
 Integrating Representation Learning and Skill
Learning in a Human-Like Intelligent Agent

Nan Li Noboru Matsuda William W. Cohen
Kenneth R. Koedinger

January 2012
CMU-ML-12-100

 Integrating Representation Learning and Skill
Learning in a Human-Like Intelligent Agent

Nan Li Noboru Matsuda William W. Cohen
Kenneth R. Koedinger

January 2012
CMU-ML-12-100

Integrating Representation Learning and Skill
Learning in a Human-Like Intelligent Agent

Nan Li Noboru Matsuda William W. Cohen
Kenneth R. Koedinger

January 2012
CMU-ML-12-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keywords: representation learning, deep feature learning, intelligent agent

Abstract

Building an intelligent agent that simulates human learning of math and science could potentially
benefit both education, by contributing to the understanding of human learning, and artificial intel-
ligence, by advancing the goal of creating human-level intelligence. However, constructing such
a learning agent currently requires manual encoding of prior domain knowledge; in addition to
being a poor model of human acquisition of prior knowledge, manual knowledge-encoding is both
time-consuming and error-prone. Previous work showed that one of the key factors that differen-
tiates experts and novices is their different representations of knowledge. Experts view the world
in terms of deep functional features, while novices view it in terms of shallow perceptual features.
Moreover, since the performance of many existing learning algorithms is sensitive to representa-
tion, the deep features are also important in achieving effective learning. In this paper, we present
an efficient algorithm that acquires representation knowledge in the form of “deep features” for
specific domains, and demonstrate its effectiveness in the domain of algebra as well as synthetic
domains. We integrate this algorithm into a machine-learning agent, SimStudent, which learns
procedural knowledge by observing a tutor solve sample problems, and by getting feedback while
actively solving problems on its own. We show that learning “deep features” reduces the require-
ments for knowledge engineering. Moreover, we propose an approach that automatically discovers
student models using the extended SimStudent. By fitting the discovered model to real student
learning curve data, we show that it is a better student model than human-generated models, and
demonstrate how the discovered model may be used to improve a tutoring system’s instructional
strategy.

1 Introduction
One of the fundamental goals of artificial intelligence is to understand and develop intelligent
agents that simulate human-like intelligence. A considerable amount of effort [21, 2, 23] has been
put toward this challenging task. Further, education in the 21st century will be increasingly about
helping students not just learn content but to become better learners. Thus, we have a second goal
of improving our understanding of how humans acquire knowledge and how students vary in their
abilities to learn.

To contribute to both goals, recent efforts [30] have been pursued to develop intelligent agents
that model human learning of math, science, or a second language. Although such agents produce
intelligent behavior with less human knowledge engineering than before, there remains a non-
trivial element of knowledge engineering in the encoding of the prior domain knowledge given to
the simulated student agent at the start of the learning process. For example, the agent developer
needs to encode functions that describe how to extract a coefficient, or how to add two terms, as
prior knowledge given to the intelligent agent. Such manual encoding of prior knowledge can be
time-consuming and error-prone.

Moreover, since real students entering a course do not necessarily have substantial domain-
specific or domain-relevant prior knowledge, it is not realistic in a model of human learning to
assume this knowledge is given rather than learned. For example, for students learning about
algebra, we cannot assume that they all know beforehand what a coefficient is, or what the differ-
ence between a variable term and a constant term is. An intelligent system that models automatic
knowledge acquisition with a small amount of prior knowledge could be helpful both in reducing
the effort in knowledge engineering intelligent systems and in advancing the cognitive science of
human learning.

Previous work in cognitive science [10] showed that one of the key factors that differentiates
experts and novices in a field is their different prior knowledge of world state representation. Ex-
perts view the world in terms of deep functional features (e.g., coefficient and constant in algebra),
while novices only view in terms of shallow perceptual features (e.g., integer in an expression).
Deep feature learning is a major component of human expertise acquisition, but has not received
much attention in AI. Learning deep features changes the representation on which future learning
is based and, by doing so, improves future learning. However, how these deep features are acquired
is not clear. Therefore, we have recently developed a learning algorithm that acquires deep features
automatically with only domain-independent knowledge (e.g., what is an integer) as input [28]. We
reported the effectiveness of the algorithm in the algebra domain and synthetic domains.

In order to further evaluate how the deep feature learner could affect the performance of an
intelligent agent, in this paper, we integrated this deep feature learning algorithm into a machine-
learning agent, SimStudent [30], to provide a better representation. The original SimStudent relies
on a hand-engineered representation that encodes an expert representation given as prior knowl-
edge. This limits its ability to model novice students. Integrating the deep feature learner into the
original SimStudent both reduces the amount of engineering effort and builds a better model of
student learning.

We show that the extended SimStudent with better representation learning performs much bet-
ter than the original SimStudent when neither of them are given domain-specific knowledge. Fur-

1

Figure 1: The interface where SimStudent is being tutored in an equation solving domain.

thermore, we also show that even compared to the original SimStudent with the domain-specific
knowledge, the extended SimStudent is able to achieve nearly as good results without domain-
specific knowledge given reasonable number of training examples. In addition, we use the ex-
tended SimStudent to automatically discover models of real students, and show that the discovered
model is a better student model than human-generated models, as well as the model discovered by
the original SimStudent.

To summarize, the main contributions of this paper are two-fold. By integrating representation
learning into skill learning, 1) we reduce the amount of knowledge engineering effort required in
constructing an intelligent agent; 2) we get a better modeling of human behavior.

In the following sections, we start with a brief review of SimStudent. We then present the deep
feature learning algorithm together with its evaluation results. Next, we describe how to integrate
the feature learner into SimStudent, and illustrate the algorithm with an example in algebra. After
that, we present experimental results for both the original SimStudent and the extended SimStu-
dent trained with problem sets used by real students in learning algebra, and show that the extended
SimStudent is able to achieve performance comparable to the original SimStudent without requir-
ing domain-specific knowledge as input. Then, we present how to use the extended SimStudent
to automatically discover student models, and show that the discovered model is better than the
human-generated models. Finally, we discuss related work and possible future extensions.

2

Figure 2: The interface that shows how SimStudent traces each demonstrated step and learns
production rules.

2 A Brief Review of SimStudent
SimStudent is an intelligent agent that inductively learns skills to solve problems from demon-
strated solutions and from problem solving experience. It is an extension of programming by
demonstration [25] using inductive logic programming [34] as an underlying learning technique.
Figure 1 and 2 are a screenshot of SimStudent learning to solve algebra equations. Figure 1 is
the interface used to teach SimStudent, and Figure 2 shows how SimStudent keeps track of the
demonstrated steps and acquires skill knowledge based on them. In this paper, we will use equa-
tion solving as an illustrative domain to explain the learning mechanisms. But we would like to
point out that the learning algorithms are domain general. In fact, SimStudent has been used and
tested across various domains, including multi-column addition, fraction addition, stoichiometry,
and so on. In the rest of this section, we will briefly review the learning mechanism of SimStudent.
For full details, please refer to [30].

3

2.1 Learning Task
SimStudent is given a set of (ideally simple) feature predicates and a set of operator functions as
prior knowledge before learning. Each feature predicate is a boolean function that describes rela-
tions among objects in the domain. For example, (has-coefficient -3x) means -3x has a coefficient.
Operator functions specify basic skills (e.g., add two numbers, get the coefficient) that SimStudent
can apply to the problem. Operator functions are divided into two groups, domain-independent op-
erator functions and domain-specific operator functions. Domain-independent operator functions
are basic skills used across multiple domains. Examples of such operator functions include adding
two numbers, (add 1 2), copy a string, (copy -3x), and so on. These operator functions are not
only used in solving equations, but also used in other domains such as multi-column addition and
fraction addition. Hence, we assume that real students usually have knowledge of these simple
skills prior to class. Domain-specific operator functions, on the other hand, are more complicated
skills, such as getting the coefficient of a term, (coefficient -3x), add two terms, (add-term 5x-5 5),
and so on. Performing such operator functions usually require domain expert knowledge, which
real students may not.

Domain-specific operator functions require more knowledge engineering than domain-independent
operator functions. For example, consider the “add” domain-independent operator function with
the “add-term” domain-specific operator function. Adding two numbers is actually just one step
among all the steps in adding two terms together (i.e., parsing the input terms into sub-terms, ap-
plying an addition strategy for each term format, and concatenating all of the sub-terms together).
Also note that since real students do not necessarily know when to apply these skills, unlike tra-
ditional planning problems, no explicit encoding of preconditions and effects are provided in the
operator functions. These functions are not guaranteed to produce correct results. Thus, Sim-
Student is different from traditional planning algorithms, which can engage on speed up learning.
SimStudent engages in knowledge level learning [35], and inductively acquires complex reasoning
rules. These rules are represented as production rules, which we will explain later.

During the learning process, given the current state of the problem (e.g., -3x = 6), SimStu-
dent first tries to find an appropriate production rule that proposes a plan for the next step (e.g.,
(coefficient -3x ?coef) (divide ?coef)). If it finds one and receives positive feedback, it continues
to the next step. If the proposed next step is incorrect, negative feedback and a correct next step
demonstration are provided to SimStudent. The learning agent will attempt to learn or modify
its production rules accordingly. If it has not learned enough skill knowledge and fails to find a
plan, a correct next step is directly demonstrated to SimStudent for later learning. Although other
feedback mechanisms are also possible, in our case, the feedback is given by an existing automatic
tutor CTAT [1], which has been used to teach real students. For each demonstrated step, the tu-
tor specifies 1) perceptual information (e.g., -3x and 6 for -3x = 6) from graphical user interfaces
(GUI) showing where to pay attention when plans for the next step, 2) a skill label (e.g., divide)
corresponding to the type of skill applied, 3) a next step (e.g., (divide -3) for problem -3x = 6).
Note that unlike normal learning algorithm which gives the full plan (e.g., (coefficient -3x ?coef)
(divide ?coef)) in getting the next step, the tutor only demonstrates the final output (e.g., (divide -
3)) to SimStudent. This simulates the same amount of information available to real students. Taken
together, the three pieces of information form one example action record indexed by the skill label,

4

R=〈label, 〈percepts, step〉〉. In the algebra example, an example action record is R=〈divide, 〈(-3x,
6), (divide -3)〉〉. For each incorrect next step proposed by SimStudent, an example action record
is also generated as a negative example. During learning, SimStudent acquires one production rule
for each skill label, l, based on the set of associated example action records gathered till the current
step,Rl = (R1, R2, ..., Rn) (where Ri.label = l).

