes

of the Fourier coefficients in the
250-600Hz range of the spectrum.

5 Ratio The ratio of the mid-range power
over the total signal power.

6 Zero crossings The number of zero crossings in the
Linear PCM encoding of the audio signal

7-16 Band power 9 features representing the signal power in
100Hz bands from 1 to 1000Hz. The bands

are 1-100Hz, 101-200Hz...901-1000Hz.

Table 4.2: Voice activity detection features

GMM SVM
In pocket 86.7% 91.3%

Out of pocket 90.5% 95.1%

Table 4.3: Voice activity detection accuracy

51

4.4.3 Smoothing of Information Extraction Output

Because several seconds of data is collected whenever we wish to sense the current context, both

of the information extraction algorithms actually produce a sequence of predictions as their out-

put. Rather than simply using the mode label of the sequence, we instead consider the certainty

of the classifiers over the time interval. For phone posture recognition, we select the label with

the most total certainty over the sequence. However, for the voice activity detection, we recog-

nize that pauses in a conversation may result in many elements of the label sequence receiving a

negative label, even though there is actually a conversation present in the environment. Therefore

when smoothing the predictions of the voice activity detection algorithm, rather than selecting

the most confident label, we instead require that the total confidence surpass a certain threshold.

This is formalized in equation 4.1, in which the smoothed label YV AD is based on a sequence of

data-points x1...xT. For each element in the sequence, the distance to the decision boundary of

the SVM is given by w · xt. The threshold, C, was selected to maximize classification accuracy

on a labeled parameter validation set.

YV AD = I

([
T∑
t=1

w · xt

]
≥ C

)
(4.1)

4.4.4 Preference Classification

This section addresses the problem of trying to predict a user’s preferences in a given context,

given their preferences in previous contexts. Unlike the other applications described in this thesis,

we will be dealing with small datasets that do not require spectral methods to minimize compu-

tational complexity. Instead, we employ a variant of the nearest-neighbors algorithm for the task

of selecting ringer preferences in different contexts. We compared this algorithm to a variety

of other simple baseline classification algorithms, including a support vector machine, decision

tree, and naive Bayes algorithms, and found that the nearest-neighbor algorithms outperformed

these alternatives.

52

For the purposes of classification, we use the first six variables presented in table 4.1 as fea-

tures, and we use the weakly labeled data sources to provide training labels. As noted previously,

we believe that at the moment a user changes their ringer setting, this setting is most likely correct

for their current context (or near future contexts). Therefore, the weakness of this data source

will increase with time. Unlike other weakly labeled data sources in which we may use a static

weight value in training, in this instance we wish to decrease the weight of the hardware switch

data source as a function of t. To capture this behavior, equation 4.2 shows the exponential decay

function we use to weight the samples. In this equation, the weight Wi of datapoint i is based

on the hardware ringer switch, Yi, of this sample, which adopts value 1 if the switch is on and

-1 if the switch is off. The exponential decay parameter λ is selected using the validation set.

It was empirically determined that small changes to these parameters do not have a significant

impact on classifier performance, so it is not necessary to learn them for each user. The vari-

able h denotes the number of hours since this setting was selected, rounded to the nearest whole

number. The weight function has an additional benefit as well. When this system is deployed on

a user’s phone, if the preference classifier is working correctly, we envision the users no longer

needing to change their ringer setting. By ignoring the ringer setting if it has been a long time

since the user set it, we allow the system to take over completely when the user is satisfied with

the system.

Wi =

 Yie
−h/λ : h ≤ 12

0 : h > 12
(4.2)

The distance function for the nearest neighbor classifier is given in equation 4.3. This func-

tion describes the distance between two recorded context Ci and Cj . For each feature d in

contexts i and j, we consider the difference |f id − f jd |. For the phone posture, voice activity,

weekday, and sound level features, this is simply the Hamming distance. For the hour feature,

the difference is min(|hi − hj|, 4). For the location feature, the difference is the indicator func-

tion, denoting whether these two locations are within 150 meters of one another. For each feature

53

k, we have a distance parameter dk, which was selected on a validation set taken from a single

user’s data.

D(Ci, Cj) =
6∑

k=1

dk|f id − f jd | (4.3)

Using the distance function given by equation 4.3, we have the decision policy given in equa-

tion 4.4. If we wish to predict the ringer setting for a context C, we take a weighted summation

over the k contexts in the user’s history with the smallest distance to the current context. If this

summation is non-negative, the algorithm predicts that the user would like the ringer turned on.

Otherwise the ringer is turned off. It is worth noting that this prediction function gives us an

obvious confidence measure, namely the weighted summation of distances to the nearest con-

texts. The larger the magnitude of this summation, the more confident the algorithm is of the

prediction. Empirical results for this algorithm are given in section 4.5.

Pred(C) = I

([
k∑
i=1

Wi

D(C,Ci)2

]
≥ 0

)
(4.4)

4.4.5 Active Learning

For this application, we will leverage active learning as described in section 3.5.2. However,

rather than using it to filter weakly labeled data, we will use it as a traditional tool to query a

labeling oracle. In the context of interruptibility, the user acts as the oracle, and these queries

are presented in situ so as to benefit from the increased accuracy of experience sampling [17].

In scenarios in which a labeling oracle is available, active learning has been shown to greatly

increase classification accuracy[61].

As previously described, we will use entropy H(X) as our measure of uncertainty.

H(X) = −
1∑
l=0

P (Y (X) = l|X) log[P (Y (X) = l|X)] (4.5)

In our mobile phone application we are likely to see many samples densely packed around a small

54

number of contexts (e.g. the user is at work or at home), plus a small number of previously un-

known contexts (such as when the user tries a new restaurant). This makes the density sampling

component described in section 3.5.2 particularly important. However, rather than building a ker-

nel density estimate for the feature space, we will use a more computationally efficient function

that can be easily computed on a phone. The metric function for density-weighted uncertainty

(DW) sampling is given in equation 4.6. In this equation, sim(X, Y), is a function representing

how similar two points X and Y are. For our similarity function, we use the squared reciprocal

of the distance function from equation 4.3.

DW (X) = H(X)
n∑
i=1

sim(X,X i) (4.6)

With density-weighted uncertainty sampling, we wish to query the label of the sample, X ,

that maximizesDW (X). This will be a sample that the algorithm is uncertain about labeling, but

which is also representative of several other data-points in our dataset. We also use an additional

heuristic, in which the algorithm will not request the label of a point if a similar data-point has

already been labeled.

We collected 50-100 labeled data-points for each volunteer using the InContext system.

These data-points were collected using experience sampling, according to a uniform query sched-

ule. Of these labeled data-points, 50% were set aside for testing for each user. The remain-

ing labeled data-points were used to evaluate the benefit of allowing the system to actively re-

quest labels. In the next section, we compare density-weighted uncertainty sampling to standard

uncertainty sampling, which is the technique used in most previous interruptibility prediction

systems[29, 35].

55

Features RBF SVM accuracy
With Information Extraction 6 95.3%

Without Information Extraction 33 59.3%

Table 4.4: Effects of voice activity detection and phone posture recognition (Information extrac-
tion)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Percentage of training data used

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Nearest Neighbors
Naive Bayes
Decision Tree
Support Vector Machine

Figure 4.4: Comparison of preference classifiers

4.5 Results

Figure 4.4 shows a comparison of four different classifiers for predicting ringer preferences. We

evaluated the nearest-neighbors algorithm described in section 4.4.4, a support vector machine

with an RBF kernel, Naive Bayes, and a decision tree using the information-gain metric. Addi-

tionally, the support vector machine was evaluated on a single user when given the raw features

used for information extraction, rather than the output of the information extraction algorithms

(voice activity detection and phone posture recognition). From the summary of experimental

results, shown in table 4.4, we see that that these two information extraction algorithms have a

significant positive impact on classification accuracy.

The effects of active learning queries on classification accuracy are shown in figure 4.5. In

this experiment, we compared the performance of standard uncertainty sampling against density-

weighted uncertainty sampling. The classification accuracy is averaged across all five users. We

see that density-weighted uncertainty sampling consistently outperforms uncertainty sampling.

When given the maximum number of active labels (15), the classifier with density-weighted

56

0 5 10 15
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Number of labeled samples

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Density−weighted uncertainty sampling
Uncertainty sampling

Figure 4.5: Active learning curve

uncertainty sampling attained an average classification accuracy of 96.12%±3.37%. This equates

to approximately two queries per day. When the number of queries is dropped to one per day,

the classification accuracy is 87.86% ± 5.68%. With no active queries at all, the classification

accuracy is 81.46% ± 6.20%, indicating that the weakly labeled data in this application is quite

useful on its own. For all but one user, using weak data alone leads to an average accuracy of

87.82%—indicating very low noise rates for those users. The remaining user very rarely set

the hardware switch, so training this user using only weakly labeled data attains only 52.0%

accuracy. By training using 7 active queries, and then conducting internal error correction as

described in section 3.5.1, we are able to improve this number to 83.52% for this user, and

90.12% averaged across all users.

Hardware ringer switches have not previously been used to train interruptibility classifiers,

presumably because the noise was thought to be too great. We see that, in general, this is not

the case, with four of our five users attaining a classification accuracy above 80% with no active

labels. One user attained 96.32% accuracy using no active labels. In addition, internal error

correction allows us to attain positive results even in instances in which the noise rate would

otherwise make training intractable. By starting with a much higher baseline, we need fewer

queries to users to push classification accuracy above 95%. Compared to a system that relies

57

only on user queries[57], we are able to produce comparable accuracy with many fewer queries,

and much greater accuracy when the user is willing to answer only a small number of queries.

We additionally see that the density-weighted uncertainty sampling provides increased accuracy

compared to regular uncertainty sampling. Furthermore, we conjecture that the density term will

prevent the system from issuing queries every time the user travels to a new context.

4.6 Conclusions

The InContext application is the simplest task described in this document, allowing us to use

simple classification methods to great effect. However, it succinctly demonstrates the effective-

ness of using weakly labeled data to minimize the need for hand-labeled training data. In this

chapter, we have seen that we can achieve very accurate prediction using little to no supervision.

