
Parallel and Distributed Systems for 
Probabilistic Reasoning

Joseph Gonzalez

December 2012 
CMU-ML-12-111

 



  



Parallel and Distributed Systems for
Probabilistic Reasoning

Joseph Gonzalez

December 2012
CMU-ML-12-111

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Carlos Guestrin, Chair
Guy Blelloch, CMU

David O’Hallaron, CMU
Alex Smola, Google

Jeff Bilmes, UW

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Joseph Gonzalez

This research was sponsored by AT&T Labs Fellowship Program, the ONR Young Investigator Program grant N00014-08-1-0752,
the ARO under MURI W911NF0810242, DARPA IPTO FA8750-09-1-0141, the ONR PECASE-N00014-10-1-0672, the NSF
under the Graduate Research Fellowship Program and grants NeTS-NOSS CNS-0625518, NeTS-NBD CNS-0721591, and
IIS-0803333, and Intel Science and Technology Center for Cloud Computing.



Abstract

Scalable probabilistic reasoning is the key to unlocking the full potential of the age of
big data. From untangling the biological processes that govern cancer to effectively targeting
products and advertisements, probabilistic reasoning is how we make sense of noisy data
and turn information into understanding and action. Unfortunately, the algorithms and tools
for sophisticated structured probabilistic reasoning were developed for the sequential Von
Neumann architecture and have therefore been unable to scale with big data. In this thesis
we propose a simple set of design principles to guide the development of new parallel and
distributed algorithms and systems for scalable probabilistic reasoning. We then apply these
design principles to develop a series of new algorithms for inference in probabilistic graphical
models and derive theoretical tools to characterize the parallel properties of statistical inference.
We implement and assess the efficiency and scalability of the new inference algorithms in the
multicore and distributed settings demonstrating the substantial gains from applying the thesis
methodology to real-world probabilistic reasoning.

Based on the lessons learned in statistical inference we introduce the GraphLab parallel
abstraction which generalizes the thesis methodology and enable the rapid development of
new efficient and scalable parallel and distributed algorithms for probabilistic reasoning. We
demonstrate how the GraphLab abstraction can be used to rapidly develop new scalable
algorithms for probabilistic reasoning and assess their performance on real-world problems in
both the multicore and distributed settings. Finally, we identify a unique challenge associated
with the underlying graphical structure in a wide range of probabilistic reasoning tasks. To
address this challenge we introduce PowerGraph which refines the GraphLab abstraction and
achieves orders of magnitude improvements in performance relative to existing systems.
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Chapter 1

Introduction

Probabilistic reasoning forms the foundation of modern statistics and machine learning. From estimating
the chance of rain to predicting a user’s shopping interests we rely on probabilistic reasoning to quantify
uncertainty, model noisy data, and understand complex phenomena. Probabilistic graphical models are one
of the most influential and widely used techniques for complex probabilistic reasoning. By providing a
compact representation of complex phenomena as well as a set algorithmic and analytical tools, probabilistic
graphical models have been used to successfully untangle the structure [Yanover and Weiss, 2002, Yanover
et al., 2007] and interactions [Jaimovich et al., 2006] of proteins, decipher the meaning of written language
[Blei et al., 2003, Richardson and Domingos, 2006], and label our visual world [Li, 1995].

Historically, exponential gains in sequential processor technology have enabled increasingly sophisticated
probabilistic graphical models to be applied to a wide range of challenging real-world problems. However,
recent physical and economic limitations have forced computer architectures away from exponential se-
quential performance scaling and towards parallel performance scaling [Asanovic et al., 2006]. Meanwhile,
improvements in processor virtualization, networking, and data-storage, and the desire to catalog every
fact and human experience, has lead to the development of new hardware paradigms like cloud computing
and massively parallel data-centers which fundamentally challenge the future of sequential algorithms
[Armbrust et al., 2010].

Unfortunately, the algorithms and techniques used to analyze and apply probabilistic graphical models
were developed and studied in the sequential Von Neumann setting. As a consequence, recent efforts
[Chu et al., 2006, Panda et al., 2009, Wolfe et al., 2008, Ye et al., 2009] in scalable machine learning have
overlooked these rich models and techniques in favor of simpler unstructured models and approximations
which are more immediately amenable to existing large-scale parallel tools, abstractions, and infrastructure.
Alternatively, when confronted with computationally challenging graphical models we typically resort to
model simplification rather than leveraging ubiquitous and increasingly powerful parallel hardware.

In this thesis we introduce the simple GrAD design methodology which leads to a new set of efficient
algorithms, theoretical tools, and systems for scalable parallel and distributed probabilistic reasoning. The
Graphical, Asynchronous, Dynamic, (GrAD), design methodology is composed of the following three
basic principles:

1. Graphical: Explicitly represent statistical and computational dependencies as a sparse graph. The
sparse graphical representation enables the parallel decomposition of algorithms and exposes the
data locality needed for efficient distributed computation.
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2. Asynchronous: Allow computation to proceed asynchronously as dependencies are satisfied obeying
the dependency structure encoded in the graph. By allowing computation to run asynchronously
as dependencies are satisfied we can reduce wasted computation and build more efficient parallel
and distributed systems. By obeying the dependency structure we can obtain provably correct
asynchronous algorithms.

3. Dynamic: Adaptively identify and prioritize sub-problems that when solved make the most progress
towards the solution. By first identifying and solving the key sub-problems we can reduce the overall
work and more effectively use computational resources.

The GrAD design methodology lead to the following core principle evaluated in this work:

Thesis Statement: By factoring large-scale probabilistic computation with respect to the underlying
graphical structure, asynchronously addressing sequential dependencies, and dynamically scheduling
computation, we can construct efficient parallel and distributed systems capable of scalable probabilistic
reasoning.

We evaluate the thesis statement by applying the GrAD design methodology to two of the most widely used
probabilistic inference techniques, loopy belief propagation (Chapter 3) and Gibbs sampling (Chapter 4),
and derive a sequence of efficient parallel algorithms for probabilistic reasoning. In the process, we develop
basic theoretical tools like the τε-approximation Section 3.3 and the connection between graph coloring and
Gibbs sampling Section 4.3 to characterize the efficiency, scalability, and correctness of parallel inference
algorithms. Using large-scale real-world problems we experimentally evaluate the resulting algorithms in
the parallel and distributed settings. We find that by applying the GrAD methodology we are able to obtain
provably efficient and correct parallel and distributed algorithms that substantially outperform existing
approaches.

By generalizing our work on probabilistic inference algorithms, we derive the GraphLab high-level graph-
parallel abstraction (Chapter 5) which explicitly targets the GrAD design principles while providing strong
serializability guarantees (Section 5.4.5) that simplify the design and implementation GrAD algorithms.
We use the GraphLab abstraction to implement our graphical model inference algorithms as well as several
new algorithms demonstrating the applicability of the GrAD methodology to a wider class of problems
(e.g., Co-EM in Section 5.8.3 and the Lasso in Section 5.6.4). We implement the GraphLab system in
both the multicore and distributed settings generalizing our earlier system design work by introducing new
dynamic schedulers, improved distributed graph representations, and fault-tolerance. Finally, we evaluate
our implementation of the GraphLab system and show orders of magnitude improvements over traditional
data-parallel abstractions like Hadoop.

From our experience in designing and deploying GraphLab, we identified a critical challenge in scaling
graphical computation to massive real-world graphs. The power-law degree distribution, a defining char-
acteristic of a vast majority of real-world graphs, violates several of the key assumptions that form the
foundation of the GraphLab system as well as other widely used systems for graphical computation. To
address this challenge, we introduce PowerGraph which refines the GraphLab abstraction and exploits the
power-law structure as well as a common pattern in GrAD algorithms. As a consequence PowerGraph is
able to substantially reduce communication overhead and introduce a new approach to distributed graph rep-
resentation. We demonstrate that the PowerGraph system both theoretically and experimentally outperforms
existing graph computation systems (including GraphLab) often by orders-of-magnitude.
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1.1 Example: Modeling Political Bias in a Social Network

Suppose we are interested in estimating the political bias (e.g., liberal or conservative) of each user in
a large social network with hundreds of millions of users and billions of relationships. We might begin
by building a simple classifier that predicts political bias of a user based on the presence of politically
polarizing text in her profile. Applying this simple classifier to each user in isolation is a well studied
problem [Chu et al., 2006] and can easily scale to hundreds of millions of users by applying classic parallel
computing techniques and abstractions [Dean and Ghemawat, 2004]. While we may be able to accurately
estimate the political bias of users that frequently post polarizing comments, for the vast majority of users
who post infrequently the profile may not contain sufficient information to draw strong conclusions about
political bias (see Figure 1.1a).

? 

? 

? 

? 

? 

? 
? 

(a) Without Social Network (b) Predictions With Social Network

Figure 1.1: Social Network Example: Consider the task estimating the political bias of users in a large
social network. In (a) we have politically informative comments for only a small subset of the users leaving
us unable to make predictions about the vast majority. However by including the social network structure
(b) we can substantially improve our predictions.

Graphical: If we rely exclusively on the profile text to estimate political bias, we are discarding the import
relationships between users. Moreover, knowing something about the political bias of your friends, their
friends, and your greater social community can reveal a lot about your political bias (see Figure 1.1b).
Unfortunately, directly modeling all of these relationship leads to overly parameterized models and is
generally computation intractable. Instead, we can decompose the relationship along the original social
graph. However, to be able to model the long-range relationships (e.g., the effect of your community on
your political bias) we will need to iteratively move information through the graph (transitive closure). This
can be accomplished by using inference algorithms that factorize over the graph structure (i.e., operate only
at the level of each vertex and its neighbors) and iteratively refine simple models at each vertex based on
the models on neighboring vertices.

Asynchronous: Having decomposed the task of modeling long range relationships into the task of
iteratively refining local relationships, we introduced a substantial amount of parallelism. For example
in the large social network we could in principle refine the model for each user simultaneously. As
a consequence, many have proposed synchronously refining all users models by simulating a separate
processor for each user. However, we will show that it is substantially more efficient to refine users
profiles asynchronously as processor resources become available and using the most recent estimates for
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neighboring profiles. Intuitively, if a processor is currently refining one of your neighbors models then it is
often better to wait for your neighbors new model then to recompute based on the old model.

Dynamic: In a large social network there are often trend setters whose opinion shapes their community.
Intuitively, applying computational resources to refine the local models for the trend setters can have a
greater impact than applying the same resources to the vast majority of the remaining users. Alternatively,
accurately estimating the models for the vast majority based on inaccurate models for the trend setters
wastes resources since the estimates for the vast majority are likely to change as we refine the estimates for
the trend setters. By dynamically identifying and focusing computational resources on the trend setters we
can eliminate wasted computation and accelerate convergence.

GraphLab: In order to implement and run the proposed Graphical Asynchronous Dynamic (GrAD)
algorithm we would need to address a wide range of complex multicore and distributed system design
challenges including: efficient re-entrant data structure design, race and deadlock elimination, distributed
data placement and coordination, and fault-tolerance. While there are a several high-level parallel and
distributed abstractions which effectively hide the challenges of system design, none of them naturally
express GrAD algorithms. To fill this void we introduced the GraphLab abstraction which directly targets
GrAD algorithms and hides all of the challenges of multicore and distributed system design. Using the
GraphLab abstraction, we can quickly and easily implement and debug our GrAD algorithm. Then using
the many interchangeable GraphLab schedulers we can evaluate the effect of different dynamic schedules
on convergence and scalability. Finally, we can apply our algorithm to large graphs in both the multicore
and distributed settings.

PowerGraph: However, if we try to scale GraphLab to the full social network with billions of edges using
a large cluster of machines, we quickly find that communication overhead dominates and performance
degrades. Furthermore if we try to use other abstractions or traditional techniques for implementing
distributed graph computation the situation does not improve. The problem is that the power-law sparsity
structure, commonly found in graphs derived from natural phenomena (e.g., social networks and the web),
violates many of the assumptions made by traditional graph-parallel systems (including the GraphLab
system). However, by exploiting a common pattern in GrAD algorithms and the structure of power-law
graphs we can refine the GraphLab abstraction and produce a new system PowerGraph that is orders of
magnitude faster and more efficient.

1.2 Contributions and Greater Impact

We evaluate the thesis statement by developing the core algorithms, theory, and tools needed to scale
probabilistic reasoning to challenging real-world problems in the parallel and distributed settings. More
precisely, we:

• design and implement a suite of efficient parallel and distributed graphical model inference algorithms
based on the GrAD principles. Chapter 3, Chapter 4)

• develop theoretical tools to characterize the efficiency and scalability of the proposed algorithms as
well as the underlying parallel structure of inference in graphical models. (Chapter 3, Chapter 4)

• introduce the GraphLab abstraction and system which simplifies the design and implementation of
scalable GrAD parallel and distributed algorithms. (Chapter 5)
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• introduce the PowerGraph abstraction and system which refines GraphLab to efficiently express
computation on power-law graphs and capture the fundamental structure of the GrAD methodology.
(Chapter 6)

• evaluate the proposed techniques on real-world problems using a variety of parallel platforms and
demonstrate substantially improved scaling, computational efficiency, accuracy, and speed relative to
existing systems and techniques.

The algorithms, systems, and abstractions developed throughout this thesis have already started to have
significant impact on the greater research community. The GraphLab and PowerGraph systems along with
open-source implementations of a wide variety of GrAD algorithms for scalable probabilistic reasoning
have been widely downloaded and used to address tasks ranging from collaborative filtering to natural
language modeling. Along with help from collaborators we have fostered a community around graphical
approaches to scalable probabilistic reasoning.

In the future, we believe the emphasis on graph structured models and systems for scalable efficient
inference, will enable the development and application of substantially richer models to the massive scale
real-world problems. Throughout this thesis we give examples of sophisticated structured models and
how they are able to address complex real-world problems. By efficiently using parallel and distributed
resources, the algorithms and techniques described in this thesis can substantially decrease the time required
to design, evaluate, and debug new sophisticated models on the complete data allowing model designers to
capture the full complexity of the underlying phenomenon. We believe this will lead to a proliferation of
new structured models and inference techniques in a wide range of applications.

The GraphLab and PowerGraph high-level abstractions will allow advances in scalable system design to
be directly applicable to algorithms built upon these abstractions. By abstracting away the complexity
of scalable probabilistic reasoning, the GraphLab and PowerGraph abstractions enable system designers
to develop and apply advances in eventually consistent data representations, parallel and distributed data
structure design, and networking to a wide range of probabilistic reasoning tasks. Similarly, by isolating the
challenges of scalable parallel and distributed system design, GraphLab and PowerGraph system enables
experts in probabilistic reasoning to easily and efficiently construct rich models and algorithms which
leverage a wide range of architectures.

Finally, we believe the GrAD design methodology and the lessons learned in this thesis will help refocus
the course of future research in scalable probabilistic reasoning away from simple unstructured models
and parallelism at the expense algorithm efficiency and towards rich structured models and efficient GrAD
algorithms and systems. This thesis provides a tractable approach to rich structured models with scalable
and efficient distributed algorithms and systems and opens a wide range of new research directions including,
distributed dynamic scheduling, the role of model structure in approximate probabilistic reasoning, scalable
asynchronous consistency protocols, efficient distributed placement and representation of natural graphs,
and new approaches to recursive model design.

1.3 Outline and Summary of Key Results

We begin in Chapter 2 by briefly reviewing some of the key terminology, operations, and properties of
probabilistic graphical models as well as parallel and distributed algorithms and systems.

In Chapter 3 and we apply the GrAD methodology to design and implement algorithms and systems for
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Figure 1.2: The contributions of the thesis work in the context of existing work in graphical models inference (belief
propagation and Gibbs sampling) as well high-level abstractions and systems for parallel and distributed computation.
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(a) Execution of the Splash Algorithm on the Image Denoising Task

(b) Speedup (c) Work (d) Speedup

Figure 1.3: Key Results from Work on Belief Propagation: In (a) we plot the number of times each pixel is recomputed
when applying the SplashBP algorithm to the image denoising task. Brighter pixels have been recomputed more often. As the
algorithm converges it adaptively identifies the challenging parts of the image and focuses computation where it is needed. (b,c)
By introducing more aspects of the GrAD we are able to improve the scalability and efficiency of probabilistic reasoning systems.
The Wildfire, Residual, and Splash algorithms implement all three of the GrAD principles. By closely preserving the optimal
sequential schedule the SplashBP algorithm is able to most efficiently schedule computation. (d) To deal with work imbalance in
the distributed setting we introduced a simple over partitioning heuristic (larger k) which can substantially improve scalability.

probabilistic inference using loopy belief propagation. We incrementally introduce each aspect of the
GrAD approach and derive a sequence of algorithms which build upon each other (see Figure 1.3). In the
process we develop basic theoretical tools for reasoning about the efficiency and convergence of parallel
belief propagation algorithms and relate the parallel scaling to both structural properties of the graph as
well as underlying model parameters. In the end we arrive at the SplashBP algorithm which adaptively
moves wavefronts across the graph and embodies the key ideas described in the thesis statement. We then
implement the each algorithms in the multicore and distributed settings and evaluate their performance on a
wide range of metrics using real-world problems.

In Chapter 4 we apply the GrAD methodology to Gibbs sampling, a widely used inference technique
in Bayesian statistics. As with our work on belief propagation we derive a sequence of algorithms each
introducing new properties of the GrAD methodology. In contrast to existing work on parallel Gibbs
sampling, we prove that the resulting parallel algorithms are ergodic and therefore preserve the same
guarantees as their sequential counterparts. In addition we relate the parallel scaling to graph theoretic
properties of the underlying Markov Random Field and reveal the limiting distribution of existing non-
ergodic parallel Gibbs samplers. Finally, we arrive at the SplashGibbs algorithm which applies many of the
lessons learned from our work on SplashBP to substantially accelerate burn-in and mixing (see Figure 1.4.
We then implement each of the algorithms in the multicore setting and evaluate their performance on a
collection of synthetic and real-world sampling tasks.

In Chapter 5 we introduce the GraphLab graph-parallel abstraction which generalizes our work in graphical
model inference and is specifically targeted at algorithms that follow the GrAD methodology. We begin by
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Figure 1.4: Key Results from Work on Gibbs Sampling: (a) A noisy image of a sunset illustration. (b - e) Different thin
junction tree Splashes constructed for an image denoising task (grid MRF). Each splash is shown in a different shade of gray and
the black pixels are not assigned to any Splash. In (c) and (e) we zoom in on the Splashes to illustrate their structure and the black
pixels along the boundary needed to maintain conditional independence. (f-i) Comparison of Chromatic sampler and the Splash
sampler at different settings on a real world citation modeling task. (f) The un-normalized log-likelihood plotted as a function of
running-time. (g) The variance in the estimator of the expected assignment computed across 10 independent chains with random
starting points. (h) The total number of variables sampled in a 20 second window plotted as a function of the number of cores. (i)
The speedup in number of samples drawn as a function of the number of processors.
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Figure 1.5: Key Results for GraphLab: Computation in GraphLab is encoded as a vertex programs that can read and modify
the data on adjacent vertices and edges. In (a) the vertex-program running on the vertex 1 has access to all the data in the shaded
region. GraphLab automatically enforces strong serializability guarantees through three exclusion policies (b) which allow the user
to explore the tradeoff (c) between parallelism and data consistency. In (d,e) we plot the multicore speedup of our earlier parallel
belief propagation and Gibbs sampling algorithms running within the GraphLab framework. In (f) we plot the distributed speedup
of several new GrAD algorithms implemented using the GraphLab abstraction. Finally, in (g) we demonstrate the substantial
financial savings and performance gains of the GraphLab abstraction when compared to Hadoop.

reviewing the key properties of algorithms that follow the GrAD methodology and discussing how existing
high-level abstractions are not well suited for these algorithms. We then present the GraphLab abstraction
and demonstrate how GraphLab is able to naturally represent GrAD algorithms while providing strong
serializability guarantees. We then implement and evaluate the GraphLab system in the multicore and
distributed settings demonstrating strong scalability and substantial gains relative to MapReduce based
abstractions (i.e., Hadoop).

In Chapter 6, we identify the power-law sparsity structure found in most real-world graphs (Figure 1.6)
as one of the critical challenges to the scalability of distributed graph-parallel computation. We describe
how the high-degree vertices and low quality balanced cuts found in power-law graphs leads to substantial
storage and communication overhead for GraphLab as well as other popular message based graph-parallel
abstractions. We then propose the GAS decomposition which factors vertex programs over edges in
the graph and enables the use of vertex cuts to efficiently place large power-law graphs in a distributed
environment. We then propose a set of three simple distributed techniques to construct vertex cuts as
the graph is loaded and theoretically analyze these techniques demonstrating order of magnitude gains
over standard randomized edge cuts. Finally, we evaluate the PowerGraph system on several real-world
problems and demonstrate order of magnitude gains against existing state-of-the-art results.
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Figure 1.6: Key Results for PowerGraph: The vast majority of real-world graphs have a (a) power-law degree distribution.
Here we have plotted the in-degree distribution for the twitter follower graph. The power-law degree distribution leads to a
small set of very high degree vertices. The PowerGraph abstraction (b) splits high degree vertices across machines and factor
vertex-programs along edges in the graph using the Gather-Apply-Scatter (GAS) decomposition. The PowerGraph abstraction
enables the use of vertex-cuts which substantially reduce the communication overhead (c) relative to traditional edge-cuts. We
introduced several new partitioning heuristics (d) which improve the overall performance algorithms run on the PowerGraph
system. In figures (c,d) we demonstrate that the PowerGraph abstraction out performs GraphLab and Pregel and is robust to
changes in the power-law constant (smaller α implies more high degree vertices). Finally, in (g) we plot the runtime in minutes of
PowerGraph and Hadoop when computing triangles in the twitter follower graph. PowerGraph is over 282 times faster than the
best published result for this problem.
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Chapter 2

Background

This work combines ideas from statistical machine learning, parallel algorithms, and distributed systems.
In this chapter we provide the background on the relevant concepts from each of these fields and introduce
some the notation used throughout the remaining chapters.

2.1 Probabilistic Reasoning

Suppose we are interested in modeling the political bias (e.g., liberal or conservative) of users in a large
social network. We might begin by representing the political bias of each user i as a Bernoulli random
variable Xi ∼ Bern(θ1) taking the value 0 if i is a liberal and 1 if i is a conservative. The parameter θ1
determines the probability P (Xi = 1) = θ1 that any user is conservative and can be estimated by polling
or expert knowledge (e.g., θ1 = 0.5). While this simple model provides a prediction of the political bias for
each user, it does not take into account information unique to each user (e.g., the users profile or purchase
history).

We can improve our model by incorporating the observed profile text yi for each user. This can be
accomplished by defining the conditional probability P (Yi |Xi) of observing the text Yi given the
user has the political bias Xi. Using expert knowledge or polling data for our users we can estimate
P (Yi |Xi)

P (Yi = yi |Xi = xi) =

xi = 0 (liberal) xi = 1 (conservative)
”Obamacare” /∈ yi 0.8 0.3

”Obamacare” ∈ yi 0.2 0.7

(2.1)

Using Bayes rule we can combine the prior P (Xi) with the likelihood P (Yi |Xi) to compute the
posterior probability that a particular user is a conservative or liberal given their profile text:

P (Xi|Yi) ∝
P (Yi |Xi)P (Xi)∑
Xi

P (Yi |Xi)P (Xi)
(2.2)

While we may be able to accurately estimate the political bias of users that frequently post polarizing
comments, for many users who post infrequently the profile may not contain sufficient information to draw
strong conclusions about political bias.
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If we rely exclusively on the profile text to estimate political bias, we are discarding the import relationships
between users. Moreover, our model assume that knowing the political bias of a user’s friends tells us
nothing about the users own political bias, which is clearly not the case. More precisely, our model
incorrectly assumes that the random variables corresponding to political bias are independent. However
relaxing the independence assumption in the context of large datasets is both challenging and one of the
principle goals of this thesis work.

We can relax the independence assumption by defining the full joint probability over all the random
variables in our model. In the context of the social networking example, if we just considered the random
variables Xi the joint probability takes the form:

P (X1, . . . , Xn) (2.3)

which returns a probability for every possible assignment to each random variable Xi in the model. For a
social network with only two people we could encode the joint probability as a simple table:

P (X1, X2) =

P (x1, x2)

x1 = 0, x2 = 0 .4
x1 = 0, x2 = 1 .1
x1 = 1, x2 = 0 .1
x1 = 1, x2 = 1 .4

(2.4)

which effectively states that friends are more likely to share the same political view. Using the joint
probability function we can answer questions about the relationship between random variables. For
example, in the above two user social network the probability that user one is a liberal given that user two
is a liberal can be expressed as:

P (X1 = 0 |X2 = 0) =
P (X1 = 0, X2 = 0)∑
x1

P (X1 = 0, X2 = 0)
=

0.4

0.4 + 0.1
=

4

5
(2.5)

However, to extend this approach to even a small social network of 100 users we would need a table with
2100 rows and the calculation in Eq. (2.5) would requiring a summation over 299 states!

2.1.1 Factorized Joint Probability Distributions

Directly learning and manipulating the full joint probability distribution over every possible states for all
random variables is typically intractable. However, for most problems we can factorize the joint probability
distribution:

P (X1, . . . , Xn | θ) =
1

Z(θ)

∏
A∈F

fA(xA | θ), (2.6)

into a products of functions fA called factors. Each factor fA is positive function, fA : xA → R+, over a
small subset A ⊆ {1, . . . , n} of random variables XA. The factors are parametrized by a set of parameters
θ, and the partition function Z(θ) is defined as:

Z(θ) =
∑
X1

. . .
∑
Xn

∏
A∈F

fA(xA | θ). (2.7)

While we will primarily focus on distributions over discrete random variables Xi ∈ Xi = {1, . . . , |Xi|}
most of the proposed methods may also be applied to continuous distributions.
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If we return to our social networking example, one possible factorized representation of the joint probability
of all the users and their profiles is:

P (X1, . . . , Xn, Y1, . . . , Yn) ∝

(
n∏
i=1

P (Yi |Xi)

)(
n∏
i=1

P (Xi)

)
(2.8)

This factorized representation is equivalent to the independent user model we proposed earlier. Another
possible representation for the joint probability distribution is:

P (X1, . . . , Xn, Y1, . . . , Yn) ∝

(
n∏
i=1

P (Yi |Xi)

) ∏
(i,j)∈E

f{i,j} (Xi, Xj | θ)

 . (2.9)

where E is the set of all edges in the social network and the the factors f{i,j}:

f{i,j} (Xi, Xj | θ) =

{
1, if xi = xj

θ, otherwise
(2.10)

(where 0 < θ < 1) are defined over friends i and j and encode the prior belief that friends should share
a similar political bias. Given this model we can now condition on the observed user text and answer
questions about each user’s political bias in the context of their friends and their greater community.

In this example we started by modeling users independently and then improved our model by capturing
the relationships between friends. In the process we described a compact way to express a complex
joint distribution. We now formalize this modeling technique and describe the methods for applying and
analyzing these models.

2.1.2 Probabilistic Graphical Models

Probabilistic graphical models provide a common language and set of algorithmic tools for efficiently
representing and manipulating large factorized distributions. This is accomplished by constructing a
correspondence between the factorized distribution and a combinatorial graph representation upon which
we can define algorithms for learning and manipulating the underlying model.

A Markov Random Field (MRF) is an undirected graphical representation of a factorized distribution.
The MRF corresponding to the factorized probability distribution in Eq. (2.6) is an undirected graph over
the variables where Xi is connected to Xj if there is a A ∈ F such that i, j ∈ A. We denote the set of
indicies corresponding to the variables neighboring Xi as Ni ⊆ {1, . . . , n} and therefore XNi is the set of
neighboring variables.

To provide a easy to visualize illustration of a Markov Random Field we introduce the digital image
denoising task. We can construct a factorized distribution to model the noisy pixels in a digital image (see
Figure 2.1). For each pixel sensor reading we define an observed random variable yi and a corresponding
unobserved random variable Xi which represents the true pixel value. We can then introduce set of factors
corresponding to the noise process (e.g., Guassian):

f{i}(Xi = xi |Yi = yi, θ) = exp

(
−
(

(xi − yi)2

2θ21

))
. (2.11)
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(a) Original Image (b) Noisy Image

X1 X2 X3

X4 X5 X6

X7 X8 X9

(c) MRF

X1 X2 X3

X4 X5 X6

X7 X8 X9

(d) Markov Blanket

X1 X2 X3 X4 X5 X6 X7 X8 X9

f12 f23

f1 f2 f3 f4 f5 f6 f7 f8 f9

f14 f25 f36 f45 f47 f56 f58 f69 f78 f89

(e) Factor Graph (f) Expected Estimate

Figure 2.1: Image denoising problem. (a) The synthetic noiseless original image. (b) The noisy pixel
values observed by the camera. (c) The MRF corresponding to the potentials in Eq. (2.11) and Eq. (2.12).
The large gray vertices correspond to the latent unobserved pixel values Xi while the dark black circles
correspond to the observed pixel values yi (d) The Markov blanket for variable X5. (e) The denoise factor
graph. As with the MRF we have removed the Yi random variables and instead associated each Xi with the
unary factor fi. (f) The expected assignment to each of the latent pixels.

To encode smoothness in the image we introduce factors which encode similarity between neighboring
pixels (e.g., Laplace smoothing):

f{i,j}(Xi = xi, Xj = xj | θ) = exp (−θ2 |xi − xj |) . (2.12)

for adjacent Xi and Xj (e.g., cardinal neighbors). Then we can express the factorized joint distribution
(Eq. (2.6)) as:

P (X1, . . . , Xn, Y1, . . . , Yn) ∝

(
n∏
i=1

f{i}(Xi = xi |Yi = yi, θ)

) ∏
(i,j)∈E

f{i,j}(Xi = xi, Xj = xj | θ)

 .

(2.13)
The Markov random field for the image denoising problem is drawn in Figure 2.1c, and the indicies of the
variables neighboring X5 in Figure 2.1c are N5 = {2, 4, 6, 8}. To resolve the underlying image w e might
then want to compute the expected assignment E [Xi] for each pixel as in Figure 2.1f.

The edges in the MRF encode both the statistical dependencies between the variables and the computational
dependencies of the algorithms that operate on these models. As a consequence the MRF is a crucial
structure in designing scalable parallel and distributed algorithms for structured probabilistic reasoning.
In addition, the MRF also provides a means to leverage the substantial existing work in parallel graph
algorithms and job scheduling.

When building large-scale probabilistic graphical models, sparsity in the MRF is a desirable property.
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Densely connected models typically require too many parameters and make exact and even approximate
inference computationally intractable. Auspiciously, sparsity is also a desirable property for parallelism.
Many algorithms that operate on graphical models factor with respect to the Markov Blanket of each
variable. The Markov Blanket (see Figure 2.1d) of a variable is the set of neighboring variables in the
MRF. Therefore sparse models, provide strong locality in computation which is a very desirable property in
parallel algorithms. In fact the new parallel abstraction we develop in Chapter 5 is built around the locality
derived from sparsity in the MRF and the idea that computation factorizes over Markov blankets.

Factor Graphs

In some settings it may be more convenient to reason about the factor graph corresponding to the factorized
distribution. A factor graph is an undirected bipartite graph where the vertices V = X ∪ {fA}A∈F
correspond to all the variables X on one side and all the factors {fA}A∈F on the other side. Undirected
edges E = {{fA, Xi} : i ∈ A,A ∈ F} connect factors with the variables in their domain. To simplify
notation, we will use fi ∈ V and Xj ∈ V to refer to vertices in the factor when we wish to distinguish
between factors and variables, and i, j ∈ V otherwise. As with the MRF we define Ni ⊆ V as the
neighbors of i ∈ V in the factor graph. In Figure 2.1e we illustrate the factor graph for the image denoising
problem.

2.1.3 Inference

There are three primary operations within graphical models: inference, parameter learning, and structure
learning. Given the structure and parameters of the model, inference is the process of computing or
estimating marginals:

P (XS | θ) =
∑

x{1,...,n}\S

P
(
XS ,x{1,...,n}\S | θ

)
(2.14)

Estimating marginal distributions is an essential step in probabilistic reasoning and is needed to construct
conditionals and posteriors, make predictions, and evaluate the partition function Z(θ). For example, by
constructing the marginals of a factor graph representing the interactions between protein side chains we
can compute the likely orientations of each side chain and bound the energy of a particular configuration.
Alternatively, the marginals can be used in various learning algorithms to optimize model parameters.

Unfortunately, exact inference is NP-hard in general [Cooper, 1990] and even computing bounded approxi-
mations is known to be NP-hard [Roth, 1993]. Since exact inference is not tractable in most large-scale
real-world graphical models we typically resort to approximate inference algorithms. Fortunately, there are
many of approximate inference algorithms which typically perform well in practice. In addition we can
often use the approximations made by approximate inference algorithms to introduce additional parallelism.
In some cases (e.g., Section 3.3) we can introduce new approximations that are tailored to the objective of
increasing parallelism with a bounded impact on the resulting error in inference.
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2.1.4 Parameter Learning

Parameter learning in graphical models is used to choose the value of the parameters θ, usually by fitting
the model to data. The parameters may correspond to individual entries in a probability table or the weights
in functions (factors) over sets of variables. Often many factors will depend on a single parameter (shared
parameter). In the image denoising task their are only two parameters which are shared across all the
factors and act as weights.

Parameter learning is typically accomplished by maximizing the log-likelihood of the data:

θMLE = arg max
θ

d∑
i=1

logP
(
x
(i)
A | θ

)
(2.15)

= arg max
θ

d∑
i=1

∑
A∈F

log fA(x
(i)
A | θ)− d log

∑
x

∏
A∈F

fA(xA | θ) (2.16)

Unfortunately, while the left term (unnormalized log-likelihood) in Eq. (2.16) is tractable to compute, the
right term (log-partition function) is intractable and must be computed through approximate inference.
Therefore by focusing on improving the scalability of inference we can also improve the scalability of
parameter learning.

In many applications parameter learning is not necessary. In a purely Bayesian formulation, priors are
placed on parameters and the actual parameter values are treated as variables which are eliminated through
marginalization during inference. Often domain knowledge, like the physical energy between interacting
molecules, is used to select parameter values.

2.1.5 Structure Learning

The final and typically most challenging task in graphical models, is structure learning. Here the structure
of the MRF, or the model factorization encoded by F , is learned from data. Structure learning is most
challenging because it adds a combinatorial search on-top of the already intractable problems of learning
and inference. Moreover, in order to apply structure learning we need a method to impose factors over
the maximal cliques in the MRF and then the ability to learn optimal values for the factor parameters θ
given the structure. Therefore, structure learning requires parameter learning and consequently inference as
nested subroutines.

In many real-world applications of graphical models, the structure is typically predetermined from prior
knowledge. For example, in many vision applications the structure is a regular grid or mesh connecting
nearby pixels and objects. Alternatively, in language modeling applications the structure is determined by
the presence of words in documents. Even in our social network example, the graphical model structure is
derived from the friend network. Therefore, in this thesis we will assume that the structure and parameters
of the model are given, however we believe that the search for scalable parameters and substructures is an
exciting direction for future research.

2.1.6 Summary of Important Graphical Models Properties in the Parallel Setting

Graphical models provide a standardized representation of complex probabilistic relationships enabling the
design and implementation of general purpose probabilistic reasoning algorithms. Moreover, by providing
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a small suite of efficient parallel algorithms we can address a wide range of applications. In this thesis we
focus on inference algorithms which are the key computational bottleneck in both learning an applying
graphical models.

The same sparse graph structure which enables graphical models to efficiently encode large probability
distributions also exposes the fundamental dependencies in computation and present an opportunity to
leverage the wealth of existing work in parallel graph algorithms. For example our work in Gibbs sampling
demonstrates that we can exploit the factorization of single variable Gibbs updates along with classical
ideas from job scheduling on a dependency graph to construct a parallel Gibbs sampler that is provably
correct and has theoretically quantifiable mixing acceleration.

The inherent complexity of learning and inference in large graphical models often necessitates approxima-
tions. By restructuring or simply reinterpreting the approximations made by efficient sequential algorithms
we have considerable latitude to introduce additional parallelism. For example, in Chapter 3 we show how
approximations can introduce substantial parallel gains.

To conclude this section we briefly summarize several of the key properties of probabilistic graphical
models that will enable us to achieve the proposed objectives:

• Graphical models provide a standardized representation enabling the design and implementation of
a small core set of parallel algorithms which span a wide range of real-world applications.

• Efficient graphical models have a sparse dependency structure which facilitates efficient factorized
(local) parallel computation.

• The explicit graph structure of graphical models enables us to leverage classic work in parallel graph
algorithms and job scheduling.

• The inherent complexity of learning and inference in large graphical models often necessitates
approximations which can be used to expose substantial additional parallelism.

2.2 Parallel and Distributed Systems

Unlike the sequential setting where most processor designs faithfully execute a single random access
computational model, the parallel setting has produced a wide variety of parallel architectures. In this work
we focus on Multiple Instruction Multiple Data (MIMD) parallel architectures which includes multicore
processors and distributed clusters. The MIMD architecture permits each processor to asynchronously
execute its own sequence of instruction (MI) and operate on separate data (MD). Furthermore we divide
the MIMD architectures into Shared Memory (SM-MIMD) represented by multi-core processors and
Distributed Memory (DM-MIMD) represented by large commodity clusters and cloud systems. This
section will briefly review the design and unique opportunities and challenges afforded by shared and
distributed memory MIMD systems in the context of parallel machine learning.

2.2.1 Shared Memory

The shared-memory architectures are a natural generalization of the standard sequential processor to the
parallel setting. In this work we assume that each processor is identical and has symmetric access to a
single shared memory. All inter-processor communication is accomplished through shared memory and
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(a) Shared Memory (b) Distributed Memory

Figure 2.2: The two common parallel architectures encountered in typical commodity hardware. (a) The standard shared
memory architectural model consists of a collection of processors that have low latency high bandwidth access to a single uniform
address space. All inter-processor communication is accomplished through the shared memory. (b) The standard distributed
memory architectural model consists of a collection of processors each with their own local memory which are able to communicate
by passing messages across a reliable but typically slow communication network.

is typically very fast (on the order of a memory read). Consequently, shared memory architectures are
particularly convenient because they do not require partitioning the algorithm state and enable frequent
interaction between processors.

The class of parallel architectures that implement symmetric access to shared memory are commonly
referred to as symmetric multi-processors (SMP). Most modern SMP systems are composed of one or more
multi-core processors. Each multi-core chip is itself composed of several processors typically sharing a
local cache. These systems must therefore implement sophisticated mechanisms to ensure cache coherency,
limiting the potential for parallel scaling. Nonetheless, moderately sized mutli-core/SMP can be found in
most modern computer systems and even in many embedded systems. It is expected that the number of
cores in standard SMP systems will continue to increase [Asanovic et al., 2006].

While multi-core systems offer the convenience of shared memory parallelism they introduce challenges
in data intensive computing. By dividing the already limited bandwidth to main memory over several
processors, multi-core systems quickly become memory bandwidth constrained. Therefore, efficient
multi-core algorithms need to carefully manage memory access patterns.

2.2.2 Distributed Memory and Cluster Computing

Distributed memory systems are found in systems ranging from small clusters to elastic cloud computing
services like EC2. Distributed memory systems are composed of a collection of independent processors each
with its own local memory and connected by a relatively slow communication network. Distributed memory
algorithms must therefore address the additional costs associated with communication and distributed
coordination. While there are many performance and connectivity models for distributed computing
[Bertsekas and Tsitsiklis, 1989], most provide point-to-point routing, a maximum latency which scales
with the number of processors, and a limited bandwidth.

Unlike the shared memory setting, the distributed setting often considers systems with network and
processor failures. As clusters become larger, rare failure modes become more common and the chances
of machine and network failure increases. The ability to recover from and in many cases tolerate limited
system failure has been a focus of recent work in distributed computing systems and cloud environments.
For many of the moderately sized clusters used in research some of the emphasis on fault-tolerance may
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be unnecessary (see Section 5.7.3). In our work on graphical model inference algorithms we will initially
assume that all resources remain available throughout execution and that all messages eventually reach
their destination. We then relax this assumption in the GraphLab system by introducing relatively simple
check-point and recover fault-tolerance model.

Typical distributed memory systems range from hundreds of processors to thousands of processors. These
system employ fast commodity networks with switch hierarchies or highly tuned system specific inter-
connects. Often distributed memory systems are composed of smaller shared memory systems, typically
having several multi-core processors at each node. Here we will use the term node to refer to a single
machine on the network and we will use the term processor to refer each processing element. For instance,
a network of 8 machines, each with 2 quad-core CPUs, has 8 nodes, 64 processors.

By eliminating the need for cache coherency, the distributed memory model permits the construction of
substantially larger systems and also offers several key advantages to highly data intensive algorithms.
Because each processor has its own memory and dedicated bus, the distributed memory setting provides
linear scaling in memory capacity and memory bandwidth. In heavily data intensive algorithms linear
scaling in memory can provide substantial performance gains by eliminating memory bottlenecks.

Because of the latency associated with network communication and the limited network bandwidth, efficient
algorithms in the distributed memory model must minimize inter-processor communication. Consequently,
efficient distributed memory algorithms must deal with the challenges associated with partitioning both the
state and execution in a way that minimizes network congestion while still ensuring that no one processor
has disproportionally greater work.
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Chapter 3

Probabilistic Inference: Belief
Propagation

In this chapter we evaluate the thesis statement in the context of the widely used [Baron et al., 2010,
Jaimovich et al., 2006, Lan et al., 2006, Singla and Domingos, 2008, Sun et al., 2002] Loopy Belief
Propagation (BP) approximate inference algorithm. Many [Kang et al., 2010, Mendiburu et al., 2007,
Sun et al., 2002] have proposed synchronous parallelizations of the Loopy BP algorithm. We will show
that synchronous parallelization of Loopy BP is highly inefficient and propose a series of more efficient
parallelizations by adhering to the design methodology described within the thesis statement. In the process
we develop the SplashBP algorithm which combines new scheduling ideas to address the limitations of
existing sequential BP algorithms and achieves theoretically optimal performance. Finally, we present how
to efficiently implement BP algorithms in the distributed setting by addressing the challenges of distributed
state and load-balancing. We provide both theoretical and real-world experimental analysis along with
implementation specific details addressing locking and efficient data-structures. In addition, C++ code for
the algorithms and experiments presented in this chapter can be obtained from our online repository at
http://gonzalezlabs/thesis.

3.1 Belief Propagation

A core operation in probabilistic reasoning is inference (see Section 2.1.3) — the process of computing the
probability of an event. While inference is NP-hard [Cooper, 1990] in general, there are several popular
approximate inference algorithms which typically perform well in practice. Unfortunately, approximate
inference is still computationally intensive [Roth, 1993] and therefore can benefit from parallelization. In
this chapter we parallelize Loopy Belief Propagation (or BP in short) which is used in a wide range of
ML applications [Baron et al., 2010, Jaimovich et al., 2006, Lan et al., 2006, Singla and Domingos, 2008,
Sun et al., 2002]. For a more detailed review of the BP and it generalizations we recommend reading the
tutorial by Yedidia et al. [2003].

Belief propagation (BP), or the Sum-Product algorithm, was introduced by Pearl [1988] as an exact
inference procedure for tree-structured models but was later popularized as Loopy Belief Propagation, an
approximate inference algorithm for models with cycles or “loops.” However, for simplicity we will refer
to Loopy Belief Propagation as BP.
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Figure 3.1: The solid message leaving the solid center vertex depends only on the shaded messages entering
the center vertex.

Computation in the BP algorithm factorizes over the graphical model structure. The BP algorithm associates
a vector of parameters called a message1 along each direction of every edge in the factor graph. The
messages mXi→fA and mfA→Xi along the edge connecting variable Xi to factor fA are positive functions
(tables) mapping assignments to Xi to the positive reals. In loopy graphs, it is difficult to provide a direct
probabilistic interpretation of the messages. While the messages technically correspond to Langrange
multipliers in the Bethe approximation, it may help to think of the message mfA→Xi as encoding a
distribution over the variable Xi.

Starting with messages encoding uniform distributions, the BP algorithm iteratively recomputes (updates)
messages using the following update (fixed-point) equations:

mXi→fA(xi) ∝
∏

fB∈NXi\fA

mfB→Xi(xi) (3.1)

mfA→Xi(xi) ∝
∑
xA\xi

fA(xA)
∏

Xk∈NfA\Xi

mXk→fA(xk) (3.2)

where Eq. (3.1) is the message sent from variable Xi to factor fA and Eq. (3.2) is the message sent from
factor fA to variable Xi. The sum,

∑
xA\xi , is computed over all assignments to xA excluding the variable

xi, and the product,
∏
Xk∈NfA\Xi

, is computed over all neighbors of the vertex fA excluding vertex Xi. To
ensure numerical stability the messages are typically normalized.

A critical property of the BP update equations (Eq. (3.1) and Eq. (3.2)) is that they only depend on the
inbound messages associated with edges adjacent to the corresponding vertex (see Figure 3.1). As a
consequence the BP update equations demonstrate the factorized locality structure needed for efficient
parallel and distributed computation. In addition we will also exploit the property that the outbound
message does not depend on the inbound message along the same edge.

The update equations are iteratively applied until a convergence condition is met. Typically, convergence is

1Even though “message” is the traditional terminology and the words “send” and “receive” are frequently used, it should not
be interpreted as a form of communication. The “message” is simply a numeric vector used in the derivation of the loopy BP
algorithm in Pearl [1988].
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defined in terms of a bound on the change in message values between iterations:

max
(i,j)∈E

∣∣∣∣∣∣m(new)
i→j −m

(old)
i→j

∣∣∣∣∣∣
1
≤ β. (3.3)

for a small constant β ≥ 0. Unfortunately, in cyclic graphical models there are few convergence guarantees
[Ihler et al., 2005, Mooij and Kappen, 2007, Tatikonda and Jordan, 2002].

