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Abstract
Extracting knowledge and providing insights into complex mechanisms under-

lying noisy high-dimensional data sets is of utmost importance in many scientific
domains. Statistical modeling has become ubiquitous in theanalysis of high dimen-
sional functional data in search of better understanding ofcognition mechanisms, in
the exploration of large-scale gene regulatory networks inhope of developing drugs
for lethal diseases, and in prediction of volatility in stock market in hope of beating
the market. Statistical analysis in these high-dimensional data sets is possible only
if an estimation procedure exploits hidden structures underlying data.

This thesis develops flexible estimation procedures with provable theoretical
guarantees for uncovering unknown hidden structures underlying data generating
process. Of particular interest are procedures that can be used on high dimensional
data sets where the number of samplesn is much smaller than the ambient dimension
p. Learning in high-dimensions is difficult due to the curse ofdimensionality, how-
ever, the special problem structure makes inference possible. Due to its importance
for scientific discovery, we put emphasis on consistent structure recovery through-
out the thesis. Particular focus is given to two important problems, semi-parametric
estimation of networks and feature selection in multi-tasklearning.
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Chapter 1

Introduction

In recent years, we have witnessed fast advancement of data-acquisition techniques in many ar-
eas, including biological domains, engineering and socialsciences. As a result, new statistical
and machine learning techniques are needed to help us develop a better understanding of com-
plexities underlying large, noisy data sets.

Statistical inference in high-dimensions is challenging due to the curse of dimensionality.
What makes the inference possible is that many real world systems have a special structure that
can be represented with a much smaller number of parameters than the dimension of the ambient
space. Even when a system cannot be represented exactly withfew parameters, there are still
good approximations that use few parameters and useful in providing insights into the system.
This concept of parsimony commonly occurs in a number of scientific disciplines.

The main goal of this thesis is to develop flexible and principled statistical methods for uncov-
ering hidden structure underlying high-dimensional, complex data sets with focus on scientific
discovery. This thesis is naturally divided into two parts.In the first part, we focus on learning
structure of time varying latent networks from nodal observations. The second part of the thesis
focus on exploiting structure in multi-task learning.

1.1 Network Structure Estimation

Across the sciences, networks provide a fundamental setting for representing and interpreting
information on the state of an entity, the structure and organization of communities, and changes
in these over time. Traditional approaches to network analysis tend to make simplistic assump-
tions, such as assuming that there is only a single node or edge type, or ignoring the dynamics
of the networks. Unfortunately, these classical approaches are not suitable for network data aris-
ing in contemporary applications. Modern network data can be large, dynamic, heterogeneous,
noisy and incomplete. These characteristics add a degree ofcomplexity to the interpretation and
analysis of networks.

As a motivating example, let us consider estimation of cellular networks in systems biology.
Studying biological networks is a difficult task, because incomplex organisms, biological pro-
cesses are often controlled by a large number of molecules that interact and exchange information
in a spatial-temporally specific and context-dependent manner. Current approaches to studying
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biological networks have primarily focused on creating a descriptive analysis of macroscopic
properties, which include degree distribution, path length and motif profiles of the networks, or
using graph mining tools to identify clusters and subgraphs. Such simple analysis offer limited
insights into the remarkably complex functional and structural organization of a biological sys-
tem, especially in a dynamic context. Furthermore, it is often common to completely ignore the
dynamic context in which the data are collected. For example, in the analysis of microarray data
collected over a time course it is common to infer a single static gene network. As a solution to
this problem, we develop a flexible framework for inferring dynamic networks.

In this thesis, we develop flexible statistical procedures with rigorous theoretical guarantees
for inferring unobservable dynamic network structure fromnodal observations that are governed
by the latent network. In particular, we build on the formalism of probabilistic graphical models
in which we cast the problem of network learning as the problem of learning a graph structure
from observational data. We develop methods for learning both undirected and directed graphical
models. These estimation methods are developed for both gradually changing networks and
networks with abrupt changes. Furthermore, we go beyond analysis dynamic systems only.
Methods that are developed can be also used to learn conditional covariance structures, where a
network depends on some other observed random variables.

Analysis of network data is an important problem in a number of disciplines [see, e.g., 53,
for a textbook treatment of the topic]. However, these methods assume availability of network
structure for performing a statistical analysis. In this thesis, we develop techniques that learn
network structure from only nodal observations. Once a network structure is learned, any of the
existing network analysis tools can be used to further investigate properties of the underlying
system. Therefore, this thesis makes significant progress in advancing the boundary of what
problems can be tackled using well developed network analysis tools.

1.2 Multi-task Learning

In different scientific fields, such as neuroscience and genetics, it has been empirically observed
that learning jointly from related tasks (i.e., multi-tasklearning) improves estimation perfor-
mance. For example, in biology, a genome-wide association mapping study aims to find a small
set of causal single-nucleotide polymorphisms (SNPs) thataccount for genetic variations of a
large number of genes. Identifying causal SNPs is a challenging problem for current statistical
methods due to a large number of variables and low signal-to-noise ratio. However, genes in a
biological pathway are co-expressed as a module and it is often assumed that a causal SNP af-
fects multiple genes in one pathway. Therefore, once the whole biological pathway is examined,
it is much easier to find the causal SNPs.

Prior to the work in this thesis, despite many investigations, the theory of variable selection in
multi-task regression models was far from settled, and there was no clear picture that explained
when variable selection can be done more efficiently by considering multiple tasks. Using the
framework of the Normal means model, we are able to sharply characterize the theoretical prop-
erties of different estimation procedures. In particular,we provide a sharp characterization of the
variable selection properties of two commonly used procedures for variable selection in high-
dimensional problems, the lasso and group lasso. Interestingly, two distinct regimes emerge
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showing that one or the other procedure is optimal, in the minimax sense, depending on the
amount of relatedness between the tasks.

Although optimal in many settings, variable selection methods based on convex programming
do not scale well to the setting when the number of variables is in the hundreds of thousands. For
that reason, in this thesis, we study ways to identify relevant variables quickly. We prove that
simultaneous orthogonal matching pursuit and marginal regression can be used to identify rele-
vant variables quickly and under much less stringent conditions compared to the ones required
for the lasso or group lasso.

1.3 Thesis Overview

The central focus of the thesis is uncovering unknown structure from high-dimensional data.
In Part I (Chapter 2 - Chapter 10), we focus on uncovering unknown latent networks:
• Chapter 2 reviews Markov random fields. The problem of uncovering networks is cast as a

task of learning graph structure of a Markov random field. Twomethods commonly used
to learn graph structure in high-dimensions are reviewed. We will build on these methods
in subsequent chapters.

• Chapter 3 introduces time-varying networks. These models are introduced as semi-parametric
extensions of Markov random fields. Therefore, they are rather flexible in capturing real-
world phenomena and at the same time easily interpretable bydomain experts. We intro-
duce general framework which will be used for estimation of time-varying networks in the
subsequent Chapters.

• Chapter 4 presents algorihtms for recovery of time-varyingnetwork structure from discrete
data. An algorithm for recovery of smoothly and abruptly changing networks is given. Us-
ing the algorithms, we reverse engineer the latent sequenceof temporally rewiring political
networks between Senators from the US Senate voting recordsand the latent evolving reg-
ulatory networks underlying 588 genes across the life cycleof Drosophila melanogaster
from the microarray time course. The chapter is based on [112, 159].

• Chapter 5 establishes conditions under which the method proposed in Chapter 4, for recov-
ery of smoothly varying networks, consistently recovers the structure of a network. This
work complements previous empirical findings by providing sound theoretical guarantees
for the proposed estimation procedure. The chapter is basedon [103].

• Chapters 6 and 7 introduce and analyze procedures for recovery of graph structure of
Gaussian graphical models. Again, sufficient conditions for consistent graph structure
recovery are given, as well as efficient numerical algorithms. These chapters are based on
[105, 106, 113].

• Chapter 8 is focused on conditional estimation of network structures. Unlike previous
chapters, where the network structure changes as a functionof time, in many applications,
it is more natural to think of a network changing as a functionof some other random vari-
able. We motivate the problem with examples in portfolio selection and exploration of
complex dependencies between assets. Efficient algorithmsand their theoretical underpin-
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nings are presented. This work was published in [111].

• Chapters 9 and 10 focus on estimation of static networks under more realistic assumptions
than commonly studied in literature. Chapter 9 studies a simple two step procedure for
estimating sparse precision matrices from data with missing values, which is tractable in
high-dimensions and does not require imputation of the missing values [107]. Chapter 10
studies a principled framework for estimating structure ofundirected graphical models
from multivariate nodal data [109].

In Part II (Chapter 11 - Chapter 14), we focus on variable selection in multi-task learning:
• Chapter 11 reviews multi-task learning in the context of multiple output multivariate linear

regression. The problem of variable selection in this setting is introduced.

• Chapter 12 analyzes commonly used penalties for variable selection in multi-task linear
regression problems. We establish sharp bounds that characterize performance of these
penalties. The chapter is based on [110].

• Chapter 13 and Chapter 14 focus on fast variable selection inmulti-task problems. Prob-
lems that arise in genome-wide associations studies often involve hundred of thousands
of single nucleotide polymorphisms, which are used as inputvariables. Problems of this
size are not readily solvable using off-the-shelf solvers for convex programs. In these two
chapters we analyze greedy methods that can quickly reduce the number of input variables.
These chapters are based on [102, 104].

The conclusions and future directions are provided in Chapter 15.

1.4 Notation

We use[n] to denote the set{1, . . . , n} and[l : r] to denote the set{l, l+1, . . . , r− 1}. For a set
S ⊂ V , we use the notationXS to denote the set{Xa : a ∈ S} of random variables. We useX
to denote then×p matrix whose rows consist of observations. The vectorXa = (x1,a, . . . , xn,a)

′

denotes a column of matrixX and, similarly,XS = (Xb : b ∈ S) denotes then × |S| sub-
matrix ofX whose columns are indexed by the setS andXBj

denotes the sub-matrix|Bj| × p
whose rows are indexed by the setBj . For simplicity of notation, we will use\a to denote
the index set[p] \ {a}, X\a = (Xb : b ∈ [p] \ {a}). For a vectora ∈ Rp, we letS(a)
denote the set of non-zero components ofa. Throughout the paper, we usec1, c2, . . . to denote
positive constants whose value may change from line to line.For a vectora ∈ Rn, define

||a||1 =
∑

i∈[n] |ai|, ||a||2 =
√∑

i∈[n] a
2
i and ||a||∞ = maxi |ai|. For a symmetric matrix

A, Λmin(A) denotes the smallest andΛmax(A) the largest eigenvalue. For a matrixA (not
necessarily symmetric), we use|||A|||∞ = maxi

∑
j |Aij |. For two vectorsa,b ∈ Rn, the dot

product is denoted〈a,b〉 = ∑
i∈[n] aibi. For two matricesA,B ∈ Rn×m, the dot product is

denoted as〈〈A,B〉〉 = tr(A′B). Given two sequences{an} and{bn}, the notationan = O(bn)
means that there exists a constantc1 such thatan ≤ c1bn; the notationan = Ω(bn) means that
there exists a constantc2 such thatan ≥ c2bn and the notationan ≍ bn means thatan = O(bn)
andbn = O(an). Similarly, we will use the notationan = op(bn) to denote thatb−1

n an converges
to 0 in probability.
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Chapter 2

Learning Network Structure

Network models have become popular as a way to abstract complex systems and gain insights
into relational patterns among observed variables. For example, in a biological study, nodes of
the network can represent genes in one organism and edges canrepresent associations or regula-
tory dependencies among genes. In a social domain, nodes of anetwork can represent actors and
edges can represent interactions between actors. Recent popular techniques for modeling and
exploring networks are based on the structure estimation inthe probabilistic graphical models,
specifically, Markov Random Fields (MRFs). These models represent conditional independence
between variables, which are represented as nodes. Once thestructure of the MRF is estimated,
the network is drawn by connecting variables that are conditionally dependent. The hope is that
this graphical representation is going to provide additional insight into the system under obser-
vation, for example, by showing how different parts of the system interact.

In this chapter, we review methods for learning structure ofMRFs in high-dimensions with
focus on the Ising model and the Gaussian graphical model (GGM). The Ising model represents
a typical discrete MRF, while the GGMs are commonly used to represent continuous MRFs. We
focus on these two models because they can be fully specified just with the first two moments.
Even though they are quite simple, they are rich enough to be applicable in a number of domains
and also provide an opportunity to succinctly present theoretical results. The statistical challenge
is going to be structure estimation of a graphical model froma sample in a high-dimensional
setting. Since the number of unknown model parameters exceeds the number of observations,
classical tools, like the maximum likelihood estimator, are ill-posed in this high-dimensional
setting. Therefore, additional assumption will be needed to make high-dimensional statistical
inference possible. For example, we will need to assume thatthe parameter vector is sparse,
that is, that only a few of the unknown model parameters are different from zero. Using penal-
ized maximum likelihood (or pseudo-likelihood) estimation, we will see that the correct graph
structure can be recovered consistently.

2.1 Preliminaries

In recent years, we have witnessed fast advancement of data-acquisition techniques in many ar-
eas, including biological domains, engineering and socialsciences. As a result, new statistical
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and machine learning techniques are needed to help us develop a better understanding of com-
plexities underlying large, noisy data sets. Networks havebeen commonly used to abstract noisy
data and provide an insight into regularities and dependencies between observed variables. For
example, in a biological study, nodes of the network can represent genes in one organism and
edges can represent associations or regulatory dependencies among genes. In a social domain,
nodes of a network can represent actors and edges can represent interactions between actors.
Recent popular techniques for modeling and exploring networks are based on the structure esti-
mation in the probabilistic graphical models, specifically, Markov Random Fields (MRFs). These
models represent conditional independence between variables, which are represented as nodes.
Once the structure of the MRF is estimated, the network is drawn by connecting variables that
are conditionally dependent.

Let G = (V,E) represent a graph, of whichV denotes the set of vertices, andE denotes the
set of edges over vertices. Depending on the specific application of interest, a nodea ∈ V can
represent a gene, a stock, or a social actor, and an edge(a, b) ∈ E can represent a relationship
(e.g., correlation, influence, friendship) between actorsa andb. Let X = (X1, . . . , Xp)

′, where
p = |V |, be a random vector of nodal states following a probability distribution indexed byθ ∈
Θ. Under a MRF, the nodal statesXa’s are assumed to be either discrete or continuous and the
edge setE ⊆ V × V encodes certain conditional independence assumptions among components
of the random vectorX, for example, the random variableXa is conditionally independent of
the random variableXb given the rest of the variables if(a, b) 6∈ E. We focus on two types of
MRFs: the Ising model and the Gaussian graphical models. We specify their forms below.

The Ising model arises as a special case of discrete MRFs, where each node takes binary
nodal states. That is, under the Ising model, we haveXa ∈ X ≡ {−1, 1}, for all a ∈ V and the
joint probability ofX = x can be expressed by a simple exponential family model:

Pθ(x) =
1

Z(θ)
exp

{∑

a<b

θabxaxb

}
(2.1)

whereZ(θ) =
∑

x∈{−1,1}p exp
{∑

a<b θabxaxb

}
denotes the partition function that is intractable

to compute (even for moderately largep) and the weight potentials are given byθab for all
(a, b) ∈ E. Under the Ising model, the model is completely defined by thevector of param-
eters(θab)(a,b)∈V ×V . Furthermore, the parameters specify the graph structure,that is, we have
thatθab = 0 for all (a, b) 6∈ E.

The Gaussian graphical models are used as the simplest continuous MRFs, since the proba-
bility distribution under the GGM can be fully specified withthe first two moments. Let

X = (X1, . . . , Xp)
′ ∼ N (0,Σ)

be ap-dimensional multivariate Gaussian random variable with mean zero and covarianceΣ =
(σab)(a,b)∈V ×V . Associated with the vectorX is a graphG = (V,E) that encodes the conditional
independence assumptions between the components ofX. Let Ω = Σ−1 = (σab)(a,b)∈V ×V be
the precision matrix. The precision matrix encodes the conditional independence assumptions as
well, in the sense that variableXa is conditionally independent ofXb given the rest of variables
if and only if ωab = 0. Therefore the graphG is specified directly by the positions of non-zero
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elements of the precision matrix, that is, an edgeeab ∈ E only if ωab 6= 0. An elementωab of the
precision matrix is proportional to the partial correlation between random variablesXa andXb.
Indeed, we have

ρab|V \{a,b} = −
ωab√
ωaaωbb

.

This relationship will be used later to motivate the algorithms for learning structure of GGMs.
All these properties are well known and can be found in a monograph on the Gaussian graphical
models [130].

2.2 Structure Learning Procedures

One of the most important tasks in graphical models is that oflearning the graph structure given
a sample. LetDn = {xi ∼ Pθ | i ∈ [n]} be a sample ofn i.i.d. p-dimensional vectors drawn
from the distributionPθ. The goal is to estimate conditional independence assumptions between
the components ofX ∼ Pθ. In a high-dimensional setting, whenp ≫ n, it is common to
use penalization or regularization methods in order to fit models. We will use the estimation
procedures of the form

argmin
θ

L(Dn; θ) + penλ(θ) (2.2)

whereL(·; θ) is the convex loss function,penλ(·) is the regularization term andλ is a tuning
parameter. The first term in the objective is measuring the fitto data, while the second one
measures the complexity of the model. The regularization term is used to encode some prior
assumptions about the model, e.g., sparsity of the graph structure or the way the graph structure
changes over time. The loss functions that is used will be problem specific. For example, in the
case of the Gaussian graphical models, we will use the negative log-likelihood, while in the case
of discrete MRFs a surrogate to the negative log-likelihoodwill be used.

2.2.1 Learning structure of an Ising model

In general, learning structure of an Ising model is hard [33]due to the combinatorial explo-
sion of the search space of graphs. Therefore, score based searches are limited to restricted
classes of models, such as, trees, polytrees and bounded tree-width hypertrees [27, 46, 163]. The
computational complexity of search based procedures arises from two sources. First, there are

2(
p
2) potential graph structures to be evaluated. Second, computing a score for any fixed graph

structure involves computing the normalization constant,which is intractable in general. Other
methods for learning the graph structure include minimizing the Kullback-Leibler divergence [5]
and other pseudo-likelihood methods [13, 29].

Ravikumar et al. [151] use an optimization approach to estimate the graph structure in a high-
dimensional setting. This approach can be cast in the optimization framework outlined in (2.2),
where the loss function is a node conditional likelihood andtheℓ1 norm of a coefficient vector is
used as a penalty function. Therefore, the optimization procedure decomposes across different
nodes and as a result can be maximized efficiently. We describe the procedure in details below.
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The estimation procedure in [151] is based on the neighborhood selection technique, where
the graph structure is estimated by combining the local estimates of neighborhoods of each node.
For each vertexa ∈ V , define the set of neighboring edges

S(a) = {(a, b) | (a, b) ∈ E}.

Under the model (2.1), the conditional distribution ofXa given other variablesX\a = {Xb | b ∈
V \ a} takes the form

Pθa(xa | X\a = x\a) =
exp(2xa〈θa,x\a〉)

exp(2xa〈θa,x\a〉) + 1
, (2.3)

where〈a,b〉 = a′b denotes the dot product. Under the model (2.3) the log-likelihood, for one
data-point, can be written in the following form

γ(θa;xi) = log Pθa(xi,a | xi,\a)

= xi,a〈θa,xi,\a〉 − log
(
exp(〈θa,xi,\a〉) + exp(−〈θa,xi,\a〉)

)
,

where, for simplicity, we writePθa(xi,a | Xi,\a = xi,\u) asPθa(xi,a | xi,\u). The estimator̂θa of
the vectorθa is defined as the solution to the following convex program:

θ̂a = min
θa∈Rp−1

{ℓ (θa;Dn) + λ||θa||1} (2.4)

whereℓ(θa;Dn) = −∑i∈[n] γ(θa;xi) is the logloss. Based on the vectorθ̂a, we have the fol-
lowing estimate of the neighborhood

Ŝ(a) =
{
(a, b) | b ∈ V \ a, θ̂ab 6= 0

}
.

The structure of graphGτ is consistently estimated if every neighborhood is recovered, that is,
Ŝ(a) = S(a) for all a ∈ V . In §4 and§5, we build on this procedure to estimate time-varying
networks from discrete nodal observations.

2.2.2 Learning structure of a Gaussian graphical model

A large amount of literature in both statistics and machine learning has been devoted to the prob-
lem of estimating sparse precision matrices, as they encodeconditional independence structure
between random variables. The problem of estimating precision matrices with zeros is known
in statistics ascovariance selectionand was introduced in the seminal paper by [47]. An in-
troduction to classical approaches, which are commonly based on identifying the correct set of
non-zero elements and then estimating the non-zero elements, can be found in, for example,
[56, 130]. [43] proposed a method that tests if partial correlations are different from zero. This
and other classical methods can be applied when the number ofdimensionsp is small in com-
parison to the sample sizen. However, due to the technological improvements of data collection
processes, we have seen a surge in the number of high-dimensional data sets. As a result, more
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recent literature on estimating sparse precision matricesis focused on methods suitable for high-
dimensional problems where the number of variablesp can be much larger than the sample size
n.

[135] proposed a procedure based onneighborhood selectionof each node via theℓ1 penal-
ized regression. Leveraging the lasso [175] they efficiently estimate the non-zero pattern of the
precision matrix. Like the approach in 2.2.1, this procedure uses a pseudo-likelihood, which de-
composes across different nodes, to estimate graph edges and, although the estimated parameters
are not consistent, the procedure recovers the graph structure consistently under a set of suitable
conditions.

LetΩ = (ωab)ab be the precision matrix The neighborhood of the nodea can be directly read
of from the precision matrix as

S(a) = {b ∈ V \ a | ωab 6= 0}.
It is a well known result for Gaussian graphical models that the elements of

θa = arg min
θ∈Rp−1

E

(
Xa −

∑

b∈\a
Xbθb

)2

are given byθab = −ωab/ωaa. Therefore, the neighborhood of a nodea, S(a), is equal to the set
of non-zero coefficients ofθa. Using the expression forθa, we can writeXa =

∑
b∈Sa

Xbθ
a
b + ǫ,

whereǫ is independent ofX\a. The neighborhood selection procedure was motivated by the
above relationship between the regression coefficients andthe elements of the precision matrix.
[135] proposed to solve the following optimization procedure

θ̂a = arg min
θ∈Rp−1

1

n

∑

i∈[n]

(
xi,a − x′

i,\aθ
)2

+ λ||θ||1 (2.5)

and proved that the non-zero coefficients ofθ̂a consistently estimate the neighborhood of the
nodea, under a suitably chosen penalty parameterλ.

A related approach is proposed in [146] who consider a different neighborhood selection
procedure for the structure estimation in which they estimate all neighborhoods jointly and as a
result obtain a global estimate of the graph structure that empirically improves the performance
on a number of networks. These neighborhood selection procedures are suitable for large-scale
problems due to availability of fast solvers toℓ1 penalized problems [55, 73].

Another popular technique for estimating sparse precisionmatrix is based onℓ1-norm penal-
ized maximum likelihood [195], which simultaneously estimates the graph structure and the el-
ements of the covariance matrix. The penalized likelihood approach involves solving a semidef-
inite program (SDP)

Ω̂ = argmin
Ω≻0

{
trΩΣ̂− log |Ω|+ λ||Ω||1

}
, (2.6)

whereΣ̂ is a sample covariance matrix. A number of authors have worked on efficient solvers
that exploit the special structure of the problem (see, for example, [19, 52, 71, 85, 154, 195]).
Statistical properties of the above procedure were analyzed in [152, 154]. Some authors have
proposed to use a nonconcave penalty instead of theℓ1 penalty, which tries to remedy the bias
that theℓ1 penalty introduces [64, 67, 202]. See also [37, 39].
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2.3 Discussion

In this chapter, we have discussed common approaches to estimation of graph structure in Markov
random fields in a high-dimensional setting. The focus was onmethods where the structure is
estimated from i.i.d. data. Most of the work in the literature has been by the simplifying as-
sumption of static network structure. In the next chapter, we motivate estimation of time-varying
networks as a useful and flexible tool for exploring complex systems. Estimation framework will
build on the methods presented here.
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Chapter 3

Time Varying Networks

As discussed in Chapter 2, stochastic networks are a plausible representation of the relational in-
formation among entities in dynamic systems such as living cells or social communities. While
there is a rich literature in estimating a static or temporally invariant network from observation
data, little has been done toward estimating time-varying networks from time series of entity at-
tributes. In this chapter, we introduce and motivate time-varying networks. A general estimation
framework is presented, which is going to be used in subsequent chapters.

3.1 Motivation

In many problems arising from natural, social, and information sciences, it is often necessary to
analyze a large quantity of random variables interconnected by a complex dependency network,
such as the expressions of genes in a genome, or the activities of individuals in a community.
Real-time analysis of such networks is important for understanding and predicting the organi-
zational processes, modeling information diffusion, detecting vulnerability, and assessing the
potential impact of interventions in various natural and built systems. It is not unusual for net-
work data to be large, dynamic, heterogeneous, noisy, incomplete, or even unobservable. Each
of these characteristics adds a degree of complexity to the interpretation and analysis of net-
works. One of the fundamental questions in this thesis is thefollowing: how can one reverse
engineer networks that are latent, and topologically evolving over time, from time series of nodal
attributes?

Prior to our work, literature mainly focused on estimating asingle static network underlying
a complex system. However, in reality, many systems are inherently dynamic and can be bet-
ter explained by a dynamic network whose structure evolves over time. We develop statistical
methodology of dealing with the following real world problems:

• Analysis of gene regulatory networks.Suppose that we have a set ofn microarray measure-
ments of gene expression levels, obtained at different stages during the development of an
organism or at different times during the cell cycle. Given this data, biologists would like
to get insight into dynamic relationships between different genes and how these relations
change at different stages of development. The problem is that at each time point there is
only one or at most a few measurements of the gene expressions; and a naive approach to
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estimating the gene regulatory network, which uses only thedata at the time point in ques-
tion to infer the network, would fail. To obtain a good estimate of the regulatory network
at any time point, we need to leverage the data collected at other time points and extract
some information from them.

• Analysis of stock market.In a finance setting, we have values of different stocks at each
time point. Suppose, for simplicity, that we only measure whether the value of a particular
stock is going up or down. We would like to find the underlying transient relational patterns
between different stocks from these measurements and get insight into how these patterns
change over time. Again, we only have one measurement at eachtime point and we need
to leverage information from the data obtained at nearby time points.

• Understanding social networks.There are 100 Senators in the U.S. Senate and each can
cast a vote on different bills. Suppose that we are givenn voting records over some period
of time. How can one infer the latent political liaisons and coalitions among different
senators and the way these relationships change with respect to time and with respect to
different issues raised in bills just from the voting records?

The aforementioned problems have commonality in estimating a sequence of time-specific
latent relational structures between a fixed set of entities(i.e., variables), from a time series of
observation data of entities states; and the relational structures between the entities are time
evolving, rather than being invariant throughout the data collection period. A key technical hur-
dle preventing us from an in-depth investigation of the mechanisms underlying these complex
systems is the unavailability ofserial snapshotsof the time-varying networks underlying these
systems. For example, for a realistic biological system, itis impossible to experimentally de-
termine time-specific networks for a series of time points based on current technologies such as
two-hybrid or ChIP-chip systems. Usually, only time seriesmeasurements, such as microarray,
stock price, etc., of the activity of the nodal entities, butnot their linkage status, are available. Our
goal is to recover the latent time-varying networks with temporal resolution up to every single
time point based on time series measurements. Most of the existing work on structure estima-
tion assumes that the data generating process is time-invariant and that the relational structure is
fixed. (see, for example, [13, 19, 67, 71, 76, 135, 146, 151, 152, 154, 185, 195] and references
therein), which may not be a suitable assumption for the described problems. Chapter 2 presents
some of these methods. The focus of this chapter is to presenta general framework for estimating
dynamic network structure from a time series of entity attributes.

3.2 Estimation Framework

In the following few chapters, we will assume that we are given a sequence of observations

Dn = {xt ∼ Pθt | t ∈ Tn}

whereTn = {1/n, 2/n, . . . , 1} is an index set. The observations are independent (but not identi-
cally distributed) samples from a series of time-evolving MRFs{Pθt(·)}t∈Tn . The goal is to es-
timate the parameters of the sequence of probability distributions{Pθt}t∈Tn or more specifically
conditional independence assumptions encoded by a sequence of graphs{Gt}t∈Tn . The problem
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of dynamic structure estimation is of high importance in domains that lack prior knowledge or
measurement techniques about the interactions between different actors; and such estimates can
provide desirable information about the details of relational changes in a complex system. It
might seem that the problem is ill-defined, since for any timepoint we have at most one observa-
tion; however, as we will show shortly, under a set of suitable assumptions the problem is indeed
well defined and the series of underlying graph structures can be estimated. For example, we
may assume that the probability distributions are changingsmoothlyover time, or there exists
a partition of the interval[0, 1] into segments where the graph structure within each segmentis
invariant.

The estimation procedure we use to estimate the structure ofa time-varying MRF will depend
on the assumptions we make on the network dynamics. The general form of the estimation
procedure will be as in§2.2. In the case that the network parameters change smoothly, we will
use estimation procedures of the form

θ̂τ = argmin
θ

∑

t∈Tn
wτ

t γ(θ;x
t) + penλ(θ). (3.1)

The first term is the local log-likelihood (or pseudo-likelihood), withγ(θ;xt) being the log-
likelihood (or pseudo-likelihood) and the weightwτ

t defines the contribution of the pointxt at
a time pointτ ∈ [0, 1]. The regularization termpenλ(θ) encourages sparsity of the estimated
network at the time pointτ ∈ [0, 1]. Note that the above estimation procedure estimates the
time-varying network only at one time pointτ . In order to get insight into dynamics, we need to
solve (3.1) for a number of time pointsτ , for example, for allτ ∈ Tn.

When the underlying network parameters are piecewise constant, we will use estimation
procedures of the form

{θ̂t}t∈Tn = arg min
{θt}t∈Tn

∑

t∈Tn
γ(θ;xt) + penλ

(
{θt}t∈Tn

)
. (3.2)

Compared to the optimization problem in (3.1), here the whole dynamic network is estimated at
once. The regularization term will encourage both sparsityof the parameter vector at each time
point and the way parameters change over time.

In §4 and§5 we specialize optimization problems in (3.1) and (3.2) to problems of learning
time-varying network structure from binary nodal observations. In§6 and§7, the two optimiza-
tion are discussed in the context of learning network structure of Gaussian graphical models. In
§8, a related problem of estimating conditional networks is discussed.

3.3 Related Work

In §2 we have discussed estimation of static networks from i.i.d. data. Here we discuss work re-
lated to estimation of dynamic networks. With few exceptions [75, 92, 166, 206], little has been
done on modeling dynamical processes that guide topological rewiring and semantic evolution
of networks over time. In particular, prior to our work, verylittle has been done toward esti-
mating the time-varying graph topologies from observed nodal states, which represent attributes
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of entities forming a network. [92] introduced a new class ofmodels to capture dynamics of
networks evolving over discrete time steps, calledtemporal Exponential Random Graph Models
(tERGMs). This class of models uses a number of statistics defined on time-adjacent graphs, for
example, “edge-stability,” “reciprocity,” “density,” “transitivity,” etc., to construct a log-linear
graph transition modelP (Gt|Gt−1) that captures dynamics of topological changes. [75] in-
corporate a hidden Markov process into the tERGMs, which imposes stochastic constraints on
topological changes in graphs, and, in principle, show how to infer a time-specific graph struc-
ture from the posterior distribution ofGt, given the time series of node attributes. Unfortunately,
even though this class of model is very expressive, the sampling algorithm for posterior inference
scales only to small graphs with tens of nodes.

Other literature on inferring time inhomogeneous networkscan be divided into two cate-
gories: estimation of directed graphical models and estimation of undirected graphical models.
Literature on estimating time-inhomogeneous directed networks usually assumes a time-varying
vector auto-regressive model for observed data [see, for example, 41, 42, 58, 79, 80, 81, 86,
99, 126, 145, 149, 158, 160, 187], a class of models that can berepresented in the formalism
of time-inhomogeneous Dynamic Bayesian Networks althoughnot all authors use terminology
commonly used in the Dynamic Bayesian Networks literature.Markov switching linear dynami-
cal systems are another popular choice for modeling non-stationary time series [see, for example,
4, 44, 59, 95, 161, 196]. This body of work has focused on developing flexible models capable
of capturing different assumptions on the underlying system, efficient algorithms and sampling
schemes for fitting these models. Although a lot of work has been done in this area, little is
known about finite sample and asymptotic properties regarding the consistent recovery of the un-
derlying networks structures. Some asymptotic results aregiven in [160]. Due to the complexity
of MCMC sampling procedures, existing work does not handle well networks with hundreds of
nodes, which commonly arise in practice. Finally, the biggest difference from our work is that the
estimated networks are directed. [178] point our that undirected models constitute the simplest
class of models, whose understanding is crucial for the study of directed models and models with
both, directed and undirected edges. [168] and [192] study estimation of time-varying Gaussian
graphical models in a Bayesian setting. [168] use a reversible jump MCMC approach to estimate
the time-varying variance structure of the data. [192] proposed an iterative procedure to segment
the time-series using the dynamic programming approach developed by [69] and fit a Gaussian
graphical model using the penalized maximum likelihood approach on each segment. To the best
of our knowledge, [206] is the first work that focuses on consistent estimation, in the Frobenius
norm, of covariance and concentration matrix under the assumption that the time-varying Gaus-
sian graphical model changes smoothly over time. However, the problem of consistent estimation
of the non-zero pattern in the concentration matrix, which corresponds to the graph structure es-
timation, is not addressed there. Note that the consistencyof the graph structure recovery does
not immediately follow from the consistency of the concentration matrix. Network estimation
consistency for this smoothly changing model is established in [105]. Time-varying Gaussian
graphical models with abrupt changes in network structure were studied in [106], where con-
sistent network recovery is established using a completelydifferent proof technique. A related
problem is that of estimating conditional covariance matrices [111, 193], where in place of time,
which is deterministic quantity, one has a random quantity.Methods for estimating time-varying
discrete Markov random fields were given in [2] and [112], however, no results on the consis-
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tency of the network structure were given. Note that a lot of the work appeared after our initial
work was communicated [103].

3.4 Discussion

In this chapter, we have discussed a framework for estimating dynamic networks. This frame-
work will be specialized to different models and assumptions on the way the structure changes
over time in the following chapters. The framework extends the common estimation tools used
for learning static networks.
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Chapter 4

Estimating time-varying networks from
binary nodal observations

In this chapter we present two new machine learning methods for estimating time-varying net-
works, which both build on a temporally smoothedℓ1-regularized logistic regression formal-
ism that can be cast as a standard convex-optimization problem and solved efficiently using
generic solvers scalable to large networks. We report promising results on recovering simulated
time-varying networks. For real data sets, we reverse engineer the latent sequence of tempo-
rally rewiring political networks between Senators from the US Senate voting records and the
latent evolving regulatory networks underlying 588 genes across the life cycle ofDrosophila
melanogasterfrom the microarray time course.

4.1 Preliminaries

LetDn = {xt ∼ Pθt | t ∈ Tn} be an independent sample ofn observation from a time series,
obtained at discrete time steps indexed byTn = {1/n, 2/n, . . . , 1} (for simplicity, we assume
that the observations are equidistant in time). Each samplepoint comes from a different discrete
time step and is distributed according to a distributionPθt indexed byθt ∈ Θ. In particular,
we will assume thatXt is ap-dimensional random variable taking values from{−1, 1}p with a
distribution of the following form:

Pθt(x) =
1

Z(θt)
exp

( ∑

(u,v)∈Et

θtuvxuxv

)
, (4.1)

whereZ(θt) is the partition function,θt ∈ R(
p
2) is the parameter vector, andGt = (V,Et) is

an undirected graph representing conditional independence assumptions among subsets of the
p-dimensional random vectorXt. Recall thatV = {1, . . . , p} is the node set and each node
corresponds with one component of the vectorXt.

The model given in (4.1) can be thought of as a nonparametric extension of conventional
MRFs, in the similar way as the varying-coefficient models [40, 96] are thought of as an extension
to the linear regression models. The difference between themodel given in (4.1) and an MRF
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model is that our model allows for parameters to change, while in MRF the parameters are
considered fixed. Allowing parameters to vary over time increases the expressiveness of the
model, and make it more suitable for longitudinal network data. For simplicity of presentation,
in this chapter we consider time-varying MRFs with only pairwise potentials as in (4.1). Note
that in the case of discrete MRFs there is no loss of generality by considering only pairwise
interactions, since any MRF with higher-order interactions can be represented with an equivalent
MRF with pairwise interactions [191].

In this chapter, we are addressing the following graph structure estimation problem:
Given any time pointτ ∈ [0, 1] estimate the graph structure associated withPθτ ,
given the observationsDn.

To obtain insight into the dynamics of changes in the graph structure, one only needs to estimate
graph structure for multiple time-points, for example, foreveryτ ∈ Tn.

We specialize the general estimation framework described in §3 to binary nodal observations.
Discussion that follows extends the setup introduced in§2.2.1 to allow for estimation of time-
varying networks from binary observations.

The graph structureGτ is encoded by the locations of the nonzero elements of the parameter
vectorθτ , which we refer to as the nonzero pattern of the parameterθτ . Components of the
vectorθτ are indexed by distinct pairs of nodes and a component of the vectorθτuv is nonzero if
and only if the corresponding edge(u, v) ∈ Eτ . Throughout the rest of the chapter we will focus
on estimation of the nonzero pattern of the vectorθτ as a way to estimate the graph structure.
Let θτ

u be the(p− 1)-dimensional subvector of parameters

θτ
u := {θτuv | v ∈ V \ u}

associated with each nodeu ∈ V , and letSτ (u) be the set of edges adjacent to a nodeu at a time
point τ :

Sτ (u) := {(u, v) ∈ V × V | θτuv 6= 0}.
Observe that the graph structureGτ can be recovered from the local information on neighboring
edgesSτ (u), for each nodeu ∈ V , which can be obtained from the nonzero pattern of the
subvectorθτ

u alone. The main focus of this section is on obtaining node-wise estimatorŝθτ
u of

the nonzero pattern of the subvectorθτ
u, which are then used to create estimates

Ŝτ (u) := {(u, v) ∈ V × V | θ̂τuv 6= 0}, u ∈ V.

Note that the estimated nonzero pattern might be asymmetric, for example,̂θτuv = 0, but θ̂τvu 6= 0.
We consider using themin andmax operations to combine the estimatorsθ̂τuv and θ̂τvu. Let
θ̃τ denote the combined estimator. The estimator combined using themin operation has the
following form:

θ̃uv =

{
θ̂uv, if |θ̂uv| < |θ̂vu|,
θ̂vu, if |θ̂uv| ≥ |θ̂vu|,

“min symmetrization,” (4.2)

which means that the edge(u, v) is included in the graph estimate only if it appears in both
estimateŝSτ(u) andŜτ (v). Using themax operation, the combined estimator can be expressed
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as

θ̃uv =

{
θ̂uv, if |θ̂uv| > |θ̂vu|,
θ̂vu, if |θ̂uv| ≤ |θ̂vu|,

“max symmetrization,” (4.3)

and, as a result, the edge(u, v) is included in the graph estimate if it appears in at least oneof
the estimateŝSτ (u) or Ŝτ (v).

A stronger notion of structure estimation is that ofsigned edge recoveryin which an edge
(u, v) ∈ Eτ is recovered together with the sign of the parametersign(θτuv). For each vertex
u ∈ V , similar to the setSτ (u), we define the set ofsigned neighboring edgesSτ

±(u) :=
{(sign(θτuv), (u, v)) : (u, v) ∈ Sτ (u)}, which can be determined from the signs of elements
of the (p − 1)-dimensional subvector of parametersθτ

u. Based on the vector̂θτ
u, we have the

following estimate of the signed neighborhood:

Ŝτ
±(u) :=

{
(sign(θ̂τuv), (u, v)) : v ∈ V \u, θ̂τuv 6= 0

}
. (4.4)

An estimatorθ̂τ
u is obtained through the use of pseudo-likelihood based on the conditional

distribution ofXτ
u given the other of variablesXτ

\u = {Xτ
v | v ∈ V \ u}. Although the use

of pseudo-likelihood fails in certain scenarios, for example, estimation of Exponential Random
Graphs (see [180] for a recent study), the graph structure ofan Ising model can be recovered
from an i.i.d. sample using the pseudo-likelihood, as shownin [151]. Under the model (4.1), the
conditional distribution ofXτ

u given the other variablesXτ
\u takes the form

Pθτ
u
(xτ

u|Xτ
\u = xτ

\u) =
exp(xτ

u〈θτ
u,x

τ
\u〉)

exp(xτ
u〈θτ

u,x
τ
\u〉) + exp(−xτ

u〈θτ
u,x

τ
\u〉)

, (4.5)

where〈a,b〉 = a′b denotes the dot product. For simplicity, we will writePθτ
u
(xτ

u|Xτ
\u = xτ

\u) as
Pθτ

u
(xτ

u|xτ
\u). Observe that the model given in equation (4.5) can be viewedas expressingXτ

u as
the response variable in the generalized varying-coefficient models withXτ

\u playing the role of
covariates. Under the model given in equation (4.5), the conditional log-likelihood, for the node
u at the time pointt ∈ Tn, can be written in the following form:

γ(θu;x
t) = log Pθu(x

t
u|xt

\u) (4.6)
= xt

u〈θu,x
t
\u〉 − log

(
exp(〈θu,x

t
\u〉) + exp(−〈θu,x

t
\u〉)
)
.

The nonzero pattern ofθτ
u can be estimated by maximizing the conditional log-likelihood given

in equation (4.6). What is left to show is how to combine the information across different time
points, which will depend on the assumptions that are made onthe unknown vectorθt.

The primary focus is to develop methods applicable to data sets with the total number of ob-
servationsn small compared to the dimensionalityp = pn. Without assuming anything aboutθt,
the estimation problem is ill-posed, since there can be moreparameters than samples. A common
way to deal with the estimation problem is to assume that the graphs{Gt}t∈Tn are sparse, that is,
the parameter vectors{θt}t∈Tn have only few nonzero elements. In particular, we assume that
each nodeu has a small number of neighbors, that is, there exists a number s ≪ p such that it
upper bounds the number of edges|Sτ (u)| for all u ∈ V andτ ∈ Tn. In many real data sets the
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sparsity assumption holds quite well. For example, in a genetic network, rarely a regulator gene
would control more than a handful of regulatees under a specific condition [51]. Furthermore,
we will assume that the parameter vectorθt behaves “nicely” as a function of time. Intuitively,
without any assumptions about the parameterθt, it is impossible to aggregate information from
observations even close in time, because the underlying probability distributions for observations
from different time points might be completely different. In this chapter, we will consider two
ways of constraining the parameter vectorθt as a function of time:
• Smooth changes in parameters.We first consider that the distribution generating the obser-

vation changes smoothly over the time, that is, the parameter vectorθt is a smooth function
of time. Formally, we assume that there exists a constantM > 0 such that it upper bounds
the following quantities:

max
u,v∈V×V

sup
t∈[0,1]

∣∣∣∣
∂

∂t
θtuv

∣∣∣∣ < M, max
u,v∈V×V

sup
t∈[0,1]

∣∣∣∣
∂2

∂t2
θtuv

∣∣∣∣ < M.

Under this assumption, as we get more and more data (i.e., we collect data in higher and
higher temporal resolution within interval[0, 1]), parameters, and graph structures, corre-
sponding to any two adjacent time points will differ less andless.

• Piecewise constant with abrupt structural changes in parameters.Next, we consider that
there are a number of change points at which the distributiongenerating samples changes
abruptly. Formally, we assume that, for each nodeu, there is a partition

Bu = {0 = Bu,0 < Bu,1 < · · · < Bu,ku = 1}
of the interval[0, 1], such that each element ofθt

u is constant on each segment of the
partition. At change points some of the elements of the vector θt

u may become zero, while
some others may become nonzero, which corresponds to a change in the graph structure.
If the number of change points is small, that is, the graph structure changes infrequently,
then there will be enough samples at a segment of the partition to estimate the nonzero
pattern of the vectorθτ .

In the following two sections we propose two estimation methods, each suitable for one of the
assumptions discussed above.

4.2 Smooth changes in parameters

Under the assumption that the elements ofθt are smooth functions of time, as described in the
previous section, we use a kernel smoothing approach to estimate the nonzero pattern ofθτ

u at
the time point of interestτ ∈ [0, 1], for each nodeu ∈ V . These node-wise estimators are then
combined using either equation (4.2) or equation (4.3) to obtain the estimator of the nonzero
pattern ofθτ . The estimator̂θτ

u is defined as a minimizer of the following objective:

θ̂τ
u := arg min

θu∈Rp−1
{l(θu;Dn) + λ1||θu||1}, (4.7)

where
l(θu;Dn) = −

∑

t∈Tn
wτ

t γ(θu;x
t)
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is a weighted log-likelihood, with weights defined aswτ
t = Kh(t−τ)∑

t′∈Tn
Kh(t′−τ)

andKh(·) = K(·/h)
is a symmetric, nonnegative kernel function. We will refer to this approach of obtaining an
estimator assmooth. Theℓ1 norm of the parameter is used to regularize the solution and,as a
result, the estimated parameter has a lot of zeros. The number of the nonzero elements of̂θτ

u is
controlled by the user-specified regularization parameterλ1 ≥ 0. The bandwidth parameterh is
also a user defined parameter that effectively controls the number of observations aroundτ used
to obtainθ̂τ

u. In §4.5 we discuss how to choose the parametersλ1 andh. Note how (4.7) extends
the optimization problem in (2.4) to allow for non-i.i.d. data.

The optimization problem (4.7) is the well-known objectiveof the ℓ1 penalized logistic re-
gression and there are many ways of solving it, for example, the interior point method of [101],
the projected subgradient descent method of [52], or the fast coordinate-wise descent method
of [70]. From our limited experience, the specialized first order methods work faster than the
interior point methods and we briefly describe the iterativecoordinate-wise descent method:

1. Set initial values:̂θτ,0
u ← 0.

2. For eachv ∈ V \ u, set the current estimatêθτ,iter+1
uv as a solution to the following opti-

mization procedure:

min
θ∈R

{∑

t∈Tn
γ(θ̂τ,iter+1

u,1 , . . . , θ̂τ,iter+1
u,v−1 , θ, θ̂τ,iteru,v+1, . . . , θ̂

τ,iter
u,p−1;x

t) + λ1|θ|
}
. (4.8)

3. Repeat step 2 until convergence

For an efficient way of solving (4.8) refer to [70]. In our experiments, we find that the neigh-
borhood of each node can be estimated in a few seconds even when the number of covariates
is up to a thousand. A nice property of our algorithm is that the overall estimation procedure
decouples to a collection of separate neighborhood estimation problems, which can be trivially
parallelized. If we treat the neighborhood estimation as anatomic operation, the overall algo-
rithm scales linearly as a product of the number of covariates p and the number of time points
n, that is,O(pn). For instance, the Drosophila data set in the application section contains 588
genes and 66 time points. The methodsmooth can estimate the neighborhood of one node, for
all points in a regularization plane, in less than 1.5 hours.1

4.3 Structural changes in parameters

In this section we give the estimation procedure of the nonzero pattern of{θt}t∈Tn under the
assumption that the elements ofθt

u are a piecewise constant function, with pieces defined by
the partitionBu. Again, the estimation is performed node-wise and the estimators are combined
using either equation (4.2) or equation (4.3). As opposed tothe kernel smoothing estimator
defined in equation (4.7), which gives the estimate at one time pointτ , the procedure described
below simultaneously estimates{θ̂t

u}t∈Tn . The estimators{θ̂t
u}t∈Tn are defined as a minimizer

1We have used a server with dual core 2.6GHz processor and 2GB RAM.
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of the following convex optimization objective:

arg min
θt
u∈Rp−1,t∈Tn

{∑

t∈Tn
γ(θt

u;x
t) + λ1

∑

t∈Tn
||θt

u||1 + λTV

∑

v∈V \u
TV({θtuv}t∈Tn)

}
, (4.9)

whereTV({θtuv}t∈Tn) :=
∑n

i=2 |θ
i/n
uv − θ

(i−1)/n
uv | is the total variation penalty. We will refer

to this approach of obtaining an estimator asTV. The penalty is structured as a combination
of two terms. As mentioned before, theℓ1 norm of the parameters is used to regularize the
solution toward estimators with lots of zeros and the regularization parameterλ1 controls the
number of nonzero elements. The second term penalizes the difference between parameters that
are adjacent in time and, as a result, the estimated parameters have infrequent changes across
time. This composite penalty, known as the “fused” Lasso penalty, was successfully applied in a
slightly different setting of signal denoising (see, for example, [148]) where it creates an estimate
of the signal that is piecewise constant.

The optimization problem given in equation (4.9) is convex and can be solved using an off-
the-shelf interior point solver (for example, theCVX package [84]). However, for large scale
problems (i.e., bothp andn are large), the interior point method can be computationally expen-
sive, and we do not know of any specialized algorithm that canbe used to solve (4.9) efficiently.
Therefore, we propose a block-coordinate descent procedure which is much more efficient than
the existing off-the-shelf solvers for large scale problems. Observe that the loss function can be
decomposed as

L({θt
u}t∈Tn) = f1({θt

u}t∈Tn) +
∑

v∈V \u
f2({θtuv}t∈Tn)

for a smooth differentiable convex function

f1({θt
u}t∈Tn) =

∑

t∈Tn
γ(θt

u;x
t)

and a convex function

f2({θtuv}t∈Tn) = λ1

∑

t∈Tn
|θtuv|+ λTV TV({θtuv}t∈Tn).

Tseng [169] established that the block-coordinate descentconverges for loss functions with such
structure. Based on this observation, we propose the following algorithm:

1. Set initial values:̂θt,0
u ← 0, ∀t ∈ Tn.

2. For eachv ∈ V \ u, set the current estimates{θ̂t,iter+1
uv }t∈Tn as a solution to the following

optimization procedure:

min
{θt∈R}t∈Tn

{∑

t∈Tn
γ(θ̂t,iter+1

u,1 , . . . , θ̂t,iter+1
u,v−1 ,θt, θ̂t,iteru,v+1, . . . , θ̂

t,iter
u,p−1;x

t)

+ λ1

∑

t∈T n

|θt|+ λTV TV({θt}t∈Tn)
}
.

(4.10)
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3. Repeat step 2 until convergence.
Using the proposed block-coordinate descent algorithm, wesolve a sequence of optimization

problems each with onlyn variables given in equation (4.10), instead of solving one big opti-
mization problem withn(n − 1) variables given in equation (4.9). In our experiments, we find
that the optimization in equation (4.9) can be estimated in an hour when the number of covari-
ates is up to a few hundred and when the number of time points isalso in the hundreds. Here,
the bottleneck is the number of time points. Observe that thedimensionality of the problem in
equation (4.10) grows linearly with the number of time points. Again, the overall estimation
procedure decouples to a collection of smaller problems which can be trivially parallelized. If
we treat the optimization in equation (4.9) as an atomic operation, the overall algorithm scales
linearly as a function of the number of covariatesp, that is,O(p). For instance, the Senate data
set in the application section contains 100 Senators and 542time points. It took about a day to
solve the optimization problem in equation (4.9) for all points in the regularization plane.

4.4 Multiple observations

In the discussion so far, it is assumed that at any time point inTn only one observation is available.
There are situations with multiple observations at each time point, for example, in a controlled
repeated microarray experiment two samples obtained at a certain time point could be regarded
as independent and identically distributed, and we discussbelow how to incorporate such obser-
vations into our estimation procedures. Later, in§4.6 we empirically show how the estimation
procedures benefit from additional observations at each time point.

For the estimation procedure given in equation (4.7), thereare no modifications needed to
accommodate multiple observations at a time point. Each additional sample will be assigned the
same weight through the kernel functionKh(·). On the other hand, we need a small change in
equation (4.9) to allow for multiple observations. The estimators{θ̂t

u}t∈Tn are defined as follows:

{θ̂t
u}t∈Tn = arg min

θt
u∈Rp−1,t∈Tn

{∑

t∈Tn

∑

x∈Dt
n

γ(θt
u;x) + λ1

∑

t∈Tn
||θt

u||1 + λTV

∑

v∈V \u
TV({θtuv}t∈Tn)

}
,

where the setDt
n denotes elements from the sampleDn observed at a time pointt.

4.5 Choosing tuning parameters

Estimation procedures discussed in§4.2 and§4.3,smooth andTV respectively, require a choice
of tuning parameters. These tuning parameters control sparsity of estimated graphs and the way
the graph structure changes over time. The tuning parameterλ1, for bothsmooth andTV,
controls the sparsity of the graph structure. Large values of the parameterλ1 result in estimates
with lots of zeros, corresponding to sparse graphs, while small values result in dense models.
Dense models will have a higher pseudo-likelihood score, but will also have more degrees of
freedom. A good choice of the tuning parameters is essentialin obtaining a good estimator
that does not overfit the data, and balances between the pseudo-likelihood and the degrees of
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freedom. The bandwidth parameterh and the penalty parameterλTV control how similar are
estimated networks that are close in time. Intuitively, thebandwidth parameter controls the size
of a window around time pointτ from which observations are used to estimate the graphGτ .
Small values of the bandwidth result in estimates that change often with time, while large values
produce estimates that are almost time invariant. The penalty parameterλTV biases the estimates
{θ̂t

u}t∈Tn that are close in time to have similar values; large values ofthe penalty result in graphs
whose structure changes slowly, while small values allow for more changes in estimates.

We discuss how to choose the penalty parametersλ1 andλTV for the methodTV. Observe
that γ(θt

u;x
t) represents a logistic regression loss function when regressing a nodeu onto the

other nodesV \u. Hence, problems defined in equation (4.7) and equation (4.9) can be regarded
assupervisedclassification problems, for which a number of techniques can be used to select the
tuning parameters, for example, cross-validation or held-out data sets can be used when enough
data is available, otherwise, the BIC score can be employed.In this paper we focus on the BIC
score defined for{θt

u}t∈Tn as

BIC({θt
u}t∈Tn) :=

∑

t∈Tn
γ(θt

u;x
t)− log n

2
Dim({θt

u}t∈Tn),

whereDim(·) denotes the degrees of freedom of the estimated model. Similar to [177], we adopt
the following approximation to the degrees of freedom:

Dim({θt
u}t∈Tn) =

∑

t∈Tn

∑

v∈V \u
1I[sign(θtuv) 6= sign(θt−1

uv )]× 1I[sign(θtuv) 6= 0], (4.11)

which counts the number of blocks on which the parameters areconstant and not equal to zero. In
practice, we average the BIC scores from all nodes and choosemodels according to the average.

Next, we address the way to choose the bandwidthh and the penalty parameterλ1 for the
methodsmooth. As mentioned earlier, the tuning of bandwidth parameterh should trade off the
smoothness of the network changes and the coverage of samples used to estimate the network.
Using a wider bandwidth parameter provides more samples to estimate the network, but this
risks missing sharper changes in the network; using a narrower bandwidth parameter makes
the estimate more sensitive to sharper changes, but this also makes the estimate subject to larger
variance due to the reduced effective sample size. In this paper we adopt a heuristic for tuning the
inital scale of the bandwidth parameter: we set it to be the median of the distance between pairs
of time points. That is, we first form a matrix(dij) with its entriesdij := (ti − tj)

2 (ti, tj ∈ Tn).
Then the scale of the bandwidth parameter is set to the medianof the entries in(dij). In our later
simulation experiments, we find that this heuristic provides a good initial guess forh, and it is
quite close to the value obtained via exhaustive grid search. For the methodsmooth, the BIC
score for{θt

u}t∈Tn is defined as

BIC({θt
u}t∈Tn) :=

∑

τ∈Tn

∑

t∈Tn
wτ

t γ(θ
τ
u;x

t)− log n

2
Dim({θt

u}t∈Tn), (4.12)

whereDim(·) is defined in equation (4.11).
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4.6 Simulation studies

We have conducted a small empirical study of the performanceof methodssmooth andTV.
Our idea was to choose parameter vectors{θt}t∈Tn , generate data according to the model in
equation (4.1) using Gibbs sampling, and try to recover the nonzero pattern ofθt for eacht ∈ Tn.
Parameters{θt}t∈Tn are considered to be evaluations of the functionθt at Tn and we study two
scenarios, as discussed in§4.1: θt is a smooth function,θt is a piecewise constant function. In
addition to the methodssmooth andTV, we will use the method of [151] to estimate a time-
invariant graph structure, which we refer to asstatic. All of the three methods estimate the
graph based on node-wise neighborhood estimation, which, as discussed in§4.1, may produce
asymmetric estimates. Solutions combined with the min operation in equation (4.2) are denoted
as∗∗∗∗.MIN, while those combined with the max operation in equation (4.3) are denoted as
∗∗∗∗.MAX.

we took the number of nodesp = 20, the maximum node degrees = 4, the number of edges
e = 25, and the sample sizen = 500. The parameter vectors{θt}t∈Tn and observation sequences
are generated as follows:

1. Generate a random graph̃G0 with 20 nodes and 15 edges: edges are added, one at a time,
between random pairs of nodes that have the node degree less than 4. Next, randomly
add 10 edges and remove 10 edges fromG̃0, taking care that the maximum node degree is
still 4, to obtainG̃1. Repeat the process of adding and removing edges fromG̃1 to obtain
G̃2, . . . , G̃5. We refer to these 6 graphs as the anchor graphs. We will randomly generate
the prototype parameter vectorsθ̃0, . . . , θ̃5, corresponding to the anchor graphs, and then
interpolate between them to obtain the parameters{θt}t∈Tn .

2. Generate a prototype parameter vectorθ̃i for each anchor graph̃Gi, i ∈ {0, . . . , 5}, by
sampling nonzero elements of the vector independently fromUnif([0.5, 1]). Then generate
{θt}t∈Tn according to one of the following two cases:

• Smooth function: The parameters{θt}t∈((i−1)/5,i/5]∩Tn are obtained by linearly inter-

polating100 points betweeñθi−1 andθ̃i, i ∈ {1, . . . , 5}.
• Piecewise constant function: The parameters{θt}t∈((i−1)/5,i/5]∩Tn are set to be equal

to (θ̃i−1 + θ̃i)/2, i ∈ {1, . . . , 5}.
Observe that after interpolating between the prototype parameters, a graph corresponding
to θt has25 edges and the maximum node degree is4.

3. Generate 10 independent samples at eacht ∈ Tn according toPθt , given in equation (4.1),
using Gibbs sampling.

We estimateĜt for eacht ∈ Tn with our smooth andTV methods, usingk ∈ {1, . . . , 10}
samples at each time point. The results are expressed in terms of the precision(Pre) and the
recall (Rec) andF1 score, which is the harmonic mean of precision and recall, that is,F1 :=

2 ∗ Pre ∗ Rec/(Pre + Rec). Let Êt denote the estimated edge set ofĜt, then the precision is
calculated asPre := 1/n

∑
t∈Tn |Êt∩Et|/|Êt| and the recall asRec := 1/n

∑
t∈Tn |Êt∩Et|/|Et|.

Furthermore, we report results averaged over 20 independent runs.
We discuss the estimation results when the underlying parameter vector changes smoothly.

See Figure 4.2 for results. It can be seen that as the number ofthe i.i.d. observations at each time
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(a) Average BIC score (b) Average BIC score

Figure 4.1: Plot of theBICavg score over the regularization plane. The parameter vectorθt is a smooth
function of time and at each time point there is one observation. (a) The graph structure recovered using
the methodsmooth. (b) Recovered using the methodTV.

point increases, the performance of both methodssmooth andTV increases. On the other hand,
the performance of the methodstatic does not benefit from additional i.i.d. observations.
This observation should not be surprising as the time-varying network models better fit the data
generating process. When the underlying parameter vectorθt is a smooth function of time, we
expect that the methodsmooth would have a faster convergence and better performance, which
can be seen in Figure 4.2. There are some differences betweenthe estimates obtained through
MIN andMAX symmetrization. In our limited numerical experience, we have seen thatMAX
symmetrization outperformsMIN symmetrization.MIN symmetrization is more conservative in
including edges to the graph and seems to be more susceptibleto noise.

Next, we discuss the estimation results when then the underlying parameter vector is a piece-
wise constant function. See Figure 4.3 for results. Again, both performance of the method
smooth and of the methodTV improve as there are more independent samples at different time
points, as opposed to the methodstatic. It is worth noting that the empirical performance of
smooth andTV is very similar in the setting whenθt is a piecewise constant function of time,
with the methodTV performing marginally better. This may be a consequence of the way we
present results, averaged over all time points inTn. A closer inspection of the estimated graphs
shows that the methodsmooth poorly estimates graph structure close to the time point at which
the parameter vector changes abruptly (results not shown).

The tuning parametersh andλ1 for smooth, andλ1 andλTV for TV, are chosen by maxi-
mizing the average BIC score,

BICavg := 1/p
∑

u∈V
BIC({θt

u}t∈Tn),

over a grid of parameters. The bandwidth parameterh is searched over{0.05, 0.1, . . . , 0.45, 0.5}
and the penalty parameterλTV over 10 points, equidistant on the log-scale, from the interval
[0.05, 0.3]. The penalty parameter is searched over 100 points, equidistant on the log-scale, from
the interval[0.01, 0.3] for bothsmooth andTV. The same range is used to select the penalty
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(a) Precision (b) Recall (c) F1 score

(d) Precision (e) Recall (f) F1 score

Figure 4.2: Results of estimation when the underlying parameter{θt}t∈Tn changes smoothly with time.
The upper row consists of results when the graph is estimatedcombining the neighborhoods using the
min operation, while the lower row consists of results when themax operation is used to combine neigh-
borhoods. Precision, recall, and F1 score are plotted as thenumber of i.i.d. samplesk at each time point
increases from 1 to 10. The solid, dashed, and dotted lines denote results forsmooth, TV, andstatic,
respectively.

(a) Precision (b) Recall (c) F1 score

(d) Precision (e) Recall (f) F1 score

Figure 4.3: Results of estimation when the underlying parameter{θt}t∈Tn is a piecewise constant function
of time. The upper row consists of results when the graph is estimated combining the neighborhoods using
themin operation, while the lower row consists of results when themax operation is used to combine
neighborhoods. Precision, recall, and F1 score are plottedas the number of i.i.d. samplesk at each time
point increases from 1 to 10. The solid, dashed, and dotted lines denote results forsmooth, TV, and
static, respectively.
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parameterλ for the methodstatic that estimates a time-invariant network. In our experiments,
we use the Epanechnikov kernelK(z) = 3/4 ∗ (1 − z2) 1I{|z| ≤ 1} and we remind our reader
thatKh(·) = K(·/h). For illustrative purposes, in Figure 4.1 we plot theBICavg score over the
grid of tuning parameters.

We have decided to perform simulation studies on Erdös–Rényi graphs, while real-world
graphs are likely to have different properties, such as a scale-free network with a long tail in its
degree distribution. From a theoretical perspective, our method can still recover the true structure
of these networks regardless of the degree distribution, although for a more complicated model,
we may need more samples in order to achieve this. [146] proposed a joint sparse regression
model, which performs better than the neighborhood selection method when estimating networks
with hubs (nodes with very high degree) and scale-free networks. For such networks, we can
extend their model to our time-varying setting, and potentially make more efficient use of the
samples, however, we do not pursue this direction here.

4.7 Applications to real data

In this section we present the analysis of two real data sets using the algorithms presented in§4.1.
First, we present the analysis of the senate data consistingof Senators’ votes on bills during the
109th Congress. The second data set consists of expression levels of more than 4000 genes from
the life cycle ofDrosophila melanogaster.

4.7.1 Senate voting records data

The US senate data consists of voting records from 109th congress (2005–2006). There are 100
senators whose votes were recorded on the 542 bills. Each senator corresponds to a variable,
while the votes are samples recorded as−1 for no and 1 for yes. This data set was analyzed
in [19], where a static network was estimated. Here, we analyze this data set in a time-varying
framework in order to discover how the relationship betweensenators changes over time.

This data set has many missing values, corresponding to votes that were not cast. We fol-
low the approach of [19] and fill those missing values with (−1). Bills were mapped onto the
[0, 1] interval, with 0 representing Jan 1st, 2005 and 1 representing Dec 31st, 2006. We use
the Epanechnikov kernel for the methodsmooth. The tuning parameters are chosen optimiz-
ing the average BIC score over the same range as used for the simulations in§4.6. For the
methodsmooth, the bandwidth parameter was selected ash = 0.174 and the penalty parameter
λ1 = 0.195, while penalty parametersλ1 = 0.24 andλTV = 0.28 were selected for the method
TV. In the figures in this section, we use pink square nodes to represent republican Senators and
blue circle nodes to represent democrat Senators.

A first question is whether the learned network reflects the political division between Repub-
licans and Democrats. Indeed, at any time pointt, the estimated network contains few clusters of
nodes. These clusters consist of either Republicans or Democrats connected to each others; see
Figure 4.4. Furthermore, there are very few links connecting different clusters. We observe that
most Senators vote similarly to other members of their party. Links connecting different clusters
usually go through senators that are members of one party, but have views more similar to the
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Figure 4.4: 109th Congress, Connections between Senators in April 2005. Democrats are represented with
blue circles, Republicans with pink squares, and the red circle represents independent Senator Jeffords.

other party, for example, Senator Ben Nelson or Senator Chafee. Note that we do not necessarily
need to estimate a time evolving network to discover this pattern of political division, as they can
also be observed from a time-invariant network (see, for example, [19]).

Therefore, what is more interesting is whether there is any time evolving pattern. To show
this, we examine neighborhoods of Senators Jon Corzine and Bob Menendez. Senator Corzine
stepped down from the Senate at the end of the 1st Session in the 109th Congress to become
the Governor of New Jersey. His place in the Senate was filled by Senator Menendez. This
dynamic change of interactions can be well captured by the time-varying network (Figure 4.5).
Interestingly, we can see that Senator Lautenberg who used to interact with Senator Corzine
switches to Senator Menendez in response to this event.