The sources of weakly labeled data in this application showed fairly little bias and noise, with

the exception of one user. For the anomalous user, internal error correction allowed us to achieve

desirable results using only 7 labeled examples. We have also seen that active learning can make

an excellent tool for carefully selecting labeled examples. In subsequent chapters, we will also

see how active learning can combat biased weakly labeled data.

In the following chapter, we will turn to the Virtual Seating coach, a natural extension of

the InContext application. With the Virtual Seating coach, we will be dealing with a larger,

weaker training dataset, requiring us to leverage more advanced techniques, in particular a latent

variable, spectral method.

58

Chapter 5

The Virtual Seating Coach System

5.1 Introduction

We now turn to an application that is conceptually very similar to InContext, but with with

much higher stakes depending on the system’s performance. More than 2.5 million Americans

experience pressure ulcers every year [56]. One particularly high risk group of individuals are

those with severe physical disabilities that utilize power wheelchairs as their primary means of

mobility. Power wheelchairs can very effectively relieve pressure by raising the user to a reclined,

titled position for several seconds. However, research indicates that less than 40% of power

wheelchair users correctly use their power seat functions to relieve pressure and prevent deadly

ulcers [40]. This leads many power wheelchair users to be exposed to preventable pressure ulcer

formation, which can often lead to complicating infections or even death.

The Virtual Coach smart power wheelchair system was designed at the Human Engineering

Research Laboratory [45]. It is built to track the power wheelchair usage of users in order to

help them better conform to the pressure relief guidelines set forth for them by clinicians, as

well as improve their overall posture. By monitoring encoders in the power wheelchair’s joints

(chair tilt, leg rest elevation, seat elevation, etc), the system is able to determine when a user has

successfully performed the repositioning exercise prescribed by the user’s healthcare provider.

59

Users are reminded on a periodic basis to conduct pressure relief, and the system tracks whether

the user complied with the reminder or not. Initial results suggest that users that receive regular

reminders from the system have higher rates of compliance with their exercise regime than those

users not receiving instruction [45]. However, there is a risk of the system becoming intrusive

and annoying if users are given too many undesired reminders.

Instead of simply reminding users with a static periodicity, we would like to expand upon the

InContext framework to deliver context-aware, personalized exercise prompts. In this section,

we present the results of applying our methods to predict whether a user is likely to comply with a

reminder given information about the user’s current context collected by several sensors onboard

the Virtual Coach system. We show that when averaged across all users, we can attain a predic-

tive accuracy of 92%. Compared to the InContext system, we are dealing with weaker, higher

dimensional data—with regards to both noise and bias. In addition to leveraging active sam-

pling and internal error correction, we also utilize the spectral, latent variable method described

in section 2.1.2. The spectral HMM provides us with the more accurate predictive model, but

some clinicians have also requested a more interpretable model to help them understand why pa-

tients do or do not comply with exercise prompts. To address this need, we also provide results

with a computationally lightweight decision tree model that creates an output which is easy for

clinicians and users to understand. The goal for this work is to create an intelligent, decision

theoretic reminding system that would select the best moments to issue reminders to users given

the likelihood of compliance in the current context, the time since the last pressure relief was

completed, and the recommendations given by the overseeing clinician.

5.2 The Virtual Seating Coach System

The Virtual Seating Coach (VC) system is a smart power wheelchair outfitted with a variety of

sensors and an onboard computer. The sensors installed on these chairs include encoders in each

of the chair’s joints and wheels, accelerometers in the base of the seat, a seat occupancy sensor,

60

Figure 5.1: A researcher demonstrating the use of the Virtual Coach system

a thermometer, and a light sensor. Additionally, a subset of users in the clinical trails used chairs

that were outfitted with GPS chips and microphones. A complete list of the sensors and the

machine learning features that were computed is shown in Table 5.1.

A tablet computer is attached to the arm of the chair, as seen in Figure 5.1. The software on

this tablet is used to issue reminders to users, and to provide feedback while an exercise is being

conducted. Additionally, users can set preferences that dictates if reminders will be given using

audio queues, silent text, or if the reminders should be disabled completely. When a reminder is

given, a user is given the choice of snoozing the reminder, which will result in another prompt

being given in 5 minutes, or the reminder can be dismissed for 1 hour. If the user does not comply

with the reminder, it is automatically snoozed for 5 minutes. If the user successfully completes

the exercise, the reminding system will be reset for a duration determined by a clinician. Ad-

ditionally users were queried at longer random intervals to indicate if they would be willing to

perform a pressure relief exercise in the current environment. The user questionnaire responses

are used to supplement the training data, but the user responses to exercise prompts are treated

as the golden standard for determining interruptibility.

Data Source Features

Chair angle encoders Mean and variance of encoder values over previous 10 seconds

Wheel Encoders Mean and variance of rotational velocity over previous 10 seconds

Accelerometers Average Fourier power in 500 Hertz bands over 0-4000 Hz

61

Thermometer Average temperature over previous 30 seconds

Seat Occupancy A 0/1 value indicating state of pressure sensor in seat

Clock The current day of the week and hour of the day

Recent Behavior Time since the last reminder

Recent Behavior Outcome of previous reminder (Snooze, dismiss, compliance)

GPS Data1 The current encrypted longitude and latitude coordinates

Audio Data1 Average Fourier power in 100 Hertz bands over 0-1000 Hz

Table 5.1: The features computed using the Virtual Coach sensors

The Human Engineering Research Laboratory has built several prototype versions of the

system that have been undergoing clinical trials, and more than 20 volunteers have participated

in the trials using the VC system over a period of 6 weeks per user [45]. Volunteers were either

assigned to a control group, being given a sensor equipped chair without a reminding system, or

they were given the full VC system with tablet computer. The system stores clinician pressure

relief guidelines for the individual user. For instance, the recommendation may be for the user

to receive 30 seconds of pressure relief once every 60 minutes. During clinical trials the system

issued reminders on a fixed basis according to the prescription, and the user’s response to the

reminder was recorded—indicating if the user snoozed the request, ignored it, or complied with

the prompt by completing an exercise.

5.3 Weakly Labeled Data

Figure 5.2 shows the empirical noise bias values for the weakly labeled data sources available

with the Virtual Coach. We see a very similar arrangement in the noise-bias spectrum when

compared to the InContext application. In particular, we have two principal sources of weakly

1Data only available for subset of users

62

labeled data.

For the first data source, users are able to provide reminding preferences through the Virtual

Coach software, allowing them to select various reminding modalities (textual, audio, vibration)

or to disable reminders all together. For the purposes of determining interruptibility, we cast

these preferences into a binary class indicating if the user has disabled reminders or not. Similar

to InContext, this data source represents a curve through the noise bias spectrum, as a function of

time since the reminder was set. The KL-Divergence with regards to this testing set is computed

using the features and labels of these datapoints, yielding an empirical estimate for bias. We use

the recorded responses of users to exercise prompts to determine the noise of the labels in the

software preferences as a function of preference staleness. We see that this data source is weaker

than the hardware switch in the InContext application, both in terms of noise and bias. With the

InContext application, user preferences are controlled by a simple, pre-existing hardware switch

on a phone the users are already familiar with. With the Virtual Coach, user preferences are

recorded via software in a sub-menu of a system that users are unfamiliar with. This lead to

higher average staleness of preferences and more noise even for fresh preference labels.

The second source of weakly labeled data are periodic software questionares issued to users

asking if the current context would be appropriate for interruption. We see a much lower noise

rate for this datasource (0.0921), but increased bias. In particular, we see that users are sig-

nificantly more likely to respond to these queries in instances in which they would be willing

to comply with an exercise prompt, leading to an increased KL-Divergence with respect to the

testing data.

Both of these datasets show high noise-rates, which makes Internal Error Correction an ef-

fective approach. To achieve this, we train a spectral, latent variable model using the labeled

data, and relabeled all training points below entropy threshold (ψ = 0.15).

The user questionnaire responses are fairly low in volume for this application, making the

density-weighted threshold less useful. As such, only the lowest 10 percentile of these labels are

removed from the training set. On the other hand the continuously observed data labeled using

63

0.5 0

1.
0

0.
0

User preference curve

Software prompt
responses

Decreasing Noise
P (ŷ 6= y)

D
ec

re
a
si

n
g

B
ia

s

(K
L
-D

iv
er

ge
n
ce

)

Figure 5.2: Weakly Labeled Virtual Coach Data in the Noise Bias Spectrum

the software preference setting has much greater volume, although most of these datapoints are

redundant. As such, we only retain the top 30 percent of the original data according to density

sampling, with the caveat that all datapoints in the training set have a maximum cosine similarity

of 0.8. This step prevents too many redundant datapoints from being used in training.

Additionally, after Internal Error Correction and density thresholding are conducted, these

datasources are re-weighted according to the procedure described in section 3.5.3. UsingWr = 1

for the exercise responses, we arrive at Wr = .82 for the software responses and Wr = 0.525 for

the passively recorded preference data.

5.4 Spectral Hidden Markov Models

We see from figure 5.2 that we are dealing with weaker data in this application compared to

InContext. In addition to leveraging our methods for improving weakly labeled data, we can

improve predictive performance by explicitly modeling the sequential nature of the task at hand.

64

A person’s daily routine is inherently sequential, as we move from one context to another, thus

using a model with latent states allows us to compensate for the more difficult dataset induced by

this application. The spectral, latent variable methods described in section 2.1.2 provide us with

a powerful framework that models sequential dependencies using Markovian latent variables.

For this application, we have access to a relatively low volume of unique labeled datapoints.

However, the environmental sensors were running almost continuously for all subjects, giving us

a fairly complete representation of transitions between contexts. One of the most computationally

expensive steps in building a spectral, latent variable model consists of computing empirical n-

grams of the observation space, defined as follows:

[P1]i = Pr[x1 = i]

[P2,1]ij = Pr[x2 = i, x1 = j]

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j] ∀x

These n-grams can also be very sparse when the observation space is large, or training data

is limited. The weakly labeled continuous data is of limited use for training, but is ideal for

computing these empirical n-grams. By improving the accuracy of these n-gram matrices, we

also derive improved estimates for the subspace spectral paramters π̂U and ÂU .