At convergence, the variable and clique marginals, also called the beliefs (b) are estimated using:

P (Xi = xi) ≈ bXi(xi) ∝
∏

fA∈NXi

mfA→Xi(xi) (3.4)

P (XA = xA) ≈ bXA(xA) ∝ fA(xA)
∏

Xj∈NfA

mXj→fA(xj). (3.5)

In other words, the approximate marginal distribution of a variable is simply the (normalized) product of
all of its incoming messages. Similarly, the approximate marginal of all variables within a factor can be
estimated by multiplying the factor with all of its incoming messages.

3.1.1 The Message Schedule

The order in which messages are updated is called the schedule and plays a central role in efficient BP.
For instance, in tree graphical models, a simple procedure known as the forward-backward schedule was
shown by Pearl [1988] to yield exact marginals using O(2 |E|) message calculations. First, messages are
computed starting from the leaves and in the direction of an arbitrarily chosen root. The process is then
reversed computing all the messages in the opposite direction. The reader may observe from Eq. (3.1) and
Eq. (3.2) that this forward-backward (or perhaps upward-downward) schedule achieves exact convergence.
That is, re-evaluation of any message using the message update equations, will not change the message
values.

Unfortunately, choosing the best schedule on loopy graphs is often difficult and can depend heavily on
the factor graph structure and even the model parameters. For simplicity, many applications of loopy BP
adopt a synchronous schedule in which all messages are simultaneously updated using messages from the
previous iteration. Alternatively, in some cases an asynchronous schedule is employed, in which messages
are updated sequentially using the most recent inbound messages. For example, the popular round-robin
asynchronous schedule, sequentially updates the messages in fixed order which is typically a random
permutation over the vertices. Advances by Elidan et al. [2006] and Ranganathan et al. [2007] have focused
on dynamic asynchronous schedules, in which the message update order is determined as the algorithm
proceeds. Other work by Wainwright et al. [2001] focus on tree structured schedules, in which messages
are updated along collections of spanning trees.

In this chapter we demonstrate that by varying the BP schedule we can affect the efficiency, speed, and
parallelism of BP. By applying the GrAD design methodology we develop computationally efficient parallel
schedules that simultaneously focus computation and respect the sequential structure of the underlying
graphical model while exposing a high-degree of parallelism. In the process we unify and refine the work
on dynamic scheduling [Elidan et al., 2006] and tree scheduling [Wainwright et al., 2001] to achieve
state-of-the-art performance in the sequential, parallel, and distributed settings.
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Algorithm 3.1: Synchronous BP
Input: Graph G = (V,E) and all messages {mi→j : ∀(i, j) ∈ E}
while not converged do

// Embarrassingly Parallel Computation Step
forall j ∈ Nv in the neighbors of v do in parallel

Compute Message m(new)
v→j using

{
m

(old)
i→v

}
i∈Nv

// Synchronization Phase

Swap(m(old), m(new))

3.1.2 Opportunities for Parallelism in Belief Propagation

Because BP update equation factor the inference computation over the graph they exposes substantial
graph-level parallelism. Moreover, all the messages in the graph could be computed simultaneously
and in parallel: leading to the Synchronous BP algorithm which we will present next in Section 3.2. In
addition BP exposes opportunities for more fine-grained factor-level parallelism through the individual
message calculations (sums and products) which can be expressed as matrix operations which can be
parallelized relatively easily [Bertsekas and Tsitsiklis, 1989]. For typical message sizes where the number
of assignments is much less than the number of vertices (Xi << n), graph level parallelism provides more
potential gains than factor level parallelism. For instance, the message update equations do not offer much
parallelism if all variables are binary. Therefore, we will ignore factor level parallelism in this chapter and
instead focus on graph level parallelism. Running time will be measured in terms of the number of message
computations, treating individual message updates as atomic unit time operations.

Pennock [1998] and Xia et al. [2009] explore parallel transformations of the graph which go beyond
the standard message calculations. While these techniques expose additional parallelism they require
low tree-width models and tractable exact inference, which are unreasonably strong requirements when
operating on massive real-world distributions. In acyclic models these techniques can achieve running times
that are logarithmic in the tree height (as apposed to the linear running times presented in this chapter) but
require considerable fine grained parallelism. In this chapter we restrict our attention to message passing
algorithms on the original graph and do not require low tree-width models.

3.2 Synchronous BP

Running BP with a synchronous message schedule leads to the highly parallel Synchronous BP algorithm
shown in Alg. 3.1. In fact Synchronous BP perfectly fits the classic Bulk Synchronous Parallel (BSP)
model of computation (described in greater detail in Section 5.3). The BSP model divides computation into
super-steps each consisting of two phases. During the first phase, each processor executes independently
updating its local BP messages. In the second phase, all processors exchange BP messages. Finally,
a barrier synchronization is performed before the next iteration, ensuring all processors compute and
communicate in lockstep.

In the shared memory setting messages are exchanged by swapping between old and new message buffers at
the end of each iteration. In the distributed memory setting messages must be sent over the communication
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Algorithm 3.2: Map Function for Synchronous BP
Input: A vertex v ∈ V and all inbound messages {mi→v}i∈Nv
Output: Set of outbound messages as key-value pairs (j,mv→j)
forall j ∈ Nv in the neighbors of v do in parallel

Compute Message mv→j using {mi→v}i∈Nv
return key-value pair (j,mv→j)

Algorithm 3.3: Reduce Function for Synchronous BP
Input: The key-value pairs {(v,mi→v)}i∈Nv
Output: The belief bv for vertex v as well as the {(v,mi→v)}i∈Nv pairs (j,mv→j)

Compute the belief bv for v using {(v,mi→v)}i∈Nv
Return bv and {(v,mi→v)}i∈Nv

network. In either case Synchronous BP requires two copies of each message to be maintained at all
times. When the messages are updated their new the values in m(old) are used as input, while the resultant
values are stored in m(new). In addition, the task of assessing convergence is relatively straight forward for
Synchronous BP. After each iteration all processors (or machines in the distributed setting) vote to halt
based on whether all the messages they have compute satisfy the termination condition (Eq. (3.3)).

3.2.1 Synchronous BP in MapReduce

The Synchronous BP algorithm may also be expressed in the context of the popular Map-Reduce framework.
The Map-Reduce framework, introduced by Dean and Ghemawat [2004], simplifies designing and and
implementation large scale parallel algorithms and has therefore been widely adopted by the data-mining
and machine learning community [Chu et al., 2006]. Synchronous BP can naturally be expressed as an
iterative MapReduce algorithm where the Map operation (defined in Alg. 3.2) is applied to all vertices and
emits destination-message key-value pairs and the Reduce operation (defined in Alg. 3.3) joins messages
at their destination vertex, updates the local belief, and prepares for the next iteration. It is important
to note that the MapReduce abstraction was not originally designed for iterative algorithms, like belief
propagation, and therefore standard implementations, like Hadoop, incur a costly communication and disk
access penalty between iterations.

3.2.2 Synchronous BP Runtime Analysis

While it is not possible to analyze the running time of Synchronous BP on a general cyclic graphical model,
we can analyze the running time in the context of tree graphical models. In Theorem 3.2.1 we characterize
the running time of Synchronous BP when computing exact marginals (with β = 0).

Theorem 3.2.1 (Exact Synchronous BP Running Time). Given an acyclic factor graph with n vertices,
longest path length l, and p ≤ 2(n− 1) processors, parallel synchronous belief propagation will compute
exact marginals in time (as measured in number of vertex updates):

Θ

(
nl

p
+ l

)
.
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Proof of Theorem 3.2.1. The proof follows naturally from the optimality of the standard forward-backward
scheduling on tree-structured models. On the kth iteration of Synchronous BP, all messages have traveled a
distance of k in all directions. We know from the forward-backward algorithm that the furthest distance
we must push messages is l. Therefore it will take at most l iterations for Synchronous BP to obtain exact
marginals.

Each iteration requires 2(n−1) message calculations, which we divide evenly over p processors. Therefore
it takes d2 (n− 1) /pe time to complete a single iteration. Thus the total running time is:

l

⌈
2 (n− 1)

p

⌉
≤ l
(

2 (n− 1)

p
+ 1

)
∈ Θ

(
nl

p
+ l

)

If we consider the running time given by Theorem 3.2.1 we see that the n/p term corresponds to the
parallelization of each synchronous update. The length l of the longest path corresponds to the limiting
sequential component which cannot be eliminated by scaling the number of processors. As long as the
number of vertices is much greater than the number of processors, the Synchronous BP algorithm achieves
nearly linear parallel scaling and therefore appears to be an optimal parallel algorithm. However, an
optimal parallel algorithm should also be efficient. That is, the total work done by all processors should be
asymptotically equivalent to the work done by a single processor running the optimal sequential algorithm.
By examining the simple chain graphical model we will show that there are O(n) unnecessary parallel
message computations at each iteration leading to a highly suboptimal parallel algorithm.

3.2.3 Analysis of Synchronous Belief Propagation on Chains

To illustrate the inefficiency of Synchronous BP, we analyze the running time on a chain graphical model
with n vertices. Chain graphical models act as a theoretical benchmark by directly capturing the limiting
sequential structure of message passing algorithms and can be seen as a sub-problem in both acyclic and
cyclic graphical models. Chain graphical models also represent the worst case acyclic graphical model
structure for parallel belief propagation because they contain only a single long path and do not expose
any opportunities2 for parallelism. Conversely, the branching structure of trees permits multiple longest
paths and exposes an opportunity for additional parallelism by running each path separately. Even in cyclic
graphical models, the longest paths in the unrolled computation graph again reduces to a chain graphical
model.

It is well known that the forward-backward schedule (Figure 3.2a) for belief propagation on chain graphical
models is optimal. The forward-backward schedule, as the name implies, sequentially computes messages
from m1→2 to mn−1→n in the forward direction and then sequentially computes messages from mn→n−1
to m2→1 in the backward direction. The running time of this simple schedule is therefore Θ (n) or exactly
2(n− 1) message calculations.

If we run the Synchronous BP algorithm using p = 2(n − 1) processors on a chain graphical model of
length n, we obtain a running time of exactly n− 1. This means that parallel Synchronous BP algorithm
obtains only a factor of two speedup using two processors per edge, almost twice as many processors as the
number of vertices. More surprisingly, if we use fewer than n − 1 processors, the parallel synchronous

2While it is true that rake-compress style algorithms as described by Miller and Reif [1985] could be applied to chain graphical
models they do not generalize to cyclic models.
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(a) Single Sequential (b) Optimal Parallel

Figure 3.2: (a) The optimal forward-backwards message ordering for exact inference on a chain using a
single processor. (b) The optimal message ordering for exact inference on a chain using two processors.

algorithm will be slower than the simple sequential forward-backward algorithm running on a single
processor. Finally, if we use any constant number of processors (for example p = 2), then the parallel
Synchronous BP algorithm will run in quadratic time while the sequential single processor algorithm will
run in linear time.

What is the optimal parallel schedule for belief propagation on chain graphical models? Recall that in the
message update equations (Eq. (3.1) and Eq. (3.2)), the message mi→j does not depend on the message
mj→i (see Figure 3.1). In the sequential forward-backward algorithm, messages in the forward sweep do
not interact with messages in the backward sweep and therefore we can compute the forward and backward
sweep in parallel as shown in Figure 3.2b. Using only p = 2 processors, simultaneously computing
messages sequentially in the forward and backward directions as shown in Figure 3.2b, we obtain a running
time of n− 1 and achieve a factor of two speedup.

While messages may be computed in any order, information is propagated sequentially. On every iteration
of Synchronous BP only a few message computations (in the case of chain graphical models only two
message computations) contribute to convergence while the rest are wasted. Unfortunately, there are no
parallel schedules which achieve greater than a factor of two speedup for exact inference on arbitrary chain
graphical models. Fortunately, there are parallel schedules which can achieve substantially better scaling
by exploiting a frequently used approximation in loopy BP.

3.3 The τε Approximation

In almost all applications of loopy BP, the convergence threshold β in Eq. (3.3) is set to a small value
greater than zero and the algorithm is terminated prior to reaching the true fixed-point. Even when β = 0,
the fixed floating point precision of discrete processors result in early termination. Because the resulting
approximation plays an important role in studying parallel belief propagation, we provide a brief theoretical
characterization.

We can represent a single iteration of synchronous belief propagation by a function UBP which maps all the
messages m(t) on the tth iteration to all the messages m(t+1) = UBP(m(t)) on the (t+ 1)th iteration. The
fixed point is then the set of messages m∗ = UBP(m∗) that are invariant under UBP. In addition, we define
a max-norm for the message space∣∣∣∣∣∣m(t) −m(t+1)

∣∣∣∣∣∣
∞

= max
(i,j)∈E

∣∣∣∣∣∣m(t)
i→j −m

(t+1)
i→j

∣∣∣∣∣∣
1
, (3.6)

which matches the norm used in the standard termination condition, Eq. (3.3).
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Definition 3.3.1 (Definition of τε-approximation). We define τε as:

τε = min
t
t s.t.

∣∣∣∣∣∣m(t) −m∗
∣∣∣∣∣∣
∞
≤ ε, (3.7)

the number of synchronous iterations required to be within an ε ball of the BP fixed-point. Therefore
a τε-Approximation is the approximation obtained from running synchronous belief propagation for τε
iterations.

A common method for analyzing fixed point iterations is to show (assume) that the UBP is a contraction
mapping and then use the contraction rate to bound the number of iterations for an ε level approximation of
m∗. If UBP is a max-norm contraction mapping then for the fixed point m∗ and 0 ≤ α < 1,

||UBP(m)−m∗||∞ ≤ α ||m−m
∗||∞ .

Work by Mooij and Kappen [2007] provide sufficient conditions for UBP(m) to be a contraction mapping
under a variety of norms including the max-norm and the L1-norm and shows that BP on acyclic graphs is
guaranteed to be a contraction mapping under a particular spectral norm.

If the contraction rate α is known, and we desire an ε approximation of the fixed point, τε is the smallest
value such that ατε ||m0 −m∗||∞ ≤ ε. This is satisfied by setting

τε ≤
⌈

log(2/ε)

log(1/α)

⌉
. (3.8)

Finally, in Eq. (3.9) we observe that the convergence criterion, ||m− f(m)||∞ defined in Eq. (3.3), is
a constant factor upper bound on the distance between m and the fixed point m∗. If we desire an ε
approximation, it is sufficient to set the convergence criterion β ≤ ε(1− α).

||m−m∗||∞ = ||m− UBP(m) + UBP(m)−m∗||∞
≤ ||m− UBP(m)||∞ + ||UBP(m)−m∗||∞
≤ ||m− UBP(m)||∞ + α ||m−m∗||∞

||m−m∗||∞ ≤ 1

1− α
||m− UBP(m)||∞ (3.9)

In practice, the contraction rate α is likely to be unknown and UBP will not be a contraction mapping on
all graphical models. Furthermore, it may be difficult to determine τε without first running the inference
algorithm. Ultimately, our results only rely on τε as a theoretical tool for comparing inference algorithms
and understanding parallel convergence behavior. In practice, rather than constructing a β for a particular
α and ε, we advocate the more pragmatic method of picking the smallest possible value that resources
permit.

3.3.1 Graphical Interpretation

The τε-Approximation also has a graphical interpretation. Intuitively, for a long chain graphical model with
weak (nearly uniform) edge potentials, distant vertices are approximately independent. For a particular
vertex, an accurate approximation to the belief may often be achieved by running belief propagation on
a small subgraph around that vertex. More formally to achieve an ε level approximation for a particular
message, we require a subgraph which contains all vertices that are reachable in τε steps.
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Figure 3.3: Above the chain graphical model we plot the sequence of messages from vertex 1 to vertex
7. For visual clarity these messages are plotted as continuous distributions. Below the chain we plot
the approximate sequence of messages starting at vertex 4 assuming a uniform message is received from
vertex 3. We see that the message that finally arrives at vertex 7 is only ε away from the original message.
Therefore for an ε level approximation at vertex 7 messages must only be sent a distance of τ = 3.

An illustration of the graphical interpretation is given in Figure 3.3. Suppose in the sequential forward pass
we change the message m3→4 to a uniform distribution (or equivalently disconnect vertex 3 and 4) and
then proceed to compute the rest of the messages from vertex 4 onwards. Assuming τε = 3 for the chosen
ε, the final approximate belief at b7 would have less than ε error in some metric (here we will use L1-norm)
to the true probability P (Xτε+1). Vertices τε apart are therefore approximately independent. If τε is small,
this can dramatically reduces the length of the sequential component of the algorithm.

3.3.2 Empirical Analysis of τε

The τε structure of a graphical model is a measure of both the underlying chain structure as well as
the strength of the factors. The strength of a factor refers to its coupling affect on the variables in its
domain. A factor that assigns relatively similar probability to all configurations is much weaker than a
factor that assigns disproportionately greater probability to a subset of its assignments. Graphical models
with factors that tightly couple variables along chains will require a greater τ to achieve the same ε level
approximation.

To illustrate the dependence τε on the coupling strength of the factors we constructed a sequence of binary
chain graphical models each with 1000 variables but with varying degrees of attractive and repulsive edge
factors. We parameterized the edge factors by

fxi,xi+1 =

{
eθ xi = xi+1

e1 otherwise
(3.10)

where θ is the “strength” parameter. When θ = 1, every variable is independent and we expect τε = 1
resulting in the shortest runtime. When θ < 1 (corresponding to anti-ferromagnetic potentials) alternating
assignments become more favorable. Conversely when θ > 1 (corresponding to ferromagnetic potentials)
matching assignments become more favorable. We constructed 16 chains at each potential with vertex
potentials fxi chosen randomly from Unif(0, 1). We ran synchronous belief propagation until a fixed
ε = 10−5 level approximation was achieved and plotted the number of iterations versus the potential
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(a) τε versus θ (b) τε versus θ

Figure 3.4: In (a) the number of iterations synchronous BP required to obtain a ε = 10−5 approximation
on a 1000 variable chain graphical model is plotted against the strength of the pairwise potential θ. In (b)
the log average message error is plotted as a function of the walk length on the protein pair-wise markov
random fields and the UW-Languages MLN.

strength in Figure 3.4a. We observe that even with relatively strong potentials, the number of iterations, τε,
is still relatively small compared to the length of the chain.

We can further experimentally characterize the decay of message errors as a function of propagation
distance. On several real networks we ran belief propagation to convergence (at β = 10−10) and then
simulated the effect of replacing an arbitrary message with a uniform distribution and then propagating that
error along random paths in the graph. In Figure 3.4b we plot the message error as a function of distance
averaged over 1000 random walks on various different factor graphs. Walks were terminated after the error
fell below the original β = 10−10 termination condition. In all cases we see that the affect of the original
message error decays rapidly.

The concept of message decay in graphical models is not strictly novel. In the setting of online inference in
Russell and Norvig [1995] used the notion of Fixed Lag Smoothing to eliminate the need to pass messages
along the entire chain. Meanwhile, work by Ihler et al. [2005] has investigated message error decay along
chains as it relates to robust inference in distributed settings, numerical precision, and general convergence
guarantees for belief propagation in cyclic models. Our use of τε is to theoretically characterize the
additional parallelism exposed by an ε level approximation and to ultimate guide the design of the new
optimal parallel belief propagation scheduling.

The τε-Approximation enables us to achieve substantially greater parallelism in chain models with only
a negligible loss in accuracy. The definition of τε directly leads to an improved parallel running time for
Synchronous BP:

Theorem 3.3.1 (τε-Approximate Synchronous BP Running Time). Given an acyclic factor graph with n
vertices and p ≤ 2(n−1) processors, parallel synchronous belief propagation will compute τε-approximate
messages in time (as measured in number of vertex updates):

Θ

(
nτε
p

+ τε

)
.

Proof of Theorem 3.3.1. We know that each iteration will take d2(n− 1)/pe time to complete. From
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Definition 3.3.1 it follows that a τε-approximation is obtained in exactly τε iterations.

The important consequence of Theorem 3.3.1 is that the fundamental sequential component of Synchronous
BP depends on the effective chain length determined by τε. Models with weaker variable interactions will
have a smaller τε and will permit greater parallelism. However, even with the reduced runtime afforded by
the τε-approximation, we can show that on a simple chain graphical model, the performance of Synchronous
BP is still far from optimal when computing a τε approximation. We formalize this intuition through the
following lower bound on τε-approximations for chain graphical models.

Theorem 3.3.2 (τε-Approximate BP Lower Bound). For an arbitrary chain graph with n vertices and p
processors, a lower bound for the running time of a τε-approximation is:

Ω

(
n

p
+ τε

)
.

To prove Theorem 3.3.2 we introduce the concept of awareness. Intuitively, awareness captures the “flow”
of message information along edges in the graph. If messages are passed sequentially along a chain of
vertices starting at vertex i and terminating at vertex j then vertex j is aware of vertex i.

Definition 3.3.2 (Awareness). Vertex j is aware of vertex i if there exists a path (v1, . . . , vk) from v1 = i

to vk = j in the factor graph G and a sequence of messages [m
(t1)
v1→v2 , . . . ,m

(tk)
vk−1→vk ] such that each

message was computed after the previous message in the sequence t1 < . . . < tk.

Proof of Theorem 3.3.2. Because the messages sent in opposite directions are independent and the amount
of work in each direction is symmetric, we can reduce the problem to computing a τε-approximation in one
direction (X1 to Xn) using p/2 processors. Furthermore, to achieve a τε-approximation, we need exactly
n− τε vertices from {Xτε+1, . . . , Xn} to be τε left-aware (i.e., for all i > τε, Xi is aware of Xi−τε). By
definition when n− τε vertices first become τε left-aware the remaining (first) τε vertices are maximally
left-aware.

Let each processor compute a set of k ≥ τε consecutive message updates in sequence (e.g.,
[m

(1)
1→2,m

(2)
2→3, . . . ,m

(k)
k−1→k]). Notice that it is never beneficial to skip a message or compute messages

out of order on a single processor since doing so cannot increase the number of vertices made left-aware.
After the first τε updates each additional message computation make exactly one more vertex left-aware.
Therefore after k message computations each processor can make at most k − τε + 1 vertices left-aware.
Requiring all p/2 processors to act simultaneously, we observe that pre-emption will only decrease the
number of vertices made τε left-aware.

We then want to find a lower bound on k such that the number of vertices made left-aware after k iterations
greater than the minimum number of vertices that must be made left-aware. Hence we obtain the following
inequality:

n− τε ≤
p

2
(k − τε + 1)

k ≥ 2n

p
+ τε

(
1− 2

p

)
− 1 (3.11)

relating required amount of work and the maximum amount of work done on the kth iteration. For p > 2,
Eq. (3.11) provides the desired asymptotic result.
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Algorithm 3.4: Atomic Parallel Round-Robin Algorithm

σ ← Arbitrary permutation on {1, . . . , |V |}
Atomic integer i← 1
do in parallel

while Not Converged do
// Reads the value of i and increments i atomically
j = AtomicFetchAndIncrement(i)
// Get the vertex to update
v = σ(j mod |V |)
// Compute out messages after earlier neighbors complete.
SendMessages(v)

The bound provided in Theorem 3.3.2 is surprisingly revealing because it concisely isolates the fundamental
parallel (n/p) and sequential (τε) components of BP. Furthermore, as we scale models, holding their
parameters fixed, τε remains constant providing optimal parallel scaling albiet with τε multiplicative
inefficiency.

In the next few sections we will apply the GrAD methodology to introduce several more efficient parallel
BP algorithms that will attempt to address this multiplicative dependence of nτε/p on τε in Theorem 3.3.1
and improve upon memory efficiency and convergence.

3.4 Round Robin Belief Propagation

In contrast to the Synchronous BP algorithm in which updates all messages simultaneously, the more
efficient forward-backward algorithm updates messages in a fixed sequential order. Once a message is
updated its value is immediately visible to any future message calculations. More generally given any fixed
ordering σ over the vertices, the inherently sequential Round-Robin BP algorithm iteratively sweeps the
vertices in the order σ recomputing each of their out messages. As before, once a message is computed its
new value is used in all message calculation for vertices later in σ.

We can obtain a parallel Round-Robin BP algorithm (Alg. 3.4) by choosing a particular sweep ordering
σ and constructing a corresponding parallel execution. Rather than one processor iteratively updating
messages in the order σ all p processors asynchronously update p vertices at a time. While each processor
runs independently, the next vertex v = σ(+ + j mod |V |) is obtained by atomically advancing the
shared schedule σ. After a processor gets the next vertex v it executes SendMessages(v) and checks
for local convergence.

We introduce a locking scheme that prevents a processor from updating a vertex while a dependent message
from an earlier vertex is being processed. The SendMessages(v) operation (Alg. 3.5) implements this
locking scheme. When SendMessages(v) is invoked on vertex v it acquires a write lock on v and read
locks on all adjacent vertices. As a consequence, concurrent invocations of SendMessages on adjacent
vertices are serialized ensuring both that the sequential order is preserved and that only one processor is
reading or writing the same a message value at the same time. To prevent deadlocks, all locks are acquired
in the same order (σ) on all processors. Once all the adjacent locks have been acquired all out-bound
messages are updated and then the locks are released.
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Algorithm 3.5: SendMessages(v)

// Sort v and its neighbors (done in advance)
o← Sort(Nv ∪ {v}) ordered by σ
// Lock v and its neighbors in order
for i ∈ [1, . . . , |o|] do

if oi = v then Acquire Write Lock on v
else Acquire Read Lock on neighbor oi

// Compute the new belief
bv ∝

∏
u∈Nv

mu→v

if v is a factor node then bv ∝ fv × bv
// Compute outgoing messages
for u ∈ Nv do mv→u ∝

∑
xv\xu

bv/mu→v

for i ∈ [1, . . . , |o|] do
Release Lock on oi

The locking mechanism used in SendMessages (Alg. 3.5) ensures that every sweep of the Round Robin
BP algorithm is serializable: there is a corresponding sequential execution σ(t). It is possible for the
serialization σ(t) to differ form σ the proposed permutation. However, for large cyclic models where σ is
usually a random permutation, such variation is not typically not an issue.

In the shared memory setting the Round-Robin BP algorithm uses atomic operations (see Section 2.2.1)
which are typically available on most modern processors and provide the coordination needed to maintain
the shared schedule. In the distributed setting we further relax serializability constraints by partitioning (see
Section 3.8.1) the Round-Robin schedule across machines allowing messages along the boundary between
machines to be computed concurrently.

3.5 Wildfire Belief Propagation

While Round Robin BP tends to converge faster than Synchronous BP, the Round Robin BP algorithm can
still lead to a significant amount of unnecessary computation. For example, consider a graphical model
which comprises of two disconnected regions. The first region takes a Round Robin sweeps to converge,
while the second region takes b sweeps, where a << b. Performing full Round Robin BP sweeps on the
entire graph will therefore take b iterations to converge. The first region will run for b− a more iterations
than necessary resulting in substantial wasted computation.

A simple solution to the problem of over scheduling an already converged region of the model is to
simply skip vertices that have converged. The resulting Wildfire algorithm shown in Alg. 3.6 is a direct
parallelization of the algorithm proposed by [Ranganathan et al., 2007]. The Wildfire algorithm is
almost identical to the Round Robin algorithm (Alg. 3.4) except that only messages that have changed
significantly: ∣∣∣∣∣∣m(new)

i→j −m
(old)
i→j

∣∣∣∣∣∣
1
> β (3.12)

are sent. To apply this definition we must compute all the new outbound messages every time a new
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Figure 3.5: If Round Robin BP is used on this graph, the left part of the graph (A) will converge rapidly
in a few iterations, while the right part of the graph (B) may take much longer to converge. Running full
sweeps therefore wastes computation.

message arrives. However, only the outbound messages that have changed by more then β are sent and the
rest are discarded. If a vertex has not received any messages since the last Round Robin sweep then it is
not necessary to recompute its outbound messages.

3.6 Residual Belief Propagation

A natural extension of to the WildFire BP algorithm is to prioritize the reception of the most influential
messages over messages that have not changed substantially. Elidan et al. [2006] introduced the Residual
BP algorithm which prioritizes messages based on their residual:

rmi→j =
∣∣∣∣∣∣m(new)

i→j −m
(old)
i→j

∣∣∣∣∣∣
1

(3.13)

which is analogous to the skipping condition used in the Wildfire belief propagation algorithm. The residual
prioritization greedily updates the message that most violates the termination condition. In settings where
belief propagation is a contraction mapping, Elidan et al. [2006] showed that the largest residual is an upper
bound on the distance to fixed-point and therefore the residual heuristic is greedily minimizing and upper
bound on the underlying BP energy.

Every time a vertex receives one message it actually must “re-receive” all messages into that vertex.
While it is possible to “incrementally” receive each new message doing so would be wasteful since every
received message would require completely recomputing all out-bound messages. Therefore prioritizing
messages actually corresponds to prioritizing vertices. Using Eq. (3.13) corresponds to using the vertex
priority:

rj = max
i

∣∣∣∣∣∣m(new)
i→j −m

(old)
i→j

∣∣∣∣∣∣
1

(3.14)

which prioritizes vertices based on the new message with largest change. Intuitively, vertex residuals
capture the amount of new information available to a vertex. Recomputing outbound messages from a
vertex with unchanged inbound messages results in a wasted update. Once the SendMessages operation
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Algorithm 3.6: Parallel Wildfire Algorithm Using Atomics

σ ← Arbitrary permutation on {1, . . . , |V |}
Atomic integer i← 1
do in parallel

while Not Converged do
// Reads the value of i and increments i atomically
j = AtomicFetchAndIncrement(i)
// Get the vertex to update
v = σ(j mod |V |)
if New Messages into v then

Grab neighborhood locks in canonical order
forall j ∈ Nv in the neighbors of v do in parallel

Compute Message m(new)
v→j using

{
m

(old)
i→v

}
i∈Nv

if
∣∣∣∣∣∣m(new)

v→j −m
(old)
v→j

∣∣∣∣∣∣
1
> β then

Send message m(new)
v→j

Release locks

Algorithm 3.7: Residual Belief Propagation Algorithm

Priority Queue Q
Initialize Q with all vertices at∞ priority
do in parallel

while TopResid(Q) > β do
v = Top (Q) // Get vertex with highest residual
SendMessages(v)
Set rv = 0 and update neighbors rNv

is applied to a vertex, its residual is set to zero and its neighbors residuals are updated. Vertex scheduling
has the advantage over message residuals of using all of the most recent information when updating a
message.

The parallel Residual BP algorithm in Alg. 3.7 uses a priority queue to store the vertices in residual order.
Each processor executes SendMessages on the next highest priority vertex from Q and then updates the
priorities on all neighboring vertices.

When the message calculations are fairly simple, the priority queue becomes the central synchronizing
bottleneck. An efficient implementation of a parallel priority queue is therefore the key to performance
and scalability. There are numerous parallel priority queue algorithms in the literature [Crupi et al., 1996,
Driscoll et al., 1988, Parberry, 1995, Sanders, 1998]. Many require sophisticated fine grained locking
mechanisms while others employ binning strategies with constraints on the range and distribution of
the priorities. Because the residual priorities are a heuristic, we find that relaxing the strict ordering
requirement can further improve performance by reducing priority queue contention. In our implementation
we randomly assigned vertices to priority queues associated with each processor. Each processor then
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draws from its own queue but can update the priorities of vertices owned by other processors.

3.6.1 Limitations of Message Residuals

The message centric residual defined in Eq. (3.14) may lead to nonuniform convergence in the pos-
terior marginals (beliefs) and starvation of low-degree vertices. In this section we characterize these
limitations and define a new residual measure Eq. (3.17) that directly captures changes in the estimated
marginals.

Because the residual definition in Eq. (3.14) only considers the largest message change for each vertex,
high-degree vertices with many small message changes may satisfy the termination condition while being
far from convergence.

Lemma 3.6.1. A small ε changes in all messages to a vertex of degree d can align resulting in a large dε
change in the belief.

Proof. Consider a discrete binary random variableXi with d = |Ni| and incoming messages {m1, . . . ,md}
which are all uniform. Then the belief at that variable is also uniform (i.e., bi = [12 ,

1
2 ]). Suppose we then

perturb each message by ε such that m′k(0) = 1
2 − ε and m′k(1) = 1

2 + ε. The perturbed messages have
changed by less than 2ε (i.e., ∀k : ||m′k −mk||1 ≤ 2ε) and by the classic convergnec criterion Eq. (3.3) all
messages have effectively converged. However the new belief is:

b′i(0) =

(
1
2 − ε

)d(
1
2 + ε

)d
+
(
1
2 − ε

)d .
The L1 change of the belief due to the compounded ε change in each message is then:

∥∥b′i(0)− bi(0)
∥∥
1

=
1

2
−

(
1
2 − ε

)d(
1
2 + ε

)d
+
(
1
2 − ε

)d .
By constructing a 2nd order Taylor expansion around ε = 0 we obtain:∥∥b′i(0)− bi(0)

∥∥
1
≈ dε+O(ε3).

Therefore, the change in belief varies linearly in the degree of the vertex enabling small ε message residuals
to translate into large dε belief residuals.

Alternatively, a large change in a single message may result in a small change in belief at a high degree
vertex resulting in the over-scheduling.

Lemma 3.6.2. A large 1− ε residual in a single message may result in a small ε change in belief at a high
degree vertex.

Proof. Consider the set {m1, . . . ,md} of binary messages with value [1− ε, ε] then the resulting belief at
that variable would be

bi(0) =
(1− ε)d

(1− ε)d + εd
.
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If we then change m1 to [ε, 1− ε] then the resulting belief is

b′i(0) =
(1− ε)d−1ε

(1− ε)d−1ε+ εd−1(1− ε)
.

Assuming that 0 < ε ≤ 1
4 and d ≥ 3,

1

2

∥∥b′i − bi∥∥1 =
(1− ε)d

(1− ε)d + εd
− (1− ε)d−1ε

(1− ε)d−1ε+ εd−1(1− ε)

≤ 1− (1− ε)d−1ε
(1− ε)d−1ε+ εd−1(1− ε)

= 1− (1− ε)d−2

(1− ε)d−2 + εd−2

=
εd−2

(1− ε)d−2 + εd−2

We can bound the denominator to obtain:

1

2

∥∥b′i − bi∥∥1 ≤ εd−2

(1/2)d−3
= (2ε)d−3ε ≤ ε

2d−3

In Figure 3.6a we plot the L1 error in the belief ||b′i − bi||1, varying the value of ε. In Figure 3.6b, we plot
the L1 error in the beliefs against the L1 change in m1. The curves look nearly identical (but flipped) since
the L1 change is exactly 2− 4ε (recall that m1 was changed from [1− ε, ε] to [ε, 1− ε]).

(a) Belief Error against ε (b) Belief Error against Message Error

Figure 3.6: (a): Given a vertex of degree d with all incoming messages equal to [1− ε, ε]. This graph plots
the L1 change of belief on a vertex of degree d caused by changing one message to [ε, 1− ε]. (b): Similar
to (a), but plots on the X-axis the L1 change of the message, which corresponds to exactly 2− 4ε.

3.6.2 Belief Residuals

The goal of belief propagation is to estimate the belief for each vertex. However, message scheduling
and convergence assessment uses the change in messages rather than beliefs. Here we define a belief
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residual which addresses the problems associated with the message-centric approach and enables improved
scheduling and termination assessment.

A natural definition of the belief residuals analogous to the message residuals defined in Eq. (3.13) is

rj =
∣∣∣∣bnew

i − bold
i

∣∣∣∣
1

(3.15)

where bold
i is the belief at vertex i the last time vertex i was updated. Unfortunately, Eq. (3.15) has a

surprising flaw that admits premature convergence on acyclic graphical models even when the termination
condition:

max
i∈V

∣∣∣∣bnew
i − bold

i

∣∣∣∣
1
≤ β (3.16)

is set to β = 0.

Example 3.6.3 (Premature Termination Using Eq. (3.16)). To see how Eq. (3.15) can lead to premature
termination consider a chain MRF with five vertices and the binary factors fXi,Xi+1(xi, xi+1) = I[xi =
xi+1] and unary factors:

fX1 =
[
1
9 , 9
]

fX2 =
[
9
10 ,

1
10

]
fX3 =

[
1
2 ,

1
2

]
fX4 =

[
1
10 ,

9
10

]
fX5 =

[
9, 19
]

We begin by initializing all vertex residuals to infinity, and all messages to uniform distributions and then
perform the following update sequence marked in black: After stage (b), m2→3 = fX2 and m4→3 =

fX4 . Since bX3 ∝ (m2→3 × m4→3) ∝ [1, 1], the belief at X3 X3 will have uniform belief. Since
X3 is just updated, it will have a residual of 0. After stage (d), m2→3 ∝ (fX1 × fX2) ∝ fX4 and
m4→3 ∝ (fX5 × fX4) ∝ fX2 . These two messages therefore have swapped values since stage (b). Since
bX3 ∝ (m2→3 ×m4→3), the belief at X3 will not be changed and will therefore continue to have uniform
belief and zero residual. At this point X2 and X4 also have zero residual since they were just updated. After
stage (e), the residuals at X1 and X5 at set to 0. However, the residuals on X2 and X4 remain zero since
messages m1→2 and m5→4 will not change since state (c). All variables therefore now have a residual of 0.
By Eq. (3.15) with β = 0 we have converged prematurely since no sequence of messages connects X1 and
X5. The use of the naive belief residual in Eq. (3.15) will therefore converge to an erroneous solution.

An alternative formulation of the belief residual which does not suffer from premature termination and
offers additional computational advantages is given by:

r
(t)
i ← r

(t−1)
i +

∣∣∣∣∣∣b(t)i − b(t−1)i

∣∣∣∣∣∣
1

(3.17)

b
(t)
i (xi) ∝

b
(t−1)
i (xi)m

(t)
i→j(xi)

m
(t−1)
i→j (xi)

. (3.18)
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b
(t−1)
i is the belief after incorporating the previous message and b(t)i is the belief after incorporating the

new message. Intuitively, the belief residual defined in Eq. (3.17) measures the cumulative effect of all
message updates on the belief. As each new message arrives, the belief can be efficiently recomputed using
Eq. (3.18). Since with each message change we can quickly update the local belief using Eq. (3.18) and
corresponding belief residual (Eq. (3.17)), we do not need to retain the old messages and beliefs reducing
the storage requirements and the overhead associated with scheduling.

The belief residual may also be used as the convergence condition:

max
i∈V

ri ≤ β (3.19)

terminating when all vertices have a belief residual below a fixed threshold β ≥ 0. Since Eq. (3.17) satisfies
the triangle inequality, it is an upper bound on the total change in belief ensuring that the algorithm does
not change while their are beliefs that have changed by more than β. Because Eq. (3.17) accumulates the
change in belief with each new message, it will not lead to premature termination scenario encountered in
the more naive belief residual definition (Eq. (3.15)).

Since the belief residual of a vertex can only increase until the vertex is updated and all vertices with belief
residuals above the termination threshold are eventually updated, the belief residual prevents starvation. In
addition, belief residuals also address the issue of over-scheduling in high degree vertices since a large
change in a single inbound message that does not contribute to a significant change in belief will not
significantly change the belief residual.

We use the belief residual for termination assessment and as a priority for Wildfire and Residual BP.

3.7 Splash Belief Propagation

The Round Robin BP, WildFire BP, and Residual BP algorithms improve upon the Synchronous BP algo-
rithm. The Round Robin BP algorithm introduces asynchronous execution allowing each message update
to access the most recent version of its dependent messages and eliminating the need for global barriers.
The WildFire BP algorithm improves upon the Round Robin algorithm by eliminating wasted computation
as messages converge at different rates. Finally the Residual BP algorithm focuses computation resources
where they can make the most progress further accelerating convergence. Unfortunately, despite all of
these improvements, all the algorithms we have described so far share the same asymptotic O(nτε/p+ τε)
performance on chain graphical models. The problem is none of these algorithms directly address the
forward-backward sequential structure of inference.

3.7.1 Optimal Parallel Scheduling on Chains

We begin by developing a simple algorithm (Alg. 3.8) that composes the forward-backward schedule
to efficiently construct a τε-approximation in parallel and achieve the asymptotic lower bound given in
Theorem 3.3.2. Alg. 3.8 begins by dividing the chain evenly among the p processors as shown in Figure 3.7a.
Then, in parallel, each processor runs the sequential forward-backward algorithm on its sub-chain as shown
in Figure 3.7b. Finally each processor exchanges messages along the boundaries and repeats the procedure
until convergence. Notice, the algorithm does not require knowledge of τε and instead relies on the
convergence criterion to ensure an accurate approximation.
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Processor 1! Processor 2! Processor 3!

(a) Chain Partitioning

Processor 1! Processor 2! Processor 3!

(b) Parallel Forward-Backwards

Processor 1! Processor 2! Processor 3!

(c) Message Exchange

Figure 3.7: An illustration of the optimal scheduling on a chain. (a) The chain is partitioned evenly among the processors. (b)
In parallel each processor runs the forward-backward sequential scheduling. The forward sweep updates messages towards the
center vertex and the backwards sweep updates messages towards the boundary. This slightly abnormal forward-backward sweep
will be more natural when we generalize it to arbitrary cyclic graphs in the Parallel Splash Algorithm. (c) Messages that cross the
processor boundaries are exchanged and steps (b) and (c) are repeated until convergence.

We now show that this simple procedure achieves the asymptotic lower bound:

Theorem 3.7.1 (Optimality of Alg. 3.8). Given a chain graph with n vertices and p ≤ n processors, the
ChainSplash belief propagation algorithm, achieves a τε level approximation for all vertices in time

O

(
n

p
+ τε

)

Proof. As with the lower bound proof we will consider messages in only one direction from xi to xi+1.
After each local execution of the forward-backward algorithm all vertices become left-aware of all vertices
within each processor block. After messages are exchanged the left most vertex becomes left-aware of
the right most vertex on the preceding processor. By transitivity of left-awareness, after k iterations, all
vertices become left-aware of (k − 1)n/p vertices. We require all vertices to be made τε left-aware and so
solving for k-iterations we obtain:

τε = (k − 1)
n

p

k =
τεp

n
+ 1

Each iteration is executed in parallel in time n/p so the total running time is then:

n

p
k =

n

p

(τεp
n

+ 1
)

=
n

p
+ τε
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Algorithm 3.8: ChainSplash BP Algorithm
Input: Chain graphical model (V,E) with n vertices
// Partition the chain over the p processors
forall i ∈ {1, . . . , p} do in parallel

Bi ←
{
xd(i−1)n/pe, . . . , xdin/pe−1

}
while Not Converged do

// Run Forward-Backward Belief Propagation on each Block
forall i ∈ {1, . . . , p} do in parallel

Run Sequential Forward-Backward on Bi
// Exchange Messages
forall i ∈ {1, . . . , p} do in parallel

Exchange messages with Bi−1 and Bi+1

Our new Splash BP algorithm generalizes Alg. 3.8 to arbitrary cyclic graphical models. The Splash
algorithm is composed of two core components, the Splash operation which generalizes the forward-
backward schedule to arbitrary cyclic graphical models, and a dynamic Splash scheduling heuristic which
ultimately determines the shape, size, and location of the Splash operation. We will first present the Parallel
Splash algorithm as a sequential algorithm, introducing the Splash operation, belief scheduling, and how
they are combined to produce a simple single processor Splash algorithm. Then in subsequent sections
we describe the parallel structure of this algorithm and how it can efficiently be mapped to shared and
distributed memory systems.

3.7.2 The Splash Operation

The Splash BP algorithm is built around the Splash3 operation (Alg. 3.9 and Figure 3.8) which generalizes
the forward-backward schedule illustrated in Figure 3.2a by constructing a small sub-tree and then executing
a local forward-backward schedule on the sub-tree. By scheduling message calculations along a local tree,
we directly address the sequential message dependencies and retain the optimal forward-backward schedule
when applied to acyclic models.

The inputs to the Splash operation are the root vertex v and the maximum allowed size of the Splash, W .
The Splash operation begins by constructing a sub-tree rooted at v, adding vertices in breadth first order
until the sub-tree exceeds W which is measured in terms of number of floating point operations associated
with executing BP inference on the sub-tree. The size of each sub-tree is restricted to ensure work balance
across processors, which will execute multiple Splash operations in parallel. The work associated with
each vertex u (which could be a variable or factor) depends on the size of the messages and the number of
neighbors in the graph:

wu = |Nu| × |Xu|+
∑

Xv∈Nu

|Xv| , (3.20)

where |Nu| × |Xu| represents the work required to recompute all outbound messages and
∑

Xv∈Nu |Xv| is
the work required to update the beliefs of all the neighboring vertices (needed for dynamic scheduling). In

3The algorithm is called Splash BP because the forward-backward “wavefront” seen when running the algorithm on large
planar graphs looks like a splash.
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Algorithm 3.9: Splash(v, W )
Input: vertex v
Input: maximum Splash size W
// Construct the breadth first search ordering with W message

computations and rooted at v.
fifo← [] // FiFo Spanning Tree Queue
σ ← (v) // Initial Splash ordering is the root v
AccumW← wv // Accumulate the root vertex work
visited← {v} // Set of visited vertices
fifo.Enqueue(Nv)
while fifo is not empty do

u← fifo.Dequeue()
// If adding u does not cause Splash to exceed limit
if AccumW + wu ≤W then

AccumW← AccumW + wu
Add u to the end of the ordering σ
foreach neighbors v ∈ Nu do

if v is not in visited then
fifo.Enqueue(v) // Add to boundary of spanning tree
visited← visited ∪{v} // Mark Visited

// Forward Pass: sends messages from the leaves to root
1 foreach u ∈ ReverseOrder(σ) do

SendMessages(u) // Update priorities if necessary.

// Backward Pass: sends messages from the root to leaves
2 foreach u ∈ σ do

SendMessages(u) // Update priorities if necessary.

Table 3.1 we compute the work associated with each vertex shown in Figure 3.8a.

