
   Statistical Models and Algorithms for Studying Hand
   and Finger Kinematics and their Neural Mechanisms

Lucia Castellanos

August 2013
CMU-ML-13-108

       



  



Statistical Models and Algorithms for Studying Hand
and Finger Kinematics and their Neural Mechanisms

Lucia Castellanos

August 2013
CMU-ML-13-108

School of Computer Science
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee
Robert E. Kass, chair

Tom M. Mitchell
Byron M. Yu

Andrew B. Schwartz (University of Pittsburgh)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2013 Lucia Castellanos

This research was sponsored by grants RO1 MH064537, R90 DA023426. The views and conclusions contained in this docu-
ment are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.



Keywords: Variance Decomposition, Multivariate Gaussian Process Factor Analysis, Laplace Gaussian
Filter, Functional Data Alignment, Encoding, Decoding.



Abstract

The primate hand, a biomechanical structure with over twenty kinematic degrees of freedom, has an elab-
orate anatomical architecture. Although the hand requires complex, coordinated neural control, it endows
its owner with an astonishing range of dexterous finger movements. Despite a century of research, however,
the neural mechanisms that enable finger and grasping movements in primates are largely unknown.
In this thesis, we investigate statistical models of finger movement that can provide insights into the me-
chanics of the hand, and that can have applications in neural-motor prostheses, enabling people with limb
loss to regain natural function of the hands.
There are many challenges associated with (1) the understanding and modeling of the kinematics of fingers,
and (2) the mapping of intracortical neural recordings into motor commands that can be used to control a
Brain-Machine Interface. These challenges include: potential nonlinearities; confounded sources of varia-
tion in experimental datasets; and dealing with high degrees of kinematic freedom.
In this work we analyze kinematic and neural datasets from repeated-trial experiments of hand motion, with
the following contributions:

• We identified static, nonlinear, low-dimensional representations of grasping finger motion, with ac-
companying evidence that these nonlinear representations are better than linear representations at
predicting the type of object being grasped over the course of a reach-to-grasp movement. In addi-
tion, we show evidence of better encoding of these nonlinear (versus linear) representations in the
firing of some neurons collected from the primary motor cortex of rhesus monkeys.
• A functional alignment of grasping trajectories, based on total kinetic energy, as a strategy to account

for temporal variation and to exploit a repeated-trial experiment structure.
• An interpretable model for extracting dynamic synergies of finger motion, based on Gaussian Pro-

cesses, that decomposes and reduces the dimensionality of variance in the dataset. We derive efficient
algorithms for parameter estimation, show accurate reconstruction of grasping trajectories, and illus-
trate the interpretation of the model parameters.
• Sound evidence of single-neuron decoding of interpretable grasping events, plus insights about the

amount of grasping information extractable from just a single neuron.
• The Laplace Gaussian Filter (LGF), a deterministic approximation to the posterior mean that is more

accurate than Monte Carlo approximations for the same computational cost, and that in an off-line
decoding task is more accurate than the standard Population Vector Algorithm.
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sports at CMU. I trained with Antonio Juárez for our first triathlon, did long runs in Frick Park with Jamie
Flannick, followed Elmer Garduño’s smart training program, swam many kilometers with Arthur Gretton
and played squash with many friends. Dominik Schmidt introduced me to the sport, which I practiced with
Ezequiel Guinsburg and Marcos Gallo, but I really improved my technique with Sangwoo Park, to whom I
am incredibly grateful for his couple of months of training.

I spent many Thursday evenings in 2007 with the Germans in the long gone Kiva Han on Craig St.:



x

Dominik Schmidt, Tomas Szabo, Max Heinig, and Lorenz Steinwender (actually, Austrian). From this
group I gained friends for life (I hope!). We shared lunch many times and some social activities and, to be
fair, the label “the Germans” is not quite accurate, as there were also a couple of French in the crowd: Juan
Pino and Yannick Stenger. ...Good times!

I had fun times with the Argentinians — Ceci Perroni, Ezequiel Guinsburg, Marcos Gallo; and other
Latin Americans: Diego Andrade and Tara Loux who are so kind, friendly and generous.

Clare Sigrist, my flatmate and friend, gave me many conversations outside of CS. We talked about
literature and philosophy of life. Thanks Clare!

There are some people with whom I do not keep in touch that often, but whenever we do, it is always
meaningful and brings happiness because we care for each other: Cibeles Garcı́a, Anna Pasquetti, Lore
Becerril and Ole Schulz-Trieglaff. I am grateful to Lore Tapia because she has always been helpful whenever
I have reached out to her.

I want to thank Chuck and Al, who were responsible for taking me (and other students) home safely at
the end of the day (sometimes at the beginning of the next). They always did a great job and kept a smile on
their faces.

I keep in my heart my dear cousins and brother (spread across the globe) and in Mexico — I always
remember the good times, and continue to look forward to chatting and updating. My uncles and aunts who
are no further than a phone call away, and are willing to give advice if I ask, or to join me in my happiness
whenever I have something to celebrate. I would like to thank my mother and father, for taking care of me
through my first twenty-something years. And I am grateful to Tere, porque es un ángel cariñoso conmigo
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Chapter 1

Introduction

In the United States there are approximately 1.7 million people living with limb loss whose quality of life
can be improved by providing them with prosthetic devices controlled solely by neural signals. However,
to create effective neural prostheses that can mirror the capabilities of human hands, it is necessary to un-
derstand both the mechanics of the fingers and their neural basis. The goals of this thesis are to develop
and use statistical machine learning methods which provide insight into finger kinematics and to develop
algorithms that allow for fast and accurate neural decoding of continuous motor variables. In particular, we
address questions such as: how to effectively summarize and model finger kinematics during reach-to-grasp
movements, how to decouple the different sources of variability across repeated trials of the same movement
and how to obtain interpretable summaries that allow for accurate reconstruction of movement. We also in-
vestigate potential relationships between some of these kinematic summaries and neural signals collected
from the hand region of non-human primates.

The main scientific challenge is that we still lack a full understanding of the mechanism by which the
motor cortex controls complex dexterous hand motions. In addition, there a number of challenges asso-
ciated with working with kinematic data sets as well as with neural recordings. These challenges include
confounded sources of variation in repeated trial experiments, a large number of degrees of freedom in fin-
ger movement, plausible non linear effects in the kinematic data, as well as intrinsic noise in neural and
kinematic recordings.

In this work we address the above challenges in a number of ways: we developed statistical algorithms
to efficiently predict hand motion from neural recordings (Koyama et al., 2010a, 2008), modelled hand
dynamics (Castellanos et al., 2013; Castellanos, 2010; Castellanos et al., 2008), investigated the neural en-
coding of some these representations (Castellanos, 2010; Castellanos et al., 2008); and defined an approach
for decoding discrete grasping features (Castellanos et al., 2010). We elaborate on each of these topics as
follows.

Modelling hand dynamics and neural encoding of movement. In the past people have reduced noise
and modelled the coordinated and aggregated action of hand components through linear dimensionality re-
duction methods (Santello et al., 1998; Todorov and Ghahramani, 2004; Mason et al., 2001, 2004; Soechting

1



2 CHAPTER 1. INTRODUCTION

and Flanders, 1997; Pesyna et al., 2011; Thakur et al., 2008). In our work we found evidence of non lin-
earities in the data, and therefore we modelled hand kinematics through non linear dimensionality reduction
methods. We also found some evidence of neurons encoding the non linear synergies of the data (Castel-
lanos, 2010; Castellanos et al., 2008). In (Castellanos et al., 2013) we incorporated temporal variation into
the modelling of the data, and exploited the repeated trial structure of the grasping dataset that we studied.
We adapted a Multivariate Gaussian Process (MGP) based model, the Gaussian Process Factor Analysis
model (Yu et al., 2009), to decompose finger motion into two interpretable terms: a term that is shared
among all replications of the same reach-and-grasp task and a term that is particular to each replication and
that is modelled with a MGP, which provided a dynamic lower-dimensional representation of finger motion.

Predicting hand motion from neural recordings (Koyama et al., 2010a, 2008). Estimating hand kine-
matics can be challenging due to the large number of parameters involved in representing hand configuration
and its dynamics, as well as the fact that neural activity is not normally distributed. Moreover, computing the
optimal hand kinematic states is made even more difficult in the presence of non linearities in dynamics. We
developed the Laplace Gaussian Filter, a fast, accurate and deterministic approximation for the recursive
Bayesian computation (based on Laplace’s approximation) of the posterior expectation, that allows one to
effectively deal with non linearities and with high dimensional states. Our approach outperforms sequential
Monte Carlo methods in a fraction of the time, and we show results in simulations and on real data.

Decoding event-based grasping (Castellanos et al., 2010). In order to investigate the encoding of motor
commands, only a single neuron is required. In contrast, to solve the reciprocal problem of decoding or
predicting hand dynamics from neural activity several dozens of simultaneously recorded neurons are typ-
ically needed. In this thesis, we investigated whether some information that meaningfully describes grasp
is signalled by single neurons. We defined interpretable discrete variables that summarize and describe the
aggregated motion of fingers. For example, we consider the event corresponding to the time at which the
maximum or the minimum fist aperture is attained, or the maximum or minimum finger spread or curliness
is attained. Then we proposed a framework to decode these events (in contrast to decoding full grasp tra-
jectories) based on the historical pattern of firing of the neurons. We were able to show the existence of
single neurons that reliably decode relevant features of grasping that potentially can be used to control a
basic prosthetic device with discretized commands. In fact, we found that we only require a single neuron
to reliably perform the decoding, in some cases getting accuracies up to 96%. Even when more neurons are
available, these discrete events might be more stable to estimate, and can be thought of in some sense as a
dimensionality reduction of the kinematic data.

In all these studies we used kinematic and neural recording datasets from experiments from rhesus mon-
keys. In Section 1.1 we briefly explain the similarities that allow us to draw general conclusions about
humans from data collected from non-human primates and we explain the type of neural data that we an-
alyze. In Section 1.2 we survey the different ways of studying and modelling movement. In Section 1.3
we explain the problems of motor-neural encoding and decoding together with a literature review of related
work and our contributions put in context. Readers familiar with these concepts can skip to Section 1.4
where we present the thesis structure and main contributions.
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1.1 Rhesus monkeys as models

In order to study human processes, it is common to use animal models. In particular, Macaca mulatta
monkeys (or rhesus monkeys) are good models of human beings for motor tasks as they share anatomical
and functional features of brain and upper limbs. Like humans, Rhesus monkeys have arms and hands
with five fingers including an opposable thumb (see Figure 1.1). This similarity allows for the design of
experiments where the non-human primates perform motor tasks that humans would do, that bring insights
into the mechanics of human motor control.

As for the brain, the topology of the somatosensory and motor areas is very similar in both species (see
Figure 1.1). In particular, there exists ‘great’ architectonic similarities between the somatosensory and motor
areas in macaques and humans, and the distribution of patterns of many receptors in the somatosensory and
motor areas of both species have many features in common (Zilles et al., 1995).

In order to study neural-motor processes, technological devices need to record the activity of specific
motor areas while subjects perform a specific motor task (for a review of motor areas associated with vol-
untary movement refer to (Kandel et al., 1991)). There are different methods for recording neural activity
when performing a motor task. These methods vary in the type of signals sensed, granularity (in time and
space), and in the degree of invasiveness for the subject. Non-invasive methods involve placing external
sensors on or near the scalp, while invasive techniques are based on arrays of electrodes that are typically
placed, through a surgical implantation procedure, on the surface of the cerebral cortex penetrating a few
millimetres into the brain, situating the electrodes’ tips within close proximity of individual neurons.

Individual neurons are considered to be the the fundamental information encoding unit in the nervous
system. Intracortical electrode arrays allow the extraction of single unit behaviour at the highest spatial
resolution (individual neurons, micro spatial scale) and temporal resolution (milisecond timescale)(Gilja
et al., 2011). Therefore, at the cost of a surgical intervention, this technology is very useful for understanding
the way by which the brain encodes motor commands and, at the same time, for extracting information to
control motor-neural prosthesis. We refer the reader to a discussion of the burden-benefit of this technology
in (Gilja et al., 2011).

In this work, we focus on hand kinematic data sets paired with intracortical recordings taken from the
hand region of the primary motor cortex (Figure 1.2) of a rhesus monkey performing a motor task.

1.2 Studies of hand and fingers kinematics

In the literature, hand kinematics can be studied through experiments where kinematic variables, such as
position, velocity, acceleration, direction, force, torque, etc. are recorded from a subject (human or non-
human primate) performing a specific motor task. Some examples of motor experiments involve subjects
moving cursors, moving their hand following a target in a virtual environment (target pursuit), moving a
cursor or the hand from a central location to surrounding targets (center-out-tasks), pulling levers, perform-
ing sequences of movements, pushing buttons, exploring, reaching and/or grasping objects of different sizes
and shapes, etc. While the subject performs the task, different kinematic variables can be simultaneously
recorded and analyzed or correlated with other variables such as neural signals.

In this thesis we analyze several such datasets, most of which correspond to rhesus monkeys trained to
reach-and-grasp different objects presented in different orientations and spatial locations. The subjects are
comfortably seated in a primate chair, with one hand restrained and the other free to move to perform the
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Hand Brain

Figure 1.1: Hand. Correspondence of hands between human and macaque monkey. Brain. Correspondence of Motor Areas
in human and macaque monkey brain. Premotor cortex (PM), Supplementary motor area (SMA), Primary motor cortex (M1),
Prefrontal cortex (PF), Primary somatic sensory cortex (Pssc), Posterior Parietal Area (PP), Corpus callosum (Cc), Central sulcus
(Cs). (Figure extracted from (Kandel et al., 1991).)

Figure 1.2: Somatotopic organization in Primary motor cortex (M1) that is similar to motor cortical areas
of rhesus monkeys. (Figure extracted from (Kandel et al., 1991).)

task. A state-of-the-art motion tracking system (Vicon Inc) is used to record the three-dimensional (3D)
positions of passive markers placed on a thin custom made glove worn by the monkey, at a rate of 200Hz.
The markers are positioned at the center of each of the fingers’ phalanges, on the wrist and on the back of the
hand. Each replication of the reach-to-grasp task corresponds to a specific condition (i.e. an object presented
in a specific orientation) and constitutes a multivariate time series of markers’ position. We analyze these
datasets from Chapter 2 through Section 5.1.

The other dataset that we analyze corresponds to a monkey performing a 3D center-out-task where the
3D trajectory of the hand is recorded while the monkey reaches from the central position to the desired target
in a repeated trial experiment (Section 5.2).
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1.2.1 Studies on grasping

The earliest studies of grasping tried to understand hand configurations by creating grasp taxonomies (Napier,
1956; Cutkosky, 1989; Iberall, 1987, 1997; Goldfeder et al., 2009; Bock and Feix, 2008) – see Figure 1.3
upper panel for an example. The feasibility of defining a taxonomy suggests that it is possible to include
virtually all of the possible grasp configurations into a finite set. That is, while the configuration space of
dexterous hands is high dimensional, it is possible that most useful grasps can be found in the neighborhood
of a small number of discrete points (Ciocarlie et al., 2007).

It has also been observed that there is clear mechanical coupling on the hand components, meaning
that the digits do not move in isolation from contiguous digits (Ross and Schieber, 2000), and that there
exist clear correlations in the motion of digits. In the kinesiology and neurophysiology literature there has
been work trying to explain the space of hand configurations based on the coupling of the digits and their
correlation, through a small number of elements that have been called synergies.

The extraction of linear static synergies (understood as summaries of variation) in primate grasping has
been performed in different experimental settings including static hand poses grabbing imaginary (Santello
et al., 1998) and real (Todorov and Ghahramani, 2004) objects, reach-to-grasp tasks (Mason et al., 2001,
2004), skilled activities (Soechting and Flanders, 1997), and unconstrained haptic exploration tasks (Pesyna
et al., 2011; Thakur et al., 2008) (see Table 7.1). In these works it has been shown that it is possible to obtain
a small number of synergies that describe most of the variance of the different possible hand configurations.
In all of these works, synergies are obtained via principal components analysis (PCA), a dimensionality
reduction technique that assumes linear relationships on the variables representing the digits and that cannot
capture non linear structure. Matrix decomposition methods, like PCA or singular value decomposition
(SVD), in their standard formulations, are not suited for the the experimental trial structure of the data. In
fact, these approaches confound kinematic variability with time variation, and result in a loss of information
when the experimental design structure is ignored and data is collapsed into a large rectangular matrix.

Other approaches in the literature have incorporated temporal information into the extraction of grasping
synergies. For instance, Vinjamuri et al. (2007, 2010a,b) inspired in (d’Avella and Bizzi, 2005) proposed
two convolved-mixture models, that use SVD and an optimization step in their core, to learn a dictionary
of time varying synergies– while this approach is able to describe time varying phenomena, it does not
provide a generative model of grasping. State-space models are generative models that have been used to
model dynamics of general body motion (Wang et al., 2008) albeit not finger dynamics – in these models a
Markovian assumption is made and thus long range time correlations are unable to be directly captured.

1.2.2 Our contribution modelling hand kinematics

We model finger kinematics during reach-to-grasp movements. In particular, in Chapter 3 we obtain static
non linear kinematic synergies at relevant time landmarks and we show improved classification accuracy of
objects being grasped at every landmark as compared to linear synergies. While the non linear synergies
capture better the information of object being grasped, due to the focus on critical landmarks, they do not
model the entire trajectory and moreover, are not interpretable.

In Section 5.1 we explicitly define interpretable hand engineered synergies that describe relevant fea-
tures of grasping such as grasp opening, finger curling and finger spread. And in Chapter 4 we adapt the
Gaussian Process Factor Model from Yu et al. (2009) to model finger kinematics. This Multivariate Gaus-
sian Process Factor Model considers entire trajectories at once, and decomposes and reduces the dimensions
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Example of a grasp taxonomy

Visualization of static linear eigengrasps

Figure 1.3: Top panel: Figure from Bock and Feix (2008): A unifying Hand Taxonomy. Bottom panel:
Figure from (Ciocarlie et al., 2007): Synergies or eigengrasps that were obtained as in (Santello et al., 1998)
but from four robotic hand models and a human hand model.
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of the variation of the data into interpretable elements that capture what is common between replications
and what is different. Additionally, by applying an alignment procedure based on the total kinetic energy,
we also address time variation.

1.3 Encoding and decoding problems

Neurons propagate signals through electrical pulses called action potentials or spikes that propagate down
nerve fibers. These action potentials convey information through their timing. In order to understand and to
reproduce (through prosthetic devices) a specific phenomena like volitional movement two reciprocal prob-
lems can be posed: neural encoding and decoding. Neural encoding refers to measuring and characterizing
how stimulus attributes or motor actions are represented by action potentials; it corresponds to learning a
mapping from stimulus to neural response such that the function explains the neural activity in terms of the
motor action/stimulus.

The inverse problem of neural decoding consists of mapping a representation of the neural activity of an
organism to a specific behavior or interaction with the environment. Some examples of neural decoding are:
mapping thought to a specific word or meaning, mapping thought to limb movement, guiding the selection
of a specific key on a virtual keyboard with thoughts (Kennedy et al., 2000) or moving a cursor or a robotic
arm based on thoughts (Velliste et al., 2008; Hochberg et al., 2012). In the context of motor control, the goal
of the decoding analysis is to predict the kinematic variables from neural activity originating in motor areas
of the brain.

1.3.1 Encoding

The encoding problem can also be viewed as a search of all possible stimuli that are able to generate replica-
ble and specific patterns in the neuron or population of neurons. But it is not possible to evaluate all possible
stimuli, as the search space of all possible stimuli is too large. Hence, the encoding problem is essentially
statistical: given a finite number of samples, noisy physiological data and all possible stimuli how do we
estimate the neural code? (Paninski et al., 2006). In other words, how do we provide a model that explains
the probabilities that different spike sequences are produced by specific stimuli?

Although in this work we follow this parameter representational approach of searching in the space of
kinematic variables those that can consistently explain the firing rate of a neuron, recently there has also
been work on a dynamical systems approach, where, instead of trying to estimate the firing rate of a neuron
or population of neurons in terms of a function of kinematic variables, one tries to estimate the change (or
derivative) of the firing rate in terms of the firing rate and external variables (Churchland et al., 2012). The
dynamical systems view does not contradict the parameter representational approach (for a discussion refer
to (Churchland et al., 2010; Shenoy et al., 2011)), but it opens up new perspectives and opportunities to
understanding the neural code for voluntary movements.

Statistical models for neural encoding

The probability density for the occurrence of a spike is the firing rate of a neuron and there are different
ways to estimate this statistic (Dayan and Abbott, 2001; Cunningham et al., 2009). The average firing rate of
a neuron written as a function of the stimulus (or of the parameters that describe the stimulus) is the tuning
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curve. One way to provide an encoding model is to show that the response of a neuron or a population
of neurons to specific stimuli can consistently be described through a deterministic tuning curve. This is
the case, for instance, for the cosine tuning curve found by (Georgopoulos et al., 1982) used to describe
preferred direction in neurons in the primary motor cortex.

Tuning curves as described do not provide a model for the variability or noise in the neurons. However
it is possible to describe the encoding model through a probabilistic model such as a standard multiple linear
regression model or a point process. Even though standard regression methods are designed for the analysis
of continuous valued data, after some pre-processing of the data, these methods have shown to reliably en-
code kinematic variables (Kettner et al., 1988; Schwartz, 1992, 1993; Ashe and Georgopoulos, 1994; Moran
and Schwartz, 1999; Wang and Moran, 2007). Point processes are naturally suited to analyze spike trains as
they are processes composed of a time series of binary events that occur in continuous time. These processes
are defined through the conditional intensity function which, in the case of neural encoding, specifies the
joint probability density of spike times based on the kinematic stimuli. This conditional intensity function
corresponds to a deterministic estimate of the firing rate and from it, the model generates a stochastic spiking
pattern. Truccolo et al. (2004); Paninski (2004) proposed this framework for neural encoding of kinematic
data1 where they modelled the conditional intensity function through parametric models (e.g. either through
a Generalized Linear Model or through other general parametric models). This framework allows us to
analyze the simultaneous effects and relative importance of spiking history, neural ensemble and extrinsic
covariates. Furthermore it is flexible enough to allow the inclusion of non linear transformations and of
latent terms that can help to better describe the anatomy/physiology of the system or model intracellular
noise or the dynamical state of the network (Paninski et al., 2006).

There is a large body of work in encoding for voluntary movements; here we present an non exhaustive
but representative survey.

Primary motor cortex (M1). Neural activity in M1 is associated with execution of movement. Geor-
gopoulos et al. (1982) and Schwartz et al. (1988) showed that individual neurons in M1 fire preferentially
when movements are executed in their preferred direction (in 2D and 3D, respectively), and that the tuning
profiles of motor cortical cells can be described by a cosine tuning function. Georgopoulos et al. (1986a)
also showed that at a population level, while cortical neurons with different preferred directions are active
during movement in a particular direction, the activity of the whole population results in a population vector
that corresponds to the direction of movement. Maynard et al. (1999) showed later, that interactions among
groups of neurons in M1 improve population coding of movement direction. The population vector forms
the basis for the first decoding algorithm in motor control that we will review in later sections.

While the existance of a particular preferred direction for single neurons in M1 is consistently present,
studies have found systematic shifts in preferred direction on single units in M1 while subjects perform
standard center-out tasks or random target pursuit tasks (Sergio et al., 2005; Hatsopoulos et al., 2007) and
in PMd (Mason et al., 1998). But direction of movement is not the only kinematic variable encoded in
neurons in M1. Neurons in M1 show linear neural encoding of 3D hand position and define a position
gradient (Kettner et al., 1988). Speed of movement has also been shown to be linearly encoded in drawing
movements (Schwartz, 1992, 1993) and in reaches (Moran and Schwartz, 1999). Furthermore, Wang and
Moran (2007) linearly combined the models proposed in (Kettner et al., 1988) and (Moran and Schwartz,

1This paradigm was first applied to hippocampus data by (Brown et al., 1998).
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1999) and showed that position and velocity are simultaneously encoded by single motor cortical neurons
in an additive fashion, but the velocity signal is more salient during reaching than the position.

Wang et al. (2010) investigated the encoding of orientation and rotational velocity during a center-out
with rotation task. They found that single M1 neurons are capable of simultaneously encoding hand position,
translational velocity, orientation, and rotational velocity. They also found that hand rotational velocity is
more strongly represented than hand orientation; and that when two or more of the mentioned kinematic
variables are encoded by the same neuron their relationship can be additive (as in Wang and Moran (2007))
or multiplicative, such as between hand translation and rotation.

Paninski et al. (2004a) investigated the encoding of position and velocity by a single motor cortical
neuron during a pursuit tracking task and they incorporated time into the model through the evaluation of
individual time lags. They found that moto-cortical neurons linearly encoded a function of the full time
varying hand trajectory and showed that although both position and velocity are encoded roughly to the
same extent this encoding exhibits markedly different temporal dynamics for each of them.

Other kinematic parameters, such as force, have also shown to be linearly encoded in the firing patterns
of neurons in M1 (Sergio and Kalaska, 1998; Sergio et al., 2005; Cabel et al., 2001).

All the studies mentioned above use standard linear models as the encoding paradigm. Paninski et al.
(2004b) used a model that fits (Truccolo et al., 2004) to show that M1 cells encode a superlinear function
of the full time varying hand trajectory in a continuous tracking task. They showed that the exponentiated
linear combination of position and velocity constitute a suitable encoding model for M1 neurons (point
process-GLM framework (Truccolo et al., 2004; Paninski, 2004)). This showed in a principled way, that the
firing of neurons in M1 depends on the full hand trajectory and not just through position and velocity at a
fixed time, and that there exist a non linear encoding performed by M1 cells. They also showed dependence
of the firing rate on the activity of neighbouring cells.

Hatsopoulos et al. (2007) performed an analysis within the same statistical framework (Truccolo et al.,
2004) and investigated the superlinear encoding of normalized velocity trajectory, mean speed and mean
hand position. Their model can be reduced to cosine tuning (Georgopoulos et al., 1982) and linear tuning of
speed (Moran and Schwartz, 1999). This study, which is similar to (Paninski et al., 2004b), provides an ex-
plicit trajectory encoding model or tuning function that characterizes the shape of the preferred trajectories
of neurons in M1. Interestingly, in a similar analysis, they did not find strong encoding of torque trajectories.

Saleh et al. (2010, 2012) took a similar approach building trajectories describing hand shaping during
a reach-grasp task. Trajectories were built taking joint angles, angular velocities of fingers, wrist and arm
at multiple time lags, and applying principal components to these variables. Then, the components were
modeled into the point process-GLM framework to show encoding of the kinematic features by neurons
in M1. Their main conclusion was that neurons encode trajectories of the hand’s joints during prehensile
movements.

All the studies we mentioned in the last paragraphs were performed in rhesus monkeys; however there is
at least one paper reporting GLM encoding of motor variables on spike train data in humans (Truccolo et al.,
2008). In this work, two humans with tetraplegia were implanted with intracortical arrays in M1 and the
encoding of intended movement (velocity and position) in a imagined visually guided pursuit tracking task
and a center-out task was performed. A point process-GLM encoding model showed that the M1 spiking
activity is strongly tuned to intended movement direction and velocity even though highly variable time
lags were observed. In line with (Hatsopoulos et al., 2007; Saleh et al., 2010) the approach of querying
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whether specific parameters are encoded in M1 is questioned by Reimer and Hatsopoulos (2009). They
argue that inherent correlations between parameters of movement that happen during natural movement
cause unsolvable confounded effects and that the highly variant time lag between neural activity and motor
variable effect causes noise. They suggest an alternative approach of building a hyper-volume in a high-
dimensional movement space (similar to the proposed trajectories in their mentioned works) that avoids
these issues and that can potentially better explain the neural code in M1.

1.3.2 Decoding

The problem of neural decoding consists in mapping a representation of the neural activity of an organism
to a specific behavior, interaction with the environment or variables representing either of them. We focus
on the problem of decoding kinematic variables describing voluntary movement from spike trains collected
from one of the motor areas on the cerebral cortex. Two good reviews of the main approaches are (Yu et al.,
2010; Koyama et al., 2010b). In the Appendix we provide tables summarizing the approaches found in the
literature to address the neural motor decoding problem in all its modalities (Tables 7.4, 7.5, 7.2 and 7.3).

On-line control versus Off-line reconstruction

When considering the decoding problem, two settings can be distinguished: on-line (closed-loop) control
versus off-line (open-loop) reconstruction. The off-line setting corresponds to the application of decoding
algorithms in pre-recorded data and involves an algorithmic, statistical and data analysis problem. There is
a large body of work on off-line kinematic decoding algorithms (see Tables 7.4 and 7.5).

The on-line setting, on the other hand, includes a living subject, a specific task to be performed, a
brain-computer interface (BCI) and the efficient implementation of a decoding algorithm that will assist the
subject in the performance of the task through the BCI. The on-line setting involves scientific, algorithmic
and technological challenges and has been performed in different organisms ranging from rats (Chapin et al.,
1999), non human-primates (Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al.,
2003; Velliste et al., 2008), to even human beings (Hochberg et al., 2006; Kim et al., 2008; Hochberg et al.,
2012). Refer to Tables 7.2 and 7.3 for more examples.

In our work we focus on the off-line decoding of kinematic variables. However, as a cautionary satement,
we remark that it has been shown that decoding performance can highly vary when the same algorithm is
applied in the on-line setting versus in the off-line setting (Chase et al., 2009; Koyama et al., 2010b). Some
factors that may affect the disparity of performance of decoding algorithms in the off- and the on-line setting
include the algorithm’s statistical properties (Koyama et al., 2010b), the ability (or inability) for the subjects
to compensate for certain biases (Chase et al., 2009; Koyama et al., 2010b), the change of properties of
neurons (plasticity), and the ability of the brain to learn and adapt the mapping between neural activity and
device movement (Orsborn et al., 2012).

Decoding continuous versus discrete variables: regression versus classification

Movement of an arm/hand or cursor can be described from moment-to-moment through the trajectory that
it follows in time. This trajectory can be specified by a set of continuous variables like position, velocity,
acceleration, joint angles or any function of these variables. Alternatively, the movement of a device can
also be characterized by a discrete finite set of final target locations or configurations, such as, a specific
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key on a virtual keyboard or whether a finger is flexed or extended. Mathematically, the distinction between
these two types of decoding corresponds to predicting a time series of real numbers (continuous decoding)
versus predicting a discrete finite number of possible outcomes (discrete decoding). In the machine learning
community, these correspond to the two different problems of regression and classification.

In our work we provide an algorithm to efficiently solve the decoding of continuous variables in time
(section 5.2). We also provide a discrete decoding framework that allows us to recover relevant grasping
events from neural activity (section 5.1).

In the next sections we provide a survey of the main techniques for decoding kinematic continuous and
discrete variables.

Decoding of continuous variables

There are several approaches for decoding kinematic continuous variables:

Population Vector Algorithm (PVA). First proposed by Georgopoulos et al. (1986b, 1988) the PVA
method constructs a vector for each neuron representing the neuron’s preferred direction. The algorithm
linearly combines the vectors of all the neurons into a population vector that indicates the instantaneous
movement of the hand/cursor at each point in time. The PVA method performs optimally when the tuning
functions are linear, the set of preferred directions are uniformly distributed, and spike counts in adjacent
time bins are conditionally uncorrelated (Koyama et al., 2010b), which is often not the case in real data. Ad-
ditionally, since the PVA method is not designed to combine activity across multiple time steps, it frequently
generates results that are not smooth. Regardless, the algorithm yields good results in the on-line setting in
spite of its non-uniform assumption; the reason seems to be that subjects learn to compensate for the bias
introduced by the assumption (Chase et al., 2009). There are various versions of this algorithm based on the
same essential idea (Moran and Schwartz, 1999; Taylor et al., 2002; Velliste et al., 2008).

