
Graph Structured Normal Means Inference

James Sharpnack

May 2013
CMU-ML-13-102



  



Graph Structured Normal Means Inference

James Sharpnack

May 2013

CMU-ML-13-102

School of Computer Science

Machine Learning Department

Dietrich College of Humanities and Social Sciences

Department of Statistics

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Aarti Singh, Co-chair

Alessandro Rinaldo, Co-chair

Larry Wasserman

Gary Miller

Ery Arias-Castro

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2013 James Sharpnack

This research was funded in part by the Air Force Office of Scientific Research under grant number FA95501010382.

The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or

any other entity.



Keywords: Normal means, Gaussian goodness-of-fit, graph structure, estimation, detection,

localization, anomaly detection, statistical inference, network, Laplacian, spanning tree wavelets,

spectral scan



To my parents, Jan and Doug.



iv



Abstract

This thesis addresses statistical estimation and testing of signals over a graph

when measurements are noisy and high-dimensional. Graph structured patterns ap-

pear in applications as diverse as sensor networks, virology in human networks,

congestion in internet routers, and advertising in social networks. We will develop

asymptotic guarantees of the performance of statistical estimators and tests, by stat-

ing conditions for consistency by properties of the graph (e.g. graph spectra). The

goal of this thesis is to demonstrate theoretically that by exploiting the graph struc-

ture one can achieve statistical consistency in extremely noisy conditions.

We begin with the study of a projection estimator called Laplacian eigenmaps,

and find that eigenvalue concentration plays a central role in the ability to estimate

graph structured patterns. We continue with the study of the edge lasso, a least

squares procedure with total variation penalty, and determine combinatorial condi-

tions under which changepoints (edges across which the underlying signal changes)

on the graph are recovered. We will shift focus to testing for anomalous activations

in the graph, using the scan statistic relaxations, the spectral scan statistic and the

graph ellipsoid scan statistic. We will also show how one can form a decomposition

of the graph from a spanning tree which will lead to a test for activity in the graph.

This will lead to the construction of a spanning tree wavelet basis, which can be

used to localize activations on the graph.
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Chapter 1

Introduction

Statistical inference is inherently difficult when there are few samples and the parameter space

is large. The only way to avoid this problem, given a limited amount of data, is to impose

constraints on the parameter space. This thesis focuses on the problem of detecting, localizing

and estimating patterns over a graph when observations are corrupted by noise. Hence, we

consider the case when parameter constraints derive from a graph structure, generally graphs

given by real world networks.

The problem of estimating graph-structured activations is relevant to many applications in-

cluding identifying congestion in router and road networks, eliciting preferences in social net-

works, and localizing viruses in human and computer networks. While several machine learning

algorithms are designed to estimate graph-structured patterns[12, 55, 63] very few statistical

guarantees are known. Much less work addresses the detection of anomalous patterns in graphs

from a statistical testing perspective. This is despite a variety of real-world applications such as

activity detection in social networks, network surveillance, disease outbreak detection, biomed-

ical imaging, sensor network detection, gene network analysis, environmental monitoring and

malware detection. Recent theoretical contributions in the statistical literature[1, 3] have detailed

the inherent difficulty of such a testing problem but have positive results only under restrictive

conditions on the graph topology. By combining knowledge from high-dimensional statistics,

graph theory and mathematical programming, the characterization of detection algorithms over

any graph topology by their statistical properties is possible.

Aside from the statistical challenges, the computational complexity of these algorithms must

be addressed. Due to the combinatorial nature of graph based methods, problems can easily shift

from having polynomial-time algorithms to having running times exponential in the size of the

graph. The applications of graph structured inference require that any method be scalable to

large graphs. As we will see some proposed statistical procedures will be intractable, suggesting

that approximation algorithms and relaxations are necessary. Luckily, computer science boasts

a plethora of efficient graph based algorithms that are adaptable to these statistical problems.

Before we elaborate on the statistical setup, we will examine two real-world examples in which

one detects and localizes graph structured signals.
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1.0.1 Disease Detection in Human Networks

Most people think of tests for contagious diseases as reporting a positive or negative indicating

the existence of a disease. In fact, many common experimental techniques in virology report

various indicators of a virus, such as antibody protein concentrations (western blot, enzyme-

linked immunosorbent assay) or measuring virus concentrations directly (the plaque assay). One

popular method, the western blot, reports concentrations by the shade of bands from an x-ray

film darkened by a luminescent compound. Infectious diseases diffuse within human networks,

e.g. I interact with my officemates and roommates quite often, they would be my neighbors in

this network, and can communicate any diseases to them more easily then other individuals living

in Pittsburgh. If we can exploit this network structure in the detection of infectious diseases, then

we may be able to detect and localize an incipient infection under low signal-to-noise ratios (very

light bands in the western blot).

1.0.2 Sensor Networks

One of the advantages of representing structure with a graph, and not through a Euclidean embed-

ding, is its versatility when representing unexpected constraints and topological artifacts. Sensor

networks might be deployed for detecting nuclear substances, water contaminants, or activity in

video surveillance. When sensors are placed in an environment for the sake of detecting and lo-

calizing some activity, the structure inherent in that environment should influence the statistical

inference. For example, the spread of a contaminant in water changes greatly when the environ-

ment is the Gulf of Mexico (as in the Deepwater Horizon oil spill) or a water supply network.

Water supply contamination is a common cause for outbreaks of cholera, gastroenteritis, E. coli,

and polio. Because of the potential for large scale health problems, it is of interest to detect

contaminated water under low signal-to-noise regimes. As we will see, by exploiting the graph

structure (in this case, the pipe network for the water supply), one can detect activity in networks

when the activity is very faint. Furthermore, the graph structure provides a versatile framework

for modeling environmental constraints.

1.1 Problem Setup

We will be studying the setting in which a graph that provides the structure to our inference

is known a priori, and we are tasked with identifying latent parameters over the graph. An

undirected graph is a set of vertices V which can be taken to be the natural numbers [p] =
{1, . . . , p} for some p > 0 and pairs of vertices E ⊆ V × V called the edges (with |E| = m).

To each edge is possibly associated a weight, which we will denote We for some e ∈ E. In this

case we have a weighted graph, and we let the graph be the triplet G = (V,E,W ). We are now

ready to define the graph-structured normal means problem, which will be the main focus of this

thesis.
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1.1.1 Structured Normal Means Problem

In the graph-structured normal means problem, we observe one realization of the random vector

y = x+ ǫ, (1.1)

where x ∈ R
p and ǫ ∼ N(0, σ2Ip) is Gaussian white noise with known variance σ2. The goal is

to make inferences regarding the unknown x, when it is believed to be smooth with respect to a

graph. Before we define what it means for x to be smooth over a graph, we must first introduce

two differential operators: the incidence matrix and the graph Laplacian.

We begin by constructing (arbitrarily) an orientation of G by defining a head e+ ∈ e and

tail e− ∈ e for each edge e ∈ E. The incidence matrix ∇ ∈ R
m×p for the oriented graph is

the matrix whose ∇e,v entry is 1 if v = e+, −1 if v = e− and 0 otherwise (it is
√
We or 0 in a

weighted graph). The incidence matrix is indeed the discrete analogue of the gradient operator,

which is a comparison to which we will frequently adhere. Another commonly studied discrete

differential operator is the Laplacian of G which is defined as ∆ = ∇⊤∇. Let dv =
∑

w∈V Wv,w

and D = diag({dv}v∈V ) be the diagonal degree matrix. Then ∆ = D −W is positive semi-

definite and for z ∈ R
p, z⊤∆z =

∑
v,w Wv,w(zv − zw)

2.

Much of the study of the Laplacian revolves around its spectrum, which will play a central

role in this thesis. Let us denote the decomposition ∆ = UΛU⊤ for U ∈ R
p×p and diagonal

Λ = diag({λi}pi=1). Furthermore, let λi ≤ λi+1 without loss of generality. Then it is known

that λ1 = 0 and |{i : λi = 0}| is the number of connected components of the graph G. Further-

more, because of the invariance of trace under rotations,
∑p

i=1 λi =
∑p

i=1 di, hence the average

eigenvalue is equal to the average degree.

For a vector, z ∈ R
p, define supp(z) = {i ∈ [p] : zi 6= 0} ([p] = {1, . . . , p}), z̄ = 1

n

∑p
i=1 zi,

z̄ = z̄1, and ‖w‖0 = |supp(w)|. Furthermore, define the ℓk norms for k > 0 to be ‖z‖k =
(
∑

i∈[p] z
k
i )

1/k, with ‖z‖∞ = maxi∈[n] |zi|. We will also be considering the induced norms of

matrices, specifically for a matrix M let |||M|||k,l = sup‖z‖k≤1 ‖Mz‖l. Immediately, we see that

‖∇z‖22 = z⊤∆z and supp(∇z) = {e ∈ E : ze+ 6= ze−}. Furthermore, if A ⊂ V then let

Ā = V \A and let ∂A denote the edges leaving A (the boundary of A).

We now have the machinery in place to define what we mean by graph structured signals. This

thesis studies estimation and detection primarily with respect several distinct function classes,

with parameter ρ > 0:

1. ℓ2 graph-structure: the class X2(ρ) = {x ∈ R
p : ‖∇x‖22 ≤ ρ}

2. ℓ0 graph-structure: the class X0(ρ) = {x ∈ R
p : ‖∇x‖0 ≤ ρ}

3. balanced graph-structure: for each x ∈ XPC(ρ) there exists A ⊂ V , x = b01A + b11Ā

with p|∂A|/(|A||Ā|) ≤ ρ for some b0, b1 ∈ R (here PC stands for piece-wise constant)

We will also consider two separate prior distributions that are induced by the graph G, the

Ising prior and the Gaussian graphical model (GGM). Below p(x) denotes the density with re-

spect to either the Lebesgue measure (in the GGM) or the discrete measure over the hypercube

{0, 1}p (for Ising).

Gaussian graphical model: p(x) ∝ exp(−x⊤Σ−1x)
Ising model: p(x) ∝ exp(−x⊤∆x)

(1.2)
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In the Gaussian graphical model, ∆ = Σ−1 denotes the inverse covariance matrix whose zero

entries indicate the absence of an edge between the corresponding nodes in the graph. With

these function classes and priors in mind, we study the statistical performance of estimation,

localization, and detection.

1.1.2 Estimation and Changepoint Localization

There are two standards that we will ask of an estimator x̂ in the normal means problem: recovery

with an ℓ2 loss and the recovery of its structure through the changepoints, supp(∇x). In Chapter

2 we will consider a Laplacian eigenmaps projection estimator x̂. We will say that the estimator

is ℓ2 consistent if

‖x̂− x‖2 P→ 0.

The risk E‖x̂ − x‖ is known as the mean square error (MSE). We will highlight conditions

under which we can achieve ℓ2 consistency for the ℓ2 graph structure, the Ising, and the GGM

in Chapter 2. Localization refers to the ability to obtain the elements of C = supp(x), while

tolerating some loss in the recovery. This setting will be studied in detail in Chapter 5. The

following natural notion of distance between clusters (C,C ′ ⊆ [p]) will be important for both

theoretical and validation purposes.

d(C,C ′) = 2

(
1− |C ∩ C ′|√

|C||C ′|

)

The idea is that d(C,C ′) is small if and only if there is large overlap between C and C ′ relative

to their size. We will say that an estimator of Ĉ of C is localization consistent if

Ed(C, Ĉ)→ 0⇒ d(C, Ĉ)
P→ 0

We will prove in Chapter 2 (Proposition 9) is that estimation consistency implies localization

consistency.

Changepoint sparsistency is when we hope to recover exactly supp(∇x), in fact we require

that the signs of the changes be correctly recovered, i.e. ,

lim
p→∞

P{sign(∇x̂) = sign(∇x)} = 1.

In Chapter 3, we study the changepoint sparsistency of the edge lasso, an instantiation of the

generalized lasso.[78] We will see that while changepoint consistency may be a strong criteria,

it directly leads to nearly-oracle rates of convergence for the ℓ2 loss.

1.1.3 Detection

The detection of graph-structured signals may refer to one of two things: detecting an anoma-

lous cluster from zero background activation, or detecting an anomalous cluster from constant

4



background activation. In Chapter 4, we study the case of constant background activation with

balanced alternative, in which we assume the following testing hypotheses:

H0 : ∇x = 0 vs H1 : x ∈ XPC(ρ), ‖x− x̄‖ ≥ µ (1.3)

In Chapter 5, we study zero background activation in which we assume the null and alternative

hypotheses:

H0 : x = 0 vs H1 : x ∈ X0(ρ), ‖x‖2 ≥ µ (1.4)

In both cases, H0 represents business as usual while H1 encompasses all of the foreseeable

anomalous activity. It is the composite nature of H1 that causes theoretical difficulties.

It is imperative that we control both the probability of false alarm, and the false acceptance

of the null. Let a test be a mapping T (y) ∈ {0, 1}, where 1 indicates that we reject the null. To

this end, we define our measure of risk to be

R(T ) = sup
x∈H0

Eǫ[T ] + sup
x∈H1

Eǫ[1− T ]

where Eǫ denotes the expectation with respect to y ∼ N(x, σ2Ip). The test T may be ran-

domized, in which case the risk is ETR(T ). Notice that if the distribution of the random test

T is independent of x, then ET supx∈X Ex[1 − T ] = supx∈X ET,x[1 − T ]. This is the setting

of [3] which we should contrast to the Bayesian setup in [1]. We will say that H0 and H1 are

asymptotically distinguished by a test, T , if limn→∞R(T ) = 0. If such a test exists then H0 and

H1 are asymptotically distinguished, otherwise they are asymptotically indistinguishable. If it is

the case that there is an SNR scaling (µ/σ) for which there is a test that asymptotically distin-

guishes H0 from H1 and for any SNR sequence of lower order, H0 and H1 are asymptotically

indistinguishable by that test, then we call this the critical SNR for the test.

1.2 Related Work

In Chapter 2, we will analyze the asymptotic statistical performance of projection estimators on

graphs, with both a frequentist result and Bayesian corollary for the Ising prior. Much work

has been devoted to the use of shrinkage estimators for ellipsoid constraints, resulting in the

asymptotic optimality for the Pinsker estimator for low-noise asymptotics [8, 16, 40]. Invari-

ably efficient estimators with ellipsoid constraints shrink components of the observed vector that

correspond to minor axes of the ellipsoid. Other shrinkage procedures have been studied exten-

sively, such as the projection estimator and Tikhonov regularization[79]. For simplicity we study

the performance of projection estimators, but characterize their statistical consistency through

spectral graph theory.

Markov random fields (MRF) provide a succinct framework in which the underlying signal

is modeled as a draw from an Ising or Potts model [12, 63]. Most work on MRFs suggest the use

of the maximum a posteriori (MAP) estimator which is the Bayes rule under 0/1 loss. Less is

known about the Bayes rule under Hamming distance loss, in which the estimator is the posterior

centroid [11], a procedure known to be computationally intractable. A similar line of research

is the use of kernels over graphs. The study of kernels over graphs began with the development

5



of diffusion kernels [44], and was extended through Green’s functions on graphs [74]. A related

body of work extends marginalized kernels to graphs [42, 56], while recently it has been shown

that this and the aforementioned definitions are members of an overarching framework with

computationally efficient constructions [80]. While kernels on graphs provide computationally

efficient procedures for inference on graphs, much less is known about their asymptotic statistical

efficiency.

We find that statistical consistency of specific shrinkage estimators imply that the Lapla-

cian eigenbasis gives statistically efficient representations of graph structured patterns. There

have been several attempts at constructing multi-scale basis for graphs that can efficiently rep-

resent localized activation patterns, notably diffusion wavelets [14] and treelets [47], however

their approximation capabilities are not well understood. [73] and [30] independently proposed

unbalanced Haar wavelets and characterized their approximation properties for tree-structured

binary patterns.

In Chapter 3, we study a total variation denoising procedure, called the edge lasso, over

general graph structures. The edge lasso is a generalization of the fused lasso originally proposed

in [77] to enable recovery of high-dimensional patterns which are smooth (piece-wise constant)

on a graph. The key idea is to penalize the ℓ1-norm of differences of measurements at vertices

that share an edge to encourage sparsity of the edges which connect vertices that have different

signal values. While there have been some attempts [34, 52, 78] at coming up with efficient

algorithms for solving the fused lasso optimization, a theoretical analysis of its performance is

mostly lacking. The only exception, to the best of our knowledge, are [33, 64] which analyze the

linear graph topology.

In Chapters 4 and 5, we consider statistical tests for the graph structured normal means prob-

lem. Normal means testing in high-dimensions is a well established and fundamental problem in

statistics. Much is known when H1 derives from a smooth function space such as Besov spaces or

Sobolev spaces[35, 36]. Only recently has combinatorial structures such as graphs been proposed

as the underlying structure of H1. A significant portion of the recent work in this area [1, 3, 4, 5]

has focused on incorporating structural assumptions on the signal, as a way to mitigate the effect

of high-dimensionality and also because many real-life problems can be represented as instances

of the normal means problem with graph-structured signals (see, for an example, [37]).

Another line of research relevant to the problem posed in Chapter 4 is optimal fail detection

with nuisance parameters and matched subspace detection in the signal processing literature:

see, e.g. [7, 25, 26, 67]. Though our problem can be cast as a special case of the more general

problem of optimal testing of a linear subspace with nuisance parameters, the focus on a graph-

structured signal, as well as the type of analysis based on the interplay between the scan statistics

and the spectral properties of the graph contained in this work, is novel.
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Chapter 2

Laplacian Eigenmaps for Estimation and

Localization

This chapter is devoted to the analysis of an estimator based on the graph Laplacian eigenbasis,

and establish conditions for ℓ2 consistency when latent patterns arise from the Ising and GGM

models in (1.2) or when the pattern is ℓ2 graph structured. For both deterministic and probabilistic

network models, the results indicate that by leveraging the network interaction structure, it is

possible to consistently recover high-dimensional patterns even when the noise variance relative

to the dimension with network size. Below is a summary of the contributions that can be found

in the subsections. A more detailed analysis with proofs can be found in [71].

1. Main result: under the Ising, GGM priors and ℓ2 graph structure the ℓ2 risk of Laplacian

eigenmaps projection is bounded by a function of the Laplacian eigenvalues.

2. Hierarchical block structure: under the hierarchical block structure, the Laplacian eigen-

vectors gives the Haar wavelet basis, and we can achieve ℓ2 consistency with polynomially

growing noise variance.

3. Regular torus structure: for a torus of increasing dimension, Laplacian eigenmaps achieves

ℓ2 consistency with polynomially growing noise variance.

4. Random graph structure: for the supercritical Erdös-Rényi, we can achieve ℓ2 consis-

tency with polynomially growing noise variance.

5. Estimation implies localization: Given any estimator that is ℓ2 consistent, we can show

that it generates an estimator of supp(x) that is localization consistent.

2.1 Main Result for Laplacian Eigenmaps

If the network activation patterns are generated by a Gaussian graphical model, it is easy to see

that the eigenvalues of the Laplacian (inverse covariance) determine the MSE decay. Consider

the GGM prior as in (1.2), then the posterior distribution is

x|y ∼ N
(
(2σ2∆+ I)−1y,

(
2∆ + σ−2I

)−1
)
, (2.1)
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where I is the identity matrix. The posterior mean is the Bayes optimal estimator with Bayes

MSE,
∑

i∈[p](2λi + σ−2)−1, where {λi}i∈[p] are the ordered eigenvalues of ∆. The binary Ising

model is essentially a discrete version of the GGM, however, the Bayes rule and risk for the Ising

model have no known closed form. For binary graph structured patterns drawn from an Ising

prior, we suggest a different estimator based on projections onto the graph Laplacian eigenbasis.

Recall that the graph Laplacian ∆ has spectral decomposition, ∆ = UΛU⊤, and denote the first

k eigenvectors (corresponding to the smallest eigenvalues) of ∆ by U[k]. Define the estimator

x̂k = U[k]U
⊤
[k]y, (2.2)

which is a hard thresholding of the projection of network measurements onto the graph Laplacian

eigenbasis. The following theorem bounds the MSE of this estimator.

Theorem 1. 1. The maximum MSE of the estimator in (2.2) for the observation model in

(1.1), when the activation patterns satisfy x⊤∆x ≤ ρ (i.e. lie within X2(ρ)) is bounded as

R := sup
x:x⊤∆x≤ρ

Eǫ‖x̂k − x‖2 ≤ min

(
p,

ρ

λk+1

)
+ kσ2

2. The Bayes MSE of the estimator in (2.2) for the observation model in (1.1), when the

activation patterns are drawn from the GGM prior is bounded as

RB := Ex,ǫ‖x̂k − x‖2 =
p∑

i=k+1

1

2λi

+ kσ2 ≤ p

2λk+1

+ kσ2

3. The Bayes MSE when the binary activation patterns are drawn from the Ising prior is

bounded as

RB := Ex,ǫ‖x̂k − x‖2 ≤ min

(
p,

pδ

λk+1

)
+ kσ2 + pe−p

where 0 < δ < 2 is a constant and λk+1 is the (k + 1)th smallest eigenvalue of ∆.

Proof. We will prove (3) as (1) and (2) follow from similar considerations. First, we argue that

with high probability, xT∆x ≤ δp, where 0 < δ < 2 is a constant. Let Ω = {x : xT∆x ≤ δp}
and Ω̄ denotes its complement. By Markov’s inequality, for t > 0,

P{xT∆x > K} = P{etxT∆x > etK} ≤ e−tK
Eetx

T∆x

Let ν denote the uniform distribution over {0, 1}p and N(∆) =
∫
ν(dx)e−xT∆x. Then,

Eex
T (t∆)x =

∫
ν(dx)N(∆)−1e−xT∆xex

T (t∆)x =
∫
ν(dx)e−x

T (1−t)∆x

N(∆)
= N((1−t)∆)

N(∆)
≤ 2p

where the last step follows since N(∆) =
∑

x∈{0,1}p e
−xT∆x and ∆1 = 0 implying that 1 ≤

N(∆), N((1− t)∆) ≤ 2p, ∀t ∈ (0, 1). This gives us the Chernoff-type bound,

P(Ω̄) ≤ P{xT∆x > K} ≤ e−tK2p = e(log 2−tK/p)p ≤ e−p

by setting K = δp and δ = 1+log 2
t

. If we choose t < 1+log 2
2

then δ < 2.
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Let ui denote the ith eigenvector of the graph Laplacian ∆, then under this orthonormal basis,

E[‖x̂k − x‖2] ≤ E[

p∑

i=k+1

uT
i x

2| Ω] + pP (Ω̄) + kσ2 ≤ sup
x:xT∆x≤δp

p∑

i=k+1

uT
i x

2 + p e−p + kσ2.

We now establish that supx:xT∆x≤δp

∑p
i=k+1(u

T
i x)

2 ≤ pmin(1, δ/λk+1), and the result follows.

Let x̃i = uT
i+kx, i ∈ [p − k] and note that xT∆x =

∑p
i=1 λi(u

T
i x)

2 ≥ ∑p
i=k+1 λix̃

2
i , for λi the

ith eigenvalue of ∆. Consider the primal problem,

max

p−k∑

j=1

x̃2
j such that

p−k∑

j=1

λjx̃
2
j ≤ δp, x̃ ∈ R

p−k

Note that x contained within the ellipsoid xT∆x ≤ δp, x ∈ {0, 1}p implies that x̃ is feasible, so

a solution to the optimization upper bounds supx:xT∆x≤δp

∑p
i=k+1(u

T
i x)

2. By forming the dual

problem, we find that the solution, x∗, to the primal problem attains a bound of ||x̃||2 ≤ ||x̃∗||2 =
δp/λk+1. Also, ||x̃||2 ≤ ||x||2 ≤ p, so we obtain the desired bound.