In summary, since we would like to model how real students are tutored, the learning task
presented to SimStudent is quite challenging. First, the total number of world states is very large.
When being taught, students are allowed to write whatever they consider to be correct into their
solutions. Hence, it is actually legal to input any number/string to the interface textboxes, even
if they are incorrect answers. This assumption makes the search space to SimStudent to be very
large. Second, the operator functions given as prior knowledge do not encode any preconditions
(for both applicability and search control) and postconditions in it. Last, the demonstrated steps
are only partially observable. It usually takes more than one operator functions to move from one
observed state to the next observed state. Some intermediate states and actions taken by the tutor
are unobservable to SimStudent. Taken together, the learning task SimStudent is facing is learning
skill knowledge within infinite world states given incomplete operator function description and
partially observable states.

2.2 Production Rules
As we mentioned before, the output of the learning agent is represented as production rules. The
left side of Figure 3 shows an example of a production rule learned by SimStudent with its readable
format at the right side. A production rule indicates “where” to look for information in the interface
(perceptual information), “how” to change the problem state (operator function sequence), and
“when” to apply a rule (precondition for rule to be useful). For example, the rule to “divide both
sides of -3x=6 by -3” shown in Figure 3 would be read as “given a left-hand side (i.e., -3x) and
a right-hand side (6) of the equation, when the left-hand side does not have a constant term, then
get the coefficient of the term on the left-hand side and divide both sides by the coefficient.” The
perceptual information part represents paths to identify useful information from GUI in solving the
problem. The precondition of a production rule includes a set of feature tests representing desired
conditions in which to apply the production rule. The last part is the operator function sequence
which specifies a plan to execute in the next step.

2.3 Learning Mechanism
With all the challenges presented, we have developed three learning mechanisms in SimStudent
to acquire the three parts of the production rules. The first component is a perceptual learner
that learns the where-part of the production rule by finding paths to identify useful information in
the GUI. All of the elements in the interface are organized in a tree structure. For example, the
table node has columns as children, and each column has multiple cells as children. The percepts
specified in the above production rule are cells associated with the left-hand side and right-hand
side of the algebra equation, which are Cell 11 and Cell 21 in this case. Hence, the perceptual
learner’s task is to find the right paths in the tree to reach the specified cell nodes. There are two

5

Skill divide (e.g. -3x = 6)
Perceptual information:

Left side (-3x)

Right side (6)

Precondition:
Left side (-3x) does not

have constant term
=>
Operator sequence:

Get coefficient (-3) of left
side (-3x)

Divide both sides with the
coefficient (-3)

(defrule divide

?var518 <- (problem (interface-elements ? ? ? ? ?
var522 ?))
?var522 <- (table (columns $?m557 ?var523 $?))
?var523 <- (column (cells ? ?var525 ? ? ? ? ? ? ? ?))
?var525 <- (cell (name ?foa0) (value ?val0&~nil))

?var518 <- (problem (interface-elements ? ? ? ? ?
var522 ?))
?var522 <- (table (columns $?m569 ?var534 $?))
?var534 <- (column (cells ? ?var536 ? ? ? ? ? ? ? ?))
?var536 <- (cell (name ?foa1) (value ?val1&~nil))

?var518 <- (problem (interface-elements ? ? ? ? ?
var522 ?))
?var522 <- (table (columns ? ? ?var545))
?var545 <- (column (cells ? ?var547 ? ? ? ? ? ? ? ?))
?var547 <- (cell (name ?selection) (value ?
input&nil))

(test (not (has-constant-term?val0)))

=>

(bind ?val2 (coefficient ?val0))
(bind ?input (skill-divide ?val2))
(here-is-the-list-of-foas ?foa0 ?foa1)
(predict-algebra-input ?selection UpdateTable ?input)
(modify ?var547 (value ?*sInput*))
(construct-message "[Enter" ?input ".]”)

)

Perceptual
Information

Precondition

Operator
Function
Sequence

Figure 3: A production rule for divide.

ways to reach a percept node in the interface: 1) by the exact path to its exact position in the tree,
or 2) by a generalized path to a set of GUI elements that includes the current node’s position. A
generalized path has one or more levels in the tree that are bound to more than one nodes. For
example, a cell in the second column and the third row, Cell 23, can be generalized to any cell in
the second column, Cell 2?, or any cell in the table, Cell ??.

SimStudent assumes that example action records for the same skill have a fixed number of
percepts. Therefore, for each positive example action record associated with skill label l, Ri ∈ Rl,
the percept field, Ri.percepts, is a m-dimensional vector, i.e., Ri.percepts= (perceptsi1, perceptsi2
... perceptsim), where perceptsij stands for the jth percept in the ith example action record. Each
percept in the vector, perceptsij , is a GUI element.1 The set of percepts from all positive examples
form an n × m matrix, P =(R1.percepts, R2.percepts, ... Rn.percepts)T , where each row Pi is a
percepts field in one example action record, and each column Pj is composed of percepts at the
same position in all of the example action records. For each position j, the set of paths, where each

1In the case of the equation solving domain, all percepts are associated with cells, but the learning algorithm is not
limited to cells.

6

path can reach all percepts in Pj , defines a version space Vj [31] (i.e., the subset of all hypotheses
that are consistent with the observed training examples). The learner searches for the least general
path in the version space Vj . This process is done by a brute-force depth-first search.

The second part of the learning mechanism is a feature test learner that learns the when-part
of the production rule by acquiring the precondition of the production rule using the given feature
predicates. The acquired preconditions should contain information about both applicability (e.g.,
getting a coefficient is not applicable to the term 3x+5) and search control (e.g., it is not preferred to
add 5 to both sides for problem -3x = 6). The feature test learner utilizes FOIL [39], an inductive
logic programming system that learns Horn clauses from both positive and negative examples
expressed as relations. FOIL is used to acquire a set of feature tests that describe the desired
situation in which to fire the production rule. For each rule, the feature test learner creates a new
predicate that corresponds to the precondition of the rule, and sets it as the target relation for FOIL
to learn. The arguments of the new predicate are associated with the percepts. Each training action
record serves as either a positive or a negative example for FOIL. For example, (precondition-
divide ?percept1 ?percept2) is the precondition predicate associated with the production rule named
“divide”. (precondition-divide -3x 6) is a positive example for it. The feature test learner computes
the truthfulness of all predicates bound with all possible permutations of percept values, and sends
it as input to FOIL. Given these inputs, FOIL will acquire a set of clauses formed by feature
predicates describing the precondition predicate.

The last component is an operator function sequence learner that acquires the how-part of
the production rule. For each positive example action record, Ri, the learner takes the percepts,
Ri.percepts, as the initial state, and sets the step, Ri.step, as the goal state. We say an operator func-
tion sequence explains a percepts-step pair, 〈Ri.percepts, Ri.step〉, if the system takes Ri.percepts
as an initial state and yields stepi after applying the operator functions. For example, with the
percepts-step pair in the example, 〈(-3x, 6), (divide -3)〉, the operator function sequence (coef-
ficient -3x ?coef) (divide ?coef) is a possible explanation for this pair. Since we have multiple
example action records for each skill, it is not sufficient to find one operator function sequence
for each example action record. Instead, the learner attempts to find a shortest operator function
sequence that explains all of the 〈percepts, step〉 pairs using iterative-deepening depth-first search
within some depth-limit.

Last, although we said that SimStudent tries to learn one rule for each label, when some new
training action record is added, it might fail to learn a single rule for all example action records
(e.g., no operator function sequence is found that explains all percepts-step pairs including the
new one). In that case, SimStudent learns a separate rule just for the last example action record.
This breaking a single production rule into a pair of disjuncts effectively splits the example action
records into two clusters. Later, for each new example action record, SimStudent tries to acquire
a rule for each of the clusters plus the new example action record. If it cannot learn a rule that
includes the new example, it creates another new cluster.

7

Table 1: Probabilistic context free grammar for coefficient in algebra

Terminal symbols: −, x;
Non-terminal symbols: Expression, SignedNumber,

V ariable,MinusSign,Number;
Expression→ 1.0, [SignedNumber] V ariable
V ariable→ 1.0, x
SignedNumber → 0.5, MinusSign Number
SignedNumber → 0.5, Number
MinusSign→ 1.0, −

3 x

MinusSign Number

SignedNumber

Expression

Variable

3 x

MinusSign

Number

S
1

Expression

Variable

Figure 4: Correct and incorrect parse trees for −3x.

3 Deep Feature Learning
Having reviewed SimStudent, we move to a discussion of representation knowledge acquisition as
deep feature learning. In this section, we are going to describe the deep feature learning algorithm.
As mentioned above, deep feature learning is important both for human knowledge acquisition, and
in achieving effective machine learning. Missing deep feature knowledge sometimes causes real
students to make errors in learning. We carefully examined the nature of deep feature learning in
algebra equation solving, and discovered that it could be modeled as a grammar induction problem
given observational data (e.g. equations in algebra). Expressions can be formulated as a context
free grammar as shown in Table 1. The deep feature “coefficient” is a non-terminal symbol in one
of the grammar rules.

More interestingly, the perspective of viewing feature learning tasks as grammar induction
problems also explains the cause of student errors. If we consider the learning task as a grammar
induction problem, learning errors means acquiring the wrong grammar for the problem. Let us
use the -3x example again. If instead of learning the grammar shown in Table 1, a student acquires
another set of grammar rules. Based on the wrong grammar, the student constructs an incorrect
parse tree as demonstrated at the right side of Figure 4. Instead of grouping - and 3 together, the

8

Algorithm 1: GSH constructs an initial set of grammar rules, S, from observation se-
quences, O.

Input: Observation Sequence Set O.
S := terminal symbol grammar rules;1

while not-all-sequences-are-parsable(O, S) do2

if has-recursive-rule(O) then3

s := generate-recursive-rule(O);4

else5

s := generate-most-frequent-rule(O);6

end7

S := S + s;8

O := update-plan-set-with-rule(O, S);9

end10

S = initialize-probabilities(S);11

return S12

student groups 3 and x first, and thus mistakenly considers 3 as the coefficient. Based on these
observations, we built a deep feature learner by extending an existing probabilistic context free
grammar (PCFG) learner [29] to support feature learning and transfer learning. Note that the deep
feature learner is domain general. It currently supports all domains where student input can be
represented as a string of tokens, and can be modeled with a context-free grammar (e.g., algebra,
stoichiometry, NLP).

3.1 A Brief Review of the pHTN Learner
Before introducing the deep feature acquisition algorithm, let’s first briefly review the pHTN
learner [29] it is based on. The pHTN learner is a variant of the inside-outside algorithm [24]
that acquires a probabilistic context-free grammar (PCFG). The input to the pHTN learner is a set
of observation sequences, O. Each sequence is a string of characters directly from user input. The
output is a PCFG that can generate all input observation sequences with high probabilities. The
system consists of two parts, a greedy structure hypothesizer, which creates non-terminal symbols
and associated grammar rules, as needed, to cover all the training examples, and a Viterbi training
step, which iteratively refines the probabilities of the grammar rules.