Optimal Linear Filter (OLE). The OLE method (Salinas and Abbott, 1994) also builds vectors of pre-
ferred directions for each neural unit. The difference with PVA is that OLE drops the assumption that the
directions of the units are uniformly distributed (impacting decoding accuracy). PVA can thus be viewed as
a special case of OLE.

Linear Filters (LF). Serruya et al. (2002) demonstrated 2D on-line cursor control (decoding position)
with linear filters. This method estimates (each of the coordinates of) the kinematic variable at a particular
time as a linear combination of the binned historical activity of the neurons. That is, the design matrix
contains the binned firing rate history of each neuron for a period of time (Serruya et al. (2002) considered
one second binned in 50mS periods). The design matrix is regressed onto the kinematic variables, and a
filter is built for each coordinate. This method was introduced in the visual decoding context by Warland
et al. (1997), and adapted to motor-decoding by Paninski et al. (2004a). Linear filters are able to incorporate
time information, which results in smoother estimates.
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Non-linear methods. Artificial neural networks have been used to perform continuous decoding of kine-
matic variables (Wessberg et al., 2000; Hatsopoulos et al., 2004; Aggarwal et al., 2008). The disadvantage
of this approach is the lack of interpretability of the elements in the model.

Recursive Bayesian Filters (State-space methods). Bayesian filters provide ways of incorporating the
uncertainty of the decoding through the use of probabilistic assumptions (Brockwell et al., 2004; Wu et al.,
2004, 2006). In particular, two probabilistic models need to be defined: one that describes how the time-
evolving kinematic variables relate to the neural activity (the observation or encoding model) and another
that characterizes the way the motor commands vary from one time point to the other (the state or trajectory
model). The problem can then be posed as obtaining the most likely sequence of kinematic variables given
the observed neural activity; or, in other words, obtaining the maximum a posteriori (MAP) probability of
the kinematics at a particular point in time given the neural activity observed up to that point. The estimation
can be done by applying Bayes rule at each point and recursively thereafter. These models make optimal
use of the observed data when the model assumptions are satisfied, yield smooth kinematic estimates (as
they incorporate time varying information) and, importantly, provide a framework where it is relatively
easy to relax or incorporate assumptions and information about the neural behavior (as modulated by the
kinematics of the system) or about the evolution of kinematic variables. This flexibility is reflected in the
ability to incorporate: hidden variables that can account for attentional states or other non observed variables
(Wu et al., 2009; Lawhern et al., 2010), complex trajectory models (mixtures of trajectories (Yu et al., 2007)
or switching states (Srinivasan et al., 2007)), switching observation models (Wu et al., 2004), models with
parameters that change over time (Wu and Hatsopoulos, 2008) or feedback (Gilja et al., 2012).

The point process-GLM framework (Truccolo et al., 2004; Paninski, 2004) introduced in Section 1.3.1
naturally fits within the recursive Bayesian decoders. The conditional intensity function is the observation
or encoding model and only the trajectory model needs to be specified.

The biggest drawback of Bayesian decoders is the computational complexity, in particular, the bottle-
neck is the algorithm for calculating or approximating the posterior. In the Gaussian case, exact solutions can
be found. When non Gaussian distributions are considered, careful analysis is needed. While Yu et al. (2007)
were able to incorporate their complex trajectory model without impacting computational cost, this is not the
general case. Some alternative approximate inference methods include variational approximations (Jordan
et al., 1999) or Monte Carlo methods such as Particle Filtering (PF) (Brockwell et al., 2004). Monte Carlo
methods are computationally expensive. In Section 5.2 we propose an alternative approximation scheme,
the Laplace-Gaussian Filter (LGF) – a deterministic method that gives fast and accurate state estimates with
bounded error.

Decoding of discrete variables

In some cases, the state to be decoded is a target from a discrete and finite set, for instance, the state can
be a key on a virtual keyboard (Kennedy et al., 2000), specific location in space (Musallam et al., 2004;
Santhanam et al., 2006), a specific direction (Maynard et al., 1999; Shenoy et al., 2003), whether a single
or multiple fingers are flexed or extended (Hamed et al., 2007; Aggarwal et al., 2008; Acharya et al., 2008;
Baker et al., 2009; Shin et al., 2009a,b, 2010) or specific grasp types (Stark and Abeles, 2007; Carpaneto
et al., 2011; Townsend et al., 2011; Hao et al., 2012). See Tables 7.3 and 7.5 for more examples.

In this context the problem to be solved is a classification task. The classification problem can be
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solved discriminatively or generatively (Mitchell, 1997). Some works of discriminative kinematic variable
decoding make use of support vector machines, k-nearest neighbors or artificial neural networks (Carpaneto
et al., 2011; Hao et al., 2012; Xu et al., 2013). But the most widely used discrete decoders are probabilistic.

In the probabilistic setting the classification problem can be viewed as predicting the most likely target
given the neural activity. Some studies use a maximum likelihood approach (Shenoy et al., 2003; Shin et al.,
2009a,b, 2010). This approach is the maximum a posteriori technique but considering uniform priors. Some
studies use the MAP approach (Musallam et al., 2004; Maynard et al., 1999; Baker et al., 2009; Townsend
et al., 2011) where the problem can be solved by applying Bayes rule to obtain the most likely target given
the data. The likelihood term specifies the probability of the neural activity given a possible target and makes
assumptions about the neural behavior. The most commonly used probabilistic models for neural activity
(represented as spike counts) are Gaussian (Maynard et al., 1999; Hatsopoulos et al., 2004; Santhanam et al.,
2006; Yu et al., 2007) and Poisson (Shenoy et al., 2003; Hatsopoulos et al., 2004; Santhanam et al., 2006)
models.

Traditionally, the units are assumed to be conditionally independent given the target, mainly to avoid
overfitting by estimating the large number of parameters that comprise the full covariance matrix (in the
Gaussian case) (Yu et al., 2010) and because in the multivariate Poisson case, estimation becomes cumber-
some (Kawamura, 1979).

While the conditional independence assumption yields good results when using a large number of si-
multaneously recorded neurons, there have been studies showing that there exists systematic variation in
the activity of a neural population, suggesting that the activity in the units is not conditionally independent.
As pointed out by Yu et al. (2010) some of the factors that have been found to produce this systematic
variation include: reach curvature, reach speed, force, type of grasp, attention and others. One way of ex-
ploiting the systematic variation include defining latent factors that account for any source of variation and
then decomposing the neural data covariance matrix (through factor analysis) into a term that represents
shared variability across the neural population and a term that represents what is independent across units.
By defining a system that includes these terms, Santhanam et al. (2009) showed that the decoding error
is significantly less than in the Gaussian and Poisson conditionally independent models in the off line set-
ting. There are other methods for summarizing and reducing the dimensionality of the neural activity like
(Yu et al., 2009) that could be used to leverage the systematic variation in neural data in order to increase
decoding accuracy.

Highly accurate discrete decoding of binary kinematic variables, like decoding of single finger move-
ments, requires at least 20-25 neurons (Shin et al., 2009b). Kennedy et al. (2000), on the other hand, showed
rough decoding of one dimensional position with one or two units. In Section 5.1 we investigate how ac-
curately we can decode grasping binary events with single neurons, and how robust is such decoding. We
propose a framework where grasping information is intuitively summarized by interpretable variables. We
also identify relevant events that describe grasping and show that a large proportion of neurons is able to
decode specific grasping events consistently.

1.3.3 Our contributions in encoding and decoding

In Section 3.2 we show some evidence of improved encoding of non linear static synergies as compared to
linear synergies using a multiple linear regression approach. In Section 5.1 we propose a discrete Bayesian
classification approach to decode relevant interpretable grasping features. We show, in particular that there
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are variables that are consistently decoded using just a single neuron from both hemispheres of the brain of
a non-human primate. Finally, to deal with non linearities in the neural signals, we developed the Laplace
Gaussian Filter (LGF) (Chapter 5.2) which mitigates the intractability of computing the posterior expectation
for the decoding problem by using Laplaces approximation. We show in simulations that LGF outperforms
particle filtering in accuracy while running in a fraction of the time and it provides better approximations
than PVA in our off-line decoding center-out task.

1.4 Summary and main contributions

We now outline the remainder of the thesis and state the main contributions.
In Chapter 2 we describe of experimental design and the datasets we used in Chapters 3, 4 and Section

5.1. We mention the derivation of joint angles according to the specific experimental settings.

In Chapter 3, we first define relevant time landmarks based on the total kinetic energy, then we inves-
tigate static synergies of grasping via a number of different linear and non linear dimensionality reduction
strategies. Using these reduced representations of grasping kinematics we evaluate the amount of infor-
mation preserved in the synergies by predicting which objects are being grasped. We show that as the
reach-to-grasp movement evolves, non linear synergies give significantly better results, suggesting that in-
formation from the kinematics can be better encoded via non linear features instead of linear features. We
also present results from linear encodings of the static synergies on the firing rates of primary motor cortex
neurons, yielding comparable results between linear and non linear synergies at population level, but show-
ing evidence of better non linear synergy encoding in some neurons.

In Chapter 4, we go beyond static dimensionality reduction: we incorporate modelling of whole tra-
jectories and account for time variation through statistical alignment of multivariate curves. We propose
and fit the Multivariate Gaussian Process Factor Model to represent finger kinematics during reach-to-grasp
movements. Our MGPFM model takes advantage of the repeated trial structure in the grasping experiment
and separates the common structure across many trials from the specific structure within each trial by fitting
interpretable parameters. We develop tractable algorithms for estimating parameters of the model, demon-
strating its effectiveness in both simulated and real data. In terms of reconstruction error, we show that
extracting structure using our model yields a better fit to the data compared to just using the mean or PCA.

In Chapter 5, we focus on both continuous and discrete formulations of the neural decoding problem.
In the first part of Chapter 5, we propose a discrete decoding formulation, in which the goal is to recover
kinematic events associated with interpretable hand engineering features that capture relevant aspects of
grasping. The discrete on-off events in our event-based framework require much less data to reliably decode,
allowing us to demonstrate consistent decoding of events from single neurons. For continuous decoding,
our contribution is algorithmic — we develop the Laplace Gaussian Filter (Section 5.2) to deal with the non
linear observation models that arise in typical neural decoding problems. Our algorithm yields fast, recur-
sive, and deterministic estimates of the kinematic variables with an error that remains stable over time. In
comparison with the (non deterministic) particle filter, our method delivers superior results in a simulation
and off-line analysis of real data in a fraction of the time.



Chapter 2

Experimental design and datasets

In Chapters 3 and 4 and in Section 5.1 we analyze and propose models for datasets that come from the same
experimental paradigm. In order to avoid repetition, we explain the experiment here and specify which
portion of the datasets was used for each of the analysis in the ulterior chapters. In Chapter 5.2 we analyze
another dataset corresponding to a center-out task, but we confine its description to that section as it is the
only part of the thesis where it appears.

In this chapter we first describe the grasping experiment design and some data exploration, and then we
point out what datasets we used in the different chapters of this thesis.

2.1 Reach-to-grasp experiment description

Three Macaca mulatta monkeys (Baxter, Vinny and Esteban) were trained to reach and grasp one of ten1

different objects (Figure 2.2), presented in different orientations. The monkeys were positioned on a primate
chair (as illustrated in Figure 2.1 right panel) , with one hand restrained and the other free to move to perform
the task. During the task, two datasets were recorded: one corresponding to the hand and fingers position
of the monkey and another corresponding to the activity of some neurons in the primary motor cortex of the
monkeys.

The experiment design and data collection was done at the University of Pittsburgh’s Motor Lab directed
by Dr. Andrew Schwartz. The data were collected by Dr. Chance Spalding and Dr. Sagi Perel, and the first
steps of preprocessing were performed by Dr. Samuel Clanton.

Experimental design. The experiment had a repeated trial structure where an industrial robot presented
the objects (Figure 2.2) one at a time at randomly selected orientations. A trial is described in Figure 2.3.
At the beginning of the trial, the monkey positioned its hand on the start pad. The industrial robot presented
an object in a specific position to the monkey. A cue light turned on and the monkey reached and grasped
the object. If the monkey exerted enough force for a randomized period of time, squeezing top- and bottom-
mounted pressure sensors on the object as to surpass a threshold, then the trial was saved and the monkey
was given a water reward.

1Different monkeys grasped different subsets of these objects.

15
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Recording Devices Experimental Setting

Figure 2.1: Recording devices. (A) Custom made glove with 23 reflective markers, whose position is tracked by a Vicon Inc.

optical marker tracking system. (B) Picture of a 5-Channel Electrode Mini Matrix System from Thomas Recording GmbH. The

magnified microdrive head shown on the left was inserted every session into the primary motor cortex of the macaques with the

device shown at the right. Experiment setting. A picture of the monkey sitting on the primate chair, with the robot presenting the

object to grasp. The light turns on as a go cue.

Figure 2.2: Objects presented to the monkeys. Each object was presented in different positions. Not all objects were grasped
by all subjects – see text for details.

Vinny was trained to grasp all the objects shown in Figure 2.2, Baxter grasped nine objects (all except
the large handle), and Esteban grasped six objects (all the small stimuli, the button and a bar not shown in
the figure). All objects, except the button and the bar were presented in seven orientations: horizontal, 45◦

flexion of the wrist, 45◦ extension of the wrist, 45◦ abduction and 45◦ adduction, 45◦ to the left and 45◦

to the right (these last two orientations are a combination of abduction/adduction and flexion/extension).
The button was only presented in the first five listed orientations, and the bar was presented in only two
orientations: pronation and supination.

For Vinny and Baxter the goal was to record five successful trials for each (object, orientation) pair
during each session; and for Esteban, twenty.
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Figure 2.3: A trial of the grasping experiment.

Kinematic recording. A state-of-the-art motion tracking system (Vicon Inc.) was used to record the three-
dimensional (3D) positions of passive markers placed on a thin custom made glove worn by the monkey, at a
rate of 200Hz. The markers were positioned at the center of each of the fingers’ phalanges, on the wrist and
on the back of the hand. Each replication of the reach-to-grasp task corresponded to a specific condition (i.e.
an object presented in a specific orientation) and constituted a multivariate time series of markers’ position.

The orginal kinematic data consists of twenty-three 3D points representing the position of each of the
reflective markers swen in the glove (Figure 2.1 left panel). Therefore, a total number of 69 numbers yields
the hand configuration per time point. There were three markers for each of the following fingers: index,
medium, ring and little; four markers for the thumb; three markers for the hand; and four markers for
the wrist. The total number of variables per time point that correspond only to the finger configuration is,
consequently, forty-eight. See Figure 2.5 left panel for a normalized visualization of several reach-and-grasp
movements.

The 3D marker positions corresponding to the fingers were summarized into 20 joint angles per time
point through a kinematic model used and applied in the Motor Lab. The joint angle dataset is described
by four variables per finger (see Figure 2.4): the metacarpo-phalangeal joint (MCP) that is defined by two
degrees of freedom the one that describes abduction-adduction (denoted in the figure with Ia where I stands
for index) and the one that describes flexion-extension (f1 in the figure), the proximal interphalangeal
joint (PIP) that moves in flexion-extension (f2 in the figure) and the distal interphalangeal joint (DIP) that
performs a flexion-extension movement (f3 in the figure). In Figure 2.5 (right panel) we show the joint
angles corresponding to the ring finger for five trials of Baxter grasping the large cone with 45 degrees of
abduction (note that each trial has different length).

According to Chang and Matsuoka (2006) the human thumb requires five DOF to be fully described
because the axes of rotation in the thumb are neither perpendicular nor parallel and are non intersecting
(Veber and Bajd, 2006). This implies a loss of information for the thumb kinematics when represented by
four variables. In Section 7.2 we provide our own mathematical conversion from the 3D datapoints to joint
angles based of the specific marker configuration and we describe the thumb in spherical coordinates to
tackle this loss of information. However, joint angles obtained by applying a kinematic model used in the
Motor lab essentially correspond to the 3D original dataset.
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MCP
PIP

DIP
Ia

If1

If2
If3

Figure 2.4: Mechanics of digits (A) Coordinate system defined for a particular joint. (B) The extension-flexion movement of
a joint with respect to the x-axis. (C) The abduction-adduction movement with respect to the z-axis. (Figure extracted from the
Computational Bioengineering Laboratory, National University of Singapore website) (Right panel) Example of the index finger
joint angles we used. a stands for abduction, f stands for flexion. The flexion variables are enumerated in order, increasing as they
are more distal from the wrist. (Figure adapted from (Veber et al., 2007))

Multiple trials
3D marker positions Joint angles

Rf2

Rf1

Ra

Rf3

Time 
(trials aligned to end point)

Figure 2.5: Kinematic data of Baxter grasping the large cone (45 abduction): (Left panel) 3D marker positions, (Right panel)
joint angles of ring digit. In the (Left panel) columns correspond to fingers, rows to markers, and each line represents a trial; data is
normalized to time interval (0,1). In the (Right panel) each row is a different joint angle, a color corresponds to a trial (each trial is
of different length); trials are aligned to end points.

In summary, we have two kinematic datasets (one for 3D marker position and one for joint angles)
describing the grasping of objects from three monkeys.

In Figure 2.5 is evident that when considering the time component, the kinematic curves have a certain
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consistency: that is, they present similar features such as peaks or valleys. However, these features occur at
different times for each trial, and furthermore, each of the trials is of different length.

Neural recording. Single unit recordings were obtained every millisecond from a 5-Channel Electrode
Mini Matrix System, from Thomas Recording GmbH (Figure 2.1 center panel). For every recording session
five new electrodes were positioned in the ports in the Mini-Matrix and mounted on the recording chamber
of the subject, spike waves were sorted on-line using two discriminator bars resulting in between two to eight
isolated units per sessions. Sometimes electrodes moved within a session and not all trials in the session
were associated with that unit’s activity; and across sessions there are all different units recorded.

To visualize the activity of the units, we constructed raster plots and peristimulus time histograms
(PSTH) for each of the studied neurons. These plots display aggregated activity and timing of discharge
of the neurons in relation to the reach and grasp task. We built these type of plots aligning the trials in two
ways: with respect to (a) the beginning of the trial, and (b) to the end of the trial. Two main qualitative
observations resulted from this approach. First, within the population of studied neurons there exist neurons
whose peak of activity is towards the begining of the trial, that is, towards the beginning of the reach; but
there are also neurons whose peak of activity is towards the end of the trial, that is, during the grasp. Figure
2.6 shows an example of each. It is sensible to hypothesize that the former type of neurons modulate reach,
and the latter, grasp. And second, there exist neurons whose discharge is object dependent. An example is
shown in Figure 2.6 panel (B) this neuron fires preferentially to trials of all objects, except for small handle.
In effect, as time progresses, the neuron becomes silent in all trials associated with the small handle. The
silent period is emphasized in the graph with an orange striped rectangle.

Neural commands of voluntary movement are generated in the brain before the kinematic behavior is
observed. That is, there exists a lag between the neural activity representing a command and the kinematic
response. As an example, observe Figure 2.7 where neuronal activity is displayed simultaneously with a
summary of the kinematic behavior (that will be introduced in Section 3.1.1, but that represents amount of
motion of the fingers). Notice, for instance, neuron spk003a which consistently shows a higher frequency of
spikes several dozens of mS before the largest peak in the energy function happens, one might hypothesize
that this neuron is signaling finger motion in the displayed trials. A challenge is to identify the time lag for
each neuron.

2.2 Datasets for obtaining static synergies (Chapter 3)

In Table 2.1 we provide a summary of how many sessions per monkey we analyzed, together with the total
number of trials, the average number of trials per session, the average number of time samples across trials
and the average trial length in milliseconds. In the lower panel of the table we show the total number of
neurons recorded per session per monkey. In Appendix 7.3 for each monkey, we display the total number
of successful recorded trials per (object, position) pair and the mean number of trials per session (Tables 7.6
and 7.7). The latter information will be relevant when considering the neural analysis. The important point
of these tables is that for this section: (a) we have considerably more data for Vinny than for Baxter, and
that (b) for each monkey there are different numbers of repeats for each (object, position) condition.
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(A) Neuron predominantly active towards the beginning of trial

(B) Neuron predominantely active towards the end of trial, displaying object preferences

Figure 2.6: Raster plots and peristimulus time histograms showing the activity of the two neurons: Panel (A) Session Vinny

000661, neuron 5b. 292 trials. Panel (B) Session Vinny 000669, neuron 4a. 216 trials. On the (left side) the raster plot and the

PSTH are aligned to the go cue (t=0), whereas the (right side) shows the plots aligned to the end of trials. The different colors of the

spikes in the raster plot denote different objects, the spikes color code is shown in the graph. Magenta triangles denote beginning

and end of trials. Panel (A) shows how the shape of the aggregated activity of the neuron changes as a function of alignment type.

The PSTHs in panel (A) (and also in panel (B)) shows two peaks of activity: a major one, and a minor one. Observe that, regardless

of the alignment, the order of peaks of activity in the PSTHs is preserved. That is, even though the shape of the aggregated neural

activity does change as a function of alignment, the larger peak always precedes the lower peak in panel (A) regardless of the

alignment. This is also the case for the neuron shown in panel (B) where the larger peak always follows the lower peak (alignment

with respect to end of trial is not displayed). In a nutshell, regardless of alignment, we can observe the timing of the highest peak

of activity of the neurons and hypothesize which part of the reach-grasp they are modulating.
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Figure 2.7: Spike trains and measure of movement of fingers for different trials. The kinematics of the fingers was summarized

in the energy function that will be introduced in Section 3.1.1). The upper panels display a cross in the (time, neuron) position

if the neuron presented an action potential at the given time. Neural activity was binned in 5mS intervals, to correspond to the

frequency at which the kinematics data was sampled. Crosses in magenta denote that more than one action potential happened in

the corresponding 5mS bin. In this case, all the energy functions were centered at zero, which explains why some energy values are

displayed as negative.

2.3 Datasets for obtaining dynamic synergies (Chapter 4)

In Chapter 4 we propose a model for dynamic synergies. We used data from Esteban. In Table 2.2 we sum-
marize the data we have for Esteban. In the analysis we analyzed the 48-dimensional finger motion captured
data from all 23 sessions and focused on five conditions: small cone and small handle presented in positions
45◦ of flexion and 45◦ of adduction, and for the small cone also at 45◦ of abduction. In each condition we
considered all trials across sessions, totalling in average 155 trials per condition.

Even though we did not pursue a full encoding or decoding analysis with this data, we did some prelim-
inary exploration summarized in Appendix 7.4 where we show a (1) visual analysis of which sessions are
suitable for analysis of simultaneous neurons based on the number of valid trials and simultaneous neural
recordings Figure 7.5, and (2) a glimpse on the heterogeneity of the population of recorded neurons based
on their modulation during the reach-to-grasp movement Figure 7.6.

2.4 Datasets for decoding grasping events (Section 5.1)

In Section 5.1 we pose a decoding task. Thus our focus is on neurons. In Table 2.3 we show the number of
neurons we analyzed for Vinny. We considered the two hemispheres, and we required that a neuron had fired
in (at least) 100 trials. If that condition was fullfilled we also required the neuron to spike in average at least
10 times during the whole reach and grasp movements. For the kinematics we obtained hand engineered
interpretable variables that are explained in the corresponding section.
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Dataset for static synergies
General sessions and stimuli information

Vinny Baxter
Num. sessions 16 4
Total num. trials 3,166 672
Trials per session (mean ± std) 198 ± 71 168 ± 25
Mean number of time samples (± std) 211 ± 33 155 ± 35
Mean trial length [mS] (± std) 1,052 ± 164 772 ± 176

Number of collected neurons
Session Num. valid neurons Session Num. valid neurons

Vinny000639 5 Baxter000467 7
Vinny000658 6 Baxter000475 3
Vinny000661 8 Baxter000478 4
Vinny000669 4 Baxter000481 5
Vinny000673 4
Vinny000676 1
Vinny000678 4
Vinny000680 3
Vinny000682 4
Vinny000683 4
Vinny000687 1
Vinny000690 5
Vinny000691 5
Vinny000693 5
Vinny000694 5
Vinny000695 3
Total number 67 19

Neurons with at least 100 trials 37 13

Table 2.1: Dataset for static synergies. (Top table) General information of kinematic data collected from
Vinny and Baxter. (Bottom table) Number of recorded neurons per session per monkey. In the last row we
show the total number of neurons per monkey that fired in at least 100 trials.
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Dataset for dynamic synergies
General sessions and stimuli information

Per session (total: 23 sessions)
Number of: Total Mean Min Median Max
Trials 9,465 411 34 495 717
Objects 5 1 6 7
Trials per object 70 22 82 119
(Object, orientation) pairs 29 7 32 39
Trials per (obj, orient.) pair 13 4 15 22
Neurons 152 6 3 6 10
Task related neurons

Specific information per session
Session Num trials Num obj Avg trials per obj Num (obj,orient) Avg trials per cond. Num Neurons

Esteban000597 687 7 98.14 39 17.62 9
Esteban000612 527 6 87.83 32 16.47 4
Esteban000613 86 3 28.67 14 6.14 4
Esteban000615 717 6 119.50 32 22.41 6
Esteban000620 185 6 30.83 32 5.78 6
Esteban000623 487 6 81.17 32 15.22 3
Esteban000640 213 6 35.50 32 6.66 9
Esteban000642 34 1 34.00 7 4.86 5
Esteban000644 362 6 60.33 32 11.31 8
Esteban000645 45 2 22.50 11 4.09 6
Esteban000647 325 6 54.17 32 10.16 10
Esteban000648 120 4 30.00 25 4.80 6
Esteban000655 563 6 93.83 32 17.59 3
Esteban000659 527 6 87.83 32 16.47 6
Esteban000661 553 6 92.17 32 17.28 6
Esteban000663 495 6 82.50 32 15.47 7
Esteban000667 496 6 82.67 32 15.50 8
Esteban000669 639 6 106.50 32 19.97 10
Esteban000671 517 6 86.17 32 16.16 9
Esteban000675 362 6 60.33 32 11.31 7
Esteban000677 516 6 86.00 32 16.13 9
Esteban000679 517 6 86.17 32 16.16 6
Esteban000683 492 6 82.00 32 15.38 5

Table 2.2: Dataset for dynamic synergies. (Top table) General session information. (Bottom table) Specific
information per session.
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Dataset for decoding grasping events
Number of neurons

Data set ≥ 100 trials AND ≥ 10
spikes/trial

Average number
of spikes per trial

Mean ± std sec-
onds per trial

Vinny right hemi-
sphere (left hand)

83 37 20.57 1.07 ± 0.23

Vinny left hemi-
sphere (right
hand)

155 67 17.52 1.03 ± 0.28

Table 2.3: Dataset for decoding grasping events.



Chapter 3

Static synergies and their kinematic
encoding

Given the repeated trial experiment structure described in Chapter 2 we can identify several sources of
variation in the recorded reach-to-grasp movements: time, conditions, replications and hand components. In
this chapter we study finger kinematics (joint angles) at specific relevant time slices, effectively removing
time variability. The goals are to obtain synergies, which we understand as summaries of variation, that help
to understand finger mechanics during grasping, and to investigate their encoding in neurons in the primary
motor cortex.

This chapter is divided in two main sections. In the first part we define time landmarks during grasping
motion based on the total kinetic energy of the trial, then obtain grasping synergies (at those landmarks)
through linear and non linear dimensionality reduction methods, and finally evaluate the amount of infor-
mation that these synergies contain through a classification task. In the second part we investigate linear
encoding of the obtained grasping synergies through multiple linear regression, and we verify that our re-
sults are not due to chance by bootstrapping.

3.1 Learning static synergies

Previous work has applied matrix decomposition methods to similar grasping datasets (see Table 3.1). Our
approach differs in two ways: we focus on specific relevant time landmarks and we apply non linear (ker-
nelized) methods to extract synergies. With this strategy we compare features that happen at specific points
in time, and enhance the possibility of extracting structure from data. However, by applying kernelized
methods we lose interpretability and increase computational cost.

While the application of PCA or SVD capture linear interactions between observations, in our ex-
ploratory analysis we found evidence of non linearities between some variables in the dataset; in particular,
we observed some parabola-shaped relationships between variables (Figure 3.1). We therefore explore the
hypothesis that modelling non linearities in the kinematic data better captures the configuration of the digits
during grasping and improves object prediction accuracy.

To explore this hypothesis we first obtain the synergies (linear and non linear) through dimensionality
reduction methods. And then we evaluate the ability of these synergies to classify what object is being

25
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Task Subjects Coordinate Method Reference
system

Static synergies
• hold imaginary object human JA PCA (Santello et al., 1998)
• specific manipulation human JA PCA (Todorov and Ghahramani, 2004)
of actual objects
• reach-to-grasp human 3D SVD (Mason et al., 2001)
• reach-to-grasp monkey 3D SVD (Mason et al., 2004)
• skilled activity human JA PCA (Soechting and Flanders, 1997)
• unconstrained human JA PCA (Thakur et al., 2008)
haptic exploration

Dynamic synergies
• grasp and hold human JA convoluted mixture model (Vinjamuri et al., 2007, 2010a,b)

Table 3.1: Summary of related work in extraction of hand synergies. Static methods do not account for timing, instead they

confound time variability. Dynamic synergies account for the variation in timing of features during movement (we defer discussion

of these synergies to Chapter 4). JA stands for joint angles, and 3D for the three dimensional position of markers. (For more

detailed information of the data they used and more details on the methods, refer to Table 7.1 of the Appendix.)

grasped.

The dimensionality reduction methods we use for synergy extraction are principal components analysis
(PCA), kernelized versions of PCA (kPCA) with different kernel functions and linear discriminative analysis
(LDA) 1. We chose to use kPCA because of the type of curvature we observed in some plots (like in Figure
3.1), where we observe a data distributions that could be represented potentially with either a polynomial
kernel of degree higher than one or a Gaussian kernel. We use LDA because it is a supervised method
and thus can serve as a reference of how well the dimensionality reduction can be done in an unsupervised
manner compared to the supervised manner. Since we only decided to use this method as a reference, we
do not further explore other supervised methods or their non linear extensions, like kernelized discriminant
analysis (Mika et al., 1999; Baudat and Anouar, 2000).

For the evaluation criterion, we use the following classifiers: naive Bayes and Multivariate Support Vec-
tor Machines. The Naive Bayes classifier is a supervised generative classifier based on Bayes rule. It makes
the assumption that the considered variables are conditionally independent given the class to which the input
data belongs. This assumption is made to reduce the complexity of general Bayesian classifiers from O(2n)
to O(n) (Mitchell, 1997). We selected this classifier because of its simplicity, low complexity and because
it has been applied successfully in applications in spite of the conditionally independent assumption being
invalid. We selected the discriminative SVM because it generally results in good classification accuracies in
other applications.

In Appendix 7.5 we briefly survey the methods we use for the data analysis.

1We also tried graph based dimensionality reduction methods such as local linear embedding (LLE) and isomap but their
performance was highly sensitive on the number of neighbors, so we omit the results.
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Scatter plots of joint angles

Figure 3.1: Evidence of linear and of non linear relationships between joint angles. Matrix of scatter plots of joint angles from

Vinny at the end of the trial (the last landmark as defined in Section 3.1.1) when grasping the object labelled ‘small precision’. Each

plot shows the relationships of two joint angles (T= thumb, I= index, M= middle, R= ring, P= pinky; f= flexion; 1=proximal, ..., 3=

distal). There is evidence of parabola-shaped relationships between variables.