Through this bias-variance decomposition, we see the eigenspectrum of the graph Laplacian

determines a bound on the MSE for binary graph-structured activations.

Remark 2. Consider the binarized estimator x̂′
i = 1x̂i>1/2, i ∈ [p]. Then the results of Theorem 1

(3) also provide an upper bound on the expected Hamming distance of this new estimator since

E[dH(x̂
′,x)] = MSE(x̂′) ≤ 4MSE(x̂), by the triangle inequality (this is similar to Proposition

9).

2.2 Asymptotic performance under specific graph models

We now discuss the eigenspectrum of some simple graphs and use the MSE bounds derived in the

previous section to analyze the amount of noise that can be tolerated while ensuring consistent

MSE recovery of high-dimensional patterns. In all these examples, we find that the tolerable

noise level scales as σ2 = o(pγ−1), where γ ∈ (0, 1) characterizes the strength of network

interactions. Notice that without any structural assumptions naive estimators can only tolerate

noise levels that scale like σ2 ≍ 1/p for ℓ2-consistency. To compare these results to those in the

later chapters the signal size ‖x‖2 ≍ p, and so the signal-to-noise ratio is
√
p/σ.

2.2.1 Hierarchical structure

Consider that, under an appropriate permutation of rows and columns, the weight matrix W has

the hierarchical block form shown in Figure 2.1. This corresponds to hierarchical graph struc-

tured dependencies between node variables, where ǫℓ > ǫℓ+1 denote the strength of interactions

between nodes that are in the same block at level ℓ = 0, 1, . . . , L. We find that in this case the

eigenvectors U of the graph Laplacian correspond to unbalanced Haar wavelet basis (proposed

in [30, 73]). Using the bound on MSE as given in Theorem 1, we can now derive the noise

threshold that allows for consistent MSE recovery of high-dimensional patterns as the network

size p→∞.

9



Figure 2.1: Weight matrices corresponding to hierarchical dependencies between node variables.

Corollary 3. Consider a graph-structured pattern under any of the conditions of Theorem 1 (1)-

(3) under the hierarchical block graph. If ǫℓ = 2−ℓ(1−β) ∀ℓ ≤ γ log2 p + 1, for constants γ, β ∈
(0, 1), and ǫℓ = 0 otherwise, then the SNR threshold for consistent MSE recovery (R,RB = o(1))
is √

p

σ
= ω(p

1−γ
2 ).

Proof. Let ℓ∗ = (1 − γ) log2 p. Since ǫi = 2−i(1−β) ∀i < L − ℓ∗ + 1 and ǫi = 0 otherwise, we

have for ℓ ≥ ℓ∗ and since L = log2 p, λℓ ≥ 2β(L−ℓ∗)2β−1 = pβγ2β−1, which is increasing in p.

Therefore, we can pick k = 2ℓ
∗

and since 2ℓ
∗

/p = p−γ , the result follows.

What we find then is that under the heirarchical structure we are able to tolerate an SNR

scaling like p
1−γ
2 where in the naive setting we can only tolerate

√
p, thus gaining by a factor of

pγ/2.

2.2.2 Regular torus structure

Now consider the torus graph which is constructed by placing vertices in a regular grid on a ℓ
dimensional torus and adding edges of weight 1 to adjacent points. Let p = rℓ. For ℓ = 1
this is a cycle which has a circulant weight matrix w, with eigenvalues {2 cos(2πk

p
) : k ∈ [p]}

and eigenvectors correspond to the discrete Fourier transform [27]. Let i = (i1, ..., iℓ), j =
(j1, ..., jℓ) ∈ [r]ℓ. Then the weight matrix of the torus in ℓ dimensions is

Wi,j = wi1,j1δi2,j2 ...δiℓ,jℓ + ...+ wiℓ,jℓδi1,j1 ...δiℓ−1,jℓ−1
(2.3)

where δ is the Kronecker delta function. Through concentration of the eigenspectrum, we can

choose k such that λk ≥ ℓ and k = ⌈pe−ℓ/8⌉. So, the risk bound becomes O(2p/ℓ + pσ2e−ℓ/8 +
pe−p), and as we increase dimensions of the torus the MSE decays linearly.

Corollary 4. Consider a graph-structured pattern under any of the conditions of Theorem 1

(1)-(3) based on a torus graph in ℓ dimensions with p = rℓ vertices. If r is a constant and

ℓ = 8γ ln r, for some constant γ ∈ (0, 1), then the SNR threshold for consistent MSE recovery

(R,RB = o(1)) is given as: √
p

σ
= ω(p

1−γ
2 ).
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Again, the noise variance can increase with the network size p, and larger γ implies stronger

network interactions as each variables interacts with more number of neighbors (ℓ is larger).

Proof. The primary mechanism that will allow us to use Theorem 1 is a concentration result for

the eigenvalue distribution of ∆. This result is highly dependent on the fact that the dimension

of the torus ℓ must be increasing.

Lemma 5. Let λ∆
• be an eigenvalue of the Laplacian, ∆, of the torus graph in ℓ dimensions with

p = rℓ vertices, chosen uniformly at random. Then

P{λ∆
• ≤ ℓ} ≤ exp{−ℓ/8}. (2.4)

What follows is the proof sketch of Lemma 5. If v1, ..., vℓ are a subset of the eigenvectors of

w with eigenvalues λ1, ..., λℓ, then W (v1 ⊗ ... ⊗ vℓ) = (λ1 + ... + λℓ)(v1 ⊗ ... ⊗ vℓ) where ⊗
denotes tensor product. Noting that the Dii = 2ℓ, ∀i ∈ [r]ℓ then we see that the Laplacian ∆ has

eigenvalues λ∆
i = 2ℓ − λW

i =
∑[ℓ]

j (2 − λw
ij
) for all i ∈ [r]ℓ. Recall λw

k = 2 cos(2πk
n
) for some

k ∈ [r]. Let i be distributed uniformly over [r]ℓ. Then E[λw
ij
] = 0, and by Hoeffding’s inequality,

P{
ℓ∑

j=1

(2− λw
ij
)− 2ℓ ≤ −t} ≤ exp{−2t2/16ℓ}

So, using t = ℓ we get that P{∑ℓ
j=1(2− λw

ij
) ≤ ℓ} ≤ exp{−ℓ

8
} and the result follows.

2.2.3 Erdös-Rényi random graph structure

Erdös-Rényi (ER) random graphs are generated by adding edges with weight 1 between any

two vertices within V with probability qp. It is known that the probability of edge inclusion

(qp) determines large geometric properties of the graph [17]. Real world networks are generally

sparse, so we set qp = p−(1−γ), where γ ∈ (0, 1). Larger γ implies higher probability of edge

inclusion and stronger network interaction structure. Using the degree distribution, and a result

from perturbation theory, we bound the quantiles of the eigenspectrum of ∆. This enables us to

set the sequence of quantiles for the eigenvalue distribution k = ⌈αpp
1−γ⌉ such that PG{λk ≤

pγ/2 − pγ−1} = O(1/αp). So, we obtain a bound for the expected Bayes MSE (with respect to

the graph) EG[R] ≤ O(p1−γ) + σ2O(αpp
1−γ) +O(p/αp).

Corollary 6. Consider a graph G drawn from an Erdös-Rényi random graph model with p ver-

tices and probability of edge inclusion qp = p−(1−γ) for some constant γ ∈ (0, 1). For a graph-

structured pattern under any of the conditions of Theorem 1 (1)-(3), the noise variance that can

be tolerated while ensuring consistent MSE recovery (R,RB = oPG
(1)) is given as:

√
p

σ
= o(p

1−γ
2 ).

Proof. Using the degree distribution [9], and a result from perturbation theory, we bound the

quantiles of the eigenspectrum of ∆.
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Lemma 7. Let λ• denote an eigenvalue of ∆ chosen uniformly at random. Let PG be the proba-

bility measure induced by the ER random graph and P• be the uniform distribution over eigen-

values conditional on the graph. Then, for any αp increasing in p,

PG{P•{λ• ≤ pγ/2− pγ−1} ≥ αpp
−γ} = O(1/αp) (2.5)

Proof of Lemma 7: We introduce a random variable • that is uniform over [p]. Note that, con-

ditioned on this random variable, d• ∼ Binomial(p − 1, qp) and Var(d•) ≤ pqp. We decompose

the Laplacian, ∆ = D −W = (d̄I −W) + (D − d̄I), into the expected degree of each vertex

(d̄ = (p− 1)qp), W and the deviations from the expected degree and use the following lemma.

Lemma 8 (Wielandt-Hoffman Theorem). [38, 85] Suppose A = B + C are symmetric p × p
matrices and denote the ordered eigenvalues by {λA

i , λ
B
i }pi=1. If ||.||F denotes the Frobenius

norm,
p∑

i=1

(λA
i − λB

i )
2 ≤ ||C||2F (2.6)

Notice that EG||D− d̄I||2F/p = Var(d•) and so EG||λd̄I−W−λL||2/p ≤ pqp = pγ (i). Also, it

is known that for γ ∈ (0, 1) the eigenvalues converge to a semicircular distribution[20] such that

PG{|λW
• | ≤ 2

√
pqp(1− qp)} → 1. Since 2

√
pqp(1− qp) ≤ 2pγ/2, we have EG[(λ

W
• )2] ≤ 4pγ

for large enough p (ii). Using triangle inequality,

EG[(λ
L
• − (p− 1)qp)

2] ≤ EG[(λ
L
• − ((p− 1)qp − λW

• ))2] + EG[(λ
W
• )2] ≤ 5pγ, (2.7)

where the last step follows using (i), (ii) and λd̄I−W
i = (p− 1)qp − λW

i . By Markov’s inequality,

PG{P•{λL
• ≤

pγ

2
− pγ−1} ≥ αpp

−γ} ≤ pγ

αp

EG[P•{λL
• ≤

pγ

2
− pγ−1}] (2.8)

for any αp which is an increasing positive function in p. We now analyze the right hand side.

P•{|λL
• − (p− 1)qp| ≥ ǫ} ≤ ǫ−2

E•[(λ
L
• − (p− 1)qp)

2]

Note that P•{λL
• ≤ pqp − qp − ǫ} ≤ P•{|λL

• − (p− 1)qp| ≥ ǫ} and setting ǫ = pqp/2 = pγ/2,

P•{λL
• ≤ pγ/2− pγ−1} ≤ 4p−2γ

E•[(λ
L
• − (p− 1)qp)

2].

Hence, we are able to complete the lemma, such that for p large enough, using Eqs. (2.8) and

(2.7)

PG{P•{λL
• ≤

pγ

2
− pγ−1} ≥ αpp

−γ} ≤ 4

αppγ
EG[E•[(λ

L
• − (p− 1)qp)

2]] ≤ 20

αp

. (2.9)

Proof sketch of Corollary 6: By lemma 7 and appropriately specifying the quantiles,

EGRB/p ≤ EG

[
2

λkp

+ σ2kp
p

+ e−p

]
≤
(

2

pγ/2− pγ−1
+ σ2O(αpp

−γ) + e−p

)
+O( 1

αp

)

(2.10)

Note that we have the freedom to choose αp =
√
pγ/σ2 making σ2O(αpp

−γ) = O(
√
σ2/pγ) =

o(1) and O(1/αp) = o(1) if σ2 = o(pγ).
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(a) Eigenvalue Histogram for hierarchical tree. (b) Estimator Performance

Figure 2.2: The eigenvalue histogram for the binary tree, L = 11, β = .1 (left) and the perfor-

mance of various estimators (right) with β = 0.05 and σ2 = 4, both with γ = 1.

2.3 Experiments

We simulate patterns from the Ising model defined on hierarchical, torus and ER graphs. Since

the Ising distribution admits a closed form for the distribution of one node conditional on the

rest of the nodes, a Gibbs sampler can be employed. Histograms of the eigenspectrum for the

hierarchical tree graph with a large depth, the torus graph in high dimensions, and a draw from

the ER graph with many nodes is shown in figures 2.2(a), 2.3(a), 2.4(a) respectively. The eigen-

spectrum of the torus and ER graphs illustrate the concentration of the eigenvalues about the

expected degree of each node.

(a) Eigenvalue Histogram for Torus. (b) Estimator Performance

Figure 2.3: The eigenvalue histogram for the torus with ℓ = 10 and p = 510 (left) and estimator

performances (right) with p = 3ℓ and σ2 = 1. Notice that the eigenvalues concentrate around 2ℓ.

We use iterative eigenvalue solvers to form our estimator and choose the quantile k by min-

imizing the bound in Theorem 34. We compute the average Bayes MSE, RB/p, (by taking

multiple draws) of our estimator for a noisy sample of node measurements. We observe in all of

the models that the eigenmap estimator is a substantial improvement over Naive (the Bayes esti-

mator that ignores the structure). See Figures 2.2(b), 2.3(b), 2.4(b). For the hierarchical model,

we also sample from the posterior using a Gibbs sampler and estimate the posterior mean (Bayes

rule under MSE). We find that the posterior mean is only a slight improvement over the eigenmap

estimator (Figure 2.2(b)), despite it’s difficulty to compute. Also, a binarized version of these

estimators does not substantially change the MSE.
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(a) Eigenvalue Histogram for Erdös-Rényi. (b) Estimator Performance

Figure 2.4: The eigenvalue histogram for a draw from the ER graph with p = 2500 and qp = p−.5

(left) and the estimator performances (right) with qp = p−.75 and σ2 = 4. Notice that the

eigenvalues are concentrated around pγ where qp = p−(1−γ).

(a) Eigenvalue Histogram for Watts-Strogatz. (b) Estimator Performance

Figure 2.5: The eigenvalue histogram for a draw from the Watts-Strogatz graph with d = 5 and

p = 45 with 0.25 probability of rewiring (left) and estimator performances (right) with 4ℓ vertices

and σ2 = 4. Notice that the eigenvalues are concentrated around 2ℓ.
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We also simulate graphs from the Watts-Strogatz ‘small world’ model [84], which is known

to be an appropriate model for self-organizing systems such as biological systems and human

networks. The ‘small world’ graph is generated by forming the torus graph, then rewiring each

edge with some constant probability to another vertex uniformly at random such that loops are

never created. We observe that the eigenvalues concentrate (more tightly than the torus graph)

around the expected degree 2ℓ (Figure 2.5(a)) and note that, like the ER model, the eigenspectrum

converges to a nearly semi-circular distribution [20]. Similarly, the MSE decays in a fashion

similar to the ER model (Figure 2.5(b)).

2.4 Estimation Implies Localization

ℓ2 consistency may seem superficial, as in some situations 0, may have diminishing mean square

error. We will now see that if the mean vector has the form x ∝ 1C then ℓ2 consistency (esti-

mation) implies localization consistency of C. Recall that localization means that we have an

estimate Ĉ such that |C ∩ Ĉ| is small relative to

√
|Ĉ||C|. Suppose that we obtain an estimator

that has a low MSE (‖x− x̂‖) then we immediately can construct an estimate of C.

Ĉ = arg max
C⊆[n]

x̂⊤ 1C√
|C|

(2.11)

and define x̂T = ‖x̂‖1Ĉ/

√
|Ĉ|. This estimate is easily computed by greedily including the

largest components of x̂ in Ĉ until the objective is maximized. Then we know that

x̂⊤ 1C√
|C|
≤ x̂⊤ 1Ĉ√

|Ĉ|
⇒ ‖x̂T − x̂‖ ≤ ‖x̂− x‖

Hence, we have the following MSE

‖x̂T − x‖2 ≤ (‖x̂T − x̂‖+ ‖x̂− x‖)2 ≤ 4‖x̂− x‖2

‖x̂T − x‖2 = µ2


‖x̂T‖2

µ2
+ 1− 2

|Ĉ ∩ C|√
|C||Ĉ|




µ2d(Ĉ, C) = ‖x̂T − x‖2 + µ2(1− ‖x̂T‖2
µ2

) ≤ ‖x̂T − x‖2 + |‖x‖2 − ‖x̂T‖2|

≤ ‖x̂T − x‖2 + ‖x̂T − x‖(‖x‖+ ‖x̂T‖) ≤ 2(‖x̂T − x‖2 + µ‖x̂T − x‖)
We summarize our result in the following,

Proposition 9. Consider Ĉ constructed from x̂ according to (2.11).

d(Ĉ, C) ≤ 1

µ2
(‖x̂T − x‖2 + |‖x‖2 − ‖x̂T‖2|) ≤ 2(

4

µ2
‖x̂− x‖2 + 2

µ
‖x̂− x‖) (2.12)

Of course this means that if the conditions, particularly the SNR scaling, are such that E‖x̂ −
x‖ → 0 then Ed(C,C ′)→ 0.
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This has obvious implications for the preceeding Sections, because any x drawn from the

Ising model can be written as 1C . We will see that this can directly port some classical estimators

to apply to our localization techniques in Chapter 5.

2.5 Discussion

In this chapter, we have characterized the improvement in SNR threshold, above which ℓ2 con-

sistency of high-dimensional network activation patterns embedded in heavy noise is possible,

as a function of the network size and parameters governing the statistical dependencies in the

activation process. Our results indicate that by leveraging the network interaction structure, it

is possible to tolerate noise with variance that increases with the size of the network whereas

without exploiting dependencies in the node measurements, the noise variance needs to decrease

as the network size grows to accommodate for multiple hypothesis testing effects.

Recall, that we have studied the estimation of a Gaussian mean under an ellipsoid constraint.

There is some work in statistics along these lines, most notably the Pinsker estimator has been

shown to be asymptically minimax [41]. The major difference, between our work and the afore-

mentioned is that the setting in which they prove asymptotic minimaxity is when the ellipsoid is

fixed in possibly infinite dimensions and the noise variance is decreasing. This is not applicable

to the setting in which the graph may change as p → ∞. In Chapter 4, we will compare our

statistical test to one closely related to Pinsker’s estimator (Ermakov’s test).

One may notice that all of the examples above require that the degree of the vertices is in-

creasing in p. This excludes such important cases as the two dimensional lattice and the balanced

binary tree. We will set out to perform a more refined analysis that will show that such cases re-

sult in improved performance, under the balanced graph structure (Chapter 4). We will see that

there are fundamental limits to what is detectable under the ℓ0 graph structure (Chapter 5). In

this case, we will see that improved SNR regimes require that the degree must be increasing.

While we have only considered MSE recovery, it is often possible to detect the presence of

patterns in much heavier noise, even though the activation values may not be accurately recovered

[39]. SNR thresholds for the detection of graph structured signals will be addressed in Chapters

4 and 5. In addition, the thresholding estimator based on the graph Laplacian eigenbasis can also

be used in high-dimensional linear regression or compressed sensing framework to incorporate

structure, in addition to sparsity, of the relevant variables. Another popular estimator is based on

total-variation denoising, which we call the Edge lasso. We will be addressing this estimator in

the following chapter.
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Chapter 3

Edge Lasso for Changepoint Localization

The fused lasso was proposed recently to enable recovery of high-dimensional patterns which

are piece-wise constant on a graph, by penalizing the ℓ1-norm of differences of measurements

at vertices that share an edge. While there have been some attempts at coming up with efficient

algorithms for solving the fused lasso optimization, a theoretical analysis of its performance

is mostly lacking except for the simple linear graph topology. In this section, we investigate

changepoint sparsistency of fused lasso for general graph structures, i.e. its ability to correctly

recover the exact support of piece-wise constant graph-structured patterns asymptotically (for

large-scale graphs). To emphasize this distinction over previous work, we will refer to it as Edge

Lasso.

We focus on the (structured) normal means setting, and our results provide necessary and

sufficient conditions on the graph properties as well as the signal-to-noise ratio needed to ensure

changepoint sparsistency. Let A ∈ A denote the maximal sets of vertices with constant activation

(viz. xv = xw, ∀v, w ∈ A). We exemplify our results using simple graph-structured patterns, and

demonstrate that in some cases fused lasso is changepoint sparsistent at very weak signal-to-noise

ratios, which may scale as
√
(log p)/|A|, where p is the number of vertices in the graph and A is

the smallest element of A (see figure 3.1). In other cases, it performs no better than thresholding

the difference of measurements at vertices which share an edge (which requires signal-to-noise

ratio that scales as
√
log p). The standard of recovery that we will study is the exact recovery

of the boundary set, B = supp(∇x). All results and detailed proofs can be found in [70]. We

summarize the current results regarding the edge lasso:

1. Edge thresholding: Generic chaining provides upper and lower bounds on the change-

point sparsistency of edge thresholding, a simple estimator, that provides a natural com-

parison for the edge lasso.

2. Noiseless changepoint sparsistency: There are combinatorial conditions under which the

edge lasso is changepoint sparsistent given the noiseless model (ǫ = 0).

3. Noisy changepoint sparsistency: By combining the conditions for the noiseless model

with concentration of measure and spectral graph theory, one can obtain conditions for

changepoint sparsistency in the noisy model.

4. Asymptotics for specific graphs: The edge lasso fails to be changepoint sparsistent for

the 1 and 2 dimensional lattice, while it obtains nearly oracle rates for the nested complete
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graph.

Figure 3.1: A qualitative summary of our changepoint sparsistency results for the SNR required

by Edge thresholding, Edge lasso (for the 1-d, 2-d Grid and Nested Complete Graph), and an

Oracle that has a priori knowledge of A. (In the figure it is assumed that |A| scales like p for all

A ∈ A.)

3.0.1 Mathematical Preliminaries

The following will provide the necessary tools from algebraic graph theory, for a more detailed

exposition of these mathematical objects refer to [31]. For any oriented graph, the column space

of ∇ is row(∇⊤), and its orthogonal complement is null(∇⊤). To cut a subset of the vertices,

A ⊂ V , from the graph is to define A to be the positive shore and Ā = V \A the negative shore.

Now we define signed characteristic vectors of a cut to be χ(A) such that

χ(A)e =





+1 , e+ ∈ A, e− ∈ Ā
−1 , e− ∈ A, e+ ∈ Ā
0 , otherwise

Notice that {χ({v})}v∈V is precisely the columns of ∇, so by definition it forms a basis for

row(∇⊤). Moreover χ(A) =
∑

v∈A∇v which we will use often. (We often subscript ∇ with e
and v interchangeably where e means rows and v means columns.)

Let us introduce the signed characteristic vectors of cycles, χ(φ) where φ is an ordered col-

lection of vertices that form a cycle such that (φi, φi+1) ∈ E.

χ(φ)e =





+1 , e+ = φi+1 and e− = φi

−1 , e− = φi+1 and e+ = φi

0 , otherwise
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So, if an edge e is contained in the cycle then χ(φ)e = 1 if the orientation of e is in the direction

of the cycle and χ(φ)e = −1 otherwise. Not only is it the case that null(∇⊤) contains χ(φ) for

all cycles φ but it is spanned by all such χ(φ). We will denote the projection onto these spaces

as Pnull(∇⊤) and Prow(∇⊤).

Also, let us denote the largest degree as dmax. We also would like to note that the null space

and row space (null(∇), row(∇)) is equal to the null and row space of ∆. The null space of ∇
is specifically the vectors that are constant over connected components of G. Furthermore, the

projection onto the null space is obtained by averaging a vector within connected components.