3.1.1 Greedy Structure Hypothesizer (GSH)

Pseudo code for the GSH algorithm is shown in algorithm 1. GSH creates context-free grammar
in a bottom-up fashion. It starts by initializing the rule set S to rules associated with terminal
characters (e.g., 3 and x in 3x) in the observation sequences, O. Next the algorithm (line 4) detects
whether there are possible recursive structures embedded in the observation sequence by looking
for repeated symbols. If so, the algorithm learns a recursive rule for them. If the algorithm fails
to find recursive structures, it starts to search for the character pair that appears in the plans most

9

frequently (line 6), and constructs a grammar rule for the character pair. To build a non-recursive
rule, the algorithm will introduce a new symbol and set it as the head of the new rule. After
getting the new rule, the system updates the current observation set O with this rule by replacing
the character pairs in the observations with the head of the rule (line 9).

After learning all the grammar rules, the structure learning algorithm assigns initial probabili-
ties to these rules. If there are k grammar rules with the same head symbol, then each of them are
assigned the probability 1

k
. To break ties among grammar rules with the same head, GSH adds a

small random number to each probability and normalizes the values again. This output of GSH is
a redundant set of grammar rules, which is sent to the Viterbi training phase.

3.1.2 Refining Schema Probabilities: Viterbi Training Phase

The probabilities associated with the initial set of rules generated by the GSH phase are tuned by a
Viterbi training algorithm. It considers the parse trees T associated with each observation sequence
as hidden variables. Each iteration involves two steps.

In the first step, the algorithm computes the most probable parse tree for each observation
example using the current rules. Any subtree of a most probable parse tree is also a most probable
parse subtree. Therefore, for each observation sequence, the algorithm builds the most probable
parse tree in a bottom-up fashion until reaching the start symbol g. After getting the parse trees for
all observation examples, the algorithm moves on to the second step. In this step, the algorithm
updates the selection probabilities associated with the grammar rules. For a grammar rule with
head ai, the new probability of it getting chosen is simply the total number of times that schema
appears in the Viterbi parse trees divided by the total number of times ai appears in the parse
trees. (This learning procedure is a fast approximation of expectation-maximization [13], which
approximates the posterior distribution of trees given parameters by the single MAP hypothesis.)
After finishing the second step, the algorithm starts a new iteration until convergence. The output
of the algorithm is a set of probabilistic grammar rules.

3.2 Feature Learning
Having reviewed Li et al.’s pHTN learning algorithm, we are ready to describe how it is extended to
support deep feature learning without SimStudent. The input of the system is a set of pairs such as
〈-3x, -3〉, where the first element is the input to a feature extraction mechanism (e.g., coefficient),
and the second is the extraction output (e.g., -3 is the coefficient of -3x). The output is a PCFG
with a non-terminal symbol in one of the rules set as the target feature as shown in Table 1. To
produce this output, the deep feature learner uses the pHTN learner to produce a grammar, and
then searches for non-terminal symbols that correspond to the example extraction output (e.g., the
-3 in -3x). The process is done in three steps.

The system first builds the parse trees for all of the observation sequences based on the ac-
quired rules. For instance, in algebra, suppose we have acquired the PCFG shown in Table 1.
The associated parse tree of -3x is shown at the left side of Figure 4. Next, for each sequence,
the learner traverses the parse tree to identify the non-terminal symbol associated with the target
feature extraction output, and the rule to which the non-terminal symbol belongs. In the case of

10

our example, the non-terminal symbol is SignedNumber, the associated feature extraction output
is -3, and the rule is Expression→ 1.0, SignedNumber Variable. For some of the sequences, the
feature extraction output may not be generated by a single non-terminal symbol, which happens
when the acquired PCFG does not have the right structure. For example, the parse tree shown in
the right side of Figure 4 is an incorrect parse of -3, and there is no non-terminal symbol associ-
ated with -3. In this case, the system will ignore the current sequence. Last, the system records
the frequency of each symbol rule pair, and picks the pair that matches the most training records
as the learned feature. For instance, if most of the input records match with SignedNumber in
Expression→ 1.0, SignedNumber Variable, this symbol-rule pair will be considered as the target
feature pattern.

After learning the feature, when a new problem comes, the system will first build the parse tree
of the new problem based on the acquired grammar. Then, the system recognizes the subsequence
associated with the feature symbol from the parse tree, and returns it as the target feature extraction
output (e.g., -5 in -5x).

3.3 Transfer Learning for Deep Feature Learning
In order to achieve effective learning, we further extended the feature learner to support transfer
learning within the same domain and across domains. Different grammars sometimes share gram-
mar rules for some non-terminal symbols. For example, both the grammar of equation solving and
the grammar of integer arithmetic problems should contain the sub-grammar of signed number.
We extended the feature learning algorithm to transfer solutions to common sub-grammars from
one task to another. Note that the tasks can be either from the same domain (e.g. learning what
is an integer, and learning what is a coefficient), or from different domains (e.g. learning what is
an integer, and learning what is a chemical formula). We consider two learning protocols: one in
which the tutor provides hints to a shared grammar by highlighting subsequences that should be
associated with a non-terminal symbol; and one in which the shared grammar is present, but no
hints are provided. For transfer learning with sub-grammar hints, we applied what we will call
a feature focus mechanism to the acquisition process. For transfer learning without sub-grammar
hints, we extended the system to make use of grammar rule application frequencies from previous
tasks to guide future learning, as explained below.

3.3.1 Explicitly Labeled Common Sub-grammars

We first consider the situation where SimStudent’s tutor provides a hint toward a shared sub-
grammar (the deep feature). In the original learning algorithm, during the process of grammar
induction, the learner acquires some grammar that generates the observation sequences, without
differentiating potential feature subsequences (e.g. coefficients or constant terms) from other sub-
sequences in the training examples. It is possible that two grammars can generate the same set of
observation sequences, but only one grammar has the appropriate feature symbol embedded in it.
We cannot be sure that the original learner will learn the right one.

However, if we assume that the tutor explicitly highlights example subsequences as targeted
features (e.g. highlighting -3 in -3x or -4 in -4x), the deep feature learner can focus on creating

11

non-terminal symbols for such feature subsequences. We developed this feature focus mechanism
as follows. First, we call one copy of the original learner to learn the subgrammar for the deep
feature. That is, we extract all the feature subsequences from training sequences, and then learn
a sub-grammar for it. We then replace the feature subsequence with a special semantic terminal
symbol, and invoke the original learner on this problem. Since this semantic terminal symbol
is viewed as a terminal character in this phase of learning, it must be properly embedded in the
observation sequence. Finally, two grammars are combined, and the semantic terminal is relabeled
as a non-terminal symbol and associated with the start symbol for the grammar for the feature.

3.3.2 Learning and Transfer of Common Sub-grammars without Hints

As mentioned above, aiding transfer learning by providing hints for common sub-grammars re-
quires extra work for the tutors. A more powerful learning strategy should be able to transfer
knowledge without adding more work for the tutor. Therefore, we considered a second learning
protocol, where the shared grammar is present, but no hints to it are provided. An appropriate
way of transferring previously acquired knowledge to later learning could improve the speed and
accuracy of that later learning. Our solution involves transferring the acquired grammar, including
the application frequency of each grammar rule, from previous tasks to future tasks.

More specifically, during the acquisition of the grammar in previous tasks, the learner records
the acquired grammar and the number of times each grammar rule appeared in a parse tree. When
faced with a new task, the learning algorithm first uses the existing grammar from previous tasks
to build the smallest number of most probable parse trees for the new records. This process is done
in a top-down fashion. For each sequence/subsequence, the algorithm first tries to see whether the
given sequence/subsequence can be reduced to a single most probable parse tree. If it succeeds,
the algorithm returns; if it fails, the algorithm separates the sequence/subsequence into two subse-
quences, and recursively calls itself. After building the least number of most probable parse trees
for the training subsequences, the system switches to the original GSH and acquires new rules
based on the partially parsed sequences.

For example, if the grammar learner acquired what is a signed number (e.g. -3) in a previous
task, when faced with a new task of learning what is a term (e.g. -3x), the learner will first tries to
build a parse tree for the whole term (e.g. -3x). But it fails, the grammar for signed number can
only build the parse trees for some subsequence (e.g. -3 in -3x). Then, the grammar learner gets
some partially parsed sequences (e.g. the partial reduced sequence for -3x is SignedNumber x), and
calls the original grammar learner on these partially parsed sequences.

During the Viterbi training phase, the learning algorithm estimates rule frequency using a
Dirichlet distribution based on prior tasks; that is, it adds the applied rule frequency associated
with the training problems of the current task to the recorded frequency from previous tasks. Note
that it is possible that after acquiring new rules with new examples, in the Viterbi training phase,
the parse trees for the training examples in the previous tasks have changed, and the recorded fre-
quencies are no longer accurate, so this is not equivalent to combining the examples from the old
task with the examples of the new task. By recording only the frequencies, instead of rebuilding
the parse trees for all previous training examples in each cycle, we save both space and time for
learning.

12

Having acquired the grammar for deep features, when a new problem is given to the system,
the learner will extract the deep feature by first building the parse tree of the problem based on the
acquired grammar, and then extracting the subsequence associated with the feature symbol from
the parse tree as the target feature. However, this model is only capable of learning and extracting
deep features without using them to solve problems. Later, we will describe how to extend its
ability by integrating it into SimStudent.

4 Empirical Evaluation on Deep Feature Learner
To evaluate the proposed deep feature learner, we carried out two controlled experiments. We
compared four alternatives of the proposed approach, 1) without transfer learning and no feature
focus; 2) without transfer learning, but with feature focus; 3) with transfer learning (from unlabeled
sub-grammars), and without feature focus; 4) with transfer learning from unlabeled sub-grammars
and feature focus. Learners without labeled feature have no way of knowing what the feature is;
instead, we report the accuracy that would be obtained using the non-terminal symbol that mostly
frequently corresponds to the feature sub-grammar in the training examples. Note that we did not
compare the proposed deep feature learner with the inside-outside algorithm, as Li et al. have
shown that the base learner (i.e. the learner with no extension) outperforms the inside-outside
algorithm.2 All the experiments were run on a 2.53 GHz Core 2 Duo Mackbook with 4GB of
RAM.