The model is initially trained using a dataset that has undergone Internal Error Correction,

density thresholding, and datasource re-weighting. After the model is trained using all these

datasources, internal error correction is applied a second time, and the final model is trained

using this refined dataset.

65

5.5 Decision Trees

Power wheelchairs are a principle component in the life of many people living with a physical

disability, and research suggests that chair users prefer to remain in full control of their chair’s

functionality [5]. In light of this, we may wish to create a reminding system that is maximally

transparent, so that a user or a clinician could better understand how the intelligent system is

deciding when to issue prompts. The spectral HMM, while very powerful, relies on a latent

variable distribution that often lacks a simple, relatable explanation.

In an effort to explore a model that would be easier for end users to comprehend, we turned

to one of the oldest and most popular machine learning classifiers: decision trees. Decision

trees conduct classification through a series of logical binary operations applied to the learning

features. Information gain is most often used to determine which features to place near the root

of the tree. Information gain is defined as the reduction in statistical entropy gained by learning

the state of a random variable. If we denote H(Y) to be the statistical entropy of a random

variable, the information gain of X with regards to label Y is H(Y)−H(Y |X = a).

Decision trees have been shown to be high bias classifiers, leading to a great deal of overfit-

ting [70]. To combat this, decision trees are generally pruned near the leaves of the tree to reduce

bias and improve the tree’s capacity for generalization. Smaller trees will also be easier for users

to view and comprehend.

An example of a heavily pruned decision tree trained on one user’s Virtual Coach data is

shown in Figure 5.3. In this figure, a lead node of 1 indicates that the user is expected to comply

with a reminder, 0 indicates predicted non-compliance. The tree in this figure was trimmed to

depth 3, leaving only encrypted location and audio features remaining. It is worth noting that the

audio feature with the highest information gain is the Fourier signal power in the 300 to 400Hz

range of the spectrum. This represents the lower end of the audio spectrum that the human

voice inhabits, so the decision tree seems to indicate that this given user would prefer not to be

reminded if there is evidence of a speech signal present in the environment. If a Virtual Coach

66

0

0

1 0

x1 < 102.716

x1 < 28.8081

x13 < 8.26022e+06

 x1 >= 102.716

 x1 >= 28.8081

 x13 >= 8.26022e+06

Latitude >= 102.716 Latitude < 102.716

Longitude
>= 28.8081

Longitude
< 28.8081

300-400Hz Audio Power
< 8.26022e+06

300-400Hz Audio Power
>= 8.26022e+06

Figure 5.3: A Decision Tree Showing the Compliance Predictions of a User

user were to elect to use a decision tree to determine when the intelligent system should issue

reminders, the user would be able to verify, and possibly modify, the behavior of the system.

This would help to curb any confusion a user may have as to why the system is behaving in the

way that it is. As before, the initial training data has already undergone Internal Error Correction,

density thresholding, and re-weighting.

5.6 Results

When collecting empirical results, we used 15 fold cross validation to determine prediction ac-

curacy of our models by randomly selecting one week of data to hold out for validation. Figure

5.4 shows the average prediction accuracy of the spectral HMM and decision tree models as a

function of training data volume, including the usage of Internal Error Correction, density thresh-

olding, and re-weighting. We also considered several other classifiers, including Support Vector

Machines, Nearest Neighbors, Naive Bayes’ algorithm, and Conditional Random Fields. None

of these other approaches performed as well as the spectral HMM, or produced output that was

as interpretable as the decision trees.

We see from these results that the spectral HMM performs particularly well with small

amounts of data, with a very steep peak in the training curve after being supplied with only

67

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

Percentage of Training Data Used

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

Decision Tree
Spectral HMM

Figure 5.4: Empirical Training Curve

20% of the data (roughly one week’s worth of data). This result fits with intuition, because we

expect accuracy to plateau after seeing one full instance of a user’s weekly schedule. The spectral

HMM peaks at around 92% classification accuracy, while the decision tree model peaks at 88%.

It is not surprising that the spectral HMM performs the best, because the HMM reflects recent

observations through the latent state distribution, while the decision tree performs classification

using only the current sensor values. For comparison, a naive model that always predicts the

most likely prior attains 69% classification accuracy.

Table 5.2 shows the effects of Internal Error Correction (IEC), density thresholding, and data-

source re-weighting. Similar to simulated results in this region of the noise-bias spectrum, we see

a fairly significant improvement from Internal Error Correction. Density thresholding, however,

provides a much more modest improvement. Due to the low volume of unique labels, we were

unable to aggressively prune biased data away, which explains the incremental improvements

this approach produces.

Re-weighting produces the most dramatic effects. This is likely due to the fact that the

largest source of labels (continuously collected data labeled with software preferences) is also the

largest—particularly when density thresholding is not deployed. This leads to an over-emphasis

68

IEC Density Threshold Re-weighting HMM DT
Y Y Y .92 .88
N Y Y .87 .82
N N Y .85 .81
N N N .76 .71

Table 5.2: Effects of Data Improvement Methods for the Virtual Coach

on noisy, biased data, which—in the worst case—leads to a model that barely outperforms the

naive baseline.

We determined that both models performed best when supplied with training and testing

data from only a single user. Models trained with data from multiple users resulted in many

contradictory training examples, which is intuitive, because we would expect different users to

react differently to a reminder under the same circumstances.

Prediction accuracy with users for whom audio and GPS data were available was higher than

the rest of the population, showing 94% average accuracy with the HMM, and 92% average

accuracy with the decision tree. We see a smaller differential between the two models in this

case due to the fact that the GPS data shows very high information gain, often placing it near the

root of the decision trees. For these users we can attain a predictive accuracy surpassing 85%

using trees of only depth four that were built only using time of day, GPS coordinates, and the

outcome of the most recent reminder. This suggests that simpler models are almost as effective

for users that are willing to share personal information, such as location data, with the Virtual

Coaching system.

5.7 Conclusions

Initial results show that we can accurately predict repositioning exercise compliance given a

set of fairly common sensors embedded in a power wheelchair. The spectral Hidden Markov

Model leverages Markovian information about the past in a framework that has many desirable

69

theoretical and practical qualities. On the other hand, the decision tree model is computationally

very lightweight, and presents an easily understandable graphical representation of the model. It

could also be possible to combine these approaches, using a Hidden Markov Decision Tree [33]

to build a model with maximum predictive performance that is still interpretable. Regardless of

the model used, we have seen that by leveraging weakly labeled datasets, and a variety of tools

for improving data quality, we are able to achieve high predictive accuracy in a task that includes

very few labeled training examples.

By using our methods to monitor and alter users’ pressure relief habits, we have the potential

to prevent thousands of occurrences of pressure ulcers every year. The cost saving nature of this

technology will also make it desirable for insurance companies and healthcare organizations,

which could lead to faster adoption of the technology and improved outcomes for the millions of

power wheelchair users in the world.

In subsequent chapters we will turn away from sensor based, context-aware applications, and

towards large scale natural language tasks. We will encounter many of the same types of weakly

labeled datasets, however, as the size of these datasets increases, the value of active density

sampling will increase significantly.

70

Chapter 6

Discourse Analysis

6.1 Introduction

We now consider our first application in the natural language domain, discourse parsing. Com-

pared to applications in the previous chapters, the size of available datasets derived from unla-

beled text on the web is nearly infinite, which makes density thresholding more valuable and

requires us to leverage fast, efficient spectral methods to train with the most data possible. Dis-

course parsing is a fundamental task in natural language processing that entails the discovery of

the latent relational structure in a multi-sentence piece of text. Unlike semantic and syntactic

parsing, which are used for single sentence parsing, discourse parsing is used to discover inter-

sentential relations in longer pieces of text. Without discourse, parsing methods can only be used

to understand documents as sequences of unrelated sentences.

Unfortunately, manual annotation of discourse structure in text is costly and time consuming.

Multiple expert annotators are required for each relation to estimate inter-annotator agreement.

The Penn Discourse Treebank (PDTB) [54] is one of the largest annotated discourse parsing

datasets, with 16,224 implicit relations. However, this pales in comparison to unlabeled datasets

that can include millions of sentences of text. By augmenting a labeled dataset with weakly

labeled data, we can offset the limitations of a small hand-labeled dataset.

71

As a consequence of collecting weakly labeled data from the web, we are left with enormous

datasets consisting of tens of millions of relation pairs, with hundreds of features within each

pair. As such, the primary constraint on training set size depends on computation rather than

availability of training data. As we have previously seen in Figure 2.1.2, spectral methods can

sometimes be orders of magnitude faster than similar approaches such as EM. This increase in

efficiency directly affects the volume of data that can be used for training in a given time, leading

to a significant increase in predictive accuracy, in addition to the benefits of statistical consistency

entailed in spectral methods. As such, discourse parsing is the first application described in this

document in which we can begin to realize the full potential of spectral methods, while other

competing methods become intractable.

This chapter presents a spectral model for a sequential relation labeling task for discourse

parsing using weakly labeled data. Besides the theoretically desirable properties mentioned

above, we also demonstrate the practical advantages of the model with an empirical evaluation

on the Penn Discourse Treebank (PDTB) [54] dataset, which yields an F1 score of 0.485. This

accuracy shows a 7-9 percentage point improvement over previous approaches that do not utilize

weakly labeled training data with spectral methods.

6.2 Problem Definition and Dataset

This section defines the discourse parsing problem and discusses the characteristics of the PDTB.

The PDTB consists of annotated articles from the Wall Street Journal and is used in our empirical

evaluations. This is combined with the New York Times Annotated Corpus [59], which includes

1.8 million New York Times articles printed between 1987 and 2007.

