
Optimizing Optimization: Scalable Convex
Programming with Proximal Operators

Matt Wytock

March 2016
CMU-ML-16-100

Optimizing Optimization: Scalable Convex
Programming with Proximal Operators

Matt Wytock

March 2016
CMU-ML-16-100

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania

Thesis Committee:
J. Zico Kolter, Chair

Ryan Tibshirani
Geoffrey Gordon

Stephen Boyd, Stanford University
Arunava Majumdar, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2016 Matt Wytock

This research was sponsored by the National Science Foundation under grant number IIS1320402, the Air Force
Office of Scientific Research under grant number FA95501010247, the Office of Naval Research under grant number
N000141410018, the Duquesne Light Company, the Thomas and Stacey Siebel Foundation, and a gift from Google,
Inc.

Keywords: convex optimization, proximal operator, operator splitting, Newton method, sparsity,
graphical model, wind power, forecasting, energy disaggregation, microgrids

For Audra

iv

Abstract
Convex optimization has developed a wide variety of useful tools critical to many

applications in machine learning. However, unlike linear and quadratic program-
ming, general convex solvers have not yet reached sufficient maturity to fully de-
couple the convex programming model from the numerical algorithms required for
implementation. Especially as datasets grow in size, there is a significant gap in
speed and scalability between general solvers and specialized algorithms.

This thesis addresses this gap with a new model for convex programming based
on an intermediate representation of convex problems as a sum of functions with ef-
ficient proximal operators. This representation serves two purposes: 1) many prob-
lems can be expressed in terms of functions with simple proximal operators, and 2)
the proximal operator form serves as a general interface to any specialized algorithm
that can incorporate additional `2-regularization. On a single CPU core, numerical
results demonstrate that the prox-affine form results in significantly faster algorithms
than existing general solvers based on conic forms. In addition, splitting problems
into separable sums is attractive from the perspective of distributing solver work
amongst multiple cores and machines.

We apply large-scale convex programming to several problems arising from
building the next-generation, information-enabled electrical grid. In these problems
(as is common in many domains) large, high-dimensional datasets present oppor-
tunities for novel data-driven solutions. We present approaches based on convex
models for several problems: probabilistic forecasting of electricity generation and
demand, preventing failures in microgrids and source separation for whole-home
energy disaggregation.

vi

Acknowledgments
Zico Kolter, my advisor, has been an incredible resource and a key influence

in shaping my research over the course of my graduate career. It was Zico who
first exposed me to the wide range of exciting problems in energy and I still recall
vividly our first conversations about how machine learning and data will transform
this domain. To this day, I am incredibly impressed with his capacity to rapidly
assimilate a vast range of topics spanning linear algebra, optimization and machine
learning as well as his ability to distill research in these areas into its most basic
atoms and communicate those ideas concisely. I have been incredibly fortunate to
be advised by him as well as an entire thesis committee that embodies the broad-
based approach to research that I strive to emulate in my own work. Furthermore, I
am grateful to Stephen Boyd for hosting me at Stanford and for fruitful discussions
around the past, present and future of optimization. I also thank Arun Majumdar
for providing guidance and opportunities in working on new high-impact projects
beyond the boundaries of traditional computer science.

My path to pursuing the Ph.D. began not in academia, but at Google, where I
witnessed the application of state-of-the-art research to real problems. During this
period, I learned a great deal from an incredible cast of colleagues, but one in par-
ticular has been an important mentor over the past ten years. Ramanthan V. Guha,
whose project I was assigned to on my first day, has taught me a great deal and in
particular forcefully encouraged me to pursue graduate study. Guha once said that
his own graduate advisor taught him “how to think” and it is clear to me that through
our many interactions over the years, he has profoundly shaped my own thought
processes on research and technology.

Finally, this dissertation would not have been possible without the support of my
family. Foremost, my wife Audra, who selflessly moved across the country from
California to Pittsburgh to support my studies. In many ways, the growth of our
family has paralleled the Ph.D. journey—our wedding taking place in my first year,
followed by the the birth of our son in my final year. Audra has been an amazing
partner in both undertakings and in particular played a pivotal role in realizing this
thesis. In addition, the first year with our son, Preston, reminds me of my deep
appreciation for my own parents who have been inspirational role models. I thank
them for teaching me the importance of curiosity, education, and effecting change on
the world; I hope that my own work and life will one day provide the same example
for my son.

Contents

1 Introduction 1

I Scalable Convex Programming 4

2 Background 5
2.1 Disciplined convex programming . 5

2.1.1 Expressions and atoms . 6
2.1.2 Disciplined convex programming rules 8
2.1.3 Conic graph implementations . 10

2.2 Proximal operators and algorithms . 11
2.2.1 Properties of proximal operators . 11
2.2.2 Functions with simple proximal operators 12
2.2.3 Alternating direction method of multipliers 14

3 Convex Programming with Fast Proximal and Linear Operators 16
3.1 The Epsilon compiler and solver . 16

3.1.1 The prox-affine form . 17
3.1.2 Conversion to prox-affine form . 19
3.1.3 Optimization and separation of prox-affine form 21
3.1.4 Solving problems in prox-affine form 23

3.2 Fast computational operators . 24
3.2.1 Linear operators . 24
3.2.2 Proximal operators . 25

3.3 Examples and numerical results . 29
3.3.1 Lasso . 29
3.3.2 Multivariate lasso . 31
3.3.3 Total variation . 32
3.3.4 Library of convex programming examples 35
3.3.5 Comparison with specialized solvers . 35

viii

II Specialized Newton Methods for Sparse Problems 37

4 The Sparse Gaussian Conditional Random Field 39
4.1 Problem formulation . 39
4.2 The Newton coordinate descent method . 40
4.3 Newton-CD for the sparse Gaussian CRF . 42

4.3.1 Fast coordinate updates . 43
4.3.2 Computational speedups . 44

4.4 Numerical results . 45
4.4.1 Timing results . 45
4.4.2 Comparison to MRF . 46
4.4.3 `1 and `2 regularization vs. sample size 47

5 The Sparse Linear-Quadratic Regulator 48
5.1 Problem formulation . 49
5.2 Newton-CD for sparse LQR . 50

5.2.1 Fast coordinate updates . 53
5.2.2 Additional algorithmic elements . 56

5.3 Numerical results . 57
5.3.1 Mass-spring system . 58
5.3.2 Wide-area control in power systems . 61

6 The Group Fused Lasso 66
6.1 A fast Newton method for the GFL . 67

6.1.1 Dual problems . 67
6.1.2 A projected Newton method for (DD) 68
6.1.3 A primal active set approach . 71

6.2 Applications . 72
6.2.1 Linear model segmentation . 72
6.2.2 Color total variation denoising . 75

6.3 Numerical results . 76
6.3.1 Group fused lasso . 77
6.3.2 Linear regression segmentation . 79
6.3.3 Color total variation denoising . 79

III Applications in Energy 82

7 Probabilistic Forecasting of Electricity Generation and Demand 85
7.1 Introduction . 85
7.2 The probabilistic forecasting setting . 86

7.2.1 Relation to existing settings and models 86
7.3 Forecasting with the sparse Gaussian CRF . 87

7.3.1 Non-Gaussian distributions via copula transforms 88

ix

7.3.2 Final Algorithm . 88
7.4 Experimental results on wind power forecasting 89

7.4.1 Probabilistic predictions . 89
7.4.2 Ramp detection . 92

8 Contextually Supervised Source Separation for Energy Disaggregation 94
8.1 Introduction . 94

8.1.1 Related work . 95
8.2 Contextually supervised source separation . 96
8.3 Experimental results . 97

8.3.1 Disaggregation of synthetic data . 99
8.3.2 Energy disaggregation with ground truth 101
8.3.3 Large-scale energy disaggregation . 103

9 Preventing Cascading Failures in Microgrids 104
9.1 System and problem description . 106
9.2 Machine learning model . 109
9.3 Results and Discussion . 112

10 Conclusion 117

Bibliography 118

x

List of Figures

2.1 Example abstract syntax tree for a DCP expression. 7

3.1 The Epsilon system: the compiler transforms a DCP-valid input problem into
separable prox-affine problem to be solved by the solver. The prox-affine prob-
lem is also used as an intermediate representation internal to the compiler. 17

3.2 Original abstract syntax tree for lasso ‖Ax − b‖2
2 + λ‖x‖1 (left) and the same

expression converted to prox-affine form (right). 19
3.3 Compiler representation of prox-affine form as bipartite graph for exp(‖x‖2 +

cTx) + ‖x‖1 after conversion pass (top, see equation 3.8) and after separation
pass (bottom, see equation 3.9). 22

3.4 Comparison of running times on lasso example with dense X ∈ Rm×10m. 30
3.5 Comparison of running times on the multivariate Lasso example with denseX ∈

Rm×10m and k = 10. 32
3.6 Comparison of running times on total variation example with X ∈ Rm×10m,

y = Xθ0 + ε with ε ∼ N (0, 0.052) where θ0 is piecewise constant with segments
of length 10. 33

4.1 Illustration of sparse Gaussian CRF model. 40
4.2 Sparse Gaussian conditional random field: comparison of specialized Newton

coordinate descent to existing methods. 45
4.3 Generalization performance (measured by mean squared error of the predictions)

for the Gaussian MRF versus CRF. 46
4.4 Generalization performance (MSE for the best λ chosen via cross-validation),

for the sparse Gaussian CRF versus `2-regularized least squares. 47

5.1 Comparison of sparse controllers to the optimal LQR control law J∗ for varying
levels of sparsity on the mass-spring system. 59

5.2 Convergence of algorithms on mass-spring system with N = 500 and λ = 10
(top left); the sparsity found by each algorithm for the same system (top right);
and across many settings with one column per example and rows corresponding
to different settings of λ with λ1 = [10, 10, 1, 1], λ2 = [1, 1, 0.1, 0.1] and λ3 =
[0.1, 0.1, 0.01, 0.01] (bottom). 60

5.3 Convergence of Newton methods on the polishing step for the mass-spring sys-
tem with N = 500 and λ = 100. 61

xi

5.4 Comparison of performance to LQR solution for varying levels of sparsity on
wide-area control in power networks. 62

5.5 Sparsity patterns for wide-area control in the NPCC 140 Bus power system: the
sparsest stable solution found (top) and the sparsest solution achieving perfor-
mance within 10% of optimal (bottom) . 63

5.6 Convergence of algorithms on IEEE 145 Bus (PSS) wide-area control example
with λ = 100 (left) and the number of nonzeros in the intermediate solutions
(right). 64

5.7 Convergence of algorithms on wide-area control across all power systems with
three choices of λ corresponding to performance within 10%, 1% and 0.1% of
LQR. Columns correspond to power systems and rows correspond to different
choices of λ with largest on top. 65

6.1 Top left: synthetic change point data, with T = 10000, n = 100, and 10 true
change points. Top right: recovered signal. Bottom left: timing results on syn-
thetic problem with T = 1000, n = 10. Bottom right: timing results on synthetic
problem with T = 10000, n = 100. 76

6.2 Left: timing results vs. number of change points at solution for synthetic problem
with T = 10000 and n = 10. Right: timing results for varying T , n = 10, and
sparse solution with 10 change points. 77

6.3 Top left: Lung data from [15]. Top right: recovered signal using group fused
lasso. Bottom left: Timing results on bladder problem, T = 2143, n = 57.
Bottom right: Timing results on lung problem, T = 31708, n = 18. 78

6.4 Top left: Observed autoregressive signal zt. Top right: true autoregressive model
parameters. Bottom left: Autoregressive parameters recovered with “simple”
ADMM algorithm. Bottom right: parameters recovered using alternative ADMM
w/ ASPN. 78

6.5 Convergence of simple ADMM versus alternative ADMM w/ ASPN 79
6.6 Left: original image. Middle: image corrupted with Gaussian noise. Right:

imaged recovered with total variation using proximal Dykstra and ASPN. 80
6.7 Comparison of proximal Dykstra method to ADMM for TV denoising of color

image. 80

7.1 Sparsity patterns Λ and Θ from the SGCRF model. Λ is estimated to have 1412
nonzero entries (1.2% sparse) and Θ is estimated to have 7714 nonzero entries
(0.67% sparse). White denotes zero values and wind farms are grouped together
in blocks. 90

7.2 Examples of predictive distributions for total energy output from all wind farms
over a single day. 91

7.3 Samples drawn from the linear regression model (top), and SGCRF model (bottom) 93

8.1 Synthetic data generation process starting with two underlying signals (top left),
corrupted by different noise models (top right), summed to give the observed
input (row 2) and disaggregated (rows 3 and 4). 98

xii

8.2 Energy disaggregation results over one week and a single home from the Pecan
Street dataset. 100

8.3 Energy disaggregation results over entire time period for a single home from the
Pecan Street dataset with estimated (left) and actual (right). 101

8.4 Disaggregated energy usage for a single home near Fresno, California over a
summer week (top left) and a winter week (top right); aggregated over 4000+
homes over nearly four years (bottom) . 102

9.1 Averaged model of a single inverter with a linear load Z. 106
9.2 (a) Schematic describing the system shows the outer-control loop. The loads

being serviced are a dryer, washer, water heater and lights. 107
9.3 The inner-control loop for voltage regulation where a virtual resistance is incor-

porated. 107
9.4 Example of method on synthetic data with linear SVM (left), one-sided SVM

(center) and one-sided SVM with RBF kernel (right). 108
9.5 Example scenarios showing varying simulation conditions: washer and dryer do

not overlap (top), washer and dryer overlap in steady state (middle) and washer
and dryer overlap during the transient start up (bottom). 113

9.6 Comparison of classifiers on the entire range over the entire ROC curve (left) and
focused on a low false positive rate (right). 114

9.7 Learned safe parameter regions for each inverter under different scenarios. The
top row shows safe parameters for inverter 1 when inverter 2 has thresholds
(0.01, 10) (top left) and (0.05, 50) (top right). Bottom row, vice versa. 116

xiii

List of Tables

3.1 Comparison of running time and objective value between Epsilon and CVXPY
with SCS and ECOS solvers; a value of “-” indicates a lack of result due to either
solver failure, unsupported problem or 1 hour timeout. 34

3.2 Comparison of running times between Epsilon and specialized solvers. 35

7.1 Comparison of mean prediction error on wind power forecasting. 90
7.2 Coverage of confidence intervals for wind power forecasting models. 91

8.1 Performance on disaggregation of synthetic data. 97
8.2 Comparison of performance on Pecan Street dataset, measured in mean absolute

error (MAE). 99
8.3 Model specification for contextually supervised energy disaggregation. 99

9.1 Comparison of classification algorithms . 114

xiv

Chapter 1

Introduction

Convex optimization, with its robust theory and rich toolbox, has found many applications, es-
pecially in machine learning and control. One especially useful set of tools are convex pro-
gramming frameworks based on disciplined convex programming (DCP) (e.g. CVX [53]), which
provide high-level specification languages for convex optimization problems, allowing a wide
variety of problems to be solved with general algorithms. The appeal of these tools is that they
decouple the task of formulating the mathematical optimization model from the implementation
of numerical algorithms—two tasks that involve different concerns: mathematical modeling of
the problem domain vs. programming efficient numerical routines. The decoupling of these con-
cerns allows domain practitioners to focus on developing convex models for particular problems,
while programming and optimization experts develop general methods, algorithms and code that
can be applied to solve these problems.

The existing approach to general convex programming has relied heavily on cone solvers and
in particular primal-dual interior point methods [87]. These methods serve this purpose well as
they are robust to problem inputs and able to find highly accurate solutions in polynomial time.
For a small problem (i.e., megabyte-scale data), the existing approach of transforming to cone
form and solving with a general cone solver is often sufficient, especially in the prototyping phase
when the model is being developed. However, on larger datasets and problem sizes, this approach
encounters major scalability issues rendering general convex programming frameworks far less
applicable. In practice, convex methods can only be applied to “big data” with specialized algo-
rithms developed for a single problem or class of problems, requiring custom implementations
to apply even the most basic optimization techniques (e.g. gradient descent). The development
of these special case numerical methods is time-consuming, error prone and suffers from a lack
of the extensibility that is so easily provided by the high-level convex programming frameworks.

The aim of this thesis is to address the gap between general convex programming and spe-
cialized algorithms, bringing the scalability achievable with specialized methods to the declar-
ative style of convex programming frameworks. Our approach adopts the disciplined convex
programming syntax and interface but develops new methods for transforming and solving prob-
lems specified in this form, targeting new classes of algorithms beyond cone solvers. In essence,
this requires increasing the functionality of the compiler, the system responsible for transforming
input problems into a solvable form. In particular, we introduce a new representation for general
convex programming: a sum of functions with efficient proximal operators. This representation

1

allows us to apply operator splitting algorithms (e.g. ADMM [19]), a class of methods which
has received considerable attention in recent years and are in fact often the method of choice for
specialized algorithms. From the perspective of general convex programming, operator splitting
is appealing as it can support a wide variety of convex problems (it is in fact a generalization
of cone form) while still maintaining significant problem structure that can be exploited at the
algorithmic level through efficient proximal operator implementations. Clearly, due to the enor-
mous popularity of convex optimization, there are a large number of problems and specialized
algorithms and thus completely closing the gap with general convex programming is outside the
scope of this work; however, on many common problems, our approach improves on existing
general methods by multiple orders of magnitude, approaching the speed of specialized solvers.

In terms of related work, the general challenge of coping with large datasets has received
significant attention from both research and industry. From a software perspective, frameworks
such as MapReduce [32], Spark [147], Pregel [80], GraphLab [78], Dataflow [4] and others
each provide abstractions for implementing parallel algorithms as well as implementations of
the systems required for executing these algorithms in various large-scale computing environ-
ments. Although these frameworks substantially ease the burden of developing and deploying
distributed systems for parallel computing, they operate at a significantly lower level than convex
programming frameworks. In addition, they are primarily focused on distributing computation
across network nodes whereas in scaling general convex programming, there is already a signifi-
cant gap between general methods and specialized algorithms even on problems that comfortably
fit on a single machine. Ultimately, these frameworks are complementary to our goals and our
methods are developed so that they can be implemented and deployed on these existing systems.

In the area of large-scale machine learning, a number of frameworks providing efficient im-
plementations of neural networks have recently become popular, coinciding with the surge in
popularity of deep learning. Frameworks such as Torch [1], Theano [13], Caffe [64] and Ten-
sorFlow [2] allow deep learning practitioners to rapidly develop models in a high-level language
appropriate to neural network modeling. The design and implementation of these systems is
highly related to the challenge of scaling general convex programming in that both rely certain
on certain basic primitives, e.g. fast CPU- or GPU-based linear algebra and communication be-
tween processing units. However, deep learning is rather different mathematically from convex
optimization, leading to a different modeling language and different algorithmic approaches for
optimization. The core function of a general convex programming framework, to translate a
general convex problem to a solvable form, is basically nonexistent in neural networks; instead,
neural nets involve basic computational units that are optimized directly via gradients and back-
propagation. Nonetheless, the popularity of these frameworks motivates our desire to provide a
high-level declarative model with similar scalability for general convex programming.

In addition, our work on general convex programming is inspired by our own experience in
developing specialized algorithms for convex models. In Part II, we present specialized algo-
rithms for several convex optimization problems: the sparse Gaussian conditional random field
[138], the sparse linear-quadratic regulator [136], and the group fused lasso [141]. Each of these
models is of independent interest, having been proposed by researchers in several different fields
in recent years with many different applications. However, their adoption has been somewhat
limited due to the computational difficultly of the optimization problems involved, motivating
our development of these specialized methods. At a high level, our approach to each of these

2

problems is based on specialized Newton methods which exploit sparsity at an algorithmic level
through the use of coordinate descent algorithms. Toward the broader goal of this thesis—the de-
velopment of general convex programming methods—these problems and algorithms serve two
purposes: 1) as advanced examples of convex optimization problems that should (eventually)
be supported by general convex programming frameworks achieving similar performance as our
specialized algorithms; and 2) as examples of proximal operators that could be incorporated in
our existing framework for general convex programming as described in Part I.

In Part III we present applications of large-scale convex programming to problems arising
from the development of the next-generation electrical grid. In our first application, we develop
probabilistic forecasting models for balancing supply and demand in the electricity grid—it is our
contention that the integration of fundamentally uncertain renewable energy sources (e.g. wind,
solar) requires models capable of accurate probabilistic predictions incorporating spatiotemporal
correlations as opposed to classical point forecasts. In our second application, we develop disag-
gregation models for understanding energy end-use from millions of residential smart meters, an
important task for improving the efficiency of residential consumption. Finally, our third appli-
cation considers a machine learning approach to prevent failures in microgrids by learning safety
parameters from data.

To summarize, the main contributions of this thesis are:
1. A new approach to general convex programming based on transforming problems to sums

of functions with computationally efficient proximal operators [133, 142].

2. Specialized algorithms for several problems from machine learning and control: the sparse
Gaussian conditional random field [138], the sparse linear-quadratic regulator [136] and
the group fused lasso [141].

3. Convex models for large-scale energy applications: probabilistic forecasting [137], energy
disaggregation [139] and predicting failures in microgrids [140].

3

Part I

Scalable Convex Programming

4

Chapter 2

Background

Our approach to general convex programming combines the interface and syntax of disciplined
convex programming (DCP) with algorithms based on proximal operators and operator splitting.
Disciplined convex programming provides a declarative model for programming convex opti-
mization problems in a natural mathematical syntax as well as methods for transforming prob-
lems to a general form, historically a cone problem. In our work we extend the DCP approach
to target proximal algorithms, an appealing approach due to the flexibility provided by prox-
imal operators—conceptually, a proximal operator is defined for any function although certain
functions give rise to especially efficient implementations. In this Chapter, we review disciplined
convex programming as well as the proximal operators and operator splitting techniques that will
later be employed to solve general convex problems.

2.1 Disciplined convex programming
Consider a convex optimization problem

minimize ‖Ax− b‖2
2 + λ‖x‖1 (2.1)

with optimization variables x ∈ Rn, problem data A ∈ Rm×n, b ∈ Rm, and regularization
parameter λ ≥ 0. Disciplined convex programming provides a syntax for writing this problem
in a high-level programming language, rules for verifying its properties (in particular, convexity)
and methods for transforming the problem to a form that can be solved with a general cone
solver. Frameworks based on disciplined convex programming (e.g. CVX [53], CVXPY [34]
and Convex.jl [127]) provide this functionality in several popular environments for numerical
computing. For the purposes of this thesis, we adopt the CVXPY syntax which is implemented
as standard classes and functions in Python. In this syntax, the optimization problem above can
be written in a few lines of Python.

x = Variable(n)

f = sum_squares(A*x - b) + lam*norm1(x)

prob = Problem(Minimize(f))

5

As such, these libraries and other similar modeling frameworks (e.g. YALMIP [77]) have sub-
stantially lowered the barrier to quickly prototyping convex programs without the need to manu-
ally convert them to a form that can be fed directly into a numerical solver.

The innovation of these frameworks is in providing a separation between the specification
of the convex programming problem and the numerical routines required to find a solution. In
doing so, they enable domain practitioners whose primary focus is the application to rapidly
experiment with convex models using numerical routines developed by optimization experts.
Two key elements enable this separation: 1) a library of atoms—functions with known properties
and numerical implementations; and 2) a set of rules for composing these functions in a way that
can easily be verified to be convex. Importantly, the DCP ruleset is sufficient but not necessary
for a problem to be convex: for instance, the log-sum-exp function

f(x) = log(ex1 + · · ·+ exn) (2.2)

is convex, but is a composition of a concave monotonic and convex function, which does not
imply convexity using standard rules. However, log-sum-exp can be incorporated in a DCP
framework through direct implementation as an atom that is convex (and monotonic in its argu-
ments). Adding new atoms to the DCP library is straightforward and in practice, most convex
problems can be written using the DCP ruleset with a relatively small set of atoms.

Conceptually, the specification and verification steps in disciplined convex programming are
agnostic to the numerical routines used to produce a solution. However, to the best of our knowl-
edge, all DCP-based frameworks target the same canonical cone representation (originally pro-
posed in [52]) and nearly all general solvers available to these frameworks are based on interior
point methods.1 Although interior point methods are robust, providing highly accurate solutions
with provably polynomial time algorithms, they are often intractable for even moderately-sized
problems. Fundamentally, our approach differs from the conventional approach by employing a
different set of transformations to target a new class of algorithms based on proximal operators
and operator splitting techniques.

2.1.1 Expressions and atoms
The basic building block of disciplined convex programming are expressions representing vector-
valued functions, f : Rn1 × · · · × Rnk → Rm. We can describe these expressions programmati-
cally using a language with only three types of elements.
• Constant. A literal value (10) or a symbol representing a data constant (A)
• Variable. A symbol representing an optimization variable (x)
• Atom. A vector-valued function operating on one or more expressions, e.g. norm1(x), Ax,

or x + y

In essence, this simply formalizes the notion of variables and constants transformed by a set of
functions (called atoms in DCP) with known properties. For example, the function f : Rn → R

1The exception is recent work on the splitting conic solver [91] which employs a first-order method on the
canonical cone representation. We compare to this solver extensively in Section 3.3 and see that on many problems
Epsilon can be much faster.

6

b

MULTIPLY x

x

SUM SQUARES

NORM P (p: 1)

MULTIPLY

λ

A

ADD

ADD

NEGATE

Figure 2.1: Example abstract syntax tree for a DCP expression.

defined by
f(x) = ‖Ax− b‖2

2 + λ‖x‖1 (2.3)

can be written as the DCP expression (in Python syntax provided by CVXPY):

f = sum_squares(A*x - b) + lam*norm1(x)

where A, b, lam are constants, x is a variable and sum squares, norm1, +, - and * are all
atoms provided by the DCP framework (in this case the binary operators in Python have been
overloaded to produce the appropriate atom). When manipulating expressions programmatically,
it is convenient to conceive of them as abstract syntax trees (ASTs) with constants and variables
at the leaves and atoms at the internal nodes. The AST for this particular example is shown in
Figure 2.1.

The fundamental characteristic of disciplined convex programming frameworks is a set of
rules that can be used to verify the properties of expressions programmatically. These rules
associate with each node of the AST a set of attributes that characterize the properties of the
mathematical expression represented by that node.
• Size. The output dimension of the function represented by this expression.
• Curvature. The curvature of the expression in all of its inputs: constant, affine, convex,
concave, or unknown.

• Sign. The sign of the function: positive, negative, zero or unknown.
Then, the DCP verification process amounts to computing these attributes for each node in the
AST—once these attributes have been computed for each node, the mathematical properties of
the entire expression and each sub-expression can be determined directly from attributes associ-
ated with their respective nodes.

7

2.1.2 Disciplined convex programming rules
We next specify the rules for formulating a convex optimization problem in the DCP framework.
The first set of rules specify how DCP expressions are arranged to form a valid convex problem;
first, the objective must be scalar-valued and be a valid minimization or maximization problem.

minimize(convex) or maximize(concave)

In addition, it can include zero or more convex constraints.

affine = affine

convex ≤ concave

concave ≥ convex

(affine, ..., affine) ∈ convex set

Note that in describing the curvature of an expression, stronger notions of curvature imply the
more general ones.

constant =⇒ affine =⇒ convex and concave

Thus, in the rules described below an expression with constant curvature is also affine, convex
and concave.

The curvature of the expressions in the objective and the constraints is verified according to
the DCP attributes which are computed for each node in the AST in a bottom-up fashion. In
order to define these rules, we first need to define some additional properties for each atom.
• Monotonicity. The monotonicity of the function in each of its arguments: increasing,
decreasing, signed, nonmonotonic or unknown.

• Function curvature. The curvature of the function independent of its inputs: constant,
affine, convex, concave, or unknown.

Signed monotonicity handles “absolute value”-style functions which are nondecreasing for posi-
tive inputs and nonincreasing for negative ones. Importantly, these attributes depend only on the
atom itself and not the entire expression. In particular the function curvature attribute does not
depend on a function’s arguments (which may themselves be other atoms) unlike the curvature
attribute defined in Section 2.1.1.

With these additional properties, the curvature of an expression is computed in each of its
arguments according to the following rules which depend on the function in question as well as
the DCP attributes of its arguments.

argument curvature = constant =⇒ constant

argument curvature = affine =⇒ function curvature
monotonicity = increasing =⇒ argument curvature + function curvature
monotonicity = decreasing =⇒ argument curvature− function curvature

In the above rules, the binary operator “+” applied to two curvature types returns the least general

8

curvature type encompassing both, e.g.

convex + convex = convex

convex + affine = convex

affine + constant = affine

convex + concave = unknown

Similarly, the binary operator “−” performs the same operation after first modifying the second
argument from convex to concave and vice versa.

There is one final set of rules applying only to the special case of a convex function with
signed monotonicity (e.g. absolute value).

argument curvature = convex, argument sign = positive =⇒ function curvature
argument curvature = concave, argument sign = negative =⇒ function curvature

As a simple example of the above rules consider the atom for binary addition. This atom has
affine curvature and is monotonically increasing in both of its two arguments. Thus the curvature
of an addition expression largely mirrors the curvature of its arguments: in the case where both
arguments are convex then the overall expression will also be convex—similarly for concave,
affine or constant expressions. However, if one argument is convex and the other concave this
will result in an expression with unknown curvature which (in general) represents a nonconvex
function.

Unlike addition, multiplication tends to be significantly restricted in disciplined convex pro-
gramming. In general, inferring the curvature of multiplication expressions is a difficult problem
and thus all existing DCP frameworks require at least one constant argument to the binary mul-
tiplication atom. This restriction allows for a straightforward application of the curvature rules:
the curvature for multiplicaton atom is computed as a single-argument atom with affine curvature
and monotonicity determined by the sign of the constant argument.

In addition to computing the DCP attribute for curvature, we must also compute signs of
various expressions based on the signs of their sub-expressions. This operation is straightforward
and here we give the standard rules for the binary operators.

positive× positive = positive

positive× negative = negative

negative× negative = positive

positive + positive = positive

negative + negative = negative

zero× any = zero

zero + any = any

In the above rules, any refers to an expression with arbitrary sign, e.g. adding zero to an expres-
sion with any sign retains the same sign.

Taken together, these rules describe the basic elements used by the DCP framework to com-
pute DCP attributes for curvature and sign of an expression based on the properties of sub-
expressions for most of the common cases. In addition, each atom is also responsible for speci-
fying its dimension as a function of its arguments. Finally, we note that although the rules above

9

cover the most common cases, each individual atom can override these definitions to specify
custom behavior in order to handle important special cases capturing the properties of particular
functions.

2.1.3 Conic graph implementations
After convexity of the problem has been verified by the DCP rules, traditionally the next step
in the DCP framework is to convert problems into a standard conic form. This is accomplished
using the graph implementation: a representation of each atom as the solution to a linear cone
program. For example, the `1-norm can be expressed as

‖x‖1 ≡ minimize
t

1T t, subject to −t ≤ x ≤ t. (2.4)

Thus, when the transformation step encounters an `1-norm, it can be replaced with the linear
cone problem above by simply introducing the t variable, modifying the expression to be that of
the objective and adding the constraints above.

By applying these transformation repeatedly, the entire problem is reduced to a single linear
cone problem

minimize cTx

subject to Ax = b

x ∈ K,
(2.5)

which can then be solved by standard cone solvers. An important detail of this process is that the
graph implementation for each atom can depend only on cones supported by the general solvers
available to the DCP framework, which in practice is a small set of cones:
• Nonnegative orthant. {x | x ≥ 0}
• Second-order cone. {(x, t) | ‖x‖2 ≤ t}
• Positive semidefinite cone. {X ∈ Sn | X � 0}
• Exponential cone. {(x, y, z) | y > 0, yex/y ≤ z} ∪ {(x, y, z) | x ≤ 0, y = 0, z ≥ 0}

These cones are supported by a number of solvers (e.g. SeDuMi [120], SDPT3 [125], Gurobi
[95], MOSEK [85], GLPK [79], CVXOPT [28], ECOS [35] and SCS [91]), although it is the
case that not all solvers support all cones, requiring the DCP framework to choose the appropriate
solver based on the problem.

The most common approach to solving conic problems in standard form are primal-dual
interior point methods. These methods are robust to problem inputs and find highly accurate
solutions in a moderate amount of time on small problems—a statement that is made rigor-
ous by analysis (via self-concordance [88]) which bounds the number of iterations required for
convergence independent of problem scaling factors. However, each Newton iteration of the
primal-dual method requires solving a large linear system, which quickly becomes intractable as
the problem grows. This problem can be exacerbated by the cone representation, which often
requires many auxiliary variables to represent a problem in standard form. For example, repre-
senting ‖x‖1 in cone form with x ∈ Rn requires the introduction of an additional variable t ∈ Rn,
doubling the number of variables. These difficulties motivate our approach in adapting the DCP
framework to target a new class of algorithms based on operator splitting.