Another interesting question is whether we can discover senators with swaying political
stance based on time evolving networks. We discover that Senator Ben Nelson and Lincoln
Chafee fall into this category. Although Senator Ben Nelsonis a Democrat from Nebraska, he
is considered to be one of the most conservative Democrats inthe Senate. Figure 4.6 presents

(a) March 2005 (b) August 2005 (c) March 2006 (d) August 2006

Figure 4.5: Direct neighbors of the node that represent Senator Corzine and Senator Menendez at four
different time points. Senator Corzine stepped down at the end of the 1st Session and his place was taken
by Senator Menendez, which is reflected in the graph structure.
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(a) May 2005 (b) August 2006

Figure 4.6: Neighbors of Senator Ben Nelson (distance two orlower) at the beginning of the 109th
Congress and at the end of the 109th Congress. Democrats are represented with blue circles, Republi-
cans with pink squares. The estimated neighborhood in August 2006 consists only of Republicans, which
may be due to the type of bills passed around that time on whichSenator Ben Nelson had similar views as
other Republicans.

neighbors at distance two or less of Senator Ben Nelson at twotime points, one during the
1st Session and one during the 2nd Session. As a conservativeDemocrat, he is connected to
both Democrats and Republicans since he shares views with both parties. This observation is
supported by Figure 4.6(a) which presents his neighbors during the 1st Session. It is also in-
teresting to note that during the second session, his views drifted more toward the Republicans
[Figure 4.6(b)]. For instance, he voted against abortion and withdrawal of most combat troops
from Iraq, which are both Republican views.

In contrast, although Senator Lincoln Chafee is a Republican, his political view grew in-
creasingly Democratic. Figure 4.7 presents neighbors of Senator Chafee at three time points
during the 109th Congress. We observe that his neighborhoodincludes an increasing amount of
Democrats as time progresses during the 109th Congress. Actually, Senator Chafee later left the
Republican Party and became an independent in 2007. Also, his view on abortion, gay rights,
and environmental policies are strongly aligned with thoseof Democrats, which is also consis-
tently reflected in the estimated network. We emphasize thatthese patterns about Senator Nelson
and Chafee could not be observed in a static network.

(a) (b) (c)

Figure 4.7: Neighbors of Senator Chafee (distance two or lower) at different time points during the 109th
Congress. Democrats are represented with blue circles, Republicans with pink squares, and the red circle
represents independent Senator Jeffords.
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(a) Network statistics (b) Mid-embryonic stage (c) Mid-pupal stage

Figure 4.8: Characteristic of the dynamic networks estimated for the genes related to the developmental
process. (a) Plot of two network statistics as functions of the development time line. Network size ranges
between 1712 and 2061 over time, while local clustering coefficient ranges between 0.23 and 0.53 over
time; To focus on relative activity over time, both statistics are normalized to the range between 0 and 1.
(b) and (c) are the visualization of two examples of networksfrom different time points. We can see that
network size can evolve in a very different way from the localclustering coefficient.

4.7.2 Gene regulatory networks of Drosophila melanogaster

In this section we used the kernel reweighting approach to reverse engineer the gene regulatory
networks ofDrosophila melanogasterfrom a time series of gene expression data measured dur-
ing its full life cycle. Over the developmental course ofDrosophila melanogaster, there exist
multiple underlying “themes” that determine the functionalities of each gene and their relation-
ships to each other, and such themes are dynamical and stochastic. As a result, the gene regu-
latory networks at each time point are context-dependent and can undergo systematic rewiring,
rather than being invariant over time. In a seminal study by [127], it was shown that the “active
regulatory paths” in the gene regulatory networks ofSaccharomyces cerevisiaeexhibit topolog-
ical changes and hub transience during a temporal cellular process, or in response to diverse
stimuli. We expect similar properties can also be observed for the gene regulatory networks of
Drosophila melanogaster.

We used microarray gene expression measurements from [10] as our input data. In such an
experiment, the expression levels of 4028 genes are simultaneously measured at various devel-
opmental stages. Particularly, 66 time points are chosen during the full developmental cycle of
Drosophila melanogaster, spanning across four different stages,that is, embryonic (1–30 time
point), larval (31–40 time point), pupal (41–58 time points), and adult stages (59–66 time points).
In this study we focused on 588 genes that are known to be related to the developmental process
based on their gene ontologies.

Usually, the samples prepared for microarray experiments are a mixture of tissues with pos-
sibly different expression levels. This means that microarray experiments only provide rough
estimates of the average expression levels of the mixture. Other sources of noise can also be
introduced into the microarray measurements during, for instance, the stage of hybridization and
digitization. Therefore, microarray measurements are farfrom the exact values of the expression
levels, and it will be more robust if we only consider the binary state of the gene expression:
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Figure 4.9: Interactivity of 3 groups of genes related to (a)embryonic development (ranging between 169
and 241), (b) post-embryonic development (ranging between120 and 210), and (c) muscle development
(ranging between 29 and 89). To focus on the relative activity over time, we normalize the score to[0, 1].
The higher the interactivity, the more active the group of genes. The interactivities of these three groups
are very consistent with their functional annotations.

either being up-regulated or down-regulated. For this reason, we binarize the gene expression
levels into{−1, 1} (−1 for down-regulated and 1 for up-regulated). We learned a sequence of
binary MRFs from these time series.

First, we study the global pattern of the time evolving regulatory networks. In Figure 4.8(a)
we plotted two different statistics of the reversed engineered gene regulatory networks as a func-
tion of the developmental time point (1–66). The first statistic is the network size as measured
by the number of edges; and the second is the average local clustering coefficient as defined
by [188]. For comparison, we normalized both statistics to the range between[0, 1]. It can be
seen that the network size and its local clustering coefficient follow very different trajectories
during the developmental cycle. The network size exhibits awave structure featuring two peaks
at mid-embryonic stage and the beginning of the pupal stage.A similar pattern of gene activity
has also been observed by [10]. In contrast, the clustering coefficients of the dynamic networks
drop sharply after the mid-embryonic stage, and they stay low until the start of the adult stage.
One explanation is that at the beginning of the development process, genes have a more fixed and
localized function, and they mainly interact with other genes with similar functions. However,
after mid-embryonic stage, genes become more versatile andinvolved in more diverse roles to
serve the need of rapid development; as the organism turns into an adult, its growth slows down
and each gene is restored to its more specialized role. To illustrate how the network proper-
ties change over time, we visualized two networks from mid-embryonic stage (time point 15)
and mid-pupal stage (time point 45) using the spring layout algorithm in Figure 4.8(b) and (c)
respectively. Although the size of the two networks are comparable, tight local clusters of in-
teracting genes are more visible during mid-embryonic stage than mid-pupal stage, which is
consistent with the evolution local clustering coefficientin Figure 4.8(a).

To judge whether the learned networks make sense biologically, we zoom into three groups
of genes functionally related to different stages of the development process. In particular, the
first group (30 genes) is related to embryonic development based on their functional ontologies;
the second group (27 genes) is related to post-embryonic development; and the third group (25
genes) is related to muscle development. For each group, we use the number of within group
connections plus all its outgoing connections to describe the activitiy of each group of genes (for
short, we call it interactivity). In Figure 4.9 we plotted the time courses of interactivity for the
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Figure 4.10: Timeline of 45 known gene interactions. Each cell in the plot corresponds to one gene pair
of gene interaction at one specific time point. The cells in each row are ordered according to their time
point, ranging from embryonic stage (E) to larval stage (L),to pupal stage (P), and to adult stage (A). Cells
colored blue indicate the corresponding interaction listed in the right column is present in the estimated
network; blank color indicates the interaction is absent.
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(a) Summary network

(b) Time point 15 (mid-embryonic stage) (c) Time point 35 (mid-larval stage)

(d) Time point 49 (mid-pupal stage) (e) Time point 62 (mid-adult stage)

Figure 4.11: The largest transcriptional factors (TF) cascade involving 36 transcriptional factors. (a) The
summary network is obtained by summing the networks from alltime points. Each node in the network
represents a transcriptional factor, and each edge represents an interaction between them. On different
stages of the development, the networks are different, (b),(c), (d), (e) shows representative networks for
the embryonic, larval, pupal, and adult stage of the development respectively.

three groups respectively. For comparison, we normalize all scores to the range of[0, 1]. We
see that the time courses have a nice correspondence with their supposed roles. For instance,
embryonic development genes have the highest interactivity during embryonic stage, and post-
embryonic genes increase their interactivity during the larval and pupal stages. The muscle
development genes are less specific to certain developmental stages, since they are needed across
the developmental cycle. However, we see its increased activity when the organism approaches
its adult stage where muscle development becomes increasingly important.

The estimated networks also recover many known interactions between genes. In recovering
these known interactions, the dynamic networks also provide additional information as to when
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(a) Average network. Each color patch denotes an onto-
logical group, and the position of these ontological groups
remain the same from (a) to (u). The annotation in the
outer rim indicates the function of each group.

(b) t = 1
66 (c) t = 4

66

(d) t = 8
66 (e) t = 12

66

(f) t = 16
66 (g) t = 20
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Figure 4.12: Interactions between gene ontological groupsrelated to the developmental process undergo
dynamic rewiring. The weight of an edge between two ontological groups is the total number of connec-
tions between genes in the two groups. In the visualization,the width of an edge is proportional to its
edge weight. We thresholded the edge weight at 30 in (b)–(u) so that only those interactions exceeding
this number are displayed. The average network in (a) is produced by averaging the networks underlying
(b)–(u). In this case, the threshold is set to 20 instead.
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interactions occur during development. In Figure 4.10 we listed these recovered known inter-
actions and the precise time when they occur. This also provides a way to check whether the
learned networks are biologically plausible given the prior knowledge of the actual occurrence
of gene interactions. For instance, the interaction between genes msn and dock is related to the
regulation of embryonic cell shape, correct targeting of photoreceptor axons. This is very con-
sistent with the timeline provided by the dynamic networks.A second example is the interaction
between genes sno and Dl which is related to the development of compound eyes ofDrosophila.
A third example is between genes caps and Chi which are related to wing development during
pupal stage. What is most interesting is that the dynamic networks provide timelines for many
other gene interactions that have not yet been verified experimentally. This information will be a
useful guide for future experiments.

We further studied the relations between 130 transcriptional factors (TF). The network con-
tains several clusters of transcriptional cascades, and wewill present the detail of the largest
transcriptional factor cascade involving 36 transcriptional factors (Figure 4.11). This cascade of
TFs is functionally very coherent, and many TFs in this network play important roles in the ner-
vous system and eye development. For example, Zn finger homeodomain 1 (zhf1), brinker (brk),
charlatan (chn), decapentaplegic (dpp), invected (inv), forkhead box, subgroup 0 (foxo), Optix,
eagle (eg), prospero (pros), pointed (pnt), thickveins (tkv), extra macrochaetae (emc), lilliputian
(lilli), and doublesex (dsx) are all involved in nervous andeye development. Besides functional
coherence, the network also reveals the dynamic nature of gene regulation: some relations are
persistent across the full developmental cycle, while manyothers are transient and specific to
certain stages of development. For instance, five transcriptional factors, brk-pnt-zfh1-pros-dpp,
form a long cascade of regulatory relations which are activeacross the full developmental cycle.
Another example is gene Optix which is active across the fulldevelopmental cycle and serves
as a hub for many other regulatory relations. As for transience of the regulatory relations, TFs
to the right of the Optix hub reduced in their activity as development proceeds to a later stage.
Furthermore, Optix connects two disjoint cascades of gene regulations to its left and right side
after embryonic stage.

The dynamic networks also provide an overview of the interactions between genes from
different functional groups. In Figure 4.12 we grouped genes according to 58 ontologies and
visualized the connectivity between groups. We can see thatlarge topological changes and net-
work rewiring occur between functional groups. Besides expected interactions, the figure also
reveals many seemingly unexpected interactions. For instance, during the transition from pupa
stage to adult stage,Drosophilais undergoing a huge metamorphosis. One major feature of this
metamorphosis is the development of the wing. As can be seen from Figure 4.12(r) and (s), genes
related to metamorphosis, wing margin morphogenesis, wingvein morphogenesis, and apposi-
tion of wing surfaces are among the most active group of genes, and they carry their activity into
adult stage. Actually, many of these genes are also very active during early embryonic stage [for
example, Figure 4.12(b) and (c)]; though the difference is they interact with different groups of
genes. On one hand, the abundance of the transcripts from these genes at embryonic stage is
likely due to maternal deposit [10]; on the other hand, this can also be due to the diverse func-
tionalities of these genes. For instance, two genes relatedto wing development, held out wings
(how) and tolloid (td), also play roles in embryonic development.
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4.8 Discussion

We have presented two algorithms for an important problem ofstructure estimation of time-
varying networks. While the structure estimation of the static networks is an important problem
in itself, in certain cases static structures are of limiteduse. More specifically, a static structure
only shows connections and interactions that are persistent throughout the whole time period and,
therefore, time-varying structures are needed to describedynamic interactions that are transient
in time. Although the algorithms presented in this paper forlearning time-varying networks are
simple, they can already be used to discover some patterns that would not be discovered using
a method that estimates static networks. However, the ability to learn time-varying networks
comes at a price of extra tuning parameters: the bandwidth parameterh or the penalty parameter
λTV.

Throughout the chapter, we assume that the observations at different points in time are inde-
pendent. An important future direction is the analysis of the graph structure estimation from a
general time series, with dependent observations. In our opinion, this extension will be straight-
forward but with great practical importance. Furthermore,we have worked with the assumption
that the data are binary, however, extending the procedure to work with multi-category data is
also straightforward. One possible approach is explained in [151] and can be directly used here.

There are still ways to improve the methods presented here. For instance, more principled
ways of selecting tuning parameters are definitely needed. Selecting the tuning parameters in the
neighborhood selection procedure for static graphs is not an easy problem, and estimating time-
varying graphs makes the problem more challenging. Furthermore, methods presented here do
not allow for the incorporation of existing knowledge on thenetwork topology into the algorithm.
In some cases, the data are very scarce and we would like to incorporate as much prior knowledge
as possible, so developing Bayesian methods seems very important.

The methodsmooth and the methodTV represent two different ends of the spectrum: one
algorithm is able to estimate smoothly changing networks, while the other one is tailored toward
estimation of structural changes in the model. It is important to bring the two methods together in
the future work. There is a great amount of work on nonparametric estimation of change points
and it would be interesting to incorporate those methods forestimating time-varying networks.
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Chapter 5

Sparsistent estimation of smoothly varying
Ising model

In the previous chapter, we proposed a method based on kernel-smoothingℓ1-penalized logistic
regression for estimating time-varying networks from nodal observations collected from a time-
series of observational data. In this chapter, we establishconditions under which the proposed
method consistently recovers the structure of a time-varying network. This work complements
previous empirical findings by providing sound theoreticalguarantees for the proposed estima-
tion procedure. Theoretical findings are illustrated through numerical simulations.

5.1 Introduction

In this chapter, we study the problem of estimating a sequence of high-dimensional MRFs that
slowly evolve over time from observational data. Recall thesetup introduced in the previous
chapter. We are given a sequence ofn nodal statesDn = {xt ∼ Pθt | t ∈ Tn}, with the time
index defined asTn = {1/n, 2/n, . . . , 1}. For simplicity of presentation, we assume that the
observations are equidistant in time and only one observation is available at each time point from
distributionPθt indexed byθt. Specifically, we assume that thep-dimensional random vectorXt

takes values in{−1, 1}p and the probability distribution takes the following form:

Pθt(x) =
1

Z(θt)
exp


 ∑

(u,v)∈Et

θtuvxuxv


 , ∀t ∈ Tn,

whereZ(θt) is the partition function,θt ∈ R(
p
2) is the parameter vector andGt = (V,Et) is an

undirected graph representing certain conditional independence assumptions among subsets of
thep-dimensional random vectorXt. For any given time pointτ ∈ [0, 1], we are interested in
estimating the graphGτ associated withPθτ , given the observationsDn. Since we are primarily
interested in a situation where the total number of observation n is small compared to the di-
mensionp, our estimation task is going to be feasible only under some regularity conditions. We
impose two natural assumptions: thesparsityof the graphs{Gt}t∈Tn , and thesmoothnessof the
parametersθt as functions of time. These assumptions are precisely stated in §5.2. Intuitively,
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Input : DatasetDn, time point of interestτ ∈ [0, 1], penalty parameterλn, bandwidth
parameterh

Output : Estimate of the graph structurêGτ

foreachu ∈ V do

Estimateθ̂u by solving the convex program (4.7)

Estimate the set of signed neighboring edgesŜτ
±(u) using (4.4)

end

Combine sets{Ŝτ
±(u)}u∈V to obtainĜτ .

Algorithm 1: Graph structure estimation

the smoothness assumption is required so that a graph structure at the time pointτ can be esti-
mated from samples close in time toτ . On the other hand, the sparsity assumption is required to
avoid the curse of dimensionality and to ensure that a the graph structure can be identified from
a small sample.

The main contribution of this chapter is to establish theoretical guarantees for the estimation
procedure discussed in§4.2. The estimation procedure is based on temporally smoothed ℓ1-
regularized logistic regression formalism, as summarizedin Algorithm 1. An application to
real world data was given in [159], where the procedure was used to infer the latent evolving
regulatory network underlying 588 genes across the life cycle of Drosophila melanogasterfrom
microarray time course. Although the true regulatory network is not known for this organism,
the procedure recovers a number of interactions that were previously experimentally validated.
Since in most real world problems the ground truth is not known, we emphasize the importance
of simulation studies to evaluate the estimation procedure.

It is noteworthy that the problem of the graph structure estimation is quite different from
the problem of (value-) consistent estimation of the unknown parameterθ that indexes the dis-
tribution. In general, the graph structure estimation requires a more stringent assumptions on
the underlying distribution and the parameter values. For example, observe that a consistent es-
timator ofθ in the Euclidean distance does not guarantee a consistent estimation of the graph
structure, encoded by the non-zero patter of the estimator.In the motivating problems that we
gave in§2 and§3, the main goal is to understand the interactions between different actors. These
interactions are more easily interpreted by a domain expertthan the numerical values of the pa-
rameter vectorθ and have potential to reveal more information about the underlying process of
interest. This is especially true in situations where thereis little or no domain knowledge and
one is interested in obtaining casual, preliminary information.

5.2 Main theoretical result

In this section, we provide conditions under which the estimation procedure detailed in§4.2
consistently recovers the graph structure. In particular,we show that under suitable conditions
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P[∀u Ŝτ
±(u) = Sτ

±(u)]
n→∞−−−→ 1, the property known assparsistency. We are mainly interested

in the high-dimensional case, where the dimensionp = pn is comparable or even larger than
the sample sizen. It is of great interest to understand the performance of theestimator under
this assumption, since in many real world scenarios the dimensionality of data is large. Our
analysis is asymptotic and we consider the model dimensionp = pn to grow at a certain rate as
the sample size grows. This essentially allows us to consider more “complicated” models as we
observe more data points. Another quantity that will describe the complexity of the model is the
maximum node degrees = sn, which is also considered as a function of the sample size. Under
the assumption that the true-graph structure is sparse, we will require that the maximum node
degree is small,s≪ n. The main result describes the scaling of the triple(n, pn, sn) under which
the estimation procedure given in the previous section estimates the graph structure consistently.

We will need certain regularity conditions to hold in order to prove the sparsistency result.
These conditions are expressed in terms of the Hessian of thelog-likelihood function as evaluated
at the true model parameter, i.e., the Fisher information matrix. The Fisher information matrix
Qτ

u ∈ R(p−1)×(p−1) is a matrix defined for each nodeu ∈ V as:

Qτ
u : = E[∇2 log Pθτ

u
[Xu|X\u]]

= E[η(X; θτ
u)X\uX

′
\u],

where

η(x; θu) :=
4 exp(2xu〈θu,x\u〉)

(exp(2xu〈θu,x\u〉) + 1)2

is the variance function and∇2 denotes the operator that computes the matrix of second deriva-
tives. We writeQτ := Qτ

u and assume that the following assumptions hold for each nodeu ∈ V .
A1: Dependency condition There exist constantsCmin, Dmin, Dmax > 0 such that

Λmin(Q
τ
SS) ≥ Cmin

and
Λmin (Σ

τ ) ≥ Dmin, Λmax (Σ
τ ) ≤ Dmax,

whereΣτ = Eθτ [XX′]. HereΛmin(·) andΛmax(·) denote the minimum and maximum
eigenvalue of a matrix.

A2: Incoherence condition There exists an incoherence parameterα ∈ (0, 1] such that

|||Qτ
ScS(Q

τ
SS)

−1|||∞ ≤ 1− α,

where, for a matrixA ∈ Ra×b, theℓ∞ matrix norm is defined as

|||A|||∞ := max
i∈{1,...,a}

b∑

j=1

|aij|.

The setSc denotes the complement of the setS in {1, . . . , p}, that is,Sc = {1, . . . , p}\S. With
some abuse of notation, when defining assumptions A1 and A2, we use the index setS := Sτ (u)
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to denote nodes adjacent to the nodeu at timeτ . For example, ifs = |S|, thenQτ
SS ∈ Rs×s

denotes the sub-matrix ofQτ indexed byS.
Condition A1 assures that the relevant features are not too correlated, while condition A2

assures that the irrelevant features do not have to strong effect onto the relevant features. Similar
conditions are common in other literature on high-dimensional estimation (see, for example,
[76, 135, 146, 151] and references therein). The differencehere is that we assume the conditions
hold for the time point of interestτ at which we want to recover the graph structure.

Next, we assume that the distributionPθτ changes smoothly over time, which we express in
the following form, for every nodeu ∈ V .
A3: Smoothness conditionsLet Σt = [σt

uv]. There exists a constantM > 0 such that it upper
bounds the following quantities:

max
u,v∈V ×V

sup
t∈[0,1]

| ∂
∂t

σt
uv| < M, max

u,v∈V×V
sup
t∈[0,1]

| ∂
2

∂t2
σt
uv| < M

max
u,v∈V ×V

sup
t∈[0,1]

| ∂
∂t

θtuv| < M, max
u,v∈V×V

sup
t∈[0,1]

| ∂
2

∂t2
θtuv| < M.

The condition A3 captures our notion of the distribution that changes smoothly over time. If
we consider the elements of the covariance matrix and the elements of the parameter vector as
a function of time, then these functions have bounded first and second derivatives. From these
assumptions, it is not too hard to see that elements of the Fisher information matrix are also
smooth functions of time.

A4: Kernel The kernelK : R 7→ R is a symmetric function, supported in[−1, 1]. There exists
a constantMK ≥ 1 which upper bounds the quantitiesmaxz∈R |K(z)| andmaxz∈R K(z)2.

The condition A4 gives some regularity conditions on the kernel used to define the weights.
For example, the assumption is satisfied by the box kernelK(z) = 1

2
1I{z ∈ [−1, 1]}.

With the assumptions made above, we are ready to state the theorem that characterizes the
consistency of the method given in§4.2 for recovering the unknown time-varying graph structure.
An important quantity, appearing in the statement, is the minimum value of the parameter vector
that is different from zero

θmin = min
(u,v)∈Eτ

|θτuv|.

Intuitively, the success of the recovery should depend on how hard it is to distinguish the true
non-zero parameters from noise.
Theorem 5.1. Assume that the dependency condition A1 holds withCmin, Dmin andDmax, that
for each nodeu ∈ V , the Fisher information matrixQτ satisfies the incoherence condition
A2 with parameterα, the smoothness assumption A3 holds with parameterM , and that the
kernel function used in(4.7)satisfies assumption A4 with parameterMK . Let the regularization
parameter satisfy

λn ≥ C

√
log p

n1/3

for a constantC > 0 independent of(n, p, s). Furthermore, assume that the following conditions
hold:
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1. h = O(n− 1
3 )

2. s = o(n1/3), s3 log p
n2/3 = o(1)

3. θmin = Ω(
√
s log p
n1/3 ).

Then for a fixedτ ∈ [0, 1] the estimated grapĥGτ (λn) obtained through neighborhood selection
satisfies

P
[
Ĝτ (λn) 6= Gτ

]
= O

(
exp

(
−Cn2/3

s3
+ C ′ log p

))
→ 0,

for some constantsC ′, C ′′ independent of(n, p, s).
This theorem guarantees that the procedure in Algorithm 1 asymptotically recovers the se-

quence of graphs underlying all the nodal-state measurements in a time series, and the snapshot
of the evolving graph at any time point during measurement intervals, under appropriate regular-
ization parameterλn as long as the ambient dimensionalityp and the maximum node degrees
are not too large, and minimumθ values do not tend to zero too fast.

Remarks:
1. The bandwidth parameterh is chosen so that it balances variance and squared bias of

estimation of the elements of the Fisher information matrix.

2. Theorem 5.1 states that the tuning parameterλ can be set asλn ≥ Cn−1/3
√
log p. In

practice, one can use the Bayesian information criterion toselect the tuning parameterλn

is a data dependent way, as explained in§4.5. We conjecture that this approach would lead
to asymptotically consistent model selection, however, this claim needs to be proven.

3. Condition 2 requires that the size of the neighborhood of each node remains smaller than
the size of the samples. However, the model ambient dimension p is allowed to grow
exponentially inn.

4. Condition 3 is crucial to be able to distinguish true elements in the neighborhood of a node.
We require that the size of the minimum element of the parameter vector stays bounded
away from zero.

5. The rate of convergence is dictated by the rate of convergence of the sample Fisher infor-
mation matrix to the true Fisher information matrix, as shown in Lemma 5.3. Using a local
linear smoother, instead of the kernel smoother, to estimate the coefficients in the model
(4.5) one could get a faster rate of convergence.

6. Theorem 5.1 provides sufficient conditions for reliable estimation of the sequence of graphs
when the sample size is large enough. In order to improve small sample properties of the
procedure, one could adapt the approach of [76] to the time-varying setting, to incorpo-
rate sharing between nodes. [76] estimate all the local neighborhoods simultaneously, as
opposed to estimating each neighborhood individually, effectively reducing the number of
parameters needed to be inferred from data. This is especially beneficial in networks with
prominent hubs and scale-free networks.

In order to obtain insight into the network dynamics one needs to estimate the graph structure
at multiple time points. A common choice is to estimate the graph structure for everyτ ∈ Tn and
obtain a sequence of graph structures{Ĝτ}τ∈Tn . We a have the following immediate consequence
of Theorem 5.1.
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Corollary 5.1. Under the assumptions of Theorem 5.1, we have that

P
[
∀τ ∈ Tn : Ĝτ (λn) = Gτ

]
n→∞−−−→ 1.

In the sequel, we set out to prove Theorem 5.1. First, we show that the minimizer̂θτ
u of (4.7) is

unique under the assumptions given in Theorem 5.1. Next, we show that with high probability the
estimatorθ̂τ

u recovers the true neighborhood of a nodeu. Repeating the procedure for all nodes
u ∈ V we obtain the result stated in Theorem 5.1. The proof uses theresults that the empirical
estimates of the Fisher information matrix and the covariance matrix are close elementwise to
their population versions.

5.3 Proof of the main result

In this section we give the proof of Theorem 5.1. The proof is given through a sequence of
technical lemmas. We build on the ideas developed in [151]. Note that in what follows, we use
C,C ′ andC ′′ to denote positive constants independent of(n, p, s) and their value my change
from line to line.

The main idea behind the proof is to characterize the minimumobtained in (4.7) and show
that the correct neighborhood of one node at an arbitrary time point can be recovered with high
probability. Next, using the union bound over the nodes of a graph, we can conclude that the
whole graph is estimated sparsistently at the time points ofinterest.

We first address the problem of uniqueness of the solution to (4.7). Note that because the
objective in (4.7) is not strictly convex, it is necessary toshow that the non-zero pattern of the
parameter vector is unique, since otherwise the problem of sparsistent graph estimation would
be meaningless. Under the conditions of Theorem 5.1 we have that the solution is unique. This
is shown in Lemma 5.1 and Lemma 5.2. Lemma 5.1 gives conditions under which two solutions
to the problem in (4.7) have the same pattern of non-zero elements. Lemma 5.2 then shows, that
with probability tending to1, the solution is unique. Once we have shown that the solutionto
the problem in (4.7) is unique, we proceed to show that it recovers the correct pattern of non-
zero elements. To show that, we require the sample version ofthe Fisher information matrix
to satisfy certain conditions. Under the assumptions of Theorem 5.1, Lemma 5.3 shows that
the sample version of the Fisher information matrix satisfies the same conditions as the true
Fisher information matrix, although with worse constants.Next we identify two events, related
to the Karush-Kuhn-Tucker optimality conditions, on whichthe vectorθ̂u recovers the correct
neighborhood the nodeu. This is shown in Proposition 5.1. Finally, Proposition 5.2shows that
the event, on which the neighborhood of the nodeu is correctly identified, occurs with probability
tending to1 under the assumptions of Theorem 5.1. Table 5.1 provides a summary of different
parts of the proof.

Let us denote the set of all solution to (4.7) asΘ(λn). We define the objective function in
(4.7) by

F (θu) := −
∑

t∈Tn
wτ

t γ(θu;x
t) + λn||θu||1 (5.1)
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Table 5.1: Outline of the proof strategy.

Result Description of the result

Lemma 5.1 and Lemma 5.2 These two lemmas establish the unique-
ness of the solution to the optimization
problem in (4.7).

Lemma 5.3 Shows that the sample version of the
Fisher information matrix satisfies the
similar conditions to the population ver-
sion of the Fisher information matrix.

Proposition 5.1 Shows that on an event, related to the
KKT conditions, the vector̂θu recovers
the correct neighborhood the nodeu.

Proposition 5.2 Shows that the event in Proposition 5.1
holds with probability tending to1.

and we say thatθu ∈ Rp−1 satisfies the system (S) when

∀v = 1, . . . , p− 1,

{ ∑
t∈Tn w

τ
t (∇γ(θu;x

t))v = λn sign(θuv) if θuv 6= 0
|∑t∈Tn w

τ
t (∇γ(θu;x

t))v| ≤ λn if θuv = 0,
(5.2)

where
∇γ(θu;x

t) = xt
\u
{
xt
u + 1− 2Pθu [x

t
u = 1|xt

\u]
}

(5.3)

is the score function. Eq. (5.2) is obtained by taking the sub-gradient ofF (θ) and equating it
to zero. From the Karush-Kuhn-Tucker (KKT) conditions it follows thatθu ∈ Rp−1 belongs
to Θ(λn) if and only if θu satisfies the system (S). The following Lemma shows that any two
solutions have the same non-zero pattern.
Lemma 5.1. Consider a nodeu ∈ V . If θu ∈ Rp−1 and θ̃u ∈ Rp−1 both belong toΘ(λn) then
〈xt

\u, θu〉 = 〈xt
\u, θ̃u〉, t ∈ Tn. Furthermore, solutionsθu and θ̃u have non-zero elements in the

same positions.
We now use the result of Lemma 5.1 to show that with high probability the minimizer in (4.7)

is unique. We consider the following event:

Ω01 = {Dmin − δ ≤ y′Σ̂τ
SSy ≤ Dmax + δ : y ∈ Rs, ||y||2 = 1}.

Lemma 5.2. Consider a nodeu ∈ V . Assume that the conditions of Lemma 5.6 are satisfied. As-
sume also that the dependency condition A1 holds. There are constantsC,C ′, C ′′ > 0 depending
onM andMK only, such that

P[Ω01] ≥ 1− 4 exp(−Cnh(
δ

s
− C ′h)2 + C ′′ log(s)).

Moreover, on the eventΩ01, the minimizer of(4.7) is unique.
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We have shown that the estimateθ̂τ
u is unique on the eventΩ01, which under the conditions

of Theorem 5.1 happens with probability converging to 1 exponentially fast. To finish the proof
of Theorem 5.1 we need to show that the estimateθ̂τ

u has the same non-zero pattern as the true
parameter vectorθτ

u. In order to show that we consider a few “good” events, which happen
with high probability and on which the estimatêθτ

u has the desired properties. We start by
characterizing the sample version of the Fisher information matrix, defined in (5.10). Consider
the following events:

Ω02 := {Cmin − δ ≤ y′Q̂τ
SSy : y ∈ Rs, ||y||2 = 1}

and
Ω03 := {|||Q̂τ

ScS(Q̂
τ
SS)

−1|||∞ ≤ 1− α

2
}.

Lemma 5.3. Assume that the conditions of Lemma 5.6 are satisfied. Assumealso that the depen-
dency condition A1 holds and the incoherence condition A2 holds with the incoherence parame-
ter α. There are constantsC,C ′, C ′′ > 0 depending onM , MK andα only, such that

P[Ω02] ≥ 1− 2 exp(−Cnhδ2

s2
+ C ′ log(s))

and

P[Ω03] ≥ 1− exp(−Cnh

s3
+ C ′′ log(p)).

Lemma 5.3 guarantees that the sample Fisher information matrix satisfies “good” properties
with high probability, under the appropriate scaling of quantitiesn, p, s andh.

We are now ready to analyze the optimum to the convex program (4.7). To that end we apply
the mean-value theorem coordinate-wise to the gradient of the weighted logloss

∑

t∈Tn
wτ

t∇γ(θu;x
t)

x and obtain
∑

t∈Tn
wτ

t (∇γ(θ̂τ
u;x

t)−∇γ(θτ
u;x

t)) = [
∑

t∈Tn
wτ

t∇2γ(θτ
u;x

t)](θ̂τ
u − θτ

u) +∆τ , (5.4)

where∆τ ∈ Rp−1 is the remainder term of the form

∆τ
v = [

∑

t∈Tn
wτ

t (∇2γ(θ
(v)

u ;xt)−∇2γ(θτ
u;x

t))]′v(θ̂
τ
u − θτ

u)

andθ
(v)

u is a point on the line betweenθτ
u andθ̂τ

u, and[·]′v denoting thev-th row of the matrix. Re-
call thatQ̂τ =

∑
t∈Tn w

τ
t∇2γ(θτ

u;x
t). Using the expansion (5.4), we write the KKT conditions

given in (5.2) in the following form,∀v = 1, . . . , p− 1,
{

Q̂τ
v(θu − θτ

u) +
∑

t∈Tn w
τ
t (∇γ(θτ

u;x
t))v +∆τ

v = λn sign(θuv) if θuv 6= 0

|Q̂τ
v(θu − θτ

u) +
∑

t∈Tn w
τ
t (∇γ(θτ

u;x
t))v +∆τ

v | ≤ λn if θuv = 0.
(5.5)
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We consider the following events

Ω0 = Ω01 ∩ Ω02 ∩ Ω03,

Ω1 = {∀v ∈ S : |λn((Q̂
τ
SS)

−1 sign(θτ
S))v − ((Q̂τ

SS)
−1Wτ

S)v| < |θτuv|}
and

Ω2 = {∀v ∈ Sc : |(Wτ
Sc − Q̂τ

ScS(Q̂
τ
SS)

−1Wτ
S)v| <

α

2
λn}

where
Wτ =

∑

t∈Tn
wτ

t∇γ(θτ
u;x

t) +∆τ .

We will work on the eventΩ0 on which the minimum eigenvalue of̂Qτ
SS is strictly positive and,

so,Q̂τ
SS is regular andΩ0 ∩ Ω1 andΩ0 ∩ Ω2 are well defined.

Proposition 5.1. Assume that the conditions of Lemma 5.3 are satisfied. The event

{∀θ̂τ
u ∈ Rp−1 solution of(S), we havesign(θ̂τ

u) = sign(θτ
u)} ∩ Ω0

contains eventΩ0 ∩ Ω1 ∩ Ω2.

Proof. We consider the following linear functional

G :

{
Rs → Rs

θ 7→ θ − θτ
S + (Q̂τ

SS)
−1Wτ

S − λn(Q̂
τ
SS)

−1 sign(θτ
S).

For any two vectorsy = (y1, . . . , ys)
′ ∈ Rs andr = (r1, . . . , rs)

′ ∈ Rs
+, define the following set

centered aty as

B(y, r) =
s∏

i=1

(yi − ri, yi + ri).

Now, we have

G (B(θτ
S, |θτ

S|)) = B
(
(Q̂τ

SS)
−1Wτ

S − λn(Q̂
τ
SS)

−1 sign(θτ
S), |θτ

S|
)
.

On the eventΩ0 ∩ Ω1,

0 ∈ B
(
(Q̂τ

SS)
−1Wτ

S − λn(Q̂
τ
SS)

−1 sign(θτ
S), |θτ

S|
)
,

which implies that there exists a vectorθ
τ

S ∈ B(θτ
S, |θτ

S|) such thatG(θ
τ

S) = 0. Forθ
τ

S it holds
thatθ

τ

S = θτ
S + λn(Q̂

τ
SS)

−1 sign(θτ
S)− (Q̂τ

SS)
−1Wτ

S and|θτ

S − θτ
S| < |θτ

S|. Thus, the vectorθ
τ

S

satisfies
sign(θ

τ

S) = sign(θτ
S)

and
Q̂SS(θ

τ

S − θτ
S) +Wτ

S = λn sign(θ
τ

S). (5.6)
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Next, we consider the vectorθ
τ
=

(
θ
τ

S

θ
τ

Sc

)
whereθ

τ

Sc is the null vector ofRp−1−s. On event

Ω0, from Lemma 5.3 we know that|||Q̂τ
ScS(Q̂

τ
SS)

−1|||∞ ≤ 1 − α
2
. Now, on the eventΩ0 ∩ Ω2 it

holds
||Q̂τ

ScS(θ
τ

S − θτ
S) +Wτ

Sc||∞ =

|| − Q̂τ
ScS(Q̂

τ
SS)

−1Wτ
S +Wτ

Sc + λnQ̂
τ
ScS(Q̂

τ
SS)

−1 sign(θ
τ

S)||∞ < λn.
(5.7)

Note that forθ
τ
, equations (5.6) and (5.7) are equivalent to saying thatθ

τ
satisfies conditions

(5.5) or (5.2), i.e., saying thatθ
τ

satisfies the KKT conditions. Sincesign(θ
τ

S) = sign(θτ
S), we

havesign(θ
τ
) = sign(θτ

u). Furthermore, because of the uniqueness of the solution to (4.7) on
the eventΩ0 , we conclude that̂θτ

u = θ
τ
.

Proposition 5.1 implies Theorem 5.1 if we manage to show thatthe eventΩ0∩Ω1∩Ω2 occurs
with high probability under the assumptions stated in Theorem 5.1. Proposition 5.2 characterizes
the probability of that event, which concludes the proof of Theorem 5.1.
Proposition 5.2. Assume that the conditions of Theorem 5.1 are satisfied. Thenthere are con-
stantsC,C ′ > 0 depending onM , MK , Dmax, Cmin andα only, such that the following holds:

P[Ω0 ∩ Ω1 ∩ Ω2] ≥ 1− 2 exp(−Cnh(λn − sh)2 + log(p)).

Proof. We start the proof of the proposition by giving a technical lemma, which characterizes
the distance between vectorsθ̂τ

u = θ
τ

andθτ
u under the assumptions of Theorem 5.1, whereθ

τ
is

constructed in the proof of Proposition 5.1. The following lemma gives a bound on the distance
between the vectorŝθτ

S andθτ
S, which we use in the proof of the proposition. The proof of the

lemma is given in Appendix.

Lemma 5.4. Assume that the conditions of Theorem 5.1 are satisfied. There are constants
C,C ′ > 0 depending onM,MK , Dmax, Cmin andα only, such that

||θ̂τ
S − θτ

S||2 ≤ C

√
s log p

n1/3
(5.8)

with probability at least1− exp(−C ′ log p).

Using Lemma 5.4 we can prove Proposition 5.2. We start by studying the probability of the
eventΩ2. We have

ΩC
2 ⊂ ∪v∈Sc{Wv + (Q̂τ

ScS(Q̂
τ
SS)

−1Wτ
S)v ≥

α

2
λn}.

Recall thatWτ =
∑

t∈Tn w
τ
t∇γ(θτ

u;x
t) +∆τ . Let us define the event

Ω3 = { max
1≤v≤p−1

|e′v
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)| < αλn

4(2− α)
},

whereev ∈ Rp−1 is a unit vector with one at the positionv and zeros elsewhere. From the proof
of Lemma 5.4 available in the appendix we have thatP[Ω3] ≥ 1− 2 exp(−C log(p)) and on that
event the bound given in (5.8) holds.
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On the eventΩ3, we bound the remainder term∆τ . Let g : R 7→ R be defined as

g(z) =
4 exp(2z)

(1 + exp(2z))2
.

Thenη(x; θu) = g(xu〈θu,x\u〉). Forv ∈ {1, . . . , p−1}, using the mean value theorem it follows
that

∆v = [
∑

t∈Tn
wτ

t (∇2γ(θ
(v)

u ;xt)−∇2γ(θτ
u;x

t))]′v(θ̂
τ
u − θτ

u)

=
∑

t∈Tn
wτ

t [η(x
t; θ

(v)

u )− η(xt; θτ
u)][x

t
\ux

t′

\u]
′
v[θ̂

τ
u − θτ

u]

=
∑

t∈Tn
wτ

t g
′(xt

u〈θ
(v)

u ,xt
\u〉)[xt

ux
t
\u]

′[θ
(v)

u − θτ
u][x

t
vx

t′

\u][θ̂
τ
u − θτ

u]

=
∑

t∈Tn
wτ

t {g′(xt
u〈θ

(v)

u ,xt
\u〉)xt

ux
t
v}{[θ

(v)

u − θτ
u]

′xt
\ux

t′

\u[θ̂
τ
u − θτ

u]},

whereθ
(v)

u is another point on the line joininĝθτ
u and θτ

u. A simple calculation shows that

|g′(xt
u〈θ

(v)

u ,xt
\u〉)xt

ux
t
v| ≤ 1, for all t ∈ Tn, so we have

|∆v| ≤ [θ
(v)

u − θτ
u]

′{
∑

t∈Tn
wτ

t x
t
\ux

t′

\u}[θ̂τ
u − θτ

u]

≤ [θ̂τ
u − θτ

u]
′{
∑

t∈Tn
wτ

t x
t
\ux

t′

\u}[θ̂τ
u − θτ

u]

= [θ̂τ
S − θτ

S]
′{
∑

t∈Tn
wτ

t x
t
Sx

t′

S}[θ̂τ
S − θτ

S]

≤ Dmax||θ̂τ
S − θτ

S||22.

(5.9)

Combining the equations (5.9) and (5.8), we have that on the eventΩ3

max
1≤v≤p−1

|∆v| ≤ Cλ2
ns <

λnα

4(2− α)

whereC is a constant depending onDmax andCmin only.
On the eventΩ0 ∩ Ω3, we have

W τ
v + (Q̂τ

ScS(Q̂
τ
SS)

−1Wτ
S)v <

αλn

2(2− α)
+ (1− α)

αλn

2(2− α)
≤ αλn

2

and we can conclude thatP[Ω2] ≥ 1 − 2 exp(−C log(p)) for some constantC depending on
M,MK , Cmin, Dmax andα only.

Next, we study the probability of the eventΩ1. We have

ΩC
1 ⊂ ∪v∈S{λn((Q̂

τ
SS)

−1 sign(θτ
S))v + ((Q̂τ

SS)
−1W τ

S )v ≥ θτuv}.
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Again, we will consider the eventΩ3. On the eventΩ0 ∩ Ω3 we have that

λn((Q̂
τ
SS)

−1 sign(θτ
S))v + ((Q̂τ

SS)
−1Wτ

S)v ≤
λn

√
s

Cmin
+

λn

2Cmin
≤ Cλn

√
s,

for some constantC. Whenθmin > Cλn

√
s, we have thatP[Ω1] ≥ 1 − 2 exp(−C log(p)) for

some constantC that depends onM,MK , Cmin, Dmax andα only.

In summary, under the assumptions of Theorem 5.1, the probability of eventΩ0 ∩ Ω1 ∩ Ω2

converges to one exponentially fast. On this event, we have shown that the estimator̂θτ
u is the

unique minimizer of (4.7) and that it consistently estimates the signed non-zero pattern of the true
parameter vectorθτ

u, i.e., it consistently estimates the neighborhood of a nodeu. Applying the
union bound over all nodesu ∈ V , we can conclude that the estimation procedure consistently
estimates the graph structure at a time pointτ .

5.4 Numerical simulation

In this section, we demonstrate numerical performance of Algorithm 1. A detailed comparison
with other estimation procedures and an application to biological data has been reported in [112].
We will use three different types of graph structures: a chain, a nearest-neighbor and a random
graph. Each graph hasp = 50 nodes and the maximum node degree is bounded bys = 4. These
graphs are detailed below:
Example 1: Chain graph. First a random permutationπ of {1, . . . , p} is chosen. Then a graph
structure is created by connecting consecutive nodes in thepermutation, that is,

(π(1), π(2)), . . . , (π(p− 1), π(p)) ∈ E.

Example 2: Nearest neighbor graph. A nearest neighbor graph if generated following the
procedure outlined in [119]. For each node, we draw a point uniformly at random on a unit
square and compute the pairwise distances between nodes. Each node is then connected to
4 closest neighbors. Since some of nodes will have more than 4adjacent edges, we remove
randomly edges from nodes that have degree larger than 4 until the maximum degree of a node
in a graph is 4.
Example 3: Random graph. To generate a random graph withe = 45 edges, we add each
edges one at a time, between random pairs of nodes that have the node degree less than 4.

We use the above described procedure to create the first random graphG̃0. Next, we ran-
domly add 10 edges and remove 10 edges fromG̃0, taking care that the maximum node degree
is still 4, to obtainG̃1. Repeat the process of adding and removing edges fromG̃1 to obtain
G̃2, . . . , G̃5. We refer to these 6 graphs as the anchor graphs. We will randomly generate the
prototype parameter vectors̃θ0, . . . , θ̃5, corresponding to the anchor graphs, and then interpo-
late200 points between them to obtain the parameters{θt}t∈Tn , which gives usn = 1000. We
generate a prototype parameter vectorθ̃i for each anchor graph̃Gi, i ∈ {0, . . . , 5}, by sampling
non-zero elements of the vector independently fromUnif([−1, 0.5] ∪ [0.5, 1]). Now, for each
t ∈ Tn we generate10 i.i.d. samples using Gibbs sampling from the distributionPθt. Specifi-
cally, we discard samples from the first104 iterations and collect samples every100 iterations.
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Table 5.2: Summary of simulation results. The number of nodes p = 50 and the number of discrete time
pointsn = 1000.

Number of independent samples
1 2 3 4 5 6 7 8 9 10

Precision
Chain 0.75 0.95 0.96 0.96 0.97 0.98 0.99 0.99 0.99 0.99
NN 0.84 0.98 0.97 0.96 0.98 0.98 0.98 0.98 0.97 0.98
Random 0.55 0.57 0.65 0.71 0.75 0.79 0.83 0.84 0.85 0.85

Recall
Chain 0.59 0.65 0.69 0.72 0.73 0.73 0.73 0.73 0.73 0.73
NN 0.48 0.57 0.61 0.63 0.63 0.64 0.64 0.64 0.65 0.65
Random 0.50 0.52 0.55 0.56 0.56 0.58 0.60 0.60 0.63 0.66

F1 score
Chain 0.66 0.76 0.80 0.82 0.83 0.84 0.84 0.84 0.85 0.84
NN 0.61 0.72 0.74 0.76 0.77 0.77 0.77 0.77 0.77 0.78
Random 0.52 0.54 0.60 0.63 0.64 0.67 0.70 0.70 0.72 0.74

We estimateĜt for eacht ∈ Tn usingk ∈ {1, . . . , 10} samples at each time point. The
results are expressed in terms of the precision(Pre) and the recall(Rec) andF1 score, which is
the harmonic mean of precision and recall, i.e.,F1 := 2 ∗ Pre ∗Rec/(Pre+ Rec). Let Êt denote
the estimated edge set ofĜt, then the precision is calculated asPre := 1/n

∑
t∈Tn |Êt∩Et|/|Êt|

and the recall asRec := 1/n
∑

t∈Tn |Êt ∩ Et|/|Et|. Furthermore, we report results averaged
over 100 independent runs. The tuning parameters are selected by maximizing the BIC score
over a grid of regularization parameters as described in§4.5. Table 5.2 contains a summary of
simulation results.

We perform an additional simulation that illustrates that the conditions of Theorem 5.1 can be
satisfied. We will use the random chain graph and the nearest neighbor graph for two simulation
settings. In each setting, we generate two anchor graphs with p nodes and create two prototype
parameter vectors, as described above. Then we interpolatethese two parameters overn points.
Theorem 5.1 predicts the scaling for the sample sizen, as a function of other parameters, required
to successfully recover the graph at a time pointτ . Therefore, if our theory correctly predicts
the behavior of the estimation procedure and we plot the hamming distance between the true
and recovered graph structure against appropriately rescaled sample size, we expect the curves
to reach zero distance for different problem sizes at a same point. The bandwidth parameterh is
set ash = 4.8n−1/3 and the penalty parameterλn asλn = 2

√
n−2/3 log(p) as suggested by the

theory. Figure 5.1 shows the hamming distance against the scaled sample sizen/(s4.5 log1.5(p)).
Each point is averaged over 100 independent runs.

5.5 Discussion

In the chapter, we focus on sparsistent estimation of the time-varying high-dimensional graph
structure in Markov Random Fields from a small size sample. An interesting open direction is
estimation of the graph structure from a general time-series, where observations are dependent.
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In our opinion, the graph structure that changes with time creates the biggest technical difficul-
ties. Incorporating dependent observations would be an easier problem to address, however, the
one of great practical importance, since samples in the realdata sets are likely to be dependent.
Another open direction is to establish necessary conditions, to complement sufficient conditions
established here, under which it is possible to estimate a time-varying graph structure. Another
research direction may be to use non-convex penalties introduced by [64] in place of theℓ1
penalty. The idea would be to relax the condition imposed in the assumption A2, since it is well
known that the SCAD penalties improve performance when the variables are correlated.

5.6 Technical results

5.6.1 Large deviation inequalities

In this section we characterize the deviation of elements ofthe sample Fisher information matrix
Q̂τ := Q̂τ

u at time pointτ , defined as

Q̂τ =
∑

t

wτ
t η(x

t; θτ
u)x

t
\ux

t′

\u, (5.10)

and the sample covariance matrixΣ̂τ from their population versionsQτ andΣτ . These results
are crucial for the proof of the main theorem, where the consistency result depends on the bounds
on the differencêQτ−Qτ andΣ̂τ−Στ . In the following, we useC,C ′ andC ′′ as generic positive
constants independent of(n, p, s).
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Figure 5.1: Average hamming distance plotted against the rescaled sample size. Each column represents
one simulation setting. Results are averaged over 100 independent runs.

54



Sample Fisher information matrix

To bound the deviation between elements ofQ̂τ = [q̂τvv′ ] andQτ = [qτvv′ ], v, v
′ ∈ V \u, we will

use the following decomposition:

|q̂τvv′ − qτvv′ | ≤ |
∑

t∈Tn
wτ

t η(x
t; θτ

u)x
t
vx

t
v′ −

∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ |

+ |
∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ − E[

∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ ]|

+ |E[
∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ ]− qτvv′ |.

(5.11)

The following lemma gives us bounds on the terms in (5.11).
Lemma 5.5. Assume that the smoothness condition A3 is satisfied and thatthe kernel function
K(·) satisfies A4. Furthermore, assume

max
t∈[0,1]

|{v ∈ {1, . . . , p} : θtuv 6= 0}| < s,

i.e., the number of non-zero elements of the parameter vector is bounded bys. There exist
constantsC,C ′, C ′′ > 0, depending onM andMK only, which are the constants quantifying
assumption A3 and A4, respectively , such that for anyτ ∈ [0, 1], we have

max
v,v′
|q̂τvv′ −

∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ | = Csh (5.12)

max
v,v′
|E[
∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ ]− qτvv′ | = C ′h. (5.13)

Furthermore,
|
∑

t∈Tn
(wτ

t η(x
t; θt

u)x
t
vx

t
v′ − E[wτ

t η(x
t; θt

u)X
t
vX

t
v′ ])| < ǫ (5.14)

with probability at least1− 2 exp(−C ′′nhǫ2).

Proof. We start the proof by bounding the difference|η(x; θt+δ
u )−η(x; θt

u)|which will be useful
later on. By applying the mean value theorem toη(x; ·) and the Taylor expansion onθt

u we
obtain:

|η(x; θt+δ
u )− η(x; θt

u)| = |
p−1∑

v=1

(θt+δ
uv − θtuv)η

′(x; θ
(v)

u )|
(

θ
(v)

u is a point on the line
betweenθt+δ

u andθt
u

)

≤
p−1∑

v=1

|θt+δ
uv − θtuv| ( |η′(x; ·)| ≤ 1 )

=

p−1∑

v=1

|δ ∂
∂t

θtuv +
δ2

2

∂2

∂t2
θtuv

∣∣∣
t=βv

|
(

βv is a point on the line
betweent andt+ δ

)
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Without loss of generality, letτ = 1. Using the above equation, and the Riemann integral to
approximate the sum, we have

|
∑

t∈Tn
wτ

t η(x
t; θτ

u)x
t
vx

t
v′ −

∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ |

≈ |
∫

2

h
K(

z − τ

h
)[η(xz; θτ

u)− η(xz; θz
u)]x

z
vx

z
v′dz|

≤ 2

∫ 0

− 1
h

K(z′)|η(xτ+z′h; θτ
u)− η(xτ+z′h; θτ+z′h

u )|dz′

≤ 2

∫ 0

−1

K(z′)[
p−1∑

v=1

|z′h ∂

∂t
θtuv

∣∣∣
t=τ

+
(z′h)2

2

∂2

∂t2
θtuv

∣∣∣
t=βv

|]dz′

≤ Csh,

for some constantC > 0 depending onM from A3 which bounds the derivatives in the equa-
tion above, andMK from A4 which bounds the kernel. The last inequality followsfrom the
assumption that the number of non-zero components of the vector θt

u is bounded bys.
Next, we prove equation (5.13). Using the Taylor expansion,for any fixed1 ≤ v, v′ ≤ p− 1

we have
|E[
∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ ]− qτvv′ |

= |
∑

t∈Tn
wτ

t (q
t
vv′ − qτvv′)|

= |
∑

t∈Tn
wτ

t ((t− τ)
∂

∂t
qtvv′
∣∣∣
t=τ

+
(t− τ)2

2

∂2

∂t2
qtvv′
∣∣∣
t=ξ
|,

whereξ ∈ [t, τ ]. Sincewτ
t = 0 for |t− τ | > h, we have

max
v,v′
|E[
∑

t∈Tn
wτ

t η(x
t; θt

u)x
t
vx

t
v′ ]− qτvv′ | ≤ C ′h

for some constantC > 0 depending onM andMK only.
Finally, we prove equation (5.14). Observe that

wτ
t η(x

t; θt
u)x

t
vx

t
v′

are independent and bounded random variables[−wτ
t , w

τ
t ]. The equation simply follows from

the Hoeffding’s inequality.

Using results of Lemma 5.5 we can obtain the rate at which the element-wise distance be-
tween the true and sample Fisher information matrix decays to zero as a function of the band-
width parameterh and the size of neighborhoods. In the proof of the main theorem, the band-
width parameter will be chosen so that the bias and variance terms are balanced.
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Sample covariance matrix

The deviation of the elements of the sample covariance matrix is bounded in a similar way as the
deviation of elements of the sample Fisher information matrix, given in Lemma 5.5. Denoting
the sample covariance matrix at time pointτ as

Σ̂τ =
∑

t

wτ
t x

txt′ ,

and the difference between the elements ofΣ̂τ andΣτ can be bounded as

|σ̂τ
uv − στ

uv| = |
∑

t∈Tn
wτ

t x
t
ux

t
v − στ

uv|

≤ |
∑

t∈Tn
wτ

t x
t
ux

t
v − E[

∑

t∈Tn
wτ

t x
t
ux

t
v]|

+ |E[
∑

t∈Tn
wτ

t x
t
ux

t
v]− στ

uv|.

(5.15)

The following lemma gives us bounds on the terms in (5.15).
Lemma 5.6. Assume that the smoothness condition A3 is satisfied and thatthe kernel function
K(·) satisfies A4. There are constantsC,C ′ > 0 depending onM andMK only such that for
anyτ ∈ [0, 1], we have

max
u,v
|E[
∑

t∈Tn
wτ

t x
t
ux

t
v]− στ

uv| ≤ Ch. (5.16)

and

|
∑

t∈Tn
wτ

t x
t
ux

t
v − E[

∑

t∈Tn
wτ

t x
t
ux

t
v]| ≤ ǫ (5.17)

with probability at least1− 2 exp(−C ′nhǫ2).

Proof. To obtain the Lemma, we follow the same proof strategy as in the proof of Lemma 5.5.
In particular, (5.16) is proved in the same way as (5.13) and (5.17) in the same way as (5.14).
The details of this derivation are omitted.

5.6.2 Proof of Lemma 5.1

The set of minimaΘ(λn) of a convex function is convex. So, for two distinct points ofminima,
θu andθ̃u, every point on the line connecting two points also belongs to minima, i.e.ξθu + (1−
ξ)θ̃u ∈ Θ(λn), for anyξ ∈ (0, 1). Letη = θu− θ̃u and now any point on the line can be written
asθ̃u + ξη. The value of the objective at any point of minima is constantand we have

F (θ̃u + ξη) = c, ξ ∈ (0, 1),
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wherec is some constant. By taking the derivative with respect toξ of F (θ̃u + ξη) we obtain

∑

t∈Tn
wτ

t

[
−xt

u +
exp(〈θ̃u + ξη,xt

\u〉)− exp(−〈θ̃u + ξη,xt
\u〉)

exp(〈θ̃u + ξη,xt
\u〉) + exp(−〈θ̃u + ξη,xt

\u〉)

]
〈η,xt

\u〉

+ λn

p−1∑

v=1

ηv sign(θ̃uv + ξηv) = 0.

(5.18)

On a small neighborhood ofξ the sign ofθ̃u + ξη is constant, for each componentv, since the
function θ̃u + ξη is continuous inξ. By taking the derivative with respect toξ of (5.18) and
noting that the last term is constant on a small neighborhoodof ξ we have

4
∑

t∈Tn
wτ

t 〈η,xt
\u〉2

exp(−2〈θ̃u + ξη,xt
\u〉)(

1 + exp(−2〈θ̃u + ξη,xt
\u〉)
)2 = 0.

This implies that〈η,xt
\u〉 = 0 for everyt ∈ Tn, which implies that〈xt

\u, θu〉 = 〈xt
\u, θ̃u〉, t ∈ Tn,

for any two solutionsθu andθ̃u. Sinceθu andθ̃u were two arbitrary elements ofΘ(λn) we can
conclude that〈xt

\u, θu〉, t ∈ Tn is constant for all elementsθu ∈ Θ(λn).
Next, we need to show that the conclusion from above implies that any two solutions have

non-zero elements in the same position. From equation (5.2), it follows that the set of non-zero
components of the solution is given by

S =

{
1 ≤ v ≤ p− 1 :

∣∣∣∣∣
∑

t∈Tn
wτ

t (∇γ(θu;x
t))v

∣∣∣∣∣ = λ

}
.

Using equation (5.3) we have that
∑

t∈Tn
wτ

t (∇γ(θτ
u;x

t))v =

∑

t∈Tn
wτ

t (x
t
\u{xt

u + 1− 2
exp(2xt

u〈θτ
u,x

t
\u〉)

exp(2xt
u〈θτ

u,x
τ
\u〉) + 1

})v,

which is constant across different elementsθu ∈ Θ(λn), since〈xt
\u, θu〉, t ∈ Tn is constant for

all θu ∈ Θ(λn). This implies that the set of non-zero components is the samefor all solutions.�

5.6.3 Proof of Lemma 5.2

Under the assumptions given in the Lemma, we can apply the result of Lemma 5.6. Lety ∈ Rs

be a unit norm minimal eigenvector of̂Στ
SS. We have

Λmin(Σ
τ
SS) = min

||x||2=1
x′Στ

SSx

= min
||x||2=1

{x′Σ̂τ
SSx+ x′(Στ

SS − Σ̂τ
SS)x }

≤ y′Σ̂τ
SSy + y′(Στ

SS − Σ̂τ
SS)y,
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which implies
Λmin(Σ̂

τ
SS) ≥ Dmin − |||(Στ

SS − Σ̂τ
SS)|||2.

LetΣτ = [στ
uv] andΣ̂τ = [σ̂τ

uv]. We have the following bound on the spectral norm

|||Στ
SS − Σ̂τ

SS|||2 ≤
(

s∑

u=1

s∑

v=1

(σ̂τ
uv − στ

uv)
2

)1/2

≤ δ,

with the probability at least1 − 2 exp(−Cnh( δ
s
− C ′h)2 + C ′′ log(s)), for some fixed constants

C,C ′, C ′′ > 0 depending onM andMK only.
Similarly, we have that

Λmax(Σ̂
τ
SS) ≤ Dmax + δ,

with probability at least1 − 2 exp(−Cnh( δ
s
− C ′h)2 + C ′′ log(s)), for some fixed constants

C,C ′, C ′′ > 0 depending onM andMK only.
From Lemma 5.1, we know that any two solutionsθu, θ̃u ∈ Θ(λn) of the optimization prob-

lem (4.7) have non-zero elements in the same position. So, for any two solutionsθu, θ̃u ∈ Θ(λn),
it holds

X\u(θu − θ̃u) = X\u,S(θu − θ̃u)S +X\u,Sc(θu − θ̃u)Sc = X\u,S(θu − θ̃u)S.

Furthermore, from Lemma 5.1 we know that the two solutions are in the kernel ofX\u,S. On the
eventΩ01, kernel ofX\u,S is {0}. Thus, the solution is unique onΩ01. �

5.6.4 Proof of Lemma 5.3

We first analyze the probability of the eventΩ02. Using the same argument to those in the proof
of Lemma 5.2, we obtain

Λmin(Q̂
τ
SS) ≥ Cmin − |||Qτ

SS − Q̂τ
SS|||2.

Next, using results of Lemma 5.5, we have the following bound

|||Qτ
SS − Q̂τ

SS|||2 ≤
(

s∑

u=1

s∑

v=1

(q̂τuv − qτuv)
2

)1/2

≤ δ, (5.19)

with probability at least1 − 2 exp(−C nhδ2

s2
+ 2 log(s)), for some fixed constantsC,C ′ > 0

depending onM andMK only.
Next, we deal with the eventΩ03. We are going to use the following decomposition

Q̂τ
ScS(Q̂

τ
SS)

−1 = Qτ
ScS[(Q̂

τ
SS)

−1 − (Qτ
SS)

−1]

+ [Q̂τ
ScS −Qτ

ScS](Q
τ
SS)

−1

+ [Q̂τ
ScS −Qτ

ScS][(Q̂
τ
SS)

−1 − (Qτ
SS)

−1]

+ Qτ
ScS(Q

τ
SS)

−1

= T1 + T2 + T3 + T4.
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Under the assumption A2, we have that|||T4|||∞ ≤ 1−α. The lemma follows if we prove that
for all the other terms we have||| · |||∞ ≤ α

6
. Using the submultiplicative property of the norm, we

have for the first term:

|||T1|||∞ ≤ |||Qτ
ScS (Q

τ
SS)

−1 |||∞|||Q̂τ
SS −Qτ

SS|||∞|||(Q̂τ
SS)

−1|||∞
≤ (1− α)|||Q̂τ

SS −Qτ
SS|||∞

√
s|||(Q̂τ

SS)
−1|||2.

(5.20)

Using (5.19), we can bound the term|||
(
Q̂τ

SS

)−1

|||2 ≤ C ′′, for some constant depending onCmin

only, with probability at least1− 2 exp(−C nh
s
+ 2 log(s)), for some fixed constantC > 0. The

bound on the term|||Q̂τ
SS −Qτ

SS|||∞ follows from application of Lemma 5.5. Observe that

P[|||Q̂τ
SS −Qτ

SS|||∞ ≥ δ] = P[max
v∈S
{
∑

v′∈S
|q̂τvv′ − qτvv′ |} ≥ δ]

≤ 2 exp(−Cnh(
δ

s
− C ′sh)2 + 2 log(s)),

(5.21)

for some fixed constantsC,C ′ > 0. Combining all the elements, we obtain the bound on the
first term|||T1|||∞ ≤ α

6
, with probability at least1−C exp(C ′ nh

s3
+C ′′ log(s)), for some constants

C,C ′, C ′′ > 0.
Next, we analyze the second term. We have that

|||T2|||∞ ≤ |||Q̂τ
ScS −Qτ

ScS|||∞
√
s||| (Qτ

SS)
−1 |||2

≤
√
s

Cmin
|||Q̂τ

ScS −Qτ
ScS|||∞.

(5.22)

The bound on the term|||Q̂τ
SS −Qτ

SS|||∞ follows in the same way as the bound in (5.21) and we
can conclude that|||T3|||∞ ≤ α

6
with probability at least1 − C exp(C ′ nh

s3
+ C ′′ log(p)), for some

constantsC,C ′, C ′′ > 0.
Finally, we bound the third termT3. We have the following decomposition

|||[Q̂τ
ScS −Qτ

ScS][(Q̂
τ
SS)

−1 − (Qτ
SS)

−1]|||∞
≤ |||Q̂τ

ScS −Qτ
ScS|||∞

√
s|||(Qτ

SS)
−1[Qτ

SS − Q̂τ
SS](Q̂

τ
SS)

−1|||2

≤
√
s

Cmin

|||Q̂τ
ScS −Qτ

ScS|||∞|||Qτ
SS − Q̂τ

SS|||2|||(Q̂τ
SS)

−1|||2.

Bounding the remaining terms as in equations (5.22), (5.21)and (5.20), we obtain that|||T3|||∞ ≤
α
6

with probability at least1− C exp(C ′ nh
s3

+ C ′′ log(p)).
Bound on the probability of eventΩ03 follows from combining the bounds on all terms.�

5.6.5 Proof of Lemma 5.4

To prove this Lemma, we use a technique of [154] applied to theproblem of consistency of the
penalized covariance matrix estimator. Let us define the following function

H :

{
Rp → R

D 7→ F (θτ
u +D)− F (θτ

u),
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where the functionF (·) is defined in equation (5.1). The functionH(·) takes the following form

H(D) =
∑

t∈Tn
wτ

t (γ(θ
τ
u;x

t)− γ(θτ
u +D;xt))

+ λn(||θτ
u +D||1 − ||θτ

u||1).

Recall the minimizer of (4.7) constructed in the proof of Proposition 5.1,θ̂τ
u = (θ

′
S, 0

′
Sc)′.