For an operator Φ define the Moore-Penrose pseudoinverse Φ†. We will often use the operator

norm,

|||Φ|||2,∞ = sup
‖b‖2≤1

‖Φb‖∞

where the norms ℓ2 and ℓ∞ are the Euclidean and max norms. To be clear we define sign(0) = 0.

For a vector z ∈ R
E and a non-empty set of edges B ⊂ E, we will denote with zB the vector

in R
E which agrees with z in the coordinates B and has zero entries in the coordinates in B̄.

Similarly, for a matrix ∇ ∈ R
V×E , we will write ∇B for the matrix ∇ with the rows in −B

replaced by zero vectors.

3.1 Edge Thresholding

It is natural as a first pass to merely difference observations ye+ − ye− and hard threshold to

obtain an estimator of sign(∇x) to achieve changepoint sparsistency. The estimator is given by,

ẑth,e(τ) = (ye+ − ye−)I{|ye+ − ye− | > τ} = (∇ey)I{|∇ey| > τ}

We now characterize necessary and sufficient conditions to obtain changepoint sparsistency of

edge thresholding.

Theorem 10. Suppose that
‖∇x‖0
|E| → 0 for simplicity. Let δ be the smallest gap between the

componentwise signal size between two maximal clusters, A,A′ ∈ A.

1. If δ
σ
= ω(

√
log |E|) then ẑth is changepoint sparsistent.

2. If δ
σ
= o(

√
log(|E| − ‖∇x‖0)) then ẑth is not changepoint sparsistent.

Proof. We will assume that the noise is Gaussian with variance 1, by making the gap δ′ = δ/σ.

Let us construct the statistics: ze = ye+ − ye− for each edge e. Now we are interested in

the estimator B̂ = {e : |ze| > τ}. We can show (1) with Markov’s inequality and Gaussian

concentration,

P{B̂ 6= B} = P{inf
e∈B
|ze| < τ} ∪ { sup

e∈−B
|ze| ≥ τ} (3.1)

≤ 2|B|e−(δ′−τ)2/4 + (m− |B|)e−τ2/4

The inequality works because within B, ze is normal with variance 2 and mean of magnitude at

least δ′. Also, within −B, ze is normal with zero mean and variance 2. The RHS of (3.1) is equal

to me−δ′2/8 if we select τ = δ′/2. Hence, if δ′ = Ω(
√

(log(m))) then we obtain dual consistency.
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To prove (2) we must employ the generic chaining to control the supremum of a Gaussian

process. First let us recall the following fact about zero mean Gaussian processes, XT , indexed

by the set T with σ′2 ≥ supt∈T EX2
t .

P{| sup
t∈T

Xt − E sup
t∈T

Xt| ≥ u} ≤ e−u2/(2σ′2)

Hence, if τ = o(E supe∈−B ze) then certainly B̂ is not sparsistent. But certainly τ < δ′ is a

necessary condition for sparsistency because there exists an e ∈ B such that P{|ze| ≤ δ′} ≥ C
for some constant C. Thus, δ′ = Ω(E supe∈−B ze) is necessary for consistency.

Now we use the generic chaining methods developed by [75] to bound E supe∈−B ze from

below. Let T be an index set with |T | = n and Nn = 22
n

and define an admissible sequence

to be a sequence of increasing partitions Hn such that |Hn| ≤ Nn. Let diam(Hn(t)) be the

diameter of the cell containing t in the partition. Now define the following functional of metric

space (T, d),

γα(T, d) = inf sup
t∈T

∑

n≥0

2n/αdiam(Hn(t))

where the infimum is over all admissible sequences. Then we have the following majorizing

measure theorem,

Theorem 11 ([75]). For Gaussian process XT , let d(s, t) =
√
E(Xs −Xt)2.

1

L
γ2(T, d) ≤ E sup

t∈T
Xt ≤ Lγ2(T, d)

for some universal constant L.

Now ze restricted to −B is a Gaussian process (with mean 0) resulting in the distance,

d2(a, b) =





0, a = b
2, a+ = b+ xor a− = b−

6, a+ = b− xor a− = b+

4, otherwise

Until the allowable partition size Nn ≥ |−B| the largest diameter of a cell is at least
√
2 (because

before that point we cannot have a partition of singletons). Hence,

γ2(E
±, d) ≥

√
2

⌊log log |−B|⌋∑

n=0

2n/2 ≥
√

2 log | − B|

So,

E sup
e∈E
|Xe| ≥

√
2 log(m− |B|)

L

Thus, δ′ = δ/σ = Ω(log(m− |B|)) is necessary for dual consistency.

We see immediately that the signal to noise ratio must be increasing like the log of the number

of edges for edge thresholding to achieve changepoint sparsistency.
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3.2 Edge Lasso

In this section we will analyze the edge lasso estimator, which arises as the solution to a gener-

alized fused lasso problem as defined in [78] with the graph constraints specified by the matrix

∇. In particular, the edge lasso is the minimizer of the convex problem

min
x̂∈Rp

1

2
‖y − x̂‖22 + λ‖∇x̂‖1, (3.2)

were λ > 0 is a tuning parameter. Thus, the edge lasso is the penalized least squares estimator

of x with penalty term given by the ℓ1-norm of the differences of measurements across edges in

G. Using KKT conditions and a primal-dual witness method we are able to extract the following

theorem regarding noiseless recovery of x.

As shown in [78], the dual problem to (3.2) is given by

minz∈Rm

1

2
‖y − λ∇⊤z‖22 such that ‖z‖∞ ≤ 1, (3.3)

and any solution ẑ to the dual problem results in the primal solution (see [78] for details)

x̂ = y − λ∇⊤ẑ = Pnull(∇
−B̂

)(y − λ∇⊤
B̂ ẑB̂). (3.4)

where B̂ = {e ∈ E : |ze| = 1}. In this way, we can assess if the solution to the dual program

is sparsistent. Unlike the primal solution, the solution to the dual problem is not always unique.

In fact it may be that there are two solutions with different dual sparsity patterns B̂, but have the

same x̂. [78]

3.2.1 Noiseless Changepoint Sparsistency

We now consider the performance of the edge lasso in the noiseless case, i.e. when the vertices

are observed without noise. The reasons for investigating this seemingly uninteresting case are

two-fold. First, somewhat surprisingly, there are many graphs for which the primal problem

will not recover the correct sparsity pattern A, for any value λ > 0. (See Figure 3.2) For these

graphs, consistent noisy recovery with the edge lasso is therefore hopeless. Secondly, and more

importantly, as we will show later, in order for noisy recovery to be possible, it is sufficient that

strict dual feasibility holds, i.e. ‖z−B‖∞ < a for some a < 1 for some dual solution z to the

noiseless edge lasso problem.

Figure 3.2: An example where for all λ > 0 the edge lasso does not recover the true A. The 0 to

the right is separated into its own element of the partition.

When testing for sparsistency we use the following primal dual witness (PDW) construc-

tion, pioneered by [82], which results in a pair (x̂, ẑ) of primal and dual solutions. The PDW
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construction will be used as sufficient conditions for sparsistency. Note that this is not a prac-

tical method for solving the dual problem and is only used as a proof technique. We begin by

setting zB = sign(∇x), which is equivalent to assuming the knowledge of both B and the sign

differences. Using this knowledge, compute x̂ = Pnull(∇−B)(y− λ∇⊤
B ẑB). The PDW steps are as

follows.

1. Verify the complementary slackness condition sign(∇Bx̂) = ẑB.

2. Construct z̃ by solving the linear program

minz̃∈Z‖z̃‖∞ (3.5)

where Z is the set of all dual parameters that satisfy the zero-subgradient condition in the

noiseless setting, i.e.

Z = {z ∈ R
−B : ∇−B∇⊤

−Bz = −∇−B∇⊤
BzB}

3. Construct the noisy dual by

z−B =
1

λ
∇−B∆

†
−Bǫ+ z̃

where ∆−B is the Laplacian of the graph G−B.

4. Check the strict dual feasibility condition ‖z−B‖∞ < 1.

Theorem 12. If the PDW method passes for all large enough p then the solution to the dual

program (3.3) is sparsistent.

Before we can prove Theorem 12 we need the following lemma. This lemma will also be

used when proving Proposition 22.

Lemma 13. Suppose we are given the boundary set B with sign vector zB ∈ {−1, 0, 1}E sup-

ported only over B. Let ẑ
†
−B = ∇−B∆

†
−B(

y

λ
− ∇⊤

BzB). Set z† = zB + ẑ
†
−B and obtain the

corresponding primal solution

x̂ = y − λ∇⊤ẑ†.

There exists a solution to the dual problem with B and zB as given if and only if ∃f ∈ null(∇⊤
−B)

such that

1. Dual feasibility: ‖z†−B + f‖∞ ≤ 1

2. Complementary slackness: sign(∇Bx̂) ⊆ zB
Where ⊆ in the complementary slackness is taken to mean that it is equal over the support of

sign(∇Bx̂).

Proof of Lemma 13. We will enumerate the KKT conditions and find that ẑ† arises due to the

zero-subgradient conditions leaving only the dual feasibility and complementary slackness to be

satisfied. We introduce Lagrangian parameters γ+,γ− and use the following Lagrangian,

1

2
‖y − λ∇⊤z‖22 + γ

⊤
+(z− 1) + γ

⊤
−(−z− 1)

This was obtained by turning ‖z‖∞ < 1 into linear constraints.

The following are the complete KKT conditions:
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1. Zero subgradient: ∇(λ∇⊤z− y) + γ+ − γ− = 0

2. Parameter domain: γ+,γ− ≥ 0

3. Dual feasibility: ∀e, ze − 1 ≤ 0,−ze − 1 ≤ 0

4. Complementary slackness: γ+,e = 0 if ze 6= 1 and γ−,e = 0 if ze 6= −1
Now define γ = γ+ − γ− the KKT conditions may be reduced to,

1. Zero subgradient: ∇(λ∇⊤z− y) + γ = 0

2. Dual feasibility: ‖z‖∞ ≤ 1

3. Complementary slackness: γe ≥ 0 if ze = 1, γe ≤ 0 if ze = −1, and γ = 0 otherwise.

Notice that the existence of such a γ is necessary and sufficient for dual optimality due to con-

vexity. Consider the zero subgradient condition only over −B̂,

λ∇−B̂∇⊤
−B̂z−B̂ +∇−B̂(λ∇⊤

B̂zB̂ − y) = 0

because over −B, γe = 0. This is equivalent to

∃f ∈ null(∇⊤
−B̂) such that

z−B̂ = (∇−B̂∇⊤
−B̂)

†∇−B̂(
y

λ
−∇⊤

B̂zB̂) + f

Now we will show that (∇−B̂∇⊤
−B̂)

†∇−B̂ = ∇−B̂∆
†
−B̂. Let ∇−B̂ = UΛV⊤ be the singular value

decomposition of∇−B̂ then

(∇−B̂∇⊤
−B̂)

†∇−B̂ = U(Λ†)2U⊤UΛV⊤

= UΛ†V⊤ = UΛV⊤VΛ†U⊤

= ∇−B̂∆
†
−B̂

Furthermore defining γB̂ = ∇⊤
B̂ x̂ is necessary and sufficient for the remainder of the zero sub-

gradient condition. Now the complementary slackness holds if and only if sign(∇B̂x̂) ⊆ zB̂.

Proof of Theorem 12. We will show that the conditions of Lemma 13 are satisfied if the PDW

passes. By construction, if 1 passes then complementary slackness in Lemma 13 will be satisfied.

By step 2 of the PDW construction,∇−B∇⊤
−Bz̃ = −∇−B∇⊤

BzB implies that z = −∇−B∆
†
−B∇⊤

BzB+
f , for some f ∈ null(∇⊤

−B), again by the SVD decomposition of ∆−B. But we know that

∆†
−Bx = 0 because the Moore-Penrose pseudoinverse has zero action on any vectors that are

constant over connected components of G−B. Therefore, 1
λ
∇⊤

−B∆
†
−Bǫ = 1

λ
∇⊤

−B∆
†
−By. Next, by

step 3 we know that

z−B = ∇−B∆
†
−B(

y

λ
−∇⊤

BzB) + f = z
†
−B + f

If step 4 passes then dual feasibility holds.

Proposition 14. For dual solution z the zero-subgradient condition is satisfied if and only if for

all Â ∈ Â, and for all C ⊆ Â,

χ(C)⊤z−B̂ =
|C|
|Â|

χ(Â)⊤zB − χ(C)⊤zB
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Proof. The zero-subgradient condition for the noiseless setting can be rewritten as

∇⊤
−B̂,vz−B̂ = Prow(∇⊤

−B̂
)(−∇⊤

B̂,vzB̂) (3.6)

=
χ(Â)⊤z

B̂

|Â| −∇⊤
B̂,vzB̂ (3.7)

Because z−B̂ is supported only over−B̂ we can rewrite∇⊤
−B̂,vz−B̂ = ∇⊤

v z−B̂. Similarly,∇⊤
B̂,vzB̂ =

∇⊤
v zB̂. Recall that

∑
v∈C ∇⊤

v = χ(C)⊤ and the result follows by summing each side of eq. (3.8).

The other direction follows immediately by setting C = {v} and we have that χ({v}) = ∇v.

Below, we will outline sufficient conditions for sparsistency that are based on the topology of

the graph G. To this end, recall that, for a given estimated partition Â, we have an explicit form

for the approximation error incurred on v ∈ Â(v) ∈ Â using the characteristic vector of the cut

Â, namely

x̂v − xv = (Pnull(∇
−B̂

)(x− λ∇⊤
B̂ ẑB̂))v − xv

= −λχ(Â(v))
⊤ẑB̂

|Â(v)|
Notice that |χ(Â(v))⊤ẑB̂| ≤ |∂Â(v)| because of the definition of the characteristic vector. We

find that the success and failure of the noiseless edge lasso is dictated by the presence of a

bottleneck cut of elements A ∈ A in a sense made precise in the following result.

Lemma 15. Let z be the result of the PDW method and notice that in the noiseless setting

z̃ = z−B. Then for some A ∈ A there exists a cut of A with shores C, C̄ such that

‖z̃‖∞ =
1

|∂C ∩ ∂C̄|

∣∣∣∣
|C|
|A|χ(C̄)⊤zB −

|C̄|
|A|χ(C)⊤zB

∣∣∣∣

Proof. For the following theorem we will focus on a connected component A that contains an

edge e such that |z̃e| = ‖z̃‖∞. Let Q = {e ∈ E(A) : |z̃e| = ‖z̃‖∞} and denote ζ = ‖z̃‖∞.

Suppose that Q is not a cut of A (the removal of Q does not disconnect A). There exists a

spanning tree of A not containing Q as we can take any spanning tree of A with Q removed.

Take e ∈ Q then form a cycle φ containing e by including the unique path in the spanning tree

from eh to et. Notice that e is the unique element of φ such that |ẑe| = ζ . Construct a new

edge vector z′ = z̃ + ηχ(φ) for some small η such that |z′e| is smaller over the cycle φ. Notice

that |z′e| < ζ and with |η| < ζ − maxe′ 6=e |ze|, |z′e′ | < ζ for all e′ ∈ φ. Repeat this procedure

for the other elements of Q replacing z̃ with z′. We obtain a new edge vector that satisfies

the zero subgradient condition because we only added elements of the null(D⊤
−B). Moreover

‖z′‖∞ < ‖z̃‖∞, contradicting the fact that z̃ is the solution to eqn. (3.5) in PDW step (2). Hence,

Q is a cut of A and for all e ∈ Q, |z̃e| = ‖z̃‖∞, and let one shore of the cut be C. Notice that

|Q| = |∂C ∪ ∂C̄| and ‖z̃‖∞|∂C ∪ ∂C̄| = |χ(C)⊤z̃| = |χ(C)⊤z−B|. Now, Proposition 16 below

states that the zero subgradient condition is equivalent to,

χ(C)⊤z−B =
|C|
|A|χ(A)

⊤zB − χ(C)⊤zB
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=
|C|
|A|χ(A)

⊤zB −
|C|+ |C̄|
|A| χ(C)⊤zB

=
|C|
|A|χ(C̄)⊤zB +

|C̄|
|A|χ(C)⊤zB

Proposition 16. For dual solution z the zero-subgradient condition is satisfied if and only if for

all Â ∈ Â, and for all C ⊆ Â,

χ(C)⊤z−B̂ =
|C|
|Â|

χ(Â)⊤zB − χ(C)⊤zB

Proof. The zero-subgradient condition for the noiseless setting can be rewritten as

∇⊤
−B̂,vz−B̂ = Prow(∇⊤

−B̂
)(−∇⊤

B̂,vzB̂) (3.8)

=
χ(Â)⊤z

B̂

|Â| −∇⊤
B̂,vzB̂ (3.9)

Because z−B̂ is supported only over−B̂ we can rewrite∇⊤
−B̂,vz−B̂ = ∇⊤

v z−B̂. Similarly,∇⊤
B̂,vzB̂ =

∇⊤
v zB̂. Recall that

∑
v∈C ∇⊤

v = χ(C)⊤ and the result follows by summing each side of eq. (3.8).

The other direction follows immediately by setting C = {v} and we have that χ({v}) = ∇v.

Using the previous Lemma we offer the following sufficient conditions for correct recovery

(and strict dual feasibility).

Theorem 17. Define the following notion of connectivity for each A ∈ A,

ν(A) = max
C⊂A

|C|
|∂C ∩ ∂C̄|

|∂C̄ ∩ ∂A|
|A| (3.10)

Then the noiseless problem recovers the correct A if ν(A) = maxA∈A ν(A) < 1/2.

Proof. Consider the C,A pair in the proof of Lemma 15. We need to show that, 1
|∂C∩∂C̄| |

|C|
|A|χ(C̄)⊤z−

|C̄|
|A|χ(C)⊤z| ≤ 2ρ(A). To this end, note that 1

|∂C∩∂C̄| |
|C|
|A|χ(C̄)⊤z− |C̄|

|A|χ(C)⊤z| is smaller than

|χ(C̄)⊤z|
|∂C ∩ ∂C̄|

|C|
|A| +

|χ(C)⊤z|
|∂C ∩ ∂C̄|

|C̄|
|A|

which in turn is smaller than

2max
C⊂A

|χ(C̄)⊤z|
|∂C ∩ ∂C̄|

|C|
|A| ≤ 2max

C⊂A

|∂C̄ ∩ ∂A|
|∂C ∩ ∂C̄|

|C|
|A| = 2ρ(A).

See Figure 3.3 for an illustration of condition (3.10) in the previous theorem. An interpre-

tation of the ν(A) parameter is that there is no bottleneck within vertices of constant activation,

A, relative to the flow coming in and out of A. Later we will describe a class of graphs which

we call the nested complete graphs for which ν(A) = 1
|A| for A ∈ A. We now combine this

result with subGaussian concentration to produce a changepoint sparsistency result in the noisy

regime.
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Figure 3.3: An example of the quantities in eq. (3.10) for a cut of set A depicted by the large

vertices. The cut C are the black vertices, ∂C ∩ ∂C̄ are blue edges, and ∂C̄ ∩ ∂A are red edges.

The RHS of eq. (3.10) for this cut is 5/21.

3.2.2 Noisy Changepoint Sparsistency

We now analyze the performance of the noisy edge lasso estimator. We will rely on the PDW

construction and on the results from the previous section to formulate conditions under which the

edge lasso achieves sparsistency. All of the proofs in this section are in the supplementary ma-

terial and are a combination of Gaussian concentration and noiseless recovery. We first provide

conditions guaranteeing that, asymptotically, the first step of the PDW construction passes.

Lemma 18. Let x̂ be the estimated signal resulting from the PDW method and δ is the minimal

gap of the symbol. If ∀A ∈ A,

δ

σ
= ω

(
1√
|A|

)
and λ = o

(
δ
|A|
|∂A|

)
(3.11)

then step (1) of the PDW method passes with probability tending to 1.

Proof. In the PDW method we use B̂ = B. Recall that the estimated signal is given by,

x̂v = (Pnull(∇−B)(y − λ∇⊤
BzB))v

= xv +

∑
w∈A(v) ǫw

|A(v)| − λ
χ(A(v))⊤zB
|A(v)|

Now by Gaussian concentration, we know that for γ > 0 with probability at least 1− 2γ,

|∑w∈A(v) ǫw|
|A(v)| ≤ σ

√
2

|A(v)| log(
1

γ
)

We intend to show that for v, w such that A(v) 6= A(w),

|x̂v − x̂w|
δ

≥ 1− o(1)
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Differencing the equation for x̂ we have,

|x̂v − x̂w|
δ

≥ 1− σ

δ

√
2

|A(v)| log(
1

γ
)

−σ

δ

√
2

|A(w)| log(
1

γ
)− λ

δ
(
|∂A(v)|
|A(v)| +

|∂A(w)|
|A(w)| )

The conditions of (3.11) imply that

σ

δ

√
2

|A(v)| log(
1

γ
) +

σ

δ

√
2

|A(w)| log(
1

γ
) = o(1)

λ

δ
(
|∂A(v)|
|A(v)| +

|∂A(w)|
|A(w)| ) = o(1)

We continue our study of the noisy reconstruction with the edge lasso by outlining sufficient

conditions for sparsistency based on the 2,∞ norm of the operator∇−B∆
†
−B. The intuition is that

if we have some dual slack in the sense that ‖z̃‖∞ is bounded away from 1 and if we bound the

maximum of |(∇−B∆
†
−Bǫ)e| then the PDW method will pass. We show that we can accurately

describe ‖∇−B∆
†
−B‖2,∞ with the spectrum of the Laplacian. Specifically, if the eigenvectors

corresponding to low eigenvalues do not differ significantly across an edge then we have a small

‖∇−B∆
†
−B‖2,∞.

Lemma 19. Let z̃ be the result of step (2) of the PDW method. If ‖z̃−B‖∞ < c for all large p for

some 0 < c < 1 and

σ = o

(
λ

|||∇−B∆
†
−B|||2,∞

√
log(| − B|)

)

Then step (4) in the PDW method passes for large enough p.

Proof. First we know that for each e ∈ −B,

(∇B∆
†
−Bǫ)e ∼ N(0, σ2‖∇e∆

†
−B‖22)

Notice that |||∇−B∆
†
−B|||22,∞ = maxe ‖∇e∆

†
−B‖22 Hence, ‖∇−B∆

†
−Bǫ‖∞ is the maximum of |−B|

Gaussian random variables with maximum variance σ2|||∇−B∆
†
−B|||22,∞. By Gaussian concentra-

tion and the union bound we know that,

‖∇−B∆
†
−Bǫ‖∞ ≤ σ|||∇−B∆

†
−B|||2,∞

√
2 log(

| − B|
γ

)

with probability at least 1− γ. So,

‖z‖∞ ≤ ‖z‖∞ +
1

λ
‖∇−B∆

†
−Bǫ‖∞
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≤ ‖z‖∞ +
σ|||∇−B∆

†
−B|||2,∞

λ

√
2 log(

| − B|
γ

)

So, ‖z‖∞ < 1 with high probability for large p if

σ|||∇−B∆
†
−B|||2,∞

λ

√
log(| − B|) = o(1)

which occurs if

σ = o(
λ

|||∇−B∆
†
−B|||2,∞

√
log(| − B|)

)

By putting together the results described so far we arrive at the following conditions for

sparsistency.

Theorem 20. Let B = supp(∇x) the changepoints of x. Suppose that the following conditions

hold for all A ∈ A, and let δ be the gap between signal across clusters of activation in A.