10

2.2 Proximal operators and algorithms
The proximal operator of a function f : Rn → R ∪ {∞} is

proxf (v) = argmin
x

(
f(x) + (1/2)‖x− v‖2

2

)
(2.6)

where ‖ · ‖2 denotes the usual Euclidean norm. Conceptually, the proximal operator generalizes
set projections to functions—given an input v ∈ Rn we find a point x that is close to v (in the
`2-norm) but also makes f small. Naturally, there is a tradeoff between these two objectives
which we control explicitly with parameter λ > 0

proxλf (v) = argmin
x

(
f(x) + (1/2λ)‖x− v‖2

2

)
. (2.7)

In this form, larger values of λ increase the weight given to f while smaller values prefer points
close to v. We recover the operator for projection onto a set C with the indicator function

IC(x) =

{
0 x ∈ C
∞ x /∈ C, (2.8)

since
proxIC(v) = argmin

x∈C
‖x− v‖2 = ΠC(v). (2.9)

2.2.1 Properties of proximal operators
All proximal operators satisfy the following basic properties.
• Scalar multiplication. If f(x) = αg(x) with α > 0, then

proxλf (v) = proxαλg(v).

• Linear addition. If f(x) = g(x) + cTx, then

proxλf (v) = proxλg(v − λc)

• Post composition. If f(x) = g(αx+ b) with α 6= 0, then

proxλf (v) =
1

α

(
proxα2λg(αv + b)− b

)
.

We refer to the `2-regularization (1/2)‖x − v‖2
2 as the proximal term. Multiple proximal

terms can be combined into a single proximal operator

argmin
x

f(x) + (1/2λ)‖x− v‖2
2 + (1/2ρ)‖x− u‖2

2 = proxγf ((γ/λ)v + (γ/ρ)u) (2.10)

where γ = (λρ)/(λ+ ρ). On the other hand, for a separable function h(x, y) = f(x) + g(y), the
proximal operator reduces to evaluation in parts

proxh(v, u) = (proxf (v), proxg(u)). (2.11)

11

2.2.2 Functions with simple proximal operators
In this section, we give examples of functions with simple proximal operators with closed form
evaluations.

Functions on scalars. We start with several functions on scalar inputs, x ∈ R.
• Identity. Let f(x) = x, proxλf (v) = v − λ.
• Square. Let f(x) = (1/2)x2, proxλf (v) = v/(λ+ 1).

• Absolute value. Let f(x) = |x|,

proxλf (v) =

v + λ v < −λ
0 |v| ≤ λ
v − λ v > λ.

• Hinge. Let f(x) = max{x, 0},

proxλf (v) =

v v < 0
0 0 ≤ v ≤ λ
v − λ v > λ.

• Negative log. Let f(x) = − log(x), proxλf (v) = v + (1/2)
√
v2 + 4λ.

• Inverse. Let f(x) = 1/x, proxλf (v) is the solution to the polynomial

x3 − vx2 − λ = 0

which can be found with the cubic formula.
• Nonnegative. Let f(x) = I(x ≥ 0), proxλf (v) = (x)+.
• Box. Let f(x) = I(a ≤ x ≤ b)

proxλf (v) =

a v < a
v a ≤ v ≤ b
b v > b.

These functions functions can be applied elementwise to form functions on vectors. For
example, the `1-norm

‖x‖1 =
n∑
i=1

|xi| (2.12)

and the sum-of-squares function

(1/2)‖x‖2
2 = (1/2)

n∑
i=1

x2
i (2.13)

are both separable functions, applying elementwise to a vector x ∈ Rn.
Functions on vectors. Next, we turn to functions on vectors that cannot be expressed ele-

mentwise.

12

• `2-norm. For x ∈ Rn, let f(x) = ‖x‖2,

proxλf (v) =

{
(1− λ‖v‖2)v ‖v‖2 ≥ λ
0 ‖v‖2 ≤ λ.

• Quadratic. For x ∈ Rn, let f(x) = (1/2)xTQx+ cTx with Q � 0,

proxλf (v) = (I + λQ)−1(v − λc).

• Second-order cone. For x ∈ Rn and t ∈ R, let f(x, t) = I(‖x‖2 ≤ t)

proxλf (v, s) =

0 ‖v‖2 ≤ −s
(v, s) ‖v‖2 ≤ s
(1/2)(1 + s/‖v‖2)(v, ‖v‖2) ‖v‖2 > |s|.

Functions on matrices. Finally, we give a few examples of functions on matrices. In this
case, the proximal operator is

proxλf (V) = argmin
X

f(X) + (1/2λ)‖X − V ‖2
F (2.14)

where ‖ · ‖F denotes the Frobenius norm, the `2-norm applied elementwise to the entries of a
matrix.
• Negative log-det. For X ∈ Sn, let f(X) = − log |X|,

proxλf (V) = UX̃UT

where V = UDUT is the eigenvalue decomposition and X̃ is the diagonal matrix with

X̃ii =
Dii +

√
D2
ii + 4λ

2
.

• Semidefinite cone. For X ∈ Sn, let f(X) = I(X � 0),

proxλf (V) =
n∑
i=1

(di)+uiu
T
i

where V =
∑n

i=1 diuiu
T
i is the eigenvalue decomposition.

Linear composition. In general, the existence of a simple proximal operator for f(x) does
not imply the existence of one for f(Ax). However, in a few special cases a function composed
with a linear operator can be solved in closed form.
• Linear equality. Let f(x) = I(Ax = b),

proxλf (v) = v − AT (AAT)−1(Av − b).

• Least squares. Let f(x) = (1/2)‖Ax− b‖2
2,

proxλf (v) = (I + λATA)−1(AT b+ v).

13

In addition, functions involving linear and quadratic terms can often be combined into a
single proximal operator. For example, let f(x) = (1/2)xTQx+ cTx+ I(Ax = b) with Q � 0.
The optimality conditions for the proximal operator proxλf (v) are

(λQ+ I)x+ ATy = v − λc
Ax = b

(2.15)

where y is the dual variable for the equality constraint. We can solve this with Gaussian elimina-
tion and back substitution

y = (AAT)−1A(λQ+ I)−1(v − λc)
x = (λQ+ I)−1(v − λc)− ATy.

(2.16)

In many of the examples above, the main computational cost arises from solving linear sys-
tems. Typically, proximal algorithms require applying the same proximal operator many times
which allows us to amortize this cost by computing and caching the factorization required by the
linear solver. Furthermore, the matrix inversion lemma can often be used to reduce the operations
required for factorization. For example, least squares (1/2)‖Ax − b‖2

2 may have A with m ≤ n
in which case

(I + λATA)−1 = I − AT ((1/λ)I + AAT)−1A (2.17)

and we reduce computation by factoring (1/λ)I + AAT instead of I + λATA.
As an example of applying the atomic proximal operators discussed in this section with the

basic properties from Section 2.2.1, consider the weighted `1-norm applied to a vector x ∈ Rn

λf(x) = λ‖w ◦ x‖1 = λ
n∑
i=1

wi|xi|. (2.18)

where w ∈ Rn is a vector of weights. Since this is an elementwise function, by the separable
sum property and the precomposition rule,

(proxλf (v))i = proxλwi|·|(vi) =

vi + λwi vi < −λwi
0 |vi| ≤ λwi
vi − λwi vi > λwi

(2.19)

where in the last step we simply apply the proximal operator for the scalar absolute value to each
element of v.

2.2.3 Alternating direction method of multipliers
For the purposes of this work, we are interested in algorithms which interface with optimization
problems primarily through the proximal operator. In this section, we present one such algorithm
based on the alternating direction method of multipliers (ADMM) [19]. For a detailed discussion
of other proximal algorithms, we refer the reader to the recent monograph [97].

Given a problem of the form

minimize f(x) + g(x) (2.20)

14

we introduce a new variable z and a consensus equality constraint

minimize f(x) + g(z)

subject to x = z
(2.21)

which makes the objective separable. The alternating updates

xk+1 := proxλf (z
k − uk)

zk+1 := proxλg(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

(2.22)

are applied in a round robin Gauss-Seidel fashion; k is the iteration counter and λ > 0 is an al-
gorithm parameter. The standard motivation for ADMM comes from the augmented Lagrangian

Lλ(x, z, y) = f(x) + g(z) + yT (x− z) + (1/λ)‖x− z‖2
2 (2.23)

where y is the dual variable corresponding to the equality constraint. The updates are derived by
minimizing the augmented Lagrangian over x and z and updating a scaled version of the dual
variable u = λy with a gradient step. We can also view ADMM from the perspective of integral
control [46], in which case u is the sum of errors fed back to each proximal operator.

15

Chapter 3

Convex Programming with Fast Proximal
and Linear Operators

In this chapter we present Epsilon, a new system for general convex programming that combines
the interface of disciplined convex programming with efficient operator splitting algorithms, au-
tomating the decomposition of general convex problems into subproblems with efficient proximal
operators. In the sequel, we describe the complete Epsilon system, starting with the details of the
Epsilon compiler and solver in Section 3.1—like existing convex programming frameworks, Ep-
silon takes as input convex problems formulated with the DCP ruleset (see Section 2.1) and thus
provides a natural mathematical syntax that can easily and intuitively express complex objectives
and constraints. However, unlike existing frameworks which transform the problem into a stan-
dard conic form and then pass to a cone solver, Epsilon transforms the problem into a form we
call prox-affine: a sum of “prox-friendly” functions (i.e., functions that have efficient proximal
operators) composed with affine transformations. These functions include the cone projections
sufficient to solve existing cone problems, but prox-affine form is a much richer representation
also including a wide range of other convex functions with efficient proximal operators. Section
3.2 presents a library of efficient proximal operator implementations for many common functions
along with a high-level discussion of their implementation details. As is often the case in convex
optimization, for many problems the evaluation of linear operators accounts for the majority of
time and thus we also present a library of efficient linear operators extending beyond the tradi-
tional sparse and dense matrices. In total, the resulting Epsilon system can solve a wide range of
optimization problems an order of magnitude faster (or more) than existing approaches to gen-
eral convex programming—we provide several examples of popular problems from statistics and
machine learning in Section 3.3.

3.1 The Epsilon compiler and solver

The Epsilon system has two components: 1) the compiler, which transforms a DCP representa-
tion into a prox-affine form (and eventually a separable prox-affine form, to be discussed shortly),
by a series of passes over the AST corresponding to the original problem; and 2) the solver, which
solves the resulting problem using the fast implementation of these proximal and linear opera-

16

Epsilon
compiler

DCP
problem

Prox-affine
problem

Epsilon
solver

Separable
prox-affine

problem
Solution

Figure 3.1: The Epsilon system: the compiler transforms a DCP-valid input problem into sepa-
rable prox-affine problem to be solved by the solver. The prox-affine problem is also used as an
intermediate representation internal to the compiler.

tors. An overview of the system is shown in Figure 3.1. This section describes each of these two
components in detail.

Before describing the details of the prox-affine form and the compiler transformations, we
emphasize that for a given DCP problem, multiple translations to prox-affine form are possible
and we do not in general find the “best” representation. Our approach is rule-based, adopting
various heuristics that attempt to produce a reasonably efficient prox-affine form for any problem,
ensuring a valid transformation while attempting to minimize the number of auxiliary variables
introduced. At a high level, the prox-affine representation balances per-iteration computational
complexity and the overall number of iterations that will be required to solve a given problem.
As an extreme example, we can often split problems into a large number of proximal operators
which are very cheap to evaluate but will require a large number of iterations. The theoretical
analysis of convergence rates for operator splitting algorithms is an active area of research (see
e.g. [31, 51, 90]) but Epsilon follows the simple heuristic of minimizing the total number of
proximal operators in the separable form provided that each operator can be evaluated efficiently.
This is implemented with multiple passes on the prox-affine form which split the problem as
needed until it it satisfies the constraints required for applying the operator splitting algorithm
described in Section 3.1.4.

3.1.1 The prox-affine form

The internal representation used by the compiler, as well as the input to the solver, is a convex
optimization problem in prox-affine form

minimize
N∑
i=1

fi(Hi(x)), (3.1)

where x is the optimization variable, f1, . . . , fN are functions with efficient proximal operators
and H1, . . . , Hn are affine transformations. The affine transformations are implemented with a
library of linear operators which includes matrices (either sparse or dense), as well as special

17

cases like diagonal or scalar matrices and more complex linear transformations not easily repre-
sented as a single matrix, like Kronecker products. Crucially, not every proximal operator can be
combined with every linear operator, but it is the job of the Epsilon compiler, described shortly,
to ensure that the problem is transformed to one where the compositions of proximal and linear
operators have an available implementation. For example, very few proximal operators support
composition with a general dense matrix (the sum-of-squares and subspace equality constraint
being some of the only instances), but several can support composition with a diagonal matrix.
Representing these distinctions in Epsilon compiler is critical to deriving efficient proximal up-
dates for the final optimization problems.

As an example of prox-affine form, the linear cone problem which forms the basis for existing
disciplined convex programming systems (see Section 2.1),

minimize cTx

subject to Ax = b

x ∈ K,
(3.2)

can be represented in prox-affine form as

minimize cTx+ I0(Ax− b) + IK(x), (3.3)

with f1 being the identity function, H1 being inner product with c, f2 the indicator of the zero
set, H2 being the affine transformation Ax−b, f3 the indicator of the coneK and H2 the identity.
Each of these functions has an efficient proximal operator; for example the proximal operator of
I0(Ax − b) is simply the projection onto this subspace, the proximal operator for IK is the cone
projection, and the proximal operator for cTx is simply v − c (in fact, this term can be merged
with one or both of the other terms and thus only two proximal operators are necessary). As the
linear cone problem is thus a special case of prox-affine form, Epsilon enjoys the same generality
as existing DCP systems.

In order to apply the operator splitting algorithm, we also define the separable prox-affine
form

minimize
N∑
i=1

fi(Hi(xi))

subject to
N∑
i=1

Ai(xi) = 0

(3.4)

which has a separable objective and explicit linear equality constraints (these are required in order
to guarantee that the objective can be made separable while remaining equivalent to the original
problem). As above, the affine transformations Ai are implemented by the linear operator library
and can thus be represented with matrices or Kronecker products, as well as simpler forms such
as diagonal or scalar matrices. The latter are especially common in the separable form because
they are often introduced for representing the consensus constraint that two variables be equal
(e.g. Ai = I or Ai = −I). Mathematically, there is little difference between the separable
and non-separable forms; but computationally the separable form allows for direct application

18

b

MULTIPLY x

x

SUM SQUARES

NORM P (p: 1)

MULTIPLY

λ

A

ADD

ADD

NEGATE LINEAR MAP (A)

x

x

PROX FUNCTION (‖ · ‖22) PROX FUNCTION (λ‖ · ‖1)

b

ADD

ADD

LINEAR MAP (−1)

Figure 3.2: Original abstract syntax tree for lasso ‖Ax− b‖2
2 +λ‖x‖1 (left) and the same expres-

sion converted to prox-affine form (right).

of the ADMM-based operator splitting algorithm. Specifically, the separable prox-affine form
maps directly to a sequence of proximal and linear operator evaluations employed by the Epsilon
variant of ADMM.

The algorithm we present shortly for problems in separable prox-affine form will ultimately
reduce to solving generalized proximal operators of the form

proxf◦H,A(v) = argmin
x

λf(H(x)) + (1/2)‖A(x)− v‖2
2. (3.5)

For most functions f and affine transformations H and A, this function will not have a simple
closed-form solution, even if a simple proximal operator exists for f . The three important excep-
tions to this are when: 1) f is the null function, 2) f is the indicator of the zero cone, or 3) f is a
sum-of-squares function; in all these cases, the solution boils down to a linear least squares prob-
lem. However, for certain linear operators (namely, scalar or diagonal transformations), there
are many cases where the generalized proximal operator has a straightforward solution. The
Epsilon compiler produces a prox-affine form where the combination of f , H , and A results in
an efficient proximal operator.

3.1.2 Conversion to prox-affine form
The first stage of the Epsilon compiler transforms an arbitrary disciplined convex problem into
a prox-affine problem. Concretely, given an AST representing the optimization problem in its
original form, which may consist of any valid composition of functions from the DCP library,
this stage produces an AST with a reduced set of nodes:
• ADD. The sum of its children x1 + · · ·+ xn.
• PROX FUNCTION. A prox-friendly function with proximal operator implementation in the

Epsilon solver.

19

• LINEAR MAP. A linear function with linear operator implementation in the Epsilon solver.
• VARIABLE, CONSTANT. Each leaf of the AST is either a variable or constant.

In addition, once the AST is transformed into prox-affine form, each PROX FUNCTION corre-
sponds to a function with an efficient proximal operator implementation from the library de-
scribed in Section 3.2. An example of this transformation is shown in Figure 3.2.

The transformation to prox-affine form is done in two passes over the AST representing the
optimization problem. In the first pass, we convert all nodes representing linear functions to a
nodes of type LINEAR MAP which map directly to the linear operators available in the Epsilon
solver. In terms of ASTs representing linear functions, there are two possibilities in any DCP-
valid input problem: 1) direct linear transformations of inputs, such as the unary SUM or variable
argument HSTACK and 2) binary functions such as MULTIPLY which apply a linear operator de-
fined by a constant expression. The former have straightforward transformations to LINEAR MAP

representations; for the latter, DCP rules require that one of the arguments be constant and thus
this argument is evaluated and converted to a linear operator (typically, a sparse, dense or diago-
nal matrix) and a LINEAR MAP node with single argument.

In the second pass, we complete the transformation to prox-affine form by applying a set of
prioritized rules, preferring to map ASTs onto a high-level proximal operator implementation
when available but falling back to conic transformations when necessary. In short, given an input
tree (or subtree) along with a set of rules for proximal operator transformations, we match the
input against these rules. If a matching proximal operator is found, we then transform the func-
tion arguments (represented by subtrees of the original input tree) so that they have valid form
for composition with the proximal operator in question. In doing so, the process may introduce
auxiliary variables and additional indicator functions; the behavior of ConvertProxArguments
depends on the requirements of the particular proximal operator, but some common examples
include:
• No-op. The expression max{−x, 0}with variable x is the hinge function f(x) = max{x, 0},

composed with the linear transformation −I . This represents a valid proximal operator so
no further transformations are necessary and the argument −x is returned as-is.

• Epigraph transformation. The expression ‖Ax − b‖1 with constants A, b and variable x
matches a the proximal operator for the `1-norm ‖ · ‖1, but it cannot be composed with an
arbitrary affine function given the set of proximal operators available in the Epsilon solver.
Therefore, a new variable y is introduced along with the constraint I0(Ax − b − y); y is
returned as argument, resulting in the new expression ‖y‖1.

• Kronecker product splitting. The expression ‖AXB − C‖2
F with constants A,B,C and

variableX matches the proximal operator for sum-of-squares, but evaluation would require
factoring F TF + I where F = BT ⊗ A which cannot be done efficiently given the linear
operators available. Therefore, the compiler introduces a new variable Z, modifies the
argument to be ‖AZ − C‖2

F and introduces the constraint I0(XB − Z).

Once the arguments have been transformed to the proper form, we create a PROX FUNCTION

node (with attribute specifying which proximal operator implementation) and the transformed
arguments as children. Any indicators that were added by the argument conversion process are
themselves recursively converted to prox-affine form and the result is accumulated in the output

20

under an ADD node.

3.1.3 Optimization and separation of prox-affine form
Once the problem has been put in prox-affine form, the next stage of the compiler transforms it to
be separable in preparation for the solver. Although we previously described the prox-affine form
generically, where we were minimizing over a single variable x and each term could potentially
depend on all variable fi(Hi(x)), the reality is that for many problems the x variables are already
“naturally” partitioned to some extent (for instance, this arises in epigraph transformations, where
one function in the prox-affine form will only depend on epigraph variables). Thus, to be more
concrete, we introduce a partitioning of the variables x = (x1, . . . , xk) (where here each xj is
itself a vector of appropriate size, and let Ji denote the set of all variables that are used in the ith
prox operator, i.e. our optimization problem becomes

minimize
x1,...,xk

n∑
i=1

fi(Hi(xJi)). (3.6)

The process of separation is effectively one of introducing “copies” of variables until we reach
a point that each objective term fi has a unique set of variables, and the interactions between
variables are captured entirely by the explicit equality constraints.

Given the form above, we describe the optimization problem via a bipartite graph, between
nodes corresponding to objective functions f1, . . . , fN (plus additional equality constraints, in
the final form) and nodes corresponding to variables x1, . . . , xk. An edge exists between fi and
xj if j ∈ Ji, i.e. if the function uses that variable. By applying a sequence of transformations,
we will introduce new variables and new equality constraints that will put the problem into a
separable prox-affine form.

Definition of equivalence transformations. Specifically, the compiler sequentially executes a
series of transformations to put the problem in separable prox-affine form:

1. Move equality indicators. The first compiler stage (“Conversion to prox-affine form”, see
Section 3.1.2) produces a single expression for the objective which includes all constraints
via indicators; due to the nature of the transformations, many equality constraints are “sim-
ple” (e.g. involving I or −I) and can thus be moved to actual constraints in the separable
form. This pass performs these modifications based on the linear map associated with the
edges corresponding to variables in each equality constraint, splitting expressions when
necessary. For example, an objective term I0(Ax + y + z) is transformed to a new objec-
tive term I0(Ax− w) and the constraint w + y + z = 0.

2. Combine objective terms. The basic properties of proximal operators (see e.g. [97]) allow
simple functions like cTx and ‖x−b‖2

2 to be combined with other terms, reducing the num-
ber of proximal operators needed in the separable prox-affine form. This pass combines
these terms assuming there is another objective term which includes the same variable.

3. Add variable copies and consensus constraints. The final pass guarantees that the objective
is separable by introducing variable copies and consensus constraints. For example, the
objective f(x) + g(x) is transformed to f(x1) + g(x2) and the constraint x1 = x2 is added.

21

exp I0IQ I+‖ · ‖1

st vx

expI0IQ I+‖ · ‖1

=

x1

=

s tvx2 x3 z

=

Figure 3.3: Compiler representation of prox-affine form as bipartite graph for exp(‖x‖2 +cTx)+
‖x‖1 after conversion pass (top, see equation 3.8) and after separation pass (bottom, see equation
3.9).

For illustration purposes, consider the problem

minimize exp(‖x‖2 + cTx) + ‖x‖1. (3.7)

The first compiler stage converts this problem to prox-affine form by introducing auxiliary vari-
ables t, s, v, along with three cone constraints and two prox-friendly functions:

minimize exp(t) + ‖x‖1 + IQ(x, s) + I0(s+ cTx− t− v) + I+(v), (3.8)

where IQ denotes the indicator of the second-order cone, I0 the zero cone and I+ the nonnegative
orthant. The problem in this form is the input for the second stage which constructs the bipartite
graph shown in Figure 3.3 (top). The problem is then transformed to have separable objective
with many of the terms in I0 (those with simple linear maps) move to the constraint

minimize exp(t) + ‖x1‖1 + IQ(x2, s) + I0(cTx3 − z) + I+(v)

subject to s+ z − t− v = 0

x1 = x2

x2 = x3

(3.9)

and variables x1, x2, x3 are introduced along with consensus constraints. The bipartite graph for
the final output from the compiler, a problem in separable prox-affine form, is shown in Figure
3.3 (bottom).

22

3.1.4 Solving problems in prox-affine form
Once the problem has been put in separable prox-affine form, the Epsilon solver applies the
ADMM-based operator splitting algorithm using the library of proximal and linear operators.
The implementation details of each operator are abstracted from the high-level algorithm, which
applies the operators only through a common interface providing the basic mathematical op-
erations required. Next we give a mathematical description of the operator splitting algorithm
itself while the computational details of individual proximal and linear operators are discussed
in Section 3.2.

Given a problem in separable prox-affine form

minimize
N∑
i=1

fi(Hi(xi))

subject to
N∑
i=1

Ai(xi) = 0.

(3.10)

This operator splitting algorithm is motivated by considering the augmented Lagrangian

Lλ(x1, . . . , xN , y) =
N∑
i=1

fi(H(xi)) + yT (Ax− b) + (1/2λ)‖Ax− b‖2
2 (3.11)

where y is the dual variable, λ ≥ 0 is the augmented Lagrangian penalization parameter, and
Ax =

∑N
i=1 Ai(xi). The ADMM method applied here results in the Gauss-Seidel updates1 with

xk+1
i := argmin

xi

λfi(Hi(xi)) +
1

2

∥∥∥∥∥∑
j<i

Aj(x
k+1
j) + Ai(xi) +

∑
j>i

Aj(x
k
j)− b+ uk

∥∥∥∥∥
2

2

uk+1 := uk + Axk+1 − b
(3.12)

where we have u = λy is the scaled dual variable. Critically, the xi-updates are applied using
the (generalized) proximal operator: let

vki = b− uk −
∑
j<i

Aj(x
k+1
j)−

∑
j>i

Aj(x
k
j) (3.13)

then we have

xk+1
i := argmin

xi

λfi(Hi(xi)) + (1/2)‖A(xi)− vki ‖2
2 = proxλfi◦Hi,Ai

(vki) (3.14)

The ability of the solver to evaluate the generalized proximal operator efficiently will depend on
fi and Ai (in the most common case ATi Ai = αI , a scalar matrix, which can be handled by any
proximal operator); it is the responsibility of the compiler to ensure that the prox-affine problem
has been put in the required form such that these evaluations map to efficient implementations
from the proximal operator library.

1specifically, the update for x(k+1)
i depends on x(k+1)

j for j < i and x(k)j for j > i

23

3.2 Fast computational operators
The proximal operator library directly implements the atoms available to disciplined convex
programming frameworks, reducing the need for extensive transformation before solving an op-
timization problem. As the evaluation of proximal operators as well as the operations required by
high-level algorithms rely heavily on linear operators, Epsilon also provides a library of efficient
linear operators (and a system for composing them), extending beyond the standard dense/sparse
matrices typically found in generic convex solvers.

3.2.1 Linear operators
In general, the computation required for solving convex optimization problems often depends
heavily on the application of linear operators. Most commonly these linear operators are im-
plemented with sparse or dense matrices which explicitly represent the coefficients of the linear
transformation. Clearly, in many cases this can be inefficient (see, e.g., [33] and the references
therein) and as such, we abstract the notion of a linear operator allowing for other implementa-
tions which can often be far more efficient than direct matrix representation.

A motivating example that arises in many applications is the use of matrix-valued variables.
As intermediate representations for convex programming (both prox-affine and conic forms) typ-
ically reduce optimization problems over matrices to ones over vectors, matrix products naturally
give rise to the Kronecker product. For example, consider the expression AX where A ∈ Rm×n

is a dense constant and X ∈ Rn×k is the optimization variable; we vectorize this product with
vec(AX) = (I ⊗ A) vec(X) where ⊗ denotes the Kronecker product. Representing the Kro-
necker product as a sparse matrix is not only space inefficient (i.e. requiring A to be repeated
k times) but can also be extremely costly to factor. In particular, the naive approach requires a
sparse factorization of a km×knmatrix as opposed to factoring a densem×nmatrixA directly.
Explicitly maintaining the Kronecker product structure provides a mechanism for avoiding this
unnecessary computational cost.

Epsilon augments the standard sparse/dense matrices with dedicated implementations for di-
agonal matrices, scalar matrices, the Kronecker product as well as composite types representing
a sum or product:
• Dense matrix. A dense matrix A ∈ Rm×n with O(mn) storage.
• Sparse matrix. A sparse matrix A ∈ Rm×n with O(# nonzeros) storage.
• Diagonal matrix. A diagonal matrix A ∈ Rn×n with O(n) storage.
• Scalar matrix. A scalar matrix αI ∈ Rn×n with α ∈ R and O(1) storage.
• Kronecker product. The Kronecker product of A ∈ Rm×n and BS ∈ Rp×q, representing a

linear map Rnq → Rmp where A and B can themselves be any linear operator type.
• Sum. The sum of linear operators A1 + · · ·+ AN .
• Product. The product of linear operators A1 · · ·AN .
• Abstract. An abstract linear operator which cannot be combined with any of the basic

types. This is used to represent factorizations, see below.
Each linear operator type A supports the following operations:

24

• Apply. Given a vector x, return y = Ax.
• Transpose. Return the linear operator AT .
• Inverse. Return the linear operator A−1.

The transpose operation returns a linear operator of the same type whereas the inverse operation
may return a linear operator of a different type. The inverse operation is undefined for non-
invertible linear operators and in practice is intended to be used in contexts where the linear
transformation is known to be invertible.

In addition, linear operators also support binary operations for sum A + B and product AB.
This requires a system for type conversion, the basic rules for which are described with an order-
ing of the types corresponding to their sparsity (Dense > Sparse > Diagonal > Scalar); in
order to combine any two of these types, we first promote the sparser type to to the denser type.
For Kronecker products, type conversion depends on the arguments: the sum of two Kronecker
products can be combined if one of the arguments is equivalent, e.g.

A⊗B + A⊗ C = A⊗ (B + C) (3.15)

while the product can be combined if the arguments have matching dimensions, i.e.

(A⊗B)(C ⊗D) = AC ⊗BD (3.16)

if we can form AC and BD. In either case, if a combination is possible it will be performed
along with the appropriate type conversion for the sum/product of the arguments themselves. If
a combination is not possible according to these rules, the resulting type will instead be a Sum
or Product composed of the arguments.

3.2.2 Proximal operators
The second class of operators that form the basis for Epsilon are the proximal operators. As
seen in the resulting description of the ADMM algorithm, each individual solution over the xi
variables can be represented via an operator

xk+1
i := argmin

xi

λf(H(xi)) +
1

2
‖Ai(xi)− vki ‖2

2 (3.17)

for some value of vki (which naturally depends generally on the dual variables for the equality
constraints involving xi as well as the other xj variables). This is exactly the generalized prox-
imal operator xk+1

i = proxλf◦Hi,Ai
(v). Indeed, the Epsilon compiler uses precisely the set of

available fast proximal operators to reduce the convex optimization problems to fast forms rel-
ative to the corresponding cone problem; while any of the problems can be solved by reducing
everything to conic form (and thus using only proximal operators corresponding to cone projec-
tions), the speed of the solver crucially depends on the ability to evaluate a much wider range of
these proximal operators efficiently.

It is well-known that many proximal operators have closed form solutions that can be solved
much more quickly than general optimization problems (see e.g. [97] for a review). In this
section, we highlight several of the operators included in Epsilon along with a general description

25

of the methods used to solve them. The proximal operators group roughly into three categories:
elementwise, vector, and matrix operators, for functions f of scalar inputs, vector inputs, and
matrix inputs respectively. Note that this is not a perfect division, because several vector or
matrix functions are simply sums of corresponding scalar functions, e.g., ‖x‖2

2 =
∑n

i=1 x
2
i , but

instead we use vector or matrix designations to refer to functions that cannot be decomposed
over their inputs.
• Exact linear, quadratic, or cubic equations. Several prox operators can be solved using

exact solutions to their gradient conditions. For instance, the prox operator of f(x) =
(ax− b)2 is given by the solution to the gradient equation 2a(ax− b) + x = 0, which is a
simple linear equation. Similarly, the prox operators for f(x) = − log x and f(x) = 1/x
have gradient conditions that are given by quadratic and cubic equations respectively. Here
some care must be taken to ensure that we select the correct one of two or three possible
solutions, but this can be ensured analytically in many cases or simply by checking all
solutions in the worst case. For vector functions, the proximal operator of a least-squares
objective is also an instance of this case, though here of course the complexity requires a
matrix inversion rather than a scalar linear equation.

• Soft thresholding. The absolute value and related functions can be solved via the soft
thresholding operator. For example, the proximal operator of f(x) = |x| is given by

proxλf (v) =

v − λ if v > λ
0 if − λ ≤ v ≤ λ
v + λ if v < −λ.

(3.18)

• Newton’s method. Several proximal operators for smooth functions have no easily com-
puted closed form solution. Nonetheless, in this case Newton’s method can be used to find
a solution in reasonable time. For elementwise functions, for instance, these operations
are relatively efficient, because in practice a very small number of Newton iterations are
needed to reach numerical precision. For example, the proximal operator of the logistic
function f(x) = log(1 + exp(x)) has no closed form solution, but can easily computed
with Newton’s method.

• Projection approaches. The proximal operator for several functions can be related to the
projection on to a set. In the simplest case, the proximal operator for an indicator of a set
is simply equal to the projection onto the set, giving prox operators for cone projections.
However, additional proximal methods derive from Moreau decomposition [84], which
states that

v = proxf (v) + proxf∗(v) (3.19)

where f ∗ denotes the Fenchel conjugate of f . For example, the proximal operator for the
`∞-norm, f(x) = ‖x‖∞ is given by

proxf (v) = v − P‖x‖1≤1(v) (3.20)

using the relation that the Fenchel conjugate of a normal is equal to the indicator of of the
dual norm ball. The projection on to the `1-ball can be accomplished in O(n) time using a
median of medians algorithm [38].