The local spanning tree rooted at vertex F in Figure 3.8 is depicted by the shaded rectangle which grows
outwards in the sequence of figures Figure 3.8b through Figure 3.8e. The maximum splash size is set to
W = 170. In Figure 3.8b the Splash contains only vertex F (the root) and has total accumulated work of
w = 30. The vertices A, E, and F are added in Figure 3.8c expanding the breadth first search without
exceeding W = 170. The effect of W = 170 is seen in Figure 3.8d vertices B and K are added but vertex
G is skipped because including G would cause the Splash to exceed W = 170. The maximum splash size
is achieve in Figure 3.8e when vertex C is added and no other vertices may be added without exceeding
W = 170. The final splash ordering is σ = [F,E,A, J,B,K,C].

Using the reverse of the breadth first search ordering constructed in the first phase, the SendMessages
operation is sequentially invoked on each vertex in the spanning tree (Line 1) starting at the leaves, in
analogy to the forward sweep. The function SendMessages(v) updates all outbound messages from
vertex v using the most recent inbound messages. In Figure 3.8f, SendMessages(C) is invoked on
vertex C causing the messages mC→B , mC→G, and mC→D to be recomputed. Finally, messages are
computed in the original σ ordering starting at the root and invoking SendMessages sequentially on
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(a) Factor Graph (b) Splash Root (c) Splash Level 1

(d) Splash Level 2 (e) Splash Level 3 (f) SendMessages

Figure 3.8: A splash of splash size W = 170 is grown starting at vertex F . The Splash spanning tree
is represented by the shaded region. (a) The initial factor graph is labeled with the vertex work (wi)
associated with each vertex. (b) The Splash begins rooted at vertex F with accumulated work w = 30.
(c) The neighbors of F are added to the Splash and the accumulated work increases to w = 108. (d)
The Splash expands further to include vertex B and K but does not include vertex G because doing so
would exceed the maximum splash size of W = 170. (e) The splash expand once more to include vertex
C but can no longer expand without exceeding the maximum splash size. The final Splash ordering is
σ = [F,E,A, J,B,K,C]. (f) The SendMessages operation is invoked on vertex C causing the messages
mC→B , mC→G, and mC→D to be recomputed.

each vertex, completing the backwards sweep. Hence, with the exception of the root vertex v, all messages
originating from each vertex in σ are computed twice, once on the forwards sweep in Line 1 and once in
the backwards sweep in Line 2.

It is easy to see that by repeatedly executing p parallel Splashes (see Figure 3.7) of size W = wn/p
(where w is the work of updating a single vertex) placed evenly along the chain we can recover the optimal
algorithm Alg. 3.8.

3.7.3 The Sequential SplashBP Algorithm

By combining the Splash operation with the belief residual scheduling to select Splash roots we obtain
the sequential version of the SplashBP algorithm given in Alg. 3.10. The belief residual of each vertex
is initialized to the largest possible value (e.g., Inf) to ensure that every vertex is updated at least once.
The Splash operation is repeatedly applied to the vertex with highest priority. During the Splash operation
the priorities (belief residuals) of all vertices in the Splash and along the boundary are updated: after
SendMessages is invoked on a vertex its belief residual is set to zero and the priority of its neighboring
vertices is increased by the change in their beliefs.
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Vertex Assignments (Ai) Degree (|Ni|) Neighbor Costs
(∑

w∈Ni |Nw|
)

Work (wi)

A 2 3 23 + 24 + 22 34
B 22 2 2 + 2 12
C 2 3 22 + 24 + 22 30
D 22 2 2 + 2 12
E 2 1 23 10
F 23 3 2 + 2 + 2 30
G 24 4 2 + 2 + 2 + 2 72
H 2 2 22 + 22 12

Table 3.1: The work associated with each vertex in Figure 3.8a is computed using Eq. (3.20). We have
omitted vertices I , J , K, and L sinc they are equivalent to vertices D, A, B, and C respectively.

Algorithm 3.10: The Sequential Splash Algorithm
Input: Constants: maximum Splash size W , termination bound β
Q← InitializeQueue(Q)
Set All Residuals to∞
while TopResid(Q) > β do

v ← Top(Q)
Splash(Q, v, W) // Priorities updated after SendMessages

3.7.4 Evaluating SplashBP in the Sequential Setting

To demonstrate the performance gains of the sequential SplashBP algorithm on chain structured models we
constructed a set of synthetic chain graphical models and evaluated the running time on these models for a
fixed convergence criterion while scaling the size of the Splash in Figure 3.9a and while scaling the size of
the chain in Figure 3.9b. Each chain consists of binary random variables with weak random node potentials
and strong attractive edge potentials. As the size of the Splash increases (Figure 3.9a) the total number of
updates on the chain decreases reflecting the optimality of the underlying forward-backward structure of
the Splash.

In Figure 3.9b we compare the running time of Splash with Synchronous, Round-Robin, Residual, and
Wildfire BP algorithms as we increase the size of the model. The conventional Synchronous and Round-
Robin algorithms are an order of magnitude slower than Wildfire, ResiduaBP, and Splash and scale poorly
forcing separate comparisons for readability. Nonetheless, in all cases the Splash algorithm is substantially
faster and demonstrates better scaling with increasing model size.

The running time, computational efficiency, and accuracy of the SplashBP algorithm were evaluated in
the single processor setting. In Figure 3.10a, Figure 3.10b, and Figure 3.10c we plot the average belief
accuracy, worst case belief accuracy, and prediction accuracy against the runtime on a subset of the UAI
2008 Probabilistic Inference Evaluation dataset [Darwiche et al., 2008]. We ran each algorithm to β = 10−5

convergence and report the runtime in seconds and the marginal estimates for all variables. We compared
against the exact marginals obtained using Ace 2.0 [Huang et al., 2006]. In all cases the Splash algorithm
obtained the most accurate belief estimates in the shortest time. The dynamical scheduled algorithms,
Wildfire and Residual BP, consistently outperformed the statically scheduled algorithms, Round-Robin and
Synchronous BP. We also assessed accuracy on a protein side chain prediction task [Yanover et al., 2007]
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Figure 3.9: In this figure, we plot the number of vertex updates on a randomly generated chain graphical
model. Run-time to convergence is measured in vertex updates rather than wall clock time to ensure a fair
algorithmic comparison and eliminate hardware and implementation effects which appear at the extremely
short run-times encountered on these simple models. (a) The number of vertex updates made by Sequential
Splash BP, fixing the chain length to 1000 variables, and varying the Splash size. (b) The number of
vertex updates made by various BP algorithms varying the length of the chain. Two plots are used to
improve readability since the Splash algorithm is an order of magnitude faster than the Synchronous and
Round-Robin algorithms however the Splash algorithm curve is the same for both plots.

where the goal is to estimate the orientations of each side chain in a protein structure. Here we find that all
belief propagation algorithms achieve roughly the same prediction accuracy of 73% for χ1 and χ2 angles
which is consistent with the results of Yanover et al. [2007].

Not only does SplashBP converge faster than other belief propagation algorithms, it also converges
more often. We assessed the convergence of the SplashBP algorithm using several different metrics.
In Figure 3.11a we plot the number of protein networks that have converged (β = 10−5) against the
run-time. In Figure 3.11b we plot the number of protein networks that have converged against the number
of message computations. Again, we see that SplashBP converges sooner than other belief propagation
algorithms.

In Figure 3.12a and Figure 3.12b we directly compare the running time and work of the SplashBP algorithm
against other common scheduling strategies on a set of challenging protein-protein interaction networks
obtained from Taskar et al. [2004b]. The results are presented for each of the 8 networks separately with
bars in the order Splash, Residual, Wildfire, Round-Robin, and Synchronous. All algorithms converged
on all networks except residual belief propagation which failed to converge on network five. In all cases
the Splash algorithm achieves the shortest running time and is the in the bottom two in total message
computations. Since the Splash algorithm favors faster message computations (lower degree vertices), it
is possible for the Splash algorithm is able to achieve a shorter runtime even while doing slightly more
message computations.

3.7.5 Parallelizing the Splash Algorithm

We easily parallelize the SplashBP algorithm (Alg. 3.11) by executing multiple Splash operations in parallel
generalizing Alg. 3.8. Each of the p processor executes it own separate Splash operation on the top p
highest priority vertices.
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(a) Average L1 Error (b) Maximum L1 Error (c) MAP Accuracy

Figure 3.10: We assessed the accuracy of Splash algorithm using the exact inference challenge networks
from Darwiche et al. [2008] as well as the protein side chain prediction networks obtained from Yanover
et al. [2007]. In (a) and (b) we plot the average and max L1 error in the belief estimates for all variables as
a function of the running time. In (c) we plot the prediction accuracy of the MAP estimates as a function of
the running time. In all cases we find that Splash belief propagation achieves the greatest accuracy in the
least time.

Algorithm 3.11: Parallel Splash Belief Propagation Algorithm
Input: Constants: maximum Splash size W , termination bound β
Q← InitializeQueue(Q)
Set All Residuals to∞

1 forall processors do in parallel
while TopResidual(Q) > β do

v ← Pop(Q) // Atomic
Splash(Q, v, W) // Updates vertex residuals
Q.Push((v, Residual(v))) // Atomic

While we do not require that parallel Splash operations contain disjoint sets of vertices, we do require that
each Splash has a unique root which is achieved through a shared priority queue and atomic Push and
Pop operations.

To achieve maximum parallel performance the Parallel Splash algorithm relies on an efficient par-
allel scheduling queue to minimize processor locking and sequentialization when Push, Pop, and
UpdatePriority are invoked. While there is considerable work from the parallel computing commu-
nity on efficient parallel queue data structures, we find that in the shared memory setting basic locking
queues provide sufficient performance. In the distributed Splash algorithm discussed in Section 3.8 we
employ a distributed scheduling queue in a work balanced manner to eliminate processor contention.

3.7.6 Parallel Splash Optimality on Chains

We now show that the parallel SplashBP algorithm using belief residual scheduling achieves the opti-
mal running time for chain graphical models. We begin by relating the Splash operation to the vertex
residuals.

Lemma 3.7.2 (Splash Residuals). Immediately after the Splash operation is applied to an acyclic graph

45



(a) Protein Convergence vs. Time (b) Protein Convergence vs. Work

Figure 3.11: The Splash algorithm demonstrates faster and more consistent convergence than other baseline
algorithms on a single processor. In the number of converged (β = 10−5) networks (out of 276) is plotted
against the runtime (a) and number of message calculations (b).

all vertices interior to the Splash have zero belief residual.

Proof. The proof follows naturally from the convergence of BP on acyclic graphs. The Splash operation
runs BP to convergence on the sub-tree contained within the Splash. Therefore the marginal estimates at
each variable will have converged and the corresponding belief residuals will be zero.

After a Splash is completed, the residuals associated with vertices interior to the Splash are propagated to
the exterior vertices along the boundary of the Splash. Repeated application of the Splash operation will
continue to move the boundary residual leading to Lemma 3.7.3.

Lemma 3.7.3 (Basic Convergence). Given a chain graph where only one vertex has nonzero residual, the
Splash algorithm with Splash size W will run in O(τε +W ) time.

Proof. When the first Splash, originating from the vertex with nonzero residual is finished, the interior of
the Splash will have zero residual as stated in Lemma 3.7.2, and only the boundary of the Splash will have
non-zero residual. Because all other vertices initially had zero residual and messages in opposite directions
do not interact, each subsequent Splash will originate from the boundary of the region already covered by
the previous Splash operations. By definition the convergence criterion is achieved after the high residual
messages at the originating vertex propagate a distance τε. However, because the Splash size is fixed, the
Splash operation may propagate messages an additional W vertices.

If we set the initial residuals to ensure that the first p parallel Splashes are uniformly spaced, SplashBP
obtains the optimal lower bound.

Theorem 3.7.4 (SplashPB Optimality on Chain Models). Given a chain graph with n vertices and p ≤ n
processors we can apply the Splash algorithm with the Splash size set to W = n/p and uniformly spaced
initial Splashes to obtain a τε-approximation in expected running time

O

(
n

p
+ τε

)
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Figure 3.12: We assessed runtime and convergence on eight different protein-protein interaction networks
obtained from Taskar et al. [2004b]. In (a) and (b) we plot the runtime in seconds and the work in message
computations for each algorithm on each network. Each bar represents a different algorithm in the order
Splash, Residual, Wildfire, Round-Robin, and Synchronous from left (darkest) to right (lightest).

Proof of Theorem 3.7.4. We set every n/p vertex
{
Xn/2p, X3n/2p, X5n/2p, . . .

}
to have slightly higher

residual than all other vertices forcing the first p Splash operations to start on these vertices. Since the size
of each splash is also W = n/p, all vertices will be visited in the first p splashes. Specifically, we note that
at each Splash only produces two vertices of non-zero residual (see Lemma 3.7.2). Therefore there are at
most O(p) vertices of non-zero residual left after the first p Splashes.

To obtain an upper bound, we consider the runtime obtained if we independently compute each τε subtree
rooted at a vertex of non-zero residual. This is an upper bound as we observe that if a single Splash overlaps
more than one vertex of non-zero residual, progress is made simultaneously on more than one subtree and
the running time can only be decreased.

From Lemma 3.7.2, we see that the total number of updates needed including the initial O(p) Splash
operations is O(p(τε +W )) + O(n) = O(n+ pτε). Since work is evenly distributed, each processor
performs O(n/p+ τε) updates.

In practice, when the graph structure is not a simple chain graph, it may be difficult to evenly space Splash
operations. By randomly placing the initial Splash operations we can obtain a factor log(p) approximation
in expectation.

Corollary 3.7.5 (SplashBP with Random Initialization). If all residuals are initialized to a random value
greater than the maximum residual, the total expected running time is at most O(log(p)(n/p+ τε)).

Proof. Partition the chain graph into p blocks of size n/p. If a Splash originates in a block then it will
update all vertices interior to the block. The expected time to Splash (collect) all p blocks is upper bounded4

by the coupon collectors problem. Therefore, at most O(p log(p)) Splash operations (rather than the p
Splash operations used in Theorem 3.7.4) are required in expectation to update each vertex at least once.
Using the same method as in Theorem 3.7.4, we observe that the running time isO(log(p)(n/p+ τε)).

4Since candidate vertices are removed between parallel rounds, there should be much fewer collection steps than the analogous
coupon collectors problem.
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Algorithm 3.12: DynamicSplash(Q, v, W )
Input: scheduling queue Q, vertex v, maximum splash size W
fifo← [] // FiFo Spanning Tree Queue
σ ← (v) // Initial Splash ordering is the root v
AccumW← wv // Accumulate the root vertex work
visited← {v} // Set of visited vertices
fifo.Enqueue(Nv)
while fifo is not empty do

u← fifo.Dequeue()
if AccumW + wu ≤W then

AccumW← AccumW + wu
Add u to the end of the ordering σ
foreach neighbors v ∈ Nu do

if Belief Residual of v is greater than β and is not in visited then
fifo.Enqueue(v) // Add boundary
visited← visited ∪{v} // Mark Visited

foreach u ∈ ReverseOrder(σ) do
SendMessages(u)
Q.SetPriority(u, 0) // Set Belief residual to zero
foreach v ∈ Nu do Q.UpdatePriority(v)

foreach u ∈ σ do
SendMessages(u)
Q.SetPriority(u, 0) // Set Belief residual to zero
foreach v ∈ Nu do Q.UpdatePriority(v)

3.7.7 Dynamically Tuning the Splash Operation

A weakness of the Splash operation is that it requires selecting the Splash size parameter W which affects
the overall performance. If the Splash size is too large then the algorithm will be forced to recompute
messages that have already converged. Alternatively, if the Splash size is set too small then we do not exploit
the local sequential structure. To address this weakness introduced Dynamic Splashes which substantially
improve performance in practice and eliminate the need to tune the Splash size parameter.

Dynamic Splashes (Alg. 3.12) automatically adjust the size and shape of each Splash by adopting the
Wildfire BP heuristic in the sub-tree construction procedure of the Splash operation. During the initial
breadth first search phase of the Dynamic Splash operation to excludes vertices with belief residuals below
the termination condition. This ensures that we do not recompute messages that have already converged,
and more importantly allows the Splash operation to dynamically adapt to the local convergence patterns in
the graph. In addition, as the algorithm converges, low belief residuals automatically prune the breadth
first search tuning the size of each Splash and eliminating the need to carefully choose the Splash size
W . Instead we can fix Splash size to a relatively large fraction of the graph (e.g., n/p) and let pruning
automatically decrease the Splash size as needed.

In Figure 3.13a we plot the running time of the Parallel Splash algorithm with different Splash sizes W
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(a) Automatic Splash Size Tuning (b) Irregular Splash Shape

(c) Execution of the Splash Algorithm on the Denoising Task

Figure 3.13: (a) The running time of the Splash algorithm using various different Splash sizes with and
without pruning. (b) The vertices with high belief residual,shown in black, are included in the Splash while
vertices with belief residual below the termination threshold, shown in gray are excluded. (c) To illustrate
the execution of the Splash BP algorithm we ran it on a simple image denoising task and took snapshots
of the program state at four representative points (phases) during the execution. The cumulative vertex
updates (number of times SendMessages was invoked since the last snapshot) are plotted with brighter
regions being updates more often than darker regions. Initially, large regular (rectangular) Splashes are
evenly spread over the entire model. As the algorithm proceeds the Splashes become smaller and more
irregular focusing on the challenging regions along the boundaries of the underlying image.

both with and without Splash pruning enabled. With Splash pruning disabled there is clear optimal Splash
size. However with Splash pruning enabled, increasing the size of the Splash beyond the optimal size does
not reduce the performance. In Figure 3.13c we illustrate examples of the Splashes at various phases of
the algorithm on the image denoising task (see Figure 2.1). Initially the Splashes are relatively large and
uniform but as the algorithm converges the Splashes shrink and adapt to the local shape of the remaining
non-converged regions in the model.

3.7.8 Implementing SplashBP in the Shared Memory Setting

The parallel SplashBP algorithm presented in the previous section (Alg. 3.11) can easily be mapped to the
shared memory setting described in Section 2.2.1. Because the shared memory setting ensures relatively
low latency access to all memory it is not necessary5 to partition the graph over the processors. However,
because multiple processors can read and modify the same message, we must ensure that messages and

5It is possible that in an extreme NUMA setting partitioning could improve performance and in this case we advocate using
ideas from the distributed implementation.
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beliefs are manipulated in a consistent manner which is accomplished using the SendMessages locking
scheme described in Alg. 3.5.

(a) Runtime (b) Speedup

(c) Work (d) Comp. Efficiency

Figure 3.14: Multicore results for a Protein-Protein Interaction Networks [Taskar et al., 2004a]

In Figure 3.14 we compare each algorithm in terms of runtime, speedup, work, and efficiency as a function
of the number of cores. All experiments were run on protein-protein interaction networks obtained from
Taskar et al. [2004b] with over 14K binary variables, 20K factors, and 50K edges. The runtime, shown in
Figure 3.14a, is measured in seconds of elapsed wall clock time before convergence. On all of the networks
the SplashBP algorithm is the fastest. The static scheduling algorithms (Round-Robin and Synchronous
BP) are consistently slower than the dynamic scheduling algorithms (Residual and Widlfire BP).

The Splash algorithm demonstrates nearly linear scaling. In Figure 3.14b we plot the strong scaling
of each algorithm measured relative to the fastest single processor algorithm. As a consequence of the
relative-to-best scaling, inefficient algorithms may exhibit a speedup less than one. Furthermore, we again
see a consistent pattern in which the dynamic scheduling algorithms dramatically outperform the static
scheduling algorithms. The inefficiency in the static scheduling algorithms is so dramatic that the parallel
variants seldom achieve more than a factor of 2 speedup using 16 processors.

We measured algorithm work in Figure 3.14c, in terms of the number of message calculations before
convergence. The total work, which is a measure of algorithm efficiency, should be as small as possible
and not depend on the number of processors. We find that the Splash algorithm generally does the least
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Algorithm 3.13: The Distributed BP Algorithm

1 B ← Partition(G, p) // Partition the graph over processors
DistributeGraph(G,B)
forall b ∈ B do in parallel

repeat
// Perform BP Updates according to local schedule

2 RunBPAlgorithmOn(b)
RecvExternalMsgs() // Receive and integrate messages
SendExternalMsgs() // Transmit boundary messages

until3 not Converged() // Distributed convergence test

work and that the number of processors has minimal impact on the total work done.

Finally, we assessed computation efficiency (Figure 3.14d) by computing the number of message calcula-
tions per processor-second. The computational efficiency is a measure of the raw throughput of message
calculations during inference. Ideally, the efficiency should remain as high as possible. The computational
efficiency, captures the cost of building spanning trees in the Splash algorithm or frequently updating
residuals in the residual algorithm. The computational efficiency also captures concurrency costs incurred
at locks and barriers. In all cases we see that the Splash algorithm is considerably more computationally
efficient. While it is tempting to conclude that the implementation of the Splash algorithm is more opti-
mized, all algorithms used the same message computation, scheduling, and support code and only differ
in the core algorithmic structure. Hence it is surprising that the Splash algorithm, even with the extra
overhead associated with generating the spanning tree in each Splash operations. However, by reducing the
frequency of queue operations and the resulting lock contention, by increasing cache efficiency through
message reuse in the forward and backward pass, and by favoring lower work high residual vertices in each
spanning tree, the Splash algorithm is able to update more messages per processor-second.

3.8 Belief Propagation Algorithms on Distributed Architectures

In contrast to the shared memory setting where each processor has symmetric fast access to the entire
program state, in the distributed memory setting each process can only directly access its local memory
and must pass messages to communicate with other processors. Therefore efficient distributed parallel
algorithms are forced to explicitly distribute the program state.

While the distributed memory setting can be more challenging, it offers the potential for linear scaling
in memory capacity and memory bandwidth. To fully realize the linear scaling in memory capacity and
bandwidth we must partition the program state in a way that places only a fraction 1/p of the global
program state on each processor. Evenly distributing computation and storage while minimizes across
machine coordination is the central challenge in the design of scalable distributed parallel algorithms.
While the distributed setting often considers systems with network and processor failure, in this section we
assume that the all resources remain available throughout execution and that all messages eventually reach
their destination.

In Alg. 3.13 we present a generic distributed BP algorithm composed of partitioning phase (Line 1) after
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which each processor repeatedly executes a BP update (Line 2) using a local schedule followed by inter-
processor communication and a distributed convergence test (Line 3). To achieve balance computation and
communication we employ weighted graph partitioning and over-partitioning which we will now describe.
As it is often impractical to maintain an exact schedules across distributed memory, relaxed versions are
discussed in Section 3.8.2. Finally, we address the challenges of distributed convergence assessment in
Section 3.8.3.

3.8.1 Partitioning the Factor Graph and Messages

To distribute the state of the program among p processors, we begin by partitioning the graphical model
and BP messages (parameters). To maximize throughput and hide network latency, we must minimize
inter-processor communication and ensure that the data needed for message computations are locally
available. We define a partitioning of the factor graph over p processors as a set B = {B1, ..., Bp} of
disjoint sets of vertices Bk ⊆ V such that ∪pk=1Bk = V . Given a partitioning B we assign all the factor
data associated with fi ∈ Bk to the kth processor. Similarly, for all (both factor and variable) vertices
i ∈ Bk we store the associated belief and all inbound messages on the processor k. Each vertex update is
therefore a local procedure. For instance, if vertex i is updated, the processor owning vertex i can read
factors and all incoming messages without communication. To maintain the locality invariant, updated
messages destined to remote vertices are immediately transmitted across the network to the processors
owning the destination vertices.

To minimize communication and ensure balanced storage and computation, we frame the minimum
communication load balancing objective in terms of a classic balanced graph partitioning:

min
B

∑
B∈B

∑
(i∈B,j /∈B)∈E

(Ui + Uj) |Xi| (3.21)

subj. to: ∀B ∈ B
∑
i∈B

Uiwi ≤
γ

p

∑
v∈v

Uvwv (3.22)

where Ui is the number of times SendMessages is invoked on vertex i and wi is the vertex work defined
in Eq. (3.20), and γ ≥ 1 is the balance coefficient. The objective in Eq. (3.21) minimizes communication
while the constraint in Eq. (3.22) ensures work balance for small γ and is commonly referred to as the k-way
balanced cut objective which is unfortunately NP -Hard in general. However, there are several popular
graph partitioning libraries such as METIS [Karypis and Kumar, 1998] and Chaco [Hendrickson and
Leland, 1994], which quickly produce reasonable approximations. Here we use the collection of multilevel
graph partitioning algorithms in the METIS graph partitioning library. These algorithms, iteratively coarsen
the underlying graph, apply high quality partitioning techniques to the small coarsened graph, and then
iteratively refine the coarsened graph to obtain a high quality partitioning of the original graph. While
there are no theoretical guarantees, these algorithms have been shown to perform well in practice and are
commonly used for load balancing in parallel computing.

In the case of static schedules, every vertex is updated the same number of times (Ui = Uj : ∀i, j,)
and therefore U can be eliminated from both the objective and the constraints. Unfortunately, dynamic
algorithms (Wildfire, Residual, and Splash BP) the update counts Ui for each vertex are neither fixed
or known. Furthermore, the update counts are difficult to estimate since they depend on the graph
structure, factors, and progress towards convergence. Consequently, for dynamic algorithms, we advocate a
randomized load balancing technique based on over-partitioning, which does not require knowledge of the
number of updates Ui.
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(a) Original Image (b) Noisy Image (c) Factor Graph (d) Update Counts

(e) Uninformed Part. (f) Informed Part. (g) Update Distribution (h) Update Prediction

Figure 3.15: We use the synthetic denoising task (also used in Figure 3.13) to illustrate the difficult in
estimating the update patterns of Splash belief propagation. (a) The original synthetic sunset image which
was specifically created to have an irregular update pattern. (b) The synthetic image with Gaussian noise
added. (c) Factor graph model for the true values for the underlying pixels. The latent random variable
for each pixel is represented by the circles and the observed values are encoded in the unary factors
drawn as shaded rectangles. (d) The update frequencies of each variable plotted in log intensity scale with
brighter regions updated more frequently. (e) Uniformed Ui = 1 balanced partitioning. (f) The informed
partitioning using the true update frequencies after running Splash. Notice that the informed partitioning
assigns fewer vertices per processors on the top half of the image to compensate for the greater update
frequency. (g) The distribution of vertex update counts for an entire execution. (h) Update counts from
first the half of the execution plotted against update counts from the second half of the execution. This is
consistent with phases of execution described in Figure 3.13c.

To illustrate the difficulty involved in estimating the update counts for each vertex, we again use the
synthetic denoising task. The input, shown in Figure 3.15a, is a grayscale image with independent Gaussian
noise N

(
0, σ2

)
added to each pixel. The factor graph (Figure 3.15c) corresponds to the pairwise grid

Markov Random Field constructed by introducing a latent random variable for each pixel and connecting
neighboring variables by factors that encode a similarity preference. We also introduce single variable
factors which represent the noisy pixel evidence. The synthetic image was constructed to have a nonuniform
update pattern (Figure 3.15d) by making the top half more irregular than the bottom half. The distribution
of vertex update frequencies (Figure 3.15g) for the denoising task is nonuniform with a few vertices being
updated orders of magnitude more frequently than the rest. The update patterns is temporally inconsistent
frustrating attempts to estimate future update counts using past behavior (Figure 3.15h).
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Uninformed Partitioning

Given the inability to predict the update counts Ui one might conclude, as we did, that sophisticated
dynamic graph partitioning is necessary to effectively balance computation and minimize communication.
Surprisingly, we find that an uninformed cut obtained by setting the number of updates to a constant (i.e.,
Ui = 1) yields a partitioning with comparable communication cost and work balance as those obtained
when using the true update counts. We designate B̂ as the partitioning that optimizes the objectives in
Eq. (3.21) and Eq. (3.22) where we have assumed Ui = 1. In Table 3.2 we construct uninformed cuts
(p = 120) for several factor graphs and report the communication cost and balance defined as:

Rel. Com. Cost =

∑
B∈B̂

∑
(u∈B,v/∈B)∈E wuv∑

B∈B∗
∑

(u∈B,v/∈B)∈E wuv

Rel. Work Balance =
p∑

v∈V wv
max
B∈B̂

∑
v∈B

wv

relative to the ideal cut B∗ obtained using the true update counts Ui. We find that uninformed cuts have
lower communication costs at the expense of increased imbalance. This discrepancy arises from the need
to satisfy the balance requirement with respect to the true Ui at the expense of a higher communication
cost.

Graph Rel. Com. Cost Rel. Work Balance
denoise 0.980 3.44
uw-systems 0.877 1.837
uw-languages 1.114 2.213
cora-1 1.039 1.801

Table 3.2: Comparison of uninformed and informed partitionings with respect to communication cut cost
and work balance. While the communication costs of the uniformed partitionings are comparable to those
of the informed partitionings, the work imbalance of the uninformed cut is typically greater.

Over-Partitioning

If the graph is partitioned assuming constant update counts, there could be work imbalance if BP is executed
using a dynamic schedule. For instance, a frequently updated sub-graph could be placed within a single
partition as shown in Figure 3.16a. To decrease the chance of such an event, we can over-partition the
graph, as shown in Figure 3.16b, into k×p balanced partitions and then randomly redistribute the partitions
to the original p processors.

By partitioning the graph more finely and randomly assigning regions to different processor, we more evenly
distribute nonuniform update patterns improving the overall work balance. However, over-partitioning also
increases the number of edges crossing the cut and therefore the communication cost. We demonstrate
this effect on the synthetic denoising problem in Figure 3.17a and Figure 3.17b. We also observe that in
the limit of k = n/p, the over partitioning strategy corresponds exactly to randomly distributing vertices
over the processors. This is intuitively, the most balanced partitioning strategy, but also incurs the greatest
amount of communication overhead.
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(a) Denoise Uniformed Cut
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(b) Denoise Over-Partitioning

Figure 3.16: Over-partitioning can help improve work balance by more uniformly distributing the graph
over the various processors. (a) A two processor uninformed partitioning of the denoising factor graph can
lead to one processor (CPU1) being assigned most of the work. (b) Over-partitioning by a factor of 6 can
improve the overall work balance by assigning regions from the top and bottom of the denoising image to
both processors.

Choosing the optimal over-partitioning factor k is challenging and depends heavily on hardware, graph
structure, and even factors. In situations where the algorithm may be run repeatedly, standard search
techniques may be used. We find that in practice a small factor, e.g., k = 5 is typically sufficient.

The over-partitioning technique may be justified theoretically. In particular, when using a recursive bisection
style partitioning algorithm where the true work split at each step is an unknown random variable, there
exists a theoretical bound on the ideal size of k. If at each split the work is divided into two parts of
proportion X and 1−X where E [X] = 1

2 and Var [X] = σ2 for σ ≤ 1
2 , Sanders [1994] shows that we

can obtain work balance with high probability if we select k to be at least:

Ω

(
p

(
log
(

1
σ+1/2

))−1)
.

A similar, but looser bound was obtained by Sanders [1996] even if work balance is adversarial.

Incremental Repartitioning

One might consider occasionally repartitioning the factor graph to improve balance. For example, we could
divide the execution into T phases and then repartition the graph at the beginning of each phase based on
the update patterns from the previous phase. To assess the potential performance gains from incremental
repartitioning we conducted a retrospective analysis. We executed the sequential Splash algorithm to
convergence on the denoising model and then divided the complete execution into T phases for varying
values of T . We then partitioned each phase using the true update counts for that phase and estimate the
work imbalance and number of transmitted messages. While the true update counts would not be known in
practice, they provide an upper bound on the performance gains of the best possible predictor.

In Figure 3.18 we plot the performance of both optimal phased partitioning and phased partitioning in
which future update counts are predicted from previous update counts. In both cases we consider phased
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(a) Denoise Work Balance (b) Denoise Rel. Com. Cost

Figure 3.17: The effect of over-partitioning on the work balance and communication cost. For all points 30
trials with different random assignments are used and 95% confidence intervals are plotted. (a) The ratio
of the size of the partition containing the most work, relative to the ideal size (smaller is better). (b) The
communication cost relative to the informed partitioning (smaller is better).

partitioning for T ∈ {1, . . . , 10} phases on a simulated 16 processor system. In Figure 3.18a we see
that by repartitioning more often we actually slightly increase the average imbalance over the epochs.
We attribute the slight increased imbalance to the increasingly irregular local update counts relative to
the connectivity structure (the regular grid). However, as seen in Figure 3.18b the number of messages
transmitted over the network (i.e., the communication cost) relative to the optimal single phase partitioning
actually decreases by roughly 35%. Alternatively, using the update counts from the previous phase to
partition the next phase confers a substantial decrease in overall balance (Figure 3.18c) and a dramatic
increase in the communication costs (Figure 3.18d). We therefore conclude that only in situations where
update counts can be accurately predicted and network communication is the limiting performance can
incremental repartitioning lead to improved performance.

3.8.2 Distributing Scheduling

The SplashBP and ResidualBP algorithms rely on a shared global priority queue. Because a centralized
ordering is too costly in the distributed setting, each processor maintains its own local priority queue over
its vertices. At any point in the distributed execution one of the processor is always applying the Splash
operation to the globally highest residual vertex. Unfortunately, the remaining p− 1 highest vertices are not
guaranteed to be at the top of the remaining queues and so we do not recover the original shared memory
scheduling. However, any processor with vertices that have not yet converged, must eventually update
those vertices and therefore can always make progress by updating the vertex at the top of its local queue.
In Section 3.8.4 we show that the collection of local queues is sufficient to retain the original optimality
properties of the Splash algorithm.
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(a) Optimal Balance (b) Optimal Comm.

(c) Naive Balance (d) Naive Comm.

Figure 3.18: Here we plot the balance and communication costs of incremental repartitioning against
the number of epochs (repartitioning phases) in a single execution. The balance is measured as the work
ratio between the smallest and largest work block. We present the messages transmitted measured relative
to the optimal performance for a single phase rather than raw message counts. (a,b) The balance and
communication costs for optimal phased partitioning where the update counts in each phase are known in
advance. (c,d) The balance and communication costs for naive phased partitioning where the update counts
in each phase are assumed to be the update counts observed in the previous phase.

3.8.3 Distributed Termination

In the absence of a common synchronized state it is difficult to assess whether a convergence condition has
been globally achieved. The task of assessing convergence is complicated by the fact that when a node
locally converges, it could be woken up at any time by an incoming message which may causes its top
residual to exceed the termination threshold.

Fortunately, the distributed termination problem [Matocha and Camp, 1998, Mattern, 1987] is well studied
with several solutions. We implement a variation of the algorithm described in Misra [1983]. The algorithm
(Alg. 3.14) pases a token comprising of 2 integer values, NumSent and NumReceived, in a fixed loop
over the machines. The integer values represent the total number of network messages sent and received
throughout the execution of the program across all machines. When the node holding onto the token
converges, the node will add the number of network messages it has sent and received since the last time it
has seen the token, to NumSent and NumReceived respectively. The node will then forward the token
to the next node in the ring. Global termination is achieved when the token completes a loop around the
ring without changing, and NumSent equals NumReceived.
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Algorithm 3.14: Distributed Termination Algorithm
Output: Converged
Data: Global Variables: LastToken, NetMessagesSent, NetMessagesReceived
// Infinite Loop
while True do

if I have the Token then
// Check for the global termination
if Token == LastToken AND Token.NumSent == Token.NumReceived then

return Converged = True

else
// Update the Token with this node’s contributions
// Reset the network message counters
Token.NumSent← Token.NumSent + NetMessagesSent
Token.NumReceived← Token.NumReceived + NetMessagesReceived
NetMessagesSent← 0
NetMessagesReceived← 0
LastToken← Token // Remember the last Token we saw
Transmit(Token, NextNode) // Send the updated token to the next

node in the ring

Sleep and Wait For Any Incoming Network Message.

if Network Message is not a Token then
// This is not a message. Wake up and process it
return Converged = False

3.8.4 The Distributed Splash Algorithm

We now present the distributed Splash algorithm (Alg. 3.15) which can be divided into two phases, setup
and inference. In the setup phase, in Line 1 we over-segment the input factor graph into kp pieces using the
METIS partitioning algorithm. Note that this could be accomplished in parallel using ParMETIS, however
our implementation uses the sequential version for simplicity. Then in Line 2 we randomly assign k pieces
to each of the p processors. In parallel each processor collects its factors and variables (Line 3). On Line 4
the priorities of each variable and factor are set to infinity to ensure that every vertex is updated at least
once.

On Line 5 we evaluate the top residual with respect to the β convergence criterion and check for termination
in the token ring. On Line 6, the DynamicSplash operation is applied to v. In the distributed setting
Splash construction procedure does not cross partitions. Therefore each Splash is confined to the vertices
on that processor. After completing the Splash all external messages from other processors are incorporated
(Line 7). Any beliefs that changed during the Splash or after receiving external messages are promoted in
the priority queue on Line 9. On Line 10, the external messages are transmitted across the network. The
process repeats until termination at which point all beliefs are sent to the originating processor.

Empirically, we find that accumulating external messages and transmitting only once every 5-10 loops
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Algorithm 3.15: The Distributed Splash Algorithm

// The graph partitioning phase =========================>
// Construct factor k over-partitioning for p processors

1 Btemp ← OverSegment(G, p, k);
// Randomly assign over-partitioning to the original processors

2 B ← RandomAssign(Btemp, p);
// The distributed inference phase ======================>
forall b ∈ B do in parallel

// Collect the variables and factors associated with this
partition

3 Collect(Fb,xb) ;
// Initialize the local priority queue

4 Initialize (Q);
// Loop until TokenRing signifies convergence

5 while TokenRing(Q, β) do
v ← Top(Q) ;

6 DynamicSplash(v, Wmax, β);
7 RecvExternalMsgs();

// Update priorities affected by the Splash and newly
received messages

8 foreach u ∈ local changed vertices do
9 Promote(Q, ||∆bv||1);

10 SendExternalMsgs();

tends to increase performance by substantially decreasing network overhead. Accumulating messages
may however adversely affect convergence on some graphical models. To ensure convergence in our
experiments, we transmit on every iteration of the loop.

We now show that Splash retains the optimality in the distributed setting.

Theorem 3.8.1 (Splash Chain Optimality). Given a chain graph with n = n vertices and p ≤ n processes,
the distributed Splash algorithm with no over-segmentation, using a graph partitioning algorithm which re-
turns connected partitions, and with work Splash size at least 2

∑
v∈V wv/p will obtain a τε-approximation

in expected running time O
(
n
p + τε

)
.

Proof of Theorem 3.8.1. We assume that the chain graph is optimally sliced into p connected pieces of
n/p vertices each. Since every vertex has at most 2 neighbors, the partition has at most 2n/p work. A
Splash anywhere within each partition will therefore cover the entire partition, performing the complete
forward-backward update schedule.

Because we send and receive all external messages after every splash, after d τεn/pe iterations, every vertex
will have received messages from vertices a distance of at least τε away. The runtime will therefore be:

2n

p
×
⌈
τε
n/p

⌉
≤ 2n

p
+ 2τε
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Since each processor only send 2 external messages per iteration (one from each end of the partition),
communication therefore only adds a constant to the total runtime.

3.8.5 Algorithm Comparison in the Distributed Setting

Distributed experiments were conducted on cluster composed of 13 blades (nodes) each with 2 Intel Xeon
E5345 2.33GHz Quad core processors. Each processor is connected to the memory on each node by a
single memory controller. The nodes are connected via a fast Gigabit ethernet switch. We invoked the
weighted kmetis partitioning routine from the METIS software library for graph partitioning and partitions
were computed in under 10 seconds.

To assess the performance of the BP algorithms in the distributed setting we focus our attention on larger
models. To adequately challenge the distributed algorithms we consider the Elidan protein networks
(with a stricter termination bound β = 10−10) and the larger UW-CSE MLNs with the termination bound
β = 10−5. All the baseline algorithms converged on the Elidan protein networks except synchronous
running on one processor which ran beyond the 10,000 second cutoff. Consistent with the multicore results,
only the Splash algorithm converges on the larger UW-CSE MLNs.

Since all the baseline algorithms converged on the smaller Elidan networks we use these networks for
algorithm comparison. Because the single processor runtime on these networks is only a few minutes we
analyze performance from 1 to 40 processors in increments of 5 rather than using the entire 104 processor
system. As discussed in the experimental setup, we consider over-partition factors of 2, 5, and 10 for each
algorithm and present the results using the best over-partition factors for each of the respective algorithms
(which is typically 5). In Figure 3.19a and Figure 3.19b we present the standard runtime and speedup curves
which show that the Splash algorithm achieves the best runtime and speedup performance with a maximum
speedup of roughly 23 at 40 processors. While the speedup does not scale linearly we achieve a runtime of
6.4 seconds at 40 processors making it difficult to justify extending to an additional 80 processors. We also
plot the amount of work Figure 3.19c as a function of the number of processors and find that despite the
message delays and distributed scheduling, the algorithmic efficiency remains relatively constant with the
Splash and Wildfire algorithm performing optimally.

In Figure 3.19d we plot the total amount of network traffic measured in bytes as a function of the number of
processors and we find that the Splash algorithm performs the minimal amount of network communication.
Furthermore the amount of network communication scales linearly with the number of processors. We also
find in Figure 3.19e that the Splash algorithm is able to more fully utilize the cluster by executing more
message calculations per processor-second and doing so consistently as the number of processor scales.
Finally, we compare the algorithms in terms of their communication efficiency measured in total bytes sent
per processor-second. The total bytes sent per processor-second, plotted in Figure 3.19f is a measure of
the network bandwidth used per machine. Again we find that the Splash requires the minimal network
bandwidth and that the network bandwidth grows sub-linearly with the number of processors. At peak load
we use less than a megabyte per second per machine.

The larger UW-CSE MLNs provide the best demonstration of the effectiveness of the Splash algorithm.
None of the other inference algorithms converge on these models, and the models are sufficiently large to
justify the use of a cluster. In Figure 3.20 and Figure 3.21, we provide plots for the UW-Systems and the
UW-AI MLNS respectively.

The UW-Systems model is larger, and we could demonstrate a linear to super-linear speedup up to about 65
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Figure 3.19: Distributed Results for the Elidan1 Protein Network

processors. At 65 processors, the runtime is about 23.6 seconds with a partition factor of 10. The speedup
curves start to flatten out beyond that. The plot in Figure 3.20b justify the claim that over-partitioning can
increase performance through improved load-balancing. Over-partitioning however, does lead to increased
network communication as seen in Figure 3.20d and Figure 3.20f. At 65 processors, over 100 MB of
network messages were communicated in 23 seconds.

The UW-AI model in Figure 3.21 has similar results. However, as the model is smaller, we notice that the
speedup curves start to flatten out earlier, demonstrating linear speedup only up to about 39 processors.
Once again, at 65 processors, the runtime is only 22.7 seconds with a partition factor of 10.

3.9 Additional Related Work

While we focus on approximate inference methods, much of the existing work on parallel algorithms
for graphical models focuses on exact inference which is extremely computationally intensive. Most
exact inference algorithms operate on the junction tree which is an acyclic representation of the factorized
distribution. One of the earliest parallel exact inference algorithm was introduced by Kozlov and Singh
[1994] who implemented the Lauritzen-Spiegelhalter (see Koller and Friedman [2009]) algorithm on a 32
core Stanford DASH processor. Later Pennock [1998] provided a method to both construct the junction
tree and apply Lauritzen-Spiegelhalter with log depth inference using a form of parallel tree contraction
[Miller and Reif, 1985]. While the work by Pennock [1998] provides an optimal algorithm it requires
substantial fine grain coordination. Later Xia and Prasanna [2008, 2010] and Xia et al. [2009] implemented
the algorithm for various platforms and demonstrated limited scaling on models with high treewidth.
Unfortunately, the complexity of inference in junction trees is exponential in the treewidth which grows
quickly in loopy models with many variables. Therefore, for most real-world large-scale models the
treewidth is typically prohibitively large.
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Figure 3.20: Distributed Parallel Results for the UW-Systems MLN
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Figure 3.21: Distributed Parallel Results for the UW-AI MLN

62



In the sequential setting their has been an increased emphasis on asynchronous prioritized scheduling for
belief propagation. Soni et al. [2010] examined the use of asynchronous domain specific scheduling to
accelerate convergence. Prior to our work on SplashBP, Wainwright et al. [2006] proposed an alternative
factorization of approximate inference algorithms along spanning trees. This work conceptually corresponds
to scheduling message updates along spanning trees. After our work on SplashBP, Tarlow et al. [2011]
proposed a prioritized tree based inference algorithm for max-product linear program solver which closely
resembles SplashBP. It is encouraging to see that the GrAD methodology not only leads to efficient parallel
algorithms but is equally applicable in the design of efficient sequential algorithms.

The τε-approximation can be related to work in approximate message passing algorithms. In particular,
work by Ihler et al. [2005] studied the effect of errors in the convergence of belief propagation. They related
the dynamic range of factors, a measure of sensitivity to changes in message values, to the convergence
and accuracy of loopy belief propagation. Consistent with our τε-approximation they found that messages
errors typically decay over long chains.

3.10 Conclusion

Approximate parallel inference algorithms are important to a wide range of machine learning applications.
In this chapter we reviewed the natural parallelization of the belief propagation algorithm using the
synchronous schedule and demonstrated both theoretically and empirically, how this can lead to a highly
inefficient parallel algorithm.

Using the GrAD design principles we gradually improved upon the Synchronous BP algorithm by gradually
introducing asynchronous dynamic scheduling. This lead to the sequence of algorithms, Round Robin,
Wildfire, and Residual BP, each improving upon the previous. Finally by identifying the serial sub-problems,
chains and more generally trees, we developed the Splash BP algorithm, which sequentially moves messages
along spanning trees. We theoretically demonstrated that the SplashBP algorithm is optimal on chains but
generalizes to arbitrary cyclic models.

