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Abstract
In many real world problems, rare categories (minority classes) play an essential role despite

of their extreme scarcity. For example, in financial fraud detection, the vast majority of the
financial transactions are legitimate, and only a small number may be fraudulent; in Medicare
fraud detection, the percentage of bogus claims is small, but the total loss is significant; in
network intrusion detection, malicious network activities are hidden among huge volumes of
routine network traffic; in astronomy, only 0.001% of the objects in sky survey images are truly
beyond the scope of current science and may lead to new discoveries; in spam image detection,
the near-duplicate spam images are difficult to discover from the large number of non-spam
image; in rare disease diagnosis, the rare diseases affect less than 1 out of 2000 people, but the
consequences can be very severe. Therefore, the discovery, characterization and prediction of
rare categories or rare examples may protect us from fraudulent or malicious behaviors, provide
the aid for scientific discoveries, and even save lives.

This thesis focuses on rare category analysis, where the majority classes have a smooth
distribution, and the minority classes exhibit a compactness property. Furthermore, we focus
on the challenging cases where the support regions of the majority and minority classes overlap
each other. To the best of our knowledge, this thesis is the first end-to-end investigation of rare
categories.

Depending on the availability of the label information, we can perform either supervised or
unsupervised rare category analysis. In the supervised settings, our first task is rare category
detection, which is to discover at least one example from each minority class with the help of a
labeling oracle. Then given labeled examples from all the classes, our second task is rare cate-
gory characterization. The goal here is to find a compact representation for the minority classes
in order to identify all the rare examples with high precision and recall. On the other hand,
in the unsupervised settings, we do not have access to a labeling oracle. Here we propose to
co-select candidate examples from the minority classes and the relevant features, which benefits
both tasks (rare category selection and feature selection). For each of the above tasks, we have
developed effective algorithms with theoretical guarantees as well as good empirical results.

In the future, we plan to apply rare category analysis on rich data, such as medical images,
texts / blogs, Electronic Health Records (EHR), web link graphs, stream data, etc; we plan
to build statistical models for the rare categories in order to understand how they emerge and
evolve over time; we plan to study complex fraud based on rare category analysis; we plan to
make use of transfer learning to help with our analysis; we also plan to build a complete system
for rare category analysis.



Acknowledgments
Looking back upon the many years I spent in school, I feel greatly indebted to the numerous

people who have made me the person I am today.
I would like to thank Jaime Carbonell for being my advisor. I could not have hoped for a

better advisor to guide me through my PhD studies. He is smart, professional, fun and knows
everything. Every time I came to him with a new idea, he was always able to sharpen my
thoughts and point out possible directions which turned out to be very fruitful. I would like to
thank Christos Faloutsos for being both a wise mentor and a great friend. He shared with me a
lot of his advices and experiences so that I would not take detours in my career. I would like to
thank John Lafferty, Larry Wasserman, and Foster Provost for serving on my thesis committee.
Their comments and suggestions really helped me improve my thesis work. And I would like
to thank Avrim Blum for invaluable and insightful discussions.

I would also like to thank all my collaborators during my internship. These include: Hong-
Jiang Zhang, Mingjing Li, and Lei Zhang from Microsoft Research Asia, who set up a very high
standard for me at the beginning of my research life; Bo Thiesson from Microsoft Research,
who constantly encouraged me to pursue one step further; Rick Lawrence and Yan Liu from
IBM Research, the discussions with whom really expanded my horizon.

During my undergraduate studies in Tsinghua University, I was greatly inspired by the fac-
ulty in Automation Department, including Nanyuan Zhao, Changshui Zhang, Zongxia Liang,
Yuanlie Lin, Yanda Li, Shi Yan, Mei Lu, to name a few. Their enthusiasm towards science
and rigorous attitude towards research have a long impact on my own career. They deserve my
deepest appreciation.