26

• Orthogonally invariant matrix functions. If a matrix input function is defined solely
by the singular values (or eigenvalues) of a matrix, then the proximal operator can be
computed using the singular value decomposition (or eigenvalue decomposition) of that
matrix. Typically, the running time of these proximal operators are dominated by the cost
of the decomposition itself, making them very efficient for reasonably-sized matrices. For
example, the log det function can be written as

log det(X) =
n∑
i=1

log λi (3.21)

so its proximal operator can be given by

proxlog det(X) = U proxlog(Λ)UT (3.22)

where proxlog(Λ) is shorthand for applying the proximal operator for the negative log
function to each diagonal element of the eigenvalues Λ. The prox operator for the log
function can itself be solved via a quadratic equation, so computing the inner prox term is
only an O(n) operation and the runtime is dominated by the O(n3) cost of computing the
eigenvalue decomposition.

• Special purpose algorithms. Finally, though we cannot enumerate these broadly, several
proximal operators have special purpose fast solvers for these particular types of operators.
A particularly relevant example is the fused lasso f(x) = ‖Dx‖1 where D is the first order
difference operator; this proximal operator can be solved efficiently via an O(n) dynamic
programming approach [65].

27

Function Proximal operator
Category Atom Definition Method Complexity

Cone

Zero f(x) = I0(Ax− b), A ∈ Rm×n subspace projection O(mn2 + n3)
Nonnegative orthant f(x) = I+(x) positive thresholding O(n)
Second-order cone f(x, t) = IQ(x, t), x ∈ Rn, t ∈ R projection O(n)
Semidefinite cone f(X) = I�(X), X ∈ Sn positive thresholding on λ(X) O(n3)

Elementwise x, y ∈ R

Absolute f(x) = |x| soft thresholding O(n)
Square f(x) = x2 linear equation O(n)
Hinge f(x) = max{x, 0} soft thresholding O(n)

Deadzone f(x) = max{|x| − ε, 0}, ε ≥ 0 soft thresholding O(n)
Quantile f(x) = max{αx, (α− 1)x}, 0 ≤ α ≤ 1 asymmetric soft thresholding O(n)
Logistic f(x) = log(1 + exp(x)) Newton O(n) · (# Newton)

Inverse positive f(x) = 1/x, x ≥ 0 Newton O(n) · (# Newton)
Negative log f(x) = − log(x), x ≥ 0 quadratic equation O(n)
Exponential f(x) = exp(x) Newton O(n) · (# Newton)

Negative entropy f(x) = x · log(x), x ≥ 0 Newton O(n) · (# Newton)
KL Divergence f(x, y) = x · log(x/y), x, y ≥ 0 Newton O(n) · (# Newton)

Quadratic over linear f(x, y) = x2/y, y ≥ 0 cubic equation O(n)

Vector x ∈ Rn

`1-norm f(x) = ‖x‖1 soft thresholding O(n)
Sum-of-squares f(x) = ‖Ax− b‖22, A ∈ Rm×n normal equations O(mn2 + n3)†

`2-norm f(x) = ‖x‖2 group soft thresholding O(n)
`∞-norm f(x) = ‖x‖∞ median of medians O(n)
Maximum f(x) = maxi xi median of medians O(n)

Log-sum-exp f(x) = log (
∑n

i=1 exp(xi)) Newton O(n) · (# Newton)

Fused lasso f(x) =
∑n−1

i=1 |xi − xi+1| dynamic programming [65] O(n)

Matrix
Negative log det f(X) = − log det(X), X ∈ Sn quadratic equation on λ(X) O(n3)

Nuclear norm f(X) = ‖σ(X)‖1, X ∈ Rm×n soft thresholding on σ(X) O(n3)
Spectral norm f(X) = ‖σ(X)‖∞, X ∈ Rm×n median of medians on σ(X) O(n3)

†Or O(nm2 +m3) if m < n, and often lower if A is sparse. Furthermore, the cost can be amortized over multiple evaluations for the same A
matrix, we can compute a Cholesky factorization once in this time, and solve subsequent iterations in O(mn+ n2) time.

28

3.3 Examples and numerical results
In this section we present several examples of convex problems from statistical machine learning
and compare Epsilon to existing approaches on a library of examples from several domains.
At present, Python integration is provided (Matlab, R, Julia versions are planned) with CVXPY
[34] providing the environment for constructing the disciplined convex programs and performing
DCP validation. Epsilon effectively serves as a solver for CVXPY although behind the scenes
the CVXPY/Epsilon interface is somewhat different than for other solvers as Epsilon compiler
implements its own transformations on the AST. Nonetheless, from a user perspective problems
are specified in the same syntax, a high-level domain specific language of which we give several
examples in this section. Epsilon is open source and available at http://epopt.io/, including
the code for all examples and benchmarks discussed here.

As Epsilon integrates with CVXPY, we make the natural comparison between Epsilon and
the existing solvers for CVXPY which use the conic form. In particular, we compare Epsilon
to ECOS [35], an interior point method and SCS [91], the “splitting conic solver”. In general,
interior point methods achieve highly accurate solutions but have trouble scaling to larger prob-
lems and so it is unsurprising that Epsilon is able to solve problems to moderate accuracy several
orders of magnitude faster than ECOS (this is also the case when comparing ECOS and SCS, see
[91]). On the other hand, SCS employs an operator splitting method that is similar in spirit to
the Epsilon solver, both being variants of ADMM; the main difference between the two is in the
intermediate representation and set of available proximal operators: SCS solves the conic form
produced by CVXPY with cone and subspace projections (using sparse matrices) while Epsilon
solves the prox-affine form using the much larger library of fast proximal and linear operators
described in Section 3.2. In practice, this has significant impact with Epsilon achieving the same
level of accuracy as SCS an order of magnitude faster (or more) on many problems.

In what follows we examine several examples in detail followed by results on a library of
20+ problems common to applications in statistical machine learning and other domains. In
the detailed examples, we start with a complete specification of the input problem (a few lines
of Python in the CVXPY grammar), discuss the transformation by the Epsilon compiler to an
abstract syntax tree representing a prox-affine problem and explore how the Epsilon solver scales
relative to conic solvers. When printing the AST for individual problems, we adopt a concise
functional form which is a serialized version of the abstract syntax trees shown in Figure 3.2 and
is the internal representation of the Epsilon compiler, as well as input to the Epsilon solver.

3.3.1 Lasso
We start with the lasso problem

minimize
θ

(1/2)‖Xθ − y‖2
2 + λ‖θ‖1, (3.23)

where X ∈ Rm×n contains input features, y ∈ Rm the outputs, and θ ∈ Rn are the model param-
eters. The regularization parameter λ ≥ 0 controls the tradeoff between data fit and sparsity in
the solution—the lasso is especially useful in the high-dimensional case wherem ≤ n as sparsity
effectively controls the number of free parameters in the model, see [123] for details.

In CVXPY, the lasso can be written as

29

http://epopt.io/

102 103 104

Number of variables

10-2

10-1

100

101

102

103

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Epsilon
CVXPY+SCS
CVXPY+ECOS

Figure 3.4: Comparison of running times on lasso example with dense X ∈ Rm×10m.

theta = Variable(n)

f = sum_squares(X*theta - y) + lam*norm1(theta)

prob = Problem(Minimize(f))

where sum squares()/norm1() functions correspond directly to the two objective terms. In
essence this problem is already in prox-affine form with proximal operators for ‖Xθ − y‖2

2 and
‖θ‖1; thus the prox-affine AST produced by the Epsilon compiler merely adds an additional
variable and equality constraint to make the objective separable:

objective:

add(

sum_squares(add(const(a), scalar (-1.00)*dense(B)*var(x))),

norm1(var(y)))

constraints:

zero(add(var(y), scalar (-1.00)*var(x)))

Note that in the automatically generated serialization of the AST, variable/constant names are
auto-generated and do not necessarily correspond to user input. In this particular example a, B
correspond to the constants y, X from the original problem while x, y correspond to two copies
of the optimization variable θ.

Computationally, it is the evaluation of the sum-of-squares proximal operator which domi-
nates the running time for Epsilon as it requires solving the normal equations. However, the cost
of the factorization required is amortized as this step can be performed once before the first itera-
tion of the algorithm, as discussed in Section 3.2. In Figure 3.4, we compare the running time of
Epsilon to CVXPY+SCS/ECOS on a sequence of problems with dense X ∈ Rm×10m. Epsilon

30

(representing X as a dense linear operator) performs a dense factorization while SCS embeds
X in a large sparse matrix and performs a sparse factorization (as it does with all problems).
The difference in these factorizations explains the difference in running time as the time spent
performing the actual iterations is negligible for both methods.

3.3.2 Multivariate lasso
In this example, we apply lasso to the multivariate regression setting where the output variable is
now a vector as opposed to a scalar in univariate regression. In particular,

minimize
Θ

(1/2)‖XΘ− Y ‖2
F + λ‖Θ‖1 (3.24)

where X ∈ Rm×n are input features, Y ∈ Rm×k represent the k-dimensional response variable
and the optimization variable is now a matrix Θ ∈ Rn×k, representing the parameters of the
multivariate regression model. The Frobenius norm ‖ · ‖F is the `2-norm applied elementwise to
a matrix and here ‖ · ‖1 is also interpreted elementwise.

The CVXPY problem specification for the multivariate lasso is virtually identical to the stan-
dard lasso example

Theta = Variable(n,k)

f = sum_squares(X*Theta - Y) + lam*norm1(Theta)

prob = Problem(Minimize(f))

with the only change being the replacement of vectors y, theta with their matrix counterparts Y,
Theta (by convention, we denote matrix-valued variables with capital letters). As a result, when
the Epsilon compiler transforms this problem to the prox-affine AST,

objective:

add(

sum_squares(add(kron(scalar (1.00) , dense(A))*var(X),

scalar (-1.00)*const(B))),

norm1(var(Y)))

constraints:

zero(add(var(Y), scalar (-1.00)*var(X)))

the matrix-valued optimization variable results in the kron linear operator appearing as argument
to the sum squares proximal operator. This corresponds to the specialized Kronecker product
linear operator implementation with (in this case) O(mn) for the dense data matrix X .

Although it is a simple to change to the problem specification to apply Lasso in the multivari-
ate case, the new problem results in a substantially different computational running times for the
solvers considered. In Figure 3.5 we show the running times of each approach on a sequence of
problems with X ∈ Rm×10m and Y ∈ Rm×10; where as on standard Lasso Epsilon was roughly
10x faster than SCS, now the gap is closer to 100x, e.g. for a problem with 1.35× 104 variables,
SCS requires 2192 seconds vs. 27 seconds for Epsilon. The reason for this difference is due to

31

102 103 104

Number of variables

10-1

100

101

102

103

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Epsilon
CVXPY+SCS
CVXPY+ECOS

Figure 3.5: Comparison of running times on the multivariate Lasso example with dense X ∈
Rm×10m and k = 10.

the representation of the linear operator required for solving the normal equations for the least
squares term

(1/2)‖(Ik ⊗X) vec(Θ)− vec(Y)‖2
2. (3.25)

Since SCS is restricted to representing linear operators as sparse matrices, it must instantiate the
Kronecker product explicitly (replicating the X matrix 10 times) and factor the resulting matrix
with sparse methods. In contrast, Epsilon represents the Kronecker product directly (using the
kron linear operator) and applies dense factorization methods without any unnecessary replica-
tion.

3.3.3 Total variation
In the previous lasso examples, we employ the `1-norm to estimate a sparse set of regression
coefficients—a natural extension to this idea is to incorporate a notion of structured sparsity. The
fused lasso problem (originally proposed in [124])

minimize
θ

(1/2)‖Xθ − y‖2
2 + λ1‖θ‖1 + λ2

n−1∑
i=1

‖θi+1 − θi‖1 (3.26)

employs total variation regularization (originally proposed in [108]) to encourage the differences
of the coefficient vector θi+1− θi to be sparse. Such structure naturally arises in problems where
the dimensions of the coefficient vector correspond to vertices in a chain or grid, see e.g. [3, 143]
for example applications.

For total variation problems, CVXPY provides a function tv() which makes the problem
specification concise:

32

102 103 104

Number of variables

10-1

100

101

102

103

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Epsilon
CVXPY+SCS
CVXPY+ECOS

Figure 3.6: Comparison of running times on total variation example with X ∈ Rm×10m, y =
Xθ0 + ε with ε ∼ N (0, 0.052) where θ0 is piecewise constant with segments of length 10.

theta = Variable(n)

f = sum_squares(X*theta - y) + lam1*norm1(theta) + lam2*tv(

theta)

prob = Problem(Minimize(f)).

In conic form this penalty is transformed to a set of a linear constraints which involve the first
order differencing operator (to be defined shortly); however, Epsilon includes a direct proximal
operator implementation of the total variation penalty and thus the compiler simply maps the
problem specification onto three proximal operators

objective:

add(

least_squares(add(dense(C)*var(x), scalar (-1.00)*const(d))

),

norm1(var(y)),

tv_1d(var(z)))

constraints:

zero(add(var(z), scalar (-1.00)*var(y)))

zero(add(var(z), scalar (-1.00)*var(x)))

with the addition of the necessary variable copies and equality constraints to make the objective
separable.

Figure 3.6 compares Epsilon to the conic solvers on a sequence of problems with X ∈
Rm×10m. The main difference between the two approaches is that while Epsilon directly solves

33

Epsilon CVXPY+SCS CVXPY+ECOS
Problem Time Objective Time Objective Time Objective
basis pursuit 1.35s 1.44× 102 17.26s 1.45× 102 217.68s 1.45× 102

covsel 0.93s 3.74× 102 25.09s 3.73× 102 - -
fused lasso 3.87s 7.46× 101 57.85s 7.41× 101 641.34s 7.41× 101

hinge l1 3.71s 1.15× 103 45.59s 1.15× 103 678.47s 1.15× 103

hinge l1 sparse 14.26s 1.38× 103 106.75s 1.38× 103 183.65s 1.38× 103

hinge l2 3.58s 3.87× 103 133.10s 3.87× 103 1708.31s 3.87× 103

hinge l2 sparse 1.82s 8.08× 103 28.40s 8.09× 103 47.72s 8.08× 103

huber 0.20s 2.18× 103 3.17s 2.18× 103 28.43s 2.18× 103

lasso 3.69s 3.21× 101 20.54s 3.21× 101 215.68s 3.21× 101

lasso sparse 13.58s 4.37× 102 56.94s 4.37× 102 277.80s 4.37× 102

least abs dev 0.10s 7.09× 103 2.96s 7.10× 103 11.46s 7.09× 103

logreg l1 3.70s 8.18× 102 51.60s 8.18× 102 684.86s 8.17× 102

logreg l1 sparse 6.69s 9.61× 102 33.35s 9.63× 102 310.02s 9.61× 102

lp 0.33s 7.77× 102 3.78s 7.75× 102 7.58s 7.77× 102

mnist 0.91s 1.75× 103 219.63s 1.72× 103 1752.97s 1.72× 103

mv lasso 7.14s 4.87× 102 824.83s 4.88× 102 - -
qp 1.39s 4.30× 103 3.20s 4.28× 103 23.12s 4.24× 103

robust pca 0.59s 1.71× 103 2.88s 1.71× 103 - -
tv 1d 0.13s 2.29× 105 51.85s 2.95× 105 - -

Table 3.1: Comparison of running time and objective value between Epsilon and CVXPY with
SCS and ECOS solvers; a value of “-” indicates a lack of result due to either solver failure,
unsupported problem or 1 hour timeout.

the proximal operator for the total variation penalty (using the dynamic programming algorithm
of [65]), while transforming to conic form requires reformulating the fused lasso penalty as
a linear program using auxiliary variables and involving the finite differencing operator D ∈
{−1, 0, 1}(n−1)×n

D =

1 −1 0 · · ·
0 1 −1 · · ·
0 0 1 · · ·
...

...
... . . .

 (3.27)

containing 1 on the diagonal,−1 on the first super diagonal and 0 elsewhere. For even moderate n
this linear operator (which corresponds to the edge incidence matrix for the chain graph) is poorly
conditioned which can be problematic for general solvers, see e.g. [104] for further details. The
dedicated proximal operator avoids these issues, reducing running times—on a problem with 104

variables, Epsilon requires 5.7 seconds vs. 123 seconds for SCS.

34

Solver Problem Epsilon time Solver time

liblinear

hinge l1 3.71s 0.49s
hinge l1 sparse 14.26s 4.26s
hinge l2 3.58s 0.16s
hinge l2 sparse 1.82s 0.83s

glmnet

lasso 3.69s 0.84s
lasso sparse 13.58s 0.67s
logreg l1 3.70s 2.31s
logreg l1 sparse 6.69s 1.96s
mv lasso 7.14s 7.40s

Gurobi
lp 0.33s 6.02s
qp 1.39s 4.12s

QUIC covsel 0.93s 6.24s

Table 3.2: Comparison of running times between Epsilon and specialized solvers.

3.3.4 Library of convex programming examples
In this final section we present results on a library of example convex problems from statistical
machine learning appearing frequently in the literature (e.g. [19, 91]). In general, each example
depends on a variety of factors such as dimensions of the constants, data generation scheme
and setting of the hyperparameters—we have chosen reasonable defaults for these settings. The
complete specification for each problem is available in the the submodule epsilon.problems,
distributed with the Epsilon code base. On each example, we run each solver considered using
the default tolerances which for Epsilon and SCS correspond to moderate accuracy and high
accuracy for ECOS2. In practice, we observe that all solvers converge to a relative accuracy of
10−2 which is reasonable for the statistical applications under consideration.

The running times in Table 3.1 show that on all problem examples considered, Epsilon is
faster than SCS and ECOS and often by a wide margin. In general, we observe that Epsilon
tends to solve problems in fewer ADMM iterations and for many problems the iterations are
faster due in part to operating on a smaller number of variables. There are numerous reasons
for these differences, some of which we have explored in the more detailed examples appearing
earlier in this section.

3.3.5 Comparison with specialized solvers
Next, we compare Epsilon to an assortment of specialized solvers which are available for the
most common problems benchmarked in the previous section. Before doing so, we emphasize
that the general convex programming approach offers many advantages to specialized algorithms
in terms of reuse and extensibility. In addition, many of the relatively simple convex problems
from the previous section do not have dedicated, mature software packages readily available
in common mathematical programming environments (e.g. Matlab, R, Python). Furthermore,

2Modifying the tolerances for an interior point method does not materially affect the comparison due to the
nature of the bottlenecks.

35

even when specialized solvers are available, translating problems to the interface provided by
a particular package requires effort to understand and conform to the idiosyncrasies of each
implementation. In contrast, general convex programming offers a uniform syntax and interface
allowing problems to be easily formulated, extended and solved.

In terms of running times, Table 3.2 compares Epsilon to four dedicated software packages
implementing specialized algorithms: liblinear [44], glmnet [48], Gurobi [95] and QUIC [62].
As in Table 3.1, the default stopping criteria is used corresponding to moderate accuracy for
Epsilon and high accuracy for the specialized solvers. For the most part, Epsilon is competitive,
although on a few problems liblinear and glmnet are significantly faster. This is due to the ability
of these specialized algorithms to exploit sparsity in the solution which arises due to `1 regu-
larization (lasso problems) or a small number of support vectors in the dual SVM formulation
(hinge problems). At present, Epsilon does not take advantage of such structure and thus may
have a disadvantage on sparse problems. We consider `-regularized problems in more detail in
Part II, developing several additional specialized algorithms exploiting sparsity in the solution.

On the other hand, Table 3.2 shows that Epsilon is significantly faster than Gurobi and QUIC
in solving linear/quadratic programs and sparse inverse covariance estimation (covsel), respec-
tively. However, it is important to highlight that the specialized algorithms solve these prob-
lems to high accuracy (e.g. tolerances of 10−8 or smaller) while Epsilon targets only moderate
accuracy (e.g. 10−3). For moderate accuracy, the operator splitting approach can be highly
competitive, allowing Epsilon to be significantly faster on some problems. In general, accuracy
requirements are problem-specific—however, solving problems to moderate accuracy is often
sufficient in statistics and machine learning.

36

Part II

Specialized Newton Methods for Sparse
Problems

37

Introduction to Specialized Newton
Methods for Sparse Problems

In Part I of this thesis we argue strongly for the development of general convex programming
methods, presenting a system that combines the declarative syntax of disciplined convex pro-
gramming with fast operator splitting algorithms. We believe that this paradigm of convex pro-
gramming, which provides a separation between problem formulation and the implementation
of numerical algorithms, is highly beneficial and will over time become the preferred method of
developing and deploying convex methods for a wide variety of problems.

Nonetheless, we recognize that at present specialized algorithms may enjoy many benefits not
yet available to general convex programming systems. From this perspective, we present several
specialized Newton methods in Chapters 4-6, comprising Part II of this thesis. These methods
are focused on sparse problems, exploiting sparsity at the algorithmic level through optimization
techniques such as coordinate descent, allowing them to be orders of magnitude faster in the
special case that the optimal value of the objective variable is sparse. In addition, Chapter 5
considers optimizing a control problem with nonconvex objective, a problem formulation which
does not fit into the convex focus of the DCP framework. In this problem as well as all of the
problems considered in Part II, the proposed algorithms advance the size of problems that can be
solved by a significant amount, often multiple orders of magnitude.

In addition, there are several connections between the specialized methods developed in Part
II and the general framework proposed in Part I. At a high level, these algorithms represent state-
of-the-art specialized solvers for narrow classes of problems, representing the performance we
would like our general convex methods to achieve. In some cases this is trivially possible: with
the addition of `2 regularization, the specialized algorithms could be used directly as proximal
operators in the operator splitting framework presented in Chapter 3. More deeply, we envision
future general convex programming methods which automatically recognize problem properties
(e.g. separable objective with smooth and nonsmooth parts) and use this information to tailor
solution methods appropriately, possibly with the aid of additional tools such as automatic dif-
ferentiation. Such a system would (in theory) achieve performance comparable to the specific
algorithms presented here as well as many other state-of-the-art specialized implementations for
other problems.

38

Chapter 4

The Sparse Gaussian Conditional Random
Field

The sparse Gaussian conditional random field (CRF) is discriminative extension of sparse inverse
covariance estimation [9] also known as the graphical lasso [47]. Sparse inverse covariance
estimation enables convex learning of high-dimensional undirected graphical models with entries
in the inverse covariance corresponding to edges in a Gaussian Markov random field. However, in
many prediction tasks we may not want to model correlations between input variables. This is the
familiar generative/discriminative contrast in machine learning [89], where it has been repeatedly
observed that in terms of predictive accuracy, discriminative approaches can be superior [121]. In
recent years several researchers have proposed the sparse Gaussian conditional random field with
applications in many fields [117, 138, 146]. Our contribution, which we develop in this Chapter,
is a specialized Newton method which we demonstrate to be several orders of magnitutde faster
on problems of interest than previously proposed algorithms. In Chapter 7, we apply this model
to forecasting supply and demand of energy in the electrical grid.

4.1 Problem formulation
Let x ∈ Rn denote covariates and and y ∈ Rp denote response variables for a prediction task. A
Gaussian CRF is a log-linear model with

p(y|x; Λ,Θ) =
1

Z(x)
exp

{
−1

2
yTΛy − yTΘx

}
(4.1)

where the quadratic term models the conditional dependencies of y and the linear term models
the dependence of y on x. The model is parameterized by Λ ∈ Rp×p, corresponding to the inverse
covariance of y|x and Θ ∈ Rp×n, which captures the dependence of the response variables on
the covariates; an illustration of the model is shown in Figure 4.1. It is straightforward to verify
that the CRF is simply a reparameterization of a multivariate Gaussian distribution with mean
−Λ−1Θx, variance Λ−1, and partition function

1

Z(x)
= c|Λ| 12 exp

{
−1

2
xTΘTΛ−1Θx

}
. (4.2)

39

x1 x2

· · ·

xnx3

y1

· · ·

y2 ypy3

Figure 4.1: Illustration of sparse Gaussian CRF model.

For m data samples, arranged as the rows of X ∈ Rm×n and Y ∈ Rm×p, the negative log-
likelihood is given by

f(Λ,Θ) = − log |Λ|+ tr
(
SyyΛ + 2STyxΘ + SxxΘ

TΛ−1Θ
)

(4.3)

where the S terms are empirical covariances

Syy =
1

m
Y TY, Syx =

1

m
Y TX, Sxx =

1

m
XTX. (4.4)

Without regularization, it is straightforward to verify that maximum likelihood estimation is
simply a reparameterization of the least squares problem. We can additionally add `2 regular-
ization by adding λ2 to the diagonal elements of S (formally, this corresponds to a Normal-
Wishart prior on Λ and the columns of Θ), but again this just corresponds to the regularized least
squares. However, the total number of parameters in this problem (for estimating both Θ and Λ)
is np+ p(p+ 1)/2, and thus model can overfit in the high-dimensional setting when the number
of examples m is small relative to dimension of the variables.

To address this concern, we regularize the maximum likelihood estimate by adding `1 regu-
larization to Θ and the off-diagonal elements of Λ; since the `1-norm encourages sparsity of the
parameters, this directly corresponds to learning a sparse set of edges in our graphical model.
Our final optimization problem is then given by minimizing the composite objective

minimize f(Λ,Θ) + λ(‖Λ‖1,? + ‖Θ‖1) (4.5)

where ‖ · ‖1 denotes the elementwise `1-norm, ‖ · ‖1,? denotes the elementwise `1-norm on off-
diagonal entries, and λ ≥ 0 is the regularization parameter.1 This is a convex objective, following
from the convexity of the `1-norm and the fact that the log-partition function of an exponential
family graphical model is concave.

4.2 The Newton coordinate descent method

1It is also possible to introduce different regularization parameters for Λ and Θ, though we have found through
our experiments that the optimal settings for these regularization parameters are typically quite similar, so we use
only one for simplicity.

40

Algorithm 4.1: Newton coordinate descent
Input: Smooth function f : Rn → R; `1 regularization parameter λ
Output: x? minimizes f(x) + λ‖x‖1

Initialize: x ∈ dom f
while (not converged) do

1. Compute the active set. A = {i | |(∇f(x))i| > λ} ∪ {i | xi 6= 0}
2. Compute the regularized Newton step with coordinate descent.
∆x = argmind∈DA

(
∇f(x)Td+ (1/2)dT∇2f(x)d+ λ‖x+ d‖1

)
3. Line search. Compute step size α using backtracking line search.
4. Update. x← x+ α∆x

end while

In this section, we describe a general second-order method for solving `1-regularized opti-
mization problems of the form

minimize f(x) + λ‖x‖1 (4.6)

where f(x) is a smooth function. The approach follows the overall structure of a “Newton-
Lasso” method [126], also sometimes called proximal Newton methods [21]. In particular, we
repeatedly form a second-order approximation to the smooth component of the objective

f(x+ ∆) ≈ f(x) +∇f(x)T∆ +
1

2
∆T∇2f(x)∆, (4.7)

which we minimize with the addition of the `1 regularization term. In other words, we reduce
the problem of solving an arbitrary smooth objective with `1 regularization to repeatedly solving
a quadratic approximation with `1 regularization which is typically much easier. The overall
procedure requires a relatively small number of iterations to converge to high accuracy, as is
expected for second-order methods.

However, the time complexity of this approach depends critically on our ability to com-
pute the `1-regularized Newton step which cannot be done in closed form. Here we employ
coordinate descent, an approach known to perform well for the standard lasso [48] and other
`1-regularized quadratic problems (see e.g. [62, 126, 138]). The strength of this approach is
in exploiting sparsity at the algorithmic level: at each iteration we optimize over an active set
A which tends to be much smaller than the overall variable dimension. Formally, define define
DA ≡ {d : di = 0,∀i /∈ A}, the set of candidate directions. Intuitively, these correspond to only
those coordinates that are either nonzero or violate the current optimality conditions of the opti-
mization problem. Since the `1 regularization on the Newton direction tends to push the Newton
updates in a direction that increases sparsity and since the line search provably converges to step
sizes with α = 1 [126], this method tends to generate sparse iterates. Thus, in problems with
sparse solutions (the high-dimensional setting), the size of the active set tends to remain small
which gives considerable computation advantage. We refer to this method as Newton coordinate
descent (Newton-CD), shown in Algorithm 4.1.

In order to apply Newton-CD to a particular f(x) we must be able to efficiently solve the
coordinate descent problem for the second-order Taylor expansion which can be somewhat in-
volved depending on the nature of ∇2f(x). Nonetheless, in the presence of a small active set,

41

solving for the regularized Newton direction with coordinate descent can be significantly cheaper
than explicitly forming and inverting the Hessian. In order to achieve an efficient method, atten-
tion must be paid to implementing efficient per-coordinate updates using computational tricks
such as caching certain matrix-matrix or matrix-vector products.

4.3 Newton-CD for the sparse Gaussian CRF

We discuss the details of applying the Newton-CD method to the sparse Gaussian CRF in this
section. Such algorithms have previously been applied to the Gaussian MRF [61, 93], and a
general analysis of such methods (showing quadratic convergence) is presented in [126]. The
method here largely mirrors the approach in [61] for the Gaussian MRF, but the precise formula-
tion is significantly more involved, owing to the complexity of gradient term of the ΘTΛ−1ΘSxx
term in the objective. Previous work on the sparse Gaussian CRF model has proposed using
off-the-shelf algorithms to solve the above optimization problem, including orthantwise quasi-
Newton methods [118] (specifically, the OWL-QN method of [8]), and accelerated proximal
gradient methods [146] (specifically, the FISTA algorithm of [11]). These methods are attrac-
tive due to their simplicity, but the algorithms suffer from relatively slow convergence and thus
quickly become computationally impractical in the high-dimensional setting.

In the sparse Gaussian CRF problem, the gradients of the smooth component of the objective
are

∇Λf(Λ,Θ) = Syy − Λ−1 − Λ−1ΘSxxΘ
TΛ−1

∇Θf(Λ,Θ) = 2Syx + 2Λ−1ΘSxx.
(4.8)

The precise formulation of the Hessian terms is cumbersome, due to the fact that all parameters
involved are matrices, but we can express the second-order Taylor expansion using differentials.

f(Λ + ∆Λ,Θ + ∆Θ) ≈ g(∆Λ,∆Θ) ≡ f(Λ,Θ) +

trSyy∆Λ + 2 trSyx∆Θ − tr Λ−1∆Λ +

2 tr Λ−1ΘTSxx∆Θ − tr Λ−1ΘTSxxΘΛ−1∆Λ+

tr Λ−1∆ΛΛ−1ΘTSxxΘΛ−1∆Λ +
1

2
tr Λ−1∆ΛΛ−1∆Λ +

tr Λ−1∆T
ΘSxx∆Θ − 2 tr Λ−1∆ΛΛ−1ΘTSxx∆Θ.

(4.9)

As above, we compute the regularized Newton steps ∆Λ, ∆Θ by

∆Λ,∆Θ = argmin
DΛ,DΘ

g(DΛ, DΘ) + λ (‖Λ +DΛ‖1,? + ‖Θ +DΘ‖1) (4.10)

where we use a coordinate descent algorithm to optimize this `1-regularized QP. We must also
incorporate the domain of f , ensuring that Λ is positive definite which is implemented in the line
search by defining − log |X| =∞ for X 6� 0.

42

4.3.1 Fast coordinate updates
In this section, we derive the coordinate descent method for the regularized Newton Step (4.10)
and highlight the key optimizations that are used in order to achieve fast performance. We split
the per-coordinate updates for DΛ and DΘ into three cases. First, consider optimizing over a
diagonal element of DΛ

argmin
µ

(
g(DΛ + µeie

T
i , DΘ) + λ

(
‖Λ +DΛ + µeie

T
i ‖1,? + ‖Θ +DΘ‖1

))
= argmin

µ
((1/2)µ2

[
Σ2
ii + 2ΣiiΨii

]
+

µ
(
−Σii + (Syy)ii −Ψii + (ΣDΛΣ)ii − 2(ΣDΘSxxΘ

TΣ)ii + 2(ΨDΛΣ)ii
)

+

λ|Λii + (DΛ)ii + µ|)
(4.11)

where Σ = Λ−1 and Ψ = ΣΘSxxΘ
TΣ.

Next, note that for two symmetric matrices A, B the symmetric update is given by

argmin
µ

trA(DΛ + µ(eie
T
j + eje

T
i))B(DΛ + µ(eie

T
j + eje

T
i))

= argmin
µ

µ2 trA(eie
T
j + eje

T
i)B(eie

T
j + eje

T
i) + µ trADΛB(eie

T
j + eje

T
i) + µ trA(eie

T
j + eje

T
i)BDΛ

= argmin
µ

µ2(AiiBjj + 2AijBij + AjjBii) + 2µ((ADΛB)ij + (ADΛB)ji)

Applying this equivalence twice, once with A = B = Σ and again with A = Σ, B = Ψ the
symmetric update for an off-diagonal element of matrix DΛ

argmin
µ

(
g(DΛ + µ(eie

T
j + eje

T
i), DΘ) + λ

(
‖Λ +DΛ + µ(eie

T
j + eje

T
i)‖1,? + ‖Θ +DΘ‖1

))
= argmin

µ
(µ2
(
Σ2
ij + ΣiiΣjj + ΣiiΨjj + 2ΣijΨij + ΣjjΨii

)
+

2µ (−Σij + (Syy)ij −Ψij + (ΣDΛΣ)ij − Φij − Φji + (ΨDΛΣ)ij + (ΨDΛΣ)ji) +

2λ|Λij + (DΛ)ij + µ|)
(4.12)

where Φ = ΣDΘSxxΘ
TΣ. Finally, we consider optimizing over an element of DΘ

argmin
µ

(
g(DΛ, DΘ + µ(eie

T
j)) + λ

(
‖Λ +DΛ‖1,? + ‖Θ +DΘ + µeie

T
j ‖1

))
= argmin

µ
(µ2 (Σjj(Sxx)ii] + µ [2(Syx)ij + 2(SxxΘΣ)ij + 2(SxxDΘΣ)ij − 2(SxxΘΣDΛΣ)ij] +

λ|Θij + (DΘ)ij + µ|
(4.13)

Although the notation is heavy due to the number of matrices involved, each update is simply
minimizing an `1-regularized quadratic function over a scalar variable which can be solved in
closed form, i.e.

argmin
µ

1

2
aµ2 + bµ+ λ|c+ µ| = −c+ Sλ/a

(
c− b

a

)
(4.14)

43

where Sλ is the soft-thresholding operator.