The minimizer of the functionH(·) is D̂ = θ̂τ
u − θτ

u. FunctionH(·) is convex andH(0) = 0 by
construction. ThereforH(D̂) ≤ 0. If we show that for some radiusB > 0, andD ∈ Rp with
||D||2 = B andDSc = 0, we haveH(D) > 0, then we claim that||D̂||2 ≤ B. This follows from
the convexity ofH(·).

We proceed to show strict positivity ofH(·) on the boundary of the ball with radiusB =
Kλn

√
s, whereK > 0 is a parameter to be chosen wisely later. LetD ∈ Rp be an arbitrary

vector with||D||2 = B andDSc = 0, then by the Taylor expansion ofγ(·;xt) we have

H(D) = −(
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t))′D

−D′[
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
\ux

t′

\u]D

+ λn(||θτ
u +D||1 − ||θτ

u||1)
= (I) + (II) + (III),

(5.23)

for someα ∈ [0, 1].
We start from the term(I). Let ev ∈ Rp be a unit vector with one at the positionv and

zeros elsewhere. Then random variables−e′v
∑

t∈Tn w
τ
t∇γ(θτ

u;x
t) are bounded[− C

nh
, C
nh
] for all

1 ≤ v ≤ p−1, with constantC > 0 depending onMK only. Using the Hoeffding inequality and
the union bound, we have

max
1≤v≤p−1

|e′v(
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)− E[
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)])| ≤ δ,

with probability at least1− 2 exp(−Cnhδ2 + log(p)), whereC > 0 is a constant depending on
MK only. Moreover, denoting

p(θt
u) = Pθt

u
[xt

u = 1 | xt
\u]

to simplify the notation, we have for all1 ≤ v ≤ p− 1,

|E[e′v
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t) | {xt
\u}t∈Tn ]|

= |E[
∑

t∈Tn
wτ

t x
t
v[x

t
u + 1− 2p(θτ

u)] | {xt
\u}t∈Tn ]|

= |2
∑

t∈Tn
wτ

t x
t
v[p(θ

t
u)− p(θτ

u)]|

≤ 4

∫ 0

− 1
h

K(z)|p(θτ+zh
u )− p(θτ

u)|dz.

(5.24)
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Next, we apply the mean value theorem onp(·) and the Taylor’s theorem onθt
u. Under the

assumption A3, we have

|p(θτ+zh
u )− p(θτ

u)|

≤
p−1∑

v=1

|θτ+zh
uv − θτuv| (| p′(·)| ≤ 1 )

=

p−1∑

v=1

|zh ∂

∂t
θtuv

∣∣∣
t=τ

+
(zh)2

2

∂2

∂t2
θtuv

∣∣∣
t=αv

| ( αv ∈ [τ + zh, τ ] )

≤ Cs|zh+
(zh)2

2
|,

(5.25)

for someC > 0 depending only onM . Combining (5.25) and (5.24) we have that

|E[e′v
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)| ≤ Csh

for all 1 ≤ v ≤ p− 1. Thus, with probability greater than

1− 2 exp(−Cnh(λn − sh)2 + log(p))

for some constantC > 0 depending only onMK ,M andα, which under the conditions of
Theorem 5.1 goes to 1 exponentially fast, we have

max
1≤v≤p−1

|e′v
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)| ≤ αλn

4(2− α)
<

λn

4
.

On that event, using Hölder’s inequality, we have

|(
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t))′D| ≤ ||D||1 max
1≤v≤p−1

|e′v
∑

t∈Tn
wτ

t∇γ(θτ
u;x

t)|

≤ λn

4

√
s||D||2 ≤ (λn

√
s)2

K

4
.

The triangle inequality applied to the term(III) of equation (5.23) yields:

λn(||θτ
u +D||1 − ||θτ

u||1) ≥ −λn||DS||1
≥ −λn

√
s||DS||2 ≥ −K(λn

√
s)2.

Finally, we bound the term(II) of equation (5.23). Observe that sinceDSc = 0, we have

D′[
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
\ux

t′

\u]D

= D′
S[
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
Sx

t′

S ]DS

≥ K2Λmin(
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
Sx

t′

S)
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Let g : R 7→ R be defined asg(z) = 4 exp(2z)
(1+exp(2z))2

. Now,η(x; θu) = g(xu〈θu,x\u〉) and we have

Λmin(
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
Sx

t′

S)

≥ min
α∈[0,1]

Λmin(
∑

t∈Tn
wtη(x

t; θτ
u + αD)xt

Sx
t′

S)

≥ Λmin(
∑

t∈Tn
wτ

t η(x
t; θτ

u)x
t
Sx

t′

S)

− max
α∈[0,1]

|||
∑

t∈Tn
wτ

t g
′(xt

u〈θτ
u + αD,xt

S〉)(xt
uD

′
Sx

t
S)x

t
Sx

t′

S |||2

≥ Cmin − max
α∈[0,1]

|||
∑

t∈Tn
wτ

t g
′(xt

u〈θτ
u + αD,xt

S〉)(xt
uD

′
Sx

t
S)x

t
Sx

t′

S |||2

To bound the spectral norm, we observe that for any fixedα ∈ [0, 1] andy ∈ Rs, ||y||2 = 1 we
have:

y′{
∑

t∈Tn
wτ

t g
′(xt

u〈θτ
u + αD,xt

S〉)(xt
uD

′
Sx

t
S)x

t
Sx

t′

S}y

=
∑

t∈Tn
wτ

t g
′(xt

u〈θτ
u + αD,xt

S〉)(xt
uD

′
Sx

t
S)(x

t′

Sy)
2

≤
∑

t∈Tn
wτ

t |g′(xt
u〈θτ

u + αD,xt
S〉)(xt

uD
′
Sx

t
S)|(xt′

Sy)
2

≤ √s||D||2|||
∑

t

wτ
t x

t
Sx

t′

S |||2 ( |g′(·)| ≤ 1 )

≤ DmaxKλns ≤
Cmin

2
.

The last inequality follows as long asλns ≤ Cmin

2DmaxK
. We have shown that

Λmin(
∑

t∈Tn
wτ

t η(x
t; θτ

u + αD)xt
Sx

t′

S) ≥
Cmin

2
,

with high probability.
Putting the bounds on the three terms together, we have

H(D) ≥ (λn

√
s)2
{
−1
4
K +

Cmin

2
K2 −K

}
,

which is strictly positive forK = 5
Cmin

. For this choice ofK, we have thatλns ≤ C2
min

10Dmax
, which

holds under the conditions of Theorem 5.1 forn large enough. �
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Chapter 6

Sparsistent Estimation Of Smoothly
Varying Gaussian Graphical Models

The time-varying multivariate Gaussian distribution and the undirected graph associated with it,
as introduced in [206], provide a useful statistical framework for modeling complex dynamic
networks. In many application domains, it is of high importance to estimate the graph struc-
ture of the model consistently for the purpose of scientific discovery. In this chapter, we show
that under suitable technical conditions, the structure ofthe undirected graphical model can be
consistently estimated in the high dimensional setting, when the dimensionality of the model
is allowed to diverge with the sample size. The model selection consistency is shown for the
procedure proposed in [206] and for the modified neighborhood selection procedure of [135].

6.1 Preliminaries

In this chapter, we study consistent graph structure estimation in a time-varying Gaussian graph-
ical model [206]. Let

xt ∼ N
(
0,Σt

)
, t ∈ Tn = {1/n, 2/n, . . . , 1} (6.1)

be an independent sequence ofp-dimensional observations distributed according to a multi-
variate Gaussian distribution whose covariance matrix changes smoothly over time. A graph
Gt = (V,Et) is associated with each observationxt and it represents the non-zero elements of
the precision matrixΩt = (Σt)−1 (recall thateab ∈ Et only if ωt

ab 6= 0). With changing pre-
cision matrixΩt, the associated graphs change as well, which allows for modelling of dynamic
networks. The model given in (6.1) can be thought of as a special case of the varying coefficient
models introduced in [96]. In particular, the model in (6.1), inherits flexibility and modelling
power from the class of nonparametric models, but at the sametime it retains interpretability of
parametric models. Indeed, there are no assumptions on the parametric form of the elements of
the covariance matrixΣt as a function of time.

Under the model (6.1), [206] studied the problem of the consistent recovery in the Frobenius
norm ofΩτ for someτ ∈ [0, 1], as well as the predictive performance of the fitted model. While
those results are very interesting and important in statistics, in many application areas, it is the
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graph structure that provides most insight into complex systems by allowing visualiziation of re-
lational structures and mechanisms that explain the data. For example, in computational biology,
a graph estimated from a gene expression microarray profile can reveal the topology of genetic
regulation circuitry, while in sociocultural analysis, a graph structure helps identify communities
and communication patterns among actors. Unfortunately, the consistent estimation of the graph
structure does not follow immediately from the consistent estimation of the precision matrixΩ.
We address the problem of the consistent graph structure recovery under the model (6.1). Our
work has applications in many disciplines, including computational biology and computational
finance, where the assumptions that the data are distributedi.i.d. are not satisfied. For example,
a gene regulatory network is assumed to change throughout the developmental process of the
organism, and a plausible way to model the longitudinal geneexpression levels is by using the
multivariate Gaussian distribution with a time-evolving structure.

The main contributions of the chapter include establishingsufficient conditions for the pe-
nalized likelihood procedure, proposed in [206], to estimate the graph structure consistently.
Furthermore, we modify the neighborhood selection procedure of [135] to estimate the graph
structure under the model (6.1) and provide sufficient conditions for the graph recovery.

6.2 Penalized likelihood estimation

In this section, we show that, under some technical conditions, the procedure proposed in [206]
is able to consistently estimate the set of non-zero elements of the precision matrixΩτ at a given
time pointτ ∈ [0, 1]. Under the model (6.1), an estimator of the precision matrixcan be obtained
by minimizing the following objective

Ω̂τ = argmin
Ω≻0

{
trΩΣ̂τ − log |Ω|+ λ||Ω−||1

}
, (6.2)

whereΩ− has off-diagonal elements equal to those ofΩ and diagonal elements equal to zero,
Σ̂τ =

∑
t∈Tn w

τ
t x

t(xt)′ is the weighted sample covariance matrix, with weights defined as

wτ
t =

Kh(t− τ)∑
t∈Tn Kh(t− τ)

, (6.3)

K : R 7→ R being the kernel function andKh(·) = K(·/h). Note that (6.2) extends the penalized
maximum likelihood estimation procedure given (2.6) for learning network structure from i.i.d.
data. The tuning parameterλ controls the number of non-zero pattern of the estimated precision
matrix, while the bandwidth parameterh controls the smoothness over time of the estimated
precision matrix and the effective sample size. These tuning parameters depend on the sample
sizen, but we will omit this dependence in our notation. In practice, the parameters are chosen
using standard model selection techniques in data dependent way, for example, using cross-
validation or Bayesian information criterion. The kernelK is taken such that the following set
of assumptions holds.

Assumption K: The kernelK : R 7→ R is symmetric, supported in[−1, 1] and there exists a
constantMK ≥ 1 which upper bounds the quantitiesmaxx∈R |K(x)| andmaxx∈R K(x)2.
For example, the assumptionK is satisfied by the box kernelK(x) = 1

2
1I{x ∈ [−1, 1]}.
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A similar estimator to the one given in (6.2) is analyzed in [206] and the convergence rate is
established for||Ω̂τ −Ωτ ||F . However, establishing that the estimated edge set

Êτ = {(a, b) | a 6= b, ω̂τ
ab 6= 0}

consistently estimates the true edge setEt = {(a, b) | a 6= b, ωt
ab 6= 0} is a harder problem,

which requires stronger conditions on the true model. Lets = maxi |Eti | denote the maximum
number of edges in a graph andd = maxt∈Tn maxa∈V |{b ∈ V | a 6= b, eab ∈ Et}| the maximum
node degree. In the remainder of this section, we provide sufficient conditions on(n, p, d, h, λ)
under which the estimator given by (6.2) recovers the graph structure with high probability. To
that end, we will use some of the results established in [152].

We start by imposing some assumptions on the true model. The first assumption assures that
the covariance matrix is not singular at any time point. Notethat if the population covariance
matrix was singular, the problem of recovering the true graph structure would be ill-defined,
since there would be no unique graph structure associated with the probability distribution.

Assumption C: There exist constantsΛmax,M∞ <∞ such that for allt ∈ Tn we have

1

Λmax
≤ Λmin(Σ

t) ≤ Λmax(Σ
t) ≤ Λmax and |||Σt|||∞,∞ ≤ M∞.

Furthermore, we assume thatστ
aa = 1 for all a ∈ V .

The next assumption captures the notion of the distributionchanging smoothly over time.
Assumption S:Let Σt = (σt

ab). There exists a constantMΣ > 0 such that

max
a,b

sup
τ∈[0,1]

|σ̇τ
ab| ≤MΣ, and

max
a,b

sup
τ∈[0,1]

|σ̈τ
ab| ≤MΣ,

whereσ̇t
ab andσ̈t

ab denote the first and second derivative with respect to time.
Assumptions similar toC andS are also imposed in [206] in order to show consistency in

the Frobenius norm. In particular, the rate of the convergence of ||Ω̂τ − Ωτ ||F depends on the
quantitiesΛmax,M∞ andMΣ. AssumptionScaptures our notion of a distribution that is smoothly
changing over time and together with assumptionC guarantees that the precision matrixΩt

changes smoothly over time as well. The common variance of the components is assumed for
presentation simplicity and can be obtained through scaling.

AssumptionsC andS are not enough to guarantee recovery of the non-zero patternof the
population precision matrixΩτ . From the previous work on variable selection in generalized
linear models (see, for example, [63], [151], [12]) we know that additional assumptions are
needed on the Fisher information matrix in order to guarantee consistent model identification. In
the case of the multivariate Gaussian distribution the Fisher information matrix at timeτ ∈ [0, 1]
is given as

Iτ = I(Ωτ ) = (Ωτ )−1 ⊗ (Ωτ )−1,

where⊗ denotes the Kronecker product. The elements of the Fisher information matrix can be
also expressed asIτ(a,b),(a′,b′) = Corr(Xτ

aX
τ
b , X

τ
a′X

τ
b′). Let S = Sτ = Eτ

⋃{(a, a)}a∈V be an
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index set of the non-zero elements ofΩτ andSC denotes its complement inV × V . Let IτSS
denote the|S| × |S| sub-matrix ofIτ indexed by elements ofS.

Assumption F: The sub-matrixISS is invertible. There exist constantsα ∈ (0, 1] andMI <
∞ such that

|||IτSCS(IτSS)−1|||∞,∞ ≤ 1− α and |||(IτSS)−1|||∞,∞ ≤ MI .

The assumptionF is identical to the assumptions made in [152]. We need to assume that it
holds only for the time point of interestτ at which the precision matrix is being estimated.

With these assumptions, we have the following result.
Theorem 6.1. Fix a time point of interestτ ∈ [0, 1]. Let {xt}t∈Tn be an independent sam-
ple according to the model(6.1). Under the assumptionsC, S, F and K there exists a con-
stantC > 0 depending only onΛmax,M∞,MΣ,MK ,MI andα for which the following holds.
Suppose that the weighted sample covariance matrixΣ̂τ is estimated using the kernel with the
bandwidth parameter satisfyingh = O

(
n−1/3

)
. If the penalty parameterλ in (6.2) scales as

λ = O
(
n−1/3

√
log p

)
and the sample size satisfiesn > Cd3(log p)3/2, then the minimizer̂Ωτ of

(6.2)defines the edge set̂Eτ which satisfies

P[Êτ 6= {(a, b) | a 6= b, |ωτ
ab| > ωmin}] = O(exp(−c log p))→ 0,

for some constantc > 0, with ωmin = Mωn
−1/3
√
log p andMω being a sufficiently large con-

stant.
The theorem states that all the non-zero elements of the population precision matrixΩτ ,

which are larger in absolute value thanωmin, will be identified. Note that if the elements of
the precision matrix are too small, then the estimation procedure is not able to distinguish them
from zero. Furthermore, the estimation procedure does not falsely include zero elements into the
estimated set of edges. The theorem guarantees consistent recovery of the set of sufficiently large
non-zero elements of the precision matrix at the time pointτ . In order to obtain insight into the
network dynamics, the graph corresponding toΩt needs to be estimated at multiple time points.
Due to the slow rate of convergence ofΩ̂t, it is sufficient to estimate a graph at each time point
t ∈ Tn.

Comparing Theorem 6.1 to the results on the static graph structure estimation [152], we can
observe a slower rate of convergence. The difference arisesfrom the fact that using the kernel
estimate, we effectively use only the sample that is “close”to the time pointτ . Using a local
linear smoother, instead of the kernel smoother to reduce the bias in the estimation, a better
dependence on the sample size could be obtained. Finally we note that, for simplicity and ease
of interpretation, Theorem 6.1 is stated without providingexplicit dependence of the rate of
convergence on the constants appearing in the assumptions.

6.2.1 Proof of Theorem 6.1

The proof of the theorem will be separated into several propositions to facilitate the exposition.
Technical lemmas and some proofs are deferred to the end of chapter. Our proof uses some ideas
introduced in [152].
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We start by introducing the following function

G(Ω) = trΩΣ̂τ − log |Ω|+ λ||Ω−||1, ∀Ω ≻ 0

and we say thatΩ ∈ Rp×p satisfies the system (S) when∀ a 6= b ∈ V × V ,

(Σ̂τ )ab − (Ω−1)ab = −λ sign((Ω−1)ab), if (Ω−1)ab 6= 0

|(Σ̂τ )ab − (Ω−1)ab| ≤ λ, if (Ω−1)ab = 0.
(6.4)

It is known thatΩ ∈ Rp×p is the minimizer of Equation (6.2) if and only if it satisfies the system
(S). SinceG(Ω) is strictly convex, the minimum, if attained, is unique. TheassumptionC
guarantees that the minimum is attained. Therefore, we do not have to worry about the possibility
of having severalΩ satisfying the system (S).

Recall that we use the setS to index the non-zero elements of the population precision matrix.
Without loss of generality we write

I =

(
ISS ISSC

ISCS ISCSC

)
, ~Σ =

(
~ΣS

~ΣSC

)
.

Let Ω = Ωτ + ∆. Using the first-order Taylor expansion of the functiong(X) = X−1 around
Ωτ we have

Ω−1 = (Ωτ )−1 − (Ωτ )−1∆(Ωτ )−1 +R(∆), (6.5)

whereR(∆) denotes the remainder term. We consider the following two events

E1 =
{
|(ISS)−1[(

~̂
Σ

τ

− ~Στ )−−−−→R(∆) + λ
−−→
sign(Ωτ )]S| < ω(n, p)

}

and

E2 =
{
|ISCS(ISS)−1[(~Στ − ~̂

Σ
τ

) +
−−−→
R(∆)]S + (

~̂
Σ

τ

− ~Στ )SC −−−−→R(∆)SC | < αλ
}
,

where, in both events, inequalities hold element-wise.
Proposition 6.1. Under the assumptions of Theorem 6.1, the event

{
Ω̂τ ∈ Rp×p minimizer of(6.2), sign(ω̂ab) = sign(ωτ

ab) for all |ωab| 6∈ (0, ωmin)
}

contains the eventE1
⋂ E2.

Proof. We start by manipulating the conditions given in (6.4). Using (6.5) and using the fact that
vec((Ωτ )−1∆(Ωτ )−1) = ((Ωτ )−1 ⊗ (Ωτ )−1) ~∆ = I ~∆, we can rewrite (6.4) in the equivalent
form

(I ~∆)S + (
~̂
Σ

τ

− ~Στ )S − (
−−−→
R(∆))S = −λ(−−→sign(Ω))S

|(I ~∆)SC + (
~̂
Σ

τ

− ~Στ )SC − (
−−−→
R(∆))SC | ≤ λ 1ISC ,

(6.6)

where1ISC is the vector of the form(1, 1, . . . , 1)′ and the equations hold element-wise. Now
consider the following linear functional,F : R|S| → R|S|,

θ 7→ θ − ~Ωτ
S + (ISS)−1

[
(
~̂
Σ

τ

− ~Στ )−−−−→R(∆)

]

S

+ λ(ISS)−1−−→sign(θ).
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For any two vectorsx = (x1, . . . , x|S|)′ ∈ R|S| andr = (r1, . . . , r|S|)′ ∈ R
|S|
+ , define the set

B(x, r) =
|S|∏

i=1

(xi − ri, xi + ri).

Now, we have

F (B(~Ωτ
S, ωmin)) = B

(
(ISS)−1[(

~̂
Σ

τ

− ~Στ )−−−−→R(∆)]S + λ(ISS)−1−−→sign(Ωτ
S), ωmin

)
= H.

On the eventE1, we have0 ∈ H and hence there exists~ΩS ∈ B(~Ωτ
S, ωmin) such thatF (~ΩS) = 0.

Thus we havesign(ωab) = sign(ωτ
ab) for all elements(a, b) ∈ S such that|ωτ

ab| > ωmin and

ISS ~∆S + (
~̂
Σ− ~Σ)S − (

−−−→
R(∆))S = −λ(−−→sign(Ω))S. (6.7)

Under the assumption on the Fisher information matrixF and on the eventE2 it holds

−λ 1ISC < ISCS
~∆S +

(
~̂
Σ

τ

− ~Στ

)

SC

−
(−−−→
R(∆)

)
SC

= ISCS(ISS)−1

[
(~Στ − ~̂

Σ
τ

) +
−−−→
R(∆)

]

S

+

(
~̂
Σ

τ

− ~Στ

)

SC

−
(−−−→
R(∆)

)
SC

+λISCS(ISS)−1(
−−→
sign

(
Ω)
)
S

< λ 1ISC .

(6.8)

Now, we consider the vector~Ω =

(
~
ΩS

~0SC

)
∈ Rp2. Note that forΩ, equations (6.7) and (6.8)

are equivalent to saying thatΩ satisfies conditions (6.6) or (6.4), that is, saying thatΩ satisfies
the system (S). We have thatsign(ωab) = sign(ωτ

ab) for all (a, b) such that|ωτ
ab| 6∈ (0, ωmin).

Furthermore the solution to (6.2) is unique.

Using Proposition 6.1, Theorem 6.1 follows if we show that eventsE1 andE2 occur with
high probability. The following two propositions state that the eventsE1 andE2 occur with high
probability.
Proposition 6.2. Under the assumptions of Theorem 6.1, there exist constantsC1, C2 > 0 de-
pending onΛmax, M∞, MΣ, MK , Mω, MI andα such thatP[E1] ≥ 1− C1 exp(−C2 log p).

Proof. We will perform analysis on the event

A =

{
||Σ̂τ −Στ ||∞ ≤

αλ

8

}
. (6.9)

Under the assumptions of the proposition, it follows from Lemma11 in [105] that

P[A] ≥ 1− C1 exp(−C2 log p).
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Also, under the assumptions of the proposition, Lemma can beapplied to conclude thatR(∆) ≤
αλ
8

. Let ej ∈ R|S| be a unit vector with1 at positionj and zeros elsewhere. On the eventA, it
holds that

max
1≤j≤|S|

|e′j(ISS)−1[(
~̂
Σ

τ

− ~Στ )−−−−→R(∆) + λ
−−→
sign(Ωτ )]S|

≤ |||(ISS)−1|||∞,∞
(
||( ~̂Σ

τ

− ~Στ )S||∞ + ||−−−→R(∆)S||∞ + λ||−−→sign(Ωτ
S)||∞

)

( using the Hölder’s inequality )

≤MI
4 + α

4
λ ≤ C

√
log p

n1/3
< ωmin = Mω

√
log p

n1/3
,

for a sufficiently large constantMω.

Proposition 6.3. Under the assumptions of Theorem 6.1, there existC1, C2 > 0 depending on
Λmax, M∞, MΣ, MK , MI andα such thatP[E2] ≥ 1− C1 exp(−C2 log p).

Proof. We will work on the eventA defined in (6.9). Under the assumptions of the proposition,
Lemma12 in [105] givesR(∆) ≤ αλ

8
. Let ej ∈ Rp2−|S| be a unit vector with1 at positionj and

zeros elsewhere. On the eventA, it holds that

max
1≤j≤(p2−|S|)

∣∣∣e′j
(
ISCS(ISS)−1[(~Στ − ~̂

Σ
τ

) +
−−−→
R(∆)]S + (

~̂
Σ

τ

− ~Στ )SC −−−−→R(∆)SC

)∣∣∣

≤ |||ISCS(ISS)−1|||∞,∞

(
||~Στ − ~̂

Σ
τ

||∞ + ||−−−→R(∆)||∞
)
+ || ~̂Σ

τ

− ~Στ ||∞ + ||−−−→R(∆)||∞

≤ (1− α)
αλ

4
+

αλ

4
≤ αλ,

which concludes the proof.

Theorem 6.1 follows from Propositions 6.1, 6.2 and 6.3.

6.3 Neighborhood selection estimation

In this section, we discuss the neighborhood selection approach to selection of non-zero elements
of the precision matrixΩτ under the model (6.1). The neighborhood selection procedure was
proposed in [135] as a way to estimate the graph structure associated to a GGM from an i.i.d.
sample. The method was applied to learn graph structure in more general settings as well (see, for
example, [76, 112, 146, 151]). As opposed to optimizing penalized likelihood, the neighborhood
selection method is based on optimizing penalized pseudo-likelihood on each node of the graph,
which results in local estimation of the graph structure. While the procedure is very scalable and
suitable for large problems, it does not result in consistent estimation of the precision matrix. On
the other hand, as we will show, the non-zero pattern of the elements of the precision matrix can
be recovered under weaker assumptions.

We start by describing the neighborhood selection method under the model (6.1). Here, we
modify As mentioned in the introduction, the elements of theprecision matrix are related to the
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partial correlation coefficients asρtab = −ωt
ab/
√
ωt
aaω

t
bb. A well known result [130] relates the

partial correlation coefficients to a regression model where a variableXa is regressed onto the
rest of variablesX\a,

Xa =
∑

b∈V \{a}
Xbθ

t
ab + ǫta, a ∈ V.

In the equation above,ǫta is independent ofX\a if and only if θtab = ρtab
√
ωt
aa/ω

t
bb. The relation-

ship between the elements of the precision matrix and the least square regression immediately
suggests the following estimator forθτ

\a = {θτab}b∈V \{a},

θ̂τ
\a = arg min

θ∈Rp−1

∑

t∈Tn
(xt

a −
∑

b6=a

xt
bθb)

2wτ
t + λ||θ||1, (6.10)

where the weightwτ
t are defined in (6.3). Note how (6.10) modifies the objective in(2.5) to

estimate changing neighborhoods. The estimatorθ̂τ
\a defines the neighborhood of the nodea ∈ V

at the time pointτ asŜτ
a = S(θ̂τ

\a). By estimating the neighborhood of each node and combining
them, the whole graph structure can be obtained. There are two natural ways to combine the
estimated neighborhoods, using the union,Êτ,∪ = {(a, b) | b ∈ Ŝτ

a ∨ a ∈ Ŝτ
b }, or intersection

of different neighborhoods,̂Eτ,∩ = {(a, b) | b ∈ Ŝτ
a ∧ a ∈ Ŝτ

b }. Asymptotically these two
approaches are equivalent and we will denote the resulting set of edges aŝEτ .

The consistency of the graph estimation for the neighborhood selection procedure will be
proven under similar assumptions to those of Theorem 6.1. However, the assumptionF can be
relaxed. LetS = Sτ

a = S(θτ
\a) denote the set of neighbors of the nodea. Using the index set

S, we writeΣτ
SS for the|S| × |S| submatrix ofΣτ whose rows and columns are indexed by the

elements ofS.
Assumption F̃ : There exist constantsγ ∈ (0, 1] such that

|||Στ
SCS(Σ

τ
SS)

−1|||∞,∞ ≤ 1− γ

for all a ∈ {1, . . . , p} (recall thatS = Sτ
a ).

The assumptioñF is known in the literature as the irrepresentable condition[135, 181, 190,
205]. It is known that it is sufficient and almost necessary condition for the consistent variable
selection in the Lasso setting. Compared to the assumptionF that was sufficient for the consistent
graph selection using penalized maximum likelihood estimator, the assumptioñF is weaker, see
for example, [134] and [152].

With these assumptions, we have the following result.
Theorem 6.2. Fix a time point of interestτ ∈ [0, 1]. Let {xt}t∈Tn be an independent sample
according to the model(6.1). Under the assumptionsC, S, F̃ and K there exists a constant
C > 0 depending only onΛmax,MΣ,MK and γ for which the following holds. Suppose that
the bandwidth parameter used in(6.10)satisfiesh = O

(
n−1/3

)
. If the penalty parameterλ in

(6.10)scales asλ = O
(
n−1/3

√
log p

)
and the sample size satisfiesn > Cd3/2(log p)3/2, then

the neighborhood selection procedure defines the edge setÊτ , by solving(6.10) for all a ∈ V ,
which satisfies

P[Êτ 6= {(a, b) | a 6= b, |θτab| > θmin}] = O(exp(−cn2/3(d log p)−1))→ 0,
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for some constantc > 0, with θmin = Mθn
−1/3
√
d log p andMθ being a sufficiently large con-

stant.
The theorem states that the neighborhood selection procedure can be used to estimate the

pattern of non-zero elements of the matrixΩτ that are sufficiently large, as defined byθmin and
the relationship betweenθτ

\a and the elements ofΩτ . Similarly to the procedure defined in§6.2,
in order to gain insight into the network dynamics, the graphstructure needs to be estimated at
multiple time points.

The advantage of the neighborhood selection procedure overthe penalized likelihood pro-
cedure is that it allows for very simple parallel implementation, since the neighborhood of each
node can be estimated independently. Furthermore, the assumptions under which the neighbor-
hood selection procedure consistently estimates the structure of the graph are weaker. Therefore,
since the network structure is important in many problems, it seems that the neighborhood se-
lection procedure should be the method of choice. However, in problems where the estimated
coefficients of the precision matrix are also of importance,the penalized likelihood approach
has the advantage over the neighborhood selection procedure. In order to estimate the precision
matrix using the neighborhood selection, one needs first to estimate the structure and then fit the
parameters subject to the structural constraints. However, it was pointed out by [17] that such
two step procedures are not stable.

6.3.1 Proof of Theorem 6.2

There has been a lot of work on the analysis of the Lasso and related procedure (see for example
[12, 16, 190, 205]). We will adapt some of the standard tools to prove our theorem. We will
prove that the estimator̂θτ

\a defined in (6.10) consistently defines the neighborhood of the node
a. Using the union bound over all the nodes in the graph, we willthen conclude the theorem.

Unlike the optimization problem (6.2), the problem defined in (6.10) is not strongly convex.
Let Θ̂ be the set of all minimizers of (6.10). To simplify the notation, we introducẽXa ∈ Rp−1

with components̃xt
a =
√
wτ

t x
t
a andX̃\a ∈ Rn×p−1 with rows equal tõxt

\a =
√
wτ

t x
t
\a. With this,

we say thatθ ∈ Rp−1 satisfies the system(T ) when for allb = 1, . . . , p− 1

2X̃′
b(X̃a − X̃\aθ) = −λ sign(θb) if θb 6= 0

|2X̃′
b(X̃a − X̃\aθ)| ≤ λ if θb = 0.

(6.11)

Furthermore,θ ∈ Θ̂ if and only if θ satisfies the system(T ). The following result from [12]
relates the two elements of̂Θ.
Lemma 6.1([12]). Letθ1 andθ2 be any two elements of̂Θ. ThenX̃\a(θ1 − θ2) = 0. Further-
more, all solutions have non-zero components in the same position.

The above lemma guarantees that even though the problem (6.10) is not strongly convex, all
the solutions will define the same neighborhood.

Recall thatS = Sa denotes the set of neighbors of the nodea. Without loss of generality, we
can write

Σ̂τ =

(
Σ̂τ

SS Σ̂τ
SSC

Σ̂τ
SCS Σ̂τ

SCSC

)
.
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We will consider the following two events

E3 =
{
|(2Σ̂τ

SS)
−1[2X̃′

SE− λ sign(θτ
S)]| < θmin

}

and
E4 =

{
|2Σ̂τ

SCS(Σ̂
τ
SS)

−1[X̃′
SE− λ sign(θτ

S)]− 2X̃′
SCE| < λ

}
, (6.12)

where, in both events, inequalities hold element-wise andE ∈ Rn is the noise term with elements
ei =

√
wτ

i (ǫ
i
a + (θi

\a − θτ
\a)

′xi). Note that the noise term is not centered and includes the bias

term. Using Lemma13 in [105], the matrixΣ̂τ
SS is invertible and the eventsE3 andE4 are well

defined.
We have an equivalent of proposition 6.1 for the neighborhood selection procedure.

Proposition 6.4. Under the assumptions of Theorem 6.2, the event
{
θ̂τ
\a ∈ Rp−1 minimizer of(6.10), sign(θ̂ab) = sign(θτab) for all |θab| 6∈ (0, θmin)

}

contains the eventE3
⋂ E4.

The theorem 6.2 will follow from Proposition 6.4, once we show that the eventE3
⋂ E4 occurs

with high-probability. The proof of Proposition 6.4 is based on the analysis of the conditions
given in (6.11) and, since it follows the same reasoning given in the proof of Proposition 6.1, the
proof is omitted.

The following two lemmas establish that the eventsE3 andE4 occur with high probability
under the assumptions of Theorem 6.2.
Lemma 6.2. Under the assumptions of Theorem 6.2, we have that

P[E3] ≥ 1− C1 exp(−C2
nh

d2 log d
)

with constantsC1 andC2 depending only onMK ,MΣ,Mθ andΛmax.

Proof. To prove the lemma, we will analyze the following three termsseparately,

T1 = λ(2Σ̂τ
SS)

−1 sign(θτ
\a),

T2 = (2Σ̂τ
SS)

−12X̃′
NE

1, and

T3 = (2Σ̂τ
SS)

−12X̃′
NE

2,

whereE = E1 + E2, E1 ∈ Rn has elementset,1 =
√
wτ

t ǫ
t
a andE2 ∈ Rn has elementset,2 =√

wτ
t (θ

t
\a − θτ

\a)
′xt. Using the above defined terms and the triangle inequality, we need to show

that|T1 + T2 + T3| ≤ |T1|+ |T2|+ |T3| < θmin.
Using Lemma13 in [105], we have the following chain of inequalities

||T1||∞ ≤ ||T1||2 ≤ 2λΛmax(Σ̂
−1
SS)2|| sign(θτ

\a)||2 ≤ C1λ
√
d

with probability at least1−C2 exp(−C3
nh

d2 log d
) andC1,C2 andC3 are some constants depending

onMK andΛmax.
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Next, we turn to the analysis ofT2. Conditioning onXN and using Lemma13 in [105], we
have that the components ofT2 are normally distributed with zero mean and variance bounded
byC1(nh)

−1, whereC1 depends onMK ,Λmax. Next, using Gaussian tail bounds, we have that

||T2||∞ ≤ C1

√
log d

nh

with probability at least1−C2 exp(−C3
nh

d2 log d
), whereC1 is a constant depending onMK , Λmax

andMΣ.
For the termT3, we have that

||T3||∞ ≤ ||T3||2 ≤ Λmax((Σ̂
τ
SS)

−1)||E2||2 ≤ 2Λmax||E2||2
where the last inequality follows from an application of Lemma 13 in [105] with probability
at least1 − C2 exp(−C3

nh
d2 log d

). Furthermore, elements ofE2 are normally distributed with
zero mean and varianceC1hn

−1. Hence, we can conclude that the termT3 is asymptotically
dominated byT2.

Combining all the terms, we have that|T1 + T2 + T3| ≤ Mθ

√
d log p
n1/3 = θmin with probability

at least1− C1 exp(−C2
nh

d2 log d
) for constantsC1, C2 and sufficiently largeMθ.

Lemma 6.3. Under the assumptions of Theorem 6.2, we have that

P[E4] ≥ 1− C1 exp(−C2
nh

d log p
)

with constantsC1 andC2 depending only onMK ,MΣ,Λmax andγ.

Proof. Only a proof sketch is provided here. We analyze the event defined in (6.12) by splitting
it into several terms. Observe that forb ∈ SC , we can write

xt
b = Στ

bS(Σ
τ
SS)

−1xt
S + [Σt

bS(Σ
t
SS)

−1 −Στ
bS(Σ

τ
SS)

−1]′xt
S + vtb

wherevtb ∼ N (0, (σt
b)

2) with σt
b ≤ 1. Let us denotẽVb ∈ Rn the vector with components

ṽtb =
√
wτ

t v
t
b. With this, we have the following decomposition of the components of the eventE4.

For all b ∈ Sc,

wb,1 = Στ
bS(Σ

τ
SS)

−1λ sign(θτ
S),

wb,2 = Ṽ′
b

[
(X̃S(Σ̂SS)

−1λ sign(θτ
S) + Π⊥

X̃S
(E1)

]
,

wb,3 = Ṽ′
bΠ

⊥
X̃S

(E2), and

wb,4 = F̃′
b

[
(X̃N(Σ̂SS)

−1λ sign(θτ
N) + Π⊥

X̃S
(E1 + E2)

]
,

whereΠ⊥
X̃S

is the projection operator defined asIp − X̃S(X̃
′
SX̃S)

−1X̃′
S, E1 andE2 are defined

in the proof of Lemma 6.2 and we have introducedF̃b ∈ Rn as the vector with components

f̃ t
b =

√
wτ

t [Σ
t
bS(Σ

t
SS)

−1 −Στ
bS(Σ

τ
SS)

−1]′xt
S.
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The lemma will follow using the triangle inequality if we show that

max
b∈NC

|wb,1|+ |wb,2|+ |wb,3|+ |wb,4| ≤ λ.

Under the assumptions of the lemma, it holds thatmaxb∈NC |wb,1| < (1− γ)λ.
Next, we deal with the termwb,2. We observe that conditioning onXS, we have thatwb,2

is normally distributed with variance that can be bounded combining results of Lemma13 in
[105] with the proof of Lemma 4 in [190]. Next, we use the Gaussian tail bound to conclude that
maxb∈NC |wb,2| < γλ/2 with probability at least1− exp(−C2nh(d log p)

−1).
An upper bound on the termwb,3 is obtained as followswb,3 ≤ ||Ṽb||2||Π⊥

X̃S
(E2)||2 and then

observing that the term is asymptotically dominated by the termwb,2. Using similar reasoning,
we also have thatwb,4 is asymptotically smaller thanwb,2.

Combining all the upper bounds, we obtain the desired result.

Now, Theorem 6.2 follows from Propositions 6.4, Lemma 6.2 and Lemma 6.3 and an appli-
cation of the union bound.

6.4 Discussion

In this chapter, we focus on consistent estimation of the graph structure in high-dimensional time-
varying multivariate Gaussian distributions, as introduced in [206]. The non-parametric estimate
of the sample covariance matrix used together with theℓ1 penalized log-likelihood estimation
produces a good estimate of the concentration matrix. Our contribution is the derivation of the
sufficient conditions under which the estimate consistently recovers the graph structure.

This work complements the earlier work on value consistent estimation of time-varying
Gaussian graphical models in [206] in that the main focus here is the consistent structure recov-
ery of the graph associated with the probability distribution at a fixed time point. Obtaining an
estimator that consistently recovers the structure is a harder problem than obtaining an estimator
that is only consistent in, say, Frobenius norm. However, the price for the correct model identi-
fication comes in much more strict assumptions on the underlying model. Note that we needed
to assume the “irrepresentable-like” condition on the Fisher information matrix (AssumptionF),
which is not needed in the work of [206]. In some problems, where we want to learn about the
nature of the process that generates the data, estimating the structure of the graph associated with
the distribution gives more insight into the nature than thevalues of the concentration matrix.
This is especially true in cases where the estimated graph issparse and easily interpretable by
domain experts.

Motivated by many real world problems coming from diverse areas such as biology and
finance, we extend the work of [152] which facilitates estimation under the assumption that the
underlying distribution does not change. We assume that thedistribution changes smoothly, an
assumption that is more valid, but could still be unrealistic in real life. In the next chapter, we
consider estimation of abrupt changes in the distribution and the graph structure.

Furthermore, we extend the neighborhood selection procedure as introduced in [135] to the
time-varying Gaussian graphical models. This is done in a straightforward way using ideas from
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the literature on the varying-coefficient models, where a kernel smoother is used to estimate
the model parameters that change over time in an unspecified way. We have shown that the
neighborhood selection procedure is a good alternative to the penalized log-likelihood estimation
procedure, as it requires less strict assumptions on the model. In particular, the assumptionF can
be relaxed toF̃ . We believe that our work provides important insights into the problem of
estimating structure of dynamic networks.
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Chapter 7

Time Varying Gaussian Graphical Models
With Jumps

In this chapter, we consider the scenario in which the model evolves in a piece-wise constant
fashion. We propose a procedure that estimates the structure of a graphical model by minimizing
the temporally smoothed L1 penalized regression, which allows jointly estimating the partition
boundaries of the model and the coefficient of the sparse precision matrix on each block of the
partition. A highly scalable proximal gradient method is proposed to solve the resultant convex
optimization problem; and the conditions for sparsistent estimation and the convergence rate of
both the partition boundaries and the network structure areestablished for the first time for such
estimators.

7.1 Introduction

In this chapter, we consider an estimation problem under a particular dynamic context, where the
model evolves piecewise constantly, i.e., staying structurally invariant during unknown segments
of time, and then jump to a different structure.

Approximately piecewise constantly evolving networks canbe found underlying many nat-
ural dynamic systems of intellectual and practical interest. For example, in a biological de-
velopmental system such as the fruit fly, the entire life cycle of the fly consists of 4 discrete
developmental stages, namely, embryo, larva, pupa, and adult; across the stages, one expect to
see dramatical rewiring of the regulatory network to realize very different regulation functions
due to different developmental needs, whereas within each stage, the change of the network
topology are expected to be relatively more mild as revealedby the smoother trajectories of the
gene expression activities, because a largely stable regulatory machinery is employed to control
stage-specific developmental processes. Such phenomena are not uncommon in social systems.
For example, in an underlying social network between the senators, even it is not visible to out-
siders, we would imagine the network structure being more stable between the elections but more
volatile when the campaigns start. Although it is legitimate to use a completely unconstrained
time-evolving network model to describe or analysis such systems, an approximately piecewise
constantly evolving network model is better at capturing the different amount of network dy-
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namics during different phases of a entire life cycle, and detecting boundaries between different
phases when desirable.

Let {xi}i∈[n] ∈ Rp be a sequence ofn independent observations from somep-dimensional
multivariate Gaussian distributions, not necessarily thesame for every observation. Let{Bj}j∈[B]

be a disjoint partitioning of the set[n] where each block of the partition consists of consecutive
elements, that is,Bj ∩Bj′ = ∅ for j 6= j′ and

⋃
j Bj = [n] andBj = [Tj−1 : Tj ] := {Tj−1, Tj−1+

1, . . . , Tj − 1}. Let T := {T0 = 1 < T1 < · · · < TB = n + 1} denote the set of partition
boundaries. We consider the following model

xi ∼ Np(0,Σ
j), i ∈ Bj , (7.1)

such that observations indexed by elements inBj arep-dimensional realizations of a multivariate
Gaussian distribution with zero mean and the covariance matrix Σj = (σj

ab)a,b∈[p], which suggest
that it is only unique to segmentj of the time series. LetΩj := (Σj)−1 denote the precision ma-
trix with elements(ωj

ab)a,b∈[p]. With the number of partitions,B, and the boundaries of partitions,
T , unknown, we study the problem of estimating both the partition set{Bj} and the non-zero
elements of the precision matrices{Ωj}j∈[B] from the sample{xi}i∈[n]. Note that in this work
we study a particular case, where the coefficients of the model are piece-wise constant functions
of time.

If the partitions{Bj}j were known, the problem would be trivially reduced to the setting
analyzed in the previous work. Dealing with the unknown partitions, together with the structure
estimation of the model, calls for new methods. We propose and analyze a method based on
time-coupled neighborhood selection, where the model estimates are forced to stay similar across
time using a fusion-type total variation penalty and the sparsity of each neighborhood is obtained
through theℓ1 penalty. Details of the approach are given in§7.2.

The model in (7.1) is related to the varying-coefficient models (for example, [96]) with the
coefficients being piece-wise constant functions. Varyingcoefficient regression models with
piece-wise constant coefficients are also known as segmented multivariate regression models
[121] or linear models with structural changes [15]. The structural changes are commonly de-
termined through hypothesis testing and a separate linear model is fit to each of the estimated
segments. In our work, we use the penalized model selection approach to jointly estimate the
partition boundaries and the model parameters.

The work presented in this chapter is very different from theone of [206] and§6, since under
our assumptions the network changes abruptly rather than smoothly. The work of [2] is most
similar to our setting, where they also use a fused-type penalty combined with anℓ1 penalty to
estimate the structure of the varying Ising model. Here, in addition to focusing on GGMs, there
is an additional subtle, but important, difference to [2]. In this chapter, we use a modification
of the fusion penalty (formally described in§7.2) which allows us to characterize the model
selection consistency of our estimates and the convergenceproperties of the estimated partition
boundaries, which is not available in the earlier work.
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7.2 Graph estimation via Temporal-Difference Lasso

In this section, we introduce our time-varying covariance selection procedure, which is based
on the time-coupled neighborhood selection using the fused-type penalty. We call the proposed
procedure Temporal-Difference Lasso (TD-Lasso).

We build on the neighbourhood selection procedure to estimate the changing graph structure
in model (7.1). We useSj

a to denote the neighborhood of the nodea on the blockBj andN j
a to

denote nodes not in the neighborhood of the nodea on thej-th block,N j
a = V \ Sj

a. Consider
the following estimation procedure

β̂a = argmin
β∈Rp−1×n

L(β) + penλ1,λ2
(β) (7.2)

where the loss is defined forβ = (βb,i)b∈[p−1],i∈[n] as

L(β) :=
∑

i∈[n]

(
xi,a −

∑

b∈\a
xi,bβb,i

)2

(7.3)

and the penalty is defined as

penλ1,λ2
(β) := 2λ1

n∑

i=2

||β·,i − β·,i−1||2 + 2λ2

n∑

i=1

∑

b∈\a
|βb,i|. (7.4)

The penalty term is constructed from two terms. The first termensures that the solution is going
to be piecewise constant for some partition of[n] (possibly a trivial one). The first term can
be seen as a sparsity inducing term in the temporal domain, since it penalizes the difference
between the coefficientsβ·,i andβ·,i+1 at successive time-points. The second term results in
estimates that have many zero coefficients within each blockof the partition. The estimated set
of partition boundaries

T̂ = {T̂0 = 1} ∪ {T̂j ∈ [2 : n] : β̂a
·,T̂j
6= β̂a

·,T̂j−1
} ∪ {T̂B̂ = n+ 1}

contains indices of points at which a change is estimated, with B̂ being an estimate of the number
of blocksB. The estimated number of the block̂B is controlled through the user defined penalty
parameterλ1, while the sparsity of the neighborhood is controlled through the penalty parameter
λ2.

Based on the estimated set of partition boundariesT̂ , we can define the neighborhood esti-
mate of the nodea for each estimated block. Let̂θa,j = β̂a

·,i, ∀i ∈ [T̂j−1 : T̂j ] be the estimated

coefficient vector for the block̂Bj = [T̂j−1 : T̂j ]. Using the estimated vector̂θa,j , we define the
neighborhood estimate of the nodea for the blockB̂j as

Ŝj
a := S(θ̂a,j) := {b ∈ \a : θ̂a,jb 6= 0}.

Solving (7.2) for each nodea ∈ V gives us a neighborhood estimate for each node. Combining
the neighborhood estimates we can obtain an estimate of the graph structure for each pointi ∈
[n].
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The choice of the penalty term is motivated by the work on penalization using total varia-
tion [131, 148], which results in a piece-wise constant approximation of an unknown regression
function. The fusion-penalty has also been applied in the context of multivariate linear regression
[177], where the coefficients that are spatially close, are also biased to have similar values. As
a result, nearby coefficients are fused to the same estimatedvalue. Instead of penalizing theℓ1
norm on the difference between coefficients, we use theℓ2 norm in order to enforce that all the
changes occur at the same point.

The objective (7.2) estimates the neighborhood of one node in a graph for all time-points.
After solving the objective (7.2) for all nodesa ∈ V , we need to combine them to obtain the
graph structure. We will use the following procedure to combine{β̂a}a∈V ,

Êi = {(a, b) : max(|βa
b,i|, |βb

a,i|) > 0}, i ∈ [n].

That is, an edge between nodesa andb is included in the graph if at least one of the nodesa or b
is included in the neighborhood of the other node. We use themax operator to combine different
neighborhoods as we believe that for the purpose of network exploration it is more important
to occasionally include spurious edges than to omit relevant ones. For further discussion on the
differences between the min and the max combination, we refer an interested reader to [19].

7.2.1 Numerical procedure

Finding a minimizerβ̂a of (7.2) can be a computationally challenging task for an off-the-shelf
convex optimization procedure. We propose to use an accelerated gradient method with a smooth-
ing technique [142], which converges inO(1/ǫ) iterations whereǫ is the desired accuracy.

We start by defining a smooth approximation of the fused penalty term. LetH ∈ Rn×n−1 be
a matrix with elements

Hij =




−1 if i = j
1 if i = j + 1
0 otherwise.

With the matrixH we can rewrite the fused penalty term as2λ1

∑n−1
i=1 ||(βH)·,i||2 and using the

fact that theℓ2 norm is self dual (e.g., see [26]) we have the following representation

2λ1

n∑

i=2

||β·,i − β·,i−1||2 = max
U∈Q
〈〈U, 2λ1βH〉〉

whereQ := {U ∈ Rp−1×n−1 : ||U·,i||2 ≤ 1, ∀i ∈ [n− 1]}. The following function is defined
as a smooth approximation to the fused penalty,

Ψµ(β) := max
U∈Q
〈〈U, 2λ1βH〉〉 − µ||U||2F (7.5)

whereµ > 0 is the smoothness parameter. It is easy to see that

Ψµ(β) ≤ Ψ0(β) ≤ Ψµ(β) + µ(n− 1).
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Setting the smoothness parameter toµ = ǫ
2(n−1)

, the correct rate of convergence is ensured. Let
Uµ(β) be the optimal solution of the maximization problem in (7.5), which can be obtained
analytically as

Uµ(β) = ΠQ

(
λβH

µ

)

whereΠQ(·) is the projection operator onto the setQ. From Theorem 1 in [142], we have that
Ψµ(β) is continuously differentiable and convex, with the gradient

∇Ψµ(β) = 2λ1Uµ(β)H
′

that is Lipschitz continuous.
With the above defined smooth approximation, we focus on minimizing the following objec-

tive
min

β∈Rp−1×n
F (β) := min

β∈Rp−1×n
L(β) + Ψµ(β) + 2λ2||β||1.

Following [11] (see also [141]), we define the following quadratic approximation ofF (β) at a
pointβ0

QL(β,β0) := L(β0) + Ψµ(β0) + 〈〈β − β0,∇L(β0) +∇Ψ(β0)〉〉

+
L

2
||β − β0||2F + 2λ2||β||1

whereL > 0 is the parameter chosen as an upper bounds for the Lipschitz constant of∇L+∇Ψ.
Let pL(β0) be a minimizer ofQL(β,β0). Ignoring constant terms,pL(β0) can be obtained as

pL(β0) = argmin
β∈Rp−1×n

1

2

∥∥∥∥β −
(
β0 −

1

L

(
∇L+∇Ψ

)
(β0)

)∥∥∥∥
2

F

+
2λ2

L

∥∥β
∥∥
1
.

It is clear thatpL(β0) is the unique minimizer, which can be obtained in a closed form, as a result
of the soft-thresholding,

pL(β0) = T

(
β0 −

1

L

(
∇L+∇Ψ

)
(β0),

2λ2

L

)
(7.6)

whereT (x, λ) = sign(x)max(0, |x|−λ) is the soft-thresholding operator that is applied element-
wise.

In practice, an upper bound on the Lipschitz constant of∇L + ∇Ψ can be expensive to
compute, so the parameterL is going to be determined iteratively. Combining all of the above, we
arrive at Algorithm 2. In the algorithm,β0 is set to zero or, if the optimization problem is solved
for a sequence of tuning parameters, it can be set to the solution β̂ obtained for the previous set of
tuning parameters. The parameterγ is a constant used to increase the estimate of the Lipschitz
constantL and we set it toγ = 1.5 in our experiments, whileL = 1 initially. Compared to
the gradient descent method (which can be obtain by iterating βk+1 = pL(βk)), the accelerated
gradient method updates two sequences{βk} and{zk} recursively. Instead of performing the
gradient step from the latest approximate solutionβk, the gradient step is performed from the
search pointzk that is obtained as a linear combination of the last two approximate solutions
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βk−1 andβk. Since the conditionF (pL(zk)) ≤ QL(pL(zk), zk) is satisfied in every iteration, we
have the algorithm converges inO(1/ǫ) iterations following [11]. As the convergence criterion,
we stop iterating once the relative change in the objective value is below some threshold value
(e.g., we use10−4).

7.2.2 Tuning parameter selection

The penalty parametersλ1 andλ2 control the complexity of the estimated model. In this work,
we propose to use the BIC score to select the tuning parameters. Define the BIC score for each
nodea ∈ V as

BICa(λ1, λ2) := log
L(β̂a)

n
+

logn

n

∑

j∈[B̂]

|S(θ̂a,j)|

whereL(·) is defined in (7.3) and̂βa = β̂a(λ1, λ2) is a solution of (7.2). The penalty parameters
can now be chosen as

{λ̂1, λ̂2} = argmin
λ1,λ2

∑

a∈V
BICa(λ1, λ2).

We will use the above formula to select the tuning parametersin our simulations, where we are
going to search for the best choice of parameters over a grid.

7.3 Theoretical results

This section is going to address the statistical propertiesof the estimation procedure presented in
Section 7.2. The properties are addressed in an asymptotic framework by letting the sample size

Input : X ∈ Rn×p, β0 ∈ Rp−1×n, γ > 1, L > 0, µ = ǫ
2(n−1)

Output : β̂a

Initialize k := 1, αk := 1, zk := β0

repeat
while F (pL(zk)) > QL(pL(zk), zk) do

L := γL

end

βk := pL(zk) (using Eq. (7.6))

αk+1 :=
1+

√
1+4αk

2

zk+1 := βk +
αk−1
αk+1

(
βk − βk−1

)

until convergence

β̂a := βk

Algorithm 2: Accelerated Gradient Method for Equation (7.2)
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n grow, while keeping the other parameters fixed. For the asymptotic framework to make sense,
we assume that there exists a fixed unknown sequence of numbers{τj} that defines the partition
boundaries asTj = ⌊nτj⌋, where⌊a⌋ denotes the largest integer smaller thata. This assures that
as the number of samples grow, the same fraction of samples falls into every partition. We call
{τj} the boundary fractions.

We give sufficient conditions under which the sequence{τj} is consistently estimated. In par-
ticular, if the number of partition blocks is estimated correctly, then we show thatmaxj∈[B] |T̂j −
Tj| ≤ nδn with probability tending to 1, where{δn}n is a non-increasing sequence of positive
numbers that tends to zero. If the number of partition segments is over estimated, then we show
that for a distance defined for two setsA andB as

h(A,B) := sup
b∈B

inf
a∈A
|a− b|, (7.7)

we haveh(T̂ , T ) ≤ nδn with probability tending to 1. With the boundary segments consis-
tently estimated, we further show that under suitable conditions for each nodea ∈ V the correct
neighborhood is selected on all estimated block partitionsthat are sufficiently large.

The proof technique employed in this section is quite involved, so we briefly describe the
steps used. Our analysis is based on careful inspection of the optimality conditions that a solu-
tion β̂a of the optimization problem (7.2) need to satisfy. The optimality conditions forβ̂a to be
a solution of (7.2) are given in§7.3.2. Using the optimality conditions, we establish the rate of
convergence for the partition boundaries. This is done by proof by contradiction. Suppose that
there is a solution with the partition boundarŷT that satisfiesh(T̂ , T ) ≥ nδn. Then we show
that, with high-probability, all such solutions will not satisfy the KKT conditions and therefore
cannot be optimal. This shows that all the solutions to the optimization problem (7.2) result in
partition boundaries that are “close” to the true partitionboundaries, with high-probability. Once
it is established that̂T andT satisfyh(T̂ , T ) ≤ nδn, we can further show that the neighbor-
hood estimates are consistently estimated, under the assumption that the estimated blocks of the
partition have enough samples. This part of the analysis follows the commonly used strategy to
prove that the Lasso is sparsistent (e.g., see [12, 135, 190]), however important modifications are
required due to the fact that position of the partition boundaries are being estimated.

Our analysis is going to focus on one nodea ∈ V and its neighborhood. However, using the
union bound over all nodes inV , we will be able to carry over conclusions to the whole graph.
To simplify our notation, when it is clear from the context, we will omit the superscripta and
write β̂, θ̂ andS, etc., to denotêβa, θ̂a andSa, etc.

7.3.1 Assumptions

Before presenting our theoretical results, we give some definitions and assumptions that are going
to be used in this section. Let∆min := minj∈[B] |Tj −Tj−1| denote the minimum length between
change points,ξmin := mina∈V minj∈[B−1] ||θa,j+1 − θa,j ||2 denote the minimum jump size and
θmin = mina∈V minj∈[B]minb∈Sj |θa,jb | the minimum coefficient size. Throughout the section, we
assume that the following holds.
A1 There exist two constantsφmin > 0 andφmax <∞ such that

φmin = min {Λmin(Σ
j) : j ∈ [B], a ∈ V }
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and

φmax = max {Λmax(Σ
j) : j ∈ [B], a ∈ V }.

A2 Variables are scaled so thatσj
aa = 1 for all j ∈ [B] and alla ∈ V .

The assumptionA1 is commonly used to ensure that the model is identifiable. If the popula-
tion covariance matrix is ill-conditioned, the question ofthe correct model identification if not
well defined, as a neighborhood of a node may not be uniquely defined. The assumptionA2 is
assumed for the simplicity of the presentation. The common variance can be obtained through
scaling.

A3 There exists a constantM > 0 such that

max
a∈V

max
j,k∈[B]

‖θa,k − θa,j‖2 ≤M.

The assumptionA3 states that the difference between coefficients on two different blocks,||θa,k−
θa,j ||2, is bounded for allj, k ∈ [B]. This assumption is simply satisfied if the coefficientsθa

were bounded in theℓ2 norm.

A4 There exist a constantα ∈ (0, 1], such that the following holds

max
j∈[B]
|||ΣNj

aS
j
a
(ΣSj

aS
j
a
)−1|||∞ ≤ 1− α, ∀a ∈ V.

The assumptionA4 states that the variables in the neighborhood of the nodea, Sj
a, are not too

correlated with the variables in the setN j
a . This assumption is necessary and sufficient for correct

identification of the relevant variables in the Lasso regression problems (e.g., see [181, 205]).
Note that this condition is sufficient also in our case when the correct partition boundaries are
not known.

A5 The minimum coefficient sizeθmin satisfiesθmin = Ω(
√

log(n)/n).

The lower bound on the minimum coefficient sizeθmin is necessary, since if a partial correlation
coefficient is too close to zero the edge in the graph would notbe detectable.

A6 The sequence of partition boundaries{Tj} satisfyTj = ⌊nτj⌋, where{τj} is a fixed, un-
known sequence of the boundary fractions belonging to[0, 1].

The assumption is needed for the asymptotic setting. Asn → ∞, there will be enough sample
points in each of the blocks to estimate the neighborhood of nodes correctly.

7.3.2 Convergence of the partition boundaries

In this subsection we establish the rate of convergence of the boundary partitions for the estima-
tor (7.2). We start by giving a lemma that characterizes solutions of the optimization problem
given in (7.2). Note that the optimization problem in (7.2) is convex, however, there may be
multiple solutions to it, since it is not strictly convex.
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Lemma 7.1. Let xi,a = x′
i,\aθa + ǫi. A matrixβ̂ is optimal for the optimization problem(7.2)

if and only if there exist a collection of subgradient vectors {ẑi}i∈[2:n] and{ŷi}i∈[n], with ẑi ∈
∂||β̂·,i − β̂·,i−1||2 andŷi ∈ ∂||β̂·,i||1, that satisfies

n∑

i=k

xi,\a〈xi,\a, β̂·,i − β·,i〉 −
n∑

i=k

xi,\aǫi + λ1ẑk + λ2

n∑

i=k

ŷi = 0 (7.8)

for all k ∈ [n] andẑ1 = ẑn+1 = 0.

The following theorem provides the convergence rate of the estimated boundaries of̂T , under
the assumption that the correct number of blocks is known.
Theorem 7.1.Let{xi}i∈[n] be a sequence of observation according to the model in(7.1). Assume
thatA1-A3 andA5-A6 hold. Suppose that the penalty parametersλ1 andλ2 satisfy

λ1 ≍ λ2 = O(
√

log(n)/n).

Let{β̂·,i}i∈[n] be any solution of(7.2)and letT̂ be the associated estimate of the block partition.
Let{δn}n≥1 be a non-increasing positive sequence that converges to zero asn→∞ and satisfies
∆min ≥ nδn for all n ≥ 1. Furthermore, suppose that(nδnξmin)

−1λ1 → 0, ξ−1
min

√
pλ2 → 0 and

(ξmin

√
nδn)

−1
√
p logn→ 0, then if|T̂ | = B + 1 the following holds

P[max
j∈[B]
|Tj − T̂j| ≤ nδn]

n→∞−−−→ 1.

The proof builds on techniques developed in [94] and is presented in§7.7.
Suppose thatδn = (log n)γ/n for someγ > 1 andξmin = Ω(

√
log n/(logn)γ), the con-

ditions of Theorem 7.1 are satisfied, and we have that the sequence of boundary fractions{τj}
is consistently estimated. Since the boundary fractions are consistently estimated, we will see
below that the estimated neighborhoodS(θ̂j) on the blockB̂j consistently recovers the true
neighborhoodSj.

Unfortunately, the correct bound on the number of blockB may not be known. However,
a conservative upper boundBmax on the number of blocksB may be known. Suppose that the
sequence of observation is over segmented, with the number of estimated blocks bounded by
Bmax. Then the following proposition gives an upper bound onh(T̂ , T ) whereh(·, ·) is defined
in (7.7).
Proposition 7.1. Let {xi}i∈[n] be a sequence of observation according to the model in(7.1).

Assume that the conditions of Theorem 7.1 are satisfied. Letβ̂ be a solution of(7.2) and T̂
the corresponding set of partition boundaries, witĥB blocks. If the number of blocks satisfy
B ≤ B̂ ≤ Bmax, then

P[h(T̂ , T ) ≤ nδn]
n→∞−−−→ 1.

The proof of the proposition follows the same ideas of Theorem 7.1 and its sketch is given in
the appendix.

The above proposition assures us that even if the number of blocks is overestimated, there
will be a partition boundary close to every true unknown partition boundary. In many cases it is
reasonable to assume that a practitioner would have an idea about the number of blocks that she
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Figure 7.1: The figure illustrates where we expect to estimate a neighborhood of a node consistently. The
blue region corresponds to the overlap between the true block (bounded by gray lines) and the estimated
block (bounded by black lines). If the blue region is much larger than the orange regions, the additional
bias introduced from the samples from the orange region willnot considerably affect the estimation of
the neighborhood of a node on the blue region. However, we cannot hope to consistently estimate the
neighborhood of a node on the orange region.

wishes to discover. In that way, our procedure can be used to explore and visualize the data. It is
still an open question to pick the tuning parameters in a datadependent way so that the number
of blocks are estimated consistently.

7.3.3 Correct neighborhood selection

In this section, we give a result on the consistency of the neighborhood estimation. We will
show that whenever the estimated blockB̂j is large enough, say|B̂j | ≥ rn where{rn}n≥1 is an
increasing sequence of numbers that satisfy(rnλ2)

−1λ1 → 0 andrnλ2
2 → ∞ asn → ∞, we

have thatS(θ̂j) = S(βk), whereβk is the true parameter on the true blockBk that overlaps
B̂j the most. Figure 7.1 illustrates this idea. The blue region in the figure denotes the overlap
between the true block and the estimated block of the partition. The orange region corresponds
to the overlap of the estimated block with a different true block. If the blue region is considerably
larger than the orange region, the bias coming from the sample from the orange region will not
be strong enough to disable us from selecting the correct neighborhood. On the other hand,
since the orange region is small, as seen from Theorem 7.1, there is little hope of estimating the
neighborhood correctly on that portion of the sample.

Suppose that we know that there is a solution to the optimization problem (7.2) with the
partition boundarŷT . Then that solution is also a minimizer of the following objective

min
θ1,...,θB̂

∑

j∈B̂

||XB̂j

a −XB̂j

\aθ
j ||22 + 2λ1

B̂∑

j=2

||θj − θj−1||2 + 2λ2

B̂∑

j=1

|B̂j|||θj||1. (7.9)

Note that the problem (7.9) does not give a practical way of solving (7.2), but will help us to
reason about the solutions of (7.2). In particular, while there may be multiple solutions to the
problem (7.2), under some conditions, we can characterize the sparsity pattern of any solution
that has specified partition boundariesT̂ .
Lemma 7.2. Let β̂ be a solution to(7.2), with T̂ being an associated estimate of the partition
boundaries. Suppose that the subgradient vectors satisfy|ŷi,b| < 1 for all b 6∈ S(β̂·,i), then any
other solutionβ̃ with the partition boundarieŝT satisfyβ̃b,i = 0 for all b 6∈ S(β̂·,i).
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The above Lemma states sufficient conditions under which thesparsity pattern of a solution
with the partition boundarŷT is unique. Note, however, that there may other solutions to (7.2)
that have different partition boundaries.

Now, we are ready to state the following theorem, which establishes that the correct neigh-
borhood is selected on every sufficiently large estimated block of the partition.
Theorem 7.2.Let{xi}i∈[n] be a sequence of observation according to the model in(7.1). Assume
that the conditions of theorem 7.1 are satisfied. In addition, suppose thatA4 also holds. Then, if
|T̂ | = B + 1, it holds that

P[Sk = S(θ̂k)]
n→∞−−−→ 1, ∀k ∈ [B].

Under the assumptions of theorem 7.1 each estimated block isof sizeO(n). As a result,
there are enough samples in each block to consistently estimate the underlying neighborhood
structure. Observe that the neighborhood is consistently estimated at eachi ∈ B̂j ∩ Bj for all
j ∈ [B] and the error is made only on the small fraction of samples, wheni 6∈ B̂j ∩ Bj , which is
of orderO(nδn).