3.1.1 Landmark definition

An important property of a reach-to-grasp movement is the magnitude of motion of the fingers during the
trial, we can quantify this magnitude by aggregating the motion of each of the sixteen markers attached to
the fingers. The amount of motion of the digits can be written as a function of the velocity of the markers
along time, and we call it the total energy signal.

Let Yr(t) denote the K × 3 matrix containing the 3-dimensional position of the K = 16 markers
attached to the fingers for replication r at time t. And let Ẏr

(t) denote the corresponding velocities. Then
Gr(t) = [Ẏr

(t)][Ẏr
(t)]T is the matrix of inner products of marker velocities for each replication r in a

specific condition, and the sum of the squared magnitudes of the velocities across markers is:

(3.1) Er(t) = tr(Gr(t)) = tr([Ẏr
(t)][Ẏr

(t)]T).

Er(t) is an important property of the trial because it summarizes the aggregated magnitude of motion of
the fingers during a trial. In general, the energy profile of a specific trial starts close to zero, presents one or
several peaks, and goes back to be close to zero at the end of the trial (see Figure 3.2 for two examples). In
addition, in every case there is a well-defined maximum for the energy. Thus, we define the relevant time
landmarks with respect to the time slice trmax corresponding to the point where the maximum of the energy
of replication r is attained (this time slice is labelled c in the central panel of Figure 3.2).

In addition, we consider two time slices before trmax and two time slices after trmax. The first two
landmarks correspond to the first landmark before the maximum and to the last landmark before the max-
imum, and thus they are denoted by trfirstBef and by trlastBef respectively. Landmark trfirstBef (labeled
a in Figure 3.2) is important because it corresponds to the beginning of the trial, since it is defined as the
first time that the amount of motion of the digits reaches a ρ% of the total motion of the trial, where ρ is
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Energy profiles of typical trials Energy profile of an outlier

Figure 3.2: Energy profiles of different trials, landmark definition and profile of an outlier during the reach-grasp movement.

Time landmarks are defined with respect to the amount of fingers’ motion and make reference to the time trmax (time when the

maximum of the energy of replication r is attained). In the plots two horizontal lines show ηr(ρ) for ρ = 0.05 and ρ = 0.1. In the

example in the center we show the definition of our times of interest: (a) trfirstBef (ρ), (b) trlastBef (ρ), (c) trmax, (d) trfirstAft(ρ),

and (e) trlastAft(ρ). (Left panel) Vinny: session 673, trial 238; small handle at −45◦ rotation. (Center panel) Baxter: session 475,

trial 147; large cone at 45◦ abduction. (Right panel) Baxter: session 467, trial 25; button, −45◦ rotation.

small. Landmark trlastBef (labeled b in Figure 3.2) denotes when the energy function is starting to climb the
hill that will maximize it; formally, it corresponds to the last intersection of the energy function with line
yρ = ρ · (maxt(Er(t)) −mint(Er(t))) before trmax. The last two landmarks happen after the maximum
and are labelled trfirstAft and trlastAft. The latter corresponds to the end of the trial, i.e. when the energy (or
the total finger motion) is decreasing towards zero for the last time (last intersection with line yρ). Whereas
trfirstAft corresponds to the finger motion reaching zero for the first time after the energy function was
maximized.

These landmarks are important because they closely correspond to crossings of zero of the aggregated
finger velocity and to the peak of velocity, that is, they are critical points of the aggregated digits movement.

In Figure 3.2 (center panel) we show an example of energy profile together with the defined landmarks
referring to the maximum amount of motion of the fingers (indicated by c in the figure) and the other
landmarks defined by the ρ-percent of motion of the trial: a and e denoting the first and last intersection
with the line yρ = ρ · (maxt(Er(t)) − mint(Er(t))), where ρ = 0.05 or ρ = 0.1, and b and d denoting
the closest intersections preceding and succeeding maxt(Er(t)). In this chapter, we use these landmarks as
reference points to compare trials at meaningful moments in time.

3.1.2 Data analysis

For this section we considered data from the grasping experiment described in Chapter 2. We analyzed
sixteen sessions from Vinny and four sessions of Baxter ). We included all conditions and all recorded
replications and we applied the following analysis.

Preprocessing

Three preprocessing steps were performed: outlier removal, selection of time of interest and data summa-
rization.
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(1) Outlier definition. The energy function (Equation 3.1) provides us with the means of defining an
outlier. There are trials where the energy function is not close to zero at the end of the trial. This could mean
either that (a) there was an error in defining the end of the trial, or (b) the configuration of the hand at the
defined end of trial is not stable, and there is still a lot of finger movement.

We defined a trial as an outlier when the motion of the fingers as the end of the trial has not gotten close
enough to zero, that is, when there is no trlastAft different than trfirstAft. Refer to Figure 3.2 for an example.

Under this definition Baxter had a 10% and Vinny 2% of outliers when ρ = 0.05, and 5% and 1.5%
when ρ = 0.10. This indicates that Vinny reached and held a steadier hand configuration compared to
Baxter at the end of the grasp.

(2) Selection of time of interest. In order to frame the problem as a classical dimensionality reduction
task we need to build a matrix Q which contains in its rows the trials and in its columns the variables.

Many authors (Soechting and Flanders, 1997; Todorov and Ghahramani, 2004; Thakur et al., 2008)
have built Q by considering each time point as an independent trial and have stacked the variables Xr

t

corresponding to different time points t and different trials r all together as follows:

Q =
(
X1

1 , . . . , X
1
T (1)| . . . |X

N
T (N), . . . , X

N
T (N)

)T
. This approach (a) removes the temporal information in

the data, and (b) treats each time point as independent from the others. In our approach, we select a specific
time of interest (like in (Santello et al., 1998)) in order to make data comparable and remove time variability.

(3) Sampling versus averaging. Once a time point of interest is fixed (see 3.2 for a definition of relevant
times of interest), and outliers are removed, we end up with a matrix of size N × p where p is the number of
variables describing hand configuration, andN is the number of replications whose value is: NBaxter ≈ 600
and NV inny ≈ 3, 100.

In kernelized versions of PCA, the time complexity is cubic in the number of samples since we need
to spectrally decompose a matrix of size N × N . The analysis of Vinny’s data takes a large amount of
time. In order to be able to run several experiments with 10-fold cross validation (in a single machine), we
considered ways of summarizing the data. In particular, we considered (a) sampling a specific number of
trials, preserving the distribution of frequencies of (object, position) pairs; and (b) averaging across trials
fixing an (object, position) pair, to obtain a representative trial from each condition.

In the case of sampling we considered all the trials for Baxter because the number of trials for him is
not prohibitive for applying kernelized dimensionality reduction methods. However, for Vinny we sampled
1, 000 trials. Averaging, on the other hand, drastically summarized the data into a matrix that contained only
one representative mean trial per (object,position) pair for each of the monkeys. To obtain the representative
mean trial, we averaged across trials fixing (object,position). Figure 3.3 shows a schematic view of the
analysis after outliers removal.

Experiments

We considered the joint angles data set for each monkey, that is, we obtained postural joint angle synergies.
And performed the following steps:

1. Select:
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Figure 3.3: A schematic diagram of the analysis after outliers removal. Summarizing refers either to (a) sampling a certain

number of trials preserving the distribution of number of trials that belong to a specific (object,position) condition; or (b) averaging

across trials fixing (object,position). The latter yields a drastic reduction of the number of trials in the matrix that will be used

to obtain the mapping. One of the objectives of the analysis is to determine which strategy yields better results according to the

measures of goodness.

(a) A specific time of interest: to study the hand configuration when object is being grasped we
considered tlastAft(ρ). And, to study the pre-shaping of the hand we considered tfirstBef (ρ),
tlastBef (ρ), tmax and tfirstAft(ρ).

(b) An outlier definition: we tried ρ = 0.05, and ρ = 0.10.
(c) A summarizing strategy:

i. Sampling:
A. Baxter: we used all the data, since the total number of trials does not exceed 700.
B. Vinny: we sampled 1,000 trials preserving the distribution of conditions.

ii. Averaging across trials fixing (object, position) condition.

2. Build a matrix D of kinematic information with the options selected in the previous step. Each row
corresponds to a particular trial at the selected landmark (in the case of sampling), or to a mean trial
at the selected landmark (in the case of averaging); and each column corresponds to the kinematic
variables that describe the hand configuration, in this case, the joint angles.

3. Use D to obtain a mapping to project the high dimensional data to a low dimensional data. The
mapping was obtained using: Principal Components Analysis, Linear Discriminant Analysis, and
kernel Principal Components Analysis with polynomial kernel (degree 2 and 3) and with Gaussian
kernel (σ = 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5)

4. Obtain the low dimensional embeddings of the original data through the mappings obtained in the
previous step.

5. We applied the classification methods to: the original data, and the reduced data. We considered the
following number of components for the reduced data:
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(a) PCA, kPCA: 2, 3, 4 to 20 in steps of size two.

(b) LDA: 2, 3, 4, 6, 8.

6. Finally, to get a sense of the preservation of the data, we obtained the 10-fold cross validation accuracy
from all the D matrices with:

(a) Multi-class support vector machines

(b) Naive Bayes classifiers

We report the main results in the following section.

3.1.3 Results

For the kPCA-Gaussian method we selected σ2 = 2 after 10-fold cross validation because this value yielded
the best results for both Baxter and Vinny. Also, we found that the performance of the synergies when using
kPCA-polynomial degree 2 and 3 was very similar, so we focused on the results of kPCA (with polynomial
kernels of degree 2 and 3). Local linear embedding and Isomap yielded solutions very sensitive to the
number of neighbors, and they performed very poorly compared with the other methods so we exclude
them from the results. We compared the accuracies obtained from classifying the original kinematic data
(not reduced) versus the classification accuracies of all the obtained synergies. We focused mainly on
unsupervised classification methods because the main goal is not to classify objects, but for comparison
we show the results of Linear Discriminant Analysis which is a supervised linear dimensionality reduction
method (see Figure 3.7).

Evaluation at different times of interest. The classification accuracy of all the methods increases as the
reach-and-grasp evolves in time and the hand reaches the final hand configuration. We can conclusively
show that the classification accuracy of the original data at the last landmark (signaling the end of grasping)
was on average better than all the other time points we considered. The first four landmarks represent the
preshaping of the hand. These results can be observed in Figure 3.2, where we show the performance of
all the dimensionality reduced data at different time points along the evolution of the reaching. The plots
correspond to the landmarks signaled in Figure 3.2 (center panel).

In our experiments we observed that starting from the point in time when the fingers start increasing
their aggregated motion during the reach, kernel PCA with polynomial kernel of degree 2 consistently
outperforms other dimensionality reduction methods when Support Vector Machines are used. In the same
setting, the Gaussian kernel-reduced data consistently performs the worst, even compared against PCA.

Classification accuracy also depends on the specific classifier. The combination of PCA and Naive
Bayes classifier yielded surprisingly good accuracies for lower numbers of components in Baxter (but not in
Vinny). Nevertheless, the main result is that non linear methods can capture information from the grasping
that linear methods cannot.

Variance explained with Linear Principal Components. We show the mean number of principal linear
components needed to explain 85% and 95% of variance averaged across all the times of interest in Tables
3.3 (the details for each time of interest are in Table 7.8). The first fact to notice is that the mean number of
components needed to explain a specific amount of variance is relatively robust to the definition of outliers
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tfirstBef tlastBef tmax tfirstAft tlastAft

Table 3.2: Preshaping and final configuration of the hand: at the left the earliest time point in the reach is plotted; going further to

the right, the hand is closer to the object to be grasped. The classification task is to predict the object that is being grasped using the

obtained static synergies. The horizontal line in each plot represents the classification accuracy using the raw (unprojected) features.

In this case chance level accuracy is 11%. The data is from Baxter with Support Vector Machine classification, and similar results

are seen from Vinny with SVM.

through the threshold defined by ρ. Secondly, the number of principal components needed to explain the
averaged data are lower than the number of principal components needed to explain the sampled data.

Various authors have reported the number of components needed to explain specific percentages of the
variability of the data sets they considered. The number of components they reported are shown in Table 7.1
of the Appendix.

Our results are only comparable to those of Santello et al. (1998), since they also considered only one
time point as opposed to all time points of the movement. The differences are that (a) our subjects are
monkeys, and theirs, human beings; (b) they only considered 15 out of the 20 joint angles that describe
the hand configuration, and we included all joint angles. The condition where our results were closest
to them was in Baxter, when ρ = 0.10 and when the eigenvalues of the covariance matrix was obtained
from the averaged data across trials fixing (object, pair) condition. But, in general, the number of principal
components we report are slightly higher particularly for Vinny. A plausible explanation for this is that the
number of variables we considered is larger than the number of variables (Santello et al., 1998) used.

The amount of variance explained by kernel PCA is not directly comparable to PCA, since the covariance
that is being obtained is the covariance matrix in the feature space, not in the space of variables.

Robustness to outliers definition criterion. Not only is the mean number of components needed to ex-
plain 85% and 95% of the variance in the PCA reduced data practically the same when considering different
outlier criteria. But also, the difference in accuracy given by removing outliers with ρ = 0.05 and with
ρ = 0.10 is not meaningful. We found thus, that our results are relatively robust to the specific threshold for
defining outliers, and we fixed ρ = 0.05.

Sampling versus averaging to obtain mappings. We contrasted the strategy of sampling versus aver-
aging the data set to obtain the mappings, and found that as a whole the classification accuracies are not
affected for any of the unsupervised dimensionality reduced methods. However, the performance of the em-
bedding using Linear Discriminant Analysis is deteriorated when averaging is used as opposed to sampling.
In Figure 3.4 we show the phenomenon: for all number of components, the accuracy of LDA obtained with
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Baxter
Baxter Sampling Averaging

85% 95% 85% 95%

Outliers ρ = 0.05 4.2 7.6 2.5 5.1
Outliers ρ = 0.10 4.1 7.3 2.5 4.8

Vinny
Vinny Sampling Averaging

85% 95% 85% 95%

Outliers ρ = 0.05 4.8 8.1 3.1 5.8
Outliers ρ = 0.10 4.8 8.3 3.5 5.8

Table 3.3: Baxter and Vinny: mean number of components needed across all times of interest considered, for the different

alternatives of the analysis.

the mappings constructed from averaged data is lower than the accuracy of LDA obtained with the map-
pings built from sampled data. This is a representative example of all the comparisons between averaging
and sampling in all the different experimental setups.

Figure 3.4: Contrasting summarizing strategies: sampling versus averaging. Using the averaged data across trials fixing (object,

position) pair considerably deteriorates the performance of Linear Discriminant Analysis, whereas the performance on the classifiers

remains relatively unchanged for the unsupervised dimensionality reduced embeddings. The performance of LDA when evaluated

with Naive Bayes classifiers is also worse when using averaged data as opposed to sampled data to obtain the reduction mapping.

In this plot: Vinny. Classification method: SVM. Time point: end of grasp (lastAft).

Classification accuracies of reduced data. The dimensionality reduced method naturally depends on the
kernel. The two main options we tried were polynomial and Gaussian kernels, and they exhibit different be-
havior when evaluated with the classification methods. Classification accuracy also depends on the specific
classifier. In our experiments we observed that kernel PCA with kernel polynomial of degree 2 performs
consistently the best as compared to other dimensionality reduction methods, when Support Vector Ma-
chines are used. In the same setting, the Gaussian kernel-reduced data performs consistently the worst, even
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compared against PCA.
With the SVM classifier, the PCA embeddings rarely go higher than the accuracy yielded by the Original

Data (Figure 3.4). In contrast, the PCA embeddings coupled with a Naive Bayes Classifier yield higher
accuracy. One possible explanation to why Principal Component Analysis perform better when trained with
Naive Bayes as opposed to Support Vector Machines is that PCA might rotate the data in a way that it more
closely satisfies the conditional independence assumptions.

Figure 3.5: Contrasting classification methods: Support Vector Machines (Figure 3.4 Part A) versus Naive Bayes classifier. The

accuracy obtained from linear and non linear reduced data evaluated through Naive Bayes classifiers is not meaningfully different.

In this plot: Vinny. Classification method: Naive Bayes. Time point: end of grasp (lastAft).

Confusion matrices. We now show qualitative results that bring insight into which objects are easier to
classify, and we elaborate on possible explanations for this. In Figure 3.6 we show graphical representations
of confusion matrices for the three unsupervised dimensionality reduction methods coupled with a respec-
tive Support Vector Machines classifier for Baxter. We show (from left to right) an increasing number of
components. A confusion matrix C contains in its (i, j) coordinate a count of observations known to be in
group i but predicted to be in group j.

On the left most column we observe the confusion matrices obtained with only two components. The
object that is easiest to classify by all classifiers, and only with two components, is the button. Through
observation of movies representing the hand movements we observe that the pattern of grasping is indeed
quite different from grasps of other objects. The monkeys use their middle finger to push the button, and
the rest of the fingers are extended. The hand configuration for all the other objects is very different than
that pattern, and more similar between the other objects in which more classic power or precision grips
are observed. The clear differentiation of hand configuration from button to all other objects can also be
observed in the scatter plots of the LDA projections of the data (see Figure 3.7).

From left to right there is an increasing organization of the matrices towards the diagonal. The method
that brings the elements fastest to the diagonal is kPCA with polynomial kernel of degree two. Furthermore,
observing the right-most column of matrices which corresponds to taking all the components, the method
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PCA

kernel PCA polynomial degree = 2

kernel PCA Gaussian σ = 2

Figure 3.6: Confusion matrices obtained from SVM classification on Baxter data at the landmark at the end of the grasp from the

two non-supervised dimensionality reduction methods. On the y-axis the true object is shown; on the x-axis the predicted object is

shown. A sequence of increasing number of components considered is shown from left to right.

that presents the cleanest pattern of elements only in the diagonal is kPCA polynomial of degree 2 (also
compared to kPCA with Gaussian kernel). The performance of kPCA with Gaussian kernel is the worst,
and objects which PCA is not able to differentiate even with all the components (like the small precision
versus the large precision) are successfully classified by kPCA with polynomial kernel (see Figure 3.6’s last
column of matrices, coordinates corresponding to (small precision, large precision)).

In the first column we also observe blobs of dark color outside the diagonal. Common troubles for all
classifiers when only two components are considered are: (a) the large rectangle is classified as the disk (and
vice versa, except for kPCA polynomial degree 2); (b) the large precision is classified as the small precision
(and vice versa); (c) the large cone is classified as the small cone (and vice versa), and (d) surprisingly the
small handle is classified as the large cone.

These qualitative results show evidence that unsupervised non linear dimensionality methods can extract
more information per component than unsupervised linear methods, and also that non linear synergies extract
information about the object to be grasped earlier in the reach.
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Figure 3.7: First two and three components obtained from the Linear Discriminant Analysis projection of Baxter at a time point

where the grasp is fully configured to the object. Note the separation of objects in the 3-first components space suggesting that

different objects elicit different hand configurations that can be distinguished from each other.

3.1.4 Conclusions

The performance of non linear versus linear dimensionality reduction depends on the specific classifier used,
as we have seen from experiments. However, we have shown that modelling the non linear relationships in
the data is helpful for classifier performance. Out of all the experimental settings for both monkeys, the
setting which achieves the highest accuracy with 10 components is always the Support Vector Machine with
polynomial kernel degree 2. Our main finding is that modelling the non linear relationships in the data re-
sulted in better classifier performance, and this strongly supports our hypothesis that non linear relationships
in the data can be captured with kernelized (non linear) dimensionality reduction methods.

3.2 Encoding of linear and non linear synergies

In the previous section we obtained joint angle linear and non linear synergies for grasping movements in
the defined landmarks in time. In this section our goal is to investigate whether these linear and non liner
synergies are encoded in the firing pattern of the collected neurons. That is, whether we can predict the
neural activity (and to what extent) based on the synergies, through multivariate linear regressions.

In addition to the joint angle synergies we obtained joint angle velocity synergies, 3D postural synergies
and 3D velocity synergies in an analogous fashion. We investigate their encoding too.

Related work. In Section 1.3.1 we provide a general literature review of models for motor encoding. Here,
we mention some studies specifically related to grasping. Hendrix et al. (2009) studied standard multiple
linear encoding of grasp force and dimension (size) during reach and grasp movements in neurons in PMd
and M1. They found that these two parameters were encoded in both regions but the correlations with grasp
force were stronger in the firing of M1, and across both regions the modulations with these parameters
increased as reach to grasp proceeded. They also found that although neurons that signaled grasp force also
signaled grasp dimension (not vice-versa) the two signals exhibit limited interactions suggesting that the



3.2. ENCODING OF LINEAR AND NON LINEAR SYNERGIES 37

neural basis for control of these two parameters is independent. Chen et al. (2009) performed an analysis-
of-variance type encoding analysis (essentially a linear model) associating the way of approaching to a
grasped object and the shape/type of grasped objects to the firing rate of neurons in the posterior parietal
cortex. They found that the way of approaching to the object was strongly correlated with firing rate and
that the object shape/type was not correlated. Mason et al. (2006) performed an analysis-of-variance type
encoding analysis of the size and shape of objects grasped and of force exerted in a reach-grasp task in
simple2 spike trains of Purkinje neurons in the cerebellum. They found that there was significant force and
object related modulation in these neurons, but that the signals were not correlated between each other.

More closely related to our work is the work of Saleh et al. (2010, 2012) who built trajectories describing
hand shaping during a reach-grasp task. Trajectories were built taking joint angles, angular velocities of
fingers, wrist and arm at multiple time lags, and applying linear principal components to these variables.
Then, the components were modeled into a point process-GLM framework (Truccolo et al., 2004) to show
encoding of the kinematic features by neurons in M1. Their main conclusion was that neurons encode linear
trajectories of the hand’s joints during prehensile movements.

In our work we use multivariate linear regression to investigate the encoding of synergies, and it is
different from others because we focus on specific landmarks and because, to our knowledge, no one has
studied the encoding of synergies obtained with non linear dimensionality reduction methods.

3.2.1 Methodology

Pre-selection of neurons

We performed a pre-selection of neurons. Two criteria had to be fulfilled by a neuron in order for it to be
considered eligible for the analysis: (a) the neuron had to be associated with at least 100 trials; (b) the
neuron had to be task-related.

In order to define task relatedness we divided each trial into three epochs: premovement, reach and grasp
configuration. Premovement extends from the beginning of the trial until landmark tfirstBef ; reaching or
prehension included the period between landmark tfirstBef and landmark tlastAft; and grasp-hold was the
period from landmark tlastAft until the end of the trial. Roughly, these three epochs correspond to (1) the
monkey having the hand on the starting pad, (2) the monkey moving and positioning the fingers on the
object, and (3) the monkey holding the object. An analysis of variance was done of the firing rates during
premovement, reach-prehension and grasp-hold. We tested the null hypothesis that states that the mean of
the firing rates in each of the epochs are equal. We considered the neuron to be task related if the p-value of
the F-test was lower than 0.001, which meant that the null hypothesis was rejected.

Linear model for kinematic synergies

We modeled the firing rate wj of neuron j in terms of a linear relationship of the synergies S by

(3.2) wj = S ·Bj + εj εj ∼ N (0, I · σ2
j ).

For each monkey, we considered the firing rate of each neuron to be binned in non-overlapping time bins
of length ∆ = 70mS as in (Wu et al., 2003, 2002). The physical relationship between neural firing and

2Their analysis focused on the simple spikes of Purkinje cells as opposed to the complex spike type also characteristic of these
types of neurons.
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kinematic behavior implies the existence of a time lag between them (Moran and Schwartz, 1999). In
order to address this neural-motor lag, we considered four non-overlapping bins backwards starting from
the considered landmark (spanning a total period of 280mS). Firing rate was obtained as sum of spike
counts divided by the length of the bin. Then we fitted a model for each time lag using the static synergies
obtained in the previous section at the two latest landmarks during the reach-and-grasp (namely, tfirstAft
and tlastAft). In addition, we obtained static synergies on these same landmarks considering the velocity
of the joint angles and the velocity of the 3D markers during the reach-and-grasp. For each synergy we
selected the lag whose model yielded the largest mean 10-fold cross-validated coefficient of determination
R2. The larger this value, the better the synergy explains the firing rate.

Bootstrap to verify results are not due to chance

Finally, for each regression we performed a version of the bootstrap to verify that the results were not due
to chance. Consider the matrix of kinematics S ∈ Rn×p that contains n trials, and perform the following
procedure M times (in our case M = 10): draw a sample Sres ∈ Rn×p, with replacement of size n from
among the trials contained in S; , perform the regression of wj on Sres, and save the resulting R2. In this
way, M coefficients of determination will be obtained, and the mean of them is an approximation of the R2

obtained by chance. These values can be used to compare the R2 obtained from the original regressions.

3.2.2 Data Analysis

Neural data. We analyzed sixteen sessions from Vinny and four from Baxter ; they contained 67 and 19
recorded neurons respectively. But from these neurons only 37 and 13 respectively fired in at least 100 trials
and had, in average, at least ten spikes per replication. Therefore, we focused our analysis in those 37 and
13 neurons.

Static synergies. Table 3.4 shows the choices needed to build static synergies S ∈ Rn×p. The number
of columns p was determined by the number of components to be considered. When considering the low
representation of the data we considered 2, 3, 5, 8 and 15 principal components for the unsupervised di-
mensionality dimension methods (PCA and kernel PCA), and the same number of components except for
15 for LDA. In the case of the original data, p = 20 for joint angles position and velocity, and p = 48 for
3D marker position and velocity. Ten fold cross validated multiple linear regression analysis was performed
for each of the built synergies S paired with each of the vectors of neural activities. Since the neural activity
was binned in intervals of 70mS, the lag which yielded the largest 10-fold cross validated R2 was selected.
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Monkey Kinematic variable Time of interest Synergy obtained with
• Vinny • joint angles • prehension • PCA
• Baxter • joint angles velocity∗ (tfirstAft) • kPCA polynomial kernel

• 3D marker position • grasp-and-hold • kPCA Gauss kernel
• 3D marker velocity∗ (tlastAft) • LDA

Table 3.4: Summary of the choices made to build synergies S to investigate their linear encoding on neurons in M1. In the case

of the Gaussian kernel, we considered σ = 2 as determined by the cross validated classification accuracy in Section 3.1.3. ∗Note

that for velocity we considered a window of 40mS centered in the landmark and averaged the kinematic variables – otherwise the

variables would have been zero due to the landmarks definition.

3.2.3 Results

Pre-selection of neurons. We pre-selected the neurons through the analysis described in Section 3.2.1.
Thirty-one neurons from Vinny (83.78% of the total analyzed) were found to be task related (p < 0.001)
and four neurons from Baxter (30.77% of the total analyzed). Table 3.5 shows the complete results.

Monkey p < 0.05 p < 0.01 p < 0.001

Vinny 91.89% (34/37) 83.78% (31/37) 83.78% (31/37)
Baxter 38.46% (5/13) 30.77% (4/13) 30.77% (4/13)

Table 3.5: Number of task related neurons. We found evidence to reject the hypothesis that the firing rates in each epoch

(premovement, reach-prehension and grasp-hold) are the same, with p-value of the F-test in the ANOVA being less than the specified

value in the columns. Note that the two last columns look the same, but refer to different thresholds for the p-values.

Linear encoding of static synergies. We focused on the results from Vinny because there is a population
of 31 neurons as opposed to only four from Baxter.

Linear encoding of joint angle kinematics. In Table 3.6 we show the mean R2 values corresponding to
the regression of selected neurons and the obtained synergies. We find that for these neurons (and many
others) the non linear learned synergies better explain the firing rate of the collected neurons, especially for
the variables corresponding to velocity. For some neurons, the joint angle synergies present a suggestive
pattern: when the number of components is small, the linear and non linear learned synergies explain the
firing rate very similarly; however, when considering more components, the non linear synergies are clearly
better than the linear synergies.

We compared the linear coding of joint angles versus joint angles velocities. The number of neurons (out
of 31) that yielded in average anR2 higher than 0.15 are in Table 3.7. We contrasted synergies corresponding
to two landmarks: tfirstAft (prehension), and tlastAft (grasp-and-hold).

The number of neurons that yielded R2 above threshold for joint angles was always higher than that
for joint angle velocity except in three cases: LDA with 2 components at time prehenshion, kernel PCA



40 CHAPTER 3. STATIC SYNERGIES AND THEIR KINEMATIC ENCODING

3D marker velocity
Baxter000467 - Neuron: spk002a

Num. comp. PCA kPCA poly-2
2 0.19 0.28
3 0.23 0.32
5 0.25 0.34
8 0.27 0.37
15 0.31 0.54

Vinny000661 - Neuron: spk005a
Num. comp. PCA kPCA poly-2

2 0.19 0.29
3 0.20 0.30
5 0.22 0.30
8 0.24 0.32
15 0.28 0.41

Joint Angles
Vinny000658 - Neuron: spk005b

Num. comp. PCA kPCA poly-2
2 0.05 0.06
3 0.08 0.08
5 0.10 0.13
8 0.13 0.17
15 0.18 0.27

Vinny000693 - Neuron: spk001a
Num. comp. PCA kPCA poly-2

2 0.16 0.18
3 0.20 0.21
5 0.20 0.23
8 0.23 0.25
15 0.30 0.36

Table 3.6: Examples of neurons and the mean R2 from their 10-fold cross validated regression during prehension. In these ex-
amples non linear learned synergies explain better the firing rate of the collected neurons, especially for the variables corresponding
to velocity. For some neurons, the joint angle synergies present a suggestive pattern: when the number of components is small, the
linear and non linear learned synergies explain the firing rate very similarly; however, when considering more components, the non
linear synergies are clearly better than the linear synergies.

(polynomial) with 15 components, and kernel PCA (gaussian) with 15 components. However, in these
three cases the difference of number of neurons was only one. To contrast joint angles against joint angle
velocities with respect to the number of neurons whoseR2 surpassed threshold, we calculated the average of
the absolute value of the difference between the number of neurons. This value was 7.2 for grasp-and-hold,
and 1.3 for prehension. The last value indicates that no matter what kinematic variable we consider (joint
angle or joint angle velocity) the number of neurons whose firing rate can be explained (given our threshold)
by a linear model of the kinematics is the same. In other words, at prehension there is the same number of
neurons in our population that code for joint angle and for joint angle velocity.

We also contrasted the different dimensionality reduction methods (Table 3.7). We concluded that when
considering joint angles, the behavior of all dimensionality reduction methods is very similar; such is also
the case when considering joint angle velocities at prehension. However, when considering joint angle
velocities at grasp-and-hold, LDA performs better, perhaps because at that point, the monkey is already
grasping the object and so the information of the object that is definitely coded in the kinematics (since
LDA is supervised) implies some specific firing pattern of the neurons.

Linear coding of 3D markers kinematics. Table 3.8 display the encoding results using 3D markers po-
sitions and velocities. Note that in this case, the design matrices consisted of 48 variables, as opposed to the
20 variables used in the joint angles case.