4.3.2 Computational speedups
In order to make the Newton method computationally efficient, there are a number of needed
optimizations. Again, these mirror similar optimization presented in [61], but require adaptations
for the CRF case. In practice, the majority of the computational work of the Newton CD method
comes from computing the regularized Newton step via coordinate descen. In particular it is
important to cache and incrementally update certain matrix products, such that we can evaluate
subsequent coordinate updates efficiently. This requires that we maintain an explicit form of the
matrix products Λ−1∆Λ and Λ−1∆Θ; crucially, when we update a single coordinate of the ∆Θ or
∆Λ, we only need to update a single row of these matrix products, and we can subsequently use
only certain elements of these products to compute each coordinate descent step. The algorithm
for computing the regularized Newton step via coordinate descent using this matrix caching is
shown in Algorithm 4.2.

Algorithm 4.2: Coordinate descent for regularized Newton step in SGCRF
Input: Current iterates Λ,Θ, active sets AΛ, AΘ

Output: Regularized Newton direction DΛ, DΘ

Initialize: DΛ ← 0, DΘ ← 0, U ← 0, V ← 0
while (not converged) do

for coordinate (i, j) in AΛ do
1. Minimize over coordinate. Find µ by solving (4.11) or (4.12), using U = Λ−1∆Λ and
V = Λ−1∆Θ.
2. Update.

(DΛ)ij, (DΛ)ij ← (DΛ)ij + µ

Ui ← Ui + µΣj

Uj ← Uj + µΣi

where Xi denotes the ith row of matrix X .
end for
for coordinate (i, j) in SΘ do

1. Minimize over coordinate. Find µ by solving (4.13), using U and DΘ.
2. Update.

(DΘ)ij ← (DΘ)ij + µ

Vi ← Vi + µΣj

end for
end while

In addition, since each step of our Newton method involves solving an `1-regularized problem
itself, it is important that we solve for this regularized Newton step only to an accuracy that is

44

0 1000 2000 3000 4000 5000 6000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (seconds)

f −
 f*

Newton CD
OWL−QN
FISTA

Figure 4.2: Sparse Gaussian conditional random field: comparison of specialized Newton coor-
dinate descent to existing methods.

warranted by the overall accuracy of algorithm as a whole. Although more involved approaches
are possible, we simply require that the inner loop makes no more than O(t) passes over the
data, where t is the iteration number, a heuristic that is simple to implement and works well in
practice.

Finally, in cases where n� m (the high-dimensional setting of interest), by not forming the
Sxx ∈ Rn×n matrix explicitly, we can reduce the computation for products involving XTX from
O(n2) to O(mn). Note that the same considerations do not apply to Syy, since we need to form
an invert the p × p matrix Λ to compute the gradients. Thus, the algorithm still has complexity
O(p3), as in the MRF case. However, this highlights another advantage of the CRF over the
MRF: when n is large, just forming a generative model over x and y jointly is prohibitively
expensive. Thus, the sparse Gaussian CRF significantly improves both the performance and the
computational complexity of the generative model.

4.4 Numerical results
In the numerical examples that follow we generate data following a similar procedure as [146]:
Λ and Θ are sampled with 5(n + p) random unity entries (the rest being zero), and the diagonal
of Λ is such that the condition number is n + p. We sample x from a zero-mean Gaussian with
full covariance, square half the entries, and then normalize the columns to have unit variance.

4.4.1 Timing results
Figure 4.2 shows the suboptimality of each method in terms of the objective function f − f ?

versus execution time on a problem with dimensions p = 1000, n = 4000, and m = 2500.

45

10
−3

10
−2

10
−1

10
0

10
1

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

M
S

E

SGCRF
SGMRF

Figure 4.3: Generalization performance (measured by mean squared error of the predictions) for
the Gaussian MRF versus CRF.

On this problem, the Newton CD approach converges to high numerical precision within about
81 seconds, while FISTA and OWL-QN still don’t approach this level of precision after two
hours. It is also important to note that the Newton CD approach also reaches all intermediate
levels of accuracy faster than the alternative approaches, so that the algorithm is preferable even
if only intermediate precision is desired. Indeed, we note previous works [118, 146] considered
maximum problem sizes of np ≈ 105; since much of the appeal of `1 approaches lies precisely
in the ability to use large feature sizes, this has significantly limited the applicability of the
approach. We thus believe that our proposed algorithms opens the possibility of substantial new
applications of this sparse Gaussian CRF model.

4.4.2 Comparison to MRF

Our next experiment compares the discriminative CRF modeling to a generative MRF model.
In particular, an alternative approach to our framework is to use a sparse Gaussian MRF to
jointly model x, y as a Gaussian, then compute y|x. Figure 4.3 shows the performance of the
Gaussian MRF versus CRF (problem dimensions n = 200, p = 50, m = 50), measured by mean
squared error in the predictions on a test set, over a variety of different λ parameters. The CRF
substantially outperforms the MRF in this case, due to two main factors: 1) the x variables as
generated by the above process are not Gaussian, and thus any Gaussian distribution will model
them poorly; and 2) the x variables are correlated and have dense inverse covariance, making it
difficult for the MRF to find a sparse solution.

We also note that in addition to the modeling benefits, the CRF has substantial computa-
tional benefits. Modeling x and y jointly requires computing and inverting their joint covariance,
which takes time O((n + p)3); in contrast, the corresponding operations for the CRF case are

46

100 200 300 400 500
0

0.2

0.4

0.6

0.8

Training examples (m)

M
S

E

SGCRF
LS

Figure 4.4: Generalization performance (MSE for the best λ chosen via cross-validation), for the
sparse Gaussian CRF versus `2-regularized least squares.

O(np3), which is substantially faster for even modestly large n. Indeed, in real-world experi-
ments, we were unable to successfully optimize a joint MRF using the QUIC algorithm of [61]
(itself amongst the fastest for solving the sparse Gaussian MRF), after running the algorithm for
24 hours.

4.4.3 `1 and `2 regularization vs. sample size
Finally, to illustrate the benefit of `1 regularization over traditional (`2-regularized) multiple least
squares estimation, we evaluate generalization performance versus sample size, shown in Figure
4.4 (here n = 800, p = 200). This figure shows performance measured by mean squared error
of the `1-regularized sparse Gaussian CRF versus traditional least squares with `2 regularization;
for eachm we choose the `1 and `2 regularization parameters using validation data, then evaluate
the MSE on separate test data. As the sample size increases, the performance of the two methods
becomes similar (in the limit of infinite data with fixed n and p, they will of course be equivalent);
however, as expected, for small samples sizes the `1 regularization method performs much better,
being able to take advantage of the sparsity in the underlying model.

47

Chapter 5

The Sparse Linear-Quadratic Regulator

This chapter considers the task of designing sparse linear control laws for large-scale linear
systems. Sparsity and decentralized control have a long history in the control literature: unlike
the centralized control setting, which in the H2 and H∞ settings can be solved optimally [7],
it has been known for some time that the task of finding an optimal control law with structure
constraints is a hard problem [17]. Witenhausen’s counterexample [135] famously demonstrated
that even for a simple linear system, a linear control law is no longer optimal, and subsequent
early work focused on finding effective decentralized controllers for specific problem instances
[72] or determining the theoretical existence of stabilizing distributed control methods [134];
they survey of Sandell et al. [109] covers many of these earlier approaches in detail.

In recent years, there has been an increasing interest in sparse and decentralized control
methods, spurred 1) by increasing interest in large-scale systems such as the electrical grid,
where some form of decentralization seems critical for practical control strategies, and 2) by
increasing computational power that can allow for effective controller design methods in such
systems. Generally, this work has taken one of two directions. On the one hand, several authors
have looked at restricted classes of dynamical systems where the true optimal control law is
provably sparse, resulting in efficient methods for computing optimal decentralized controllers
[43, 103, 106, 114]. A notable recent example of such work has been the characterization of
all systems that admit convex constraints on the controller (and thus allow for exact sparsity-
constrained controller design) using the notion of quadratic invariance [106, 122]. On the other
hand, an alternative approach has been to search for approximate (suboptimal) decentralized
controllers, either by directly solving a nonconvex optimization problem [75], by constraining
the class of allowable Lyapunov functions in a convex parameterization of the optimalH2 orH∞
controllers [112, 113] or by employing a convex, alternative optimization objective as opposed to
the typical infinite horizon cost [39, 40]. We build upon this second line of work, specifically the
framework established in [75], which uses `1 regularization (amongst other possible regularizers)
to discover the good sparsity patterns in the control law (though our method also applies directly
to the case of a fixed sparsity pattern).

Despite the aforementioned work, an element that has been notably missing from past work
in the area is a focus on the algorithmic approaches that can render these methods practical for
large-scale systems, such as those with thousands of states and controls or more. Indeed, it
is precisely for such systems that sparse and decentralized control is most appealing, and yet

48

most past work we are aware of has focused solely on semidefinite programming formulation
of the resulting optimization problems [112, 113] (which scale poorly in off-the-shelf solvers),
or very approximate first-order or alternating minimization methods [75] such as the alternating
direction method of multipliers [19]. As a result, most of the demonstrated performance of the
methods in these past papers has focused solely on relatively small-scale systems. In contrast,
sparse methods in fields like machine learning and statistics, which have received a great deal
of attention in recent years [23, 36, 123], evolved simultaneously with efficient algorithms for
solving these statistical estimation problems [41, 68]. The goal of this work is to push this
algorithmic direction in the area of sparse control, developing methods that can handle large-
scale sparse controller design.

5.1 Problem formulation
Here we formally define our control and optimization framework, based upon the setting in [75].
Formally, we consider the linear Gaussian system

ẋ(t) = Ax(t) +Bu(t) +W 1/2ε(t) (5.1)

where x ∈ Rn denotes the state variables, u ∈ Rm denotes the control inputs, ε is a zero-mean
Brownian motion process, A ∈ Rn×n and B ∈ Rn×m are system matrices, and W ∈ Rn×n

is a noise covariance matrix. We seek to optimize the infinite horizon LQR cost for a linear
state-feedback control law u(t) = Kx(t) for K ∈ Rm×n,

J(K) = lim
T→∞

1

T
E

[∫ T

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

]
(5.2)

which can also be written in the alternative form (see e.g. [105] for details)

J(K) =

{
trPW = trL(Q+KTRK) A+BK stable
∞ otherwise. (5.3)

where L = L(K) and P = P (K) are the unique solutions to the Lyapunov equations

(A+BK)L+ L(A+BK)T +W = 0

(A+BK)TP + P (A+BK) +Q+KTRK = 0.
(5.4)

When K is unconstrained, it is well-known that the problem can be solved by the classical LQR
algorithm, though this results in a dense (i.e., centralized) control law, where each control will
tend to depend on each state.

To encourage sparsity in the controller, [75] proposed to add an additional penalty to the `1-
norm of the controller K. Here we will consider this framework with a weighted `1-norm: we
are concerned with solving the optimization problem

minimize J(K) + g(K) (5.5)

49

where J(K) defined in (5.2) is the LQR cost (or theH2-norm for output z(t) = (Q1/2x(t), R1/2u(t))
and treating ε(t) as a disturbance input) and g(K) is the sparsity-promoting penalty which we
take to be

g(K) = ‖Λ ◦K‖1 =
∑
ij

Λij|Kij|, (5.6)

a weighted version of the `1-norm. This formulation allows us to use this single algorithmic
framework to capture both `1 regularization of the control matrix, as well as optimization over a
fixed pattern of nonzeros, by setting the appropriate elements of Λ to 0 or∞.

Our algorithm uses gradient and Hessian information extensively. Following standard results
[105], the gradient of J(K) is given by

∇J(K) = 2(BTP +RK)L (5.7)

when A+BK is stable. The Hessian is somewhat cumbersome to formulate directly, but we can
concisely write its inner product (see [105]) with a direction D ∈ Rm×n as

vec(D)T∇2J(K) vec(D) =

2 tr
(
L̃(PB +KTR) + L(P̃B +DT)R

)
D

(5.8)

where vec(·) denotes the vectorization of a matrix, and L̃ = L̃(K,D) and P̃ = P̃ (K,D) are the
unique solutions to two Lyapunov equations

(A+BK)L̃+ L̃(A+BK)T +BDL+ LDTBT = 0

(A+BK)T P̃ + P̃ (A+BK) + ED +DTET = 0,
(5.9)

denoting E = PB + KTR for brevity. Since solving these Lyapunov equations takes O(n3)
time, evaluating the function and gradient, or evaluating a single inner product with the Hessian,
are all O(n3) operations.

Traditionally, direct second-order Newton methods have seen relatively little application in
Lyapunov-based control, precisely because computing these Hessian terms is computationally
intensive. Instead, typical approaches have focused on approaches that use gradient information
only, either in a quasi-Newton setup [105], or by including only certain terms from the Hessian as
in the Anderson-Moore method [7]. However, since a single iteration of any first-order approach
is already a reasonably expensive O(n3) operation, the significantly reduced iteration count of
typical Newton methods is appealing, provided we have a way to efficiently compute the New-
ton step. The algorithm we propose in the next section does precisely that, bringing down the
complexity of a Newton step to a computational cost similar to that of a single evaluation of the
objective function.

5.2 Newton-CD for sparse LQR
We solve the sparse LQR optimization problem with the Newton-CD method introduced in Sec-
tion 4.2, an approach that works particularly well in this setting due to two elements:

50

1. Coordinate descent methods allow us to optimize only over a relatively small “active set”
A of size k � mn, which includes only the nonzero elements of K plus elements with
large gradient values. For problems that exhibit substantial sparsity in the solution, this
often lets us optimize over much fewer elements than would be required if we considered
all the elements of K at each iteration.

2. By properly precomputing certain terms, caching intermediate products, and exploiting
problem structure, we can reduce the per-coordinate-update computation in coordinate
descent from O(n3) (the naive solution, since each coordinate update requires computing
an inner product with the Hessian matrix) to O(n).

For the sparse LQR, we form the second-order Taylor expansion

J(K + ∆) ≈ tr∇J(K)T∆ +
1

2
vec(∆)T∇2J(K) vec(∆)

≡ J̃K(∆)
(5.10)

which in our problem takes the form

J̃K(∆) = 2 trLE∆ + tr L̃E∆ + trLP̃B∆ + trL∆TR∆ (5.11)

where L̃ and P̃ are defined implicitly as the unique solutions to the Lyapunov equations given in
(5.9).

As discussed in Section 4.2, in contrast to the standard Newton method, Newton-CD mini-
mizes the second-order approximation with the addition of (weighted) `1 regularization

∆ = arg min
D∈DA

J̃K(D) + ‖(K +D) ◦ Λ‖1 (5.12)

and updates K ← K + α∆ where α is chosen using backtracking line search. Intuitively, it can
be shown that α→ 1 as the algorithm progresses, causing the weighted `1 penalty on K +D to
shrinkD in the direction that promotes sparsity inK+∆; the weights Λ control how aggressively
we shrink each coordinate: Λij → ∞ forces (K + ∆)ij → 0. Importantly, we note that with
this formulation we will never choose a K such that A + BK is unstable; this would make the
resulting objective infinite, and a smaller step size would be preferred by the backtracking line
search.

In order to find the regularized Newton step efficiently, we use coordinate descent which is
appealing for `1-regularized problems as each coordinate update can be computed in closed form.
This reduces (5.12) to iteratively minimizing each coordinate

µ̂ = argmin
µ

(
J̃K(D + µeie

T
j) + Λij|Kij +Dij + µ|

)
(5.13)

where ei denotes the ith basis vector, and then setting D ← D + µ̂eie
T
j . Since the second-order

approximation J̃K(D) is quite complex (it depends on the solution to four Lyapunov equations,
two of which depend on D), deriving efficient coordinatewise updates is somewhat involved. In
the next section we describe how each coordinate descent iteration can be computed inO(n) time
by precomputing a single eigendecomposition and solving the Lyapunov equations explicitly.

51

Algorithm 5.1: Coordinate descent for regularized Newton step in SLQR
Input: Stochastic linear system A, B, W ; regularization parameters Q, R, Λ; current iterate
K; active set A; solution to Lyapunov equations L, P
Output: Regularized Newton step ∆
Initialize: D ← 0, Ψ← 0
1. Compute the eigendecomposition A+BK = USU−1

2. Let Θij = 1/(Sii + Sjj) and compute Θ = XXT

3. Precompute matrix products as in (5.27)
while (not converged) do

for coordinate (i, j) in A do
1. Compute a, b, c according to (5.29) and set

µ = −c+ Sλ/a

(
c− b

a

)

2. Update solution
Dij ← Dij + µ

3. Update the cached matrix products

(Ψ0)j ← (Ψ0)j + µRi

(Ψ1
k)i ← (Ψ1

k)i + µ(Φ1
k)j

(Ψ2
k)j ← (Ψ2

k)j + µ(Φ4
k)i

(Ψ3
k)j ← (Ψ3

k)j + µ(Φ2
k)i

(Ψ4
k)j ← (Ψ4

k)j + µ(Φ3
k)i

where (in general) Aj denotes the jth column of A
end for

end while

52

5.2.1 Fast coordinate updates
To begin, we consider the explicit forms for L̃(K,D) and P̃ (K,D), the unique solutions

to the Lyapunov equations depending on D. Since each coordinate descent update changes
an element of D, a naive approach would require re-solving these two Lyapunov equations and
O(n3) operations per iteration. Instead, assuming thatA+BK is diagonalizable, we precompute
a single eigendecomposition A + BK = USU−1 and use this to compute the solutions to the
Lyapunov equations directly. For example, the equation describing L̃ can be written as

USU−1L̃+ L̃U−TSUT +BDL+ LDTBT = 0 (5.14)

and pre- and post-multiplying by U−1 and U−T respectively gives

SL̃U + L̃US = −U−1(BDL+ LDTBT)U−T (5.15)

where L̃U = U−1L̃U−T . Since S is diagonal, this equation has the solution

(L̃U)ij = −(U−1(BDL+ LDTBT)U−T)ij
Sii + Sjj

(5.16)

which we rewrite as the Hadamard product

L̃U = U−1(BDL+ LDTBT)U−T ◦Θ (5.17)

with Θij = −1/(Sii + Sjj).
Fast Θ multiplication via the Fast Multiple Method. Precomputing the eigendecomposi-

tion ofA+BK in this manner immediately allows for anO(n2) algorithm for evaluating Hessian
products, but reducing this to O(n) requires exploiting additional structure in the problem. In
particular, we consider the form of the Θ matrix above, which is an example of a Cauchy matrix,
that is, matrices with the form Cij = 1/(ai − bj). Like several other special classes of matrices,
matrix-vector products with a Cauchy matrix can be computed more quickly than for a standard
matrix. In particular, the Fast Multiple Method (FMM) [54], specifically the 2D FMM using
the Laplace kernel, provides an O(n) algorithm (technically O(n log 1

ε
) where ε is the desired

accuracy) for computing the matrix vector product between a Cauchy matrix and an arbitrary
vector.1

Although the FMM provides a theoretical method for quickly computing Hessian inner prod-
ucts, in our setting the overhead involved with actually setting up the factorization (which also
takes O(n) time, but with a relatively larger constant) would make using an off-the-shelf im-
plementation of the FMM quite costly. However, our setting in fact is somewhat easier as Θ is
fixed per outer Newton iteration; thus we can factor Θ once at (relatively) high computation cost
and then directly use this factorization is subsequent iterations. Each FMM operation implicitly
factors Θ in a hierarchical manner with blocks of low-rank structure, though here the situation is

1In theory, such matrix-vector products for Cauchy matrices can be computed exactly in time O(n log2 n) [49],
but these approaches are substantially less numerically robust than the FMM, so the FMM is typically preferred in
practice [96].

53

simpler: since we maintain A + BK to be stable at each iteration, all the eigenvalues are in the
left half plane and representing Θ as a Cauchy matrix

Θij =
1

ai − bj
, (5.18)

i.e., ai = Sii, bj = −Sjj leads to points, ai, bj ∈ C that are separated in the context of the FMM.
This means that Θ in fact simply admits a low-rank representation (though the actual rank will
be problem-specific, and depend on how close the eigenvalues of A + BK are to the imaginary
axis). Thus, while slightly more advanced factorizations may be possible, for the purposes of this
work we simply use the property, based upon the FMM, that Θ will typically admit a low-rank
factorization.

The Autonne-Kagaki factorization of Θ. Using the above property, we can compute the
optimal low rank factorization of Θ using the (complex) singular value decomposition to obtain
a factorization Θ = XY ∗. But since Θ is a complex symmetric (but not Hermitian) matrix, it also
can be factored as Θ = V SV T where S is a diagonal matrix of the singular values of Θ and V is
a complex unitary matrix [59, Corollary 2.6.6]. This factorization lets us speed up the resulting
computations by 2-fold over simply using an SVD, as we have significantly fewer matrices to
precompute in the sequel.

Specifically, writing Θ =
∑n

i=1 xix
T
i , and using the fact that for a Hadamard product

A ◦ abT = diag(a)A diag(b). (5.19)

we can write the Lyapunov solution L̃ analytically as

L̃ = UL̃UU
T =

r∑
k=1

Xi(BDL+ (BDL)T)XT
i (5.20)

where we letXi = U diag(xi)U
−1, the transformed version of the diagonal matrix corresponding

to the ith column of X . With the same approach, we write the explicit form for P̃ as

P̃ =
r∑
i=1

XT
i ((ED)T + ED)Xi. (5.21)

Using these explicit forms for L̃ and P̃ we observe that tr L̃ED = tr P̃BDL and the second-
order Taylor expansion simplifies to

J̃K(D) = 2 trLED + trLDTRD

+ 2 tr
r∑
i=1

XT
i ((ED)T + ED)XiBDL.

(5.22)

Closed-form coordinate updates. Next, we consider coordinatewise updates to minimize
J̃K(D) with the addition of `1 regularization. In particular, consider optimizing over µ the rank
one update D + µeie

T
j ; for each term we get a quadratic function in µ with coefficients that

depend on several matrix products. For example, the second term of LDTRD yields

trL(D + µeie
T
j)TR(D + µeie

T
j)

= trLDTRD + 2µ(RDL)ij + µ2RiiLjj.
(5.23)

54

For each term in J̃K(D), we repeat these steps to derive

arg min
µ
J̃K(D + µeie

T
j) + ‖(K +D + µeie

T
j) ◦ Λ‖1

= arg min
µ

1

2
aµ2 + bµ+ ‖c+ µ‖1

(5.24)

where

a = 2RiiLjj

+ 4

(
r∑

k=1

(ETXkB)ii(LX
T
k)jj + (LXTE)ji(XB)ji

)
b = 2(ETL)ij + 2(RDL)ij

+ 2

(
r∑

k=1

(ETXkBDLX
T
k)ij + (BTXT

k EDXkL)ij

)

+ 2

(
r∑

k=1

(XkBDLX
T
k E)ji + (LXT

k EDXkB)ji

)
c = Kij +Dij.

(5.25)

This has the closed form solution

µ = −c+ Sλ/a

(
c− b

a

)
(5.26)

where Sλ is the soft-thresholding operator.
Caching matrices. Naive computation of these matrix products for a, b and c still requires

O(n3) operations; however, all matrices except D remain fixed over each iteration of the inner
loop, allowing us to precompute many matrix products. Let

Φ0 = LE

Φ1
k = XkL

Φ2
k = XkB

Φ3
k = LXT

k E

Φ4
k = BTXTE.

(5.27)

In addition as we iteratively update D, we also maintain the matrix products

Ψ0 = RD

Ψ1
k = Φ1

kD
T

Ψ2
k = Φ4

kD

Ψ3
k = Φ2

kD

Ψ4
k = Φ3

kD

(5.28)

55

which allows us to efficiently compute

a = 2RiiLjj + 4

(
r∑

k=1

(Φ4
k)ii(Φ

1
k)jj + (Φ3

k)ij(Φ
2
k)ji

)
b = 2

(
(Φ0)ji + (Ψ0L)ij

)
+ 2

(
r∑

k=1

(Ψ1
kΦk)ji + (Ψ2

kΦ
1
k)ij

)

+ 2

(
r∑

k=1

(Ψ3
kΦ

3
k)ji + Ψ4

kΦ
2
k)ji

)
c = Kij +Dij

(5.29)

resulting in an O(n) time per iteration (in general we can compute an element of a matrix prod-
uct (AB)ij as the dot product between the ith row of A and the jth column of B). Updating
the cached products Ψ also requires O(n) time as a change to a single coordinate of D requires
modifying a single row or column of one of the products Ψ. The complete algorithm is given in
Algorithm 5.1 and has O(n) per iteration complexity as opposed to the O(n3) naive implemen-
tation.

5.2.2 Additional algorithmic elements
While the above algorithm describes the basic second-order approach, several elements are im-
portant for making the algorithm practical and robust to a variety of different systems.

Initial conditions. One crucial element that affects the algorithm’s performance is the choice
of initial K matrix. Since the objective J(K) is infinite for A + BK unstable, we require that
the initial value must stabilize the system. We could simply choose the full LQR controller
KLQR as this initial point; it may take time O(n3) to compute the LQR solution, but since our
algorithm is O(n3) overall, this is typically not a prohibitive cost. However, the difficulty with
this strategy is that the resulting controller is not sparse, which leads to a full active set for the
first step of our Newton-CD approach, substantially slowing down the method. Instead, a single
soft-thresholding step on the LQR solution produces a good initial starting point that is both
guaranteed to be stable, and which leads to a much smaller active set in practice. Formally, we
compute

K(0) = SαΛ(KLQR) (5.30)

where α ≤ 1 is chosen by backtracking line search such that the regularized objective decreases
and K(0) remains stable. In addition, if the goal is to sweep across a large range of possible
regularization parameters, we can employ a “warm start” method that initializes the controller to
the solution of previous optimization problems.

Unstable initial controllers. In the event where we do not want to start at the LQR solution,
it is also possible to begin with some initial controller K(0) that is not stabilizing using a “defla-
tion” technique. Specifically, rather than find an optimal control law for the linear system (A,B),
we find a controller for the linear system (A−νI,B) where ν is chosen such thatA−νI+BK(0)

56

is stable with some margin. The resulting controller K(1) will typically stabilize the system to a
larger degree, and we can repeat this process until it produces a stabilizing control law. Further,
we typically do not need to run the Newton-CD method to convergence, but can often obtain a
better stabilizing control law after only a few outer iterations.

Handling non-convexity. As mentioned above, the objective J(K) is not a convex function,
and so can (and indeed, often does in practice) produce indefinite Hessian matrices. In such
cases, the coordinate descent steps are not guaranteed to produce a descent direction, and indeed
can cause the overall descent direction to diverge. Furthermore, since we never compute the
full Hessian ∇2

KJ(K) (even restricted to just the active set), it is difficult to perform typical
operations to handle non-convexity such as projecting the Hessian onto the positive definite cone.
Instead, we handle this non-convexity by a fallback to a simpler quasi-Newton coordinate descent
scheme [126]. At each Newton iteration we also form a coordinate descent update based upon a
diagonal PSD approximation to the Hessian,

J̄(K +D) = tr∇J(K)TD +
1

2
vec(D)TH vec(D) (5.31)

where
Hii = min{max{10−2, (∇2J(K))ii}, 104}. (5.32)

The diagonal terms of the Hessian are precisely the a variables that we compute in the coordinate
descent iterations anyway, so this search direction can be computed at little additional cost. Then,
we simply perform a line search on both update directions simultaneously, and choose the next
iterate with the largest improvement to the objective. In practice, the algorithm sometimes uses
the fallback direction in the early iterations of the method until it converges to a convex region
around a (local) optimum where the full Newton step causes much larger function decreases and
so is nearly always chosen. This fallback procedure also provides a convergence guarantee for
our method: the quasi-Newton coordinate descent approach was analyzed in [126] and shown to
converge for both convex and non-convex objectives. Since our algorithm always takes at least
as good a step as this quasi-Newton approach, the same convergence guarantees hold here.

Inner and outer loop convergence and approximation. Finally, a natural question that
we do not address directly in the above algorithmic presentations involves how many iterations
to use (both inner and outer), as well as what constitutes a sufficient approximation for certain
terms like the rank of Θ. In practice, a strength of the Newton-CD methods is that it can be fairly
insensitive to slightly less accurate inner loops [21]: in such cases, the approximate Newton
direction is still typically much better than a gradient direction, and while additional outer loop
iterations may be required, the timing of the resulting method is somewhat insensitive to choice
of parameters for the inner loop convergence and for different low-rank approximations to Θ. In
our implementation, we run the inner loop for at most t/3 iterations at outer loop iteration t or
until the relative change in the direction D is less than 10−2 in the Frobenius norm.

5.3 Numerical results
In this section we evaluate the performance of the proposed algorithm on the task of finding
sparse optimal controllers for a synthetic mass-spring system and wide-area control in power

57

systems. In both settings, the method finds sparse controllers that perform nearly optimally
while only depending on a small subset of the state space; furthermore, as we scale to larger
examples, we demonstrate that these optimal controllers become more sparse, highlighting the
increased role of sparsity in larger systems.

Computationally, we compare the convergence rate of our algorithm to that of existing ap-
proaches for solving the sparse optimal control problem and demonstrate that the proposed
method converges rapidly to highly accurate solutions, significantly outperforming previous ap-
proaches. Although the solution accuracy required for a “good enough” controller is problem-
specific, since per-iteration complexity grows with the dimension of the state space as O(n3),
faster methods that reach an accurate solution in a small number of iterations are strongly pre-
ferred. We also note that, if one uses the `1 regularization penalty solely as a heuristic for encour-
aging sparsity, then finding an exact (locally) optimal solution may be less important than merely
finding a solution with a reasonable sparsity pattern, which can indeed be accomplished by a va-
riety of algorithms. However, given that we are using the `1 heuristic in the first place, and since
in practice the `1 penalty has a similar ”shrinkage” effect as increasing the respective R penalty
on the controls, it is reasonable to seek out as accurate a solution as possible to this optimization
problem. We demonstrate that for all levels of accuracy and on both sets of examples considered,
our second-order method is significantly faster than existing approaches. In particular, for large
problems with thousands of states, our method reaches a reasonable level of accuracy in minutes
whereas previous approaches take hours.

Specifically, we compare our algorithm to two other approaches: the original alternating
direction method of multipliers (ADMM) method from [75] which has as an inner loop the
Anderson-Moore method; and iterative soft-thresholding (ISTA), a proximal gradient approach
which iterates between a gradient step and the soft-thresholding projection. In the ISTA imple-
mentation, in order to ensure that we maintain the stability ofA+BK we perform a line search to
choose the step size for each iteration. Although it is also possible to add acceleration to ISTA,
resulting in the FISTA algorithm, this is known to perform poorly on nonconvex problems, a
behavior which we observed in our own experiments.

In each set of experiments, we first solve the `1 regularized objective with a weight λ placed
on all elements of K. Once this has converged, we perform a second polishing pass with the
sparsity of K fixed to the nonzero elements of the optimal solution to the `1 problem, optimizing
performance on the LQR objective for a given level of sparsity. The polishing step can also
be performed efficiently using the Newton-CD method and Λ with elements equal to 0 or ∞.
Finally, when solving the `1 regularized problem in the first step, we soft-threshold the LQR
solution as described in Section 5.2.2; this is relatively quick compared to the overall running
time and we use the same initial controller K(0) as the starting point for all algorithms.