ν(A) = o(1)

δ

σ
= ω

( |∂A|
|A| |||∇−B∆

†
−B|||2,∞

√
log(| − B|)

)

δ

σ
= ω

(
1√
|A|

)

then the edge lasso is changepoint sparsistent.

Proof. Recall from Theorem 17 that ‖z̃‖∞ ≤ 2maxA∈A ρ(A) and so ‖z̃‖∞ = o(1). The second

condition implies the conditions of Lemma 19 for some λ = o(δminA∈A
|A|
|∂A|). Thus, step (4)

of the PDW method passes for large enough p. The third condition completes the conditions of

Lemma 18 and step (1) passes for large enough p.

Thus far our conditions rely on the size of |||∇−B∆
†
−B|||2,∞ with no obvious validation tech-

niques. We are able to relate this norm to the smoothness of eigenvectors of Laplacians weighted

by the reciprocals of eigenvalues.

Proposition 21. Let the spectral decomposition of the Laplacian for A ∈ A be ∆A = UΛU⊤

then |||∇−B∆
†
−B|||2,∞ is equal to

max
A∈A

max
e∈A

√∑

v∈V
(Uv,e+ −Uv,e−)2(λ2

v)
†

So, if each eigenvector Uv is ηv-Lipschitz with respect to the shortest path distance then (Uv,e+−
Uv,e−)

2 ≤ η2v

and |||∇−B∆
†
−B|||2,∞ ≤ max

A∈A

√∑

v∈A
η2v(λ

2
v)

†
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Proof. Let ∆−B = UΛU⊤

|||∇−B∆
†
−B|||2,∞ = sup

‖α‖2≤1

‖∇−BUΛ†U⊤
α‖∞

= sup
‖α‖2≤1

‖∇−BUΛ†
α‖∞ = sup

‖α‖2≤1

max
e∈−B
‖∇eUΛ†

α‖∞

= sup
‖α‖2≤1

max
e∈−B
|(Ue+ − Ue−)Λ

†
α|

= max
e∈−B

sup
‖α‖2≤1

|(Ue+ − Ue−)Λ
†
α| = max

e∈−B
‖(Ue+ − Ue−)Λ

†‖2

= max
e∈−B

√∑

v∈V
(Uv,e+ − Uv,e−)2(Λ2

v)
†

The above supremum is achieved for α = Λ†(Ue+ − Ue−)
⊤/‖(Ue+ − Ue−)Λ

†‖2. Because G−B
is disconnected ∆−B is block diagonal. Hence, U is block diagonal with blocks being the eigen-

vectors of each component of A. Moreover, e ∈ −B is completely internal to some A ∈ A, so

we have that

|||∇−B∆
†
−B|||2,∞ = max

A∈A
max
e∈A

√∑

v∈V
(Uv,e+ − Uv,e−)2(λ2

v)
†

Where the eigenvectors U are understood to be specific to the A ∈ A. The only thing remaining

to show is that η-Lipschitz in the shortest path distance implies that (Uv,e+ − Uv,e−)
2 ≤ η2. But

we have that η-Lipschitz in the shortest path distance occurs if and only if ‖∇Uv‖∞ ≤ η.

Proposition 21 provides a more tractable condition that implies that |||∇−B∆
†
−B|||2,∞ is small.

Our findings suggest that the changepoint sparsistency of the edge lasso is highly dependent on

the topology of G and its partition A. In general, it is necessary that there exists no bottleneck

cuts (cuts that force ν(A) to be large). We conclude this section with a final observation and a

result that we will use in the next section to analyze the 1D and 2D edge lasso. There are many

graphs for which the in degree of a vertex matches the out degree (namely the intersection with

∂A(V )), such as the 1D and 2D grids. We show that when the approximation error is small

relative to the noise there is no hope of achieving sparsistency.

Proposition 22. Suppose that |A| ≥ 2 and that for some A ∈ A there exists v ∈ A such that

|∇⊤
B,vzB| = |{e /∈ B : v ∈ e}|. Let the maximum gap of x between elements of A be denoted

δmax. If δmax

σ
= o(1) then edge lasso is not sparsistent.

Proof. Suppose that the solution to the primal program does recover A and zB correctly. Then

there is a solution to the dual program that recovers B̂ such that B ⊆ B̂. Let us first find necessary

conditions on λ for primal sparsistency. Recall that β̂v is Gaussian with mean (Pnull(∇
−B̂

)(β −
λ∇⊤

B̂zB̂))v. So this mean is βv − λ
χ(A(v))⊤z

B̂

|A(v)| . So, if λ
χ(A(v))⊤z

B̂

|A(v)| > δmax then we will not achieve

sign consistency with probability at least 1/2. Thus, λ = o(χ(A(v))⊤s
|A(v)| ) for all A ∈ A is necessary.

Lemma 13 implies

∇⊤
−B̂z−B̂ = ∇⊤

−B̂(∇−B̂∇⊤
−B̂)

†∇−B̂(
y

λ
−∇⊤

B̂zB̂)

29



= Prow(∇
−B̂

)(
y

λ
−∇⊤

B̂zB̂)

Using the fact that Prow(∇
−B̂

) subtracts the average within A ∈ A , we have,

∇⊤
−B̂,vz−B̂ = −∇⊤

B̂,vzB̂ +
χ(A(v))⊤zB̂
|A(v)| +

ǫv
λ
− 1

λ|A(v)|
∑

w∈A(v)

ǫw

Notice that we can decompose the noise terms as, (using the shorthand that A = A(v))

1

λ
(
|A| − 1

|A| ǫv +
1

|A|
∑

w 6=v

ǫw)

which is less than − |∂A|
|A| with probability bounded from below for all large p if

σ|A|
λ|∂A| = ω(1)

which happens if
σ

δmax

= ω(1)

We know that if the noise term dominates the potential bias
|∂A|
|A| then |∇⊤

−B̂,vz−B̂| > |∇⊤
B̂,vzB̂|.

But by the condition there are not enough internal edges to dissipate |∇⊤
B̂,vzB̂| without making

‖∇⊤
−B̂,vz−B̂‖∞ > 1, and we arrive at our contradiction.

3.3 Specific Graph Models

We apply our results to the edge lasso over the 1 and 2 dimensional grids, commonly referred

to as the fused lasso. In these cases the SNR must not decrease to achieve changepoint sparsis-

tency, which is in sharp contrast to the performance of the oracle (see Figure 3.1). We provide a

topology called the nested complete graph that satisfies the sufficient conditions for changepoint

sparsistency. These examples are meant to provide a blueprint for using the previous results to

explore topologies for which the edge lasso is changepoint sparsistent.

3.3.1 1D and 2D fused Lasso

Due to the popularity of total variation penalization, it is imperative that we discuss the 1D and

2D fused lasso. In the 1D grid each vertex can be associated with a number in {1, ..., p} and we

connect the pairs with Euclidean distance less than or equal to 1. Similarly, in the 2D grid each

vertex can be associated with a number in {1, ..., p0} × {1, ..., p1}. In the 2D grid we will say

that a vertex v is a corner if its degree within A(v) (the partition element containing v) is 2. (See

Figure 3.4)
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Figure 3.4: A 2D grid with |A| = 2 depicted as union of black and red vertices. The red vertex

is an example of a corner.

Corollary 23. (a) Consider the 1D fused lasso with a non-trivial signal such that |A| = 2.

If the signal to noise ratio is decreasing (δmax/σ = o(1)) then the 1D fused lasso is not

changepoint sparsistent.

(b) Consider the 2D fused lasso with a A ∈ A such that A contains a corner v and |A| = 2.

If the signal to noise ratio is decreasing (δmax/σ = o(1)) then the 2D fused lasso is not

changepoint sparsistent.

Proof. If the signal is non-trivial then there is a vertex v ∈ A ∈ A that is adjacent to ∂A.

|∇⊤
v zB| = 1 which is the degree of v within A, so the conditions of Proposition 22 hold. The 2D

case follows by considering the corner as v with |∇⊤
v zB| = 2.

We see these typical mistakes in the 1D fused lasso in Figure 3.5. Here we observe a small

incorrect element of Â at the boundary of a true element ofA. Here we see that it is due to small

deviations from the true clusters that changepoint sparsistency fails in these cases.

Figure 3.5: A typical mistake in the 1D fused lasso. The vertical lines indicate the beginning and

end of estimated Â.

3.3.2 Nested complete graph

We construct the nested complete graph from k+ 1 copies of the complete graph with k vertices

by adjoining each complete graph to each other with one edge. We can form this such that each

vertex has only one edge leaving its element in A which are the original complete graphs. (See

Figure 3.6) We find that modulo factors that scale like the log p, the changepoint sparsistency

thresholds are the same as that of the oracle.
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Figure 3.6: Nested complete graph with k = 3. A are the complete subgraphs of size 3.

Corollary 24. Suppose we construct the nested complete graph with k vertices in A and k + 1
elements in the partition (|A| = k and |A| = k + 1). If the SNR satisfies,

δ

σ
= ω

(
1√
k

√
log(k(k + 1))

)

Then the edge lasso is changepoint sparsistent.

Proof. Consider a cut C of the complete graph with p vertices. The cut size is |∂C ∩ ∂C̄| =
|C|(p− |C|) while the cut boundary is |∂C̄ ∩ ∂A| = p− |C|. Hence,

|∂C̄ ∩ ∂A|
|∂C ∩ ∂C̄|

|C|
|A| =

(p− |C|)
|C|(p− |C|)

|C|
p

=
1

p

Thus, ν(A) = o(1).
We know that the spectrum of the Laplacian of the p-complete graph has one eigenvalue of 0

and the rest are p. Because the eigenvectors are normalized the Lipschitz constants ηv ≤ 1 as in

Proposition 21. Hence,
√∑

v∈V η2v(ξ
2
v)

† ≤
√∑

v∈A
1
p2

= 1√
p

Moreover |∂A| = |A| = p and we

have that

max
A∈A

|∂A|
|A|

√∑

v∈V
η2v(ξ

2
v)

†
√
log(| − B|) ≤ 1√

p

√
log(p(p+ 1))

By Theorem 20 the result follows.

This Corollary shows that the edge lasso is changepoint sparsistent when the clusters are

easily separable before the observations y are made.

3.4 Discussion

As we have seen in Corollary 23, it is quite easy to find cases in which changepoint sparsistency

is impossible. This illustrates precisely the difficulty in expecting an estimator to precisely de-

termine supp(∇x). While the aforementioned results illustrate the difficulty of obtaining exactly

the changepoint sparsity pattern, it is not clear what can be said about approximate recovery of x

through the edge lasso. While some simple adaptations of the primal-dual witness method seem

plausible, an exact analysis of approximate recovery is not within the scope of this thesis. We

have seen that recovery guarantees for the edge lasso are difficult and nuanced. In the following
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Chapter, we will take a more principled approach to a more fundamental problem. We will form

a generalized likelihood ratio test for the detection of graph structured signals. This will lead

to the development of new statistical methods, the spectral scan statistic and the graph ellipsoid

scan statistic.
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Chapter 4

Spectral Scan Relaxations for Estimation,

Localization and Detection

In this chapter we are concerned with the basic but fundamental task of deciding whether a given

graph, over which a noisy signal is observed, contains a cluster of anomalous or activated nodes

comprising an induced subgraph. As we have discussed, such a problem is highly relevant in a

variety of scientific areas, such as surveillance, disease outbreak detection, biomedical imaging,

sensor network detection, gene network analysis, environmental monitoring and malware detec-

tion over a computer network. Recent theoretical contributions in the statistical literature (see,

e.g., [1, 3, 4, 5]) have detailed the inherent difficulty of such testing problems in relatively sim-

plified settings and under specific conditions on the graph topology. From a practical standpoint,

the natural algorithm for detection of anomalous clusters of activity in graphs is the generalized

likelihood ratio test (GLRT) or scan statistic, a computationally intensive procedure that entails

scanning all clusters with low surface area and testing individually for anomalous activation. Un-

fortunately, its performance over general graphs is not well understood, and little attention has

been paid to determining alternative, computationally tractable, procedures.

We assume that the class of clusters of constant signal consists of sub-graphs of small cut size.

We believe this is a natural and realistic assumption which, as we demonstrate below, allows us

to explicitly incorporate into the detection problem the properties of the graph topology through

its spectrum. In particular, we show that the GLRT is an integer program with a term in the

objective that corresponds to the sparsest cut in a graph, a known NP-hard problem [57]. With

this in mind, we propose two relaxations of the GLR, called the spectral scan statistic (SSS)

and graph ellipsoid scan statistic (GESS), which are based on the combinatorial Laplacian of the

graph and, importantly, are computationally efficient programs. We summarize our results as

follows:

1. Balanced Graph Structured Goodness-of-Fit Tests: We define a few new classes of

signals based on the notion of small cut size that reflects in a natural way the topological

properties of the graph.

2. Graph Ellipsoid Scan Statistic: We analyze the corresponding GLR statistics and show

that it is, in fact, related to the problem of finding sparest cuts. We then develop two

computationally efficient relaxations of the GLR statistic, called the spectral scan statistic
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and the graph ellpsiod scan statistic, and analyze their properties. In our main theoretical

result, we show that the performance of the scan statistics depend explicitly on the spectral

properties of the graph.

3. Adaptive Graph Ellipsoid Scan Statistic: While the GESS requires the specification of

the cut sparsity parameter ρ, we develop a competetive procedure that adapts to ρ.

4. Localization with the Spectral Scan Statistic: The SSS can be used for localization, for

which we develop some theoretical guarantees.

5. Specific Graph Examples and Comparisons: Using such results we are able to charac-

terize in a very explicit form the performance of the GESS on a few notable graph topolo-

gies and demonstrate its superiority over naive detectors, such as the aggregate and max

statistics.

4.1 Balanced Graph Structured Goodness-of-Fit Tests

Detection, also known as goodness-of-fit testing, involves the fundamental statistical question:

are we observing merely noise or is there some signal amidst this noise? While the basic de-

tection problem is to determine if the signal x is constant or not, we analyze four different

alternatives: unstructured signal, piece-wise constant graph-structured signal, graph-structured

signal with differential activation, and the graph-structured ellipsoid.

Unstructured H1. Let XU(µ) = {x ∈ R
p : ‖x − x̄‖ ≥ µ}, the complement of the open ball

of radius µ in the subspace orthogonal to 1. Then the basic ‘unstructured’ detection problem is

testing the null hypothesis against the alternative hypothesis:

H0 : x = x̄ v.s. HU
1 : x ∈ XU(µ)

Because there is no a priori structure, i.e. no relationships between the indices, in this setting we

are compelled to use tests that are invariant under arbitrary permutation of the indices of y and

x. We will now outline the graph-structured alternative hypotheses.

Piece-wise constant graph-structured H1. Let G = (V,E,W ) be a connected, possibly

weighted graph with p < ∞ vertices (V = [p]). Hence, for each index of x, and consequently

the indices of y, we associate a vertex of G. We have already motivated this problem, detailing

situations in which it is appropriate. We will assume that there are two groups of constant signal

for x, namely that there exists a subset C ⊂ V (C /∈ {∅, V }) such that x is constant within both

C and its complement C̄ = V \C. We consider the function class specific to C,

XPC(µ,C) = {x = α1+ δ1C : µ, δ ∈ R} ∩ XU(µ)

The parameter α can be thought of as the magnitude of the background signal and is a nuisance

parameter, while δ quantifies the gap in signal between the two clusters. For the signal x =

α1+ δ1C to be contained in XU(µ), it is required that

√
|C||C̄|

n
δ ≥ µ.

We will not assume any knowledge of the true clustering (C, C̄), other than that it belongs to

a given class C ⊂ 2[p] such that for C ∈ C, C and C̄ are both large and can be easily disconnected,
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in that they have low cut size. Formally, we define, for some ρ > 0,

C = C(ρ) =
{
C ⊂ V,C 6= ∅ : |∂C||C||C̄| ≤

ρ

n

}
, (4.1)

where ∂C = {(i, j) ∈ E : i ∈ C, j ∈ C̄} is the boundary of C. Note that C is a symmetric class

in the sense that C ∈ C if and only if C̄ ∈ C. The quantity
n|∂C|
|C||C̄| is known as the cut sparsity

and is equivalent, up to factor of 2, to the cut expansion (
|∂C|

min{|C|,|C̄|} ):

|∂C|
min{|C|, |C̄|} ≤

n|∂C|
|C||C̄| ≤ 2

|∂C|
min{|C|, |C̄|}

The groundwork for defining our testing hypotheses is set. DefineXPC(µ, ρ) = ∪C∈C(ρ)XPC(µ,C).
Then we will consider testing the null hypothesis against the alternative hypotheses:

H0 : x = x̄ v.s. HPC
1 : x ∈ XPC(µ, ρ)

Graph-structured H1. We now consider a more general form of alternative, in which the sig-

nal is graph-structured, but not necessarily constant over clusters of activation. We will assume

that there is again a true cluster C ∈ C(ρ) within which the signal differs little and across which

the signal differs highly. Specifically, let

XS(µ, ρ) =

{
x ∈ R

p :

∣∣∣∣
1⊤
Cx

|C| −
1⊤
C̄
x

|C̄|

∣∣∣∣

√
|C||C̄|

n
≥ µ,C ∈ C

}

Notice that if x ∈ XS(µ, ρ) then ‖x − x̄‖ ≥ µ, so XS(µ, ρ) ⊂ XU(µ). Furthermore, if x =
α1+ δ1C ∈ XPC(µ, ρ) then ∣∣∣∣

1⊤
Cx

|C| −
1⊤
C̄
x

|C̄|

∣∣∣∣ = δ

Hence, XPC(µ, ρ) ⊂ XS(µ, ρ). This induces the following hypothesis testing framework:

H0 : x = x̄ v.s. HS
1 : x ∈ XS(µ, ρ)

Whenever possible we will make statements about this non-constant alternative, for the sake of

generality.

Graph-structured ellipsoidal H1. It will be convenient to introduce a final alternative hypoth-

esis, that is a relaxation of the piece-wise constant graph-structured signals. Define the ellipsoidal

alternative space (it is in fact an ellipsoidal cone) to be

XE(µ, ρ) =

{
x ∈ R

p : z⊤∆z ≤ ρ, z =
x

‖x− x̄‖

}
∩ XU(µ)

This generates the hypothesis test,

H0 : x = x̄ v.s. HE
1 : x ∈ XE(µ, ρ)
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We see that for any x = α1+ δ1C ∈ XPC(µ, ρ), (here α′ is some value)

z =
x

‖x− x̄‖ = α′1+
δ

‖x− x̄‖1C = α′1+

√
n

|C||C̄|1C

⇒ z⊤∆z =
n|∂C|
|C||C̄| ≤ ρ

Hence, XPC(µ, ρ) ⊂ XE(µ, ρ). The same analysis cannot be repeated for the more general

graph-structured signals XS(µ, ρ). We summarize these results.

Proposition 25. The alternative spaces are nested in the following way:

(a) XPC(µ, ρ) ⊂ XS(µ, ρ) ⊂ XU(µ)

(b) XPC(µ, ρ) ⊂ XE(µ, ρ) ⊂ XU(µ)

4.2 A Lower Bound and Classical Results

It is our ultimate goal to give a theory of changepoint detection on general graphs. This means

that our theorems should apply to all graph structures with only minor, simplifying assumptions,

such as connectedness. But as a validation of the theory and methods that we propose, we

will pay particular attention to the implications of this on canonical graph structures. We begin

by introducing the torus graph structure that will serve as a running example for illustrations.

The reader should in no way interpret this to mean that our results necessarily depend on the

idiosyncrasies of the torus graph, such as edge transitivity.

Example 1. (Torus Graph) The n × n torus graph can be embedded in V = (Z mod n)2

where points (i1, i2), (j1, j2) are connected by an edge if and only if |i1 − j1 mod n| + |i2 − j2
mod n|.The class of clusters in the torus under consideration C(ρ) are those that have sparsity

n|∂C|/(|C||C̄|) ≤ ρ. For example, rectangles of size k × k within the torus have sparsity

4kn/(k2(n− k2)) ≈ 4/k for k2 ≪ n. Meaning that if we would like to include rectangles of size

k × k, it is sufficient that ρ = 4/k, and for the largest rectangles we require ρ = 4/
√
n.

In order to understand the fundamental limitations of the changepoint detection problem, we

can provide lower bounds on the performance of any procedure. After this negative result, we

will review classical theory about the detection of non-zero means under no constraints and in

infinite ellipsoids. While the ellipsoid result can’t be exactly ported to our setting, it is the most

similar known result to that which we will develop. These will foreshadow the critical SNR

scaling that we will discover with the graph ellipsoid scan statistic.

4.2.1 Lower Bound

The first lower bound that we will provide is a simple bound on the performance of the oracle

based on the Neyman-Pearson lemma. The second result is more sophisticated and requires that

the graph and the ρ parameter allows for unions of disjoint clusters. It requires that the graph has

symmetries that we can exploit, but it will not be satisfied by most graphs. We will later show

that the conditions are satisfied by the specific graph structures that we will analyze.
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Theorem 26. (a) H0 and HPC
1 , HS

1 , H
E
1 are asymptotically indistinguishable if µ/σ = o(1).

(b) Suppose that there is a subset of clusters C ′ ⊆ 2V such that all the elements of C ′ are disjoint,

of the same size (|C| = c for all C ∈ C ′), and

∀C ∈ C ′, n|∂C|
|C||C̄| ≤

ρ

2

i.e., elements of C ′ belong to the alternative hypothesis with ρ/2 cut sparsity. Furthermore as-

sume that
c|C′|
n
→ 1. H0 and HPC

1 , HS
1 , H

E
1 are asymptotically indistinguishable if

µ

σ
= o(|C ′|1/4)

Proof. Notice that if H0 is indistinguishable from HPC
1 then so is it indistinguishable from HS

1

and HE
1 . For the proof let σ = 1 as it can be absorbed into the signal size µ. Let the risk be the

sum of the probabilities of type 1 and type 2 error. Notice that the risk can be bounded by

sup
x=x̄

ExT (y) + sup
x∈XPC(µ,ρ)

Ex[1− T (y)] ≥ Ex=0T (y) +
1

|S|
∑

S∈S
ExS [1− T (y)] = R∗

where xS = µ
√

n
|S||S̄|1S and S ⊆ C. Then by Proposition 3.2 in [1],

R∗ ≥ 1− 1

2

√
E exp

{
µ2

σ2
Z

}
− 1

where

Z =
p|S ∩ S ′|√
|S||S̄||S ′||S̄ ′|

for S, S ′ drawn independently uniformly from S . Let k = ⌊
√
⌊p/(2|C|)⌋⌋, and let S be the

union of k elements of C chosen uniformly at random without replacement (and let S ′ be an

IID copy of S). Notice that |S| ≤ p/2 and because for all C ∈ C, |∂C|/(|C||C̄|) ≤ ρ then

|∂S|/(|S||S̄|) ≤ ρ. Moreover, Z is stochastically bounded by |K ∩K ′|/
√
|K||K ′| where K,K ′

are chosen independently, uniformly from all k-sets of 1, . . . ,m = ⌊p/|C|⌋. Hence, we can

apply Proposition 3.4 from [1] and determine that R∗ > δ if

µ

σ
√
k
≤
√
log

(
1 +

m log(1 + 4(1− δ)2)

k2

)

Because k2 ≍ m we have asymptotic indistinguishability if µ/σ = o(
√
k) = o(m1/4) =

o((p/|C|)1/4).
We illustrate the usefulness of the lower bound with the following example.