4.1 Experimental Design in Synthetic Domains
In order to understand the generality and scalability of the proposed approach, we first designed
and carried out experiments in synthetic domains. We carried out the experiment with two types
of transfer in non-recursive domains, where randomly generated rules form a binary and-or tree.
The first type is a sub-grammar transfer. We randomly generated two sets of non-recursive rules,
S1 and S2. S1 is a sub-grammar in S2. The size of S1 is roughly half of S2. In order to further
understand how transfer learning affects learning efficiency, we carried out a second experiment
where previous grammar is not part of the current grammar. The second transfer is an overlap-
ping grammar transfer. We randomly generated two non-recursive domains, S1 and S2, where S1

overlaps with S2 in the feature sub-grammar.
Both transfer learners from unlabeled sub-grammars were trained first on S1. Each training

record contains a full observation sequence and a set of subsequences (usually just one) associated
with the feature. If S1 contains n1 non-terminal symbols in S1, the number of training records is
10n1. Then, all four learners were trained and tested on S2. The number of training records ranges
from zero to ten. If S2 contains n2 non-terminal symbols in S2, the number of testing sequences
is 10n1. For each testing record, we compared the feature recognized by the oracle grammar with
those recognized by the acquired grammar. The score is the average accuracy of 100 randomly
generated feature extraction tasks.

2http://rakaposhi.eas.asu.edu/nan-tist.pdf

13

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(b)

Figure 5: Learning curve in synthetic domain with (a) subtask to task transfer problems (b) over-
lapping tasks transfer problems.

4.2 Experiment Results in Synthetic Domains
We evaluated both the efficiency and the scalability of the proposed algorithm. For learning effi-
ciency, we measured the learning curves of the learners. For scalability, we looked at the accuracy,
time, and size of the acquired schemas with different domain sizes.

Rate of Learning: In order to test the learning speed, we randomly generated 100 sub-grammar-
grammar pairs, 〈S1,i, S2,i〉, where i = 1, 2, ...100. For each pair, 〈S1,i, S2,i〉, S2,i has 20 non-
terminal symbols. We measured the scores of the four learners of every sub-grammar-grammar
pair given different numbers of training sequences. The results are shown in Figure 5(a) and 5(b).
We can see that the learner with both transfer learning and feature focus (+Transfer +Feature
Focus) has the steepest learning curve. In the sub-grammar transfer case, with ten training records,
the learner (+Transfer + Feature Focus) achieves score 0.99, which is much higher than the score
of the base learner (-Transfer -Feature Focus) (i.e. the learner without transfer learner and feature
focus), 0.65. Learners with single extension (-Transfer +Feature Focus, and +Transfer -Feature
Focus) have a slower learning curve comparing with the learner with both extensions (+Transfer
+Feature Focus), but both outperform the base learner (-Transfer -Feature Focus).

One interesting thing you may have noticed is that the learner with only transferring from un-
labeled sub-grammar has a better score (+Transfer -Feature Focus) with small number of training
records comparing with the learner with only feature focus (-Transfer +Feature Focus). But with
ten training records, the learner with only feature focus (-Transfer +Feature Focus) does have a
higher score comparing with the learner with transfer learning (+Transfer -Feature Focus). This
situation appears in both transfer tasks. It suggests that learners with transferring from unlabeled
sub-grammars (+Transfer -Feature Focus) work better than those with feature focus (-Transfer
+Feature Focus) with small number of training records, while learners with transferring from
labeled sub-grammars (+Transfer -Feature Focus) perform better with large number of training

14

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−terminal symbols in schemas

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(a)

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of non−terminal symbols in schemas

S
c
o

re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(b)

Figure 6: Score with different domain sizes with (a) subtask to task transfer problems. (b) over-
lapping tasks transfer problems.

records.
Not surprisingly, since sub-grammar transfer is explicitly trained on the feature in task one

before switching to task two, the difference between learners with and without transfer learning,
is larger than that in overlapping task transfer. Moreover, since we randomly pick features from
randomly generated grammars in overlapping task transfer, it is possible that the selected feature
is at a relatively low level in the hierarchy, and thus corresponds to very short subsequences or one
specific action sequence (no disjunctions). In this case, the targeted feature is easy to learn, and the
benefit of transfer does not show up well. But even under this situation, all the extended learners,
(-Transfer +Feature Focus, and +Transfer -Feature Focus, and +Transfer +Feature Focus), still
outperform the base learner (-Transfer -Feature Focus).

Scalability of the Learning Algorithm: In order to understand the scalability of the proposed
algorithms, we also tested the performance of the four learners in terms of accuracy, time, and size
of acquired grammar, with different numbers of domain sizes. The scores of learners in domains
with five to twenty-five non-terminal symbols are shown in Figure 6(a) and 6(b). We can see that
with ten training records, the learner with both extensions (+Transfer +Feature Focus) performs
the best among all four learners, while the base leaner (-Transfer -Feature Focus) shows a fastest
drop with increasing size of domains. The two learners with single extension (-Transfer +Feature
Focus, and +Transfer -Feature Focus) perform roughly equally well. In fact, we have also tested
the two learners with feature focus (-Transfer +Feature Focus, and +Transfer +Feature Focus)
with domains of size 50. The learner with transfer learning as well as feature focus (+Transfer
+Feature Focus) is able to perform quite well and get the score 0.90 for sub-grammar transfer and
score 0.73 for overlapping sub-grammar transfer. We did not test the learner with only transfer
learning (+Transfer -Feature Focus) since it took a longer time to run the experiment. More details
can be found in the next paragraph.

15

5 10 15 20 25
0

50

100

150

200

250

300

Number of non−terminal symbols in schemas

N
u
m

b
e
r

o
f
m

ill
is

e
c
o
n
d
s
 p

e
r

tr
a
in

in
g

 r
e
c
o

rd

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(a)

5 10 15 20 25
0

50

100

150

200

250

300

Number of non−terminal symbols in schemas

N
u
m

b
e
r

o
f
m

ill
is

e
c
o
n
d
s
 p

e
r

tr
a
in

in
g

 r
e
c
o

rd

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(b)

Figure 7: Average time spent on each training record with different domain sizes with (a) subtask
to task transfer problems. (b) overlapping tasks transfer problems.

As for the average time spent on each training record, all learners acquire the targeted feature
within a reasonable amount of time. The results are presented in Figure 7(a) and 7(b). While the
learner with transfer learning (+Transfer -Feature Focus) took 266 milliseconds per training record
with domains of size 25, all other learners (-Transfer -Feature Focus, and -Transfer +Feature
Focus, and +Transfer +Feature Focus) took less than 1 millisecond per training record during
learning. We found out that the learner with transfer learning from unlabeled sub-grammars, but
without the feature focus (+Transfer -Feature Focus) runs slower with domains of larger sizes. In
fact, it needs 266 milliseconds per training record. This is because in the second task, maintaining
the grammar rules acquired from previous task requires much more work in the Viterbi training
step. Besides, the feature focus mechanism enables the learner to separate a whole sequence into
small subsequences and focus on one small piece at a time during learning. Since the learner with
only transfer learning (+Transfer -Feature Focus) does not consider feature focus during learning,
it takes much longer time than other learners. Comparing with the base learner (-Transfer -Feature
Focus), the learner with transfer learning (+Transfer -Feature Focus) contains not only knowledge
of the current task, but also knowledge from previous tasks. Hence, it (+Transfer -Feature Focus)
needs more learning time than the base learner. Regarding to learners with feature focus, even with
domains of size 50, the learner with both extensions (+Transfer +Feature Focus) can still acquire
schemas with an average of less than 1 millisecond per training record during learning.

We also looked at the conciseness of the acquired grammar, since grammars of larger sizes
typically slow down the process of future learning, as well as feature extraction. To measure con-
ciseness, we compute the symbol ratio between the number of symbols in the learned grammar and
the original schema. With sub-grammar transfer, all four learners acquired grammars of roughly
equal sizes. With overlapping grammar transfer, since the learners with transfer learning from un-
labeled sub-grammars, (+Transfer -Feature Focus, and +Transfer +Feature Focus), need to also
maintain knowledge acquired from previous task, both have a higher symbol ratio then the other

16

two learners. This is reasonable since they do have more knowledge embedded in the grammar.

4.3 Experimental Design in Algebra
In order to understand whether the proposed algorithm is a good model of real students, we car-
ried out a controlled simulation study in algebra. Accelerated future learning, in which learning
proceeds more effectively and more rapidly because of prior learning, is considered to be one of
the most interesting measures of robust learning. It is considered that there are two reasons that
could yield accelerated future learning: a better learning strategy and stronger prior knowledge.
Learning with feature focus is considered to be a better learning strategy during knowledge acqui-
sition. Since transfer learning from unlabeled sub-grammars maintains knowledge from previous
task, it simulates the situation where a student has stronger prior knowledge due to previous train-
ing experience. The objective of this study is to test 1) whether the proposed model could yield
accelerated future learning with stronger prior knowledge and better learning strategies, 2) if so,
how prior knowledge and learning strategies affect the learning outcome.

4.3.1 Method

In order to understand the behavior of the proposed model, we designed three curricula. Three tasks
are used across the three curricula. Task one is to learn signed number. Task two is to learn how to
recognize a coefficient from expressions in the form of {SignedNumber x}. Task three is to learn
how to recognize a constant in the left-hand side from equations in the form of {SignedNumber x
- Integer = SignedNumber}. The three curricula contain 1) task one, task two; 2) task two, task
three; 3) task one, task two, and task three.

There were also 10 training sequences to control for a difference in training problems. The
training data were randomly generated following the grammar corresponding to each task. For
instance, task two’s grammar is shown in Table 1. In all but the last task, each learner was given
10 training problems following the curriculum. For the last task, each learner was given one to five
training records.

To measure learning gain, under each training condition, both systems were tested on 100
expressions in the same form of the training data in the last task. For each testing record, we com-
pared the feature extracted by the oracle grammars with that recognized by the acquired grammars.
Note that in task two, 4% of the testing problems in task two were x and −x. To assess the accu-
racy of the model, we asked both systems to extract the feature from each problem. We then used
the oracle grammar to evaluate the correctness of output. A brief summary of the the method is
shown in Table 2.

4.3.2 Measurements

To assess the learning outcome, we measured the learning rate to evaluate the effectiveness of the
learners. The experiment tested whether the proposed model is able to yield accelerated future
learning, and how different extensions affect the learning rate. To evaluate the learning rate, we
reported learning curves for all four learners by the number of training problems given in the last

17

Table 2: Method summary

Three tasks: T1, learn signed number
T2, learn to find coefficient from expression
T3, learn to find constant from equation

Three curricula: T1→ T2
T2→ T3
T1→ T2→ T3

Number of training condition: 10
Training size in all but last tasks: 10
Training size in the last task: 1, 2, 3, 4, 5
Testing size: 100

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o
re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(a)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o
re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(b)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

S
c
o
re

− Transfer, − Feature Focus

− Transfer, + Feature Focus

+ Transfer, − Feature Focus

+ Transfer, + Feature Focus

(c)

Figure 8: Learning curves for four learners in curriculum (a) from task one to task two (b) from
task two to task three (c) from task one to task two to task three.

task. For each training size, we computed the average accuracy of the feature extraction task across
10 training conditions.