Discourse parsing can be reduced to three separate tasks. First, the text must be decomposed

into elementary discourse units (EDUs), which may or may not coincide with sentence bound-

aries. The EDUs are often independent clauses that may be connected with conjunctions. After

the text has been partitioned into EDUs, the discourse structure must be identified. This requires

72

us to identify all pairs of EDUs that will be connected with some discourse relation. These re-

lational links induce the skeletal structure of the discourse parse tree. Finally, each connection

identified in the previous step must be labeled using a known set of relations [47]. Examples of

these discourse relations include concession, causal, and instantiation relations. In the PDTB,

only adjacent discourse units are connected with a discourse relation, so with this dataset we are

considering parse sequences rather than parse trees.

In this work, we focus on the relation labeling task, as fairly simple methods perform quite

well at the other two tasks [69]. We use the ground truth parse structures provided by the PDTB

dataset, so as to isolate the error introduced by relation labeling in our results, but in practice a

greedy structure learning algorithm can be used if the parse structures are not known a priori.

Some of the relations in the dataset are induced by specific connective words in the text. For

example, a contrast relation may be explicitly revealed by the conjunction but. Simple classifiers

using only the text of the discourse connective with POS tags can find explicit relations with high

accuracy [44]. The following sentence shows an example of a more difficult implicit relation. In

this sentence, two EDUs are connected with an explanatory relation, shown in bold, although the

connective word does not occur in the text.

“But a few funds have taken other defensive steps. Some have raised their cash

positions to record levels. [BECAUSE] High cash positions help buffer a fund when

the market falls.”

We focus on the more difficult implicit relations that are not induced by coordinating connec-

tives in the text. The implicit relations have been shown to require more sophisticated feature sets

including syntactic and linguistic information [42]. The PDTB dataset includes 16,224 examples

of implicit relations.

A full list of the PDTB relations is shown in figure 6.1. The relations are organized hierar-

chically into top level, types, and sub-types. Our experiments focus on learning only up to level

2, as the level 3 (sub-type) relations are too specific and show only 80% inter-annotator agree-

73

Figure 1: Hierarchy of sense tags

e.g., “Contrast” vs “Concession”. Cases when one anno-
tator picked a class level tag, e.g., “COMPARISON”, and
the other picked a type level tag of the same class, e.g.,
“Contrast”, did not count as disagreement. At the sub-
type level, disagreement was noted when the two annotators
picked different subtypes, e.g., “expectation” vs. “contra-
expectation”. Higher level disagreement was counted as
disagreement at all the levels below. Inter-annotator agree-
ment is shown in Table 3. Percent agreement, computed for
five sections (5092 tokens), is shown for each level. Agree-
ment is high for all levels, ranging from 94% at the class
level to 80% at the subtype level.
Class level disagreement was adjudicated by a team of three
experts. Disagreement at lower levels was resolved by pro-
viding a sense tag from the immediately higher level. For
example, if one annotator tagged a token with the type
“Concession” and the other, with the type “Contrast”, the
disagreement was resolved by applying the higher level tag
“COMPARISON”. This decision was based on the assump-
tion that both interpretations were possible, making it hard
to determine with confidence which one was intended.

LEVEL % AGREEMENT
CLASS 94%
TYPE 84%
SUBTYPE 80%

Table 3: Inter-annotator agreement

Table 4 shows the distribution of “CLASS” level tags in the
corpus. Each “CLASS” count includes all the annotations
of the specified “CLASS” tag and all its types and subtypes.
The total of Explicit, Implicit and AltLex tokens is shown

in parentheses at the top row. The total of sense tags ap-
plied to these categories is shown at the bottom of the table.
The numbers differ because some tokens may have been
annotated with two senses.
Table 5 shows the top ten most polysemous connectives and
the distribution of their sense tags. The total number of
tokens whose sense tags occurred less than ten times are
shown as other. The connectives after, since and when,
which typically relate non-simultaneous situations, are am-
biguous between “TEMPORAL” and “CONTINGENCY”
senses. The connectives while and meanwhile, which typ-
ically relate simultaneous situations, are ambiguous be-
tween the “TEMPORAL” and “COMPARISON” senses.
The connectives but, however and although are ambigu-
ous between the “Contrast” and “Concession” types and
subtypes of “COMPARISON” but rarely between different
classes of senses. The connective if is ambiguous between
subtypes of “Condition” and some pragmatic uses.

4. Attribution Annotation
Recent work (Wiebe et al., 2005; Prasad et al., 2005) has
shown the importance of attributing beliefs and assertions
expressed in text to the agent(s) holding or making them.
Such attributions are a common feature in the PDTB cor-
pus which belongs to the news domain. Since the discourse
relations in the PDTB are annotated between abstract ob-
jects, with the relations themselves denoting a class of ab-
stract objects (called “relational propositions” (Mann and
Thompson, 1988)), one can distinguish a variety of cases
depending on the attribution of the discourse relation or its
arguments: that is, whether the relation and its arguments
are attributed to the writer (e.g., attribution to the writer in

2965

Figure 6.1: Overview of all relations occurring in the Penn Discourse Treebank

74

This hasn't been Kellogg Co.'s year

The oat-bran craze has cost the world's largest
cereal maker market share, and!

the company's president quit suddenly.

edu2

r12!

(Contingency.Cause.Reason)
h12

edu1

Figure 6.2: An example of the latent variable discourse parsing model taken from the Penn
Discourse Treebank Dataset. The relation here is an example of a cause attribution relation.

ment. There are 16 level 2 relations in the PDTB, but the 5 least common relations only appear

a handful of times in the dataset and are omitted from our tests, yielding 11 possible classes.

6.3 Approach

We incorporate weakly labeled data into our spectral discourse parsing model using a bootstrap-

ping framework. The model is trained over several iterations, and the most useful weakly labeled

sequences are added as labeled training data after each iteration. Our method also utilizes Marko-

vian latent states to compactly capture global information about a parse sequence, with one latent

variable for each relation in the discourse parsing sequence. Most discourse parsing frameworks

will label relations independently of the rest of the accompanying parse sequence, but this model

allows for information about the global structure of the discourse parse to be used when labeling

a relation.

Specifically, each potential relation rij between elementary discourse units ei and ej is ac-

companied by a corresponding latent variable as hij . A graphical representation of one link in

the parsing model is shown in Figure 6.2. According to the model assumptions, the following

75

equality holds:

P (rij = r|r1,2, r2,3...rn+1,n) = P (rij = r|hij)

To maintain notational consistency with other latent variable models, we will denote these

relation variables as x1...xn, keeping in mind that there is one possible relation for each adjacent

pair of elementary discourse units.

For the Penn Discourse Treebank Dataset, the discourse parses behave like sequence of ran-

dom variables representing the relations, which allows us to use an HMM-like latent variable

model based on the framework presented in [32]. If the discourse parses were instead trees, such

as those seen in Rhetorical Structure Theory (RST) datasets, we can modify the standard model

to include separate parameters for left and right children, as demonstrated in [19].

6.3.1 Spectral Learning

For this application, we will once again be using the spectral latent-variable method described in

section 2.1.2. For our original feature space, we use the rich linguistic discourse parsing features

defined in [23], which includes syntactic and linguistic features taken from dependency parsing,

POS tagging, and semantic similarity measures. We augment this feature space with a vector

space representation of semantics. A term-document co-occurrence matrix is computed using

all of Wikipedia and Latent Dirichlet Analysis was performed using this matrix. The top 200

concepts from the vector space representation for each pair of EDUs in the dataset are included

in the feature space, with a concept regularization parameter of 0.01.

Similar to the Virtual Coach, abundant weakly labeled and unlabeled data are particularly

useful for computing the empirical n-gram matrices, P1, P2,1, and P3,x,1. Given the very high-

dimensional, sparse feature space, computing these empirical matrices using only the labeled

PDTB dataset yields unacceptably sparse results—even in the reduced dimensional subspace.

76

0.5 0
1.

0
0.

0

Bootstrapped Labels

Explicit Relations

Decreasing Noise
P (ŷ 6= y)

D
ec

re
as

in
g

B
ia

s

(K
L
-D

iv
er

ge
n
ce

)

Figure 6.3: Empirical Arrangement of Datasources in the Noise-Bias Spectrum

6.4 Weakly Labeled Data

For this application, we will be dealing with two weakly labeled datasources, which are almost

diametrically opposed to one another in the noise-bias feature space.

In the first datasource, we have bootstrapped labels sampled from unlabeled Wall Street Jour-

nal newsfeed articles. Because the source of this data is the same as the testing set, the bias

measured by KL-divergence is very low (0.049). However, the difficulty of the prediction task

leads to very high noise rates, even when using aggressive certainty thresholds. Additionally, as

discussed in Chapter 3, this noise is strongly correlated with the existing beliefs of the classifier,

making internal error correction much less useful. If we were given no other options, cross-

training would be on possible method to improve the quality of these labels, but fortunately we

have a second, extremely useful source of weakly labeled data.

The second source of weakly labeled data are explicit relations, i.e. those relations that

have a known lexical connecter that induces the relation. These types of relations can be trivially

77

identified using simple methods such as a linear SVM with an F1 score of .87 or above [44]. This

provides us with a nearly endless set of low-noise weak labels. Unfortunately, not all relations

have explicit forms, and those that do can have very different lexical properties when taken in

explicit form. To make things more concrete, we can consider an example where the explicit and

implicit forms of a relation are quite different. For example, the temporal precedence relation

indicates that the events of the head EDU take place before the tail. In explicit form, this can be

indicated by a simple connective argument.

(1) “The Professor gave the lecture, and then he went home”.

(2) “The Professor gave the lecture. It was later in the day that he arrived at home”.

In this instance, we see significant lexical differences in the implicit and explicit forms of the

relation. However, other relations may retain the same meaning by simply removing the explicit

connective, such as this example of a causal relation.

(1) “The President’s favorability is dropping, because people just don’t think the

economy is on track”.

(2) “The President’s favorability is dropping; people just don’t think the economy is

on track”.

Using density sampling allows us to greatly prefer datapoints more akin to the second example.