With 3D marker positions and velocities, the number of neurons whose regression yielded an R2 higher
than threshold were higher using 3D marker positions than 3D marker velocity except where a Gaussian
kernel was used for the dimensionality reduction. There were also three other exceptions, but the difference
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Prehension
JA position JA velocity

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 11 (35.5) 10 (32.3) 12 (38.7) 7 (22.6)
3 11 (35.5) 11 (35.5) 12 (38.7) 9 (29)
5 12 (38.7) 12 (38.7) 14 (45.2) 12 (38.7)
8 17 (54.8) 15 (48.4) 18 (58.1) 17 (54.8)
15 24 (77.4) 24 (77.4) 23 (74.2)

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 9 (29) 9 (29) 9 (29) 7 (22.6)
3 10 (32.3) 10 (32.3) 10 (32.3) 8 (25.8)
5 12 (38.7) 12 (38.7) 12 (38.7) 11 (35.5)
8 15 (48.4) 15 (48.4) 15 (48.4) 16 (51.6)

15 23 (74.2) 25 (80.6) 24 (77.4)

Grasp-Hold
JA position JA velocity

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 11 (35.5) 11 (35.5) 9 (29) 14 (45.2)
3 14 (45.2) 15 (48.4) 10 (32.3) 19 (61.3)
5 21 (67.7) 18 (58.1) 12 (38.7) 26 (83.9)
8 26 (83.9) 24 (77.4) 15 (48.4) 26 (83.9)
15 29 (93.5) 29 (93.5) 24 (77.4)

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 0 (0) 0 (0) 0 (0) 7 (22.6)
3 2 (6.5) 2 (6.5) 7 (22.6) 13 (41.9)
5 10 (32.3) 10 (32.3) 10 (32.3) 18 (58.1)
8 21 (67.7) 20 (64.5) 21 (67.7) 24 (77.4)

15 27 (87.1) 26 (83.9) 26 (83.9)

Table 3.7: Encoding of kinematic JA synergies. Number (and percentage) of neurons whose regression yields an R2 ≥ 0.15

considering joint angles and joint angles velocities as regressors. Each entry in the table (composed of two numbers – the count

of neurons and the percentage) corresponds to one kinematic data set, a dimensionality reduction method, a specific number of

components, and a specific point in time. For each dataset 10-folded cross validated regression was run on the firing rate of a

specific neuron on different lags, the lag that yielded the highest R2 in average was selected and its corresponding R2 recorded.

was only of one neuron: LDA with 8 components at grasp-and-hold, and LDA with 8 components and
PCA with 3 components at prehension. The average absolute difference in number of neurons was 7.55 for
grasp-and-hold and 5.6 at prehension. Most of the difference was concentrated in the experiments where the
Gaussian kernel was used to reduce the data.

Are these results due to chance? To verify whether the results were due to chance or not we performed
a version of the bootstrap as explained in 3.2.1. The number of regressions to perform was large: M ×
numberNeurons × numberConditions × numberT imePoints × numberLags × numberKinematicV ariables where

M denotes the number of iterations of the bootstrap; numberNeurons = 31 for Vinny; numberConditions = 19
referring to dimensionality reduction method with specific number of components; numberT imePoints =
2 for prehension (tfirstAft), and grasp-and-hold (tlastAft); numberLags = 4 for the different lags tried;
and numberKinematicV ariables = 4 referring to joint angles, joint angles velocity, 3D marker position
and 3D marker velocity.

We definedM = 10. Thus, for each neuron, we obtainedM values ofR2 (and for each of them we took
the maximumR2 across the four lags) and took its average. Then, we counted how many neurons yielded an
R2 higher than the defined threshold. Our bootstrap results show that it was never the case that the number
of neurons yielding an R2 ≥ 0.15 through this procedure was higher than the number of neurons reported
in Tables 3.7 and 3.8, and consequently, these results are not due to chance.
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Prehension
3D position 3D velocity

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 9 (29) 10 (32.3) 0 (0) 10 (32.3)
3 9 (29) 13 (41.9) 1 (3.2) 10 (32.3)
5 17 (54.8) 17 (54.8) 2 (6.5) 12 (38.7)
8 21 (67.7) 21 (67.7) 3 (9.7) 15 (48.4)

15 26 (83.9) 24 (77.4) 7 (22.6)

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 9 (29) 3 (9.7) 7 (22.6) 8 (25.8)
3 10 (32.3) 4 (12.9) 9 (29) 8 (25.8)
5 13 (41.9) 9 (29) 14 (45.2) 10 (32.3)
8 17 (54.8) 11 (35.5) 17 (54.8) 16 (51.6)

15 24 (77.4) 18 (58.1) 20 (64.5)

Grasp-Hold
3D position 3D velocity

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 15 (48.4) 14 (45.2) 7 (22.6) 14 (45.2)
3 16 (51.6) 15 (48.4) 9 (29) 20 (64.5)
5 24 (77.4) 24 (77.4) 14 (45.2) 24 (77.4)
8 27 (87.1) 27 (87.1) 17 (54.8) 26 (83.9)
15 31 (100) 31 (100) 20 (64.5)

Num. kPCA kPCA
comp. PCA poly Gauss LDA

2 9 (29) 3 (9.7) 3 (9.7) 10 (32.3)
3 14 (45.2) 6 (19.4) 8 (25.8) 14 (45.2)
5 18 (58.1) 9 (29) 16 (51.6) 24 (77.4)
8 21 (67.7) 18 (58.1) 23 (74.2) 27 (87.1)

15 27 (87.1) 23 (74.2) 29 (93.5)

Table 3.8: Encoding of kinematic 3D synergies. Number (and percentage) of neurons whose regression yields an R2 ≥ 0.15

considering 3D position and 3D velocities as regressors. Each entry in the table (composed of two numbers – the count of neurons

and the percentage) corresponds to one kinematic data set, a dimensionality reduction method, a specific number of components,

and a specific point in time. For each dataset 10-folded cross validated regression was run on the firing rate of a specific neuron on

different lags, the lag that yielded the highest R2 in average was selected and its corresponding R2 recorded.

3.2.4 Conclusions

The number of neurons to be analyzed is greatly reduced by the imposed requirements of having at least
some minimum number of trials and of being task related. We argue that these constraints are necessary to
ensure: (a) the reliability of the results of the linear regressions, and (b) that the signal we are analyzing is,
in fact, related to the reach-to-grasp task. However, at the same time the requirements do drastically reduce
the data we can analyze. For instance, for Baxter four neurons are actually insufficient to make any reliable
inference of primary motor cortex neuron behavior. Nevertheless, the main result of this analysis is that we
found some evidence that non linear synergies explain the firing pattern of some neurons in a better way
than the linear synergies assuming a linear model.

3.3 Chapter summary and main contributions

In this work we analyzed the kinematics of the fingers of two monkeys (species Macaca mulatta) during a
reach-to-grasp task. We considered two data sets: joint angles and 3D marker positions that describe the
movement of the hand along time. We defined an energy function summarizing the amount of motion of
the fingers. This function was useful to derive definitions for outliers, and to define time points of inter-
est during the trials. We investigated low dimensional representations of the hand configurations at those
specific time points during the reach-to-grasp movement. In order to perform the dimensionality reduction
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we tried linear supervised (Linear Discriminant Analysis) and unsupervised (Principal Components Anal-
ysis) methods, and non linear unsupervised methods (kernel Principal Components Analysis with various
choices of kernels). The low dimensional representations were then evaluated according to a classification
task: predicting what object was being grasped at a specific trial. Two classifiers were trained and tested: a
generative one (Naive Bayes) and a discriminative one (Support Vector Machines). The main finding was
that under certain conditions, modelling the non linear relationships in the data resulted in better classifier
performance.

The analysis of the low dimensional representation of the hand configurations was extended to investi-
gate whether these representations were encoded in neurons recorded from the primary motor cortex (M1)
of the monkeys. In order to perform the neural analysis, neurons were required to have a specific number
of trials associated with them, and to be task related, as defined through differentiated firing rate patterns
in different epochs during the reach-to-grasp trial (analysis of variance). We found that 84% of neurons of
Vinny and 31% of neurons of Baxter were task related.

A classical multiple linear regression model was proposed to explain the firing rate of the neurons. The
explanatory variables were the low dimensional representation of the kinematic variables of the fingers. The
measure-of-goodness was defined to be the number of neurons that yielded an R2 higher than a specific
threshold. Using a variation of bootstrap in regression, results were verified to not be due to chance. We
found that although the number of neurons that yield R2 ≥ 0.15 is similar in PCA and in kPCA with
polynomial kernel, the actual value of R2 is higher in the encoding of kPCA in some neurons. Therefore we
found some evidence of better encoding of non linear synergies versus linear synergies.
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Chapter 4

Dynamic synergies

In Chapter 3 we accounted for (or removed) time variation in the grasping dataset by identifying relevant
time slices and analyzing the reach-to-grasp movements in those pre-defined landmarks. This approach
allowed us to focus on finger and conditions variability, however it came at the cost of limiting the analysis
to particular landmarks and disregarded finger variability in the rest of the trajectories.

An alternative strategy is to treat each observation as a multivariate functional observation and decom-
pose the variation in a principled way. In this chapter we propose to explain out time variation of multivariate
grasping trajectories by aligning (registering) the curves through a functional data analysis procedure. Then
we show how to decompose and reduce the dimensionality of variation by adapting a Multivariate Gaussian
Process (MGP) model, also known as the Gaussian Process Factor Analysis model (Yu et al., 2009). We
set our model to decompose finger motion into two terms: a term that is shared among all replications of
the same reach-and-grasp task and a term that is particular to each replication and that is modelled with a
MGP. By fitting this model we also estimate dynamic and interpretable lower-dimensional representations
of finger motion. In this chapter we discuss variants of our model, estimation algorithms, and we evaluate
its performance in simulations and in data from the monkey Esteban introduced in Chapter 2. We also show
that by taking advantage of the repeated trial structure of the experiments, our model yields an intuitive way
to interpret the time and replication variation in our kinematic dataset.

The two main methodological contributions of our work include the alignment (or registering) of the col-
lected multivariate grasping data and the decomposition and reduction of the dimensionality of the variation
of the multivariate functional data according to the experimental structure: time, replication, and condition
through the fitting of our Multivariate Gaussian Process Factor Model.

4.1 Introduction

In reach-to-grasp experiments, part of the variability may be understood as a result of the constraints among
the fingers and this has led to the use of lower-dimensional representations known as synergies . Stan-
dard matrix factorization approaches, like principal components analysis (PCA), can go far in this direction
(Santello et al., 1998; Todorov and Ghahramani, 2004; Mason et al., 2001, 2004; Soechting and Flanders,
1997; Pesyna et al., 2011; Thakur et al., 2008) but do not conform to the repeated-trial structure of most
experiments and, furthermore, confound temporal variability with experimental condition and kinematic

45
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variability.
There have been other approaches in the literature to obtain temporal grasping synergies. For instance,

Vinjamuri et al. (2007, 2010a,b) inspired in (d’Avella and Bizzi, 2005) proposed two convolved-mixture
models, which use SVD and an optimization step in their core, to learn a dictionary of time varying syner-
gies. While the approach is able to describe time varying phenomena, it does not provide a generative model
of grasping. State-space models are generative models that have been used to model dynamics of general
body motion (Wang et al., 2008) albeit not finger dynamics. In these models, a Markovian assumption is
posited and thus time correlations are unable to be directly captured. In contrast, the model we present in
this chapter is not a state-space model — instead, we assume that the observed trajectories are generated
via low-dimensional latent factor trajectories that are drawn directly from a GP, allowing for longer range
correlations to be captured. Fyshe et al. (2012) also used this idea of modeling latent factor trajectories with
GPs to analyze brain imaging data (MEG). Fyshe et al. (2012) assumed a loading matrix which changes over
time as well as latent factors which are correlated through a hierarchical Bayesian prior, while our model
follows the more traditional setting of latent factor analysis by assuming that the factors are independent and
a stationary loading matrix.

We propose a Multivariate Gaussian Process (MGP) based model (similar to Yu et al. (2009)) which
captures long range correlations and provides a generative framework for finger motion data. We set the
MGP as a prior for a dynamic factor analysis model that allows for the learning of low dimensional spatio-
temporal patterns (or synergies). In our model we decompose motion data into two terms: a term that
is shared among all replications of the same reach-and-grasp task and a term that is particular to each
replication and that is modelled with a MGP. We first derive an efficient inference algorithm that finds
the maximum a posteriori trajectory in the latent low dimensional space from an observed multivariate
3D trajectory. And secondly, we derive an EM-based parameter estimation algorithm which, given 3D
trajectories, outputs interpretable model parameters that can be used to explain the variability in the grasping
task.

4.2 Model

Consider the p−dimensional observed dataset: { Y r
i (t) | i = 1, . . . , p; t = 1, . . . , T ; r = 1, . . . , R }. Y r

i (t)
is the ith coordinate at time t of the p-dimensional trajectory that is the rth replication of an event. Note
that for simplicity of exposition, we consider only finitely many time points, but our model is based on
Gaussian Processes and thus it applies to the continuous setting. R is the number of repeated trials, T the
number of time slices and p the number of observed variables. In our application the observed variables
describe the hand kinematics – they could be position, velocity, acceleration, joint angles or any function or
representation of hand kinematics.

We define the Multivariate Gaussian Process Factor Model (MGPFM), which assumes:

(4.1)

 Y r
1 (t)
...

Y r
p (t)

 =

 µ1(t)
...

µp(t)

+


∑d

j=1 b1jX
r
j (t)

...∑d
j=1 bpjX

r
j (t)

+

 εr1(t)
...

εrp(t)

 ,
where µi(t) i = 1, . . . , p are deterministic mean functions, B = (bij) ∈ Rp×d is a deterministic factor
loadings matrix, whose columns correspond to the d latent factors and rows correspond to the p observed
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variables. Each latent factor trajectory Xr
j is drawn iid from an MGP with mean function 0 and covariance

function
∑

(t1, t2) defined by
∑

(·; ·) : [0, 1] × [0, 1] → R. And, finally, εi(t) i = 1, . . . , p are iid
stationary MGP draws with covariance function Ψ(t1, t2), which we assume to be diagonal in this work.

Letting Yr(t) =
[
Y r

1 (t) . . . Y r
p (t)

]T, µ(t) = [µ1(t) . . . µp(t)]
T, Xr(t) = [Xr

1(t) . . . Xr
d(t)]T and εr(t) =[

εr1(t) . . . εrp(t)
]T we can write Equation 4.1 as:

(4.2) Yr(t) = µ(t) + BXr(t) + εr(t).

To ensure identifiability of the model we assume that the columns of B are orthogonal, that is: BTB = Id.
Our model (Equation 4.2) decomposes each kinematic trial into a term µ(t) that is common among replica-
tions and a term Xr(t) that is specific to the replication. The observed variables can represent any kinematic
variables, such as 3D positions, velocities, accelerations or the corresponding joint angles. In our data anal-
ysis we model 3D marker velocities.

The parameter µ(t) does not depend on the specific trial and can be modelled in two ways: invariant
in time as a p−dimensional constant vector, and as a p−dimensional varying function in time. In the latter
case µ can be represented as a p × T matrix, or more efficiently, through a B-spline basis. The number of
parameters to estimate for µ is p when µ is assumed to be constant, p · T when µ is allowed to vary freely
as µ = µ(t) ∈ Rp×T and O(c · T ) when µ is described through a B-spline basis with c the number of basis
functions where c << T . This formulation drastically reduces the number of parameters to be estimated,
while imposing a smoothing constraint on the learned functions, and it can be written as follows:

(4.3) Yr(t) = µS(t) + BXr(t) + εr(t), µS(t) = α · (S(t))T ∈ Rp×1,

where S ∈ RT×c is a matrix that holds the c spline basis functions, S(t) corresponds to one row of S and
α ∈ Rp×c contains the coefficients for each of the spline basis functions.

The parameter Σ corresponds to the covariance matrix of the MGP. The form of Σ determines the
properties of the low dimensional kinematic representation. Estimating Σ ∈ RT×T implies learning O(T 2)
parameters. While it is possible to estimate Σ free (which we do in some of our analysis), this procedure
is prone to overfitting when there is not much data available or when the observed data was not exactly
drawn from the model. One way to overcome this problem is to impose structure to Σ by assuming that
it takes a parametric form. In this work, we use an stationary exponential covariance function: Σ(i, j) =

exp
(
−(i−j)2

θΣ

)
where θΣ controls the width of the diagonal that decays exponentially. But other functions

such as the Matern covariance function are also possible (Rasmussen and Williams, 2006). In our case,
the exponential covariance function effectively imposes a prior belief that the latent trajectories are smooth,
where θΣ controls how fast the function varies within a certain window of time.

4.2.1 Estimation

Our estimation algorithms are EM-based. We iterate between parameter estimation (learning) and inference
on the latent variables as we explain below.



48 CHAPTER 4. DYNAMIC SYNERGIES

Loglikelihood

Denote ~µ = {µ(t)}Tt=1, Y =
{
{Yr(t)}Rr=1

}T
t=1

and X =
{
{Xr(t)}Rr=1

}T
t=1

. Then the joint distribution
can be written as:

P(Y,X|~µ,B,Ψ,Σ) = P(Y|X; ~µ,B,Ψ) · P(X|Σ).

The loglikelihood consists of two terms:

(4.4) log P(Y,X|~µ,B,Ψ,Σ) = log P(Y|X; ~µ,B,Ψ) + log P(X|Σ).

If we simplify the model by defining Ψ = ρ · Ip×p with ρ > 0 then the first term corresponds to:

(4.5)

log P(Y|X; ~µ,B, ρ)

= −1
2

∑R
r=1

∑p
k=1

∑T
i=1

1
ρ

(
Yr
k(ti)−

[
µk(ti) +

∑d
w=1 bk,wX

r
w(ti)

])2

−R·p
2 T · log ρ − 1

2 p ·R · T log 2π.

The second term of the loglikelihood corresponds to the distribution of the d iid MGPs indexed by s (denoted
Xs ∈ RT×1) given the covariance function Σ(ti, tj):

(4.6) log P(X|Σ) = −1

2

R∑
r=1

d∑
s=1

Xr T
s Σ−1Xr

s −
1

2
d ·R log|Σ| − 1

2
d ·R · T log 2π.

In sum, if we consider the covariance simplifications then the loglikelihood of the model is given by the
sum of expressions in Equation 4.5 and 4.6. We can take Equation 4.4 and use it as a loss function to learn
the components of the model. Our approach is EM-based, in which we iterate between:

1. Estimation (learning) problem: Assuming that X are known, learn parameters ~µ ∈ Rp×T ,B ∈
Rp×d, ρ ∈ R,Σ ∈ RT×T which jointly constitute the parameter space.

2. Inference problem: Assuming that Y and all the parameters known, estimate the latent variables X.

Iterations are stopped either by convergence of the loglikelihood or by number of iterations. In the experi-
ments we noted that 50 iterations sufficed to reach convergence. Our approach can be thought of as Hard
EM – in conventional EM, one computes a soft posterior distribution in the E-step; in hard EM, we simply
maximize the posterior. For example, K-means can be seen as the Hard EM based algorithm for fitting
Gaussian Mixture Models.

Learning problem

In the first problem we assume that the latent space trajectories X are known and we estimate the parameters
~µ,B, ρ,Σ. Here we will be maximizing the loglikelihood with respect to the parameters.

Note that to learn ~µ ∈ Rp×T ,B ∈ Rp×d, and ρ ∈ R we only need the first term of Equation 4.4, that is,
Equation 4.5. And to estimate Σ we only need the second term of Equation 4.4, namely Equation (4.6).

To estimate Σ we consider Equation (4.6), let Ω = Σ−1 and perform standard optimization to learn the
covariance function of the multivariate normal, obtaining:

(4.7) Σ̂ =

∑R
r=1

∑d
s=1X

r
s ·Xr T

s

dR
.
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Estimating ρ from Equation 4.5 is independent from estimating ~µ and B. Differentiating Equation 4.5 with

respect to ρ and equating to zero we obtain: ρ̂ =
∑R

r=1

∑p
k=1

∑T
i=1(Yr

k(ti)−[µ̂k(ti)+
∑d

w=1 b̂k,wX
r
w(ti)])

2

RpT .
Maximizing Equation 4.5 with respect to ~µ and B is equivalent to separately maximizing each term

for a fixed k = 1, . . . , p and, in fact, corresponds to performing p multiple linear regressions. Con-
sider the data vector Yk, the design matrix W , and the variables to learn βk defined as follows: YkT =[[
Y 1
k (t1), . . . , Y 1

k (tT )
]T
, . . . ,

[
Y R
k (t1), . . . , Y R

k (tT )
]T] ∈ R1×(R·T ),

W =



 X1
1 (t1) . . . X1

d(t1)
...

. . .
...

X1
1 (tT ) . . . X1

d(tT )

 IT×T

...
... XR

1 (t1) . . . XR
d (t1)

...
. . .

...
XR

1 (tT ) . . . XR
d (tT )

 IT×T


∈ RR·T×(d+T ),

and

(4.8) βk
T = [bk,1, . . . bk,d , µk(t1), . . . , µk(tT )]T ∈ R1×(d+T ).

Then, we can consider the p independent linear regression models:

(4.9) Yk =W · βk, k = 1, . . . , p.

By solving these p linear regressions we can estimate the vectors βk, from which we can read off the desired
model parameters ~µ ∈ Rp×T and B ∈ Rp×d. In the case in which µ is assumed constant along time, the
estimate corresponds to the mean across time of provided estimate.

Modelling µ with splines. We have that the mean trajectory µ can be written in a B-spline basis as
follows:

(4.10) µS(t) = α · (S(t))T ∈ Rp×1,

where S ∈ RT×c is a matrix that holds the c spline basis functions (one in each column). Vector S(t)
corresponds to one row of S . We are interested in learning α ∈ Rp×c which contains the coefficients for
each of the spline basis functions and describes the data.

Our goal is thus to formulate similar models to Equation 4.9 for each variable k = 1, . . . , p but solving
for the coefficients of the B-spline basis. Instead of defining the auxiliary variable βk as in Equation 4.8,
we define: φk = [bk,1, . . . , bk,d, αk(1), . . . , αk(c)]

T ∈ R(d+c)×1, where k denotes the index of an observed
variable k = 1, . . . , p and αk(i) denotes the coefficient of the ith spline basis. Equation 4.10 can be written
as [µk(t1), . . . , µk(tT )]T = [αk(1), . . . , αk(c)]

T · ST ∈ R1×T and we want to determine the values for
{αk(i)}ci=1 for each k ∈ {1, . . . , p}. Note that βk = bk,1:d ⊕ µk and φk = bk,1:d ⊕ αk where ⊕ denotes
the stacking operation for vectors. Also bk,1:d = [bk,1, . . . , bk,d]

T ∈ Rd×1 corresponds to the kth transposed
row of the loading matrixB ∈ Rp×d. Then: βk = (Id×d ∗ bk,1:d)⊕ (S ·αk) = (Id×d⊕S) · (bk,1:d⊕αk) =
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(Id×d ⊕ S) · φk, and: Yk = W · βk = W · (Id×d ⊕ S) · φk. Consequently, we have written an analogous
problem as in Equations 4.9 to solve for the coefficients of the B-spline basis, namely:

(4.11) Yk =WS · φk, WS =W · (Id×d ⊕ S)

for k = 1, . . . , p. And the problem reduces to solve for φk in a similar way as before.

Constraining Σ. In the estimation procedure we can either learn Σ free as in Equation 4.7, or learn θΣ,
the univariate parameter that determines the covariance function of the MGP: Σ(i, j) = exp

(
−(i−j)2

θΣ

)
.

The latter can be done by gradient descent (numerically maximizing the loglikelihood) or through a one
dimensional search over a space of reasonable values for θΣ. In our implementation we follow the last
strategy.

Inference problem

For the second problem (inference) we assume that the parameters Θ = {~µ,B,Ψ,Σ} are now known and we
learn the hidden variables X by maximizing the posterior probability of X given Y and Θ. We observe that
the vectorized elements of the latent factors for replication r (denoted by vecXr ∈ R(d·T )×1) are distributed
asN (0,Σ⊗ Id×d) where⊗ denotes the Kronecker product of two matrices. Also, the vectorized difference
of observed trajectory Y r and mean µ given the latent factors of that replication are normally distributed:

(vecYr − vecµ)|vecXr ∼ N ((IT×T ⊗ B) · vecXr,Ψ⊗ Ip×p) .

Using standard properties of normal distributions we conclude that the posterior distribution of the latent
factors given Y and Θ is

vecXr|(vecYr − vecµ) ∼ N (η,Λ) ,

with:
(4.12) η = 0 + [(IT×T ⊗ B) · (Σ⊗ Id×d)]T ·[

(IT×T ⊗ B) · (Σ⊗ Id×d) · (IT×T ⊗ B)T + (Ψ⊗ Ip×p)
]−1 ·

(vecYr − vecµ− 0) ,

and Λ = [Σ⊗ Id×d]−

[(IT×T ⊗ B) · (Σ⊗ Id×d)] ·
[
(IT×T ⊗ B) · (Σ⊗ Id×d) · (IT×T ⊗ B)T + (Ψ⊗ Ip×p)

]−1

· [(IT×T ⊗ B) · (Σ⊗ Id×d)]T .
The mean of a normal distribution maximizes the loglikelihood, therefore we set: X̂ = η. Note that the
matrix we need to invert in this step is sparse and contains a lot of structure that we can exploit to make
computation efficiently. In particular, in Equation 4.12, η is the product of two big matrices U and V and
a vector w. Both U and V are sparse and we do not need to fully invert V , we only need to compute
V −1 ·w. Hence, we can use sparse matrices to represent U and V , and we can efficiently calculate V −1 ·w
without explicitly inverting the matrix using a sparse linear solver. In addition, matrices U and V are
Kronecker products with the identity matrix, which is itself sparse, and thus we can represent it efficiently
computationally.
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Initialization

Since the learning algorithm is an EM procedure, it is susceptible to local optima. To avoid getting stuck in
local optima we propose two initialization methods. The first one (MLE) involves estimating the MLE for a
matrix normal distribution (Dawid, 1981; Dutilleul, 1999), and the second (down-projection) estimating the
MGPFM parameters assuming a higher latent dimension and projecting down to the desired dimension.

Matrix normal MLE based initialization. A matrix U ∈ Rp×T is said to be sampled from a matrix
normal distribution Np,T (M,F,G) with mean M ∈ Rp×T , among-row covariance matrix F ∈ Rp×p and
among-column covariance matrix G ∈ RT×T if its vectorized form vecU is distributed as the multivariate
normal: Np·T (vecM, F ⊗ G). Conceivably the observed data generated with the MGPFM can be close to
a matrix normal distribution or, at least, we can use this distribution for initialization purposes (for more
details of the matrix normal distribution see (Dawid, 1981)). There are no analytical solutions for the MLE
for the among-row and among-column covariance matrices of the matrix normal distribution. However,
Dutilleul (1999) presents an iterative algorithm (also called flip-flop algorithm) to obtain the MLE of its
three parameters (M,F,G). We propose to initialize the parameters of the MGPFM as follows: µ0 = M̃
and Σ0 = G̃, where ˜ denotes the MLE. To initialize B0 and ρ0 we obtain the spectral decomposition of F̃ .
Intuitively, B0 contains the first d normalized eigenvectors of F̃ and ρ is the residual obtained by subtracting
B0 · BT

0 from F̃ . Let D ∈ Rp×p be the diagonal matrix containing the decreasing eigenvalues of F̃ and
let E ∈ Rp×p contain in its columns the corresponding eigenvectors. We set B0 = E:,1:d ·

√
D1:d,1:d , and

ρ0 =

√∑
i

∑
j ě

2
i,j

p where ěi,j is the (i, j) element of the matrix Ě defined as E:,d+1:p ·
√
Dd+1:p,d+1:p .

Down-projection based initialization. In this second initialization approach we want to learn the model
parameters when the latent dimension is dgoal, but begin with a higher dimensional problem.

1. We first run the MGPFM learning algorithm (as before) for a latent dimension dhigh higher than
desired i.e. dgoal < dhigh and obtain as an output the estimates: µ̂h ∈ Rp×T , ρ̂h ∈ R, Σ̂h ∈ RT×T ,
and B̂h ∈ Rp×dhigh .

2. Project the estimated parameters to the target latent dimension dgoal. We note that only B̂h needs to
be projected. We use the SVD decomposition of the matrix: B̂h = U · S · V T and define Bproj =
B̂h · V:,1:dgoal .

3. Use the projected estimates as initial values for a second run of the MGPFM learning algorithm, that
is, set: µ0 = µ̂h, ρ0 = ρ̂h, Σ0 = Σ̂h and B0 = Bproj .

We find in practice that this second initialization method is often effective but also significantly more
computationally expensive since it requires optimization in a higher dimension first.

4.3 Alignment procedure

In functional data there are two types of variability: amplitude variation and phase variation (Ramsay et al.,
2009; Ramsay and Silverman, 2005). Amplitude variation describes the variability of the sizes of the features
of the kinematic curves; features such as the height of peak velocities of different markers recording finger
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movement during a grasping task. On the other hand, phase variation describes the variability of the timings
of the features of the kinematic curves, such as, the variation between the timing of the opening and closing
or between the peak velocities of the fingers.

We are interested in studying amplitude variations in order to understand how the movement of the
fingers relate to one another. To isolate the amplitude variation from the phase variation we can transform
the time-axis for each trial so that phase variation between kinematic curves is minimized.

The original kinematic marker positions can be represented as Yr(t) ∈ Rp where p = 3∗K andK = 16
is the number of markers placed on the fingers (K is multiplied by the three because of the 3-dimensional
positions of the markers). Alignment of the curves is accomplished by estimating monotonically increasing
time warping functions hr(t) such that the phase variation of t → Yr(hr(t)) is minimized across trials r.
Note that it is important that the same function be used across kinematic variables for a fixed condition and
trial, because we want to preserve the relationships between kinematic variables at fixed times.

Total energy signal. Alignment of multivariate curves is greatly simplified by summarizing each multi-
variate curve by a univariate curve. We will summarize the trials based on the total energy signal (already
introduced in Chapter 3). The basic idea is that the velocity of the markers typically has clear peaks, valleys
and zero crossings – features that are easily identified. In this subsection we slightly overload notation,
letting Yr(t) denote the K × 3 matrix containing the 3-dimensional measurements of the K kinematic vari-
ables and Ẏr

(t) the corresponding velocities. Thus Gr(t) = [Ẏr
(t)][Ẏr

(t)]T is the matrix of inner products
of marker velocities for each replication r in a specific condition, and the sum of the squared magnitudes of
the velocities across markers is:

(4.13) Er(t) = tr(Gr(t)) = tr([Ẏr
(t)][Ẏr

(t)]T).

Er(t) is an important property of the trial because it summarizes the magnitude of motion during a
trial and condition. Our goal is to estimate time warping functions hr(t) such that the phase variation of
t → Yr(hr(t)) is minimized across trials. One of the benefits of this signal is that it is invariant under
rotations of the 3-dimensional variables.

We estimate the time warping functions by minimizing the MINEIG criterion iteratively. The main idea
is to choose a warping function for each trial such that the shape of the warped energy is close to the shape
of the mean energy across replications of the same condition. In Figure 4.1 we show raw energy profiles
and their aligned versions.

The MINEIG criterion. Estimation of the time warping function is explained in (Ramsay and Silverman,
2005) and is based on the minimizing criterion

(4.14) MINEIG(h) = α2 · det
( ∫

E0(t)2dt
∫
E0(t)Er(h(t))dt∫

E0(t)Er(h(t))dt
∫
Er(h(t))2dt

)
,

where E0(t) is the target and α2 is the size of the second smallest eigenvalue of the enclosed matrix. The
basic idea is that the matrix is like the covariance matrix of ({E0(t) : t}, {Er(h(t)) : t}). If one of the curves
is exactly proportional to the other then the matrix is singular and so MINEIG(h) = 0. The advantage of
using this criterion is that there are well developed R and Matlab packages (fda, Ramsay et al. (2009)) for
minimizing the roughness penalized criterion:
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Figure 4.1: Example of energy profiles raw and aligned (Small cone, 45◦ adduction). On the x-axis we show time and on the

y-axis the value of the energy functions.

(4.15) MINEIG(h) + λ

∫
{W (m)(t)}2dt,

when h is of the form: h(t) = C0 + C1

∫ t
0 expW (u)du, with W expanded into the B-spline basis. The

basic strategy for alignment then follows the iterative procedure known as Procrustes method:

1. Initialize the target E0(t)← Er(t) to some Er(t).
2. Repeat until convergence:

(a) For each trial r = 1, ..., R fit a time warping function hr(t) using the criterion given in Equation
(4.15)

(b) Update the target E0(t)← 1
R

∑
r E

r(hr(t)).