Using proposition 7.1 in place of theorem 7.1, it can be similarly shown that, for a large frac-
tion of samples, the neighborhood is consistently estimated even in the case of over-segmentation.
In particular, whenever there is a sufficiently large estimated block, with|B̂k ∩ Bj | = O(rn), it
holds thatS(B̂k) = Sj with probability tending to one.

7.4 Alternative estimation procedures

In this section, we discuss some alternative estimation methods to the neighborhood selection
detailed in§7.2. We start describing how to solve the objective (7.2) fordifferent penalties than
the one given in (7.4). In particular, we describe how to minimize the objective when theℓ2 is
replaced with theℓq (q ∈ {1,∞}) norm in (7.4). Next, we describe how to solve the penalized
maximum likelihood objective with the temporal differencepenalty. We do not provide statistical
guarantees for solutions of these objective functions.

7.4.1 Neighborhood selection with modified penalty

We consider the optimization problem given in (7.2) with thefollowing penalty

penλ1,λ2
(β) := 2λ1

n∑

i=2

||β·,i − β·,i−1||q + 2λ2

n∑

i=1

∑

b∈\a
|βb,i|, q ∈ {1,∞}. (7.10)

We call the penalty in (7.10) the TDq penalty. As in§7.2.1, we apply the smoothing procedure
to the first term in (7.10). Using the dual norm representation, we have

2λ1

n∑

i=2

||β·,i − β·,i−1||q = max
U∈Qq

〈〈U, 2λ1βH〉〉
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where
Q1 := {U ∈ Rp−1×n−1 : ||U·,i||∞ ≤ 1, ∀i ∈ [n− 1]}

and
Q∞ := {U ∈ Rp−1×n−1 : ||U·,i||1 ≤ 1, ∀i ∈ [n− 1]}.

Next, we define smooth approximation to the norm as

Ψq
µ(β) := max

U∈Qq
〈〈U, 2λ1βH〉〉 − µ||U||2F (7.11)

whereµ > 0 is the smoothness parameter. Let

Uq
µ(β) = ΠQq

(
λβH

µ

)

be the optimal solution of the maximization problem in (7.11), whereΠQq(·) is the projection
operator onto the setQq. We observe that the projection on theℓ∞ unit ball can be easily obtained,
while a fast algorithm for projection on theℓ1 unit ball can be found in [20]. The gradient can
now be obtained as

∇Ψq
µ(β) = 2λ1U

q
µ(β)H

′,

and we can proceed as in§ 7.2.1 to arrive at the update (7.6).
We have described how to optimize (7.2) with the TDq penalty forq ∈ {1, 2,∞}. Otherℓq

norms are not commonly used in practice. We also note that a different procedure forq = 1 can
be found in [133].

7.4.2 Penalized maximum likelihood estimation

In §7.2, we have related the problem of estimating zero elementsof a precision matrix to a
penalized regression procedure. Now, we consider estimating a sparse precision matrix using
a penalized maximum likelihood approach. That is, we consider the following optimization
procedure

min
{Ωi≻0}i∈[n]

∑

i∈[n]
(trΩixix

′
i − log |Ωi|) + penλ1,λ2

({Ωt}t∈[n]) (7.12)

where

penλ1,λ2
({Ωi}i∈[n]) := 2λ1

n∑

i=2

||Ωi −Ωi−1||F + 2λ2

n∑

i=1

|Ωi|1.

In order to optimize (7.12) using the smoothing technique described in§7.2.1, we need to show
that the gradient of the log-likelihood is Lipschitz continuous. The following Lemma establishes
the desired result.
Lemma 7.3. The functionf(A) = trSA− log |A| has Lipschitz continuous gradient on the set
{A ∈ Sp : Λmin(A) ≥ γ}, with Lipschitz constantL = γ−2.

Following [19], we can show that a solution to the optimization problem (7.12), on each
estimated block, is indeed positive definite matrix with smallest eigenvalue bounded away from
zero. This allows us to use the Nesterov’s smoothing technique to solve (7.12).
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Penalized maximum likelihood approach for estimating sparse precision matrix was proposed
by [195]. Here, we have modified the penalty to perform estimation under the model (7.1). Al-
though the parameters of the precision matrix can be estimated consistently using the penalized
maximum likelihood approach, a number of theoretical results have shown that the neighbor-
hood selection procedure requires lest stringent assumptions in order to estimate the underlying
network consistently [135, 152]. We observe this phenomenain our simulation studies as well.

7.5 Numerical studies

In this section, we present a small numerical study on simulated networks. In all of our simula-
tions studies we setp = 30 andB = 3 with |B1| = 80, |B2| = 130 and|B3| = 90, so that in total
we haven = 300 samples. We consider two types of random networks: a chain and a nearest
neighbor network. We measure the performance of the estimation procedure outlined in§7.2 on
the following metrics: average precision of estimated edges, average recall of estimated edges
and averageF1 score which combines the precision and recall score. The precision, recall and
F1 score are respectively defined as

precision =
1

n

∑

i∈[n]

∑
a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}

∑
a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi}

recall =
1

n

∑

i∈[n]

∑
a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Êi ∧ (a, b) ∈ Ei}∑
a∈[p]

∑p
b=a+1 1I{(a, b) ∈ Ei}

F1 =
2 ∗ precision ∗ recall
precision+ recall

.

Furthermore, we report results on estimating the partitionboundaries usingn−1h(T̂ , T ), where
h(T̂ , T ) is defined in (7.7). Results are averaged over 50 simulation runs. We compare the TD-
Lasso algorithm introduced in§7.2.1 against an oracle algorithm which exactly knows the true
partition boundaries. In this case, it is only needed to run the algorithm of [135] on each block of
the partition independently. We use a BIC criterion to select the tuning parameter for this oracle
procedure as described in [146]. Furthermore, we report results using neighborhood selection
procedures introduced in§7.4, which are denoted TD1-Lasso and TD∞-Lasso, as well as the
penalized maximum likelihood procedure, which is denoted as LLmax. We choose the tuning
parameters for the penalized maximum likelihood procedureusing the BIC procedure.

Chain networks We follow the simulation in [67] to generate a chain network (see Figure 7.2).
This network corresponds to a tridiagonal precision matrix(after an appropriate permutation of
nodes). The network is generated as follows. First, we choose to generate a random permutation

Figure 7.2: A chain graph
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Figure 7.3: Plots of the precision, recall andF1 scores as functions of the penalty parametersλ1 andλ2

for chain networks estimated using the TD-Lasso. The parameterλ1 is obtained as100 ∗ 0.9850+i, where
i indexesy-axis. The parameterλ2 is computed as285 ∗ 0.98230+j , wherej indexesx-axis. Black dot
represents the selected tuning parameters. The white region of each plot corresponds to a region of the
parameter space that we did not explore.

π of [n]. Next, the covariance matrix is generated as follows: the element at position(a, b) is
chosen asσab = exp(−|tπ(a)−tπ(b)|/2) wheret1 < t2 < · · · < tp andti−ti−1 ∼ Unif(0.5, 1) for
i = 2, . . . , p. This processes is repeated three times to obtain three different covariance matrices,
from which we sample80, 130 and90 samples respectively.

For illustrative purposes, Figure 7.3 plots the precision,recall andF1 score computed for
different values of the penalty parametersλ1 andλ2. Table 7.1 shows the precision, recall and
F1 score for the parameters chosen using the BIC score described in 7.2.2, as well as the error in
estimating the partition boundaries. The numbers in parentheses correspond to standard devia-
tion. Due to the fact that there is some error in estimating the partition boundaries, we observe a
decrease in performance compared to the oracle procedure that knows the correct position of the
partition boundaries. Further, we observe that the neighborhood selection procedure estimate the
graph structure more accurately than the maximum likelihood procedure. For TD1-Lasso we do
not reportn−1h(T̂ , T ), as the procedure does not estimate the partition boundaries.

Nearest neighbors networks We generate nearest neighbor networks following the procedure
outlined in [119]. For each node, we draw a point uniformly atrandom on a unit square and com-
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Table 7.1: Performance of different procedures when estimating chain networks

Method name Precision Recall F1 score n−1h(T̂ , T )
TD-Lasso 0.84 (0.04) 0.80 (0.04) 0.82 (0.04) 0.03 (0.01)
TD1-Lasso 0.78 (0.05) 0.70 (0.03) 0.74 (0.04) N/A
TD∞-Lasso 0.83 (0.03) 0.80 (0.03) 0.81 (0.03) 0.03 (0.01)

LLmax 0.72 (0.03) 0.65 (0.03) 0.68 (0.04) 0.06 (0.02)
Oracle procedure 0.97 (0.02) 0.89 (0.02) 0.93 (0.02) 0 (0)

pute the pairwise distances between nodes. Each node is thenconnected to 4 closest neighbors
(see Figure 7.4). Since some of nodes will have more than 4 adjacent edges, we remove ran-
domly edges from nodes that have degree larger than 4 until the maximum degree of a node in a
network is 4. Each edge(a, b) in this network corresponds to a non-zero element in the precision
matrixΩ, whose value is generated uniformly on[−1,−0.5]∪ [0.5, 1]. The diagonal elements of
the precision matrix are set to a smallest positive number that makes the matrix positive definite.
Next, we scale the corresponding covariance matrixΣ = Ω−1 to have diagonal elements equal
to 1. This processes is repeated three times to obtain three different covariance matrices, from
which we sample80, 130 and90 samples respectively.

For illustrative purposes, Figure 7.5 plots the precision,recall andF1 score computed for
different values of the penalty parametersλ1 andλ2. Table 7.2 shows the precision, recall,
F1 score andn−1h(T̂ , T ) for the parameters chosen using the BIC score, together withtheir
standard deviations. The results obtained for nearest neighbor networks are qualitatively similar
to the results obtain for chain networks.

Figure 7.4: An instance of a random neighborhood graph with 30 nodes.
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Figure 7.5: Plots of the precision, recall andF1 scores as functions of the penalty parametersλ1 andλ2 for
nearest neighbor networks estimated using the TD-Lasso. The parameterλ1 is obtained as100∗0.9850+i ,
wherei indexesy-axis. The parameterλ2 is computed as285 ∗ 0.98230+j , wherej indexesx-axis. Black
dot represents the selected tuning parameters. The white region of each plot corresponds to a region of the
parameter space that we did not explore.

Table 7.2: Performance of different procedure when estimating random nearest neighbor networks

Method name Precision Recall F1 score n−1h(T̂ , T )
TD-Lasso 0.79 (0.06) 0.76 (0.05) 0.77 (0.05) 0.04 (0.02)
TD1-Lasso 0.70 (0.05) 0.68 (0.07) 0.69 (0.06) N/A
TD∞-Lasso 0.80 (0.06) 0.75 (0.06) 0.77 (0.06) 0.04 (0.02)

LLmax 0.62 (0.08) 0.60 (0.06) 0.61 (0.06) 0.06 (0.02)
Oracle procedure 0.87 (0.05) 0.82 (0.05) 0.84 (0.04) 0 (0)
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7.6 Discussion

We have addressed the problem of time-varying covariance selection when the underlying proba-
bility distribution changes abruptly at some unknown points in time. Using a penalized neighbor-
hood selection approach with the fused-type penalty, we areable to consistently estimate times
when the distribution changes and the network structure underlying the sample. The proof tech-
nique used to establish the convergence of the boundary fractions using the fused-type penalty
is novel and constitutes an important contribution of the chapter. Furthermore, our procedure
estimates the network structure consistently whenever there is a large overlap between the esti-
mated blocks and the unknown true blocks of samples coming from the same distribution. The
proof technique used to establish the consistency of the network structure builds on the proof
for consistency of the neighborhood selection procedure, however, important modifications are
necessary since the times of distribution changes are not known in advance. Applications of the
proposed approach range from cognitive neuroscience, where the problem is to identify changing
associations between different parts of a brain when presented with different stimuli, to system
biology studies, where the task is to identify changing patterns of interactions between genes
involved in different cellular processes. We conjecture that our estimation procedure is also valid
in the high-dimensional setting when the number of variables p is much larger than the sample
sizen. We leave the investigations of the rate of convergence in the high-dimensional setting for
a future work.

7.7 Technical Proofs

7.7.1 Proof of Lemma 7.1

For eachi ∈ [n], introduce a(p− 1)-dimensional vectorγi defined as

γi =

{
β·,i for i = 1
β·,i − β·,i−1 otherwise

and rewrite the objective (7.2) as

{γ̂i}i∈[n] = argmin
γ∈Rn×p−1

n∑

i=1

(
xi,a −

∑

b∈\a
xi,b

∑

j≤i

γj,b

)2

+ 2λ1

n∑

i=2

||γi||2 + 2λ2

n∑

i=1

∑

b∈\a

∣∣∣∣
∑

j≤i

γj,b

∣∣∣∣.
(7.13)

A necessary and sufficient condition for{γ̂i}i∈[n] to be a solution of (7.13), is that for eachk ∈ [n]
the(p− 1)-dimensional zero vector,0, belongs to the subdifferential of (7.13) with respect toγk

evaluated at{γ̂i}i∈[n], that is,

0 = 2
n∑

i=k

(−xi,\a)

(
xi,a −

∑

b∈\a
xi,bβ̂

a
b,i

)
+ 2λ1ẑk + 2λ2

n∑

i=k

ŷi, (7.14)
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whereẑk ∈ ∂|| · ||2(γ̂k), that is,

z̃k =

{
γ̃k

||γ̃k||2 if γ̃k 6= 0

∈ B2(0, 1) otherwise

and fork ≤ i, ŷi ∈ ∂|∑j≤i γ̂j |, that is,yi = sign(
∑

j≤i γ̂j) with sign(0) ∈ [−1, 1]. The Lemma
now simply follows from (7.14).

7.7.2 Proof of Theorem 7.1

We build on the ideas presented in the proof of Proposition 5 in [94]. Using the union bound,

P[max
j∈[B]
|Tj − T̂j | > nδn] ≤

∑

j∈[B]

P[|Tj − T̂j | > nδn]

and it is enough to show thatP[|Tj − T̃j | > nδn]→ 0 for all j ∈ [B]. Define the eventAn,j as

An,j :=
{
|Tj − T̂j| > nδn

}

and the eventCn as

Cn :=

{
max
j∈[B]
|T̂j − Tj| <

∆min

2

}
.

We show thatP[An,j] → 0 by showing that bothP[An,j ∩ Cn] → 0 andP[An,j ∩ Cc
n] → 0 as

n→∞. The idea here is that, in some sense, the eventCn is a good event on which the estimated
boundary partitions and the true boundary partitions are not too far from each other. Considering
the two cases will make the analysis simpler.

First, we show thatP[An,j ∩ Cn] → 0. Without loss of generality, we assume thatT̂j < Tj ,
since the other case follows using the same reasoning. Using(7.8) twice withk = T̂j and with
k = Tj and then applying the triangle inequality we have

2λ1 ≥
∣∣∣∣
∣∣∣∣
Tj−1∑

i=T̂j

xi,\a〈xi,\a, β̂·,i − β·,i〉 −
T̂j−1∑

i=T̂j

xi,\aǫi + λ2

Tj−1∑

i=T̂j

ŷi

∣∣∣∣
∣∣∣∣
2

. (7.15)

Some algebra on the above display gives

2λ1 + (Tj − T̂j)
√
pλ2 ≥

∣∣∣∣
∣∣∣∣
Tj−1∑

i=T̂j

xi,\a〈xi,\a, θ
j − θj+1〉

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣
Tj−1∑

i=T̂j

xi,\a〈xi,\a, θ
j+1 − θ̂j+1〉

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣
Tj−1∑

i=T̂j

xi,\aǫi

∣∣∣∣
∣∣∣∣
2

=: ||R1||2 − ||R2||2 − ||R3||2.

The above display occurs with probability one, so that the event {2λ1 + (Tj − T̂j)
√
pλ2 ≥

1
3
||R1||2} ∪ {||R2||2 ≥ 1

3
||R1||2} ∪ {||R3||2 ≥ 1

3
||R1||2} also occurs with probability one, which

gives us the following bound
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P[An,j ∩ Cn] ≤ P[An,j ∩ Cn ∩ {2λ1 + (Tj − T̂j)
√
pλ2 ≥

1

3
||R1||2}]

+ P[An,j ∩ Cn ∩ {||R2||2 ≥
1

3
||R1||2}]

+ P[An,j ∩ Cn ∩ {||R3||2 ≥
1

3
||R1||2}]

=: P[An,j,1] + P[An,j,2] + P[An,j,3].

First, we focus on the eventAn,j,1. Using lemma 7.6, we can upper boundP[An,j,1] with

P[2λ1 + (Tj − T̂j)
√
pλ2 ≥

φmin

27
(Tj − T̂j)ξmin] + 2 exp(−nδn/2 + 2 logn).

Since under the assumptions of the theorem(nδnξmin)
−1λ1 → 0 andξ−1

min

√
pλ2 → 0 asn→∞,

we have thatP[An,j,1]→ 0 asn→∞.
Next, we show that the probability of the eventAn,j,2 converges to zero. LetT j := ⌊2−1(Tj+

Tj+1)⌋. Observe that on the eventCn, T̂j+1 > T j so thatβ̂·,i = θ̂j+1 for all i ∈ [Tj , T j].
Using (7.8) withk = Tj andk = T j we have that

2λ1 + (T j − Tj)
√
pλ2 ≥

∣∣∣∣
∣∣∣∣
T j−1∑

i=Tj

xi,\a〈xi,\a, θ
j+1 − θ̂j+1〉

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣
T j−1∑

i=Tj

xi,\aǫi

∣∣∣∣
∣∣∣∣
2

.

Using lemma 7.6 on the display above we have

||θj+1 − θ̂j+1||2 ≤
36λ1 + 18(T j − Tj)

√
pλ2 + 18||∑T j−1

i=Tj
xi,\aǫi||2

(Tj+1 − Tj)φmin
, (7.16)

which holds with probability at least1 − 2 exp(−∆min/4 + 2 logn). We will use the above
bound to deal with the event{||R2||2 ≥ 1

3
||R1||2}. Using lemma 7.6, we have thatφmin(Tj −

T̂j)ξmin/9 ≤ ||R1||2 and ||R2||2 ≤ (Tj − T̂j)9φmax||θj+1 − θ̂j+1||2 with probability at least
1− 4 exp(−nδn/2+ 2 logn). Combining with (7.16), the probabilityP[An,j,2] is upper bounded
by

P[c1φ
2
minφ

−1
max∆minξmin ≤ λ1] + P[c2φ

2
minφ

−1
maxξmin ≤

√
pλ2]

+ P

[
c3φ

2
minφ

−1
maxξmin≤(T j−Tj)

−1

∣∣∣∣
∣∣∣∣
T j−1∑

i=Tj

xi,\aǫi

∣∣∣∣
∣∣∣∣
2

]
+c4 exp(−nδn/2+2 logn).

Under the conditions of the theorem, the first term above converges to zero, since∆min > nδn
and(nδnξmin)

−1λ1 → 0. The second term also converges to zero, sinceξ−1
min

√
pλ2 → 0. Using

lemma 7.5, the third term converges to zero with the rateexp(−c6 log n), since

(ξmin

√
∆min)

−1
√

p logn→ 0.

Combining all the bounds, we have thatP[An,j,2]→ 0 asn→∞.
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Finally, we upper bound the probability of the eventAn,j,3. As before,φmin(Tj− T̂j)ξmin/9 ≤
||R1||2 with probability at least1 − 2 exp(−nδn/2 + 2 logn). This gives us an upper bound on
P[An,j,3] as

P

[
φminξmin

27
≤
||∑Tj−1

i=T̂j
xi,\aǫi||2

Tj − T̂j

]
+ 2 exp(−nδn/2 + 2 logn),

which, using lemma 7.5, converges to zero as under the conditions of the theorem

(ξmin

√
nδn)

−1
√

p logn→ 0.

Thus we have shown thatP[An,j,3] → 0. Since the case when̂Tj > Tj is shown similarly, we
have proved thatP[An,j ∩ Cn]→ 0 asn→∞.

We proceed to show thatP[An,j ∩ Cc
n] → 0 asn → ∞. Recall thatCc

n = {maxj∈[B] |T̂j −
Tj | ≥ ∆min/2}. Define the following events

D(l)
n :=

{
∃j ∈ [B], T̂j ≤ Tj−1

}
∩ Cc

n,

D(m)
n :=

{
∀j ∈ [B], Tj−1 < T̂j < Tj+1

}
∩ Cc

n,

D(r)
n :=

{
∃j ∈ [B], T̂j ≥ Tj+1

}
∩ Cc

n

and writeP[An,j ∩ Cc
n] = P[An,j ∩D

(l)
n ] + P[An,j ∩D

(m)
n ] + P[An,j ∩D

(r)
n ]. First, consider the

eventAn,j ∩ D
(m)
n under the assumption that̂Tj ≤ Tj . Due to symmetry, the other case will

follow in a similar way. Observe that

P[An,j ∩D(m)
n ]

≤ P[An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n ]

+ P[{(Tj+1 − T̂j+1) ≥
∆min

2
} ∩D(m)

n ]

≤ P[An,j ∩ {(T̂j+1 − Tj) ≥
∆min

2
} ∩D(m)

n ]

+

B−1∑

k=j+1

P[{(Tk − T̂k) ≥
∆min

2
} ∩ {(T̂k+1 − Tk) ≥

∆min

2
} ∩D(m)

n ].

(7.17)

We bound the first term in (7.17) and note that the other terms can be bounded in the same
way. The following analysis is performed on the eventAn,j ∩ {(T̂j+1 − Tj) ≥ ∆min/2} ∩D

(m)
n .

Using (7.8) withk = T̂j andk = Tj, after some algebra (similar to the derivation of (7.15)) the
following holds

||θj − θ̂j+1||2 ≤
18λ1 + 9(Tj − T̂j)

√
pλ2 + 9||∑Tj−1

i=T̂j
xi,\aǫi||

φmin(Tj − T̂j)
,
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with probability at least1 − 2 exp(−nδn/2 + 2 logn), where we have used lemma 7.6. Let
T j = ⌊2−1(Tj + Tj+1)⌋. Using (7.8) withk = T j andk = Tj after some algebra (similar to the
derivation of (7.16)) we obtain the following bound

||θj − θj+1||2 ≤
18λ1 + 9(T j − Tj)

√
pλ2 + 9||∑T j−1

i=Tj
xi,\aǫi||2

φmin(T j − Tj)

+ 81φmaxφ
−1
min||θj − θ̂j+1||2,

which holds with probability at least1− c1 exp(−nδn/2 + 2 logn), where we have used lemma
7.6 twice. Combining the last two displays, we can upper bound the first term in (7.17) with

P[ξminnδn ≤ c1λ1] + P[ξmin ≤ c2
√
pλ2]

+ P[ξmin

√
nδn ≤ c3

√
p logn] + c4 exp(−c5 log n),

where we have used lemma 7.5 to obtain the third term. Under the conditions of the theorem, all
terms converge to zero. Reasoning similar about the other terms in (7.17), we can conclude that
P[An,j ∩D

(m)
n ]→ 0 asn→∞.

Next, we bound the probability of the eventAn,j ∩D
(l)
n , which is upper bounded by

P[D(l)
n ] ≤

B∑

j=1

2j−1P[max{l ∈ [B] : T̂l ≤ Tl−1} = j].

Observe that
{max{l ∈ [B] : T̂l ≤ Tl−1} = j}

⊆
B⋃

l=j

{Tj − T̂j ≥
∆min

2
} ∩ {T̂j+1 − Tj ≥

∆min

2
}

so that we have

P[D(l)
n ] ≤ 2B−1

B−1∑

j=1

∑

l>j

P[{Tl − T̂l ≥
∆min

2
} ∩ {T̂l+1 − Tl ≥

∆min

2
}].

Using the same arguments as those used to bound terms in (7.17), we have thatP[D(l)
n ] → 0 as

n→ ∞ under the conditions of the theorem. Similarly, we can show that the termP[D(r)
n ] → 0

asn→∞. Thus, we have shown thatP[An,j ∩ Cc
n]→ 0, which concludes the proof.

7.7.3 Proof of Lemma 7.2

ConsiderT̂ fixed. The lemma is a simple consequence of the duality theory, which states that
given the subdifferential̂yi (which is constant for alli ∈ B̂j , B̂j being an estimated block of
the partitionT̂ ), all solutions{β̌·,i}i∈[n] of (7.2) need to satisfy the complementary slackness
condition

∑
b∈\a ŷi,bβ̌b,i = ||β̌·,i||1, which holds only ifβ̌b,i = 0 for all b ∈ \a for which |ŷi,b| < 1.
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7.7.4 Proof of Theorem 7.2

Since the assumptions of theorem 7.1 are satisfied, we are going to work on the event

E := {max
j∈[B]
|T̂j − Tj | ≤ nδn}.

In this case,|B̂k| = O(n). For i ∈ B̂k, we write

xi,a =
∑

b∈Sj

xi,bθ
k
b + ei + ǫi

whereei =
∑

b∈S xi,b(βb,i − θkb ) is the bias. Observe that∀i ∈ B̂k ∩ Bk, the biasei = 0, while
for i 6∈ B̂k ∩ Bk, the biasei is normally distributed with variance bounded byM2φmax under the
assumptionA1 andA3.

We proceed to show thatS(θ̂k) ⊂ Sk. Sinceθ̂k is an optimal solution of (7.2), it needs to
satisfy

(XB̂k

\a )
′XB̂k

\a (θ̂
k − θk)− (XB̂k

\a )
′(eB̂

k

+ ǫB̂
k

)

+ λ1(ẑT̂k−1
− ẑT̂k

) + λ2|B̂k|ŷT̂k−1
= 0.

(7.18)

Now, we will construct the vectoršθk, žT̂k−1
, žT̂k

andy̌T̂k−1
that satisfy (7.18) and verify that the

subdifferential vectors are dual feasible. Consider the following restricted optimization problem

min
θ1,...,θB̂ ; θk

Nk=0

∑

j∈[B̂]

||XB̂j

a −XB̂j

\aθ
j ||22

+ 2λ1

B̂∑

j=2

||θj − θj−1||2 + 2λ2

B̂∑

j=1

|B̂j|||θj||1,
(7.19)

where the vectorθk
Nk is constrained to be0. Let{θ̌j}j∈[B̂] be a solution to the restricted optimiza-

tion problem (7.19). Set the subgradient vectors asžT̂k−1
∈ ∂||θ̌k − θ̌k−1||, žTk

∈ ∂||θ̌k+1 − θ̌k||
andy̌T̂k−1,Sk = sign(θ̌k

Sk). Solve (7.18) fořyT̂k−1,Nk . By construction, the vectoršθk, žT̂k−1
, žT̂k

andy̌T̂k−1
satisfy (7.18). Furthermore, the vectorsžT̂k−1

and žT̂k
are elements of the subdiffer-

ential, and hence dual feasible. To show thatθ̌k is also a solution to (7.9), we need to show that
||y̌T̂k−1,Nk ||∞ ≤ 1, that is, thaťyT̂k−1 is also dual feasible variable. Using lemma 7.2, if we show

that y̌T̂k−1,Nk is strict dual feasible,||y̌T̂k−1,Nk ||∞ < 1, then any other solution̂̌θ
k

to (7.9) will

satisfŷ̌θ
k

N = 0.
From (7.18) we can obtain an explicit formula forθ̌Sk

θ̌k
Sk = θk

Sk +
(
(XB̂k

Sk)
′XB̂k

Sk

)−1

(XB̂
Sk)

′(eB̂
k

+ ǫB̂
k

)

−
(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
λ1(žT̂k−1,Sk − žT̂k,Sk) + λ2|B̂k|y̌T̂k−1,Sk

)
.

(7.20)
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Recall that for large enoughn we have that|B̂| > p, so that the matrix(XB̂k

Sk)
′XB̂k

Sk is in-
vertible with probability one. Plugging (7.20) into (7.18), we have that||y̌T̂k−1,Nk ||∞ < 1 if
maxb∈Nk |Yb| < 1, whereYb is defined to be

Yb :=
(
XB̂k

b

)′ [
XB̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
y̌T̂k−1,Sk +

λ1(ẑT̂k−1,Sk − ẑT̂k,Sk)

|B̂k|λ2

)

+H
B̂k,⊥
Sk

(eB̂k
+ ǫB̂

k

|B̂k|λ2

)]
−

λ1(žT̂k−1,b
− žT̂k ,b

)

|B̂k|λ2

,

whereHB̂k,⊥
Sk is the projection matrix

H
B̂k,⊥
Sk = I−XB̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
XB̂k

Sk

)′
.

Let Σ̃k and ̂̃Σ
k

be defined as

Σ̃k =
1

|B̂k|
∑

i∈B̂k

E[xi
\a(x

i
\a)

′] and ̂̃
Σ

k

=
1

|B̂k|
∑

i∈B̂k

xi
\a(x

i
\a)

′.

For i ∈ [n], we letB(i) index the block to which the samplei belongs to. Now, for anyb ∈ Nk,
we can writexi

b = Σ
B(i)
bSk (Σ

B(i)
SkSk)

−1xi
Sk + wi

b wherewi
b is normally distributed with variance

σ2
b < 1 and independent ofxi

Sk . Let Fb ∈ R|B̂k| be the vector whose components are equal to

Σ
B(i)
bSk (Σ

B(i)
SkSk)

−1xi
Sk , i ∈ B̂k, andWb ∈ R|B̂k| be the vector with components equal towi

b. Using
this notation, we writeYb = T 1

b + T 2
b + T 3

b + T 4
b where

T 1
b = F′

bX
B̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
y̌T̂k−1

+
λ1(žT̂k−1,Sk − žT̂k,Sk)

|B̂k|λ2

)

T 2
b = F′

bH
B̂k,⊥
Sk

(eB̂k
+ ǫB̂

k

|B̂k|λ2

)

T 3
b =

(
W̃b

)′ [
XB̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
y̌T̂k−1

+
λ1(žT̂k−1,Sk − žT̂k,Sk)

|B̂k|λ2

)
+H

B̂k,⊥
Sk

(eB̂k
+ ǫB̂

k

|B̂k|λ2

)]
, and

T 4
b = −

λ1(žT̂k−1,b
− žT̂k ,b

)

|B̂k|λ2

.

We analyze each of the terms separately. Starting with the termT 1
b , after some algebra, we obtain

that
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F′
bX

B̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1

=
∑

j : B̂k∩Bj 6=∅

|Bj ∩ B̂k|
|B̂k|

Σ
j
bSk(Σ

j
SkSk)

−1(Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk)

(
̂̃
Σ

k

SkSk

)−1

+ Σ̃k
bSk((

̂̃
Σ

k

SkSk)−1 − (Σ̃k
SkSk)

−1)

+ Σ̃k
bSk(Σ̃

k
SkSk)

−1
.

(7.21)

Recall that we are working on the eventE , so that

|||Σ̃k
NkSk(Σ̃

k
SkSk)

−1|||∞ n→∞−−−→ |||Σk
NkSk(Σ

k
SkSk)

−1|||∞

and
(|B̂k|λ2)

−1λ1(žT̂k−1,Sk − žT̂k,Sk)
n→∞−−−→ 0

element-wise. Using (7.25) we bound the first two terms in theequation above. We bound the
first term by observing that for anyj and anyb ∈ Nk andn sufficiently large

|Bj ∩ B̂k|
|B̂k|

||Σj
bSk(Σ

j
SkSk)

−1(Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk)||∞

≤ |B
j ∩ B̂k|
|B̂k|

||Σj
bSk(Σ

j
SkSk)

−1||1||Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk ||∞

≤ C1
|Bj ∩ B̂k|
|B̂k|

||Σ̂Bj∩B̂k

SkSk −Σ
j
SkSk ||∞ ≤ ǫ1

with probability1− c1 exp(−c2 log n). Next, for anyb ∈ Nk we bound the second term as

||Σ̃k
bSk((

̂̃
Σ

k

SkSk)−1 − (Σ̃k
SkSk)

−1)||1

≤ C2||( ̂̃Σ
k

SkSk)−1 − (Σ̃k
SkSk)

−1)||F

≤ C2||Σ̃k
SkSk ||2F ||

̂̃
Σ

k

SkSk − Σ̃k
SkSk ||F +O(|| ̂̃Σ

k

SkSk − Σ̃k
SkSk ||2F )

≤ ǫ2

with probability1− c1 exp(−c2 log n). Choosingǫ1, ǫ2 sufficiently small and forn large enough,
we have thatmaxb |T 1

b | ≤ 1− α + op(1) under the assumptionA4.
We proceed with the termT 2

b , which can be written as

T 2
b = (|B̂k|λ2)

−1

(
Σk

bSk

(
Σk

SkSk

)−1 − F′
bX

B̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1
) ∑

i∈Bk∩B̂k

xi
Skǫ

i

+ (|B̂k|λ2)
−1
∑

i 6∈Bk∩B̂k

(
Σ

B(i)
bSk

(
Σ

B(i)
SkSk

)−1

−F′
bX

B̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1
)
xi
Sk(e

i+ǫi).
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Since we are working on the eventE the second term in the above equation is dominated by the
first term. Next, using (7.21) together with (7.25), we have that for allb ∈ Nk

||Σk
bSk

(
Σk

SkSk

)−1 − F′
bX

B̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1

||2 = op(1).

Combining with Lemma 7.5, we have that under the assumptionsof the theorem

max
b
|T 2

b | = op(1).

We deal with the termT 3
b by conditioning onXB̂k

Sk andǫB̂
k
, we have thatWb is independent

of the terms in the squared bracket inT 3
b , since alľzT̂k−1,S

, žT̂k,S
andŷT̂k−1,S

are determined from
the solution to the restricted optimization problem. To bound the second term, we observe that
conditional onXB̂k

Sk andǫB̂
k
, the variance ofT 3

b can be bounded as

Var(T 3
b ) ≤ ||XB̂k

Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1

η̌Sk +H
B̂k,⊥
Sk

(eB̂k
+ ǫB̂

k

|B̂k|λ2

)
||22

≤ η̌′Sk

(
(XB̂k

Sk)
′XB̂k

Sk

)−1

η̌Sk +
∥∥∥e

B̂k
+ ǫB̂

k

|B̂k|λ2

∥∥∥
2

2
,

(7.22)

where

η̌Sk =
(
y̌T̂k−1,Sk +

λ1(žT̂k−1,Sk − žT̂k,S
)

|B̂|λ2

)
.

Using lemma 7.6 and Young’s inequality, the first term in (7.22) is upper bounded by

18

|B̂|φmin

(
s+

2λ2
1

|B̂|2λ2
2

)

with probability at least1− 2 exp(−|B̂k|/2+2 logn). Using lemma 7.4 we have that the second
term is upper bounded by

(1 + δ′)(1 +M2φmax)

|B̂|λ2
2

with probability at least1 − exp(−c1|B̂k|δ′2 + 2 logn). Combining the two bounds, we have
thatVar(T 3

b ) ≤ c1s(|B̂k|)−1 with high probability, using the fact that(|B̂k|λ2)
−1λ1 → 0 and

|B̂k|λ2 → ∞ asn → ∞. Using the bound on the variance of the termT 3
b and the Gaussian tail

bound, we have that
max
b∈N
|T 3

b | = op(1).

Combining the results, we have thatmaxb∈Nk |Yb| ≤ 1 − α + op(1). For a sufficiently large
n, under the conditions of the theorem, we have shown thatmaxb∈N |Yb| < 1 which implies that
P[S(θ̂k) ⊂ Sk]

n→∞−−−→ 1.
Next, we proceed to show thatP[Sk ⊂ S(θ̂k)]

n→∞−−−→ 1. Observe that

P[Sk 6⊂ S(θ̂k)] ≤ P[||θ̂k
Sk − θk

Sk ||∞ ≥ θmin].

103



From (7.18) we have that||θ̂k
Sk − θk

Sk ||∞ is upper bounded by
∣∣∣∣
∣∣∣∣

(
1

|B̂k|
(XB̂k

Sk)
′XB̂k

Sk

)−1
1

|B̂k|
(XB̂k

Sk)
′(ẽB̂

k

+ ǫB̂
k

)

∣∣∣∣
∣∣∣∣
∞

+

∣∣∣∣
∣∣∣∣
(
(XB̂k

Sk)
′XB̂k

Sk

)−1 (
λ1(žT̂k−1,Sk − žT̂k,Sk)− λ2|B̂B̂k |y̌T̂k−1,Sk

) ∣∣∣∣
∣∣∣∣
∞
.

Sinceẽi 6= 0 only on i ∈ B̂k \ Bk andnδn/|B̂k| → 0, the term involving̃eB̂
k

is stochastically
dominated by the term involvingǫB̂

k
and can be ignored. Define the following terms

T1 =

(
1

|B̂k|
(XB̂k

Sk)
′XB̂k

Sk

)−1
1

|B̂k|
(XB̂k

Sk)
′ǫB̂

k

,

T2 =

(
1

|B̂k|
(XB̂k

Sk)
′XB̂k

Sk

)−1
λ1

|B̂k|λ2

(žT̂k−1,Sk − žT̂k,Sk),

T3 =

(
1

|B̂k|
(XB̂k

Sk)
′XB̂k

Sk

)−1

y̌T̂k−1,Sk .

Conditioning onXB̂k

Sk , the termT1 is a|Sk| dimensional Gaussian with variance bounded byc1/n
with probability at least1 − c1 exp(−c2 log n) using lemma 7.6. Combining with the Gaussian
tail bound, the term||T1||∞ can be upper bounded as

P

[
||T1||∞ ≥ c1

√
log s

n

]
≤ c2 exp(−c3 log n).

Using lemma 7.6, we have that with probability greater than1− c1 exp(−c2 log n)

||T2||∞ ≤ ||T2||2 ≤ c3
λ1

|B̂k|λ2

→ 0

under the conditions of theorem. Similarly||T3||∞ ≤ c1
√
s, with probability greater than1 −

c1 exp(−c2 logn). Combining the terms, we have that

||θk − θ̂k||∞ ≤ c1

√
log s

n
+ c2
√
sλ2

with probability at least1−c3 exp(−c4 logn). Sinceθmin = Ω(
√

log(n)/n), we have shown that
Sk ⊆ S(θ̂k). Combining with the first part, it follows thatS(θ̂k) = Sk with probability tending
to one.

7.7.5 Proof of Lemma 7.3

We have that∇f(A) = A−1. Then

||∇f(A)−∇f(A′)||F = ||A−1 − (A′)−1||F
≤ ΛmaxA

−1||A−A′||FΛmaxA
−1

≤ γ−2||A−A′||F .
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7.7.6 Proof of Proposition 7.1

The following proof follows main ideas already given in theorem 7.1. We provide only a sketch.
Given an upper bound on the number of partitionsBmax, we are going to perform the analysis

on the event{B̂ ≤ Bmax}. Since

P[h(T̂ , T ) ≥ nδn
∣∣ {B̂ ≤ Bmax}] ≤

Bmax∑

B′=B

P[h(T̂ , T ) ≥ nδn
∣∣ {|T̂ | = B′ + 1}],

we are going to focus onP[h(T̂ , T ) ≥ nδn
∣∣ {|T̂ | = B′ +1}] for B′ > B (for B′ = B it follows

from theorem 7.1 thath(T̂ , T ) < nδn with high probability). Let us define the following events

Ej,1 = {∃l ∈ [B′] : |T̂l − Tj| ≥ nδn, |T̂l+1 − Tj| ≥ nδn andT̂l < Tj < T̂l+1}
Ej,2 = {∀l ∈ [B′] : |T̂l − Tj| ≥ nδn andT̂l < Tj}
Ej,3 = {∀l ∈ [B′] : |T̂l − Tj| ≥ nδn andT̂l > Tj}.

Using the above events, we have the following bound

P[h(T̂ , T ) ≥ nδn
∣∣ {|T̂ | = B′ + 1}] ≤

∑

j∈[B]

P[Ej,1] + P[Ej,2] + P[Ej,3].

The probabilities of the above events can be bounded using the same reasoning as in the proof
of theorem 7.1, by repeatedly using the KKT conditions givenin (7.8). In particular, we can use
the strategy used to bound the eventAn,j,2. Since the proof is technical and does not reveal any
new insight, we omit the details.

7.7.7 Technical results

Lemma 7.4. Let {ζ i}i∈[n] be a sequence of iidN (0, 1) random variables. Ifvn ≥ C log n, for
some constantC > 16, then

P

[ ⋂

1≤l<r≤n
r−l>rn

{ r∑

i=l

(ζ i)2 ≤ (1 + C)(r − l + 1)
}]
≥ 1− exp(−c1 logn)

for some constantc1 > 0.

Proof. For any1 ≤ l < r ≤ n, with r − l > vn we have

P

[ r∑

i=l

(ζ i)2 ≥ (1 + C)(r − l + 1)

]
≤ exp(−C(r − l + 1)/8)

≤ exp(−C log n/8)

using (7.26). The lemma follows from an application of the union bound.
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Lemma 7.5. Let {xi}i∈[n] be independent observations from(7.1) and let{ǫi}i∈[n] be indepen-
dentN (0, 1). Assume thatA1 holds. Ifvn ≥ C logn for some constantC > 16, then

P

[ ⋂

j∈[B]

⋂

l,r∈Bj

r−l>vn

{
1

r − l + 1

∣∣∣∣
∣∣∣∣

r∑

i=l

xiǫi

∣∣∣∣
∣∣∣∣
2

≤ φ
1/2
max

√
1 + C√

r − l + 1

√
p(1 + C log n)

}]

≥ 1− c1 exp(−c2 logn),

for some constantsc1, c2 > 0.

Proof. Let Σ1/2 denote the symmetric square root of the covariance matrixΣSS and letB(i)
denote the blockBj of the true partition such thati ∈ Bj . With this notation, we can write

xi =
(
ΣB(i))1/2 ui whereui ∼ N (0, I). For anyl ≤ r ∈ Bj we have

∣∣∣∣
∣∣∣∣

r∑

i=l

xiǫi

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣

r∑

i=l

(
Σj
)1/2

uiǫi

∣∣∣∣
∣∣∣∣
2

≤ φ1/2
max

∣∣∣∣
∣∣∣∣

r∑

i=l

uiǫi

∣∣∣∣
∣∣∣∣
2

.

Conditioning on{ǫi}i, for eachb ∈ [p],
∑r

i=l ui,bǫi is a normal random variable with variance∑r
i=l(ǫi)

2. Hence,||∑r
i=l uiǫi||22/(

∑r
i=l(ǫi)

2) conditioned on{ǫi}i is distributed according toχ2
p

and

P

[
1

r − l + 1

∣∣∣∣
∣∣∣∣

r∑

i=l

xiǫi

∣∣∣∣
∣∣∣∣
2

≥ φ
1/2
max

√∑r
i=l(ǫi)

2

r − l + 1

√
p(1 + C log n)

∣∣∣ {ǫi}ri=l

]

≤ P[χ2
p ≥ p(1 + C log n)] ≤ exp(−C log n/8),

where the last inequality follows from (7.26). Using lemma 7.4, for all l, r ∈ Bj with r− l > vn
the quantity

∑r
i=l(ǫi)

2 is bounded by(1+C)(r−l+1)with probability at least1−exp(−c1 log n),
which gives us the following bound

P

[ ⋂

j∈[B]

⋂

l,r∈Bj

r−l>vn

{
1

r − l + 1

∣∣∣∣
∣∣∣∣

r∑

i=l

xiǫi

∣∣∣∣
∣∣∣∣
2

≤ φ
1/2
max

√
1 + C√

r − l + 1

√
p(1 + C log n)

}]

≥ 1− c1 exp(−c2 logn).

Lemma 7.6. Let {xi}i∈[n] be independent observations from(7.1). Assume thatA1 holds. Then
for anyvn > p,

P

[
max

1≤l<r≤n
r−l>vn

Λmax

(
1

r − l + 1

r∑

i=l

xi (xi)
′
)
≥ 9φmax

]
≤ 2n2 exp(−vn/2)

and

P

[
min

1≤l<r≤n
r−l>vn

Λmin

(
1

r − l + 1

r∑

i=l

xi (xi)
′
)
≤ φmin/9

]
≤ 2n2 exp(−vn/2).
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Proof. For any1 ≤ l < r ≤ n, with r − l ≥ vn we have

P

[
Λmax

(
1

r − l + 1

r∑

i=l

xi (xi)
′
)
≥ 9φmax

]
≤ 2 exp(−(r − l + 1)/2)

≤ 2 exp(−vn/2)

using (7.23), convexity ofΛmax(·) andA1. The lemma follows from an application of the union
bound. The other inequality follows using a similar argument.

7.7.8 A collection of known results

This section collects some known results that we have used inthe chapter. We start by collecting

some results on the eigenvalues of random matrices. Letx
iid∼ N (0,Σ), i ∈ [n], andΣ̂ =

n−1
∑

xi(xi)
′ be the empirical covariance matrix. Denote the elements of the covariance matrix

Σ as[σab] and of the empirical covariance matrix̂Σ as[σ̂ab].
Using standard results on concentration of spectral norms and eigenvalues [54], [190] derives

the following two crude bounds that can be very useful. Underthe assumption thatp < n,

P[Λmax(Σ̂) ≥ 9φmax] ≤ 2 exp(−n/2) (7.23)

P[Λmin(Σ̂) ≤ φmin/9] ≤ 2 exp(−n/2). (7.24)

From Lemma A.3. in [25] we have the following bound on the elements of the covariance
matrix

P[|σ̂ab − σab| ≥ ǫ] ≤ c1 exp(−c2nǫ2), |ǫ| ≤ ǫ0 (7.25)

wherec1 andc2 are positive constants that depend only onΛmax(Σ) andǫ0.
Next, we use the following tail bound forχ2 distribution from [123], which holds for all

ǫ > 0,

P[χ2
n > n + ǫ] ≤ exp(−1

8
min(ǫ,

ǫ2

n
)). (7.26)
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Chapter 8

Conditional Estimation of Covariance
Models

In the previous chapters, we discussed estimation of network structures as a function of time,
however, in many applications, it is more natural to think ofa network changing as a function
of some other random variable. In this chapter, we focus on conditional estimation of network
structures. We start by motivating the problem by few real world applications.

Consider the problem of gene network inference in systems biology, which is of increasing
importance in drug development and disease treatment. A gene network is commonly repre-
sented as a fixed network, with edge weights denoting strength of associations between genes.
Realistically, the strength of associations between genescan depend on many covariates such
as blood pressure, sugar levels, and other body indicators;however, biologists have very little
knowledge on how various factors affect strength of associations. Ignoring the influence of dif-
ferent factors leads to estimation procedures that overlook important subtleties of the regulatory
networks. Consider another problem in quantitative finance, for which one wants to understand
how different stocks are associated and how these associations vary with respect to external fac-
tors to help investors construct a diversified portfolio. The rule ofDiversification, formalized
by Modern Portfolio Theory [132], dictates that risk can be reduced by constructing a portfolio
out of uncorrelated assets. However, it also assumes that the associations between assets are
fixed (which is highly unrealistic) and a more robust approach to modeling assets would take
into account how their associations change with respect to economic indicators, such as, gross
domestic product (GDP), oil price or inflation rate. Unfortunately, there is very little domain
knowledge on the exact relationship between economic indicators and associations between as-
sets, which motivates the problem ofconditional covariance selectionwe intend to investigate
in this chapter.

8.1 Motivation

Let X ∈ Rp denote ap-dimensional random vector representing genes or stock values, and
Z ∈ R denote an index random variable representing some body factor or economic indicator
of interest. Both of the above mentioned problems in biologyand finance can be modeled as
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inferring non-zero partial correlations between different components of the random vectorX
conditioned on a particular value of the index variableZ = z. We assume that the value of
partial correlations change withz, however, the set of non-zero partial correlations is constant
with respect toz. LetΣ(z) = Cov(X|Z = z) denote theconditionalcovariance ofX givenZ,
which we assume to be positive definite, and letΩ(z) = Σ(z)−1 denote the conditional precision
matrix. The structure of non-zero components of the matrixΩ(z) tells us a lot about associations
between different components of the vectorX, since the elements ofΩ(z) correspond to partial
correlation coefficients. In this section we address the challenge of selecting non-zero compo-
nents ofΩ(z) from noisy samples. Usually, very little is known about the relationship between
the index variableZ and associations between components of the random variableX; so, we
develop a nonparametric method for estimating the non-zeroelements ofΩ(z). Specifically, we
develop a new method based onℓ1/ℓ2 penalized kernel smoothing, that is able to estimate the
functional relationship between the indexZ and components ofΩ(z) with minimal assumptions
on the distribution(X, Z) and only smoothness assumption onz 7→ Ω(z). In addition to devel-
oping an estimation procedure that works with minimal assumptions, we also focus on statistical
properties of the estimator in the high-dimensional setting, where the number of dimensionsp
is comparable or even larger than the sample size. Ubiquity of high-dimensionality in many
real world data forces us to carefully analyze statistical properties of the estimator, that would
otherwise be apparent in a low-dimensional setting.

Our problem setting, as stated above, should be distinguished from the classical problem of
covariance selection, introduced in the seminal paper by Dempster [47]. In the classical setting,
the main goal is to select non-zero elements of the precisionmatrix; however, the precision matrix
does not vary with respect to the index variables. As mentioned before, non-zero elements of the
precision matrix correspond to partial correlation coefficients, which encode associations among
sets of random variables.

There are only few references for work on nonparametric models for conditional covariance
and precision matrices. [193] develop a kernel estimator ofthe conditional covariance matrix
based on the local-likelihood approach. Since their approach does not perform estimation of
non-zero elements in the precision matrix, it is suitable inlow-dimensions. Other related work
includes nonparametric estimation of the conditional variance function in longitudinal studies
(see [65, 150] and references within).

In summary, here are the highlights of our this chapter. Our main contribution is a new
nonparametric model for sparse conditional precision matrices, and theℓ1/ℓ2 penalized kernel
estimator for the proposed model. The estimation procedurewas developed under minimal as-
sumptions, with the focus on the high-dimensional setting,where the number of dimensions is
potentially larger than the sample size. A modified BayesianInformation Criterion (BIC) is given
that can be used to correctly identify the set of non-zero partial correlations. Finally, we demon-
strate the performance of the algorithm on synthetic data and analyze the associations between
the set of stocks in the S&P 500 as a function of oil price.

The work presented here is related, but different from estimation of time-varying networks.
As we will see, the estimation procedure is based on the neighborhood selection described in§2
and is a slight modification of neighborhood estimation usedto estimate time-varying networks.
However, the difference comes from the fact that the variable we are conditioning is not fixed,
but a random quantity.
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8.2 The Model

LetX = (X1, . . . , Xp)
T ∈ Rp be ap-dimensional random vector (representing gene expressions

or stock values) and let random variableZ ∈ [0, 1] be an associated univariate index (representing
a body factor or an economy index). We will estimate associations between different components
of X conditionally onZ. For simplicity of presentation, we assume that the index variable can
be scaled into the interval[0, 1] and, furthermore, we assume that it is a scalar variable. The
kernel smoothing method, to be introduced, can be easily extended to multivariateZ. However,
such an extension may only be practical in limited cases, dueto the curse of dimensionality
[125]. Throughout the chapter, we assume thatE[X|Z = z] = 0 for all z ∈ [0, 1]. In practice,
one can easily estimate the conditional mean ofX givenZ using local polynomial fitting [60]
and subtract it fromX. We denote the conditional covariance matrix ofX givenZ asΣ(z) :=
Cov(X|Z = z) = (σuv(z))u,v∈[p], where we use[p] to denote the set{1, . . . , p}. Assuming
that Σ(z) is positive definite, for allz ∈ [0, 1], the conditional precision matrix is given as
Ω(z) := Σ(z)−1 = (ωuv(z))u,v∈[p]. Elements(ωuv(z))u,v∈[p] are smooth, but unknown functions
of z.

With the notation introduced above, the problem of conditional covariance selection, e.g.,
recovering the strength of association between stocks as a function of oil price, or association
between gene expressions as a function of blood pressure, can be formulated as estimating the
non-zero elements in the conditional precision matrixΩ(z). As mentioned before, association
between different components ofX can be expressed using the partial correlation coefficients,
which are directly related to the elements of precision matrix as follows; the partial correlation
ρuv(z) betweenXu andXv (u, v ∈ [p]) givenZ = z can be computed as

ρuv(z) = −
ωuv(z)√

ωuu(z)ωvv(z)
.

The above equation confirms that the non-zero partial correlation coefficients can be selected
by estimating non-zero elements of the precision matrix. Let S := {(u, v) :

∫
[0,1]

ω2
uv(z)dz >

0, u 6= v} denote the set of non-zero partial correlation coefficients, which we assume to be
constant with respect toz, i.e., we assume that the associations are fixed, but their strength can
vary with respect to the indexz. Furthermore, we assume that the number of non-zero partial
correlation coefficients,s := |S|, is small. This is a reasonable assumption for many problems,
e.g., in biological systems a gene usually interacts with only a handful of other genes. In the
following paragraphs, we relate the partial correlation coefficients to a regression problem, and
present a computationally efficient method for estimating non-zero elements of the precision
matrix based on this insight. In particular, we extend the neighborhood selection procedure
discussed in§2.

For each componentXu (u ∈ [p]) we set up a regression model, whereXu is the response
variable, and all the other components are the covariates. Let X\u := {Xv : v 6= u, v ∈ [p]}.
Then we have the following regression model

Xu =
∑

v 6=u

Xvbuv(z) + ǫu(z), u ∈ [p],
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with ǫu(z) being uncorrelated withX\u if and only if

buv(z) = −
ωuv(z)

ωuu(z)
= ρuv(z)

√
ωvv(z)

ωuu(z)
.

We propose a locally weighted kernel estimator of the non-zero partial correlations. LetDn =
{(xi, zi)}i∈[n] be an independent sample ofn realizations of(X, Z). For eachu ∈ [p], we define
the loss function

Lu(Bu;Dn) :=
∑

z∈{zj}j∈[n]

∑

i∈[n]

(
xi
u −

∑

v 6=u

xi
vbuv(z)

)2
Kh(z − zi) + 2λ

∑

v 6=u

||buv(·)||2 (8.1)

whereBu = (bu(z
1), . . . ,bu(z

n)), bu(z
j) ∈ Rp−1, Kh(z − zi) = K( |z−zi|

h
) is a symmetric

density function with bounded support that defines local weights,h denotes the bandwidth,λ is
the penalty parameter and||buv(·)||2 :=

√∑
z∈{zj}j∈[n]

buv(z)2. DefineB̂u as a minimizer of the

loss
B̂u := argmin

B∈Rp−1×n

Lu(B;Dn). (8.2)

Combining{B̂u}u∈[p] gives an estimator

Ŝ := {(u, v) : max{||̂buv(·)||2, ||̂bvu(·)||2} > 0}
of the non-zero elements of the precision matrix.

In (8.1), theℓ1/ℓ2 norm is used to penalize model parameters. This norm is commonly used
in the Group Lasso [194]. In our case, since we assume the set of non-zero elementsS, of the
precision matrix, to be fixed with respect toz, theℓ2 norm is a natural way to shrink the whole
group of coefficients{buv(zi)}i∈[n] to zero. Note that the group consists of the same element, say
(u, v), of the precision matrix for different values ofz.

8.3 Optimization algorithm

In this section, we detail an efficient optimization algorithm that can be used to solve the problem
given in (8.2). Given that the optimization problem is convex, a variety of techniques can be used
to solve it. A particularly efficient optimization algorithm has been devised forℓ1/ℓ2 penalized
problems, that is based on the group-coordinate descent andis referred to as the active-shooting
algorithm [72, 146]. A modification of the procedure, suitable for our objective, is outlined in
Algorithm 3, which we now explain.

We point out that the group coordinate descent will convergeto an optimum, since the loss
function is smooth and the penalty term in (8.1) decomposes across different rows of the matrix
Bu [72]. Now, we derive an update for rowv, while keeping all other rows ofBu fixed. Let
{b̃uv(zj)}j∈[n] be a minimizer of

Lv
u({buv(zj)}j∈[n];Dn) :=

∑

z∈{zj}j∈[n]

∑

i∈[n]

(
riuv(z)− xi

vbuv(z)
)2
Kh(z − zi) + 2λ ||buv(·)||2,

(8.3)
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Input : DataDn = {xi, zi}i∈[n], initial solutionB̃(0)
u

Output : SolutionB̂u to Eq. (8.2)

A := {v ∈ [p] \ u : ||̃b(0)uv (·)||2 > 0}, t = 0
repeat

repeat iterate overv ∈ A
Compute{riuv(zj)}i,j∈[n] using (8.4)
if condition(8.5) is satisfiedthen

b̃uv(·)← 0
else

b̃uv(·)← argminLv
u

(
buv(·);Dn

)

end
until convergence onA
forall the v ∈ [p] \ u do

if condition(8.5) is satisfiedthen
b̃uv(·)← 0

else
b̃uv(·)← argminLv

u

(
buv(·);Dn

)

end
end
A := {v ∈ [p] \ u : ||̃buv(·)||2 > 0}

until A did not change

B̂u ← {b̃uv(·)}v∈[p]\u

Algorithm 3: Procedure for solving Eq. (8.2)

where
riuv(z) = xi

u −
∑

v′ 6=u,v

xi
v′ b̃uv′(z) (8.4)

and{b̃uv′(z)} denotes the current solution for all the other variables. Solving (8.3) iteratively,
by cycling through rowsv ∈ [p] \ u, will lead to an optimal solution̂Bu of (8.2). By analyzing
Karush-Kuhn-Tucker conditions of the optimization problem in Eq. (8.3), we can conclude that
the necessary and sufficient condition for{b̃uv(zj)}j∈[n] ≡ 0 is

1

λ2

∑

z∈{zj}j∈[n]


∑

i∈[n]
xi
vr

i
uv(z)Kh(z − zi)




2

≤ 1. (8.5)

Eq. (8.5) gives a fast way to explicitly check if the rowv of a solution is identical to zero or not.
If the condition in (8.5) is not satisfied, only then we need tofind a minimizer of (8.3), which can
be done by the gradient descent, since the objective is differentiable when{buv(zj)}j∈[n] 6≡ 0.

In practice, one needs to find a solution to (8.2) for a large number of penalty parametersλ.
Computing solutions across a large set of possibleλ values can effectively be implemented using
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the warm start technique [70]. In this technique, Eq. (8.2) is solved for a decreasing sequence
of penalty parametersλ1 > . . . > λN and the initial valuẽB(0)

u provided to Algorithm 3 forλi

is the final solution̂Bu for λi−1. This experimentally results in faster convergence and a more
stable algorithm.

8.4 Theoretical properties

In this section, we give some theoretical properties of the estimation procedure given in§8.2.
These results are given for completeness and are presented without proofs, which will be re-
ported elsewhere. In particular, we provide conditions under which there exists a set̂S = Ŝ(λ)
of selected non-zero partial correlations, which consistently estimatesS, the true set of non-zero
partial correlations. Observe that̂S depends on the penalty parameterλ, so it is of practical
importance to correctly select the parameterλ for which Ŝ consistently recoversS. We give con-
ditions under which the modified BIC criterion is able to identify the correct penalty parameter
λ. We start by giving general regularity conditions.

The following regularity conditions are standard in the literature [61, 183]:(A1) There is an
s > 2 such thatE[||X||2s2 ] ≤ ∞; (A2) The density functionf(z) of the random variableZ is
bounded away from 0 on[0, 1] and has bounded second order derivative;(A3) The matrixΩ(z)
is positive definite for allz ∈ [0, 1] and its elements(ωuv(z)) are functions that have bounded
second derivatives;(A4) The functionE[||X||42

∣∣ Z = z] is bounded;(A5) The kernelK(·) is a
symmetric density with compact support. In addition the standard regularity conditions, we need
the following identifiability condition, which allows us tocorrectly identify the true model(A6)
supz∈[0,1]maxu 6=v |ωuv(z

i)| ≤ O(1
d
), whered := maxu∈[p] |{v : (u, v) ∈ S}|

Theorem 8.1. Assume that the regularity conditions(A1)-(A6) are satisfied. Furthermore, as-
sume thatE[exp(tX)|Z = z] ≤ exp(σ2t2/2) for all z ∈ [0, 1], t ∈ R and someσ ∈ (0,∞). Let
h = O(n−1/5), λ = O(n7/10

√
log p) andn−9/5λ → 0. If n11/10√

log p
minu,v∈S ||buv(·)||2 → ∞, then

P[Ŝ = S]→ 1.

Assuming thatX is a subgaussian random variable in Theorem 8.1 is due to technical rea-
sons. The assumption is needed to establish exponential inequalities for the probability that each
solutionB̂u of Eq. (8.2) correctly identifies the set of non-zero rows ofBu. Then consistency of
Ŝ can be established by applying the union bound over the events that estimators{B̂u}u∈[p] con-
sistently estimate non-zero rows of{Bu}u∈[p]. For the last claim to be true when the dimension
p is large, e.g.,p = O(exp(nα)), α > 0, we need a good tail behavior of the distribution ofX.
The statement of the theorem still holds true, even if we do not establish exponential inequali-
ties, but only for smaller dimensions. Another commonly used regularity condition onX is to
assume that it is bounded with probability 1, which would again allow us to establish exponential
inequalities needed in the proof. Finally, we need to assumethat for(u, v) ∈ S, ||buv(·)||2 does
not decay to zero too quickly. Otherwise, the element of the precision matrix would be to hard
to distinguish from 0.

Next, we show that the correct penalty parameterλ can be chosen using the modified BIC
criterion of [31]. DenotêBu,λ as the solution of Eq. (8.2) obtained for the penalty parameterλ.
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We define the residual sum of squares as

RSSu(λ) := n−2
∑

z

∑

i∈[n]

(
xi
u −

∑

v 6=u

xi
v b̂uv,λ(z)

)2
Kh(z − zi)

and the BIC-type criterion

BICu(λ) = log(RSSu(λ)) +
d̂fu,λ(log(nh) + 2 log p)

nh
,

whered̂fu,λ denotes the number of non-zero rows ofB̂u,λ. We used the modified version of the
BIC criterion, since the ordinary BIC criterion tends to include many spurious variables when
the complexity of the model space is large [31]. Now,λ is chosen by a minimization:

λ̂ = argmin
λ

∑

u∈[p]
BICu(λ), (8.6)

and the final estimator of the non-zero components of the precision matrixŜ = Ŝ(λ̂) is obtained
by combining{B̂u,λ̂}u∈[p]. We have the following theorem.
Theorem 8.2. Assume that the conditions of Theorem 8.1 are satisfied. Thenthe tuning param-
eter λ̂ obtained by minimizing criterion(8.6) asymptotically identifies the correct model, i.e.,
P[Ŝ(λ̂) = S]→ 1.

8.5 Simulation results

8.5.1 Toy example

We first consider a small toy example in order to demonstrate our algorithm’s performance. We
drawn samples, from the joint distribution of(X, Z) where the conditional distribution ofX
givenZ = z is a 5-dimensional multivariate Gaussian with mean 0 and precision matrixΩ(z),
andZ is uniformly distributed on[0, 1]. The setS = {(1, 2), (3, 4), (2, 4), (1, 5), (3, 5)} denotes
the non-zero elements ofΩ(z). We set elementsωuv(z) = ωuv(z) = fuv(z) for all (u, v) ∈ S,
where the functions{fuv(z)} are defined as follows:(1) f1,2 ≡ 1 (constant),(2) f3,4 ≡ 1
(constant),(3) f2,4(z) = 1 if z ≤ .5 and−1 for z > .5 (piecewise constant),(4) f1,5(z) = 2z− 1
(linear),(5) f3,5(z) = sin(2πz) (sinusoid). The diagonal elementsωuu(z) (z ∈ [0, 1]) are set to
a constant number such thatΩ(z) is diagonally dominant, and hence positive definite.

We compared our method against the approach of [135] (referred to asMB), which assumes an
invariant covariance matrix and ignoresz, and against a simpler variant of our algorithm (called
“kernel,ℓ1 penalty”), which replaces the groupℓ1/ℓ2 penalty in (8.1) with theℓ1 penalty. Recall
that theℓ1 penalty does not encourage the set of non-zero elements in the precision matrix to
remain fixed for allz ∈ [0, 1]. Our algorithm, developed in§8.2 is referred to as “kernel, group
penalty”.

We average our results over 100 random trials. For each trial, n = 300 samples are randomly
generated using the procedure described above. We counted the number of times each of the
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Figure 8.1: Toy example results. Each bar represents the number of times the corresponding precision
matrix element was included in̂S. Performance of the ideal algorithm is shown in the top left part. Our
algorithm gets close to this, and far outperforms both the other methods.
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Figure 8.2: Simulation results for 8x8 grid. See§8.5.2 for details.

116



(
5
2

)
= 10 possible off-diagonal elements of the precision matrix were selected as non-zeros.

Figure 8.1 displays results as histograms. Bars 1-5 correspond to the true non-zero elements in
S, as enumerated above, while bars 6-10 correspond to the elements that should be set to zero.
Thus, in the ideal case, bars 1-5 should be estimated as non-zero for all 100 trials, while bars 6-10
should never be selected. As we can see, all algorithms select the constant elementsω12(·) (bar 1)
andω34(·) (bar 2). However, theMB approach fails to recover the three varying precision matrix
elements and also recovers many false elements. Just using the kernel +ℓ1 penalty, described
above, performs better, but still selects many elements notin S. Our algorithm, on the other
hand, selects all the elements inS almost all of the time, and also excludes the elements not
in S the vast majority of the time. This higher precision is the result of our group penalty, and
gives superior performance to just using anℓ1 penalty (assuming that the set of non-zero partial
correlation coefficients is fixed with respect toz).

8.5.2 Large simulations

We next tested our algorithm on a larger problem whereX ∈ R64. The components ofX were
arranged into an 8x8 grid, so that only adjacent components in the grid have has non-zero partial
correlation. For all adjacent(u, v), ωuv(z) = sin(2πz + cuv), wherecuv ∼ Unif([0, 1]) is a
random offset. We measure how well the algorithm recovers the true set of non-zero precision
matrix elements. BothMB and “kernel +ℓ1” perform much worse than our estimator, so we do
not display their performance. Performance of the “kernel +group penalty” estimator is shown
in Figure 8.2. Even though the problem is significantly harder, after 800 samples our algorithm
achieves an F1 score above0.9.