We discussed how to implement each parallel belief propagation algorithm in the shared memory setting
using basic locking primitives and parallel priority queues. We identified load balancing and communication
contention in the context of dynamic scheduling as key challenges to a distributed belief propagation
algorithms and presented a simple over-partitioning method to address these challenges. Finally, we
experimentally compared each parallel belief propagation algorithm demonstrating the substantial gains of
applying the GrAD design methodology in both the shared memory and distributed memory settings.
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Chapter 4

Probabilistic Inference: Gibbs Sampling

Gibbs sampling is a popular MCMC inference procedure used widely in statistics and machine learning.
However, on many models the Gibbs sampler can be slow mixing [Barbu and Zhu, 2005, Kuss and
Rasmussen, 2005]. Consequently, a number of authors [Asuncion et al., 2008, Doshi-Velez et al., 2009,
Newman et al., 2007, Yan et al., 2009] have proposed parallel methods to accelerate Gibbs sampling.
Unfortunately, most of the recent methods rely on synchronous Gibbs updates that are not ergodic, and
therefore generate chains that do not converge to the targeted stationary distribution.

By applying the GrAD methodology we introduce three ergodic parallel Gibbs samplers. The first, called
the Chromatic sampler, applies a classic technique relating graph coloring to parallel job scheduling, to
obtain a direct parallelization of the classic sequential scan Gibbs sampler. We show that the Chromatic
sampler is provably ergodic and provide strong guarantees on the parallel reduction in mixing time. We then
introduce the Asynchronous Sampler which relaxes the Chromatic schedule and introduces the Markov
Blanket Locking protocol to allow greater asynchrony while preserving ergodicity.

For the relatively common case of models with two-colorable Markov random fields, the Chromatic sampler
provides substantial insight into the behavior of the non-ergodic Synchronous Gibbs sampler. We show that
in the two-colorable case, the Synchronous Gibbs sampler is equivalent to the simultaneous execution of
two independent Chromatic samplers and provide a method to recover the corresponding ergodic chains.
As a consequence, we are able to derive the invariant distribution of the Synchronous Gibbs sampler and
show that it is ergodic with respect to functions over single variable marginals.

The Chromatic sampler achieves a linear increase in the rate at which samples are generated and is therefore
ideal for models where the variables are weakly coupled. However, for models with strongly coupled
variables, the chain can still mix prohibitively slowly. In this case, it is often necessary to jointly sample
large subsets of related random variables [Barbu and Zhu, 2005, Jensen and Kong, 1996] in what is known
as a blocking Gibbs sampler.

The third parallel Gibbs sampler, the Splash sampler, addresses the challenges of highly correlated
variables by incrementally constructing multiple bounded tree-width blocks, called Splashes, and then
jointly sampling each Splash using parallel junction-tree inference and backward-sampling. To ensure that
multiple simultaneous Splashes are conditionally independent (and hence that the chain is ergodic), we
introduce a Markov blanket locking protocol. To accelerate burn-in and ensure high likelihood states are
reached quickly, we introduce a vanishing adaptation heuristic for the initial samples of the chain, which
explicitly builds blocks of strongly coupled variables.
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We construct optimized implementation of the Chromatic and Splash parallel samplers and compare
performance on synthetic and real-world sampling problems using a 32 processor multicore system. The
Asynchronous sampler is a special case of the Splash sampler with Splash size set to one. We find that
both algorithms achieve strong speedups in sample generation, and the adaptive Splash sampler can further
accelerate mixing on strongly correlated models. Our experiments illustrate that the two sampling strategies
complement each other: for weakly coupled variables, the Chromatic sampler performs best, whereas the
Splash sampler is needed when strong dependencies are present.

4.1 The Gibbs Sampler

The Gibbs sampler was introduced by Geman and Geman [1984] and is a popular Markov Chain Monte
Carlo (MCMC) algorithm used to simulate samples from the joint distribution. The Gibbs sampler is
constructed by iteratively sampling each variable,

Xi ∼ P (Xi |XNi = xNi) ∝
∏

A:i∈A,A∈F
fA(Xi,xNi) (4.1)

given the assignment to the variables in its Markov blanket. Geman and Geman [1984] showed that if each
variable is sampled infinitely often and under reasonable assumptions on the conditional distributions (e.g.,
positive support), the Gibbs sampler is ergodic (i.e., it converges to the true distribution). While we have
considerable latitude in the update schedule, we shall see in subsequent sections that certain updates must
be treated with care: in particular, Geman and Geman [1984] were incorrect in their claim that parallel
simultaneous sampling of all variables (the Synchronous update) yields an ergodic chain.

For large models with complex dependencies, the mixing time and even the time required to obtain a
high likelihood sample can be substantial. Therefore, we would like to use parallel resources to increase
the speed of the Gibbs sampler. The simplest method to construct a parallel sampler is to run a separate
chain on each processor. However, running multiple parallel chains requires large amounts of memory
and, more importantly, is not guaranteed to accelerate mixing or the production of high-likelihood samples.
As a consequence, we focus on single chain parallel acceleration, where we apply parallel methods to
increase the speed at which a single Markov chain is advanced. The single chain setting ensures that any
parallel speedup directly contributes to an equivalent reduction in the mixing time, and the time to obtain a
high-likelihood sample.

Unfortunately, recent efforts to build parallel single-chain Gibbs samplers have struggled to retain ergodicity.
The resulting methods have relied on approximate sampling algorithms [Asuncion et al., 2008] or proposed
generally costly extensions to recover ergodicity [Doshi-Velez et al., 2009, Ferrari et al., 1993, Newman
et al., 2007]. Here we will apply the GrAD methodology to design efficient parallel Gibbs samplers while
ensuring ergodicity.

4.2 The Synchronous Gibbs Sampler

A naive single chain parallel Gibbs sampler is obtained by sampling all variables simultaneously on separate
processors. Called the Synchronous Gibbs sampler, this highly parallel algorithm (Alg. 4.1) was originally
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Algorithm 4.1: The Synchronous Gibbs Sampler

forall Variables Xj do in parallel
Execute Gibbs Update: X(t+1)

j ∼ P
(
Xj |x(t)

Nj

)
end

proposed by Geman and Geman [1984]. Unfortunately the extreme parallelism of the Synchronous Gibbs
sampler comes at a cost. As others (e.g., Newman et al. [2007]) have observed, one can easily construct
cases where the Synchronous Gibbs sampler is not ergodic and therefore does not converge to the correct
stationary distribution.

For example, suppose we draw
(
X

(t−1)
1 , X

(t−1)
2

)
from the multivariate normal distribution:(

X
(t−1)
1

X
(t−1)
2

)
∼ N

[(
µ1
µ2

)
,

(
σ21 ρ
ρ σ22

)]
and then use the Synchronous Gibbs sampler to generate

(
X

(t)
1 , X

(t)
2

)
given

(
X

(t−1)
1 , X

(t−1)
2

)
. One can

easily show that: (
X

(t)
1

X
(t)
2

)
∼ N

(µ1
µ2

)
,

 σ21
ρ3

σ2
1σ

2
2

ρ3

σ2
1σ

2
2

σ22


where the covariance term is not preserved. Note, however that the marginals remain consistent. Alterna-
tively, in the discrete case, consider the two binary variable discrete model P (X1, X2) where

P (X1 = x1, X2 = x2) ∝

{
ε x1 6= x2

1− ε x1 = x2
(4.2)

for some 0 < ε < 1. The transition matrix of the Synchronous sampler which samples from both variables
simultaneously is therefore:

(0,0) (0,1) (1,0) (1,1)
(0,0) (1− ε)2 (1− ε)ε (1− ε)ε ε2

(0,1) (1− ε)ε ε2 (1− ε)2 (1− ε)ε
(1,0) (1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1,1) ε2 (1− ε)ε (1− ε)ε (1− ε)2

which has the incorrect stationary distribution (first eigenvector is 1):

P̃ (X1, X2) ∝ 1

Again, the marginals P̃ (X1) = P (X1) and P̃ (X2) = P (X2) are correctly estimated.

Not only does the Synchronous Gibbs sampler converge to the wrong distribution, it can actually decelerate
burn-in, the time it takes to reach high-likelihood samples. If we return to the simple two variable discrete
model and start with an assignment where X1 6= X2 then the probability that X1 = X2 after a single
iteration is:

P
(
Xnew

1 = Xnew
2 |Xold

1 6= Xold
2

)
= 2ε(1− ε) ≤ 2ε

Therefore for small ε the probability of transitioning to a high likelihood state vanishes when run syn-
chronously but occurs almost surely when run asynchronously.
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Algorithm 4.2: The Chromatic Sampler
Input: k-Colored MRF
for For each of the k colors κi : i ∈ {1, . . . , k} do

forall Variables Xj ∈ κi in the ith color do in parallel
Execute Gibbs Update: X(t+1)

j ∼ P
(
Xj |x(t+1)

Nj∈κ<i ,x
(t)
Nj∈κ>i

)
end

end

4.3 The Chromatic Sampler

Just as with the Synchronous BP algorithm in Chapter 3, we can improve upon the Synchronous Gibbs
sampler by scheduling computation asynchronously. In particular we want to construct a parallel execution
of Gibbs updates that has an equivalent sequential execution and therefore retains ergodicity. We can
achieve this serial equivalence by applying a classic technique from parallel computing and introduce the
Chromatic parallel Gibbs sampler.

The Chromatic Gibbs sampler (Alg. 4.2) begins by constructing a k-coloring of the MRF. A k-coloring
of the MRF assigns one of k colors to each vertex such that adjacent vertices have different colors. The
Chromatic sampler simultaneously draws new values for all variables in one color before proceeding
to the next color. The k-coloring of the MRF ensures that all variables within a color are conditionally
independent given the variables in the remaining colors and can therefore be sampled independently and in
parallel.

By combining a classic result ([Bertsekas and Tsitsiklis, 1989, Proposition 2.6]) from parallel computing
with the original Geman and Geman [1984] proof of ergodicity for the sequential Gibbs sampler one can
easily show:

Proposition 4.3.1 (Graph Coloring and Parallel Execution). Given p processors and a k-coloring of
an n-variable MRF, the parallel Chromatic sampler is ergodic and generates a new joint sample in running
time:

O

(
n

p
+ k

)
.

Proof. From [Bertsekas and Tsitsiklis, 1989, Proposition 2.6] we know that the parallel execution of the
Chromatic sampler corresponds exactly to the execution of a sequential scan Gibbs sampler for some
permutation over the variables. The running time can be easily derived:

O

(
k∑
i=1

⌈
|κi|
p

⌉)
=O

(
k∑
i=1

(
|κi|
p

+ 1

))
=O

(
n

p
+ k

)
.

Therefore, given sufficient parallel resource (p ∈ O(n)) and a k-coloring of the MRF, the parallel Chromatic
sampler has running-time O(k), which for many modeling tasks is constant in the number of vertices. It is
important to note that this parallel gain directly results in a factor of p reduction in the mixing time as well
as the time to reach a high-likelihood sample.
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Figure 4.1: (a) Execution of a two colored model using the synchronous Gibbs sampler. The dotted lines represent dependencies
between samples. (b) Two ergodic chains obtained by executing the Synchronous Gibbs sampler. Note that ergodic sums with
respect to marginals are equivalent to those obtained using the Synchronous sampler.

Unfortunately, constructing the minimal coloring of a general MRF is NP-Complete. However, for many
common models the optimal coloring can be quickly derived. For example, given a plate diagram, we
can typically compute an optimal coloring of the plates, which can then be applied to the complete model.
When an optimal coloring cannot be trivially derived, we find simple graph coloring heuristics (see Kubale
[2004]) perform well in practice.

4.3.1 Properties of 2-Colorable Models

Many common models in machine learning have natural two-colorings. For example, Latent Dirichlet
Allocation, the Indian Buffet process, the Boltzmann machine, hidden Markov models, and the grid models
commonly used in computer vision all have two-colorings. For these models, the Chromatic sampler
provides additional insight into properties of the Synchronous sampler. The following theorem relates the
Synchronous Gibbs sampler to the Chromatic sampler in the two-colorable setting and provides a method
to recover two ergodic chains from a single Synchronous Gibbs chain:

Theorem 4.3.2 (2-Color Ergodic Synchronous Samples). Let (X(t))mt=0 be the non-ergodic Markov
chain constructed by the Synchronous Gibbs sampler (Alg. 4.1) then using only (X(t))mt=0 we can construct
two ergodic chains (Y (t))mt=0 and (Z(t))mt=0 which are conditionally independent givenX(0) and correspond
to the simultaneous execution of two Chromatic samplers (Alg. 4.2).

Proof. We split the chain (X(t))mt=0 = (X
(t)
κ1 , X

(t)
κ2 )mt=0 over the two colors and then construct the chains

(Y (t))mt=0 and (Z(t))mt=0 by simulating the two Chromatic Gibbs samplers, which each advance only one
color at a time conditioned on the other color (as illustrated in Figure 4.1):

(
Y (t)

)m
t=0

=

[(
X

(0)
κ1

X
(1)
κ2

)
,

(
X

(2)
κ1

X
(1)
κ2

)
,

(
X

(2)
κ1

X
(3)
κ2

)
, . . .

]
(
Z(t)

)m
t=0

=

[(
X

(1)
κ1

X
(0)
κ2

)
,

(
X

(1)
κ1

X
(2)
κ2

)
,

(
X

(3)
κ1

X
(2)
κ2

)
, . . .

]

Observe that no samples are shared between chains, and given X(0) both chains are independent. Finally,
because both derived chains are simulated from the Chromatic sampler they are provably ergodic.

Using the partitioning induced by the 2-coloring of the MRF we can analytically construct the invariant
distribution of the Synchronous Gibbs sampler:
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Theorem 4.3.3 (Invariant Distribution of Sync. Gibbs). Let (Xκ1 , Xκ2) = X be the partitioning of the
variables over the two colors, then the invariant distribution of the Synchronous Gibbs sampler is the
product of the marginals P (Xκ1)P (Xκ2).

Proof. Let the current state of the sampler beX = (Xκ1 , Xκ2) and the result of a single Synchronous Gibbs
update be X ′ = (X ′κ1 , X

′
κ2). By definition the Synchronous Gibbs update simulates X ′κ1 ∼ P

(
x′κ1 |xκ2

)
and X ′κ2 ∼ P

(
x′κ2 |xκ1

)
. Therefore the transition kernel for the Synchronous Gibbs sampler is:

K(x′ |x) = P
(
x′κ1 |xκ2

)
P
(
x′κ2 |xκ1

)
We can easily show that P (Xκ1)P (Xκ2) is the invariant distribution of the Synchronous Gibbs sampler:

P
(
x′
)

=
∑
x

K(x′ |x)P (x)

=
∑
xκ1

∑
xκ2

P
(
x′κ1 |xκ2

)
P
(
x′κ2 |xκ1

)
P (xκ1)P (xκ2)

=
∑
xκ1

∑
xκ2

P
(
xκ1 , x

′
κ2

)
P
(
x′κ1 , xκ2

)
= P

(
x′κ1
)
P
(
x′κ2
)

A useful consequence of Theorem 4.3.3 is that when computing ergodic averages over sets of variables
with the same color, we can directly use the non-ergodic Synchronous samples and still obtain convergent
estimators:

Corollary 4.3.4 (Monochromatic Marginal Ergodicity). Given a sequence of samples (x(t))mt=0 drawn
from the Synchronous Gibbs sampler on a two-colorable model, empirical expectations computed with
respect to single color marginals are ergodic:

∀f, i ∈ 1, 2 : lim
m→∞

1

m

m∑
t=0

f(x(t)κi )
a.s.−−→ E [f(Xκi)]

Corollary 4.3.4 justifies many applications where the Synchronous Gibbs sampler is used to estimate single
variables marginals and explains why the Synchronous Gibbs sampler performs well in these settings.
However, Corollary 4.3.4 also highlights the danger of computing empirical expectations over variables
that span both colors without splitting the chains as shown in Theorem 4.3.2.

We have shown that both the Chromatic sampler and the Synchronous sampler can provide ergodic samples.
However the Chromatic sampler is clearly superior when the number of processors is less than the half
the number of vertices (p < n/2) since it will advance a single chain twice as fast as the Synchronous
sampler.

4.4 Asynchronous Gibbs Sampler

While the Chromatic sampler performs optimally in many applications, there are scenarios in which the
Chromatic sampler can be inefficient or where we may favor more control over the execution order at
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the expense of added complexity. If the time required to draw from conditions differs substantially it is
easy to construct a simple scenario where p − 1 processors wait unnecessarily even when the optimal
coloring is used. Alternatively, we may want to sample variables at different frequencies or use adaptive
prioritization mechanisms like those proposed in Levine and Casella [2006]. In this section we construct the
Asynchronous Gibbs Sampler, which is the parallel equivalent of the Random Scan Gibbs sampler.

In the Asynchronous Gibbs Sampler, each processor randomly draws the next variable to sample from
some (potentially adaptive subject to the conditions in Levine and Casella [2006]) distribution. Before a
processor can sample a new value for that variable, it must first acquire the corresponding Markov Blanket
Lock using the Blanket Locking (MBL) Protocol. The Blanket Locking protocol associates a Read/Write
lock with each variable in the model. The Markov blanket lock for variable Xv is obtained by acquiring the
read-locks on all neighboring variables XNv and the write lock on Xv. To ensure that the Blanket Locking
Protocol is Dead-lock free, locks are always acquired and released using the canonical ordering of the
variables. The Markov blanket locking protocol (MBL) is actually equivalent to the locking protocol used
in the LoopyBP SendMessages routine described in Alg. 3.5.

We show that the Asynchronous Gibbs sampler is ergodic and equivalent to the sequential execution of
the Random Scan Gibbs sampler. Ergodicity relies on the notion of Sequential Consistency. The locking
strategy employed by the Asynchronous Gibbs sampler ensures that there exists a sequential execution
which recovers the same output as every parallel execution. Alternatively, since we lock the Markov
Blanket, we can show that all variables sampled simultaneously are also conditionally independent given
the assignment to the remaining variables.

One of the major drawback to the asynchronous Gibbs sampler is that processors can collide on locks,
resulting in sequentialization and leading to a loss in parallel performance. We can, none the less, provide
an encouraging lower bound on the expected number of processors that may operate simultaneously (i.e.,
execute without colliding on a lock). If we consider a small grid (d = 4) Ising model with n = 202

variables then using p = 8 processors, Theorem 4.4.1 states that in expectation we will be able to use at
least 7 of the processors in parallel. The intuition behind the bound in Theorem 4.4.1 is that at least one
processor will always run and the remaining p− 1 remaining processors run successfully with probability
at most (1− (p− 1)(d+ 1)/n).

Theorem 4.4.1 (Randomized Asynchronous Parallelism). If p processors simultaneously try to grab
variables uniformly at random from an MRF with n random variables and maximum degree d then the
expected number of processors which will be able to execute in parallel is at least:

E [# Processors Running in Parallel] ≥ 1 + (p− 1)

(
1− (p− 1)

(
d+ 1

n

))
(4.3)

Proof. A processor is blocked if another processor is running on that vertex or any of its neighbors
(d + 1)/n and any of the (p − 1) other processors can block a vertex. Therefore a lower bound on the
probability that one of the (p− 1) processors will succeed is given by (1− (p− 1)(d+ 1)/n).

4.5 The Splash Gibbs Sampler

The Chromatic sampler provides a linear speedup for single-chain sampling, advancing the Markov chain
for a k-colorable model in time O

(
n
p + k

)
rather than O(n). Unfortunately, some models have strongly
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Algorithm 4.3: Parallel Splash Sampler
Input: Maximum treewidth wmax
Input: Maximum Splash size hmax
while t ≤ ∞ do

// Make p bounded treewidth Splashes

1 {JSi}
p
i=1 ← ParSplash(wmax, hmax, x

(t));
// Calibrate each junction trees

2 {JSi}
p
i=1 ← ParCalibrate(x(t), {JSi}

p
i=1);

// Sample each Splash
3 {xSi}

p
i=1 ← ParSample({JSi}

p
i=1);

// Advance the chain

x(t+1) ←
{
xS1 , ..., xS1 , x

(t)

¬
⋃p
i=1 Si

}

correlated variables and complex dependencies, which can cause the Chromatic sampler to mix prohibitively
slowly.

In the single processor setting, a common method to accelerate a slowly mixing Gibbs sampler is to
introduce blocking updates [Barbu and Zhu, 2005, Hamze and de Freitas, 2004, Jensen and Kong, 1996].
In a blocked Gibbs sampler, blocks of strongly coupled random variables are sampled jointly conditioned
on their combined Markov blanket. The blocked Gibbs sampler improves mixing by enabling strongly
coupled variables to update jointly when individual conditional updates would force the chain to move
through low-probability states in-order to mix or reach high-probability states.

To improve mixing in the parallel setting we introduce the Splash sampler (Alg. 4.3), a general purpose
blocking sampler. For each joint sample, the Splash sampler exploits parallelism both to construct multiple
random blocks, called Splashes, and to accelerate the joint sampling of each Splash. To ensure each Splash
can be safely and efficiently sampled in parallel, we developed a novel Splash generation algorithm which
incrementally builds multiple conditionally independent bounded treewidth junction trees for every new
sample. In the initial rounds of sampling, the Splash algorithm uses a simple adaptation heuristic which
groups strongly dependent variables together based on the state of the chain. Adaptation is then disabled
after a finite number of rounds to ensure ergodicity.

We present the Splash sampler in three parts. First, we present the parallel algorithm used to construct
multiple conditionally independent Splashes. Next, we describe the parallel junction tree sampling
procedure used to jointly sample all variables in a Splash. Finally, we present our Splash adaptation
heuristic which sets the priorities used during Splash generation.

4.5.1 Parallel Splash Generation

The Splash generation algorithm (Alg. 4.4) uses p processors to incrementally build p disjoint Splashes
in parallel. Each processor grows a Splash rooted at a unique vertex in the MRF (Line 1). To preserve
ergodicity we require that no two roots share a common edge in the MRF, and that every variable is a root
infinitely often.

Each Splash is grown incrementally using a best first search (BeFS) of the MRF. The exact order in
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(a) Noisy (b) FIFO Splashes (c) FIFO Splashes (+) (d) Priority Splashes (e) Priority Splashes (+)

Figure 4.2: Different Splashes constructed on a 200× 200 image denoising grid MRF. (a) A noisy sunset
image. Eight Splashes of treewidth 5 were constructed using the FIFO (b) and priority (d) ordering. Each
splash is shown in a different shade of gray and the black pixels are not assigned to any Splash. The
priorities were obtained using the adaptive heuristic. In (c) and (e) we zoom in on the Splashes to illustrate
their structure and the black pixels along the boundary needed to maintain conditional independence.

which variables are explored is determined by the call to NextVertexToExplore(B) on Line 2 of
Alg. 4.4 which selects (and removes) the next vertex from the boundary B. In Figure 4.2 we plot several
simultaneous Splashes constructed using a first-in first-out (FIFO) ordering (Figure 4.2b) and a prioritized
ordering (Figure 4.2d).

The Splash boundary is extended until there are no remaining variables that can be safely added or the
Splash is sufficiently large. A variable cannot be safely added to a Splash if sampling the resulting Splash
is excessively costly (violates a treewidth bound) or if the variable or any of its neighbors are members of
other Splashes (violates conditional independence of Splashes).

There are two core challenges to constructing multiple bounded computation Splashes in parallel. First, we
need a fast incremental algorithm to estimate the computational cost of sampling a Splash; and second, we
need a deadlock-free, race-free protocol to ensure that simultaneously constructed Splashes are conditionally
independent.

To bound the computational complexity of sampling, and to jointly sample the Splash, we rely on junction
trees. A junction tree, or clique graph, is an undirected acyclic graphical representation of the joint
distribution over a collection of random variables. For a Splash containing the variables XS , we construct
a junction tree (C, E) = JS representing the conditional distribution P (XS |x−S). The set of vertices
C ∈ C is called a clique and is a subset of the vertices (i.e., C ⊆ S) in the Splash S . The cliques satisfy the
constraint that for every factor domain A ∈ F there exists a clique C ∈ C such that A ∩ S ⊆ C. The edges
E of the junction tree satisfy the running intersection property (RIP) which ensures that all cliques sharing
a common variable form a connected tree.

The computational complexity of inference, and consequently sampling using a junction tree, is exponential
in the treewidth; one less than number of variables in the largest clique. Therefore, to evaluate the
computational cost of adding a new variable Xv to the Splash, we need an efficient method to extend the
junction tree JS over XS to a junction tree JS+v over XS∪{v} and evaluate the resulting treewidth.

To efficiently build incremental junction trees, we developed a novel junction tree extension algorithm
(Alg. 4.5) which emulates standard variable elimination, with variables being eliminated in the reverse
of the order they are added to the Splash (e.g., if Xi is added to JS then Xi is eliminated before all XS).
Because each Splash grows outwards from the root, the resulting elimination ordering is optimal on tree
MRFs and typically performs well on cyclic MRFs.
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Algorithm 4.4: ParallelSplash: Parallel Splash Generation
Input: Maximum treewidth wmax
Input: Maximum Splash size hmax
Output: Disjoint Splashes {S1, . . . ,Sp}
do in parallel i ∈ {1, . . . , p}

1 r ← NextRoot(i) // Unique roots
Si ← {r} // Add r to splash
B ← Nr // Add neighbors to boundary
V ← {r} ∪ Nr // Visited vertices
JSi ← JunctionTree({r})
while (|Si| < hmax)

∧
(|B| > 0) do

2 v ← NextVertexToExplore(B)
MarkovBlanketLock(Xv)
// Check that v and its neighbors Nv are not in other

Splashes.

safe←
∣∣∣({v} ∪ Nv) ∩ (⋃j 6=i Sj

)∣∣∣ = 0

JSi+v ← ExtendJunctionTree(JSi , v)
if safe

∧
TreeWidth(JSi+v)< wmax then

JSi ← JSi+v // Accept new tree
Si ← Si ∪ {v}

3 B ← B ∪ (Nv\V) // Extend boundary
V ← V ∪Nv // Mark visited

MarkovBlanketFree(Xv)

The incremental junction tree extension algorithm (Alg. 4.5) begins by eliminating Xi and forming the new
clique Ci = (Ni ∩ S) ∪ {i} which is added to JS+i. We then attach Ci to the most recently added clique
CPa[i] that contains a variable in Ci (CPa[i] denotes the parent of Ci). The running intersection property
(RIP) is then restored by propagating the newly added variables back up the tree. We define the remaining
unsatisfied variables R = Ci\ {i} and insert R into its parent clique CPa[i]. The RIP condition is now
satisfied for variables inR which were already in CPa[i]. The parent for CPa[i] is then recomputed, and any
unsatisfied variables are propagated up the tree in the same way. We demonstrate this algorithm with a
simple example in Figure 4.3.

To ensure that simultaneously constructed Splashes are conditionally independent, we employ
the Markov blanket locking (MBL) protocol from the Asynchronous Gibbs sampler. Once the
MarkovBlanketLock(Xv) has been acquired, no other processor can assign Xv or any of it neighbors
XNv to a Splash. Therefore, we can safely test if Xv or any of its neighbors XNv are currently assigned
to other Splashes. Since we only add Xv to the Splash if both Xv and all its neighbors are currently
unassigned to other Splashes, there will never be an edge in the MRF that connects two Splashes.
Consequently, simultaneously constructed Splashes are conditionally independent given all remaining
unassigned variables.
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Algorithm 4.5: ExtendJunctionTree Algorithm
Input: The original junction tree (C, E) = JS .
Input: The variable Xi to add to JS
Output: JS+i
Define: Cu as the clique created by eliminating u ∈ S
Define: V[C] ∈ S as the variable eliminated when creating C
Define: t[v] as the time v ∈ S was added to S
Define: Pa[v] ∈ Nv ∩ S as the next neighbor of v to be eliminated.
Ci ← (Ni ∩ S) ∪ {i}
Pa[i]← arg maxv∈Ci\{i} t[v]

// ----------- Repair RIP -------------
R ← Ci\ {i} // RIP Set
v ← Pa[i]
while |R| > 0 do

Cv ← Cv ∪R // Add variables to parent
w ← arg maxw∈Cv\{v} t[w] // Find new parent

if w = Pa[v] then
R ← (R\Ci)\ {i}

else
R ← (R∪ Ci)\ {i}
Pa[v]← w // New parent

v ← Pa[v] // Move upwards

4.5.2 Parallel Splash Sampling

Once we have constructed p conditionally independent Splashes {S1}pi=1, we jointly sample each Splash
by drawing from P (XSi |x−Si) in parallel. Sampling is accomplished by first calibrating the junction trees
{JSi}

p
i=1, and then running backward-sampling starting at the root to jointly sample all the variables in each

Splash. We also use the calibrated junction trees to construct Rao-Blackwellized marginal estimators. If the
treewidth or the size of each Splash is large, it may be beneficial to construct fewer Splashes, and instead
assign multiple processors to accelerate the calibration and sampling of individual junction trees.

To calibrate the junction tree we use the ParCalibrate function (Alg. 4.6). The ParCalibrate
function constructs all clique potentials in parallel by computing the products of the assigned factors
conditioned on the variables not in the junction tree. Finally, parallel belief propagation is used to calibrate
the tree by propagating messages in parallel following the optimal forward-backward schedule. At each
level individual message computations are done in parallel.

Parallel backward-sampling is accomplished by the function ParSample which takes the calibrated
junction tree and draws a new joint assignment in parallel. The ParSample function begins by drawing
a new joint assignment for the root clique using the calibrated marginal. Then, in parallel, each child is
sampled conditioned on the parent assignment and the messages from the children.
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Figure 4.3: Incremental Junction Tree Example: The junction tree on the top comprises the subset
of variables {1,2,4,5,6} of the MRF (center). The tree is formed by the variable elimination ordering
{6,1,2,5,4} (reading the underlined variables of the tree in reverse). To perform an incremental insertion of
variable 3, we first create the clique formed by the elimination of 3 ({1,2,3,6}) and insert it into the end
of the tree. Its parent is set to the latest occurrence of any of the variables in the new clique. Next the set
{1,2,6} is inserted into its parent (boldface variables), and its parent is recomputed in the same way.

Algorithm 4.6: ParallelCalibrate: Junction Calibration

Input: x(t), {JSi}
p
i=1

do in parallel processor i ∈ {1, . . . , p}
forall Cliques c ∈ JSi do in parallel

// Initialize clique potentials

ψc(Xc)←
∏
fα∈c fα(Xc, x

(t)
−c)

JSi ← ParallelBPCalibrate({ψc}c∈Si)
Output: Calibrated junction trees {JSi}

p
i=1

4.5.3 Adaptive Splash Generation

As discussed earlier, the order in which variables are explored when constructing a Splash is determined
on Line 2 in the ParSplash algorithm (Alg. 4.4). We propose a simple adaptive prioritization heuristic,
based on the current assignment to x(t), that prioritizes variables at the boundary of the current tree which
are strongly coupled with variables already in the Splash. We assign each variable Xv ∈ B a score using
the likelihood ratio:

s[Xv] =

∣∣∣∣∣∣
∣∣∣∣∣∣log

∑
xP

(
XS , Xv = x |X−S = x

(t)
−S

)
P
(
XS , Xv = x

(t)
v |X−S = x

(t)
−S

)
∣∣∣∣∣∣
∣∣∣∣∣∣
1

, (4.4)

and includes the variable with the highest score. Effectively, Eq. (4.4) favors variables with greater average
log likelihood than conditional log likelihood. We illustrate the consequence of applying this metric to
an image denoising task in which we denoise the synthetic image shown in Figure 4.2a. In Figure 4.4 we
show a collection of Splashes constructed using the score function Eq. (4.4). To see how priorities evolve
over time, we plot the update frequencies early (Figure 4.4a) and later (Figure 4.4b) in the execution of the
Splash scheduler.

75



(a) Early (b) Later

Figure 4.4: The update frequencies of each variable in the 200× 200 image denoising grid MRF for the
synthetic noisy image shown in Figure 4.2a. The brighter pixels have been prioritized higher and are
therefore updated more frequently. (a) The early update counts are relatively uniform as the adaptive
heuristic has not converged on the priorities. (b) The final update counts are focused on the boundaries of
the regions in the model corresponding to pixels that can be most readily changed by blocked steps.

4.5.4 A Need for Vanishing Adaptation

Given the flexibility in scheduling Geman and Geman [1984] ascribed to the Gibbs sampler, it would seem
reasonable to continually adapt the update schedule and Splash shape especially since any individual Splash
preserves the underlying distribution. Indeed, Levine and Casella [2006] make a similar claim about their
Algorithm 7.1: which is a generalization of adaptive Gibbs samplers. Unfortunately, we can demonstrate,
by means of a simple counter example, that tuning the Splash (blocking) in general breaks ergodicity even
when we include all variables with positive probability.

Consider the case of two uniform independent binary variables X1 and X2 with constant probability mass
function P (x1, x2) ∝ 1. We define an adaptive sampling procedure which picks a variable to sample
uniformly at random if both variables have the same assignment (x1 = x2). However, if the variables have
different assignments (x1 6= x2), we pick the variable with assignment 1 with 90% probability. Let the
choice of variable to sample (Splash) be represented by P (S |X1, X2) where S ⊆ {1, 2}. Let (X1, X2)
be the current state and (X ′1, X

′
2) be the new state after one step of the procedure. Then the transition

kernel is given by (where 1 [·] is the indicator function):

P
(
X ′1, X

′
2 | S = {1} , X1, X2

)
∝ 1

[
x′2 = x2

]
P
(
X ′1, X

′
2 | S = {2} , X1, X2

)
∝ 1

[
x′1 = x1

]

Marginalizing the assignments to (X1, X2) with respect to the true probability P (X1, X2) we ob-
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tain:

P
(
X ′1 = x′1, X

′
2 = x′2

)
=
∑
x1,x2

∑
S

P (S |X1, X2)P
(
X ′1, X

′
2 | S, X1, X2

)
P (X1, X2)

∝
∑
x1,x2

∑
S

P (S |X1, X2)P
(
X ′1, X

′
2 | S, X1, X2

)
∝
∑
x1,x2

P (S = {1} |X1, X2)1
[
x′2 = x2

]
+ P (S = {2} |X1, X2)1

[
x′1 = x1

]
∝

(∑
x1

P
(
S = {1} |X1, X2 = x′2

))
+

(∑
x2

P
(
S = {2} |X1 = x′1, X2

))
= 1

[
x′2 = 1

]
(0.5 + 0.1) + 1

[
x′2 = 0

]
(0.9 + 0.1)

+ 1
[
x′1 = 1

]
(0.5 + 0.1) + 1

[
x′1 = 0

]
(0.9 + 0.1),

where the last step of the process is computing by substituting in the values of P (S |X1, X2) as defined by
the adaptation process.

The resulting distribution of P (X ′1, X
′
2) is

x′1 x′2 P (X ′1 = x′1, X
′
2 = x′2)

0 0 0.35

0 1 0.25

1 0 0.25

1 1 0.15

which clearly is not the correct stationary distribution and the Gibbs sampler is therefore not ergodic. This
counter example refutes the proof of Algorithm 7.1 in Levine and Casella [2006], and places conditions
upon the Gibbs sampler described in [Geman and Geman, 1984]. Specifically, simply sampling from every
variable infinitely often is insufficient for ergodicity.

To ensure the chain remains ergodic, we disable prioritized tree growth after a finite number of iterations,
and replace it with a random tree growth. This form of vanishing adaptation helps move to high-
likelihood samples and can accelerate early mixing (burn-in). However, ultimately we would like to develop
adaptation heuristics that do not require vanishing adaptation and believe this is an important area of future
research.

By employing vanishing adaptation we show that our Splash sampler with vanishing is ergodic:

Theorem 4.5.1 (Splash Sampler Ergodicity). The adaptive Splash sampler with vanishing adaptation is
ergodic and converges to the true distribution.

Proof. We prove Theorem 4.5.1 in three parts. First we show that P (X) is the invariant distribution of the
Splash Sampler:

P
(
X(t+1)

)
=
∑
x

K
(
X(t+1) |X(t) = x

)
P
(
X(t) = x

)
(4.5)

Second, we show that the Splash sampler forgets its starting state:

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ γt/n (4.6)

77



Finally, we show that the sampler draws from P (X) in the limit:

lim
t→∞

sup
y,x

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P (X = x)

∣∣∣∣∣∣
1

= 0 (4.7)

Distributional Invariance: Because vanishing adaptation is used we show that P (X) is preserved for
Splash updates without adaptation: where the choice of Splash S(t) does not depend on the state of the chain.
However, we do allow the choice of the Splash to depend on all previous Splash choices

{
S(0), . . . ,S(t)

}
.

The transition kernel for the Splash sampler given the Splash S is defined as:

K
(
X(t+1) |x(t)

)
=
∑
S

P
(
S | S(0) . . .S(t−1)

)
1
[
X

(t+1)
−S = X

(t)
−S

]
P
(
X

(t+1)
S |X(t+1)

−S

)
(4.8)

Substituting Eq. (4.8) into Eq. (4.5) we obtain:∑
X(t)

K
(
X(t+1) |X(t)

)
P
(
X(t)

)
(4.9)

=
∑
X(t)

∑
S

P
(
S | S(0) . . .S(t)

)
1
[
x
(t+1)
−S = x

(t)
−S

]
P
(
X

(t+1)
S |X(t+1)

−S

)
P
(
X(t)

)
(4.10)

=
∑
S

P
(
S | S(0) . . .S(t)

)
P
(
X

(t+1)
S |X(t+1)

−S

)∑
X(t)

1
[
x
(t+1)
−S = x

(t)
−S

]
P
(
X(t)

)
(4.11)

=
∑
S

P
(
S | S(0) . . .S(t)

)
P
(
X

(t+1)
S |X(t+1)

−S

)
P
(
X

(t+1)
−S

)
(4.12)

=
∑
S

P
(
S | S(0) . . .S(t)

)
P
(
X(t+1)

)
(4.13)

= P
(
X(t+1)

)
(4.14)

Dependence on Starting State: We now show that the Splash sampler forgets its initial starting state. This
is done by first showing that there is a positive probability of reaching any state after a bounded number of
Splash operations. Then we use this strong notion of irreducibility to setup a recurrence which bounds the
dependence on the starting state.

The Splash algorithm sweeps across the roots ensuring that after ∆t ≤ n tree updates all variables are
sampled at least once. Define the time ti as the last time variableXi was updated. Without loss of generality
(by renumbering the variables) we assume that t1 < t2 < . . . < tn. We can then bound the probability that
after n Splashes we reach state x given we were initially at state y,

P
(
X(n) = x |X(0) = y

)
≥

n∏
i=1

inf
x−i

P (Xi = xi |X−i = x−i) . (4.15)

Define the smallest conditional probability,

δ = inf
i,x

P (Xi = xi |X−i = x−i) , (4.16)

then we can lower bound the probability of reach any state:

P
(
X(n) = x |X(0) = y

)
≥ δn. (4.17)
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Effectively, we are stating that P (X) is irreducible since all the conditionals are positive. As a consequence
we can show that there exists an γ such that 0 ≤ γ < 1 and

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ γt/n. (4.18)

This is trivially true for t = 0. We can rewrite the left side of the above equation as

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1

=

sup
x

∣∣∣∣∣∣∣∣sup
y

P
(
X(t) = x |X(0) = y

)
− inf

z
P
(
X(t) = x |X(0) = z

)∣∣∣∣∣∣∣∣
1

. (4.19)

Now we will bound the inner sup and inf terms. For t > n we can introduce a probability measure µ such
that

sup
y
P
(
X(t) = x |X(0) = y

)
= sup

y

∑
w

P
(
X(t) = x |X(n) = w

)
P
(
X(n) = w |X(0) = y

)
(4.20)

≤ sup
µ≥δn

∑
w

P
(
X(t) = x |X(n) = w

)
µ(w) (4.21)

Then by defining the w∗ as

w∗ = arg sup
w

P
(
X(t) = x |X(n) = w

)
, (4.22)

we can easily construct the maximizing µ which places the minimal mass δn on all w except w∗ and places
the remaining mass 1− (|Ω| − 1)δn on w∗. This leads to

sup
y

P
(
X(t) = x |X(0) = y

)
≤ (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ (4.23)

δn
∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
. (4.24)

Similarly we define w∗ as the minimizing element in Ω

w∗ = arg inf
w

P
(
X(t) = x |X(n) = w

)
. (4.25)

We can then construct the lower bound,

inf
z
P
(
X(t) = x |X(0) = z

)
≥ (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ (4.26)

δn
∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
. (4.27)
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Taking the difference, we get

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1

= sup
x

∣∣∣∣∣∣∣∣sup
y

P
(
X(t) = x |X(0) = y

)
− inf

z
P
(
X(t) = x |X(0) = z

)∣∣∣∣∣∣∣∣
1

(4.28)

≤ sup
x
|| (1− (|Ω| − 1)δn)P

(
X(t) = x |X(n) = w∗

)
+ δn

∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
−

(1− (|Ω| − 1)δn)P
(
X(t) = x |X(n) = w∗

)
− δn

∑
w 6=w∗

P
(
X(t) = x |X(n) = w

)
||1.

(4.29)

We can bound the sum terms

δn
∑
w 6=w∗

P (X(t) = x |X(n) = w)− δn
∑
w 6=w∗

P (X(t) = x |X(n) = w) ≤

δn
∑
w

P (X(t) = x |X(n) = w)− δn
∑
w

P (X(t) = x |X(n) = w) = 0,

and then simplify Eq. (4.29) to obtain

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤

(1− (|Ω| − 1)δn) sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(n) = y
)
−P

(
X(t) = x |X(n) = z

)∣∣∣∣∣∣
1
.

(4.30)

We can repeat this procedure t/n times to the term
∣∣∣∣P (X(t) = x |X(n) = y

)
−P

(
X(t) = x |X(n) = z

)∣∣∣∣
1

on the right side of the above equation to obtain the desired result,

sup
x,y,z

∣∣∣∣∣∣P(X(t) = x |X(0) = y
)
−P

(
X(t) = x |X(0) = z

)∣∣∣∣∣∣
1
≤ (1− (|Ω| − 1)δn)t/n . (4.31)

We can use Eq. (4.31) along with π invariance to finish the proof,

lim
t→∞

sup
y,x

∣∣∣∣∣∣P(X(t) = y |X(0) = x
)
−P (y)

∣∣∣∣∣∣
1

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣P(X(t) = y |X(0) = x

)
−
∑
z

P (y | z)P (z)

∣∣∣∣∣
∣∣∣∣∣
1

(4.32)

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣P(X(t) = y |X(0) = x

)
−
∑
z

P
(
X(t) = y |X(0) = z

)
P (z)

∣∣∣∣∣
∣∣∣∣∣
1

(4.33)

= lim
t→∞

sup
y,x

∣∣∣∣∣
∣∣∣∣∣∑
z

P (z)
(
P
(
X(t) = y |X(0) = x

)
−P

(
X(t) = y |X(0) = z

))∣∣∣∣∣
∣∣∣∣∣
1

(4.34)

≤ lim
t→∞

sup
y,x,z

∣∣∣∣∣∣P(X(t) = y |X(0) = x
)
−P

(
X(t) = y |X(0) = z

)∣∣∣∣∣∣
1

(4.35)

≤ lim
t→∞

(1− (|Ω| − 1)δn)t/n (4.36)

= 0. (4.37)
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Figure 4.5: Comparison of Chromatic sampler and the Splash sampler at different settings (i.e.,
Chromatic(p), Splash(p, wmax, adaptation) for p processors and treewidth wmax) on the synthetic im-
age denoising grid model and the Cora Markov logic network. Adaptation was not used in the CORA-1
MLN. (a,e) The un-normalized log-likelihood plotted as a function of running-time. (b,f) The variance in
the estimator of the expected assignment computed across 10 independent chains with random starting
points. (c,g) The total number of variables sampled in a 20 second window plotted as a function of the
number of cores. (d,h) The speedup in number of samples drawn as a function of the number of processors.

4.6 Experiments

We implemented an optimized C++ version of both the Chromatic and Splash samplers for arbitrary
discrete factorized models. Although Alg. 4.3 is presented as a sequence of synchronous parallel steps,
our implementation splits these steps over separate processors to maximize performance and eliminate
the need for threads to join between phases. While the calibration and sampling of individual junction
trees can also be parallelized, we found that for the typically small treewidth used in our experiments,
the overhead associated the additional parallelism overrode any gains. Nonetheless, when we made the
treewidth sufficiently large (e.g., 106 sized factors) we were able to obtain 13×-speedup in junction tree
calibration on 32 cores.

To evaluate the proposed algorithms in both the weakly and strongly correlated setting we selected two
representative large-scale models. In the weakly correlated setting we used a 40, 000 variable 200× 200
grid MRF similar to those used in image processing. The latent pixel values were discretized into 5 states.
Gibbs sampling was used to compute the expected pixel assignments for the synthetic noisy image shown
in Figure 4.2a. We used Gaussian node potentials centered around the pixel observations with σ2 = 1
and Ising-Potts edge potentials of the form exp(−3δ(xi 6= xj)). To test the algorithms in the strongly
correlated setting, we used the CORA-1 Markov Logic Network (MLN) obtained from Domingos [2009].
This large real-world factorized model consists of over 10, 000 variables and 28, 000 factors, and has a
much higher connectivity and higher order factors than the pairwise MRF.
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In Figure 4.5 we present the results of running both algorithms on both models using a state-of-the-art 32
core Intel Nehalem (X7560) server with hyper-threading disabled. We plot un-normalized log-likelihood
and across chain variance in-terms of wall-clock time. In Figure 4.5a and Figure 4.5e we plot the un-
normalized log-likelihood of the last sample as a function of time. While in both cases the Splash algorithm
out-performs the chromatic sampler, the difference is more visible in the CORA-1 MLN. We found that the
adaptation heuristic had little effect in likelihood maximization on the CORA-1 MLN, but did improve
performance on the denoising model by focusing the Splashes on the higher variance regions. In Figure 4.5b
and Figure 4.5f we plot the variance in the expected variable assignments across 10 independent chains
with random starting points. Here we observe that for the faster mixing denoising model, the increased
sampling rate of the Chromatic sampler leads to a greater reduction in variance while in the slowly mixing
CORA-1 MLN only the Splash sampler is able to reduce the variance.