This makes explicit relations one of the most ideal scenarios for using active density-weighted

certainty sampling. We begin with unlabeled Wall Street Journal and New York Times news

feed text, and use the EDU segmenter described in [23] and the explicit relation classifier de-

scribed in [44] to produce a weakly labeled training set. The most informative sequences in the

weakly labeled training set are added to the labeled training set as labeled examples. Unlike most

weakly labeled datasets, the confidence of the SVM predictions gives us an explicit measure of

how likely a label is to be noisy. We capture this information using density-weighted certainty

sampling (DCS). Specifically for a sequence of relations r1...rn taken from a document, d, we

78

use the following formula:

DCS(d) =
1

n

n∑
i=1

p̂(ri)

U(ri)

In this equation, U(ri) represents the distance from the decision boundary supplied by the

explicit relation SVM. Density is denoted p̂(ri), and this quantity measures the extent to which

the text corresponding to this relation is representative of the labeled corpus. To compute this

measure, we create a Kernel Density Estimate (KDE) over a 100 dimensional LDA vector space

representation of all EDU’s in the labeled corpus. We then compute the density of the KDE

for the text associated with relation ri, which gives us p̂(ri). All sequences of relations in the

weakly labeled dataset are ranked according to their average density-weighted certainty score,

and all sequences scoring above a parameter ψ are added to the training set. The model is then

retrained, the weakly labeled data re-scored, and the process is repeated for several iterations.

In iteration i, the labeled data in the training set is weighted wli, and the weakly labeled data is

weighted wui , with the weakly labeled data receiving higher weight in subsequent iterations. The

KDE kernel bandwidth and the parameters ψ, wli, w
u
i , and the number of hidden states are chosen

in experiments using 10-fold cross validation on the labeled training set, coupled with a subset

of the weakly labeled data.

We see an empirical noise rate of roughly .05 when selecting the top 40% of training data

according to DCS. Further examination indicates that this noise is generally not attributed to

misclassification by the SVM, but rather explicit relations becoming ambiguous when the explicit

connector is removed.

(1) “The President’s favorability is dropping, however people don’t understand his

vision for the country”.

(2) “The President’s favorability is dropping; people don’t understand his vision for

the country”.

In the first example, we see a comparison-concession relation, where the author seems to be

indicating that the President is a sort of misunderstood visionary. The second example appears

79

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

Percentage of Labeled Training Data Used

F1
 P

re
di

ct
io

n
Sc

or
e

Spectral HMM
Lin 14
Baseline

Figure 6.4: Empirical results for labeling of implicit relations.

to be more of an explanatory relation, where the second clause is providing evidence to support

the first clause. Empirically, these ambiguities occur at a fairly low rate [12], but these instances

are a larger source of error than explicit relation misclassification.

6.5 Results

Figure 6.4 shows the F1 scores of the model using various sizes of labeled training sets. In all

cases, the entirety of the weakly labeled data is made available, and 7 rounds of bootstrapping is

conducted. Sections 2-22 of the PDTB are used for training, with section 23 being withheld for

testing, as recommended by the dataset guidelines [54]. The results are compared against those

reported in [44], as well as a simple baseline classifier that labels all relations with the most

common class, EntRel. Compared to the semi-supervised method described in [28], we show

significant gains in accuracy using similarly sized labeled datasets, although the weakly labeled

dataset used in our experiments is much larger.

When the spectral HMM is trained using only the labeled dataset, with no weakly labeled

data, it produces an F1 score of 41.1%, which is comparable to the results reported in [44]. By

80

comparison, the classifier using weakly labeled data is able to obtain similar accuracy when using

approximately 50% of the labeled training data. When given access to the full labeled dataset, we

see an improvement in the F1 score of 7-9 percentage points. Recent work has shown promising

results using CRFs for discourse parsing [23, 34], but the results reported in this work were

taken from the RST-DT corpus and are not directly comparable. However, supervised CRFs and

HMMs show similar accuracy in other language tasks [4, 53].

6.6 Conclusions

In this chapter, we have shown that we are able to outperform fully-supervised relation classifiers

by augmenting the training data with weakly labeled text. The spectral optimization used in

this approach makes computation tractable even when using over one million documents. In

the subsequent chapter, we will take this parsing framework and apply it to a real world dataset

taken from Massively Online Open Courses operated by Coursera. we will see that by leveraging

weakly labeled data, we are able to learn an accurate response relation classifier using no hand

labeled data for training.

81

82

Chapter 7

MOOC Thread Structure Identification

7.1 Introduction

We now turn to a practical application of the discourse parsing framework introduced in the pre-

vious chapter, concerning the analysis of conversations between students participating in a Mas-

sive Online Open Course (MOOC). These types of online courses offer tremendous potential for

expanding access to quality education. However, as the number of students vastly outweigh the

number of administrators and educators, it is vital that productive collaboration between students

is fostered. Given the sheer volume of forum activity in a large MOOC, there is an opportunity to

develop software techniques that can automatically help to analyze natural language discussions

between students [2, 3] . This analysis can be used to clean and curate course forums, as well as

deploy automated interventions to aid struggling students. We may, for instance, identify which

students are most actively engaged in productive conversations with their fellow students, and

these peer mentors could be leveraged when another student is found to be struggling.

Shallow, sentence level language analysis has proven useful in a variety of MOOC applica-

tions, however many of these methods ignore the higher level inter-sentential structure of online

discussions. There is an opportunity to better understand conversations between students by

identifying which posts within a thread are related to one another, which induces a directed re-

83

lationship graph for the thread. Conversational structure, such as dialogue act sequences, can

be very useful when assessing the quality of unstructured discourse between students [1]. Un-

fortunately, most of this work has relied on manually annotated conversational structure. In this

chapter, we present a method to automatically discover forum thread structure in a weakly super-

vised manner that does not require costly, manual annotation of data. Instead, we rely on weakly

labeled data inferred from a thread’s metadata, or supplied directly by the students during normal

forum usage.

Discourse parsing offers a useful framework for analyzing the high-level structure of a con-

versation or a block of text. In most discourse parsing work, semantic relationships are identified

between elementary discourse units such as sentences or sentence fragments. This framework

generally requires very large manually annotated datasets, such as the Penn Discourse Treebank

[54]. Compiling this sort of annotated corpus is difficult for MOOCs, where supervised classi-

fiers may not generalize across different course topics. Instead, we consider a simpler problem

in which we seek to identify pairs of forum posts in which the second post is a direct response

to the first. This allows us to leverage structured forum responses built into popular online plat-

forms such as Coursera. Coupling these structured responses with a semi-supervised training

framework allows us to train a discourse parser that does not require manually supplied training

data.

In this chapter we leverage the spectral, hidden variable discourse parsing algorithm for learn-

ing the relational structure of conversations between students participating in a MOOC. We de-

scribe the specifics of the Coursera data, consisting of forum activity taken from two courses,

and we provide empirical results on a human annotated testing set compiled from the data. The

model is able to achieve predictive accuracy of .921 and .903 on the two course datasets, which

is nearing the estimated human inter-annotator agreement of .939.

84

Python Psychology
Total Threads 3,234 1,488

Total Posts 24,963 5,244
Mean Posts/Thread 7.7 3.5

Total Comments 8,421 2,747
Labeled Threads 54 34

Labeled Pairs 1,120 916

Table 7.1: MOOC Datasets

7.2 Weakly Labeled Dataset

The dataset for our experiments consists of forum posts from two Coursera courses. Some statis-

tics describing these datasets are shown in table 7.1. The first course, ‘Learn to Program: The

Fundamentals’, focused on teaching the Python programming language to students with little

computer science experience. The second dataset, based on a psychology course, was used in the

shared task for the Modeling Large Scale Social Interaction in Massively Open Online Courses

Workshop [71]. Posts are organized into threads, and each post is accompanied by a set of meta-

data variables, including the author of the post, the title of the thread, the timestamp, the number

of votes given to the post by other students, as well as a tag indicating if the thread the post is

contained in has been identified as resolved by the thread’s creator. Additionally, each post is

designated either as an unstructured member of the forum thread, or as a comment which is a

structured method for forum participants to respond to another specific post.

A subset of the dataset was manually annotated for use in testing the model’s predictive

accuracy, and the sizes of these testing sets are also shown in table 7.1. These labels were

generated by selected a random subset of forum threads, and then each unique pair of posts in the

thread were labeled. It should be noted again that this labeled data is only used for evaluation, and

no manually annotated data is required for training. Each pair of posts in this set was evaluated

to determine if the second post in the pair was a direct response to the first, and a label was given

for every ordered pair of posts taken from the threads selected for annotation. Five threads from

the psychology dataset were labeled by two different annotators, and within those threads we

85

0.5 0
1.

0
0.

0

Decreasing Noise
P (ŷ 6= y)

D
ec

re
as

in
g

B
ia

s

(K
L
-D

iv
er

ge
n
ce

)

Structured Comment
Posts

First Two Posts in
Thread

Figure 7.1: Noise-Bias Spectrum of Weakly Labeled MOOC

observed an inter-annotator agreement rate of .939. Of all possible pairs of posts in the testing

sets, 24.7% of them were observed to share a response relation in the Python course, and 19.1%

were related in the psychology course.

Figure 7.1 shows the noise-bias spectrum of the weakly labeled data used in this application.

Structured comments were seen to be related to their parent post roughly 60% of the time, while

the second post in a thread was observed to be a direct response to the first post 94% of the time.

For the purposes of evaluation, only unstructured pairs of posts were used for testing. Structured

comment posts and the first two posts in every thread were excluded. Surprisingly, the comment

posts also demonstrated significant bias, as the lexical form of many of these posts differed

significantly from general forum posts. Collectively, these two sources of weakly labeled data

constitute one of the weakest and one of the strongest heuristically labeled datasets considered

in all applications of this thesis.

86

7.3 Method

We once again use use Markovian latent states to compactly capture global information about

a parse sequence, with one latent variable for each relation in the discourse parsing sequence.

Most other discourse parsing frameworks label each relation independently, but our model allows

information about the global structure of the discourse parse to be used when identifying an

individual relation.