8.6 Analyzing the stock market

We next apply our method to analyzing relationships among stocks in the S&P 500. Such an
analysis would be useful to an economist studying the effectof various indicators on the market,
or an investor who is seeking to minimize his risk by constructing a diverse portfolio according to
Modern Portfolio Theory [132]. Rather than assume static associations among stocks we believe
it is more realistic to model them as a function of an economicindicator, such as oil price. We
acquired closing stock prices from all stocks in the S&P 5001 and oil prices2 for all the days
that the market was open from Jan 1, 2003 through Dec 31, 2005.This gave us 750 samples
of 469 stocks (we only considered stocks that remained in theS&P 500 during the entire time
period). Instead of considering the raw prices, which oftenare a reflection of other factors, such
as number of shares, we used the logarithm of the ratio of the price at timet to the price at time
t− 1 and subtracted the mean value and divided by the standard deviation for each stock.

Our data consists of pairs{xi, zi}, the vector of standardized stock prices and the oil price,
respectively, obtained over a period of time. We analyze thedata to recover the strength of
associations between different stocks as a function of the oil price. Our belief is that each stock
is associated with a small number of other stocks and that theset of associations is fixed over a

1Can be obtained athttp://www.finance.yahoo.com.
2Can be obtained athttp://tonto.eia.doe.gov/.
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time-period of interest, although the strengths may change. We believe this is justified since we
are looking for long-term trends among stocks and want to ignore transient effects. Figure 8.3
illustrates the estimated network, where an edge between two nodes correspond to a non-zero
element in the precision matrix. Note that the presented network is not a representation of an
undirected probabilistic graphical model.

Clusters of related stocks are circled in Figure 8.3, and these largely confirm our intuition.
Here are some of the stocks in a few of the clusters:(1) Technology/semiconductors- Hewlett
Packard, Intel, Teradyne, Analog Devices etc.;(2) Oil/drilling/energy - Diamond Offshore
Drilling, Baker Hughes, Halliburton, etc.;(3) Manufacturing- Alcoa, PPG Industries (coating
products), International Paper Co. etc.;(4) Financial- American Express, Wells Fargo, Franklin
Resources etc. It is also interesting that there exist coherent subgroups inside these clusters. For
example, the “Retail stores” sector could be further divided into companies that specialize in
clothes, like Gap and Limited, and those that are more general purpose department stores, like
Wal-Mart and Target.

Another point of interest are two hubs (enlarged and highlighted in green in Figure 8.3), that
connect a set of diverse stocks that do not easily categorizeinto an industrial sector. They corre-
spond to JPMorgan Chase and Citigroup (two prominent financial institutions). It possible that
these stocks are good indicators of the status of the market or have certain investment portfolios
that contribute to their central positions in the network.

Finally, we explore the evolving nature of our edge weights as a function of oil price to
demonstrate the advantages over simply assuming static partial correlations. Recall that the edge
weights vary with oil price and are proportional to the estimated partial correlation coefficients.
Consider the two stocks Analog Devices (ADI), which makes signal processing solutions, and
NVIDIA (NVDA), which makes graphics processing units. Ignoring the effect of the oil price,
both of these companies are highly related since they belongto the semiconductor sector. How-
ever, if one analyzes the edge weights as a function of oil price, as shown in Figure 8.4 (a) and
(b), both behave quite differently. This changing relationship is reflected by the varying strength
of the edge weight between NVIDIA and Analog Devices (shown in Figure 8.4 (c) ). Note that
when oil prices are low, the edge weight is high since Analog Devices and NVIDIA are both
rising as a function of oil price. However, as oil prices increase, Analog Devices stabilizes while
NVIDIA is more erratic (although it is mostly rising), so theedge weight sharply decreases.
Thus, if an investor is aiming for diversification to reduce risk, he/she may be wary of investing
in both of these stocks together when oil prices are low sincethey are highly associated, but
might consider it if oil prices are high and the stocks are less associated.
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Figure 8.3: Overall stock market network that was recoveredby the algorithm. Edges in the graph corre-
spond to non-zero elements in the precision matrix. As one can see, the recovered network contains many
clusters of related stocks. The green (and enlarged) hubs are described in the text.
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Figure 8.4: This figure demonstrates how the changing edge weight between Analog Devices and NVIDIA
((c)) corroborates with the fact that Analog Devices and NVIDIA behave quite differently as a function
of oil price ((a) and (b)). In (a) and (b), the y-axis is the ratio of the stock price to its price on January 1,
2003.
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Chapter 9

Estimation From Data with Missing Values

In this chapter, we study a simple two step procedure for estimating sparse precision matrices
from data with missing values, which is tractable in high-dimensions and does not require impu-
tation of the missing values. We provide rates of convergence for this estimator in the spectral
norm, Frobenius norm and element-wiseℓ∞ norm. Simulation studies show that this estimator
compares favorably with the EM algorithm. Our results have important practical consequences
as they show that standard tools for estimating sparse precision matrices can be used when data
contains missing values, without resorting to the iterative EM algorithm that can be slow to con-
verge in practice for large problems. Furthermore, the tools developed here could be extended to
estimation of time-varying networks in previous chapters.

9.1 Introduction

Covariance matrices and their inverses, precision matrices, arise in a number of applications
including principal component analysis, classification bylinear and quadratic discriminant anal-
ysis, and the identification of conditional independence assumptions in the context of Gaussian
graphical models. As a result, obtaining good estimators ofcovariance and precision matrices
under various contexts is of essential importance in statistics and machine learning research. In
§2 we provide an overview of methods for learning GGMs from fully observed data.

In practice, we often have to analyze data that contains missing values [129]. Missing values
may occur due to a number of reasons, for example, faulty machinery that collects data, subjects
not being available in subsequent experiments (longitudinal studies), limits from experimental
design, etc. When missing values are present, they are usually imputed to obtain a complete
data set on which standard methods can be applied. However, methods that directly perform
statistical inference, without imputing missing values, are preferred. A systematic approach to
missing values problem is based on likelihoods of observed values. However, with an arbitrary
pattern of missing values, no explicit maximization of the likelihood is possible even for the
mean values and covariance matrices [129]. Expectation maximization algorithms, which are
iterative methods, are commonly used in cases where explicit maximization of the likelihood
is not possible; however, providing theoretical guarantees for such procedures is difficult. This
approach was employed in [164] to estimate sparse inverse covariance matrices, which we will

121



review in the following section. In recent work, [122] dealswith the estimation of covariance
matrices from data with missing values under the assumptionthat the true covariance matrix is
approximately low rank. [124] recently studied high-dimensional regression problems when data
contains missing values. Casting the estimation of a precision matrix as a sequence of regression
problems, they obtain an estimator of the precision matrix without maximizing partially observed
likelihood function using an EM algorithm.

In this chapter, we present a simple, principled method thatdirectly estimates a large di-
mensional precision matrix from data with missing values. We form an unbiased estimator of
the covariance matrix from available data, which is then plugged into the penalized maximum
likelihood objective for a multivariate Normal distribution to obtain a sparse estimator of the
precision matrix. Even though the initial estimator of the covariance matrix is not necessarily
positive-definite, we can show that the final estimator of theprecision matrix is positive defi-
nite. Furthermore, unlike the EM algorithm, which is only guaranteed to converge to a local
maximum, we prove consistency and convergence rate for our estimator in the Frobenius norm,
spectral norm andℓ∞ norm. Our results have important practical consequences asthey allow
practitioners to use existing tools for penalized covariance selection (see, for example, [71]),
which are very efficient in high-dimensions for data sets with missing values without changing
the algorithm or resorting to the iterative EM algorithm.

Throughout the chapter we assume that the missing values aremissing at random in the sense
of [155]. LetX = (xij) ∈ Rn×p be a matrix of observations with samples organized into rows,
and letR = (rij) ∈ Rn×p be a matrix of indicators of observed values, that is,rij = 1 if the
valuexij was observed andrij = 0 otherwise. We assume that the data is missing completely
at random (MCAR), which means thatP[R|X, ϕ] = P[R|ϕ] for all X andϕ, whereϕ denotes
unknown parameters. The MCAR assumption implies that the missingness does not depend
on the observed values, e.g., in a distributed environment,each sensor may fail independently
from other sensors. This assumption is relaxed in the experimental section where we test the
robustness of our procedure when the missing data mechanismdeparts from the MCAR assump-
tion. Another more realistic assumption is called missing at random (MAR), which assumes
P[R|X, ϕ] = P [R|Xobs, ϕ] for all Xmis andϕ, whereXobs denotes the observed components of
X andXmis denotes the missing components. The MAR assumes that the distribution ofR de-
pends on the observed values ofX, but not on the missing values, e.g., cholesterol level may be
measured only if patient has high blood pressure. Finally, the missing data mechanism is called
not-missing at random (NMAR) if the distribution ofR depends on the non-observed values of
X. Estimation under NMAR is a hard problem, as one needs to makeassumptions on the model
for missing values. The method presented in this chapter can, in theory, be extended to handle
the MAR case.

9.2 Problem setup and the EM algorithm

Let {xi}ni=1 be ani.i.d. sample from the multivariate Normal distribution with the meanµ ∈ Rp

and the covariance matrixΣ ∈ Rp×p. Let R ∈ Rn×p be a matrix of missing values indicators
with rij = 1 if xij is observed and 0 otherwise. The goal is to estimate the sparse precision
matrixΩ = Σ−1 from the data with missing values.
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Estimating covariance matrices from data with missing values is quite an old problem. See,
for example, [1, 7, 87, 90, 167]. However, literature on high-dimensional estimation of covari-
ance matrices from incomplete data is missing. Recently [164] proposed to use an EM algorithm,
called MissGlasso, to estimate sparse precision matrices,which we review below.

As discussed in§2 the sparse precision matrix can be estimated by solving thefollowing
ℓ1-norm penalized maximization problem

Ω̂ = argmax
Ω�0
{log |Ω| − trΩŜ− λ||Ω−||1}, (9.1)

whereŜ is the empirical covariance matrix,Ω− := Ω− diag(Ω) and||A||1 =
∑

ij |Aij |.
When the data are fully observed, [195] arrived at the optimization procedure in (9.1) from

the penalized maximum likelihood approach, withŜ = n−1
∑n

i=1(xi − x)(xi − x)′. In the case
when data contains missing values, the log-likelihood of observed data takes the following form

ℓ(µ,Ω; {xi,obs}i) =

− 1

2

n∑

i=1

(
log |(Ω−1)i,obs|+ (xi,obs − µi,obs)

′((Ω−1)i,obs)
−1(xi,obs − µi,obs)

)
,

where for a sample pointxi we writexi = (xi,obs,xi,mis) to denote observed and missing compo-
nents, andµi,obs andΩi,obs are the mean and precision matrix of the observed componentsof xi.
MissGlasso is an EM algorithm that finds a local maximum(µ̂, Ω̂) of theℓ1 penalized observed
log-likelihood. In the E-step, MissGLasso imputes the missing values by conditional means of
the distribution. That is, imputation is done byx̂i,mis = µ̂mis−(Ω̂mis,mis)

−1Ω̂mis,obs(xi,obs−µobs),
whereµ̂ and Ω̂ are the current estimates of the parameters. In the M-step, the optimization
problem (9.1) is solved using the GLasso on data with imputedmissing values. The procedure
iterates between the E-step and the M-step until convergence to a local optimum of the penalized
observed log-likelihood. We will denotêΩEM, the final estimator of the precision matrix ob-
tained by the EM algorithm. As the objective is non-convex, it is difficult to establish theoretical
guarantees on the solution produced by the EM. Next, we present our estimator.

9.3 Plug-in estimator and related procedures

In this section, we propose a simple procedure based on the plug-in estimator of the covariance
matrix from available data that can be used together with existing procedures for estimating
precision matrices from fully observed data. Specifically,we will use the penalized likelihood
approach, which was introduced in the previous section in (9.1). From (9.1) it is obvious that we
only need a sample estimate of the covariance matrix, which is plugged into a convex program
that produces an estimate of the precision matrix.

We form a sample covariance matrix from the available samples containing missing values
as follows. Let̂S = [σ̂ab]ab be the sample covariance matrix with elements

σ̂ab =

∑n
i=1 riarib(xia − µ̂a)(xib − µ̂b)∑n

i=1 riarib
(9.2)

123



whereµ̂ = (µ̂a) is the sample mean defined asµ̂a = (
∑n

i=1 ria)
−1
∑n

i=1 riaxia. Observe that the
missing values inX are taken into account naturally and that the mean and covariance elements
are estimated only from the observed sample. Under the MCAR assumption, it is simple to show
thatŜ is an unbiased estimator ofΣ, that is,E[Ŝ] = Σ.

Our estimator is formed by plugginĝS into the objective in (9.1), which we will denote as
Ω̂mGLasso. Note thatŜ is not necessarily a positive definite matrix, however, the minimization
problem in (9.1) is still convex and the resulting estimatorΩ̂mGLasso will be positive definite and
unique. In the next section, we leverage the analysis of [152] to establish a number of good
statistical properties of the estimatorΩ̂mGLasso.

9.3.1 Selecting tuning parameters

The procedure described in the previous section requires selection of the tuning parametersλ,
which controls the sparsity of the solution and balances it to the fit to data. A common approach
is to form a grid of candidate values for the tuning parameterλ and choose one that minimizes a
modified BIC criterion

BIC(λ) = −2ℓ(µ̂, Ω̂; {xi,obs}i) + log(n)
∑

a≤b

1I{ω̂ab 6= 0}.

Here (µ̂, Ω̂) are estimates obtained using the tuning parameterλ andℓ(µ̂, Ω̂; {xi,obs}i) is the
observed log-likelihood. [195] proposed to use

∑
a≤b 1I{ω̂ab 6= 0} to measure the degrees of

freedom.
Performing cross-validation is another possibility for finding the optimal parameterλ. In the

V-fold cross-validation, samples are divided intoV disjoint folds, sayDv for v = 1, . . . , V , and
the score is computed as

CV(λ) =

V∑

v=1

∑

i∈Dv

log |(Ω̂−1
v )i,obs|+ (xi,obs − (µ̂v)i,obs)

′((Ω̂−1
v )i,obs)

−1(xi,obs − (µ̂v)i,obs),

where(µ̂v, Ω̂v) denote estimates obtained from the sample{xi}ni=1\Dv. The optimal tuning
parameter̂λ is the one that minimizesCV(λ). The final estimates(µ̂, Ω̂) are constructed using
the optimization procedure with the tuning parameterλ̂ on all the data.

9.3.2 Related procedures

[122] and [124] have recently proposed procedures for estimating approximately low-rank co-
variance matrices and sparse precision matrices, respectively, from high-dimensional data with
missing values. In both works, a sample covariance estimator is formed, which is then plugged

into an optimization procedure. The sample covariance estimator they consider, assuming(ria)ia
iid∼

Bern(γ) with γ ∈ (0, 1] known, is defined as

Σ̃ = (γ−1 − γ−2)diag(Σ̌) + γ−2Σ̌
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whereΣ̌ = [σ̌ab]ab andσ̌ab = n−1
∑n

i=1 riaribxiaxib. The estimator̃Σ is an unbiased estimator
of the covariance matrix, however, it requires knowledge ofthe parameterγ.

Procedure of [122] is focused on estimating a covariance matrix under the assumption that the
true covariance matrix is approximately low rank and hence is not comparable to our procedure.
[124] used a projected gradient descent method to obtain a solution to a high-dimensional re-
gression problem when data contains missing values. A sparse precision matrix can be obtained
by maximizing anℓ1 penalized pseudo-likelihood, which reduces to a sequence of regression
problems. We note that the estimatorΩ̂mGLasso can be obtained using any convex program solver
that can solve (9.1), while the results of [124] rely on the usage of projected gradient descent.

9.4 Theoretical results

In this section, we provide theoretical analysis of the estimatesΩ̂mGLasso, which we denotêΩ
throughout the section for notational simplicity, under the MCAR assumption. We start by ana-
lyzing the sample covariance matrix̂S in (9.2). We will assume that each element of the missing
values indicator matrixR is independently distributed asria ∼ Bern(γ), i = 1, . . . , n, a =
1, . . . , p. Furthermore, we assume that a distribution ofX has sub-Gaussian tails, that is, there
exists a constantσ ∈ (0,∞) such that

E[exp(t(Xia − µa))] ≤ exp(σ2t2), for all t ∈ R.

A multivariate Gaussian distribution satisfies this condition. We define the functionf(n, γ, δ),
which will be useful for characterizing probabilistic deviation of different quantities, as

f(n, γ, δ) = (nγ2 −
√

2nγ2 log(2/δ))−1 log(8/δ).

Our first result characterizes the deviation of the sample covariance matrix from the true covari-
ance matrix.
Lemma 9.1. Assume thatXa/

√
Σaa is sub-Gaussian with parameterσ2. Fix δ > 0 and assume

that n is big enough so thatf(n, γ, δ) ≤ 1/2. Then for any fixed(a, b) ∈ {1, . . . , p}2, a 6= b,
with probability at least1− δ, we have that|σ̂ab−σab| ≤ Cσ

√
f(n, γ, δ) whereCσ = 16

√
2(1+

4σ2)maxa σaa.

Similarly, we can obtain that for any diagonal elements ofŜ the statement|σ̂aa − σaa| ≤
Cσ

√
f(n,
√
γ, δ) holds with probability1− δ.

We use Lemma 9.1 to prove properties of the estimateΩ̂mGLasso. We start by introducing
some additional notation and assumptions. Following [152], we introduce theirrepresentable
condition:

|||ΓSCS(ΓSS)
−1|||∞ ≤ 1− α, α ∈ (0, 1] (9.3)

whereΓ = Ω⊗Ω,S := {(a, b) : ωab 6= 0} is support ofΩ andSC := {(a, b) : ωab = 0}, and|||·
|||∞ is theℓ∞/ℓ∞-operator norm. Furthermore, we defineKΣ := |||Σ|||∞ andKΓ := |||(ΓSS)

−1|||∞.
The maximum number of non-zero elements in a row ofΩ is denotedd := maxa=1,...,p |{b :
ωab 6= 0}|. The rate of convergence will depend on these quantities.
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Theorem 9.1. Suppose that the distribution ofX satisfies the irrepresentable condition in(9.3)
with parameterα ∈ (0, 1] and that the missing values indicator matrixR has i.i.d.Bern(γ)
elements, that is, the data is missing completely at random with probability1− γ. Furthermore,
assume that the conditions of Lemma 9.1 hold. LetΩ̂ be the unique solution for the regularization
parameterλ = 8

α
Cσ

√
f(n, γ, p−τ) with someτ > 2 andCσ = 16

√
2(1 + 4σ2)maxa σaa. If the

sample size satisfies

n >
2(C2

1(1 + 8α−1)2d2 + C1(1 + 8α−1)d) log 8pτ

γ2

whereC1 = 6Cσ max{KΣKΓ, K
3
Σ
K2

Γ
} then with probability at least1− p2−τ

max
a,b
|ω̂ab − ωab| ≤ 2(1 + 8α−1)KΓCσ

√
f(n, γ, p−τ),

whereΩ̂ = [ω̂ab]ab andΩ = [ωab]ab.
The result follows from application of Theorem 1 in [152] to the tail bound in Lemma 9.1

and some algebra. A simple consequence of Theorem 9.1 is thatthe support̂S of Ω̂ consistently
estimates the supportS of Ω if all the elements ofΩ are large enough in absolute values.
Corollary 9.1. Under the same assumptions as in Theorem 9.1, we have thatP[Ŝ = S] ≥
1− p2−τ if minab |ωab| ≥ 2(1 + 8α−1)KΓCσ

√
f(n, γ, p−τ ).

Proof follows by straightforward algebra from Theorem 9.1.Using the element-wiseℓ∞
bound on deviation of̂Ω fromΩ established in Theorem 9.1, we can simply establish the bounds
on the convergence in the Frobenius and spectral norms.
Corollary 9.2. Under the same assumptions as in Theorem 9.1, we have that with probability at
least1− p2−τ ,

||Ω̂−Ω||F ≤ K
√
|S|f(n, γ, p−τ), and

|||Ω̂−Ω|||2 ≤ Kmin{
√
|S|, d}

√
f(n, γ, p−τ)

whereK = 2(1 + 8α−1)KΓCσ.
Proof follows by straightforward algebra from Theorem 9.1.We can compare the established

results forΩ̂ under the MCAR assumption to results of [152] for the fully observed case. We
observe that the sample size increases by a factor ofO(γ−2), while the rate of convergence in
the element-wiseℓ∞ norm is slower by a factor ofO(γ−1). The parameterγ which controls the
rate of missing data is commonly considered a constant, however, it is clear from Theorem 9.1
that we could letγ → 0 slowly as a function ofn andp, while maintaining the convergence
properties of the procedure.

9.5 Simulation Analysis

In this section, we perform a set of simulation studies to illustrate finite sample performance
of our procedure. First, we show that the scalings predictedby the theory are sharp. Next,
we compare our procedure to the EM algorithm, MissGLasso [164] and the projected gradient
method [124], PGLasso. Furthermore, we can explore robustness of our method when the data
generating process departs from the one assumed in Section 9.4.
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Figure 9.1: Hamming distance between the support ofΩ̂ andΩ averaged over 100 runs. Vertical line
marks a threshold at which the graph structure is consistently estimated.

9.5.1 Verifying theoretical scalings

Theoretical results given in Section 9.4 predict behavior of the error when estimating the preci-
sion matrix. In particular, Corollary 9.1 suggests that we needO(d2 log(p)) samples to estimate
the graph structure consistently and Corollary 9.2 states that the error in the operator norm de-
creases asO(d

√
log(p)/n). Therefore, if we plot the error curves against appropriately rescaled

sample size, we expect them to align for different problem sizes. To verify this, we create a
chain-structured Gaussian graphical model (following [124]), so thatd = 2 and the precision
matrixΩ is created as follows. Each diagonal element is set to 1, and all the entries correspond-
ing to the chain are set equal to0.1. The precision matrix is rescaled so that|||Ω|||2 = 1 and
γ = 0.8.

Figure 9.1 shows the hamming distance between the support ofΩ̂ andΩ plotted against the
rescaled sample size. Vertical line marks a threshold in scaled sample size after which the pattern
of non-zero element of the precision matrix is consistentlyrecovered. Figure 9.2 shows that the
error curves align when the sample size is rescaled, as predicted by the theory.

9.5.2 Data missing completely at random

Our first simulation explores the MCAR assumption. We use models from [164]:
Model 1: σab = 0.7|a−b|, so that the elements of the covariance matrix decay exponentially.
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Recall Precision

MissGLasso mGLasso PGLasso MissGLasso mGLasso PGLasso
M

o
d

el
1

p
=

1
0

0 0% NA 1.000(0.000) 1.000(0.000) NA 0.973(0.045) 0.991(0.015)
10% 1.000(0.000) 1.000(0.000) 0.998(0.008) 0.608(0.068)0.915(0.059) 0.998(0.010)
20% 0.999(0.004) 1.000(0.003) 0.967(0.006) 0.636(0.081)0.897(0.073) 0.999(0.003)
30% 0.977(0.062) 0.989(0.003) 0.759(0.140) 0.642(0.064)0.836(0.057) 0.998(0.009)

p
=

2
0

0 0% NA 1.000(0.000) 0.891(0.005) NA 0.950(0.046) 0.999(0.004)
10% 0.860(0.022) 0.950(0.006) 0.782(0.024) 0.858(0.043)0.803(0.046) 0.984(0.027)
20% 0.833(0.053) 0.930(0.001) 0.556(0.006) 0.763(0.048)0.734(0.062) 0.952(0.091)
30% 0.794(0.138) 0.923(0.003) 0.553(0.009) 0.729(0.059)0.731(0.060) 0.941(0.052)

p
=

5
0

0 0% NA 1.000(0.001) 0.889(0.015) NA 0.912(0.022) 0.995(0.003)
10% 0.931(0.011) 0.933(0.031) 0.855(0.023) 0.834(0.029)0.862(0.044) 0.966(0.010)
20% 0.852(0.064) 0.920(0.024) 0.767(0.026) 0.811(0.037)0.841(0.037) 0.965(0.025)
30% 0.808(0.045) 0.887(0.028) 0.526(0.031) 0.739(0.043)0.781(0.030) 0.963(0.033)

M
o

d
el

2

p
=

1
0

0 0% NA 0.330(0.008) 0.403(0.006) NA 0.420(0.012) 0.297(0.012)
10% 0.278(0.019) 0.280(0.011) 0.380(0.007) 0.342(0.012)0.375(0.010) 0.319(0.008)
20% 0.240(0.022) 0.253(0.018) 0.259(0.012) 0.339(0.028)0.372(0.027) 0.320(0.026)
30% 0.231(0.031) 0.241(0.027) 0.174(0.030) 0.267(0.033)0.281(0.037) 0.331(0.042)

p
=

2
0

0 0% NA 0.281(0.011) 0.410(0.013) NA 0.570(0.012) 0.270(0.021)
10% 0.331(0.011) 0.261(0.010) 0.361(0.011) 0.354(0.013)0.471(0.015) 0.257(0.018)
20% 0.261(0.012) 0.243(0.015) 0.283(0.013) 0.274(0.018)0.354(0.021) 0.313(0.021)
30% 0.218(0.017) 0.232(0.017) 0.208(0.017) 0.281(0.019)0.267(0.031) 0.453(0.059)

p
=

5
0

0 0% NA 0.309(0.006) 0.302(0.012) NA 0.510(0.007) 0.540(0.018)
10% 0.305(0.007) 0.307(0.005) 0.357(0.009) 0.461(0.008)0.462(0.010) 0.224(0.012)
20% 0.297(0.010) 0.315(0.027) 0.243(0.015) 0.272(0.026)0.223(0.048) 0.383(0.019)
30% 0.238(0.025) 0.242(0.023) 0.203(0.028) 0.267(0.031)0.259(0.033) 0.396(0.021)

M
o

d
el

3

p
=

1
0

0 0% NA 0.943(0.002) 0.971(0.015) NA 0.532(0.017) 0.251(0.051)
10% 0.857(0.010) 0.857(0.003) 0.994(0.005) 0.857(0.009)0.882(0.004) 0.200(0.006)
20% 0.829(0.017) 0.857(0.012) 0.886(0.035) 0.691(0.022)0.588(0.015) 0.307(0.059)
30% 0.771(0.053) 0.829(0.033) 0.595(0.096) 0.780(0.050)0.671(0.050) 0.797(0.053)

p
=

2
0

0 0% NA 0.783(0.005) 1.000(0.003) NA 0.921(0.002) 0.245(0.023)
10% 0.747(0.005) 0.733(0.006) 0.998(0.007) 0.887(0.009)0.921(0.004) 0.233(0.030)
20% 0.667(0.009) 0.747(0.030) 0.931(0.014) 0.909(0.015)0.737(0.031) 0.311(0.023)
30% 0.480(0.037) 0.600(0.052) 0.801(0.045) 0.837(0.059)0.804(0.033) 0.412(0.035)

p
=

5
0

0 0% NA 0.744(0.005) 0.998(0.002) NA 0.844(0.003) 0.191(0.019)
10% 0.627(0.006) 0.718(0.006) 0.994(0.003) 0.893(0.003)0.835(0.005) 0.180(0.020)
20% 0.601(0.010) 0.699(0.031) 0.923(0.029) 0.887(0.034)0.789(0.037) 0.259(0.054)
30% 0.511(0.039) 0.614(0.038) 0.851(0.041) 0.800(0.043)0.755(0.027) 0.355(0.047)

Table 9.1: Average (standard deviation) recall and precision under the MCAR assumption.
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Figure 9.2: Operator norm error averaged over 100 runs. We observe that the error curve align when
plotted against the rescaled sample size.

Model 2:
σab = 1I{a=b} +0.4 1I{|a−b|=1} +0.2 1I{|a−b|=2}

+0.2 1I{|a−b|=3} +0.1 1I{|a−b|=4},

where the symbol1I represents the indicator function which is1 if a = b and0 otherwise.
Model 3: Ω = B + δI, where each off-diagonal entry ofB is generated independently and

equals0.5 with probabilityα = 0.1 or 0 with probability1− α. Diagonal entries ofB are zero,
andδ is chosen so that the condition number ofΩ is p.

We report convergence results in the operator norm. We also report precision and recall for

the performance on recovering the sparsity structure ofΩ, whereprecision = |Ŝ∩S|
|Ŝ| andrecall =

|Ŝ∩S|
|S| . As described in Section 9.3.1, the tuning parameterλ is selected by minimizing the BIC

criterion. We observed that using the tuning parameters that minimize the cross-validation loss
result in complex estimates with many falsely selected edges (results not reported).

We set the sample size and number of dimensions(n, p) = (100, 100), (150, 200), (200, 500)
for each model and report results averaged over 50 independent runs for each setting. For each
generated data set, we remove completely at random10%, 20% and30% entries. Results on
recall and precision for different degrees of missingness are reported in Table 9.1, while the
operator norm convergence results are reported in Table 9.2. From the simulations, we observe
that mGLasso performs better than the EM algorithm on the task of recovering the sparsity
pattern of the precision matrix. PGLasso does well on Model 1, but does not perform so well
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under Model 2 and 3. Model 2 is a difficult one for recovering non-zero patterns, as the true
precision matrix contains many small non-zero elements. The EM algorithm performs better
than mGLasso and PGLasso measured by|||Ω̂−Ω|||2, with mGLasso doing better than PGLasso.
However, on average the EM algorithm requires 20 iterationsfor convergence, which makes
mGLasso about 20 times faster on average.

9.5.3 Data missing at random

In the previous section, we have simulated data with missingvalues completely at random, under
which consistency of the estimatorΩ̂mGLasso given in Section 3 can be proven. When the missing
values are produced at random (MAR), the EM algorithm described is still valid, however, the
estimatorΩ̂mGLasso is not. [128] provided a statistical test for checking whether missing values
are missing completely at random, however, no such tests exist for high-dimensional data. In
this section, we will observe how robust our estimator is when the data generating mechanism
departs from the MCAR assumption. When the missing data mechanism is NMAR, then neither
the EM algorithm, nor the procedures described Section 3 arevalid.

We will use the model considered in [164] in Section 4.1.2. The model is a Gaussian with
p = 30, n = 100 and the covariance matrix is block-diagonal,Σ = diag(B,B, . . . ,B) with
B ∈ R3×3, bab = 0.7|a−b|. Missing values are created using the following three mechanisms:

1. For all j = 1, . . . , ⌊p/3⌋ and i = 1, . . . , n: xi,3∗j is missing if ri,j = 0 whereri,j
iid∼

Bern(π).

2. For allj = 1, . . . , ⌊p/3⌋ andi = 1, . . . , n: xi,3∗j is missing ifxi,3∗j−2 < T .

3. For allj = 1, . . . , ⌊p/3⌋ andi = 1, . . . , n: xi,3∗j is missing ifxi,3∗j < T .
The threshold valueT determines the percentage of missing values. We consider three set-

tings: 1)π = 0.25 andT = Φ−1(0.25), 2) π = 0.5 andT = Φ−1(0.5). and 3)π = 0.75
andT = Φ−1(0.75) whereΦ(·) is the standard Normal cumulative distribution function. The
first missing data mechanism is MCAR as the missing values do not depend on the observed
values. The second missing data mechanism is MAR as the missing value indicators depend on
the observed values of other variables. Finally, the third missing data mechanism is NMAR as
the missing data indicators depend on the unobserved values.

Results of the simulation, averaged over 50 independent runs, are summarized in Table 9.3
and Table 9.4. We first observe that when the missing values are not missing at random, per-
formance of all procedures degrades. Furthermore, the EM algorithm performs better than the
other two methods when the data is generated under MAR. This is expected, since our proposed
procedure is not valid under this assumption. Note, however, that mGLasso performs better than
PGLasso under this simulation scenario.

9.6 Discussion and extensions

We have proposed a simple estimator for the precision matrixin high-dimensions from data with
missing values. The estimator is based on a convex program that can be solved efficiently. In
particular, from our simulation studies, we observed that the algorithm runs on average 20 times
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MissGLasso mGLasso PGLasso

Model 1

p
=

1
0

0 0% NA 2.10(0.01) 4.35(0.01)
10% 2.25(0.01) 2.31(0.01) 4.69(0.01)
20% 2.35(0.04) 2.42(0.03) 4.78(0.04)
30% 2.69(0.05) 2.85(0.04) 4.82(0.06)

p
=

2
0

0 0% NA 2.26(0.01) 4.49(0.01)
10% 2.32(0.01) 2.73(0.01) 4.76(0.02)
20% 2.51(0.01) 2.88(0.01) 4.86(0.02)
30% 2.96(0.02) 3.04(0.01) 4.98(0.05)

p
=

5
0

0 0% NA 3.59(0.03) 4.94(0.03)
10% 3.71(0.02) 3.85(0.02) 5.25(0.04)
20% 3.99(0.03) 3.99(0.02) 5.32(0.04)
30% 4.11(0.05) 4.77(0.04) 5.76(0.05)

Model 2

p
=

1
0

0 0% NA 1.25(0.01) 1.63(0.01)
10% 1.32(0.01) 1.66(0.01) 1.75(0.01)
20% 1.59(0.01) 1.75(0.01) 1.88(0.02)
30% 1.66(0.02) 1.86(0.01) 1.99(0.02)

p
=

2
0

0 0% NA 1.31(0.01) 1.69(0.01)
10% 1.41(0.01) 1.71(0.01) 1.71(0.01)
20% 1.61(0.01) 1.79(0.02) 1.99(0.01)
30% 1.69(0.01) 1.87(0.01) 2.08(0.01)

p
=

5
0

0 0% NA 1.44(0.01) 1.73(0.01)
10% 1.49(0.01) 1.74(0.01) 1.84(0.02)
20% 1.66(0.01) 1.81(0.02) 2.05(0.03)
30% 1.72(0.02) 1.95(0.02) 2.22(0.04)

Model 3

p
=

1
0

0 0% NA 1.12(0.01) 1.35(0.01)
10% 1.16(0.01) 1.32(0.01) 1.42(0.02)
20% 1.20(0.01) 1.64(0.02) 1.70(0.03)
30% 1.49(0.05) 1.67(0.03) 1.83(0.03)

p
=

2
0

0 0% NA 1.35(0.01) 1.59(0.01)
10% 1.43(0.01) 1.62(0.01) 1.83(0.01)
20% 1.46(0.03) 1.71(0.02) 1.87(0.01)
30% 1.52(0.03) 1.82(0.01) 1.93(0.03)

p
=

5
0

0 0% NA 1.42(0.01) 1.64(0.02)
10% 1.47(0.01) 1.69(0.02) 1.86(0.01)
20% 1.55(0.02) 1.73(0.04) 1.92(0.03)
30% 1.59(0.02) 1.87(0.03) 2.01(0.03)

Table 9.2: Average (standard deviation) distance in the operator norm|||Ω − Ω̂|||2 under the MCAR as-
sumption. 131



MissGLasso mGLasso PGLasso

π = 0.25 MCAR 2.88(0.02) 3.16(0.01) 3.72(0.01)
MAR 3.24(0.01) 3.92(0.03) 4.15(0.05)
NMAR 5.78(0.05) 6.57(0.08) 7.64(0.10)

π = 0.5 MCAR 2.97(0.03) 3.28(0.02) 3.77(0.02)
MAR 3.41(0.05) 4.16(0.06) 4.58(0.04)
NMAR 6.15(0.07) 6.61(0.10) 8.12(0.12)

π = 0.75 MCAR 3.17(0.02) 3.31(0.03) 3.99(0.03)
MAR 3.59(0.05) 4.47(0.04) 4.87(0.05)
NMAR 6.87(0.11) 7.04(0.13) 8.76(0.15)

Table 9.3: Average (standard deviation) distance in the operator norm|||Ω − Ω̂|||2 when missing values
mechanism is MCAR, MAR and NMAR. The fraction of the observeddata is controlled byπ.

Recall Precision

MissGLasso mGLasso PGLasso MissGLasso mGLasso PGLasso

π = 0.25 MCAR 0.900(0.003) 0.950(0.005) 1.000(0.000) 0.900(0.002) 0.861(0.006) 0.333(0.030)
MAR 0.512(0.026) 0.815(0.070) 0.501(0.067) 0.995(0.006)0.471(0.052) 0.634(0.025)
NMAR 0.500(0.015) 0.443(0.052) 0.465(0.112) 0.698(0.086) 0.188(0.021) 0.213(0.091)

π = 0.5 MCAR 0.800(0.005) 0.900(0.003) 1.000(0.000) 0.889(0.008) 0.774(0.068) 0.263(0.050)
MAR 0.650(0.034) 0.900(0.005) 0.551(0.061) 0.921(0.021)0.393(0.089) 0.453(0.072)
NMAR 0.531(0.042) 0.613(0.477) 0.463(0.073) 0.684(0.092) 0.370(0.285) 0.315(0.109)

π = 0.75 MCAR 0.626(0.062) 0.635(0.220) 0.775(0.081) 0.924(0.053) 0.891(0.063) 0.221(0.039)
MAR 0.619(0.014) 0.611(0.132) 0.431(0.075) 0.879(0.061)0.555(0.074) 0.399(0.044)
NMAR 0.491(0.046) 0.557(0.115) 0.411(0.076) 0.688(0.059) 0.464(0.067) 0.368(0.071)

Table 9.4: Average (standard deviation) recall and precision when missing values mechanism is MCAR,
MAR and NMAR.
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faster than the EM algorithm. Furthermore, the estimator does not require imputation of the
missing values and can be found using existing numerical procedures. As such, we believe that
it represents a viable alternative to the iterative EM algorithm.

From the analysis in Section 9.4, it is clear that other procedures for estimating precision
matrices from fully observed data, such as the Clime estimator [37], could be easily extended to
handle data with missing values. Theoretical properties ofthose procedures would be established
using the tail bounds on the sample covariance matrix given in Lemma 9.1.

There are two directions in which this work should be extended. First, the MCAR assumption
is very strong and it is hard to check whether it holds in practice. However, we have observed
in our simulation studies that under the MAR assumption, which is a more realistic assump-
tion than MCAR, performance of the estimators does not degrade dramatically when estimating
the support of the precision matrix. However, estimated parameters are quite far from the true
parameters. This could be improved by using a weighted estimator for the sample covariance
matrix (see, for example, [156]). Second, it is important toestablish sharp lower bounds for
the estimation problem from data with missing values, whichshould reflect dependence on the
proportion of observed entriesγ (see [122]).
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Chapter 10

Estimation of Networks From
Multi-attribute Data

The existing methods for estimating structure of undirected graphical models focus on data where
each node represents a scalar random variable, even though,in many real world problems, nodes
are representing multivariate variables, such as images, text or multi-view feature vectors. In
this chapter, we study a principled framework for estimating structure of undirected graphical
models from multivariate (or multi-attribute) nodal data.The structure of a graph is estimated
through estimation of non-zero partial canonical correlation between nodes, which under the
Gaussian model is equivalent to estimating conditional independencies between random vectors
represented by the nodes. We develop a method that efficiently minimize the penalized Gaussian
likelihood. Extensive simulation studies demonstrate theeffectiveness of the method under vari-
ous conditions. We provide illustrative applications to uncovering gene regulatory networks from
gene and protein profiles, and uncovering brain connectivity graph from functional magnetic res-
onance imaging data. Finally, we provide sufficient conditions which guarantee consistent graph
recovery.

10.1 Motivation

Undirected Gaussian graphical models are commonly used to represent and explore conditional
independencies between variables in a complex system. As wediscuss in§2, these conditional
dependencies are represented by a network, where an edge connects two conditionally dependent
random variables. Current approaches to estimating structure of an undirected graphical model
focus on cases where nodes represent scalar variables, however, in many modern problems, we
are interested in studying a network where nodes represent vector variables or multi-attribute
objects. For example, when modeling a social network, a nodemay correspond to a person for
which a vector of attributes is available, such as personal information, demographics, interests,
and other features. In the current literature on social graph estimation based on Markov random
fields it is commonly assumed that a node represents a scalar variable, such as a binary vote (see
for example [19, 112]). As another example, consider modeling gene regulatory networks. A
node in a graphical model corresponds to a gene and the graph structure is estimated from gene
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expression levels (see for example [146]). However, due to advances of modern data acquisition
technologies, researchers are able to measure the activities of a single gene in a high-dimensional
space, such as an image of the spatial distribution of the gene expression, or a multi-view snap-
shot of the gene activity such as mRNA and protein abundances. Therefore, there is a need for
methods that estimate the structure of an undirected graphical model from multi-attribute data.

In this chapter, we present new methodology for estimating the structure of undirected graph-
ical models where nodes correspond to vectors, that is, multi-attribute objects. We consider the
following setting. LetX = (X′

1, ...,X
′
p)

′ whereX1 ∈ Rk1 , . . . ,Xp ∈ Rkp are random vec-
tors that jointly follow a multivariate Gaussian distribution with meanµ = (µ′

1, . . . ,µ
′
p)

′ and
covariance matrixΣ∗, which is partitioned as

Σ∗ =




Σ∗
11 · · · Σ∗

1p
...

. . .
...

Σ∗
p1 · · · Σ∗

pp


 , (10.1)

with Σ∗
ij = Cov(Xi,Xj). Without loss of generality, we assumeµ = 0. Let G = (V,E)

be a graph with the vertex setV = {1, . . . , p} and the set of edgesE ⊆ V × V that encodes
the conditional independence relationships among(Xa)a∈V . That is, each nodea ∈ V of the
graphG corresponds to the random vectorXa and there is no edge between nodesa andb in the
graph if and only ifXa is conditionally independent ofXb given all the vectors corresponding
to the remaining nodes,X¬ab = {Xc : c ∈ V \ {a, b}}. Such a graph is also known as
a Markov network (of Markov graph), which we shall emphasizein this chapter to compare
with an alternative graph overV known as the association network, which is based on pairwise
marginal independence. Conditional independence can be read from the inverse of the covariance
matrix, as the block corresponding toXa andXb will be equal to zero. LetDn = {xi}ni=1 be a
sample ofn independent and identically distributed vectors drawn fromN (0,Σ). For a vector
xi, we denotexi,a ∈ Rka the component corresponding to the nodea ∈ V . Our goal is to estimate
the structure of the graphG from the sampleDn. Note that we allow for different nodes to have
different number of attributes, which is useful in many applications, e.g., when a node represents
a gene pathway in a regulatory network.

Methods discussed in§2 cannot be extended to handle multi-attribute data in an obvious way.
For example, if the number of attributes is the same for each node, one may naively estimate one
graph per attribute, however, it is not clear how to combine such graphs into a summary graph
with a clear statistical interpretation. The situation becomes even more difficult when nodes
correspond to objects that have different number of attributes.

In a related work, [114] use canonical correlation to estimate association networks from
multi-attribute data, however, such networks have different interpretation to undirected graphical
models. In particular, association networks are known to confound the direct interactions with
indirect ones as they only represent marginal associations, where as undirected graphical mod-
els represent conditional independence assumptions that are better suited for separating direct
interactions from indirect confounders. Our work is related to the literature on simultaneous es-
timation of multiple Gaussian graphical models under a multi-task setting [30, 45, 77, 88, 179].
However, the model given in (10.1) is different from models considered in various multi-task
settings and the optimization algorithms developed in the multi-task literature do not extend to
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handle the optimization problem given in our setting.
Unlike the standard procedures for estimating the structure of Gaussian graphical models

(e.g., neighborhood selection [135] or glasso [71]), whichinfer the partial correlations between
pairs of nodes, our proposed method estimates the graph structure based on the partial canon-
ical correlation, which can naturally incorporate complexnodal observations. Under that the
Gaussian model in (10.1), the estimated graph structure hasthe same probabilistic independence
interpretations as the Gaussian graphical model over univariate nodes. The main contributions
of the chapter are the following. First, we introduce a new framework for learning structure of
undirected graphical models from multi-attribute data. Second, we develop an efficient algorithm
that estimates the structure of a graph from the observed data. Third, we provide extensive sim-
ulation studies that demonstrate effectiveness of our method and illustrate how the framework
can be used to uncover gene regulatory networks from gene andprotein profiles, and to uncover
brain connectivity graph from functional magnetic resonance imaging data. Finally, we provide
theoretical results, which give sufficient conditions for consistent structure recovery.

10.2 Methodology

In this section, we propose to estimate the graph by estimating non-zero partial canonical corre-
lation between the nodes. This leads to a penalized maximum likelihood objective, for which we
develop an efficient optimization procedure.

10.2.1 Preliminaries

LetXa andXb be two multivariate random vectors. Canonical correlationis defined betweenXa

andXb as
ρc(Xa,Xb) = max

u∈Rka ,v∈Rkb

Corr(u′Xa,v
′Xb).

That is, computing canonical correlation betweenXa andXb is equivalent to maximizing the
correlation between two linear combinationsu′Xa andv′Xb with respect to vectorsu andv.
Canonical correlation can be used to measure association strength between two nodes with multi-
attribute observations. For example, in [114], a graph is estimated from multi-attribute nodal
observations by elementwise thresholding the canonical correlation matrix between nodes, but
such a graph estimator may confound the direct interactionswith indirect ones.

We exploit the partial canonical correlation to estimate a graph from multi-attribute nodal
observations. A graph is going to be formed by connecting nodes with non-zero partial canonical
correlation. Let̂A = argmin E (||Xa −AX¬ab||22) andB̂ = argmin E (||Xb −BX¬ab||22), then
the partial canonical correlation betweenXa andXb is defined as

ρc(Xa,Xb;X¬ab) = max
u∈Rka ,v∈Rkb

Corr{u′(Xa − ÂX¬ab),v
′(Xb − B̂X¬ab)},

that is, the partial canonical correlation betweenXa andXb is equal to the canonical correlation
between the residual vectors ofXa andXb after the effect ofX¬ab is removed [21].
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Let Ω∗ denote the precision matrix under the model in (10.1). Usingstandard results for the
multivariate Gaussian distribution (see also Equation (7)in [21]), a straightforward calculation
(given in§10.8.3) shows that

ρc(Xa,Xb;X¬ab) 6= 0 if and only if max
u∈Rka ,v∈Rkb

u′Ω∗
abv 6= 0. (10.2)

This implies that estimating whether the partial canonicalcorrelation is zero or not can be done by
estimating whether a block of the precision matrix is zero ornot. Furthermore, under the model
in (10.1), vectorsXa andXb are conditionally independent givenX¬ab if and only if partial
canonical correlation is zero. A graph built on this type of inter-nodal relationship is known as a
Markov graph, as it captures both local and global Markov properties over all arbitrary subsets
of nodes in the graph, even though the graph is built based on pairwise conditional independence
properties. In§10.2.2, we use the above observations to design an algorithmthat estimates the
non-zero partial canonical correlation between nodes fromdataDn using the penalized maximum
likelihood estimation of the precision matrix.

Based on the relationship given in (10.2), we can motivate analternative method for estimat-
ing the non-zero partial canonical correlation. Leta = {b : b ∈ V \ {a}} denote the set of all
nodes minus the nodea. Then

E (Xa | Xa = xa) = Σ∗
a,aΣ

∗,−1
a,a xa.

SinceΩ∗
a,a = −(Σ∗

aa − Σ∗
a,aΣ

∗,−1
a,a Σ∗

a,a)
−1Σ∗

a,aΣ
∗,−1
a,a , we observe that a zero blockΩab can be

identified from the regression coefficients when each component ofXa is regressed onXa. We do
not build an estimation procedure around this observation,however, we note that this relationship
shows how one would develop a regression based analogue of the work presented in [114].

10.2.2 Penalized Log-Likelihood Optimization

Based on the dataDn, we propose to minimize the penalized negative Gaussian log-likelihood
under the model in (10.1),

min
Ω≻0

{
trSΩ− log |Ω|+ λ

∑

a,b

||Ωab||F
}

(10.3)

whereS = n−1
∑n

i=1 xix
′
i is the sample covariance matrix,||Ωab||F ) denotes the Frobenius

norm ofΩab andλ is a user defined parameter that controls the sparsity of the solution Ω̂. The
Frobenius norm penalty encourages blocks of the precision matrix to be equal to zero, similar
to the way that theℓ2 penalty is used in the group Lasso [194]. Here we assume that the same
number of samples is available per attribute. However, the same method can be used in cases
when some samples are obtained on a subset of attributes. Indeed, we can simply estimate each
element of the matrixS from available samples, treating non-measured attributesas missing
completely at random (for more details see [107] and§9).

The dual problem to (10.3) is

max
Σ

∑

j∈V
kj + log |Σ| subject to max

a,b
||Sab −Σab||F ≤ λ,
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whereΣ is the dual variable toΩ and |Σ| denotes the determinant ofΣ. Note that the primal
problem gives us an estimate of the precision matrix, while the dual problem estimates the co-
variance matrix. The proposed optimization procedure, described below, will simultaneously
estimate the precision matrix and covariance matrix, without explicitly performing an expensive
matrix inversion.

We propose to optimize the objective function in (10.3) using an inexact block coordinate
descent procedure, inspired by [138]. The block coordinatedescent is an iterative procedure that
operates on a block of rows and columns while keeping the other rows and columns fixed. We
write

Ω =

(
Ωaa Ωa,a

Ωa,a Ωa,a

)
, Σ =

(
Σaa Σa,a

Σa,a Σa,a

)
, S =

(
Saa Sa,a

Sa,a Sa,a

)

and suppose that(Ω̃, Σ̃) are the current estimates of the precision matrix and covariance matrix.
With the above block partition, we havelog |Ω| = log(Ωa,a) + log(Ωaa−Ωa,a(Ωa,a)

−1Ωa,a). In
the next iteration,̂Ω is of the form

Ω̂ = Ω̃+

(
∆aa ∆a,a

∆a,a 0

)
=

(
Ω̂aa Ω̂a,a

Ω̂a,a Ω̃a,a

)

and is obtained by minimizing

trSaaΩaa+2 trSa,aΩa,a− log |Ωaa−Ωa,a(Ω̃a,a)
−1Ωa,a|+λ||Ωaa||F +2λ

∑

b6=a

||Ωab||F . (10.4)

Exact minimization over the variablesΩaa andΩa,a at each iteration of the block coordinate
descent procedure can be computationally expensive. Therefore, we propose to updateΩaa

andΩa,a using one generalized gradient step update (see [11]) in each iteration. Note that the
objective function in (10.4) is a sum of a smooth convex function and a non-smooth convex
penalty so that the gradient descent method cannot be directly applied. Given a step sizet,
generalized gradient descent optimizes a quadratic approximation of the objective at the current
iterateΩ̃, which results in the following two updates

Ω̂aa = argmin
Ωaa

{
tr(Saa − Σ̃aa)Ωaa +

1

2t
||Ωaa − Ω̃aa||2F + λ||Ωaa||F

}
, and (10.5)

Ω̂ab = argmin
Ωab

{
tr(Sab − Σ̃ab)Ωba +

1

2t
||Ωab − Ω̃ab||2F + λ||Ωab||F

}
, ∀b ∈ a. (10.6)

Solutions to (10.5) and (10.6) can be computed in a closed form as

Ω̂aa = (1− tλ/||Ω̃aa + t(Σ̃aa − Saa)||F )+(Ω̃aa + t(Σ̃aa − Saa)), and (10.7)

Ω̂ab = (1− tλ/||Ω̃ab + t(Σ̃ab − Sab)||F )+(Ω̃ab + t(Σ̃ab − Sab)), ∀b ∈ a, (10.8)

where(x)+ = max(0, x). If the resulting estimator̂Ω is not positive definite or the update does
not decrease the objective, we halve the step sizet and find a new update. Once the update of the
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precision matrixΩ̂ is obtained, we update the covariance matrixΣ̂. This update can be found
efficiently, without inverting the wholêΩ matrix, using the matrix inversion lemma as follows

Σ̂a,a = (Ω̃a,a)
−1 + (Ω̃a,a)

−1Ω̂a,a(Ω̂aa − Ω̂a,a(Ω̃a,a)
−1Ω̂a,a)

−1Ω̂a,a(Ω̃a,a)
−1,

Σ̂a,a = −Ω̂aaΩ̂a,aΣ̂a,a,

Σ̂aa = (Ω̂aa − Ω̂a,a(Ω̃a,a)
−1Ω̂a,a)

−1,

(10.9)

with (Ω̃a,a)
−1 = Σ̃a,a−Σ̃a,aΣ̃

−1
aa Σ̃a,a. Combining all three steps we get the following algorithm:

1. Set the initial estimator̃Ω = diag(S) andΣ̃ = Ω̃−1. Set the step sizet = 1.

2. For eacha ∈ V perform the following:

UpdateΩ̂ using (10.7) and (10.8).
If Ω̂ is not positive definite, sett← t/2 and repeat the update.
UpdateΣ̂ using (10.9).

3. Repeat Step 2 until the duality gap
∣∣∣tr(SΩ̂)− log |Ω̂|+ λ

∑

a,b

||Ω̂ab||F −
∑

j∈V
kj − log |Σ|

∣∣∣ ≤ ǫ,

whereǫ is a prefixed precision parameter (for example,ǫ = 10−3).
Finally, we form a grapĥG = (V, Ê) by connecting nodes with||Ω̂ab||F 6= 0.

Step 2 of the estimation algorithm updates portions of the precision and covariance matrices
corresponding to one node at a time. We observe that the computational complexity of updating
the precision matrix isO (pk2). Updating the covariance matrix requires computing(Ω̃a,a)

−1,
which can be efficiently done inO (p2k2 + pk2 + k3) = O (p2k2) operations, assuming that
k ≪ p. With this, the covariance matrix can be updated inO (p2k2) operations. Therefore the
total cost of updating the covariance and precision matrices isO (p2k2) operations. Since step 2
needs to be performed for each nodea ∈ V , the total complexity isO (p3k2). Let T denote the
total number of times step 2 is executed. This leads to the overall complexity of the algorithm
asO (Tp3k2). In practice, we observe thatT ≈ 10 to 20 for sparse graphs. Furthermore, when
the whole solution path is computed, we can use warm starts tofurther speed up computation,
leading toT < 5 for eachλ.

Convergence of the above described procedure to the unique minimum of the objective func-
tion in (10.3) does not follow from the standard results on the block coordinate descent algorithm
[169] for two reasons. First, the minimization problem in (10.4) is not solved exactly at each it-
eration, since we only updateΩaa andΩa,a using one generalized gradient step update in each
iteration. Second, the blocks of variables, over which the optimization is done at each iteration,
are not completely separable between iterations due to the symmetry of the problem. The proof
of the following convergence result is given in§10.8.
Lemma 10.1. For every value ofλ > 0, the above described algorithm produces a sequence

of estimates
{
Ω̃(t)

}
t≥1

of the precision matrix that monotonically decrease the objective values

given in(10.3). Every element of this sequence is positive definite and the sequence converges to
the unique minimizer̂Ω of (10.3).
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10.2.3 Efficient Identification of Connected Components

When the target grapĥG is composed of smaller, disconnected components, the solution to
the problem in (10.3) is block diagonal (possibly after permuting the node indices) and can be
obtained by solving smaller optimization problems. That is, the minimizerΩ̂ can be obtained by
solving (10.3) for each connected component independently, resulting in massive computational
gains. We give necessary and sufficient condition for the solution Ω̂ of (10.3) to be block-
diagonal, which can be easily checked by inspecting the empirical covariance matrixS.

Our first result follows immediately from the Karush-Kuhn-Tucker conditions for the opti-
mization problem (10.3) and states that ifΩ̂ is block-diagonal, then it can be obtained by solving
a sequence of smaller optimization problems.
Lemma 10.2. If the solution to(10.3)takes the form̂Ω = diag(Ω̂1, Ω̂2, . . . , Ω̂l), that is,Ω̂ is a
block diagonal matrix with the diagonal blockŝΩ1, . . . , Ω̂l, then it can be obtained by solving

min
Ωl′≻0

{
trSl′Ωl′ − log |Ωl′|+ λ

∑

a,b

||Ωab||F
}

separately for eachl′ = 1, . . . , l, whereSl′ are submatrices ofS corresponding toΩl′.
Next, we describe how to identify diagonal blocks ofΩ̂. Let P = {P1, P2, . . . , Pl} be a

partition of the setV and assume that the nodes of the graph are ordered in a way thatif a ∈ Pj ,
b ∈ Pj′, j < j′, thena < b. The following lemma states that the blocks ofΩ̂ can be obtained
from the blocks of a thresholded sample covariance matrix.
Lemma 10.3. A necessary and sufficient conditions forΩ̂ to be block diagonal with blocks
P1, P2, . . . , Pl is that||Sab||F ≤ λ for all a ∈ Pj, b ∈ Pj′, j 6= j′.

BlocksP1, P2, . . . , Pl can be identified by forming ap × p matrix Q with elementsqab =
1I{||Sab||F > λ} and computing connected components of the graph with adjacency matrix
Q. The lemma states also that given two penalty parametersλ1 < λ2, the set of unconnected
nodes with penalty parameterλ1 is a subset of unconnected nodes with penalty parameterλ2.
The simple check above allows us to estimate graphs on datasets with large number of nodes,
if we are interested in graphs with small number of edges. However, this is often the case
when the graphs are used for exploration and interpretationof complex systems. Lemma 10.3
is related to existing results established for speeding-upcomputation when learning single and
multiple Gaussian graphical models [45, 139, 189]. Each condition is different, since the methods
optimize different objective functions.

10.3 Consistent Graph Identification

In this section, we provide theoretical analysis of the estimator described in§10.2.2. In particular,
we provide sufficient conditions for consistent graph recovery. For simplicity of presentation,
we assume thatka = k, for all a ∈ V , that is, we assume that the same number of attributes is
observed for each node. For eacha = 1, . . . , kp, we assume that(σ∗

aa)
−1/2Xa is sub-Gaussian

with parameterγ, whereσ∗
aa is theath diagonal element ofΣ∗. Recall thatZ is a sub-Gaussian

random variable if there exists a constantσ ∈ (0,∞) such that

E (exp(tZ)) ≤ exp(σ2t2), for all t ∈ R.
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Our assumptions involve the Hessian of the functionf(A) = trSA−log |A| evaluated at the
trueΩ∗,H = H(Ω∗) = (Ω∗)−1⊗(Ω∗)−1 ∈ R(pk)2×(pk)2 , with⊗ denoting the Kronecker product,
and the true covariance matrixΣ∗. The Hessian and the covariance matrix can be thought of as
block matrices with blocks of sizek2 × k2 andk × k, respectively. We will make use of the
operatorC(·) that operates on these block matrices and outputs a smaller matrix with elements
that equal to the Frobenius norm of the original blocks. For example,C(Σ∗) ∈ Rp×p with
elementsC(Σ∗)ab = ||Σ∗

ab||F . Let T = {(a, b) : ||Ωab||F 6= 0} andN = {(a, b) : ||Ωab||F = 0}.
With this notation introduced, we assume that the followingirrepresentable condition holds.
There exists a constantα ∈ [0, 1) such that

|||C
(
HNT (HT T )

−1
)
|||∞ ≤ 1− α,

where|||A|||∞ = maxi
∑

j |Aij|. We will also need the following quantities to specify the results
κΣ∗ = |||C(Σ∗)|||∞ andκH = |||C(H−1

T T )|||∞. These conditions extend the conditions specified in
[152] needed for estimating graphs from single attribute observations.

We have the following result that provides sufficient conditions for the exact recovery of the
graph.

Proposition 10.1.Let τ > 2. We set the penalty parameterλ in (10.3)as

λ = 8kα−1
(
128(1 + 4γ2)2(max

a
(σ∗

aa)
2)n−1(2 log(2k) + τ log(p))

)1/2
.

If n > C1s
2k2(1 + 8α−1)2(τ log p + log 4 + 2 log k), wheres is the maximal degree of nodes in

G, C1 = (48
√
2(1 + 4γ2)(maxa σ

∗
aa)max(κΣ∗κH, κ3

Σ∗κ2
H))

2 and

min
(a,b)∈T ,a6=b

||Ωab||F > 16
√
2(1 + 4γ2)(max

a
σ∗
aa)(1 + 8α−1)κHk

(
τ log p+ log 4 + 2 log k

n

)1/2

,

thenP
(
Ĝ = G

)
≥ 1− p2−τ .

The proof of Proposition 10.1 is given in§10.8. We extend the proof of [152] to accommo-
date the Frobenius norm penalty on blocks of the precision matrix. This proposition specifies
the sufficient sample size and a lower bound on the Frobenius norm of the off-diagonal blocks
needed for recovery of the unknown graph. Under these conditions and correctly specified tuning
parameterλ, the solution to the optimization problem in (10.3) correctly recovers the graph with
high probability. In practice, one needs to choose the tuning parameter in a data dependent way.
For example, using the Bayesian information criterion. Even though our theoretical analysis
obtains the same rate of convergence as that of [152], our method has a significantly improved
finite-sample performance (More details will be provided in§10.5.). It remains an open question
whether the sample size requirement can be improved as in thecase of group Lasso (see, for
example, [123]). The analysis of [123] relies heavily on thespecial structure of the least squares
regression. Hence, their method does not carry over to the more complicated objective function
as in (10.3).
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10.4 Interpreting Edges

We propose a post-processing step that will allow us to quantify the strength of links identified
by the method proposed in§10.2.2, as well as identify important attributes that contribute to the
existence of links.

For any two nodesa and b for which Ωab 6= 0, we defineN (a, b) = {c ∈ V \ {a, b} :
Ωac 6= 0 orΩbc 6= 0}, which is the Markov blanket for the set of nodes{Xa,Xb}. Note that
the conditional distribution of(X′

a,X
′
b)

′ givenX¬ab is equal to the conditional distribution of
(X′

a,X
′
b)

′ givenXN (a,b). Now,

ρc(Xa,Xb;X¬ab) = ρc(Xa,Xb;XN (a,b))

= max
wa∈Rka ,wb∈Rkb

Corr(u′(Xa − ÃXN (a,b)),v
′(Xb − B̃XN (a,b))),

whereÃ = argmin E
(
||Xa −AXN (a,b)||22

)
and B̃ = argmin E

(
||Xb −BXN (a,b)||22

)
. Let

Σ(a, b) = Var(Xa,Xb | XN (a,b)). Now we can express the partial canonical correlation as

ρc(Xa,Xb;XN (a,b)) = max
wa∈Rka ,wb∈Rka

w′
aΣabwb(

w′
aΣaawa

)1/2 (
w′

bΣbbwb

)1/2

where

Σ(a, b) =

(
Σaa Σab

Σba Σbb

)
.

The weight vectorswa andwb can be easily found by solving the system of eigenvalue equations
{

Σ
−1

aaΣabΣ
−1

bb Σbawa = φ2wa

Σ
−1

bb ΣbaΣ
−1

aaΣabwb = φ2wb

(10.10)

with wa andwb being the vectors that correspond to the maximum eigenvalueφ2. Furthermore,
we haveρc(Xa,Xb;XN (a,b)) = φ. Following [114], the weightswa, wb can be used to access
the relative contribution of each attribute to the edge between the nodesa and b. In particu-
lar, the weight(wa,i)

2 characterizes the relative contribution of theith attribute of nodea to
ρc(Xa,Xb;XN (a,b)).

Given an estimatêN (a, b) = {c ∈ V \ {a, b} : Ω̂ac 6= 0 or Ω̂bc 6= 0} of the Markov blanket
N (a, b), we form the residual vectors

ri,a = xi,a − Ǎxi,N̂ (a,b), ri,b = xi,b − B̌xi,N̂ (a,b),

whereǍ andB̌ are the least square estimators ofÃ andB̃. Given the residuals, we form̌Σ(a, b),
the empirical version of the matrixΣ(a, b), by setting

Σ̌aa = Corr
(
{ri,a}i∈[n]

)
, Σ̌bb = Corr

(
{ri,b}i∈[n]

)
, Σ̌ab = Corr

(
{ri,a}i∈[n], {ri,a}i∈[n]

)
.

Now, solving the eigenvalue system in (10.10) will give us estimates of the vectorswa, wb and
the partial canonical correlation.

Note that we have described a way to interpret the elements ofthe off-diagonal blocks in the
estimated precision matrix. The elements of the diagonal blocks, which correspond to coeffi-
cients between attributes of the same node, can still be interpreted by their relationship to the
partial correlation coefficients.
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10.5 Simulation Studies

In this section, we perform a set of simulation studies to illustrate finite sample performance
of our method. We demonstrate that the scalings of(n, p, s) predicted by the theory are sharp.
Furthermore, we compare against three other methods: 1) a method that uses theglasso first
to estimate one graph over each of thek individual attributes and then creates an edge in the
resulting graph if an edge appears in at least one of the single attribute graphs, 2) the method of
[77] and 3) the method of [45]. We have also tried applying theglasso to estimate the precision
matrix for the model in (10.1) and then post-processing it, so that an edge appears in the resulting
graph if the corresponding block of the estimated precisionmatrix is non-zero. The result of this
method is worse compared to the first baseline, so we do not report it here.

All the methods above require setting one or two tuning parameters that control the sparsity of
the estimated graph. We select these tuning parameters by minimizing the Bayesian information
criterion, which balances the goodness of fit of the model andits complexity, over a grid of
parameter values. For our multi-attribute method, the Bayesian information criterion takes the
following form

BIC(λ) = tr(SΩ̂)− log |Ω̂|+
∑

a<b

1I{Ω̂ab 6= 0}kakb log(n).

Other methods for selecting tuning parameters are possible, like minimization of cross-validation
or Akaike information criterion. However, these methods tend to select models that are too dense.

Theoretical results given in§10.3 characterize the sample size needed for consistent recovery
of the underlying graph. In particular, Proposition 10.1 suggests that we needn = θs2k2 log(pk)
samples to estimate the graph structure consistently, for someθ > 0. Therefore, if we plot the
hamming distance between the true and recovered graph againstθ, we expect the curves to reach
zero distance for different problem sizes at a same point. Weverify this on randomly generated
chain and nearest-neighbors graphs.

We generate data as follows. A random graph withp nodes is created by first partitioning
nodes intop/20 connected components, each with20 nodes, and then forming a random graph
over these20 nodes. A chain graph is formed by permuting the nodes and connecting them in
succession, while a nearest-neighbor graph is constructedfollowing the procedure outlined in
[119]. That is, for each node, we draw a point uniformly at random on a unit square and compute
the pairwise distances between nodes. Each node is then connected tos = 4 closest neighbors.
Since some of nodes will have more than4 adjacent edges, we randomly remove edges from
nodes that have degree larger than4 until the maximum degree of a node in a network is4.
Once the graph is created, we construct a precision matrix, with non-zero blocks corresponding
to edges in the graph. Elements of diagonal blocks are set as0.5|a−b|, 0 ≤ a, b ≤ k, while off-
diagonal blocks have elements with the same value,0.2 for chain graphs and0.3/k for nearest-
neighbor networks. Finally, we addρI to the precision matrix, so that its minimum eigenvalue
is equal to0.5. Note thats = 2 for the chain graph ands = 4 for the nearest-neighbor graph.
Simulation results are averaged over 100 replicates.