To illustrate the parallel scaling we plot the number of samples generated in a 20 seconds (Figure 4.5c
and Figure 4.5d) as well as the speedup in sample generation (Figure 4.5c and Figure 4.5d). The speedup
is computed by measuring the multiple of the number of samples generated in 20 seconds using a single
processor. The ideal speedup is linear with 32× speedup on 32 cores.

We find that the Chromatic sampler typically generates an order of magnitude more samples per second
than the more costly Splash sampler. However, if we examine speedup curves we see that the larger
cost associated with the Splash construction and inference contributes to more exploitable coarse grain
parallelism. Interestingly, in Figure 4.5h we see that the Splash sampler exceeds the ideal scaling. This is
actually a consequence of the high connectivity forcing each of the parallel Splashes to be smaller as the
number of processors increases. As a consequence the cost of computing each Splash is reduced and the
sampling rate increases. However, this also reduces some of the benefit from the Splash procedure as the
size of each Splash is smaller resulting a potential increase in mixing time.

4.7 Additional Related Work

As discussed in the motivation, the majority of existing large-scale sampling efforts have not preserved
ergodicity and in many cases focused on largely synchronous updates. However, some more recent sampling
efforts have taken a strongly asynchronous approach. For example, Smola and Narayanamurthy [2010]
constructed one of the largest collapsed Gibbs samplers for LDA. This approach is entirely asynchronous
with each variable being sampled as fast as possible. While this approach has not yet been shown to
converge to the correct distribution, it seems to perform extremely well in practice.

Later work by Ahmed et al. [2012] improves upon the work by Smola and Narayanamurthy [2010],
and introduces the parameter server a powerful new primitive for expressing highly asynchronous but
unstructured computation. The parameter server is a large distributed key-value store which supports
eventually consistent [Vogels, 2009] transactions using a novel delta update strategy. Each processor then
sequentially updates its local variables writing their new values to the parameter server. As a consequence
the updates are locally consistent but globally inconsistent. The system them replicates these changes to the
remaining processors as quickly as possible. While this work does not leverage the graphical dependency
structure, the novel use of asynchrony is consistent with the GrAD methodology.

In the single processor setting there has been a lot of work on blocking Gibbs samplers [Barbu and Zhu,
2005, Hamze and de Freitas, 2004, Jensen and Kong, 1996]. Our Splash algorithm is inspired by the
work of Hamze and de Freitas [2004] which studies the case of constructing a fixed set of tree-width one
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spanning trees. They provide deeper analysis of the potential acceleration in mixing achieved by tree based
blocking with Rao-Blackwellization.

4.8 Conclusion

In this chapter we used the GrAD design methodology to develop three ergodic parallel Gibbs samplers for
high-dimensional models: the Chromatic sampler, the Asynchronous Sampler, and the Splash sampler. The
Chromatic parallel Gibbs sampler can be applied where single variable updates still mix well, and uses
graph coloring techniques to schedule conditionally independent updates in parallel. We related Chromatic
sampler to the commonly used (but non-ergodic) Synchronous Gibbs sampler, and showed that we can
recover two ergodic chains from a single non-ergodic Synchronous Gibbs chain.

We relaxed the strict chromatic schedule to introduce the Asynchronous Gibbs sampler. The Asynchronous
Gibbs sampler relies on the Markov Blanket Locking protocol to ensure ergodicity and actually a special
case of the Splash Gibbs sampler with Splash size set to one.

In settings with tightly couples variables, the parallelism afforded by the Chromatic Gibbs sampler
may be insufficient to achieve rapid mixing. We therefore proposed the Splash Gibbs sampler which
incrementally constructs multiple conditionally independent bounded treewidth blocks (Splashes) in
parallel. We developed a novel incremental junction tree construction algorithm which quickly and
efficiently updates the junction tree as new variables are added. We further proposed a procedure to
accelerate burn-in by explicitly grouping strongly dependent variables,. An interesting topic for future
work is whether one can design an adaptive parallel sampler (i.e., one that continually modifies its behavior
depending on the current state of the chain) that still retains ergodicity.
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Chapter 5

GraphLab: Generalizing the GrAD
Methodology

In Chapter 3 and Chapter 4 we applied the GrAD methodology to design and implement efficient parallel
and distributed algorithms for probabilistic reasoning. In this chapter we generalize the thesis approach by
introducing GraphLab, a high-level graph-parallel framework for the design and implementation algorithms
that adhere to the GrAD methodology.

5.1 Introduction

With the exponential growth in the scale and complexity of structured probabilistic reasoning in Machine
Learning and Data Mining (MLDM) applications there is an increasing need for systems that can execute
MLDM algorithms efficiently on multicore machines and distributed environments. Simultaneously, the
availability of cloud computing services like Amazon EC2 provide the promise of on-demand access
to affordable large-scale computing and storage resources without substantial upfront investments. In
the previous chapters we presented the design and implementation two MLDM systems for probabilistic
reasoning. In both cases we had to explicitly address the design of low-level primitives for scheduling,
mutual exclusion, data-placement, and distributed coordination in addition to the design of efficient
algorithms.

Unfortunately, designing, implementing, and debugging the efficient parallel and distributed MLDM
algorithms needed to fully utilize multicore and distributed systems can be extremely challenging requiring
MLDM experts to address race conditions, deadlocks, distributed state, and communication protocols while
simultaneously developing mathematically complex models and algorithms. While low level abstractions
like MPI and pthreads provide powerful, expressive primitives, they force the user to address hardware
issues and the challenges of parallel and distributed system design.

To avoid the challenges of system design, many have turned to high-level data-parallel abstractions, which
dramatically simplify the design and implementation of a restricted class of parallel algorithms. For
example, the MapReduce abstraction [Dean and Ghemawat, 2004] has been successfully applied to a
broad range of ML applications [Chu et al., 2006, Panda et al., 2009, Wolfe et al., 2008, Ye et al., 2009].
The success of these abstractions derives from their ability to restrict the types of algorithms that may
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be expressed enabling the isolation of the algorithm from the systems specific challenges and forcing the
algorithm designer to explicitly expose a high degree of parallelism. However, by restricting our focus to
ML algorithms that are naturally expressed in existing data-parallel abstractions, we are often forced to
make overly simplifying assumptions. Alternatively, as was demonstrated in Chapter 3 by coercing efficient
sequential ML algorithms to satisfy the restrictions imposed by many existing abstraction, we often produce
inefficient parallel algorithms that require many processors to be competitive with comparable sequential
methods.

As we will demonstrate in this chapter, the efficient MLDM algorithms that follow the GrAD methodology
are not naturally expressed by existing high-level data-parallel abstractions. As a consequence many [Asun-
cion et al., 2008, Graf et al., 2004, Nallapati et al., 2007, Newman et al., 2007, Smola and Narayanamurthy,
2010] recent large-scale learning systems are built upon low-level tools and targeted at individual models
and applications. This time consuming and often redundant effort slows the progress of the field as different
research groups repeatedly solve the same parallel and distributed computing problems. Therefore, the
MLDM community needs a high-level distributed abstraction that specifically targets the asynchronous,
dynamic, graph-parallel computation found in many MLDM applications while hiding the complexities of
parallel and distributed system design.

In this chapter we introduce GraphLab, a new graph-parallel abstraction that explicitly targets MLDM
algorithms which follow the GrAD methodology. GraphLab enables MLDM experts to easily design and
implement efficient scalable parallel and distributed MLDM algorithms by composing problem specific
computation, data-dependencies, and scheduling.

We begin by first providing some background on existing abstractions and their limitations in the context of
the GrAD methodology. We then present the Graph-Parallel setting and introduce the GraphLab abstraction.
We describe how the abstraction can be used to efficiently express a range of MLDM algorithms including
the earlier Belief Propagation and Gibbs sampling algorithms. We then describe an efficient multicore
implementation of the GraphLab abstraction and evaluate our implementation by using it to run several
GrAD algorithms including belief propagation and Gibbs sampling as well as several new algorithms
designed using the GraphLab abstraction and the GrAD methodology. We then extend our multicore
implementation to the distributed (cloud) setting and discuss several methods used to achieve serializability
and fault-tolerance. Finally we evaluate the distributed implementation on an EC2 cluster demonstrating
order of magnitude gains of published results.

The main contributions of this chapter are:

• A summary of common properties of MLDM algorithms (Section 5.2) and the limitations of existing
abstractions frameworks (Section 5.3).

• The GraphLab abstraction (Section 5.4) which targets algorithms designed using the GrAD method-
ology and is composed of:

1. A data graph (Section 5.4.1) which simultaneously represents data and computational depen-
dencies.

2. A vertex program (Section 5.4.2) representation of user defined computation which isolates
the algorithm from the movement of data and enables dynamic scheduling.

3. A simple serial execution model (Section 5.4.3) which exposes a high degree of asynchronous
parallelism.
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Figure 5.1: (a) Rate of convergence, measured in L1 error to the true PageRank vector versus time, of the
PageRank algorithm on a 25M vertex 355M edge web graph on 16 processors. (b) The distribution of update
counts after running dynamic PageRank to convergence. Notice that the majority of the vertices converged
in only a single update. (c) Rate of convergence of Loopy Belief propagation on web-spam detection.
(d) Comparing serializable and non-serializable (racing) execution of the dynamic ALS algorithm in
Section 5.8.1 on the Netflix movie recommendation problem. Non-serializable execution exhibits unstable
convergence behavior.

4. A range of schedulers (Section 5.4.4) which enable rich dynamic computation.

5. Strong serializability guarantees (Section 5.4.5) which simplify design, analysis, and imple-
mentation of GrAD algorithms and preserves the simple serial execution model.

6. A concurrent aggregation framework (Section 5.4.6) which allows users to incrementally
estimate global aggregates of the graph.

• An optimized multicore implementation (Section 5.5) of the GraphLab abstraction which extends
many of the system design techniques developed in Chapter 3 and Chapter 4.

• An optimized distributed implementation (Section 5.7) of GraphLab that address distributed data
graph representation, mutual exclusion, and fault tolerance.

• GraphLab implementations of a wide range of GrAD algorithms including parameter learning and
inference in graphical models, Gibbs sampling as well as several new algorithms including CoEM,
Lasso, compressed sensing, image segmentation, and collaborative filtering.

• An experimental evaluation on a range of real-world problems using both the multicore (Section 5.6)
and distributed (Section 5.8) implementations demonstrating substantial performance gains over
existing systems.

5.2 Common Patterns in MLDM

The GraphLab abstraction explicitly targets algorithms that follow the GrAD methodology and effectively
generalizes the approach described in this thesis. In this section review the key properties of the GrAD
methodology and discuss how they generalize to a wide range MLDM algorithms.
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5.2.1 Sparse Graph Structured Dependencies

Many of the recent advances in MLDM have focused on modeling the dependencies between data. By
modeling data dependencies, we are able to extract stronger signal from noisy data. For example, modeling
the dependencies between similar shoppers and products allows us to make better product recommendations
than treating shoppers in isolation. However, directly modeling all possible relationships between dependent
data is both computationally intractable and statistically inefficient, requiring substantial amounts of data
to resolve the form of each relationship. As a consequence, efficient MLDM techniques typically reduce
these dependencies to a sparse graphical structure. For example, in the earlier chapters we discussed how
statistical dependencies can be encoded in the form of sparse probabilistic graphical models.

In this chapter we will consider the more general case in which dependencies between model parameters
and data are encoded in the form of a graph. Such graphs include social networks which relate the interests
of individuals, term-document co-occurence graphs which connect documents with the key terms they
contain, and even physical networks such as those used to represent protein structures and interactions.
Identifying and exploiting problem specific sparse structure is a common pattern in MLDM research and
we will assume that this graph-structure is known in advance. Alternatively, techniques for resolving the
dependency structure typically work by extending upon existing structures.

As we saw in the earlier chapters the algorithms for reasoning about these dependences (e.g., Belief
Propagation and Gibbs sampling) operate on the local neighborhood of each vertex transforming only
a small context of the larger graph. For example, the conditional distribution of each random variable
in a large statistical model only depends on its neighbors in the Markov Random Field. Alternatively,
the gradient of a parameter in a high-dimensional optimization problem may only depend on a small
number of parameters encoded as neighbors in a graph. This explicit locality is essential to enable
parallel and distributed computation and efficient data placement. By exploiting latent sparse structure in
ML problems, we can develop efficient scalable ML algorithms which are capable expressing rich data
dependencies.

While there are MLDM methods which are both data-parallel and model dense data dependencies these
methods are not typically scalable to the large data regime and often exhibit poor generalization behavior.
For instance learning the complete covariance matrix for a high dimensional data is fully data-parallel
procedure which is also unlikely to scale to extremely large problems or yield strong generalization
performance. Alternatively, using a sparse structured approximation (e.g., a tree graphical model) can
dramatically reduce the computational complexity while improving the generalization performance. By
explicitly exploiting sparse dependencies in the design of a parallel framework we obtain efficient parallel
algorithms that scale.

5.2.2 Asynchronous Iterative Computation

Many important MLDM algorithms iteratively update a large set of parameters. Because of the underlying
graph structure, parameter updates (on vertices or edges) depend (through the graph adjacency structure)
on the values of other parameters. Furthermore, the presence of cycles in the graph forces most algorithms
to search for a fix-point which satisfies all the relationships encoded along the edges. For example, in our
work on belief propagation (see Chapter 3) we iteratively updated edge parameters (messages) until the
parameters stopped changing by more than some small ε. Alternatively, in our work on Gibbs sampling
(see Chapter 4), we iterate until we have obtained a sufficient number of samples. In both cases we found
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that the order in which parameters are updated plays a central role in both the rate of convergence as well
as the final fixed-point achieved.

In contrast to synchronous systems, which update all parameters simultaneously (in parallel) using
parameter values from the previous time step as input, asynchronous systems update parameters as
resources become available and using the most recent parameter values as input. In Chapter 3 we showed
how an asynchronous schedule is essential to rapid stable convergence for the belief propagation algorithms.
Alternatively, in Chapter 4 we showed how a synchronous approach can lead to statistical divergence and
consequently the failure to reach the correct solution.

More generally, by using the most recently computed parameter values and respecting the local sequential
order asynchronous systems can more efficiently execute a wide range of MLDM algorithms. For example,
linear systems (common to many MLDM algorithms) have been shown to converge faster when solved
asynchronously [Bertsekas and Tsitsiklis, 1989]. Additionally, there are numerous other cases such as
expectation maximization [Neal and Hinton, 1998], and stochastic optimization [Macready et al., 1995,
Smola and Narayanamurthy, 2010] where asynchronous procedures have been empirically shown to
significantly outperform synchronous procedures. Even classic algorithms such as PageRank can be
substantially accelerated when run asynchronous (see Figure 5.1a).

Furthermore from a system design perspective, synchronous computation incurs costly performance
penalties since the runtime of each phase is determined by the slowest machine. The poor performance
of the slowest machine may be caused by a multitude of factors including: load and network imbalances,
hardware variability, and multi-tenancy (a principle concern in the Cloud). Even in typical cluster settings,
each compute node may also provide other services (e.g., distributed file systems). Imbalances in the
utilization of these other services will result in substantial performance penalties if synchronous computation
is used.

Serializability

Unlike synchronous computation which has a well defined deterministic execution semantics, asynchronous
computation can behave non-deterministically especially in the presence of data-dependencies. By ensuring
that all parallel executions have a corresponding sequential execution, serializability eliminates many of
the challenges associated with designing, implementing, and testing parallel and distributed asynchronous
algorithms. Debugging mathematical code in a concurrent program which has data-corruption caused by
data races is difficult and time consuming. In addition, many algorithms converge faster if serializability is
ensured, and some even require serializability for correctness. For example our work in Chapter 3 exploits
serializability along trees to achieve optimality. Alternatively, as discussed in Chapter 4, Gibbs sampling
requires serializability to prove statistical correctness. Finally, some algorithms can be made more stable
when run with a serializable execution. For instance, the collaborative filtering algorithms such as ALS
(Section 5.8.1) can be unstable when allowed to race (Figure 5.1d).

However, serializability often comes at a cost and recently Chafi et al. [2011], Jiayuan et al. [2009]
advocated soft-optimization techniques (e.g., allowing computation to intentionally race), but we argue
that such techniques do not apply broadly in MLDM. Even for the algorithms evaluated by Chafi et al.
[2011], Jiayuan et al. [2009], the conditions under which the soft-optimization techniques work are not
well understood and may fail in unexpected ways on different datasets and or cluster configurations.
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Computation
Model

Sparse
Depend.

Async.
Comp.

Iterative Prioritized
Ordering

Enforce
Serializ-
ability

Distrib-
uted

MPI Messaging Yes Yes Yes N/A No Yes
MapReduce Par. data-flow No No extensions(a) No Yes Yes
Dryad Par. data-flow Yes No extensions(b) No Yes Yes
Pregel/BPGL GraphBSP Yes No Yes No Yes Yes
Piccolo Distr. map No No Yes No Partially(c) Yes
Pearce et al. [2010] Graph Visitor Yes Yes Yes Yes No No

GraphLab GraphLab Yes Yes Yes Yes Yes Yes

Table 5.1: Comparison chart of large-scale computation frameworks. (a) Zaharia et al. [2010] de-
scribes and iterative extension of MapReduce. (b) Hindman et al. [2009] proposes an iterative extension for
Dryad. (c) Piccolo does not provide a mechanism to ensure serializability but instead exposes a mechanism
for the user to attempt to recover from simultaneous writes. References: MapReduce [Dean and Ghemawat,
2004], Dryad [Isard et al., 2007], Pregel [Malewicz et al., 2010], BPGL [Gregor and Lumsdaine, 2005],
Piccolo [Power and Li, 2010]

5.2.3 Dynamic Computation:

In many MLDM algorithms, iterative computation converges asymmetrically. For example, in parameter
optimization, often a large number of parameters will quickly converge in a few iterations, while the
remaining parameters will converge slowly over many iterations Efron et al. [2004], Elidan et al. [2006]. In
Figure 5.1b we plot the distribution of updates required to reach convergence for PageRank. Surprisingly,
the majority of the vertices required only a single update while only about 3% of the vertices required more
than 10 updates. Additionally, prioritizing computation can further accelerate convergence as demonstrated
by Zhang et al. [2011] for a variety of graph algorithms including PageRank. If we update all parameters
equally often, we waste time recomputing parameters that have effectively converged. Conversely, by
focusing early computation on more challenging parameters, we can potentially accelerate convergence.
In Figure 5.1c we empirically demonstrate how dynamic scheduling can accelerate convergence of loopy
belief propagation (a popular MLDM algorithm). Likewise, in Chapter 4 we showed how prioritization can
be used to accelerate the construction of high-likelihood samples.

Unfortunately, the role of parallel schedule for many algorithms is not yet well studied largely because
existing tools do not readily support the evaluation of new scheduling techniques. A successful paral-
lel abstraction must provide the ability to support a wide variety of schedules and facilitate schedule
comparison.

5.3 High-Level Abstractions

In this section we review several existing high-level abstractions for designing and implementing parallel
and distributed algorithms and discuss their limitations in the context GrAD principles. To better organize
their presentation we have attempted to divide the abstractions across three general forms of parallelism
however in reality individual implementations may blend different forms of parallelism. Furthermore,
while we broadly characterize properties of each abstraction is common that instantiations deviate from the
general abstraction and potentially address some of the issues we discuss.
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Figure 5.2: A typical MapReduce operation, but drawn using “Update” functions which transforms the
Map input data in-place; instead of the canonical data flow model where the Map operation writes its results
to some output stream.

5.3.1 Data-Parallel Abstractions

Data parallel abstractions run the same computation on independent sets of data in parallel. Data parallel
abstractions are among the most widely used and include frameworks ranging from MapReduce to the
general data-flow systems that form the backend modern relational databases. However, data-parallel
abstractions typically struggle to efficiently address fixed computational dependencies and the more
sophisticated asynchronous dynamics that form the foundation of the GrAD methodology.

Map-Reduce

One of the most widely used high-level distributed programming abstractions is MapReduce. A program
implemented in the MapReduce abstraction (Figure 5.2) consists of a Map operation and a Reduce
operation. The Map operation is a function which is applied independently and in parallel to each
datum (e.g., webpage) in a large data set (e.g., computing the word-count). The Reduce operation is an
aggregation function which combines the Map outputs (e.g., computing the total word count). MapReduce
performs optimally only when the algorithm is embarrassingly parallel and can be decomposed into a large
number of independent computations. The MapReduce framework expresses the class of ML algorithms
which fit the Statistical-Query model [Chu et al., 2006] and problems where feature extraction dominates
the run-time.

The MapReduce abstraction fails when there are computational dependencies in the data. For example,
MapReduce can be used to extract features from a massive collection of images but cannot represent
computation that depends on small overlapping subsets of images. This critical limitation makes it difficult
to represent algorithms that operate on structured models. As a consequence, when confronted with
large scale problems, we often abandon rich structured models in favor of overly simplistic methods
that are amenable to the MapReduce abstraction. Alternatively, we could try to transform algorithms
with computational dependencies into data-parallel variants where computational dependencies have been
removed. Transforming MLDM algorithms with computational dependencies into the data-parallel form
needed for the map-reduce abstraction can introduce substantial algorithmic inefficiency (e.g., Synchronous
BP) and in some cases lead to divergent computation (e.g., Synchronous Gibbs).

While the MapReduce abstraction can be invoked iteratively, it does not provide a mechanism to directly
encode iterative computation. Furthermore, to achieve fault-tolerance the MapReduce abstraction must
redundantly save the output to a distributed filesystem after each iteration. As a consequence, applying the
MapReduce framework to iterative problems with relatively small local computations, a property common
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to many ML algorithms, can be extremely costly. Recent projects such as Twister [Ekanayake et al., 2010]
and Spark [Zaharia et al., 2010] extend MapReduce to the iterative setting and address the costly overhead
of disk-based fault-tolerance by introducing novel recovery mechanisms. However, these abstractions are
constrained to fully synchronous computation and are limited in their ability to express rich asynchronous
and dynamic scheduling.

Dataflow

Dataflow abstractions such as Dryad Isard et al. [2007] and Hyracks Borkar et al. [2011] generalize the
Map-Reduce abstraction and represent parallel computation as a directed (typically acyclic) graph with data
flowing along edges between vertices which correspond to functions which receive information on inbound
edges and output results to outbound edges. Dataflow abstractions are ideal for processing streaming
data.

While most dataflow abstraction permits rich computational dependencies through sophisticated join
operations they are not directly aware of the graph dependency structure in advance. As a consequence
data-flow abstractions can easily handle changes in the dependency structure but are not optimized to
take advantage of the locality inherent in a static dependency graph. In many cases such join operations
may require substantial movement of data. Furthermore, with the exception of recursive dataflow systems
such as Datalog [Ceri et al., 1989], most data-flow systems do not directly support iterative or dynamic
computation.

5.3.2 Process-Parallel Abstractions

In contrast to data-parallel abstractions, process-parallel abstractions divide computation along separate
processes that interact through messages or shared state. These include low level primitives like pthreads
and MPI as well as slightly higher-level abstractions based on actor models [Hewitt et al., 1973] like
Scala Akka or Erlang [Virding et al., 1996] and distributed key-value models like Piccolo [Power and Li,
2010].

Actor Models

The actor model was first introduced by Hewitt et al. [1973] and encompasses a very broad class of process
parallel abstractions. The actor abstraction is generally thought of as fully asynchronous message based
abstraction in which processes (actors) communicate by sending and receiving messages and can spawn
other actors. There are many implementations of actor models ranging from programming languages such
as Erlang to actively developed public APIs such as Akka for Scala.

While the actor model is in many ways well suited to express dynamic asynchronous computation, it does
not provide a mechanism to ensure serializability and forces the user to directly manage the movement
of information through messages. This makes it difficult to reason about joint state of multiple actors.
Furthermore, these abstractions typically do not allow for prioritized computation and instead instantiate
actors as processing resources become available. Finally, because the actor model does not impose
restrictions on the communication patterns it is unable to isolating load balancing and distributed data
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Figure 5.3: The Bulk Synchronous Parallel Model comprises of interleaved fully parallel “compute phases”
and “communication phases”, where each phase is followed by a global synchronization barrier.

management from the algorithm design forcing the algorithm to address both the ML and systems problem
simultaneously.

Piccolo

The Piccolo abstraction, introduced by Power and Li [2010], exposes the program state as a large distributed
key-value store and synchronously executes computational kernels in parallel which transform the key-value
store. In contrast to the actor abstraction, Piccolo kernels interact through shared state. In addition the
Piccolo abstraction exposes a clever commutative associative transaction model that allows for concurrent
transactions on a single key-value pair to be combined. However, Piccolo does not explicitly support graph
structures and as a consequence locality is achieved through user defined placement functions.

Piccolo implements the Bulk Synchronous Parallel (BSP) model of communication (Figure 5.3), introduced
by Valiant [1990], forces computation to be decomposed into small atomic components (like the Map
in MapReduce), but allows for phased communication between the components and naturally expresses
iterative algorithms with computational dependencies. The BSP abstraction divides an algorithm into
super-steps each consisting of two phases. During the first phase, each processor executes independently
(like the Map in Map-Reduce). In the second phase, all processors exchange messages. Finally, a barrier
synchronization is performed before the next iteration, ensuring all processors compute and communicate
in lockstep. While the BSP model is easier to reason about than the fully asynchronous actors, it cannot
efficiently express adaptive asynchronous computation.

5.3.3 Graph-Parallel Abstractions

The need for high-level frameworks that specifically targets graph computation has lead to the emergence
of graph-parallel abstractions. A graph-parallel abstraction consists of a sparse graph G = {V,E}
and a vertex-program Q which is executed in parallel on each vertex v ∈ V and can interact (e.g.,
through shared-state or messages) with neighboring instances Q(u) where (u, v) ∈ E. In contrast to more
general message passing and actor models models, graph-parallel abstractions constrain the interaction of
vertex-program to a graph structure enabling the optimization of data-layout and communication.
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Pregel

Malewicz et al. [2010] introduced the Pregel bulk synchronous message passing abstraction in which
all vertex-programs run simultaneously in a sequence of super-steps. Within a super-step each program
instance Q(v) receives all messages from the previous super-step and sends messages to its neighbors in
the next super-step. A barrier is imposed between super-steps to ensure that all program instances finish
processing messages from the previous super-step before proceeding to the next. The program terminates
when there are no messages remaining and every program has voted to halt. Pregel introduces commutative
associative message combiners which are user defined functions that merge messages destined to the same
vertex. These message combiners behave similarly to the commutative associative transactions within
the Piccolo abstraction. In many ways the Pregel abstraction is a generalization of the classic Systolic
array[Shapiro, 1988]. While systolic arrays focused on a fixed often physical network topology with
processors at each node, Pregel virtualizes each processor as vertex-program and allows for arbitrary graph
topologies.

The following is an example of the PageRank vertex-program implemented in Pregel. The vertex-program
receives the single incoming message (after the combiner) which contains the sum of the PageRanks of all
in-neighbors. The new PageRank is then computed and sent to its out-neighbors.

Message combiner(Message m1, Message m2) :
return Message(m1.value() + m2.value());

void PregelPageRank(Message msg) :
float total = msg.value();
vertex.val = 0.15 + 0.85*total;
foreach(nbr in out_neighbors) :

SendMsg(nbr, vertex.val/num_out_nbrs);

One of the key limitations of the Pregel abstraction is that the user must architect the movement of program
state between vertex-programs through messages. For example, if we consider the above PageRank example
we see that each vertex generates a separate but identical message which is sent to each of its neighbors. If
each of its neighbors is physically mapped to a separate machine this might be reasonable. However, if
many of its neighbors are on the same machine this could lead to substantial additional network overhead.
We will return to the limitations of messaging abstraction throughout this and the subsequent chapter.

While Pregel improves upon Piccolo by introducing the graph structure it retains the synchronous execution
semantics. As a consequence, we can naturally express Synchronous BP in Pregel but we cannot to express
the more asynchronous variants of BP. Moreover, the Pregel abstraction is not designed for dynamic
computation and specialized structured schedules which are central to the GrAD methodology. As we
have already demonstrated, by skipping unnecessary vertex-programs and by executing vertex-programs
along spanning trees, we can reduce wasted computation and move information across the graph more
efficiently.

5.4 The GraphLab Abstraction

At a high-level, GraphLab is an asynchronous distributed shared-memory graph-parallel abstraction in
which vertex programs have shared access to information on adjacent edges and vertices and can schedule
neighboring vertex-programs to be executed in the future. By targeting GrAD methodology, GraphLab
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achieves a balance between low-level and high-level abstractions. Unlike many low-level abstractions
(e.g., MPI, PThreads), GraphLab insulates users from the complexities of synchronization, data races
and deadlocks by providing a high level data representation through the data graph and automatically
maintained serializability guarantees through configurable exclusion policies. Unlike many high-level
abstractions (i.e., MapReduce), GraphLab can express complex computational dependencies using the data
graph and provides sophisticated scheduling primitives which can express iterative parallel algorithms with
dynamic scheduling.

The GraphLab abstraction consists of three main parts, the data graph, the vertex-program, and the sync
operation. The data graph (Section 5.4.1) represents user modifiable program state, and stores both
the mutable user-defined data and encodes the sparse computational dependencies. The vertex-program
(Section 5.4.2) represents the user computation and operate on the data graph by transforming data in small
overlapping contexts called scopes. Finally, the sync operation (Section 5.4.6) concurrently maintains
global aggregates. To ground the GraphLab abstraction in a concrete problem, we will use the PageRank
algorithm Page et al. [1999] as a running example.

Example 5.4.1 (PageRank). The PageRank algorithm recursively defines the rank of a webpage v:

R(v) =
γ

n
+ (1− γ)

∑
u links to v

wu,v × R(u) (5.1)

in terms of the weighted wu,v ranks R(u) of the pages u that link to v as well as some probability γ of
randomly jumping to a new page (typically γ = 0.15). The PageRank algorithm iterates Eq. (5.1) until the
PageRank changes by less than some small value ε.

5.4.1 Data Graph

The GraphLab abstraction stores the program state as a directed graph called the data graph. The data
graph G = (V,E,D) is a container that manages the user defined data D. Here we use the term data
broadly to refer to model parameters, algorithm state, and even statistical data. Users can associate
arbitrary data with each vertex {Dv : v ∈ V } and edge {Du→v : {u, v} ∈ E} in the graph. However, as
the GraphLab abstraction does not depend on edge directions, we also use Du↔v to denote the data on
both edge directions u→ v and v → u. Since some MLDM applications require directed edge data (e.g.,
weights on directed links in a web-graph), we provide the ability to store and retrieve data associated with
each direction along an edge. Finally, while the graph data is mutable, the structure is static and cannot be
changed during execution.

Example 5.4.2 (PageRank: Example 5.4.1). The data graph is directly obtained from the web graph, where
each vertex corresponds to a web page and each edge represents a link. The vertex data Dv stores R(v),
the current estimate of the PageRank, and the edge data Du→v stores wu,v, the directed weight of the link.

The data graph naturally represents the state of a wide range of machine learning algorithms. For example
in belief propagation, the data graph is the pairwise MRF, with the vertex data Dv to storing the node
potentials and the directed edge data Du→v storing the BP messages. If the MRF is sparse then the data
graph is also sparse and GraphLab will achieve a high degree of parallelism. The data graph can also be
used to represent many algorithms that do not explicitly operate on graph structures. For example, the
shooting algorithm (coordinate-wise sub-gradient descent) for the Lasso can be transformed into a data
graph by connecting each weight with examples that have non-zero feature values for that weight.
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Figure 5.4: The data graph and scope S1. Gray cylinders represent the user defined vertex and edge
data while the irregular region containing the vertices {1, 2, 3, 4} is the scope, S1 of vertex 1. An vertex
program applied to vertex 1 is able to read and modify all the data in S1 (vertex data D1, D2, D3, and D4

and edge data D1↔2, D1↔3, and D1↔4).

As we will show in subsequent sections, the explicit data graph representation of the program state also
enables the GraphLab runtime to effectively place the entire program state in a distributed environment,
automatically enforce powerful serializability models, and even achieve efficient fault-tolerance.

5.4.2 GraphLab Vertex Programs

Computation is encoded in the GraphLab abstraction in the form of a user defined vertex program. A
GraphLab vertex program is a stateless procedure that modifies the data within the scope of a vertex
and schedules the future execution of vertex programs on neighboring vertices. The scope of vertex v
(denoted by Sv) is the data stored on v, as well as the data stored on all adjacent vertices and adjacent edges
(Figure 5.4). A GraphLab vertex program is analogous to the map function in MapReduce, but unlike in
MapReduce, vertex programs are permitted to access and modify overlapping contexts in the graph.

A GraphLab vertex program takes as an input a vertex v and its scope Sv and returns the new versions of
the data in the scope as well as a set vertices T :

Vprog : f(v,Sv)→ (Sv, T )

After executing a vertex program the modified data in Sv is written back to the data graph. We refer to the
neighborhood Sv as the scope of v because Sv defines the extent of the graph that can be accessed by the
vertex program f when applied to v. The set of vertices T are eventually executed by applying the vertex
program f(u,Su) for all u ∈ T following the execution semantics described later in Section 5.4.3.

Rather than adopting a message passing (e.g., Pregel) or data flow (e.g., Dryad) model, GraphLab allows
the user defined vertex programs complete freedom to read and modify any of the data on adjacent vertices
and edges. This simplifies user code and eliminates the need for the users to orchestrate the movement
of data. This allows the implementation of the system to choose when and how to move vertex and edge
data in a distributed environment. By controlling what vertices are returned in T and thus are eventually
executed, GraphLab vertex programs can efficiently express adaptive computation. For example, a vertex
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program may choose to return (schedule) its neighbors only when it has made a substantial change to its
local data.

There is an important difference between Pregel and GraphLab in how dynamic computation is expressed.
GraphLab decouples the scheduling of future computation from the movement of data. As a consequence,
GraphLab vertex programs have access to data on adjacent vertices even if the adjacent vertices did not
schedule the current execution. Conversely, Pregel vertex programs are initiated by messages and can only
access the data in the messages sent during the previous super-step. This restriction limits what can be
expressed and explicitly couples program dynamics to the user orchestrated movement of data.

For instance, dynamic PageRank is difficult to express in Pregel since the PageRank computation for a
given page requires the PageRank values of all adjacent pages even if some of the adjacent pages have not
recently changed. Therefore, the decision to send data (PageRank values) to neighboring vertices cannot
be made by the sending vertex (as required by Pregel) but instead must be made by the receiving vertex.
GraphLab, naturally expresses the pull behavior, since adjacent vertices are only responsible for scheduling,
and vertex programs can always directly read adjacent vertex values even if they have not changed.

Example 5.4.3 (PageRank: Example 5.4.1). The vertex program for PageRank (defined in Alg. 5.1)
computes a weighted sum of the current ranks of neighboring vertices and assigns it as the rank of the
current vertex. The algorithm is adaptive: neighbors are scheduled for execution only if the value of current
vertex changes by more than a predefined threshold.

Algorithm 5.1: PageRank Vertex Program in the GraphLab Abstraction
Input: Vertex data R(v) from Sv
Input: Edge data {wu,v : u ∈ Nv} from Sv
Input: Neighbor vertex data {R(u) : u ∈ Nv} from Sv
Rold(v)← R(v) // Save old PageRank
R(v)← γ/n
foreach u ∈ Nv do // Loop over neighbors

R(v)← R(v) + (1− γ) ∗ wu,v ∗ R(u)

// If the PageRank changes sufficiently
if |R(v)− Rold(v)| > ε then

// Schedule neighbors to be executed
return {u : u ∈ Nv}

Output: Modified scope Sv with new R(v)

Algorithms that follow the GrAD principles can naturally be expressed as GraphLab vertex programs. For
example, probabilistic inference algorithms discussed in earlier chapters can directly translated into vertex
programs. Like wise other classical algorithms such as expectation propagation Minka [2001] and mean
field variational inference Xing et al. [2003] can all be expressed using vertex programs which read the
current assignments to the parameter estimates on neighboring vertices and edges and then apply sampling
or optimization techniques to update parameters on the local vertex.

5.4.3 The GraphLab Execution Model

The GraphLab execution model, presented in Alg. 5.2, follows a simple single loop semantics. The input to
the GraphLab abstraction consists of the data graph G = (V,E,D), a vertex program, and an initial active
set of vertices T to be executed. While there are vertices remaining in T , the algorithm removes (Line 1)
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Algorithm 5.2: GraphLab Execution Model
Input: Data Graph G = (V,E,D)
Input: Initial vertex set T = {v1, v2, ...}
while T is not Empty do

1 v ← RemoveNext(T )
2 (T ′,Sv)← f(v,Sv)
3 T ← T ∪ T ′

Output: Modified Data Graph G = (V,E,D′)

and executes (Line 2) vertices, adding any new vertices back into T (Line 3). The active set T behaves like
a classic set and therefore contains at most one instance of each vertex. As a consequence if a vertex is
added more than once before being executed, then it is executed only once. The resulting data graph is
returned to the user on completion.

5.4.4 Scheduling Vertex Programs

The order in which vertices are returned from RemoveNext(T ) (Line 1) is determined by the GraphLab
scheduler. GraphLab provides a collection of schedulers each with different behaviors. While all schedulers
must ensure that all vertices in the active set T are eventually executed, each scheduler is free to choose an
order that optimizes system performance, parallelization, and algorithm convergence.

The GraphLab framework provides three fundamental schedulers which are capable of expressing a wide
range of computation. The simplest of these schedulers is the sweep scheduler which always executes
vertices in T in a canonical order. Typically the canonical order is either a random permutation of the
vertices or a specifically chosen order based on properties of the vertices or the structure of the graph.
The sweep scheduler is ideally suited for algorithms like Gibbs sampling which repeatedly iterate over all
vertices.

As we observed in our earlier work in graphical model inference, it is often advantageous to schedule
computation along a wavefront. This can be accomplished by using the FiFo scheduler which executes
vertices in the order in which they are added. The FiFo scheduler preserves the set semantics of T and
so repeated additions of the same vertex are ignored until the vertex leaves the FiFo schedule. As a
consequence the FiFo schedule effectively maintains a frontier set and enables a bread-first traversal of the
graph.

While the presence of the active set T of vertices automatically leads to adaptive computation, we
demonstrated in our earlier work (Chapter 3 and Chapter 4) that dynamic prioritization can further
accelerate the convergence. Therefore GraphLab provides a priority scheduler which associates a priority
with each vertex and returns the active vertices in order of priority. If a vertex is added more than once than
its highest priority value is used and so vertex programs can promote the priority of active vertices. The
priority scheduler is used to implement algorithms like residual belief propagation.

In addition to the three basic schedules, we also have implemented several special purpose schedulers. For
example, motivated by our work on the Splash BP and Splash Gibbs sampling algorithms we developed
a specialized Splash scheduler which automatically constructs bounded work Splashes. We believe that
work in improved scheduling heuristics can lead to more efficient parallel algorithms. As a consequence
GraphLab makes it easy for users to compose different schedulers with the same vertex program.
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Figure 5.5: (a) The read and write permissions for a vertex program executed on vertex 3 under each
of the exclusion policies. Under the scope exclusion policy the vertex program has complete read-write
access to its entire scope. Under the edge exclusion policy, the vertex program has only read access to
adjacent vertices. Finally, vertex exclusion policy only provides write access to the central vertex data. (b)
The trade-off between serializability and parallelism. The dark rectangles denote the write-locked regions
that cannot overlap. Vertex program are executed on the dark vertices concurrently. Under the stronger
serializability models fewer functions can run concurrently.

When executed in a distributed environment each scheduler can optionally relax its scheduling guarantees
to improve system performance. For example, in the distributed setting each scheduler only maintain its
scheduling invariant with respect to vertices explicitly assigned to that machine. However, regardless of
the parallel or distributed execution each scheduler must always maintain the invariant that all schedule
vertices are executed eventually.

5.4.5 Ensuring Serializable Execution

The GraphLab abstraction presents an inherently sequential model of computation which is automatically
translated into a parallel execution by allowing multiple processors to execute the same loop on the same
graph, removing and executing different vertices concurrently. To retain the sequential execution semantics
we prevent overlapping computation from running concurrently. However, the extent to which computation
can safely overlap depends on the user defined computation within the vertex program as well as the
stability of the underlying algorithm. We therefore introduce several exclusion policies that allow the
runtime to optimize the parallel execution while maintaining serializability.

The GraphLab runtime ensures a serializable execution. A serializable execution implies that there exists
a corresponding serial schedule of vertex programs that when executed sequentially following Alg. 5.2
produces the same values in the data-graph.

Definition 5.4.1 (GraphLab Serializability Guarantee). For every parallel execution of the GraphLab ab-
straction, there exists a sequential ordering on the vertices such that vertex programs executed sequentially
according to that ordering produce the same data graph.

By ensuring serializability, GraphLab simplifies reasoning about highly-asynchronous dynamic computation
in the distributed setting. For example, in a serializable execution it is not possible for adjacent vertices
to run concurrently. As a consequence, if an invariant over the neighborhood of a vertex is true at the
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start of the vertex program it will remain true until after the vertex program completes. Alternatively, a
non-serializable execution would make it extremely difficult to maintain neighborhood invariants.

Serializability is achieved through three different mutual exclusion policies which prevent vertex programs
with overlapping state from executing concurrently (see Figure 5.5a). The strongest policy is the scope
exclusion policy which prevents vertex programs with overlapping scopes from executing concurrently. As
a consequence the scope exclusion policy ensures that during the execution of the vertex program on the
vertex v no other function will read or modify data within Sv. However, the scope exclusion policy limits
the potential parallelism since concurrently executing vertices cannot share any common neighbors (i.e.,
must be at least two vertices apart) as illustrated in Figure 5.5b.

The vast majority of vertex programs only read the values of adjacent vertices. In this case we can permit
vertices with common neighbors to run concurrently and still ensure serializability. For instance, the
PageRank vertex program only requires read access to neighboring vertices. To provide greater parallelism
while retaining serializability, GraphLab defines the edge exclusion policy. The edge exclusion policy
ensures each vertex program has exclusive read-write access to its vertex and adjacent edges but read only
access to adjacent vertices as illustrated in Figure 5.5a). As a consequence, the edge exclusion policy
increases parallelism by allowing vertex programs with slightly overlapping scopes to safely run in parallel
(see Figure 5.5b).

The vertex exclusion policy is the weakest of the three policies and guarantees a serializable execution only
if vertex programs do not read or write to neighboring vertices and do not write to adjacent edges. Under
the vertex exclusion policy neighboring vertex programs can run concurrently. By allowing neighboring
vertex programs to run, the vertex exclusion policy allows maximum parallelism. While very few vertex
programs satisfy this weak policy, it can be useful when initializing data and more importantly to explore
the non-serializable executions of vertex programs.

We summarize the guarantees of each of the three mutual exclusion policies in the following:

Proposition 5.4.4. GraphLab guarantees serializability under the following three conditions:

1. The scope exclusion policy is used

2. The edge exclusion policy is used and vertex programs do not modify data on adjacent vertices.

3. The vertex exclusion policy is used and vertex programs do not read or write to adjacent vertices
and do not write to adjacent edges.

Because mutual exclusion and data serializability are maintained by the GraphLab abstraction, the user
does not have to deal with the challenges of avoiding deadlock or data races. This is an important property
since, preventing deadlock and race conditions is one of the principle challenges of parallel and distributed
algorithm design. Moreover, if the user selects the correct mutual exclusion policy and ensures that every
vertex program returns, the GraphLab abstraction guarantees a race free and deadlock free execution.

The serializability property of the GraphLab abstraction also enables the expression and analysis of a much
richer class of vertex programs. For example, we can easily implement graph coloring by having each
vertex choose a color that is different from its neighbors. We can prove that under the edge exclusion policy,
the graph coloring vertex program will converge and each vertex will be executed only once. In contrast,
under the bulk synchronous parallel model adopted by abstractions like Pregel, the same algorithm will
never converge. Furthermore, we can directly apply many of the theoretical tools for analyzing serial graph
algorithms to the analysis of parallel graph algorithms running in the GraphLab abstraction. For example,
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by running a Gibbs sampler vertex program under the edge exclusion policy, we can directly apply existing
theoretical proofs of ergodicity to the parallel execution.

While a serializable execution is essential when designing, implementing, and debugging complex MLDM
algorithms, some algorithms are robust to non-serializable executions and may benefit from the increased
parallelism achieved by running under a weaker mutual exclusion policy. For example, work by Chafi
et al. [2011], Recht et al. [2011] has demonstrated that some algorithms can run efficiently even in a fully
asynchronous setting. Therefore we allow users to choose a weaker mutual exclusion policy.

5.4.6 Aggregation Framework

In many MLDM algorithms it is necessary to maintain global statistics describing data stored in the data
graph. For example, many statistical inference algorithms require tracking global convergence estimators.
To address this need, the GraphLab abstraction defines global values that may be read by vertex programs,
but are written using aggregators. Similar to aggregates in Pregel, A GraphLab global aggregate is an
commutative associative sum:

Z = Finalize

(⊕
v∈V

Map(Sv)

)
(5.2)

defined over all the scopes in the graph. Unlike Pregel, GraphLab aggregates introduce a finalization phase,
Finalize(·), to support tasks, like normalization, which are common in MLDM algorithms. Also in contrast
to Pregel, where the aggregation runs after each super-step, aggregation in GraphLab runs continuously in
the background to maintain updated estimates of the global value.

Since every vertex program can access global values, ensuring serializability of global aggregates with
respect to vertex programs is costly and requires synchronizing and blocking all vertex programs while
the global value is computed. Therefore just as GraphLab has multiple exclusion policies for vertex
programs, GraphLab similarly provides the option to enable or disable serializability of global aggregate
computations.