Recovering the aligned kinematic curves. Having estimated hr(t), the aligned velocity curves are Ẏr
(hr(t)),

while the positional curves can be obtained by integration:

(4.16) Y0 +

∫ t

0
Ẏr

(hr(u))du.

4.4 Simulation studies

We performed several simulations to study the behavior of the MGPFM when varying the number of sam-
ples, the size of the latent dimension and the various learning settings. Note that in the simulation studies
there is no need of alignment.

We generated p = 50 dimensional data from a latent process of dimension dtrue = 4. The dimensional-
ity p of the observed simulated data roughly corresponds to the grasping data analyzed in further sections.
We considered T = 51 time points and set µ ∈ Rp×T deterministically as a sinusoidal function of time with
different amplitudes per coordinate: µk(t) = sin

(
2·k
p · (t− k)

)
, k = 1, . . . , p; the entries of B ∈ Rp×d

were drawn iid from U(0, 1); we set ρ = 0.25; and assumed Σ(i, j) = exp
(
−(i−j)2

θΣ

)
with θΣ = 0.01. Note

that in the simulation studies no alignment is necessary.
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Measures of goodness of fit. We summarize the mean square error (MSE) of observation r at a particular
time slice t as:

(4.17) er(t) =
1

p

p∑
i=1

(
Y r
i (t)− Ŷ r

i (t)
)2
,

and the mean integrated square error (MISE) of observation r along time as:

(4.18) er =
1

T

T∑
t=1

er(t).

These statistics summarize the reconstruction error. Also, in a specific simulation S we obtain the mean
error in the simulation as:

(4.19) ES =
1

RS

RS∑
r=1

er

where RS is the number of observations in simulation S. We report the average of ES across independent
simulations S, and we also report its corresponding standard error.

Number of required training samples. We explore the question of how many training examples are
required to achieve a certain performance and we compare the differences between modelling µ free and
with splines with initialization through down-projection, keeping Σ free. We kept the latent dimension
d fixed at dtrue = 4, we generated a single test set of size 500, and ten different training sets for each
specific number of training examples. Figure 4.2 shows that in every case, performance improved in terms
of reconstruction error as the amount of training data increased. We also notice that after 40 examples the
performance levels off. There is no clear difference between modelling µ free (as a matrix in Rp×T ) and µ
with splines, but considering the number of parameters to be estimated, the best performance is achieved
with modelling µ as splines.

Latent dimension and reconstruction error. In the second simulation we study the behavior of dif-
ferent models when varying the value of the latent dimension. We consider three ways of modelling µ:
as a constant across dimensions but varying along time; free (as a matrix in Rp×T ) and modelling it with
B−splines. We also consider two types of initialization: the matrix-normal MLE and the down-projection
of a solution from a higher dimension. We investigate the performance in terms of reconstruction error,
and we study whether the model and learning procedure are able to recover the true dimensionality of the
data. We set apart a single test set of 500 samples and 10 training sets of size 20 for each value of d. We
considered a training set of size 20 because this number corresponds to the number of samples of a specific
condition in a session of the grasping dataset for the third monkey (see Chapter 2).

In Figure 4.3 we display the log-likelihood, the average MISE on the test set and the Bayesian Infor-
mation Criterion (BIC) on the test set for each of the considered models, learning settings and for various
values of the latent dimension.

In terms of MISE, modelling µ as a constant results in the worst performance. In contrast, modelling µ
free yields much better results in both initialization regimes. We expected that modelling µ with B-splines
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Figure 4.2: MGPFM: Loglikelihood and average MISE in the test set as a function of number of training samples. The figures

show the results on a single train set of 500 samples using ten independent training sets of size 80. We report the mean error in

the test set for the ten simulations
(

1
10

∑10
i=1 ESi

)
and its standard error. The dimensionality of the observed data was p = 50 and

the latent dimension dtrue = 4. We modelled Σ free, the µ with splines and free, and initialized the learning algorithm with the

down-projection.

was as good as modelling µ free or even better, because constraining the number of parameters to learn would
help when there is not a lot of training data. And indeed, when µ is modelled with B-splines and initialized
through the projection strategy we get the best results in terms of MISE. However, the initialization regime
played a bigger role than in the free setting (Figure 4.3) suggesting that in the more constrained case the
algorithm is more susceptible to local optima and requires smarter initialization.

The true latent dimension is recovered through the BIC whenever the learning method is initialized
through the projecting procedure, and sometimes with the MLE initialization. In all cases, the BIC is
characterized by a very fast drop until reaching the true value of the latent dimension d, and the steep
decrease is followed by either a slower decrease or slight increase in the BIC. The clearest case occurs
when modelling µ with splines and in performing initialization through the projection procedure. In the
supplementary material we show how the model works in one run of the simulation.

In conclusion, we showed that for data simulated from the model, we are able to recover the latent
dimensionality, and that best performance comes from modelling µ with splines and initializing with the
down-projecting strategy. However, given the computational cost, and that not much accuracy is lost, ini-
tializing the algorithm with the MLE of the matrix normal distribution is a recommendable strategy.

4.5 Data analysis

We analyzed the 48-dimensional finger motion captured data from 23 sessions of a rhesus monkey perform-
ing the reach-and-grasp task explained in Section 4.1. For the analysis we considered five conditions: small
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Figure 4.3: MGPFM: Average MISE in the test set, likelihood and BIC for different values of the latent dimensionality when

varying the initialization regimes and the ways of modelling µ. The true latent dimension d = 4 is most obviously recovered

when µ is modelled with splines and the initialization is through the projection procedure. When µ is modelled with splines the

initialization regime has a large impact in performance.

cone and small handle presented in positions 45◦ of flexion and 45◦ of adduction, and for the small cone
also at 45◦ of abduction. In each condition we considered all trials across sessions, totalling in average 155
trials per condition.

We performed the analysis on the 3D velocity profiles, because velocity and speed of hand movements
are thought to be encoded in the activity of single motor cortical neurons (Moran and Schwartz, 1999; Wang
and Moran, 2007). Note that performing similar analysis with joint angle velocity is also possible (Vinjamuri
et al., 2007, 2010a,b).

We denote the observed velocity profiles as Ẏr
(t) and fit the following model where µ is modelled

through splines:

(4.20) Ẏr
(t) = µS(t) + BẊr

(t) + εr(t).

Each reach-and-grasp replication lasted an average of 1.13 seconds, but each trial was of different length.
In order to make it comparable, we smoothed data with a B-spline basis, resampling all trials onto 150 time
slices.
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For outlier removal we summarized each trial with its energy function (Equation 4.13) and clustered
trials of a specific condition using the same function via k−means. We applied the clustering algorithm
for several values of k (2, 3 and 4) and aggregated the resulting clusters removing the smallest group that
contained at most 10% of trials and whose removal yielded the most visually uniform set of energy profiles.
The MGPFM was applied to the preprocessed raw data and to aligned data (as explained in Section 4.3).
Figure 4.1 shows an example of the same data in these two states.

Analysis of performance varying models, alignment and latent dimensionality. We compared the per-
formance of the MGPFM to two different baselines in terms of the MISE (Equation 4.18). We first compared
our model against a simple baseline, namely modelling the data as a time varying mean; and secondly, we
compared MGPFM against PCA, the prevailing approach in literature. In addition, we investigated whether
aligning the data had an impact on the performance of the models in terms of MISE. Finally, we investigated
the impact of varying the size of the latent dimension. We modelled µ with B-splines, Σ constrained and we
initialize the model with matrix normal MLE.

Note that to apply PCA, we stacked the training trajectories into a 2D matrix of size (R · T )× p where
R is the number of training samples, T = 150 and p = 48 denotes the number of kinematic variables. In
applying this methodology we disregard time correlations (as is usual in conventional PCA), and for this
reason it does not make sense to align data before applying PCA.

We considered different conditions: each condition defined by the object and the orientation in which it
was presented. We obtained the 10-fold cross validated MISE for the preprocessed raw data modelled with
the mean, with PCA and with the MGPFM. We did the same with the aligned data modelled with the mean
and with the MGPFM.

Figure 4.4 shows a representative example of the results of this experiment. Regardless of alignment,
PCA or the MGPFM considerably outperform the mean. However the alignment helps in every setting
including the mean, PCA and MGPFM, and it gives a significant improvement in MISE particularly when
modelling the data only with the mean. Finally, MISE decreases in every case as the latent dimensionality
increases. And we notice that the impact that alignment has on the reduction of MISE is greater when the
latent dimensionality is lower.

Results of a specific condition. We now discuss in some detail the results of estimating the model param-
eters for the small cone presented with 45◦ of abduction. We use the pre-processed and aligned data from all
sessions (165 trials) and present the results of one of the ten folds (with 149 replications for training, and 16
for test). We modelled µ with B-splines, Σ constrained and we initialized the model with the matrix normal
MLE. For simplicity of interpretation, we set the latent dimensionality to be two.

In Figure 4.5 we plot the error in two ways: first, as a function of time, and second, integrated across
time for each replication. We compare the MSE of MGPFM against a baseline of modelling only the mean.
The top two plots show that there is much more variation during certain time periods in the trials and that the
baseline is unable to capture this variation. The MGPFM significantly reduces the error (by approximately
an order of magnitude) in those time periods by capturing the variation between trials.

In Figure 4.6 we show the observed velocity profiles, the MGPFM estimates and the residuals decom-
posed per marker and finger for a specific replication for the small cone presented at 45◦ abduction. These
plots, which are representative of the grasping behavior in the dataset, show that the thumb’s amount of
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Figure 4.4: MGPFM: we show 10-fold cross validated MISE in grasping data for two conditions (small cone flexion and

adduction). Note that we are not plotting standard errors as we are not dealing with independent replications of the experiment, but

with folds; we show the average standard deviation as an indication of the spread of the error in different folds. We compare the

baseline model considering only the mean, PCA, MGPFM on raw pre-processed data and MGPFM on aligned data. Experiments

were run for various sizes of latent dimensionality d. The MGPFM was applied modelling µ with splines, Σ constrained, initializing

with the MLE of the matrix normal distribution and 50 iterations of the learning procedure. Observe that the MGPFM applied on

aligned data achieves better results than other methods, but its advantage decreases as the size of the latent dimension increases.

movement is very small as compared to the amount of movement by all the other fingers. In other condi-
tions (like the small handle) this is also the case, but the contrast is particularly prominent with the middle,
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Figure 4.5: Error profiles in real data (small cone, 45◦ abduction). In the upper panel, each line corresponds to a replication and

the black line is the mean value. The lower panel displays the mean integrated square error per replication (± standard deviation of

the error along time on the ten folds). The MGPFM reduces the error significantly, as compared to the baseline of modelling only

the mean on aligned data (by approximately an order of magnitude).

ring and index fingers. The MGPFM captures most of the variation leaving residuals close to zero.

Interpretation of learned parameters. One of the main features of the MGPFM is that its parameters can
be interpreted. Parameter µ is a trajectory in the velocity space, and through Equation 4.16 we are able to
obtain corresponding postures in the position space. In Figure 4.7 we show time slices of µ projected onto
the hand space that summarize the main features of the µ trajectory. The mean parameter µ captures the
shared behavior across all trials. In this particular condition, this behavior consists of five epochs that corre-
spond to the hand starting in a neutral position, followed by a slight opening of the fingers in a synchronized
fashion, back to a neutral position, after which the subject spreads his fingers slightly before going back to
neutral position. All trials in this condition show this pattern.

In contrast to the parameterµ that encodes behavior shared among all replications, the term that includes
the latent factors X and the loading matrix B corresponds to the ways in which a replication differentiates
itself from the other replications. The factors X encode what is specific to each trial. Figure 4.8 shows X
for two example replications superposed on the distribution of factors for all replications. The factors for
these two representative replications differ, and to understand how these differences are manifested in the
grasp trajectory we can visualize the columns of the loading matrix B which encode the marker movement
as a function of the latent factors. Figure 4.9 shows both columns of B as a set of K = p/3 = 16 vectors
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Figure 4.6: Observed velocity profiles, MGPFM fit and residuals for one replication of the subject grasping the small cone

at 45◦ of abduction. Each row represents a finger and the trajectories corresponding to a specific marker are plotted in the same

color: red for the most distal marker, green for the most proximal marker and blue for the maker in the middle. The thumb has a

fourth marker plotted in black. The magnitude of motion in the thumb markers is very small as compared to the other fingers. The

MGPFM estimates are very close to the observed data yielding residuals close to zero.
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Epochs of trajectory µ̂ projected onto postural space
t0 − t50 t51 − t66 t67 − t77 t78 − t87 t88 − tend
Neutral Slight opening Neutral Finger spread Neutral

Figure 4.7: The trajectory µ̂ (projected onto the position space) represents what is shared by all replications of a condition.

Here we show the visualization of µ̂ for the small cone at 45◦ of abduction. The trajectory presents five epochs corresponding

to hand postures. It begins at a neutral position, followed by a slight opening of the grasp through a synchronized movement of

fingers and a slight rotation, then back to the neutral hand configuration after which the fingers spread slightly (after the subject

releases the object) and back to a neutral position. All replications for this condition follow this pattern; and they differentiate

among themselves with the movement modelled through the loading matrix and the MGP term.

that correspond to the direction and relative magnitude of change for each of the p markers.
The first loading, or first column, of B (left panel) encodes a synchronized closing-opening motion of the

fingers; whereas the second loading, or second column, of B (right panel) encodes a movement that happens
at a somewhat different rate and direction per finger, whose net effect captures a wrapping (or curling) of the
fingers (as if around the cone). These two loadings represent the ways in which trials are different among
each other in the dataset, namely that trials differ amongst each other in the magnitude of the grasp opening
and the emphasis of the curling motion. In other words, the subject can change the amount by which it opens
its hand or the amount by which it wraps its fingers from trial to trial.

Whereas X̂ is estimated in the velocity space, it is more intuitive to visualize the differences between
trials on the position space (Figure 4.10) by integrating the latent factors along time and adding the corre-
sponding initial hand posture (as in Equation 4.16). In this way we are able to compare the two replications
in the positional space at specific time periods. For instance, we can choose (for illustrative purposes)
the period between time points 50 and 58 (notice that it is valid to compare the two replications at the
same time period because through the alignment procedure we accounted for the phase variation). We ob-
serve that whereas the first factor corresponding to replication 1 transitions from X1(t = 50) = +54.19
to X1(t = 58) = −684.8 (with a net change of −738.99), the first factor of replication 2 changes from
X1(t = 50) = +73.21 to X1(t = 58) = −178.5 (with a net change of −251.71). While the net change is
not meaningful by itself, the relative change is. The first/corresponding column in the loading matrix B sug-
gests that these changes should result in an exaggerated opening of the hand in replication 1 as compared to
replication 2. And, indeed by visualizing Ŷ (and the observed data Y ) we verify that the hand in replication
1 opens further than in replication 2 (see Figure 4.10).

This example that we just presented illustrates one of the highlights of our approach, namely, the ability
to capture and display interpretable differences between replications of the same condition (through the
interaction of the learned loading matrix and the latent factors) after having removed what is common among
replications of the same condition. In other words, we are able to provide understanding of the variation
between replications with the use of only a few components.
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Figure 4.8: Learned factors X̂ for condition: small cone, 45◦ abduction. In the top panel we show (in green) the distribution of

learned factors in the velocity space (left) and their integrated version on the positional space (right). This figure depicts differences

between trials in the space of learned factors. On this plot we overlap two exemplary trials: replication 1 (in red) and replication 2

(in blue). In the middle and lower panel we show details of these replications: the shape and values they display are different. The

starting point of the trial is denoted by an open circle, the end position, by a star. There are arrows along the trajectory show the

direction of movement. Colored arrows represent a percentage of the total time that the movement took and allow for comparison

between trajectories: red arrow (33%), magenta (40%), black (50%), green (54%), blue (60%). In Figure 4.10 we show how

difference between the integrated learned factors in these two trials manifest on hand posture.
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(1) Loading 1 (2) Loading 2

Figure 4.9: Visualization of loadings encoded in B̂ for the small cone presented at 45◦ abduction. The first loading corresponds

to synchronized opening-closing of the hand; the second loading to curling of the fingers wrapping around the cone.
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Figure 4.10: Interpretation of latent factors showing differences between replications. On the left we plot (
∫ ˆ̇

1X(t),
∫ ˆ̇

2X(t))

as a function of t. The start of the trial is at the red open circle (filled in with gray), the red circle corresponds to t = 50, the

blue triangle to t = 58 and the star to the end of the trial. Middle and right panels: hand configurations corresponding to those

time points. The interaction between the first latent factor (moving negatively) and the corresponding loading (Figure 4.9 panel 1)

corresponds to an opening of the fingers in a synchronized manner – this movement differs between the two replications and leads

to an exaggerated opening of the hand in replication 1 (top panel).

We have shown that each of the elements of the MGPFM have direct physical and intuitive interpretation.
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Furthermore, we can differentiate the variability that corresponds to a specific replication from the variability
shared among all trials from a specific condition. Finally, we are also able to accurately recover (in terms of
reconstruction error) hand configurations from the estimated parameters and factors.

4.6 Chapter summary and main contributions

In this chapter we formulated a dynamic factor model based on Multivariate Gaussian Processes to study
grasping kinematics. We developed an algorithm for inference and parameter estimation for the MGPFM
and discussed variations of the model and algorithm. We showed in simulations that our model outperforms
PCA in the reconstruction of error when alignment is applied. But, more importantly, in contrast with PCA
or SVD we are able to differentiate sources of variation that can potentially be used to design robotic primi-
tives for grasping devices. Our MGPFM can be extended by assuming prior distributions in the parameters
(for instance, in the loading matrix), and can capture long range correlations, which can be good for coor-
dinated dexterous hand motions. It is also easy to adapt to new settings — we can add sensors, change the
representation to joint angles, and the same algorithms would be applicable in principle.

Our core methodological contribution is a strategy to decompose and reduce the dimensionality of the
variation of the data according to the experimental structure (time, condition and replications). The de-
composition of variance in the grasping datasets relied on application of a multivariate functional alignment
procedure. A major product of this approach is the decomposition of variability between what is common
in replications and what is specific for each trial; it also provides clear interpretation in the space of grasp
postures. In particular, visualizations of the shared mean trajectory µ, of the axis of variation in replications
encoded in the loading matrix B and of the specific differences in particular trials summarized in the latent
factors X helped to explain variability in grasping movements.



Chapter 5

Decoding: algorithms and grasping features

We turn our attention now to the decoding problem. The problem of kinematic-neural decoding consists
in mapping a representation of the neural activity to variables representing movement. Movement can be
described with continuous variables, such as position, velocity or joint angles over time. Alternatively,
movement can be represented by discrete events or states, like determining whether a particular finger is
flexed or extended, or selecting a grasp configuration (among a discrete and finite set of types of grasps). In
this chapter we deal with these two types of decoding: continuous and discrete, in two different ways.

First, we provide a framework to study the ability of single neurons to decode discrete interpretable
grasping events (section 5.1). In particular, we define intuitive and interpretable variables that characterize
grasping, identify relevant events such as maximum aperture, minimum speed in movement and others, and
define a discrete decoding formulation of grasping events based on maximum a posteriori distributions. We
demonstrate the ability of single neurons to decode these relevant events of grasping in a reliable and con-
sistent way achieving decoding accuracies of up to 96% (where chance accuracy is 50%).

Second, we provide an algorithm for solving the continuous decoding problem efficiently in the context
of recursive Bayesian decoders (section 5.2). In particular, we develop the Laplace Gaussian Filter, an algo-
rithm to solve the filtering problem through an approximation of the posterior distribution in a deterministic
way. Our algorithm consists in using Laplace’s method to obtain estimates of the mean and variance of the
posterior density, approximating that density by a Gaussian with the estimated mean and variance and recur-
sively updating this distribution when the next observation is taken. Our algorithm provides an alternative
to sequential Monte Carlo, provides superior results in a short amount of time and yields accurate results in
simulations and real data.

In both cases, our approach is probabilistic and at the core of our reasonings lie Bayes rule and the
computation of the most likely kinematic representation given the neural data.

65
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5.1 Decoding of grasping features from primary motor cortex

To get continuous decoding in real data we typically need simultaneous recordings of many neurons (often
at least ∼ 25). For example, in our analysis of real data in Section 5.2.8 we use simultaneous recordings of
78 neurons in order to decode. But for now we focus on the question of how much information of grasping
can we robustly extract from just one single neuron. In this section we describe an approach where we
define meaningful interpretable variables that characterize grasping and identify relevant kinematic events
associated with these variables. We then propose a discrete decoding formulation to investigate whether
(and to what extent) individual neurons collected in our reach-and-grasp experiment are able to decode
these events.

While natural, smooth and precise control of hand prosthesis cannot be achieved with the information of
one single neuron, our study is scientifically illuminating, because it shows what information of grasping can
be decoded from a single neuron. In addition, our approach can be useful for limited clinically viable systems
where grasping is performed via discrete operations instead of being continuously controlled. Kennedy et al.
(2000), for example, created a limited, but useful, clinically viable system when they demonstrated that a
human patient, who suffered a brainstem stroke and only had residual facial movements, was able to control
the horizontal coordinate of a cursor on a 2D screen using signals from only one or two neurons.1 The
patient was able to select letters on the screen to build words and sentences and communicate. Kennedy
et al. (2000) was able to provide control over one horizontal degree of freedom. With our approach, we
decode events based on the aggregated motion of all the fingers of the hand, which can be thought of as a
form of dimensionality reduction.

5.1.1 Related work

In literature there are some works that have shown off-line decoding of continuous grasp aperture from
spiking activity (Artemiadis et al., 2007; Zhuang et al., 2010; Bansal et al., 2011, 2012) and from ECoG
data (Fifer et al., 2011) or finger position during a grasping task (Aggarwal et al., 2009). Some other works
have shown off-line discrete decoding of grasp type (Stark and Abeles, 2007; Carpaneto et al., 2011, 2012;
Hao et al., 2012; Xu et al., 2013) or of single or multiple finger flexion or extensions (Hamed et al., 2007;
Aggarwal et al., 2008; Acharya et al., 2008; Baker et al., 2009; Shin et al., 2009a,b, 2010).

In the on-line setting (Velliste et al., 2008; Hochberg et al., 2012) controlled the open-and-close of
a gripper and a robotic hand respectively, and Townsend et al. (2011) was able to decode discrete grasp
types. All these studies used at least twenty units for decoding. We aimed at extracting relevant grasping
information from a single neuron as in (Kennedy et al., 2000), who extracted information for moving a
cursor on the screen. We also aimed at confirming the robustness of decoding the grasping events in many
of the neurons that were sampled.

A first step to understand the grasping information is to summarize the information from the multiple
markers on the fingers. One way to do it is by extracting synergies as in Chapters 3 or 4; or, alternatively,
by defining some intuitive variables that describe the grasping, which can be thought of as a type of dimen-
sionality reduction.

1This patient was implanted with a neurotrophic electrode (Kennedy and Bakay, 1998) on the primary motor cortex.
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Figure 5.1: Definition of interpretable variables.

5.1.2 Interpretable variables

A problem when studying encoding of learned synergies is their interpretability. Synergies obtained with
non-linear dimensionality reduction methods such as kPCA can be difficult to interpret. We define a set of
intuitive and interpretable variables that summarize and describe the aggregated digits motion. The objective
is to understanding the encoding of aggregated digit movement in an intuitive manner.

We propose to use the following interpretable variables:

• fist opening, or the sum of the Euclidean distances from each finger marker to its centroid

I1(t) =
∑16

j=1

∥∥∥Zrj (t)− cr(t)
∥∥∥2

2
where Zrj (t) ∈ R1×3 and cr(t) is the centroid of the markers posi-

tion at time t of trial r, that is, of the rows of matrix Zr(t);

• palm-finger angle I2(t), or aggregated sum of the metacarpo-phalangeal (MCP) joints of the digits;

• finger curliness I3(t), or aggregated sum of the distal and proximal interphalangeal (DIP and PIP)
joints of all the digits; and

• finger spread I4(t), or aggregated sum of the angles between digits.

The last three variables can be defined as
∑

j∈W Xr
j (t) where W corresponds to the set of MCP joint

flexions of the fingers in the first case, to the set of PIP and DIP joint flexions of the digits in the second
case, and to the set of angles between fingers in the third case. Note that the only non-linear variable is the
fist opening. This variable is also only one that includes information about the thumb. For an illustration,
see Figure 5.1.

We now proceed to investigate whether some information of these interpretable variables is signaled by
single neurons.

5.1.3 Decoding events framework

Our grasping datasets have very few neurons recorded simultaneously (refer to Chapter 2), so in this section
we do not aim at reconstructing the whole grasping movement. Instead, we investigate ways to describe
grasping through a set of relevant kinematic “events” that capture the relevant features of grasping, and we
ask whether there is signal in the neurons that consistently decodes for these kinematics events.
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We hypothesize that single neurons recorded from the primary motor cortex are sufficient to reliably
decode relevant features of grasping that potentially can be used to control a basic prosthetic device with
discretized commands. In order to verify our hypothesis we propose the following framework.

For a specific trial we consider a unidimensional variable along time w(t) that describes grasping. For
instance, let w(t) be the interpretable variable hand aperture. Then we identify critical points of the variable,
such as maximum, minimum, and change of sign (if any exist), and we call these critical points kinematic
events. These kinematic events effectively discretize an aspect of the hand configuration. For instance,
maximum aperture and minimum aperture represent two informative and opposite configurations of the
digits. In effect, in the simplest case a grasp performed by a robotic hand could be controlled by a binary
command: maximize hand aperture or minimize hand aperture. In addition to the raw variable w(t) we
can consider its rate of change w′(t) = d

dt w(t) and its acceleration w′′(t) = d2

dt2
w(t), and we can find

the kinematic events of each of these functions. We can label two opposite kinematic events as xi where
xi ∈ {+1,−1} corresponding respectively to maximum and minimum. Each kinematic event is associated
with some neural activity that precedes it. Our goal is to investigate the association between the neural signal
and the kinematic event. If given a specific single neuron, we consider the neural activity zi consisting of
280mS preceding a kinematic event, and we bin the activity in four 70mS windows as before (Section
3.2). The neural data together with all the labeled kinematic events associated with it form a data set.
D = {(zi, xi)}ni=1, where zi ∈ R4, xi ∈ {+1,−1}, and n is the number of kinematic events in the data set.
In the case of considering the events to be the maximum and the minimum of a specific variable w(t), n is
equal to twice as many trials as are associated with a specific neuron. For a graphical description of how to
build the data set, see Figure 5.2.

Decoding and encoding problems

Consider a kinematic event x (a binary variable in this case). Denote the probability distribution of the
event by P (x). Let z be the neural information as described above, and P (z|x) the conditional probability
of the neural data given the specific event. Estimating P (z|x) from data constitutes the encoding problem
within the event driven framework. The corresponding decoding problem is concerned with obtaining the
maximum a posteriori (MAP) estimate of the kinematic event: maxx P (x|z) ∝ P (z|x)P (x), where we
observe the firing rate z and we want to predict the discrete variable x representing the kinematic event.

Evaluation criteria

We evaluate the ability to predict the kinematic event correctly, performing k-fold cross validation and
reporting the mean accuracy and standard deviation across folds. In order to make sure the results are correct,
we use permutation tests for classification (Ojala and Garriga, 2010) and false discovery rates (Benjamini
and Yekutieli, 2001) to control for Type I errors.

Permutation Tests for Classification (Ojala and Garriga, 2010). For each (neuron, variable) pair we
performed a permutation test where the null hypothesis H0 is: P (x, z) = P (x)P (z), or equivalently, that
the two conditional probability distributions are identical: P (z|x = 1) = P (z|x = −1). We tested this
hypothesis as follows:

1. Define B = 103, k = 10
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Vinny000661. Neuron: 0003a. Trial 16. 
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Figure 5.2: Definition of kinematic event: maximum vs minimum. (Top panel) Activity of neuron depicted with crosses. (Bottom
panel) Fist opening velocity along time. In order to define kinematic graspig events, we identify the timing of critical points (like
maximum and minimum) in the interpretable variables. We associate a label with these time points, for example, maximum as +1
and minimum as −1. We also associate the 280mS prior neural activity (binned in 70mS slots) to the corresponding time slice. We
build one sample with the binned neural activity (as explanatory variables) and the class label associated with the kinematic event.
(Session: Vinny 661, neuron: 0003a, trial: 16.)

2. Repeat B times:

(a) permute labels
(b) perform k-fold cross validated classification as explained above
(c) record accuracy

3. Obtain histogram of B accuracies
4. Obtain k-fold cross validated accuracy of non-permuted (original) data set
5. Obtain the empirical p-value by:

p =

∣∣∣{acc(f,D′) ≥ acc(f,D) : D′ ∈ D̂}
∣∣∣+ 1

B + 1

where D is the set of labeled data D = {(zi, xi)}ni=1; n is the number of trials; π is a permutation of
n elements; D′ is a randomized version of D obtained by applying the permutation π on the labels
i.e. D′ = {(zi, π(x)i)}ni=1; D̂ is a set of B randomized versions D′ of the original data D; f is our
classifier which assigns a row of zi to a label; and we denote the k-fold cross validation accuracy of
the classifier f on the data D as acc(f,D).
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False Discovery Rate. We obtained (per data set) numNeurons × numV ariables permutation tests,
and thus we have as many p-values. We are interested in controlling the expected proportion of rejected
hypotheses that are mistakenly rejected. FDR is that proportion – the proportion of tests (over all performed
tests) where the null hypothesis is actually true. The FDR controls Error Type I. In our problem we apply the
version of FDR testing that correspond to test statistics that are not independent (Benjamini and Yekutieli,
2001). This procedure is based on (Benjamini and Hochberg, 1995) and is as follows.

Consider m null hypotheses {H1
0 , H

2
0 , . . . ,H

m
0 } and their test statistics. Let m0 of these hypothesis

be true null hypotheses. Consider that it is unknown which hypothesis are the true ones, and m0 is also
unknown. After testing these hypotheses there are m observed p-values: {p1, . . . , pm} where pi = 1 −
FHi

0
(Si) and Si is the test statistic of the i-th test. Then apply the following steps:

1. Sort the m observed p-values: p(1) ≤ p(2) ≤ . . . ≤ p(m)

2. Define κ = max
{
i : p(i) ≤ i

m·
∑m

i=1
1
i

· q
}

where q = 0.05 is our defined desired false discovery
rate.

3. Reject H(1)
0 , H

(2)
0 , . . . ,H

(κ)
0 . If no such i exists, reject no hypotheses.

5.1.4 Experiments

We defined binary kinematic events related to all the interpretable variables defined in Section 5.1.2, and
tried the proposed framework that decodes the kinematic events from neural data. We analyzed 83 neurons
from the right hemisphere of Vinny and 155 neurons from the left hemisphere (see Table 2.3). From these
neurons only 37 and 67 respectively, had fired in at least 100 trials and had an average number of spikes per
trial higher than 10. We focused on these neurons.

In our framework, the prior P (x) can be estimated as a proportion. We assumed the encoding model
P (z|x) ∼ F , and we considered three models for F :

1. The firing rates in different bins are correlated and the firing rate is distributed as a Multivariate
Normal N(µ̂, Σ̂), µ̂ ∈ R4, Σ̂ ∈ R4×4.

2. The firing rates in different bins are independent and the firing rate is distributed as a Normal, thus:
P (z|x) =

∏4
j=1 P (zj |x) =

∏4
j=1N(µ̂j , σ̂j), µ̂, σ̂ ∈ R.