Example 2. (Lower Bound for Torus) We will construct C ′ in Theorem 26 (b) from disjoint

squares of size a constant multiple of p1−β making |C ′| ≍ pβ . Thus, the critical SNR for H0

versus any of HPC
1 , HE

1 , H
S
1 for any estimator is greater than pβ/4.

This scaling with the 1/4th power is not a coincidence. We will see that the classical re-

sults, both upper and lower bounds, for the unconstrained and ellipsoid constrained alternative

hypotheses also provide a critical SNR of this form.
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4.2.2 Classical Results

In order to understand the inherent difficulty of distinguishing H0 from HU
1 , we will recount a

result from [36].

Theorem 27. The critical SNR for any test distinguishing H0 from HU
1 is given by,

µ

σ
≍ p1/4

and it is achieved by the energy test statistic ‖y − ȳ‖22.

This result highlights the aforementioned 1/4th power scaling in critical SNRs. Because of

the nested nature of the alternatives, this critical SNR, one would hope that this upper bounds

that of any tests that we perform. We will see that this is always achieved by the graph ellipsoid

scan statistic, and by it’s adaptive version in most cases.

Consider the statistics maxi∈[p] |yi− ȳ| and ‖y− ȳ‖1, which we will call the max statistic and

the aggregate statistic respectively. Then they have the following critical SNR’s for the piecewise

alternative structure, HPC
1 .

Theorem 28. (a) Let cmax = maxC∈C min{|C|, |C̄|}. Then if log cmax ≪ log p then the critical

SNR for H0 versus HPC
1 of the max statistic is between the following

µ

σ
= ω(

√
cmax),

µ

σ
= o(

√
cmax log p)

while the upper bound is an equality (≍) if log cmax = o(log p).
(b) Let cmin = minC∈C max{|C|, |C̄|}. The critical SNR for H0 versus HPC

1 of the aggregate test

statistic is
µ

σ
≍
√

p

cmin

Remark 29. Notice that the critical SNR of the max statistic, Theorem 28 (a), can be significantly

worse than the energy and aggregate statistics if cmax ≥ √p. Otherwise the Max statistic is

superior. Similarly, (b) provides worse performance than the energy and max statistic if cmin ≤√
p. For our examples, it will be the case that cmax ≍ p and cmin will be significantly smaller. We

can see that for the torus cmax ≍ p and cmin ≍ p1−β . Moreover, these only hold for the piecewise

constant graph structure of HPC
1 .

A closely related testing setting is the ellipsoid sequence space model. The main difference

between this setting and ours is that the minimax estimator developed in [18] has been shown

to be optimal for the setting where the alternative is a fixed infinite-dimensional ellipsoid. The

asymptotic statements are made with respect to a decreasing noise variance sequence. To make

this precise let the sequence space model be,

yi = N (xi, σ
2)

independent over i ∈ Z+. The null and alternative hypotheses are

H0 : xi = 0, ∀i ∈ Z+ and HEr
1 :

∞∑

i=1

aix
2
i ≤ 1 and

∞∑

i=1

x2
i ≥ µ2
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Ermakov’s test statistic is similar to the Pinsker filter in that it applies a linear shrinkage to

the observations. Let b0, b1 be the solutions to the following equations,

∞∑

i=1

ai(b0 − b1ai)+ = 1 and

∞∑

i=1

(b0 − b1ai)+ = µ2

Then the test statistic is

ê = σ−4

∞∑

i=1

y2i (b0 − b1ai)+

The following is the relevant portion of the main theorem in [18].

Theorem 30. Under the ellipsoid sequence space model, the critical SNR achieved by ê for the

hypotheses H0 and HEr
1 is any µ/σ that satisfies,

σ4 ≍ (b0µ− b1ρ)

Unfortunately, a convenient form for this SNR is only known for certain forms of {ai}, such

as the Sobolev-type ellipsoids. Incidentally, the graph ellipsoid scan statistic will take a weighted

χ2 form, but it’s derivation will be as a relaxation of the generalized likelihood ratio test. We are

able to relate the graph ellipsoid setting to this setting by rotating the signal, x← U⊤x. We see

that in order to even compare our ellipsoid alternative HE
1 to this setting we would need a very

special form for the eigenvalues of ∆. At the very least, it would need to happen that there would

be some sequence of scalars αn and a fixed sequence {ai}, such that {αnλi} → {ai} uniformly.

This of course is an overly restrictive assumption when we are considering arbitrary sequences

of graph structures. We will compare the performance of Ermakov’s statistic to the GESS for

specific graph models in a later section.

4.3 Graph Ellipsoid Scan Statistic

In order to derive the Graph Ellipsoid Scan Statistic (GESS), we will consider specifically the

piece-wise constant graph structured HPC
1 . Before we arrive at the GESS, we must derive the

Spectral Scan Statistic (SSS). The SSS was derived originally in [69], but since its publication

the authors derived the graph ellipsoid scan statistic. While the GESS is shown to be a relaxation

of the SSS, we favor the GESS because it is simple to implement, performs as well as the SSS

in practice, and admits a superior theoretical analysis. The superior theoretical analysis has

practical implications because p-values and power curves can be derived analytically.

4.3.1 Derivation of GESS

The hypothesis testing problem, with signal in XPC(µ, ρ), at hand presents two challenges: (1)

the model contains an unbounded nuisance parameter α ∈ R and (2) the alternative hypothesis

is comprised of a finite disjoint union of composite hypotheses indexed by C. These features set

our problem apart from virtually all existing work of structured normal means problems (see, e.g.

[1, 3, 4, 5]), which does not consider nuisance parameters and relies on a simplified framework
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consisting of a simple null hypothesis and a composite hypothesis consisting of disjoint unions

of simple alternatives. Having nuisance parameters and composite hypothesis require a more

sophisticated analysis.

We will eliminate the interference caused by the nuisance parameter by considering test pro-

cedures that are independent of α (or equivalently x̄). The formal justification for this choice is

based on the theory of optimal invariant hypothesis testing (see, e.g., [48]) and of uniformly best

constant power tests (see [83]). Due to space limitations we will not provide the details and refer

the reader to [7, 22, 23, 25, 26, 67] and references therein for in depth-treatments of these issues

related to the model a hand.

For the simpler problem of testing x = x̄ versus x ∈ XPC(µ,C) for some C ⊂ V , the

optimal test is based on the likelihood ratio (LR) statistic (see the proof of Lemma 31 below for

a derivation)

2 log ΛC(y) = log

(
supx∈XPC(µ,C) fx(y)

supx=x̄ fx(y)

)
=

1

σ2

p

|C||C̄|

(
∑

v∈C
ỹv

)2

, (4.2)

where ỹ = y − ȳ = (ỹv, v ∈ V ) and fθ is the Lebesgue density of Pθ. This test rejects H0 for

large values of ΛC(y). Optimality follows from the fact that the statistical model we consider

has the monotone likelihood ratio property.

When testing against composite alternatives, like in our case, it is customary to consider

instead the generalized likelihood ratio (GLR) statistic, which in our case reduces to

ĝ = max
C∈C(ρ)

2σ2 log ΛC(y).

Through manipulations of the likelihoods, we find that the GLR statistic has a very convenient

form which is tied to the spectral properties of the graph G via its Laplacian.

Lemma 31. Let ỹ = y − 1(1
p

∑
v∈V yv) and K = I− 1

n
11⊤. Then

ĝ = max
x∈{0,1}p

x⊤ỹỹ⊤x

x⊤Kx
s.t.

x⊤∆x

x⊤Kx
≤ ρ, (4.3)

where ∆ is the combinatorial Laplacian of the graph G.

Proof. First we notice that H0 and HC
1 are invariant to a group action that will allow us to

simplify the LR statistic. Let the group action on x ∈ R
p be

G = {x 7→ x+∆ :
1

|C|
∑

v∈C
∆v =

1

|C̄|
∑

v∈C̄

∆v = 0,∆ ∈ R
p}

We now are able to obtain the maximal invariant statistics to G, y0 = 1
|C|
∑

i∈C yi ∼ N(β0, σ
2
0)

and y1 =
1
|C̄|
∑

i∈C̄ yi ∼ N(β1, σ
2
1) for σ0 = σ/

√
|C| and σ1 = σ/

√
|C̄|. By the theory of most

powerful invariant tests we can reduce the LR statistic for y to it’s maximal invariants y0,y1.

Then, we obtain

2 log ΛC(y) =
1

σ2
0

(y0 − β̂)2 +
1

σ2
1

(y1 − β̂)2
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where β̂ =
σ2
1

σ2
0+σ2

1
y0 +

σ2
0

σ2
0+σ2

1
y1 is the MLE under H0. (The likelihood under the alternative

balances with the normalizing constant of the null likelihood.) Thus,

2 log ΛC(y) =
1

σ2
0

(
σ2
0

σ2
0 + σ2

1

(y0 − y1)

)2

+
1

σ2
1

(
σ2
1

σ2
0 + σ2

1

(y0 − y1)

)2

=
(y0 − y1)

2

σ2
0 + σ2

1

=
1

σ2

|C||C̄|
|V | (y0 − y1)

2

=
1

σ2

|V |
|C||C̄|

(
|C̄|
|V |

∑

v∈C
yv −

|C|
|V |

∑

v∈C̄

yv

)2

=
1

σ2

|V |
|C||C̄|

(
∑

v∈C
yv −

|C|
|V |

∑

v∈V
yv

)2

=
1

σ2

|V |
|C||C̄|

(
∑

v∈C
ỹv

)2

. (4.4)

Now we let x = 1C , making the statistic above

2σ2 log ΛC(y) =
x⊤ỹỹx

x⊤Kx
and
|∂C||V |
|C||C̄| =

x⊤Lx

x⊤Kx
.

The result now follows by considering all the indicator functions corresponding to the sets in

C.

The savvy reader will notice the connection between (4.3) and the graph sparsest cut program.

By Lagrangian duality, we see that the program (4.3) is equivalent to (for some Lagrangian

parameter ν)

min
C⊆V

|∂C|
|C||C̄| − ν

(
∑

i∈C ỹi)
2

|C||C̄|
the first term of which is precisely the sparsest cut objective, and the second term drives the solu-

tion C to have positive within cluster empirical correlations. The sparsest cut program is known

to be NP-hard, with poly-time algorithms known for trees and planar graphs([57]). Because of

this fact, approximate algorithms have been proposed over the past two decades, most notably the

uniform multicommodity flow approach of ([49, 72]) and the semi-definite relaxation of the cut

metric ([6]). While it is tempting to apply these same relaxation techniques to (4.3), we will see

in the Section 4 that the addition of the data driven objective ỹỹ⊤ renders these approaches in-

valid. [32] observed that the minimum cut sparsity is bounded by the algebraic connectivity (λ2),

suggesting the Fiedler vector (i.e. the second eigenvector of ∆) to be an appropriate relaxation of

the characteristic vector of the cut. Moreover, the well known Cheeger inequality shows that the

minimum cut sparsity (in a regular graph) is bounded by the algebraic connectivity (see [13]).

We will follow the tradition of bounding sparsity with the algebraic connectivity, and provide a

surrogate estimator to the scan statistic based on this simple spectral relaxation.

Proposition 32. Define the Spectral Scan Statistic (SSS) as

ŝ = sup
x∈Rn

(x⊤ỹ)2 s.t. x⊤∆x ≤ ρ, ‖x‖ ≤ 1,x⊤1 = 0.

Then the GLR statistic is bounded by the SSS: ĝ ≤ ŝ.
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Proof. First let us notice that K = I− 1
p
11⊤ is the projection onto the subspace orthogonal to 1.

Because K is thus idempotent, ỹ1 = 0, and ∆1 = 0 we can rewrite

ĝ = max
x∈{0,1}p\{0,1}

(Kx)⊤ỹỹ⊤(Kx)

(Kx)⊤(Kx)
s.t.

(Kx)⊤∆(Kx)

(Kx)⊤(Kx)
≤ ρ

So, we have the following relaxation,

ĝ ≤ max
x 6=0,x⊤1=0

x⊤ỹỹ⊤x

x⊤x
s.t.

x⊤∆x

x⊤x
≤ ρ = ŝ

Notice that because the domain X = {x ∈ R
p : x⊤∆x ≤ ρ, ‖x‖ ≤ 1,x⊤1 = 0} is

symmetric around the origin, this is precisely the square of the solution to
√
ŝ = sup

x∈Rp

x⊤y s.t. x⊤∆x ≤ ρ, ‖x‖ ≤ 1,x⊤1 = 0, (4.5)

where we have used the fact that x⊤ỹ = ((I− 1
p
11⊤)x)⊤y = x⊤y because x⊤1 = 0 within X .

Proposition 33. Define the Graph Ellipsoid Scan Statistic (GESS) as

t̂ =

p∑

i=2

min{1, ρ
λi

}[(u⊤
i y)

2 − 1]

The SSS as a function of ρ can be bounded above and below in the following:

t̂+

p∑

i=2

min{1, ρ
λi

} ≤ ŝ ≤ 2(t̂+

p∑

i=2

min{1, ρ
λi

})

Proof. Let ai = λi/ρ. We have shown that

‖z‖ ≤ 1, z⊤Az ≤ 1⇒
∑

i>1

max{1, ai}z2i ≤ 2

It is also the case that
∑

i>1

max{1, ai}z2i ≤ 1⇒ ‖z‖ ≤ 1, z⊤Az ≤ 1

Hence,

{Uz ∈ R
p : z ∈ R

p−1,

p∑

i=2

max{1, ai}z2i ≤ 1} ⊆ {Uz ∈ R
p : z ∈ R

p−1,
1

ρ
z⊤Λz ≤ 1, z⊤z ≤ 1}

⊆ {Uz ∈ R
n : z ∈ R

p−1,

p∑

i=2

max{1, ai}
2

z2i ≤ 1}

If we denote A′ = diag{max{1, ai}}pi=2, then it is the case that

sup
x⊤UA′U⊤x≤1

ỹ⊤x ≤
√
ŝ ≤ sup

x⊤UA′U⊤x≤2

ỹ⊤x

Evaluating these programs (one can use the Fenchel dual of indicators over ellipsoids) gives us

the lemma.
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While it is not obvious that it is important that the GESS is a relaxation of the GLRT, it

is a natural starting point for the development of a suite of changepoint detectors on graphs.

Understanding its performance is an important step in the possibly long process of characterizing

the difficulty of distinguishing H0 from HPC
1 . It is not clear, even if it is possible to obtain a poly-

time algorithm that can distinguish H0 from HPC
1 over any graph under the critical SNR regime.

Before we get lost in such speculation, let us return to the GESS and show what it does on our

torus example.

Example 3. (GESS for the Torus) By a simple Fourier analysis (see [71]), we know that the

Laplacian eigenvalues are 2(2 − cos(2πi1/ℓ) − cos(2πi2/ℓ)) for all i1, i2 ∈ [ℓ]. The eigen-

vectors correspond to that of the discrete Fourier transform. So the GESS for the Torus graph

corresponds to linear shrinkage in the frequency domain.

In order to quantify the uncertainty inherent in this testing problem, we develop a theory of

the GESS.

4.3.2 Theoretical Analysis of GESS

A thorough theoretical analysis of the GESS has several uses. Information theoretic results,

such as Corollary 37, in which we characterize the critical signal-to-noise ratio, enable us to

determine the strength of the GESS as a detector on theoretical grounds. More statistical results,

such as Corollary 36, give the practicing statistician ways to quantify the uncertainty inherent in

the GESS. We give the practitioner a simple way to calculate p-values and power curves without

need for computationally expensive simulations from the null hypothesis.

The following main result bounds the test statistic under H0 and under the piece-wise constant

(HPC
1 ), general graph structured (HS

1 ), and the graph ellipsoid (HE
1 ) alternatives. It is based on

the concentration of weighted sums of independent χ2 random variables found in [46].

Theorem 34. Under the null hypothesis, H0, with probability at least 1− δ0,

t̂ ≤ 2



√√√√

p∑

i=2

min{1, ρ
2

λ2
i

} log(1/δ0) + log(1/δ)


 (4.6)

Under the alternative hypotheses, HPC
1 , HS

1 , H
E
1 , with probability at least 1− δ1,

t̂ ≥ µ2

2σ2
− 2µ

σ

√
log(2/δ1)− 2

√√√√
p∑

i=2

min{1, ρ
2

λ2
i

} log(2/δ1) (4.7)

Proof. We will use the following lemma regarding the concentration of χ2 random variables.

Lemma 35 ([46]). Let for i ∈ {2, . . . , p}, ai ≥ 0 and {Xi}pi=1 be independent χ2
1 random

variables. Define Z =
∑p

i=1 ai(Xi − 1)

P{Z ≥ 2‖a‖2
√
x+ 2‖a‖∞x} ≤ e−x

P{Z ≤ −2‖a‖2
√
x} ≤ e−x
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The probability of error under the null, (4.6), follows from Lemma 35. Consider any of the

alternatives, then t̂ can be written,

t̂ = y⊤Ay − trA = x⊤Ax+ 2x⊤Aǫ+ ǫ
⊤Aǫ− trA

where A = Udiag({min{1, ρ/λi}}pi=2)U
⊤. By Gaussian concentration, with probability at least

1− δ1,

x⊤Aǫ ≥ −
√
2x⊤A2x log(1/δ1)

Because A is PSD and symmetric, we have that x⊤A2x ≤ x⊤Ax. We will now show that

x⊤Ax ≥ µ2/2 under HPC
1 , HS

1 , H
E
1 . Recall that by Fenchel conjugacy,

x⊤Ax = sup
z⊤A†z≤1

(z⊤x)2

Case 1: HPC
1 . In this case,

(x− x̄)⊤

‖x− x̄‖ Λ
(x− x̄)

‖x− x̄‖ ≤ ρ

while ‖(x− x̄)/‖x− x̄‖‖ = 1. Thus,

(x− x̄)⊤

‖x− x̄‖ A
† (x− x̄)

‖x− x̄‖ ≤ 2

because A† = Udiag({max{1, λi/ρ}}pi=2)U
⊤. So,

(x− x̄)⊤√
2‖x− x̄‖

A
(x− x̄)√
2‖x− x̄‖

≤ 1

⇒ x⊤Ax ≥
(

(x− x̄)⊤√
2‖x− x̄‖

x

)2

= ‖x− x̄‖2/2 ≥ µ2/2

Case 2: HS
1 . Let x ∈ XS(µ,C). In this case we will let KC be the projection onto the span

of 1C ,1C̄ and orthogonal to 1. So, KCx =
1⊤
Cx

|C| 1C +
1⊤
C̄
x

|C̄| 1C̄ − x̄. Let z = KCx/‖KCx‖ that

z⊤x = ‖KCx‖. Let x̄C =
1⊤
Cx

|C| 1C and x̄C̄ =
1⊤
C̄
x

C̄| 1C̄ .

x̄C − x̄ = (
1

|C| −
1

n
)1⊤

Cx−
1

n
1⊤
C̄x

=
|C̄|
n

(x̄C − x̄C̄)

Similarly, x̄C̄ − x̄ = |C|
n
(x̄C̄ − x̄C). And so,

z⊤x = ‖KCx‖ = |C|
|C̄|2
n2

(x̄C − x̄C̄)
2 + |C̄| |C|

2

n2
(x̄C̄ − x̄C)

2 =
|C||C̄|

n
(x̄C̄ − x̄C)

2 ≥ µ2

Now we can go through the same proof as the previous case substituting z for x− x̄/‖x− x̄‖.
Case 3: HE

1 . This follows directly from the definition of XE(µ, ρ) and the considerations in

Case 1.

The error bound, (4.7) follows from these facts and the Lemma 35 applied to ǫ
⊤Aǫ − trA.
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Theorem 34 shows that by setting a threshold to be the right hand side of (4.6), we have a

size δ0 test. If we then set the right hand side of (4.7) to be this threshold, and solve for µ/σ, then

we get the lowest SNR such that the test has power 1− δ1 under the alternative. Equivalently, we

can obtain p-values and power curves for the GESS test statistic.

Corollary 36. By Theorem 34, we have that a valid p-value, α(t̂), is (i.e. P0{α(t̂) ≥ δ0} ≤ δ0)

α(t̂) = exp




1

2

√√√√
p∑

i=2

min{1, ρ
2

λ2
i

} − 1

2

√√√√
p∑

i=2

min{1, ρ
2

λ2
i

}+ 2t̂





A valid power curve, γ(t̂), for HPC
1 , HS

1 , H
E
1 is (i.e. P1{γ(t̂) ≥ δ1} ≤ δ1)

γ(t̂) =
1

2
exp



−

1

2


 µ2/2σ2 − t̂

µ/σ +
√∑p

i=2 min{1, ρ2

λ2
i

}




2


While the above corollary is useful for the practicing statistician, the corollary below allows

us to compare the GESS to other tests on asymptotic theoretical grounds.

Corollary 37. The GESS, t̂, can asymptotically distinguish H0 from HPC
1 , HS

1 , H
E
1 if the SNR is

stronger than

µ

σ
= ω

(
p∑

i=2

min{1, ρ
2

λ2
i

}
)1/4

Most notably the critical SNR is lower than p1/4 which is the critical SNR enjoyed by the

energy test statistic. The most unreasonable assumption that we have made thus far is that the cut

sparsity, ρ, is known. This unreasonable advantage is especially apparent when we compare the

GESS to the max and aggregate statistics that do not require the knowledge of ρ. The following

section develops a test that adapts to ρ.

4.4 Adaptive Graph Ellipsoid Scan Statistic

Notice that our estimators, the SSS and GESS, require that the statistician prespecify the cut

sparsity parameter, ρ. While the user may have certain shapes in mind, such as large rectangles

in a lattice, it is not reasonable to assume that this can be done for arbitrary graph structure. In

order to adapt to ρ we will consider the test statistic, t̂(ρ), as a function of ρ, as it is allowed to

vary.

Definition 38. Let δ0 > 0 and

τ(ρ) = 2



√√√√

p∑

i=2

min{1, ρ
2

λ2
i

} log((p− 1)/δ0) + log((p− 1)/δ0)




The adaptive GESS test is the test that rejects H0 if ∃ρ > 0 such that

t̂(ρ) > τ(ρ) (4.8)
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Of course it is not reasonable to assume that the statistician can calculate with finite resources

the entire curve t̂(ρ) without some a priori knowledge of its stability as ρ varies. It is our good

fortune that it is sufficient to evaluate t̂(ρ) only at p− 1 points, because t̂ is piecewise linear with

knots at the eigenvalues and τ(ρ) is similarly well behaved. Let k = max{k : λk ≤ ρ} then

t̂(ρ) = ρ

p∑

i=k+1

(u⊤
i y)

2 − 1

λi

+
k∑

i=2

((u⊤
i y)

2 − 1)

Hence, t̂(ρ) is piecewise linear with knots at {λi}pi=2. Similarly,

τ(ρ) =

√√√√4 log((p− 1)/δ0)

(
ρ2

p∑

i=k+1

λ−2
i + k

)
+ 2 log((p− 1)/δ0)

Define the following shorthand:

A = 4 log((p− 1)/δ0)

p∑

i=k+1

λ−2
i , B = 4k log((p− 1)/δ0)

D = 2 log((p− 1)/δ0), E =

p∑

i=k+1

(u⊤
i y)

2 − 1

λi

, F =
k∑

i=2

((u⊤
i y)

2 − 1)

Then we reject iff

τ(ρ) =
√

ρ2A+B +D < ρE + F = t̂(ρ)

Notice that A,B,D > 0, so τ(ρ) has strictly positive curvature and is convex. Thus, τ(ρ)− t̂(ρ)
is convex within λk ≤ ρ ≤ λk+1 and has a unique minimum. We can minimize the unrestricted

function,

ρ∗ = argmin
ρ

√
ρ2A+B +D − ρE − F

and we find that this is attained at

ρ∗ =

{
0, E2 ≥ A√

E2B
A2−E2A

, otherwise

We know by convexity that if ρ∗ < λk then the constrained maximum is attained at λk, and if

ρ∗ > λk+1 then it is attained at λk+1. For each k, we can construct A,B,D,E, F and define

ρk =





λk, E2 ≥ A or

√
E2B

A2−E2A
≤ λk

λk+1,
√

E2B
A2−E2A

≥ λk+1√
E2B

A2−E2A
, otherwise

Then the following proposition holds,
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Proposition 39. The adaptive GESS test rejects H0 if and only if

∃k ∈ {2, . . . , p}, τ(ρk) < t̂(ρk)

This proposition has theoretical implications as well as practical. It shows us that we only

need to provide a theoretical control of p separate GESS values. We see that Proposition 39 was

foreshadowed by the specific form of τ(ρ) in (4.8) The clever choice of threshold function τ(ρ)
naturally gives us a control on the false alarm (type 1 error).