5.3.1 Mass-spring system

In our first example we consider the mass-spring system from [75] describing the displacement
of N masses connected on a line. The state space is comprised of the position and velocity of

58

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Sparsity

(J
 −

 J
*)/

J*

N=25
N=50
N=250
N=500

Figure 5.1: Comparison of sparse controllers to the optimal LQR control law J∗ for varying
levels of sparsity on the mass-spring system.

each mass with dynamics given by the linear system

A =

[
0 I
T 0

]
, B =

[
0
I

]
(5.33)

where I is the N ×N identity matrix, and T is an N ×N tridiagonal symmetric Toeplitz matrix
of the form

T =

−2 1 0 0

1 −2 1 0
0 1 −2 1
0 0 1 −2

 ; (5.34)

we take Q = I, R = 10I , W = BBT as in the previous paper.
We begin by characterizing the trade-off between sparsity and system performance by sweep-

ing across 100 logarithmically spaced values of λ. For the system with N = 50 springs, the re-
sults shown in Figure 5.1 are nearly identical to those reported by [75], although their methodol-
ogy includes an additional loop and iteratively solving a series of reweighted `1 problems. For all
systems, the leftmost point represents a control law based almost entirely on local information—
although the results shown penalize the elements of K uniformly, we also found that by regu-
larizing just the elements of K corresponding to nonlocal feedback we were able to find stable
local control laws in all examples. As λ decreases, the algorithm finds controllers that quickly
approach the performance of LQR and in the smallest example we require a controller with 18%
nonzero elements to be within 0.1% of the LQR performance; in the largest example we require
only and 4.0% sparsity to reach this level. This demonstrates the trend that we anticipate: larger
systems require comparatively sparser controllers for optimal performance.

Next we compare the running times of each algorithm by fixing λ and considering the con-
vergence of the objective value f at each iteration to the (local) optimum f ∗. Figure 5.2 shows
three such fixed λ settings corresponding to the levels of sparsity of interest in the mass-spring
system and we in all settings that the Newton-CD method converges far more quickly than other
methods. In the largest system considered (N = 500) with λ = 0.1 (top left), it converges to a

59

0 1000 2000 3000
10

−10

10
−6

10
−2

10
2

Time (seconds)

f −
 f*

0 1000 2000 3000

6000

6500

7000

7500

8000

Time (seconds)

N
um

be
r

of
 n

on
ze

ro
s

Newton−CD
ISTA
ADMM

10
−10

10
−5

10
0

N=25

10
−10

10
−5

10
0

0 5 10
10

−10

10
−5

10
0

Time (seconds)

N=50

0 10 20

Time (seconds)

N=250

0 500 1000

Time (seconds)

N=500

0 1000 2000 3000

Time (seconds)

Figure 5.2: Convergence of algorithms on mass-spring system with N = 500 and λ = 10 (top
left); the sparsity found by each algorithm for the same system (top right); and across many
settings with one column per example and rows corresponding to different settings of λ with
λ1 = [10, 10, 1, 1], λ2 = [1, 1, 0.1, 0.1] and λ3 = [0.1, 0.1, 0.01, 0.01] (bottom).

60

0 100 200 300 400 500 600
10

−10

10
−5

10
0

Time (seconds)

f −
 f*

Newton−CD
Newton−CG

Figure 5.3: Convergence of Newton methods on the polishing step for the mass-spring system
with N = 500 and λ = 100.

solution accurate to 10−8 in less than 11 minutes whereas ADMM has not reached an accuracy
of 10−1 after over two hours. In addition, the sparsity pattern in the intermediate solutions do
not typically correspond to that of the `1 solution, as can be seen in Figure 5.2 (top right). For
smaller examples, ISTA is competitive but as the size of the system grows, the many iterations
that it requires to converge become more expensive, a behavior that is highlighted in the conver-
gence for the N = 500 system (rightmost column). Finally, we note that Newton-CD performs
especially well on λ corresponding to sparse solutions (top row) due to the active set method
exploiting sparsity in the solution.

In addition to solving the `1 problem, the Newton-CD method can also be used for the pol-
ishing step of finding the optimal controller with a fixed sparsity structure. In Figure 5.3, we
compare Newton-CD to the conjugate gradient approach of [75] which can be seen as a Newton-
Lasso method for the special case of Λ with entries 0 or∞. Here we see that performance on the
polishing step is comparable with both methods converging quickly and using the same number
of outer loop iterations. We note that the conjugate gradient approach could also be extended to
work for general Λ by using an orthant-based approach (for example, see [93]), but we do not
pursue that direction in this work.

5.3.2 Wide-area control in power systems

Following [37], which applied the sparse optimal control framework and the ADMM algorithm
to this same problem, our next examples consider the task of controlling inter-area oscillations
in a power network via wide-area control. These examples highlight the computational benefits
of our algorithmic approach even more so than the synthetic examples above.

To briefly introduce the domain ([37] explains the overall setup in more detail), we are con-
cerned here with the problem of frequency regulation in a AC transmission grid. We employ a
linearized approximation where for each generation the system state consists of the power angle
θi, the mismatch between the rotational velocity and the reference rotational velocity ωi − ωref ,
as well as a number of additional states xi characterizing the exciters, governors, and/or power

61

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Sparsity

(J
 −

 J
*)/

J*

IEEE 14 Bus
GE 68 Bus
NE 39 Bus
NE 39 Bus (Dorfler)
NPCC 140 Bus
IEEE 145 Bus
IEEE 145 Bus (PSS)

Figure 5.4: Comparison of performance to LQR solution for varying levels of sparsity on wide-
area control in power networks.

system stabilizer (PSS) control loops at each generator (typically operating on much faster time
scale). The system dynamics can be written generically as

θ̇ = ω − ωref

ω̇ = (YGG − YGLY −1
LL YLG)θ + f(x)

(5.35)

where Y is an approximate DC power flow susceptance matrix; G and L are the generator and
load nodes; and f(x) denotes the local control dynamics. Importantly, there is a coupling be-
tween the generators induced by the network dynamics, which can create oscillatory modes that
cannot easily be stabilized by local control alone. The control actions available to the system ef-
fectively involve setting the operating points for the inner loops of the power system stabilizers.

The examples we use here are all drawn from the Power Systems Toolbox, in particular the
MathNetEig package, which provides a set of routines for describing power networks, generators,
exciters and power system stabilizers, potentially at each generator node, and also has routines
for analytically deriving the resulting linearized systems. We evaluate our approach on all the
larger examples included with this toolbox, as well as the New England 39 bus system used in
[37] (which is similar to the 39 bus system included in the power system toolbox, but which
includes power system stabilizers at 9 of the 10 generators, limits the type of external control
applied to each PSS, and which allows for no control at one of the generators). To create a
somewhat larger system than any of those included in the toolbox, we also modify the PST 50
machine system to include power system stabilizers at each node, resulting in a n = 500 state
system to regulate with our sparse control algorithm.

As in the previous example, we begin by considering the sparsity/performance trade-off by
varying the regularization parameter λ, shown in Figure 5.4. Here we see that for several pow-
ers systems under consideration, near optimal performance is achieved by an extremely sparse

62

State

C
on

tr
ol

Local
Wide−area

State

C
on

tr
ol

Figure 5.5: Sparsity patterns for wide-area control in the NPCC 140 Bus power system: the
sparsest stable solution found (top) and the sparsest solution achieving performance within 10%
of optimal (bottom)

.

63

0 1000 2000 3000
10

−10
10

−8
10

−6
10

−4
10

−2
10

0
10

2
10

4

Time (seconds)

f −
 f*

0 1000 2000 3000
0

200

400

600

800

1000

Time (seconds)

N
um

be
r

of
 n

on
ze

ro
s

Newton−CD
ISTA
ADMM

Figure 5.6: Convergence of algorithms on IEEE 145 Bus (PSS) wide-area control example with
λ = 100 (left) and the number of nonzeros in the intermediate solutions (right).

controller depending almost exclusively on local information. As in the mass-spring system, in
addition to Λ with uniform weights, we also used a structured Λ to find local controllers; here
were able to find stable local control laws for every example with the exception of PST 48. For
this power system, we show the sparsity pattern of the sparsest stable controller in Figure 5.5
along with that of the controller achieving performance within 10% of the full LQR optimum.
Finally, we note that in general the larger power systems admit controllers with relatively more
sparsity as was the case in the mass-spring system.

Computationally, we consider the convergence on the largest power system example in Figure
5.6 and observe a dramatic difference between Newton-CD and previous algorithms: Newton-
CD has converged to an accuracy better than 10−8 in less than 173 seconds while ADMM is not
within 103 after over an hour. In addition, the sparsity pattern of the intermediate solutions found
by ADMM is significantly different than that of Newton-CD and ISTA which have converged to
the `1 regularized solution with much higher accuracy. In Figure 5.7 we consider convergence
across all power systems with three values of λ chosen such that the resulting controllers have
performance within 10%, 1% and 0.1% of LQR. Here we see similar results as in the large system
with Newton-CD converging faster across all examples and choices of λ and the differences being
orders of magnitude in many cases. We note that algorithm benefits significantly from a high
level of sparsity for these choices of λ since for most power systems considered, the controller
achieving performance within 0.1% of LQR is still quite sparse.

64

10
−8

10
−4

10
0

10
4

IEEE 14 Bus

10
−8

10
−4

10
0

10
4

0 50 100
10

−8

10
−4

10
0

10
4

Time (seconds)

GE 68 Bus

0 50 100

Time (seconds)

NE 39 Bus

0 50 100

Time (seconds)

NE 39 Bus (Dorfler)

0 50 100

Time (seconds)

NPCC 140 Bus

0 500 1000

Time (seconds)

IEEE 145 Bus

0 500 1000

Time (seconds)

IEEE 145 Bus (PSS)

0 1000 2000 3000

Time (seconds)

Newton−CD ISTA ADMM

Figure 5.7: Convergence of algorithms on wide-area control across all power systems with three
choices of λ corresponding to performance within 10%, 1% and 0.1% of LQR. Columns corre-
spond to power systems and rows correspond to different choices of λ with largest on top.

65

Chapter 6

The Group Fused Lasso

Given a multivariate signal y1, y2, . . . , yT , with yt ∈ Rn, the (weighted) group fused lasso (GFL)
estimator [5, 15] attempts to find a roughly “piecewise-constant” approximation to this signal. It
determines this approximation by solving the optimization problem

minimize
1

2

T∑
t=1

wi‖xt − yt‖2
2 +

T−1∑
t=1

λt‖xt − xt+1‖2 (6.1)

where x1, x2, . . . , xT are the optimization variables, w ∈ RT
+ are weights for each time point,

λ ∈ RT−1
+ are regularization parameters, and ‖ · ‖2 denotes the Euclidean norm. Intuitively,

the `2-norm on the difference between consecutive points encourages sparsity in this difference:
each xt − xt+1 will typically be either full or identically zero at the solution, i.e., the signal x
will be approximately piecewise-constant. This approach generalizes the 1D total variation norm
[10, 124], which considers only univariate signals. Owing to the piecewise-constant nature of
the approximate signals formed by the group fused lasso, the approach has found applications
in signal compression, multiple change-point detection, and total variation denoising. Though
several algorithms have been proposed to solve (6.1), to the best of our knowledge these have
involved, at their foundation, first-order methods such as projected gradient, block coordinate
descent, or splitting methods. Although such algorithms can sometimes obtain reasonable per-
formance, they often fail to quickly find accurate solutions, especially when one wants to solve
(6.1) to high precision as a proximal operator (e.g. as in Section 2.2).

In this chapter, we develop a fast algorithm for solving the optimization problem (6.1), based
upon a projected Newton approach. Our method can solve group fused lasso problems to high
numerical precision, often several orders of magnitude faster than existing state-of-the-art ap-
proaches. At its heart, our method involves dualizing the optimization problem (6.1) twice, in a
particular manner, to eliminate the non-differentiable `2-norm and replace it by simple nonneg-
ativity constraints; we solve the reformulated problem to high accuracy via a projected Newton
approach. In order to fully exploit the sparsity of large-scale instances, we combine the above
ideas with a primal active-set method that iteratively solves reduced-size problems to find the
final set of non-zero differences for the original GFL problem.

Although our fast fused group lasso method is valuable in its own right, its real power comes
when used as a proximal subroutine in a more complex algorithm, an operation that often needs

66

to be solved thousands of times. With this motivation in mind, we apply our approach to two
applications: segmenting linear regression models, and color total variation image denoising. We
demonstrate the power of our approach in experiments with real and synthetic data, both for the
basic group fused lasso and these applications, and show substantial improvement over the state
of the art.

6.1 A fast Newton method for the GFL
We begin by adopting slightly more compact notation, and rewrite (6.1) (the primal problem) as

minimize (1/2)‖(X − Y)W 1/2‖2
F + ‖XDΛ‖1,2 (P)

where X, Y ∈ Rn×T denote the matrices

X =
[
x1 · · · xT

]
, Y =

[
y1 · · · yT

]
; (6.2)

W := diag(w) and Λ := diag(λ); ‖ · ‖F denotes the Frobenius norm; ‖ · ‖1,2 denotes the mixed
`1,2-norm

‖A‖1,2 :=
∑

i
‖ai‖2, (6.3)

where ai is the ith column of A; and D ∈ RT,T−1 denotes the first-order differencing operator

D =

1 0 0 · · ·
−1 1 0 · · ·
0 −1 1 · · ·
...

...
... . . .

 (6.4)

so that XD takes the difference of the columns of X .

6.1.1 Dual problems
To solve (P), it is useful to look at its dual and (for our algorithm) a modified dual of this dual.
To derive these problems, we transform (P) slightly by introducing the constraint V = XD, and
corresponding dual variables U ∈ Rn×T−1. The Lagrangian is then given by

LP (X,U, V) := (1/2)‖(X − Y)W 1/2‖2
F + ‖V Λ‖1,2 + trUT (V −XD). (6.5)

Minimizing (6.5) analytically over X and V gives

X? = Y − UDTW−1, V ? = 0 iff ‖ut‖2 ≤ λt (6.6)

where ut is the t-th column of U ; this leads to the dual

maximize − (1/2)‖UDTW−1/2‖2
F + trUDTY T

subject to ‖ut‖2 ≤ λt, t = 1, . . . , T − 1.
(D)

67

Indeed, several past algorithmic approaches have solved (D) directly using projected gradient
methods, see e.g., [5].

The basis of our algorithm is to form the dual of (D), but in a manner that leads to a different
problem than the original primal. In particular, noting that the constraint ‖ut‖2 ≤ λt is equivalent
to the constraint that ‖ut‖2

2 ≤ λ2
t , we can remove the non-differentiable `2-norm, and form the

Lagrangian

LD(U, z) = −(1/2)‖UDTW−1/2‖2
F + trUDTY T +

T−1∑
t=1

zt(‖ut‖2
2 − λ2

t). (6.7)

Minimizing over U analytically yields

U? = Y D(DTW−1D + Z)−1, (6.8)

where Z := diag(z), and leads to the dual problem (the dual of the dual of (P))

minimize (1/2)Y D(DTW−1D + Z)−1DTY T + (1/2)(λ2)T z

subject to z ≥ 0
(DD)

where λ2 denotes squaring λ elementwise. This procedure, taking the dual of the dual of the
original optimization problem, has transformed the original, nonsmooth problem into a smooth
optimization problem subject to a nonnegativity constraint, a setting for which there are sev-
eral efficient algorithms. Although (DD) is not easily solved via a standard form semidefinite
program—it involves a matrix fractional term, for which the standard semidefinite programming
form is computationally unattractive—it can be solved efficiently by a number of methods for
smooth, bound-constrained optimization. However, as we will see below, the Hessian for this
problem is typically poorly conditioned, so the choice of algorithm for minimizing (DD) has a
large impact in practice. Furthermore, because the z dual variables are non-zero only for the
change points of the original X variables, we expect that for many regimes we will have very
few non-zero z values. These points motivate the use of projected Newton methods [14], which
perform Newton updates on the variables not bound (z 6= 0).

6.1.2 A projected Newton method for (DD)

Denote the objective of (DD) as f(z); the gradient and Hessian of f are given by

∇f(z) = −(1/2)(U2)T1 + (1/2)λ2,

∇2f(z) = UTU ◦ (DTW−1D + Z)−1,
(6.9)

where as above U = Y D(DTW−1D + Z)−1, U2 denotes elementwise squaring of U , and ◦ de-
notes the elementwise (Hadamard) product. The projected Newton method proceeds as follows:
at each iteration, we construct the set of bound variables

I := {i : zi = 0 and (∇zf(z))i > 0}. (6.10)

68

We then perform a Newton update only on those variables that are not bound (Ī, referred to as
the free set), and project back onto the feasible set

zĪ ←
[
zĪ − α(∇2

zf(z))−1
Ī,Ī(∇zf(z))Ī

]
+
, (6.11)

where α is a step size (chosen by backtracking, interpolation, or other line search), and [·]+
denotes projection onto the non-negative orthant. The full method is shown in Algorithm 6.1.
Although the projected Newton method is conceptually simple, it involves inverting several (pos-
sibly T × T matrices), which is impractical if these were to be performed with general matrix
operations. Fortunately, there is a great amount of structure that can be exploited in this problem.

Algorithm 6.1: Projected Newton for GFL
input signal Y ∈ Rn×T ; weights w ∈ RT

+; regularization parameters λ ∈ RT−1
+ ; tolerance ε

output: optimized signal X ∈ Rn×T

initialization: z ← 0
repeat

1. Form dual variables and gradient

U ← Y D(DW−1D + Z)−1

∇zf(z)← −(1/2)(U2)T1 + (1/2)λ2

2. Compute active constraints

I ← {i : zi = 0 and (∇zf(z))i > 0}

3. Compute reduced Hessian and Newton direction

H ← UT
Ī UĪ ◦ (DTW−1D + Z)−1

Ī,Ī

∆zĪ ← −H−1(∇zf(z))Ī

4. Update variables
zĪ ← [zĪ + α∆zĪ]+

where α is chosen by line search
until ‖(∇zf(z))Ī‖2 ≤ ε

Efficiently solving Y D(DTW−1D+Z)−1. One key operation for the weighted GFL problem
is to solve linear systems of the form DTW−1D+Z, where W and Z are diagonal. Fortunately,

69

the first matrix is highly structured: it is a symmetric tridiagonal matrix

DTW−1D =

1
w1

+ 1
w2

− 1
w2

0 · · ·
− 1
w2

1
w2

+ 1
w3

− 1
w3

· · ·
0 − 1

w3

1
w3

+ 1
w4
· · ·

...
...

... . . .

 , (6.12)

and adding Z to it only affects the diagonal. LAPACK has customized routines for solving
problems of this form: dpttrf (which computes the LDLT factorization of the matrix) and
dptts2 (which computes the solution to LDLTX = B via backsubstitution). For our work,
we modified this latter code slightly to solve systems with the unknown on the left hand size,
as is required for our setting; this lends a slight speedup by exploiting the memory locality of
column-based matrices. The methods factor T − 1×T − 1 matrix in O(T) time, and solve n left
hand sides in time O(Tn).

Computing entries of (DTW−1D + Z)−1. The projected Newton method also requires more
than just solving equations of the form above: to compute the Hessian, we must actually also
compute entries of the inverse (DTW−1D + Z)−1 — we need to compute the entries with rows
and columns in Ī. Naively, this would require solving k = |Ī| left hand sides, corresponding
to the unit bases for the entries in Ī; even using the fast solver above, this takes time O(Tk).
To speed up this operation, we instead use a fast method for computing the actual entries of the
inverse of this tridiagonal, using an approach based upon [129]; this ultimately lets us compute
the k2 entries in O(k2) time, which can be much faster for small free sets.

Specifically, let a ∈ RT−1 and b ∈ RT−2 denote the diagonal and the negative off-diagonal
entries ofDTW−1D+Z respectively (that is, ai = 1

wi
+ 1

wi+1
+zi and bi = 1

wi+1
), we can compute

individual entries of (DTW−1D+Z)−1 as follows (the following adapts the algorithm in [129],
but has enough simplifications for our case that we state it explicitly here). Define θ, φ ∈ RT via
the recursions

θi+1 = aiθi − b2
i−1θi−1, i = 2, . . . , T − 1

θ1 = 1, θ2 = a1,

φi = aiφi+1 − b2
iφi+2, i = T − 2, . . . , 1

φT = 1, φT−1 = aT−1.

(6.13)

Then, the (i, j) entry of (DTW−1D + Z)−1 for j ≤ i is given by

(DTW−1D + Z)−1
ij =

1

θT

(∏j−1

k=i
bi

)
θiφj+1. (6.14)

Finally, we can compute all the needed running products
∏j−1

k=i bi by computing a single cumu-
lative sum of the logs of the bi terms ci =

∑i
j=1 log bi and then using the equality

∏j−1
k=i bi =

exp(cj − ci).

70

6.1.3 A primal active set approach

Using the two optimizations mentioned above, the projected Newton method can very quickly
find a solution accurate to numerical precision for medium sized problems (T and n on the order
of thousands). However, for problems with substantially larger T , which are precisely those we
are most interested in for many GFL applications, the approach above begins to break down.
There are two reasons for this: 1) The size of the free set k = |I|, though often small at the
final solution, can be significantly larger at intermediate iterations; since the Newton method
ultimately does involve an O(k3) time to invert the Hessian restricted to the free set, this can
quickly render the algorithm impractical. 2) Even with small free sets, the basic O(Tn) cost
required for a single pass over the data at each Newton iteration starts to dominate, especially
since a significant number of iterations to find the correct free set may be required (only after
finding the correct free set does one obtain quadratic convergence rates).

To overcome these problems, we consider a further layer to the algorithm, which wraps our
fast projected Newton solver inside a primal active-set method. The basic intuition is that, at the
optimal solution to the original GFL problem, there will typically be very few change points in
the solution X? (these correspond exactly to those z variables that are non-zero). If we knew
these changes points ahead of time, we could solve a substantially reduced (weighted) GFL
problem that was equivalent to the original problem. Specifically, let J ⊆ {1, . . . , T −1} denote
the optimal set of change point locations for the primal problem. By the relationship of dual
problems, this will be identical to the set of free variables Ī at the optimal solution, but since
we treat these differently in the algorithmic design we use different notation. Then the original
problem

minimize ‖(X − Y)W 1/2‖2
F + ‖XDΛ‖1,2, (6.15)

where X ∈ Rn×T , is equivalent to the reduced problem

minimize ‖(X ′ − Y ′)W ′1/2‖2
F + ‖X ′D′ΛJ ,J ‖1,2 (6.16)

with optimization variableX ′ ∈ Rn×k+1 for k = |J |, whereD′ ∈ Rk+1×k denotes the same first-
order differences matrix but now over only k+1-sized vectors, and where Y ′ andW ′ = diag(w′)
are defined by

w′i =
∑
j∈J ′i

wj, y′i =
1

w′i

∑
j∈J ′i

wjyj, (6.17)

where we define J ′i = {Ji−1 + 1, . . . ,Ji} for i = 1, . . . , k+ 1 (i.e., J ′i denotes the list of indices
within the ith segment, there being k + 1 segments for k change points). Furthermore, all these
terms can be computed in time O(nk) via cumulative sums similar to the cumulative sum used
for b above (which take O(Tn) to compute once, but which thereafter only require O(kn) to
form the reduced problem).

To see this equivalence, note first that since X only changes at the points |J |, it immediately
holds that ‖XDΛ‖1,2 = ‖X ′D′ΛJ ,J ‖1,2. To show that the other term in the objective is also

71

equivalent, we have that

‖(X − Y)W 1/2‖2
F

=
k+1∑
i=1

‖(x′i1T − YJ ′i)W
1/2

J ′i ,J ′i
‖2
F

=
k+1∑
i=1

(
(wTJ ′1)x′

T
i x
′
i − 2x′

T
YJ ′iwJ ′i + ‖YJ ′iW

1/2

J ′i ,J ′i
‖2
F

)
=

k+1∑
i=1

w′i‖x′i − y′i‖2
2 + c.

This equivalence motivates a primal active set method where we iteratively guess the active set
J (with some fixed limit on its allowable size), use the projected Newton algorithm to solve
the reduced problem, and then use the updated solution to re-estimate the active set. This is
essentially equivalent to a common “block pivoting” strategy for non-negative least squares [102]
or `1 methods [73], and has been shown to be very efficient in practice [67]. The full algorithm,
which we refer to as Active Set Projected Newton (ASPN, pronounced “aspen”), is shown in
Algorithm 6.2. In total, the algorithm is extremely competitive compared to past approaches to
GFL, as we show in Section 6.3, often outperforming the existing state of the art by orders of
magnitude.

6.2 Applications
Although the ASPN algorithm for the group fused lasso is a useful algorithm in its own right,
part of the appeal of a fast solver for this type of problem is the possibility of using it as a “sub-
routine” within solvers for more complex problems. In this section we derive such algorithms
for two instances: segmentation of time-varying linear regression models and multi-channel total
variance image denoising. Both models have been considered in the literature previously, and the
method presented here offers a way of solving these optimization problems to a relatively high
degree of accuracy using simple methods.

6.2.1 Linear model segmentation
In this setting, we observe a sequence of input/output pairs (at ∈ Rn, yt ∈ R) over time and the
goal is to find model parameters xt such that yt ≈ aTt xt (it is more common to denote the input
itself as xt and model parameters θt, but the notation here is more in keeping with the rest of this
chapter). Naturally, if xt is allowed to vary arbitrarily, we can always find (an infinite number of)
xt’s that fit the output perfectly, but if we constrain the sum of norms ‖xt − xt−1‖2, then we will
instead look for piecewise constant segments in the parameter space; this model was apparently
first proposed in [92].

This model may be cast as the optimization problem

minimize ‖A vecX − y‖2
2 + ‖XDΛ‖1,2, (6.18)

72

Algorithm 6.2: Active Set Projected Newton (ASPN)
input signal Y ∈ Rn×T ; weights w ∈ RT

+; regularization parameters λ ∈ RT−1
+ ; maximum

active set size kmax; tolerance ε
output: optimized signal X ∈ Rn×T

initialization: z ← 0
repeat

1. Form dual variables and gradient

U ← Y D(DW−1D + Z)−1

∇zf(z)← −1

2
(U2)T1 +

1

2
λ2

2. Compute active set, containing all non-zero zi’s and additional element with negative
gradients, up to size kmax

J 0 ← {i : zi > 0}
J 1 ← {i : zi = 0,∇zf(z) < 0}
J ← J 0 ∪ J 1

1:kmax−|J 0|

3. Form reduced problem (Y ′, w′) for J using (6.17) and solve using projected Newton

zJ ← Projected-Newton(Y ′, w′, λJ)

until ‖(∇zf(z))J ‖2 ≤ ε

where X ∈ Rn×T is the same optimization variable as previously, y ∈ RT denotes the vector
of outputs, vec denotes the vectorization of a matrix (stacking its columns into a single column
vector), and A ∈ RT×Tn is the block diagonal matrix

A =

aT1 0 0 · · ·
0 aT2 0 · · ·
0 0 aT3 · · ·
...

...
... . . .

 . (6.19)

While this problem looks very similar to the ordinary GFL setting, the introduction of the ad-
ditional matrix A renders it substantially more complex. While it is possible to adapt the Newton
methods above to solve the problem directly, much of the special problem structure is lost, and
it requires, for examples, forming Tn × Tn block tridiagonal matrices, which is substantially
more computationally intensive, especially for large n (the methods scale like O(n3)). While
optimization may still be possible with such approaches, we instead adopt a different approach
that builds on the alternating direction method of multipliers (see Section 2.2.3).

73

The “standard” ADMM algorithm. The simplest way to apply ADMM to (6.18), considered
for the pure group fused lasso e.g., in [132], is to introduce variables Z = XD, and formulate
the problem as

minimize ‖A vecX − Y ‖2
2 + ‖ZΛ‖1,2

subject to XD = Z.
(6.20)

After some derivations, this leads to the updates

Xk+1 ← argmin
X
‖A vecX − y‖2

2 + ρ
2
‖XD − Zk + Uk‖2

F

Zk+1 ← argmin
Z
‖ZΛ‖1,2 + ρ

2
‖Xk+1D − Z + Uk‖2

F

Uk+1 ← Uk +Xk+1D − Zk+1,

(6.21)

where ρ acts effectively like a stepsize for the problem. This set of updates is particularly appeal-
ing because minimization over X and Z can both be computed in closed form: the minimization
over X is unconstrained quadratic optimization, and has the solution(

ATA+ ρF TF
)−1 (

ATy + ρF T vec(Zk − Uk)
)

(6.22)

where F = (DT ⊗ I). Furthermore, these updates can be computed very efficiently, since(
ATA+ ρF TF

)
is block tridiagonal, and since this matrix does not change at each iteration,

we can precompute its (sparse) Cholesky decomposition once, and use it for all iterations; using
these optimizations, the X update takes time O(Tn2). Similarly, the Z update is a proximal
operator that can be solved by soft thresholding the columns of Xk+1D + Uk (an O(Tn) op-
eration). Although these elements make the algorithm appealing, they hide a subtle issue: the
matrix (ATA + ρF TFX) is poorly conditioned (owing to the poor conditioning of DTD), even
for large ρ. Because of this, ADMM needs a large number of iterations for converging to a
reasonable solution; even if each iteration is quite efficient, the overall algorithm can still be
impractical.

ADMM using the GFL proximal operator. Alternatively, we can derive a different ADMM
algorithm by considering instead the formulation

minimize ‖A vecX − Y ‖2
2 + ‖ZDΛ‖1,2

subject to X = Z,
(6.23)

which leads to the iterative updates

Xk+1 ← argmin
X
‖A vecX − y‖2

2 + ρ
2
‖X − Zk + Uk‖2

F

Zk+1 ← argmin
Z
‖ZDΛ‖1,2 + ρ

2
‖Xk+1 − Z + Uk‖2

F

Uk+1 ← Uk +Xk+1 − Zk+1.

(6.24)

The X update can still be computed in closed form

vecXk+1 =
(
ATA+ ρI

)−1 (
ATy + ρ vec(Zk − Uk)

)
,

74

which is even simpler to compute than in the previous case, since ATA + ρI is block diagonal
with blocks aiaTi + ρI , which can be solved for in O(n) time; thus the entire X update takes
times O(Tn). The downside is that the Z update, of course, can no longer be solved with soft-
thresholding. But the Z update here is precisely in the form of the group fused lasso; thus, we
can use ASPN directly to perform the Z update. The main advantage here is that the matrix
ATA + ρI is much better conditioned, which translates into many fewer iterations of ADMM.
Indeed, as we show below, this approach can be many orders of magnitude faster than straight
ADMM, which is already a very competitive algorithm for solving these problems.

6.2.2 Color total variation denoising

Next, we consider color total variation denoising example. Given an m × n RGB image repre-
sented as a third order tensor, Y ∈ R3×m×n, total variation image denoising [16, 108] attempts to
find an approximation X ∈ R3×m×n such that differences between pixels in X favor being zero.
It does this by solving the optimization problem

minimize (1/2)‖X − Y ‖2
F + λ

m∑
i=1

n−1∑
j=1

‖X:,i,j −X:,i,j+1‖2 + λ
m−1∑
i=1

n∑
j=1

‖X:,i,j −X:,i+1,j‖2,

corresponding to an `2-norm penalty on the difference between all adjacent pixels, where each
pixel X:,i,j is represented as a 3 dimensional vector. We can write this as a sum of m + n group
fused lasso problems

minimize
m∑
i=1

(
‖X:,i,: − Y:,i,:‖2

F + λ‖X:,i,:D‖1,2

)
+

n∑
j=1

(
‖X:,:,j − Y:,:,j‖2

F + λ‖X:,:,jD‖1,2

)
,

where X:,i,: ∈ R3×n denotes the slice of a single row of the image and X:,:,j ∈ R3×n denotes the
slice of a single column.

Unfortunately, this optimization problem cannot be solved directly via the group fused lasso,
as the difference penalties on the rows and columns for the same matrix X render the problem
quite different from the basic GFL. We can, however, adopt an approach similar to the one above,
and create separate variables corresponding to the row and column slices, plus a constraint that
they be equal; formally, we solve

minimize
m∑
i=1

(
‖X:,i,: − Y:,i,:‖2

F + λ‖X:,i,:D‖1,2

)
+

n∑
j=1

(
‖Z:,:,j − Y:,:,j‖2

F + λ‖Z:,:,jD‖1,2

)
subject to X = Z.

The major advantage of this approach is that it decomposes the problem into m+ n independent
GFL tasks, plus a meta-algorithm that adjusts each sub-problem to make the rows and columns
agree. Several such algorithms are possible, including ADMM; we present here a slightly simpler
scheme known as the “proximal Dykstra” method [25], which has been previously applied to

75

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−5

0

5

0 1 2 3 4 5
10

−5

10
−3

10
−1

10
1

10
3

Time (seconds)

f −
 f*

ASPN
GFL
PG
APG
DR
LBFGS−B

0 5 10 15 20 25 30
10

−5

10
−2

10
1

10
4

Time (seconds)

f −
 f*

ASPN
GFL
PG
APG
DR
LBFGS−B

Figure 6.1: Top left: synthetic change point data, with T = 10000, n = 100, and 10 true
change points. Top right: recovered signal. Bottom left: timing results on synthetic problem
with T = 1000, n = 10. Bottom right: timing results on synthetic problem with T = 10000,
n = 100.

the case of (single channel, i.e., black and white) total variation denoising [10]. Starting with
X0 = Y , P 0 = 0, Q0 = 0, the algorithm iterates as follows:

Zk+1
:,:,j ← GFL(Xk

:,:,j + P k
:,:,j, λ), j = 1, . . . , n

P k+1 ← P k +Xk − Zk+1

Xk+1
:,i,: ← GFL(Zk+1

:,i,: +Qk
:,i,:, λ), i = 1, . . . ,m

Qk+1 ← Qk + Zk+1 −Xk+1.