3. The firing rates in different bins are independent and the firing rate is distributed as a Poisson, thus:
P (z|x) =

∏4
j=1 P (zj |x) =

∏4
j=1 Poisson(λ̂j), λ̂j ∈ R.

5.1.5 Results

We focused on the set of interpretable variables defined in Section 5.1.2 and performed the analysis on data
from Vinny. The first observation is that the three models we tried for P (z|x) yielded very similar results.
In Figure 5.3 we present the results of the multivariate normal model. We observe that three variables are
decoded with accuracy larger than 75% consistently over a large proportion of sampled neurons on both
hemispheres: finger curliness, velocity of palm-finger angle, and fist opening. Remarkably, some single
neurons could be decoded with accuracy as high as 96%. Also some variables are decoded better by one
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hemisphere than by the other; we hypothesize that this is due to the location of the area where neurons were
recorded. Finally, events corresponding to finger spread do not appear to be decoded by either side of the
brain from the neurons we sampled.

In order to make sure that we decoded digit related events versus arm events, we considered arm speed
and defined arm events in an analogous fashion as before. We then decoded within our defined framework.
Our results show that for most neurons whose grasp event decoding accuracy was high, those neurons de-
coded arm events accurately as well. That is, there is overlap between arm and finger movement signaling.
However, there are some neurons that simultaneously (and significantly) decode digit events with high accu-
racy and arm events with low accuracy (see Table 5.1). This provides evidence for the existence of neurons
that contain information of digit kinematics as opposed to arm movement.

We investigated further the correlation between the interpretable variables and arm speed. We found
that the rate of change of the interpretable variables and arm speed yield an average Pearson’s correlation
coefficient larger than 0.6. This correlation suggests that arm speed and interpretable variables rate of change
are confounded in the experiment design. This coupling may hamper the conclusions we can make about
digit control; however, (a) these variables are correlated naturally in common reach-and-grasp tasks, and
(b) the correlation coefficient is large, but not one. We hypothesize that the reason why these variables are
not completely correlated is the actual grasping action; that is, the preshaping that varies according to object
during the reach (see Figure 3.2) and the actual grasp where most of the movement corresponds to the digits
grasping the objects.

Left hand (right hemisphere)
Finger curliness Arm speed

Vinny000665spk004a 95.97± 3.07 64.15± 7.42
Vinny000667spk004a 88.45± 6.63 65.28± 9.24

Palm-finger angle velocity Arm speed
Vinny000667spk004a 82.48± 3.55 65.28± 9.24
Vinny000665spk004a 76.63± 4.31 64.15± 7.42

Fist opening Arm speed
Vinny000646spk001a 77.28± 6.1 59.85± 6.13
Vinny000667spk004a 81.88± 5.19 65.28± 9.24

Right hand (left hemisphere)
Palm finger angle velocity Arm speed

Vinny000449spk001a 82.22± 6.44 62.78± 11.21

Table 5.1: Vinny. Decoding accuracy of interpretable variables (digit-related) and arm related kinematic events: decoded event
max-min. Examples of neurons whose digit events decoding accuracy is high, and whose arm event decoding accuracy is low.

5.1.6 Conclusions

The choice of the neural activity model did not significantly affect the results. We found sound evidence
that in a large proportion of the single recorded neurons in the hand/finger region of the primary motor
cortex there is enough signal to reliably decode kinematic events related to the digits. Most of these neurons
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Figure 5.3: Matrix of results for Vinny with binary event maximum-minimum, using multinormal model: each row corresponds
to a single neuron, each column to an interpretable variable. All neurons whose color code is not gray yielded classification accuracy
higher than chance and passed the FDR test. Color coded cross-validated classification accuracy: Red: > 85%, Orange: 75−85%,
Green: 65− 55%, Blue: < 65% but significantly higher than chance.

also decode kinematic events related to the arm; however, there exist neurons that irrefutably preferentially
decode digit-related events as opposed to arm events. This confirms our hypothesis that we can reliably
decode kinematic events related to digits configurations from single neurons, and motivates the exploration
of encoding models for the digit related kinematic events. In addition, it is worth mentioning that we only
require a single neuron to reliably perform the decoding, in some cases getting accuracies up to 96%. In
contrast, other works that pose multiclass decoding problems (Shin et al., 2009b; Hamed et al., 2007) need
at least twenty neurons to get reasonable accuracies.

In our approach we based the decoding on specific times when events were known to have happened. An
extension of this work is to incorporate event timing detection. For example, one can use a Hidden Markov
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Model to express prior knowledge about the relative timing of various events in a sequence.

5.1.7 Discussion

With modern intracortical arrays it is not significantly more expensive to implant an array of electrodes
than it is to implant a single electrode. However, this does not undermine the idea of considering discrete
interpretable kinematic events for the purposes of controlling a prosthetic device. For example, since events
are more robustly decoded than continuous trajectories and require less data, they can be potentially more
useful for other clinical settings such as non-invasive systems. Despite not giving a continuous trajectory
one can imagine building a trajectory as a sequence of discrete events. And, in fact, one promising avenue
of future work would be to model sequences of discrete kinematic events and decode these sequences using
neural data.
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5.2 Laplace-Gaussian Filter (LGF) for decoding continuous states

Some neural-motor prosthesis aim at reconstructing kinematics from spike train histories of multiple recorded
neurons. Position, velocity and/or acceleration can be recorded continuously over time, and usually these
variables contain significant temporal structure. Temporal structure of kinematic continuous variables can
be described through a latent stochastical dynamical system (whose instantaneous value is the state) that
evolves in time following a Markovian function. The set of noisy observations, in this case, the spike train
histories can be assumed to be a parametric function of the state model. State-space models provide a
framework to decode kinematic signals from neural spike trains (Brown et al., 1998; Brockwell et al., 2004;
Truccolo et al., 2004; Srinivasan et al., 2007; Paninski et al., 2010).

The central problem in state-space models is filtering. Filtering refers to estimating the unobserved state
at the present time, given the information provided by all of the observations received up to the present
time. When linear and Gaussian assumptions are made, the Kalman filter provides the optimal solution. For
nonlinear or non-Gaussian models, on the other hand, the main approach in literature is to obtain approx-
imate solutions sometimes based on direct optimization (Paninski et al., 2010), but most frequently based
on simulations such as particle filtering and its variants (Doucet et al., 2001). However, existing filtering
methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this section, we propose
a new nonlinear filter which uses Laplace’s method, an asymptotic series expansion, to approximate the
conditional mean and variance, and a Gaussian approximation to the conditional distribution of the state.
This Laplace-Gaussian filter (LGF) gives fast, recursive, deterministic state estimates. In (Koyama et al.,
2010a) we show that the corresponding error (which is set by the stochastic characteristics of the model) is
stable over time. Here, we illustrate the decoding ability of the LGF by applying it to the problem of neural
decoding and by comparing it to sequential Monte Carlo both in simulations and with real data. We find the
LGF to be far more accurate, for equivalent computational cost, than particle filtering.

This section is organized as follows. In Section 5.2.1 we formalize the state-space model setting. In
Section 5.2.2 we specify the construction of the Laplace-Gaussian filter and smoother in detail. In Section
5.2.3 we provide details of the implementation and the computational complexity of the LGF. In Section
5.2.4 we consider how to estimate the parameters of the model because, in general, these parameters are not
known and need to be learnt from data. In Section 5.2.5 we mention the theoretical guarantees that Shinsuke
Koyama proved. In Sections 5.2.6 we place the LGF within the context of the neural decoding problem, and
show its use in simulations (Section 5.2.7) and in real data (Section 5.2.8). In Section 5.2.9 we discuss our
conclusions and contributions.

5.2.1 Formalization and related work on filtering

Let {xt}Tt=1 be an stochastic state process and a related observation process {yt}Tt=1, which is a noisy
function, generally nonlinear, of the state process. Filtering consists of estimating the the state xt given a
sequence observations y1, y2, . . . , yt denoted by y1:t, that is, finding the posterior distribution p(xt|y1:t) of
the state, given the sequence. Assume that the state xt is a first-order homogeneous Markov process, with
initial density p(x1) and transition density p(xt+1|xt), and that yt is independent of states and observations
at all other times given xt, with observation density p(yt|xt). Applying Bayes’s rule gives a recursive
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filtering formula,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

,(5.1)

where

(5.2) p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

is the predictive distribution, which convolves the previous filtered distribution with the transition density.
In principle, Equations 5.1 and 5.2 give a complete, recursive solution to the filtering problem for state-

space models: the mean-square optimal point estimate is simply the mean of Equation 5.1. However, when
the dynamics are nonlinear, non-Gaussian, or even just high dimensional, computing these estimates se-
quentially can be a major challenge.

A way for estimating the posterior mean is to provide an approximation by sampling from the posterior
distribution. Applying Monte Carlo to Equations 5.1–5.2 would let us draw from p(xt|y1:t), if we had
p(xt|y1:t−1). Particle filtering (Doucet et al., 2001) consists in approximating the latter distribution by Monte
Carlo sampling. This turns the recursive equations for the filtering distribution into a stochastic dynamical
system of interacting particles (Del Moral and Miclo, 2000), each representing one draw from that posterior.
While particle filtering has proven itself to be useful in practice (Doucet et al., 2001; Brockwell et al.,
2004; Ergün et al., 2007), like any Monte Carlo scheme it is computationally very costly; moreover, the
number of particles (and so the amount of computation) needed for a given accuracy grows rapidly with the
dimensionality of the state-space. For real-time processing, such as neural decoding, the computational cost
of effective particle filtering can become prohibitive.

The primary difficulty with the nonlinear filtering equations comes from their integrals. Particle filtering
approximates the integrals stochastically. We propose here to approximate them deterministically, with the
asymptotic expansion known as Laplace’s method (Erdélyi, 1956). Specifically, we use Laplace’s method to
obtain estimates of the mean and variance of the posterior density (5.1), and then approximate that density
by a Gaussian with that mean and variance. This distribution is then recursively updated in its turn when the
next observation is taken. We call this method the Laplace-Gaussian Filter (LGF).

There are several versions of Laplace’s method, all of which replace integrals with series expansion
around the maxima of integrands. An expansion parameter, γ (sample size or the sharpness of a tuning
curve) measures the concentration of the integrand about its peak. In the simplest version, the posterior
distribution is replaced by a Gaussian centered at the posterior mode. Under mild regularity conditions,
this gives a first-order approximation of posterior expectations, with error of order O(γ−1). Several papers
have applied some form of the first-order Laplace approximation sequentially (Brown et al., 1998; Eden
et al., 2004). In the ordinary static context, Tierney et al. (1989) showed that a refined procedure, the
“fully exponential” Laplace approximation, gives a second-order approximation for posterior expectations,
having an error of order O(γ−2). In (Koyama et al., 2010a) we provide theoretical results justifying these
approximations in the sequential context. Because state estimation proceeds recursively over time, it is
conceivable that the approximation error could accumulate, which would make the approach ineffective.
Koyama’s proofs show that, under reasonable regularity conditions, this does not happen: the posterior
mean from the LGF approximates the true posterior mean with an error O(γ−α) uniformly across time,
where α = 1 or 2 depending on the order of the LGF.
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In the following section we develop the LGF and in later sections we show its application to neural
decoding of continuous variables in simulations and in real data.

5.2.2 Laplace-Gaussian Filter and Smoother

Let xt|t and vt|t denote the mode and variance of the true filtered distribution at time t given a sequence
of observations y1:t. Similarly, let xt|t−1 and vt|t−1 be the true mode and variance of the true predictive
distribution at time t given y1:t−1. Let x̂ denote the approximated posterior mode, and x̃ the approximated
posterior mean.

LGF algorithm

The procedure of the LGF consists of the following steps:

1. At time t = 1, initialize the distribution of the state p(x1).
2. Observe yt.
3. Filtering. Obtain the approximate posterior mean x̃t|t and variance ṽt|t by Laplace’s method (see

below), and set p̂(xt|y1:t) to be a Gaussian distribution with these approximated mean and variance.
4. Prediction. Calculate the predictive distribution,

(5.3) p̂(xt+1|y1:t) =

∫
p(xt+1|xt)p̂(xt|y1:t)dxt.

5. Increment t and go to step 2.

First-order Laplace approximation. In the first-order Laplace approximation the posterior mean and
variance are

x̃t|t = x̂t|t ≡ argmax
xt

l̂(xt)

and
ṽt|t = [−l′′(x̂t|t)]−1 ,

where
l(xt) = log p(yt|xt)p̂(xt|y1:t−1) .

Note that for this approximation to be valid l(xt) must be unimodal.

Second-order (fully exponential) Laplace approximation. The second-order Laplace approximation is
calculated as follows (Tierney et al., 1989). For a given function g of the state, let k(xt) = log g(xt)p(yt|xt)p̂(xt|y1:t−1)
and x̄t|t maximize k. The posterior expectation of g for the second order approximation is then

(5.4) Ê[g(xt)|y1:t] ≈
| − k′′(x̄t|t)|−

1
2 exp[k(x̄t|t)]

| − l′′(x̂t|t)|−
1
2 exp[l(x̂t|t)]

.

When the g we care about is not necessarily positive, so we add a large constant c to g so that g(x) + c > 0,
apply Equation 5.4, and then subtract c. The posterior mean is thus calculated as x̃t|t = Ê[xt + c]− c. See
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(Tierney et al., 1989) for the details of this method.2 The posterior variance is set to be ṽt|t = [−l′′(x̂t|t)]−1,
as this suffices for obtaining the second-order accuracy (Koyama et al., 2010a).

To use this method to estimate a d-dimensional space, one simply takes the function g to be each co-
ordinate in turn, i.e., g(xt) = xt,i + c for each i = 1, 2, . . . , d. Each g is a function of Rd → R, and
| − l′′(x̂t|t)|−

1
2 and | − k′′(x̄t|t)|−

1
2 in Equation 5.4 are replaced by the determinants of the Hessians of

l(x̂t|t) and k(x̄t|t), respectively. Thus, estimating the state with the second-order LGF takes d times as long
as using the first-order LGF, since posterior means of each component of xt must be calculated separately.

In many applications the state process is taken to be a linear Gaussian process (such as an autoregression
or random walk) so that the integral in Equation 5.3 is analytic. When this integral is not done analytically,
either an asymptotic expansion or a numerical method may be employed. To apply our theoretical results,
the numerical error in the integration must be O(γ−α), where γ is the expansion parameter discussed in the
next paragraphs and α = 1 or 2 depending on the order of the LGF.

Meaning of γ. Based on the regularity conditions stated in (Erdélyi, 1956; Kass et al., 1990), for a given
state-space model γ is constructed by combining the model parameters so that the log posterior density is
scaled by γ as γ → ∞. In general, γ is interpreted in terms of the sample size the concentration of the
observation density, and the inverse of the noise in the state dynamics. In the context of neural decoding,
γ can be constructed in terms of the number of neurons, the noise in the state dynamics and the sharpness
of the neuronal tuning curves (see Equation 5.12). From the construction of γ, the second derivative of the
log-posterior density (which determines its concentration) is also scaled by γ. Therefore, the larger γ is,
the more precisely variables can be estimated, and the more accurate Laplace’s method becomes. When
the concentration of the posterior density is not uniform across state dimensions in a multidimensional
case, a multidimensional γ could be taken. Without a loss of approximation accuracy, however, a simple
implementation of this case is taking the largest γ as a single expansion parameter.

Smoothing

Smoothing is a related operation to filtering, but computationally more challenging (Doucet et al., 2001).
Smoothing corresponds to estimating the distribution of the state at a particular time given all of the ob-
servations up to some later time. That is, later observations are used to improve the estimates of states at
earlier time points and, as a result, trajectory estimates tend to be smoother than those estimated by filtering
(Doucet et al., 2001). Formally, the smoothed state distributions p(xt|y1:T ) when t ≤ T are calculated from
filtered and predictive distributions by recursing backwards (Anderson and Moore, 1979).

The LGF can be used for smoothing. Instead of the true filtered and predictive distributions, however,
we now have the approximated filtered and predictive distributions computed by the LGF. By using these
approximated distributions, the approximated smoothed distributions can be obained as

(5.5) p̂(xt|y1:T ) = p̂(xt|y1:t)

∫
p̂(xt+1|y1:T )p(xt+1|xt)

p̂(xt+1|y1:t)
dxt+1.

2In practice it suffices that the probability of the event {g(xt) + c > 0} be close to one under the true distribution of xt.
Allowing this to be merely very probable rather than almost sure introduces additional approximation error, which however can be
made arbitrarily small simply by increasing the constant c.
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Shinsuke Koyama provides a proof of the accuracy of LGF smoothing in (Koyama et al., 2010a).

5.2.3 Implementation and computational complexity

When fitting the LGF the log-likelihood of the model given the data must be maximized. In addition, the
Hessian matrix of the loglikelihood must be obtained and evaluated. Maximizing the loglikelihood might
not have an analytical solution and obtaining the second derivative might be difficult or cumbersome. Here
we explain how we approached these challenges.

We maximize the log-likelihood through Newton’s method (an iterative procedure). We initialize the
algorithm with x̂t|t−1 for maximizing l(xt) and x̂t|t for maximizing k(xt), since these initial values are
often close to the solutions. As for the convergence criterion: the iteration should be stopped at the lth

iteration where
∥∥x(l+1) − x(l)

∥∥ < γ−α is satisfied, where x(l) is the value obtained at the lth step. α is
set to 1 for the first-order approximation, α = 2 for the second-order approximation, and γ is a parameter
that controls the accuracy of the Laplace’s method. In our neural application, γ depends on the number of
neurons, the noise of the state dynamics and the sharpness of the neural tuning curves (see Equation 5.12
below).

Laplace approximation requires the second derivative (or the Hessian matrix for multi-dimensional state-
space) of the log-likelihood function evaluated at its maximum. However, obtaining the analytical derivative
can be difficult or cumbersome. Therefore we use an accurate numerical approximation of the derivative:
an iterated version of the Richardson extrapolation ((Kass, 1987) and Appendix Section 7.8.2).

Computational complexity

Let d be the dimensionality of the state, T the number of time steps, andN be the sample size (or the number
of neurons in the neural decoding context). Assume maximization of the log-likelihood through Newton’s
method and the evaluation of the Hessian of the log-likelihood as explained above.

In the first order LGF l(xt) needs to be maximized at each time t. At each iteration of Newton’s method,
the evaluation of the Hessian matrix of l(xt) has time complexity O(Nd2), as d2 is the time complexity for
matrix manipulation. Maintaining accuracy as d and N grow does not require more iterations of Newton’s
method and the total number of iterations is rather small (around five iterations in our neural decoding
application). Considering the T time steps, the total time complexity of the first-order LGF is O(TNd2).

The second order LGF requires maximizing both l(xt) and k(xt). Although the accuracy of approxi-
mation is order of γ−1 higher than that of the first-order LGF, it takes only one more iteration of Newton’s
method, because of its quadratic convergence. Thus the time complexity of calculating the posterior expec-
tation of each xt,i is still O(Nd2), but calculating it for i = 1, . . . , d results in O(Nd3). Considering all T
time steps, the complexity of the second-order LGF is O(TNd3).

For comparison, particle filter (PF) with M particles has complexity O(TMNd): most of the compu-
tational cost of the PF comes from calculating M weights at each time step; finding each weight needs an
invocation of the observation model, which requires time O(Nd); and thus the computational cost across all
T time steps is O(TMNd). For the computational cost of the particle filter to be comparable with the LGF,
the number of particles should be M ∼ d for the first order LGF and M ∼ d2 for the second order LGF.
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5.2.4 Parameter estimation

The primary use of the LGF is to obtain estimates of the state xt, but in the filtering problem one assumes
that the model parameters θ are known. However, this is often not the case, which means that, in practice,
the Markov model is actually p(xt|xt−1; θ) and the observation model, p(yt|xt; θ). Hence, one must jointly
estimate the states and the model parameters.

In principle, one could do this by maximizing the likelihood,

(5.6) log p(y1:T ; θ) = log

∫
p(x1:T , y1:T ; θ)dx1:T = log

∫ T∏
t=1

p(xt|xt1 ; θ)p(yt|xt; θ)dx1:T .

This is, however, hard without knowing x1:T . A standard strategy is to use the expectation-maximization
(EM) algorithm (Dempster et al., 1977; Baum et al., 1970) (see Appendix Section 7.8.3).

When the complete data distribution is of an exponential family, the E-step consists of finding the ex-
pected values of certain sufficient statistics of the complete data. Those expectation values can be approxi-
mated by the LGF. We illustrate the derivation of the EM algorithm with the LGF and smoothing within the
context of our neural decoding application in Section 5.2.6.

5.2.5 Theoretical guarantees

Erdélyi (1956); Kass et al. (1990); Wojdylo (2006) stated and studied the regularity conditions that are
sufficient for the validity of Laplace’s method. Based on these conditions it can be shown that the LGF
satisfies the following properties:

1. Accuracy of predictive distributions / Non-amplification of error. The error in approximated predictive
distribution generated by the LGF approximation at each time-step does not accumulate along time,
in fact, the error term is bounded uniformly across time. This theorem is proved by calculating the
asymptotic expansions of both the true and approximated predictive distributions and matching terms.

2. Accuracy in the posterior expectations. The error in the approximated posterior expectation is also
bounded uniformly over time.

3. Stability of the algorithm. Under suitable regularity conditions, the sequential Laplace approximation
to the predictive distribution is stable in the sense that two approximately equal versions at time
t − 1 lead to approximately equal versions at time t. That is, minor differences in the initially-
guessed distribution of the state tend to be reduced, rather than amplified, by conditioning on further
observations, even under the Laplace approximation. This means that, estimates become progressively
less dependent on the initial prior as more data arrives.

These three results together with an analogous result for the LG smoother were proved by Shinsuke
Koyama in our paper (Koyama et al., 2010a).

5.2.6 LGF in the context of neural decoding

Neurons in the primary motor cortex fire preferentially in response to velocity vt ∈ R3 and position zt ∈ R3

of the hand Georgopoulos et al. (1986a); Ketter et al. (1988); Paninski et al. (2004a); Wang and Moran
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(2007). These covariates can be linearly combined to model the logarithm of the mean firing rate of neurons
in primary motor cortex in a similar fashion as in (Truccolo et al., 2004) where the conditional intensity
function of a point process was used to define a neuron’s spiking probability in terms of a linear combination
of functions of the covariates.

Let vt ∈ R3 denote the velocity and zt ∈ R3 the position of the hand at time t . Consider a population
of N neurons, such that the mean firing rate of neuron i is:

(5.7) λi(zt,vt) = exp(αi + βi · vt + ηi · zt),

where αi ∈ R1 represents the baseline firing rate of neuron i, βi ∈ R3 denotes the preferred direction
and the sharpness of its tuning curve, and ηi ∈ R3 can be understood as the neuron’s position gradient. We
can write xt = (zt,vt) as a state column vector in 6-D space, and θi = (ηi,βi) as a preferred movement
column vector in 6-D space. In fact, in general, we can consider a potentially large dimension d on the state
xt ∈ Rd that could represent, for instance, the fingers configuration, velocity and/or acceleration. Hence,
we can model the instantaneous mean firing rate of neuron i as:

(5.8) λi(xt) = exp(αi + θi · xt),

where θi corresponds to the parameters that determine the tuning of the neuron based on kinematic variables.
In this and the following sections we refer to Equation 5.7 as the simple model and to Equation 5.8 as the
general model of firing rates.

In principle, the response of the neurons is a continuous-time point process, but we assume (in line with
the experimental situation) that we make observations at discrete times recording the number of spikes that
happen over time-intervals of length ∆. Let yi,t denote the spike count of neuron i at time t and suppose that
yi,t is a poisson process with intensity λi(xt) ∆, and that the firing of different neurons is independent from
each other conditioned on xt. Then, the probability distribution of yt, the vector of all the yi,t corresponds
to the product of the firing probabilities of each neuron.

The state model in the simple model can be assumed to be

(5.9) xt =

(
I ∆I
O I

)
xt−1 +

(
0
εt

)
,

where εt is a 3-D Gaussian random variable with mean zero and covariance matrix σ2I , I being the identity
matrix. Or, in the general model, the state model can be assumed to be a d-dimensional autoregressive (AR)
process:

(5.10) xt = F xt−1 + Et

where F ∈ Rd×d and Et is a d-dimensional Gaussian random variable with mean zero and covariance
matrixW ∈ Rd×d.

Parameters θi and σ2 can be learned via expectation maximization. However, in the context of neural
decoding (and to make the comparison fair to other neural decoders) we learn parameters θi through Pois-
son regression of spike counts on kinematic variables (and use the same preferred movement vectors in all
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decoders), and we learn σ2 (orW ) via maximum likelihood (through EM).

The construction for the LGF for the simple model Equation (5.7) and (5.9) and the EM for learning the
variance is as follows.

Derivation of LGF for simple model of neural decoding

Let x̃t|t−1 ∈ R6 and Ṽt|t−1 ∈ R6×6 be the predictive mean and the covariance matrix, and similarly let x̃t|t
and Ṽt|t be the posterior mean and covariance at time t.

In the filtering step, we introduce

l(xt) = log p(yt|xt)p̂(xt|y1:t−1)

and
ki(xt) = log gi(xt)p(yt|xt)p̂(xt|y1:t−1) .

Here gi(xt) = xt,i + c for computing the i-th element of the posterior mean of xt, and c � 0 is a large
constant3. By inspecting the second derivative of l,

(5.11) l′′(xt) = −
N∑
i=1

exp(αi + θi · xt)∆θiθTi − V −1
t|t−1,

we can identify the expansion parameter:

(5.12) γ =
1

σ2
+

N∑
i=1

eαi‖θi‖2 ,

so Laplace’s method grows more accurate as the state noise shrinks, as the number of neurons grows, as
the firing rates of neurons increase, and as the neuronal response becomes more sharply peaked around the
preferred movement.

In the prediction step, since both the approximated filtered density, p̂(xt|y1:t), and the transition density,
p(xt+1|xt), are Gaussian, the predictive density (Equation 5.3) is also Gaussian, with mean

(5.13) x̃t+1|t =

(
I ∆I
O I

)
x̃t|t,

and covariance

(5.14) Ṽt+1|t =

(
I ∆I
O I

)
Ṽt|t

(
I O

∆I I

)
+

(
O O
O σ2I

)
.

We take the initial value for filtering to be the hand position and velocity at the time origin. This
completes the LGF for this model.

3We took c = 104 in our simulation and data analysis below.
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EM for learning the covariance of the state

We apply the EM algorithm4 to determine the optimal value of σ2. Given a current estimate σ2
(l), maximizing

Equation 7.11 with respect to σ2 leads to the updating formula as

(5.15) σ2
(l+1) =

1

3(T − 1)

T∑
t=2

6∑
i=4

{
Ṽ

(i,i)
t|T + Ṽ

(i,i)
t−1|T − 2Ṽ

(i,i)
t,t−1|T + (x̃t|T,i − x̃t−1|T,i)

2
}
,

where the smoothed mean, x̃t|T , variance, Ṽt|T , and covariance of the state, Ṽt,t−1|T , are calculated with σ2
(l).

Since the approximated predictive and filtered distributions are both Gaussian, the smoothed distributions
(Equation 5.5) are also Gaussian, and the backward formula for calculating the mean and variance of the
smoothed distributions are

(5.16) x̃t|T = x̃t|t +Kt(x̃t+1|T − x̃t+1|t),

and

(5.17) Ṽt|T = Ṽt|t +Kt(Ṽt+1|T − Ṽt+1|t)K
T
t ,

for t = T − 1, T − 2, . . . , 1, where

(5.18) Kt = Ṽt|t

(
I O

∆I I

)
Ṽ −1
t+1|t.

(See (Anderson and Moore, 1979).) The smoothed covariance can be computed by

(5.19) Ṽt+1,t|T = KtṼt+1|T ,

for t = 1, 2, . . . , T − 1 (de Jong and Mackinnon, 1988).
Thus, the complete EM procedure for this model, with σ2 unknown, goes as follows:

1. At the iteration step l = 1, set the initial value, σ2
(1).

2. E-step. Apply the LGF and smoothing algorithm with σ2
(l) to obtain x̃t|T , Ṽt|T and Ṽt,t−1|T .

3. M-step. Update the value of σ2 by Equation 5.15.
4. Repeat steps 2-3 until the value of σ2 converges5.

5.2.7 Simulation study

We performed two simulation studies. In the first one we compared the performance of the LGF to the actual
posterior mean and to estimates of obtained trhough particle filtering. We also showed how the accuracy
of LGF varied as the state dimensionality grew. In the second simulation we show experimentally how the
accuracy of the LGF state estimates grow as the number of neurons increases.

4A similar algorithm for neural data analysis was derived in (Smith and Brown, 2003).
5We used the convergence criterion |σ2

(l+1) − σ2
(l)|/σ2

(l) < 10−3.



5.2. LAPLACE-GAUSSIAN FILTER (LGF) FOR DECODING CONTINUOUS STATES 83

LGF accuracy and error scaling when varying the state dimensionality

In this first simulation, we aimed at comparing the performance of the LGF state estimates to (1) the actual
posterior mean, and (2) to the estimates obtained through the particle filtering as in (Brockwell et al., 2004);
and we observed how the LGF accuracy behaved when varying the state dimensionality. We obtained the
first order and second order LGF estimates and labeled them as LGF-1 and LGF-2.

We performed these comparisions on the general model specified by Equations 5.8 and 5.10 at various
values of the state dimensionality d = 6, 10, 20, 30. The model parameters were set as follows: T = 30 time
steps of duration, ∆ = 0.03 seconds, a population of N = 100 neurons with αi = 2.5 + N (0, 1) and θi
sampled uniformly from the unit sphere in Rd; where the spike counts were drawn from Poisson distributions
with firing rates λi(xt); and where the state dynamics were determined by F = 0.94I , W = 0.019I and
Equation (5.10).

In order to compute the actual posterior mean we used particle filtering with a large number of particles
(106), averaged over 10 independent realizations and verified that the order of the mean integrated square
error (MISE) was neglegible – it resulted in an error of order O(10−7). We then compared the two versions
of LGF with PF with 100 particles for the different values of d. In addition, to be fair and based on the
computational cost analysis, we compared to what we called PF-scaled. For this analysis we calculated the
number of particles needed to match the computational time of PF with that one of the second order LGF.
Hence, we chose 100, 300, 500 and 1000 particles for d = 6, 10, 20 and 30.

The first four rows in Table 5.2 show the mean integrated square error in approximating the actual
posterior mean. The best results were attained by the LGF-2, followed by LGF-1. The two versions of LGF
yielded better results than the versions of particle filtering. Table 5.3 shows the time in seconds used to
obtain the estimates for the four filters. The LGF-1 is the fastest method; LGF-2 and PF-scaled take roughly
the same amount of time.

Figure 5.4 shows the mean integrated square error for particle filtering in approximating the actual pos-
terior mean for d = 6. The figure shows that PF needs on the order of 104 particles to be as accurate as the
first order LGF, and about 106 particles to match the second order LGF. Notice that if we allow the LGFs
and the PF to have the same accuracy, LGF-1 is about 1000 times faster than the PF, and LGF-2 is expected
to be about 10,000 faster than the PF.

The fifth row of Table 5.2 shows the MISE between the true state and the actual posterior mean. The
error in using the actual posterior mean to estimate the true state is the statistical error, that is, the error
inherent to the system’s stochastic characteristics and not the error due to approximations. Note that the
statistical error is an order of magnitude larger than the approximation error in the LGF, so that increasing
the accuracy with which the posterior expectation is approximated does little to improve the estimation of
the state. The approximation error in the PFs however, becomes on the same order as the statistical error
when the state dimension is larger (d = 20 or 30). In such cases the inaccuracy of the PF will produce
comparatively inaccurate estimates of the true state.