Our model considers each post to be one elementary discourse unit. Each thread of length

t produces t − 1 sequences of posts. Specifically, we first consider all pairs of posts in the

thread of distance 1 in chronological order, i.e. all adjacent posts. We then consider all pairs of

post of distance 2, etc. This allows us to identify all responses in a sequence, not just relations

between adjacent discourse units as seen in datasets such at the Penn Discourse Treebank. This is

especially important for forum posts which are asynchronous, which may often result in relations

between non-adjacent posts in a thread.

According to our assumption of Markovian structure, each potential relation xt between el-

ementary discourse units edut and edut+1 is accompanied by a corresponding latent variable ht,

and conditioning on ht makes xt independent from x1...t−1 and xt+1...n.

For the feature space, we once again use the discourse parsing features defined in [22], which

include syntactic and linguistic features taken from dependency parsing, POS tagging, and se-

mantic similarity measures. The various metadata for each post is also included as features, as

is the time between publication for each pair of posts, and the distance between their positions

in the forum thread. We also include a feature indicating if the name of the author from the first

post appears in the body of text in the second post.

In addition, a Latent Dirichlet Allocation (LDA) model is trained using 15 million English

language tweets made to Twitter, and this model is used to compute a vector space representa-

tion of the semantics of each post. In the previous chapter, Wikipedia was used as the basis of

the semantic vector space. However, with the forum posts we see much more casual language,

87

including many misspellings, acronyms and textual emoticons. By using Twitter, another casual

forum for language, we are able to capture some of the most common informal language prac-

tices. From the LDA model, the top 400 concepts for each post are included in the feature space,

as is the cosine similarity of the vector space representations of the two posts. URLs, HTML

tags, and Python code are removed from posts before the vector space representation is com-

puted. LDA concepts related to math, science, and technology were more common in the Python

dataset, while the psychology dataset included more concepts related to the social sciences and

popular culture.

We use one variable in the observation space to denote the response relationship for a pair of

posts, indicating whether there should be an edge between these posts in the discourse tree. If the

second post in the pair is a comment directed toward the first post, we consider this a responsive

pair and set the response variable to 1. Initially, all structured comments are labeled as related to

their parent post, as are the first two posts in every thread. Together, these two sets of datapoints

are used to train an initial model. For all other pairs in the dataset, the response variable is

set according to the model’s estimated probability that the pair constitutes a response relation

given the other observed variables, and the latent state distribution. Initially this probability is

set to the naive prior, but the estimates for the unlabeled data change every time the parameters

are recomputed. Unlabeled pairs with a predicted relation probability surpassing a threshold φ

have their labels set to 1. Because of the speed of the spectral method, we are able to construct

estimates for the response variables and recompute the model parameters several times.

After five iterations of bootstrapping, we conduct internal error correction. Those comments

with a predicted confidence below a threshold, ψ, become negative training samples, and the

model is trained one more time. This step accounts for the fact that many students use the

comment feature in unintended ways, which results in many false positive data points being

added to the training set. A small parameter validation set was held out separately from the

training set and used to select the threshold parameters ψ and φ.

88

0 10 20 30 40 50 60 70 80 90 100
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Percentage of Training Data Used

St
ru

ct
ur

e
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Python (Bootstrapping)
Python
Psychology
Psychology (Bootstrapping)

Figure 7.2: Empirical Prediction Results Using Coursera Data

7.4 Results

Figure 7.2 shows empirical results using the spectral HMM to predict response relations in the

Coursera dataset as a function of the percentage of training data used. The training curves de-

noted with (Bootstrapping) include the stages in which the unlabeled data is incorporated into the

training set and internal error correction is conducted. The other training curves include neither

unlabeled data nor label correction.

We see a maximum classification accuracy of 0.921, and a maximum precision of 0.782. This

predictive accuracy is nearing the estimated, human inter-annotator agreement of .939, which can

be thought of as an upper-limit on predictive performance at this task. Without bootstrapping,

when the model has only used structured comments and the first two posts of every thread for

training, the maximum precision drops to 0.689. This indicates that leveraging unlabeled data

and relabeling incorrect comments results in a 10 percentage point increase in prediction preci-

sion. For comparison, a naive classifier that predicts that no pairs of posts share a relation would

produce an accuracy of 0.638 with 0 precision. We also note that the psychology dataset yields

89

Dataset Precision
Psychology (Bootstrapping) 0.749

Psychology 0.675
Python (Bootstrapping) 0.782

Python 0.689

Table 7.2: Predictive Precision Results

a higher overall accuracy but a lower precision. The decrease in precision is likely due to the

smaller size of the training set, while the increase in accuracy may simply be a consequence of

the distribution being more skewed towards negative examples, leading to a higher baseline prior.

In these experiments, the HMM parameters were computed and used to produce estimates for

the relation probability of all pairs in the training data that did not have a comment relationship.

These estimates were then used to recompute the HMM parameters, and this process was re-

peated five times. The labels of the structured comments were then predicted, and all comments

with a relation probability below ψ became negative training results, while unlabeled pairs with

a confidence above φ became positive training examples.

Without using internal error correction on the comment structures, the precision in both

datasets drops by approximately 4 percentage points. Using the value of ψ chosen with the vali-

dation set, we observe that roughly 30% of the structured comments have their labeled switched

to negative. Figure 7.2 does not include results with comment prediction, but separate tests sug-

gest the predictive recall for comments is nearly 88%. This indicates that the corrective step of

the algorithm could be reducing the percent of false positive training samples from 40% to as

low as 15%.

7.5 Conclusion

In this chapter we have leveraged the previously introduced parsing framework for learning the

inter-post structure of online forum threads. Previous research has shown many applications in

which discourse information is useful such as dialogue evaluation, thread resolution prediction,

90

and thread curation. There are also other applications that have not been widely studied. For

instance, the response relations between posts tell us explicitly which students are speaking to

one another in the forums. This could help us identify potential peer-mentors that commonly

answer questions for their fellow students, and these mentors could be leveraged by an automated

intervention to minimize the workload for paid teaching assistants.

An opportunity for future work is to create new weakly supervised methods to learn multiple

semantic relations between posts. While fully unsupervised methods might not reliably learn

the most useful types of relations, semi-supervised methods or techniques that leverage exist-

ing structured data show promise. Regardless of the methods used, the sheer scale of MOOCs

presents a fantastic opportunity for data-mining in a variety of tasks, but many existing language

analysis methods are often bottlenecked by the need for annotated data. By better utilizing vast

stores of weakly labeled data, we can build tools to benefit educators and students alike.

91

92

Chapter 8

Conclusions and Future Work

In this thesis, we have examined four very different applications in which availability of hand

labeled data is a central hindrance to building an accurate model. Taking tasks ranging from

healthcare and education to linguistic analysis we have greatly improved predictive performance

using weakly labeled data. For tasks in which no pre-existing labeled dataset exists, we have

seen that broad usage of weakly labeled data provides an avenue to make learning tractable. For

applications in which labeled data is available, weakly labeled data can also significantly improve

our ability to conduct inference and make predictions.

We have presented tools for combating common types of weakly labeled data. We have seen

that weakly labeled data should also be weighted properly when training, and we have seen that

while we do not need to know the noise and bias rates of a datasource, the weights chosen using a

parameter validation set will be heavily influenced by the position of the dataset in the noise-bias

spectrum. Furthermore, we have seen the usefulness of Internal Error Correction when dealing

with noisy datasets. Unlike bootstrapping, which asks a model to generalize using existing infor-

mation, IEC allows the model to remove inconsistencies and contradictions in a training set that

could otherwise impact our ability to learn. For datasets with significant bias, density-weighted

certainty sampling provides us with means to elevate the usefulness of a training set, given a

sufficient volume of weakly labeled data. Taken together, these tools allow us to learn effective

93

models, even without access to hand labeled training data.

With the four applications discussed in this thesis, we have examined a broad swath of the

noise-bias spectrum. The simplest application, InContext, featured relatively high quality weakly

labeled data, requiring only minor internal error correction. This application serves as an initial

demonstration that weakly labeled data acquired using heuristics can supplement or replace la-

beled data when the cost of annotation is extremely high. Compared to InContext, the virtual

coach includes a much larger, weaker training set. This allows us to bring our more sophisticated

methods to bear, in particular a spectral method that makes working with large datasets tractable

and improves performance by modeling the sequential structure that is inherent in the applica-

tion. The computational efficiency of the spectral method becomes particularly significant when

we exponentially increase the size of the training set, as is the case with the discourse parsing

task. In this application, using density sampling to filter an extremely biased dataset allows us

to acquire a nearly endless, high-quality training set for a subset of the discourse relations, and

the spectral optimization gives us the speed we need to contend with such a dataset. When we

take this framework into the real-world, with the MOOC dataset, we see a significant increase in

label noise as well, which we are able to combat using internal error correction. Although these

applications are collectively very diverse, we see that our empirical observations of the effects of

weakly labeled data in the real-world very closely reflect the initial observations that we made

using the basic simulation model. This suggests that the specific impacts of noise and bias we

have seen are much more general than any one of these applications would suggest on its own.

One promising direction for future work is to develop generalized strategies for acquiring

weakly labeled data. Many of the sources of weakly labeled data in this thesis are application

specific. One of the most effective sources of weakly labeled data we have seen—explicit rela-

tions used in discourse parsing—may suggest a possible path to a general method of acquiring

weakly labeled data. In this task, a simpler sub-task is identified, and unlabeled data is used to

generate weakly labeled data. As we have seen, we are able to tolerate significant bias in this

weakly labeled set if a large enough volume of unlabeled data is available. This could suggest

94

a framework, similar to cross-training, in which a simpler classifier is used to generate weakly

labeled data, which is then filtered using density-weighted certainty sampling. Further analysis

is required to determine the general efficacy of such an approach, but if an application-agnostic

method of generating weakly labeled data could be created, it would have the potential to make

a tremendous impact on how we train data-driven models.