(6.25)

Typically, very few iterations (on the order of 10) of this outer loop are need to converge to high
accuracy. Furthermore, because each of the m or n GFL problems solved in the first and third
steps are independent, they can be trivially parallelized.

6.3 Numerical results

We present experimental results for our approaches, both on the basic group fused lasso problem,
where we compare to several other potential approaches, and on the two applications of linear
model segmentation and color total variation denoising.

76

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

Number of time points (T)

T
Im

e
(s

ec
on

ds
)

Actual
O(T)

10
0

10
1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of change points (k)

T
im

e
(s

ec
on

ds
)

Actual
O(k3)

Figure 6.2: Left: timing results vs. number of change points at solution for synthetic problem
with T = 10000 and n = 10. Right: timing results for varying T , n = 10, and sparse solution
with 10 change points.

6.3.1 Group fused lasso

Here we evaluate the ASPN algorithm versus several alternatives to solving the group fused lasso
problem, evaluated on both synthetic and real data. Figure 6.1 shows a synthetic time series with
T = 10, 000, n = 100, and 10 discrete change points in the data; the data was generated by
uniformly sampling the change points, sampling the mean of each segment from N (0, I), and
then additional Gaussian noise. Figure 6.1 shows the recovered signal using the group fused lasso
with wt = 1, λt = 20—we show timing results for this problem as well as a smaller problem
with T = 1000 and n = 10; we compare ASPN to GFLseg [15] (which uses coordinate descent
on the primal problem), an accelerated projected gradient on the dual (i.e., the FISTA algorithm)
[11], Douglas-Rachford splitting [24] (a generalization of ADMM that performs slightly better
here), a projected gradient on the dual [5], and LBFGS-B [22] applied to the dual of the dual. In
all cases, ASPN performs as well as (often much better than) the alternatives.

Next, we evaluate how the ASPN algorithm scales as a function of the number of time points
T and the number of change points at the solution, k. In Figure 6.2, the first set of experiments
shows that when the number of change points at the solution is fixed (k = 10), the amount
of time required for a highly accurate solution remains small even for large T , agreeing with
analysis that shows the number of operations required is O(T). In particular, a solution accurate
to 10−6 is found in 4.8 seconds on a problem with T = 106 time points. However, in the next
set of experiments, we see that compute time grows rapidly as a function of k due to the O(k3)
operations required to compute the Newton step, suggesting that the proposed method is most
appropriate for problems with sparse solutions.

Finally, we evaluate the algorithm on two real time series previously used with the group
fused lasso [15], from DNA profiles of bladder and lung cancer sequences. Figure 6.3 shows one
of these two series, along with the approximation produced by the group fused lasso. Figure 6.3
shows timing results for the above methods again on this problem: here we observe the same
overall behavior, that ASPN typically dominates the other approaches.

77

0.5 1 1.5 2 2.5 3

x 10
4

−1

−0.5

0

0.5

1

T

X

0 5 10 15 20 25 30
10

−5

10
−2

10
1

10
4

Time (seconds)

f −
 f*

ASPN
GFL
PG
APG
DR
LBFGS−B

0 50 100 150 200
10

−3

10
0

10
3

10
6

Time (seconds)
f −

 f*

ASPN
GFL
PG
APG
DR
LBFGS−B

Figure 6.3: Top left: Lung data from [15]. Top right: recovered signal using group fused lasso.
Bottom left: Timing results on bladder problem, T = 2143, n = 57. Bottom right: Timing
results on lung problem, T = 31708, n = 18.

0 2000 4000 6000 8000 10000
−0.5

0

0.5

T

y

0 2000 4000 6000 8000 10000

−0.2

−0.1

0

0.1

0.2

T

X

0 2000 4000 6000 8000 10000

−0.2

−0.1

0

0.1

0.2

T

X

0 2000 4000 6000 8000 10000

−0.2

−0.1

0

0.1

0.2

T

X

Figure 6.4: Top left: Observed autoregressive signal zt. Top right: true autoregressive model
parameters. Bottom left: Autoregressive parameters recovered with “simple” ADMM algorithm.
Bottom right: parameters recovered using alternative ADMM w/ ASPN.

78

0 10 20 30 40 50 60

10
−5

10
0

Time (seconds)

f −
 f*

ADMM w/ TV
ADMM

Figure 6.5: Convergence of simple ADMM versus alternative ADMM w/ ASPN

6.3.2 Linear regression segmentation

Here we apply the two different ADMM methods discussed in Section 6.2.1 to the task of
segmenting auto-regressive time series models. In particular, we observe some time series
z1, . . . , zT , and we fit a linear model to this data zt ≈ aTt xt where at = (zt−1, zt−2, . . . , zt−n).
Figure 6.4 (top) shows an example time series generated by this process, as well as the true under-
lying model that generated the data (with additional noise). This is the rough setting used in [92],
which was the first example we are aware of that uses such regularization techniques within an
linear regression framework. Figure 6.4 (bottom) shows the model parameters recovered using
the method from Section 6.2.1, which here match the ground truth closely.

Of more importance, though, is the comparison between the two different ADMM approaches.
Figure 6.5 shows convergence versus running time and here the “simple” ADMM approach,
which encodes the difference operator in the constraints (and thus has simpler updates), con-
verges significantly slower than our alternative. Importantly, the X axis in this figure is mea-
sured in time, and we emphasize that even though the “simple” ADMM updates are individually
slightly faster (they do not involve GFL subproblems), their overall performance is much poorer.
Further, as illustrated in Figure 6.4 (bottom), the “simple” ADMM approach never actually ob-
tains a piecewise constant X except at the optimum, which is never reached in practice.

6.3.3 Color total variation denoising

Finally, as described in Section 6.2.2, we apply the proximal Dykstra algorithm, using ASPN as a
fast subroutine, to color image denoising. Figure 6.6 shows a 256x256 image generated by com-
bining various solid-colored shapes, corrupted with per-RGB-component noise ofN (0, 0.1), and
then recovered with total variation denoising. There has been enormous work on total variation
denoising, and while a full comparison is beyond the scope of this work, ADMM or methods
such as those used by the FTVd routines in [144], for instance, are considered to be some of the
fastest for this problem. In Figure 6.7, we show the performance of our approach and ADMM
versus iteration number, and as expected observe better convergence; for single-core systems,

79

Figure 6.6: Left: original image. Middle: image corrupted with Gaussian noise. Right: imaged
recovered with total variation using proximal Dykstra and ASPN.

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Iteration

(f
−

f*)/
f*

ADMM
Dykstra+ASPN

Figure 6.7: Comparison of proximal Dykstra method to ADMM for TV denoising of color image.

80

ADMM is ultimately a better solution for this problem, since each iteration of ADMM takes
about 0.767 seconds in our implementation whereas 512 calls to ASPN take 20.4 seconds. How-
ever, the advantage to the ASPN approach is that all these calls can be trivially parallelized for
a 256X speedup (the calls are independent and all code is CPU-bound), whereas parallelizing a
generic sparse matrix solve, as needed for ADMM-based approaches, is much more challenging
and thus per-iteration performance highlights the potential benefits of the ASPN approach.

81

Part III

Applications in Energy

82

Introduction to Applications in Energy

In Parts I and II we develop convex methods with wide applicability to many different domains,
focusing on convex problem formulations proposed by researchers in statistics, machine learn-
ing with applications including computational biology, finance and many others. In many ways,
the strength of the convex optimization (as well as machine learning) is that this model-based
approach provides a general set of tools that can be applied in many seemingly different appli-
cations. At the same time, the goals of a particular application often drive the development of
new approaches; our interest in the models and methods studied has been in large part driven
by applications in energy systems and specifically the challenge of building the next-generation
electrical grid, a highly complex system which is presently facing a number of distinct chal-
lenges and opportunities. Chapters 7-9, comprising Part III of this thesis, consider several such
challenges, taking a data-driven approach driven by scalable convex optimization methods.

Short-term forecasting is a ubiquitous practice for electrical grid operators who must ensure
that the supply and demand for electricity is balanced at all times on the grid. For example,
over the past several decades experts have developed highly accurate models for aggregate load
forecasting (often on the order of 1-2% relative error) which is critical input into the day-ahead
planning process. However, new renewable energy sources such as wind and solar are now be-
ing integrated into the grid, requiring new forecasting approaches. In Chapter 7, we propose a
probabilistic forecasting model for the joint distribution of future power production over multiple
locations and multiple time points. This gives rise to a high-dimensional statistical estimation
problem which we solve using the convex optimization methods developed in Chapter 4. The
outputs of such a model could be integrated a scenario-based day-ahead dispatch algorithm in or-
der to more effectively integrated renewable sources, improving on the point forecast algorithms
employed now.

Beyond forecasting supply and demand at the level of the transmission network, understand-
ing the nature of energy usage at a more fine-grained level poses a number of opportunities and
challenges. Recently, utilities have invested heavily in the deployment of smart meters which
now report energy usage for millions of homes in the United States. These smart meters record
and report whole home energy usage in 15 minute intervals, giving much greater visibility into
fine-grained consumption patterns. However, it can be difficult to pinpoint the exact energy end-
uses from this data, as there are often times several significant loads behind the meter. In Chapter
8, we develop a optimization-based approach that disaggregates smart meter energy usage into
categories of consumption through the use of contextual information such as outdoor temperature
data. Taking an optimization approach to this problem provides a rich set of tools (e.g., different
loss functions for usage categories assumed to be spiky or smooth), and our methods are able to

83

scale to the problem requirement of analyzing millions of homes and years worth of data.
Finally, Chapter 9 considers a different framework for developing next-generation grid solu-

tions: microgrids, small networks of power producing and consuming devices. With the advent
of cheap distributed generation, microgrids are increasingly attractive as they allow for indepen-
dent operation, providing resiliency as well as a solution to situations where conventional grids
are unavailable. Unlike the conventional grid, microgrid operation presents significant challenges
due to low inertia as the amount of generation is often close to the amount of consumption, lead-
ing to large transient responses when loads are switched on or off. In this setting, we would like
to differentiate between short transient responses and overload conditions when available gener-
ation is truly insufficient. We adopt a data-driven approach to this problem, developing a method
for predicting microgrid collapse from historical observations; computationally, our approach is
variation on the traditional support vector machine and thus the model fits within the general
convex programming approach developed in Part I.

84

Chapter 7

Probabilistic Forecasting of Electricity
Generation and Demand

Short-term forecasting is a ubiquitous practice in a wide range of energy systems, including
forecasting demand, renewable generation, and electricity pricing. Although it is known that
probabilistic forecasts (which give a distribution over possible future outcomes) can improve
planning and control, many forecasting systems in practice are just used as “point forecast”
tools, as it is challenging to represent high-dimensional non-Gaussian distributions over multiple
spatial and temporal points. In this section, we apply the sparse Gaussian conditional random
field model discussed in Chapter 4 and extend it to the non-Gaussian case using the copula
transform. On a wind power forecasting task, we show that this probabilistic model greatly
outperforms other methods on the task of accurately modeling potential distributions of power
(as would be necessary in a stochastic dispatch problem, for example).

7.1 Introduction

Forecasting, the task of predicting future time series from past observations, is ubiquitous in en-
ergy systems. As well-known examples, electricity system operators routinely forecast upcoming
electrical load and use these forecasts in market planning [119, 130]; wind farms forecast future
power production when offering bids into these markets [71, 83, 115]; and there is a growing use
of forecasting at the micro-scale for coordinating smart grid operations [6]. Despite their ubiq-
uity and the complexity of many forecasting methods, most methods are ultimately employed as
“point forecast” strategies; users train a system to output point predictions of upcoming values,
typically to minimize a metric such as root mean squared error. However, for many complex
control and planning tasks, such point forecasts are severely limited: the processes that make up
electrical demand, wind power, etc, are stochastic systems and the notion of a “perfect forecast”
is unattainable. Thus, probabilistic forecasts, which output a distribution over potential future
outcomes instead of a single prediction, are of substantial practical interest. Indeed, studies have
demonstrated that in the context of electrical demand and wind power, probabilistic forecasts can
offer substantial benefits over point predictions [100].

The challenge of probabilistic forecasts is that it is often very hard to describe the joint dis-

85

tribution over all predicted values because many variables of interest are highly non-Gaussian
and it can be difficult to accurately model correlations in a high-dimensional output space. For
this reason, most of the literature on probabilistic forecasting has often made simplifying as-
sumptions, for example using specific forms of Gaussian linear models, such as autoregressive
moving average (ARMA) models (e.g. [82]); or only predicting non-Gaussian marginal distri-
butions for single output variables (e.g. [81]). Indeed, past work has explicitly highlighted the
challenge of developing models that can capture joint distributions over future values.

7.2 The probabilistic forecasting setting
We consider the following setting: let zt ∈ Rn denote a vector-valued observation at time t; for
example, the ith element of zt, denoted (zt)i could denote the power output by a particular wind
farm at time t, and i could range over a collection of wind farms. We let wt ∈ Rm denote a set
of (known) exogenous variables that may affect the evolution of the sequence; for example, wt
may include the current time of day, day of the year, and even external variables such as wind
forecasts at upcoming time points. The goal of our forecasting setting is to predict Hf future
values given Hp past values and the exogenous variables:

Given zt−Hp+1:t, wt, predict zt+1:t+Hf
. (7.1)

This setting can be referred to as the vector autoregressive exogenous (VARX) setting [99];
however, this terminology is also used to describe a particular form of probabilistic model for
the sequence, so we just refer to it generally as a multivariate forecasting problem.

Although predicting a single estimate of future observations from past observations can be
very useful in many situations, we often want to understand more broadly the distribution of
possible future observations given past observations and exogenous factors, denoted as

p(zt+1:t+Hf
|zt+1:t+Hf

, wt). (7.2)

We are particularly interested in the case where individual observations zt are high-dimensional
and we want to predict their evolution over a relatively long time horizon, resulting in a high-
dimensional probability distribution. The task is made more challenging by the fact that the
observations may not have Gaussian distributions (indeed, in the case of our wind power setting,
they typically do not) and by the fact that we may have relatively few past observations upon
which to build our high-dimensional model.

7.2.1 Relation to existing settings and models
A common method for handling such settings is a vector autoregressive exogenous model in
which we model future observations as a linear combination of past observations, exogenous
variables, and a Gaussian noise term

zt+1 =

Hp−1∑
i=0

Θizt−i + Ψwt + εt (7.3)

86

where Θi ∈ Rn×n and Ψ ∈ Rn×m are model parameters, and εt ∼ N (0,Σ) is a zero-mean
Gaussian random variable with covariance Σ. If we want to make forecasts over a multiple
future time points, we can iteratively apply this model or explicitly build an additional VARX
model to predict zt+2 from past values.

A common extension to the autoregressive framework is to add a moving sum of noise vari-
ables, resulting in the autoregressive moving average (ARMA) family of models (see, e.g., [20])
and in this particular setting, the VARMAX model. Additionally, we may choose Θ such that
the overall system has at least one unit root (ARIMA models) or consider only a certain periodic
set of past observations (seasonal ARIMA models). These and other approaches have been used
extensively in the literature, and while they do impose a joint probabilistic model over future
observations, they are very limited in the form of this distribution (multivariate Gaussian with a
particular covariance matrix).

In the sequel we will consider forecasting using a model that allows for more general de-
pendencies between predicted variables, can capture non-Gaussian marginal distribution of the
variables via a copula transform, and which can be learned from very little data by exploiting
sparsity. We focus largely on extensions of the pure autoregressive setting, but the model can
also be extended to the ARMA setting by introducing additional latent variables.

7.3 Forecasting with the sparse Gaussian CRF
Here we describe the application of the sparse Gaussian conditional random field (SGCRF, see
Chapter 4) to probabilistic forecasting. For simplicity of notation, we refer to the set of all known
variables as a single vector x ∈ Rn, while the unknown variables we are attempting to predict
are given by y ∈ Rp

x =

zt
zt−1

...
zt−Hp+1

wt

 , y =

zt+1

zt+2
...

zt+Hf

 . (7.4)

Recall, the SGCRF models the distribution y|x as

p(y|x; Θ,Λ) ∝ exp

{
−1

2
yTΛy − xTΘy

}
(7.5)

where Λ ∈ Rp×p and Θ ∈ Rn×p are the parameters of the model. Critically, we can express
models with high correlation between variables even though Λ and Θ are sparse. To see this,
note that the model can easily be transformed to mean/covariance form

p(y|x) ∼ N (−Λ−1ΘTx,Λ−1) (7.6)

but Λ−1Θ and Λ−1 are likely dense even when Λ and Θ are sparse. Thus, in the forecasting
setting, each element of our prediction zt+1:t+Hf

can depend on every element of zt−Hp+1:t and
wt. By exploiting sparsity, we learn the model efficiently from much less data than would be
required to estimate the mean and covariance directly.

87

7.3.1 Non-Gaussian distributions via copula transforms
The above SGCRF is limited in that it can only model the distribution over y as a multivariate
Gaussian. To overcome this limitation, we employ a (Gaussian) copula transform [148], a method
for converting multivariate Gaussian distributions into multivariate distributions with arbitrary
marginal distributions. Previous work has applied the copula transform to extend the sparse
Gaussian MRF to non-Gaussian distributions [76] and here we extend this to the SGCRF, forming
a model which is well-suited for probabilistic forecasting in a wide variety of energy systems.

Formally, suppose u ∈ R is a univariate random variable with cumulative distribution func-
tion (CDF) F ; when we only have samples of u, we use the empirical CDF

F̂ (u) =
1

m

m∑
i=1

1{u < ui}. (7.7)

In the case that we expect the variables to come from known distribution (e.g. the Weibull distri-
bution for modeling wind speeds), we could use the analytical CDF of this distribution directly.
The copula transform simply converts the sample distribution to a uniform [0, 1] random variable
by the CDF F , then applies the inverse normal CDF Φ−1 to transform the [0, 1] random variable
into a Gaussian random variable. Our algorithm models the variables using a SGCRF in this
transformed Gaussian space, and then transforms back to the original distribution by applying
the inverse copula transform (the normal CDF Φ followed by the inverse CDF F−1). Impor-
tantly, this process isolates the probabilistic assumptions of the SGCRF model, allowing it to
better handle non-Gaussian variables such as the distribution over future wind power production.

7.3.2 Final Algorithm
As with all learning methods, using SGCRFs consists of a training stage where we learn the
parameters that maximize the model’s likelihood on past observations. Then, for a new scenario
(denoted x′ ∈ Rn), we use the model to make predictions about the future observations y′. The
training stage consists of the following elements:

1. Given data (xi, yi), for i = 1, . . . ,m (recall that each xi consists of Hp past observations
and external inputs wt, and each yi consists of Hf future observations), first estimate the
univariate marginal distributions of each (yi)j , denoted Fj .

2. Transform each the yi variables to a variable with marginal Gaussian distributions ỹi by
applying the elementwise copula transform

(ỹi)j = Φ−1(Fj((yi)j)) (7.8)

3. Train a SGCRF model (i.e., estimate the Θ and Λ parameters) on (xi, ŷi), i = 1, . . . ,m.
With a model, we can perform any of the following tasks:
• Compute the most likely output: Compute the mean in the Gaussian space ỹ′ = −Λ−1ΘTx′;

then transform each element of ỹ′ using the inverse copula transform

(ŷ′)j = F−1(Φ((ỹ′)j)) (7.9)

88

• Compute the probability of a given output y′: Convert y′ to the Gaussian space using
(7.8) and compute

p(y′|x′) =p(ỹ′|x′; Θ,Λ)

=
1

Z(x′)
exp

{
−1

2
(ỹ′)TΛỹ′ − (x′)TΘỹ′

}
(7.10)

• Draw a random sample of future observations: Sample

ỹ′ ∼ N (−Λ−1ΘTx′,Λ−1) (7.11)

and then apply the inverse copula transform (7.9) to ỹ′.

7.4 Experimental results on wind power forecasting
In this section, we describe an application of the above probabilistic forecasting method to a real-
world wind power prediction task. We use data from the GEFCom 2012 forecasting challenge, a
wind power forecasting competition that was recently held on Kaggle [58], where the goal was
to predict power output from 7 nearby wind farms over the next 48 hours using forecasted wind
speed and direction as input variables.

In our setup, we model wind power production jointly across all wind farms as zt ∈ R7

and include the forecasted wind at each farm as exogenous variables. We model the non-linear
dependence of the wind power using radial basis functions (RBFs) with centers and variances
tuned using cross-validation, resulting in 10 RBFs for each time point and location and wt ∈
R3360. We also include autoregressive features for past wind power over the previous 8 hours
which we found experimentally to be sufficient to capture the autoregressive behavior of wind
power in this dataset. In our framework, the input and output variables (xt, yt) are compromised
of wt and zt ranging over past and future time points

xt =

zt
...

zt−7

wt

 , yt =

 zt+1
...

zt+48

 (7.12)

resulting in xt ∈ R3416 and yt ∈ R336.
We fit the model using 80% of the provided data (874 training examples) and report results

on the held out set. As baselines, we consider a linear regression model (LR) which predicts each
output independently and an ARMAX model with AR(3) and MA(2) components, both using the
same input features as the SGCRF.

7.4.1 Probabilistic predictions
Typically, forecasting systems are evaluated solely on the quality of the point forecasts produced
and we see in Table 7.1 that, on this basis, the SGCRF method performs significantly better than

89

Algorithm RMSE
Linear Regression 0.1560
Linear Regression + copula 0.1636
ARMAX 0.1714
SGCRF 0.1488
SGCRF + copula 0.1584

Table 7.1: Comparison of mean prediction error on wind power forecasting.

Figure 7.1: Sparsity patterns Λ and Θ from the SGCRF model. Λ is estimated to have 1412
nonzero entries (1.2% sparse) and Θ is estimated to have 7714 nonzero entries (0.67% sparse).
White denotes zero values and wind farms are grouped together in blocks.

linear regression and ARMAX. Due to the high dimensionality of the feature space relative to the
number of training examples, we expect the `1 penalty employed by the SGCRF to be statistically
efficient in identifying the underlying structure of the correlations in wind power production and
the dependence of wind power on wind forecasts; indeed in Figure 7.1, we see that the estimated
parameters exhibit a high degree of sparsity.

However, we are primarily interested not in the accuracy of point forecasts, but in the ability
of the models to capture the distribution of future power production. Indeed, as shown in the
same Table 7.1, the inclusion of the copula transform degrades the performance of the models
in terms of RMSE; this is expected since by assuming a Gaussian distribution over the noise,
the untransformed models are explicitly minimizing mean squared error. RMSE alone is a poor
measure of how well an algorithm can actually predict future observations: if we judge the
algorithms by the ability to accurately predict the range of possibilities for future outcomes, a
different picture emerges. For example, a natural task for a wind farm operation would be to
generate a distribution over total power produced by all seven wind farms in the next 24 hours,
in order to establish 95% confidence intervals about the power to be produced; this could in turn
by used by stochastic optimal dispatch method, to determine how much power to generate from
other sources.

Table 7.2 illustrates the coverage of the confidence intervals generated by different approaches,
evaluated on a held-out test set of the wind power data. For each example in the test set, we used
each method to generate many samples of upcoming wind power and for each of these samples,
we computed the total power aggregated over all the farms, all times, or both, and used these

90

Method Task 90% 95% 99%

LR
Aggregate farms 0.6943 0.7653 0.8600
Aggregate times 0.3790 0.4451 0.5364

Both 0.1944 0.2500 0.3333

LR + copula
Aggregate farms 0.7256 0.8051 0.9040
Aggregate times 0.4028 0.4663 0.5728

Both 0.2176 0.2639 0.3380

ARMAX
Aggregate farms 0.5682 0.6473 0.7570
Aggregate times 0.6779 0.8188 0.9544

Both 0.2454 0.3102 0.4213

SGCRF
Aggregate farms 0.8267 0.8791 0.9443
Aggregate times 0.6104 0.6885 0.7976

Both 0.4306 0.5370 0.6389

SGCRF + copula
Aggregate farms 0.8981 0.9468 0.9830
Aggregate times 0.8743 0.9266 0.9722

Both 0.8796 0.9259 0.9676

Table 7.2: Coverage of confidence intervals for wind power forecasting models.

0 50 100
0

0.05

0.1

0.15

0.2

0.25

x

P
ro

b(
E

ne
rg

y
=

 x
)

LR
LR + copula
SGCRF + copula

0 50 100
0

0.05

0.1

0.15

0.2

0.25

x

P
ro

b(
E

ne
rg

y
=

 x
)

Figure 7.2: Examples of predictive distributions for total energy output from all wind farms over
a single day.

91

to generate histograms of the aggregated power. Finally, we used these histograms to estimate
90%, 95%, and 99% confidence intervals of the aggregate power, and evaluated how often the
true total wind power fell into that interval.

As seen in Table 7.2, the SGCRF + copula model produces intervals that map very closely
to their desired coverage level, whereas linear Gaussian and ARMAX models perform much
worse. To see why this occurs, we show in Figure 7.2 several of these estimated distributions of
aggregate power, sampled from the different models. The independent Gaussian models are sub-
stantially overconfident in their predictions, as summing together multiple i.i.d. random variables
will tend to tighten the variance, leading to vastly inaccurate predictions when those variables
are in fact highly correlated. We note that we could also consider a joint linear model by forming
the unregularized MLE for the covariance matrix, but in general this is not well-suited for high-
dimensional problems and in fact is undefined for p > m. The ARMAX model does capture
some of the correlation across time via the moving average component and we see in Table 7.2
that it performs significantly better than linear regression when aggregating predictions across
multiple times. However, the SGCRF with the copula transform clearly achieves the best results
implying that it is more accurately capturing the correlated nature of the actual joint distribution.

7.4.2 Ramp detection
One particularly appealing possibility for the probabilistic forecasting methods is in the area of
predicting wind “ramps,” times when power experiences a sudden jump from a relatively low to
a relatively high value. Because wind power grows with the cube of wind speed in Region 2 of
the turbine operating conditions (before the wind turbines reach rated power), a small increase
in wind speed can lead to a large change in power, and predicting when these ramps occur is
one of the primary open challenges in wind forecasting. Indeed, a well-known issue with many
forecasting methods is that while they may accurately predict that a ramp will occur, they are
significantly limited in accurately capturing the uncertainty over where the ramp will occur [45].

Although a detailed analysis of the ramp prediction capabilities of our approach is not the
main focus on this paper, we briefly highlight the potential of our approach in this task. In partic-
ular, because the model accurately captures correlations in the predicted observations over time,
if we draw random samples from our model, then we expect scenarios where the ramp occurs
at different times; this is in contrast to most “independent” probabilistic methods, which would
assume a fairly tight distribution over possible future scenarios. This situation is illustrated in
Figure 7.3, where we show the mean prediction along with 10 samples drawn from each model.
Again, in a stochastic optimal control task, an operator would be much better served by consid-
ering the possible scenarios generated from our model than from the independent probabilistic
model, as they consist of several different timings for the upcoming power ramp.

92

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour

E
ne

rg
y

Mean
Sample
Truth

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Hour

E
ne

rg
y

Figure 7.3: Samples drawn from the linear regression model (top), and SGCRF model (bottom)

93

Chapter 8

Contextually Supervised Source
Separation for Energy Disaggregation

Contextually supervised source separation is a framework for single-channel source separation
that lies between the fully supervised and unsupervised setting. Instead of supervision, we pro-
vide input features for each source signal and use convex methods to estimate the correlations
between these features and the unobserved signal decomposition. It is a natural fit for domains
with large amounts of data but no explicit supervision; for example, energy disaggregation of
hourly smart meter data (the separation of whole-home power signals into different energy uses).
Here contextual supervision allows us to provide itemized energy usage for thousands of homes,
a task previously impossible due to the need for specialized data collection hardware. On smaller
datasets which include labels, we demonstrate that contextual supervision improves significantly
over a reasonable baseline and existing unsupervised methods for source separation.

8.1 Introduction

We consider the single-channel source separation problem, in which we wish to separate a single
aggregate signal into a mixture of unobserved component signals. Traditionally, this problem
has been approached in two ways: the supervised setting [70, 107, 111],where we have access to
training data with the true signal separations and the unsupervised (or “blind”) setting [18, 30, 74,
110], where we have only the aggregate signal. However, both settings have potential drawbacks:
for many problems, including energy disaggregation—which looks to separate individual energy
uses from a whole-home power signal [57]—it can be difficult to obtain training data with the
true separated signals needed for the supervised setting; in contrast, the unsupervised setting
is an ill-defined problem with arbitrarily many solutions, and thus algorithms are highly task-
dependent.

Contextually supervised source separation provides a compelling framework for energy dis-
aggregation from “smart meters”, communication-enabled power meters that are currently in-
stalled in more than 32 million homes [63], but are limited to recording whole home energy
usage at low frequencies (every 15 minutes or hour). This is an important task since many
studies have shown that consumers naturally adopt energy conserving behaviors when presented

94

with a breakdown of their energy usage [29, 42, 86]. There are several possible ways that such
a breakdown could be achieved; for example, by installing current sensors on each device we
could monitor electricity use directly. But, as custom hardware installation is relatively expensive
(and requires initiative from homeowners), algorithmic approaches that allow disaggregation of
energy data already being collected are appealing. However, existing energy disaggregation ap-
proaches virtually all use high-frequency sampling (e.g. per second or faster) which still requires
the installation of custom monitoring hardware for data collection. In contrast, by enabling dis-
aggregation of readily available low-resolution smart meter data, we can immediately realize the
benefits of observing itemized energy use without the need for additional monitoring hardware.

8.1.1 Related work

As mentioned above, work in single-channel source separation has been separated along the lines
of supervised and unsupervised algorithms. A common strategy is to separate the observed ag-
gregate signal into a linear combination of several bases, where different bases correspond to
different components of the signal; algorithms such as Probabilistic Latent Component Analysis
(PLCA) [116], sparse coding [94], and factorial hidden Markov models (FHMMs) [50] all fall
within this category, with the differences concerning 1) how bases are represented and assigned
to different signal components and 2) how the algorithm infers the activation of the different
bases given the aggregate signal. For example, PLCA typically uses pre-defined basis functions
(commonly Fourier or Wavelet bases), with a probabilistic model for how sources generate dif-
ferent bases; sparse coding learns bases tuned to data while encouraging sparse activations; and
FHMMs use hidden Markov models to represent each source. In the supervised setting, one typ-
ically uses the individual signals to learn parameters for each set of bases (e.g., PLCA will learn
which bases are typical for each signal), whereas unsupervised methods learn through an EM-
like procedure or by maximizing some separation criteria for the learned bases. The method we
propose here is conceptually similar, but the nature of these bases is rather different: instead of
fixed bases with changing activations, we require features that effectively generate time-varying
bases and learn activations that are constant over time.

Orthogonal to this research, there has also been a great deal of work in multi-channel blind
source separation problems, where we observe multiple mixings of the same sources (typically,
as many mixings as there are signals) rather than in isolation. These methods can exploit signifi-
cantly more structure and algorithms like Independent Component Analysis [12, 26] can separate
signals with virtually no supervised information. However, when applied to the single-channel
problem (when this is even possible), they typically perform substantially worse than methods
which exploit structure in the problem, such as those described above.

From the applied point of view, algorithms for energy disaggregation have received growing
interest in recent years [66, 69, 70, 98, 149] but these approaches all use either high-frequency
sampling of the whole-building power signal or known (supervised) breakdowns whereas the
focus of this work is disaggregating low-resolution smart data without the aid of explicit super-
vision, as discussed in the previous section.

95

8.2 Contextually supervised source separation
We begin by formulating the optimization problem for contextual source separation. Formally,
we assume there is some unknown matrix of k component signals

Y ∈ RT×k =

 | | |
y1 y2 · · · yk
| | |

 (8.1)

from which we observe the sum ȳ =
∑k

i=1 yi. For example, in our disaggregation setting,
yi ∈ RT could denote a power trace (with T total readings) for a single type of appliance, such
as the air conditioning, lighting, or electronics, and ȳ denotes the sum of all these power signals,
which we observe from a home’s power meter.

In our proposed model, we represent each individual component signal yi as a linear function
of some component-specific bases Xi ∈ RT×ni

yi ≈ Xiθi (8.2)

where θi ∈ Rni are the signal’s coefficients. The formal objective of our algorithm is: given the
aggregate signal ȳ and the component features Xi, i = 1, . . . , k, estimate both the parameters θi
and the unknown source components yi. We cast this as an optimization problem

minimize
Y,θ

k∑
i=1

{`i(yi, Xiθi) + gi(yi) + hi(θi)}

subject to
k∑
i=1

yi = ȳ

(8.3)

where `i : RT × RT → R is a loss function penalizing differences between the ith reconstructed
signal and its linear representation; gi is a regularization term encoding the “likely” form of the
signal yi, independent of the features; and hi is a regularization penalty on θi. Choosing `i, gi
and hi to be convex functions results in a convex optimization problem.