LGF accuracy when varying the number of neurons

In this simulation we aimed at isolating the effect of increasing the number of neurons (N = 20, 50, 100, 200)
in the accuracy of the LGF, and at comparing the accuracy of LGF with Particle Filtering with 100 particles.



84 CHAPTER 5. DECODING: ALGORITHMS AND GRASPING FEATURES

Figure 5.4: Scaling error: Laplace Gaussian Filter vs Particle Filter when the state dimensionality is d = 6. The solid line

represents the scaling of mean integrated squared error (MISE, vertical axis) for the PF as a function of the number of particles

(horizontal axis). Error here is with respect to the actual posterior expectation (optimal filter). The dashed and dotted lines represent

the MISE for the first- and second-order LGF, respectively.

We considered the simple model 5.7 with state dynamics given by Equation 5.9. We generated the neural
parameters as follows: αi = 2.5 +N (0, 1), βi uniformly distributed on the unit sphere in R3, and ηi drawn
fromN (0, π2 ). We assumed the neural observations to be a Poisson process with intensity given by (λi ·∆)
where ∆ = 0.05 and T = 100 time steps. We set the velocity to be vt =

(
sin2π

T t, sin
2π
T t, cos

2π
T t
)

and
obtained the position at each time step by integration. We learned σ2 as explained in Section 5.2.6 and
assumed the other parameters to be known.

Figure 5.5 shows the filters’ MISE in approximating the actual posterior mean as a function of the
number of neurons. The first observation is that all filters increase their accuracy as the number of neurons
increases. The behavior of the LGF matches what is predicted in theory by Equation 5.12.

The LGF-2 gives the best approximation, followed by the LGF-1, and then by the particle filtering with
100 particles. These results demonstrate that the LGFs give a fast approximation of the posterior that is
provably accurate.

Note that the MISE between the true state and the actual posterior mean is 0.064 ± 0.0033 for 100
neurons. The error in using even the optimal filter, i.e., the actual posterior mean, to estimate the true state
is orders of magnitude larger than the approximation errors; most of the filtering error is inherent statistical
error of the posterior itself, and not due to the approximations. Thus, the first-order LGF was enough for
decoding the actual state with the model we used here.

5.2.8 Real data analysis

We applied the LGF and the simple model developed in Section 5.2.6 to data from a 3-D center out exper-
iment from the Schwartz lab. A monkey was presented with a virtual 3-D cube, containing eight possible
targets corresponding to the edges of the cube and a cursor that the monkey could control through a multi-
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MISE State dimensionality d
Method 6 10 20 30
LGF-2 0.0000008 0.000002 0.00001 0.00006
LGF-1 0.00003 0.00004 0.0001 0.0002
PF-100 0.006 0.01 0.03 0.04

PF-scaled 0.006 0.007 0.01 0.02

Posterior 0.03 0.04 0.06 0.07

Table 5.2: Mean-integrated squared errors (MISEs) for different filters as a function of the dimensionality of the state. The first

four rows give the discrepancy between three approximate filters and the optimal filter (approximation error): LGF-2 and -1 (second

and first order LGF); PF-100, a particle filter with 100 particles; PF-scaled, a particle filter scaled in time to LGF-2. The fifth row

gives the MISE between the true state and the estimate of the optimal filter, i.e., the actual posterior mean (statistical error). All

values are means of 10 independent replicates and the standard errors are not reported because they are all smaller than the leading

digit in the table.

MISE State dimensionality d
Method 6 10 20 30
LGF-2 0.24 0.43 1.0 2.0
LGF-1 0.018 0.024 0.032 0.056
PF-100 0.18 0.18 0.18 0.19

PF-scaled 0.18 0.50 0.81 1.8

Table 5.3: Time in seconds needed to decode for different filters as a function of the dimensionality of the state. All values are

means of 10 independent replicates and the standard errors are not reported because they are all smaller than the leading digit in the

table.

electrode implanted in their motor cortex. The task was to move the cursor to reach a high-lighted target;
the monkey received a reward upon successful completion.

In total 78 distinct neurons were recorded simultaneously in the session. The session consisted of 104
trials. Our data each trial consist of time series of spike-counts from these neurons, along with the recorded
hand positions, and hand velocities found by taking differences in hand position at successive ∆ = 0.03
second intervals. Each trial contained 23 time steps on average.

For decoding, we used the simple state-space model defined by Equations 5.7 and 5.9. Sixteen trials
consisting of two presentations of each of the eight targests were used for estimating the parameters of the
model. The response function parameters of the neurons, αi and θi, were estimated by Poisson regression
of spike counts on cursor position and velocity 6. These parameters were then used by an EM algorithm
to estimate the variance of the state process, σ2 as explained in Section 5.2.6. Having estimated all the
parameters, cursor motions were reconstructed from spike trains for the other 88 trials. For comparison, we
also reconstructed the cursor motion with a PF with 100 particles and PVA.

6The preferred movement vectors were estimated by Poisson regression instead of an EM method in order to have a fair com-
parison; the same preferred movements were used in LGF, PF, and PVA.
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Summary

� Particle filtering may be too inaccurate or slow
for online estimation of high-dimensional state-
space.

� The Laplace-Gaussian filter (LGF) gives fast
estimates of states that are provably accurate
under certain conditions.

� For simulated neural data the LGF shows better
performance than particle filtering.

Theorem 1 (Error accumulation in predictive distributions)

Theorem 3 (Stability)

Theorem 2 (Error in the posterior expectation)

The error in approximated predictive distribution generated by
the LGF approximation at each time-step does not accumulate
across time.

Following theorems guarantee that the LGF works well.

Two initial distributions which are close to each other will converge
to the same distribution as time goes infinity. Hence the choice of
initial distribution is not crucial.

The error in the approximated posterior expectation is bounded
over time.

Laplace approximation for posterior expectation

l(xt ) = log p(y t | xt )p(xt | y1:t�1)

• 1st-order approximation
x̃
t | t = argmax

x
t

l(x
t
)

• 2nd-order approximation 

x̃
t | t =

{det[��
x

2
l
N
(x

t | t )]}
� 1
2 exp[�l

N
(x

t | t )]

{det[��
x

2
l(x̂

t | t )]}
� 1
2 exp[�l(x̂

t | t )]
� c

l N (xt ) = log(xt + c)p(y t | xt )p(xt | y1:t�1),      c >> 1

x
t | t = argmax

x
t

l
N
(x

t
)

where

where

(Tierney, Kass and Kadane,1989)

[x̃
t | t � xt | t =�(�

�1
)]

[x̃
t | t � xt | t =�(�

�2
)]
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dx�
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2 | ��h (x0) | �
g(x0)e

��h(x0 ) 1+ C1�
�1 +�(��2){ } � >>1,    x0 = argmax

x

h(x)

Laplace’s method is the asymptotic expansion of the integral,

where � is the expansion parameter. In our neural model, � is taken to be the number
of  neurons, the sharpness of the tuning curve the inverse of the state noise.
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1. At time t=1, initialize predictive distribution p(x1).
2. Observe yt.
3. (Filtering) Obtain the approximate posterior mean

xt|t and variance vt|t by Laplace’s method, and set
p(xt|y1:t) to be a Gaussian distribution with the same
mean and variance.

4. (Prediction) Calculate the predictive distribution,
p(xt+1|y1:t)= � p(xt+1|xt) p(xt|y1:t)dxt

5. Increment t and go to step 2.

Laplace-Gaussian filter (LGF)
{p(xt+1|xt), p(yt|xt), p(x1)}: state space model
{xt} (t=1,2, ) : state process
y1:t =y1,y2,…yt: sequence of observations
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Figure 5.5: Sensitivity to number of neurons: LGF vs Particle Filtering. Horizontal axis: number of neurons; Vertical axis:

MISE for the filters with respect to the actual posterior expectation (optimal filter obtained with 10 independent replications of 106

particles).

Time lag. Note that the time lag between the hand movement and each neural activity was estimated from
the training data by fitting a model over different values of time lag ranging from 0 to 3∆ s. The estimated
optimal time lag was the value at which the model had the highest R2.

Figure 5.6 part (a) shows the comparison between the two versions of the LGF. Note that, despite the
second-order LGF being more accurate than the first-order LGF, their approximations are very similar in
practical terms since the approximation error is much smaller than the statistical error (as discussed in the
simulation section). However, the comparison between LGF-1 and PF-100 (Figure 5.6 part (b)) shows that
for most of the trials the LGF yields better results than the particle filter. Finally, Figure 5.6 part (c) illustrates
that the numerical error in the PF-100 is of the same order as the error resulting from using PVA. Figure 5.7
displays the results for a single trial and illustrates the observations we made. Overall, the LGF reconstructs
the cursor motion better than the PF or PVA.

5.2.9 Discussion and main contributions

In state-space methods, we should distinguish between modelling and computation. The Laplace Gaussian
Filter is not about modeling, instead, it is a method for efficiently approximating the recursive computation.
The LGF cannot thus be compared to the linear Gaussian model or to OLE; instead, it should be compared
against Particle Filtering or with using a Gaussian model versus a Poisson model, that is, using a linear
versus a non-linear tuning function.

Hence, the main contribution in this section and in (Koyama et al., 2010a, 2008) is the development of
the LGF as a deterministic approximation to the posterior mean. This approximation is guaranteed, under
certain regularity conditions, not to accumulate error along time. In the context of neural decoding of hand
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Figure 5.6: Algorithm comparisons: LGF-1, LGF-2, PF-100 and PVA. The x- and y-axis represent the MISE of different

algorithms in estimating the true cursor position. Each point compares two different algorithms for a trial. (a) Comparison LGF-1

vs LGF-2; (b) LGF-1 vs PF-100; (c) PF-100 vs PVA

Figure 5.7: The cursor trajectory of a trial and its filtered versions. Left: the cursor position. Right: the cursor velocity. True:

actual trajectory. LGF-1 and LGF-2: trajectory as estimated by first- and second- order LGF, respectively. PF-100: trajectory

estimated by particle filters with 100 particles. PVA: trajectory estimated by the population vector algorithm.



88 CHAPTER 5. DECODING: ALGORITHMS AND GRASPING FEATURES

kinematics we found in simulation results that the LGF is much more accurate than the particle filter with the
same computational cost. And, in fact, for the 6-dimensional case approximately 104 particles are required
in the PF to yield comparable results than the first order LGF; and approximately 106 particles are needed
to match the second order LGF accuracy. The LGF was shown to be much more accurate than the PVA in
our off-line real data analysis. In this case, the first order and second order LGF yielded very similar results
in terms of accuracy, however, the second order LGF did imply a higher computational cost. Therefore, in
the case of neural decoding, our results suggest that using the first order LGF is the best approach.

With regards simplicity of the implementation of the method potential caveats are the maximization of
the log-likelihood, the calculation of the Hessian matrix of the log-likelihood and the evaluation of the latter
in its maximum. However, the use of numerical methods like Newton’s method for optimization and the it-
erated version of the Richardson extrapolation (Section 7.8.2, (Kass, 1987) ) avoid the challenges of finding
analytic solutions and provide accurate approximations.

One disadvantage of the LGF when contrasted with other methods like particle filtering is that LGF can
only be applied when the posterior distribution is unimodal and it would not work in the multimodal case
like particle filtering would.

For state space models, the best-known state estimator is the Kalman filter. For truly linear and Gaussian
systems, this is the optimal filter. But if the system is not linear or non Gaussian (like neural systems are
thought to be (Tuckwell, 1989)) a different approach needs to be taken. The simplest non-linear filter, the
extended Kalman filter (EKF) (Ahmed, 1998), linearizes the state dynamics and the observation function
around the current state estimate x̂, assuming Gaussian distributions for both. The error thus depends on the
strength of the quadratic nonlinearities and on the accuracy of preceding estimates, and so error can accu-
mulate dramatically. The LGF makes no linear approximations — every filtering step is a (generally simple)
nonlinear optimization — nor does it need to approximate either the state dynamics or the observation noise
as Gaussians.

The unscented Kalman filter (UKF) (Julier and Uhlmann, 1997) is another extension of the Kalman
filter, which uses a deterministic sampling technique known as the unscented transform to pick a minimal set
of sample points (called “sigma points”) around the mean. These sigma points are then propagated through
the non-linear functions and the covariance of the estimates is recovered. The unscented transformation is
more accurate than linearization of non-linear functions, but there is no guarantee that repeatedly applying
the unscented transformation does not accumulate errors across time.

Particle filtering, as a stochastic approximation to the integrals Equation 5.1–5.2 that the LGF series
expands, is a more natural point of comparison. Just as the error of Laplace’s method shrinks as γ →∞, so
too does the error of particle filtering vanish as the number of particles grows. In fact, while γ for the LGF is
set by the system, the number of particles can be made as large as desired. The biggest drawback of particle
filtering is that it needs many particles, which makes it slow: the accuracy grows only sub-linearly with the
number of particles, but the time complexity is super-linear in the number of particles (Doucet et al., 2001).
In our simulation study, the particle filter needed 104 particles to be as accurate as the LGF. The interaction
among the particles, via the denominator in Equation 5.1 (Del Moral and Miclo, 2000), makes it hard to
parallelize; and it seems any Monte Carlo filter will hit the same obstacles.

Finally, there have been many more or less systematic proposals for nonlinear filters where the poste-
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rior distribution is approximated by a density from a well-behaved and low-dimensional parametric family
(Azimi-Sadjadi and Krishnaprasad, 2005; Brigo et al., 1995), especially Gaussian distributions (Brown et al.,
1998; Eden et al., 2004; Wu et al., 2006), often in some kind of combination with particle filtering. Few
of these come with any kind of theoretical guarantee of the validity over time of the approximation, or the
higher-order accuracy of the fully exponential Laplace approximation.

In this section we introduced the Laplace Gaussian filter for state estimation. At each step, applying the
order-α Laplace approximation to the posterior expectation introduces an O(γ−α) error, but the recursion
propagates the last step’s error to higher orders of 1/γ, so that if our initial approximation of the posterior
density is accurate to order O(γ−α), we retain that order of accuracy even after infinitely many steps. (An
analogous result appears to hold for the posterior mean, as opposed to the posterior density.) Thus, our
theorems show that Laplace’s method can be used to approximately evaluate the filtering integrals without
compounding the error over time. Our application studies showed that the LGF is able, in a model system, to
decode hand motion from neural spike trains, and provided a better estimate, at comparable computational
cost, than the particle filter or the population vector algorithm. In fact, most of the error in the LGFs’
estimates of the hand motion would be present even in the optimal filter. That is, statistical error dominates
approximation error. In practice, other sources of error, e.g. model mis-estimation or even mis-specification,
can be even more important than statistical error, and it is far from clear that taking pains to eliminating the
approximation error will yield meaningful improvements, whether in neural decoding or other fields. By
combining accuracy with tractability, the LGF adds a valuable tool to the kit of the state-space modeler.

5.3 Summary and main contributions

In this chapter we discussed neural-kinematic decoding, the problem of translating neural data into a repre-
sentation of the kinematic variables.

Grasping is described by a large number of degrees of freedom, and as such, Bayesian decoding of
continuous grasp configuration hinges on the availability of several tens of recorded neurons. In Section 5.1
we proposed an approach to (1) summarize grasping through a small set of interpretable variables – a type
of dimensionality reduction; to (2) summarize grasping through a set of discrete relevant grasping events
based on the interpretable variables, and to (3) decode those events with the activity of a single neuron. We
showed that there is a large proportion of neurons in our dataset that reliably decode these discrete grasping
events.

One of the difficulties when decoding continuous data in the Bayesian setting is that of calculating the
posterior distribution, especially when dealing with high dimensions or with nonlinear or non-Gaussian
assumptions. In Section 5.2 we addressed these issues by proposing a deterministic and efficient way of
approximating the posterior distribution. We showed, in simulations and in real data, that our approximation
yields better results in the off-line setting as compared to Particle Filtering and the traditional PVA.
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Chapter 6

Discussion

Despite a century of research, the neural mechanisms that enable finger and grasping movements in primates
are largely unknown. The primate hand forms a complex anatomical structure, containing over twenty kine-
matic degrees-of-freedom. And while it requires complex, coordinated control, endows its owner with an
astounding range of dexterous finger movements. In this thesis, we provided models for understanding hand
kinematics and algorithms capable of kinematic decoding.

Finger kinematic modelling. One working hypothesis in the neuroscience community is that the central
nervous system controls finger kinematics by utilizing kinematic synergies, or correlated joint movements,
thus reducing the effective number of degrees of freedom nnecessary for simultaneous control. Previous
work (Santello et al., 1998; Todorov and Ghahramani, 2004; Mason et al., 2001, 2004; Soechting and Flan-
ders, 1997; Pesyna et al., 2011; Thakur et al., 2008) has shown that low-dimensional representations of the
arm and hand successfully capture most of the joint movement variability during grasping behaviors. These
low-dimensional representations are usually estimated using standard matrix factorization approaches, such
as principal components analysis (PCA). While useful, these techniques have some shortcomings:

• They are constrained to capturing only linear correlations,
• They confound temporal variability with both experimental and kinematic variability,
• They do not take advantage of the repeated trial structure of most experiments,
• They do not account for variation due to different speeds in the performance of the task.

Vinjamuri et al. (2007, 2010a) obtained temporal synergies by fitting a convoluted mixture model. This
approach is similar to dictionary learning (from Computer Vision), but does not provide a generative model
from grasping.

We specifically addressed modelling non linearities in the finger variables in Chapter 3 where we neu-
tralized time variation by focusing on relevant landmarks that we defined based in the total kinetic energy
of a trial. We found that modelling non linear kinematics resulted in more informative synergies throughout
the evolution of the reach-to-grasp movements, as measured by predicting which object was grasped. We
also found some evidence of better neural encoding of non linear synergies for specific neurons, albeit not
at a population level.
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However, while these non linear synergies capture the non linear relationships in the data that allow
for better object classification, they lack interpretability and we lose the ability to reconstruct reach-to-
grasp movements. Therefore, we proposed a generative model for grasping that is fully interpretable and
that is capable of reconstructing reach-to-grasp movements accurately. We showed that through the inter-
pretable learned parameters of the model we can characterize shared variation among replications and also
understand how specific replications differ between each other. This essentially corresponds to decoupling
sources of variation by leveraging the experimental design. We showed that critical points in the space of
learned synergies associated with individual replications have a clear correspondence in the space of hand
configurations, and we illustrated how our MGPFM is a tool that can be used to understand the evolution of
reach-to-grasp movements. Another methodological contribution of our model, together with the decompo-
sition and dimensionality reduction of the variation, is to use the total kinetic energy of a trial to statistically
align the different multivariate replications of the reach-to-grasp movements. We showed that this strategy
has direct impact on the reconstruction ability of the model and contributes to advantage over PCA. The
reason for this gain is that the aligning procedure helps to emphasize kinematic correlations by explaining
out differences in speeds of execution of the reach-to-grasp movements.

Decoding: a discrete framework for interpretable grasping features. To obtain a continuous decoding
of kinematic information from neural data, we typically need simultaneous recordings of many neurons.
However, it is illuminating to ask the question of how much information of grasping can one robustly extract
from one single neuron. To study this question we designed a number of interpretable hand engineered
variables that summarized grasp, such as, fist opening, finger curling and finger spread. We then used a
Bayesian classifier in a discrete decoding framework to predict critical events of the grasp such as maximum
hand aperture. Our analysis showed sound evidence that there exist neurons that preferentially decode digit
related events (after having controlled for arm events). And in some cases we obtained up to 96% of accuracy
for some neurons (where chance level is 50%).

Decoding: an algorithm for continuous decoding, the Laplace Gaussian Filter. In the continuous de-
coding setting of linear Gaussian systems, the Kalman Filter is known to be the optimal filter, but neural
systems are thought to be non linear and non Gaussian. To perform inference with these more complex
distributions the particle filter is a natural choice, but it requires significant computation which could poten-
tially be limiting in real time systems. We presented the Laplace Gaussian Filter as an alternative to Monte
Carlo methods to address the intractability of the integrals to obtain the posterior mean by providing a de-
terministic approximation. We showed that our method can be applied in the continuous decoding setting,
and that our method outperforms particle filtering in accuracy and accurately decodes cursor trajectories in
a 3D center-out-task. Combining accuracy with computational efficiency our LGF approach adds a valuable
tool to the kit of the state-space modelers. There remain, however, a number of directions for future work–
one disadvantage of the LGF is that it can only be applied to unimodal posterior distributions. Another
consideration in the realm of BCI is that the subjects adaptively correct for algorithmic biases (Chase et al.,
2009), raising the question whether it is so important to be highly accurate.



Chapter 7

Appendix

7.1 Related work: hand synergies, neural-motor decoding

Static hand synergies
Reference Task Subject Dataset, coordinate system Method Results

(Santello et al., 1998) hold imaginary
object

human 15 JA: flexion of all fingers
and thumb. No abduction.

PCA Number components for explaining 85%
variance: 2; for 95%, 4.

(Todorov and
Ghahramani, 2004)

specific
manipulation

human 15 JA: as before. Con-
sider three different angle
standarizations. Report aver-
age of number of components
across these standarizations.

PCA Number components for explaining for
85% of variance: 6.6; for 95%, 9.6.

specific
manipulation

human 20 JA: position. Standarized
in the three ways.

PCA Number components for explaining 85%
of variance: 7.3; for 95%, 11.

(Mason et al., 2001) reach-to-grasp human 3D marker positions SVD 1st principal component explained
97.3% of variance. The 2nd component

1.9%.
(Mason et al., 2004) reach-to-grasp monkey 3D marker positions SVD 1st principal component explained 93%

of variance. The 2nd component 5%.
(Soechting and
Flanders, 1997)

skilled activity human 11 JA: no thumb included.
MCP flexion, DIP flexion,
and abduction between 4 fin-
gers.

PCA Number components for explaining 90%
of variance: 4.

(Thakur et al., 2008) unconstrained
haptic

exploration

human 3D marker positions PCA Number components for explaining 90%
of variance: 7.

Dynamic hand synergies
Reference Task Subject Dataset, coordinate system Approach

(Vinjamuri et al.,
2007, 2010a,b)

reach and grasp human JA velocities Dictionary based approach.
Convolutive-mixture model learned through an

SVD and an `1 optimization step.

Table 7.1: Previous work on dimensionality reduction for extracting hand synergies. It is important to mention Principal Com-

ponent Analysis and Singular Value Decomposition are essentially the same. JA stands for joint angles, and 3D for the three

dimensional position of markers.
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Tables 7.2, 7.3, 7.4, 7.5 show a representative survey on related work on on-line continuous and discrete
decoding and in off-line continuous and discrete decoding. In these tables intracortical refers to single or
multiple spikes unless otherwise specified.
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On-line continuous decoding
Organism Neural-

motor
area

Neural
variables

Kinem. variables Method Reference

Rat M1 and
ventrolat-

eral
thalamus

Intracortical lever movement timing and
magnitude– 1D control

PCA neural activity, use 1 pc
into an ANN

(Chapin et al., 1999)

Rhesus
monkey

M1, PMd,
PC

Intracortical 1D/3D manipulandum Linear model / Non linear
ANN

(Wessberg et al., 2000)

Rhesus
monkey

M1 Intracortical 2D cursor position Linear estimator (Serruya et al., 2002)

Rhesus
monkey

M1 Intracortical 3D cursor reaching. visual
feedback, open and closed
loop

PVA (Taylor et al., 2002)

Rhesus
monkey

M1, PMd,
SMA, S1,

PPC

Intracortical 2D cursor grasping force,
hand position, velocity.

Linear filters (Carmena et al., 2003)

Rhesus
monkey

PPC Intracortical trajectory of a cursor Bayesian decoder KF includ-
ing target information, also
tried linear decoders (least-
squares and ridge regression)

(Mulliken et al., 2008)

Rhesus
monkey

M1 Intracortical robotic arm trajectory and
gripper

PVA (Velliste et al., 2008)

Human
being

Intracortical
(neu-

rotrophic
electrode) –
1 or 2 units!

horizontal position of cursor
on screen to reach and se-
lect letters on screen keyboard
(vertical direction with EMG
on toe muscle)

Linear filter (Kennedy et al., 2000;
Kennedy and Bakay,

1998)

Human
being

EEG 2D cursor control Adaptive algorithm: hori-
zontal and vertical location
predicted as a linear com-
bination of weighted values
of relevant frequencies, these
change over time.

(Wolpaw and McFarland,
2004)

Human
being

M1 Intracortical 2D cursor control, movement
intent, various tasks; grasp
with a robotic limb

Linear filter (Hochberg et al., 2006)

Human
being

M1 Intracortical cursor velocity and position
(the later not as successfully)

Bayesian decoder KF and lin-
ear filter (the later with less
accuracy)

(Kim et al., 2008)

Human
being

Parietal lobe,

temporal lobe

and posterior

portion of the

frontal lobe of

the left

hemisphere

ECoG virtual hand with 10 degrees
of freedom

Convolutional model (Vinjamuri et al., 2011)

Human
being

M1 Intracortical reach and grasp robotic
arm/hand

Bayesian decoder KF (Hochberg et al., 2012)

Human
being

M1, S1 ECoG 3D cursor movement OLE (Wang et al., 2013)

Table 7.2: On-line continuous decoding – related work.
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On-line discrete decoding
Organism Neural-

motor
area

Neural
variables

Kinem. variables Method Reference

Rhesus
monkey

Medial
intraparietal
area, PPC,

PMd

Intracortical intended target selection Bayesian decoder (Musallam et al., 2004)

Rhesus
monkey

PMd Intracortical discrete target selection on
screen

Maximum likelihood (genera-
tive) – Gaussian and Poisson
spike models

(Santhanam et al., 2006)

Rhesus
monkey

AIP (intra
parietal
cortex),

PMv

Intracortical two grasp types power and
precision grip and 5 wrist ori-
entations (discrete)

Bayesian decoder – Poisson
spike model

(Townsend et al., 2011)

Human
being

Over left
frontal-
parietal-
temporal

cortex

ECoG 1D cursor - binary movement
up or down the screen (dis-
crete) (and off-line 2D direc-
tion)

Selection of electrodes and
frequency bands highly corre-
lated with imaginary training
tasks- use those to predict cur-
sor location

(Leuthardt et al., 2004)

Human
being

M1 Intracortical
(and

stability
after 100

days)

2D cursor velocities and
point-and-click (continuous
and discrete)

Bayesian decoder KF (for
velocities); linear discrim-
inant classifier (for click
intentions)– Gaussian spike
model

(Kim et al.,
2011),(Simeral et al.,

2011)

Table 7.3: On-line discrete decoding – related work.
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Off-line continuous decoding
Organism Neural-

motor
area

Neural
variables

Kinem. variables Method Reference

Rhesus
monkey

M1 Intracortical direction PVA (Georgopoulos et al.,
1986b)

Rhesus
monkey

M1 Intracortical 2D velocity, position Bayesian decoder KF (Wu et al., 2002, 2003,
2006)

Rhesus
monkey

M1 Intracortical 2D velocity, position Bayesian decoder switching
KF

(Wu et al., 2004)

Rhesus
monkey

M1 Intracortical arm trajectories Bayesian decoder PF (Brockwell et al., 2004)

Rhesus
monkey

M1 and
PMd

Intracortical selection and planning of
discrete movement classes
and/or postures followed by
the execution of continuous
limb trajectories (discrete and
continuous)

Continuous: linear filter and
ANN. Discrete: Maximum
likelihood classifiers - Pois-
son (better performance) and
Gaussian spike models; and
ANN.

(Hatsopoulos et al., 2004)

Rhesus
monkey

PMd and
M1

Intracortical full trajectory Bayesian decoder MTM -
Gaussian spike model

(Yu et al., 2007)

Rhesus
monkey

M1 Intracortical hand aperture Bayes decoder with hidden
variables – Gaussian spike
model

(Artemiadis et al., 2007)

Rhesus
monkey

M1 Intracortical position of fingers and wrist
while flexing and extending
– movement constrained by
pistol-grip manipulandum.
Asynchronous decoding ie
automatic identification of
time of event

Linear filter, ANN, KF (Aggarwal et al., 2009)

Rhesus
monkey

M1 Intracortical
(LFP high
frequency
band and
multi unit
activity)

3D arm position and velocity,
and grip aperture in a reach
and grasp task

Bayesian decoder KF (Zhuang et al., 2010)

Rhesus
monkey

M1 Intracortical
(spike

trains, LFP)

arm, wrist and hand postures
during movement (25 PCA-ed
joint angles)

Bayesian decoder (a single
joint angle at a time)

(Vargas-Irwin et al., 2010)

Rhesus
monkey

M1 and
PMv

Intracortical
(spiking

activity and
LFP several

bands)

3D arm position and velocity,
and grip aperture in a reach
and grasp task

Bayesian decoder KF (Bansal et al., 2012, 2011)

Human
being

ECoG grasp apperture in a reach-
grasp-hold task of objects
varying in shape and size

Generalized linear models (Fifer et al., 2011)

Human
being

M1 Intracortical
(spiking
activity,
LFP and

multi unit
activity)

intended movement of spe-
cific joints: shoulder (eleva-
tion, rotation) , elbow (flex-
ext), wrist (flex-ext), fore-
arm (pron-supination), hand
(open-close); seen on a screen
being performed by a vir-
tual character – subject had
to imagine performing the
movement

Linear system identification.
Goodness of fit: accounted
variance

(Ajiboye et al., 2012)

Table 7.4: Off-line continuous decoding – related work.
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Off-line discrete decoding
Organism Neural-

motor
area

Neural
variables

Kinem. variables Method Reference

Rhesus
monkey

M1 Intracortical movement direction (discrete) Bayesian classifier – Gaus-
sian spike model including
correlations. Also k-NN not
as good.

(Maynard et al., 1999)

Rhesus
monkey

PPC
(parietal

reach
region)

Intracortical movement direction (discrete) Maximum likelihood decoder
(generative) Poisson spike
model

(Shenoy et al., 2003)

Rhesus
monkey

M1 Intracortical
(multi unit
activity –
without
explicit
spike

detection)

prehension- grasp type and
direction of movement (dis-
crete) or tracing movements –
2D velocities (continuous)

(Stark and Abeles, 2007)

Rhesus
monkey

M1 Intracortical flexion of single (or pairs of)
fingers (discrete) – movement
constrained by pistol-grip ma-
nipulandum

a variation of PVA, logis-
tic regression (or two lay-
ered ANN), softmax estima-
tor (and variation with infor-
mation theory)

(Hamed et al., 2007)

Rhesus
monkey

M1 Intracortical flexion and extension of fin-
gers and wrist – movement
constrained by pistol-grip ma-
nipulandum (discrete). Asyn-
chronous decoding ie auto-
matic identification of time of
event

ANN (Aggarwal et al., 2008;
Acharya et al., 2008)

Rhesus
monkey

M1 Intracortical flexions and extensions of fin-
gers (discrete) - movement
constrained by pistol-grip ma-
nipulandum

Bayes classifier (MAP)–
Poisson model for neural
activity

(Baker et al., 2009)

Rhesus
monkey

M1 Intracortical single and multiple finger
flexions, wrist flexions (dis-
crete) - movement constained
by pistol-grip manipulandum

Maximum likelihood - Skel-
lam model for neural activity

(Shin et al., 2010,
2009a,b)

Rhesus
monkey

PMv (area
F5)

Intracortical types of grips (discrete) SVM, k-NN, ANN (discrimi-
native)

(Carpaneto et al., 2011,
2012)

Rhesus
monkey

M1 Intracortical Single or multiple fin-
gers flexions or extensions
(discrete) – movement con-
strained by a pistol-grip
manipulandum

Ad-hoc method: identify neu-
rons tuned for movemnt, vot-
ing scheme

(Egan et al., 2011, 2012)

Rhesus
monkey

M1 and
PMd

Intracortical four grasp types (objects) and
a resting state (discrete on the
core, but concatenated in time
to produce trajectory)

fuzzy k-NN + finite state ma-
chine

(Hao et al., 2012)

Rhesus
monkey

M1 Intracortical objects that were grasped
(discrete) in a reach-and-
grasp task

SVM, k-NN (discriminative) (Xu et al., 2013) - this is a
method for selecting

neurons

Table 7.5: Off-line discrete decoding – related work.
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7.2 Hand kinematic model - joint angles derivation

As input we have 3D marker location as indicated with red segments in Figure 7.1. As output we seek:

• three flexion joint angles per finger (index, middle, ring and pinky): θ1, θ2, θ3 from proximal to distal;

• θthumb2 and (θthumb1 , ϕ) to describe thumb joint angles, where the last two angles are represented
in spherical coordinates to describe the most proximal joint for the thumb. The representation in
spherical coordinates helps representing rotation ability of thumb.