This experiment focuses on measuring the learning rate. In later chapters, we will also test
whether the proposed model fits with real student data. We will show that after integrating the pro-
posed model into a simulated student, the extended simulated student can be used to automatically
discovers student models. The discovered model fits with real student data better than human-
generated models. This indicates that the extended simulated student simulates the real student
learning process well.

4.4 Impact of Accelerated Future Learning on the Rate of Learning
As shown in Figure 8(a), with curriculum one, all four learners acquired better knowledge with
more training examples. With five training problems, all learners but the base learner were all able
to acquire knowledge of score 0.96, and the base learner was able to achieve a score around 0.5.

18

Original:
Skill divide (e.g. -3x = 6)
What:

Left side (-3x)
Right side (6)

 When:
Left side (-3x) does not
have constant term

 =>
 How:

Get coefficient (-3) of left
side (-3x)
Divide both sides with the
coefficient (-3)

Extended:
Skill divide (e.g. -3x = 6)
What:

Left side (-3, -3x)
Right side (6)

 When:
Left side (-3x) does not
have constant term

 =>
 How:

Get coefficient (-3) of left
side (-3x)
Divide both sides with the
coefficient (-3)

Figure 9: Original and extended production rules for divide in a readable format.

Both learners with transfer learning (+Transfer -Feature Focus, and +Transfer +Feature Focus)
have the steepest learning curve. In fact, they reached a score of 0.96 with only one training exam-
ple. The learner with a better learning strategy’s (-Transfer +Feature Focus) learning curve is not
as steep as the learners with transfer learning (+Transfer -Feature Focus, and +Transfer +Feature
Focus), but is able to get score 0.96 with five training examples. This suggests that with transfer
learning, learners are able to acquire knowledge quicker than those without transfer learning. The
base learner’s (-Transfer -Feature Focus) learning curve is the least steep one. A careful inspection
shows that without feature focus and transfer learning, the base learner (-Transfer -Feature Focus)
was not able to acquire grammar that contains one symbol associated with the feature “coefficient”.
This causes the failure of identifying the feature symbol. Comparing the base learner (-Transfer
-Feature Focus) and the learner with feature focus (-Transfer +Feature Focus) we can see that a
better learning strategy yields a steeper learning curve.

Similar results were also observed with curriculum two and curriculum three. In curriculum
two, one interesting point is that, if a transfer learner, (+Transfer -Feature Focus) remembers the
wrong knowledge acquired from task two, and transferred this knowledge to task three, the learner
will perform even worse than the learner with no prior knowledge (-Transfer -Feature Focus). This
indicates that more knowledge does not necessarily lead to steeper learning curves. Transferring
incorrect knowledge leads to less learning.

We can also see that in all three curricula, the transfer learner (+Transfer -Feature Focus)
always outperforms the learner with semantic non-terminal constraint (-Transfer +Feature Focus).
This suggests that prior knowledge is more effective in accelerating future learning than better
learning strategies.

19

5 Integrating Deep Feature Learning into SimStudent
Given the promising results shown above, we believe the proposed deep feature learner is effective
in acquiring representation knowledge, and is a good model of real students. To better evaluate how
the deep feature learner could affect the performance of an intelligent agent, in this section, we are
going to present how to integrate deep feature learning into an intelligent agent, SimStudent. As
we have mentioned above, SimStudent is able to acquire production rules in solving complicated
problems, but requires a set of operator functions given as prior knowledge. Some of the operator
functions are domain-specific, and require expert knowledge to build them. On the other hand,
the feature learner acquires deep features that are essential for effective learning without requiring
prior knowledge engineering. In order to both reduce the amount of prior knowledge engineering
needed for SimStudent and to build a better model of real students, we present a novel approach that
integrates the feature learner into SimStudent. Figure 9 shows a comparison between production
rules acquired by the original and the extended SimStudents. As we can see that, the coefficient of
the left-hand side (i.e., -3) is included in the perceptual information part in the extended production
rule. Therefore, the operator function sequence no longer needs the domain-specific operator,
(coefficient -3x). To achieve this, we extended both the perceptual learning algorithm and the
precondition acquisition mechanism, as described below.

5.1 Extending Perceptual Learning
Previously, the perceptual information encoded in production rules is always associated with ele-
ments in the GUI such as cells in the algebra example. This assumption limits the granularity of
observation SimStudent could achieve. In fact, the deep features we have discussed previously are
perceptual information obtained at a much more fine-grained level. Failing to represent these deep
perceptual features will harm the performance of the learning agent, and thus developers need to
manually encode domain-specific operator functions to reduce the learning task’s complexity.

To improve perceptual representation, we extend the percept hierarchy to further include the
most probable parse tree for the content in the leaf nodes by appending the parse trees to their
associated leaf nodes. All of the inserted nodes are of type “subcell”. In the algebra example, this
extension means that for cells that represent expressions corresponding to left-hand sides or right-
hand sides of the equation, the extended SimStudent appends the parse trees for these expressions
to the cell nodes. Let’s use -3x as an example. In this case, the extended hierarchy includes the
parse tree for -3x as shown at the left side of Figure 4 as a subtree connecting to the cell node
associated with -3x. With this extension, the coefficient (-3) of -3x is now explicitly represented in
the percept hierarchy. If the extended SimStudent includes this subcell as a percept in production
rules, as shown at the right side of Figure 9, the new production rule would not need the first
domain-specific operator function “coefficient” any more.

However, extending the percept hierarchy presents challenges to the original perceptual learner.
First of all, since the extended subcells are not associated with GUI elements, we can no longer
depend on the tutor to specify relevant perceptual input for SimStudent, nor can we simply specify
all of the subcells in the parse trees as relevant perceptual information; otherwise, the acquired
production rules would include redundant information that would hurt the generalization capabil-

20

ity of the perceptual learner. For example, consider problems -3x=6 and 4x=8. Although both
examples could be explained by dividing both sides with the coefficient, since -3x has eight nodes
in its parse tree, while 4x has five nodes, the original perceptual learner will not be able to find one
set of generalized paths that explain both training examples. Moreover, not all of the subcells are
relevant percepts in solving the problem. For example, considering the problem -3x=6: among all
inserted subcells, only -3 is a relevant percept in solving the problem. Including unnecessary per-
ceptual information into production rules could easily lead to computational issues. Second, since
the size of the parse tree for an input depends on the input length, the fixed percept size assumption
made by SimStudent no longer holds. Even with the same number of percepts, how the inserted
percepts should be ordered is not immediately clear. To address these challenges, we extend the
original perceptual learner to support acquisition of perceptual information with redundant and
variable-length percept lists.

To do this, SimStudent first includes all of the inserted subcells as candidate percepts, and
calls the operator function sequence learner to find an operator function sequence that explains all
of the training examples. In our example, the operator function sequence for (divide -3) would
only contain one operator function “divide”, since -3 is already included in the candidate percept
list. The perceptual learner then removes all of the subcells that are not used by the operator
function sequence from the candidate percept list. Hence, subcells such as -, 3 and x would not
be included in the percept list any more. Since all of the training example action records share
the same operator function sequence, the number of percepts remaining for each example action
record should be the same. Next, the percept learner arranges the remaining subcell percepts based
on their order of being used by the operator function sequences. After this process, the percept
learner now has a set of percept lists that contains a fixed number of percepts ordered in the same
fashion. We can then switch to the original percept learner to find the least general paths for the
updated percept lists. In our example for skill “divide”, as shown at the right side of Figure 9,
the perceptual information part of the production rule would contain three elements, the left-hand
side and right-hand side cells which are the same as the original rule, and a coefficient subcell
which corresponds to the left child of the variable term. Note that since we removed the redundant
subcells, the acquired production rule now works with both -3x=6 and 4x=8.

5.2 Extending Precondition Acquisition
In addition to extending the feature learner, we also extended the vocabulary of predicate symbols
provided to the precondition learner. As implied by its name, the deep feature learner acquires
information that reveals essential features of the problem state. It is natural to think that these deep
features could also be used for describing desired situations to fire a production rule. Therefore,
we construct a set of grammar features that are associated with the acquired PCFG. The set of new
predicates describes positions of a subcell in the parse tree. For example, we create a new predicate
called “is-left-child-of”, which should be true for (is-left-child-of -3 -3x) based on the parse tree
shown in the left side of Figure 4.

To make use of such predicates, we add them into the set of feature predicates for the precondi-
tion learner. When calling FOIL, the precondition learner evaluates the truthfulness of the extended
set of predicates given all permutations of percept values. Since we have added relevant subcells

21

into percept lists, these permutations would include tuples such as (-3, -3x) for the grammar pred-
icates such as “is-left-child-of”. Thus, FOIL will be able to make use of this extra information to
acquire better preconditions. Although not shown in the example, SimStudent may construct rules
saying that when the left hand side (-3x) has a left child (-3) that is a constant, SimStudent should
divide both sides with that left child.

6 Experimental Study on SimStudent Integrated with Deep Fea-
ture Learner

In order to evaluate whether the extended SimStudent is able to acquire correct knowledge with
reduced prior knowledge engineering, we carried out an experiment in the algebra domain. We
use algebra as the testing domain because it is one of the most important learning tasks for middle
school students. It is also relatively more complicated than other similar domains such as multi-
column addition and fraction addition.

6.1 Experiment Design
Since our goal is to build an intelligent agent that models skill acquisition of real students, instead
of using randomly generated problems, we select four problem sets that were used to teach real
students as training sets. More specifically, the problem sets are from the same study of 71 high
school students who used Carnegie Learning Algebra I Tutor. The sizes of the training sets are 13,
14, 35 and 35. We also choose 10 problems from real student data as the testing set.

We compare the extended SimStudent with the original SimStudent given different amounts of
prior knowledge. The extended SimStudent is first trained on a sequence of deep feature learning
tasks, which include learning what is a signed number, what is a term, and what is an expression.
We then construct a weak operator function set and a strong operator function set, simulating weak
and strong prior knowledge. The weak operator function set contains 24 domain-general operator
functions such as copying a string, adding two numbers and so on. The strong operator function
set includes the weak operator function set plus 12 domain-specific operator functions such as
getting the coefficient, adding two terms and so on. Among all the given operator functions,
Table 3 shows the list of operator functions that are used in the production rules acquired by the
four SimStudents. Two original SimStudents and one extended SimStudent are tested. One of the
original SimStudents is given the strong operator function set (O+Strong Ops), while the other is
provided with the weak operator function set (O+Weak Ops). The extended SimStudent is given
only the weak operator function set, and also uses the set of grammar features for precondition
learning (E+Weak Ops).