Figure 10.1 shows simulation results. Each row in the figure reports results for one method,
while each column in the figure represents a different simulation setting. For the first two
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(a) glasso procedure
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(b) Procedure of [45]
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(c) Procedure of [77]
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(d) Multi-attribute procedure

Figure 10.1: Average hamming distance plotted against the rescaled sample size. Off-diagonal blocks are
full matrices.
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(c) Procedure of [77]
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(d) Multi-attribute procedure

Figure 10.2: Average hamming distance plotted against the rescaled sample size. BlocksΩab of the
precision matrixΩ are diagonal matrices.
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(b) Procedure of [45]
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(c) Procedure of [77]
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(d) Multi-attribute procedure

Figure 10.3: Average hamming distance plotted against the rescaled sample size. Off-diagonal blocksΩab

of the precision matrixΩ have zeros as diagonal elements.
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(b) Procedure of [45]
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(c) Procedure of [77]
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(d) Multi-attribute procedure

Figure 10.4: Average hamming distance plotted against the rescaled sample size. Off-diagonal blocksΩab

of the precision matrixΩ have elements uniformly sampled from[−0.3,−0.1]⋃[0.1, 0.3].
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columns, we setk = 3 and vary the total number of nodes in the graph. The third simula-
tion setting sets the total number of nodesp = 20 and changes the number of attributesk. In the
case of the chain graph, we observe that for small sample sizes the method of [45] outperforms all
the other methods. We note that the multi-attribute method is estimating many more parameters,
which require large sample size in order to achieve high accuracy. However, as the sample size
increases, we observe that multi-attribute method starts to outperform the other methods. In par-
ticular, for the sample size indexed byθ = 13 all the graph are correctly recovered, while other
methods fail to recover the graph consistently at the same sample size. In the case of nearest-
neighbor graph, none of the methods recover the graph well for small sample sizes. However,
for moderate sample sizes, multi-attribute method outperforms the other methods. Furthermore,
as the sample size increases none of the other methods recover the graph exactly. This suggests
that the conditions for consistent graph recovery may be weaker in the multi-attribute setting.

10.5.1 Alternative Structure of Off-diagonal Blocks

In this section, we investigate performance of different estimation procedures under different
assumptions on the elements of the off-diagonal blocks of the precision matrix.

First, we investigate a situation where the multi-attribute method does not perform as well as
the methods that estimate multiple graphical models. One such situation arises when different
attributes are conditionally independent. To simulate this situation, we use the data generating
approach as before, however, we make each blockΩab of the precision matrixΩ a diagonal
matrix. Figure 10.2 summarizes results of the simulation. We see that the methods of [45] and
[77] perform better, since they are estimating much fewer parameters than the multi-attribute
method. glasso does not utilize any structural information underlying theestimation problem
and requires larger sample size to correctly estimate the graph than other methods.

A completely different situation arises when the edges between nodes can be inferred only
based on inter-attribute data, that is, when a graph based onany individual attribute is empty.
To generate data under this situation, we follow the procedure as before, but with the diagonal
elements of the off-diagonal blocksΩab set to zero. Figure 10.3 summarizes results of the sim-
ulation. In this setting, we clearly see the advantage of themulti-attribute method, compared to
other three methods. Furthermore, we can see thatglasso does better than multi-graph methods
of [45] and [77]. The reason is thatglasso can identify edges based on inter-attribute relation-
ships among nodes, while multi-graph methods rely only on intra-attribute relationships. This
simulation illustrates an extreme scenario where inter-attribute relationships are important for
identifying edges.

So far, off-diagonal blocks of the precision matrix were constructed to have constant values.
Now, we use the same data generating procedure, but generateoff-diagonal blocks of a precision
matrix in a different way. Each element of the off-diagonal blockΩab is generated independently
and uniformly from the set[−0.3,−0.1]⋃[0.1, 0.3]. The results of the simulation are given in
Figure 10.4. Again, qualitatively, the results are similarto those given in Figure 10.1, except that
in this setting more samples are needed to recover the graph correctly.
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Figure 10.5: Average hamming distance plotted against the rescaled sample size. Results are averaged
over 100 independent runs. Additional samples available for the first attribute.

10.5.2 Different Number of Samples per Attribute

In this section, we show how to deal with a case when differentnumber of samples is available
per attribute. As noted in§10.2.2, we can treat non-measured attributes as missing completely at
random (see [107] for more details).

Let R = (ril)i∈{1,...,n},l∈{1,...,pk} ∈ Rn×pk be an indicator matrix, which denotes for each
sample pointxi the components that are observed. Then we can form an estimate of the sample
covariance matrixS = (σlk) ∈ Rpk×pk as

σlk =

∑n
i=1 ri,lri,kxi,lxi,k∑n

i=1 ri,lri,k
.

This estimate is plugged into the objective in (10.3).
We generate a chain graph withp = 60 nodes, construct a precision matrix associated with

the graph andk = 3 attributes, and generaten = θs2k2 log(pk) samples,θ > 0. Next, we
generate additional10%, 30% and50% samples from the same model, but record only the values
for the first attribute. Results of the simulation are given in Figure 10.5. Qualitatively, the results
are similar to those presented in Figure 10.1.

10.6 Illustrative Applications to Real Data

In this section, we illustrate how to apply our method to dataarising in studies of biological
regulatory networks and Alzheimer’s disease.

10.6.1 Analysis of a Gene/Protein Regulatory Network

We provide illustrative, exploratory analysis of data fromthe well-known NCI-60 database,
which contains different molecular profiles on a panel of 60 diverse human cancer cell lines.
Data set consists of protein profiles (normalized reverse-phase lysate arrays for 92 antibodies)
and gene profiles (normalized RNA microarray intensities from Human Genome U95 Affymetrix
chip-set for> 9000 genes). We focus our analysis on a subset of 91 genes/proteins for which
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Figure 10.6: Node degree distributions for protein, gene and gene/protein networks.

both types of profiles are available. These profiles are available across the same set of60 cancer
cells. More detailed description of the data set can be foundin [114].

We inferred three types of networks: a network based on protein measurements alone, a
network based on gene expression profiles and a single gene/protein network. For protein and
gene networks we use theglasso, while for the gene/protein network, we use our procedure
outlined in§10.2.2. We use the stability selection [136] procedure to estimate stable networks.
In particular, we first select the penalty parameterλ using cross-validation, which over-selects
the number of edges in a network. Next, we use the selectedλ to estimate 100 networks based
on random subsamples containing 80% of the data-points. Final network is composed of stable
edges that appear in at least 95 of the estimated networks. Table 10.1 provides a few summary
statistics for the estimated networks. Furthermore, protein and gene/protein networks share96
edges, while gene and gene/protein networks share104 edges. Gene and protein network share
only 17 edges. Finally,66 edges are unique to gene/protein network. Figure 10.6 showsnode
degree distributions for the three networks. We observe that the estimated networks are much
sparser than the association networks in [114], as expecteddue to marginal correlations between
a number of nodes. The differences in networks require a closer biological inspection by a
domain scientist.

We proceed with a further exploratory analysis of the gene/protein network. We investigate
the contribution of two nodal attributes to the existence ofan edges between the nodes. Following
[114], we use a simple heuristic based on the weight vectors to classify the nodes and edges into
three classes. For an edge between the nodesa andb, we take one weight vector, saywa, and
normalize it to have unit norm. Denotewp the component corresponding to the protein attribute.

Table 10.1: Summary statistics for protein, gene, and gene/protein networks (p = 91).

protein network gene network gene/protein network
Number of edges 122 214 249
Density 0.03 0.05 0.06
Largest connected component 62 89 82
Avg Node Degree 2.68 4.70 5.47
Avg Clustering Coefficient 0.0008 0.001 0.003
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Figure 10.7: Edge and node classification based onw2
p.

Left plot in Figure 10.7 shows the values ofw2
p over all edges. The edges can be classified into

three classes based on the value ofw2
p. Given a thresholdT , the edges for whichw2

p ∈ (0, T )
are classified as gene-influenced, the edges for whichw2

p ∈ (1 − T, 1) are classified as protein
influenced, while the remainder of the edges are classified asmixed type. In the left plot of
Figure 10.7, the threshold is set asT = 0.25. Similar classification can be performed for nodes
after computing the proportion of incident edges. Letp1, p2 andp3 denote proportions of gene,
protein and mixed edges, respectively, incident with a node. These proportions are represented
in a simplex in the right subplot of Figure 10.7. Nodes with mostly gene edges are located in
the lower left corner, while the nodes with mostly protein edges are located in the lower right
corner. Mixed nodes are located in the center and towards thetop corner of the simplex. Further
biological enrichment analysis is possible (see [114]), however, we do not pursue this here.

10.6.2 Uncovering Functional Brain Network

We apply our method to the Positron Emission Tomography dataset, which contains 259 sub-
jects, of whom 72 are healthy, 132 have mild cognitive Impairment and 55 are diagnosed as
Alzheimer’s & Dementia. Note that mild cognitive impairment is a transition stage from normal
aging to Alzheimer’s & Dementia. The data can be obtained from http://adni.loni.ucla.edu/.
The preprocessing is done in the same way as in [91].

Each Positron Emission Tomography image contains91× 109× 91 = 902, 629 voxels. The
effective brain region contains180, 502 voxels, which are partitioned into95 regions, ignoring the
regions with fewer than500 voxels. The largest region contains5, 014 voxels and the smallest
region contains665 voxels. Our preprocessing stage extracts948 representative voxels from
these regions using theK-median clustering algorithm. The parameterK is chosen differently
for each region, proportionally to the initial number of voxels in that region. More specifically,
for each category of subjects we have ann× (d1 + . . .+ d95) matrix, wheren is the number of
subjects andd1 + . . .+ d95 = 902, 629 is the number of voxels. Next we setKi = ⌈di/

∑
j dj⌉,
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the number of representative voxels in regioni, i = 1, . . . , 95. The representative voxels are
identified by running theK-median clustering algorithm on a sub-matrix of sizen × di with
K = Ki.

We inferred three networks, one for each subtype of subjectsusing the procedure outlined in
§10.2.2. Note that for different nodes we have different number of attributes, which correspond
to medians found by the clustering algorithm. We use the stability selection [136] approach
to estimate stable networks. The stability selection procedure is combined with our estimation
procedure as follows. We first select the penalty parameterλ in (10.3) using cross-validation,
which overselects the number of edges in a network. Next, we create100 subsampled data sets,
each of which contain80% of the data points, and estimate one network for each datasetusing
the selectedλ. The final network is composed of stable edges that appear in at least95 of the
estimated networks.

We visualize the estimated networks in Figure 10.8. Table 10.2 provides a few summary
statistics for the estimated networks. [108] contains names of different regions, as well as the
adjacency matrices for networks. From the summary statistics, we can observe that in normal
subjects there are many more connections between differentregions of the brain. Loss of con-
nectivity in Alzheimer’s & Dementia has been widely reported in the literature [8, 78, 93, 186].

Learning functional brain connectivity is potentially valuable for early identification of signs
of Alzheimer’s disease. [91] approach this problem using exploratory data analysis. The frame-
work of Gaussian graphical models is used to explore functional brain connectivity. Here we
point out that our approach can be used for the same exploratory task, without the need to reduce
the information in the whole brain to one number. For example, from our estimates, we observe
the loss of connectivity in the cerebellum region of patients with Alzheimer’s disease, which has
been reported previously in [162]. As another example, we note increased connectivity between
the frontal lobe and other regions in the patients, which waslinked to compensation for the lost
connections in other regions [82, 197].

(a) Healthy subjects (b) Mild Cognitive Impairment (c) Alzheimer’s & Dementia

Figure 10.8: Brain connectivity networks
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Table 10.2: Summary statistics for protein, gene, and gene/protein networks (p = 91)

Healthy Mild Cognitive Alzheimer’s &
subjects Impairment Dementia

Number of edges 116 84 59
Density 0.030 0.020 0.014
Largest connected component 48 27 25
Avg Node Degree 2.40 1.73 1.2
Avg Clustering Coefficient 0.001 0.0023 0.0007

10.7 Discussion

In this chapter, we have proposed a solution to the problem oflearning networks from multivari-
ate nodal attributes, which arises in a variety of domains. Our method is based on simultane-
ously estimating non-zero partial canonical correlationsbetween nodes in a network. When all
the attributes across all the nodes follow joint multivariate Normal distribution, our procedure
is equivalent to estimating conditional independencies between nodes, which is revealed by re-
lating the blocks of the precision matrix to partial canonical correlation. Although a penalized
likelihood framework is adopted for estimation of the non-zero blocks of the precision matrix,
other approaches like neighborhood pursuit or greedy pursuit can also be developed. Thorough
numerical evaluations and theoretical analysis of these methods is an interesting direction for
future work.

10.8 Technical Proofs

10.8.1 Proof of Lemma 10.1

We start the proof by giving to technical results needed later. The following lemma states that the
minimizer of (10.3) is unique and has bounded minimum and maximum eigenvalues, denoted as
Λmin andΛmax.
Lemma 10.4. For every value ofλ > 0, the optimization problem in(10.3)has a unique mini-
mizerΩ̂, which satisfiesΛmin(Ω̂) ≥ (Λmax(S) + λp)−1 > 0 andΛmax(Ω̂) ≤ λ−1

∑
j∈V kj.

Proof. The optimization objective given in (10.3) can be written inthe equivalent constrained
form as

min
Ω≻0

trSΩ− log |Ω| subject to
∑

a,b

||Ωab||F ≤ C(λ).

The procedure involves minimizing a continuous objective over a compact set, and so by Weier-
strass theorem, the minimum is always achieved. Furthermore, the objective is strongly convex
and therefore the minimum is unique.

The solutionΩ̂ to the optimization problem (10.3) satisfies

S− Ω̂−1 + λZ = 0 (10.11)
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whereZ ∈ ∂
∑

a,b ||Ω̂ab||F is the element of the sub-differential and satisfies||Zab||F ≤ 1 for all
(a, b) ∈ V 2. Therefore,

Λmax(Ω̂
−1) ≤ Λmax(S) + λΛmax(Z) ≤ Λmax(S) + λp.

Next, we prove an upper bound onΛmax(Ω̂). At optimum, the primal-dual gap is zero, which
gives that ∑

a,b

||Ω̂ab||F ≤ λ−1(
∑

j∈V
kj − trSΩ̂) ≤ λ−1

∑

j∈V
kj,

asS � 0 andΩ̂ ≻ 0. SinceΛmax(Ω̂) ≤∑a,b ||Ω̂ab||F , the proof is done.

The next results states that the objective function has a Lipschitz continuous gradient, which
will be used to show that the generalized gradient descent can be used to find̂Ω.
Lemma 10.5.The functionf(A) = trSA− log |A| has a Lipschitz continuous gradient on the
set{A ∈ Sp : Λmin(A) ≥ γ}, with the Lipschitz constantL = γ−2.

Proof. We have that∇f(A) = S−A−1. Then

||∇f(A)−∇f(A′)||F = ||A−1 − (A′)−1||F
≤ ΛmaxA

−1||A−A′||FΛmaxA
−1

≤ γ−2||A−A′||F ,

which completes the proof.

Now, we provide the proof of Lemma 10.1.
By construction, the sequence of estimates(Ω̃(t))t≥1 decrease the objective value and are

positive definite.
To prove the convergence, we first introduce some additionalnotation. Letf(Ω) = trSΩ−

log |Ω| andF (Ω) = f(Ω) +
∑

ab ||Ωab||F . For anyL > 0, let

QL(Ω;Ω) := f(Ω) + tr[(Ω−Ω)∇f(Ω)] +
L

2
||Ω−Ω||2F +

∑

ab

||Ωab||F

be a quadratic approximation ofF (Ω) at a given pointΩ, which has a unique minimizer

pL(Ω) := argmin
Ω

QL(Ω;Ω).

From Lemma 2.3. in [11], we have that

F (Ω)− F (pL(Ω)) ≥ L

2
||pL(Ω)−Ω||2F (10.12)

if F (pL(Ω)) ≤ QL(pL(Ω);Ω). Note thatF (pL(Ω)) ≤ QL(pL(Ω);Ω) always holds ifL is as
large as the Lipschitz constant of∇F .
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Let Ω̃(t−1) andΩ̃(t) denote two successive iterates obtained by the procedure. Without loss
of generality, we can assume thatΩ̃(t) is obtained by updating the rows/columns corresponding
to the nodea. From (10.12), it follows that

2

Lk
(F (Ω̃(t−1))− F (Ω̃(t))) ≥ ||Ω̃(t−1)

aa − Ω̃(t)
aa ||F + 2

∑

b6=a

||Ω̃(t−1)
ab − Ω̃

(t)
ab ||F (10.13)

whereLk is a current estimate of the Lipschitz constant. Recall thatin our procedure the scalar
t serves as a local approximation of1/L. Since eigenvalues of̂Ω are bounded according to
Lemma 10.4, we can conclude that the eigenvalues ofΩ̃(t−1) are bounded as well. Therefore the
current Lipschitz constant is bounded away from zero, usingLemma 10.5. Combining the results,
we observe that the right hand side of (10.13) converges to zero ast→∞, since the optimization
procedure produces iterates that decrease the objective value. This shows that||Ω̃(t−1)

aa −Ω̃(t)
aa ||F+

2
∑

b6=a ||Ω̃
(t−1)
ab − Ω̃

(t)
ab ||F converges to zero, for anya ∈ V . Since(Ω̃(t) is a bounded sequence,

it has a limit point, which we denotêΩ. It is easy to see, from the stationary conditions for
the optimization problem given in (10.4), that the limit point Ω̂ also satisfies the global KKT
conditions to the optimization problem in (10.3).

10.8.2 Proof of Lemma 10.3

Suppose that the solution̂Ω to (10.3) is block diagonal with blocksP1, P2, . . . , Pl. For two nodes
a, b in different blocks, we have that(Ω̂)−1

ab = 0 as the inverse of the block diagonal matrix is
block diagonal. From the KKT conditions, it follows that||Sab||F ≤ λ.

Now suppose that||Sab||F ≤ λ for all a ∈ Pj , b ∈ Pj′, j 6= j′. For everyl′ = 1, . . . , l
construct

Ω̃l′ = arg min
Ωl′≻0

trSl′Ωl′ − log |Ωl′|+ λ
∑

a,b

||Ωab||F .

ThenΩ̂ = diag(Ω̂1, Ω̂2, . . . , Ω̂l) is the solution of (10.3) as it satisfies the KKT conditions.

10.8.3 Proof of Equation 10.2

First, we note that

Var ((X′
a,X

′
b)

′ | Xab) = Σab,ab −Σab,abΣ
−1

ab,ab
Σab,ab

is the conditional covariance matrix of(X′
a,X

′
b)

′ given the remaining nodesXab (see Proposition
C.5 in [130]). DefineΣ = Σab,ab−Σab,abΣ

−1
ab,ab

Σab,ab. Partial canonical correlation betweenXa

andXb is equal to zero if and only ifΣab = 0. On the other hand, the matrix inversion lemma
gives thatΩab,ab = Σ

−1
. Now, Ωab = 0 if and only if Σab = 0. This shows the equivalence

relationship in (10.2).
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10.8.4 Proof of Proposition 10.1

We provide sufficient conditions for consistent network estimation. Proposition 10.1 given in
§10.3 is then a simple consequence. To provide sufficient conditions, we extend the work of
[152] to our setting, where we observe multiple attributes for each node. In particular, we extend
their Theorem 1.

For simplicity of presentation, we assume thatka = k, for all a ∈ V , that is, we assume that
the same number of attributes is observed for each node. Our assumptions involve the Hessian
of the functionf(A) = trSA− log |A| evaluated at the trueΩ∗,

H = H(Ω∗) = (Ω∗)−1 ⊗ (Ω∗)−1 ∈ R(pk)2×(pk)2,

and the true covariance matrixΣ∗. The Hessian and the covariance matrix can be thought of
block matrices with blocks of sizek2 × k2 andk × k, respectively. We will make use of the
operatorC(·) that operates on these block matrices and outputs a smaller matrix with elements
that equal to the Frobenius norm of the original blocks,




A11 A12 · · · A1p

A21 A22 · · · A2p
...

. . .
...

Ap1 · · · App




C(·)−−−−→




||A11||F ||A12||F · · · ||A1p||F
||A21||F ||A22||F · · · ||A2p||F

...
. . .

...
||Ap1||F · · · ||App||F




In particular,C(Σ∗) ∈ Rp×p andC(H) ∈ Rp2×p2.
We denote the index set of the non-zero blocks of the precision matrix as

T := {(a, b) ∈ V × V : ||Ω∗
ab||2 6= 0} ∪ {(a, a) : a ∈ V }

and letN denote its complement inV × V , that is,

N = {(a, b) : ||Ωab||F = 0}.

As mentioned earlier, we need to make an assumption on the Hessian matrix, which takes the
standard irrepresentable-like form. There exists a constantα ∈ [0, 1) such that

|||C
(
HNT (HT T )

−1
)
|||∞ ≤ 1− α. (10.14)

These condition extends the irrepresentable condition given in [152], which was needed for esti-
mation of networks from single attribute observations. It is worth noting, that the condition given
in (10.14) can be much weaker than the irrepresentable condition of [152] applied directly to the
full Hessian matrix. This can be observed in simulations done in §10.5, where a chain network
is not consistently estimated even with a large number of samples.

We will also need the following two quantities to specify theresults

κΣ∗ = |||C(Σ∗)|||∞

and
κH = |||C(H−1

T T )|||∞.
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Finally, the results are going to depend on the tail bounds for the elements of the matrix
C(S−Σ∗). We will assume that there is a constantv∗ ∈ (0,∞] and a functionf : N× (0,∞) 7→
(0,∞) such that for any(a, b) ∈ V × V

P (C(S−Σ∗)ab ≥ δ) ≤ 1

f(n, δ)
δ ∈ (0, v−1

∗ ]. (10.15)

The functionf(n, δ) will be monotonically increasing in bothn andδ. Therefore, we define the
following two inverse functions

nf(δ; r) = argmax{n : f(n, δ) ≤ r}

and
δf(r;n) = argmax{δ : f(n, δ) ≤ r}

for r ∈ [1,∞).
With the notation introduced, we have the following result.

Theorem 10.1.Assume that the irrepresentable condition in(10.14)is satisfied and that there
exists a constantv∗ ∈ (0,∞] and a functionf(n, δ) so that(10.15)is satisfied for any(a, b) ∈
V × V . Let

λ =
8

α
δf(n, p

τ )

for someτ > 2. If

n > nf

(
1

max(v∗, 6(1 + 8α−1)smax(κΣ∗κH, κ3
Σ∗κ2

H))
, pτ
)

then
||C(Ω̂−Ω)||∞ ≤ 2(1 + 8α−1)κHδf (n, p

τ )

with probability at least1− p2−τ .
Theorem 10.1 is of the same form as Theorem 1 in [152], but theℓ∞ element-wise conver-

gence is established forC(Ω̂−Ω), which will guarantee successful recovery of non-zero partial
canonical correlations if the blocks of the true precision matrix are sufficiently large.

Theorem 10.1 is proven as Theorem 1 in [152]. We provide technical results in Lemma 10.6,
Lemma 10.7 and Lemma 10.8, which can be used to substitute results of Lemma 4, Lemma 5
and Lemma 6 in [152] under our setting. The rest of the arguments then go through. Below we
provide some more details.

First, letZ : Rpk×pk 7→ Rpk×pk be the mapping defined as

Z(A)ab =

{
Aab

||Aab||F if ||Aab||F 6= 0,

Z with ||Z||F ≤ 1 if ||Aab||F = 0,

Next, define the function

G(Ω) = trΩS− log |Ω|+ λ||C(Ω)||1, ∀Ω ≻ 0
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and the following system of equations
{

Sab − (Ω−1)ab = −λZ(Ω)ab, if Ωab 6= 0
||Sab − (Ω−1)ab||F ≤ λ, if Ωab = 0.

(10.16)

It is known thatΩ ∈ Rp̃×p̃ is the minimizer of optimization problem in (10.3) if and only if it
satisfies the system of equations given in (10.16). We have already shown in Lemma 10.4 that
the minimizer is unique.

Let Ω̃ be the solution to the following constrained optimization problem

min
Ω≻0

trSΩ− log |Ω|+ λ||C(Ω)||1 subject toC(Ω)ab = 0, ∀(a, b) ∈ N .

Observe that one cannot find̃Ω in practice, as it depends on the unknown setN . However, it is
a useful construction in the proof. We will prove thatΩ̃ is solution to the optimization problem
given in (10.3), that is, we will show that̃Ω satisfies the system of equations (10.16).

Using the first-order Taylor expansion we have that

Ω̃−1 = (Ω∗)−1 − (Ω∗)−1∆(Ω∗)−1 +R(∆), (10.17)

where∆ = Ω − Ω∗ andR(∆) denotes the remainder term. With this, we state and prove
Lemma 10.6, Lemma 10.7 and Lemma 10.8. They can be combined asin [152] to complete the
proof of Theorem 10.1.
Lemma 10.6.Assume that

max
ab
||∆ab||F ≤

αλ

8
and max

ab
||Σ∗

ab − Sab||F ≤
αλ

8
. (10.18)

ThenΩ̃ is the solution to the optimization problem in(10.3).

Proof. We useR to denoteR(∆). Recall that∆N = 0 by construction. Using (10.17) we can
rewrite (10.16) as

Hab,T ∆T −Rab + Sab −Σ
∗
ab + λZ(Ω̃)ab = 0 if (a, b) ∈ T (10.19)

||Hab,T ∆T −Rab + Sab −Σ
∗
ab||2 ≤ λ if (a, b) ∈ N . (10.20)

By construction, the solutioñΩ satisfy (10.19). Under the assumptions, we show that (10.20) is
also satisfied with inequality.

From (10.19), we can solve for∆T ,

∆T = H−1
T ,T [RT −ΣT + ST − λZ(Ω̃)T ].

Then

||Hab,TH−1
T ,T [RT −ΣT + ST − λZ(Ω̃)T ]−Rab + Sab −Σ

∗
ab||2

≤ λ||Hab,TH−1
T ,TZ(Ω̃)T ||2 + ||Hab,TH−1

T ,T [RT −ΣT + ST ]||2 + ||Rab + Sab −Σ
∗
ab||2

≤ λ(1− α) + (2− α)
αλ

4
< λ

using assumption onH in (10.14) and (10.18). This shows thatΩ̃ satisfies (10.16).
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Lemma 10.7.Assume that

||C(∆)||∞ ≤
1

3κΣ∗s
.

Then

||C(R(∆))||∞ ≤
3s

2
κ3
Σ∗||C(∆)||2∞.

Proof. Remainder term can be written as

R(∆) = (Ω∗ +∆)−1 − (Ω∗)−1 + (Ω∗)−1∆(Ω∗)−1.

Using (10.21), we have that

|||C((Ω∗)−1∆)|||∞ ≤ |||C((Ω∗)−1)|||∞|||C(∆)|||∞
≤ s|||C((Ω∗)−1)|||∞||C(∆)||∞
≤ 1

3

which gives us the following expansion

(Ω∗ +∆)−1 = (Ω∗)−1 − (Ω∗)−1∆(Ω∗)−1 + (Ω∗)−1∆(Ω∗)−1∆J(Ω∗)−1,

with J =
∑

k≥0(−1)k((Ω∗)−1∆)k. Using (10.22) and (10.21), we have that

||C(R)||∞ ≤ ||C((Ω∗)−1∆)||∞|||C((Ω∗)−1∆J(Ω∗)−1)′|||∞
≤ |||C((Ω∗)−1)|||3∞||C(∆)||∞|||C(J′)|||∞|||C(∆)|||∞
≤ s|||C((Ω∗)−1)|||3∞||C(∆)||2∞|||C(J′)|||∞.

Next, we have that
|||C(J′)|||∞ ≤

∑

k>0

|||C(∆(Ω∗)−1)|||k∞

≤ 1

1− |||C(∆(Ω∗)−1)|||∞
≤ 3

2
,

which gives us

||C(R)||∞ ≤
3s

2
κ3
Σ∗||C(∆)||2∞

as claimed.

Lemma 10.8.Assume that

r := 2κH(||C(S−Σ∗)||∞ + λ) ≤ min

(
1

3κΣ∗s
,

1

3κHκ3
Σ∗s

)
.

Then
||C(∆)||∞ ≤ r.
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Proof. The proof follows the proof of Lemma 6 in [152]. Define the ball

B(r) := {A : C(A)ab ≤ r, ∀(a, b) ∈ T },

the gradient mapping
G(ΩT ) = −(Ω−1)T + ST + λZ(Ω)T

and
F (∆T ) = −H−1

T T G(Ω∗
T +∆T ) +∆T .

We need to show thatF (B(r)) ⊆ B(r), which implies that||C(∆T )||∞ ≤ r.
Under the assumptions of the lemma, for any∆S ∈ B(r), we have the following decompo-

sition
F (∆T ) = H−1

T T R(∆)T +H−1
T T (ST −Σ

∗
T + λZ(Ω∗ +∆)T ).

Using Lemma 10.7, the first term can be bounded as

||C(H−1
T T R(∆)T )||∞ ≤ |||C(H−1

T T )|||∞||C(R(∆)||∞
≤ 3s

2
κHκ

3
Σ∗||C(∆)||2∞

≤ 3s

2
κHκ

3
Σ∗r2

≤ r/2

where the last inequality follows under the assumptions. Similarly

||C(H−1
T T (ST −Σ

∗
T + λZ(Ω∗ +∆)T )||∞

≤ |||C(H−1
T T )|||∞(||C(S−Σ∗)||∞ + λ||C(Z(Ω∗ +∆))||∞)

≤ κH(||C(S−Σ
∗
)||∞ + λ)

≤ r/2.

This shows thatF (B(r)) ⊆ B(r).

The following result is a corollary of Theorem 10.1, which shows that the graph structure can
be estimated consistently under some assumptions.
Corollary 10.1. Assume that the conditions of Theorem 10.1 are satisfied. Furthermore, suppose
that

min
(a,b)∈T , a6=b

||Ω||F > 2(1 + 8α−1)κHδf(n, p
τ )

then Algorithm 1 estimates a grapĥG which satisfies

P
(
Ĝ 6= G

)
≥ 1− p2−τ .

Next, we specialize the result of Theorem 10.1 to a case whereX has sub-Gaussian tails. That
is, the random vectorX = (X1, . . . , Xpk)

′ is zero-mean with covarianceΣ∗. Each(σ∗
aa)

−1/2Xa

is sub-Gaussian with parameterγ.
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Proposition 10.2.Set the penalty parameter inλ in (10.3)as

λ = 8kα−1
(
128(1 + 4γ2)2(max

a
(σ∗

aa)
2)n−1(2 log(2k) + τ log(p))

)1/2
.

If

n > C1s
2k2(1 + 8α−1)2(τ log p+ log 4 + 2 log k)

whereC1 = (48
√
2(1 + 4γ2)(maxa σ

∗
aa)max(κΣ∗κH, κ3

Σ∗κ2
H))

2 then

||C(Ω̂−Ω)||∞ ≤ 16
√
2(1 + 4γ2)max

i
σ∗
ii(1 + 8α−1)κHk

(
τ log p+ log 4 + 2 log k

n

)1/2

with probability1− p2−τ .

The proof simply follows by observing that, for any(a, b),

P (C(S−Σ∗)ab > δ) ≤ P

(
max

(c,d)∈(a,b)
(σcd − σ∗

cd)
2 > δ2/k2

)

≤ k2P (|σcd − σ∗
cd| > δ/k)

≤ 4k2 exp

(
− nδ2

c∗k2

)

for all δ ∈ (0, 8(1 + 4γ2)(maxa σ
∗
aa)) with c∗ = 128(1 + 4γ2)2(maxa(σ

∗
aa)

2). Therefore,

f(n, δ) =
1

4k2
exp(c∗

nδ2

k2
)

nf(δ; r) =
k2 log(4k2r)

c∗δ2

δf(r;n) =

(
k2 log(4k2r)

c∗n

)1/2

.

Theorem 10.1 and some simple algebra complete the proof.
Proposition 10.1 is a simple conseqeuence of Proposition 10.2.

10.8.5 Some Results on Norms of Block Matrices

Let T be a partition ofV . Throughout this section, we assume that matricesA,B ∈ Rp×p and a
vectorb ∈ Rp are partitioned into blocks according toT .

Lemma 10.9.

max
a∈T
||Aa·b||2 ≤ max

a∈T

∑

b∈T
||Aab||F max

c∈T
||bc||2.
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Proof. For anya ∈ T ,

||Aa·b||2 ≤
∑

b∈T
||Aabbb||2

=
∑

b∈T

(∑

i∈a
(Aibbb)

2

)1/2

≤
∑

b∈T

(∑

i∈a
||Aib||22||bb||22

)1/2

≤
∑

b∈T

(∑

i∈a
||Aib||22

)1/2

max
c∈T
||bc||2

=
∑

b∈T
||Aab||F max

c∈T
||bc||2.

Lemma 10.10.
|||C(AB)|||∞ ≤ |||C(B)|||∞|||C(A)|||∞. (10.21)

Proof. LetC = AB and letT be a partition ofV .

|||C(AB)|||∞ = max
a∈T

∑

b∈T
||Cab||F

≤ max
a∈T

∑

b

∑

c

||Aac||F ||Bcb||F

≤ {max
a∈T

∑

c

||Aac||F}{max
c∈T

∑

b

||Bcb||F}

= |||C(A)|||∞|||C(B)|||∞.

Lemma 10.11.
||C(AB)||∞ ≤ ||C(A)||∞|||C(B)′|||∞. (10.22)

Proof. For a fixeda andb,

C(AB)ab = ||
∑

c

AacBcb||F

≤
∑

c

||Aac||F ||Bcb||F

≤ max
c
||Aac||

∑

c

||Bcb||F .

Maximizing overa andb gives the result.
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Part II

Feature Selection in Multi-task Learning
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Chapter 11

Multi-task learning

It has been empirically observed, on various data sets ranging from cognitive neuroscience Liu
et al. (2009) to genome-wide association mapping studies Kim et al. (2009), that considering re-
lated estimation tasks jointly, improves estimation performance. Because of this, joint estimation
from related tasks or multi-task learning has received muchattention in the machine learning and
statistics community.

In this part of the thesis, we focus on a particular form of multi-task learning, in which the
problem is to estimate the coefficients of several multiple regressions

yj = Xjβj + ǫj , j ∈ [k] (11.1)

whereXj ∈ Rn×p is the design matrix,yj ∈ Rn is the vector of observations,ǫj ∈ Rn is the
noise vector andβj ∈ Rp is the unknown vector of regression coefficients for thej-th task, with
[k] = {1, . . . , k}.

Under the model in (11.1), we focus on variable selection under the assumption that the same
variables are relevant for different regression problems.We sharply characterize the performance
of different penalization schemes on the problem of selecting the relevant variables. Casting
the problem of variable selection in the context of the Normal means, we are able to sharply
characterize the sparsity patterns under which the Lasso procedure performs better than the group
Lasso. Similarly, our results characterize how the group Lasso can perform better when each
non-zero row is dense.

Next, we focus on efficient algorithms for screening relevant variables under the multi-task
regression model. In particular, we analyze forward regression and marginal regression, which
are extremely efficient in ultra-high dimensions. Common tool for variable selection in multi-
task regression problems is the penalized least squares procedure, where the penalty biases solu-
tion to have many zero coefficients. Though efficient algorithms for these objectives exist, they
still do not scale to million of input variables. Therefore,screening procedures are extremely
useful for initial reduction of the dimensionality.

11.1 Related Work

Multi-task learning has been an active research area for more than a decade [14, 32, 170]. For an
estimation procedure to benefit from multiple tasks, there need to be some connections between
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the tasks. One common assumption is that tasks share the feature structure. Along this direction,
researchers have proposed to select relevant variables that are predictive for all tasks [116, 120,
123, 143, 144, 172, 203, 204] or to learn transformation of the original variables so that in the
transformed space only few features are relevant [3, 144].

The model given in (11.1) has been used in many different domains ranging from multi-
variate regression [104, 123, 143, 144] and sparse approximation [174] to neural science [120],
multi-task learning [3, 123] and biological network estimation [147]. A number of authors have
provided theoretical understanding of the estimation in the model using convex programing.
[144] propose to minimize the penalized least squares objective with a mixed(2, 1)-norm on the
coefficients as the penalty term. The authors focus on consistent estimation of the support setS,
albeit under the assumption that the number of tasksk is fixed. [143] use the mixed(∞, 1)-norm
to penalize the coefficients and focus on the exact recovery of the non-zero pattern of the regres-
sion coefficients, rather than the support setS. For a rather limited case ofk = 2, the authors
show that when the regression do not share a common support, it may be harmful to consider the
regression problems jointly using the mixed(∞, 1)-norm penalty. In [123], the focus is shifted
from the consistent selection to benefits of the joint estimation for the prediction accuracy and
consistent estimation. The authors showed the benefits of the joint estimation, when there is a
small set of variables common to all outputs and the number ofoutputs is large.

The Orthogonal Matching Pursuit (OMP) has been analyzed before in the literature (see, for
example, [23, 117, 182, 207]). [182] showed that the OMP has the sure screening property in
a linear regression with a single output. The exact variableselection property of the OMP is
analyzed in [207] and [117]. The exact variable selection requires much stronger assumptions
on the design, such as the irrepresentable condition, that are hard to satisfy in the ultra-high
dimensional setting. In§13, we focus on the sure screening property, which can be shown to
hold under much weaker assumptions.

Marginal regression, also known as correlation learning, marginal learning and sure screen-
ing, is one computationally superior alternative to the Lasso. This is a very old and simple pro-
cedure, which has recently gained popularity due to its desirable properties in high-dimensional
setting [62, 66, 68, 83, 184]. Motivated by successful applications to variable selection in single
task problems, we study properties of the marginal regression in a multitask setting in§14.
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Chapter 12

Multi-Normal Means Model

Despite many previous investigations, the theory of variable selection in multi-task regression
models prior to our work [110] was far from settled. A simple clear picture of when sharing
between tasks actually improves performance did not emerge. In particular, to the best of our
knowledge, there has been no previous work that sharply characterizes the performance of dif-
ferent penalization schemes on the problem of selecting therelevant variables in the multi-task
setting.

In this chapter we study multi-task learning in the context of themany Normal means model.
This is a simplified model that is often useful for studying the theoretical properties of statistical
procedures. The use of the many Normal means model is fairly common in statistics but appears
to be less common in machine learning. Our results provide a sharp characterization of the spar-
sity patterns under which the Lasso procedure performs better than the group Lasso. Similarly,
our results characterize how the group Lasso (with the mixed(2, 1) norm) can perform better
when each non-zero row is dense.

12.1 Introduction

We consider the problem of estimating a sparse signal in the presence of noise. It has been
empirically observed, on various data sets ranging from cognitive neuroscience [120] to genome-
wide association mapping studies [116], that considering related estimation tasks jointly can
improve estimation performance. Because of this, joint estimation from related tasks ormulti-
task learninghas received much attention in the machine learning and statistics community (see,
for example, [3, 116, 120, 123, 123, 143, 144, 172, 203, 204] and references therein). However,
the theory behind multi-task learning is not yet settled.

An example of multi-task learning is the problem of estimating the coefficients of several
multiple regressions

yj = Xjβj + ǫj , j ∈ [k] (12.1)

whereXj ∈ Rn×p is the design matrix,yj ∈ Rn is the vector of observations,ǫj ∈ Rn is the
noise vector andβj ∈ Rp is the unknown vector of regression coefficients for thej-th task, with
[k] = {1, . . . , k}.
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When the number of variablesp is much larger than the sample sizen, it is commonly as-
sumed that the regression coefficients are jointly sparse, that is, there exists a small subsetS ⊂ [p]
of the regression coefficients, withs := |S| ≪ n, that are non-zero for all or most of the tasks.

The model in (12.1) under the joint sparsity assumption was analyzed in, for example, [144],
[123], [143], [123] and [104]. [144] propose to minimize thepenalized least squares objective
with a mixed(2, 1)-norm on the coefficients as the penalty term. The authors focus on consistent
estimation of the support setS, albeit under the assumption that the number of tasksk is fixed.
[143] use the mixed(∞, 1)-norm to penalize the coefficients and focus on the exact recovery
of the non-zero pattern of the regression coefficients, rather than the support setS. For a rather
limited case ofk = 2, the authors show that when the regression do not share a common support,
it may be harmful to consider the regression problems jointly using the mixed(∞, 1)-norm
penalty. [104] address the feature selection properties ofsimultaneous greedy forward selection.
However, it is not clear what the benefits are compared to the ordinary forward selection done
on each task separately. In [123] and [123], the focus is shifted from the consistent selection to
benefits of the joint estimation for the prediction accuracyand consistent estimation. The number
of tasksk is allowed to increase with the sample size. However, it is assumed that all tasks share
the same features; that is, a relevant coefficient is non-zero for all tasks.

Despite these previous investigations, the theory is far from settled. A simple clear picture
of when sharing between tasks actually improves performance has not emerged. In particular,
to the best of our knowledge, there has been no previous work that sharply characterizes the
performance of different penalization schemes on the problem of selecting the relevant variables
in the multi-task setting.

In this chapter we study multi-task learning in the context of themany Normal means model.
This is a simplified model that is often useful for studying the theoretical properties of statistical
procedures. The use of the many Normal means model is fairly common in statistics but appears
to be less common in machine learning. Our results provide a sharp characterization of the spar-
sity patterns under which the Lasso procedure performs better than the group Lasso. Similarly,
our results characterize how the group Lasso (with the mixed(2, 1) norm) can perform better
when each non-zero row is dense.

12.1.1 The Normal Means Model

The simplest Normal means model has the form

Yi = µi + σǫi, i = 1, . . . , p (12.2)

whereµ1, . . . , µp are unknown parameters andǫ1, . . . , ǫp are independent, identically distributed
Normal random variables with mean 0 and variance 1. There area variety of results [24, 140]
showing that many learning problems can be converted into a Normal means problem. This im-
plies that results obtained in the Normal means setting can be transferred to many other settings.
As a simple example, consider the nonparametric regressionmodelZi = m(i/n) + δi wherem
is a smooth function on[0, 1] andδi ∼ N(0, 1). Letφ1, φ2, . . . , be an orthonormal basis on [0,1]
and writem(x) =

∑∞
j=1 µjφj(x) whereµj =

∫ 1

0
m(x)φj(x)dx. To estimate the regression func-

tionm we need only estimateµ1, µ2, . . . ,. LetYj = n−1
∑n

i=1 Zi φj(i/n). ThenYj ≈ N(µj , σ
2)
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whereσ2 = 1/n. This has the form of (12.2) withσ = 1/
√
n. Hence this regression problem

can be converted into a Normal means model.
However, the most important aspect of the Normal means modelis that it allows a clean

setting for studying complex problems. We consider the following Normal means model. Let

Yij ∼
{

(1− ǫ)N (0, σ2) + ǫN (µij, σ
2) j ∈ [k], i ∈ S

N(0, σ2) j ∈ [k], i ∈ Sc (12.3)

where(µij)i,j are unknown real numbers,σ = σ0/
√
n is the variance withσ0 > 0 known,(Yij)i,j

are random observations,ǫ ∈ [0, 1] is the parameter that controls the sparsity of features across
tasks andS ⊂ [p] is the set of relevant features. Lets = |S| denote the number of relevant
features. Denote the matrixM ∈ Rp×k of means

Tasks
1 2 . . . k

1 µ11 µ12 . . . µ1k

2 µ21 µ22 . . . µ2k
...

...
...

. . .
...

p µp1 µp2 . . . µpk

and letθi = (µij)j∈[k] denote thei-th row of the matrixM . The setSc = [p] \S indexes the zero
rows of the matrixM and the associated observations are distributed accordingto the Normal
distribution with zero mean and varianceσ2. The rows indexed byS are non-zero and the cor-
responding observation are coming from a mixture of two Normal distributions. The parameter
ǫ determines the proportion of observations coming from a Normal distribution with non-zero
mean. The reader should regard each column as one vector of parameters that we want to esti-
mate. The question is whether sharing across columns improves the estimation performance.

It is known from the work on the Lasso that in regression problems, the design matrix needs
to satisfy certain conditions in order for the Lasso to correctly identify the supportS [see 181, for
an extensive discussion on the different conditions]. These regularity conditions are essentially
unavoidable. However, the Normal means model (12.3) allowsus to analyze the estimation pro-
cedure in (12.4) and focus on the scaling of the important parameters(n, k, p, s, ǫ, µmin) for the
success of the support recovery. Using the model (12.3) and the estimation procedure in (12.4),
we are able to identify regimes in which estimating the support is more efficient using the ordi-
nary Lasso than with the multi-task Lasso and vice versa. Ourresults suggest that the multi-task
Lasso does not outperform the ordinary Lasso when the features are not considerably shared
across tasks; thus, practitioners should be careful when applying the multi-task Lasso without
knowledge of the task structure.

An alternative representation of the model is

Yij =

{
N (ξijµij, σ

2) j ∈ [k], i ∈ S
N(0, σ2) j ∈ [k], i ∈ Sc

whereξij is a Bernoulli random variable with success probabilityǫ. Throughout the chapter, we
will set ǫ = k−β for some parameterβ ∈ [0, 1); β < 1/2 corresponds to dense rows andβ > 1/2
corresponds to sparse rows. Letµmin denote the following quantityµmin = min |µij|.
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Under the model (12.3), we analyze penalized least squares procedures of the form

µ̂ = argmin
µ∈Rp×k

1

2
||Y − µ||2F + pen(µ) (12.4)

where||A||F =
∑

jk A
2
jk is the Frobenious norm,pen(·) is a penalty function andµ is ap × k

matrix of means. We consider the following penalties:
1. theℓ1 penalty

pen(µ) = λ
∑

i∈[p]

∑

j∈[k]
|µij|,

which corresponds to the Lasso procedure applied on each task independently, and denote
the resulting estimate aŝµℓ1

2. the mixed(2, 1)-norm penalty

pen(µ) = λ
∑

i∈[p]
||θi||2,

which corresponds to the multi-task Lasso formulation in [144] and [123], and denote the
resulting estimate aŝµℓ1/ℓ2

3. the mixed(∞, 1)-norm penalty

pen(µ) = λ
∑

i∈[p]
||θi||∞,

which correspond to the multi-task Lasso formulation in [143], and denote the resulting
estimate aŝµℓ1/ℓ∞.

For any solution̂µ of (12.4), letS(µ̂) denote the set of estimated non-zero rows

S(µ̂) = {i ∈ [p] : ||θ̂i||2 6= 0}.
We establish sufficient conditions under whichP[S(µ̂) 6= S] ≤ α for different methods. These
results are complemented with necessary conditions for therecovery of the support setS.

We focus our attention on the three penalties outlined above. There is a large literature
on the penalized least squares estimation using concave penalties as introduced in [64]. These
penalization methods have better theoretical properties in the presence of the design matrix,
especially when the design matrix is far from satisfying theirrepresentable condition [205]. In
the Normal means model, due to the lack of the design matrix, there is no advantage to concave
penalties in terms of variable selection.

12.1.2 Overview of the Main Results

The main contributions of the chapter can be summarized as follows.

1. We establish a lower bound on the parameterµmin as a function of the parameters(n, k, p, s, β).
Our result can be interpreted as follows: for any estimationprocedure there exists a model
given by (12.3) with non-zero elements equal toµmin such that the estimation procedure
will make an error when identifying the setS with probability bounded away from zero.
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2. We establish the sufficient conditions on the signal strength µmin for the Lasso and both
variants of the group Lasso under which these procedures cancorrectly identify the set of
non-zero rowsS.

By comparing the lower bounds with the sufficient conditions, we are able to identify regimes
in which each procedure is optimal for the problem of identifying the set of non-zero rowsS.
Furthermore, we point out that the usage of the popular groupLasso with the mixed(∞, 1)
norm can be disastrous when features are not perfectly shared among tasks. This is further
demonstrated through an empirical study.

12.2 Lower Bound on the Support Recovery

In this section, we derive a lower bound for the problem of identifying the correct variables. In
particular, we derive conditions on(n, k, p, s, ǫ, µmin) under which any method is going to make
an error when estimating the correct variables. Intuitively, if µmin is very small, a non-zero row
may be hard to distinguish from a zero row. Similarly, ifǫ is very small, many elements in a row
will be zero and, again, as a result it may be difficult to identify a non-zero row. Before, we give
the main result of the section, we introduce the class of models that are going to be considered.

Let
F [µ] := {θ ∈ Rk : min

j
|θj | ≥ µ}

denote the set of feasible non-zero rows. For eachj ∈ {0, 1, . . . , k}, letM(j, k) be the class of
all the subsets of{1, . . . , k} of cardinalityj. Let

M[µ, s] =
⋃

ω∈M(s,p)

{
(θ1, . . . , θp)

′ ∈ Rp×k : θi ∈ F [µ] if i ∈ ω, θi = 0 if i 6∈ ω
}

(12.5)

be the class of all feasible matrix means. For a matrixM ∈ M[µ, s], letPM denote the joint law
of {Yij}i∈[p],j∈[k]. SincePM is a product measure, we can writePM = ⊗i∈[p]Pθi . For a non-zero
row θi, we set

Pθi(A) =

∫
N (A; θ̂, σ2Ik)dν(θ̂), A ∈ B(Rk),

whereν is the distribution of the random variable
∑

j∈[k] µijξjej with ξj ∼ Bernoulli(k−β) and
{ej}j∈[k] denoting the canonical basis ofRk. For a zero rowθi = 0, we set

P0(A) = N (A; 0, σ2Ik), A ∈ B(Rk).

With this notation, we have the following result.
Theorem 12.1.Let

µ2
min = µ2

min(n, k, p, s, ǫ, β) = ln
(
1 + u+

√
2u+ u2

)
σ2

where

u =
ln
(
1 + α2(p−s+1)

2

)

2k1−2β
.
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If α ∈ (0, 1
2
) andk−βu < 1, then for allµ ≤ µmin,

inf
µ̂

sup
M∈M[µ,s]

PM [S(µ̂) 6= S(M)] ≥ 1

2
(1− α)

whereM[µ, s] is given by(12.5).
The result can be interpreted in words in the following way: whatever the estimation pro-

cedureµ̂, there exists some matrixM ∈ M[µmin, s] such that the probability of incorrectly
identifying the supportS(M) is bounded away from zero. In the next section, we will see that
some estimation procedures achieve the lower bound given inTheorem 12.1.

12.3 Upper Bounds on the Support Recovery

In this section, we present sufficient conditions on(n, p, k, ǫ, µmin) for different estimation pro-
cedures, so that

P[S(µ̂) 6= S] ≤ α.

Letα′, δ′ > 0 be two parameters such thatα′+ δ′ = α. The parameterα′ controls the probability
of making a type one error

P[∃i ∈ [p] : i ∈ S(µ̂) andi 6∈ S] ≤ α′,

that is, the parameterα′ upper bounds the probability that there is a zero row of the matrix M
that is estimated as a non-zero row. Likewise, the parameterδ′ controls the probability of making
a type two error

P[∃i ∈ [p] : i 6∈ S(µ̂) andi ∈ S] ≤ δ′,

that is, the parameterδ′ upper bounds the probability that there is a non-zero row of the matrix
M that is estimated as a zero row.

The control of the type one and type two errors is establishedthrough the tuning parameter
λ. It can be seen that if the parameterλ is chosen such that, for alli ∈ S, it holds thatP[i 6∈
S(µ̂)] ≤ δ′/s and, for alli ∈ Sc, it hold thatP[i ∈ S(µ̂)] ≤ α′/(p − s), then using the union
bound we have thatP[S(µ̂) 6= S] ≤ α. In the following subsections, we will use the outlined
strategy to chooseλ for different estimation procedures.

12.3.1 Upper Bounds for the Lasso

Recall that the Lasso estimator is given as

µ̂ℓ1 = argmin
µ∈Rp×k

1

2
||Y − µ||2F + λ||µ||1.

It is easy to see that the solution of the above estimation problem is given as the following soft-
thresholding operation

µ̂ℓ1
ij =

(
1− λ

|Yij|

)

+

Yij, (12.6)
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where(x)+ := max(0, x). From (12.6), it is obvious thati ∈ S(µ̂ℓ1) if and only if the maximum
statistic, defined as

Mk(i) = max
j
|Yij|,

satisfiesMk(i) ≥ λ. Therefore it is crucial to find the critical value of the parameterλ such that

{
P[Mk(i) < λ] < δ′/s i ∈ S
P[Mk(i) ≥ λ] < α′/(p− s) i ∈ Sc.

We start by controlling the type one error. Fori ∈ Sc it holds that

P[Mk(i) ≥ λ] ≤ kP[|N (0, σ2)| ≥ λ] ≤ 2kσ√
2πλ

exp
(
− λ2

2σ2

)
(12.7)

using a standard tail bound for the Normal distribution. Setting the right hand side toα′/(p− s)
in the above display, we obtain thatλ can be set as

λ = σ

√
2 ln

2k(p− s)√
2πα′ (12.8)

and (12.7) holds as soon as2 ln 2k(p−s)√
2πα′ ≥ 1. Next, we deal with the type two error. Let

πk = P[|(1− ǫ)N (0, σ2) + ǫN (µmin, σ
2)| > λ]. (12.9)

Then for i ∈ S, P[Mk(i) < λ] ≤ P[Bin(k, πk) = 0], whereBin(k, πk) denotes the binomial
random variable with parameters(k, πk). Control of the type two error is going to be established
through careful analysis ofπk for various regimes of problem parameters.
Theorem 12.2.Letλ be defined by(12.8). Supposeµmin satisfies one of the following two cases:

(i) µmin = σ
√
2r ln k where

r >

(√
1 + Ck,p,s −

√
1− β

)2

with

Ck,p,s =
ln 2(p−s)√

2πα′

ln k

and limn→∞Ck,p,s ∈ [0,∞);
(ii) µmin ≥ λ when

lim
n→∞

ln k

ln(p− s)
= 0

andk1−β/2 ≥ ln(s/δ′).
Then

P[S(µ̂ℓ1) 6= S] ≤ α.
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The proof is given in Section 12.6.2. The two different casesdescribe two different regimes
characterized by the ratio ofln k andln(p− s).

Now we can compare the lower bound onµ2
min from Theorem 12.1 and the upper bound from

Theorem 12.2. Without loss of generality we assume thatσ = 1. We have that whenβ < 1/2
the lower bound is of the orderO

(
ln
(
kβ−1/2 ln(p− s)

))
and the upper bound is of the order

ln(k(p − s)). Ignoring the logarithmic terms inp ands, we have that the lower bound is of the
orderÕ(kβ−1/2) and the upper bound is of the orderÕ(ln k), which implies that the Lasso does
not achieve the lower bound when the non-zero rows are dense.When the non-zero rows are
sparse,β > 1/2, we have that both the lower and upper bound are of the orderÕ(ln k) (ignoring
the terms depending onp ands).

12.3.2 Upper Bounds for the Group Lasso

Recall that the group Lasso estimator is given as

µ̂ℓ1/ℓ2 = argmin
µ∈Rp×k

1

2
||Y − µ||2F + λ

∑

i∈[p]
||θi||2,

whereθi = (µij)j∈[k]. The group Lasso estimator can be obtained in a closed form asa result of
the following thresholding operation [see, for example, 72]

θ̂
ℓ1/ℓ2
i =

(
1− λ

||Yi·||2
)

+

Yi· (12.10)

whereYi· is theith row of the data. From (12.10), it is obvious thati ∈ S(µ̂ℓ1/ℓ2) if and only if
the statistic defined as

Sk(i) =
∑

j

Y 2
ij ,

satisfiesSk(i) ≥ λ. The choice ofλ is crucial for the control of type one and type two errors.
We use the following result, which directly follows from Theorem 2 in [22].
Lemma 12.1. Let {Yi = fi + σξi}i∈[n] be a sequence of independent observations, wheref =

{fi}i∈[n] is a sequence of numbers,ξi
iid∼ N (0, 1) andσ is a known positive constant. Suppose

that tn,α ∈ R satisfiesP[χ2
n > tn,α] ≤ α. Let

φα = I{
∑

i∈[n]
Y 2
i ≥ tn,ασ

2}

be a test forf = 0 versusf 6= 0. Then the testφα satisfies

P[φα = 1] ≤ α

whenf = 0 and
P[φα = 0] ≤ δ

for all f such that

||f ||22 ≥ 2(
√
5 + 4)σ2 ln

(
2e

αδ

)√
n.
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Proof. This follows immediately from Theorem 2 in [22].

It follows directly from lemma 12.1 that setting

λ = tn,α′/(p−s)σ
2 (12.11)

will control the probability of type one error at the desiredlevel, that is,

P[Sk(i) ≥ λ] ≤ α′/(p− s), ∀i ∈ Sc.

The following theorem gives us the control of the type two error.
Theorem 12.3.Letλ = tn,α′/(p−s)σ

2. Then

P[S(µ̂ℓ1/ℓ2) 6= S] ≤ α

if

µmin ≥ σ

√
2(
√
5 + 4)

√
k−1/2+β

1− c

√
ln

2e(2s− δ′)(p− s)

α′δ′

wherec =
√

2 ln(2s/δ′)/k1−β.
The proof is given in Section 12.6.3.
Using Theorem 12.1 and Theorem 12.3 we can compare the lower bound onµ2

min and the up-
per bound. Without loss of generality we assume thatσ = 1. When each non-zero row is dense,
that is, whenβ < 1/2, we have that both lower and upper bounds are of the orderÕ(kβ−1/2)
(ignoring the logarithmic terms inp ands). This suggest that the group Lasso performs better
than the Lasso for the case where there is a lot of feature sharing between different tasks. Recall
from previous section that the Lasso in this setting does nothave the optimal dependence onk.
However, whenβ > 1/2, that is, in the sparse non-zero row regime, we see that the lower bound
is of the orderÕ(ln(k)) whereas the upper bound is of the orderÕ(kβ−1/2). This implies that
the group Lasso does not have optimal dependence onk in the sparse non-zero row setting.

12.3.3 Upper Bounds for the Group Lasso with the Mixed(∞, 1) Norm

In this section, we analyze the group Lasso estimator with the mixed(∞, 1) norm, defined as

µ̂ℓ1/ℓ∞ = argmin
µ∈Rp×k

1

2
||Y − µ||2F + λ

∑

i∈[p]
||θi||∞,

whereθi = (µij)j∈[k]. The closed form solution for̂µℓ1/ℓ∞ can be obtained [see 120], however,
we are only going to use the following lemma.

Lemma 12.2. [120] θ̂ℓ1/ℓ∞
i = 0 if and only if

∑
j |Yij| ≤ λ.

Proof. See the proof of Proposition 5 in [120].
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Suppose that the penalty parameterλ is set as

λ = kσ

√
2 ln

k(p− s)

α′ . (12.12)

It follows immediately using a tail bound for the Normal distribution that

P[
∑

j

|Yij| ≥ λ] ≤ kmax
j

P[|Yij| ≥ λ/k] ≤ α′/(p− s), ∀i ∈ Sc,

which implies that the probability of the type one error is controlled at the desired level.
Theorem 12.4.Let the penalty parameterλ be defined by(12.12). Then

P[S(µ̂ℓ1/ℓ∞) 6= S] ≤ α

if

µmin ≥
1 + τ

1− c
k−1+βλ

wherec =
√

2 ln(2s/δ′)/k1−β andτ = σ
√

2k ln 2s−δ′

δ′
/λ.

The proof is given in Section 12.6.4.
Comparing upper bounds for the Lasso and the group Lasso withthe mixed(2, 1) norm with

the result of Theorem 12.4, we can see that both the Lasso and the group Lasso have better
dependence onk than the group Lasso with the mixed(∞, 1) norm. The difference becomes
more pronounced asβ increases. This suggest that we should be very cautious whenusing the
group Lasso with the mixed(∞, 1) norm, since as soon as the tasks do not share exactly the
same features, the other two procedures have much better performance on identifying the set of
non-zero rows.

12.4 Simulation Results

We conduct a small-scale empirical study of the performanceof the Lasso and the group Lasso
(both with the mixed(2, 1) norm and with the mixed(∞, 1) norm). Our empirical study shows
that the theoretical findings of Section 12.3 describe sharply the behavior of procedures even for
small sample studies. In particular, we demonstrate that asthe minimum signal levelµmin varies
in the model (12.3), our theory sharply determines points atwhich probability of identifying
non-zero rows of matrixM successfully transitions from0 to 1 for different procedures.

The simulation procedure can be described as follows. Without loss of generality we let
S = [s] and draw the samples{Yij}i∈[p],j∈[k] according to the model in (12.3). The total num-
ber of rowsp is varied in{128, 256, 512, 1024} and the number of columns is set tok =
⌊p log2(p)⌋. The sparsity of each non-zero row is controlled by changingthe parameterβ in
{0, 0.25, 0.5, 0.75} and settingǫ = k−β . The number of non-zero rows is set tos = ⌊log2(p)⌋,
the sample size is set ton = 0.1p andσ0 = 1. The parametersα′ andδ′ are both set to0.01.
For each setting of the parameters, we report our results averaged over 1000 simulation runs.
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Simulations with other choices of parametersn, s andk have been tried out, but the results were
qualitatively similar and, hence, we do not report them here.

The regularization parameterλ is chosen according to Equations (12.8), (12.11) and (12.12),
which assume that the noise levelσ0 is known. In practice, estimating the standard deviation of
the noise in high-dimensions is a hard problem and practitioners often use cross-validation as a
data-driven way to choose the penalty parameter. For recentwork on data-driven tuning of the
penalty parameters, we refer the reader to [6].

12.4.1 Lasso

We investigate the performance on the Lasso for the purpose of estimating the set of non-zero
rows,S. Figure 12.1 plots the probability of success as a function of the signal strength. On the
same figure we plot the probability of success for the group Lasso with both(2, 1) and(∞, 1)-
mixed norms. Using theorem 12.2, we set

µlasso =
√

2(r + 0.001) ln k (12.13)

wherer is defined in theorem 12.2. Next, we generate data according to (12.3) with all elements
{µij} set toµ = ρµlasso, whereρ ∈ [0.05, 2]. The penalty parameterλ is chosen as in (12.8).
Figure 12.1 plots probability of success as a function of theparameterρ, which controls the
signal strength. This probability transitions very sharply from 0 to 1. A rectangle on a horizontal
line represents points at which the probabilityP[Ŝ = S] is between0.05 and0.95. From each
subfigure in Figure 12.1, we can observe that the probabilityof success for the Lasso transitions
from 0 to 1 for the same value of the parameterρ for different values ofp, which indicates that,
except for constants, our theory correctly characterizes the scaling ofµmin. In addition, we can
see that the Lasso outperforms the group Lasso (with(2, 1)-mixed norm) when each non-zero
row is very sparse (the parameterβ is close to one).

12.4.2 Group Lasso

Next, we focus on the empirical performance of the group Lasso with the mixed(2, 1) norm.
Figure 12.2 plots the probability of success as a function ofthe signal strength. Using theorem
12.3, we set

µgroup = σ

√
2(
√
5 + 4)

√
k−1/2+β

1− c

√
ln

(2s− δ′)(p− s)

α′δ′
(12.14)

wherec is defined in theorem 12.3. Next, we generate data according to (12.3) with all elements
{µij} set toµ = ρµgroup, whereρ ∈ [0.05, 2]. The penalty parameterλ is given by (12.11).
Figure 12.2 plots probability of success as a function of theparameterρ, which controls the signal
strength. A rectangle on a horizontal line represents points at which the probabilityP[Ŝ = S] is
between0.05 and0.95. From each subfigure in Figure 12.2, we can observe that the probability
of success for the group Lasso transitions from0 to 1 for the same value of the parameterρ for
different values ofp, which indicated that, except for constants, our theory correctly characterizes
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Probability of successful support recovery: Lasso
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Figure 12.1: The probability of success for the Lasso for theproblem of estimatingS plotted against the
signal strength, which is varied as a multiple ofµlasso defined in (12.13). A rectangle on each horizontal
line represents points at which the probabilityP[Ŝ = S] is between0.05 and0.95. To the left of the
rectangle the probability is smaller than0.05, while to the right the probability is larger than0.95. Different
subplots represent the probability of success as the sparsity parameterβ changes.
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the scaling ofµmin. We observe also that the group Lasso outperforms the Lasso when each non-
zero row is not too sparse, that is, when there is a considerable overlap of features between
different tasks.

12.4.3 Group Lasso with the Mixed(∞, 1) Norm

Next, we focus on the empirical performance of the group Lasso with the mixed(∞, 1) norm.
Figure 12.3 plots the probability of success as a function ofthe signal strength. Using theorem
12.4, we set

µinfty =
1 + τ

1− c
k−1+βλ (12.15)

whereτ andc are defined in theorem 12.4 andλ is given by (12.12). Next, we generate data
according to (12.3) with all elements{µij} set toµ = ρµinfty, whereρ ∈ [0.05, 2]. Figure 12.3
plots probability of success as a function of the parameterρ, which controls the signal strength. A
rectangle on a horizontal line represents points at which the probabilityP[Ŝ = S] is between0.05
and0.95. From each subfigure in Figure 12.3, we can observe that the probability of success for
the group Lasso transitions from0 to 1 for the same value of the parameterρ for different values
of p, which indicated that, except for constants, our theory correctly characterizes the scaling of
µmin. We also observe that the group Lasso with the mixed(∞, 1) norm never outperforms the
Lasso or the group Lasso with the mixed(2, 1) norm.

12.5 Discussion

We have studied the benefits of task sharing in sparse problems. Under many scenarios, the
group lasso outperforms the lasso. Theℓ1/ℓ2 penalty seems to be a much better choice for the
group lasso than theℓ1/ℓ∞. However, as pointed out to us by Han Liu, for screening, where false
discoveries are less important than accurate recovery, it is possible that theℓ1/ℓ∞ penalty could
be useful. From the results in Section 12.3, we can further conclude that the Lasso procedure
performs better than the group Lasso when each non-zero row is sparse, while the group Lasso
(with the mixed(2, 1) norm) performs better when each non-zero row is dense. Sincein many
practical situations one does not know how much overlap there is between different tasks, it
would be useful to combine the Lasso and the group Lasso in order to improve the performance.
For example, one can take the union of the Lasso and the group Lasso estimate,̂S = S(µ̂ℓ1) ∪
S(µ̂ℓ1/ℓ2). The suggested approach has the advantage that one does not need to know in advance
which estimation procedure to use. While such a combinationcan be justified in the Normal
means problem as a way to increase the power to detect the non-zero rows, it is not clear whether
the same approach can be justified in the multi-task regression model (12.1).