Theorem 40. Under H0, the probability of false alarm (type 1 error) is bounded by

P0{∃ρ, t̂(ρ) > τ(ρ)} ≤ δ0

Consider models from the alternative hypotheses, HPC
1 , HS

1 , H
E
1 as functions of ρ. Let ρ∗ be the

smallest such ρ∗ such that x+ ǫ is contained in the alternative hypotheses. Then the probability

of type 2 error is bounded by δ1 > 0 if,

µ2

2σ2
− 2

µ

σ

√
2 log(2/δ1)− 2

√√√√
p∑

i=2

min{1, ρ
∗2

λ2
i

} log(2/δ1) > τ(ρ∗)

Proof. The type 1 error control follows directly from a union bound over k,

P0{∃k ∈ {2 . . . p}, t̂(ρ) > τ(ρ)} ≤
p∑

k=2

P0{t̂(ρk) > τ(ρk)} ≤ δ0

because τ(ρ) was chosen that at any one ρ the probability that t̂(ρ) > τ(ρ) under H0 is less than

δ0/(p− 1). The type 2 error control follows by applying Theorem 34 to the GESS test at ρ∗.

Corollary 41. The adaptive GESS asymptotically distinguishes H0 from HPC
1 , HS

1 , H
E
1 if

µ

σ
= ω



√√√√

p∑

i=2

min{1, ρ
∗2

λ2
i

} log p+ log p




1/2

So we are able to make all the same theoretical guarantees with the adaptive GESS as the

GESS with only a loss of (log p)1/4. We will now show how this theory is applicable by devel-

oping corollaries for different specific graph topologies.

4.5 Localization

It turns out that while the GESS lends itself to superior detection results the SSS can be used to

estimate the mean x. It is apparent from its definition in Proposition 32, that the spectral scan

statistic attempts to estimate x modulo x̄ and ‖x − x̄‖. Thus, we will attempt to estimate the

mean, modulo it’s average, x− x̄ and its norm. In this section, we will assume that µ = ‖x− x̄‖
precisely. This should not create much confusion because we are no longer in the hypothesis
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testing framework. We will first define the following notion of localization and show that this

leads directly to an estimation bound. Suppose that we have estimated (x− x̄)/‖x− x̄‖ with x̂S

then the localization distance is

d̃(x, x̂S) = 2

(
1− (x− x̄)⊤(x̂S − 1⊤x̂S1/p)

‖x− x̄‖‖x̂S‖

)
(4.9)

The idea is that we are attempting only to localize the direction of the vector x̂S . We will consider

the following spectral scan localization algorithm

x̂S = argmaxx⊤(y − ȳ) s.t. x⊤∆x ≤ ρ, ‖x‖ = 1,x⊤1 = 0 (4.10)

Because ‖x̂S‖ = 1 we have the following bound on d̃(x̂S,x),

x̂⊤
S

(x− x̄)

‖x− x̄‖ = x̂⊤
S

(y − ȳ)

‖x− x̄‖ − x̂⊤
S

(ǫ− ǭ)

‖x− x̄‖

≥ (x− x̄)⊤

‖x− x̄‖
(y − ȳ)

‖x− x̄‖ − x̂⊤
S

(ǫ− ǭ)

‖x− x̄‖

≥ 1−
(
(x− x̄)⊤

‖x− x̄‖ + x̂⊤
S

)
(ǫ− ǭ)

‖x− x̄‖
≥ 1− 2

µ

√
ŝ(ǫ)

Here ŝ(ǫ) is the SSS evaluated on ǫ. Hence, we obtained

d̃(x, x̂S) ≤
4

µ

√
ŝ(ǫ)

By Proposition 33 we know that

ŝ(ǫ) ≤ 2(t̂(ǫ) +

p∑

i=2

min{1, ρ
λi

})

Hence, by Theorem 34,

ŝ(ǫ) ≤ 2σ2




p∑

i=2

min{1, ρ
λi

}+ 2



√√√√

p∑

i=2

min{1, ρ
2

λ2
i

} log(1/δ) + log(1/δ)






with probability 1 − δ. For convenience, define z = (x − x̄)/‖x − x̄‖. With an estimate of the

unit vector z at hand, we will proceed to estimate x,

x̂ = (y⊤x̂S)x̂S + ȳ (4.11)

Throughout the following assume that
√
ŝ(ǫ) = ωP(µ).

‖x̂− x‖2 = ‖y⊤x̂Sx̂S − (x− x̄)‖2 + ‖ȳ − x̄‖2

≤ (‖(x− x̄)⊤x̂Sx̂S − (x− x̄)‖+ |ǫ⊤x̂S|)2 + ‖ȳ − x̄‖2

‖(x− x̄)⊤x̂Sx̂S − (x− x̄)‖ ≤ ‖x− x̄‖
√

2(1− (z⊤x)2)

≤ µ

√
2(1− (min{0, 1− 2

µ

√
ŝ(ǫ)})2) = OP

(√
µ
√
ŝ(ǫ)

)
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Hence, we can bound the square error by

‖x̂− x‖2 = OP

(
(

√
µ
√
ŝ(ǫ) +

√
ŝ(ǫ))2 + σ2

)
= OP

(
µ
√
ŝ(ǫ) + ŝ(ǫ) + σ2

)

due to the fact that ‖ȳ − x̄‖2 = OP(σ
2). Therefore we have the following corollary.

Corollary 42. Consider the spectral scan estimator x̂ defined by (4.10). Then x̂ is localization

consistent (i.e. d̃(x, x̂)→ 0) if

µ

σ
= ω



√√√√

p∑

i=2

min{1, ρ
λi

}




and x̂ defined in (4.11) is ℓ2 consistent if in addition

σ = o



(

p∑

i=2

min{1, ρ
λi

}
)− 1

2




Hence, we have that we can obtain an ℓ2 consistent estimator by individually estimating x

in the direction of x̂S , the average, x̄, and the direction z. While the GESS requires the entire

spectrum the SSS and it’s estimator may be solved by first order methods with linear solvers.

Remark 43. Through a reparametrization we can show that the program (4.5) has a linear

objective and only quadratic constraints. After forming the Lagrangian we can show that this is

equivalent to

inf
ν0,ν1≥0

ν0ρ+ ν1 +
1

4
ỹ⊤[ν0∆+ ν1I]

−1ỹ

which can be solved by first order interior point methods over the parameters ν0, ν1 where the

gradient calculation requires the solution to a linear system. Furthermore, the linear systems

are semidefinite, diagonally dominant, hence by the recent work of [45], has a running time of

O(|E| log n) modulo precision factors for the interior point algorithm.

4.6 Specific Graph Models and Experiments

In this section we demonstrate the power and flexibility of Theorem 34 by analyzing in detail the

performance of the GESS over three important graph topologies: balanced binary trees, the torus

graph and Kronecker graphs (see [50, 51]). The explicit goals of this section are as follows:

1. Determine the implications of Theorem 34 in these specific graph examples;

2. Demonstrate the competitiveness of the GESS and the adaptive GESS against the agglom-

erative and max statistics;

3. Assess the tightness of our critical SNR bounds for the specific graph examples;

4. Provide an example of the general graph structure;

5. Provide a comparison to Ermakov’s test.
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4.6.1 Balanced Binary Trees

Balanced trees are graph structures of particular interest because they provide a hierarchical

structure that is common in many social structures. Furthermore, the behavior of the graph

spectra for the balanced binary tree provides a natural multiscale basis [71, 73]. We begin the

analysis of the spectral scan statistic by applying it to the balanced binary tree (BBT) of depth

ℓ. The class of signals that we will consider have clusters of constant signal which are subtrees

of size at least cpα for 0 < c ≤ 1/2, 0 < α ≤ 1. Hence, the cut size of the signals are 1 and

ρ = [cpα(1− cpα−1)]−1.

Corollary 44. For the balanced binary tree with p vertices, the GESS can asymptotically distin-

guish H0 from signals within HPC
1 , HS

1 , H
E
1 where ρ = p[cpα(p− cpα)]−1 if the SNR is stronger

than
µ

σ
= ω(p

1−α
4 (log p)1/4).

(b) The adaptive GESS distinguishes the hypotheses of (a) if

µ

σ
= ω(p

1−α
4 (log p)1/2).

(c) H0 and HPC
1 are asymptotically indistinguishable if

µ

σ
= o(p

1−α
4 ).

(d) The spectral scan estimator is localization consistent if

µ

σ
= o(p

1−α
2 log p).

Proof. The study of the spectra of trees really began in earnest with the work of [21]. Notably, it

became apparent that trees have eigenvalues with high multiplicities, particularly the eigenvalue

1. [60] gave a tight bound on the algebraic connectivity of balanced binary trees (BBT). They

found that for a BBT of depth ℓ, the reciprocal of the smallest eigenvalue (λ
(ℓ)
2 ) is

1

λ
(ℓ)
2

≤ 2ℓ − 2ℓ+ 2− 2ℓ −
√
2(2ℓ− 1− 2ℓ−1)

2ℓ − 1−
√
2(2ℓ−1 − 1)

+ (3− 2
√
2 cos(

π

2ℓ− 1
))−1

≤ 2ℓ + 105I{ℓ < 4}
(4.12)

[65] gave a more exact characterization of the spectrum of a balanced binary tree, providing

a decomposition of the Laplacian’s characteristic polynomial. Specifically, the characteristic

polynomial of L is given by

det(λI− L) = p2
ℓ−2

1 (λ)p2
ℓ−3

2 (λ)...p2
2

ℓ−3(λ)p
2
ℓ−2(λ)pℓ−1(λ)sℓ(λ) (4.13)

where sℓ(λ) is a polynomial of degree ℓ and pi(λ) are polynomials of degree i with the smallest

root satisfying the bound in (4.12) with ℓ replaced with i. In [66], they extended this work to

more general balanced trees.
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By (4.13) we know that at most ℓ+ (ℓ− 1) + (ℓ− 2)2 + ...+ (ℓ− j)2j−1 ≤ ℓ2j eigenvalues

have reciprocals larger than 2ℓ−j + 105I{j < 4}. Let k = max{⌈ ℓ
c
2ℓ(1−α)⌉, 23}, then we have

ensured that at most k eigenvalues are smaller than ρ. For n large enough

∑

i>1

min{1, ρ2λ−2
i } ≤ k + ρ2

ℓ∑

j>log k

ℓ2j22(ℓ−j) ≤ k +
ℓ

k
p2ρ2 = O(p1−α log p)

The conclusion is that for the BBT the GESS and the adaptive GESS is near optimal with

respect to critical SNR. The proof is based on the special form of the spectrum of the BBT. It is

reasonable to suspect that this strong result is due to the specific structure of the BBT, and will

not hold for other graph structures. For the Torus and the Kronecker graph, there appears to be

some gap between the performance of the GESS and the lower bound. But with this said, the

GESS consistently dominates the naive estimators and the closeness of the theoretical results is

surprisingly close to the lower bounds in all cases.

We simulate the probability of correct discovery of change-points (rejecting H0 when the

truth is H1) versus the probability of false alarm (falsely rejecting H0). These are given for the

four estimators in Figure 4.1 as p = 2ℓ+1 − 1 increases. Different estimators dominate under

different choices of cluster size parameter, α. When α = 1, corresponding to large clusters,

where the size is on the same order as p, the aggregate statistic is competitive with the adaptive

statistic. When α = 0.5, corresponding to clusters of size ≈ p1/2, the aggregate becomes less

competitive and the max more competitive, where the GESS remains the dominating test.

Figure 4.1: (BBT Comparisons) Simulations of the size (false positive rate) and the power under HPC
1

for the balanced binary tree of the GESS, adaptive GESS (Adapt), Max statistic (Max), and Aggregate

statistic (Aggr). The figures are for the tree of depth ℓ = 6, p = 2ℓ+1 − 1 = 127, with choice of α = 1
(left) and α = 0.5 (right).

One may rightly ask if the gap between the bound in Cor. 44 is just due to a lack of theoretical

know-how and the estimator is truly optimal. We attempt to assuage these fears by plotting the

performance of the GESS with constant SNR as the graph size increases alongside that with the

SNR increasing according to the scaling dictated by Cor. 44 (Figure 4.2). As we can see for

both α = 1, 0.5 when the SNR is rescaled the ROC curves line up, and the performance does not

noticeably increase.
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Figure 4.2: (BBT Rescaling) The size (false positive rate) and power (true positive rate) of the GESS as

p increases from ℓ = 5, p = 26 − 1 = 63 to ℓ = 8, p = 29 − 1 = 511, with α = 1 (top) and α = .5
(bottom). The SNR was held fixed (left), then was allowed to scale according to Cor. 44 (b) (middle), and

scaled according to the lower bound Cor. 44 (c) (right).

4.6.2 Torus Graph

The torus has been a pedagogical example, but it is also an important example as it models a mesh

of sensors in two dimensions. We will analyze the performance guarantees of the GESS over our

running example, the 2-dimensional torus graph with ℓ vertices along each dimension (p = ℓ2).

To include squares of size p1−β , as in the examples, then we would obtain ρ ≍ p−(1−β)/2. The

following result is due to a detailed analysis of the spectrum of the torus.

Corollary 45. Let G be the ℓ× ℓ square lattice (p = ℓ2), and let ρ = Cp−(1−β)/2 for β ∈ [0, 1).
(a) The GESS can asymptotically distinguish H0 from HPC

1 , HS
1 , H

E
1 if the SNR satisfies

µ

σ
= ω(p

1+β
8 )

(b) The adaptive GESS can asymptotically distinguish the hypotheses of (a) if

µ

σ
= ω(p

1+β
8 (log p)1/4)

(c) H0 and HPC
1 are asymptotically indistinguishable if the SNR is weaker than

µ

σ
= o(p

β
4 )

(d) The spectral scan estimator is localization consistent (i.e. d̃(x̂,x)→ 0) if

µ

σ
= ω(p

1+β
4

√
log p)
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Proof. By a simple Fourier analysis (see [71]), we know that the Laplacian eigenvalues are

2(2 − cos(2πi1/ℓ) − cos(2πi2/ℓ)) for all i1, i2 ∈ [ℓ]. Let us denote the ℓ2 eigenvalues as λ(i1,i2)

for i1, i2 ∈ [ℓ]. Notice that for i ∈ [ℓ], |{(i1, i2) : i1 ∨ i2 = i}| ≤ 2i. For simplicity let ℓ be even.

We know that if i1∨i2 ≤ ℓ/2 then λ(i1,i2) = 2−cos(2πi1/ℓ)−cos(2πi2/ℓ) ≥ 1−cos(2π(i1∨i2)/ℓ)
. Let k ≪ ℓ which we will specify later. Thus,

∑

(i1,i2) 6=(1,1)∈[ℓ]2
1 ∧ ρ2

λ2
(i1,i2)

≤ 2
∑

i∈[ℓ/2]
2i

(
1 ∧ ρ2

(1− cos(2πi/ℓ))2

)

≤ 4
k∑

i=1

i+ ρ2
ℓ2

2

2

ℓ

∑

k<i≤ℓ/2

2
i/ℓ

(1− cos(2πi/ℓ))2

≤ 4k2 + ρ2
ℓ2

2

∫ 1/2

k/ℓ

xdx

1− cos(2πx)

= 4k2 + ρ2
ℓ2

2

(
ℓ2

k2
+ o

(
ℓ

k

))

The above followed by the Taylor expansion about 0 of the integral. Let us choose k to be the

point at which 1− cos(2πk) ≈ ρ. By the first order approximation of arccos this occurs around

k = ⌊√ρℓ⌋. The inequalities above hold regardless of the choice of k, as long k ≪ ℓ, so we have

the freedom to tune it to our liking. Plugging this in we obtain,

∑

(i1,i2) 6=(1,1)∈[ℓ]2
1 ∧ ρ2

λ2
(i1,i2)

= O(ρℓ2) = O(n(1+β)/2)

The implication of Cor. 45 is that when β is close to 1 (small clusters), the GESS has nearly

optimal critical SNR. When β is small (large clusters), we suffer an additional factor of p(1−β)/8

in the upper bound. We conclude from the simulations (Figure 4.3) and our theory that the GESS

dominates when β ≈ 1/2, so clusters are of intermediate size.

We again see by rescaling the SNR (see Figure 4.4) according to the bound in Cor. 45 that

the theory appears to be correct. (After the rescaling the SNR the ROC curves uniformly do not

decrease as n increases.) While the curves do not exactly line up after rescaling for β = .5, this

seems to be a low n effect as the ROC curves for ℓ = 20, 30, 40 match.

4.6.3 Kronecker Graphs

Much of the research in complex networks has focused on observing statistical phenomena that

is common across many data sources. The most notable of these are that the degree distribution

obeys a power law ([19]) and networks are often found to have small diameter ([59]). A class of

graphs that satisfy these, while providing a simple modelling platform are the Kronecker graphs
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Figure 4.3: (Torus Comparisons) Simulations of the size (false positive rate) and the power under HPC
1

for the Torus of the GESS, adaptive GESS (Adapt), Max statistic (Max), and Aggregate statistic (Aggr).

The figures are for the size length of ℓ = 30, p = ℓ2 = 900, with choice of β = 0 (left), β = .5 (middle)

and β = .75 (right).

Figure 4.4: (Torus Rescaling) The size (false positive rate) and power (true positive rate) of the GESS as

n increases from ℓ = 10, n = 100 to ℓ = 40, n = 1200, with β = 0 (top) and β = .5 (bottom). The SNR

was held fixed (left), then was allowed to scale according to Cor. 45 (b) (middle), and scaled according to

the lower bound Cor. 45 (c) (right).
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(see [50, 51]). Let H1 and H2 be graphs on p0 vertices with Laplacians ∆1,∆2 and edge sets

E1, E2 respectively. The Kronecker product, H1 ⊗H2, is the graph over vertices [p0]× [p0] such

that there is an edge ((i1, i2), (j1, j2)) if i1 = j1 and (i2, j2) ∈ E2 or i2 = j2 and (i1, j1) ∈ E1.

We will construct graphs that have a multi-scale topology using the Kronecker product. Let the

multiplication of a graph by a scalar indicate that we multiply each edge weight by that scalar.

First let H be a connected graph with p0 vertices. Then the graph G for ℓ > 0 levels is defined as

1

pℓ−1
0

H ⊗ 1

pℓ−2
0

H ⊗ ...⊗ 1

p0
H ⊗H

The choice of multipliers ensures that it is easier to make cuts at the more coarse scale. Notice

that all of the previous results have held for weighted graphs.

Corollary 46. For G be the Kronecker product of the base graph H described above with p =
pℓ0 vertices, the GESS can asymptotically distinguish H0 from signals from HPC

1 , HS
1 , H

E
1 with

ρ ∝ p2k−ℓ−1
0 (which includes cuts within the k coarsest scale), if the SNR is stronger than,

µ

σ
= ω(pk/2ℓ(diam(H))1/4)

where diam(H) is the diameter of the base graph H .

(b) The adaptive GESS can distinguish the hypotheses of (a) if

µ

σ
= ω(pk/2ℓ(diam(H) log p)1/4)

(c) H0 and HPC
1 are asymptotically indistinguishable if

µ

σ
= o(pk/4ℓ)

(d) The spectral scan estimator is localization consistent (i.e. d̃(x̂,x)→ 0)

µ

σ
= ω(p20(ℓ+ 1)p(2k+1)/ℓ)

Proof. The Kronecker product of two matrices A,B ∈ R
p×p is defined as A⊗B ∈ R

(p×p)×(p×p)

such that (A ⊗ B)(i1,i2),(j1,j2) = Ai1,j1Bi2,j2 . Some matrix algebra shows that if H1 and H2 are

graphs on p0 vertices with Laplacians ∆1,∆2 then the Laplacian of their Kronecker product,

H1 ⊗H2, is given by ∆ = ∆1 ⊗ Ip0 + Ip0 ⊗∆2 ([58]). Hence, if v1,v2 ∈ R
p0 are eigenvectors,

viz. ∆1v1 = λ1v1 and ∆2v2 = λ2v2, then ∆(v1 ⊗ v2) = (λ1 + λ2)v1 ⊗ v2, where v1 ⊗ v2 is

the usual tensor product. This completely characterizes the spectrum of Kronecker products of

graphs.

We should argue the choice of ρ ∝ p2k−ℓ−1
0 , by showing that it is the results of cuts at level

k. We say that an edge e = ((i1, ..., iℓ), (j1, ..., jℓ)) has scale k if ik 6= jk. Furthermore, a cut has

scale k if each of its constituent edges has scale at least k. Each edge at scale k has weight pk−ℓ
0

and there are pℓ−1
0 such edges, so cuts at scale k have total edge weight bounded by

pℓ−1
0

k∑

i=1

pi−ℓ
0 = pk−1

0

p0 − 1

pk−1
0

p0 − 1
≤ pk0

p0 − 1
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Cuts at scale k leave components of size pℓ−k
0 intact, meaning that ρ ∝ p2k−ℓ−1

0 for large enough

p0.

We now control the spectrum of the Kronecker graph. Let the eigenvalues of the base graph

H be {νj}p0j=1 in increasing order. The eigenvalues of G are precisely the sums

λi =
1

pℓ−1
0

νi1 +
1

pℓ−2
0

νi2 + ...+
1

p0
νiℓ−1

+ νiℓ

for i = (ij)
ℓ
j=1 ⊆ [p0]. The eigenvalue distribution {λi} stochastically bounds

λi ≥
ℓ∑

j=1

1

pℓ−j
0

ν2I{νij 6= 0} ≥ ν2

p
Z(i)
0

where Z(i) = min{j : νiℓ−j
6= 0}. Notice that if i is chosen uniformly at random then Z(i) has

a geometric distribution with probability of success (p0 − 1)/p0. Hence,

1

pℓ0

∑

i∈[p0]ℓ
min{1, ρ

2

λ2
i

} ≤ EZ min{1, ρ
2p2Z0
ν2
2

}

≤ PZ{Z ≥ 2k − ℓ− 1 + logp0 ν2}+
1

ν2
2

⌊ℓ+1−2k+logp0 ν2⌋∑

z=1

p0
2(2k−ℓ−1+z)

PZ{Z = z}

≤ p0
2k−ℓ−1+logp0 ν2 +

1

ν2
2

⌊ℓ+1−2k+logp0 ν2⌋∑

z=1

p0
2(z+2k−ℓ−1) 1

p0z
p0 − 1

p0

= O((ν2 + ν−1
2 )p0

2k−ℓ−1) = O(p0
2k−ldiam(H))

where diam(H) is the diameter of the base graph H . Hence,

∑

i∈[p0]ℓ
min{1, ρ

2

λ2
i

} = O(n2k/ℓdiam(H))

The proof and an explanation of ρ is in the appendix. The implication of Cor. 46 is that only

for k small is the GESS nearly optimal. Generally, one will suffer an additional term of pk/4ℓ. As

we can see from the simulations the k = 1 case is exactly when the aggregate statistic dominates

the ROC curve (see Figure 4.5). It is in the k larger than 1 and less than ℓ case that the GESS

improves on the aggregate and the max statistics.