The metric for measuring the weakness of data we have presented in this work, the noise-bias

spectrum, generalizes well and captures a wide variety of problems encountered when training

with heuristically labeled data. However there is nuance not captured with this two-dimensional

representation that could be improved upon in future work. One could imagine many additional

dimensions that we could use to expand this spectrum into three or more dimensions, but one

issue in particular is correlated noise. As we saw in section 3.3 noise that obeys a sequential

structure does not significantly impact training compared to independent noise. However, if the

noise of the labels in the training data correlates with the existing beliefs of the model, as in the

case of bootstrapped labels, the weakly labeled data is significantly less useful. A bootstrapped

dataset may appear very appealing when positioned in the noise-bias spectrum, but would be

much less useful for training compared to a dataset in which the noise of the labeled does not

correlate with the model’s existing mistakes. Although this type of weakly labeled data appears

to be an outlier, it shows one instance in which the noise-bias spectrum does not capture the entire

picture. Future work could modify the definition of the noise axis of the noise-bias spectrum to

account for specific types of problematic correlated noise such as this.

Data is becoming more abundant in every facet or our lives, but the time we have to annotate

that data is not. It is imperative that we continue to build new methods to automate the learn-

ing process. Fully unsupervised learning is one exciting avenue of research, but it will never

be appropriate for all tasks. The framework presented in this thesis allows us to incorporate

large, unlabeled datasets, while continuing to benefit from the decades of research that have been

poured into fully supervised classification. In the decades to come, as the availability of data

continues to grow exponentially, machine learning with weakly labeled data may give us the

95

tools to bridge the divide between the capabilities of the models we’ve built with the needs of

the tasks on-hand. All together, the contributions presented in this thesis help to reduce the need

for human annotations, in a time when the increasing availability of data is forcing us to rethink

decades old methods. Only by embracing the changing landscape and leveraging the structure in

unlabeled data can automated machine learning realize its full potential.

96

Bibliography

[1] David Adamson, Akash Bharadwaj, Ashudeep Singh, Colin Ashe, David Yaron, and Car-

olyn P Rosé. Predicting student learning from conversational cues. In Intelligent Tutoring

Systems, pages 220–229. Springer, 2014. 2.2, 7.1

[2] Dyke G. Jang H. J. Rosé C. P. Adamson, D. Towards an agile approach to adapting dynamic

collaboration support to student needs. International Journal of AI in Education, 24(1):91–

121, 2014. 7.1

[3] Jaime Arguello, Brian S Butler, Elisabeth Joyce, Robert Kraut, Kimberly S Ling, Carolyn

Rosé, and Xiaoqing Wang. Talk to me: Foundations for successful individual-group in-

teractions in online communities. In Proceedings of the SIGCHI conference on Human

Factors in computing systems, pages 959–968. ACM, 2006. 7.1

[4] Pranjal Awasthi, Delip Rao, and Balaraman Ravindran. Part of speech tagging and chunking

with hmm and crf. Proceedings of NLP Association of India (NLPAI) Machine Learning

Contest 2006, 2006. 6.5

[5] Scott R Beach, Richard Schulz, Judith T Matthews, Karen Courtney, and Annette DeVito

Dabbs. Preferences for technology versus human assistance and control over technology

in the performance of kitchen and personal care tasks in baby boomers and older adults.

Disability and Rehabilitation: Assistive Technology, (0):1–13, 2013. 5.5

[6] Alessandro Bergamo and Lorenzo Torresani. Exploiting weakly-labeled web images to

improve object classification: a domain adaptation approach. In Advances in Neural Infor-

97

mation Processing Systems, pages 181–189, 2010. 2.2

[7] Maarten AS Boksem and Ale Smidts. Brain responses to movie trailers predict individual

preferences for movies and their population-wide commercial success. Journal of Market-

ing Research, 52(4):482–492, 2015. 3.1.2

[8] Byron Boots and Geoffrey J Gordon. Predictive state temporal difference learning. arXiv

preprint arXiv:1011.0041, 2010. 2.2

[9] Byron Boots and Geoffrey J Gordon. An online spectral learning algorithm for partially

observable nonlinear dynamical systems. In AAAI, 2011. 2.2

[10] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical

report, Citeseer, 2000. 4.1

[11] M Keith Chen, Jonathan E Ingersoll Jr, and Edward H Kaplan. Modeling a presidential

prediction market. Management Science, 54(8):1381–1394, 2008. 3.1.2

[12] Hannah Rohde Anna Dickinson Chris Clark and Annie Louis Bonnie Webber. Recovering

discourse relations: Varying influence of discourse adverbials. In Workshop on Linking

Models of Lexical, Sentential and Discourse-level Semantics (LSDSem), page 22, 2015. 6.4

[13] Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar. Spectral

learning of latent-variable pcfgs. In Proceedings of the 50th Annual Meeting of the Associ-

ation for Computational Linguistics: Long Papers-Volume 1, pages 223–231. Association

for Computational Linguistics, 2012. 2.2

[14] Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar. Experiments

with spectral learning of latent-variable pcfgs. In Proceedings of NAACL-HLT, pages 148–

157, 2013. (document), 2.2, 2.1.2, 2.1.2

[15] Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar. Spectral

learning of latent-variable pcfgs: Algorithms and sample complexity. The Journal of Ma-

chine Learning Research, 15(1):2399–2449, 2014. 2.2

98

[16] Joseph A Cruz and David S Wishart. Applications of machine learning in cancer prediction

and prognosis. Cancer informatics, 2:59, 2006. 2.2

[17] M. Csikszentmihalyi and R. Larson. Validity and reliability of the experience sampling

method. The experience of psychopathology: Investigating mental disorders in their natural

settings, pages 43–57, 1992. 4.4.5

[18] L. Del Pero, S. Ricco, R. Sukthankar, and V. Ferrari. Articulated motion discovery using

pairs of trajectories. 2015. 1

[19] Paramveer S Dhillon, Jordan Rodu, Michael Collins, Dean P Foster, and Lyle H Ungar.

Spectral dependency parsing with latent variables. In Proceedings of the 2012 joint con-

ference on empirical methods in natural language processing and computational natural

language learning, pages 205–213. Association for Computational Linguistics, 2012. 2.2,

6.3

[20] Anil K Dubey. Using rough sets, neural networks, and logistic regression to predict com-

pliance with cholesterol guidelines goals in patients with coronary artery disease. In AMIA

Annual Symposium Proceedings, volume 2003, page 834. American Medical Informatics

Association, 2003. 2.2

[21] Mohammad H Falakmasir, Zachary A Pardos, Geoffrey J Gordon, and Peter Brusilovsky.

A spectral learning approach to knowledge tracing. 2010. 2.2

[22] Vanessa Wei Feng and Graeme Hirst. Text-level discourse parsing with rich linguistic fea-

tures. In Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics: Long Papers-Volume 1, pages 60–68. Association for Computational Linguis-

tics, 2012. 2.2, 7.3

[23] Vanessa Wei Feng and Graeme Hirst. A linear-time bottom-up discourse parser with con-

straints and post-editing. In Proceedings of The 52nd Annual Meeting of the Association

for Computational Linguistics (ACL 2014), Baltimore, USA, June, 2014. 2.2, 6.3.1, 6.4, 6.5

99

[24] Robert Fisher and Reid Simmons. Smartphone interruptibility using density-weighted un-

certainty sampling with reinforcement learning. In Proceedings International Conference

on Machine Learning and Applications (ICMLA), Hawaii, December 2011. 3.6

[25] Robert Fisher, Reid Simmons, Cheng-Shiu Chung, Rory Cooper, Garrett Grindle, Ann-

marie Kelleher, Hsinyi Liu, and Yu Kuang Wu. Spectral machine learning for predicting

power wheelchair exercise compliance. In Foundations of Intelligent Systems, pages 174–

183. Springer, 2014. 2.2, 3.6

[26] J. Fogarty, S.E. Hudson, C.G. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler, J.C. Lee, and

J. Yang. Predicting human interruptibility with sensors. ACM Transactions on Computer-

Human Interaction (TOCHI), 12(1):119–146, 2005. 2.2

[27] Jim Giles. Internet encyclopaedias go head to head. Nature, 438(7070):900–901, 2005.

3.1.1

[28] Hugo Hernault, Danushka Bollegala, and Mitsuru Ishizuka. Semi-supervised discourse

relation classification with structural learning. In Computational Linguistics and Intelligent

Text Processing, pages 340–352. Springer, 2011. 2.2, 6.5

[29] J. Ho and S.S. Intille. Using context-aware computing to reduce the perceived burden of

interruptions from mobile devices. In Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 909–918. ACM, 2005. 2.2, 4.4.1, 4.4.5

[30] E. Horvitz and J. Apacible. Learning and reasoning about interruption. In Proceedings of

the 5th international conference on Multimodal interfaces, pages 20–27. ACM, 2003. 2.2

[31] E. Horvitz, P. Koch, R. Sarin, J. Apacible, and M. Subramani. Bayesphone: Precomputation

of context-sensitive policies for inquiry and action in mobile devices. User Modeling 2005,

pages 251–260, 2005. 4.1

[32] Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden

markov models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012. 2.1.2,

100

2.2, 6.3

[33] Michael I Jordany, Zoubin Ghahramaniz, and Lawrence K Sauly. Hidden markov decision

trees. Advances in neural information processing systems, pages 501–507, 1997. 5.7

[34] Shafiq R Joty, Giuseppe Carenini, Raymond T Ng, and Yashar Mehdad. Combining intra-

and multi-sentential rhetorical parsing for document-level discourse analysis. In ACL (1),

pages 486–496, 2013. 2.2, 6.5

[35] A. Kapoor and E. Horvitz. Experience sampling for building predictive user models: a

comparative study. In Proceeding of the twenty-sixth annual SIGCHI conference on Human

factors in computing systems, pages 657–666. ACM, 2008. 4.4.5

[36] Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon

Krzywda, Helena Zabranska, Iva Pichova, James Thompson, Zoran Popović, et al. Crystal

structure of a monomeric retroviral protease solved by protein folding game players. Nature

structural & molecular biology, 18(10):1175–1177, 2011. 3.1.2

[37] T. Kinnunen, E. Chernenko, M. Tuononen, P. Fr

”anti, and H. Li. Voice activity detection using mfcc features and support vector machine.