A natural choice of loss function `i is a norm penalizing the difference between the recon-
structed signal and its features ‖yi−Xiθi‖, but since our formulation enables loss functions that
depend simultaneously on all T values of the signal, we allow for more complex choices as well.
For example in the energy disaggregation problem, air conditioning is correlated with high tem-
perature but does not respond to outside temperature changes instantaneously; thermal mass and
the varying occupancy in buildings often results in air conditioning usage that correlates with
high temperature over some window (for instance, if no one is in a room during a period of high
temperature, we may not use electricity then, but need to “make up” for this later when someone
does enter the room). In this case, the loss function

`i(yi, Xiθi) = ‖(yi −Xiθi)(I ⊗ 1T)‖2
2 (8.4)

which penalizes the aggregate difference of yi and Xiθi over a sliding window, can be used to
capture such dynamics. In many settings, it may also make sense to use `1 or `∞ rather than `2

loss, depending on the nature of the source signal.

96

Model MAE
Mean prediction 0.3776
Nonnegative sparse coding 0.2843
`2 loss for y1 0.1205
`2 loss for y1, `1 loss for y2 0.0994
`2 loss for y1, `1 loss for y2, penalty on ‖Dyi‖ 0.0758

Table 8.1: Performance on disaggregation of synthetic data.

Likewise, since the objective term gi depends on all T values of yi, we can use it to encode
the likely dynamics of the source signal independent of Xiθi. For air conditioning and other
single appliance types, we expect sharp transitions between on/off states which we can encode by
penalizing the `1 norm ofDyi whereD is the linear difference operator subtracting (yi)t−1−(yi)t.
For other types of energy consumption, for example groups of many electronic appliances, we
expect the signal to have smoother dynamics and thus `2 loss is more appropriate. Finally, we
also include hi for statistical regularization purposes—but for problems where T � ni, such as
the ones we consider in energy disaggregation, the choice of hi is less important.

8.3 Experimental results

In this section we evaluate contextual supervision for energy disaggregation on one synthetic
dataset and two real datasets. On synthetic data we demonstrate that contextual supervision sig-
nificantly outperforms existing methods (e.g. nonnegative sparse coding) and that by tailoring the
loss functions to the expected form of the component signals (as is a feature of our optimization
framework), we can significantly increase performance. On real data, we begin with a dataset
from Pecan Street, Inc. (http://www.pecanstreet.org/) that is relatively small (less than 100
homes), but comes with labeled data allowing us to validate our unsupervised algorithm quan-
titatively. Here we show that our unsupervised model does remarkably well in disaggregating
sources of energy consumption and improves significantly over a reasonable baseline. Finally,
we apply the same methodology to disaggregate large-scale smart meter data from Pacific Gas
and Electric (PG&E) consisting of over 4000 homes and compare the results of our contextually
supervised model to aggregate statistics from independent survey data.

In all experiments, we tune the model using hyperparameters that weigh the terms in the op-
timization objective; in the case of energy disaggregation, the model including hyperparameters
α and β is shown in Table 8.3. We set these hyperparameters using a priori knowledge about
the relative frequency of each signal over the entire dataset. For energy disaggregation, it is rea-
sonable to assume that this knowledge is available either from survey data (e.g. [128]), or from
a small number of homes with more fine-grained monitoring, as is the case for the Pecan Street
dataset. In both cases, we use the same hyperparameters for all homes in the dataset.

97

http://www.pecanstreet.org/

0

0.5

1

1.5

2

x 1 x 2

−2

−1

0

1

2

w 1 w 2

0

1

2

3

4

5

y 1 +
 y

2

Actual Estimate

0

1

2

y 1

0

1

2

3

y 2

Figure 8.1: Synthetic data generation process starting with two underlying signals (top left),
corrupted by different noise models (top right), summed to give the observed input (row 2) and
disaggregated (rows 3 and 4).

98

Category Mean NNSC Contextual
Base 0.2534 0.2793 0.1849
A/C 0.2849 0.2894 0.1919
Appliance 0.2262 0.2416 0.1900
Average 0.2548 0.2701 0.1889

Table 8.2: Comparison of performance on Pecan Street dataset, measured in mean absolute error
(MAE).

Category Features `i gi
Base Hour of day α1‖y1 −X1θ1‖1 β1‖Dy1‖2

2

Heating RBFs over temperatures < 50◦F α2‖S2(y3 −X3θ3)‖1 β2‖Dy3‖1

A/C RBFs over temperatures > 70◦F α3‖S2(y2 −X2θ2)‖1 β3‖Dy2‖1

Appliance None α4‖y4‖1 β4‖Dy4‖1

Table 8.3: Model specification for contextually supervised energy disaggregation.

8.3.1 Disaggregation of synthetic data
The first set of experiments considers a synthetic generation process that mimics signals that we
encounter in energy disaggregation. The process described visually in Figure 8.1 (top) begins
with two signals, the first is smoothly varying over time while the other is a repeating step
function

X1(t) = sin(2πt/τ1) + 1, X2(t) = I(t mod τ2 < τ2/2) (8.5)

where I(·) is the indicator function and τ1, τ2 are the period of each signal. We also use two
different noise models: for the smooth signal we sample Gaussian noise fromN (0, σ2) while for
the step function, we sample a distribution with a point mass at zero, uniform probability over
[−1, 0) ∪ (0, 1] and correlate it across time by summing over a window of size β. Finally, we
constrain both noisy signals to be nonnegative and sum them to generate our input.

We generate data under this model for T = 50000 time points and consider increasingly
specialized optimization objectives while measuring the error in recovering Y ? = XD(θ?) +W ,
the underlying source signals corrupted by noise. As can be seen in Table 8.1, by using `1 loss for
y2 and adding gi(yi) terms penalizing ‖Dy1‖2

2 and ‖Dy2‖1, error decreases by 37% over just `2

loss alone; in Figure 8.1, we observe that our estimation recovers the true source signals closely
with the gi terms helping to capture the dynamics of the noise model for w2.

As a baseline for this result, we compare to the mean prediction heuristic (predicting at each
time point a breakdown proportional to the overall probability of each signal) and to a state-
of-the-art unsupervised method, nonnegative sparse coding [60]. We apply sparse coding by
segmenting the input signal into 1000 examples of 50 time points (1/4 the period of the sine
wave, X1(t)) and fit a sparse model of 200 basis functions. We report the best possible source
separation by assigning each basis function according to an oracle measuring correlation with
the true source signal and using the best value over a grid of hyperparameters. As can be seen
in Table 8.1, the mean prediction heuristic is nearly 5 times worse and sparse coding is nearly 4
times worse than our best contextually supervised model.

99

0

2

4

6

T
ot

al
 (

kW
h)

Actual Estimate

0

2

4

Ba
se

 (k
W

h)

0

2

4

A/
C

 (k
W

h)

24 48 72 96 120 144 168
0

2

4

A
pp

lia
nc

e
(k

W
h)

Hour

Figure 8.2: Energy disaggregation results over one week and a single home from the Pecan Street
dataset.

100

100 200 300
0

20

40

60

80

100

Day

E
ne

rg
y

(k
W

h)

100 200 300

Day

Base A/C Appliance

Figure 8.3: Energy disaggregation results over entire time period for a single home from the
Pecan Street dataset with estimated (left) and actual (right).

8.3.2 Energy disaggregation with ground truth

Next we consider the ability of contextual supervision to recover the sources of energy consump-
tion on a real dataset from Pecan Street consisting of 84 homes each with at least 1 year worth of
energy usage data. As contextual information we construct a temperature time series using data
from Weather Underground (http://www.wunderground.com/) measuring the temperature at
the nearby airport in Austin, Texas. The Pecan Street dataset includes fine-grained energy usage
information at the minute level for the entire home with an energy breakdown labeled according
to each electrical circuit in the home. We group the circuits into categories representing air con-
ditioning, large appliances and base load and aggregate the data on an hourly basis to mimic the
scenario presented by smart meter data.

The specification of our energy disaggregation model is given in Table 8.3—we capture the
non-linear dependence on temperature with radial-basis functions (RBFs), include a “Base” cate-
gory which models energy used as a function of time of day, and featureless “Appliance” category
representing large spikes of energy which do not correspond to any available context. For sim-
plicity, we penalize each category’s deviations from the model using `1 loss; but for heating and
cooling we first multiply by a smoothing matrix Sn (1’s on the diagonal and n super diagonals)
capturing the thermal mass inherent in heating and cooling: we expect energy usage to correlate
with temperature over a window of time, not immediately. We use gi(yi) and the difference oper-
ator to encode our intuition of how energy consumption in each category evolves over time. The
“Base” category represents an aggregation of many sources which we expect to evolve smoothly
over time, while the on/off behavior in other categories is best represented by the `1 penalty. Fi-
nally we note that in the Pecan Street data, there is no labeled circuit corresponding exclusively
to electric heating (“Heating”), and thus we exclude this category for this dataset.

101

http://www.wunderground.com/

24 48 72 96 120 144 168
0

5

10

15

20

25

Hour

E
ne

rg
y

(k
W

h)

24 48 72 96 120 144 168

Hour

Base A/C Heating Appliance

20 40 60 80 100 120 140 160 180 200
0

500

1000

Week

A
ve

ra
ge

 e
ne

rg
y

(k
W

h)

Figure 8.4: Disaggregated energy usage for a single home near Fresno, California over a summer
week (top left) and a winter week (top right); aggregated over 4000+ homes over nearly four
years (bottom)

In Table 8.2, we compare the results of contextual supervision with the mean prediction
heuristic and see that contextual supervision improves by 26% over this baseline which is already
better than nonnegative sparse coding. Qualitatively we consider the disaggregated energy results
for a single home over one week in Figure 8.2 and see that contextual supervision correctly
assigns energy usage to categories—a large amount of energy is assigned to A/C which cycles
on and off roughly corresponding to external temperature, large spikes from appliances happen
at seemingly random times and the smoothly varying base load is captured correctly. In Figure
8.3, we consider the disaggregation results for the same home across the entire time period and
see that the contextually supervised estimates correspond very closely to the actual sources of
energy consumption.

102

8.3.3 Large-scale energy disaggregation
Next, we turn to the motivating problem for our model: disaggregating large-scale low-resolution
smart meter data into its component sources of consumption. Our dataset consists of over 4000
homes and was collected by PG&E from customers in Northern California who had smart me-
ters between 1/2/2008 and 12/31/2011. According to estimations based on survey data, heating
and cooling (air conditioning and refrigerators) comprise over 39% of total consumer electricity
usage [128] and thus are dominant uses for consumers. Clearly, we expect temperature to have a
strong correlation with these uses and thus we provide contextual supervision in the form of tem-
perature information. The PG&E data is anonymized, but the location of individual customers is
identified at the census block level and we use this information to construct a parallel temperature
dataset as in the previous example.

We present the result of our model at two time scales, starting with Figure 8.4 (top), where
we show disaggregated energy usage for a single home over a typical summer and winter week.
Here we see that in summer, the dominant source of energy consumption is estimated to be air
conditioning due to the context provided by high temperature. In winter, this disappears and is
replaced to a smaller extent by heating. In Figure 8.4 (bottom), itemized energy consumption
aggregated across all 4000+ homes demonstrates these basic trends in energy usage. Quantita-
tively, our model assigns 15.6% of energy consumption to air conditioning and 7.7% to heating,
reasonably close to estimations based on survey data [128] (10.4% for air conditioning and 5.4%
for space heating). We speculate that our higher estimation may be due to the model conflating
other temperature-related energy usages (e.g. refrigerators and water heating) or to differences
in populations between the survey and smart meter customers.

103

Chapter 9

Preventing Cascading Failures in
Microgrids

In this chapter, we consider the challenge of building and operating microgrids, a fundamentally
different setting than the conventional electrical grid that was implicitly the focus of Chapters 7
and 8. Whereas the conventional grid features top-down, central control (e.g. by a government-
endorsed entity, such as a utility), microgrids are formed by small, isolated networks of individ-
ual devices and thus are naturally bottom-up. As such, they are not encumbered by the legacy
requirements of the conventional grid and have many potential advantages, particularly with re-
spect to resiliency. Furthermore, in many parts of the developing world, e.g. rural Africa and
India, microgrids are the only practical option due to a lack of existing grid infrastructure. In
these settings, the microgrid approach is increasingly attractive due to the falling cost of renew-
able generation technology (photovoltaic cells) and cheap power electronics. In the developed
world, microgrids continue to find many applications including large vehicles (airplanes, boats,
RVs, etc.) and sites which require redundant or isolated sources of power (e.g. military in-
stallations, hospitals, and data centers). In addition, with the falling cost of solar panels and
battery storage, there is increasing interest in microgrid technology at the individual consumer
and business level—for example, to operate a single home in off-grid mode in the case of grid
failure.

While microgrids offer many deployment and operational advantages, they also pose a num-
ber of unique challenges. The most fundamental challenge is a lack of inertia: conventional grids
have massive scale and thus the behavior of a single device has relatively small impact on the
overall flow of current over the entire network. This allows conventional grid operators to ensure
that the voltage and frequency remain tightly regulated and enables energy-consuming devices
to assume that current can be sourced without affecting these characteristics. In contrast, micro-
grids are much smaller and individual devices can cause significant transient responses simply
by switching on or off. Typically, it is the responsibility of the power electronics connected
to generating devices to ensure microgrid power quality by regulating voltage and frequency
within a pre-specified acceptable range, usually a much wider operating band than is accepted in
conventional grids. In the common case of an AC microgrid, the power electronics are also re-
sponsible for transforming DC input (e.g. from photovoltaic cells) to AC output and are referred

104

to generically in the microgrid literature as inverters1.
In the microgrid setting, the inverters representing each power source are responsible for en-

suring reliable operation by providing the necessary current to energy-consuming devices (loads).
At the same time, due to the possibility of large transient responses due to microgrid dynamics
driven by low inertia, these devices must include electronic circuit breakers (ECBs, or simply,
breakers) which protect their components from an overload condition. The breaker safety settings
cause the inverter to disengage from the microgrid once a local current threshold is exceeded for
a specified time duration protecting components that cannot withstand high currents for long pe-
riods of time. As such, there is a tradeoff between conservative breaker settings (low threshold,
short time duration) which protect the individual device at the expense of the microgrid and more
aggressive settings (high threshold, long time duration) which sacrifice some protection in order
to allow the microgrid to be more resilient to transients. The challenge that we will consider in
this chapter is to identify reasonable breaker settings under realistic load and generation profiles,
enabling stable microgrid operation while protecting individual devices.

Identifying breaker settings for a realistic microgrid is difficult as the flow of current over the
microgrid network is influenced by many factors. In short, a sequence of breaker trips can be
caused in a multititude of ways with each trip event depending on the threshold values and dura-
tions placed on each inverter, the load profile, and the time-varying generating capacities of each
power source (common scenarios involve renewable sources which depend on external weather).
Moreover tripping is often caused by transient conditions in the highly interconnected micro-
grid system involving loads which are often time-varying and nonlinear (i.e. with impedances
that change over time and depending on voltage). These factors make it difficult to analytically
prescribe breaker settings even for small microgrids with known loads and power sources.

Instead, our approach, which we will explore in this chapter, is based on learning a set of
breaker parameters defining a stable region of microgrid operation from data. As the actual fail-
ure of a microgrid and the corresponding power equipment can be dangerous and costly, this
work focuses on learning from simulation with a realistic microgrid model which we present
in detail in Section 9.1. In practice, we expect that our approach would be used in an iterative
process in which a realistic set of parameters are learned via a simulation which is continuously
adjusted to match real operating conditions. When the actual microgrid is deployed and operat-
ing, our learning can also be applied directly to historical data collected from current and voltage
sensing devices on the microgrid.

The rest of this chapter is organized as follows. Section 9.2 presents our machine learning
model which is a variant of the classic support vector machine (SVM). From the perspective of
machine learning, the method is straightforward, simply learning a function that maps breaker
settings for the entire microgrid (a single feature vector concatenating threshold and time duration
for each inverter) to a classification of microgrid failure or stability within a time horizon. We
do make one modification to the standard SVM, employing a “one-sided” variant which heavily
weights stable operation under the assumption that if a breaker configuration fails even once,
it may fail again in the future and thus should be deemed unstable. This can be viewed as
an extreme version of class weighting and from a geometric perspective produces a decision

1A network of inverters is a standard microgrid topology even when including power sources which naturally
produce alternating current, e.g. diesel generators.

105

function that captures the entire negative class on one side of the hyperplane. On simulated
data, presented in Section 9.3, we demonstrate that the one-sided SVM variant outperforms the
standard SVM in the low false positive regime of interest for this problem.

9.1 System and problem description
In this section, a model of a real microgrid is presented (see Figure 9.2). The data used by the
machine learning algorithms proposed in this chapter are obtained using a simulation engine
based on this model. This simulation engine employs high-fidelity models of inverters and loads,
and droop-based control architectures [55]. The simulation models and control architecture de-
scribed in this section are not the goals of this chapter; they provide the context under which
the data for machine learning is obtained and emphasize the details of the microgrid that the
model captures. It is to be noted that even though the study is focused on a specific microgrid
the framework being developed is applicable for broader class of microgrids.

A microgrid comprises multiple power sources, multiple loads that consume power, power
electronic devices (such as inverters), and controllers (see Figure 9.2). The power generated from
various sources is conditioned (and shared) by inverters that provide and distribute power to the
loads consistent with requirements of the load. For instance an inverter whose input is provided
by a DC power source can output an AC current through appropriate control at a fast time scale of
related electronics. After averaging the fast time scale dynamics, an inverter can be modeled as a
controllable voltage source, vinv, with an inductor and a capacitor as shown in Figure 9.1 [145].
A control system manages power sharing and voltage regulation at the outputs of the inverters
as different loads come on or go off the grid. More specifically, the control system can feedback
measured signals such as inductor current, inverter output voltage and current for determining
the switching control (or equivalently the vinv in the averaged model).

In the microgrid considered in this chapter, two power sources provide energy to a shared
load where the power flow is conditioned by inverters. For each inverter the operation is realized
using standard PWM based operation based on high bandwidth periodic switching which admits
the average model described by Figure 9.1 [145]. It is assumed for each inverter that the inverter

Figure 9.1: Averaged model of a single inverter with a linear load Z.

output current i, inductor current iL and inverter output voltage v are measured variables. The
control system for each inverter consists of an outer-control loop that implements the voltage-
active power droop law to generate a reference vlref,k where

vlref,k = [E∗ − nk(Pk − P ∗k)] sinω0t (9.1)

106

Figure 9.2: (a) Schematic describing the system shows the outer-control loop. The loads being
serviced are a dryer, washer, water heater and lights.

where E∗ is set to 120
√

2, ω0 = 2πf0 with f0 = 60Hz, P ∗k is the setpoint active power to be
sourced by the inverter, Pk is the actual power being delivered by the inverter and nk is the droop
coefficient which dictates the change in the voltage magnitude desired for a given error Pk − P ∗k
(see Figure 9.2). The inner control loop generates the reference voltage vr,k to be tracked by the
kth inverter given by

vr,k = vlref,k − Zvik (9.2)

where Zv is the virtual resistance [55]. The reference voltage vr,k is tracked using a inner voltage
and current controller (see Figure 9.3). Note that the reference voltage vr,k is tracked using a

Figure 9.3: The inner-control loop for voltage regulation where a virtual resistance is incorpo-
rated.

inner-control current loop. Here, the output voltage is compared with the reference vr,k which
is used to generate a reference current iref,k to be tracked by the current controller Kcur. The
tracking of the voltage reference via a current controller allows for placing safety measures to

107

Positive example Negative example Positive region Negative region

Figure 9.4: Example of method on synthetic data with linear SVM (left), one-sided SVM (center)
and one-sided SVM with RBF kernel (right).

limit unsafe magnitudes of iref . Furthermore, to safeguard the inverters from damage, if the RMS
of the kth inverter inductor current, iL,k crosses a specified threshold ith,k and remains above the
threshold for a specified guard-time tg,k then the kth inverter is shut down.

The loads consist of a washer, dryer, water heater (rated at 1.7 KW) and lights (rated at 1.3
KW). Washer and dryer pose load profiles which vary with time. The models used for washer
and dryer are representative of the behavior of generic washer and dryers and are realistic. The
total commanded generation is 4 KW with one inverter sourcing 1 KW while the other sources
3 KW. In the setup above the choice of (ith,1, tg,1) and (ith,2, tg,2) has a significant influence on
the overall viability of the system for a demanding load profile. Aggressive choices of (ith,1, tg,1)
and (ith,2, tg,2) motivated by objectives of protecting devices can lead to unacceptable probability
of blackout, whereas, on the other hand large values can damage the inverters.

We consider the following functions to provide a guidance on the choice of the breaker set-
tings. The function f0 : R4 → {−1, 1} which takes the input (ith,1, tg,1, ith,2, tg,2) and provides
an output swhere s = 1 implies that at least one inverter remains operational and s = −1 implies
that both inverters have shut down. Similarly f1 : R4 → {−1, 1} represents the survivability of
inverter 1 where the input remains the same as for f0 and the output is 1 if inverter 1 remains op-
erational else the output is −1; f2 is defined similar to f1 to describe the survivability of inverter
2.

Remark 1 Note that occurrence of a blackout (where all inverters shut down) in a microgrid
depends on a complex interaction of many factors of which ith,1, tg,1, ith,2, tg,2 form only a small
subset. These factors include dynamics of loads, the on-and-off time schedules of loads, the
controller architecture, and power commanded from each inverter. The framework for learning
functions fk (k = 0, 1 and 2) has to consolidate the variability of factors not provided as inputs
to fk.

108

9.2 Machine learning model
In the following a machine learning approach is taken to learn the functions f0, f1 and f2. This
approach is appealing as it makes few assumptions on the underlying system—in particular, we
do not attempt to model the complex time-varying and nonlinear switched dynamics that describe
the microgrid comprising the inverters, the loads, and the control system. We also make limited
assumptions on the load schedule which in practice is controlled by the user of the microgrid
who expects faultless operation. Our approach learns the function fk (k = 0, 1, 2) from test
data and in the large sample limit will converge to the true underlying function, subject to weak
smoothness constraints on fk [131].

We first formulate the problem in the classification framework; the feature set x and predicted
outcome y respectively refer to the input and the output of the function fk to be learned. A
labeled example is a tuple consisting of a feature set xi and the corresponding observed outcome
yi. In the standard setting, given a set of n labeled examples (xi, yi) for i = 1, . . . , n with
xi ∈ Rp and yi ∈ {−1, 1}, the classification problem seeks f(xi) which minimizes a composite
objective including the empirical loss between f(xi) and yi and structural penalties on f . For
each k ∈ {0, 1, 2}, we aim at solving a classification problem to obtain fk.

We first consider the standard support vector machine (SVM) [27] for solving the classifica-
tion problem; SVMs are appealing because they have a natural geometric interpretation which we
adapt to our problem and because they yield efficient algorithms for learning nonlinear functions
through dual formulation and kernels. The result of a basic SVM is a hyperplane that separates
positive examples (where features xi lead to outcome yi = 1) and negative examples (where
features xi lead to outcome yi = −1). The basic SVM seeks the optimal hyperplane separating
positive and negative examples by solving the convex optimization problem

minimize
w,b

1

2
‖w‖2

subject to yi(w
Txi − b) ≥ 1, 1 ≤ i ≤ n,

(9.3)

where the learned parameters w ∈ Rp and b ∈ R determine a hyperplane in p dimensions. In the
above setting the constraint yi(wTxi − b) ≥ 1 characterizes two conditions

(wTxi − b) ≥ 1 for all (xi, yi) with yi = 1
(wTxi − b) ≤ −1 for all (xi, yi) with yi = −1;

thus the condition yi(wTxi − b) ≥ 1 forces the features corresponding to positive and negative
examples respectively to lie on one side of the hyperplane Ha given by wTx − b = 1 and
the opposite side of the hyperplane Hb given by wTx − b = −1. The distance between these
parallel hyperplanes is given by 2/‖w‖; this distance is maximized (or equivalently ‖w‖2 is
minimized) to find the maximum margin classifier which is the unique solution to the SVM
optimization problem. Assuming that the examples are linearly separable—a set of labeled
examples is linearly separable if there exists (w, b) such that yi(wTxi − b) ≥ 1 for all examples
in the set—the resulting function is given by

f(x) = sign((w?)Tx− b?) (9.4)

109

where (w?, b?) is the solution to (9.3).
In general, labeled examples are not linearly separable which renders problem (9.3) infeasi-

ble; the standard approach to overcome this issue is to introduce slack variables ξi which allow
for the possibility of misclassification of ith example. The resulting optimization problem is
given by

minimize
w,b,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w
Txi − b) ≥ 1− ξi, 1 ≤ i ≤ n

ξi ≥ 0,

(9.5)

where ξi〉0 indicates that example iwas misclassified which is penalized in the objective function
with weight C. For our case, problem formulation (9.5) is still not adequate, which we illustrate
as follows. Note that in view of Remark 1, it is possible to have labeled examples (xi, yi) and
(xj, yj) such that xi = xj and yi 6= yj . That is, for the same feature set it is possible to have
a blackout outcome for one load schedule and no-blackout outcome for another load schedule.
The ratio ρs of blackout to no-blackout outcomes for a given feature set xs is fixed by the true
distribution of the load schedule. Now suppose a function f0 is learnt such that f0(xs) = −1 (that
is predicted outcome of xs is a blackout), then the proportion of correctly predicted outcomes by
f0 to all the outcomes for examples that have xs as feature set is ρs; no extra data will improve the
performance better than ρs. Furthermore (9.5) places equal emphasis on positive and negative
examples. These issues can be addressed either by improving the classifier (e.g. by extending
the feature set to include more comprehensive information, such as load schedules) or by mod-
ifying the classification approach to produce more desirable results for our specific application
of preventing blackouts. In the sequel we consider the latter as (in general) producing perfect
classifications for complex systems is intractable.

Specifically, since choice of current threshold and guard time parameters are critical to ensure
failsafe operation of the microgrid, it is necessary that classification scheme selects parameters
that have no failures (no negatives) over all observed data. Ideally the classification scheme
should not characterize any parameter set as safe if it leads to a negative outcome even for one
specific schedule of loads. In this aspect, the standard classification criterion described in (9.5) is
lacking since it does not emphasize exclusion of negative examples. Accordingly, we adapt the
SVM by adding a constraint that ensures such exclusion by posing the following optimization
problem,

minimize
w,b,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w
Txi − b) ≥ 1− ξi, 1 ≤ i ≤ n

ξi ≥ 0

ξi ≤ 1 for i ∈ N ,

(9.6)

whereN denotes the set of negative examples; this new formulation, the one-sided SVM, ensures
through the added constraint ξi ≤ 1 that the resulting classifier in (9.4) will label all negative

110

training examples correctly. Analogous to the standard SVM, additional benefits are gained by
considering the dual formulation:

maximize
α

n∑
i=1

min(αi, C)− 1

2

∑
i,j

αiαjyiyjx
T
i xj

subject to αi ≥ 0

αi ≤ C for i ∈ P
n∑
i=1

yiαi = 0.

(9.7)

The dual formulation above is appealing for two reasons: first, it allows us to apply computa-
tionally efficient algorithms (e.g. sequential minimal optimization [101]); second, it allows us to
consider nonlinear classification functions. Indeed the classifier that results from problem (9.6)
is restricted to be linear with the number of parameters determined by the dimension p of the
feature set. Specifically, the separating hyperplanes defined by w and b constitute p + 1 (equal
to five in our case) unknown parameters. Better fitting of data can be accomplished by nonlinear
classifiers. Consider a positive definite kernel k(·, ·) : X × X → R where X is the original
feature space. Given such a kernel, it can be shown that there exists a mapping φ : X → Z
where Z is an inner-product space with an inner-product 〈·, ·〉 such that for all elements x, x̃ in
X , 〈φ(x), φ(x̃)〉 = k(x, x̃). In our case the original features space is X = R4. The dimension of
Z can be much larger than that of X and possibly infinite. The classification problem is now cast
in the new Hilbert space where hyperplanes are sought to separate the positive examples from
the negative examples. The resulting optimization problem is described by (9.6) with xi replaced
by φ(xi) with the appropriate inner-product

minimize
w,b,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(〈w, φ(xi)〉 − b) ≥ 1− ξi
ξi ≥ 0

ξi ≤ 1 for i ∈ N .

(9.8)

Even though problem (9.8) involves the mapping φ, we can efficiently solve it by using the dual
formulation

maximize
α

n∑
i=1

min(αi, C)− 1

2

∑
i,j

αiαjyiyjk(xi, xj)

subject to αi ≥ 0

αi ≤ C for i ∈ P
n∑
i=1

yiαi = 0

(9.9)

which is equivalent to the previous dual (9.7) except that it depends on the features only through
the kernel function k(xi, xj). In addition, determining how the optimal hyperplane classifies x

111

(more precisely φ(x)), does not require knowledge of the map φ because the signed distance from
the optimal hyperplane determined by 〈w, φ(x)〉 and b can be written in terms of 〈φ(x), φ(xi)〉
which in turn is given by the known kernel k(x, xi). Indeed the following can shown
Theorem 1 For the optimal solution (w?, b?) of (9.8), the following hold true

〈w?, φ(x)〉 =
m∑
i=1

αiyi〈φ(xi), φ(x)〉

b? =
1

|A|
∑
i∈A

[〈w?, φ(xi)〉 − yi]
(9.10)

where A = {i : 0〈αi〈C} denotes the set of support vectors which lie on the interior of the [0, C]
constraint. Thus, given the optimal αi’s, we can compute the distance from the hyperplane for
any new example x with an expression that depends only k(xi, x). In this chapter we use the
Gaussian radial basis function (RBF) kernel given by

k(x, x̃) = exp(−‖x− x̃‖2/2σ2). (9.11)

which is a standard choice for kernel support vector machines.
In Figure 9.4 we construct a simple example using the one-sided SVM with kernels to learn

a function on R2. First, we classify the training examples using the standard linear SVM—
note that the separating hyperplane strikes a good balance between misclassification of positive
and negative examples. Next, the one-sided SVM shifts this hyperplane so that we have no
misclassification of negative examples while still attempting to classify the positive examples
correctly. Finally, by using the RBF kernel, we find a nonlinear separator which captures a
greater number of positive examples while still keeping the negative examples on one side.

9.3 Results and Discussion
In this section we examine the ability of our approach to find safe parameter settings in the sim-
ulated microgrid system described previously. We find that given enough data, the model is able
to find a set of parameters that avoid cascading failures; we also compare the classification per-
formance of the one-sided SVM to that of the standard SVM and show that on this classification
task, our method is better at minimizing the number of false positives while still capturing a large
percentage of the true positives.

We generate data by simulating our model assuming a time horizon of T = 3 time units with
varying load profiles for a total of n = 5000 training examples. The electrical signals reside
primarily at 60Hz (time period of 16.7 ms) and for long times (which can exceed 30 minutes) of
normal operation of washers and dryers not much new information is obtained. To restrict undue
and unwarranted computational and simulation burden we run the simulation for scaled down
time units. In addition, when evaluating our methods we use 5-fold cross validation whereby we
train the functions on 4/5 of the training examples and report classification results for the held
out 1/5. We repeat this procedure 5 times and report error results that are the average over these
5 experiments.

112

−100

−50

0

50

100

C
ur

re
nt

 (
am

ps
)

 Base Washer Dryer

−100

−50

0

50

100

C
ur

re
nt

 (
am

ps
)

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

Time

C
ur

re
nt

 (
am

ps
)

Figure 9.5: Example scenarios showing varying simulation conditions: washer and dryer do not
overlap (top), washer and dryer overlap in steady state (middle) and washer and dryer overlap
during the transient start up (bottom).

113

Table 9.1: Comparison of classification algorithms

SVM Accuracy TPR@95 TPR@99 TPR@99.9
Linear 90.78 86.58 72.45 56.48
Linear, OS 69.68 82.67 70.84 62.12
RBF Kernel 93.08 90.42 76.89 55.17
RBF Kernel, OS 82.28 87.82 80.35 68.47

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

0 0.05 0.1
0.5

0.6

0.7

0.8

0.9

False positive rate

T
ru

e
po

si
tiv

e
ra

te

SVM
OS SVM

Figure 9.6: Comparison of classifiers on the entire range over the entire ROC curve (left) and
focused on a low false positive rate (right).

In each simulation, we assume that the lights and the water heater remain on throughout
the time horizon and vary the load by randomly choosing a start time for the washer and dryer.
In choosing the washer and dryer start times there are three three possible scenarios, depicted
in Figure 9.5—since we want to emphasize the worst case scenarios for stability, in 2/5 of the
simulations sample the washer and dryer and start times uniformly from [0.5, 0.55], in 2/5 from
[0.5, 0.7] and in 1/5 we choose the start times so they do not overlap. In all scenarios the dryer
and washer remain on for 1 time unit. Note that in each of these scenarios not only is the steady
state current demand varying depending on which devices are on at a particular time, but also the
instantaneous current drawn is driven by transients from the loads and the droop characteristic2

implemented by the inverters—all characteristics typical of a microgrid environment. Finally,
in each simulated scenario we pick the parameter settings for each inverter uniformly at random
with current thresholds in the range of [10, 50] for inverter 1, [18, 50] for inverter 2 and time
limits between [0.001, 0.04]. We record which scenarios result in the failure of one or both of the
inverters; our task is to classify these parameters in order to identify parameter settings that are
stable under all load profiles.