We see by rescaling the SNR (see Figure 4.4) according to the bound in Cor. 45 that the

theory appears to be correct if loose. (After the rescaling the SNR the ROC curves uniformly

do not decrease as p increases.) For k = 2 the rescaling seems to be overkill, if lining up the

ROC curves is desired. This indicates that the gap between the upper and lower bounds may be

artificial.
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Figure 4.5: (Kronecker Comparison) Simulations of the size (false positive rate) and the power under

HPC
1 for the Kronecker graph of the GESS, adaptive GESS (Adapt), Max statistic (Max), and Aggregate

statistic (Aggr). The figures are for a base graph of size p0 = 6 and Kronecker power of ℓ = 3, so

p = pℓ0 = 216. The cuts were chosen at the coarsest scale, k = 1, (left) and at the second coarsest, k = 2
(right).

Figure 4.6: (Kronecker Rescaling) The size (false positive rate) and power (true positive rate) of the

GESS on the Kronecker graph with base graph size p0 = 6; p increases from ℓ = 2, p = 62 = 64 to

ℓ = 4, p = 216, with k = 1 (top) and k = 2 (bottom). The SNR was held fixed (left), then was allowed to

scale according to Cor. 46 (b) (middle), and scaled according to the lower bound Cor. 46 (c) (right).
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4.6.4 General Graph Structure, HS
1

The piecewise constant alternative hypothesis HPC
1 is amenable to a sophisticated theoretical

analysis and it motivates the GESS. Unfortunately, it is very easy to modify signals in XPC(µ, ρ)
by slight perturbations and find a signal that is outside our supposed class. This lack of robustness

is rightly alarming, and it is through the general graph structured class,XS(µ, ρ), that we intended

to include these perturbations. We know will show that the alternative HS
1 achieves this claim,

through an example, and will demonstrate the performance of the GESS on the example.

Suppose that we begin with a signal x ∈ XPC(µ, ρ) such that x = δ1C and modify it in the

following way: let C ′ ⊂ C and make x′ ∝ 1′
C such that x′ ∈ XS(µ, ρ). We now determine the

normalization that would make this so. Notice that

∣∣∣∣
x′⊤1C

|C| −
x′⊤1C̄

|C̄|

∣∣∣∣

√
|C||C̄|

p
≥ µ

Hence, x′ = δ′1C′ implies that

δ′ =
|C|
|C ′|δ

So for the subsampled signal x′ to remain in XS(µ, ρ) we will need to boost the signal by a factor

of |C|/|C ′|. Figures 4.7, 4.8, 4.9 show the ROC curves for the GESS when the signal cluster C ′

is formed by including each vertex in C according to independent Bernoulli(q) random variables.

To make the comparisons fair we boosted the signals according to the above formulation. As one

can see in all the cases the subsampling does not make any ROC curves worse. In the case of

the torus (Figure 4.9), subsampling the cluster seems to help the performance. It is guessed that

because in this case when the scan is performed not only does the cluster match, but individual

node clusters begin to match the data.

Figure 4.7: (BBT Perturbations) Simulations of the size (false positive rate) and the power under HS
1

for the balanced binary tree of the GESS with changing cluster sampling probability, q. The figures are

for the tree of depth ℓ = 6, p = 2ℓ+1 − 1 = 127, with choice of α = 1 (left) and α = 0.5 (right).

4.6.5 Ermakov Comparison

This study would certainly be incomplete without a comparison to Ermakov’s test for the el-

lipsoidal alternative hypothesis. We have shown that if x ∈ XPC(µ, ρ) then if we define ai =
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Figure 4.8: (Torus Perturbations) Simulations of the size (false positive rate) and the power under HS
1

for the Torus of the GESS with changing cluster sampling probability, q. The figures are for the size length

of ℓ = 30, p = ℓ2 = 900, with choice of β = 0 (left) and β = .75 (right).

Figure 4.9: (Kronecker Perturbations) Simulations of the size (false positive rate) and the power under

HS
1 for the Kronecker graph of the GESS with changing cluster sampling probability, q. The figures are

for a base graph of size p0 = 6 and Kronecker power of ℓ = 3, so p = pℓ0 = 216. The cuts were chosen at

the coarsest scale, k = 1, (left) and at the second coarsest, k = 2 (right).
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min{1, ρ/λi} we know that
∑

i ai(Ux)2i ≤ 2. Hence, we are partially justified in using Er-

makov’s statistic ê where the axis length parameters are {ai/2}. The results of simulations are

in Figure 4.10. We see that only for the Torus does Ermakov’s test have a slightly better ROC

curve. For the Kronecker graph, the GESS dominates Ermakov’s test, and for the BBT they are

all competitive.

Figure 4.10: (Ermakov’s test) Simulations of the size (false positive rate) and the power (false negative

rate) under HPC
1 for the Torus of the GESS, Ermakov’s test (ERM), and the adaptive GESS (Adapt). The

figures are for the tree of depth ℓ = 6, p = 2ℓ+1 − 1 = 127, with choice of α = 1 (left); the torus of

side length, ℓ = 30, p = ℓ2 = 900, β = 0 (middle); Kronecker graph with base graph of size p0 = 6 and

Kronecker power of ℓ = 3, so p = pℓ0 = 216.

4.7 Discussion

In this Chapter, we studied balanced graph structured activation detection, in which we require

that activations not only have low graph cut, but are large relative to the graph cut. We observed

that the GLR statistic was a computationally intractable combinatorial optimization. This led

naturally to the proposal of relaxations of the GLR, specifically the SSS and the GESS. The

GESS provided us with superior theoretical risk bounds for detection, which can be stated in

terms of the graph spectrum. The SSS provided a natural estimator of the true mean, x, in this

setting. We showed that these performed nearly optimally on the balanced binary tree.

While perhaps our upper bound in the Kronecker graph is not as small as it could be, we

have shown ample evidence that this is not the case for the Torus. It is natural to ask, why

does the GESS perform suboptimally in the Torus graph? It is believed that the relaxation is not

constrictive enough, and that perhaps there are relaxations with a smaller integrality gap that we

can exploit. Answering this question fully was not within the scope of this thesis, and it remains

an open problem.
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Chapter 5

Spanning Tree Multiscale Basis for

Estimation, Localization and Detection

In this chapter, we will be testing if there is a non-zero piece-wise constant activation pattern on

the graph given observations that are corrupted by Gaussian white noise. We show that correctly

distinguishing the null and alternative hypotheses is impossible if the signal-to-noise ratio does

not grow quickly with respect to the allowable number of discontinuities in the activation pattern.

With that said, we are able to out perform naive detectors that do not exploit the graph structure.

We summarize our results in this chapter:

1. Univeral Lower Bound and Unstructured Tests: We prove a lower bound for the ℓ0-

structured detection problem, which will serve as a benchmark for all tests. We also de-

scribe the SNR required for the max and aggregate tests to asymptotically distinguish H0

from H1.

2. Detection with Spanning Tree Decompositions: We develop a decomposition of the

graph based on a spanning tree of the graph. This naturally leads to a test which admits

theoretical risk bound.

3. Localizing Activity with Spanning Tree Wavelets: We give a computationally tractable

algorithm for the construction of a wavelet basis over the graph from a spanning tree. We

show that thresholding in the wavelet basis admits a localization guarantee.

4. Uniform Spanning Tree Basis: We prove that if one constructs the spanning tree ran-

domly, then we can express the aforementioned results in terms of electric network prop-

erties of the graph.

5. Specific Graph Models: We find that the UST wavelet estimator and the UST decompo-

sition detector provides near optimal performance on the torus graph, the kNN graph, and

the ǫ−graph.

First, we will remind the reader of the details for the testing problem. The structure of acti-

vation pattern x is determined by the graph G. Specifically, we assume that there are parameters

ρ, µ (possibly dependent on p1) such that the class of graph-structured activation patterns x is

1We suppress dependence on the number of edges m as we focus on graph models where m depends on n.
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given as follows.

X0 =

{
µ√
|C|

1C : C ⊂ V, |∂C| ≤ ρ

}

where the boundary is defined as ∂C = {(v, w) ∈ E : v ∈ C,w /∈ C} and the indicator

1C,v = 1{v ∈ C}. Hence, the possible patterns have few edges across which the values of x

differ. In other words, the set of activated vertices C have a small cut size in the graph G, where

cut size is defined to be
∑

v∈C
∑

w/∈C 1[(v, w) ∈ E]. If the number of activated vertices is |C|,
then values of ρ < |C| · degree(G) 2 imply that the activation is localized on the graph. In ℓ0-

structured activation detection we are concerned with statistically testing the null and alternative

hypotheses,

H0 : y ∼ N(0, σ2I)

H1 : y ∼ N(x, σ2I),x ∈ X0, ‖x‖ ≥ µ
(5.1)

H0 represents business as usual while H1 encompasses all of the foreseeable anomalous activity.

5.1 Universal Lower Bound and Unstructured Tests

In order to more completely understand the problem of detecting weak activations on graphs, we

prove that there is a universal minimum signal strength under which H0 and H1 are asymptoti-

cally indistinguishable. The proof is based on a result developed in [4], with a new construction

of prior distribution over worst case patterns.

Theorem 47. Hypotheses H0 and H1 defined in Eq. (5.1) are asymptotically indistinguishable if

µ

σ
= o

(√
min

{
ρ

dmax

log

(
pd2max

ρ2

)
,
√
p

})

where dmax is the maximum degree of graph G.

Proof. We begin by constructing a prior distribution over X . Consider k = min{ρ/dmax,
√
p}

and form a subset S ⊆ 2[p] that consists of all subsets of k vertices, i.e. |S| = k for all S ∈ S .

For every S ∈ S construct a pattern x = µ√
|S|
1S and denote the collection of such patterns as X ′.

Note that for all x ∈ X ′, ‖x‖2 = µ and by construction |{(v, w) ∈ E : xv 6= xw}| ≤ kdmax ≤ ρ.

Hence, X ′ ⊆ X . The prior we construct assigns uniform probability to all patterns in X ′ and

zero probability to patterns in X \ X ′. This gives us a prior distribution π over X .

The Bayes risk associated with a prior π is defined as R∗ = infT R∗(T ) = infT{E0[T ] +
EπEy[1− T ]}. Notice that R(T ) ≥ R∗(T ) ≥ R∗ for all prior distributions π. Our prior satisfies

the conditions of Proposition 3.4 in [1], and hence we get that R∗ ≥ δ for all µ such that

µ

σ
√
k
≤
√

log

(
1 +

p log(1 + 4(1− δ)2)

k2

)

2degree(G) is the maximum degree of any v ∈ G.
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from which the theorem follows by considering the two cases ρ/dmax ≤ √p and ρ/dmax >√
p.

We illustrate that there is a gap between this lower bound and tests that do not incorporate the

graph structure. We analyze two test statistics: vertex-wise thresholding and the vertex averaging

detector. Vertex-wise thresholding is typically used when it’s believed that the parameter x is

sparse, in the sense that it has few non-zero coordinates, or the signal strength at each vertex is

high. The following proposition characterizes its performance.

Proposition 48. Consider the vertex-wise thresholding test statistic maxv∈V |yv|, then a neces-

sary and sufficient condition for asymptotic distinguishability of H0 and H1 is

µ

σ
= ω

(√
|C|(

√
log n−

√
log |C|)

)

where |C| = o(p) denotes the number of activated vertices.

Proof. By Cirelson’s theorem, we know that

P{max
v∈C

ǫv ≥ Emax
v∈C

ǫv + u} ≤ e−u2/2σ2

and we have that Eminv∈C ǫv is within a constant factor of −σ
√
2 log |C| by the Majorizing-

Measure theorem. Hence, under HC
1 we have that maxv∈C yv ≥ µ/

√
|C| + Lσ

√
2 log |C| −

σ
√
2 log(1/δ) with probability at least 1−δ for some universal constant L. By similar reasoning,

under H0 we have that maxv∈V |yv| ≤ Lσ
√
2 log p+σ

√
2 log(2/δ). We have analogous opposite

bounds that prove the necessary condition. Hence, a threshold, τ , distinguishes H0 and H1 if and

only if

µ/
√
|C|+ Lσ

√
2 log |C| − σ

√
2 log 1/δ > τ

> Lσ
√

2 log p+ σ
√
2 log 1/δ

When ρ/dmax = o(|C|) (i.e. C is structured or localized on the graph) and |C| is increasing

with p, then there can be a significant gap between the lower bound of Theorem 47 and the

upper bound of Proposition 48. In other words, vertex thresholding does not take advantage

of the pattern structure when it is localized on the graph. On the other hand, if the signal is

unstructured or very sparse (number of activations do not increase with size of the graph), then

the max statistic is nearly optimal (up to log factors).

Another natural test statistic is vertex averaging, |1
p

∑
v∈V yv|, whose performance is charac-

terized below.

Proposition 49. Consider the test statistic | 1
n

∑
v∈V yv|, then a necessary and sufficient condition

for asymptotic distinguishability of H0 and H1 is

µ

σ
= ω

(√
p

|C|

)

where |C| denotes the number of activated vertices.
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Proof. Under H0,
1
p

∑
v∈V yv is normally distributed with mean 0 and variance σ2/p. Meanwhile

under HC
1 , 1

p

∑
v∈V yv is normally distributed with mean µ

√
|C|/p and variance σ2/p. Hence,

the test statistic asymptotically distinguished H0 from H1 if and only if

Φ

(
−µ

σ

√
|C|
p

)
= o(1)

where Φ is the CDF of the standard normal.

Since ρ ≤ |C|dmax, if |C| = o(
√
p/ log p) then there can be a significant gap between the

lower bound of Theorem 47 and the upper bound of Proposition 49. Intuitively, if the number of

activated vertices is small, then globally averaging the observations at all vertices is suboptimal.

We will show that testing with spanning tree wavelets is near optimal (up to log factors) and

hence bridges the gap in performance exhibited by unstructured tests (both when the structure is

localized and when the number of activated vertices is small).

5.2 Detection with Spanning Tree Decompositions

In this section, we show that given a spanning tree T one can decompose the graph by splitting

T in a strategic manner. Then we will see how using this decomposition, one can form a test

statistic for testing H0 versus H1. In the following section we will use this decomposition to

show that one can localize the cluster C by forming a wavelet basis from the decomposition.

5.2.1 The Decomposition Construction

The graph decomposition, also known as a laminar decomposition, is a set of clusters D =

{Di}|D|
i=1 ⊂ 2[p] such that the following hold: for any two D 6= D′ ∈ D either D ⊂ D′, D′ ⊂ D,

or D ∩D′ = ∅; {v} ∈ D, ∀v ∈ [p]; and [p] ∈ D. Thus we can associate a dendrogram, given by

the partial ordering D ⊂ D′, to the decomposition D. For each D ∈ D, let level(D) = |{D′ ∈
D : D ⊂ D′}|. We will furthermore denote height(D) = maxv∈[p] level({v}).

We construct our decomposition D recursively from T , by first finding a seed vertex in the

spanning tree such that the subtrees adjacent to the seed have at most ⌈p/2⌉ vertices and then by

including these subtrees to the decomposition. We recurse on each subtree, each time finding a

balancing vertex and splitting around said vertex. There are two properties of this decomposition

that we would like: that it has logarithmic height and it preserves the connectivity of the graph.

This will be made precise in Proposition 50.

The balancing step ensures (1), while the splitting method ensures (2). Finding a balancing

vertex in the tree parallels the technique in [61], which finds a balancing edge. The algorithm

starts from any vertex v ∈ T and moves along T to a neighboring vertex w that lies in the largest

connected component of T \ v. The algorithm repeats this process (moving from v to w) until

the largest connected component of T \ w is larger than the largest connected component of

T \ v at which point it returns v. We call this the FindBalance algorithm (Algorithm 1). The

decomposition method that calls FindBalance as a subroutine is explained in Algorithm 2.

66



Algorithm 1 FindBalance

Require: T is a spanning tree of G and initialize v ∈ V arbitrarily

loop

Let T ′ be the component of T \{v} of largest size

Let w be the unique neighbor of v in T ′.
Let T ′′ be the component of T \{w} of largest size.

Stop and return v if |T ′′| ≥ |T ′|.
v ← w.

end loop

Algorithm 2 Spanning Tree Decomposition

(0) Initialize D = {[p]}.
(1) Let v be the output of FindBalance applied to T .

(2) Let T1, . . . , Tdv be the connected components of T \v and add v to the smallest component

where dv is the degree of v in T .

(3) Add V (T1), . . . , V (Tdv) to D.

(4) For each i ∈ {1, . . . , dv}, recursively apply (1) - (4) on Ti as long as |Ti| ≥ 2.

Proposition 50. Let T be any spanning tree of G, and D be the decomposition formed by Algo-

rithm 2.

1. height(D) is logarithmic in p and

2. For any D ⊂ D′ in the decomposition there is an edge in G that is adjacent to both D and

D′\D.

Proof. (1) follows from the fact that at each split the size of the largest subtree is at least halved.

(2) follows from the fact that each subtree in the recursion T1, . . . , Tdv is connected its comple-

ment within T by a unique edge.

With the decomposition we are able to immediately construct a detection scheme with theo-

retical guarantees that is easily implemented.

5.2.2 Spanning Tree Decompositions Scan Test

First, let us describe the following notation for a graph decomposition. Let ℓ ∈ 1, . . . , L =
height(T ) denote a level of the dendrogram (decomposition), andDℓ = {D ∈ D : level(D) = ℓ}
(enumerate the elements ofDℓ = {Dℓ

i}mℓ

i=1). The following lemma is the primary mechanism that

allows us to obtain our detection results.

Lemma 51. Let {Zi}mi=1 be independent standard normal variables.

max
1≤i≤m

Zi ≤
√
2 logm+

√
2 log 1/δ0

with probability at least 1− δ0.
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Proof. By Cirelson’s theorem, we know that

max
1≤i≤m

Zi ≤ E max
1≤i≤m

Zi +
√
2 log 1/δ0

We then apply Dudley’s bound, in which N(η) is the η covering number of the discrete metric

over [p] given by d(i, j) = I{i = j}.

E max
1≤i≤m

Zi ≤
∫ ∞

0

√
2 logN(η)dη

Here N(η) = 0 if η ≥ 1 and N(η) = p otherwise. Evaluating the integral gives us our result.

Let us introduce the scan test that rejects when

∃ℓ ∈ [L] s.t. max
i∈mℓ

∑
v∈Dℓ

i
yv

σ
√
|Dℓ

i |
≥
√

2 logmℓ +
√

2 log(L/δ0)

Call this test T (y), then we have the following result.

Theorem 52. Under the null hypothesis, H0, the probability of type 1 error is bounded by

E0T (y) ≤ δ0

Moreover, under the alternative hypothesis with active cluster C, let ℓ,Dℓ
j , be any level and

cluster in the dendrogram contained in C, Dℓ
j ⊆ C. Then the probability of type 2 error is

bounded by δ1, E1(1− T (y)) ≤ δ1, if

µ

σ
≥
√
|C|
|Dℓ

j|
(√

2 logmℓ +
√
2 log(L/δ0) +

√
2 log 1/δ1

)

Proof. Consider the null hypothesis, H0, and the Z-scores,

Zℓ
i =

∑
v∈Dℓ

i
yv

σ
√
|Dℓ

i |
By Lemma 51, we know that with probability 1− δ0

max
i

Zℓ
i ≤

√
2 logmℓ +

√
2 log 1/δ0

Then we apply the union bound to show that

max
ℓ

max
i

Zℓ
i ≤

√
2 logmℓ +

√
2 logL/δ0

Let ℓ,Dℓ
j be the aforementioned cluster, then under H1 the Z-score has mean µ

√
|Dℓ

j|/|C|/σ
and variance 1. Hence, we know that with probability 1− δ1,

Zℓ
j ≥

µ

σ

√
|Dℓ

j|
|C| −

√
2 log 1/δ1

from which the theorem follows.
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Corollary 53. Let r = maxC∈C |∂T C|, then T (y) asymptotically distinguishes H0 from H1 if

µ

σ
= ω

(√
r log dmax log p

)

Proof. Let {Dℓ
ji
}Iℓi be the unique set of clusters in the dendrogram of maximal size within level

ℓ such that Dℓ
ji
⊆ C for all i ∈ Iℓ. For every parent of a maximal cluster there exists a unique

edge that disconnects We know that there is a unique edge for each Iℓ in ∂C, because it would

require an edge between Dℓ
ji

and its parent cluster since these clusters are maximal. Hence,

|Iℓ| ≤ r log dmax and so
∑

ℓ |Iℓ| ≤ r log dmax log p, and so there is a cluster i′ ∈ I such that

|Dℓi′
ji′
| ≥ |C|/(r log dmax log p). Because mℓi′

≤ p and the height of the dendrogram is less than

p, we obtain the result.

Thus, the performance of the detector is dependent on how many edges in the unknown

boundary ∂C are contained in the tree T . We will see in Section 5.4 that this can be guaranteed

to be small by merely choosing a spanning tree randomly.

5.3 Localizing Activity with Spanning Tree Wavelets

In this section, we present an algorithm for constructing a wavelet basis over the graph given a

decomposition D. We then show that using sparse normal means estimation with this wavelet

basis one can recover the true cluster of activation.

5.3.1 Wavelet Construction

We present an algorithm for constructing a wavelet basis given a spanning tree T and its decom-

position D. Informally, we would like to construct a basis B = [b1, . . . ,bn] such that each edge

e ∈ T is in the support of few basis elements. By e is in the support of b, we mean that be+ 6= be− .

Now, to form Haar wavelets we need that clusters are split in a binary fashion, which at present

is not the case (a cluster can have as many children clusters as the degree of the balancing ver-

tex). A naive procedure to make this dendrogram binary may result in an intolerable increase

in dendrogram height. The primary mechanism that circumvents this is that for a cluster in the

decomposition and its children we have to form an intermediate balanced binary dendrogram

with the children at its leaves. These smaller intermediate trees have heights that are logarithmic

in the number of children, and hence we are able to effectively form a binary decomposition that

is has a height logarithmic in the max degree of a vertex and in p. Algorithm 3 explains in detail

this procedure.

Proposition 54. The basis, B, constructed in Algorithm 3 is an orthonormal basis for Rp.

Proof. We can form a tree with the basis elements as vertices by connecting parents to their

children in the construction. This tree has leaves that are the singletons of [p] and is a binary

tree. The number of internal vertices in this tree are p, hence this is precisely the number of basis
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Algorithm 3 FormWavelets

Require: D is the spanning tree decomposition.