One interesting future study is to test the effectiveness of the grammar features. We did not
carry out this experiment in the current study. In future studies, we would like to remove some
of the original predicates, and compare the performance of the extended SimStudent with and
without the grammar features. Previous studies [30] have also shown that the SimStudent given
weak prior knowledge (i.e. the weak operator function set) often acquires incorrect production

22

Operator function Type Example
GetOperand domain-general (get-operand divide -3)⇒ -3

GenOne domain-general (generate-one)⇒ 1
Copy domain-general (copy 3)⇒ 3
Add domain-general (add 3 5)⇒ 8
Sub domain-general (subtract 8 2)⇒ 6

Multiply domain-general (multiply 3 5)⇒ 15
Divide domain-general (divide 8 3)⇒ 8/3
Concat domain-general (concatenate 5 x)⇒ 5x

ReverseSign domain-general (revserse-sign 8x)⇒ -8x
VarName domain-general (var-name 8x+2)⇒ x

Denominator domain-general (denominator 3/5x)⇒ 5x
Numerator domain-general (numerator 3/5x)⇒ 3
SkillAdd domain-general (skill-add 3)⇒ add 3

SkillSubtract domain-general (skill-subtract 3)⇒ subtract 3
SkillMultiply domain-general (skill-multiply 3)⇒ multiply 3
SkillDivide domain-general (skill-divide 3)⇒ divide 3

SkillCltOperand domain-general (skill-clt 3x+4+5x-2)⇒ clt 3x+4+5x-2
SkillMtOperand domain-general (skill-mt 3x)⇒ mt 3x
EvalArithmetic domain-specific (eval-arithmetic 3x+4+5x-2)⇒ 8x+2

AddTerm domain-specific (add-term 3x+4 5x-2)⇒ 8x+2
SubTerm domain-specific (subtract-term 3x+4 5x-2)⇒ -2x+2
DivTerm domain-specific (divide-term 8x+2 2)⇒ 4x+1
MulTerm domain-specific (multiply-term 8x+2 2)⇒ 16x+4

Coefficient domain-specific (coefficient -3x)⇒ -3
FirstTerm domain-specific (first-term 3x+5)⇒ 3x
LastTerm domain-specific (last-term 3x+5)⇒ 5

Table 3: A list of operator functions used by SimStudents.

23

Strong Ops Weak Ops Strong + Weak Ops
0

2

4

6

8

10

12

14

16

N
u
m

b
e
r

o
f

O
p
e
ra

to
rs

The Amount of Knowledge Engineering

O+Strong Ops

E+Weak Ops

O+Weak Ops

Figure 10: Number of strong and weak operator functions used in acquired production rules.

rules that produce the same errors the human students commonly mades. We do not present these
results in this paper.

6.2 Experiment Results
Evaluation of Knowledge Engineering Needed: We evaluate the learner performance with two
measurements, the total amount of knowledge used and the learning speed. For the first measure-
ment, we look at the production rules acquired from the two problem sets of size 35, and report
the average number of domain-specific and domain-general operator functions used in the two rule
sets. Recall that domain-specific operator functions usually require more knowledge engineering
than domain-general operator functions. As shown in Figure 10, only the SimStudent (O+Strong
Ops) who was given strong operator functions used 8 of the domain-specific operator functions,
plus 7.5 domain-general operator functions on average in the production rules. In contrast, the
extended SimStudent (E+Weak Ops) used 12 domain-general operator functions, which indicates
much less knowledge engineering effort. In addition, the original SimStudent with only domain-
general operator functions (O+Weak Ops) used 14.5 domain-general operator functions, which
suggests that it needs a larger amount of prior knowledge engineering than the extended SimStu-
dents. However, as we will see later, it performs much worse than the extended SimStudents.

Evaluation of Learning Speed: The second study we carried out focuses on evaluation of
learning speed. Since it is often possible to have more than one way of solving the same algebra
equation, it is also possible that there is more than one skill applicable at the same time. In order to
evaluate the performance of all applicable skills, we use two different measurements in evaluating
the learning efficiency. The first measurement is called first-attempt accuracy, where for each
testing problem, the learner receives score 1 if it proposes a correct step at its first attempt, and
gets 0 otherwise. This measurement is closest to the evaluation method used in real classroom
settings, where even if the student has more than one thought in solving the problem, only the
one solution he/she writes out is graded. The second measurement, all-attempt average accuracy,
focuses more on the average performance across all applicable skills. Instead of only counting for
the first attempt, the evaluator scores the correctness of all applicable skills, and reports the average

24

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

F
ri
s
t
A

tt
e
m

p
t

A
c
c
u

ra
c
y

Learning Curve

O+Strong Ops

E+Weak Ops

O+Weak Ops

(a)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training problems

A
ll

A
tt
e
m

p
t
A

v
e
ra

g
e

 A
c
c
u
ra

c
y

Learning Curve

O+Strong Ops

E+Weak Ops

O+Weak Ops

(b)

Figure 11: Learning curves for three learners (a) first-attempt accuracy (b) all-attempt average
accuracy.

score as the all-attempt average accuracy.
The average learning curves for the three SimStudents are shown in Figures 11(a) and 11(b).

The blue lines correspond to the original SimStudents, whereas the black lines represent the perfor-
mance of the extended SimStudent. As we can see in the figures, with both measurements, there is
a huge gap between the two original SimStudents with (O+Strong Ops) and without (O+Weak Ops)
strong operator functions. Our focus is to test whether the extended SimStudent is able to achieve
performance comparable to the original SimStudent with strong operator functions (O+Strong
Ops) while given only the weak operator function set. As the result shows, the extended Sim-
Student (E+Weak Ops) learns slower than the original SimStudent with strong operator functions
(O+Strong Ops) at the very beginning, but gradually catches up with the original SimStudent. With
35 training problems, the all-attempt average accuracy of the extended SimStudent (E+Weak Ops)
reaches 95%, which is only 1% lower than the original SimStudent with strong operator functions
(O+Strong Ops). This suggests that with the deep feature learner, the extended SimStudent is able
to achieve comparable performance without prior knowledge engineering.

7 Using SimStudent to Discover Better Student Models
As mentioned above, we are not only interested in building a learning agent: we would also like
to construct a learning agent that simulates how students acquire knowledge. In this section, we
are going to present an approach that automatically discovers student models using the extended
SimStudent. If the discovered model turns out to be a good student model, we should be able to
conclude that the extended SimStudent simulates the real student learning process well. A student
model is a set of knowledge components (KC) encoded in intelligent tutors to model how students
solve problems. The set of KCs includes the component skills, concepts, or percepts that a student

25

must acquire to be successful on the target tasks. For example, a KC in algebra can be how students
should proceed given problems of the form Nv=N (e.g., -3x = 6). It provides important information
to automated tutoring systems in making instructional decisions. Better student models match
with real student behavior. They are capable of predicting task difficulty and transfer of learning
between related problems, and often yield better instruction.

Traditional ways to construct student models include structured interviews, think-aloud proto-
cols, rational analysis, and so on. However, these methods are often time-consuming, and require
expert input. More importantly, they are highly subjective. Previous studies [20, 19] have shown
that human engineering of these models often ignores distinctions in content and learning that have
important instructional implications. Other methods such as Learning Factor Analysis (LFA) [8]
apply an automated search technique to discover student models. It has been shown that these au-
tomated methods are able to find better student models than human-generated ones. Nevertheless,
LFA requires a set of human-provided factors given as input. These factors are potential KCs. LFA
carries out the search process only within the space of such factors. If a better model exists but
requires unknown factors, LFA will not find it.

To address this issue, we propose a method that automatically discovers student models without
depending on human-provided factors. The system uses the extended SimStudent to acquire skill
knowledge. Each production rule corresponds to a KC that students need to learn. The model then
labels each observation of a real student based on skill application.

7.1 Method
In order to evaluate the effectiveness of the proposed approach, we carried out a study using an
algebra dataset. We compared the SimStudent model with a human-generated KC model by first
coding the real student steps using the two models, and then testing how well the two model
codings fit with real student data. Note that the human-generated KC model is one of the best
models among existing student models.

For the human-generated model, the real student steps were first coded using the “action”
label associated with a correct step transaction, where an action corresponds to a mathematical
operation(s) to transform an equation into another. As a result, there were nine KCs defined (called
the Action KC model) – add, subtract, multiply, divide, distribute, clt (combine like terms), mt
(simplify multiplication), and rf (reduce a fraction). Four KCs associated with the basic arithmetic
operations (i.e., add, subtract, multiply, and divide) were then further split into two KCs for each,
namely a skill to identify an appropriate basic operator and a skill to actually execute the basic
operator. The former is called a transformation skill whereas the latter is a typein skill. As a
consequence, there were 12 KCs defined (called the Action-Typein KC model). Not all steps in the
algebra dataset can be coded with these KC models – some steps are about a transformation that
we do not include in the Action KC model (e.g., simplify division). There were 9487 steps that
can be coded by both KC models mentioned above. The “default” KC model, which were defined
by the productions implemented for the cognitive tutor, has only 6809 steps that can be coded.
To make a fair comparison between the “default” and “Action- Typein” KC models, we took the
intersection of those 9487 and 6809 steps. As a result, there were 6507 steps that can be coded by
both the default and the Action-Typein KC models. We then defined a new KC model, called the

26

Balanced-Action-Typein KC model that has the same set of KCs as the Action-Typein model but
is only associated with these 6507 steps, and used this KC model to compare with the SimStudent
model.

To generate the SimStudent model, SimStudent was tutored on how to solve linear equations
by interacting with a Carnegie Learning Algebra I Tutor, like a human student. We selected 40
problems that were used to teach real students as the training set for SimStudent. Given all of
the acquired production rules, for each step a real student performed, we assigned the applicable
production rule as the KC associated with that step. In cases where there was no applicable pro-
duction rule, we coded the step using the human-generated KC model (Balanced-Action-Typein).
Each time a student encounters a step using some KC is considered as an “opportunity” for that
student to show mastery of that KC.

Having finished coding real student steps with both models (the SimStudent model and the
human-generated model), we used the Additive Factor Model (AFM) [8] to validate the coded
steps. AFM is an instance of logistic regression that models student success using each student,
each KC, and the KC by opportunity interaction as independent variables,

ln
pij

1− pij
= θi +

∑
k

βkQkj +
∑
k

Qkj(γkNik) (1)

Where:

i represents a student i.

j represents a step j.

k represents a skill or KC k.

pij is the probability that student i would be correct on step j.

θi is the coefficient for proficiency of student i.

βk is coefficient for difficulty of the skill or KC k

Qkj is the Q-matrix cell for step j using skill k.

γk is the coefficient for the learning rate of skill k;

Nik is the number of practice opportunities student i has had on the skill k;

We utilized DataShop [18], a large repository that contains datasets from various educational
domains as well as a set of associated visualization and analysis tools, to facilitate the process
of evaluation, which includes generating learning curve visualization, AFM parameter estimation,
and evaluation statistics including AIC (Akaike Information Criterion) and cross validation.