The analysis of the Normal means model in (12.3) provides insights into the theoretical re-
sults we could expect in the conventional multi-task learning given in (12.1). However, there is
no direct way to translate our results into valid results forthe model in (12.1); a separate analysis
needs to be done in order to establish sharp theoretical results.
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Probability of successful support recovery: group Lasso
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Figure 12.2: The probability of success for the group Lasso for the problem of estimatingS plotted
against the signal strength, which is varied as a multiple ofµgroup defined in (12.14). A rectangle on each
horizontal line represents points at which the probabilityP[Ŝ = S] is between0.05 and0.95. To the left
of the rectangle the probability is smaller than0.05, while to the right the probability is larger than0.95.
Different subplots represent the probability of success asthe sparsity parameterβ changes.
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Probability of successful support recovery: group Lasso with the mixed(∞, 1) norm
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Figure 12.3: The probability of success for the group Lasso with mixed (∞, 1) norm for the problem of
estimatingS plotted against the signal strength, which is varied as a multiple of µinfty defined in (12.15).
A rectangle on each horizontal line represents points at which the probabilityP[Ŝ = S] is between0.05
and0.95. To the left of the rectangle the probability is smaller than0.05, while to the right the probability
is larger than0.95. Different subplots represent the probability of success as the sparsity parameterβ
changes.
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12.6 Technical Proofs

This section collects technical proofs of the results presented in the chapter. Throughout the
section we usec1, c2, . . . to denote positive constants whose value may change from line to line.

12.6.1 Proof of Theorem 12.1

Without loss of generality, we may assumeσ = 1. Letφ(u) be the density ofN (0, 1) and define
P0 andP1 to be two probability measures onRk with the densities with respect to the Lebesgue
measure given as

f0(a1, . . . , ak) =
∏

j∈[k]
φ(aj) (12.16)

and

f1(a1, . . . , ak) = EZEmEξ

∏

j∈m
φ(aj − ξjµmin)

∏

j 6∈m
φ(aj) (12.17)

whereZ ∼ Bin(k, k−β), m is a random variable uniformly distributed overM(Z, k) and
{ξj}j∈[k] is a sequence of Rademacher random variables, independent of Z andm. A Rademacher
random variable takes values±1 with probability 1

2
.

To simplify the discussion, suppose thatp− s + 1 is divisible by 2. LetT = (p− s + 1)/2.
UsingP0 andP1, we construct the following three measures,

Q̃ = Ps−1
1
⊗ P

p−s+1
0

,

Q0 =
1

T

∑

j∈{s,...,p}
j odd

Ps−1
1
⊗ P

j−s
0
⊗ P1 ⊗ P

p−j
0

and

Q1 =
1

T

∑

j∈{s,...,p}
j even

Ps−1
1
⊗ P

j−s
0
⊗ P1 ⊗ P

p−j
0

.

It holds that

inf
µ̂

sup
M∈M

PM [S(M) 6= S(µ̂)] ≥ inf
Ψ

max
(
Q0(Ψ = 1),Q1(Ψ = 0)

)

≥ 1

2
− 1

2
||Q0 −Q1||1,

where the infimum is taken over all testsΨ taking values in{0, 1} and|| · ||1 is the total variation
distance between probability measures. For a readable introduction on lower bounds on the
minimax probability of error, see Section 2 in [171]. In particular, our approach is related to
the one described in Section 2.7.4. We proceed by upper bounding the total variation distance
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betweenQ0 andQ1. Let g = dP1/dP0 and letui ∈ Rk for eachi ∈ [p], then

dQ0

dQ̃
(u1, . . . , up)

=
1

T

∑

j∈{s,...,p}
j even

∏

i∈{1,...,s−1}

dP1

dP1

(ui)
∏

i∈{s,...,j−1}

dP0

dP0

(ui)
dP1

dP0

(uj)
∏

i∈{j+1,...,p}

dP0

dP0

(ui)

=
1

T

∑

j∈{s,...,p}
j even

g(uj)

and, similarly, we can computedQ1/dQ̃. The following holds

‖Q0 −Q1‖21

=

(∫ ∣∣∣ 1
T

( ∑

j∈{s,...,p}
j even

g(uj)−
∑

j∈{s,...,p}
j odd

g(uj)
)∣∣∣

∏

i∈{s,...,p}
dP0(ui)

)2

≤ 1

T 2

∫ ( ∑

j∈{s,...,p}
j even

g(uj)−
∑

j∈{s,...,p}
j odd

g(uj)
)2 ∏

i∈{s,...,p}
dP0(ui)

=
2

T

(
P0(g

2)− 1
)
,

(12.18)

where the last equality follows by observing that

∫ ∑

j∈{s,...,p}
j even

∑

j′∈{s,...,p}

j′ even

g(uj)g(uj′)
∏

i∈{s,...,p}
i even

dP0(ui) = T P0(g
2) + T 2 − T

and ∫ ∑

j∈{s,...,p}
j even

∑

j′∈{s,...,p}

j′ odd

g(uj)g(uj′)
∏

i∈{s,...,p}
dP0(ui) = T 2.

Next, we proceed to upper boundP0(g
2), using some ideas presented in the proof of Theorem 1

in [22]. Recall definitions off0 andf1 in (12.16) and (12.17) respectively. Theng = dP1/dP0 =
f1/f0 and we have

g(a1, . . . , ak) = EZEmEξ

[
exp

(
− Zµ2

min

2
+ µmin

∑

j∈m
ξjaj

)]

= EZ

[
exp

(
− Zµ2

min

2

)
Em

[∏

j∈m
cosh(µminaj)

]]
.

Furthermore, letZ ′ ∼ Bin(k, k−β) be independent ofZ andm′ uniformly distributed over
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M(Z ′, k). The following holds

P0(g
2)

= P0

(
EZ′,Z

[
exp

(
− (Z + Z ′)µ2

min

2

)
Em,m′

∏

j∈m
cosh(µminaj)

∏

j∈m′

cosh(µminaj)
])

= EZ′,Z

[
exp

(
− (Z + Z ′)µ2

min

2

)

Em,m′

[ ∏

j∈m∩m′

∫
cosh2(µminaj)φ(aj)daj

∏

j∈m△m′

∫
cosh(µminaj)φ(aj)daj

]]
,

where we usem△m′ to denote(m ∪m′) \ (m ∩m′). By direct calculation, we have that∫
cosh2(µminaj)φ(aj)daj = exp(µ2

min) cosh(µ
2
min)

and ∫
cosh(µminaj)φ(aj)daj = exp(µ2

min/2).

Since1
2
|m△m′|+ |m ∩m′| = (Z + Z ′)/2, we have that

P0(g
2) = EZ,Z′

[
Em,m′

[(
cosh(µ2

min)
)|m∩m′|

]]

= EZ,Z′

[ k∑

j=0

pj
(
cosh(µ2

min)
)j]

= EZ,Z′

[
EX

[
cosh(µ2

min)
X
]]
,

where

pj =





0 if j < Z + Z ′ − k or j > min(Z,Z ′)
(Z

′

j )(
k−Z′

Z−j )
(k
Z)

otherwise

andP [X = j] = pj . Therefore,X follows a hypergeometric distribution with parametersk, Z,
Z ′/k. [The first parameter denotes the total number of stones in anurn, the second parameter
denotes the number of stones we are going to sample without replacement from the urn and the
last parameter denotes the fraction of white stones in the urn.] Then following [9, p. 173; see
also [22]], we know thatX has the same distribution as the random variableE[X̃|T ] whereX̃
is a binomial random variable with parametersZ andZ ′/k, andT is a suitableσ-algebra. By
convexity, it follows that

P0(g
2) ≤ EZ,Z′

[
EX̃

[
cosh(µ2

min)
X̃
]]

= EZ,Z′

[
exp

(
Z ln

(
1 +

Z ′

k

(
cosh(µ2

min)− 1
)))]

= EZ′EZ

[
exp

(
Z ln

(
1 +

Z ′

k
u
))]
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whereµ2
min = ln(1 + u+

√
2u+ u2) with

u =
ln
(
1 + α2T

2

)

2k1−2β
.

Continuing with our calculations, we have that

P0(g
2) = EZ′ exp

(
k ln

(
1 + k−(1+β)uZ ′))

≤ EZ′ exp
(
k−βuZ ′

)

= exp

(
k ln

(
1 + k−β

(
exp(k−βu

)
− 1)

))

≤ exp
(
k1−β

(
exp

(
k−βu

)
− 1
))

≤ exp
(
2k1−2βu

)

= 1 +
α2T

2
,

(12.19)

where the last inequality follows sincek−βu < 1 for all largep. Combining (12.19) with (12.18),
we have that

‖Q0 −Q1‖1 ≤ α,

which implies that

inf
µ̂

sup
M∈M

PM [S(M) 6= S(µ̂)] ≥ 1

2
− 1

2
α.

12.6.2 Proof of Theorem 12.2

Without loss of generality, we can assume thatσ = 1 and rescale the final result. Forλ given in
(12.8), it holds thatP[|N (0, 1) ≥ λ] = o(1). For the probability defined in (12.9), we have the
following lower bound

πk = (1− ǫ)P[|N (0, 1)| ≥ λ] + ǫP[|N (µmin, 1)| ≥ λ] ≥ ǫP[N (µmin, 1) ≥ λ].

We prove the two cases separately.
Case 1:Large number of tasks.By direct calculation

πk ≥ ǫP[N (µmin, 1) ≥ λ] =
1√

4π log k
(√

1 + Ck,p,s −
√
r
)k−β−

(√
1+Ck,p,s−

√
r
)2

=: πk.

Since1− β >
(√

1 + Ck,p,s−
√
r
)2

, we have thatP[Bin(k, πk) = 0]
n→∞−−−→ 0. We can conclude

that as soon askπk ≥ ln(s/δ′), it holds thatP[S(µ̂ℓ1) 6= S] ≤ α.
Case 2:Medium number of tasks.Whenµmin ≥ λ, it holds that

πk ≥ ǫP[N (µmin, 1) ≥ λ] ≥ k−β

2
.

We can conclude that as soon ask1−β/2 ≥ ln(s/δ′), it holds thatP[S(µ̂ℓ1) 6= S] ≤ α.
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12.6.3 Proof of Theorem 12.3

Using a Chernoff bound,P[Bin(k, k−β) ≤ (1 − c)k1−β ] ≤ δ′/2s for c =
√

2 ln(2s/δ′)/k1−β.
For i ∈ S, we have that

P[Sk(i) ≤ λ] ≤ δ′

2s
+
(
1− δ′

2s

)
P

[
Sk(i) ≤ λ

∣∣
{
||θi||22 ≥ (1− c)k1−βµ2

min

}]
.

Therefore, using lemma 12.1 withδ = δ′/(2s − δ′), if follows thatP[Sk(i) ≤ λ] ≤ δ′/(2s) for
all i ∈ S when

µmin ≥ σ

√
2(
√
5 + 4)

√
k−1/2+β

1− c

√
ln

2e(2s− δ′)(p− s)

α′δ′
.

Sinceλ = tn,α′/(p−s)σ
2, P[Sk(i) ≥ λ] ≤ α′/(p − s) for all i ∈ Sc. We can conclude that

P[S(µ̂ℓ1/ℓ2) 6= S] ≤ α.

12.6.4 Proof of Theorem 12.4

Without loss of generality, we can assume thatσ = 1. Proceeding as in the proof of theorem 12.3,
P[Bin(k, k−β) ≤ (1− c)k1−β ] ≤ δ′/2s for c =

√
2 ln(2s/δ′)/k1−β. Then fori ∈ S it holds that

P[
∑

j

|Yij| ≤ λ] ≤ δ′

2s
+
(
1− δ′

2s

)
P[(1− c)k1−βµmin + zk ≤ λ],

wherezk ∼ N (0, k). Since(1− c)k1−βµmin ≥ (1+ τ)λ, the right-hand side of the above display
can upper bounded as

δ′

2s
+
(
1− δ′

2s

)
P[N (0, 1) ≥ τλ/

√
k] ≤ δ′

2s
+
(
1− δ′

2s

) δ′

2s− δ′
≤ δ′

s
.

The above display gives us the desired control of the type twoerror, and we can conclude that
P[S(µ̂ℓ1/ℓ∞) 6= S] ≤ α.
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Chapter 13

Feature Screening With Forward
Regression

In this chapter, we propose a novel application of the Simultaneous Orthogonal Matching Pursuit
(S-OMP) procedure for sparsistant variable selection in ultra-high dimensional multi-task regres-
sion problems. Screening of variables, as introduced in [62], is an efficient and highly scalable
way to remove many irrelevant variables from the set of all variables, while retaining all the rel-
evant variables. S-OMP can be applied to problems with hundreds of thousands of variables and
once the number of variables is reduced to a manageable size,a more computationally demand-
ing procedure can be used to identify the relevant variablesfor each of the regression outputs. To
our knowledge, this is the first attempt to utilize relatedness of multiple outputs to perform fast
screening of relevant variables. As our main theoretical contribution, we prove that, asymptoti-
cally, S-OMP is guaranteed to reduce an ultra-high number ofvariables to below the sample size
without losing true relevant variables. We also provide formal evidence that a modified Bayesian
information criterion (BIC) can be used to efficiently determine the number of iterations in S-
OMP. We further provide empirical evidence on the benefit of variable selection using multiple
regression outputs jointly, as opposed to performing variable selection for each output separately.
The finite sample performance of S-OMP is demonstrated on extensive simulation studies, and
on a genetic association mapping problem.

13.1 Introduction

Multiple output regression, also known as multi-task regression, withultra-high dimensionalin-
puts commonly arise in problems such as genome-wide association (GWA) mapping in genetics,
or stock portfolio prediction in finance. For example, in a GWA mapping problem, the goal is to
find a small set of relevant single-nucleotide polymorphisms (SNP) (covariates, or inputs) that
account for variations of a large number of gene expression or clinical traits (responses, or out-
puts), through a response function that is often modeled via a regression. However, this is a very
challenging problem for current statistical methods sincethe number of input variables is likely
to reach millions, prohibiting even usage of scalable implementation of Lasso-like procedures
for model selection, which are a convex relaxation of a combinatorial subset selection search.
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Furthermore, the outputs in a typical multi-task regression problem are not independent of each
other, therefore the discovery of truly relevant inputs hasto take into consideration of potential
joint effects induced by coupled responses. To appreciate this better, consider again the GWA
example. Typically, genes in a biological pathway are co-expressed as a module and it is often
assumed that a causal SNP affects multiple genes in one pathway, but not all of the genes in the
pathway. In order to effectively reduce the dimensionalityof the problem and to detect the causal
SNPs, it is very important to look at how SNPs affect all genesin a biological pathway. Since the
experimentally collected data is usually very noisy, regressing genes individually onto SNPs may
not be sufficient to identify the relevant SNPs that are only weakly marginally correlated with
each individual gene in a module. However, once the whole biological pathway is examined, it
is much easier to find such causal SNPs. In this paper, we demonstrate that the Simultaneous
Orthogonal Matching Pursuit (S-OMP) [174] can be used to quickly reduce the dimensionality
of such problems, without losing any of the relevant variables.

From a computational point of view, as the dimensionality ofthe problem and the number of
outputs increase, it can become intractable to solve the underlying convex programs commonly
used to identify relevant variables in multi-task regression problems. Previous work by [120],
[123] and [116], for example, do not scale well to settings when the number of variables exceeds
& 10000 and the number of outputs exceeds& 1000, as in typical genome-wide association stud-
ies. Furthermore, since the estimation error of the regression coefficients depends on the number
of variables in the problem, variable selection can improveconvergence rates of estimation pro-
cedures. These concerns motivate us to propose and study theS-OMP as a fast way to remove
irrelevant variables from an ultra-high dimensional space.

Formally, the GWA mapping problem, which we will use as an illustrative example both
in here for model formulation and later for empirical experimental validation, can be cast as a
variable selection problem in a multiple output regressionmodel:

Y = XB+W (13.1)

whereY = [y1, . . . ,yT ] ∈ Rn×T is a matrix of outputs, whose columnyt is ann-vector for
thet-th output (i.e., gene),X ∈ Rn×p is a random design matrix, of which each rowxi denotes
a p-dimensional input,B = [β1, . . . ,βT ] ∈ Rp×T is the matrix of regression coefficients and
W = [ǫ1, . . . , ǫT ] ∈ Rn×T is a matrix of IID random noise, independent ofX. Throughout the
paper, we will assume that the columns ofB are jointly sparse, as we precisely specify below.
Note that if different columns ofB do not share any underlying structure, the model in (13.1)
can be estimated by fitting each of the tasks separately.

We are interested in estimating the regression coefficients, under the assumption that they
share a common structure, for example, there exist a subset of variables with non-zero coeffi-
cients for more than one regression output. We informally refer to such outputs as related. Such
a variable selection problem can be formalized in two ways: i) the union supportrecovery of
B, as defined in [144], where a subset of variables is selected that affect at least one output; ii)
theexact supportrecovery ofB, where the exact positions of non-zero elements inB are esti-
mated. In this paper, we concern ourselves with exact support recovery, which is of particular
importance in problems like GWA mapping [115] or biologicalnetwork estimation [147]. Under
such a multi-task setting, two interesting questions naturally follow: i) how can information be
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shared between related outputs in order to improve the predictive accuracy and the rate of con-
vergence of the estimated regression coefficients over the independent estimation on each output
separately; ii) how to select relevant variables more accurately based on information from related
outputs. To address these two questions, one line of research [for example, 120, 123, 204] has
looked into the following estimation procedure leveragingamulti-task regularization:

B̂ = argmin
βt∈Rp,t∈[T ]

T∑

t=1

||yt −Xβt||22 + λ

p∑

j=1

pen(β1,j , . . . , βT,j), (13.2)

with pen(a1, . . . , aT ) = maxt∈[T ] |at| or pen(a1, . . . , aT ) =
√∑

t∈[T ] a
2
t for a vectora ∈ RT .

Under an appropriate choice of the penalty parameterλ, the estimator̂B has many rows equal to
zero, which correspond to irrelevant variables. However, solving (13.2) can be computationally
prohibitive.

In this chapter, we consider an ultra-high dimensional setting for the aforementioned multi-
task regression problem, where the number of variablesp is much higher than the sample sizen,
for example,p = O(exp(nδp)) for a positive constantδp, but the regression coefficientsβt are
sparse, that is, for each taskt, there exist a very small number of variables that are relevant to
the output. Under the sparsity assumption, it is highly important to efficiently select the relevant
variables in order to improve the accuracy of the estimationand prediction, and to facilitate
the understanding of the underlying phenomenon for domain experts. In the seminal paper of
[62], the concept ofsure screeningwas introduced, which leads to a sequential variable selection
procedure that keeps all the relevant variables with high probability in ultra-high dimensionaluni-
output regression. In this paper, we propose the S-OMP procedure, which enjoyssure screening
property in ultra-high dimensionalmultiple output regressionas defined in (13.1). To perform
exact supportrecovery, we further propose a two-step procedure that firstuses S-OMP to screen
the variables, i.e., select a subset of variables that contain all the true variables; and then use
the adaptive Lasso (ALasso) [97] to further select a subset of screened variables for each task.
We show, both theoretically and empirically, that our procedure ensures sparsistant recovery of
relevant variables. To the best of our knowledge, this is thefirst attempt to analyze the sure
screening property in the ultra-high dimensional space using the shared information from the
multiple regression outputs.

In this chapter, we make the following novel contributions:i) we prove that the S-OMP can
be used for the ultra-high dimensional variable screening in multiple output regression problems
and demonstrate its performance on extensive numerical studies; ii) we show that a two step
procedure can be used to select exactly the relevant variables for each task; and iii) we prove that
a modification of the BIC score [31] can be used to select the number of steps in the S-OMP.
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13.2 Methodology

13.2.1 The model and notation

We will consider a slightly more general model

y1 = X1β1 + ǫ1

y2 = X2β2 + ǫ2

. . .

yT = XTβT + ǫT ,

(13.3)

than the one given in (13.1). The model in (13.1) is a special case of the model in (13.3), with
all the design matrices{Xt}t∈[T ] being equal and[T ] denoting the set{1, . . . , T}. Assume that
for all t ∈ [T ], Xt ∈ Rn×p. For the designXt, we denoteXt,j thej-th column (i.e., dimension),
xt,i the i-th row (i.e., instance) andxt,ij the element at(i, j). DenoteΣt = Cov(xt,i). Without
loss of generality, we assume thatVar(yt,i) = 1, E(xt,ij) = 0 andVar(xt,ij) = 1. The noiseǫt
is zero mean andCov(ǫt) = σ2In×n. We assume that the number of variablesp ≫ n and that
the vector of regression coefficientsβt are jointly sparse, that is, there exist a small number of
variables that are relevant for the most of theT regression problems. Put another way, the matrix
B = [β1, . . . ,βT ] has only a small number of non-zero rows. LetM∗,t denote the set of non-
zero coefficients ofβt andM∗ = ∪Tt=1M∗,t denote the set of all relevant variables, i.e., variables
with non-zero coefficient in at least one of the tasks. For an arbitrary setM⊆ {1, . . . , p}, Xt,M
denotes the design with columns indexed byM, BM denotes the rows ofB indexed byM and
Bj = (β1,j, . . . ,βT,j)

′. The cardinality of the setM is denoted as|M|. Let s := |M∗| denote
the total number of relevant variables, so under the sparsity assumption we haves < n. For a

matrixA = [aij ] ∈ Rp×T , we define||A||2,1 :=
∑

i∈[p]

√∑
j∈[T ] a

2
ij .

13.2.2 Simultaneous Orthogonal Matching Pursuit

We propose a Simultaneous Orthogonal Matching Pursuit procedure for ultra high-dimensional
variable selection in the multi-task regression problem, which is outlined in Algorithm 4. Before
describing the algorithm, we introduce some additional notation. For an arbitrary subsetM⊆ [p]
of variables, letHt,M be the orthogonal projection matrix ontoSpan(Xt,M), i.e.,

Ht,M = Xt,M(X′
t,MXt,M)−1X′

t,M,

and define the residual sum of squares (RSS) as

RSS(M) =

T∑

t=1

y′
t(In×n −HM)yt.

The algorithm starts with an empty setM(0) = ∅. We recursively define the setM(k) based
on the setM(k−1). The setM(k) is obtained by adding a variable indexed byf̂k ∈ [p], which
minimizesRSS(M(k−1)∪j) over the set[p]\M(k−1), to the setM(k−1). Repeating the algorithm
for n− 1 steps, a sequence of nested sets{M(k)}n−1

k=0 is obtained, withM(k) = {f̂1, . . . , f̂k}.
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Input : Dataset{Xt,yt}Tt=1

Output : Sequence of selected models{M(k)}n−1
k=0

SetM(0) = ∅
for k = 1 to n− 1 do

for j = 1 to p do
M̃(k)

j =M(k−1) ∪ {j}
Ht,j = X

t,M̃(k)
j
(X′

t,M̃(k)
j

X
t,M̃(k)

j
)−1X′

t,M̃(k)
j

RSS(M̃(k)
j ) =

∑T
t=1 y

′
t(In×n −Ht,j)yt

end

f̂k = argminj∈{1,...,p}\M(k−1) RSS(M̃(k)
j )

M(k) =M(k−1) ∪ {f̂k}
end

Algorithm 4: Group Forward Regression

To practically select one of the sets of variables from{M(k)}n−1
k=0, we minimize the modified

BIC criterion [31], which is defined as

BIC(M) = log

(
RSS(M)

nT

)
+
|M|(log(n) + 2 log(p))

n
(13.4)

with |M| denoting the number of elements of the setM. Let

ŝ = argmin
k∈{0,...,n−1}

BIC(M(k)),

so that the selected model isM(ŝ).
The S-OMP algorithm is outlined only conceptually in this section. The steps 5 and 6 of the

algorithm can be implemented efficiently using the progressive Cholesky decomposition (see,
for example, [34]). A computationally costly step 5 involves inversion of the matrixX′

t,MXt,M,
however, it can be seen from the algorithm that the matrixX′

t,MXt,M is updated in each iteration
by simply appending a row and a column to it. Therefore, its Cholesky factorization can be
efficiently computed based on calculation involving only the last row. A detailed implementation
of the orthogonal matching pursuit algorithm based on the progressive Cholesky decomposition
can be found in [153].

13.2.3 Exact variable selection

After many of the irrelevant variables have been removed using Algorithm 4, we are left with
the variables in the setM(ŝ), whose size is smaller than the sample sizen. These variables
are candidates for the relevant variables for each of the regressions. Now, we can address the
problem of estimating the regression coefficients and recovering the exact support ofB using
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a lower dimensional selection procedure. In this paper, we use the adaptive Lasso as a lower
dimensional selection procedure, which was shown to have oracle properties [97]. The ALasso
solves the penalized least square problem

β̂t = argmin
βt∈Rŝ

||yt −Xt,M(ŝ)βt||22 + λ
∑

j∈M(ŝ)

wj |βt,j|,

where(wj)j∈M(ŝ) is a vector of known weight andλ is a tuning parameter. Usually, the weights

are defined aswj = 1/|β̂t,j| whereβ̂t is a
√
n-consistent estimator ofβt. In a low dimensional

setting, we know from [89] that the adaptive Lasso can recover exactly the relevant variables.
Therefore, we can use the ALasso on each output separately torecover the exact support ofB.
However, in order to ensure that the exact support ofB is recovered with high probability, we
need to ensure that the total number of tasks iso(n). The exact support recovery ofB is es-
tablished using the union bound over different tasks, therefore we need the number of tasks to
remain relatively small in comparison to the sample sizen. However, simulation results pre-
sented in Section 13.4.1 show that the ALasso procedure succeeds in the exact support recovery
even when the number of tasks are much larger than the sample size, which indicates that our
theoretical considerations could be improved. Figure 13.1illustrates the two step procedure.

ALasso

small number of variables

Full Model

large number of variables

S−OMP

Screening

Exact support
Only relevant variables

Figure 13.1: Framework for exact support recovery

We point out that solving the multi-task problem defined in (13.2) can be efficiently done
on the reduced set of variables, but it is not obvious how to obtain the estimate of the exact
support using (13.2). In Section 13.4.1, our numerical studies show that the ALasso applied to
the reduced set of variables can be used to estimate the exactsupport ofB.

13.3 Theory

In this section, we state conditions under which Algorithm 4is screening consistent, i.e.,

P[∃k ∈ {0, 1, . . . , n− 1} :M∗ ⊆M(k)]→ 1, asn→∞.

Furthermore, we also show that the model selected using the modified BIC criterion contains all
the relevant variables, i.e.,

P[M∗ ⊆M(ŝ)]→ 1, asn→∞.

Note that we can choose triviallyM(n) since it holds thatM∗ ⊆ M(n). However, we will be
able to prove that̂s chosen by the modified BIC criterion is much smaller than the sample sizen.
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13.3.1 Assumptions

Before we state the theorem characterizing the performanceof the S-OMP, we give some tech-
nical conditions that are needed for our analysis.

A1: The random noise vectorsǫ1, . . . , ǫT are independent Gaussian with zero mean and covari-
ance matrixσ2In×n.

A2: Each row of the design matrixXt is IID Gaussian with zero mean and covariance matrix
Σt. Furthermore, there exist two positive constants0 < φmin < φmax <∞ such that

φmin ≤ min
t∈[T ]

Λmin(Σt) ≤ max
t∈[T ]

Λmax(Σt) ≤ φmax.

A3: The true regression coefficients are bounded, i.e., there exists a positive constantCβ such
that||B||2,1 ≤ Cβ. Furthermore, the norm of any non-zero row of the matrixB is bounded
away from zero, that is, there exist positive constantscβ andδmin such that

T−1 min
j∈M∗

∑

t∈[T ]

β2
t,j ≥ cβn

−δmin .

A4: There exist positive constantsCs, Cp, δs andδp such that|M∗| ≤ Csn
δs and log(p) ≤

Cpn
δp .

The normality conditionA1 is assumed here only to facilitate presentation of theoretical results,
as is commonly assumed in literature [see, for example, 62, 199]. The normality assumption can
be avoided at the cost of more technical proofs (see, for example, [123]). Under the conditionA2,
we will be able to show that the empirical covariance matrix satisfies the sparse eigenvalue condi-
tion with probability tending to one. The assumption that the rows of the design are Gaussian can
be easily relaxed to the case when the rows are sub-Gaussian,without any technical difficulties
in proofs, since we would still obtain exponential bounds onthe tail probabilities. The condition
A3 states that the regression coefficients are bounded, which is a technical condition likely to be
satisfied in practice. Furthermore, it is assumed that the row norms ofBM∗ do not decay to zero
too fast or, otherwise, they would not be distinguishable from noise. If every non-zero coefficient
is bounded away from zero by a constant, the conditionA3 is trivially satisfied withδmin = 0.
However, we allow the coefficients of the relevant variablesto get smaller as the sample size
increases and still guarantee that the relevant variable will be identified, which suggests that the
condition is not too restrictive. The conditionA4 sets the upper bound on the number of relevant
variables and the total number of variables. While the totalnumber of variables can diverge to
infinity much faster than the sample size, the number of relevant variables needs to be smaller
than the sample size. ConditionsA3 andA4 implicitly relate different outputs and control the
number of non-zero coefficients shared between different outputs. Intuitively, if the upper bound
in A4 on the size ofM∗ is large, this immediately implies that the constantCβ in A3 should be
large as well, since otherwise there would exist a row ofB whoseℓ2 norm would be too small to
be detected by Algorithm 4.
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13.3.2 Screening consistency

Our first result states that after a small number of iterations, compared to the dimensionalityp,
the S-OMP procedure will include all the relevant variables.
Theorem 13.1.Assume the model in(13.3)and that the conditionsA1-A4 are satisfied. Fur-
thermore, assume that

n1−6δs−6δmin

max{log(p), log(T )} → ∞, asn→∞.

Then there exists a numberm∗
max = m∗

max(n), so that inm∗
max steps of S-OMP iteration, all the

relevant variables are included in the model, that is, asn→∞

P[M∗ ⊆M(m∗
max)] ≥ 1− C1 exp

(
−C2

n1−6δs−6δmin

max{log(p), log(T )}

)
,

for some positive constantsC1 andC2. The exact value ofm∗
max is given as

m∗
max = ⌊24φ−2

minφmaxC
2
βC

2
s c

−2
β n2δs+2δmin⌋. (13.5)

Under the assumptions of Theorem 13.1,m∗
max ≤ n − 1, so that the procedure effectively

reduces the dimensionality below the sample size. From the proof of the theorem, it is clear how
multiple outputs help to identify the relevant variables. The crucial quantity in identifying all
relevant variables is the minimum non-zero row norm ofB, which allows us to identify weak
variables if they are relevant for a large number of outputs even though individual coefficients
may be small. It should be noted that the main improvement over the ordinary forward regression
is in the size of the signal that can be detected, as defined inA3 andA4.

Theorem 13.1 guarantees that one of the sets{M(k)} will contain all relevant variables,
with high probability. However, it is of practical importance to select one set in the collection
that contains all relevant variables and does not have too many irrelevant ones. Our following
theorem shows that the modified BIC criterion can be used for this purpose, that is, the setM(ŝ)

is screening consistent.
Theorem 13.2.Assume that the conditions of Theorem 13.1 are satisfied. Let

ŝ = argmin
k∈{0,...,n−1}

BIC(M(k))

be the index of the model selected by optimizing the modified BIC criterion. Then, asn→∞
P[M∗ ⊆M(ŝ)]→ 1.

Combining results from Theorem 13.1 and Theorem 13.2, we have shown that the S-OMP
procedure is screening consistent and can be applied to problems where the dimensionality of the
problemp is exponential in the number of observed samples. In the nextsection, we also show
that the S-OMP has great empirical performance.

13.4 Numerical studies

In this section, we perform simulation studies on an extensive number of synthetic data sets.
Furthermore, we demonstrate the application of the procedure on the genome-wide association
mapping problem.
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13.4.1 Simulation studies

We conduct an extensive number of numerical studies to evaluate the finite sample performance
of the S-OMP. We consider three procedures that perform estimation on individuals outputs: Sure
Independence Screening (SIS), Iterative SIS (ISIS) [62], and the OMP, for comparison purposes.
The evaluation is done on the model in (13.1). SIS and ISIS areused to select a subset of variables
and then the ALasso is used to further refine the selection. Wedenote this combination as SIS-
ALasso and ISIS-ALasso. The size of the model selected by SISis fixed asn− 1, while the ISIS
selects⌊n/ log(n)⌋ variables in each of the⌊log(n)− 1⌋ iterations. From the screened variables,
the final model is selected using the ALasso, together with the BIC criterion (13.4) to determine
the penalty parameterλ. The number of variables selected by the OMP is determined using the
BIC criterion, however, we do not further refine the selectedvariables using the ALasso, since
from the numerical studies in [182] it was observed that the further refinement does not result
in improvement. The S-OMP is used to reduce the dimensionality below the sample size jointly
using the regression outputs. Next, the ALasso is used on each of the outputs to further perform
the estimation. This combination is denoted SOMP-ALasso.

Let B̂ = [β̂1, . . . , β̂T ] ∈ Rp×T be an estimate obtained by one of the estimation pro-
cedures. We evaluate the performance averaged over 200 simulation runs. LetÊn denote
the empirical average over the simulation runs. We measure the size of the union support
Ŝ = S(B̂) := {j ∈ [p] : ||B̂j||22 > 0}. Next, we estimate the probability that the screening
property is satisfied̂En[1I{M∗ ⊆ S(B̂)}], which we call coverage probability. For the union
support, we define fraction of correct zeros(p − s)−1Ên[|S(B̂)C ∩MC

∗ |], fraction of incorrect
zeross−1Ên[|S(B̂)C ∩M∗|] and fraction of correctly fitted̂En[1I{M∗ = S(B̂)}] to measure the
performance of different procedures. Similar quantities are defined for the exact support recov-
ery. In addition, we measure the estimation errorÊn[||B− B̂||22] and the prediction performance
on the test set. On the test data{x∗

i ,y
∗
i }i∈[n], we compute

R2 = 1−
∑

i∈[n]
∑

t∈[T ](y
∗
t,i − (x∗

t,i)
′β̂t)

2

∑
i∈[n]

∑
t∈[T ](y

∗
t,i − y∗t )

2
,

wherey∗t = n−1
∑

i∈[n] yt,i.
The following simulation studies are used to comparativelyassess the numerical performance

of the procedures. Due to space constraints, tables with detailed numerical results are given in
the Appendix. In this section, we outline main findings.

Simulation 1:[Model with uncorrelated variables] The following toy model is based on the
simulation I in [62] with(n, p, s, T ) = (400, 20000, 18, 500). Eachxi is drawn independently
from a standard multivariate normal distribution, so that the variables are mutually independent.
For j ∈ [s] andt ∈ [T ], the non-zero coefficients ofB are given asβt,j = (−1)u(4n−1/2 log n +
|z|), whereu ∼ Bernoulli(0.4) and z ∼ N (0, 1). The number of non-zero elements inBj

is given as a parameterTnon−zero ∈ {500, 300, 100}. The positions of non-zero elements are
chosen uniformly at random from[T ]. The noise is Gaussian with the standard deviationσ
set to control the signal-to-noise ratio (SNR). SNR is defined asVar(xβ)/Var(ǫ) and we vary
SNR ∈ {15, 10, 5, 1}.
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Simulation 2: [Changing the number of non-zero elements inBj] The following model
is used to evaluate the performance of the methods as the number of non-zero elements in
a row of B varies. We set(n, p, s) = (100, 500, 10) and vary the number of outputsT ∈
{500, 750, 1000}. For each number of outputsT , we varyTnon−zero ∈ {0.8T, 0.5T, 0.2T}.
The samplesxi and regression coefficientsB are given as in Simulation 1, that is,xi is drawn
from a multivariate standard normal distribution and the non-zero coefficientsB are given as
βt,j = (−1)u(4n−1/2 logn + |z|), whereu ∼ Bernoulli(0.4) andz ∼ N (0, 1). The noise is
Gaussian, with the standard deviation defined through the SNR, which varies in{10, 5, 1}.

Simulation 3:[Model with the decaying correlation between variables] The following model
is borrowed from [182]. We assume a correlation structure between variables given as

Var(Xj1,Xj2) = ρ|j1−j2|,

whereρ ∈ {0.2, 0.5, 0.7}. This correlation structure appears naturally among ordered variables.
We set(n, p, s, T ) = (100, 5000, 3, 150) and Tnon−zero = 80. The relevant variables are at
positions(1, 4, 7) and non-zero coefficients are given as3, 1.5 and 2 respectively. The SNR
varies in{10, 5, 1}. A heat map of the correlation matrix between different covariates is given in
Figure 13.2.

Simulation 4:[Model with the block-compound correlation structure] Thefollowing model
assumes a block compound correlation structure. For a parameterρ, the correlation between
two variablesXj1 andXj2 is given asρ, ρ2 or ρ3 when |j1 − j2| ≤ 10, |j1 − j2| ∈ (10, 20]
or |j1 − j2| ∈ (20, 30] and is set to 0 otherwise. We set(n, p, s, T ) = (150, 4000, 8, 150),
Tnon−zero = 80 and the parameterρ ∈ {0.2, 0.5}. The relevant variables are located at positions
1, 11, 21, 31, 41, 51, 61, 71 and 81, so that each block of highlycorrelated variables has exactly
one relevant variable. The values of relevant coefficients are given in Simulation 1. The noise
is Gaussian and the SNR varies in{10, 5, 1}. A heat map of the correlation matrix between
different covariates is shown in Figure 13.3.

Simulation 5: [Model with a ’masked’ relevant variable] This model represents a difficult
setting. It is modified from [182]. We set(n, p, s, T ) = (200, 10000, 5, 500). The number of non-
zero elements in each row varies isTnon−zero ∈ {400, 250, 100}. Forj ∈ [s] andt ∈ [T ], the non-
zero elements equalβt,j = 2j. Each row ofX is generated as follows. Draw independentlyzi and
z′i from ap-dimensional standard multivariate normal distribution.Now,xij = (zij + z′ij)/

√
(2)

for j ∈ [s] andxij = (zij +
∑

j′∈[s] zij′)/2 for j ∈ [p]\[s]. Now,Corr(xi,1, yt,i) is much smaller
thenCorr(xi,j, yt,i) for j ∈ [p]\[s], so that it becomes difficult to select variable 1. The variable
1 is ’masked’ with the noisy variables. This setting is difficult for screening procedures as they
take into consideration only marginal information. The noise is Gaussian with standard deviation
σ ∈ {1.5, 2.5, 4.5}.

In the next section, we summarize results of our experimental findings. Our simulation set-
ting transitions from a simple scenario considered in Simulation 1 towards a challenging one
in Simulation 5. Simulation 1 is adopted from [62] as a toy model on which all algorithms
should work well. Simulation 2 examines the influence of the number of non-zero elements in a
relevant row of the matrixB. We expect that Algorithm 4 will outperform procedures thatper-
form estimation on individual outputs whenTnon−zero is large, while whenTnon−zero is small the
single-task screening procedures should have an advantage. Our intuition is also supported by re-
cent results of [110]. Simulations 3 and 4 represent more challenging situations with structured
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Figure 13.2: Visualization of the correlation matrix in Simulation 3. Only an upper left corner is presented
corresponding to 20 of the 5000 variables.
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Figure 13.3: Visualization of the correlation matrix in Simulation 4. Only an upper left corner is presented
corresponding to 100 of the 4000 variables.
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correlation that naturally appears in many data sets, for example, a correlation between gene
measurements that are closely located on a chromosome. Finally Simulation 5 is constructed
in such a way such that procedures which use only marginal information are going to include
irrelevant variables before relevant ones.

13.4.2 Results of simulations

Tables giving detailed results of the above described simulations are given in [104]. In this sec-
tion, we outline main findings and reproduce some parts of thetables that we think are insightful.

Table 13.1 shows parts of the results for simulation 1. We cansee that all methods perform
well in the setting when the input variables are mutually uncorrelated and the SNR is high. Note
that even though the variables are uncorrelated, the samplecorrelation between variables can be
quite high due to largep and smalln, which can result in selection of spurious variables. As we
can see from the table, comparing to SIS, ISIS and OMP, the S-OMP is able to select the correct
union support, while the procedures that select variables based on different outputs separately
also include additional spurious variables into the selection. Furthermore, we can see that the
S-OMP-ALasso procedure does much better on the problem of exact support recovery compared
to the other procedures. The first simulations suggests thatsomewhat higher computational cost
of the S-OMP procedure can be justified by the improved performance on the problem of union
and exact support recovery as well as on the error in the estimated coefficients.

Table 13.2 shows parts of the results for simulation 2. In this simulation, we measured the
performance of estimation procedures as the amount of shared input variables between different
outputs varies. The parameterTnon−zero controls the amount of information that is shared be-
tween different tasks as defined in the previous subsection.In particular, the parameter controls
the number of non-zero elements in a row of the matrixB corresponding to a relevant variable.
When the number of non-zero elements is high, a variable is relevant to many tasks and we say
that outputs overlap. In this setting, the S-OMP procedure is expected to outperform the other
methods, however, whenTnon−zero is low, the noise coming from the tasks for which the variable
is irrelevant can actually harm the performance. The table shows results when the overlap of
shared variables is small, that is, a relevant variable is only relevant for 10% of outputs. As one
would expect, the S-OMP procedure does as well as other procedures. This is not surprising
since the amount of shared information between different outputs is limited. Therefore, if one
expects little variable sharing across different outputs,using the SIS or ISIS may result in similar
accuracy, but an improved computational efficiency. It is worth pointing out that in our simula-
tions, the different tasks are correlated since the same designX is used for all tasks. However, we
expect the same qualitative results even under the model given in equation (13.3) where different
tasks can have different designsXt and the outputs are uncorrelated.

Simulation 3 represents a situation that commonly occurs innature, where there is an order-
ing among input variables and the correlation between variables decays as the distance between
variables increases. The model in simulation 4 is a modification of the model in simulation 3
where the variables are grouped and there is some correlation between different groups. Ta-
ble 13.3 gives results for simulation 3 for the parameterρ = 0.5. In this setting, the S-OMP
performs much better that the other procedures. The improvement becomes more pronounced
with increase of the correlation parameterρ. Similar behavior is observed in simulation 4 as
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well, see table 13.4. Results of simulation 5, given in Table13.5, further reinforce our intuition
that the S-OMP procedure does well even on problems with high-correlation between the set of
relevant input variables and the set of irrelevant ones.

To further compare the performance of the S-OMP procedure tothe SIS, we explore the
minimum number of iterations needed for the algorithm to include all the relevant variables
into the selected model. From our limited numerical experience, we note that the simulation
parameters do not affect the number of iterations for the S-OMP procedure. This is unlike the
SIS procedure, which occasionally requires a large number of steps before all the true variables
are included, see Figure 3 in [62]. We note that while the S-OMP procedure does include, in
many cases, all the relevant variables before the irrelevant ones, the BIC criterion is not able to
correctly select the number of variables to include when theSNR is small. As a result, we can
see the drop in performance as the SNR decreases.

13.4.3 Real data analysis

We demonstrate an application of the S-OMP to a genome-wide association mapping problem.
The data were collected by our collaborator Judie Howrylak,M.D. at Harvard Medical School
from 200 individuals that are suffering from asthma. For each individual, we have a collection
of about∼350,000 genetic markers1, which are called single nucleotide polymorphisms (SNPs),
and a collection of 1,424 gene expression measurements. Thegoal of this study is to identify a
small number of SNPs that can help explain variations in geneexpressions. Typically, this type
of analysis is done by regressing each gene individually on the measured SNPs, however, since
the data are very noisy, such an approach results in selecting many variables. Our approach to
this problem is to regress a group of genes onto the SNPs instead. There has been some previous
work on this problem [115], that considered regressing groups of genes onto SNPs, however,
those approaches use variants of the estimation procedure given in Eq. (13.2), which is not easily
scalable to the data we analyze here.

We use the spectral relaxation of the k-means clustering [200] to group 1424 genes into
48 clusters according to their expression values, so that the minimum, maximum and median
number of genes per cluster is 4, 90 and 19, respectively. Thenumber of clusters was chosen
somewhat arbitrarily, based on the domain knowledge of the medical experts. The main idea
behind the clustering is that we want to identify genes that belong to the same regulatory pathway
since they are more likely to be affected with the same SNPs. Instead of clustering, one may
use prior knowledge to identify interesting groups of genes. Next, we want to use the S-OMP
procedure to identify relevant SNPs for each of the gene clusters. Since we do not have the
ground truth for the data set, we use predictive power on the test set and the size of estimated
models to access their quality. We randomly split the data into a training set of size 170 and a
testing set of size 30 and report results over 500 runs. We compute theR2 coefficient on the test
set defined as1−30−1T−1

∑
t∈[T ] ||yt,test−Xt,testβ̂t||22 (because the data have been normalized).

1These markers were preprocessed, by imputing missing values and removing duplicate SNPs that were perfectly
correlated with other SNPs.
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Table 13.1: Results for simulation 1 with parameters(n, p, s, T ) = (500, 20000, 18, 500), Tnon−zero = 500

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of Est. error Test error
Method name M∗ ⊆ Ŝ Correct zeros Incorrect zeros M∗ = Ŝ |Ŝ| ||B− B̂||2

2
R2

SNR = 15

U
n

io
n

S
u

p
p

o
rt

SIS-ALASSO 100.0 100.0 0.0 10.0 20.2 - -
ISIS-ALASSO 100.0 100.0 0.0 18.0 19.6 - -

OMP 100.0 100.0 0.0 0.0 23.9 - -
S-OMP 100.0 100.0 0.0 100.0 18.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 18.0 - -

E
xa

ct
S

u
p

p
o

rt SIS-ALASSO 0.0 100.0 0.7 0.0 8940.5 0.97 0.93
ISIS-ALASSO 100.0 100.0 0.0 18.0 9001.6 0.33 0.93

OMP 100.0 100.0 0.0 0.0 9005.9 0.20 0.93
S-OMP-ALASSO 100.0 100.0 0.0 100.0 9000.0 0.20 0.93

Table 13.2: Results for simulation 2 with parameters(n, p, s, T ) = (200, 5000, 10, 1000), Tnon−zero = 200

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of Est. error Test error
Method name M∗ ⊆ Ŝ Correct zeros Incorrect zeros M∗ = Ŝ |Ŝ| ||B− B̂||2

2
R2

SNR = 5

U
n

io
n

S
u

p
p

o
rt

SIS-ALASSO 100.0 100.0 0.0 100.0 10.0 - -
ISIS-ALASSO 100.0 100.0 0.0 100.0 10.0 - -

OMP 100.0 97.4 0.0 0.0 139.6 - -
S-OMP 100.0 100.0 0.0 100.0 10.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 10.0 - -

E
xa

ct
S

u
p

p
o

rt SIS-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.04 0.72
ISIS-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.04 0.72

OMP 100.0 100.0 0.0 0.0 2131.6 0.05 0.71
S-OMP-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.03 0.72

2
0

2



Table 13.3: Results for simulation 3 with parameters(n, p, s, T ) = (100, 5000, 3, 150), Tnon−zero = 80, ρ = 0.5

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of Est. error Test error
Method name M∗ ⊆ Ŝ Correct zeros Incorrect zeros M∗ = Ŝ |Ŝ| ||B− B̂||2

2
R2

SNR = 5

U
n

io
n

S
u

p
p

o
rt

SIS-ALASSO 100.0 100.0 0.0 97.0 3.0 - -
ISIS-ALASSO 100.0 100.0 0.0 96.0 3.0 - -

OMP 100.0 99.8 0.0 0.0 19.6 - -
S-OMP 100.0 100.0 0.0 100.0 3.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 3.0 - -

E
xa

ct
S

u
p

p
o

rt SIS-ALASSO 60.0 100.0 0.2 57.0 239.5 0.10 0.61
ISIS-ALASSO 84.0 100.0 0.1 80.0 239.8 0.08 0.61

OMP 100.0 100.0 0.0 0.0 256.6 0.06 0.61
S-OMP-ALASSO 100.0 100.0 0.0 100.0 240.0 0.03 0.62

Table 13.4: Results of simulation 4 with parameters(n, p, s, T ) = (150, 4000, 8, 150), Tnon−zero = 80, ρ = 0.5

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of Est. error Test error
Method name M∗ ⊆ Ŝ Correct zeros Incorrect zeros M∗ = Ŝ |Ŝ| ||B− B̂||2

2
R2

SNR = 10

U
n

io
n

S
u

p
p

o
rt

SIS-ALASSO 100.0 100.0 0.0 100.0 8.0 - -
ISIS-ALASSO 100.0 100.0 0.0 97.0 8.0 - -

OMP 100.0 99.9 0.0 2.0 11.7 - -
S-OMP 100.0 100.0 0.0 100.0 8.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 8.0 - -

E
xa

ct
S

u
p

p
o

rt SIS-ALASSO 35.0 100.0 1.4 35.0 631.3 0.55 0.88
ISIS-ALASSO 100.0 100.0 0.0 97.0 640.0 0.14 0.89

OMP 100.0 100.0 0.0 2.0 643.7 0.10 0.89
S-OMP-ALASSO 100.0 100.0 0.0 100.0 640.0 0.09 0.89

2
0
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Table 13.5: Results of simulation 5 with parameters(n, p, s, T ) = (200, 10000, 5, 500), Tnon−zero = 400

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of Est. error Test error
Method name M∗ ⊆ Ŝ Correct zeros Incorrect zeros M∗ = Ŝ |Ŝ| ||B− B̂||2

2
R2

σ = 1.5

U
n

io
n

S
u

p
p

o
rt

SIS-ALASSO 53.0 99.6 9.4 0.0 41.1 - -
ISIS-ALASSO 100.0 99.8 0.0 0.0 28.1 - -

OMP 100.0 99.9 0.0 12.0 10.0 - -
S-OMP 100.0 100.0 0.0 44.0 5.6 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 5.0 - -

E
xa

ct
S

u
p

p
o

rt SIS-ALASSO 0.0 100.0 68.9 0.0 936.0 84.66 0.66
ISIS-ALASSO 0.0 100.0 16.2 0.0 1791.9 5.80 0.96

OMP 100.0 100.0 0.0 12.0 2090.3 0.06 0.99
S-OMP-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.05 0.99

2
0
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We give results on few clusters in Table 13.6 and note that, qualitatively, the results do not
vary much between different clusters. While the fitted models have limited predictive perfor-
mance, which results from highly noisy data, we observe thatthe S-OMP is able to identify on
average one SNP per gene cluster that is related to a large number of genes. Other methods,
while having a similar predictive performance, select a larger number of SNPs, which can be
seen from the size of the union support. On this particular data set, the S-OMP seems to produce
results that are more interpretable from a specialist’s points of view. Further investigation needs
to be done to verify the biological significance of the selected SNPs, however, the details of such
an analysis are going to be reported elsewhere.

13.5 Discussion

In this work, we analyze the Simultaneous Orthogonal Matching Pursuit as a method for variable
selection in an ultra-high dimensional space. We prove thatthe S-OMP is screening consistent
and provide a practical way to select the number of steps in the procedure using the modified
Bayesian information criterion. A limited number of experiments suggests that the method per-
forms well in practice and that the joint estimation from multiple outputs often outperforms
methods that use one regression output at a time. Furthermore, we can see the S-OMP procedure
as a way to improve the variable selection properties of the SIS without having to solve a costly
complex optimization procedure in Eq. (13.2), therefore, balancing the computational costs and
the estimation accuracy.

13.6 Technical Proofs

13.6.1 Proof of Theorem 13.1

Under the assumptions of the theorem, the number of relevantvariabless is relatively small
compared to the sample sizen. The proof strategy can be outlined as follows: i) we are going
to show that, with high probability, at least one relevant variable is going to be identified within
the followingm∗

one steps, conditioning on the already selected variablesM(k) and this holds
uniformly for all k; ii) we can conclude that all the relevant variables are going to be selected
within m∗

max = sm∗
one steps. Exact values form∗

one andm∗
max are given below. Without loss

of generality, we analyze the first step of the algorithm, that is, we show that the first relevant
variable is going to be selected within the firstm∗

one steps.
Assume that in the firstm∗

one − 1 steps, there were no relevant variables selected. Assuming
that the variable selected in them∗

one-th step is still an irrelevant one, we will arrive at a contra-
diction, which shows that at least one relevant variable hasbeen selected in the firstm∗

one steps.
For any stepk, the reduction of the squared error is given as

∆(k) := RSS(k − 1)− RSS(k) =
∑

t

||H(k)

t,f̂k
(In×n −Ht,M(k))yt||22 (13.6)

with H
(k)
t,j = X

(k)
t,j X

(k)′

t,j ||X(k)
t,j ||−2 andX(k)

t,j = (In×n − Ht,M(k))Xt,j. We are interested in the

quantity
∑m∗

one
k=1 ∆(k), when all the selected variableŝfk (see Algorithm 4) belong to[p]\M∗.

205



Table 13.6: Results on the asthma data

Method name Union support R2

Cluster 9
Size = 18

SIS-ALASSO 18.0 (1.0) 0.178 (0.006)
OMP 17.5 (2.9) 0.167 (0.002)

S-OMP 1.0 (0.0) 0.214 (0.005)

Cluster 16
Size = 31

SIS-ALASSO 31.0 (1.0) 0.160 (0.007)
OMP 29.0 (1.8) 0.165 (0.002)

S-OMP 1.0 (0.0) 0.209 (0.005)

Cluster 17
Size = 19

SIS-ALASSO 18.5 (0.9) 0.173 (0.006)
OMP 19.5 (0.8) 0.146 (0.003)

S-OMP 1.0 (0.0) 0.184 (0.004)

Cluster 19
Size = 17

SIS-ALASSO 17.0 (1.2) 0.270 (0.017)
OMP 11.0 (4.1) 0.213 (0.008)

S-OMP 1.0 (0.0) 0.280 (0.017)

Cluster 22
Size = 34

SIS-ALASSO 34.0 (0.9) 0.153 (0.005)
OMP 30.0 (7.3) 0.142 (0.000)

S-OMP 1.0 (0.0) 0.145 (0.002)

Cluster 23
Size = 35

SIS-ALASSO 35.0 (0.9) 0.238 (0.018)
OMP 33.0 (9.9) 0.208 (0.009)

S-OMP 1.0 (0.0) 0.229 (0.014)

Cluster 24
Size = 28

SIS-ALASSO 28.0 (1.0) 0.123 (0.003)
OMP 28.0 (2.6) 0.114 (0.001)

S-OMP 1.0 (0.0) 0.129 (0.003)

Cluster 32
Size = 15

SIS-ALASSO 15.0 (0.9) 0.188 (0.010)
OMP 10.0 (2.6) 0.211 (0.006)

S-OMP 1.0 (0.0) 0.215 (0.008)

Cluster 36
Size = 33

SIS-ALASSO 34.0 (1.4) 0.147 (0.005)
OMP 29.0 (5.3) 0.157 (0.002)

S-OMP 1.0 (0.0) 0.168 (0.004)

Cluster 37
Size = 19

SIS-ALASSO 19.0 (0.9) 0.207 (0.015)
OMP 22.0 (2.5) 0.175 (0.006)

S-OMP 1.0 (0.0) 0.235 (0.014)

Cluster 39
Size = 24

SIS-ALASSO 24.0 (0.9) 0.131 (0.006)
OMP 27.0 (1.9) 0.141 (0.003)

S-OMP 1.0 (0.0) 0.160 (0.005)

Cluster 44
Size = 35

SIS-ALASSO 35.0 (0.9) 0.177 (0.010)
OMP 26.5 (6.6) 0.183 (0.005)

S-OMP 1.0 (0.0) 0.170 (0.011)

Cluster 49
Size = 23

SIS-ALASSO 23.0 (1.0) 0.124 (0.004)
OMP 23.0 (1.2) 0.140 (0.000)

S-OMP 1.0 (0.0) 0.159 (0.004)
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In what follows, we will derive a lower bound for∆(k). We perform our analysis on the
event

E = {min
t∈[T ]

min
M⊆[p],|M|≤m∗

max

Λmin(Σ̂M) ≥ φmin/2}
⋂
{max
t∈[T ]

max
M⊆[p],|M|≤m∗

max

Λmax(Σ̂M) ≤ 2φmax}.

From the definition of̂fk, we have

∆(k) ≥ max
j∈M∗

∑

t

||H(k)
t,j (In×n −Ht,M(k))yt||22

≥ max
j∈M∗

(∑

t

||H(k)
t,j (In×n −Ht,M(k))Xt,M∗βt,M∗||22

−
∑

t

||H(k)
t,j (In×n −Ht,M(k))ǫt||22

)

≥ max
j∈M∗

∑

t

||H(k)
t,j (In×n −Ht,M(k))Xt,M∗βt,M∗||22

− max
j∈M∗

∑

t

||H(k)
t,j (In×n −Ht,M(k))ǫt||22

= (I)− (II).

(13.7)

We deal with these two terms separately. LetH⊥
t,M = In×n−Ht,M denote the projection matrix.

We have that the first term(I) is lower bounded by

max
j∈M∗

∑

t

||H(k)
t,j H

⊥
t,M(k)Xt,M∗βt,M∗||22

= max
j∈M∗

∑

t

||X(k)
t,j ||−2

2 |X(k)′

t,j H⊥
t,M(k)Xt,M∗βt,M∗|2

≥ min
t∈[T ],j∈M∗

{||X(k)
t,j ||−2

2 } max
j∈M∗

∑

t

|X(k)′

t,j H⊥
t,M(k)Xt,M∗βt,M∗|2

≥ { max
t∈[T ],j∈M∗

||Xt,j||22}−1 max
j∈M∗

∑

t

|X′
t,jH

⊥
t,M(k)Xt,M∗βt,M∗|2,

(13.8)

where the last inequality follows from the fact that||Xt,j||2 ≥ ||X(k)
t,j ||2 andX

(k)′

t,j H⊥
t,M(k) =

X′
t,jH

⊥
t,M(k). A simple calculation shows that

∑

t

||H⊥
t,M(k)Xt,M∗βt,M∗||22

=
∑

t

∑

j∈M∗

βt,jXt,jH
⊥
t,M(k)Xt,M∗βt,M∗

≤
∑

j∈M∗

√∑

t

β2
t,j

√∑

t

(Xt,jH
⊥
t,M(k)Xt,M∗βt,M∗)

2

≤ ||β||2,1 max
j∈M∗

√∑

t

(Xt,jH
⊥
t,M(k)Xt,M∗βt,M∗)

2.

(13.9)
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Plugging (13.9) back into (13.8), the following lower boundis achieved

(I) ≥ { max
t∈[T ],j∈M∗

||Xt,j||22}−1
(
∑

t ||H⊥
t,M(k)Xt,M∗βt,M∗||22)2
||B||22,1

. (13.10)

On the eventE , maxt∈[T ],j∈M∗ ||Xt,j||22 ≤ 2nφmax. Since we have assumed that no additional
relevant predictors have been selected by the procedure, itholds thatM∗ 6⊆ M(k). This leads to

∑

t

||H⊥
t,M(k)Xt,M∗βt,M∗||22 ≥ 2−1nφmin min

j∈M∗

∑

t∈[T ]

β2
t,j,

on the eventE . Using the Cauchy-Schwarz inequality,||B||−2
2,1 ≥ s−1T−1C−2

β . Plugging back
into (13.10), we have that

(I) ≥ 2−3φ2
minφ

−1
maxC

−2
β ns−1T−1( min

j∈M∗

∑

t∈[T ]

β2
t,j)

2

≥ 2−3φ2
minφ

−1
maxC

−2
β C−1

s n1−δsT−1( min
j∈M∗

∑

t∈[T ]

β2
t,j)

2

Next, we deal with the second term in (13.7). Recall thatX
(k)
t,j = H⊥

t,M(k)Xt,j , so that

||X(k)
t,j ||22 ≥ 2−1nφmin, on the eventE . We have

∑

t

||H(k)
t,j (In×n −Ht,M(k))ǫt||22

=
∑

t

||X(k)
t,j ||−2(X′

t,jH
⊥
t,M(k)ǫt)

2

≤ 2φ−1
minn

−1 max
j∈M∗

max
|M|≤m∗

max

∑

t

(X′
t,jH

⊥
t,Mǫt)

2.

(13.11)

Under the conditions of the theorem,X′
t,jH

⊥
t,Mǫt is normally distributed with mean 0 and vari-

ance||H⊥
t,MXt,j||22. Furthermore,

max
j∈M∗

max
|M|≤m∗

max

max
t∈[T ]
||H⊥

t,MXt,j||22 ≤ 2nφmax.

Plugging back in (13.11), we have

(II) ≤ 22φ−1
minφmax max

j∈M∗

max
|M|≤m∗

max

χ2
T ,

whereχ2
T denotes a chi-squared random variable withT degrees of freedom. The total number

of possibilities forj ∈ M∗ and|M| ≤ m∗
max is bounded bypm

∗
max+2. Using a tail bound forχ2

random variable together with the union bound, we obtain

(II) ≤ 23φ−1
minφmaxT (m

∗
max + 2) log p

≤ 9φ−1
minφmaxCpn

δpTm∗
max

(13.12)
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with probability at least

1− pm
∗
max+2 exp

(
−2T (m∗

max + 2) log(p)

(
1− 2

√
1

2(m∗
max + 2) log(p)

))
.

Going back to (13.7), we have the following

n−1T−1∆(k) ≥ 2−3φ2
minφ

−1
maxC

−2
β C−1

s n−δsT−2( min
j∈M∗

∑

t∈[T ]

β2
t,j)

2

− 9φ−1
minφmaxCpn

δp−1m∗
max

≥ 2−3φ2
minφ

−1
maxC

−2
β C−1

s c2βn
−δs−2δmin

− 9φ−1
minφmaxCpn

δp−1m∗
max

≥ 2−3φ2
minφ

−1
maxC

−2
β C−1

s c2βn
−δs−2δmin

× (1− 72φ−3
minφ

2
maxC

2
βCpCsc

−2
β nδs+2δmin+δp−1m∗

max).

(13.13)

Since the bound in (13.13) holds uniformly fork ∈ {1, . . . , m∗
one}, we have that

n−1T−1
∑

t∈[T ]

||yt||22 ≥ n−1T−1

m∗
one∑

k=1

∆(k).

Setting
m∗

one = ⌊24φ−2
minφmaxC

2
βCsc

−2
β nδs+2δmin⌋

and recalling thatm∗
max = sm∗

one, the lower bound becomes

n−1T−1
∑

t∈[T ]

||yt||22 ≥ 2(1− Cn3δs+4δmin+δp−1), (13.14)

for a positive constantC independent ofp, n, s andT . Under the conditions of the theorem, the
right side of (13.14) is bounded below by 2. We have arrived ata contradiction, since under the
assumptionsVar(yt,i) = 1 and by the weak law of large numbers,n−1T−1

∑
t∈[T ] ||yt||22 → 1 in

probability. Therefore, at least one relevant variable will be selected inm∗
one steps.

To complete the proof, we lower bound the probability in (13.12) and the probability of the
eventE . Plugging in the value form∗

max, the probability in (13.12) can be lower bounded by
1 − exp(−C(2T − 1)n2δs+2δmin+δp) for some positive constantC. The probability of the event
E is lower bounded as1 − C1 exp(−C2

n1−6δs−6δmin

max{log p,logT}), for some positive constantsC1 andC2.
Both of these probabilities converge to1 under the conditions of the theorem.

13.6.2 Proof of Theorem 13.2

To prove the theorem, we use the same strategy as in [182]. From Theorem 13.1, we have that
P[∃k ∈ {0, . . . , n − 1} : M∗ ⊆ M(k)] → 1, sokmin := mink∈{0,...,n−1}{k : M∗ ⊆ M(k)} is
well defined andkmin ≤ m∗

max, for m∗
max defined in (13.5). We show that

P[ min
k∈{0,...,kmin−1}

(BIC(M(k))− BIC(M(k+1))) > 0]→ 1,
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so thatP[ŝ < kmin] → 0 asn → ∞. We proceed by lower bounding the difference in the BIC
scores as

BIC(M(k))− BIC(M(k+1)) = log

(
RSS(M(k))

RSS(M(k+1))

)
− log(n) + 2 log(p)

n

≥ log

(
1 +

RSS(M(k))− RSS(M(k+1))

RSS(M(k+1))

)
− 3n−1 log(p),

where we have assumedp > n. Define the eventA := {n−1T−1
∑

t∈[T ] ||yt||22 ≤ 2}. Note

thatRSS(M(k+1)) ≤ ∑t∈[T ] ||yt||22, so on the eventA the difference in the BIC scores is lower
bounded as

log(1 + 2n−1T−1∆(k))− 3n−1 log(p),

where∆(k) is defined in (13.6). Using the fact thatlog(1 + x) ≥ min(log(2), 2−1x) and the
lower bound from (13.13), we have

BIC(M(k))− BIC(M(k+1)) ≥ min(log 2, Cn−δs−2δmin)− 3n−1 log p, (13.15)

for some positive constantC. It is easy to check thatlog 2 − 3n−1 log p > 0 andCn−δs−2δmin −
3n−1 log p > 0 under the conditions of the theorem. The lower bound in (13.15) is uniform for
k ∈ {0, . . . , kmin}, so the proof is complete if we show thatP[A] → 1. But this easily follows
from the tail bounds on the central chi-squared random variable.
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Chapter 14

Marginal Regression For Multi-task
Learning

Variable selection is an important practical problem that arises in analysis of many high dimen-
sional datasets. Convex optimization procedures, that arise from relaxing the NP-hard subset
selection procedure, e.g., the Lasso or Dantzig selector, have become the focus of intense theo-
retical investigations. Although many efficient algorithms exist that solve these problems, finding
a solution when the number of variables is large, e.g., several hundreds of thousands in problems
arising in genome-wide association analysis, is still computationally challenging. A practical
solution for these high-dimensional problems is the marginal regression, where the output is
regressed on each variable separately. We investigate theoretical properties of the marginal re-
gression in a multitask framework. Our contribution include: i) sharp analysis for the marginal
regression in a single task setting with random design, ii) sufficient conditions for the multitask
screening to select the relevant variables, iii) a lower bound on the Hamming distance conver-
gence for multitask variable selection problems. A simulation study further demonstrates the
performance of the marginal regression.