Example 5.4.5 (PageRank: Example 5.4.1). We can compute the second most popular page on the web by
defining the following aggregate operation:

Map : (Sv)→ (R(v),−∞) (5.3)

⊕ : (R(a1),R(a2)) , (R(b1),R(b2))→ TopTwo ({R(a1),R(a2),R(b1),R(b2)}) (5.4)

Finalize : (R(a1),R(a2))→ R(a2) (5.5)

We may want to update the global estimate every τ = |V | vertex updates.

5.5 Multicore Design

We first implemented an optimized version of the GraphLab framework for the shared-memory multicore
setting in the form of a C++ API. The user first constructs and populates the data graph with initial data.
The user also constructs a GraphLab engine specifying the vertex program, mutual exclusion policy, and
scheduler as well as any aggregation operations. Computation is initiated by passing the data graph and an
initial set of vertices to the engine. The engine worker threads then run concurrently until no active vertices
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remain and the data graph is modified in place. When the engine returns the data graph has been updated
and there are no remaining active vertices.

We implemented the C++ API by building upon our work in parallel inference in graphical models. The
data graph was implemented as a simple generic container with user defined objects associated with each
vertex and edge based on the graph data structures used to represent graphical models.

Likewise, the mutual exclusion policies were implemented by extending the ordered locking used in the
Markov blanket locking protocol discussed in Section 4.4. We associate a readers-writer lock with each
vertex. The different exclusion policys are implemented using different locking protocols. Vertex exclusion
is achieved by acquiring a write-lock on the central vertex of each requested scope. Edge exclusion is
achieved by acquiring a write lock on the central vertex, and read locks on adjacent vertices. Finally, scope
exclusion is achieved by acquiring write locks on the central vertex and all adjacent vertices. As with
the Markov blanket locking protocol, deadlocks are avoided by acquiring locks sequentially following a
canonical order.

The primary challenge was designing efficient parallel schedulers and this was achieved using the same
techniques discussed in Chapter 3. To attain maximum performance we had to address issues related to
parallel memory allocation, concurrent random number generation, and cache efficiency. Since mutex
collisions can be costly, lock-free data structures and atomic operations were used whenever possible.
To achieve the same level of performance for parallel learning system, the MLDM community would
have to repeatedly overcome many of the same time consuming system design challenges needed to build
GraphLab.

5.6 Multicore GraphLab Evaluation

To demonstrate the expressiveness of the GraphLab abstraction and illustrate the parallel performance
gains it provides, we implemented four popular ML algorithms and evaluate these algorithms on large
real-world problems using a 16-core computer with 4 AMD Opteron 8384 processors and 64GB of RAM.
All single core (serial) timing was run with locking disabled to eliminate as much system overhead as
possible. We fount that often the system optimizations made to GraphLab resulted in better performance
than our previous application specific implementations of many of the algorithms.

5.6.1 Parameter Learning and Inference in a Markov Random Field

To demonstrate how the various components of the GraphLab framework can be assembled to build a
complete “pipeline” for probabilistic reasoning we use GraphLab to solve a novel three-dimensional retinal
image restoration task. In this task we begin with raw three-dimensional laser density estimates and
then use GraphLab to generate composite statistics, learn parameters for a large three-dimensional grid
pairwise MRF, and then finally compute expectations for each voxel using Loopy BP. Each of these tasks
requires both local iterative computation and global aggregation as well as several different computation
schedules.

We begin by using the GraphLab data graph to build a large (256x64x64) three dimensional MRF in which
each vertex corresponds to a voxel in the original image. We connect neighboring voxels in the 6 axis
aligned directions. We store the density observations and beliefs in the vertex data and the BP messages in
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Algorithm 5.3: BP Vertex Program

Compute the local belief b(xv) using {D∗→vDv}
active neighbors T
foreach (v → t) ∈ (v → ∗) do

Update mv→t(xt) using {D∗→v, Dv}
residual←

∣∣∣∣mv→t(xt)−mold
v→t(xt)

∣∣∣∣
1

if residual > Termination Bound then
Add neighbor to active neighbors T ← T ∪ (t, residual) with residual priority

return active neighbors T

Algorithm 5.4: Parameter Learning Aggregator

Map: return deviation from empirical marginal for each pixel
⊕ : Combine image statistics by averaging
Finalize: Apply gradient step to λ using the final accumulator

the directed edge data. We will use the aggregation framework to maintain three global parameters which
determine the smoothing in each dimension along the MRF. Prior to learning the model parameters, we first
use the GraphLab aggregation framework to compute axis-aligned averages as a proxy for ground-truth
smoothed images along each dimension. We then performed concurrent learning and inference in GraphLab
by using the aggregation framework (Alg. 5.4) to aggregate inferred model statistics and apply a gradient
descent procedure. To the best of our knowledge, this is the first time graphical model parameter learning
and BP inference have been done concurrently.

Results: In Figure 5.6a we plot the speedup of the parameter learning algorithm, executing inference and
learning sequentially. We found that the Splash BP scheduler outperforms other scheduling techniques
enabling a factor 15 speedup on 16 cores. We then evaluated concurrent parameter learning and inference
by allowing the aggregation framework to run concurrently with inference (Figure 5.6d and Figure 5.6e).
In Figure 5.6b and Figure 5.6c we plot examples of noisy and denoised cross sections respectively.

By running a background aggregation operation at the right frequency, we found that we can further
accelerate parameter learning while only marginally affecting the learned parameters. In fact, by frequently
taking gradient steps (once every 3 seconds), before belief propagation has converged to an accurate
gradient estimator, we are able to obtain a factor of three reduction in the overall running time. The
substantial reduction has leads to slightly different parameters (differs by 4%) but does not affect the quality
of the final prediction. We believe this provides a strong indication of the potential of the asynchronous
approach in the GrAD methodology.

5.6.2 Gibbs Sampling

To demonstrate the power of the GraphLab abstraction we implement a series of provably ergodic (asymp-
totically consistent) Gibbs samplers. In Chapter 4 we demonstrated how the Gibbs sampling algorithm
is inherently sequential and has frustrated efforts to build asymptotically consistent parallel samplers.
However, by exploiting serializability we are able to easily construct an asymptotically consistent parallel

102



0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Priority Schedule

Linear

Splash Schedule

(a) Speedup (b) Original (c) Denoised

15 30 45 60 75 90 105 120
0

500

1000

1500

2000

Aggregation Frequency (Seconds)

T
ot

al
 R

un
tim

e 
(S

ec
on

ds
)

Total Learning Runtime

(d) Bkgnd Agg. Runtime

0 15 30 45 60 75 90 105 120
0

0.5

1

1.5

2

2.5

3

3.5

4

Aggregation Frequency (Seconds)

A
ve

ra
ge

 %
 d

ev
ia

tio
n Average % deviation

(e) Bkgnd Agg. Error

Figure 5.6: Retinal Scan restoration (a) Speedup relative to the best single processor runtime of parameter
learning using priority, and Splash schedules. (b,c) A slice of the original noisy image and the corresponding
expected pixel values after parameter learning and restoration. (d) The total runtime in seconds of parameter
learning and (e) the average percent deviation in learned parameters plotted against the time between
gradient steps using the Splash schedule on 16 processors.

Gibbs sampler. In this example we compare the FiFo and Sweep schedulers with a custom built chromatic
schedule from Section 4.3.

To apply the chromatic schedule we needed to first construct a coloring of the data graph. This is
accomplished by implementing the standard greedy graph coloring algorithm as a GraphLab vertex
program which examines the colors of the neighboring vertices of v, and sets v to the first unused color.
We use the edge exclusion policy to ensure that the parallel execution retains the same guarantees as the
sequential version. We were able to color the graph in fractions of a second. Once we have a valid graph
coloring we can then revert to the vertex exclusion policy when using the Chromatic schedule.

To evaluate the GraphLab implementation of the parallel Gibbs sampler we consider the challenging task
of marginal estimation on a factor graph representing a protein-protein interaction network obtained from
Elidan et al. [2006] by generating 10,000 samples. The resulting graph (MRF) has roughly 100K edges
and 14K vertices. Unlike the earlier pairwise MRFs these networks are generally more challenging with
higher order factors and more irregular structure and substantially greater connectivity. In Figure 5.7 we
plot the color distribution for the data-graph and we see that their are relatively few colors. As a baseline
for comparison we also ran the GraphLab version Splash Loopy BP (Chapter 3) algorithm.
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Figure 5.7: Color distribution for the protein-protein interaction network.

Results: In Figure 5.8 we present the runtime, speedup, and efficiency results for Gibbs sampling and
Loopy BP. Consistent with our earlier findings in Chapter 4 the chromatic sampler is able to scale slightly
better because we can eliminate the need for the heavy locking in the edge exclusion policy. In contrast the
Loopy BP speedup demonstrates considerably better scaling with factor of 15 speedup on 16 processor.
Also consistent with our earlier findings the SplashBP scheduler is able to accelerate convergence. The
larger cost per BP update in conjunction with the ability to run a fully asynchronous schedule enables
Loopy BP to achieve relatively uniform update efficiency compared to Gibbs sampling. It is worth noting
that the difference between the SplashBP and ResidualBP algorithms in the GraphLab framework is a
single command line argument (i.e., --scheduler=splash vs. --scheduler=priority).

5.6.3 Named Entity Recognition (NER)

To illustrate how GraphLab scales in settings with large structured models we designed and implemented a
parallel version of CoEM [Jones, 2005, Nigam and Ghani, 2000], a semi-supervised learning algorithm for
named entity recognition. Named Entity Recognition (NER) is the task of determining the type (e.g., Person,
Place, or Thing) of a noun-phrase (e.g., Obama, Chicago, or Car) from its context (e.g., “President

”, “lives near .”, or “bought a .”). NER is used in many natural language processing applications
as well as information retrieval. In this application we obtained a large crawl of the web from the NELL
project [Carlson et al., 2010] and constructed two NER datasets (Table 5.2) in which we counted the
number of occurrences of each noun-phrase in each context. Starting with a small seed set of pre-labeled
noun-phrases, the CoEM algorithm labels the remaining noun-phrases and contexts (see Table 5.2b) by
alternating between estimating the type of each noun-phrase given the types of its contexts and estimating
the type of each context given the types of its noun-phrases.

The data graph for the NER problem is bipartite with one set of vertices corresponding to noun-phrases
and other corresponding to each context. There is an edge between a noun-phrase and a context if the
noun-phrase occurs in the context. The vertices store the estimated distribution over types and the edges
store the number of times the noun-phrase appears in a context. The CoEM vertex program (Alg. 5.5)
simply updates the estimated distribution for a vertex (either noun-phrase or context) based on the current
distribution for neighboring vertices. We implemented a dynamic version of the CoEM algorithm in
which adjacent vertices are rescheduled if the type distributions at a vertex changes by more than some
predefined threshold (10−5). The CoEM vertex program is relatively fast, requiring only a few floating
point operations, and therefore stresses the GraphLab implementation by requiring GraphLab to manage
massive amounts of fine-grained parallelism.

We plot in Figure 5.9a and Figure 5.9b the speedup on both small and large datasets respectively. On both
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Figure 5.8: MRF Inference We ran the Gibbs sampler vertex program with three different schedules and
report the runtime (a), speedup (b), and work efficiency (c). Consistent with the results in Chapter 4 we
find that the chromatic schedule is the fastest and most efficient in terms of raw sample generation rate. To
provide a basis for comparison we also ran loopy belief propagation on the same problem evaluating two
different schedulers and again reporting runtime (d), speedup (e), and work efficiency (f).

datasets we see relatively strong scaling performance. However, we see better scaling on the larger dataset
which is expected since the computation time for each vertex program goes up with the number of types
hiding much of the GraphLab system overhead. With 16 parallel processors, we could complete three full
Round-robin iterations on the large dataset in less than 30 minutes (including data loading time). As a
comparison, a comparable Hadoop implementation1 took approximately 7.5 hours to complete the exact
same task, executing on an average of 95 cpus.

Using the flexibility of the GraphLab framework we were able to study the benefits of FiFo scheduling
versus the original sweep schedule proposed in the CoEM. Figure 5.9c compares the number of updates
required by both schedules to obtain a result of comparable quality on the larger dataset. Here we measure
quality by L1 parameter distance to an empirical estimate of the fixed point x∗, obtained by running a large
number of iterations. For this application we do not find a substantial benefit from switching to a FiFo
schedule.

We also investigated how GraphLab scales with problem size. Figure 5.9d shows the maximum speedup
on 16 cpus attained with varying graph sizes, generated by sub-sampling a fraction of vertices from the
large dataset. We find that parallel scaling improves with problem size and that even on smaller problems
GraphLab is still able to achieve a factor of 12 speedup on 16 cores.

1Personal communication with Justin Betteridge and Tom Mitchell, Mar 12, 2010
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Algorithm 5.5: CoEM Vertex Program for Named Entity Recognition
Input: Vertex data πv ∈ Sv the distribution for this vertex.
Input: Vertex data {πu : u ∈ Nv} ∈ Sv the distributions for neighbors.
Input: Edge data {wu,v : u ∈ Nv} ∈ Sv weights based on co-occurrence
// Update the distribution on this vertex
πold
v ← πv
πv ←

∑
u∈Nv wu,vπu

// Determine which neighbors need to be recomputed
T ← ∅
foreach u ∈ Nv do

if |πold
v − πv|wu,v > ε then
T ← T ∪ {u}

return T

Name Classes Verts. Edges Runtime
small 1 0.2 mil. 20 mil. 40 min
large 135 2 mil. 200 mil. 8 hours

(a) NER Datasets

Food Religion City
onion Catholic Munich
garlic Fremasonry Cape Twn.

noodles Marxism Seoul
blueberries Catholic Chr. Mexico Cty.

beans Humanism Winnipeg
(b) NER Types

Table 5.2: (a) Dataset sizes for the CoEM benchmark and the corresponding single processor runtime. (b)
Top words for several types.

5.6.4 Lasso

The Lasso [Tibshirani, 1996] is a popular feature selection and shrinkage method for linear regression
which minimizes the objective L(w) =

∑n
j=1(w

Txj − yj)2 + λ ||w||1. At the time of this work there did
not exist, a parallel algorithm for fitting a Lasso model. In this section we easily implement two different
parallel algorithms for solving the Lasso. We use GraphLab to implement the Shooting Algorithm [Fu,
1998], a popular Lasso solver, and demonstrate that GraphLab is able to automatically obtain parallelism
by identifying operations that can execute concurrently while retaining serializability.

The shooting algorithm works by iteratively minimizing the objective with respect to each dimension in w,
corresponding to coordinate descent. We can formulate the Shooting algorithm in the GraphLab framework
as a bipartite graph with a vertex for each weight wi and a vertex for each observation yj . An edge is
created between wi and yj with weight Xi,j if and only if Xi,j is non-zero. We also define a vertex program
(Alg. 5.6) which operates only on the weight vertices, and corresponds exactly to a single minimization
step in the shooting algorithm. A sweep scheduling of Alg. 5.6 on all weight vertices corresponds exactly
to the sequential shooting algorithm. We automatically obtain an equivalent parallel algorithm by select the
full serializability model. Hence, by encoding the shooting algorithm in GraphLab we are able to discover
a serializable parallelization based on the sparsity structure in our data.

We evaluate the performance of the GraphLab implementation on a financial data set obtained from Kogan
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Figure 5.9: CoEM Results (a,b) Speedup measured relative to fastest running time on a single cpu for
both datasets. The large dataset achieves better scaling because the increased number of types increases
the computation time of each vertex program and hides most of the GraphLab overhead. (c) Speed of
convergence measured in number of updates for FiFo and Sweep, (d) Speedup achieved with 16 cpus as
the graph size is varied.

et al. [2009]. The task is to use word counts of a financial report to predict stock volatility of the issuing
company for the consequent 12 months. Data set consists of word counts for 30K reports with the related
stock volatility metrics.

To evaluate the affect of the various exclusion policies on the parallel scaling and algorithm convergence
we create two datasets by deleting common words. The sparser dataset contains 209K features and 1.2M
non-zero entries, and the denser dataset contains 217K features and 3.5M non-zero entries. The speedup
curves are plotted in Figure 5.10. We observed better scaling (4x at 16 CPUs) on the sparser dataset than
on the denser dataset (2x at 16 CPUs). This demonstrates that ensuring full serializability on denser graphs
inevitably increases contention resulting in reduced scaling.

Additionally, we experimented with relaxing the serializability constraint by switching to the vertex
exclusion policy. We discovered that the shooting algorithm still converges when serializability is no
longer enforced; obtaining solutions with only 0.5% higher loss on the same termination criterion. The
vertex exclusion model exposes substantially more parallelism and we therefore observe significantly better
scaling, especially on the denser dataset.
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Algorithm 5.6: Shooting Algorithm

Minimize the loss function with respect to wi
if wi changed by > ε then

Revise the residuals on all y′s connected to wi
Schedule all w′s connected to neighboring y′s

end

Algorithm 5.7: Compressed Sensing Outer Loop

while duality gap ≥ ε do
Update edge and node data of the data graph.
Use GraphLab to run GaBP on the graph
Use aggregator to compute duality gap
Take a newton step

end

5.6.5 Compressed Sensing

To show how GraphLab can be used as a subcomponent of a larger sequential algorithm, we implement
a variation of the interior point algorithm proposed by Kim et al. [2007] for the purposes of compressed
sensing. The aim is to use a sparse linear combination of basis functions to represent an image, while
minimizing the reconstruction error. Sparsity is achieved through the use of elastic net regularization.

The interior point method is a double loop algorithm where the sequential outer loop (Alg. 5.7) implements
a Newton method while the inner loop computes the Newton step by solving a sparse linear system using
GraphLab. We used Gaussian BP (GaBP) as a linear solver [Bickson, 2008] since it has a natural GraphLab
representation. The GaBP GraphLab construction follows closely the BP example in Section 5.6.1, but
represents potentials and messages analytically as Gaussian distributions. In addition, the outer loop uses a
Sync operation on the data graph to compute the duality gap and to terminate the algorithm when the gap
falls below a predefined threshold. Because the graph structure is fixed across iterations, we can leverage
data persistency in GraphLab, avoid both costly set up and tear down operations and resume from the
converged state of the previous iteration.

We evaluate the performance of this algorithm on a synthetic compressed sensing dataset constructed by
applying a random projection matrix to a wavelet transform of a 256 × 256 Lenna image (Figure 5.11).
Experimentally, we achieved a factor of 8 speedup using 16 processors using sweep scheduling.

5.7 Distributed GraphLab Design

In this section we extend the shared memory design of the GraphLab system to the substantially more
challenging distributed setting and discuss the techniques required to achieve this goal. An overview of
the distributed design is illustrated in Figure 5.15a. Because of the inherently random memory access
patterns common to dynamic asynchronous graph algorithms, we focus on the distributed in-memory
setting, requiring the entire graph and all program state to reside in RAM.
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Figure 5.10: Shooting Algorithm (a) Speedup on the sparser dataset using vertex exclusion and scope
exclusion (i.e., serializability) relative to the fastest single processor runtime. (b) Speedup on the denser
dataset using vertex exclusion and scope exclusion relative to the fastest single processor runtime.

We first present our distributed data graph representation that allows for rapid repartitioning across different
loads cluster sizes. Next, we describe two versions of the GraphLab engine for the distributed setting. The
first engine is the simpler chromatic engine (Section 5.7.2) that uses basic graph coloring to achieve the
various exclusion policies. The second is a locking engine (Section 5.7.2) that directly extends the lock
based implementation of the exclusion policies to the distributed setting.

5.7.1 The Distributed Data Graph

Efficiently implementing the data graph in the distributed setting requires balancing computation, commu-
nication, and storage. Therefore, we need to construct balanced partitioning of the data graph that minimize
number of edges that cross between machines. Because the Cloud setting enables the size of the cluster to
vary with budget and performance demands, we must be able to quickly load the data-graph on varying
sized Cloud deployments. To resolve these challenges, we developed a graph representation based on
two-phased partitioning which can be efficiently load balanced on a range of cluster sizes.

Motivated by our work on over partitioning for distributed belief propagation, the data graph is initially
over-partitioned using domain specific knowledge (e.g., planar embedding), or by using a distributed graph
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Figure 5.11: (a) Speedup of the Interior Point algorithm on the compressed sensing dataset, (b) Original
256x256 test image with 65,536 pixels, (c) Output of compressed sensing algorithm using 32,768 random
projections.
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Figure 5.12: Partitions and Ghosts. To represent a distributed graph we partition the graph into files each
containing fragments of the original graph. In (a) we cut a graph into two (unbalanced) pieces. In (b) we
illustrate the ghosting process for the resulting two atoms. The edges, vertices, and data illustrated with
broken edges are ghosts in the respective atoms. The meta-graph (c) is a weighted graph of two vertices.

partitioning heuristic (e.g., ParMetis [Karypis and Kumar, 1998], Random Hashing) into k parts where k
is much greater than the number of machines. Each part, called an atom, is stored as a separate file on a
distributed storage system (e.g., HDFS, Amazon S3). Each atom file contains a subset of edges and vertices
as well as the corresponding metadata. In addition, each atom stores information regarding ghosts: the set
of vertices and edges adjacent to the partition boundary. The connectivity structure and file locations of the
k atoms is stored in a atom index file as a meta-graph with k vertices (corresponding to the atoms) and
edges encoding the connectivity of the atoms.

Distributed loading is accomplished by performing a fast balanced partition of the meta-graph over the
number of physical machines. Each machine then constructs its local portion of the graph by playing back
the journal from each of its assigned atoms. The playback procedure also instantiates the ghost of the local
partition in memory. The ghosts are used as caches for their true counterparts across the network. Cache
coherence is managed using a simple versioning system, eliminating the transmission of unchanged or
constant data (e.g., edge weights).

The two-stage partitioning technique allows the same graph partition computation to be reused for different
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numbers of machines without requiring a full repartitioning step. Furthermore, random or even adaptive
placement of the atoms can be used in situations where load balancing is needed (see Section 3.8.1). We
evaluated two stage partitioning on a wide range of graphs obtained from Leskovec [2011] and found that
if the initial atom graph is well partitioned then the two phase partitioning performs comparably. This is to
be expected since typical graph partitioning algorithms perform a similar coarsening procedure.

The use of ghost vertices/edges in this design also introduces a limitation: the total amount of memory
required by a single machine is not simply 1

p of the graph, but is a function of the graph structure. Dense
graphs (e.g., a clique) could require every machine to store a copy of the complete graph. However, such
dense graphs would violate the GrAD methodology and are not common in large-scale problems.

In our later experiments we found that certain graphs were too difficult for Metis/ParMetis to cut in
reasonable time and memory. In these cases we resorted to random partitioning to provide the initial atoms.
In the next chapter we will return to this problem and show that many real-world graphs, although sparse,
have a particular sparsity pattern that will ultimately lead to costly replication and frustrate any edge cut
based partitioning technique.

5.7.2 Distributed GraphLab Engines

The Distributed GraphLab engine emulates the execution model defined in Section 5.4.3 and is responsible
for executing vertex programs and sync operations, maintaining the set of scheduled vertices T , and
ensuring serializability with respect to the appropriate exclusion policy (see Section 5.4.5). As discussed
earlier, the precise order in which vertices are removed from T is up to the execution engine and scheduler
and can affect performance and expressiveness. To evaluate this trade-off we built the low-overhead
Chromatic Engine, which executes T partially asynchronously according to a fixed sweep schedule, and
the more expressive Locking Engine which is fully asynchronous and supports relaxed versions of the
FiFo and priority schedulers.

Chromatic Engine

In our work on parallel Gibbs sampling we introduced the Chromatic Gibbs sampler (Section 4.3) which
uses graph color to achieve a serializable execution without the use of fine grained locking. The Chromatic
GraphLab engine extends this classic technique to achieve a serializable parallel execution of vertex
programs. Given a vertex coloring of the data graph, we can satisfy the edge exclusion policy by executing,
synchronously, all vertices of the same color in the vertex set T before proceeding to the next color. We
use the term color-step, in analogy to the super-step in the BSP model, to describe the process of updating
all the vertices within a single color and communicating all changes. The sync operation can then be run
safely between color-steps.

We can satisfy each of the exclusion policies simply by changing how the vertices are colored. The scope
exclusion policy is satisfied by constructing a second-order vertex coloring (i.e., no vertex shares the same
color as any of its distance two neighbors). The vertex exclusion policy is satisfied by assigning all vertices
the same color. While optimal graph coloring is NP-hard in general, a reasonable quality coloring can be
constructed quickly using graph coloring heuristics (e.g., greedy coloring). Furthermore, many MLDM
problems produce graphs with trivial colorings. For example, many optimization problems in MLDM are
naturally expressed as bipartite (two-colorable) graphs, while problems based upon template models can be
easily colored using the template [Gonzalez et al., 2011].
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Algorithm 5.8: Pipelined Locking Engine Thread Loop

while not done do
while Lock acquisition pipeline is not full and the scheduler is not empty do

Acquire a vertex v from scheduler
Add task to lock acquisition pipeline

if Lock acquisition pipeline has ready vertex v then
Execute (T ′,Sv) = f(v,SV )
// update scheduler on each machine
For each machine p, Send {s ∈ T ′ : owner(s) = p}
Release locks and push changes to Sv in background

else
Wait on the lock acquisition pipeline

While the chromatic engine operates in synchronous color-steps, changes to ghost vertices and edges are
communicated asynchronously as they are made. Consequently, the chromatic engine efficiently uses
both network bandwidth and processor time within each color-step. However, we must ensure that all
modifications are communicated before moving to the next color and therefore we require a synchronization
barrier between color-steps.

The simple design of the Chromatic engine is made possible by the explicit communication structure defined
by the data graph, allowing data to be pushed directly to the machines requiring the information. In addition,
the cache versioning mechanism further optimizes communication by only transmitting modified data. The
advantage of the Chromatic engine lies its predictable execution schedule. Repeated invocations of the
chromatic engine will always produce identical execution sequences, regardless of the number of machines
used. This property makes the Chromatic engine highly suitable for testing and debugging purposes. The
global barriers at the end of each color provide a natural breakpoint for debugging capabilities. We provide
a distributed debugging tool that halts at the end of each color, allowing graph data and scheduler state to
be queried.

The Chromatic engine supports limited dynamic scheduling. On each iteration, only active vertices are
executed within each-color step and vertices can only activate vertices that are a different color. Moreover,
the chromatic engine exactly preserves the semantics of the sweep schedule where vertices are ordered
by color. As a consequence while the execution may be composed of synchronous sub-steps it actually
corresponds to a fixed serial execution on the graph.

Distributed Locking Engine

While the Chromatic engine satisfies the GraphLab execution model and is capable of expressing dynamic
computation, it does not provide sufficient scheduling flexibility (e.g., FiFo and Priority) for algorithms
like SplashBP and Splash Gibbs sampling. To overcome these limitations, we introduce the distributed
locking engine which extends the mutual exclusion technique used in the shared memory engine to the
distributed setting.

Since the graph is partitioned, each machine is only responsible for scheduling and executing vertices that
have been assigned to that machine. This enables each machine to run one of the many shared-memory
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Figure 5.13: (a) Plots the runtime of the Distributed Locking Engine on a synthetic loopy belief propagation
problem varying the number of machines with pipeline length = 10, 000. (b) Plots the runtime of the
Distributed Locking Engine on the same synthetic problem on 16 machines (128 CPUs), varying the
pipeline length. Increasing pipeline length improves performance with diminishing returns.

schedulers allowing a much greater range of dynamic schedules. The ghost vertices and edges ensure
that the update have direct memory access to all information in the scope. The ghosting system also
eliminates the need to transmit or wait on data that has not changed remotely reducing network traffic and
latency. Each worker thread on each machine evaluates the loop described in Alg. 5.8 until the scheduler is
empty.

To hide the latency of distributed locking we pipeline the locking processess. When a vertex is removed
from the scheduler its locks are requested and it is placed on the pipeline freeing the processor to execute
other vertex programs or assist in lock processing. Once all the locks for a vertex have been acquired from
remote machines the vertex is removed from the pipeline and executed. As locks are acquired the local
ghost information is updated.

To evaluate the performance of the distributed pipelining system, we constructed a three-dimensional
mesh of 300× 300× 300 = 27, 000, 000 vertices. Each vertex is 26-connected (to immediately adjacent
vertices along the axis directions, as well as all diagonals), producing over 375 million edges. The graph
is partitioned using Metis [Karypis and Kumar, 1998] into 512 atoms. We interpret the graph as a binary
Markov Random Field and evaluate the runtime of loopy belief propagation varying the length of the
pipeline from 100 to 10,000, and the number of EC2 cluster compute instance (cc1.4xlarge) from 4
machines (32 processors) to 16 machines (128 processors). We observe in Figure 5.13a that the distributed
locking system provides strong, nearly linear, scalability. In Figure 5.13b we evaluate the efficacy of the
pipelining system by increasing the pipeline length. We find that increasing the length from 100 to 1000
leads to a factor of three reduction in runtime.

5.7.3 Fault Tolerance

We achieve fault tolerance in the distributed GraphLab framework using a distributed checkpoint mechanism.
In the event of a failure, the system is recovered from the last checkpoint. We evaluate two strategies to
construct distributed snapshots: a synchronous method that suspends all computation while the snapshot is
constructed, and an asynchronous method that incrementally constructs a snapshot without suspending
execution.
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Algorithm 5.9: Snapshot Vertex Program on vertex v
if v was already snapshotted then

Quit
Save Dv // Save current vertex
foreach u ∈ Nv do // Loop over neighbors

if u was not snapshotted then
Save data on edge Du↔v

Schedule u for a Snapshot Update

Mark v as snapshotted

The synchronous snapshots are easily constructed by suspending execution of vertex programs, flushing all
communication channels, and then saving all modified data since the last snapshot. If a machine fails we
simply restart the system with the data graph at the last checkout-point. Interestingly, we implemented the
synchronous snapshot as a GraphLab aggregate serializability enabled.

Unfortunately, synchronous snapshots expose the GraphLab engine to the same inefficiencies of syn-
chronous computation that GraphLab is trying to address. Using the GraphLab abstraction we designed and
implemented a variant of the Chandy-Lamport [Chandy and Lamport, 1985] snapshot specifically tailored
to the GraphLab data-graph and execution model. The resulting algorithm (Alg. 5.9) can be implemented
as a vertex program and guarantees a consistent snapshot. The proof of correctness follows naturally from
the original proof in Chandy and Lamport [1985] with the machines and channels replaced by vertices and
edges and messages corresponding to scope modifications.

Both the synchronous and asynchronous snapshots are initiated at fixed intervals. The choice of interval
must balance the cost of constructing the checkpoint with the computation lost since the last checkpoint
in the event of a failure. Young et al. [Young, 1974] derived a first-order approximation to the optimal
checkpoint interval:

TInterval =
√

2TcheckpointTMTBF (5.6)

where Tcheckpoint is the time it takes to complete the checkpoint and TMTBF is the mean time between
failures for the cluster. For instance, using a cluster of 64 machines, a per machine MTBF of 1 year, and a
checkpoint time of 2 min leads to optimal checkpoint intervals of 3 hrs. Therefore, for the deployments
considered in our experiments, even taking pessimistic assumptions for TMTBF, leads to checkpoint intervals
that far exceed the runtime of our experiments and in fact also exceed the Hadoop experiment runtimes.
This brings into question the emphasis on strong fault tolerance in Hadoop. Better performance can be
obtained by balancing fault tolerance costs against that of a job restart.

We evaluate the performance of the snapshotting algorithms on the same synthetic mesh problem described
in the previous section, running on 16 machines (128 processors). We configure the implementation to
issue exactly one snapshot in the middle of the second iteration. In Figure 5.14a we plot the number of
updates completed against time elapsed. The effect of the synchronous snapshot and the asynchronous
snapshot can be clearly observed: synchronous snapshots stops execution, while the asynchronous snapshot
only slows down execution.

The benefits of asynchronous snapshots become more apparent in the multi-tenancy setting where variation
in system performance exacerbate the cost of synchronous operations. We simulate this on Amazon EC2
by halting one of the processes for 15 seconds after snapshot begins. In figures Figure 5.14b we again plot
the number of updates completed against time elapsed and we observe that the asynchronous snapshot is
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(b) Snapshot with Delay

Figure 5.14: (a) The number of vertices updated vs. time elapsed for 10 iterations comparing asynchronous
and synchronous snapshots. Synchronous snapshots (completed in 109 seconds) have the characteristic
“flatline” while asynchronous snapshots (completed in 104 seconds) allow computation to proceed. (b)
Same setup as in (a) but with a single machine fault lasting 15 seconds. As a result of the 15 second delay
the asynchronous snapshot incurs only a 3 second penalty while the synchronous snapshot incurs a 16
second penalty.

minimally affected by the simulated failure (adding only 3 seconds to the runtime), while the synchronous
snapshot experiences a full 15 second increase in runtime.

5.7.4 System Design

In Figure 5.15, we provide a high-level overview of the design of the distributed GraphLab system. The
user begins by constructing the atom graph representation on a Distributed File System (DFS). When
GraphLab is launched on a cluster, one instance of the GraphLab program is executed on each machine. The
GraphLab processes are symmetric and directly communicate with each other using a custom asynchronous
RPC protocol over TCP/IP. The first process has the additional responsibility of being a master/monitoring
machine.

At launch the master process computes the placement of the atoms based on the atom index, following
which all processes perform a parallel load of the atoms they were assigned. Each process is responsible for
a partition of the distributed graph that is managed within a local graph storage, and provides distributed
locks. A cache is used to provide access to remote graph data.

Each process also contains a scheduler that manages the vertices in T that have been assigned to the process.
At runtime, each machine’s local scheduler feeds vertices into a prefetch pipeline that collects the data and
locks required to execute the vertex. Once all data and locks have been acquired, the vertex is executed by
a pool of worker threads. Vertex scheduling is decentralized with each machine managing the schedule for
its local vertices and forwarding scheduling requests for remote vertices. Finally, a distributed consensus
algorithm [Misra, 1983] is used to determine when all schedulers are empty. Due to the symmetric design
of the distributed runtime, there is no centralized bottleneck.
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(b) Locking Engine Design

Figure 5.15: (a) A high level overview of the GraphLab system. In the initialization phase the atom file
representation of the data graph is constructed. In the GraphLab Execution phase the atom files are assigned
to individual execution engines and are then loaded from the DFS. (b) A block diagram of the parts of the
Distributed GraphLab process. Each block in the diagram makes use of the blocks below it. For more
details, see Section 5.7.4.

5.8 Distributed GraphLab Evaluation

We evaluated the distributed implementation of GraphLab on three state-of-the-art MLDM applications:
collaborative filtering for Netflix movie recommendations, Video Co-segmentation (CoSeg) and Named
Entity Recognition (NER). Each experiment was based on large real-world problems and datasets (see
Table 5.3). We used the Chromatic engine for the Netflix and NER applications and the Locking Engine for
the CoSeg application. Equivalent Hadoop and MPI implementations were also evaluated on the Netflix
and NER applications. All timing experiments include loading time and atom graph partitioning.

Experiments were performed on Amazon’s Elastic Computing Cloud (EC2) using up to 64 High-
Performance Cluster (HPC) instances (cc1.4xlarge) each with dual Intel Xeon X5570 quad-core
Nehalem processors and 22 GB of memory and connected by a 10 Gigabit Ethernet network. All timings
include data loading and are averaged over three or more runs. On each node, GraphLab spawns eight
engine threads (matching the number of cores).

In Figure 5.16a we present an aggregate summary of the parallel speedup of GraphLab when run on
4 to 64 HPC machines on all three applications. In all cases, speedup is measured relative to the four
node deployment since single node experiments were not always feasible due to memory limitations. No
snapshots were constructed during the timing experiments since all experiments completed prior to the first
snapshot under the optimal snapshot interval (3 hours) as computed in Section 5.7.3. To provide intuition
regarding the snapshot cost, in Figure 5.18d we plot for each application, the overhead of compiling a
snapshot on a 64 machine cluster.

Our principle findings are:

• On equivalent tasks, GraphLab outperforms Hadoop by 20-60x and performance is comparable to
tailored MPI implementations.

• GraphLab’s performance scaling improves with higher computation to communication ratios.

• The GraphLab abstraction more compactly expresses the Netflix, NER and Coseg algorithms than
MapReduce or MPI.
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Figure 5.16: (a) Scalability of the three test applications with the largest input size. CoSeg scales excellently
due to very sparse graph and high computational intensity. Netflix with default input size scales moderately
while NER is hindered by high network utilization. (b) Average bandwidth utilization per cluster node.
Netflix and CoSeg have very low bandwidth requirements while NER appears to saturate when #machines
> 24. (c) Scalability of Netflix varying the computation cost of the vertex program. (d) Runtime of Netflix
with GraphLab, Hadoop and MPI implementations. Note the logarithmic scale. GraphLab outperforms
Hadoop by 40-60x and is comparable to an MPI implementation. See Section 5.8.1 and Section 5.8.3 for a
detailed discussion.

5.8.1 Netflix Movie Recommendation

The Netflix movie recommendation task uses collaborative filtering to predict the movie ratings for each
user, based on the ratings of similar users. We implemented the alternating least squares (ALS) algorithm
Zhou et al. [2008], a common algorithm in collaborative filtering. The input to ALS is a sparse users by
movies matrix R, containing the movie ratings of each user. The algorithm iteratively computes a low-rank
matrix factorization:

U≈R

Movies

U
se

rs

U
se

rs

Sparse

d

Vx d

Movies

(5.7)

where U and V are rank d matrices. The ALS algorithm alternates between computing the least-squares
solution for U and V while holding the other fixed. Both the quality of the approximation and the
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computational complexity depend on the magnitude of d: higher d produces higher accuracy while
increasing computational cost. Collaborative filtering and the ALS algorithm are important tools in MLDM:
an effective solution for ALS can be extended to a broad class of other applications.

While ALS may not seem like a graph algorithm, it can be represented easily using the GraphLab abstraction.
The sparse matrixR defines a bipartite graph connecting each user with the movies they rated. The edge data
contains the rating for a movie-user pair. The vertex data for users and movies contains the corresponding
row in U and column in V respectively. The GraphLab vertex program recomputes the d length vector for
each vertex by reading the d length vectors on adjacent vertices and then solving a least-squares regression
problem to predict the edge values. The chromatic engine is used since the graph is bipartite, two colorable,
and the edge serializability model is sufficient for serializability.

The Netflix task provides us with an opportunity to quantify the distributed chromatic engine overhead since
we are able to directly control the computation-communication ratio by manipulating d: the dimensionality
of the approximating matrices in Eq. (5.7). In Figure 5.16c we plot the speedup achieved for varying values
of d and the corresponding number of cycles required per update. Extrapolating to obtain the theoretically
optimal runtime, we estimated the overhead of Distributed GraphLab at 64 machines (512 CPUs) to be
about 12x for d = 5 and about 4.9x for d = 100. Note that this overhead includes graph loading and
communication. This provides us with a measurable objective for future optimizations.

Next, we compare against a Hadoop and an MPI implementation in Figure 5.16d (d = 20 for all cases),
using between 4 to 64 machines. The Hadoop implementation is part of the Mahout 2 project and is widely
used. Since fault tolerance was not needed during our experiments, we reduced the Hadoop Distributed
Filesystem’s (HDFS) replication factor to one. A significant amount of our effort was then spent tuning
the Hadoop job parameters to improve performance. However, even so we find that GraphLab performs
between 40-60 times faster than Hadoop.

While some of the Hadoop inefficiency may be attributed to Java, job scheduling, and various design
decisions, GraphLab also leads to a more efficient representation of the underlying algorithm. We can
observe that the Map function of a Hadoop ALS implementation, performs no computation and its only
purpose is to emit copies of the vertex data for every edge in the graph; unnecessarily multiplying the
amount of data that need to be tracked. For example, a user vertex that connects to 100 movies must emit
the data on the user vertex 100 times, once for each movie. This results in the generation of a large amount
of unnecessary network traffic and unnecessary HDFS writes.

This weakness extends beyond the MapReduce abstraction and affects the graph message-passing models
(such as Pregel) due to the lack of a scatter operation that would avoid sending same value multiple times
to each machine. Comparatively, the GraphLab vertex program is simpler as users do not need to explicitly
define the flow of information. Synchronization of a modified vertex only requires as much communication
as there are ghosts of the vertex. In particular, only machines that require the vertex data for computation
will receive it, and each machine receives each modified vertex data at most once, even if the vertex has
many neighbors.

Our MPI implementation of ALS is relatively optimized, and uses synchronous MPI collective operations
for communication. The computation is broken into super-steps that alternate between recomputing the
latent user and movies low rank matrices. Between super-steps the new user and movie values are scattered
(using MPI Alltoall) to the machines that need them in the next super-step. As a consequence our MPI
implementation of ALS is roughly equivalent to an optimized Pregel version of ALS with added support for

2https://issues.apache.org/jira/browse/MAHOUT-542
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parallel broadcasts. Surprisingly, GraphLab was able to outperform the MPI implementation. We attribute
the performance to the use of background asynchronous communication in GraphLab.

Finally, we can evaluate the effect of enabling dynamic computation. In Figure 5.19a, we plot the test error
obtained over time using a dynamic update schedule as compared to a static BSP-style update schedule.
This dynamic schedule is easily represented in GraphLab while it is difficult to express using Pregel
messaging semantics. We observe that a dynamic schedule converges much faster, reaching a low test error
using less than half the amount of work.

5.8.2 Video Co-segmentation (CoSeg)

Video co-segmentation automatically identifies and clusters spatio-temporal segments of video (Fig-
ure 5.17a) that share similar texture and color characteristics. The resulting segmentation (Figure 5.17a)
can be used in scene understanding and other computer vision and robotics applications. Previous co-
segmentation methods Batra et al. [2010] have focused on processing frames in isolation. Instead, we
developed a joint co-segmentation algorithm that processes all frames concurrently and is able to model
temporal stability.

We preprocessed 1,740 frames of high-resolution video by coarsening each frame to a regular grid of
120× 50 rectangular super-pixels. Each super-pixel stores the color and texture statistics for all the raw
pixels in its domain. The CoSeg algorithm predicts the best label (e.g., sky, building, grass, pavement,
trees) for each super pixel using Gaussian Mixture Model (GMM) in conjunction with belief propagation
(Chapter 3). The GMM estimates the best label given the color and texture statistics in the super-pixel.
The algorithm operates by connecting neighboring pixels in time and space into a large three-dimensional
grid and uses belief propagation to smooth the local estimates. We combined the two algorithms to form
an asynchronous Expectation-Maximization algorithm, which concurrently estimates the label for each
super-pixel given the GMM and updates the GMM given the labels from belief propagation.

The GraphLab vertex program executes the belief propagation iterative updates. We implement the state-
of-the-art adaptive belief residual schedule described in Chapter 3, where updates that are expected to
change vertex values significantly are prioritized. We therefore make use of the locking engine with a
priority scheduler. The parameters for the GMM are maintained using the sync operation. To the best of
our knowledge, there are no other abstractions that provide the dynamic asynchronous scheduling as well
as the sync (reduction) capabilities required by this application.

In Figure 5.16a we demonstrate that the locking engine can achieve scalability and performance on the
large 10.5 million vertex graph used by this application, resulting in a 10x speedup with 16x more machines.
We also observe from Figure 5.18a that the locking engine provides nearly optimal weak scaling: the
runtime does not increase significantly as the size of the graph increases proportionately with the number of
machines. We can attribute this to the properties of the graph partition where the number of edges crossing
machines increases linearly with the number of machines, resulting in low communication volume.

While Section 5.7.2 contains a limited evaluation of the pipelining system on a synthetic graph, here we
further investigate the behavior of the distributed lock implementation when run on a complete problem that
makes use of all key aspects of GraphLab: both sync and dynamic prioritized scheduling. The evaluation is
performed on a small 32-frame (192K vertices) problem using a 4 node cluster and two different partitioning.
An optimal partition was constructed by evenly distributing 8 frame blocks to each machine. A worst case
partition was constructed by striping frames across machines and consequently stressing the distributed
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lock implementation by forcing each scope acquisition is to grab at least one remote lock. We also vary the
maximum length of the pipeline. Results are plotted in Figure 5.18b. We demonstrate that increasing the
length of the pipeline increases performance significantly and is able to compensate for poor partitioning,
rapidly bringing down the runtime of the problem. Just as in Section 5.7.2, we observe diminishing returns
with increasing pipeline length.

We conclude that for the video co-segmentation task, Distributed GraphLab provides excellent performance
while being the only distributed graph abstraction that allows the use of dynamic prioritized schedul-
ing. In addition, the pipelining system is an effective way to hide latency, and to some extent, a poor
partitioning.

5.8.3 Named Entity Recognition (NER)

Here we return to the NER task described in the multicore experiments in Section 5.6.3 using the same data
and vertex program. Since the graph is two colorable and relatively dense the chromatic engine was used
with random partitioning. The lightweight floating point arithmetic in the NER computation in conjunction
with the relatively dense graph structure and random partitioning is essentially the worst-case for the current
Distributed GraphLab design, and thus allow us to evaluate the overhead of the Distributed GraphLab
runtime.

From Figure 5.16a we see that NER achieved only a modest 3x improvement using 16x more machines. We
attribute the poor scaling performance of NER to the large vertex data size (816 bytes), dense connectivity,
and poor partitioning (random cut) that resulted in substantial communication overhead per iteration.
Figure 5.16b shows for each application, the average number of bytes per second transmitted by each
machine with varying size deployments. On four nodes, NER transmits over 10 times more data than
Netflix and almost 100 times as much data as CoSeg. Beyond 16 machines, NER saturates with each
machine sending at a rate of over 100MB per second.

We evaluated our Distributed GraphLab implementation against a Hadoop and an MPI implementation in
Figure 5.18c. In addition to the optimizations listed in Section 5.8.1, our Hadoop implementation required
the use of binary serialization methods to obtain reasonable performance (decreasing runtime by 5x from
baseline). We demonstrate that GraphLab implementation of NER was able to obtains a 20-30x speedup
over Hadoop. The reason for the performance gap is the same as that for the Netflix evaluation. Since each
vertex emits a copy of itself for each edge: in the extremely large CoEM graph, this corresponds to over
100 GB of HDFS writes occurring between the Map and Reduce stage.