• four angles measuring finger spread or separation αn,m between fingers n and m.

We start by finding the flexion angles for all fingers (refer to Figure 7.1 right panel). We denote T the
thumb, I the index, L middle finger (as in largest), R ring finger, and P pinky.

Figure 7.1: (Left panel) Diagram showing the markers positions indicated by red line segments. (Right panel) Sketch for

obtaining flexion angles of index finger. M denotes marker position; J denotes joint position; H denotes hand marker position.

We know the coordinates for all M , and H . Problem: determine values of θ, which represent the joint angle flexion/extension. The

finger moves on the finger plane. Points H determine the hand plane.

Find θ2 and θ3 for I ,L,R, P ; and θ2 for T We use the law of cosines, which states: c2 = a2 + b2 − 2 a b cos(θ).
In our case: a denotes the distance between Mi and J (i+ 1); b denotes the distance between J (i+ 1)

and M (i+ 1); and c denotes the distance between Mi and M (i+ 1) for i = 1, 2

Find θ1 for I , L, R, P To do this we first need to obtain J2 for each digit:

1. Obtain the finger plane. This is fully determined by the vector normal to the plane:
Nfinger = (M1−M2)×(M3−M2)

‖(M1−M2)×(M3−M2)‖ . Note that Nfinger points to the right of the fingers (palms down,
no matter what hand).
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2. Consider the two dimensional finger plane, and let M1 to be the origin. Goal: find (x, y) the intersec-
tion between two circles:

(a) the circle centered in the origin with diameter dM1,J2 where di,j denotes the Euclidean distance
between i and j:

x2 + y2 = d2
M1,J2

(b) the circle centered in (‖M2−M1‖ , 0) is described by the equation:
(x− ‖M2−M1‖)2 + y2 = d2

M2,J2.

The intersection between these two circles is given by:

• x =
(d2

M2,J2−d
2
M1,J2)−‖M2−M1‖2

−2‖M2−M1‖ when ‖M2−M1‖ 6= 0

• y = ±
√
d2
M1,J2 − x2 selecting the physiologically correct, that is, the one with the positive

sign.

3. Then J2 = ~a+~b where ~a = x
(

M2−M1
‖M2−M1‖

)
and~b = y

(
Nfinger × M2−M1

‖M2−M1‖

)
. Refer to Figure 7.2.

We now have J2 the 3D position of the second joint of the finger. To calculate θ1 we consider the hand
plane and the finger plane, and find their intersection.

The joint angle θ1 is the angle between the intersecting line and the line on the finger plane that passes
through M1 and J2.

The hand plane is defined by the normal vector: Nhand = (H3−H2)×(H1−H2)
‖(H3−H2)×(H1−H2)‖ . Note that the normal

vector to the hand points to the opposite direction of hand closure.

Next, we need to find the intersection between the two planes defined as:
{
Nhand · (v −H1) = 0
Nfinger · (v −M1) = 0

This intersection is v∗ = k+ t(Nhand ×Nfinger), where k is a point on the intersection line. Note that
the vector Nhand ×Nfinger points towards the tip of the finger. We can then conclude that:

θ1 = arccos

(
(J2−M1) · v∗

‖J2−M1‖ ‖v∗‖

)

Find separation for I , L, R, P Instead of defining an angle of abduction-adduction per finger, we chose
to define a measure of stretch of the hand, or finger aperture. This aperture is defined as the angle between
the two planes defined by the markers of two contiguous fingers. Consider two contiguous fingers n and
m, and their respective defining normal vector Nfingern and Nfingerm . Then, the angle between the finger
planes αn,m is obtained by:

αn,m = arccos
(
Nfingern ·Nfingerm

)
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Figure 7.2: Diagram to calculate J2 position. (Left panel) M1 and M2 are known, J2 needs to be determined. An auxiliary

coordinate system is defined with origin centered inM1. This system allows to describe with simple equations two circumferences:

(a) the circumference with center in M1 that intersects J2, and (b) the circumference with center in M2 that intersects J2. These

circumferences intersect, by definition, in J2 and in a point that is physiologycally infeasible. (Right panel) This virtual triangle

lies on the finger plane.

Find a description of the proximal joint for T . The angle θ1 as defined for I , L, R, P is not suitable
to define the thumb mechanics, due to the rotation that the thumb presents. We use spherical coordinates to
describe the kinematics of the proximal joint of the thumb.

We consider the system of coordinates shown in Figure 7.3 and define ~T , the vector on the thumb plane
as ~T = T2−T1

‖T2−T1‖ .

We need to convert the markers coordinates into a suitable reference coordinate system, namely:

(x, y, z) = (left/right, hand, up)

This translates into the following expression for each of the hands:

(x, y, z)right =
(
~T ·N left, ~T ·Nhand, ~T ·Nup

)
, (x, y, z)left =

(
~T ·N right, ~T ·Nhand, ~T ·Nup

)
for right and left hand respectively, where

Nup =
1
2(H1 +H3)−H2∥∥1
2(H1 +H3)−H2

∥∥ ; N right =
Nup ×Nhand

‖Nup ×Nhand‖
; N left =

Nhand ×Nup

‖Nhand ×Nup‖
.

Finally, we obtain θthumb1 and ϕ in spheric coordinates (see Figure 7.4). The angles θthumb1 and ϕ
describe the proximal joint for T . And are obtained as follows:

θ = arctan
(y
x

)
; ϕ = arcos

(
z√

x2 + y2 + z2

)
.

7.3 Datasets for static synergies appendix
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Figure 7.3: Coordinate system for describing the mechanics of the proximal joint of the thumb. Scheme a) corresponds to the

left hand, and Nright refers to the direction towards which the thumb points. The opposite holds for the right hand (Scheme b). On

the right most panel, we show the definition of Nup. We define H1 as the marker placed on the left-most part of the glove when

the palm is facing downwards.

Figure 7.4: Spherical coordinates.
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Baxter
Total count of (Objects, Orientation)

↓ Obj / Pos→ 1 2 3 4 5 6 7 Sum

1 19 13 18 20 19 0 0 89
2 4 4 2 0 7 7 8 32
3 0 0 0 0 0 0 0 0
4 5 8 1 7 6 5 2 34
5 17 14 15 15 16 16 14 107
6 18 19 20 17 19 19 15 127
7 10 11 9 1 12 13 10 66
8 11 13 8 9 15 14 9 79
9 15 0 0 17 18 14 11 75
10 15 0 0 13 15 13 7 63

Mean count of (Objects, Orientation) per session
↓ Obj / Pos→ 1 2 3 4 5 6 7

1 4.75 3.25 4.50 5.00 4.75 0.00 0.00
2 1.00 1.00 0.50 0.00 1.75 1.75 2.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1.25 2.00 0.25 1.75 1.50 1.25 0.50
5 4.25 3.50 3.75 3.75 4.00 4.00 3.50
6 4.50 4.75 5.00 4.25 4.75 4.75 3.75
7 2.50 2.75 2.25 0.25 3.00 3.25 2.50
8 2.75 3.25 2.00 2.25 3.75 3.50 2.25
9 3.75 0.00 0.00 4.25 4.50 3.50 2.75

10 3.75 0.00 0.00 3.25 3.75 3.25 1.75

Table 7.6: Baxter: count and mean of number of trials per condition (object, orientation).
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Vinny
Total count of (Objects, Orientation)

↓ Obj / Pos→ 1 2 3 4 5 6 7 Sum

1 60 55 51 55 58 0 0 279
2 31 28 41 0 33 23 17 173
3 54 28 58 13 50 61 24 288
4 63 39 69 60 60 67 41 399
5 59 14 52 52 47 57 54 335
6 72 67 69 65 70 65 69 477
7 62 53 62 60 64 60 52 413
8 65 56 64 56 65 64 62 432
9 12 26 5 7 20 0 0 70

10 67 64 43 56 70 0 0 300

Mean count of (Objects, Orientation) per session
↓ Obj / Pos→ 1 2 3 4 5 6 7

1 3.75 3.44 3.19 3.44 3.63 0.00 0.00
2 1.94 1.75 2.56 0.00 2.06 1.44 1.06
3 3.38 1.75 3.63 0.81 3.13 3.81 1.50
4 3.94 2.44 4.31 3.75 3.75 4.19 2.56
5 3.69 0.88 3.25 3.25 2.94 3.56 3.38
6 4.50 4.19 4.31 4.06 4.38 4.06 4.31
7 3.88 3.31 3.88 3.75 4.00 3.75 3.25
8 4.06 3.50 4.00 3.50 4.06 4.00 3.88
9 0.75 1.63 0.31 0.44 1.25 0.00 0.00

10 4.19 4.00 2.69 3.50 4.38 0.00 0.00

Table 7.7: Vinny: count and mean of number of trials per condition (object, orientation).
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7.4 Appendix Esteban datasets

In Figure 7.5 we show a visual analysis of which sessions are suitable for analysis of simultaneous neurons
based on the number of valid trials and simultaneous neural recordings, and in Figure 7.6 we display a
glimpse on the heterogeneity of the population of recorded neurons based on their modulation during the
reach-to-grasp movement. Figure 7.5
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Figure 7.5: Successful trials and neural recordings from Esteban. Each plot corresponds to a session: on the y-axis there are

trials, on the x-axis neurons. Trials with good kinematics are on green, with bad kinematics on orange; and trials where a specific

neural unit was not recording are red. With this matrix visualization one can determine which sessions have many valid kinematic

trials that have associated several neural units simultaneously.
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7.5 Methods for dimensionality reduction and classification

In this section, that corresponds to Chapter 3 we mention and briefly explain the methods used to (1)
obtain the static synergies through the application of dimensionality reduction methods; and (2) evaluate
the synergies through classification of objects.

7.5.1 Dimensionality reduction methods

Dimensionality reduction techniques deal with the problem of finding or building a small number of com-
ponents that describe most of the information that the original data set has. In other words, dimensionality
reduction consists of transforming a dataset X with dimensionality K into a new dataset Y with dimen-
sionality k where k < K, while retaining as much as possible some important properties of the data, like
variance structure or geometry.

According to the geometric assumptions made on the data, there are linear and non-linear techniques
for dimensionality reduction. Linear techniques assume that the data lie on or near a linear subspace of a
high-dimensional space. Non-linear techniques do not rely on the linearity assumption, and thus a more
complex embedding of the data in the high-dimensional space can be identified.

Principal Component Analysis (PCA). (Algorithm 1) PCA finds a low dimensional representation of the
data points that best preserves their variance as measured in the high dimensional input space, this is equiv-
alent to assuming that the original data set lies on or near a linear hyperplane. The principal components are
the eigenvector basis of the covariance matrix, that is, a spectral decomposition of the covariance matrix.
The computational complexity of this operation is O(m2K + K3) where n is the number of observations
and K is the number of considered variables or dimensionality of observations.

If the structure of the dataset is not linear, PCA will not account for all of the structure. A kernelized
version of PCA proposed by Schölkopf et al. (1998) can extract more information by using suitable non
linear features.

Kernelized PCA (kPCA). (Algorithm 2) This method is PCA generalized through the kernel trick (Schölkopf
et al., 1998), which consists of substituting Euclidean dot products in the space of input patterns by gener-
alized dot products in a large dimensional feature space. The procedure takes as input a specific non linear
kernel function, applies it to the input observations (mapping the data into a possibly high-dimensional
space), and finds principal components which are not linearly related to the input space. The idea is that the
low dimensional hidden structure might be easier to discover in the feature space. This procedure also needs
a spectral decomposition, but in this case, of the kernel matrix. Therefore the complexity of kernel PCA is
O(m3) where m is the number of training examples. That is, the complexity of kPCA scales cubically with
the number of training examples and usually the number of observations is very large with respect to the
number of variables.

The selection of a kernel is rather arbitrary. Three classical examples of kernels are the linear kernel
K(xi, xj) = 〈xi · xj〉 (which is equivalent to linear PCA), the polynomial kernelsK(xi, xj) = (1 + 〈xi · xj〉)p

for p ∈ Z+ and the Gaussian kernels1 K(xi, xj) = exp
(
−‖xi−xj‖

2

σ2

)
. The linear kernel identifies the fea-

1‖x‖ =
√
〈x · x〉
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Figure 7.6: Heterogeneity of neural population from Esteban. Each bar represents the firing rate of the neuron in an epoch:

baseline, pre movement, reach and grasp. In these plots there are neurons whose activity is modulated to different extent to reaches,

to grasps, to both reaches and grasps, or to none of them.
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ture space with the input space, the polynomial kernel maps the inputs into a feature space of dimensionality
O(Kp), and the Gaussian kernel maps the inputs onto the surface of an infinite-dimensional sphere.

Linear discriminant analysis (LDA). PCA (and kPCA) are unsupervised methods of dimensionality re-
duction. If X is a data set whose points belong to a specific class, then it is possible to apply dimensionality
reduction on X taking into account the classes of the data points (supervised dimensionality reduction). A
classic method to reduce dimensionality in a supervised way is Fisher Linear Discriminant Analysis (LDA).
In LDA the objective is to maximize the ratio of between class variability over within class variability.

Fisher Linear Discriminant analysis maximizes the function J(w) = w′ SB w
w′ SW w , where SB is the be-

tween class scatter matrix and SW is the within class scatter matrix. The scatter matrices are defined as
SB =

∑
c(µc − x̄)(µc − x̄)T and SW =

∑
c

∑
i∈c(xi − µc)(xi − µc)T where c indexes over the classes,

x̄ is the overall mean of the data, and µc the mean of the data that belongs to class c. The scatter matrices
are proportional to the covariance matrices, and thus solutions using the scatter matrices or the covariance
matrices are the same. The maximization problem is solved using the Lagrangian and KKT conditions, and
it is reduced to a spectral decomposition as in PCA.

7.5.2 Classification of objects – goodness of synergies

A way of evaluating the goodness of the construction of the synergies is to examine the ability to predict
what object is going to be grasped. In the next paragraphs we briefly explain the classification methods we
considered. The kinematic data set consists of a set of vectors describing the configuration of the hand at
the selected time point. Each of these vectors is associated with an object the monkey is grasping. This
setting corresponds naturally to a supervised classification task, where the aim is to learn a function that
assigns each vector to one of a finite number of discrete categories, in this case, the objects. Therefore
we can take advantage of the framework we have, and use classification accuracy to indirectly quantify the
goodness of the dimensionality reduction in the sense that we get an idea of how much information we
preserve regarding the object being grasped. However, it is important to mention that good dimensionality
reduction does not imply good classification accuracy, and good classification accuracy does not imply good
dimensionality redution. Two classic examples are shown in Figure 7.7. Furthermore, the results might be
classifier dependent, that is limited by the classifier assumption.Therefore, the results of classification should
only be taken as an indication of information being preserved, but not proof.

In order to perform a classification task, a classifier must be trained. We chose two classifiers to be
trained: a discriminative and a generative one, and we briefly explain them below.

Naive Bayes classifier. The Naive Bayes classifier is a supervised generative classifier based on Bayes
rule. It makes the assumption that the considered variables are conditionally independent given the class
to which the input data belongs. This assumption is made to reduce the complexity of general Bayesian
classifiers from O(2n) to O(n) (Mitchell, 1997).

ConsiderO a random variable indicating the object that is being grasped in a specific trial, andX ∈ RN×K
the matrix of joint angles. The Naive Bayes classifier models the joint probability of observed variables given
the object class as:

P (X1, . . . , XK |O) =

K∏
i=1

P (Xi|O).
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input : X ∈ RN×K where N = number of observations, and K = number variables,
[Optional: x ∈ R1×K test example]

output: Y ∈ RN×k,
[Optional: y ∈ R1×k k-dimensional encoding of test example,
x̂ reconstruction of test example]

1. Prepare data X for PCA

1.1 Center data X
X̃ ← X − mean(X)

1.2 Obtain covariance matrix C of centered data
C ← X̃T X̃ where C ∈ RK×K

2. Compute the spectral decomposition of C
Λ← Eigenvalues(C) where Λ is a diagonal matrix in RK×K
V ← Eigenvectors(C)

2.1 Obtain the intrinsic linear dimensionality of the data k
k ← numberTopEigenvalues(Λ)

2.2 Build the matrix with the k eigenvectors corresponding to the top eigenvalues, and the
diagonal matrix of top k eigenvalues
Ṽ ← V K×k

Λ̃← Λk×k

2.3 Obtain the square root element by element of the diagonal matrix of top k eigenvalues Λ̃
SΛ̃ ← sqrt(Λ̃) where SΛ ∈ Rk×k and is diagonal

3. Compute k-dimensional embedding of training data
Y ← 1√

K
XṼ SΛ̃

[Optional 4.] Encode test example
4.1 Obtain the matrix JSΛ̃

that contains in the diagonal the inverse of the elements of the
diagonal of SΛ̃
JSΛ̃
← diagInv(SΛ̃)

4.2 Obtain encoding of the test example
y ← xṼ JSΛ̃

Algorithm 1: Principal Component Analysis (PCA)
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input : X ∈ RN×K where N = number of observations, and K = number variables; k the low
dimension, K a kernel selected a priori, [Optional: x ∈ R1×K a test example]

output: Y ∈ RN×k,
[Optional: y ∈ R1×k k-dimensional encoding of test example ]

0. Compute kernel on data
K ← K(X,X) where K ∈ RN×N

1. Compute normalized kernel K̃ in the feature space
K̃ ← (I − 1

N 1̄ 1̄T )K (I − 1
N 1̄ 1̄T )

2. Compute the spectral decomposition of K̃
Λ← Eigenvalues(K̃) where Λ is a diagonal matrix in RN×N
V ← Eigenvectors(K̃)

2.1 Build the matrix with the k eigenvectors corresponding to the top eigenvalues, and the
diagonal matrix of top k eigenvalues
Ṽ ← V N×k

Λ̃← Λk×k

3. Compute k-dimensional embedding of training data
3.1 Obtain the square root element by element of Λ̃
SΛ̃ ← sqrt(Λ̃) where SΛ̃ ∈ Rk×k and is diagonal

3.2 Obtain the low dimensional representation of the training data
Y ← Ṽ SΛ̃X

[Optional 4.] Encode test example
4.1 Obtain the matrix that contains in the diagonal the inverse of the elements of the diagonal of
SΛ̃
JSΛ̃
← diagInv(SΛ̃)

4.2 Obtain normalized kernel evaluated in the test point
4.2.1 Compute kernel vector: apply input kernel function on training data and test point
Kx ← K(X,x) with Kx ∈ RN×1

4.2.2 Normalize kernel vector
K̃x ← Kx − 1̄ ·

∑
i=1,...,N Kxi −B + 1̄

(
1
N2

∑
i=1,...,N

∑
j=1,...,N Ki,j

)
where 1̄ ∈ RN×1,

B ∈ RN×1 with its i-th coordinate: Bi =
∑

α=1,...,N Kα,i
4.3 Obtain encoding of the test example
y ← (JSΛ̃

· Ṽ T · K̃x)T

Algorithm 2: kernel Principal Component Analysis (kPCA)
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Figure 7.7: Good dimensionality reduction does not imply good classification, nor vice versa. In the example at the top the green

line yields the best dimensionality reduction, but the classification is bad. In the panel at the bottom the classification accuracy of

the red line is excellent, but clearly the dimensionality reduction should yield a sine function, as oppose to the straight line which

determines the best classification.

By Bayes rule, the Naive Bayes classifiation procedure indicates that the object to be assigned to the new
reach and grasp trial is given by:

O ← argmaxojP (O = oj)
∏

i∈Objects
P (Xi|O = oj).

We make the assumption that each Xi is normally distributed, and is defined by the mean and the variance
specific to the variable Xi and the class oj . The way of obtaining the mean and the variances of each
Gaussian is through the expressions:

µij = E(Xi|O = oj), σ
2
ij = E((Xi − µij)2|O = oj).

And the priors on O can be estimated as: πj = P (O = oj)
We selected this classifier because of its simplicity, low complexity and because it has been applied

successfully in applications in spite of the conditionally independent assumption being invalid.

Multi-Class Support Vector Machine. Suport Vector Machines (Boser et al., 1992) were developed from
statistical learning theory and do not assume any probabilistic model for the data. They were theoretically
motivated, and posed as an optimization problem where the idea is to maximize the margin between the
class boundary and the training patterns. The function to minimize is an additive combination of training
error and a complexity term. A convenient property is that the optimization problem to be solved is convex
(thus there is no local minima), and is solved using classical optimization theory. The resulting classification
function only depends on the (few) training examples that are closest to the decision boundary, the so-called
support vectors, and thus the solution is sparse.

The classical SVM theory was developed for binary problems. We have a multi-class problem. A tra-
ditional extension from a binary classifiaction framework to a multi-class framework is to decompose the
problem into multiple independent binary class tasks (or the one-versus-all approach). In our case we chose
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to use the implementation of Tsochantaridis et al. (2005) where the notion of separation margin is gener-
alized (Crammer and Singer, 2001), the multiclass classification is framed as a constrained optimization
problem with a quadrative objective function with a potentially prohibitive number of constraints, but where
the problem is solved through a cutting plane algorithm in polynomial time.
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7.6 Percentage of variability explained by PCA

Number components needed to explain
specific percentage of variance

Criter. outliers: 1 – Averaging fixing (object, orientation)
Time of Interest Baxter 85% Vinny 85% Baxter 95% Vinny 95%

firstBef 4 3 7 6
lastBef 3 3 5 6

max 2 4 4 6
firstAft 2 3 5 5
lastAft 2 3 5 6

Criter. outliers: 1 – Sampling
Time of Interest Baxter 85% Vinny 85% Baxter 95% Vinny 95%

firstBef 4 5 8 8
lastBef 5 5 8 9

max 4 5 7 9
firstAft 4 4 7 7
lastAft 4 5 8 8

Criter. outliers: 2 – Averaging fixing (object, orientation)
Time of Interest Baxter 85% Vinny 85% Baxter 95% Vinny 95%

firstBef 4 3 6 6
lastBef 3 4 4 6

max 2 4 4 6
firstAft 2 3 5 5
lastAft 2 4 5 6

Criter. outliers: 2 – Sampling
Time of Interest Baxter 85% Vinny 85% Baxter 95% Vinny 95%

firstBef 5 5 8 8
lastBef 4 5 7 9

max 4 5 7 9
firstAft 4 4 7 8
lastAft 4 5 7 8

Table 7.8: Number components needed to explain specific percentage of variance for each of the experimental conditions (see

Table 3.3).
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7.7 Dynamic synergies appendix

7.7.1 Supplement for simulation studies

We show results of two exemplary simluations. We generated R = 80 samples for training and 500 samples
for testing. We used the following learning settings: we initialized the parameters with the MLE of the
matrix-normal distribution, we assumed µ to be modelled with B-splines and stopped the algorithm after
50 iterations. We learned three models: the first one modelling the observed data only with the mean (as a
baseline), the last two corresponding to the MGPFM assuming Σ free and Σ constrained.

In Figure 7.8 (top panel) we show the true latent processX together with two dimensions of the observed
Y and estimated Ŷ for the two MGPFM models. Note that we obtain smoother estimates when constraining
Σ. In the middle and bottom panels of Figure 7.8 we show error profiles for the three models. The baseline
model (that disregards the MGP term) results in significantly worse estimates as compared to either setting
for the MGPFM. In addition, by constraining Σ we are able to remove all unaccounted structure left in the
residuals when modelling Σ free.

7.7.2 Supplement for reach-to-grasp data analysis

Figure 7.9 shows more visualizations of the columns of B under different experimental conditions. Unlike
PCA, in which one obtains canonical directions of movement, these visualizations only exemplify the space
of possible configurations of change of movement in the dataset.
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7.8 Laplace Gaussian Filter appendix

7.8.1 Laplace’s method

We consider the following integral,

(7.1) I(γ) =

∫
g(x)e−γh(x)dx,

where x ∈ R; γ, the expansion parameter, is a large positive real number; h(x) and g(x) are independent
of γ (or very weakly dependent on γ); and the interval of integration can be finite or infinite. There is
a computationally efficient method to compute the coefficients in the infinite asymptotic expansion of the
integral Wojdylo (2006). Suppose that h(x) has an interior minimum at x0, and h(x) and g(x) are assumed
to be expandable in a neighborhood of x0 in series of ascending powers of x. Thus, as x→ x0,

(7.2) h(x) ∼ h(x0) +

∞∑
s=0

as(x− x0)s+2,

and

(7.3) g(x) ∼
∞∑
s=0

bs(x− x0)s,

in which a0, b0 6= 0.
Consider the two dimensionless sets of quantities, Ai ≡ ai/a0 and Bi ≡ bi/b0, as well as the constants

α1 = 1/a
1/2
0 and c0 = b0/a

1/2
0 . Then the integral in Eq. 7.1 can be asymptotically expanded as

(7.4) I(γ) ∼ c0e
−γh(x0)

∞∑
s=0

Γ(s+
1

2
)α2s

1 c
∗
2sγ
−s− 1

2 ,

where

(7.5) c∗s =
s∑
i=0

Bs−i

i∑
j=0

(
− s+1

2
j

)
Ci,j(A1, . . .) ,

where Ci,j(A1, . . .) is a partial ordinary Bell polynomial, the coefficient of xi in the formal expansion of
(A1x+A2x

2 + · · · )j . Ci,j(A1, . . .) can be computed by the following recursive formula,

(7.6) Ci,j(A1, . . .) =

i−1∑
m=j−1

Ai−mCm,j−1(A1, . . .) ,

for 1 ≥ j ≥ i. Note that C0,0(A1, . . .) = 1, and Ci,0(A1, . . .) = C0,j(A1, . . .) = 0 for all i, j > 0.
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7.8.2 Numerically obtaining second derivatives

Consider calculating the second derivative of l(x) at x0 for the one-dimensional case. For n = 0, 1, 2, . . .
and c > 1, define the second central difference quotient,

(7.7) An,0 = [l(x0 + c−nh0) + l(x0 − c−nh0)− 2l(x0)]/(c−nh0)2,

and then for k = 1, 2, . . . , n compute

(7.8) An,k = An,k−1 +
An,k−1 −An−1,k−1

c2(k+1) − 1
.

When the value of |An,k −An−1,k| is sufficiently small, the approximation An,k+1 is used.
This algorithm is an iterated version of the second central difference formula, often called Richardson

extrapolation, producing an approximation with an error of order O(h2(k+1)) (G. and A., 1974).
In the d-dimensional case of a second-derivarive approximation at a maximum, Kass (1987) proposed

an efficient numerical routine which reduces the computation of the Hessian matrix to a series of one-
dimensional second-derivative calculations. The trick is to apply the second-difference quotient to suitably-
defined functions f of a single variable s, as follows.

1. Initialize the increment h = (h1, . . . , hd).

2. Find the maximum of l(x), and call it x̂.

3. Get all unmixed second derivatives for each i = 1 to d, using the function

xi = x̂i + s

xj = x̂j for j not equal to i

f(s) = l(x(s)).(7.9)

Compute the second difference quotient; then repeat and extrapolate until the difference in successive
approximations meets a relative error criterion, as in Eq. 7.8; store as diagonal elements of the Hessian
matrix array, l′′i,i = f ′′(0).

4. Similarly, get all the mixed second derivatives. For each i = 1 to d, for each j = i+ 1 to d, using the
function

xi = x̂i + s/
√
l′′i,i

xj = x̂j + s/
√
l′′j,j

xk = x̂k for k not equal to i or j

f(s) = l(x(s)).(7.10)

Compute the second difference quotient; then repeat and extrapolate until difference in successive
approximations is less than relative error criterion as in Eq. 7.8; store as off-diagonal elements of the
Hessian matrix array, l′′i,i = (f ′′(0)/2− 1)

√
l′′i,il
′′
j,j .
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7.8.3 Expectation Maximization Algorithm

The Expectation Maximization algorithm (Dempster et al., 1977; Baum et al., 1970) used to estimate the
states and the model parameters through maximization of the likelihood

log p(y1:T ; θ) = log

∫
p(x1:T , y1:T ; θ)dx1:T = log

∫ T∏
t=1

p(xt|xt1 ; θ)p(yt|xt; θ)dx1:T .

1. At the beginning (iteration step i = 1), set the initial value of parameter, θ(1).
2. (E-step) Given the current estimate θ(i) of θ, compute the posterior expecation of the log joint proba-

bility density,

Q(θ|θ(i)) = E[log p(x1:T , y1:T |θ)|y1:T ; θ(i)].(7.11)

3. (M-step) Updated the estimate θ(i+1) by

(7.12) θ(i+1) = argmax
θ

Q(θ|θ(i)).

4. Repeat steps 2 and 3 until the estimate converges.

7.8.4 The Population Vector Algorithm

The population vector algorithm (PVA) is a standard method for neural decoding, especially for directionally-
sensitive neurons like the motor-cortical cells recorded from in the experiments we analyze (Dayan and Ab-
bott, 2001, pp. 97–101). Briefly, the idea is that each neuron i, 1 ≤ i ≤ N , has a preferred motion vector
θi, and the expected spiking rate λi varies with the inner product between this vector and the actual motion
vector x(t),

(7.13)
λi(t)− ri

Λi
= x(t) · θi ,

where ri is a baseline firing rate for neuron i, and Λi a maximum firing rate. (Eq. 7.13 corresponds to a
cosine tuning curve.) If one observes yi(t), the actual neuronal counts over some time-window ∆, then
averaging over neurons and inverting gives the population vector

(7.14) xpop(t) =
N∑
i=1

y(t)− ri∆
Λi∆

θi ,

which the PVA uses as an estimate of x(t). If preferred vectors θi are uniformly distributed, then xpop

converges on a vector parallel to x as N → ∞, and is in that sense unbiased (Dayan and Abbott, 2001,
p. 101). If preferred vectors are not uniform, however, then in general the population vector gives a biased
estimate.
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Figure 7.8: Results of two exemplary simulations. (Top panel) True latent processX , and two dimensions of the 50-dimensional

Y and Ŷ . Estimates of Ŷ are smoother when Σ is constrained. (Middle and bottom panel) Error profiles for three models: baseline

when modelling only the mean (left), MGPFM with Σ free (middle) and MGPFM with Σ constrained (left). Best results are

achieved with the MGPFM when Σ is constrained.
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(1) Small cone (2) Small handle

(4) Small cone (3) Small handle

Figure 7.9: Visualization of the columns of the factor loading matrix B̂ in selected conditions. These visualizations exemplify

some of the ways that a replication can differentiate itself from others in the same data set. (1) and (2) two types of grasp opening,

the former through extension of fingers corresponding to interphalangeal joint angle extension and the latter through metacarpopha-

langeal joint angle extension; (3) Markers of two fingers move significantly faster than the others in a non-synchronized grasping

movement; (4) Complex movement corresponding to curling fingers around a cone.
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