14.1 Introduction

Recent technological advances are allowing scientists in avariety of disciplines to collect data of
unprecedented size and complexity. Examples include data from biology, genetics, astronomy,
brain imaging and high frequency trading. These novel applications are often characterized by
large number of variablesp, which can be much larger than the number of observationsn, and are
currently driving the development of statistical and machine learning procedures. The sparsity
assumption has been recognized to play a critical role in effective high-dimensional inference in
classification and regression problems, that is, the statistical inference is possible in the under-
determined problems under the assumption that only a few variables contribute to the response.
Therefore, the variable selection is of fundamental importance in the high-dimensional problems.

Consider a regression model
y = Xβ + ǫ (14.1)

with responsey = (y1, . . . , ym)
′, m × p design matrixX, noise vectorǫ = (ǫ1, . . . , ǫm)

′ and
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coefficientsβ = (β1, . . . , βp)
′. For simplicity of presentation, we assume thatm = 2n and use

first n samples to estimate the parameters and use remaining parameters to optimally select the
tuning parameters. The high dimensional setting assumesp ≫ n and the sparsity assumption
roughly states that the coefficient vectorβ has a few non-zero components or that it can be well
approximated by such a vector. In the context of linear regression, there has been a lot of recent
work focusing on variable selection under the sparsity assumption, such as, [175], [64], [28],
[97], [201], [202], [198], [38], [35], [48], [190], [205], [49], [74], [173], and [137], to name a
few. Many of these methods are based on constrained or penalized optimization procedures in
which solutions are biased to have many zero coefficients. One of the main tools for variable
selection in a regression model is the Lasso estimator defined by

β̂ = argmin
β

||y−Xβ||22 + λ||β||1 (14.2)

whereλ ≥ 0 is a user defined regularization parameter. Theoretical properties of the estima-
tor β̂ are now well understood and the optimization problem (14.2)can be efficiently solved
for medium sized problems. However, finding a solution in problems involving hundreds of
thousands variables, which commonly arise in genome-wide association mapping problems, still
remains a computationally challenging task, even when manyvariables can be pruned using rules
based on the KKT conditions [57, 176].

One computationally superior alternative to the Lasso is marginal regression, also known as
correlation learning, marginal learning and sure screening. This is a very old and simple pro-
cedure, which has recently gained popularity due to its desirable properties in high-dimensional
setting [62, 66, 68, 83, 184]. Marginal regression is based on regressing the response variable on
each variable separately

µ̂j = (X′
jXj)

−1X′
jy, (14.3)

whereXj = (x1j , . . . , xnj)
′. Next, the values{|µ̂j|} are sorted in decreasing order, with{r̂j}

denoting the ranks, and the set of estimated variables is

Ŝ(k) := {1 ≤ j ≤ p : r̂j ≤ k}, 1 ≤ k ≤ p.

Note that in Eq. (14.3) we use the firstn samples only to computêµj . Under a condition, related
to the faithfulness conditions used in causal literature [157, 165], it can be shown that the set
Ŝ(k) correctly estimates the relevant variablesS := {1 ≤ j ≤ p : βj 6= 0}, see [184]. The
following result provides the conditions under which the exact variable selection is possible if
the size of the supports := |S| is known.

Theorem 14.1.Consider the regression model in(14.1)withX = (x1, . . . ,xn)
′, xi

iid∼ Np(0,Σ),
andǫ ∼ Nn(0, σ

2In), X independent ofǫ. Assume that

max
j∈SC
|ΣjSβS|+ γn(p, s,β,Σ, δ) < min

j∈S
|ΣjSβS| (14.4)

with γn = O(
√

log(p− s)/n), then

P[Ŝ(s) = S] ≥ 1− δ.
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The above theorem is based on the asymptotic result in [184].We provide a finite sample
analysis and explicit constants for the termγn(p, s,β,Σ, δ) in Appendix. The condition like the
one in Eq. (14.4) is essentially unavoidable for marginal regression, since it can be seen that in
the noiseless setting (ǫ = 0) the condition (14.4) withγn = 0 is necessary and sufficient for
successful recovery. See [83] for discussion of cases wherethe faithfulness condition is weaker
than the irrepresentable condition, which is necessary andsufficient for exact recovery of the
support using the Lasso [190, 205].

Besides computational simplicity, another practical advantage of the marginal regression is
that the number of relevant variabless can be estimated from data efficiently as we show below.
This corresponds to choosing the tuning parameterλ in the Lasso problem (14.2) from data. To
estimate the number of relevant variables, we will use the samples indexed by{n + 1, . . . , 2n},
which are independent from those used to estimate{µ̂j}j . For a fixed1 ≤ k ≤ p, let jk denote
the index of the variable for whicĥrjk = k. Let V̂n(k) = span{Xj1, . . . ,Xjk} be the linear space
spanned byk variables whose empirical correlation with the response isthe highest, and let̂H(k)

be the projection matrix fromRn to V̂n(k). Note thatXjk = (xn+1,jk , . . . , x2n,jk). Define

ξ̂n(k) := ||(Ĥ(k + 1)− Ĥ(k))y||22, 1 ≤ k ≤ p− 1,

which is then used to estimate the number of relevant variables as

ŝn = max{1 ≤ k ≤ p− 1 : ξ̂n(k) ≤ 2σ2 log 4n
δ
}+ 1.

Using an independent sample to select the number of relevantvariables is needed so that the
projection matrix is independent of the noiseǫ. With these definitions, we have the following
result.
Theorem 14.2.Assume that the conditions of Theorem 14.1 are satisfied. Furthermore, assume
that

min
j∈S
|βj| = Ω(

√
logn).

ThenP[Ŝ(ŝn) = S]
n→∞−−−→ 1.

The above results builds on Theorem 3 in [83].
In the next few sections, we study properties of the marginalregression in a multitask setting.

14.2 Multitask Learning with Marginal Regression

In this section, we analyze properties of the marginal regression in a multitask setting. We will
consider the following multitask regression model

yt = Xβt + ǫt t = 1, . . . , T (14.5)

whereyt, ǫ ∈ Rm and ,X ∈ Rm×p. Again, we assume thatm = 2n and use half of the samples
to rank the variables and the other half to select the correctnumber of relevant variables. The
subscriptt indexes tasks andβt ∈ Rp is the unknown regression coefficient for thet-th task. We
assume that there is a shared design matrixX for all tasks, a situation that arises, for example, in
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genome-wide association studies. Alternatively, one can have one design matrixXt for each task.
We assume that the regression coefficients are jointly sparse. LetSt := {1 ≤ j ≤ p : βtj 6= 0} be
the set of relevant variables for thet-th task and letS = ∪tSt be the set of all relevant variables.
Under the joint sparsity assumptions := |S| ≪ n.

To perform marginal regression in the multitask, one computes correlation between each
variable and each task using the first half of the samples

µ̂tj = (X′
jXj)

−1X′
jyt, (14.6)

for eacht = 1, . . . , T, j = 1, . . . , p. Let Φ : RT 7→ R+ be a scoring function, which is used to
sort the values{Φ({µ̂tj}t)}j in decreasing order. Let{r̂Φ,j} denote the rank of variablej in the
ordering, then the set of estimated variables is

ŜΦ(k) := {1 ≤ j ≤ p : r̂Φ,j ≤ k}, 1 ≤ k ≤ p.

For concreteness, we will use the norm|| · ||1, || · ||2 and || · ||∞ as our scoring functions and
denote the sets of estimated variablesŜℓ1(k), Ŝℓ2(k) andŜℓ∞(k) respectively.

With the notation introduced, we focus on providing conditions for the marginal regression
to exactly select the relevant variablesS. We start our analysis in the fixed design setting. Let
Σ = n−1X′X and assume that the variables are standardized to have zero mean and unit variance,
so that the diagonal elements ofΣ are equal to1. Now it simply follows from (14.6) that

µ̂tj = n−1X′
jyt = ΣjStβtSt + n−1X′

jǫt.

In order to show that marginal regression exactly recovers the set of relevant variables, we need
to have

max
j∈SC

Φ({µ̂tj}t) ≤ min
j∈S

Φ({µ̂tj}t). (14.7)

It is easy to see that (14.7) is necessary for exact recovery.The following theorem provides
sufficient conditions for (14.7) to hold.
Theorem 14.3.Consider the model(14.5)with ǫt ∼ N (0, σ2In) andσ > 0 known. The follow-
ing three claims hold: i) Defineνj = σ−2n

∑T
t=1(ΣjStβtSt)

2. If

max
j∈SC

νj + 2 log
2(p− s)

δ
+max

j∈S
2

√
(T + 2νj) log

2s

δ
+max

j∈SC
2

√
(T + 2νj) log

2(p− s)

δ

≤ min
j∈S

νj

(14.8)
thenP[Ŝℓ2(s) = S] ≥ 1− δ. ii) If

max
j∈SC

T∑

t=1

|ΣjStβtSt |+ n−1/2σ

√

T 2 + 2T

√
T log

2(p− s)

δ
+ 2T log

2(p− s)

δ

+ n−1/2σ

√

T 2 + 2T

√
T log

2s

δ
+ 2T log

2s

δ

≤ min
j∈S

T∑

t=1

|ΣjSk
βkSk
|

(14.9)
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thenP[Ŝℓ1(s) = S] ≥ 1− δ. iii) If

max
j∈SC

max
1≤t≤T

|ΣjStβtSt |+ n−1/2σ

(√
2 log

2(p− s)T

δ
+

√
2 log

2sT

δ

)
≤ min

j∈S
max
1≤t≤T

|ΣjStβtSt |

(14.10)
thenP[Ŝℓ∞(s) = S] ≥ 1− δ.

Theorem 14.3 extends Theorem 14.1 to the multitask setting and provides sufficient condi-
tions for the marginal regression to perform exact variableselection. We will discuss how the
three different scoring procedures compare to each other inthe following section.

Theorem 14.3 assumes that the number of relevant variables is known, as in Theorem 14.1.
Therefore, we need to estimate the number of relevant variables in a data-dependent way. This
is done using the remainingn samples, indexed by{n+ 1, . . . , 2n}. Recall the definitions from
p. 213, wherejk denotes the index of the variable for whichr̂Φ,jk = k, V̂n(k) = span{Xj1, . . . ,Xjk}
andĤ(k) is the projection matrix fromRn to V̂n(k). Define

ξ̂ℓ2,n(k) :=
T∑

t=1

||(Ĥ(k + 1)− Ĥ(k))yt||22, 1 ≤ k ≤ p− 1,

which is then used to estimate the number of relevant variables as
ŝℓ2,n = 1 +max{1 ≤ k ≤ p− 1 :

ξ̂ℓ2,n(k) ≤ (T + 2
√
T log(2/δ) + 2 log(2/δ))σ2}.

Let VS = span{Xj : j ∈ S} be the subspace spanned by columns ofX indexed byS and
similarly defineVS,−j = span{Xj′ : j′ ∈ S\{j}}. Let X(2)

j denote the projection ofXj to
VS ∩ V ⊥

S,−j. With these definitions, we have the following result.
Theorem 14.4.Consider the model(14.5)with ǫt ∼ N (0, σ2In) andσ > 0 known. Suppose that
one of the following three claims hold: i) Eq.(14.8)holds and variables are ranked as{r̂ℓ2,j}j ,
ii) Eq. (14.9)holds and variables are ranked as{r̂ℓ1,j}j, or iii) Eq. (14.10)holds and variables
are ranked as{r̂ℓ1,j}j . Furthermore assume that

min
j∈S

T∑

t=1

||X(2)
j βtj ||22 >

[
2
√
5 log1/2

(
4

δ2

)√
T + 8 log

(
4

δ2

)]
σ2. (14.11)

ThenP[ŝℓ2,n = s] ≥ 1− 2δ andP[Ŝφ(ŝℓ2,n) = S] ≥ 1− 2δ.
Theorem 14.4 provides a way to select the number of relevant variables in a multitask set-

ting. It is assumed that one of the conditions given in Theorem 14.3 are satisfied and that the
corresponding scoring procedure is used to rank features. Condition (14.11) is required in order
to distinguish relevant variables from noise. If the signalstrength is small compared to the noise,
there is no hope to select the relevant variables. Comparingto Theorem 14.2, we can quantify
improvement over applying marginal regression to each taskindividually. First, the minimal sig-
nal strength for each variable, quantified asminj∈S

∑T
t=1 ||X

(2)
j βtj ||22 needs to increase only as

O(
√
T ) in multitask setting compared toO(T ) when the marginal regression is applied to each

task individually.
Theorem 14.3 and 14.4 assume that the design is fixed. However, given proofs of Theorem

14.1 and 14.2, extending the proofs of the multitask marginal regression is straight forward.
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14.2.1 Comparing Different Scoring Procedures

In this section, we compare the three scoring procedures based on|| · ||1, || · ||2 and || · ||∞.
Theorem 14.3 provides sufficient conditions under whichŜℓ1 , Ŝℓ2 andŜℓ∞ exactly recover the
set of relevant variablesS. In order to provide more intuition, we will focus on conditions (14.8),
(14.9) and (14.10) whenΣ = I. Furthermore, we assume thats = O(1).

From (14.8), we have that

max
j∈SC

T−1||β·j||22 +O(
log p

nT
) +O(

√
(T + nmaxj ||β·j||22) log p

nT
) ≤ min

j∈S
T−1||β·j||22

is sufficient forŜℓ2 to recoverS. Condition (14.9) simplifies to

max
j∈SC

T−1||β·j||1 +O(
√

1 + T−1 log p+ T−1/2
√
log p

n
) ≤ min

j∈S
T−1||β·j||1.

Finally, condition (14.10) simplifies to

max
j∈SC
||β·j||∞ +O(

√
log pT

n
) ≤ min

j∈S
||β·j||∞.

Comparing the sufficient condition in this simplified form, we can observe that thêSℓ2 requires
weaker conditions for exact support recovery thanŜℓ∞. Furthermore, it can be seen that the
estimatorŜℓ∞ is the most related to the support recovered using the marginal regression on each
task separately. From Theorem 14.1, if we stack regression coefficients for different tasks into a
big vector, we have that

max
j∈SC

max
1≤t≤T

|βtj |+O(
√

log pT

n
) ≤ min

j∈S
min
1≤t≤T

|βtj|

is sufficient for the exact support recovery. This is a stronger requirement that the one needed for
Ŝℓ∞. Still, from the numerical results, we observe thatŜℓ1 andŜℓ2 perform better than̂Sℓ∞.

14.3 Universal Lower Bound for Hamming distance

So far, we have focused on the exact variable selection. Although the exact variable selection
has been focus of many studies, the exact recovery of variables is not possible in many practical
applications with low signal to noise ratio. Therefore, it is more natural to measure performance
using a distance between the sets of selected variables and the true setS.

In this section, letX, y1, . . . ,yT , β1, . . . ,βT , ǫ1, . . . , ǫT be the same as before. HereX
could be either deterministic or random satisfyingX′

jXj = 1 for j = 1, . . . , p. We are interested
in studying the lower bound for variable selection problem measured by Hamming distance. To
construct lower bound, we need to clearly define the model family we are studying. We use the
following random coefficient model which is adapted from [83]:

βtj
i.i.d.∼ (1− ηp)ν0 + ηpντp ,
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for all t = 1, . . . , T, j = 1, . . . , p, whereν0 is the point mass at0 andντp is the point mass atτp.
Bothηp andτp vary withp. We set

ηp = p−v, 0 < v < 1,

so that the expected number of signals issp = pηp = p1−v. Let r > 0 be some fixed constant
and setτp =

√
2r log p the signal strength. Such a setting has been extensively explored in

the community of modern statistics to explore the theoretical limit of many problems including
classification, density estimation, and multiple hypothesis testing [36, 50, 98].

Let Ŝ be the index set of selected variables for any variable selection procedure andS be the
index set of true relevant variables. We define the Hamming distance

Hp(Ŝ, S | X) = Eηp,πp

[∣∣∣(Ŝ \ S) ∪ (S \ Ŝ)
∣∣∣
]
.

Let

λp :=
1

τp

[
log

(
1− ηp
ηp

)
+

Tτ 2p
2

]

=
1√

2r log p
log(pv − 1) + T

√
r log p

2

≤ (v + Tr)
√
log p√

2r
.

Our main result in this section provides a universal lower bound ofHp(Ŝ, S | X) for all sample
sizen and design matrixX. LetF (·) andF (·) be the distribution function and survival function
of the standard Gaussian distribution and letφ(·) denote the density function of the standard
Gaussian distribution. We have the following lower bound results.

Theorem 14.5.(Universal lower bound)Fix v ∈ (0, 1), r > 0 and a sufficiently largep. For any
n and design matrixX such thatX′X has unit diagonals, we have the following lower bound:

Hp(Ŝ, S | X)

sp
≥
[
1− ηp
ηp

F

(
λp√
T

)
+ F

(
λp√
T
−
√
Tτp

)]
. (14.12)

This can be further written as

Hp(Ŝ, S | X)

sp
≥





√
rT

2(v + Tr)
√
π log p

· p−(v−Tr)2/(4rT ), v < rT

1 + o(1), v > rT.

One thing to note is that in the above theorem is that such a lower bound simultaneously
holds for any sample sizen. The main reason for this is that we constraintX′

jXj = 1 for all
j = 1, . . . , p. Such a standardization essentially fixes the signal-to-noise ratio under asymptotic
framework wherep increases. Therefore, the lower bound does not depend on sample sizen.
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14.3.1 Comparing with Single Task Screening

It would be instructive to compare the lower bounds for multitask screening with that for single
task screening. By settingT = 1, we can obtain from Theorem 14.5 that the Hamming distance
lower bound for single task screening takes the form:

Hsingle
p (Ŝ, S | X)

sp
≥





√
r

2(v + r)
√
π log p

· p−(v−r)2/(4r), v < r

1 + o(1), v > r.

Comparing the lower bounds for both settings, we see that forsingle task screening. Ifv > r,
Hsingle

p (Ŝ, S | X) ≥ sp+o(1). This means no procedure can recovery any information of thetrue
signal at all. On the other hand, the corresponding no recovery condition for multitask screening
is strengthened to ber > Tr and such a condition rarely holds whenT is larger. Therefore, one
effect of the multitask setting is that the signal-to-noiseratio is improved by jointly considering
multiple tasks. For the case thatr < vT andr < T in both settings, it can be seen that the rate
for multitask screening is much faster than that for single-task screening.

14.3.2 Upper Bound on Hamming Distance

Though the lower bound result in 14.5 is illustrative, it would be more interesting if we could
match the lower bound with a certain algorithm procedure. Ifwe only consider the screening
error made by the multitask regression (i.e., the screeningprocedure should miss important vari-
ables), it’s straightforward to match the lower bound by setting a conservative threshold using
any of the‖ · ‖1, ‖ · ‖2, ‖ · ‖∞-procedures. However, it is still an open problem to see which
procedure could match the Hamming distance lower bound.

14.4 Empirical Results

We conduct an extensive number of numerical studies to evaluate the finite sample performance
of the marginal regression on the multitask model given in (14.5). We consider marginal regres-
sion using the three scoring procedures outlined in Section14.2. The variables are ranked using
|| · ||1, || · ||2 and|| · ||∞ norms and the resulting sets of variables are denotedŜℓ1 , Ŝℓ2 andŜℓ∞.
The number of active variables is set using the result of Theorem 14.4.

Let Ŝ be an estimate obtained by one of the scoring methods. We evaluate the performance
averaged over 200 simulation runs. LetÊn denote the empirical average over the simulation runs.
We measure the size of the supportŜ. Next, we estimate the probability that the estimated set
contains the true setS, that is,Ên[1I{S ⊆ Ŝ}], which we call coverage probability. We define
fraction of correct zeros(p − s)−1Ên[|ŜC ∩ SC |], fraction of incorrect zeross−1Ên[|ŜC ∩ S|]
and fraction of correctly fitted̂En[1I{S = Ŝ}] to measure the performance of different scoring
procedures.

We outline main findings using the following simulation studies. Due to space constraints,
tables with detailed numerical results are given in the Appendix.
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Simulation 1:The following toy model is based on the simulation I in [62] with (n, p, s, T ) =
(400, 20000, 18, 500). Eachxi is drawn independently from a standard multivariate normaldis-
tribution, so that the variables are mutually independent.For j ∈ S and t ∈ 1, . . . , T , the
non-zero coefficients are given asβtj = (−1)u(4n−1/2 log n + |z|), whereu ∼ Bernoulli(0.4)
andz ∼ N (0, 1). The number of non-zero elements in{βtj}t is given as a parameterTnon−zero ∈
{500, 300, 100}. The positions of non-zero elements are chosen uniformly atrandom from
{1, . . . , T}. The noise is Gaussian with the standard deviationσ set to control the signal-to-
noise ratio (SNR). SNR is defined asVar(xβ)/Var(ǫ) and we varySNR ∈ {15, 10, 5, 1}.

Simulation 2:The following model is used to evaluate the performance of the methods as
the number of non-zero elements in{βtj}t varies. We set(n, p, s) = (100, 500, 10) and vary the
number of outputsT ∈ {500, 750, 1000}. For each number of outputsT , we varyTnon−zero ∈
{0.8T, 0.5T, 0.2T}. The samplesxi and regression coefficients are given as in Simulation 1, that
is,xi is drawn from a multivariate standard normal distribution and the non-zero coefficients are
given asβtj = (−1)u(4n−1/2 logn+ |z|), whereu ∼ Bernoulli(0.4) andz ∼ N (0, 1). The noise
is Gaussian, with the standard deviation defined through theSNR, which varies in{10, 5, 1}.

Simulation 3:The following model is borrowed from [182]. We assume a correlation struc-
ture between variables given asVar(Xj1,Xj2) = ρ|j1−j2|, whereρ ∈ {0.2, 0.5, 0.7}. This correla-
tion structure appears naturally among ordered variables.We set(n, p, s, T ) = (100, 5000, 3, 150)
andTnon−zero = 80. The relevant variables are at positions(1, 4, 7) and non-zero coefficients are
given as3, 1.5 and2 respectively. The SNR varies in{10, 5, 1}.

Simulation 4: The following model assumes a block compound correlation structure. For
a parameterρ, the correlation between two variablesXj1 andXj2 is given asρ, ρ2 or ρ3 when
|j1 − j2| ≤ 10, |j1 − j2| ∈ (10, 20] or |j1 − j2| ∈ (20, 30] and is set to 0 otherwise. We set
(n, p, s, T ) = (150, 4000, 8, 150), Tnon−zero = 80 and the parameterρ ∈ {0.2, 0.5}. The relevant
variables are located at positions 1, 11, 21, 31, 41, 51, 61, 71 and 81, so that each block of
highly correlated variables has exactly one relevant variable. The values of relevant coefficients
are given in Simulation 1. The noise is Gaussian and the SNR varies in{10, 5, 1}.

Simulation 5: This model represents a difficult setting. It is modified from[182]. We set
(n, p, s, T ) = (200, 10000, 5, 500). The number of non-zero elements in each row varies is
Tnon−zero ∈ {400, 250, 100}. For j ∈ [s] andt ∈ [T ], the non-zero elements equalβtj = 2j.
Each row ofX is generated as follows. Draw independentlyzi andz′i from a p-dimensional
standard multivariate normal distribution. Now,xij = (zij + z′ij)/

√
(2) for j ∈ [s] andxij =

(zij+
∑

j′∈[s] zij′)/2 for j ∈ [p]\[s]. Now,Corr(xi,1, yt,i) is much smaller thenCorr(xi,j , yt,i) for
j ∈ [p]\[s], so that it becomes difficult to select variable 1. The variable 1 is ’masked’ with the
noisy variables. This setting is difficult for screening procedures as they take into consideration
only marginal information. The noise is Gaussian with standard deviationσ ∈ {1.5, 2.5, 4.5}.

Our simulation setting transitions from a simple scenario considered in Simulation 1 towards
a challenging one in Simulation 5. Simulation 1 represents atoy model, where variables are
independent. Simulation 2 examines the influence of the number of non-zero elements in the set
{βtj}t. Simulations 3 and 4 represent more challenging situationswith structured correlation that
naturally appears in many data sets, for example, a correlation between gene measurements that
are closely located on a chromosome. Finally Simulation 5 isconstructed in such a way such that
an irrelevant variable is more correlated with the output than a relevant variable. Tables giving
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detailed results of the above described simulations are given in Appendix. We reproduce some
parts of the tables below. We observe that the setsŜℓ1 andŜℓ2 perform similarly across different
simulation settings. Except for the simulation 5,Ŝℓ∞ has worse performance than the other
two estimators. The performance difference is increased asthe signal to noise ratio decreases.
However, when the signal to noise ratio is large there is little difference between the procedures.

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of
Ŝ S ⊆ Ŝ Correct zeros Incorrect zeros S = Ŝ |Ŝ|

Simulation 1:(n, p, s, T ) = (500, 20000, 18, 500),Tnon−zero = 300

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 76.0 18.3
Ŝℓ1 100.0 100.0 0.0 91.0 18.1
Ŝℓ2 100.0 100.0 0.0 92.0 18.1

Simulation 2.a:(n, p, s, T ) = (200, 5000, 10, 500),Tnon−zero = 400

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 82.0 10.2
Ŝℓ1 100.0 100.0 0.0 91.0 10.1
Ŝℓ2 100.0 100.0 0.0 91.0 10.1

Simulation 3:(n, p, s, T ) = (100, 5000, 3, 150),Tnon−zero = 80, ρ = 0.7

SNR = 5
Ŝℓ∞ 96.0 100.0 1.3 95.0 3.0
Ŝℓ1 99.0 100.0 0.3 97.0 3.0
Ŝℓ2 97.0 100.0 1.0 95.0 3.0

Simulation 4:(n, p, s, T ) = (150, 4000, 8, 150),Tnon−zero = 80, ρ = 0.5

SNR = 5
Ŝℓ∞ 100.0 100.0 0.0 84.0 8.2
Ŝℓ1 100.0 100.0 0.0 87.0 8.1
Ŝℓ2 100.0 100.0 0.0 87.0 8.1

Simulation 5:(n, p, s, T ) = (200, 10000, 5, 500),Tnon−zero = 250

σ = 2.5
Ŝℓ∞ 87.0 100.0 2.6 39.0 5.9
Ŝℓ1 0.0 99.9 90.6 0.0 14.8
Ŝℓ2 0.0 99.9 55.0 0.0 12.5

14.5 Discussion

This chapter has focused on the analysis of the marginal regression in the multitask setting. Due
to its simplicity and computational efficiency, the marginal regression is often applied in practice.
Therefore, it is important to understand under what assumptions it can be expected to work well.
Using multiple related tasks, the signal in data can be more easily detected and the estimation
procedure is more efficient. Our theoretical results support this intuition. One open question still
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remains. It is still not clear how to match the lower bound on the Hamming distance given in
Section 14.3, but we suspect that recent developments in [98] could provide tools to match the
lower bound.

14.6 Technical Proofs

14.6.1 Tail bounds for Chi-squared variables

Throughout the proofs we will often use one of the following tail bounds for centralχ2 random
variables. These are well known and proofs can be found in theoriginal papers.
Lemma 14.1([118]). LetX ∼ χ2

d. For all x ≥ 0,

P[X − d ≥ 2
√
dx+ 2x] ≤ exp(−x) (14.13)

P[X − d ≤ −2
√
dx] ≤ exp(−x).

Lemma 14.2([100]). LetX ∼ χ2
d, then

P[|d−1X − 1| ≥ x] ≤ exp(− 3

16
dx2), x ∈ [0,

1

2
). (14.14)

The following result provide a tail bound for non-centralχ2 random variable with non-
centrality parameterν.
Lemma 14.3([18]). LetX ∼ χ2

d(ν), then for allx > 0

P[X ≥ (d+ ν) + 2
√
(d+ 2ν)x+ 2x] ≤ exp(−x) (14.15)

P[X ≤ (d+ ν)− 2
√

(d+ 2ν)x] ≤ exp(−x). (14.16)

14.6.2 Spectral norms for random matrices

The following results can be found in literature on random matrix theory. We collect some useful
results.
Lemma 14.4([54]). LetA ∈ Rn×k be a random matrix from the standard Gaussian ensemble
with k < n. Then for allt > 0

P[Λmax(n
−1A′A− Ik) ≥ f(n, k, t)] ≤ 2 exp(−nt2/2)

wheref(n, k, t) = 2(
√

k
n
+ t) + (

√
k
n
+ t)2.

The above results holds for random matrices whose elements are independent and identically
distributedN (0, 1). The result can be extended to random matrices with correlated elements in
each row.
Lemma 14.5([190]). LetA ∈ Rn×k be a random matrix with rows sampled iid fromN (0,Σ).
Then for allt > 0

P[Λmax(n
−1A′A−Σ) ≥ Λmax(Σ)f(n, k, t)] ≤ 2 exp(−nt2/2). (14.17)

Corollary 14.1. LetA ∈ Rn×k be a random matrix with rows sampled iid fromN (0,Σ). Then

P
[
|Λmax

(
n−1A′A

)
| ≥ 9Λmax (Σ)

]
≤ 2 exp(−n/2).
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14.6.3 Sample covariance matrix

Let X ∈ Rn×p be a random matrix whose rows are independent and identically distributed
N (0,Σ). The matrixΣ = (σab) and denoteρab = (σaaσbb)

−1/2σab. The following result provides
element-wise deviation of the empirical covariance matrixΣ̂ = n−1X′X from the population
quantityΣ.
Lemma 14.6.Letνab = max{(1− ρab)

√
σaaσbb, (1 + ρab)

√
σaaσbb}. Then or allt ∈ [0, νab/2)

P [|σ̂ab − σab| ≥ t] ≤ 4 exp

(
− 3nt2

16ν2
ab

)
.

The proof is based on Lemma A.3. in [25] with explicit constants.

Proof. Let x′
ia = xia/

√
σaa. Then using (14.14)

P[| 1
n

n∑

i=1

xiaxib − σab| ≥ t]

= P[| 1
n

n∑

i=1

x′
iax

′
ib − ρab| ≥

t√
σaaσbb

]

= P[|
n∑

i=1

((x′
ia + x′

ib)
2 − 2(1 + ρab))− ((x′

ia − x′
ib)

2 − 2(1− ρab))| ≥
4nt√
σaaσbb

]

≤ P[|
n∑

i=1

((x′
ia + x′

ib)
2 − 2(1 + ρab))| ≥

2nt√
σaaσbb

]

+ P[|
n∑

i=1

((x′
ia − x′

ib)
2 − 2(1− ρab))| ≥

2nt√
σaaσbb

]

≤ 2P[|χ2
n − n| ≥ nt

νab
] ≤ 4 exp(− 3nt2

16ν2
ab

),

whereνab = max{(1− ρab)
√
ΣaaΣbb, (1 + ρab)

√
ΣaaΣbb} andt ∈ [0, νa/2).

This result implies that, for anyδ ∈ (0, 1), we have

P

[
sup

0≤a<b≤p
|σ̂ab − σab| ≤ 4max

ab
νab

√
2 log 2d+ log(1/δ)

3n

]
≥ 1− δ.

As a corollary of Lemma 14.6, we have a tail bound for sum of product-normal random variables.

Corollary 14.2. Let Z1 andZ2 be two independent Gaussian random variables and letXi
iid∼

Z1Z2, i = 1 . . . n. Then fort ∈ [0, 1/2)

P[|n−1
∑

i∈[n]
Xi| > t] ≤ 4 exp(−3nt

2

16
). (14.18)
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14.6.4 Proof of Theorem 14.1

We introduce some notation before providing the proof of Theorem 14.1. Consider ap + 1
dimensional random vector(Y,X′) = (Y,X1, . . . , Xp) and assume that

(
Y

X

)
∼ N (0,ΣF ) , ΣF =

(
σ00 C′

C Σ

)

with C = (σ0b)
p
b=1 = EYX ∈ Rp andΣ = (σab)

p
a,b=1 = EXX′. Define

Σ−1
F = ΩF =

(
ω00 P′

P Ω

)
,

with P = (ω0b)
p
b=1 andΩ = (ωab)

p
a,b=1. The partial correlation betweenY andXj is defined as

ρj ≡ Corr
(
Y,Xj | X\{j}

)
= − ω0j√

ω00ωjj

Therefore, nonzero entries of the inverse covariance matrix correspond to nonzero partial cor-
relation coefficients. For Gaussian models,ρj = 0 correspond toY andXj are conditionally
independent givenX\{j}. The relationship between the partial correlation estimation and a re-
gression problem can be formulated by the following well-known proposition [130].
Proposition 14.1.Consider the following regression model:

Y =

p∑

j=1

βjXj + ǫ, ǫ ∼ N(0,Var(ǫ))

Thenǫ is independent ofX1, . . . , Xd if and only if for all j = 1, . . . , p

βj = −
ω0j

ω00
= ρj

√
ωjj

ω00
.

Furthermore,Var(ǫ) = 1/ω00.
LetΣSC |S = ΣSCSC −ΣSCS(ΣSS)

−1ΣSSC be the conditional covariance of(XSC |XS). We
are now ready to prove Theorem 14.1.

Theorem 14.1.Consider the regression model in(14.1)withX = (x1, . . . ,xn)
′, xi

iid∼ Np(0,Σ),
andǫ ∼ Nn(0, σ

2In) with knownσ > 0, X independent ofǫ. Assume that

max
j∈SC
|ΣjSβS|+ γn(p, s,β,Σ, δ) < min

j∈S
|ΣjSβS|

with

γn(p, s,β,Σ, δ) = 8Λmax(ΣSS)

√
s

n
||βS||2max

j∈SC
(1 + ||ΣjS(ΣSS)

−1||2)

+ 4


max

j∈SC

√
ΣjS(ΣSS)−1ΣSj

ω00

+max
j∈SC

√
[ΣSC |S]jjσ00



√

log 4(p−s)
δ

3n

+ 4max
j∈S

√
σjj

ω00

√
log 4s

δ

3n
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then
P[Ŝ(s) = S] ≥ 1− 3δ − 2 exp(−s/2).

Proof. Denotingĉj = n−1
∑n

i=1 yixij , we would like to establish that

max
j 6∈S
|ĉj| ≤ min

j∈S
|ĉj|.

Using Proposition 14.1, forj ∈ SC we haveX′
j = ΣjS(ΣSS)

−1X′
S + E′

j with Ej = (eij),
eij ∼ N (0, [ΣSC |S]jj). Now

ĉj = n−1XjXSβS + n−1Xjǫ

= n−1ΣjS(ΣSS)
−1X′

S(XSβS + ǫ) + n−1E′
j(XSβS + ǫ)

= ΣjSβS +ΣjS(ΣSS)
−1(Σ̂SS −ΣSS)βS

+ n−1ΣjS(ΣSS)
−1X′

Sǫ+ n−1E′
j(XSβS + ǫ),

(14.19)

whereΣ̂ = n−1X′X is the empirical covariance matrix. Using (14.17) witht =
√

s/n we have
that

max
j∈SC
|ΣjS(ΣSS)

−1(Σ̂SS −ΣSS)βS|

≤ 8Λmax(ΣSS)

√
s

n
||βS||2max

j∈SC
||ΣjS(ΣSS)

−1||2

with probability at least1− 2 exp(−s/2). From (14.18) it follows that

max
j∈SC
|n−1ΣjS(ΣSS)

−1X′
Sǫ| ≤ 4max

j∈SC

√
ΣjS(ΣSS)−1ΣSj

ω00

√
log 4(p−s)

δ

3n

with probability1− δ and

max
j∈SC
|n−1E′

j(XSβS + ǫ)| ≤ 4max
j∈SC

√
[ΣSC |S]jjσ00

√
log 4(p−s)

δ

3n
(14.20)

with probability1− δ. Combining (14.19)-(14.20)

max
j∈SC
|ĉj| ≤ |ΣjSβS|+ 8Λmax(ΣSS)

√
s

n
||βS||2max

j∈SC
||ΣjS(ΣSS)

−1||2

+ 4max
j∈SC

√
ΣjS(ΣSS)−1ΣSj

ω00

√
log 4(p−s)

δ

3n

+ 4max
j∈SC

√
[ΣSC |S]jjσ00

√
log 4(p−s)

δ

3n

(14.21)

with probability1− 2δ − 2 exp(−s/2).

224



Similarly we can show forj ∈ S that

min
j∈S
|ĉj| ≥ min |ΣSSβS| − Λmax(Σ̂SS −ΣSS)||βS||2 −max |n−1X′

Sǫ|

≥ min |ΣSSβS| − 8Λmax(ΣSS)

√
s

n
||βS||2 − 4max

j∈S

√
σjj

ω00

√
log 4s

δ

3n

(14.22)

with probability1− δ − 2 exp(−s/2). The theorem now follows from (14.21) and (14.22).

14.6.5 Proof of Theorem 14.2

In this section we prove Theorem 14.2. DefineS−j := S\{j} and let

σ̃2
j := σjj −ΣjS−j

(ΣS−jS−j
)−1ΣS−jj

denote the variance of(Xjs|XS−js
), j ∈ S. The theorem is restated below.

Theorem 14.2.Assume that the conditions of Theorem 14.1 are satisfied. Let

ι =

√
16 log(16/δ)

3(n− s+ 1)

and assume thatι < 1
2
. Furthermore, assume that

max
j∈S

{
2σ2 log(4n/δ)

β2
j σ̃

2
j (1− ι)

+
2σ
√

2(1 + ι) log(8n/δ)

βjσ̃j(1− ι)

}
< 1.

Then
P[Ŝ(ŝn) = S] ≥ 1− 4δ − 2 exp(−s/2).

Proof. Define the event
En = {Ŝ(s) = S}.

From Theorem 14.1,
P[ECn ] ≤ 3δ + 2 exp(−s/2). (14.23)

We proceed to show that for some smallδ′ > 0

P[ŝn 6= s] ≤ P[ŝn 6= s|En]P[En] + P[ECn ] ≤ δ′,

which will prove the theorem together with (14.23). An upperbound onP[ŝn 6= s|En] is con-
structed by combining upper bounds onP[ŝn > s|En] andP[ŝn < s|En].

Let τ = 2σ2 log 4n
δ

. From{ŝn > s|En} ⊆ ∪p−1
k=s{ξ̂n(k) ≥ τ |En} follows that

P[ŝn > s|En] ≤
p−1∑

k=s

P[ξ̂n(k) ≥ τ |En]. (14.24)
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Recalling definitions of̂Vn(k) andĤn(k) from p. 213, for a fixeds ≤ k ≤ p−1, Ĥ(k+1)−Ĥ(k)

is the projection matrix fromRn to V̂n(k+1)∩ V̂n(k)
⊥. Recall also that we are using the second

half of the sample to estimatêsn, which implies that the projection matrix̂H(k) is independent
of ǫ for all k. Now, exactly one of the two events{V̂n(k) = V̂n(k+1)} and{V̂n(k) ( V̂n(k+1)}
occur. On the event{V̂n(k) = V̂n(k + 1)}, ξ̂n(k) = 0. We analyze the event{V̂n(k) ( V̂n(k +

1)} ∩ En by conditioning onX. SinceĤ(k + 1)− Ĥ(k) is a rank one projection matrix

ξ̂n(k) = ||(Ĥ(k + 1)− Ĥ(k))y||22 = ||(Ĥ(k + 1)− Ĥ(k))ǫ||22
d
= σ2χ2

1.

Furthermore,(Ĥ(k + 1) − Ĥ(k))ǫ ⊥⊥ (Ĥ(k′ + 1) − Ĥ(k′))ǫ, k 6= k′. It follows that for any
realization of the sequenceŝVn(1), . . . , V̂n(p),

p−1∑

k=s

P[ξ̂n(k) ≥ τ |En]

=

p−1∑

k=s

P[ξ̂n(k) ≥ τ |{V̂n(k) ( V̂n(k + 1)} ∩ En]P[V̂n(k) ( V̂n(k + 1)]

= P[σ2χ2
1 ≥ τ ]E

p−1∑

k=s

1I{V̂n(k) ( V̂n(k + 1)}

≤ nP[σ2χ2
1 ≥ τ ],

where the first equality follows since{V̂n(k) ( V̂n(k + 1)} is independent ofEn. Combining
with (14.24) gives

P[ŝn > s|En] ≤ nP[σ2χ2
1 ≥ τ ] ≤ δ/2

using a standard normal tail bound.
Next, we focus on boundingP[ŝn < s|En]. Since{ŝn < s|En} ⊂ {ξ̂n(s − 1) < τ |En}, we

can boundP[ξ̂n(s− 1) < τ |En]. Using the definition of̂H(s) it is straightforward to obtain that

(Ĥ(s)− Ĥ(s− 1))y = (Ĥ(s)− Ĥ(s− 1))(XjsβjS + ǫ).

Using Proposition 14.1, we can writeX′
js = ΣjsS−js

(ΣS−jsS−js
)−1X′

S−js
+ E′ whereE = (ei),

ei
iid∼ N (0, σ̃2

js). Then

(Ĥ(s)− Ĥ(s− 1))y = (Ĥ(s)− Ĥ(s− 1))(EβjS + ǫ)

= (In − Ĥ(s− 1))EβjS + (Ĥ(s)− Ĥ(s− 1))ǫ.

Define
T1 = β2

jS
E′(In − Ĥ(s− 1))E

and
T2 = ǫ′(Ĥ(s)− Ĥ(s− 1))ǫ.
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Conditional onXS−js
, T1

d
= β2

jS
σ̃2
jsχ

2
n−s+1 sinceE ⊥⊥ XS−js

, and conditional onXS, T2
d
= σ2χ2

1.
Define the events

A1 = {β2
jS
σ̃2
js(1− ι) ≤ T1 ≤ β2

jS
σ̃2
js(1 + ι)}

and

A2 = {T2 ≤ 2σ2 log
8n

δ
}.

From Eq. (14.14),P[A1(ι)
C ] ≤ δ/4, and using a normal tail bound,P[AC

2 ] < δ/4. Setting

τ̃ = τ + 2βjS σ̃jsσ

√
2(1 + ι) log

8n

δ
,

under the assumptions of theorem

P[ξ̂n(s− 1) < τ |En] ≤ P[T1 + T2 < τ + 2
√

T1T2|En]
≤ P[β2

jS
σ̃2
js(1− ι) < τ̃ ] + P[AC

1 ] + P[AC
2 ]

≤ δ

2
.

(14.25)

Combining (14.23)-(14.25), we have thatP[Ŝ(ŝn) = S] ≥ 1 − 4δ − 2 exp(−s/2), which com-
pletes the proof.

14.6.6 Proof of Theorem 14.3

We proceed to show that (14.7) holds with high probability under the assumptions of the theorem.
We start with the case whenΦ(·) = || · ||2. Let σ2

n = σ2/n andνj = σ−2
n

∑
k∈[T ](ΣjSk

βkSk
)2.

With this notation, it is easy to observe thatΦ2({µ̂kj}k) ∼ σ2
nχ

2
T (νj) whereχ2

T (νj) is a non-
central chi-squared random variable withT degrees of freedom and non-centrality parameterνj .
From (14.15),

σ−2
n max

j∈SC
Φ2({µ̂kj}k) ≤ T + 2 log

2(p− s)

δ
+max

j∈SC
νj + 2

√
(T + 2νj) log

2(p− s)

δ

with probability at least1− δ/2. Similarly, from (14.16),

σ−2
n min

j∈S
Φ2({µ̂kj}k) ≥ T +min

j∈S
νj −max

j∈S
2

√
(T + 2νj) log

2s

δ

with probability at least1 − δ/2. Combining the last two displays we have shown that (14.8) is
sufficient to show thatP[Ŝℓ2(s) = S] ≥ 1− δ.

Next, we proceed withΦ(·) = || · ||1, which can be dealt with similarly as the previous case.
Using (14.13) together with||a||1 ≤ √p||a||2, a ∈ Rp,

max
j∈SC

∑

k∈[T ]

|µ̂kj| ≤ max
j∈SC

∑

k∈[T ]

|ΣjSk
βkSk
|+ σn

√

T 2 + 2T

√
T log

2(p− s)

δ
+ 2T log

2(p− s)

δ

227



with probability at least1− δ/2. Similarly,

min
j∈S

∑

k∈[T ]

|µ̂kj| ≥ min
j∈S

∑

k∈[T ]

|ΣjSk
βkSk
| − σn

√

T 2 + 2T

√
T log

2s

δ
+ 2T log

2s

δ

with probability1−δ/2. Combining the last two displays we have shown that (14.9) issufficient
to show thatP[Ŝℓ1(s) = S] ≥ 1− δ.

We complete the proof with the case whenΦ(·) = || · ||∞. Using a standard normal tail bound
together with union bound

max
j∈SC

Φ({µ̂kj}k) ≤ max
j∈SC

max
k∈[T ]
|ΣjSk

βkSk
|+ σn

√
2 log

2(p− s)T

δ

with probability1− δ/2 and

min
j∈S

Φ({µ̂kj}k) ≥ min
j∈S

max
k∈[T ]
|ΣjSk

βkSk
| − σn

√
2 log

2sT

δ

with probability1 − δ/2, whereσ2
n = σ2/n. This shows that (14.10) is sufficient to show that

P[Ŝℓ∞(s) = S] ≥ 1− δ.

14.6.7 Proof of Theorem 14.4

We proceed as in the proof of 14.2. Define the event

En = {Ŝφ(s) = S}.
Irrespective of which scoring functionΦ is used, Theorem 14.1 provides the sufficient conditions
under whichP[ECn ] ≤ δ. It remains to upper boundP[ŝn 6= s|En], since

P[ŝn 6= s] ≤ P[ŝn 6= s|En]P[En] + P[ECn ]. (14.26)

An upper bound onP[ŝn 6= s|En] is constructed by combining upper bounds onP[ŝn > s|En] and
P[ŝn < s|En].

Let τ = (T + 2
√
T log(2/δ) + 2 log(2/δ))σ2. From{ŝn > s|En} ⊆ ∪p−1

k=s{ξ̂ℓ2,n(k) ≥ τ |En}
follows that

P[ŝn > s|En] ≤
p−1∑

k=s

P[ξ̂ℓ2,n(k) ≥ τ |En]. (14.27)

For a fixeds ≤ k ≤ p−1, Ĥ(k+1)−Ĥ(k) is the projection matrix fromRn to V̂n(k+1)∩V̂n(k)
⊥.

Since we are estimatinĝsn on the second half of the samples, the projection matrixĤ(k) is
independent ofǫ for all k. Now, exactly one of the two events{V̂n(k) = V̂n(k + 1)} and
{V̂n(k) ( V̂n(k + 1)} occur. On the event{V̂n(k) = V̂n(k + 1)}, ξ̂ℓ2,n(k) = 0. Next we analyze
the event{V̂n(k) ( V̂n(k + 1)} ∩ En. SinceĤ(k + 1)− Ĥ(k) is a rank one projection matrix

ξ̂ℓ2,n(k) =
∑

t∈[T ]

||(Ĥ(k + 1)− Ĥ(k))yt||22 =
∑

t∈[T ]

||(Ĥ(k + 1)− Ĥ(k))ǫt||22
d
= σ2χ2

T .
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Furthermore,̂ξℓ2,n(k) ⊥⊥ ξ̂ℓ2,n(k
′), k 6= k′. It follows that for any realization of the sequences

V̂n(1), . . . , V̂n(p),

p−1∑

k=s

P[ξ̂ℓ2,n(k) ≥ τ |En]

=

p−1∑

k=s

P[ξ̂ℓ2,n(k) ≥ τ |{V̂n(k) ( V̂n(k + 1)} ∩ En]P[V̂n(k) ( V̂n(k + 1)]

= P[σ2χ2
T ≥ τ ]E

p−1∑

k=s

1I{V̂n(k) ( V̂n(k + 1)}

≤ nP[σ2χ2
T ≥ τ ],

where the first equality follows since{V̂n(k) ( V̂n(k + 1)} is independent ofEn. Combining
with (14.27) gives

P[ŝn > s|En] ≤ nP[σ2χ2
T ≥ τ ] ≤ δ/2 (14.28)

using (14.13).
Next, we focus on boundingP[ŝn < s|En]. Since{ŝn < s|En} ⊂ {ξ̂ℓ2,n(s− 1) < τ |En}, it is

sufficient to boundP[ξ̂ℓ2,n(s − 1) < τ |En]. Using the definition of̂H(s) it is straightforward to
obtain that

(Ĥ(s)− Ĥ(s− 1))yt = (Ĥ(s)− Ĥ(s− 1))(Xjsβtjs + ǫt).

WriteXjs = X
(1)
js +X

(2)
js whereX(1)

js ∈ V̂n(s− 1) andX(2)
js ∈ V̂n(s) ∩ V̂n(s− 1)⊥. Then

(Ĥ(s)− Ĥ(s− 1))yt = (Ĥ(s)− Ĥ(s− 1))(X
(2)
js
βtjs + ǫt).

Furthermore we have that

||(Ĥ(s)− Ĥ(s− 1))(X
(2)
js βtjs + ǫt)||22 = (||X(2)

js βtjs ||2 + Zt)
2

whereZt
iid∼ N (0, σ2). It follows thatξ̂ℓ2,n(s− 1) ∼ σ2χ2

T (ν) with ν = σ−2
∑

t∈[T ] ||X
(2)
js
βtjs ||22.

It is left to show that
P[σ2χ2

T (ν) < τ ] ≤ δ/2. (14.29)

Using (14.16) and following the proof of Theorem 2 in [22], wehave that (14.29) holds if

ν > 2
√
5 log1/2

(
4

δ2

)√
T + 8 log

(
4

δ2

)
.

Under the assumptions, we have that

min
j∈S

∑

t∈[T ]

||X(2)
j βtj ||22 >

[
2
√
5 log1/2

(
4

δ2

)√
T + 8 log

(
4

δ2

)]
σ2

which shows (14.29). Combining (14.28) and (14.29), we obtain (14.26) which completes the
proof.
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14.6.8 Proof of Theorem 14.5

We have

Hp(Ŝ, S | X) ≥
p∑

j=1

[
P
(
‖β·j‖2 = 0, ‖β̂·j‖2 6= 0

)
+ P

(
‖β·j‖2 6= 0, ‖β̂·j‖2 = 0

)]
.

For1 ≤ j ≤ p, we consider the hypothesis testing:

H0,j : ‖β·j‖2 = 0 vs. ‖β·j‖2 6= 0.

For 1 ≤ t ≤ T , we denote byβt any empirical realization of the coefficient vector. Letβ̃t :=
βt − βtjej whereej is thej-th canonical basis ofRp. We define

h(y; β̃,α) := h(y1, . . . ,yT ; β̃1, . . . , β̃T , α1, . . . , αT )

to be the joint distribution of

y1, . . . ,yT ∼
T∏

t=1

N
(
X
(
β̃t + αtej

)
, In

)
.

We then have

h(y; β̃,α) = h(y; β̃, 0) · exp
(

T∑

t=1

αtx
′
j(yt −Xβ̃t)−

T∑

t=1

α2
t

2

)
.

Let max1≤t≤T |αt| ≤ τp. We define

h(y; β̃, τp) = h(y; β̃, 0) · exp
(
τp

T∑

t=1

x′
j(yt −Xβ̃t)−

Tτ 2p
2

)
.

Let G(β̃) be the joint distribution ofβ1, . . . ,βT . Using Neyman-Pearson Lemma, Fubinni’s
Theorem and some basic calculus, we have

P
(
‖β·j‖2 = 0, ‖β̂·j‖2 6= 0

)
+ P

(
‖β·j‖2 6= 0, ‖β̂·j‖2 = 0

)

≥ 1

2
− 1

2

∫ [∫ ∣∣∣(1− ηp)h(y; β̃, 0)− ηph(y; β̃,α)
∣∣∣dy
]
dπp(α)dG(β̃)

=
1

2
− 1

2

∫
H(β̃,α)dπp(α)dG(β̃),

where

H(β̃,α) ≡
∫ ∣∣∣(1− ηp)h(y; β̃, 0)− ηph(y; β̃,α)

∣∣∣dy.

It can be seen that
H(β̃,α) ≤ H(β̃, τp).
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We then have

P
(
‖β·j‖2 = 0, ‖β̂·j‖2 6= 0

)
+ P

(
‖β·j‖2 6= 0, ‖β̂·j‖2 = 0

)
≥ 1

2
− 1

2

∫
H(β̃, τp)dG(β̃).

For any realization of̃β1, . . . , β̃p, we define

Dp(β̃) :=

{
y1, . . . ,yT : ηp · exp

(
τp

T∑

t=1

x′
j(yt −Xβ̃t)−

Tτ 2p
2

)
> (1− ηp)

}
.

We know thaty1, . . . ,yT ∈ Dp(β̃) if and only if

Wj =
T∑

t=1

x
′

j(yt −Xβ̃t) > λp.

It is then easy to see that

Wj ∼ N (0, T ) underH0,j

Wj ∼ N (Tτp, T ) underH1,j.

Following exactly the same argument as in Lemma 6.1 from Ji and Jin (2011), we obtain the
lower bound:

1

2
− 1

2
H(β̃, τp) ≥ (1− ηp)F

(
λp√
T

)
+ ηpF

(
λp√
T
−
√
Tτp

)
.

Thus we finish the proof of the main argument (14.12).
To obtain more detailed rate, we have

1

ηp
− 1 = pv − 1.

Also,

Φ

(
λp√
T

)
≥
√
T

2λp
φ

(
λp√
T

)

≥
√
rT

(v + Tr)
√
2 log p

· 1√
2π

exp

(
−(v + Tr)2 log p

4rT

)

=

√
rT

2(v + Tr)
√
π log p

· p−(v+Tr)2/(4rT ).

Therefore

1− ηp
ηp

F

(
λp√
T

)
≍

√
rT

2(v + Tr)
√
π log p

· pv−(v+Tr)2/(4rT )
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=

√
rT

2(v + Tr)
√
π log p

· p−(v−Tr)2/(4rT ).

We then evaluate the second term

F

(
λp√
T
−
√
Tτp

)
= F

(√
Tτp −

λp√
T

)
.

First, we have that
λp√
T
−
√
Tτp =

(v + Tr)
√
log p√

2Tr
−
√

2rT log p.

If v > Tr, we have
λp√
T
−
√
Tτp →∞,

which implies that

F

(
λp√
T
−
√
Tτp

)
≥ 1 + o(1).

Now, we consider the case thatv < Tr,

F

(√
Tτp −

λp√
T

)
= F

(
(Tr − v)

√
log p√

2Tr

)

≥
√
2Tr

(Tr − v)
√
log p

1√
2π
· p−(v−Tr)2/(4rT )

=

√
Tr

(Tr − v)
√
π log p

· p−(v−Tr)2/(4rT )

This finishes the whole proof.
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Part III

Conclusions and Future Work
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Chapter 15

Conclusions and Future Directions

Black-box models are not useful for scientific discovery because they do not provide insights
about a system under consideration. Finding interesting and interpretable structure is important
in many sciences, ranging from systems biology, statistical genetics, and computer science to var-
ious social sciences. In this thesis, we have developed principled machine learning techniques,
with strong theoretical guarantees, that are capable of uncovering mechanisms underlying com-
plex systems. When data are high-dimensional and generatedby some unknown process, it is
important to have flexible models that provide insights intodata generating mechanisms and
allow for discovering of new scientific facts.

In this thesis, we have focused on two specific problems whereexperimental techniques are
expensive, not sufficient, or not available to uncover mechanisms underlying a complex system.
In these cases, statistical tools are needed. We have addressed the following questions:

1. Given noisy observations collected from a complex system, how can we find a dynamic
network, which encodes and explains relationships of interest in the system?

2. How can we identify features that are relevant for a numberof high-dimensional, noisy
learning tasks in a fast and reliable way?

For all of these problems, an important question is under what circumstances are statistical meth-
ods going to reliably identify the underlying structure of interest; and, furthermore, which pro-
cedure can be used to identify the structure quickly.

In the first part of the thesis, we have focused on methods for uncovering dynamic net-
work structure from nodal observations, while in the secondpart, we have analyzed methods
for variable selection in multi-task learning problems. Wehave focused on applications arising
in systems biology, social media analysis and economics; However, our results are applicable
in many other modern scientific fields, ranging from cognitive neuroscience to computational
meteorology.

15.1 Learning and exploring network structure

In this thesis, we have developed a comprehensive frameworkof time-varying networks for un-
covering structure of dynamic networks from noisy observational data, based on rigorous statis-
tical formalism with provable guarantees. We see it as the first step towards building a dynamic
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network analysis system for understanding complex networkentities and how they evolve and
interact over time. The framework is especially useful in scientific domains where interactions
cannot be easily measured, but noisy and indirect versions of nodal attributes are available, which
prevents scientists from an in-depth investigation of the mechanisms underlying a system of in-
terest. Using the framework of time-varying networks, researchers can reverse-engineer active
interactions between entities in a system from observed longitudinal data and postulate more pre-
cise hypotheses about processes undergoing changes in networks. As an exploratory tool, they
are indispensable for capturing transient events in the dynamic system, and have the potential to
change the way people analyze complex, dynamic systems and networks.

The new framework of time-varying networks is a semiparametric generalization of the clas-
sical framework of probabilistic graphical models, which allows for both flexibility in modeling
many effects of interest and development of efficient and scalable estimation procedures. Esti-
mation in the framework is done by solving convex optimization programs, based on penalized
empirical risk minimization, for which we have developed efficient methods, including the prox-
imal gradient descent. Furthermore, we have identified sufficient conditions for correct recovery
of the underlying network structure with high probability,for different models in the framework.
The framework can model a number of interesting scenarios that could arise in a dynamic sys-
tem, e.g., a smoothly evolving network during regular development of a biological organism;
or a network undergoing dramatic reorganization, possiblyin response to harsh economic and
political changes during a crisis, or a cell response to a virus. We used the time-varying network
framework to identify patterns of interactions between genes in fruit flies as they go through
the developmental process. We have also demonstrated applicability to social media analysis by
learning a latent time-varying network between senators from the US Senate voting records.

We have also studied a couple of related network structure learning problems. We have
studied uncovering structure of covariate indexed networks, where interactions between nodes
depend on an external covariate. For example, when nodes represent stock prices, it is of interest
to understand which stock prices jointly rise or fall, and this relationship may change depend-
ing on oil price or the price of some other commodity. Estimation of network structure from
multi-attribute data often arises in practice, however, existing methods largely ignore this aspect
of data. We have develop a new principled framework for estimating network structure from
multi-attribute data based on partial canonical correlation. Finally, we have develop an estima-
tion method, based on a convex optimization program, for learning network structure from data
with missing values that runs 20 to 40 times faster than the existing Expectation-Maximization
approach.

15.2 Identifying relevant variables for a large number of re-
lated high-dimensional tasks

In different scientific fields, such as neuroscience and genetics, it has been empirically observed
that learning jointly from related tasks (i.e., multi-tasklearning) improves estimation perfor-
mance. For example, in biology, a genome-wide association mapping study aims to find a small
set of causal single-nucleotide polymorphisms (SNPs) thataccount for genetic variations of a
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large number of genes. Identifying causal SNPs is a challenging problem for current statistical
methods due to a large number of variables and low signal-to-noise ratio. However, genes in a
biological pathway are co-expressed as a module and it is often assumed that a causal SNP af-
fects multiple genes in one pathway. Therefore, once the whole biological pathway is examined,
it is much easier to find the causal SNPs.

Prior to my work, despite many investigations, the theory ofvariable selection in multi-task
regression models was far from settled, and there was no clear picture that explained when vari-
able selection can be done more efficiently by considering multiple tasks. Using the framework
of the Normal means model, we were able to sharply characterize the theoretical properties of
different estimation procedures. In particular, we have provided a sharp characterization of the
variable selection properties of two commonly used procedures for variable selection in high-
dimensional problems, the lasso and group lasso. Interestingly, two distinct regimes emerged
showing that one or the other procedure is optimal, in the minimax sense, depending on the
amount of relatedness between the tasks.

Finally, we have explored efficient greedy methods for quickidentification of relevant vari-
ables in multi-task learning problems. When faced with problems that involve hundreds of thou-
sands input variables, classical methods for variable selection based on convex programming
are too slow. Due to their simplicity and computational efficiency, the marginal and forward
regressions are often applied in practice. Our investigation provides understanding under what
assumptions these methods can be expected to work well. Thisunderstanding will hopefully lead
to design of better and faster variable selection procedures in the future.

15.3 Future Directions

It is clear that in the future, statistical and machine learning models will become even more
prevalent in the analysis of high-dimensional functional data. Although capable of discovering
complex structures underlying noisy data, machine learning methods still need human guidance
and expertise to instruct them for what to search. The challenge is therefore to develop methods
capable of posing hypotheses on what constitutes an interesting structure and trying to identify
it in data, reducing the need for human supervision. We see anopportunity in continuing re-
search on flexible models capable of extracting useful and interpretable patterns from complex
systems. Here, we provide examples of several research problems that represent important future
directions:

1. Uncertainty quantificationof learned structure. Most of the current literature on high-
dimensional structure recovery provides only a point estimate of the underlying structure
without providing confidence intervals, which could be usedto assess uncertainty on dif-
ferent parts of the structure. Assessed uncertainty is important for domain scientists, who
can use it to guide the design of future experiments and data collection processes.

2. Develop network toolsthat would allow researchers to reason about meta-level semantic
aspects underlying network structures and their dynamicalbehaviors. In my current re-
search, I have tackled the problem of learning network structure. Once the structure is
uncovered, scientists will need network tools capable of answering useful analytic ques-
tions, like:
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(a) Function identification– What role(s) do individuals play when they interact with dif-
ferent peers? Over the course of a cellular process, such as acell cycle or an immune
response, what is each molecules function and relationshipwith other molecules?

(b) System robustness– How do social groups form and dissolve as a response to external
stimuli? How do biological networks rewire to respond to external stress?

(c) Forecasting– Based on current activity, can we predict changes in socialstructure
(e.g., emerging or dissolving of subpopulations)? How willa disease progress based
on current expression levels of genes in different pathways?

3. Nonparametric and semiparametric methodsfor uncovering structure. Nonparametric and
semiparametric models are rather flexible in representing various phenomena, however,
due to the amount of samples and computational resources needed to fit them, they have not
been used often in the analysis of high-dimensional data. More recent findings show that
in many cases the problem under study has a special structure, which can be exploited to
effectively fit a nonparametric method. We plan to investigate how nonparametric methods
can be used to learn the structure underlying a high-dimensional non-stationary time-series,
extending the applicability of time-varying dynamic Bayesian networks.
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[164] N. Städler and P. Bühlmann. Missing Values: Sparse Inverse Covariance Estimation And
An Extension To Sparse Regression.Stat. Comput., 22(1):219–235, 2012. 9.1, 9.2, 9.5,
9.5.2, 9.5.3

[165] P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction, And Search. pages
xxii+543, MIT Press, Cambridge, MA, With additional material by David Heckerman,
Christopher Meek, Gregory F. Cooper and Thomas Richardson,A Bradford Book, 2000.
14.1

[166] P. Sarkar and A. W. Moore. Dynamic Social Network Analysis Using Latent Space Mod-
els. ACM SIGKDD Explor. Newsl., 7(2):31–40, ACM, 2005. 3.3

[167] S. S. W. Moments And Distributions Of Estimates Of Population Parameters From Frag-
mentary Samples.Ann. Math. Stat., 3(3):163–195, JSTOR, 1932. 9.2

[168] M. Talih and N. Hengartner. Structural Learning With Time-varying Components: Track-
ing The Cross-section Of The Financial Time Series.J. R. Stat. Soc. B, 67(3):321–341,
2005. 3.3

[169] P. Tseng. Convergence Of A Block Coordinate Descent Method For Nondifferentiable
Minimization. J. Optim. Theory Appl., 109(3):475–494, Plenum Press, New York, NY,
USA, 2001. 4.3, 10.2.2

[170] S. Thrun and J. O’Sullivan. Discovering Structure In Multiple Learning Tasks: The Tc
Algorithm. Proc. of ICML, pages 489–497, 1996. 11.1

[171] A. B. Tsybakov. Introduction To Nonparametric Estimation. pages xii+214, Springer,
New York, Revised and extended from the 2004 French original, Translated by Vladimir
Zaiats, 2009. 12.6.1

[172] B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous Variable Selection.Tech-
nometrics, 47(3):349–363, 2005. 11.1, 12.1

[173] J. A. Tropp. Greed Is Good: Algorithmic Results For Sparse Approximation. IEEEit,
50(10):2231–2242, 2004. 14.1

[174] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms For Simultaneous Sparse Ap-
proximation. Part I: Greedy Pursuit.Signal Proces., 86(3):572–588, Elsevier, 2006. 11.1,
13.1

[175] R. J. Tibshirani. Regression Shrinkage And SelectionVia The Lasso.J. R. Stat. Soc. B,
58(1):267–288, 1996. 2.2.2, 14.1

[176] R. J. Tibshirani, J. Bien, jfriedman, T. J. Hastie, N. Simon, J. E. Taylor, and R. J. Tibshi-

249



rani. Strong Rules For Discarding Predictors In Lasso-typeProblems.J. R. Stat. Soc. B,
74(2):245–266, 2012. 14.1

[177] R. J. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K.Knight. Sparsity And Smoothness
Via The Fused Lasso.J. R. Stat. Soc. B, 67(1):91–108, 2005. 4.5, 7.2

[178] D. Vogel and R. Fried. On Robust Gaussian Graphical Modelling. Recent Developments
in Applied Probability and Statistics, pages 155-182, L. Devroye et al. (Eds.), ed., Berlin,
Heidelberg: Springer-Verlag, 2010. 3.3

[179] G. Varoquaux, A. Gramfort, J.-B. Poline, and B. Thirion. Brain Covariance Selection:
Better Individual Functional Connectivity Models Using Population Prior.Proc. of NIPS,
pages 2334–2342, John D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, eds., 2010. 10.1

[180] M. A. J. van Duijn, K. J. Gile, and M. S. Handcock. A Framework For The Comparison
Of Maximum Pseudo-likelihood And Maximum Likelihood Estimation Of Exponential
Family Random Graph Models.Social Networks, 31(1):52–62, Elsevier, 2009. 4.1
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