On the other hand, our MPI implementation was able to outperform Distributed GraphLab. The CoEM
task requires extremely little computation in comparison to the amount of data it touches. We were
able to evaluate that the NER vertex program requires 5.7x fewer cycles per byte of data accessed as
compared to the Netflix problem at d = 5 (the hardest Netflix case evaluated). The extremely poor
computation to communication ratio stresses our communication implementation, that is outperformed
by MPI’s efficient communication layer. Furthermore, Figure 5.16b provides further evidence that we
fail to fully saturate the network (that offers 10Gbps). Further optimizations to eliminate inefficiencies in
GraphLab’s communication layer should bring us up to parity with the MPI implementation.
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Exp. #Verts #Edges Vert. Data Edge Data Complexity Shape Partition Engine
Netflix 0.5M 99M 8d+ 13 16 O

(
d3 + deg.

)
bipartite random Chromatic

CoSeg 10.5M 31M 392 80 O(deg.) 3D grid frames Locking
NER 2M 200M 816 4 O(deg.) bipartite random Chromatic

Table 5.3: Experiment input sizes. The vertex and edge data are measured in bytes and the d in Netflix is
the size of the latent dimension.

(a) Coseg Video Frame (b) Segmentation

Figure 5.17: Coseg: (a) A frame from the original video sequence and the result of running the co-
segmentation algorithm. (b) The predicted segmentation.

5.8.4 EC2 Cost evaluation

To illustrate the monetary cost of using the alternative abstractions, we plot the price-runtime curve for
the Netflix application in Figure 5.19b in log-log scale. All costs are computed using fine-grained billing
rather than the hourly billing used by Amazon EC2. The price-runtime curve demonstrates diminishing
returns: the cost of attaining reduced runtimes increases faster than linearly. As a comparison, we provide
the price-runtime curve for Hadoop on the same application. For the Netflix application, GraphLab is about
two orders of magnitude more cost-effective than Hadoop.

5.9 Additional Related Work

Section 5.3 provides a detailed comparison of several contemporary high-level parallel and distributed
frameworks. In this section we review related work in classic parallel abstractions, graph databases, and
domain specific languages.

There has been substantial work [Angles and Gutierrez, 2008] in graph structured databases dating back to
the 1980’s along with several recent open-source and commercial products (e.g., Neo4j [2011]). Graph
databases typically focus on efficient storage and retrieval of graph structured data with support for basic
graph computation. In contrast, GraphLab focuses GrAD style computation on large graphs.

There are several notable projects focused on using MapReduce for graph computation. Pegasus [Kang
et al., 2009] is a collection of algorithms for mining large graphs using Hadoop. Surfer [Chen et al.,
2010] extends MapReduce with a propagation primitive, but does not support asynchronous or dynamic
scheduling. Alternatively, Lattanzi et al. [2011] proposed subsampling large-graphs (using MapReduce) to a
size which can be processed on a single machine. While Lattanzi et al. [2011] was able to derive reductions
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for some graph problems (e.g., minimum spanning tree), the techniques are not easily generalizable and
may not be applicable to many MLDM algorithms.

5.10 Conclusion

The GrAD methodology emphasizes the importance of explicitly modeling sparse computational dependen-
cies, asynchronous computation, and dynamic scheduling in large scale MLDM problems. In this chapter
we described how existing high-level parallel and distributed abstractions fail to support all three critical
properties of the GrAD methodology. To address these properties we introduced the GraphLab abstraction,
a graph-parallel framework that explicitly targets GrAD algorithms and generalizes our earlier work on
parallel belief propagation and Gibbs sampling.

The GraphLab abstraction introduces the data graph to decompose the program state along the sparse
graphical dependency structuring. User defined computation in GraphLab is expressed in the form of vertex
programs that run asynchronously on each vertex and can directly read and modify values on neighboring
edges and vertices. GraphLab supports a rich set of schedulers that allow vertex programs to dynamically
trigger and prioritize computation on neighboring vertices. To simplify reasoning about highly parallel and
distributed asynchronous executions, GraphLab introduces a set of simple mutual exclusion policies which
ensure a serializable execution. As a consequence, we can often directly apply serial analysis techniques to
programs implemented within the GraphLab abstraction. Finally, to manage sharing and aggregation of
global state, GraphLab provides a powerful aggregation framework.

We developed optimized shared-memory and distributed implementations of the GraphLab abstraction by
extending the techniques used to build scalable systems for belief propagation and Gibbs sampling. In the
distributed setting we introduced a novel pipelined locking protocol and multistage partitioning and were
able to achieve faul-tolerance by directly exploiting the key serializability properties of the abstraction.
We evaluated our implementation on multi-core and distributed systems and demonstrated strong scaling
and state-of-the-art performance on real-world applications. By implementing a wide range of algorithms
we demonstrated the expressiveness of the GraphLab abstraction within the context of a single MLDM
application. In the distributed setting we demonstrated that GraphLab significantly outperforms Hadoop by
20-60x, and is competitive with application specific MPI implementations.

The GraphLab API has the opportunity to be an interface between the ML and systems communities.
Parallel ML algorithms built around the GraphLab API automatically benefit from developments in parallel
data structures. As new locking protocols and parallel scheduling primitives are incorporated into the
GraphLab API, they become immediately available to the ML community. Systems experts can more easily
port ML algorithms to new parallel hardware by porting the GraphLab API. Future implementations of
GraphLab will benefit from research in system architectures and parallel data structures. These gains are
automatically conferred to all algorithms built in the GraphLab framework.
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Figure 5.18: (a) Runtime of the CoSeg experiment as data set size is scaled proportionately with the number
of machines. Ideally, runtime is constant. GraphLab experiences an 11% increase in runtime scaling from
16 to 64 machines. (b) The performance effects of varying the length of the pipeline. Increasing the pipeline
length has a small effect on performance when partitioning is good. When partitioning is poor, increasing
the pipeline length improves performance to be comparable to that of optimal partitioning. Runtime for
worst-case partitioning at pipeline length 0 is omitted due to excessive runtimes. (c) Runtime of the NER
experiment with Distributed GraphLab, Hadoop and MPI implementations. Note the logarithmic scale.
GraphLab outperforms Hadoop by about 80x when the number of machines is small, and about 30x when
the number of machines is large. The performance of Distributed GraphLab is comparable to the MPI
implementation. (d) For each application, the overhead of performing a complete snapshot of the graph
every |V | updates (where |V | is the number of vertices in the graph), when running on a 64 machine cluster.
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Figure 5.19: (a) Convergence rate when dynamic computation is used. Dynamic computation can converge
to equivalent test error in about half the number of updates. (b) Price Performance ratio of GraphLab
and Hadoop on running on Amazon EC2 HPC nodes in a log-log scale. Costs were computing assuming
fine-grained billing.
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Chapter 6

PowerGraph: Scaling GraphLab to the
Web and Beyond

In the previous chapters we discussed how the GrAD methodology can lead to efficient large-scale
probabilistic reasoning on graph-structured data. We then introduced the GraphLab abstraction which
generalizes the GrAD methodology, simplifying the design and implementation of parallel and distributed
graph-parallel computation. However, in the distributed setting GraphLab began to struggle on web-scale
graphs and even on smaller graphs with light-weight computation (e.g., CoEM Section 5.8.3) we found
that traditional graph partitioning techniques failed and communication overhead dominated. Upon deeper
analysis we discovered that the root cause of these limitations arrises from the power-law sparsity structure
common to a wide range or real-world graphs. Furthermore, these limitations are not unique to GraphLab
but instead are present in a wide range of existing parallel abstractions.

In this chapter, we characterize the challenges of computation on natural graphs in the context of existing
graph-parallel abstractions. We then introduce the PowerGraph abstraction which exploits the internal
structure of graph programs to address these challenges. Leveraging the PowerGraph abstraction we
introduce a new approach to distributed graph placement and representation that exploits the structure of
power-law graphs. We provide a detailed analysis and experimental evaluation comparing PowerGraph
to two popular graph-parallel systems. Finally, we describe three different implementation strategies for
PowerGraph and discuss their relative merits with empirical evaluations on large-scale real-world problems
demonstrating order of magnitude gains.

6.1 Introduction

The increasing need to reason about large-scale graph-structured data in machine learning and data mining
(MLDM) presents a critical challenge. As the sizes of datasets grow, statistical theory suggests that we
should apply richer models to eliminate the unwanted bias of simpler models, and extract stronger signals
from data. At the same time, the computational and storage complexity of richer models coupled with
rapidly growing datasets have exhausted the limits of single machine computation.

The resulting demand has driven the development of new graph-parallel abstractions such as Pregel
[Malewicz et al., 2010] and GraphLab that encode computation as vertex-programs which run in parallel
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and interact along edges in the graph. Graph-parallel abstractions rely on each vertex having a small
neighborhood to maximize parallelism and effective partitioning to minimize communication. However,
graphs derived from real-world phenomena, like social networks and the web, typically have power-law
degree distributions, which implies that a small subset of the vertices connects to a large fraction of the
graph. Furthermore, power-law graphs are difficult to partition [Abou-Rjeili and Karypis, 2006, Leskovec
et al., 2008] and represent in a distributed environment.

To address the challenges of power-law graph computation, we introduce the PowerGraph abstraction which
exploits the structure of vertex-programs and explicitly factors computation over edges instead of vertices.
As a consequence, PowerGraph exposes substantially greater parallelism, reduces network communication
and storage costs, and provides a new highly effective approach to distributed graph placement. We describe
the design of our distributed implementation of PowerGraph and evaluate it on a large EC2 deployment
using real-world applications. In particular our key contributions are:

1. An analysis of the challenges of power-law graphs in distributed graph computation and the limita-
tions of existing graph parallel abstractions (Sec. 6.2 and 6.3).

2. The PowerGraph abstraction (Section 6.4) which factors individual vertex-programs.

3. A delta caching procedure which allows computation state to be dynamically maintained (Sec-
tion 6.4.2).

4. A new fast approach to data layout for power-law graphs in distributed environments (Section 6.5).

5. An theoretical characterization of network and storage (Theorem 6.5.2, Theorem 6.5.3).

6. A high-performance open-source implementation of the PowerGraph abstraction (Section 6.7).

7. A comprehensive evaluation of three implementations of PowerGraph on a large EC2 deployment
using real-world MLDM applications (Section 6.6 and 6.7).

6.2 Graph-Parallel Abstractions

A graph-parallel abstraction consists of a sparse graph G = {V,E} and a vertex-program Q which
is executed in parallel on each vertex v ∈ V and can interact (e.g., through shared-state in GraphLab,
or messages in Pregel) with neighboring instances Q(u) where (u, v) ∈ E. In contrast to more general
message passing models, graph-parallel abstractions constrain the interaction of vertex-program to a graph
structure enabling the optimization of data-layout and communication. We focus our discussion on Pregel
and GraphLab as they are representative of existing graph-parallel abstractions.

6.2.1 Pregel

Pregel, introduced by Malewicz et al. [2010], is a bulk synchronous message passing abstraction in which
all vertex-programs run simultaneously in a sequence of super-steps. Within a super-step each program
instance Q(v) receives all messages from the previous super-step and sends messages to its neighbors in
the next super-step. A barrier is imposed between super-steps to ensure that all program instances finish
processing messages from the previous super-step before proceeding to the next. The program terminates
when there are no messages remaining and every program has voted to halt. Pregel introduces commutative
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associative message combiners which are user defined functions that merge messages destined to the
same vertex. The following is an example of the PageRank vertex-program implemented in Pregel. The
vertex-program receives the single incoming message (after the combiner) which contains the sum of the
PageRanks of all in-neighbors. The new PageRank is then computed and sent to its out-neighbors.

Message combiner(Message m1, Message m2) :
return Message(m1.value() + m2.value());

void PregelPageRank(Message msg) :
float total = msg.value();
vertex.val = 0.15 + 0.85*total;
foreach(nbr in out_neighbors) :

SendMsg(nbr, vertex.val/num_out_nbrs);

6.2.2 GraphLab

GraphLab (Chapter 5) is an asynchronous distributed shared-memory abstraction in which vertex-programs
have shared access to a distributed graph with data stored on every vertex and edge. Each vertex-program
may directly access information on the current vertex, adjacent edges, and adjacent vertices irrespective of
edge direction. Vertex-programs can schedule neighboring vertex-programs to be executed in the future.
GraphLab ensures serializability by preventing neighboring program instances from running simultaneously.
The following is an example of the PageRank vertex-program implemented in GraphLab. The GraphLab
vertex-program directly reads neighboring vertex values to compute the sum.

void GraphLabPageRank(Scope scope) :
float accum = 0;
foreach (nbr in scope.in_nbrs) :

accum += nbr.val / nbr.nout_nbrs();
vertex.val = 0.15 + 0.85 * accum;

By eliminating messages, GraphLab isolates the user defined algorithm from the movement of data, allowing
the system to choose when and how to move program state. By allowing mutable data to be associated with
both vertices and edges GraphLab allows the algorithm designer to more precisely distinguish between
data shared with all neighbors (vertex data) and data shared with a particular neighbor (edge data).

6.2.3 GAS Decomposition

While the implementation of MLDM vertex-programs in GraphLab and Pregel differ in how they collect
and disseminate information, they share a common overall structure. To characterize this common structure
and differentiate between vertex and edge specific computation we introduce the GAS model of graph
computation.

The GAS model represents three conceptual phases of a vertex-program: Gather, Apply, and Scatter. In
the gather phase, information about adjacent vertices and edges is collected through a generalized sum
over the neighborhood of the vertex u on which Q(u) is run:

Σ←
⊕
v∈Nu

g (Du, Du→v, Dv) . (6.1)
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(a) Twitter In-Degree (b) Twitter Out-Degree

Figure 6.1: The in and out degree distributions of the Twitter follower network plotted in log-log scale.

where Du, Dv, and Du→v are the values (program state and meta-data) for vertices u and v and edge (u, v).
The user defined sum ⊕ operation must be commutative and associative and can range from a numerical
sum to the union of the data on all neighboring vertices and edges.

The resulting value Σ is used in the apply phase to update the value of the central vertex:

Dnew
u ← a (Du,Σ) . (6.2)

Finally the scatter phase uses the new value of the central vertex to update the data on adjacent edges:

∀v ∈ Nu : (Du→v)← s (Dnew
u , Du→v, Dv) . (6.3)

The fan-in and fan-out of a vertex-program is determined by the corresponding gather and scatter phases. For
instance, in PageRank, the gather phase only operates on in-edges and the scatter phase only operates on out-
edges. However, for many MLDM algorithms the graph edges encode ostensibly symmetric relationships,
like friendship, in which both the gather and scatter phases touch all edges. In this case the fan-in and
fan-out are equal. As we will show in Section 6.3, the ability for graph parallel abstractions to support both
high fan-in and fan-out computation is critical for efficient computation on natural graphs.

GraphLab and Pregel express GAS programs in very different ways. In the Pregel abstraction the gather
phase is implemented using message combiners and the apply and scatter phases are expressed in the vertex
program. Conversely, GraphLab exposes the entire neighborhood to the vertex-program and allows the user
to define the gather and apply phases within their program. The GraphLab abstraction implicitly defines
the communication aspects of the gather/scatter phases by ensuring that changes made to the vertex or
edge data are automatically visible to adjacent vertices. It is also important to note that GraphLab does not
differentiate between edge directions.

6.3 Challenges of Natural Graphs

The sparsity structure of natural graphs presents a unique challenge to efficient distributed graph-parallel
computation. One of the hallmark properties of natural graphs is their skewed power-law degree distribution
[Faloutsos et al., 1999]: most vertices have relatively few neighbors while a few have many neighbors (e.g.,
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celebrities in a social network). Under a power-law degree distribution the probability that a vertex has
degree d is given by:

P (d) ∝ d−α, (6.4)

where the exponent α is a positive constant that controls the “skewness” of the degree distribution. Higher α
implies that the graph has lower density (ratio of edges to vertices), and that the vast majority of vertices are
low degree. As α decreases, the graph density and number of high degree vertices increases. Most natural
graphs typically have a power-law constant around α ≈ 2. For example, Faloutsos et al. [1999] estimated
that the inter-domain graph of the Internet has a power-law constant α ≈ 2.2. One can visualize the skewed
power-law degree distribution by plotting the number of vertices with a given degree in log-log scale. In
Figure 6.1, we plot the in and out degree distributions of the Twitter follower network demonstrating the
characteristic linear power-law form.

While power-law degree distributions are empirically observable, they do not fully characterize the
properties of natural graphs. While there has been substantial work (see Leskovec et al. [2007]) on
more sophisticated natural graph models, the techniques in this chapter focus only on the degree distribution
and do not require any other modeling assumptions.

The skewed degree distribution implies that a small fraction of the vertices are adjacent to a large fraction
of the edges. For example, one percent of the vertices in the Twitter web-graph are adjacent to nearly half
of the edges. This concentration of edges results in a star-like motif which presents challenges for existing
graph-parallel abstractions:

Work Balance: The power-law degree distribution can lead to substantial work imbalance in graph
parallel abstractions that treat vertices symmetrically. Since the storage, communication, and computation
complexity of the Gather and Scatter phases is linear in the degree, the running time of vertex-programs
can vary widely [Suri and Vassilvitskii, 2011].

Partitioning: Natural graphs are difficult to partition [Lang, 2004, Leskovec et al., 2008]. Both GraphLab
and Pregel depend on graph partitioning to minimize communication and ensure work balance. However, in
the case of natural graphs both are forced to resort to hash-based (random) partitioning which has extremely
poor locality (Section 6.5).

Communication: The skewed degree distribution of natural-graphs leads to communication asymmetry
and consequently bottlenecks. In addition, high-degree vertices can force messaging abstractions, such as
Pregel, to generate and send many identical messages.

Storage: Since graph parallel abstractions must locally store the adjacency information for each vertex,
each vertex requires memory linear in its degree. Consequently, high-degree vertices can exceed the
memory capacity of a single machine.

Computation: While multiple vertex-programs may execute in parallel, existing graph-parallel abstrac-
tions do not parallelize within individual vertex-programs, limiting their scalability on high-degree ver-
tices.

6.4 PowerGraph Abstraction

To address the challenges of computation on power-law graphs, we introduce PowerGraph, a new graph-
parallel abstraction that eliminates the degree dependence of the vertex-program by directly exploiting the
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interface GASVertexProgram(u) {
// Run on gather_nbrs(u)

gather(Du, Du→v, Dv) → Accum
sum(Accum left, Accum right) → Accum
apply(Du,Accum) → Dnew

u

// Run on scatter_nbrs(u)

scatter(Dnew
u ,Du→v,Dv) → (Dnew

u→v, Accum)
}

Figure 6.2: All PowerGraph programs must implement the stateless gather, sum, apply, and scatter
functions.

GAS decomposition to factor vertex-programs over edges. By lifting the Gather and Scatter phases into
the abstraction, PowerGraph is able to retain the natural “think-like-a-vertex” philosophy [Malewicz et al.,
2010] while distributing the computation of a single vertex-program over the entire cluster.

PowerGraph combines the best features from both Pregel and GraphLab. From GraphLab, PowerGraph
borrows the data-graph and shared-memory view of computation eliminating the need for users to architect
the movement of information. From Pregel, PowerGraph borrows the commutative, associative gather
concept. PowerGraph supports both the highly-parallel bulk-synchronous Pregel model of computation as
well as the computationally efficient asynchronous GraphLab model of computation.

Like GraphLab, the state of a PowerGraph program factors according to a data-graph with user defined
vertex data Dv and edge data Du→v. The data stored in the data-graph includes both meta-data (e.g., urls
and edge weights) as well as computation state (e.g., the PageRank of vertices). In Section 6.5 we introduce
vertex-cuts which allow PowerGraph to efficiently represent and store power-law graphs in a distributed
environment. We now describe the PowerGraph abstraction and how it can be used to naturally decompose
vertex-programs. Then in Section 6.5 through Section 6.7 we discuss how to implement the PowerGraph
abstraction in a distributed environment.

6.4.1 GAS Vertex-Programs

Computation in the PowerGraph abstraction is encoded as a state-less vertex-program which implements
the GASVertexProgram interface (Figure 6.2) and therefore explicitly factors into the gather, sum,
apply, and scatter functions. Each function is invoked in stages by the PowerGraph engine following the
semantics in Alg. 6.1. By factoring the vertex-program, the PowerGraph execution engine can distribute a
single vertex-program over multiple machines and move computation to the data.

During the gather phase the gather and sum functions are used as a map and reduce to collect information
about the neighborhood of the vertex. The gather function is invoked in parallel on the edges adjacent
to u. The particular set of edges is determined by gather nbrs which can be none, in, out, or all.
The gather function is passed the data on the adjacent vertex and edge and returns a temporary accumulator
(a user defined type). The result is combined using the commutative and associative sum operation. The
final result au of the gather phase is passed to the apply phase and cached by PowerGraph.

After the gather phase has completed, the apply function takes the final accumulator and computes a
new vertex value Du which is atomically written back to the graph. The size of the accumulator au and
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Algorithm 6.1: Vertex-Program Execution Semantics
Input: Center vertex u
if cached accumulator au is empty then

foreach neighbor v in gather nbrs(u) do
au ← sum(au, gather(Du, Du→v, Dv))

Du ← apply(Du, au)
foreach neighbor v scatter nbrs(u) do

(Du→v,∆a)← scatter(Du, Du→v, Dv)
if av and ∆a are not Empty then av ← sum(av, ∆a)
else av ← Empty

complexity of the apply function play a central role in determining the network and storage efficiency of
the PowerGraph abstraction and should be sub-linear and ideally constant in the degree.

During the scatter phase, the scatter function is invoked in parallel on the edges adjacent to u pro-
ducing new edge values Du→v which are written back to the data-graph. As with the gather phase, the
scatter nbrs determines the particular set of edges on which scatter is invoked. The scatter function
returns an optional value ∆a which is used to dynamically update the cached accumulator av for the
adjacent vertex (see Section 6.4.2).

In Figure 6.3 we implement the PageRank, greedy graph coloring, and single source shortest path algorithms
using the PowerGraph abstraction. In PageRank the gather and sum functions collect the total value of
the adjacent vertices, the apply function computes the new PageRank, and the scatter function is used to
activate adjacent vertex-programs if necessary. In graph coloring the gather and sum functions collect
the set of colors on adjacent vertices, the apply function computes a new color, and the scatter function
activates adjacent vertices if they violate the coloring constraint. Finally in single source shortest path
(SSSP), the gather and sum functions compute the shortest path through each of the neighbors, the apply
function returns the new distance, and the scatter function activates affected neighbors.

6.4.2 Delta Caching

In many cases a vertex-program will be triggered in response to a change in a few of its neighbors. The
gather operation is then repeatedly invoked on all neighbors, many of which remain unchanged, thereby
wasting computation cycles. For many algorithms [Ahmed et al., 2012] it is possible to dynamically
maintain the result of the gather phase au and skip the gather on subsequent iterations.

The PowerGraph engine maintains a cache of the accumulator au from the previous gather phase for
each vertex. The scatter function can optionally return an additional ∆a which is atomically added to
the cached accumulator av of the neighboring vertex v using the sum function. If ∆a is not returned,
then the neighbor’s cached av is cleared, forcing a complete gather on the subsequent execution of the
vertex-program on the vertex v. When executing the vertex-program on v the PowerGraph engine uses the
cached av if available, bypassing the gather phase.

Intuitively, ∆a acts as an additive correction on-top of the previous gather for that edge. More formally, if
the accumulator type forms an abelian group: has a commutative and associative sum (+) and an inverse
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PageRank

// gather_nbrs: IN_NBRS

gather(Du, Du→v, Dv):
return Dv.rank / #outNbrs(v)

sum(a, b): return a + b
apply(Du, acc):

rnew = 0.15 + 0.85 * acc
Du.delta = (rnew - Du.rank)/

#outNbrs(u)
Du.rank = rnew

// scatter_nbrs: OUT_NBRS

scatter(Du,Du→v,Dv):
if(|Du.delta|>ε) Activate(v)
return delta

Greedy Graph Coloring

// gather_nbrs: ALL_NBRS

gather(Du, Du→v, Dv):
return set(Dv)

sum(a, b): return union(a, b)
apply(Du, S):

Du = min c where c /∈ S
// scatter_nbrs: ALL_NBRS

scatter(Du,Du→v,Dv):
// Nbr changed since gather

if(Du == Dv)
Activate(v)

// Invalidate cached accum

return NULL

Single Source Shortest Path (SSSP)

// gather_nbrs: ALL_NBRS

gather(Du, Du→v, Dv):
return Dv + Dv→u

sum(a, b): return min(a, b)
apply(Du, new_dist):

Du = new_dist
// scatter_nbrs: ALL_NBRS

scatter(Du,Du→v,Dv):
// If changed activate neighbor

if(changed(Du)) Activate(v)
if(increased(Du))
return NULL

else return Du + Du→v

Belief Propagation (BP)

// gather_nbrs: IN_NBRS

gather(Du, Du→v, Dv):
swap old and new messages
return old message

sum(a, b): return a * b
apply(Du, new_dist):

update belief
// scatter_nbrs: OUT_NBRS

scatter(Du,Du→v,Dv):
Recompute new out message
if(message changed sufficiently)
Activate(v)

return NULL

Figure 6.3: The PageRank, graph-coloring, and single source shortest path algorithms implemented in
the PowerGraph abstraction. Both the PageRank and single source shortest path algorithms support delta
caching in the gather phase.

(−) operation, then we can define (shortening gather to g):

∆a = g(Du, D
new
u→v, D

new
v )− g(Du, Du→v, Dv). (6.5)

In the PageRank example (Figure 6.3) we take advantage of the abelian nature of the PageRank sum opera-
tion. For graph coloring the set union operation is not abelian and so we invalidate the accumulator.

6.4.3 Initiating Future Computation

The PowerGraph engine maintains a set of active vertices on which to eventually execute the vertex-program.
The user initiates computation by calling Activate(v) or Activate all(). The PowerGraph engine
then proceeds to execute the vertex-program on the active vertices until none remain. Once a vertex-program
completes the scatter phase it becomes inactive until it is reactivated.

Vertices can activate themselves and neighboring vertices. Each function in a vertex-program can only
activate vertices visible in the arguments to that function. For example the scatter function invoked on
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the edge (u, v) can only activate the vertices u and v. This restriction is essential to ensure that activation
events are generated on machines on which they can be efficiently processed.

The order in which activated vertices are executed is up to the PowerGraph execution engine. The only
guarantee is that all activated vertices are eventually executed. This flexibility in scheduling enables
PowerGraph programs to be executed both synchronously and asynchronously, leading to different tradeoffs
in algorithm performance, system performance, and determinism.

Bulk Synchronous Execution

When run synchronously, the PowerGraph engine executes the gather, apply, and scatter phases in order.
Each phase, called a minor-step, is run synchronously on all active vertices with a barrier at the end. We
define a super-step as a complete series of GAS minor-steps. Changes made to the vertex data and edge
data are committed at the end of each minor-step and are visible in the subsequent minor-step. Vertices
activated in each super-step are executed in the subsequent super-step.

The synchronous execution model ensures a deterministic execution regardless of the number of machines
and closely resembles Pregel. However, the frequent barriers and inability to operate on the most recent
data can lead to an inefficient distributed execution and slow algorithm convergence. To address these
limitations PowerGraph also supports asynchronous execution.

Asynchronous Execution

When run asynchronously, the PowerGraph engine executes active vertices as processor and network
resources become available. Changes made to the vertex and edge data during the apply and scatter
functions are immediately committed to the graph and visible to subsequent computation on neighboring
vertices.

Unfortunately, the behavior of the asynchronous execution depends on the number machines and availability
of network resources leading to non-determinism that can complicate algorithm design and debugging.
Furthermore, for some algorithms, like statistical simulation (see Chapter 4), the resulting non-determinism,
if not carefully controlled, can lead to instability or even divergence.

To address these challenges, GraphLab automatically enforces serializability: every parallel execution of
vertex-programs has a corresponding sequential execution. In Chapter 5 it was shown that serializability is
sufficient to support a wide range of MLDM algorithms. To achieve serializability, GraphLab prevents
adjacent vertex-programs from running concurrently using a fine-grained locking protocol which requires
sequentially grabbing locks on all neighboring vertices. Furthermore, the locking scheme used by GraphLab
is unfair to high degree vertices.

PowerGraph retains the strong serializability guarantees of GraphLab while addressing its limitations.
We address the problem of sequential locking by introducing a new parallel locking protocol (described
in Section 6.7.4) which is fair to high degree vertices. In addition, the PowerGraph abstraction exposes
substantially more fined grained (edge-level) parallelism allowing the entire cluster to support the execution
of individual vertex programs.
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6.4.4 Comparison with GraphLab / Pregel

Surprisingly, despite the strong constraints imposed by the PowerGraph abstraction, it is possible to emulate
both GraphLab and Pregel vertex-programs in PowerGraph. To emulate a GraphLab vertex-program, we
use the gather and sum functions to concatenate all the data on adjacent vertices and edges and then run the
GraphLab program within the apply function. Similarly, to express a Pregel vertex-program, we use the
gather and sum functions to combine the inbound messages (stored as edge data) and concatenate the list
of neighbors needed to compute the outbound messages. The Pregel vertex-program then runs within the
apply function generating the set of messages which are passed as vertex data to the scatter function where
they are written back to the edges.

In order to address the challenges of natural graphs, the PowerGraph abstraction requires the size of the
accumulator and the complexity of the apply function to be sub-linear in the degree. However, directly
executing GraphLab and Pregel vertex-programs within the apply function leads the size of the accumulator
and the complexity of the apply function to be linear in the degree eliminating many of the benefits on
natural graphs.

6.5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-graph to store the computation state and encode
the interaction between vertex-programs. The placement of the data-graph structure and data plays a central
role in minimizing communication and ensuring work balance.

A common approach to placing a graph on a cluster of pmachines is to construct a balanced p-way edge-cut
(e.g., Figure 6.4a) in which vertices are evenly assigned to machines and the number of edges spanning
machines is minimized. Unfortunately, the tools [Karypis and Kumar, 1998, Pellegrini and Roman, 1996]
for constructing balanced edge-cuts perform poorly [Abou-Rjeili and Karypis, 2006, Lang, 2004, Leskovec
et al., 2008] on power-law graphs. When the graph is difficult to partition, both GraphLab and Pregel resort
to hashed (random) vertex placement. While fast and easy to implement, hashed vertex placement cuts
most of the edges:

Theorem 6.5.1. If vertices are randomly assigned to p machines then the expected fraction of edges cut is:

E

[
|Edges Cut|
|E|

]
= 1− 1

p
. (6.6)

For a power-law graph with exponent α, the expected number of edges cut per-vertex is:

E

[
|Edges Cut|
|V |

]
=

(
1− 1

p

)
E [D[v]] =

(
1− 1

p

)
h|V | (α− 1)

h|V | (α)
, (6.7)

where the h|V | (α) =
∑|V |−1

d=1 d−α is the normalizing constant of the power-law Zipf distribution.

Proof. An edge is cut if both vertices are randomly assigned to different machines. The probability that
both vertices are assigned to different machines is 1− 1/p.

Every cut edge contributes to storage and network overhead since both machines maintain a copy of the
adjacency information and in some cases Gregor and Lumsdaine [2005], a ghost (local copy) of the vertex
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Figure 6.4: (a) An edge-cut and (b) vertex-cut of a graph into three parts. Shaded vertices are ghosts and
mirrors respectively.
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Figure 6.5: The communication pattern of the PowerGraph abstraction when using a vertex-cut. Gather
function runs locally on each machine and then one accumulators is sent from each mirror to the master.
The master runs the apply function and then sends the updated vertex data to all mirrors. Finally the scatter
phase is run in parallel on mirrors.

and edge data. For example in Figure 6.4a we construct a three-way edge-cut of a four vertex graph
resulting in five ghost vertices and all edge data being replicated. Any changes to vertex and edge data
associated with a cut edge must be synchronized across the network. For example, using just two machines,
a random cut will cut roughly half the edges, requiring |E| /2 communication.

6.5.1 Balanced p-way Vertex-Cut

By factoring the vertex program along the edges in the graph, The PowerGraph abstraction allows a single
vertex-program to span multiple machines. In Figure 6.5 a single high degree vertex program has been
split across two machines with the gather and scatter functions running in parallel on each machine and
accumulator and vertex data being exchanged across the network.

Because the PowerGraph abstraction allows a single vertex-program to span multiple machines, we can
improve work balance and reduce communication and storage overhead by evenly assigning edges to
machines and allowing vertices to span machines. Each machine only stores the edge information for the
edges assigned to that machine, evenly distributing the massive amounts of edge data. Since each edge is
stored exactly once, changes to edge data do not need to be communicated. However, changes to vertex
must be copied to all the machines it spans, thus the storage and network overhead depend on the number
of machines spanned by each vertex.

We minimize storage and network overhead by limiting the number of machines spanned by each vertex.
A balanced p-way vertex-cut formalizes this objective by assigning each edge e ∈ E to a machine
A(e) ∈ {1, . . . , p}. Each vertex then spans the set of machines A(v) ⊆ {1, . . . , p} that contain its adjacent
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edges. We define the balanced vertex-cut objective:

min
A

1

|V |
∑
v∈V
|A(v)| (6.8)

s.t. max
m
|{e ∈ E |A(e) = m}| , < λ

|E|
p

(6.9)

where the imbalance factor λ ≥ 1 is a small constant. We use the term replicas of a vertex v to denote
the |A(v)| copies of the vertex v: each machine in A(v) has a replica of v. Because changes to vertex
data are communicated to all replicas, the communication overhead is also given by |A(v)|. The objective
(Eq. (6.8)) therefore minimizes the average number of replicas in the graph and as a consequence the total
storage and communication requirements of the PowerGraph engine.

For each vertex v with multiple replicas, one of the replicas is randomly nominated as the master which
maintains the master version of the vertex data. All remaining replicas of v are then mirrors and maintain a
local cached read only copy of the vertex data. (e.g., Figure 6.4b). For instance, in Figure 6.4b we construct
a three-way vertex-cut of a graph yielding only 2 mirrors. Any changes to the vertex data (e.g., the Apply
function) must be made to the master which is then immediately replicated to all mirrors.

Vertex-cuts address the major issues associated with edge-cuts in power-law graphs. Percolation theory
[Albert et al., 2000] suggests that power-law graphs have good vertex-cuts. Intuitively, by cutting a small
fraction of the very high degree vertices we can quickly shatter a graph. Furthermore, because the balance
constraint (Eq. (6.9)) ensures that edges are uniformly distributed over machines, we naturally achieve
improved work balance even in the presence of very high-degree vertices.

The simplest method to construct a vertex cut is to randomly assign edges to machines. Random (hashed)
edge placement is fully data-parallel, achieves nearly perfect balance on large graphs, and can be applied
in the streaming setting. In the following theorem, we relate the expected normalized replication factor
(Eq. (6.8)) to the number of machines and the power-law constant α.

Theorem 6.5.2 (Randomized Vertex Cuts). A random vertex-cut on p machines has an expected replication:

E

[
1

|V |
∑
v∈V
|A(v)|

]
=

p

|V |
∑
v∈V

(
1−

(
1− 1

p

)D[v]
)
. (6.10)

where D[v] denotes the degree of vertex v. For a power-law graph the expected replication (Figure 6.6a) is
determined entirely by the power-law constant α:

E

[
1

|V |
∑
v∈V
|A(v)|

]
= p− p

h|V | (α)

|V |−1∑
d=1

(
p− 1

p

)d
d−α, (6.11)

where h|V | (α) =
∑|V |−1

d=1 d−α is the normalizing constant of the power-law Zipf distribution.

Proof. By linearity of expectation:

E

[
1

|V |
∑
v∈V
|A(v)|

]
=

1

|V |
∑
v∈V

E [|A(v)|] , (6.12)
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Figure 6.6: (a) Expected replication factor for different power-law constants. (b) The ratio of the expected
communication and storage cost of random edge cuts to random vertex cuts as a function of the number
machines. This graph assumes that edge data and vertex data are the same size.

The expected replication E [|A(v)|] of a single vertex v can be computed by considering the process of
randomly assigning the D[v] edges adjacent to v. Let the indicator Xi denote the event that vertex v has at
least one of its edges on machine i. The expectation E [Xi] is then:

E [Xi] = 1−P (v has no edges on machine i) (6.13)

= 1−
(

1− 1

p

)D[v]

, (6.14)

The expected replication factor for vertex v is then:

E [|A(v)|] =

p∑
i=1

E [Xi] = p

(
1−

(
1− 1

p

)D[v]
)
. (6.15)

Treating D[v] as a Zipf random variable:

E

[
1

|V |
∑
v∈V
|A(v)|

]
=

p

|V |
∑
v∈V

(
1−E

[(
p− 1

p

)D[v]
])

, (6.16)

and taking the expectation under P (d) = d−α/h|V | (α):

E

[(
1− 1

p

)D[v]
]

=
1

h|V | (α)

|V |−1∑
d=1

(
1− 1

p

)d
d−α. (6.17)

While lower α values (more high-degree vertices) imply a higher replication factor (Figure 6.6a) the
effective gains of vertex-cuts relative to edge cuts (Figure 6.6b) actually increase with lower α. In
Figure 6.6b we plot the ratio of the expected costs (comm. and storage) of random edge-cuts (Eq. (6.7)) to
the expected costs of random vertex-cuts (Eq. (6.11)) demonstrating order of magnitude gains.

Finally, the vertex cut model is also highly effective for regular graphs since in the event that a good
edge-cut can be found it can be converted to a better vertex cut:
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Theorem 6.5.3. For a given an edge-cut with g ghosts, any vertex cut along the same partition boundary
has strictly fewer than g mirrors.

Proof of Theorem 6.5.3. Consider the two-way edge cut which cuts the set of edges E′ ∈ E and let V ′ be
the set of vertices in E′. The total number of ghosts induced by this edge partition is therefore |V ′|. If we
then select and delete arbitrary vertices from V ′ along with their adjacent edges until no edges remain, then
the set of deleted vertices corresponds to a vertex-cut in the original graph. Since at most |V ′| − 1 vertices
may be deleted, there can be at most |V ′| − 1 mirrors.

6.5.2 Greedy Vertex-Cuts

We can improve upon the randomly constructed vertex-cut by de-randomizing the edge-placement process.
The resulting algorithm is a sequential greedy heuristic which places the next edge on the machine that
minimizes the conditional expected replication factor. To construct the de-randomization we consider the
task of placing the i+ 1 edge after having placed the previous i edges. Using the conditional expectation
we define the objective:

arg min
k

E

[∑
v∈V
|A(v)| |Ai, A(ei+1) = k

]
, (6.18)

where Ai is the assignment for the previous i edges. Using Theorem 6.5.2 to evaluate Eq. (6.18) we obtain
the following edge placement rules for the edge (u, v):

Case 1: If A(u) and A(v) intersect, then the edge should be assigned to a machine in the intersection.

Case 2: If A(u) and A(v) are not empty and do not intersect, then the edge should be assigned to one of
the machines from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.

Case 4: If neither vertex has been assigned, then assign the edge to the least loaded machine.

Because the greedy-heuristic is a de-randomization it is guaranteed to obtain an expected replication factor
that is no worse than random placement and in practice can be much better. Unlike the randomized algorithm,
which is embarrassingly parallel and easily distributed, the greedy algorithm requires coordination between
machines. We consider two distributed implementations:

Coordinated: maintains the values of Ai(v) in a distributed table. Then each machine runs the greedy
heuristic and periodically updates the distributed table. Local caching is used to reduce communica-
tion at the expense of accuracy in the estimate of Ai(v).

Oblivious: runs the greedy heuristic independently on each machine. Each machine maintains its own
estimate of Ai with no additional communication.

In Figure 6.8a, we compare the replication factor of both heuristics against random vertex cuts on the
Twitter follower network. We plot the replication factor as a function of the number of machines (EC2
instances described in Section 6.7) and find that random vertex cuts match the predicted replication given in
Theorem 6.5.2. Furthermore, the greedy heuristics substantially improve upon random placement with an
order of magnitude reduction in the replication factor, and therefore communication and storage costs. For
a fixed number of machines (p = 32), we evaluated (Figure 6.7a) the replication factor of the two heuristics
on five real-world graphs (Table 6.1a). In all cases the greedy heuristics out-perform random placement,
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Figure 6.7: (a) The actual replication factor on 32 machines. (b) The effect of partitioning on runtime.

Graph |V | |E|
Twitter [Kwak et al., 2010] 41M 1.4B
UK [Bordino et al., 2008] 132.8M 5.5B
Amazon [Boldi and Vigna, 2004, Boldi et al., 2011] 0.7M 5.2M
LiveJournal [Leskovec, 2011] 5.4M 79M
Hollywood [Boldi and Vigna, 2004, Boldi et al., 2011] 2.2M 229M

(a) Real world graphs

α # Edges
1.8 641,383,778
1.9 245,040,680
2.0 102,838,432
2.1 57,134,471
2.2 35,001,696
(b) Synthetic Graphs

Table 6.1: (a) A collection of Real world graphs. (b) Randomly constructed ten-million vertex power-law
graphs with varying α. Smaller α produces denser graphs.

while doubling the load time (Figure 6.8b). The Oblivious heuristic achieves compromise by obtaining a
relatively low replication factor while only slightly increasing runtime.

6.6 Abstraction Comparison

In this section, we experimentally characterize the dependence on α and the relationship between fan-in and
fan-out by using the Pregel, GraphLab, and PowerGraph abstractions to run PageRank on five synthetically
constructed power-law graphs. Each graph has ten-million vertices and an α ranging from 1.8 to 2.2. The
graphs were constructed by randomly sampling the out-degree of each vertex from a Zipf distribution
and then adding out-edges such that the in-degree of each vertex is nearly identical. We then inverted
each graph to obtain the corresponding power-law fan-in graph. The density of each power-law graph is
determined by α and therefore each graph has a different number of edges (see Table 6.1b).

We used the GraphLab v1 C++ implementation from Chapter 5 and added instrumentation to track network
usage. As of the writing of this chapter, public implementations of Pregel (e.g., Giraph) were unable to
handle even our smaller synthetic problems due to memory limitations. Consequently, we used Piccolo
[Power and Li, 2010] as a proxy implementation of Pregel since Piccolo naturally expresses the Pregel
abstraction and provides an efficient C++ implementation with dynamic load-balancing. Finally, we used
our implementation of PowerGraph described in Section 6.7.
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Figure 6.8: (a,b) Replication factor and runtime of graph ingress for the Twitter follower network as a
function of the number of machines for random, oblivious, and coordinated vertex-cuts.

All experiments in this section are evaluated on an eight node Linux cluster. Each node consists of two
quad-core Intel Xeon E5620 processors with 32 GB of RAM and is connected via 1-GigE Ethernet. All
systems were compiled with GCC 4.4. GraphLab and Piccolo used random edge-cuts while PowerGraph
used random vertex-cuts.. Results are averaged over 20 iterations.

6.6.1 Computation Imbalance

The sequential component of the PageRank vertex-program is proportional to out-degree in the Pregel
abstraction and in-degree in the GraphLab abstraction. Alternatively, PowerGraph eliminates this sequen-
tial dependence by distributing the computation of individual vertex-programs over multiple machines.
Therefore we expect, highly-skewed (low α) power-law graphs to increase work imbalance under the Pregel
(fan-in) and GraphLab (fan-out) abstractions but not under the PowerGraph abstraction, which evenly
distributed high-degree vertex-programs. To evaluate this hypothesis we ran eight “workers” per system
(64 total workers) and recorded the vertex-program time on each worker.

In Figure 6.9a and Figure 6.9b we plot the standard deviation of worker per-iteration runtimes, a measure
of work imbalance, for power-law fan-in and fan-out graphs respectively. Higher standard deviation implies
greater imbalance. While lower α increases work imbalance for GraphLab (on fan-in) and Pregel (on
fan-out), the PowerGraph abstraction is unaffected in either edge direction.

6.6.2 Communication Imbalance

Because GraphLab and Pregel use edge-cuts, their communication volume is proportional to the number of
ghosts: the replicated vertex and edge data along the partition boundary. If one message is sent per edge,
Pregel’s combiners ensure that exactly one network message is transmitted for each ghost. Similarly, at
the end of each iteration GraphLab synchronizes each ghost and thus the communication volume is also
proportional to the number of ghosts. PowerGraph on the other hand uses vertex-cuts and only synchronizes
mirrors after each iteration. The communication volume of a complete iteration is therefore proportional to
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Figure 6.9: Synthetic Experiments: Work Imbalance and Communication. (a, b) Standard deviation
of worker computation time across 8 distributed workers for each abstraction on power-law fan-in and
fan-out graphs. (b, c) Bytes communicated per iteration for each abstraction on power-law fan-in and
fan-out graphs.

the number of mirrors induced by the vertex-cut. As a consequence we expect that PowerGraph will reduce
communication volume.

In Figure 6.9c and Figure 6.9d we plot the bytes communicated per iteration for all three systems under
power-law fan-in and fan-out graphs. Because Pregel only sends messages along out-edges, Pregel
communicates more on power-law fan-out graphs than on power-law fan-in graphs.

On the other hand, GraphLab and PowerGraph’s communication volume is invariant to power-law fan-in
and fan-out since neither considers edge direction during data-synchronization. However, PowerGraph
communicates significantly less than GraphLab which is a direct result of the efficacy of vertex cuts.
Finally, PowerGraph’s total communication increases only marginally on the denser graphs and is the
lowest overall.
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Figure 6.10: Synthetic Experiments Runtime. (a, b) Per iteration runtime of each abstraction on synthetic
power-law graphs.

6.6.3 Runtime Comparison

PowerGraph significantly out-performs GraphLab and Pregel on low α graphs. In Figure 6.10a and
Figure 6.10b we plot the per iteration runtime for each abstraction. In both cases the overall runtime perfor-
mance closely matches the communication overhead (Figure 6.9c and Figure 6.9d) while the computation
imbalance (Figure 6.9a and Figure 6.9b) appears to have little effect. The limited effect of imbalance is due
to the relatively lightweight nature of the PageRank computation and we expect more complex algorithms
(e.g., statistical inference) to be more susceptible to imbalance. However, when greedy (coordinated)
partitioning is used we see an additional 25% to 50% improvement in runtime.