In Int. Conf. on Speech and Computer (SPECOM07), Moscow, Russia, volume 2, pages

556–561. Citeseer, 2007. 4.4.2

[38] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user studies with mechanical

turk. In Proceedings of the SIGCHI conference on human factors in computing systems,

pages 453–456. ACM, 2008. 2.2

[39] Ranjay Krishna, Kenji Hata, Stephanie Chen, Joshua Kravitz, David A Shamma, Li Fei-Fei,

and Michael S Bernstein. Embracing error to enable rapid crowdsourcing. arXiv preprint

arXiv:1602.04506, 2016. 2.2

[40] Michèle Lacoste, Rhoda Weiss-Lambrou, Magali Allard, and Jean Dansereau. Powered

tilt/recline systems: why and how are they used? Assistive Technology, 15(1):58–68, 2003.

101

5.1

[41] D.D. Lewis and W.A. Gale. A sequential algorithm for training text classifiers. In Proceed-

ings of the 17th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 3–12. Springer-Verlag New York, Inc., 1994. 4.1

[42] Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. Recognizing implicit discourse relations in

the penn discourse treebank. In Proceedings of the 2009 Conference on Empirical Meth-

ods in Natural Language Processing: Volume 1-Volume 1, pages 343–351. Association for

Computational Linguistics, 2009. 6.2

[43] Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. A pdtb-styled end-to-end discourse parser.

Natural Language Engineering, pages 1–34, 2012. 2.1.3

[44] Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. A pdtb-styled end-to-end discourse parser.

Natural Language Engineering, 20(02):151–184, 2014. 2.2, 6.2, 6.4, 6.5, 6.5

[45] Hsin-Yi Liu, Rosemary Cooper, Rory Cooper, Asim Smailagic, Dan Siewiorek, Dan Ding,

and Fu-Chieh Chuang. Seating virtual coach: A smart reminder for power seat function

usage. Technology and Disability, 22(1, 2):53–60, 2010. 5.1, 5.2

[46] Gideon S Mann and Andrew McCallum. Generalized expectation criteria for semi-

supervised learning with weakly labeled data. The Journal of Machine Learning Research,

11:955–984, 2010. 2.2

[47] Daniel Marcu. The theory and practice of discourse parsing and summarization. MIT

press, 2000. 6.2

[48] Elijah Mayfield, David Adamson, and Carolyn Penstein Rosé. Hierarchical conversation

structure prediction in multi-party chat. In Proceedings of the 13th Annual Meeting of the

Special Interest Group on Discourse and Dialogue, pages 60–69. Association for Compu-

tational Linguistics, 2012. 2.2

[49] A.E. Milewski and T.M. Smith. Providing presence cues to telephone users. In Proceedings

102

of the 2000 ACM conference on Computer supported cooperative work, pages 89–96. ACM,

2000. 4.1

[50] Ha Quang Minh, Marco Cristani, Alessandro Perina, and Vittorio Murino. A regularized

spectral algorithm for hidden markov models with applications in computer vision. In

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2384–

2391. IEEE, 2012. 2.2

[51] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation

extraction without labeled data. In Proceedings of the Joint Conference of the 47th An-

nual Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011. Association for Compu-

tational Linguistics, 2009. 2.2

[52] Ankur Parikh, Shay B Cohen, and Eric Xing. Spectral unsupervised parsing with additive

tree metrics. In Proceedings of the 52nd Annual Meeting of the Association for Computa-

tional Linguistics: Long Papers. Association for Computational Linguistics, 2014. 2.2

[53] Natalia Ponomareva, Paolo Rosso, Ferrán Pla, and Antonio Molina. Conditional random

fields vs. hidden markov models in a biomedical named entity recognition task. In Proc.

of Int. Conf. Recent Advances in Natural Language Processing, RANLP, pages 479–483,

2007. 6.5

[54] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind K

Joshi, and Bonnie L Webber. The penn discourse treebank 2.0. In LREC. Citeseer, 2008.

3.1, 3.6, 6.1, 6.5, 7.1

[55] J. Ramirez, P. Yélamos, JM Górriz, and JC Segura. Svm-based speech endpoint detection

using contextual speech features. Electronics letters, 42(7):426–428, 2006. 4.4.2

[56] Madhuri Reddy, Sudeep S Gill, and Paula A Rochon. Preventing pressure ulcers: a system-

atic review. Jama, 296(8):974–984, 2006. 5.1

103

[57] Stephanie Rosenthal, Anind K Dey, and Manuela Veloso. Using decision-theoretic ex-

perience sampling to build personalized mobile phone interruption models. In Pervasive

Computing, pages 170–187. Springer, 2011. 2.2, 4.1, 4.5

[58] Borhan Samei, Andrew Olney, Sean Kelly, Martin Nystrand, Sidney D’Mello, Nathan Blan-

chard, Xiaoyi Sun, Marci Glaus, and Art Graesser. Domain independent assessment of

dialogic properties of classroom discourse. In Educational Data Mining 2014, 2014. 2.2

[59] Evan Sandhaus. The new york times annotated corpus ldc2008t19. Linguistic Data Con-

sortium, 2008. 6.2

[60] A. Sasse, C. Johnson, et al. Coordinating the interruption of people in human-computer

interaction. In Human-computer interaction, INTERACT’99: IFIP TC. 13 International

Conference on Human-Computer Interaction, 30th August-3rd September 1999, Edinburgh,

UK, volume 1, page 295. IOS Press, 1999. 2.2

[61] B. Settles. Active learning literature survey. Machine Learning, 15(2):201–221, 1994. 4.4.5

[62] B. Settles and M. Craven. An analysis of active learning strategies for sequence label-

ing tasks. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 1070–1079. Association for Computational Linguistics, 2008. 4.1

[63] Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-

66):11, 2010. 3.5.2

[64] Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, and Byron Boots. Learning latent

variable models by improving spectral solutions with exterior point methods. In Proceed-

ings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI-2015), 2015.

(document), 2.2, 2.1.2

[65] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger, J. Shaffer,

and F.L. Wong. Sensay: A context-aware mobile phone. In Proceedings of the 7th IEEE

International Symposium on Wearable Computers, volume 248. Citeseer, 2003. 2.2

104

[66] Xiaowei Song, Arnold Mitnitski, Jafna Cox, and Kenneth Rockwood. Comparison of ma-

chine learning techniques with classical statistical models in predicting health outcomes.

Medinfo, 11(Pt 1):736–40, 2004. 2.2

[67] L. Terveen, J. McMackin, B. Amento, and W. Hill. Specifying preferences based on user

history. In Proceedings of the SIGCHI conference on Human factors in computing systems:

Changing our world, changing ourselves, pages 315–322. ACM, 2002. 4.1, 4.2

[68] A. Toninelli, D. Khushraj, O. Lassila, and R. Montanari. Towards socially aware mobile

phones. In First Workshop on Social Data on the Web (SDoW). Citeseer, 2008. 2.2

[69] Bonnie Webber, Markus Egg, and Valia Kordoni. Discourse structure and language tech-

nology. Natural Language Engineering, 18(4):437–490, 2012. 2.2, 6.2

[70] Allan P White and Wei Zhong Liu. Technical note: Bias in information-based measures in

decision tree induction. Machine Learning, 15(3):321–329, 1994. 5.5

[71] Diyi Yang, Miaomiao Wen, and Carolyn Rose. Towards identifying the resolvability of

threads in moocs. EMNLP 2014, page 21, 2014. 7.2

[72] John Zimmerman, Anthony Tomasic, Charles Garrod, Daisy Yoo, Chaya Hiruncharoenvate,

Rafae Aziz, Nikhil Ravi Thiruvengadam, Yun Huang, and Aaron Steinfeld. Field trial of

tiramisu: crowd-sourcing bus arrival times to spur co-design. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 1677–1686. ACM, 2011. 3.1.1

105

	1 Introduction
	2 Related Work
	2.1 Background
	2.1.1 Latent Variable Methods
	2.1.2 Spectral Hidden Markov Model
	2.1.3 Discourse Analysis

	2.2 Related Work

	3 Methodology
	3.1 Acquiring Annotated Data
	3.1.1 Crowdsourcing
	3.1.2 Expert Domains
	3.1.3 Personalized Models

	3.2 Weakly Labeled Data
	3.3 Simulation Environment for Weakly Labeled and Unlabeled Data
	3.4 Using Bootstrapping and Cross-training for Unlabeled Data
	3.5 Improving the Quality of Weakly Labeled Data
	3.5.1 Internal Error Correction for Noisy Data
	3.5.2 Active Training for Weakly Labeled Data
	3.5.3 Learning Weights for Weakly Labeled Data
	3.5.4 A Combined Approach to Improving Data Quality

	3.6 Overview of Applications

	4 InContext Smartphone Application
	4.1 Introduction
	4.2 Dataset
	4.3 Weakly Labeled Data
	4.4 System Overview
	4.4.1 Phone Posture Recognition
	4.4.2 Voice Activity Detection
	4.4.3 Smoothing of Information Extraction Output
	4.4.4 Preference Classification
	4.4.5 Active Learning

	4.5 Results
	4.6 Conclusions

	5 The Virtual Seating Coach System
	5.1 Introduction
	5.2 The Virtual Seating Coach System
	5.3 Weakly Labeled Data
	5.4 Spectral Hidden Markov Models
	5.5 Decision Trees
	5.6 Results
	5.7 Conclusions

	6 Discourse Analysis
	6.1 Introduction
	6.2 Problem Definition and Dataset
	6.3 Approach
	6.3.1 Spectral Learning

	6.4 Weakly Labeled Data
	6.5 Results
	6.6 Conclusions

	7 MOOC Thread Structure Identification
	7.1 Introduction
	7.2 Weakly Labeled Dataset
	7.3 Method
	7.4 Results
	7.5 Conclusion

	8 Conclusions and Future Work
	Bibliography