The data generated was used to obtain solutions from four optimization problems—the stan-

2To stabilize the microgrid, the inverters source additional current in response to a drop in voltage, see e.g. [56]
for a description of this common microgrid control scheme.

114

dard SVM (9.5) and one-sided SVM (9.6) are used to learn a linear and nonlinear classifier using
the RBF kernel, with the kernel variants requiring solving the dual form (e.g. (9.7)). In Table 9.1
we compare SVM-based algorithms that classify the feature space in terms of no-blackout and
blackout outcomes (corresponding to learning f0). Note that the one-sided SVM with RBF ker-
nel significantly outperforms the standard SVM approaches in maximizing the true positive rate
(TPR) at a given false positive level. Here TPR refers to the fraction of no-blackout outcomes
that were correctly predicted, and FPR refers to the fraction of blackout outcomes that were in-
correctly predicted (as not blackout). As was described in the previous section, the one-sided
SVM places larger emphasis on the negative examples which leads to lower a number of false
positives at the expense of overall classification accuracy. For our application, ensuring viability
of the electrical system is strongly desired as we would like to prevent cascading failures and
microgrid collapse as much as possible. We see this tradeoff in Figure 9.6 which shows that the
one-sided SVM achieves better performance on false positive rates less than 3% at the expense
of performance on the rest of the curve.

We present results on safe parameter regions for each inverter (corresponding to learning f1

and f2) under different scenarios in Figure 9.7. In our setting, the classification function maps
R4 → {−1, 1} and thus in order to visualize this function we fix two of the parameters and
consider the classifier boundary as we vary the other two. The top row corresponds to fixing the
parameters for inverter 2, first with aggressive settings (0.01, 10) (top left) that will typically lead
to that inverter failing. In this scenario, inverter 1 must source all of the current and thus the safe
parameter settings are much higher that those required when inverter 2 has conservative settings
(0.05, 50) (top right). On the other hand, the situation depicted on the bottom row for inverter
2 is qualitatively different: due to the power sharing arrangement between the two inverters, it
must be responsible for a significant portion of the load even when inverter 1 is fully operational.
Thus even with low thresholds and guard times for inverter 1, the separating boundary is similar
to the case where the inverter has high thresholds and guard times.

The framework presented demarcates regions of safe parameters and unsafe parameters.
These regions can be utilized by a microgrid designer to arrive at breaker settings where the
designer can incorporate data on the rating of the breaker while making decisions. Furthermore,
the TPR and FPR curves can guide the level of robustness desired. Although the chapter has pre-
sented data from a two inverter system, the algorithms presented are scalable to more complex
microgrids. Also, there are no restrictions on the topology of the network of inverters assumed.
The two inverter system has the ease of presentation and can easily communicate the central
ideas which is one of the reasons for the choice of this system.

The framework developed can be extended to expand the feature set. For example, microgrids
are envisioned to have a communication layer, where controllers incorporating measurement de-
vices can collect measured signals. These measurements can be added to the feature set which
leads to a rich class of problems which can possibly enable of adaptation in real-time for micro-
grids.

115

C
ur

re
nt

 li
m

it
(a

m
ps

)

0.01 0.02 0.03 0.04
10

20

30

40

50

0.01 0.02 0.03 0.04
10

20

30

40

50

Positive
Negative

Time limit (seconds)

C
ur

re
nt

 li
m

it
(a

m
ps

)

0.01 0.02 0.03 0.04
10

20

30

40

50

Time limit (seconds)

0.01 0.02 0.03 0.04
10

20

30

40

50

Figure 9.7: Learned safe parameter regions for each inverter under different scenarios. The top
row shows safe parameters for inverter 1 when inverter 2 has thresholds (0.01, 10) (top left) and
(0.05, 50) (top right). Bottom row, vice versa.

116

Chapter 10

Conclusion

This thesis examines the problem of developing scalable methods for convex optimization in-
spired by several applications arising from the development of the next-generation electrical grid
as well as other problems in statistical machine learning. In order to meet the challenge of de-
veloping an efficient grid far more capable than the existing system, it is increasingly evident
data-driven solutions will play a major role. In our applications, we use data to build better
forecasting models for renewable integration, more intelligent analytics for improving energy
end-uses and more robust microgrids. Although these problems are somewhat different in na-
ture, each benefits from an abundance of data and thus are able to take advantage of statistical
models learned efficiently with the tools provided by convex optimization.

As is frequently the case for real-world machine learning problems, the development and
deployment of convex models in practice requires specialized algorithms. We develop three
such algorithms in Part II of this thesis, with applications in our own work in energy as well as
many other domains. The common thread between these three problems is a general Newton-
like method which exploits sparsity for algorithmic benefit. For highly sparse problems (the
common regime for high-dimensional statistical models) these methods deliver state-of-the-art
performance often providing solutions for problems that would otherwise be impractical.

Although the development of specialize methods for particular problems solves immediate
practical issues, there is a clear downside in terms of extensibility. This inspires the work of
Part I, the development of scalable methods for general convex programming. By enhancing the
functionality of the symbolic compiler to target new classes of algorithms, we are able to achieve
orders of magnitude speed ups over existing approaches. This allows convex models to be more
rapidly prototyped, developed and deployed on a much wider class of problems. Although the
existing approach focuses exclusively on operator splitting technique, the same general principles
could be applied to target new classes of algorithms as well as new architectures (e.g., GPU,
distributed) likely enabling substantial gains in performance. It is our view that with these and
many other developments, this approach of formulating convex problems in a high-level language
will come to be the dominant paradigm for convex optimization.

117

Bibliography

[1] Torch 5. URL http://torch5.sourceforge.net/. 1

[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensor-
flow. org. 1

[3] Samrachana Adhikari, Fabrizio Lecci, James T Becker, Brian W Junker, Lewis H Kuller,
Oscar L Lopez, and Ryan J Tibshirani. High-dimensional longitudinal classification with
the multinomial fused lasso. arXiv preprint arXiv:1501.07518, 2015. 3.3.3

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, et al.
The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. Proceedings of the VLDB En-
dowment, 8(12):1792–1803, 2015. 1

[5] Carlos M. Alaı́z, Álvaro Barbero Jiménez, and José R. Dorronsoro. Group fused lasso. In
International Conference on Artificial Neural Networks and Machine Learning (ICANN),
pages 66–73, 2013. 6, 6.1.1, 6.3.1

[6] N. Amjady, F. Keynia, and H. Zareipour. Short-term load forecast of microgrids by a new
bilevel prediction strategy. Smart Grid, IEEE Transactions on, 1(3):286–294, 2010. 7.1

[7] Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods,
volume 1. Prentice Hall Englewood Cliffs, NJ, 1990. 5, 5.1

[8] Galen Andrew and Jianfeng Gao. Scalable training of l 1-regularized log-linear models.
In Proceedings of the 24th international conference on Machine learning, pages 33–40.
ACM, 2007. 4.3

[9] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate gaussian or binary data. Journal of Machine
Learning Research, 9:485–516, 2008. 4

[10] Álvaro Barbero and Suvrit Sra. Fast newton-type methods for total variation regulariza-
tion. In Proceedings of the 28th International Conference on Machine Learning (ICML),
pages 313–320, 2011. 6, 6.2.2

[11] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 4.3, 6.3.1

118

http://torch5.sourceforge.net/

[12] Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995. 8.1.1

[13] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu,
Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud
Bergeron, et al. Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning
Workshop, Granada, Spain, 2011. 1

[14] Dimitri P Bertsekas. Projected newton methods for optimization problems with simple
constraints. SIAM Journal on control and Optimization, 20(2):221–246, 1982. 6.1.1

[15] Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple change-point
detection. arXiv preprint arXiv:1106.4199, 2011. (document), 6, 6.3.1, 6.3.1, 6.3

[16] Peter Blomgren and Tony F Chan. Color TV: total variation methods for restoration of
vector-valued images. Image Processing, IEEE Transactions on, 7(3):304–309, 1998.
6.2.2

[17] Vincent D Blondel and John N Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 36(9):1249–1274, 2000. 5

[18] T Blumensath and M Davies. Shift-invariant sparse coding for single channel blind source
separation. SPARS, 5:75–78, 2005. 8.1

[19] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011. 1, 2.2.3, 3.3.4, 5

[20] P.J. Brockwell. Time Series Analysis. Wiley Online Library, 2005. 7.2.1

[21] R. H. Byrd, J. Nocedal, and F. Oztoprak. An Inexact Successive Quadratic Approximation
Method for Convex L-1 Regularized Optimization. ArXiv e-prints, September 2013. 4.2,
5.2.2

[22] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algo-
rithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):
1190–1208, 1995. 6.3.1

[23] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on pure and applied mathe-
matics, 59(8):1207–1223, 2006. 5

[24] Patrick L Combettes and Jean-Christophe Pesquet. A Douglas-Rachford splitting ap-
proach to nonsmooth convex variational signal recovery. Selected Topics in Signal Pro-
cessing, IEEE Journal of, 1(4):564–574, 2007. 6.3.1

[25] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineering,
pages 185–212. Springer, 2011. 6.2.2

[26] Pierre Comon. Independent component analysis, a new concept? Signal processing, 36
(3):287–314, 1994. 8.1.1

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):

119

273–297, 1995. 9.2

[28] Joachin Dahl and Lieven Vandenberghe. Cvxopt: A python package for convex optimiza-
tion. In Proc. eur. conf. op. res, 2006. 2.1.3

[29] S. Darby. The effectiveness of feedback on energy consumption. Technical report, Envi-
ronmental Change Institute, University of Oxford, 2006. 8.1

[30] ME Davies and CJ James. Source separation using single channel ica. Signal Processing,
87(8):1819–1832, 2007. 8.1

[31] Damek Davis and Wotao Yin. Convergence rate analysis of several splitting schemes.
arXiv preprint arXiv:1406.4834, 2014. 3.1

[32] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. 1

[33] Steven Diamond and Stephen Boyd. Convex optimization with abstract linear operators.
2015. 3.2.1

[34] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. 2015. 2.1, 3.3

[35] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded
systems. In Control Conference (ECC), 2013 European, pages 3071–3076. IEEE, 2013.
2.1.3, 3.3

[36] David L Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52
(4):1289–1306, 2006. 5

[37] F. Dörfler, M. R. Jovanovic, M. Chertkov, and F. Bullo. Sparsity-Promoting Optimal
Wide-Area Control of Power Networks. ArXiv e-prints, July 2013. 5.3.2, 5.3.2

[38] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient pro-
jections onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th
international conference on Machine learning, pages 272–279. ACM, 2008. 3.2.2

[39] Krishnamurthy Dvijotham, Evangelos Theodorou, Emanuel Todorov, and Maryam Fazel.
Convexity of optimal linear controller design. In Proceedings of the Control and Decision
Conference, 2013. 5

[40] Krishnamurthy Dvijotham, Emanuel Todorov, and Maryam Fazel. Convex structured con-
troller design. CoRR, abs/1309.7731, 2013. 5

[41] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regres-
sion. The Annals of statistics, 32(2):407–499, 2004. 5

[42] Karen Ehrhardt-Martinez, Kat A Donnelly, and Skip Laitner. Advanced metering initia-
tives and residential feedback programs: a meta-review for household electricity-saving
opportunities. In American Council for an Energy-Efficient Economy, 2010. 8.1

[43] Chih-Hai Fan, Jason L Speyer, and Christian R Jaensch. Centralized and decentralized
solutions of the linear-exponential-gaussian problem. Automatic Control, IEEE Transac-
tions on, 39(10):1986–2003, 1994. 5

[44] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Lib-

120

linear: A library for large linear classification. The Journal of Machine Learning Research,
9:1871–1874, 2008. 3.3.5

[45] C. Ferreira, J. Gama, L. Matias, A. Botterud, and J. Wang. A survey on wind power ramp
forecasting. Technical report, Argonne National Laboratory (ANL), 2011. 7.4.2

[46] Gene F Franklin, J David Powell, and Abbas Emami-Naeini. Feedback control of dynamic
systems. Addison-Wesley, Reading, MA, 1994. 2.2.3

[47] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008. 4

[48] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010. 3.3.5,
4.2

[49] Apostolos Gerasoulis. A fast algorithm for the multiplication of generalized hilbert ma-
trices with vectors. Mathematics of Computation, 50(181):179–188, 1988. 1

[50] Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. Machine
learning, 29(2-3):245–273, 1997. 8.1.1

[51] Pontus Giselsson. Tight global linear convergence rate bounds for douglas-rachford split-
ting. arXiv preprint arXiv:1506.01556, 2015. 3.1

[52] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming. Springer,
2006. 2.1

[53] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for disciplined
convex programming, 2008. 1, 2.1

[54] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal
of computational physics, 73(2):325–348, 1987. 5.2.1

[55] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuña, and M. Castilla. Hierarchical
control of droop-controlled ac and dc microgrids–A general approach toward standardiza-
tion. IEEE Trans. Ind. Electron., 58(1):158–172, 2011. 9.1, 9.1

[56] J.M. Guerrero, L.G. de Vicuna, J. Matas, M. Castilla, and J. Miret. A wireless controller
to enhance dynamic performance of parallel inverters in distributed generation systems.
IEEE Trans. Power Electron., 19(5):1205–1213, Sept. 2004. ISSN 0885-8993. doi: 10.
1109/TPEL.2004.833451. 2

[57] George William Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE,
80(12):1870–1891, 1992. 8.1

[58] T. Hong. Global energy forecasting competition, 2012. URL http://www.gefcom.org.
7.4

[59] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.
5.2.1

[60] Patrik O Hoyer. Non-negative sparse coding. In Neural Networks for Signal Processing,
2002. Proceedings of the 2002 12th IEEE Workshop on, pages 557–565. IEEE, 2002. 8.3.1

[61] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariace matrix

121

http://www.gefcom.org

estimation using quadratic approximation. In Neural Information Processing Systems,
2011. 4.3, 4.3.2, 4.4.2

[62] Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, and Pradeep D. Ravikumar.
Sparse inverse covariance matrix estimation using quadratic approximation. CoRR,
abs/1306.3212, 2013. 3.3.5, 4.2

[63] Institute for Electric Efficiency. Utility-scale smart meter deployments, plans, and propos-
als. Technical report, Institute for Electric Efficiency, 2012. 8.1

[64] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the ACM International Conference on Multimedia,
pages 675–678. ACM, 2014. 1

[65] Nicholas A Johnson. A dynamic programming algorithm for the fused lasso and l 0-
segmentation. Journal of Computational and Graphical Statistics, 22(2):246–260, 2013.
3.2.2, 3.3.3

[66] Hyungsul Kim, Manish Marwah, Martin F Arlitt, Geoff Lyon, and Jiawei Han. Unsuper-
vised disaggregation of low frequency power measurements. In SDM, volume 11, pages
747–758. SIAM, 2011. 8.1.1

[67] Jingu Kim and Haesun Park. Fast active-set-type algorithms for L1-regularized linear
regression. In International Conference on Artificial Intelligence and Statistics, pages
397–404, 2010. 6.1.3

[68] Kwangmoo Koh, Seung-Jean Kim, and Stephen P Boyd. An interior-point method for
large-scale l1-regularized logistic regression. Journal of Machine learning research, 8(8):
1519–1555, 2007. 5

[69] J Zico Kolter and Tommi Jaakkola. Approximate inference in additive factorial hmms
with application to energy disaggregation. In International Conference on Artificial Intel-
ligence and Statistics, pages 1472–1482, 2012. 8.1.1

[70] J Zico Kolter, Siddarth Batra, and Andrew Y Ng. Energy disaggregation via discriminative
sparse coding. In Neural Information Processing Systems, pages 1153–1161, 2010. 8.1,
8.1.1

[71] B. Lange, K. Rohrig, F. Schlögl, Ü. Cali, and R. Jursa. Wind power forecasting. Renew-
able electricity and the grid, pages 95–120, 2008. 7.1

[72] R Lau, R Persiano, and P Varaiya. Decentralized information and control: A network flow
example. Automatic Control, IEEE Transactions on, 17(4):466–473, 1972. 5

[73] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding
algorithms. In Neural Information Processing Systems, 2007. 6.1.3

[74] Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representations.
Neural computation, 12(2):337–365, 2000. 8.1

[75] Fu Lin, M. Fardad, and M.R. Jovanovic. Design of optimal sparse feedback gains via the
alternating direction method of multipliers. Automatic Control, IEEE Transactions on, 58
(9):2426–2431, 2013. 5, 5.1, 5.1, 5.3, 5.3.1, 5.3.1, 5.3.1

122

[76] Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric es-
timation of high dimensional undirected graphs. The Journal of Machine Learning Re-
search, 10:2295–2328, 2009. 7.3.1

[77] Johan Löfberg. YALMIP: A toolbox for modeling and optimization in matlab. In Com-
puter Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–
289. IEEE, 2004. 2.1

[78] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed GraphLab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012. 1

[79] Andrew Makhorin. Glpk (gnu linear programming kit), 2008. 2.1.3

[80] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data, pages 135–146. ACM, 2010. 1

[81] J Mendes, R.J. Bessa, H. Keko, J. Sumaili, V. Miranda, C. Ferreira, J. Gama, A. Bot-
terud, Z. Zhou, and J. Wang. Development and testing of improved statistical wind power
forecasting methods. Technical report, Argonne National Laboratory (ANL), 2011. 7.1

[82] M. Milligan, M. Schwartz, and Y. Wan. Statistical wind power forecasting models: results
for us wind farms. Technical report, National Renewable Energy Laboratory, Golden, CO,
2003. 7.1

[83] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann, et al. Wind
power forecasting: state-of-the-art 2009. Technical report, Argonne National Laboratory
(ANL), 2009. 7.1

[84] Jean-Jacques Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. CR Acad. Sci. Paris Sér. A Math, 255:2897–2899, 1962. 3.2.2

[85] APS Mosek. The mosek optimization software. Online at http://www. mosek. com, 54,
2010. 2.1.3

[86] B. Neenan and J. Robinson. Residential electricity use feedback: A research synthesis
and economic framework. Technical report, Electric Power Research Institute, 2009. 8.1

[87] Yu Nesterov and A Nemirovsky. Conic formulation of a convex programming problem
and duality. Optimization Methods and Software, 1(2):95–115, 1992. 1

[88] Yurii Nesterov, Arkadii Nemirovskii, and Yinyu Ye. Interior-point polynomial algorithms
in convex programming, volume 13. SIAM, 1994. 2.1.3

[89] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes. Advances in Neural Information Processing Systems,
2002. 4

[90] Robert Nishihara, Laurent Lessard, Benjamin Recht, Andrew Packard, and Michael I Jor-
dan. A general analysis of the convergence of admm. arXiv preprint arXiv:1502.02009,
2015. 3.1

123

[91] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Operator split-
ting for conic optimization via homogeneous self-dual embedding. arXiv preprint
arXiv:1312.3039, 2013. 1, 2.1.3, 3.3, 3.3.4

[92] Henrik Ohlsson, Lennart Ljung, and Stephen Boyd. Segmentation of ARX-models using
sum-of-norms regularization. Automatica, 46(6):1107–1111, 2010. 6.2.1, 6.3.2

[93] Peder Olsen, Figen Oztoprak, Jorge Nocedal, and Steven Rennie. Newton-like methods
for sparse inverse covariance estimation. In Advances in Neural Information Processing
Systems 25, pages 764–772, 2012. 4.3, 5.3.1

[94] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision research, 37(23):3311–3326, 1997. 8.1.1

[95] Gurobi Optimization et al. Gurobi optimizer reference manual. URL: http://www. gurobi.
com, 2012. 2.1.3, 3.3.5

[96] VY Pan, M Abu Tabanjeh, ZQ Chen, EI Landowne, and A Sadikou. New transformations
of cauchy matrices and trummer’s problem. Computers & Mathematics with Applications,
35(12):1–5, 1998. 1

[97] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in opti-
mization, 1(3):123–231, 2013. 2.2.3, 2, 3.2.2

[98] Oliver Parson, Siddhartha Ghosh, Mark Weal, and Alex Rogers. Non-intrusive load mon-
itoring using prior models of general appliance types. In 26th AAAI Conference on Artifi-
cial Intelligence, 2012. 8.1.1

[99] J.H.W. Penm, J.H. Penm, and RD Terrell. The recursive fitting of subset varx models.
Journal of Time Series Analysis, 14(6):603–619, 2008. 7.2

[100] P. Pinson. Estimation of the uncertainty in wind power forecasting. Centre Energétique et
Procédés–Ecole des Mines de Paris Rue, 23, 2006. 7.1

[101] John Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. 1998. 9.2

[102] Luis F Portugal, Joaquim J Judice, and Luis N Vicente. A comparison of block pivoting
and interior-point algorithms for linear least squares problems with nonnegative variables.
Mathematics of Computation, 63(208):625–643, 1994. 6.1.3

[103] Xin Qi, Murti V Salapaka, Petros G Voulgaris, and Mustafa Khammash. Structured op-
timal and robust control with multiple criteria: A convex solution. Automatic Control,
IEEE Transactions on, 49(10):1623–1640, 2004. 5

[104] Aaditya Ramdas and Ryan J Tibshirani. Fast and flexible admm algorithms for trend
filtering. arXiv preprint arXiv:1406.2082, 2014. 3.3.3

[105] Tankred Rautert and Ekkehard W Sachs. Computational design of optimal output feedback
controllers. SIAM Journal on Optimization, 7(3):837–852, 1997. 5.1, 5.1, 5.1, 5.1

[106] Michael Rotkowitz and Sanjay Lall. A characterization of convex problems in decentral-
ized control. Automatic Control, IEEE Transactions on, 51(2):274–286, 2006. 5

[107] Sam T Roweis. One microphone source separation. Advances in neural information

124

processing systems, pages 793–799, 2001. 8.1

[108] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992. 3.3.3, 6.2.2

[109] Nils Sandell Jr, Pravin Varaiya, Michael Athans, and Michael Safonov. Survey of decen-
tralized control methods for large scale systems. Automatic Control, IEEE Transactions
on, 23(2):108–128, 1978. 5

[110] Mikkel N Schmidt and Morten Mørup. Nonnegative matrix factor 2-d deconvolution for
blind single channel source separation. In Independent Component Analysis and Blind
Signal Separation, pages 700–707. Springer, 2006. 8.1

[111] Mikkel N Schmidt and Rasmus Kongsgaard Olsson. Single-channel speech separation
using sparse non-negative matrix factorization. In Spoken Language Proceesing, ISCA
International Conference on (INTERSPEECH), 2006. 8.1

[112] Simone Schuler, Ping Li, James Lam, and Frank Allgöwer. Design of structured dynamic
output-feedback controllers for interconnected systems. International Journal of Control,
84(12):2081–2091, 2011. 5

[113] Simone Schuler, Ulrich Münz, and Frank Allgöwer. Decentralized state feedback control
for interconnected systems with application to power systems. Journal of Process Control,
2013. 5

[114] P. Shah and P.A. Parrilo. H2-optimal decentralized control over posets: A state space
solution for state-feedback. In Decision and Control (CDC), 2010 49th IEEE Conference
on, pages 6722–6727, 2010. 5

[115] G. Sideratos and N.D. Hatziargyriou. An advanced statistical method for wind power
forecasting. Power Systems, IEEE Transactions on, 22(1):258 –265, feb. 2007. ISSN
0885-8950. doi: 10.1109/TPWRS.2006.889078. 7.1

[116] Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka. A probabilistic latent vari-
able model for acoustic modeling. Advances in models for acoustic processing, NIPS,
148, 2006. 8.1.1

[117] Kyung-Ah Sohn and Seyoung Kim. Joint estimation of structured sparsity and output
structure in multiple-output regression via inverse-covariance regularization. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 1081–1089, 2012. 4

[118] Kyung-Ah Sohn and Seyoung Kim. Joint estimation of structured sparsity and output
structure in multiple-output regression via inverse-covariance regularization. In Proceed-
ings of the Conference on Artificial Intelligence and Statistics, 2012. 4.3, 4.4.1

[119] S. A. Soliman and A. M. Al-Kandari. Electrical Load Forecasting: Modeling and Model
Construction. Elsevier, 2010. 7.1

[120] Jos F Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software, 11(1-4):625–653, 1999. 2.1.3

[121] Charles Sutton and Andrew McCallum. An introduction to conditional random fields.
Machine Learning, 4(4):267–373, 2011. 4

125

[122] J. Swigart and S. Lall. Decentralized control. Networked Control Systems. Lecture Notes
in Control and Information Sciences, 406:179–201, 2011. 5

[123] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996. 3.3.1, 5

[124] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108, 2005. 3.3.3, 6

[125] Kim-Chuan Toh, Michael J Todd, and Reha H Tütüncü. Sdpt3a matlab software package
for semidefinite programming, version 1.3. Optimization methods and software, 11(1-4):
545–581, 1999. 2.1.3

[126] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1):387–423, 2009. 4.2, 4.2,
4.3, 5.2.2, 5.2.2

[127] Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond, and
Stephen Boyd. Convex optimization in Julia. In High Performance Technical Computing
in Dynamic Languages (HPTCDL), 2014 First Workshop for, pages 18–28. IEEE, 2014.
2.1

[128] U.S. Energy Information Administration. 2009 RECS survey data, 2009. Available at
http://www.eia.gov/consumption/residential/data/2009/. 8.3, 8.3.3

[129] Riaz A Usmani. Inversion of a tridiagonal jacobi matrix. Linear Algebra and Its Applica-
tions, 212:413–414, 1994. 6.1.2

[130] Various. PJM Manual 19: Load Forecasting and Analysis. PJM, 2012. Avail-
able at: http://www.pjm.com/planning/resource-adequacy-planning/~/media/
documents/manuals/m19.ashx. 7.1

[131] Régis Vert and Jean-Philippe Vert. Consistency and convergence rates of one-class svms
and related algorithms. The Journal of Machine Learning Research, 7:817–854, 2006. 9.2

[132] Bo Wahlberg, Stephen Boyd, Mariette Annergren, and Yang Wang. An ADMM al-
gorithm for a class of total variation regularized estimation problems. arXiv preprint
arXiv:1203.1828, 2012. 6.2.1

[133] Po-Wei Wang, Matt Wytock, and J Zico Kolter. Epigraph projections for fast general
convex programming. In Submission, 2016. 1

[134] Shih-Ho Wang and E Davison. On the stabilization of decentralized control systems.
Automatic Control, IEEE Transactions on, 18(5):473–478, 1973. 5

[135] Hans S Witsenhausen. A counterexample in stochastic optimum control. SIAM Journal
on Control, 6(1):131–147, 1968. 5

[136] Matt Wytock and J Zico Kolter. A fast algorithm for sparse controller design. arXiv
preprint arXiv:1312.4892, 2013. 1, 2

[137] Matt Wytock and J. Zico Kolter. Large-scale probabilistic forecasting in energy systems
using sparse Gaussian conditional random fields. In Decision and Control (CDC), 2013

126

http://www.eia.gov/consumption/residential/data/2009/
http://www.pjm.com/planning/resource-adequacy-planning/~/media/documents/manuals/m19.ashx
http://www.pjm.com/planning/resource-adequacy-planning/~/media/documents/manuals/m19.ashx

IEEE 52nd Annual Conference on, pages 1019–1024. IEEE, 2013. 3

[138] Matt Wytock and J. Zico Kolter. Sparse Gaussian conditional random fields: Algorithms,
theory, and application to energy forecasting. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 1265–1273, 2013. 1, 2, 4, 4.2

[139] Matt Wytock and J. Zico Kolter. Contextually supervised source separation with appli-
cation to energy disaggregation. In Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, 2014. 3

[140] Matt Wytock, Srinivasa Salapaka, and Murti Salapaka. Preventing cascading failures in
microgrids with one-sided support vector machines. In Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on, pages 3252–3258. IEEE, 2014. 3

[141] Matt Wytock, Suvrit Sra, and J. Zico Kolter. Fast Newton methods for the group fused
lasso. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence,
2014. 1, 2

[142] Matt Wytock, Po-Wei Wang, and J Zico Kolter. Convex programming with fast proximal
and linear operators. arXiv preprint arXiv:1511.04815, 2015. 1

[143] Bo Xin, Yoshinobu Kawahara, Yizhou Wang, and Wen Gao. Efficient generalized fused
lasso and its application to the diagnosis of alzheimers disease. In Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 2163–2169, 2014. 3.3.3

[144] Junfeng Yang, Wotao Yin, Yin Zhang, and Yilun Wang. A fast algorithm for edge-
preserving variational multichannel image restoration. SIAM Journal on Imaging Sci-
ences, 2(2):569–592, 2009. 6.3.3

[145] A. Yazdani and R. Iravani. Voltage-Sourced Converters in Power Systems. Wiley, 2010.
ISBN 9780470551561. 9.1

[146] Xiao-Tong Yuan and Tong Zhang. Partial gaussian graphical model estimation. CoRR,
abs/1209.6419, 2012. 4, 4.3, 4.4, 4.4.1

[147] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Sto-
ica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, volume 10, page 10, 2010. 1

[148] I. Žežula. On multivariate gaussian copulas. Journal of Statistical Planning and Inference,
139(11):3942–3946, 2009. 7.3.1

[149] M. Ziefman and K. Roth. Nonintrusive appliance load monitoring: Review and outlook.
IEEE Transactions on Consumer Electronics, 57(1):76–84, 2011. 8.1.1

127

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
www.ml.cmu.edu

	1 Introduction
	I Scalable Convex Programming
	2 Background
	2.1 Disciplined convex programming
	2.1.1 Expressions and atoms
	2.1.2 Disciplined convex programming rules
	2.1.3 Conic graph implementations

	2.2 Proximal operators and algorithms
	2.2.1 Properties of proximal operators
	2.2.2 Functions with simple proximal operators
	2.2.3 Alternating direction method of multipliers

	3 Convex Programming with Fast Proximal and Linear Operators
	3.1 The Epsilon compiler and solver
	3.1.1 The prox-affine form
	3.1.2 Conversion to prox-affine form
	3.1.3 Optimization and separation of prox-affine form
	3.1.4 Solving problems in prox-affine form

	3.2 Fast computational operators
	3.2.1 Linear operators
	3.2.2 Proximal operators

	3.3 Examples and numerical results
	3.3.1 Lasso
	3.3.2 Multivariate lasso
	3.3.3 Total variation
	3.3.4 Library of convex programming examples
	3.3.5 Comparison with specialized solvers

	II Specialized Newton Methods for Sparse Problems
	4 The Sparse Gaussian Conditional Random Field
	4.1 Problem formulation
	4.2 The Newton coordinate descent method
	4.3 Newton-CD for the sparse Gaussian CRF
	4.3.1 Fast coordinate updates
	4.3.2 Computational speedups

	4.4 Numerical results
	4.4.1 Timing results
	4.4.2 Comparison to MRF
	4.4.3 1 and 2 regularization vs. sample size

	5 The Sparse Linear-Quadratic Regulator
	5.1 Problem formulation
	5.2 Newton-CD for sparse LQR
	5.2.1 Fast coordinate updates
	5.2.2 Additional algorithmic elements

	5.3 Numerical results
	5.3.1 Mass-spring system
	5.3.2 Wide-area control in power systems

	6 The Group Fused Lasso
	6.1 A fast Newton method for the GFL
	6.1.1 Dual problems
	6.1.2 A projected Newton method for (DD)
	6.1.3 A primal active set approach

	6.2 Applications
	6.2.1 Linear model segmentation
	6.2.2 Color total variation denoising

	6.3 Numerical results
	6.3.1 Group fused lasso
	6.3.2 Linear regression segmentation
	6.3.3 Color total variation denoising

	III Applications in Energy
	7 Probabilistic Forecasting of Electricity Generation and Demand
	7.1 Introduction
	7.2 The probabilistic forecasting setting
	7.2.1 Relation to existing settings and models

	7.3 Forecasting with the sparse Gaussian CRF
	7.3.1 Non-Gaussian distributions via copula transforms
	7.3.2 Final Algorithm

	7.4 Experimental results on wind power forecasting
	7.4.1 Probabilistic predictions
	7.4.2 Ramp detection

	8 Contextually Supervised Source Separation for Energy Disaggregation
	8.1 Introduction
	8.1.1 Related work

	8.2 Contextually supervised source separation
	8.3 Experimental results
	8.3.1 Disaggregation of synthetic data
	8.3.2 Energy disaggregation with ground truth
	8.3.3 Large-scale energy disaggregation

	9 Preventing Cascading Failures in Microgrids
	9.1 System and problem description
	9.2 Machine learning model
	9.3 Results and Discussion

	10 Conclusion
	Bibliography