6.7 Implementation and Evaluation

In this section, we describe and evaluate our implementation of the PowerGraph1 system. All experiments
are performed on a 64 node cluster of Amazon EC2 cc1.4xlarge Linux instances. Each instance has
two quad core Intel Xeon X5570 processors with 23GB of RAM, and is connected via 10 GigE Ethernet.
PowerGraph was written in C++ and compiled with GCC 4.5.

We implemented three variations of the PowerGraph abstraction. To demonstrate their relative implementa-
tion complexity, we provide the line counts, excluding common support code:

Bulk Synchronous (Sync): A fully synchronous implementation of PowerGraph as described in Sec-
tion 6.4.3. [600 lines]

Asynchronous (Async): An asynchronous implementation of PowerGraph which allows arbitrary inter-
leaving of vertex-programs Section 6.4.3. [900 lines]

Asynchronous Serializable (Async+S): An asynchronous implementation of PowerGraph which guaran-
tees serializability of all vertex-programs (equivalent to “edge consistency” in GraphLab). [1600
lines]

1PowerGraph is now part of the GraphLab2 open source project and can be obtained from http://graphlab.org.
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In all cases the system is entirely symmetric with no single coordinating instance or scheduler. Each
instances is given the list of other machines and start by reading a unique subset of the graph data files
from HDFS. TCP connections are opened with other machines as needed to build the distributed graph and
run the engine.

6.7.1 Graph Loading and Placement

The graph structure and data are loaded from a collection of text files stored in a distributed file-system
(HDFS) by all instances in parallel. Each machine loads a separate subset of files (determined by hashing)
and applies one of the three distributed graph partitioning algorithms to place the data as it is loaded. As a
consequence partitioning is accomplished in parallel and data is immediately placed in its final location.
Unless specified, all experiments were performed using the oblivious algorithm. Once computation is
complete, the final vertex and edge data are saved back to the distributed file-system in parallel.

In Figure 6.7b, we evaluate the performance of a collection of algorithms varying the partitioning procedure.
Our simple partitioning heuristics are able to improve performance significantly across all algorithms,
decreasing runtime and memory utilization. Furthermore, the runtime scales linearly with the replication
factor: halving the replication factor approximately halves runtime.

6.7.2 Synchronous Engine (Sync)

Our synchronous implementation closely follows the description in Section 6.4.3. Each machine runs a
single multi-threaded instance to maximally utilize the multi-core architecture. We rely on background
communication to achieve computation/communication interleaving. The synchronous engine’s fully
deterministic execution makes it easy to reason about programmatically and minimizes effort needed for
tuning and performance optimizations.

In Figure 6.11a and Figure 6.11b we plot the runtime and total communication of one iteration of PageRank
on the Twitter follower network for each partitioning method. To provide a point of comparison (Table 6.2),
the Spark [Zaharia et al., 2010] framework computes one iteration of PageRank on the same graph in 97.4s
on a 50 node-100 core cluster [Stanton and Kliot, 2011]. PowerGraph is therefore between 3-8x faster than
Spark on a comparable number of cores. On the full cluster of 512 cores, we can compute one iteration in
3.6s.

The greedy partitioning heuristics improves both performance and scalability of the engine at the cost of
increased load-time. The load time for random, oblivious, and coordinated placement were 59, 105, and
239 seconds respectively. While greedy partitioning heuristics increased load-time by up to a factor of four,
they still improve overall runtime if more than 20 iterations of PageRank are performed. In Figure 6.11c
we plot the runtime of each iteration of PageRank on the Twitter follower network. Delta caching improves
performance by avoiding unnecessary gather computation, decreasing total runtime by 45%. Finally, in
Figure 6.11d we evaluate weak-scaling: ability to scale while keeping the problem size per processor
constant. We run SSSP (Figure 6.3) on synthetic power-law graphs (α = 2), with ten-million vertices per
machine. Our implementation demonstrates nearly optimal weak-scaling and requires only 65s to solve a
6.4B edge graph.
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Figure 6.11: Synchronous Experiments (a,b) Synchronous PageRank Scaling on Twitter graph. (c) The
PageRank per iteration runtime on the Twitter graph with and without delta caching. (d) Weak scaling of
SSSP on synthetic graphs.

6.7.3 Asynchronous Engine (Async)

We implemented the asynchronous PowerGraph execution model (Section 6.4.3) using a simple state
machine for each vertex which can be either: INACTIVE, GATHER, APPLY or SCATTER. Once activated,
a vertex enters the gathering state and is placed in a local scheduler which assigns cores to active vertices
allowing many vertex-programs to run simultaneously thereby hiding communication latency. While
arbitrary interleaving of vertex programs is permitted, we avoid data races by ensuring that individual
gather, apply, and scatter calls have exclusive access to their arguments.

We evaluate the performance of the Async engine by running PageRank on the Twitter follower network.
In Figure 6.12a, we plot throughput (number of vertex-program operations per second) against the number
of machines. Throughput increases moderately with both the number of machines as well as improved
partitioning. We evaluate the gains associated with delta caching (Section 6.4.2) by measuring throughput
as a function of time (Figure 6.12b) with caching enabled and with caching disabled. Caching allows the
algorithm to converge faster with fewer operations. Surprisingly, when caching is disabled, the throughput
increases over time. Further analysis reveals that the computation gradually focuses on high-degree vertices,
increasing the computation/communication ratio.
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We evaluate the graph coloring vertex-program (Figure 6.3) which cannot be run synchronously since all
vertices would change to the same color on every iteration. Graph coloring is a proxy for many MLDM
algorithms like Gibbs sampling (Chapter 4). In Figure 6.12c we evaluate weak-scaling on synthetic
power-law graphs (α = 2) with five-million vertices per machine and find that the Async engine performs
nearly optimally. The slight increase in runtime may be attributed to an increase in the number of colors
due to increasing graph size.

6.7.4 Async. Serializable Engine (Async+S)

The Async engine is useful for a broad range of tasks, providing high throughput and performance. However,
unlike the synchronous engine, the asynchronous engine is difficult to reason about programmatically. We
therefore extended the Async engine to enforce serializability.

The Async+S engine ensures serializability by preventing adjacent vertex-programs from running simul-
taneously. Ensuring serializability for graph-parallel computation is equivalent to solving the dining
philosophers problem where each vertex is a philosopher, and each edge is a fork. GraphLab implemented
the Dijkstra [1971] algorithm where forks are acquired sequentially according to a total ordering. Instead,
PowerGraph implements the Chandy and Misra [1984] solution which acquires all forks simultaneously,
permitting a high degree of parallelism. We extend the Chandy and Misra [1984] solution to the vertex-cut
setting by enabling each vertex replica to request only forks for local edges and using a simple consensus
protocol to establish when all replicas have succeeded.

We evaluate the scalability and computational efficiency of the Async+S engine on the graph coloring task.
We observe in Figure 6.12c that the amount of achieved parallelism does not increase linearly with the
number of vertices. Because the density (i.e., contention) of power-law graphs increases super-linearly with
the number of vertices, we do not expect the amount of serializable parallelism to increase linearly.

In Figure 6.12d, we plot the proportion of edges that satisfy the coloring condition (both vertices have
different colors) for both the Async and the Async+S engines. While the Async engine quickly satisfies the
coloring condition for most edges, the remaining 1% take 34% of the runtime. We attribute this behavior to
frequent races on tightly connected vertices. Alternatively, the Async+S engine performs more uniformly.
If we examine the total number of user operations we find that the Async engine does more than twice the
work of the Async+S engine.

Finally, we evaluate the Async and the Async+S engines on a popular machine learning algorithm:
Alternating Least Squares (ALS). The ALS algorithm has a number of variations which allow it to be
used in a wide range of applications including user personalization [Zhou et al., 2008] and document
semantic analysis [Hofmann, 1999]. We apply ALS to the Wikipedia term-document graph consisting of
11M vertices and 315M edges to extract a mixture of topics representation for each document and term.
The number of topics d is a free parameter that determines the computational complexity O

(
d3
)

of each
vertex-program. In Figure 6.13a, we plot the ALS throughput on the Async engine and the Async+S engine.
While the throughput of the Async engine is greater, the gap between engines shrinks as d increases and
computation dominates the consistency overhead. To demonstrate the importance of serializability, we plot
in Figure 6.13b the training error, a measure of solution quality, for both engines. We observe that while
the Async engine has greater throughput, the Async+S engine converges faster.

The complexity of the Async+S engine is justified by the necessity for serializability in many applications
(e.g., ALS). Furthermore, serializability adds predictability to the nondeterministic asynchronous execution.
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PageRank Runtime |V | |E| System
Kang et al. [2009] 198s – 1.1B 50x8
Zaharia et al. [2010] 97.4s 40M 1.5B 50x2
Ekanayake et al. [2010] 36s 50M 1.4B 64x4
PowerGraph (Sync) 3.6s 40M 1.5B 64x8

Triangle Count Runtime |V | |E| System
Suri and Vassilvitskii [2011] 423m 40M 1.4B 1636x?
PowerGraph (Sync) 1.5m 40M 1.4B 64x16

LDA Tok/sec Topics System
Smola and Narayanamurthy [2010] 150M 1000 100x8
PowerGraph (Async) 110M 1000 64x16

Table 6.2: Relative performance of PageRank, triangle counting, and LDA on similar graphs. PageRank
runtime is measured per iteration. Both PageRank and triangle counting were run on the Twitter follower
network and LDA was run on Wikipedia. The systems are reported as number of nodes by number of cores.

For example, even graph coloring may not terminate on dense graphs unless serializability is ensured.

6.7.5 Fault Tolerance

Like GraphLab and Pregel, PowerGraph achieves fault-tolerance by saving a snapshot of the data-graph.
The synchronous PowerGraph engine constructs the snapshot between super-steps and the asynchronous
engine suspends execution to construct the snapshot. An asynchronous snapshot using GraphLab’s snapshot
algorithm can also be implemented. The checkpoint overhead, typically a few seconds for the largest
graphs we considered, is small relative to the running time of each application.

6.7.6 MLDM Applications

To assess the relative performance of PowerGraph we compare against published results on several real-
world problems and datasets. In Table 6.2 we provide comparisons of the PowerGraph system with
published results on similar data for PageRank, Triangle Counting [Suri and Vassilvitskii, 2011], and
collapsed Gibbs sampling for the LDA model [Smola and Narayanamurthy, 2010].

We compared our PageRank per iteration runtime with published results on other systems and were able to
achieve order of magnitude gains compared to published results. However, to provide a fair comparison we
did not take advantage of dynamic or asynchronous scheduling which would require accuracy information
for the published results. In Figure 6.14a we compare the PageRank algorithm when run synchronously,
asynchronously, and asynchronously with dynamic scheduling (following the GrAD methodology). The
dynamic asynchronous scheduling substantially accelerates convergence (reduction in error). To get a sense
of the importance of dynamic scheduling we also plot the number of vertices against the update count in
Figure 6.14b. More than 50% of the vertices are updated only once.

The triangle counting application computes for each vertex the number of neighbors that are also connected
(form a triangle). Triangle counting is used to estimate the strength of the community around a vertex. Users
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with a greater triangles to neighbors ratio have a tighter community. Triangle counting was implemented in
the PowerGraph abstraction by using the gather phase to collect the set of neighboring vertices and the
scatter phase to compute and store the intersection of the neighborhood set on each edge. In contrast, Suri
and Vassilvitskii [2011] used Hadoop and were forced to emit a large number of intermediate key-value
pairs (high fan-out) flooding the network. As a consequence PowerGraph is over two orders of magnitude
faster.

For LDA, the state-of-the-art solution is a heavily optimized system designed for this specific task by
Smola and Narayanamurthy [2010]. We implemented an asynchronous version of the collapsed Gibbs
sampler for LDA similar to the one described by Smola and Narayanamurthy [2010]. Neither samplers are
ergodic but both generate reasonable topics relatively quickly. The PowerGraph sampler enforces stronger
local consistency guarantees and could potentially converge faster for strongly correlated documents.
Nonetheless, we compared both samplers in terms of the sampling throughput. We find that PowerGraph is
able to achieve comparable performance using only 200 lines of user code.

6.8 Additional Related Work

The vertex-cut approach to distributed graph placement is related to work [Catalyurek and Aykanat, 1996,
Devine et al., 2006] in hypergraph partitioning. In particular, a vertex-cut problem can be cast as a
hypergraph-cut problem by converting each edge to a vertex, and each vertex to a hyper-edge. However,
existing hypergraph partitioning can be very time intensive. While our cut objective is similar to the
“communication volume” objective, the streaming vertex cut setting described in this chapter is novel.
Stanton and Kliot [2011] developed several heuristics for the streaming edge-cuts but do not consider the
vertex-cut problem.

Several [Buluç and Gilbert, 2011, Kang et al., 2009] have proposed generalized sparse matrix vector
multiplication as a basis for graph-parallel computation. These abstractions operate on commutative
associative semi-rings and therefore also have generalized gather and sum operations. However, they do
not support the more general apply and scatter operations, as well as mutable edge-data and are based on a
strictly synchronous model in which all computation is run in every iteration.

While we discuss Pregel and GraphLab in detail, there are other similar graph-parallel abstractions. Closely
related to Pregel is BPGL [Gregor and Lumsdaine, 2005] which implements a synchronous traveler model.
Signal/Collect [Stutz et al., 2010] is an asynchronous messaging abstraction with dynamic scheduling.
However signal/collect is a shared memory abstraction. Alternatively, Kineograph [Cheng et al., 2012]
presents a graph-parallel framework for time-evolving graphs which mixes features from both GraphLab
and Piccolo. Pujol et al. [2010] present a distributed graph database but do not explicitly consider the
power-law structure. Finally, Kyrola et al. [2012] present GraphChi: an efficient single-machine disk-based
implementation of the GraphLab abstraction. Impressively, it is able to significantly out-perform large
Hadoop deployments on many graph problems while using only a single machine: performing one iteration
of PageRank on the Twitter Graph in only 158s (PowerGraph: 3.6s). The techniques described in GraphChi
can be used to add out-of-core storage to PowerGraph.
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6.9 Conclusion

The need to reason about large-scale graph-structured data has driven the development of new graph-parallel
abstractions such as GraphLab and Pregel. However graphs derived from real-world phenomena often
exhibit power-law degree distributions, which are difficult to partition and can lead to work imbalance and
substantially increased communication and storage.

To address these challenges, we introduced the PowerGraph abstraction which exploits the Gather-Apply-
Scatter model of computation to factor vertex-programs over edges, splitting high-degree vertices and
exposing greater parallelism in natural graphs. We then introduced vertex-cuts and a collection of fast
greedy heuristics to substantially reduce the storage and communication costs of large distributed power-law
graphs. We theoretically related the power-law constant to the communication and storage requirements of
the PowerGraph system and empirically evaluate our analysis by comparing against GraphLab and Pregel.
Finally, we evaluate the PowerGraph system on several large-scale problems using a 64 node EC2 cluster
and demonstrating the scalability and efficiency and in many cases order of magnitude gains over published
results.

We are actively using PowerGraph to explore new large-scale machine learning algorithms. We are
beginning to study how vertex replication and data-dependencies can be used to support fault-tolerance
without check-pointing. In addition, we are exploring ways to support time-evolving graph structures.
Finally, we believe that many of the core ideas in the PowerGraph abstraction can have a significant impact
in the design and implementation of graph-parallel systems beyond PowerGraph.
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Figure 6.12: Asynchronous Experiments (a) Number of user operations (gather/apply/scatter) issued per
second by Dynamic PageRank as # machines is increased. (b) Total number of user ops with and without
caching plotted against time. (c) Weak scaling of the graph coloring task using the Async engine and the
Async+S engine (d) Proportion of non-conflicting edges across time on a 8 machine, 40M vertex instance
of the problem. The green line is the rate of conflicting edges introduced by the lack of consistency (peak
236K edges per second) in the Async engine. When the Async+S engine is used no conflicting edges are
ever introduced.
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Figure 6.13: (a) The throughput of ALS measured in millions of User Operations per second. (b) Training
error (lower is better) as a function of running time for ALS application.
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Figure 6.14: PageRank Updates and Convergence: To assess the gains of applying the GrAD methodol-
ogy to PageRank we compare synchronous, asynchronous, and asynchronous + dynamic implementations
achieved by using the synchronous and asynchronous engine. We plot (in log-scale) the L1 error (a) relative
to the true PageRank (computed by running synchronous PageRank to convergence) as a function of vertex
updates. To get a sense of the importance of dynamic scheduling we plot (b) the number of vertices against
the number of times those vertices were updated. More than 50% of the vertices are only updated once.
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Chapter 7

Conclusion and Observations

Probabilistic reasoning lies at the foundation of machine learning and statistics and is essential to extracting
signal from noisy data. This thesis explored the task of designing parallel and distributed algorithms and
systems for probabilistic reasoning. We proposed the three design principles:

1. Graphical: Explicitly represent statistical and computational dependencies as a sparse graph.

2. Asynchronous: Allow computation to proceed asynchronously as dependencies are satisfied obeying
the dependency structure encoded in the graph.

3. Dynamic: Adaptively identify and prioritize sub-problems that when solved make the most progress
towards the solution.

The Graphical, Asynchronous, and Dynamic design principles form the basis of the GrAD design method-
ology which lead to the thesis statement:

By factoring large-scale probabilistic computation with respect to the underlying graphical
structure, asynchronously addressing sequential dependencies, and dynamically scheduling
computation we can construct efficient parallel and distributed systems capable of scalable
probabilistic reasoning.

We evaluated the thesis statement by first developing a series of efficient parallel and distributed proba-
bilistic inference algorithms. In Chapter 3 we studied parallel and distributed algorithms for loopy belief
propagation. We demonstrated both theoretically and experimentally that the natural fully synchronous par-
allelization can be highly inefficient. We then designed a series of alternative parallelizations by exploiting
asynchrony and dynamic scheduling. Through this process we developed analytical tools to characterize the
flow of information along the graph and the relationship between model parameters and the approximate
sequential structure of message passing inference. In the end we arrived at the SplashBP algorithm which
employs optimal tree scheduling along with advances in asynchronous dynamic scheduling to achieve an
efficient scalable parallel and distributed inference algorithm. We implemented each of these algorithms
in the multicore and distributed settings and demonstrated how applying the GrAD design principles can
accelerate convergence, improve stability, and lead to scalable systems for probabilistic reasoning.

Motivated by our work on loopy belief propagation, in Chapter 4 we applied the GrAD design principles to
the widely used Gibbs sampling algorithm from Bayesian statistics. We again demonstrated that, the natural
synchronous parallelization leads to a Gibbs sampler which converges to the wrong stationary distribution.
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We then applied the GrAD design principles to develop three parallel Gibbs samplers which are guaranteed
to accelerate mixing while simultaneously preserving the correct stationary distribution. Through this
process we also developed a set of basic analytical tools that relate properties of the graph coloring to the
parallel structure of Gibbs sampling as well as the stationary distribution of the incorrect Synchronous
Gibbs sampler. To address settings with tightly coupled variables we introduced the Splash Gibbs sampler
which incrementally constructs multiple conditionally independent bounded treewidth blocks (Splashes)
in parallel. We accelerate burn-in by dynamically growing the Splash tree structure. We implemented
and evaluated the proposed samplers in the multicore setting an demonstrated strong parallel scaling and
accelerated burn-in and mixing.

After validating the thesis approach by designing and implementing a collection of efficient parallel
and distributed inference algorithms, we introduced GraphLab (Chapter 5) which generalizes our earlier
system design efforts and specifically targets algorithms that follow the GrAD design principles. The
GraphLab abstractions decomposes the program state and computation along the structure of the graph,
introduces a simple sequential shared-memory model of graph computation, and supports a range of
powerful dynamic scheduling primitives. As a consequence GraphLab, allows machine learning experts to
compactly represent sophisticated asynchronous dynamic graph algorithms for probabilistic reasoning. The
GraphLab system then executes those algorithms efficiently on multicore and distributed systems using
many of the system design techniques developed in our work on probabilistic inference. We experimentally
assessed the GraphLab system on a wide range of real-world applications demonstrating strong scalability
and performance; further validating the thesis approach on an even wider range of machine learning and
data mining applications.

While GraphLab generalized the thesis approach to a much broader class of Machine Learning and Data
Mining algorithms, as we scaled to increasingly larger graphs with billions of vertices and edges we
discovered a critical performance barrier. In Chapter 6, we showed that the power-law sparsity structure
found in the majority of real-world graphs leads to substantial communication and storage overhead
for existing graph computation systems, including GraphLab. To address this challenge we introduced
PowerGraph which refined the GraphLab abstraction to further decompose vertex programs along edges
in the graph and thereby enable a vertex-cut based distributed graph representation. As a consequence
we were able to leverage the power-law structure to improve scalability and reduce communication and
storage overhead. We implemented PowerGraph in the multicore and distributed setting and then ported
most of the GraphLab algorithms to the PowerGraph system. Finally we theoretically and experimentally
demonstrated that the PowerGraph system is capable of achieving orders-of-magnitude gains in scalability
and performance over existing systems.

Throughout the thesis work, we observed several repeated patterns that go beyond the thesis statement. We
now discuss some of these common patterns and their impact on our design decisions and the performance
of the resulting algorithms and systems as well as their implications on future work.

7.1 Modeling Through Recurrence Relationships

Whether computing the marginal posterior of some variable or estimating the centrality of a user in a social
network, the algorithms considered in this thesis defined a recurrence relationship between a vertex and its
neighbors and then specified a method to resolve that recurrence relationship. In most cases, the algorithms
iteratively satisfy the relationships locally and then, if necessary, repair the relationship on neighboring
vertices.
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The graphical recurrence relationship simplifies the process of designing complex models for large structured
data. It is surprisingly intuitive to express complex models in terms of local relationships. For example, the
popularity of a user in a social network can be succinctly and intuitively expressed as a simple function of
the popularity of her followers. By assuming we have successfully modeled our neighbors in the graph,
we can introduce a simple recurrence step to extend the model to ourselves. Moreover, by decomposing
the modeling task to that of modeling local relationships we simplify the task of building large complex
models.

The process of iteratively maintaining the graphical recurrence relationship is well suited for graph-parallel
computation. Because the recurrence relationship can be expressed and maintained by only accessing the
neighborhood of a vertex, we are able to factor computation along vertices exposing substantial parallelism
and locality. As a consequence, we can more effectively parallelize these algorithms and represent the
program state in a distributed environment.

The recurrence relationship approach to modeling and algorithm design in naturally amenable to dynamic
scheduling. By defining a measure of the extent to which a recurrence is violated, we can associate priorities
with each vertex. Then by focusing computational resources on the most violated recurrence relationships
and propagating corrections along wavefronts we can often accelerate convergence of these algorithms. We
believe that future work in the development of and application of prioritized scheduling will produce in a
range of more efficient parallel and distributed algorithms.

7.2 Tradeoff between Parallelism and Convergence

By decomposing computation along vertices in a graph, graph-parallel algorithms expose substantial
parallelism. In principle, we could run computation on every single vertex simultaneously. This realization
forms the basis of existing graph-parallel systems and has contributed to the re-emergence of the bulk
synchronous model of graphical computation. However, as we have demonstrated in this thesis work,
such an extreme approach to parallelism leads to inefficient algorithms and in some cases inaccurate
solutions.

The graphical structure of graph-parallel algorithms induces an inherent sequential component to their
execution. At a high-level, computing the property of a vertex typically requires knowing the correct value
for its neighboring vertices. This sequential dependency structure is most apparent in chain graphs and in
Chapter 3 we discussed the role of chains of dependencies in the convergence of loopy belief propagation.
Alternatively, in Chapter 4 we discussed how neighboring variables must be updated sequentially to prove
algorithm correctness.

In Section 3.3 we demonstrated that the inefficiency that arises from not addressing the sequential depen-
dencies can result in asymptotically slower convergence. However, by running computation on multiple
vertices we are able to increase the computation throughput. We achieve a balance between the rate
of convergence and the increased throughput due to parallelism by asynchronously prioritizing parallel
resources. In addition we schedule computation along spanning trees and ensure a serializable execution
that is as close to the optimal sequential execution as possible.

Similarly, in Chapter 4 we showed that the fully parallel synchronous Gibbs sampler converges to the
wrong distribution. Again, by running vertex computation asynchronously and ensuring serializability
we were able to obtain a parallel execution that converges to the correct posterior distribution. Finally,
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by moving computation along wavefronts defined by spanning trees in the graph we were able to further
accelerate convergence.

By restricting our attention to serializable executions along dynamically prioritized wavefronts we are
substantially reducing the amount of available parallelism. Nonetheless, for most of the problems we
considered there was typically enough remaining parallelism to continue to obtain relatively strong scaling.
However, as we moved to large distributed systems and very high-degree vertices (Chapter 6), there were
cases where maintaining a serializable execution eliminated most of the vertex-level parallelism. For
example, while executing the vertex program on the center vertex of a star graph no other vertex program
may run. In these cases we were able to extract additional edge-level parallelism in the gather and scatter
phases of the GAS decomposition. In addition, the PowerGraph abstraction enabled a substantially more
efficient distributed graph representation as well as the ability to exploit edge-level parallelism in the
distributed setting.

7.3 Approximations and Parallelism

In our work on belief propagation we revealed the connection between approximate convergence and
parallelism. In particular, we showed that the limiting sequential component, defined by the parameter τε,
can be related to the accuracy of the fix-point approximation. By increasing the tolerance at convergence
we can effectively increase the number of processor resources that can be used efficiently. However, the
resulting algorithms did not depend on the τε parameter and instead prioritized the use of parallel resources
allowing the available resources to be used as efficiently as possible. Consequently, we expect to see a
diminishing returns as parallel resources exceed the efficient level of parallelism in the model.

In our work on Gibbs sampling we showed that the limiting sequential component depends on the chromatic
number of the underlying Markov Random field. However, unlike the τε parameter in belief propagation,
the chromatic number can be directly estimated from the Markov Random Field and the precise available
parallelism and acceleration in mixing can be quantified. In the case of models with two colorable Markov
Random Fields, we can obtain a fully synchronous approximation which introduces strong independence
assumptions but also exposes the maximum available parallelism. Unfortunately we were unable to extend
this analysis to Markov Random Fields with higher chromatic numbers. However, recent state-of-the-art
systems [Ahmed et al., 2012, Smola and Narayanamurthy, 2010] for approximate Gibbs sampling have
demonstrated the advantages of asynchronous computation and the substantial additional parallelism
achieved through approximations.

7.4 Challenges of Dynamic Scheduling

Throughout our work we found dynamic scheduling to be one of the more challenging principles of
the thesis methodology. To apply dynamic scheduling we had to overcome the challenges of defining
an informative measures of future progress as well as address the system challenges associated with
dynamically evolving computation. In addition, we had to deal with the interaction between the dynamic
heuristic and the asynchronous distributed nature of its execution.

While the recursive fixed-point formulation of the vast majority of algorithms leads to a natural measure
of local convergence, it is not always the optimal measure of future progress. For example in our work
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on belief propagation (Section 3.6.2) we found that an alternative formulation of local convergence can
improve performance and help reduce asymmetric convergence. Intuitively, small changes in one vertex
could potentially lead to large changes in neighboring vertices. We believe that more work into the theory
of adaptive prioritization will lead to more general methods to construct prioritization.

Designing and building the data structures to manage priorities presented substantial challenges. While there
is existing work in parallel priority queue design [Rao and Kumar, 1988, Shavit and Zemach, 1999] their
are no widely available implementations and existing data-structures typically assume integral or uniform
priorities. In our work, we found that since the priorities were directly coupled with the convergence
of each vertex the range of priorities rapidly decreased making it difficult to apply more classic binning
techniques. A reasonable compromise which seems to address the limitations in defining priorities as
well as the scalability of scheduling data-structures is to reduce the priority to the binary converged or
not converged states as was done in (Section 3.5). While a better priority definition can lead to improved
performance, this simple form of dynamic scheduling is easy to define and implement at scale.

Whether constructing an edge-cut (e.g., as in GraphLab Section 5.7.1) or constructing a vertex-cut (e.g.,
as in PowerGraph Section 6.5) we are balancing work by evenly distributing the graph across machines.
However, with dynamic scheduling an evenly distributed graph may lead to an imbalance in computation.
In Section 3.8.1 we proposed over-partitioning as a method to improve work-balance. However, over-
partitioning leads to increased communication over-head which for many applications (e.g., PageRank,
Shortest Path, CoEM, Graph Coloring) is the primary bottleneck. While dynamic load balancing may
provide a solution, it is difficult to predict the future work distribution given the current work distribution.
We believe that form of distributed work stealing similar to that described by Power and Li [2010] could
potentially address these issues.

7.5 Importance of High-Level Abstractions

High-level abstractions are essential to isolating the design and implementation of sophisticated algorithms
from the design and implementation of complex systems. Abstractions like MapReduce or even SQL have
enabled people with limited or no system design experience to design and implement specific computation
patterns that efficiently leverage massive distributed systems and sophisticated data representations with
minimal effort and training. In contrast, in the absence of high-level abstractions the high-performance
computing community has struggled with slower development cycles and algorithms and implementations
that are built around individual machines. While MPI has excelled at isolating the design and implementa-
tion of the communication layer from the algorithm and tools like Zoltan have helped isolate the challenges
of graph placement, each implementation still requires substantial system design and tuning effort. For
example, in our work on graphical model inference it took several years to design, implement, and tune the
shared and distributed memory implementations of our algorithms using pthreads, MPI, and Metis.

However, as we demonstrated, choosing the wrong high-level abstraction can lead to substantial inefficien-
cies both in the abstraction assumptions as well as the requirements it imposes on the computation. For
example, implementing GrAD algorithms in the MapReduce abstraction leads to excessive disk-overhead
in iterative computation and forces the user to over-express parallelism in the form of synchronous compu-
tation. By identifying the key patterns that emerge across a wide range of algorithms we were able to define
a new high-level abstraction which matches the needs and assumptions of the GrAD algorithms.

Our work on GraphLab and then PowerGraph demonstrated that we could both express a wide range of
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algorithms using a targeted abstraction and then efficiently implement that abstraction in the multicore and
distributed settings. Furthermore, we observed that focused effort on the design and implementation of
the abstraction lead to performance gains in the many applications built on top of the abstraction. In some
cases algorithms built on top of GraphLab and PowerGraph outperformed their less optimized counterparts
built using the low-level primitives from high-performance computing.

We believe that by developing high-level abstractions around common computational patterns we can
isolate the challenges of algorithm and system design while enabling the construction of sophisticated
algorithms that efficiently realize the full potential of the available system resources. As a consequence
we can substantially shorten the development cycle for high-performance systems, enable systems experts
to simultaneously accelerate a wide range of sophisticated algorithms, and allow domain experts to more
readily leverage the immense computational resources available in parallel and distributed computing
systems.
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Chapter 8

Future Work

This thesis is a first step towards a larger research agenda in scalable probabilistic reasoning. The GrAD
design principles and the resulting algorithms and high-level abstractions form a foundation on which to
build more sophisticated algorithms, theoretical tools, and systems. In this section we describe several
potential avenues for further research based on our findings and experiences.

8.1 Scalable Online Probabilistic Reasoning

In many real-world applications the graph structure and meta-data are rapidly evolving. For example in the
context of social networks, as time progresses new users join, make friends, and change their profiles. As
new data arrives and existing data is modified we would like to be able to continually update and refine our
models (e.g., best estimates of users interests). We believe that the GrAD methodology will be essential in
these situations since small changes to the graph should lead to localized computation that can be prioritized
and executed asynchronously.

The online setting carries a few new challenges. First data is arriving rapidly and must be incorporated
into the graph structure. The graph representations used in this work make assumptions about the ordering
of vertices and their placement in distributed environments that are difficult to maintain if the structure is
changing rapidly. Furthermore the semantics of graph changes are not well defined. For example, if an
edge is added or deleted are both vertex programs run? When are structural changes made visible to vertex
programs? Decisions about these semantics will impact the types of algorithms that may be expressed as
well as the guarantees provided by the system.

The online setting typically assumes that computation runs continuously for extended periods of time
requiring not only fault-tolerance but also high-availability. While we have achieved a basic form of
fault tolerance through the use of both synchronously and asynchronously constructed snapshots, in
the event of a machine failure we must stop all execution and restart at the last snapshot. In an online
system, data is arriving continuously and must be incorporated continuously. If a machine fails, we
must ensure that any recent data is not lost and that we can still incorporate new data as it continues to
arrive. This form, availability is especially challenging to maintain in a consistent manner when there are
complex data dependencies (i.e., the graph). While Pujol et al. [2010] began to address this problem, we
believe that their are exciting new opportunities in the development of highly available distributed graph
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data-structures.

There has been only limited work in the development of online structured probabilistic reasoning. Hoffman
et al. [2010] described a method to accelerate inference in the LDA model by extending the model and
augmenting a variational approximation as variables are added. However, Hoffman et al. [2010] did not
consider the case in which the variables are being generated from an external source and the model is
defined as the fixed-point of a recursive relationship. In these cases we might like to continue to maintain
end extend the model as well as the fixed-point solution. We believe that by applying reasoning similar to
the τε-approximation we might be able to show that changes in the graph have a localized effect. Finally,
as the model structure changes, we need a principle method to introduce new parameters and factors and
potentially relearn the parameters already in the model.

Our work on the PowerGraph abstraction demonstrated the potential for exploiting the sparsity pattern
present in real-world problems. We also believe that a similarly exploitable arrival pattern is likely to
be present in a wide range of real-world problems. For example, if we believe our power-law graph was
derived from a preferential attachment phenomena then we might expect edges to be added to high-degree
vertices disproportionately often. Alternatively, because people’s online interactions are often bursty we
might expect changes to vertex meta-data to have a similar bursty pattern. By tuning caching schemes and
consistency models for the arrival patterns in real-world data we may be able to build more efficient online
graph processing systems.

8.2 Learning a Scalable Parsimonious Structures

We have repeatedly demonstrated how the graphical structure of data dependencies affects the convergence
and parallel scaling of structured probabilistic reasoning. In this work we have assumed that the structural
dependencies are fixed and provided as input. In many cases this is a reasonable assumption since the
model structure is coupled to relational observations like friendship, spatial proximity, or co-occurrence.
However, in some cases we may not know the structure in advance or may be willing to accept a simpler
structure both in pursuit of model parsimony as well as increased scalability. This observation leads to the
natural questions: can we regularize for scalability and thereby efficiently learn scalable structures?

There are several challenges to scalable structure learning. First, in general structure learning is computa-
tionally expensive and typically requires parameter learning and inference as a subroutines. Second general
structure learning algorithms, for obvious reasons, lack the graphical decomposition that was central to
the GrAD methodology and may require reasoning about arbitrary subsets of the data. Third, structure
learning can require large amounts of data to infer reasonable structures. If we must assess conditional
independence between groups of variables we will need many joint observations of subsets of variables.
Finally, we need to define a metric which effectively captures the notion of a scalable structure.

To overcome some of the computational and data efficiency challenges we might pursue structure search
algorithms that incrementally build upon simpler structures. This would ensure that we are never required
to do inference or parameter learning on a potentially unscalable or intractable structure. Furthermore, by
building on earlier structures we may be able to reuse previous inference estimates (e.g., belief propagation
messages) to warm start the inference process. Furthermore, by building upon simpler structures we may
be able to leverage some of the distributed representation of the previous structure.

In large-scale real-world structure search there is often considerable domain knowledge about which
variables might be related and which features may be informative. For example in image processing
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we might believe that nearby pixels have similar values but we may not know the exact local structure.
Alternatively, in the social networking domain we may assume that the model structure is a sub-graph
of the overall social network. In these cases we may be able to restrict our attention to a smaller set of
possible structures and in some cases sub-structures enabling a graphical decomposition of the search
process. Furthermore, by restricting the search space we may be able to learn structures using fewer training
examples.

The remaining and potentially most interesting challenge is the definition of a metric which captures the
notion of a scalable structure. Moreover, what defines a scalable structure? The thesis work suggests
several potential criterion. If we desire a serializable execution, we would like to minimize the chromatic
number of the underlying graph. Alternatively, if we are most worried about communication and work
balance, we might like to identify a structure which minimizes cost of the corresponding vertex cut. Finally,
if we want to accelerate the convergence of the underlying inference algorithm than we might want to find
a structure which has many short paths between variables (e.g., expander graphs). We believe their are
exciting opportunities in the study of regularization for scalability and its impact on model and system
performance.

8.3 Generalizing Prioritized Computation

One of the key principles in the GrAD methodology is the dynamic prioritization of computation. However,
defining informative metrics for prioritization can be challenging. For example, in our work on belief
propagation and Gibbs sampling, we spent a considerable effort to define informative heuristics on
which to prioritize computation. If we assume our algorithm is a contraction mapping we can use
the difference between subsequent computation steps as a priority metric which greedily accelerates
convergence. However, many algorithms are not a contraction mapping and so the priority metric is less
obvious. For example, in our work on CoEM we struggled to identify an informative definition of priorities.
In these cases we typically resorted to binary priorities (e.g., converged or not converged). Nonetheless,
we conjecture that the study of prioritized could lead to accelerated convergence for a wide range of
algorithms.

8.4 Dynamic Work Balancing

Dynamic computation is one of the key principles of the GrAD design methodology which accelerates
convergence and eliminates wasted computation by focusing computational resources where they can
make the most progress. Just as with adaptive mesh refinement in high-performance computing scenarios,
adaptive prioritization focuses computation on sub-regions of the original problem. However, if the problem
was originally evenly distributed over the cluster, it is common that some machines may actually have
disproportionately more work.

In Section 3.8.1 we introduced over-partitioning as a randomized strategy to address the challenges of work
imbalance due to dynamic computation in the distributed setting. While over-partitioning is appealing
in its simplicity and can be shown to improve work balance, it increases communication throughout the
execution of the system. Alternatively, we could consider occasionally repartitioning the graph, as is
commonly done with mesh refinement in high-performance computing. However, we found in our work on
belief propagation, the dynamic computation can be relatively unpredictable. Instead, we believe that work
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stealing may be more effective in these situations. Work stealing has the advantage of moving work only
when imbalance arrises and can be used to address imbalance in computation as well as lagging processor
resources. Power and Li [2010] developed a block based work-stealing mechanism which works well
in distributed environments to address both imbalance in the processing time of blocks as well as slow
processors.

8.5 Declarative Abstractions for Recurrence Resolution

Many of the GrAD algorithms effectively encode graph computation by modeling a recursive relationship
between a vertex and its neighboring vertices. The GraphLab and PowerGraph abstractions imperatively
express how to enforce and repair these recursive relationship and prioritize corrections to neighboring
vertices. In most cases the process of repairing these recurrence relationships is to directly recompute
the recurrence locally and trigger any neighbors to be recomputed if their recurrence is violated. As a
consequence, it may be possible to express these algorithms (or even models) at a higher more declarative
level freeing the system to determine how and when to prioritize computation, enabling composition of
multiple recurrence relations, and simplifying the transition to online computation.

Instead of expressing the algorithm to compute and preserve a local recurrence relationship, a declarative
formulation of GrAD algorithms would instead specify the value of a vertex attribute as a function of its
neighborhood. To assess approximation convergence (e.g., τε-approximation) and enable prioritization
we may also want to introduce a measure of recurrence violation and a acceptable convergence threshold
ε. For example, the PageRank algorithm could be expressed compactly as just the PageRank equation, a
measure of change, and a termination condition:

R(v)← α

n
+ (1− α)

∑
u links to v

wu,v × R(u)

Change(R(v)old,R(v)new) :=
∣∣R(v)old − R(v)new∣∣

ε := 0.005

By expressing PageRank as recurrence relationship, a measure of change, and a termination condition,
we free the system and execution environment to reason about scheduling and dynamic computation.
For example, the system could optimize over different scheduling primitives. In addition, the recurrence
formulation can automatically be translated into an online algorithm. For example, if the graph structure
were to change then the system could directly assess if the recurrence had been violated and then choose to
trigger future computation as needed. Finally, we could introduce addition recurrence relationships that
depend on the values of other recurrence relationships. For example, we might associated the marketing
value of a user with the PageRank of that user as well as the marketing values of neighboring users.

8.6 The GrAD Methodology and General Graph Computation

The GrAD methodology could potentially be applied more broadly to general graph computation. The
asynchronous prioritized approach to graphical model inference as well as many of the analysis techniques
could be naturally applied to discrete simulations and the evaluations of large-scale partial differential
equations. In addition the GraphLab and PowerGraph abstractions could also be used to simplify the design
and implementation of graphical computation.
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Chapter 9

Summary of Notation and Terminology

While we have attempted to keep each chapter as self-contained and use consistent terminology and
notation, it can still be difficult to track the various terminology and notation through this document. In this
chapter we provide a brief summary.

9.1 Terminology

GrAD Methodology: The The Graphical, Asynchronous, Dynamic, (GrAD), design methodology is
composed of the following three basic principles:

1. Graphical: Explicitly represent statistical and computational dependencies as a sparse graph. The
sparse graphical representation enables the parallel decomposition of algorithms and exposes the
data locality needed for efficient distributed computation.

2. Asynchronous: Allow computation to proceed asynchronously as dependencies are satisfied obeying
the dependency structure encoded in the graph. By allowing computation to run asynchronously
as dependencies are satisfied we can reduce wasted computation and build more efficient parallel
and distributed systems. By obeying the dependency structure we can obtain provably correct
asynchronous algorithms.

3. Dynamic: Adaptively identify and prioritize sub-problems that when solved make the most progress
towards the solution. By first identifying and solving the key sub-problems we can reduce the overall
work and more effectively use computational resources.

Asynchronous Computation: Computation that runs as new data arrives and resources become available
without a single centralized clock or source of coordination. Asynchronous algorithms typically use the
most recent information available and communicate changes.

Synchronous Computation: All computation runs simultaneously in phases that are coordinated by a
single clock. Typically communication only occurs between phases and therefore computation operates on
the output of the previous phase.

Factor Graph: A representation of a graphical model as a bipartite graph with variables on one side
connected to the clique factors on the other side.
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Markov Random Field: The Markov random field of a graphical model is the graph over the variables in
which each variable is connected to all variables in its Markov blanket.

Markov Blanket: The Markov blanket of a variable are the set of variables which when observed separate
render the variable independent from the rest of the variables in the model.

9.2 Notation

Joint Probability P (X1, . . . , Xn): The join probability function for the variables X1 to Xn describes the
probability of particular assignment to all random variables. In this work we focus on discrete random
variables but many of the techniques extend to continuous random variables.

Number of variables/vertices ]numvars: We use n to represent the number of variables in the model (or
vertices in the graph).

Number of processors p: We denote the number of individual computational units (really threads) by
p.

Conditional Probability P (Xi |Xj): The conditional probability functions describes the probability of
Xi given (denoted by | ’) a particular value for Xj .

Model parameters θ: We use θ to denote the model parameters of a graphical model. The model
parameters along with the graphical structure define the joint probability function.

Clique set F: The set A ∈ F consists of all maximal cliques A in the Markov random field.

Model Parameters θ: The model parameters encode the strength and form of the relationships between
connected variables in a graphical models.

Clique factors fA(xA | θ): The clique factors in a factor graph encode the local relationship between the
variables in the set A ⊂ {1, . . . , n} as a positive function which depends on the parameters θ.

Partition Function Z(θ): The partition function encodes the normalizing constant for the joint probability
function and depends only on the model parameters θ.

The sample space Xi of variable Xi: The sample space of a variable is the set of possible value the
variable can take.

Neighbors Ni: The set of neighbors of vertex i is denoted by Ni.

Belief Propagation messages mXi→fA(xi) and mfA→Xi(xi) The belief propagation messages are itera-
tively refined in the belief propagation update equations. The messages can be related to the Lagrange
multipliers in the Bethe approximation or in tree graphical models the messages encode the contribution to
the variable marginal after eliminating all variables in the originating subtree.

Belief P (XA = xA) ≈ bXA(xA): The posterior marginals (beliefs) estimated by the belief propagation
algorithm.

τε-approximation: The τε-approximation accounts for factor dependent serial structure of approximate
inference. The number of iterations (or distance) τε is the minimum number of iterations (or distance that a
message must travel) to achieve an ε level approximation of the message at convergence.

Expectation E [X]: The expected value of the random variable X .
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Transition kernelK(X ′ |X): The transition kernel of a Gibbs sampler assigns the probability of transition
from state X to state X ′.

Junction Tree (C, E) = JS: The set of vertices C ∈ C is called a clique and is a subset of the vertices (i.e.,
C ⊆ S) in the Splash S . The cliques satisfy the constraint that for every factor domain A ∈ F there exists
a clique C ∈ C such that A ∩ S ⊆ C. The edges E of the junction tree satisfy the running intersection
property (RIP) which ensures that all cliques sharing a common variable form a connected tree.

PageRank Reset Probability γ: In the random surfer model there is a small probability, typically γ = 0.15
of jumping to a random webpage.

Vertex Data Du and edge data Du→v: The GraphLab and PowerGraph abstractions associate arbitrary
user defined data with each vertex and directed edge in the data graph.

Accumulator au: The Gather phase of the PowerGraph abstraction accumulates the result of the gather
function in the accumulator au for the vertex u. The accumulator au is then saved for that vertex and
updated using the scatter function.

Degree D[v] of vertex v: The degree (|Nv|) is denoted by D[v].

Power-Law constant α: The skewness of a power-law degree distribution is determined by the power-law
constant which is typically α ≈ 2.

Harmonic function hx (α): The harmonic function is the normalizer of the discrete bounded Zipf
distribution ( hx (α) =

∑|V |−1
d=1 d−α).

Assignment function A(v): The partition assignment function A(v) maps a vertex (or edge) to the set of
machines on which it is located.
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