27

3 x

MinusSign Number

SignedNumber

Expression

Variable

x

MinusSign

Expression

Variable

Figure 12: Different parse trees for -3x and -x.

7.2 Dataset
We analyzed the same data from 71 students who used an Carnegie Learning Algebra I Tutor
unit on equation solving. The students were typical students at a vocational-technical school in
a rural/suburban area outside of Pittsburgh, PA. The problems varied in complexity, for example,
from simpler problems like 3x=6 to harder problems like x/-5+7=2. A total of 19,683 transactions
between the students and the Algebra Tutor were recorded, where each transaction represents an
attempt or inquiry made by the student, and the feedback given by the tutor.

7.3 Measurements
To test whether the generated model fits with real student data, we used AIC and a 3-fold cross
validation. AIC measures the fit to student data while penalizing over-fitting. We did not use BIC
(Bayesian Information Criterion) as the fit metric, because based on past analysis across multiple
DataShop datasets, it has been shown that AIC is a better predictor of cross validation than BIC
is. The cross validation was performed over three folds with the constraint that each of the three
training sets must have data points for each student and KC. We also report the root mean-squared
error (RMSE) averaged over three test sets.

7.4 Experiment Results
The SimStudent model contains 21 KCs. Both the AIC (6448) and the cross validation RMSE
(0.3997) are lower than the human-generated model (AIC 6529 and cross validation 0.4034). This
indicates that the SimStudent model better predicts real student behavior.

In order to understand whether the differences are significant or not, we carried out two sig-
nificance tests. The first significance test evaluates whether the SimStudent model is actually able
to make better predictions than the human-generated model. During the cross validation process,
each student step was used once as the test problem. We took the predicated error rates gener-
ated by the two KC models for each step during testing. Then, we compared the KC models’
predictions with the real student error rate (0 if the student was correct at the first attempt, and 1
otherwise). After removing ties, among all 6494 student steps, the SimStudent model made a better

28

−Nv=N Nv=−N Nv=N N=Nv −N=Nv −Nv=−N N=−Nv −v=N −v=−N −N=−v
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem Abstractions

E
rr

o
r

R
a
te

Real Student

Human−generated Model

SimStudent Model

Figure 13: Error rates for real students and predicted error rates from two student models.

prediction than the human-generated KC model in 4260 steps. A sign test on this shows that the
SimStudent model is significantly (p < 0.001) better in predicting real student behavior than the
human-generated model. In the second test, due to the random nature of the assignment to folds
in cross validation, we evaluated whether the lower RMSE achieved by the SimStudent model was
consistent or could be due to chance. To do this, we repeated the cross validation 20 times, and
calculated the RMSE for both models. Across the 20 runs, the SimStudent model consistently out-
performed the human-generated model: in particular, a paired t-test shows the SimStudent model
is significantly (p < 0.001) better than the human-generated model. 3 Therefore, we conclude that
the SimStudent model is a better student model than the human-generated KC model.

7.5 Implications on Instructional Decision
We can inspect the data more closely to get a better qualitative understanding of why the SimStu-
dent model is better and what implications there might be for improved instruction. Among the 21
KCs learned by the SimStudent model, there were 17 transformation KCs and four typein KCs. It
is hard to map the SimStudent KC model directly to the expert model. Approximately speaking,
the distribute, clt (i.e. combine like terms), mt, rf KCs as well as the four typein KCs are similar to
the KCs defined in the expert model. The transformation skills associated with the basic arithmetic
operators (i.e., add, subtract, multiply and divide) are further split into finer grain sizes based on
different problem forms.

One example of such split is that SimStudent created two KCs for division. The first KC
(simSt-divide) corresponds to problems of the form Ax=B, where both A and B are signed numbers,
whereas the second KC (simSt-divide-1) is specifically associated with problems of the form -x=A,
where A is a signed number. This is caused by the different parse trees for Ax vs -x as shown in
Figure 12. To solve Ax=B, SimStudent simply needs to divide both sides with the signed number
A. On the other hand, since -x does not have -1 represented explicitly in the parse tree, SimStudent
needs to see -x as -1x, and then to extract -1 as the coefficient. If SimStudent is a good model of

3Note that differences between competitors in the KDD Cup 2010 (https://pslcdatashop.web.cmu.edu/KDDCup/Leaderboard)
have also been in this range of thousands in RMSE.

29

human learning, we expect the same to be true for human students. That is, real students should
have greater difficulty in making the correct move on steps like -x = 6 than on steps like -3x =
6 because of the need to convert (perhaps just mentally) -x to -1x. To evaluate this hypothesis,
we computed the average error rates for a relevant set of problem types – these are shown with
the solid line in Figure 13 with the problem types defined in forms like -Nv=N, where the Ns are
any integrate number and the v is a variable (e.g., -3x=6 is an instance of -Nv=N and -6=-x is an
instance of -N=-v).

We also calculated the mean of the predicted error rates for each problem type for both the
human-generated model and the SimStudent model. Consistent with the hypothesis, as shown in
Figure 13, we see that problems of the form Ax=B (average error rate 0.283) are much simpler
than problems of the form -x=A (average error rate 0.719). The human-generated model predicts
all problem types with similar error rates (average predicted error rate for Ax=B 0.302, average
predicted error rate for -x=A 0.334), and thus fails to capture the difficulty difference between the
two problem types (Ax=B and -x=A). The SimStudent model, on the other hand, fits with the real
student error rates much better. It predicts higher error rates (0.633 on average) for problems of
the form -x=A than problems of the form Ax=B (0.291 on average).

SimStudent’s split of the original division KC into two KCs, simSt-divide and simSt-divide-1,
suggests that the tutor should teach real students to solve two types of division problems separately.
In other words, when tutoring students with division problems, we should include two subsets of
problems, one subset corresponding to simSt-divide problems (Ax=B), and one specifically for
simSt-divide-1 problems (-x=A). We should perhaps also include explicit instruction that highlights
for students that -x is the same as -1x.

8 Related Work
The main contribution of this paper is to reduce the amount of knowledge engineering required
in building a human-like intelligent agent by integrating feature learning into an agent. There
has been considerable research on learning within agent architectures. Soar [22] uses a chunk-
ing mechanism to acquire knowledge that constrains problem-space search. Another architecture
ACT-R [2] creates new production rules through a compilation process that gradually transforms
declarative representations into skill knowledge [46]. ICARUS [23] acquires complex conceptual
predicates in the context of problem solving. PRODIGY uses an analytical technique to acquire
control rules for means-ends problem solving (Minton et al., 1989).

Another closely related research area is learning procedural knowledge by observing others’
behavior. Classical approaches include explanation-based learning [44, 33], learning appren-
tices [32] and programming by demonstration [11, 25]. Most of these approaches used analytic
methods to acquire candidate procedures. Other works on transfer learning, e.g., [40, 36, 49, 42],
also share some resemblance with our work. They focus on improving the performance of learning
by transferring previously acquired knowledge from another domain of interest. However, to the
best of our knowledge, none of the above approaches uses the transfer learning learner to acquire
a better representation that reveals essential percept features, and integrate it into an intelligent
agent. Other research in cognitive science also attempt to use probabilistic approaches to model

30

the process of human learning. Kemp and Xu [17] apply a probabilistic model to capture princi-
ples of infant object perception. Kemp and Tenenbaum [16] use a hierarchical generative model
to show the acquisition process of domain-specific structural constraints. But again, neither of the
above approaches tend to use the probabilistic model as a representation acquisition component in
a learning agent.

Additionally, research on deep architectures [5] shares a clear resemblance with our work and
has been receiving increasing attention recently. Theoretical results suggest that in order to learn
complicated functions such as AI-level tasks, deep architectures that are composed of multiple
levels of non-linear operation are needed. Although not having been studied much in the machine
learning literature due to the difficulty in optimization, there are some notable exceptions in the
area including convolutional neural networks [26, 27, 45, 41], sigmoidal belief networks learned
using variational approximations [12, 15, 43, 48], and deep belief networks [14, 6]. While both the
work in deep architectures and our work are interested in modeling complicated functions through
non-linear features, the tasks we work on are different. Deep architectures are used more often in
classification tasks whereas our work focuses on simulating human learning of math and science.

There has been considerable work on comparing the quality of alternative student models.
LFA automatically discovers student models, but is limited to the space of the human-provided
factors. Other works such as [37, 52] are less dependent on human labeling, but may suffer from
challenges in interpreting the results. In contrast, the SimStudent approach has the benefit that
the acquired production rules have a precise and usually straightforward interpretation. Baffes and
Mooney [3] apply theory refinement to the problem of modeling incorrect student behavior. Other
systems [47, 4] use a Q-matrix to find knowledge structure from student response data. None of
the above approaches use simulated students to construct student models.

Besides SimStudent, there has been a lot of work on creating simulated students [51, 9, 38].
VanLehn [50] created a learning system and evaluated whether it was able to learn procedural
“bugs” like real students. Biswas et al.’s [7] system learns causal relations from a conceptual map
created by students. None of the above approaches compared the system with human learning
curve data. To the best of our knowledge, our work is the first combination of the two whereby we
use student model evaluation techniques to assess the quality of a simulated learner.

9 Future Work
In spite of the promising results, there are still many fruitful possibilities to further improve Sim-
Student. First of all, we should carry out more extensive studies in more domains to evaluate the
generality of the proposed system. Moreover, since the extended SimStudent only uses domain-
independent operator functions, we should also evaluate whether this extension enables better
transfer learning. In other words, after trained on one relevant task, does the extended SimStudent
needs fewer number of extra operator functions than the original SimStudent in the new learning
task. Since we are interested in modeling real student learning, we would also like to carry out
more experiments comparing our system performance with real student data. In particular, we are
interested in matching the type of errors made by SimStudent with the common errors made by
real students. We believe that with these extensions, we would be able to gain more insights of

31

human learning, as well as to advance the process of creating an integrated intelligent agent.
Second, as mentioned above, PCFGs are more suitable in representing 1-D information, which

is an appropriate choice for many maths domains such as algebra, multi-column addition and so
on. There are other domains that may require representation in a 2-D space. We believe the
grammar learner can also be extended to support other domains that require 2-D representation.
The geometry domain would be an example of such. We would like to further extend our feature
learner to support 2-D domains by using bidirectional grammars.

Finally, the deep feature learning process is currently carried out before the SimStudent knowl-
edge acquisition. Only the acquired grammar is used to provide better representation to SimStu-
dent. It is possible that the feedback given to SimStudent could also provide feedback to the inte-
grated grammar. For example, if the deep feature learner initially acquired the incorrect grammar,
and caused a lot of failures for SimStudent learning, the extended SimStudent could potentially
feed this information back to the deep feature learner, and ask it to revise its grammar. More-
over, the training records for the deep feature learner could also be automatically generated from
the steps demonstrated to SimStudent. By doing this, SimStudent would be able to learn better
representation knowledge during skill knowledge acquisition. The two learning systems would
mutually assist each other in achieving better performance.