Initialize B = [ 1√
p
1] and Db = {[p]}.

for D ∈ D such that D is not singleton do

(1) Let {Di}ki=1 be the children of D in D.

(2) Let DL = ∪i≤k/2Di and DR = ∪i>k/2Di. Add DL, DR to Db and call these the children

of D in this construction.

(3) Form the following basis element and add it to B:

b =

√
|DL||DR|√
|DL|+ |DR|

[
1

|DL|
1DL
− 1

|DR|
1DR

]

(3) Recurse at (1) with DL and DR with partitions {Di}i≤k/2 and {Di}i>k/2 respectively if

the partition is not a single set.

end for

elements. Now, we know that if b0,b1 are constructed from DL,0, DR,0 and DL,1, DR,1 then

b⊤
0 b1 =

√
|DL,0||DR,0|√
|DL,0|+ |DR,0|

√
|DL,1||DR,1|√
|DL,1|+ |DR,1|

(
1

|DL,0||DL,1|
|DL,0 ∩DL,1|

+
1

|DR,0||DR,1|
|DR,0 ∩DR,1| −

1

|DL,0||DR,1|
|DL,0 ∩DR,1| −

1

|DR,0||DL,1|
|DR,0 ∩DL,1|

)

=

{
1, DL,0 = DL,1, DR,0 = DR,

0, otherwise

This follows from the fact that if the pairs are not identical or all disjoint then either DL0 and

DR0 are both contained in DL1 or DR1 or DL1 and DR1 are both contained in DL0 or DR0 . In

these latter cases the basis elements are constructed such that their inner product is 0. Finally, we

see that

b⊤b =
|DL||DR|
|DL|+ |DR|

(1/|DL|+ 1/|DR|) = 1

where b corresponds to DL, DR.

One main idea behind the specifics of the basis construction is that if D ∈ D has children

{Di}ki=1, then if an edge e is adjacent to both Di and D\Di then the number of basis elements

that support e is logarithmic in k. This gives us the following approximation theoretic guarantee.

Proposition 55. For any C ⊆ [p], ‖B1C‖0 ≤ (1 + |∂C ∩ T |)(height(D)⌈log(dmax)⌉).

Proof. The idea is that the height of Db is logarithmic.

‖B1C‖0 ≤ 1 + |{DL, DR in Alg. 3 : ¬{DL ⊆ C,DR ⊆ C or DL ∩ C = ∅, DR ∩ C = ∅}}|
≤ 1 + |{DL, DR in Alg. 3 : ∃e ∈ ∂C ∩ T , e+ ∈ DL, e

− ∈ DR}|(height(D)⌈log(dmax)⌉)
≤ (1 + |∂C ∩ T |)(height(D)⌈log(dmax)⌉)
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The first inequality follows from the definition of the basis elements. The second inequality is

due to the fact that for a cluster D ∈ D either D ∩ C = ∅, D ⊆ C, or ∃D′ ∈ D : D′ ⊆ C,

for each maximal D ⊆ C we may at most suffer height(D)⌈dmax⌉ non-zero basis elements.

The third inequality follows from the fact that DL, DR has a unique e ∈ T that is adjacent to

both.

This result gives us the ability to apply any sparse normal means estimation or testing proce-

dure over By because we know that Bx is sparse.

5.3.2 Estimation and Localization with Wavelet Thresholding

We will focus on reconstructing C from y. Because we now know that ‖Bx‖0 is small, using

hard and soft thresholding of the wavelet coefficients can give us an estimator, x̂, such that the

mean square error (MSE), ‖x̂−x‖, is small. After rotation by the eigenvectors the problem falls

squarely in the wheelhouse of the sparse normal means estimation work in [15]. Namely, they

show that if the signal under a wavelet basis is sparse then hard and soft thresholding can recover

the signal with small MSE.

We now recall how one can easily construct an estimate Ĉ of C from x̂ according to (2.11)

in Section 2.4 which we repeat below.

Ĉ = arg max
C⊆[n]

x̂⊤ 1C√
|C|

Notice that this is easily computed by greedily including the ordered components of x̂ until the

objective is maximized. With the estimators (x̂, Ĉ) in hand, we can make the following statistical

guarantee.

Theorem 56. Consider the hard thresholding estimator

ûi = (b⊤
i y)I{|b⊤

i y| > σ
√
2 log p}

Then form the estimate Ĉ from the estimate x̂ = Bû according to (2.11). We have the following

risk bound for estimation,

E‖x̂− x‖2 ≤ (2 log p+ 1.2)(σ2 +min{µ2, kσ2})

and the following risk bound for localization,

d(Ĉ, C) ≤ 2

(
4
σ2

µ2
(k + 1)(2 log p+ 1.2) + 2

σ

µ

√
(k + 1)(2 log p+ 1.2)

)

assuming that µ/σ = ω(1) and k = |∂C ∩ T |L where L is the height of the spanning tree basis

dendrogram. The same bound holds for soft thresholding with (2 log p+ 1).

Proof. The theorem follows by applying the following risk bound of the hard thresholding (it

can be found as Proposition 8.6 in [41]).

‖û−B⊤u‖2 ≤ (2 log p+1.2)(σ2+

p∑

i=1

min{(b⊤
i x)

2, σ2}) ≤ (2 log p+1.2)(σ2+min{µ2, kσ2})
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where k = rL where L is the height of the spanning tree basis dendrogram. We can then combine

this with Proposition 9 to obtain the result.

Corollary 57. The hard (and soft) thresholding are localization and ℓ2 consistent if

µ

σ
= ω(

√
r log dmax log p)

where r = max{|∂C ∩ T | : |∂C| ≤ ρ}.
Remark 58. Of course we know that r ≤ ρ regardless of the spanning tree T . Hence, regardless

of the spanning tree construction we know that

µ

σ
= ω(

√
ρ log dmax log p)

is sufficient for localization consistency of the hard thresholding wavelet estimator.

As in the detection performance, Corollary 53, we relate the performance of the estimator to

how many edges in the unknown boundary ∂C are contained in the tree T . The following section

discusses the choice of spanning tree, and how it effects these bounds.

5.4 Uniform Spanning Tree Basis

The uniform spanning tree (UST) is a random spanning tree generation technique that we will

use to construct wavelet bases. We will first examine the deep connection between electrical

networks, USTs and random walks. Because the UST is randomly generated, the test statistic

T (y) when conditioned on y will also be random. Moreover the estimator Ĉ is random even

when conditioned on y. Due to results from cut sparsification, we can relate the performance of

the UST decomposition detector to effective resistances.

5.4.1 Cuts and Effective Resistance

Effective resistances have been extensively studied in electrical network theory. We define the

combinatorial Laplacian of G to be ∆ = ∇⊤∇. A potential difference is any z ∈ R
|E| such

that it satisfies Kirchoff’s potential law: the total potential difference around any cycle is 0.

Algebraically, this means that ∃x ∈ R
|V | such that ∇x = z. The Dirichlet Principle states

that any solution to the following program gives an absolute potential x that satisfies Kirchoff’s

potential law:

minxx
⊤∆x s.t. xS = vS

for source/sinks S ⊂ V and some voltage constraints vS ∈ R
|S|. By Lagrangian calculus, the

solution to the above program is given by x = ∆†v where v is 0 over SC and vS over S, and

† indicates the Moore-Penrose pseudoinverse. The effective resistance between a source v ∈ V
and a sink w ∈ V is the potential difference required to create a unit flow between them. Hence,

the effective resistance between v and w is rv,w = (δv − δw)
⊤∆†(δv − δw), where δv is the Dirac

delta function.
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A massively useful characterization of effective resistance is the random walk interpretation.

Let Xt be the location of a random walker on G at time t. The hitting time H(v, w) is then

H(v, w) = E[min{t > 0 : Xt = w}|X0 = v]

We find that the effective resistance is related to the hitting time by,

rv,w =
H(v, w) +H(w, v)

2m

The numerator is also known as the commute time. As we will see, this characterization of

effective resistance is useful when bounding it for specific graph models.

5.4.2 UST Detector and Estimator

We will now examine the performance of the spanning tree detector and wavelet estimator, when

the spanning tree is drawn according to a UST. First, we will explore the construction of the UST

and examine key properties. The UST is a random spanning tree, chosen uniformly at random

from the set of all distinct spanning trees. The foundational Matrix-Tree theorem [43] describes

the probability of an edge being included in the UST. The following lemma can be found in [53]

and [54].

Lemma 59. Let G be a graph, T a draw from UST(G), and let e be any edge in E. Then,

P{e ∈ T } = re

Hence, we can expect that for a given cut in the graph, the cut size in the tree will look like

the sum of effective resistances of edges in the cut. If these effective resistances are small then

|∂C ∩ T | will be small and we can improve on the bound in Remark 58. While it is infeasible

to enumerate all spanning trees of a graph, the Aldous-Broder algorithm is an efficient method

for generating a draw from UST(G) [2]. The algorithm simulates a random walk {Xt} on G,

stops when all of the vertices have been visited, and defines the spanning tree T by the edges

{(XH(X0,v)−1, v) : v ∈ V }. The computational complexity of the Aldous-Broder algorithm is the

expected cover time of G, which is O(p log p) for expander graphs, d-regular graphs, and many

other graph models, but is O(p3) in the worst case [10].

In order to control ‖∂C ∩T ‖0, we need to control the overlap between a cut in the graph and

the UST. Clearly the UST does not independently sample edges, but it does have the well docu-

mented property of negative association, that the inclusion of an edge decreases the probability

that another edge is included. The following lemma states a concentration result for the UST,

based on negative association, and can be found in [28]. The proof is a simple extension of the

concentration results in [29].

Lemma 60. Let B ⊂ E be a fixed subset of edges, and |T ∩ B| denote the number of edges in

T also in B.

P{|T ∩ B| ≥ (1 + δ)
∑

e∈B
re} ≤

(
eδ

(1 + δ)1+δ

)∑
e∈B re
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We use this result to give conditions under which the UST decomposition detector asymptot-

ically distinguishes H0 from H1.

Theorem 61. Let rmax = maxC∈C
∑

e∈C re (the maximum effective resistance of the cut of a

pattern in C).

(1) H0 and H1 are asymptotically distinguished by T (y) if

µ

σ
= ω

(√
rmax log p

)

(2) The estimator Ĉ defined in (2.11) for hard or soft thresholding is localization consistent

(d(Ĉ, C)→ 0) if
µ

σ
= ω

(√
rmax log dmax log p

)

Proof. Let rB =
∑

e∈B re for B ⊂ E. By some basic calculus, and the fact that log(1 + x) ≥
x/(1 + x/2), we see that (

eδ

(1 + δ)1+δ

)rB

≤ exp

(
− δ2rB
2 + δ

)

Rewriting the Lemma 60, we obtain with probability > 1− γ

|T ∩ B| ≤ rB +

√
2rB log

1

γ
+

1

4
(log

1

γ
)2 +

1

2
log

1

γ

≤
(
rB +

√
2rB log

1

γ
+ log

1

γ

)

Now, because ‖∇T x‖0 = |T ∩ B| for B = supp(∇T x), we know by Theorem 52 if

µ

σ
= ω



√(

rB +

√
2rB log

1

γ
+ log

1

γ

)
log d log p




then H0 and H1 are asymptotically distinguished and the result follows because we guarantee

this for all such B. The same analysis holds for the hard thresholding estimator.

While these guarantees may at first glance be merely of theoretical importance, we know that

one can easily compute the effective resistances of a graph through a pseudoinverse calculation.

Thus, the practicing statistician is able to precompute the distribution of effective resistances and

determine how well or how poorly the UST might subsample the cut boundary. In the following

section we will see that in fact we can bound theoretically the effective resistance of cuts for a

variety of real world graph models.

5.5 Specific Graph Models

In this section we study our detection problem for several different families of graphs. Specif-

ically, we control the effective resistance re for each graph family, which when combined with
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Theorem 61 gives a lower bound on the SNR for which T (y) asymptotically distinguishes H0

and H1. Moreover, this will give us the localization consistency of Ĉ defined (2.11).

In Theorem 61, we showed that the distinguishability regime depends on the effective resis-

tances of the cuts induced by the class of activation patterns X . On its own, it is not immediately

clear that this result is an improvement over Remark 58 that we would obtain from any spanning

tree. However, Foster’s theorem highlights why we expect the effective resistance to be less than

the cut size.

Theorem 62 (Foster’s Theorem [24, 76]).

∑

e∈E
re = p− 1

Hence, if we select an edge uniformly at random from the graph, we expect its effective

resistance to be (p− 1)/m ≈ d̄−1 (the reciprocal of the average degree d̄) where m = |E|.

5.5.1 Edge Transitive Graphs

An edge transitive graph, G, is one such that for any edges e0, e1, there is a graph automorphism

that maps e0 to e1. Examples of edge transitive graphs include the l-dimensional torus and the

complete graph Kn. For such a graph, every edge has the same effective resistance, and Foster’s

Theorem then shows that re = (n − 1)/m where m is the number of edges. Moreover since

edge transitive graphs must be d-regular for some degree d, we see that m = Θ(nd) so the

re = Θ(1/d). This leads us to the following corollary, which we note matches the lower bound

in Theorem 47 modulo logarithmic terms if ρ/d ≤ √n:

Corollary 63. Let G be edge transitive with common degree d. Then for each edge e ∈ E(G),
re = (p− 1)/m.

(1) H0 and H1 are asymptotically distinguished by T (y) if

µ

σ
= ω

(√
ρ

d
log p

)

(2) The hard (and soft) thresholding wavelet estimator is localization consistent (d(Ĉ, C) → 0)

if

µ

σ
= ω

(√
ρ

d
log d log p

)

We simulate the detection performance for the 2 dimensional torus graph. We report the ROC

curve, the true positive rate versus the false positive rate, for the tree wavelet detector with 1000
simulations from H0 and H1 (Figure 5.1). The cluster, C, is chosen to be a square of size≍ p1−β ,

which means that the cut size is ρ ≍ p(1−β)/2. We compare the performance of the UST detector

to the adaptive GESS, max and aggregate statistic. We find that the UST detector performs better

than the adaptive GESS in the sparse regime (β = 0.75), and is competitive otherwise.
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Figure 5.1: (Torus Comparison) Simulations of the size (false positive rate) and the power under HPC
1

for the Torus of the UST detector (Tree), adaptive GESS (GESS), Max statistic (Max), and Aggregate

statistic (Aggr). The figures are p = 402 = 1200, with choice of β = .25 (left), β = .5 (middle) and

β = .75 (right).

5.5.2 kNN Graphs

Oftentimes in applications, the graph topology is derived from data. In this case, the randomness

of the data means that the graph itself is inherently random. Commonly, these graphs are modeled

as random geometric graphs, and in this section we will devote our attention to the symmetric

k-nearest neighbor graphs. Specifically, suppose that z1, ..., zp are drawn IID from a density

p supported over RD. Then we form the graph G over [p] by connecting vertices i, j if zi is

amongst the k-nearest neighbors of zj or vice versa. Some regularity conditions of p are needed

for our results to hold; they can be found in [81].

To bound the effective resistance re, Corollary 9 in [81] shows that Hij/2m → 1/dj and by

the definition of re we see that rij → 1
di
+ 1

dj
≤ 2

k
, since di ≥ k for each i. A formal analysis leads

to the following corollary, which we prove in [68] with more precise concentration arguments:

Corollary 64. Let G be a k-NN graph with k/p→ 0 and k(k/p)2/D →∞ and where the density

p satisfies the regularity conditions in [81].

(1) H0 and H1 are asymptotically distinguished by T (y) if

µ

σ
= ω

(√
ρ

k
log p

)

(2) The hard (and soft) thresholding wavelet estimator is localization consistent (d(Ĉ, C) → 0)

if

µ

σ
= ω(

√
ρ

k
log k log p)

We simulate the detection performance for the kNN graph. We report the ROC curve, the true

positive rate versus the false positive rate, for the tree wavelet detector with 1000 simulations

from H0 and H1 (Figures 5.2, 5.3). The cluster, C, is chosen by selecting a random centroid

vertex and expanding a ball in the extrinsic space until it contains the desired number of vertices.

k was set to be ⌊√p⌋ while |C| varied between 10, 15, and 20. Somewhat surprisingly the UST

detector does not dominate the adaptive GESS, but in all cases it is competitive.
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Figure 5.2: (kNN Comparison) Simulations of the size (false positive rate) and the power under HPC
1 for

the kNN of the tree detector (Tree), adaptive GESS (GESS), Max statistic (Max), and Aggregate statistic

(Aggr). The figures are p = 200, k ≈ p.5, with choice of |C| = 10 (left), |C| = 15 (middle) and |C| = 20
(right).

Figure 5.3: (kNN Comparison) Simulations of the size (false positive rate) and the power under HPC
1

for the kNN of the tree detector (Tree), adaptive GESS (GESS), Max statistic (Max), and Aggregate

statistic (Aggr). The figures are p = 200, k ≈ p.33, with choice of |C| = 10 (left), |C| = 15 (middle) and

|C| = 20 (right).
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5.5.3 ǫ-Graphs

The ǫ-graph is another widely used random geometric graph in machine learning and statistics.

As with the k-NN graph, the vertices are embedded into R
D and edges are added between pairs of

vertices that are within distance ǫ of each other. As with the k-NN graph, Corollary 8 from [81]

shows that Hij → m/dj for each pair of vertices. This leads us to believe that rij → 1/(di) +
1/(dj). If the density p from which we draw data points is bounded from below by some constant,

then we can uniformly lower bound all of the degrees di using fairly elementary concentration

results, which results in an upper bound on re. Formalizing this intuition, we have the following

corollary, which we prove in [68]:

Corollary 65. Let G be a ǫ-graph with points X1, . . . Xn drawn from a density, which satisfies

the regularity conditions in [81] and is lower bounded by some constant (independent of n) and

ǫ→ 0, nǫD+2 →∞.

(1) H0 and H1 are asymptotically distinguished by T (y) if

µ

σ
= ω

(√
ρ

pǫD
log p

)

(2) The hard (and soft) thresholding wavelet estimator is localization consistent (d(Ĉ, C) → 0)

if

µ

σ
= ω

(√
ρ

pǫD
log dmax log p

)

Figure 5.4: (ǫ-graph Comparison) Simulations of the size (false positive rate) and the power under

HPC
1 for the Torus of the tree detector (Tree), adaptive GESS (GESS), Max statistic (Max), and Aggregate

statistic (Aggr). The figures are p = 300, with choice of |C| = 10 (left), |C| = 15 (middle) and |C| = 20
(right).

We simulate the detection performance for the ǫ−graph. We report the ROC curve, the true

positive rate versus the false positive rate, for the tree wavelet detector with 1000 simulations

from H0 and H1 (Figure 5.4). The cluster, C, is chosen by selecting a random centroid vertex

and expanding a ball in the extrinsic space until it contains the desired number of vertices. ǫ was

set to be p−1/5 while |C| varied between 10, 15, and 20. For these simulations, the UST detector

dominates the adaptive GESS and the naive estimators uniformly.
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5.6 Discussion

In this Chapter, we studied the detection of piece-wise constant activation patterns over graphs,

and provided a necessary condition for the asymptotic distinguishability of signals that are as-

sumed to have few discontinuities. We gave a novel spanning tree wavelet construction, that

is the extension of the Haar wavelet basis, for arbitrary graphs and proposed a detector relying

on the largest wavelet coefficient obtained by projecting the observations onto the basis. The

decomposition detector constructed using a uniform spanning tree was shown to have strong the-

oretical guarantees that in many cases gives us near optimal performance. This means that under

adversarial choice of patterns, our randomized algorithm asymptotically distinguishes H0 from

H1 at near optimal signal-to-noise ratios. Alternatively, this means that for any given activation

pattern (non-adversarial setting) that the vast majority of spanning trees induce detectors that

asymptotically distinguish H0 from H1 near optimally.

The UST wavelet construction is done is such a way to ensure that the resulting basis is

localized and approximates signals with low cut size. If one were to ask for a localized basis that

approximated other signal classes, then this might radically alter the wavelet construction. For

example, if one desired a localized basis that approximated the ℓ2 graph structured signals then

it would be more appropriate to turn to the Laplacian eigenvectors, using some method such as

binary cuts to localize the basis. Furthermore, one promising direction is to use the work of [62],

which has a decomposition technique with guarantees that may be extended to an approximation

theoretic result.

Notice that in this Chapter, we observe a very different behavior in the critical SNRs than

those in Chapter 4. This highlights some of the fundamental difference between ℓ0 graph struc-

ture, X0, and balanced graph structure, XPC , as alternative spaces. Moreover, we have argued the

estimators from very different perspectives. The GESS is a relaxation of the GLR statistic, which

is computationally infeasible. The decomposition is motivated as a reasonable alternative to like-

lihood based procedures for the ℓ0 graph structure. This leads us to the obvious question, is a

more likelihood based approach, such as the edge lasso superior to the decomposition approach?

This is an object of current study, and remains an open problem. Much of the impetus for the

formation of a decomposition on general graphs was explicitly the construction of the wavelet

basis over general graphs. The fact that this wavelet basis resulted in an estimation procedure is

a byproduct of the approximation guarantee Proposition 55.

5.6.1 Discussion of the Thesis

The main message of this thesis is that by exploiting graph structure as informed prior infor-

mation for statistical estimation, one is able to detect, localize, and estimate under lower SNR

regimes than would be possible without such prior knowledge. We saw this in Chapter 2, where

Theorem 1 shows that one can bound the MSE of Laplacian eigenmaps through quantiles of the

graph spectrum. In Chapter 3, Theorem 20 states that under conditions that could be related to

the graph Laplacian and the underlying signal lead to near optimal changepoint sparsistency. In

Chapter 4, the performance of the GESS is quantified in Theorem 34, where the critical SNR is

equivalent to a functional of the graph spectrum. In Chapter 5, we developed a graph wavelet

basis, and in Theorem 56, we proved that thresholding in this basis had a natural risk bound.
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Throughout this thesis, we made a variety of simplifying assumptions. Generally, this work

is the first comprehensive study of graph structured normal means inference, and simplifying

assumptions were made because it would not be in the scope of the thesis to generalize the

setting any more. Specifically, the noise variance σ is assumed to be known. If it were not

known, one recommendation would be to estimate it from the eigenvectors of the Laplacian with

large eigenvalue. This would introduce an additional tuning parameter, but perhaps an adaptive

method would allow us to find it effectively.

Another assumption is that the graph is assumed to be known. In practice one may obtain

a graph with edges missing, falsely added, or misspecified weights. There are two approaches

that one may take when it is known that the graph is misspecified. First, one may proceed

with the inference procedures given in the proceeding chapters, and verifying that the effect of

deviations from the assumed graph does not have a significant effect on the statistical power.

Second, one may model the graph misspecification, which would require new estimators with a

new theoretical analysis.

This work is only the opening salvo in a possibly long line of research. Indeed, much of the

work in this thesis was merely finding appropriate formulations of the detection and estimation

problems. It is no coincidence that each chapter left its author with more questions than answers.

It seems apparent that this line of research exemplifies the statistical and computational tradeoffs

inherent in combinatorial testing. We have seen this in the need for a spectral relaxation of the

GLR statistic, and the computational feasibility of the UST wavelet basis. While there is a multi-

tude of results waiting to be discovered regarding graph structured normal means estimation, we

feel confident that this thesis provides insights into the key theoretical and computational issues.
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