10 Concluding Remarks
To sum up, building an intelligent agent that simulates human-level learning is an essential task
in AI and education, but building such systems often requires manual encoding of prior domain
knowledge. In this paper, we proposed a novel algorithm that automatically acquires deep fea-
tures from observations without any annotation or with light annotations. We then integrate this
stand-alone feature learning algorithm into an intelligent agent, SimStudent, as an extension of
the perception module. We showed that after the integration, the extended SimStudent is able to
achieve comparable performance without requiring any domain-specific operator function as in-
put. In addition to being an effective learner, we further showed that the extended SimStudent
could be used to discover better models of real students. Given all the results, we conclude that
the extended SimStudent is a good human-like intelligent agent that requires a small amount of
knowledge engineering.

References
[1] Vincent Aleven, Bruce M. Mclaren, Jonathan Sewall, and Kenneth R. Koedinger. A new

paradigm for intelligent tutoring systems: Example-tracing tutors. International Journal of
Artificial Intelligence in Education, 19:105–154, April 2009.

[2] John R. Anderson. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1993.

32

[3] Paul Baffes and Raymond Mooney. Refinement-based student modeling and automated bug
library construction. J. Artif. Intell. Educ., 7(1):75–116, 1996.

[4] Tiffany Barnes. The Q-matrix method: Mining student response data for knowledge. In
Proceedings AAAI Workshop Educational Data Mining, pages 1–8, Pittsburgh, PA, 2005.

[5] Yoshua Bengio. Learning deep architectures for ai. Foundations Trends in Machine Learning,
2:1–127, January 2009.

[6] Yoshua Bengio, Olivier Delalleau, and Clarence Simard. Decision trees do not generalize to
new variations. Computational Intelligence, 26(4):449–467, November 2010.

[7] Gautam Biswas, Daniel Schwartz, Krittaya Leelawong, and Nancy Vye. Learning by teach-
ing: A new agent paradigm for educational software. Applied Artificial Intelligence, 19:363–
392, March 2005.

[8] Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis - a general method
for cognitive model evaluation and improvement. In Proceedings of the 8th International
Conference on Intelligent Tutoring Systems, pages 164–175, 2006.

[9] Tak-Wai Chan and Chih-Yueh Chou. Exploring the design of computer supports for recipro-
cal tutoring. International Journal of Artificial Intelligence in Education, 8:1–29, 1997.

[10] Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. Categorization and representation
of physics problems by experts and novices. Cognitive Science, 5(2):121–152, June 1981.

[11] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,
Brad A. Myers, and Alan Turransky, editors. Watch what I do: programming by demon-
stration. MIT Press, Cambridge, MA, 1993.

[12] Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The Helmholtz
Machine. Neural Computation, 7(5):889–904, December 1995.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

[14] G. E. Hinton. To recognize shapes, first learn to generate images. Progress in brain research,
165:535–547, 2007.

[15] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The ”wake-sleep” algorithm for unsuper-
vised neural networks. Science, 268(5214):1158–1161, May 1995.

[16] Charles Kemp and Joshua B B. Tenenbaum. The discovery of structural form. Proceedings
of the National Academy of Sciences of the United States of America, July 2008.

33

[17] Charles Kemp and Fei Xu. An ideal observer model of infant object perception. In Daphne
Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS, pages 825–832.
MIT Press, 2008.

[18] Kenneth R. Koedinger, Ryan S.J.d. Baker, Kyle Cunningham, Alida Skogsholm, Brett Leber,
and John Stamper. A data repository for the EDM community: The PSLC DataShop, 2010.

[19] Kenneth R. Koedinger and Elizabeth A. McLaughlin. Seeing language learning inside the
math: Cognitive analysis yields transfer. In Proceedings of the 32nd Annual Conference of
the Cognitive Science Society, pages 471–476, Austin, TX, 2010.

[20] Kenneth R. Koedinger and Mitchell J. Nathan. The real story behind story problems: Effects
of representations on quantitative reasoning. The Journal of Learning Sciences, 13(2):129–
164, 2004.

[21] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: an architecture for general
intelligence. Artificial Intelligence, 33(1):1–64, 1987.

[22] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in soar: The anatomy of a
general learning mechanism. Machine Learning, 1:11–46, 1986.

[23] Pat Langley and Dongkyu Choi. A unified cognitive architecture for physical agents. In
Proceedings of the Twenty-First National Conference on Artificial Intelligence, Boston, 2006.

[24] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 4:35–56, 1990.

[25] Tessa Lau and Daniel S. Weld. Programming by demonstration: An inductive learning for-
mulation. In Proceedings of the 1999 international conference on intelligence user interfaces,
pages 145–152, 1998.

[26] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Comput., 1:541–551,
December 1989.

[27] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[28] Nan Li, William W. Cohen, and Kenneth R. Koedinger. A computational model of accelerated
future learning through feature recognition. In ITS’10: Proceedings of 10th International
Conference on Intelligent Tutoring Systems, pages 368–370, 2010.

[29] Nan Li, Subbarao Kambhampati, and Sungwook Yoon. Learning probabilistic hierarchical
task networks to capture user preferences. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, CA, 2009.

34

[30] Noboru Matsuda, Andrew Lee, William W. Cohen, and Kenneth R. Koedinger. A compu-
tational model of how learner errors arise from weak prior knowledge. In Proceedings of
Conference of the Cognitive Science Society, 2009.

[31] Tom Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1982.

[32] Tom M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg. Leap: a learning apprentice for
vlsi design. In Proceedings of the 9th international joint conference on Artificial intelligence,
pages 573–580, San Francisco, CA, 1985.

[33] Raymond J. Mooney. A General Explanation-Based Learning Mechanism and its Application
to Narrative Understanding. Morgan Kaufmann, San Mateo, CA, 1990.

[34] Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19:629–679, 1994.

[35] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87–127, 1982.

[36] Alexandru Niculescu-Mizil and Rich Caruana. Inductive transfer for bayesian network struc-
ture learning. In Proceedings of the 11th International Conference on AI and Statistics, 2007.

[37] Philip I. Pavlik, Hao Cen, and Kenneth R. Koedinger. Learning Factors Transfer Analysis:
Using Learning Curve Analysis to Automatically Generate Domain Models. In Proceedings
of 2nd International Conference on Educational Data Mining, pages 121–130, 2009.

[38] Timo Niemirepo Pentti Hietala. The competence of learning companion agents. International
Journal of Artificial Intelligence in Education, 9:178–192, 1998.

[39] J. R. Quinlan. Learning logical definitions from relations. Mach. Learn., 5(3):239–266, 1990.

[40] Rajat Raina, Andrew Y. Ng, and Daphne Koller. Constructing informative priors using trans-
fer learning. In Proceedings of the 23rd international conference on Machine learning, pages
713–720, New York, NY, 2006.

[41] Marc’Aurelio Ranzato, Fu J. Huang, Y. Lan Boureau, and Yann LeCun. Unsupervised Learn-
ing of Invariant Feature Hierarchies with Applications to Object Recognition. Computer
Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:1–8, 2007.

[42] Matthew Richardson and Pedro Domingos. Markov logic networks. Mach. Learn., 62(1-
2):107–136, 2006.

[43] Lawrence K. Saul, Tommi Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid
belief networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

[44] Alberto Segre. A learning apprentice system for mechanical assembly. In Proceedings of the
Third IEEE Conference on AI for Applications, pages 112–117, 1987.

35

[45] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. In ICDAR ’03: Proceedings of the
Seventh International Conference on Document Analysis and Recognition, Washington, DC,
USA, 2003. IEEE Computer Society.

[46] Niels A. Taatgen and Frank J. Lee. Production compilation: A simple mechanism to model
complex skill acquisition. Human Factors, 45(1):61–75, 2003.

[47] Kikumi K. Tatsuoka. Rule space: An approach for dealing with misconceptions based on
item response theory. Journal of Educational Measurement, pages 345–354, 1983.

[48] Ivan Titov and James Henderson. Constituent Parsing with Incremental Sigmoid Belief Net-
works. In Proceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics, pages 632–639, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[49] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in reinforce-
ment learning. In Proceedings of the 17th Conference on Inductive Logic Programming,
Corvallis, Oregon, 2007.

[50] Kurt VanLehn. Mind Bugs: The Origins of Procedural Misconceptions. MIT Press, Cam-
bridge, MA, USA, 1990.

[51] Kurt Vanlehn, Stellan Ohlsson, and Rod Nason. Applications of simulated students: an
exploration. Journal of Artificial Intelligence in Education, 5:135–175, February 1994.

[52] Michael Villano. Probabilistic student models: Bayesian belief networks and knowledge
space theory. In Proceedings of the 2nd International Conference on Intelligent Tutoring
Systems, pages 491–498, Heidelberg, 1992.

36

Carnegie Mellon University does not discriminate in admission, employment, or administration of its programs
or activities on the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation,
gender identity, religion, creed, ancestry, belief, veteran status, or genetic information. Futhermore,
Carnegie Mellon University does not discriminate and if required not to discriminate in violation of
federal, state, or local laws or executive orders.

Inquiries concerning the application of and compliance with this statement
should be directed to the vice president for campus affairs,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone, 412-268-2056

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	2 A Brief Review of SimStudent
	2.1 Learning Task
	2.2 Production Rules
	2.3 Learning Mechanism

	3 Deep Feature Learning
	3.1 A Brief Review of the pHTN Learner
	3.1.1 Greedy Structure Hypothesizer (GSH)
	3.1.2 Refining Schema Probabilities: Viterbi Training Phase

	3.2 Feature Learning
	3.3 Transfer Learning for Deep Feature Learning
	3.3.1 Explicitly Labeled Common Sub-grammars
	3.3.2 Learning and Transfer of Common Sub-grammars without Hints

	4 Empirical Evaluation on Deep Feature Learner
	4.1 Experimental Design in Synthetic Domains
	4.2 Experiment Results in Synthetic Domains
	4.3 Experimental Design in Algebra
	4.3.1 Method
	4.3.2 Measurements

	4.4 Impact of Accelerated Future Learning on the Rate of Learning

	5 Integrating Deep Feature Learning into SimStudent
	5.1 Extending Perceptual Learning
	5.2 Extending Precondition Acquisition

	6 Experimental Study on SimStudent Integrated with Deep Feature Learner
	6.1 Experiment Design
	6.2 Experiment Results

	7 Using SimStudent to Discover Better Student Models
	7.1 Method
	7.2 Dataset
	7.3 Measurements
	7.4 Experiment Results
	7.5 Implications on Instructional Decision

	8 Related Work
	9 Future Work
	10 Concluding Remarks