I am also grateful to Yanxi Liu. She interviewed me 5 years ago and her nice comments
got me into CMU, the best place for studying computer science. Diane Stidle, who is always
there for the students. Whenever I have a problem, her name is the first one I can think of to
ask for help. Michelle Pagnani, who is always able to squeeze my meeting into Jaime’s busy
schedule. And all my friends, including Zhenzhen Kou, Fan Guo, Lei Li, Rong Yan, Xiaojing
Fu, Jin Peng, Xiaomeng Chang, and many more.

Special gratitude goes to my grandparents, whose warm smiles always blessed me; my
parents, who have the strongest belief in me all the time; Hanghang Tong, who has been nothing
but a great husband; and my daughter Emma, who is the most naughty girl ever. Actually this
thesis is a gift to her for her upcoming one year’s birthday, though she could not understand a
single word at this time.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 General Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Rare Category Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.2 Rare Category Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Unsupervised Rare Category Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Survey and Overview 7
2.1 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Imbalanced Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Anomaly Detection (Outlier Detection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Rare Category Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Unsupervised Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Co-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Rare Category Detection 12
3.1 Rare Category Detection with Priors for Data with Features . . . . . . . . . . . . . . . . . . 12

3.1.1 Rare Category Detection for the Binary Cases . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Rare Category Detection for Multiple Classes . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Prior-free Rare Category Detection for Data with Features . . . . . . . . . . . . . . . . . . 28
3.2.1 Semiparametric Density Estimation for Rare Category Detection . . . . . . . . . . . 28
3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Rare Category Detection for Graph Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 GRADE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 GRADE-LI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Summary of Rare Category Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



CONTENTS vii

4 Rare Category Characterization 55
4.1 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Additional Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 Pre-processing: Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Optimization Algorithm: RACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Initialization Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Projected Subgradient Method for Problem 4.3 . . . . . . . . . . . . . . . . . . . . 60
4.2.3 RACH for Problem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Kernelized RACH Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Synthetic Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Real Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Summary of Rare Category Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Unsupervised Rare Category Analysis 75
5.1 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Additional Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.3 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Partial Augmented Lagrangian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Synthetic Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Real Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Summary of Unsupervised Rare Category Analysis . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion and Future Directions 96



Chapter 1

Introduction

Imbalanced data sets are prevalent in real applications, i.e., some classes occupy the majority of the data set,
a.k.a., the majority classes; whereas the remaining classes only have a few examples, a.k.a., the minority
classes or the rare categories. For example, in financial fraud detection, the vast majority of the finan-
cial transactions are legitimate, and only a small number may be fraudulent [Bay et al., 2006]; in Medicare
fraud detection, the percentage of bogus claims is small, but the total loss is significant; in network in-
trusion detection, new malicious network activities are hidden among huge volumes of routine network
traffic [Wu et al., 2007][Vatturi & Wong, 2009]; in astronomy, only 0.001% of the objects in sky survey im-
ages are truly beyond the scope of current science and may lead to new discoveries [Pelleg & Moore, 2004];
in spam image detection, near-duplicate spam images are difficult to discover from the large number of non-
spam images [Wang et al., 2007]; in health care, the rare diseases affect less than 1 out of 2000 people, but
the consequences are severe. Compared with the majority classes, the minority classes are often of much
greater interest to the users. The main focus of my research is rare category analysis, which refers to the
problem of analyzing the minority classes in an imbalanced data set. In this thesis, we plan to address this
problem from different perspectives.

1.1 Motivation

When dealing with highly imbalanced data sets, there are a number of challenges. For example, in financial
fraud detection, we may want to discover new types of fraud transactions from a large number of unexamined
financial transactions with the help of a domain expert. In a more abstract way, given an imbalanced data set,
our goal is to discover a few examples from the minority classes when we have access to a labeling oracle.
Due to the extreme scarcity of the new types of fraud transactions compared with the normal transactions,
simple methods such as random sampling would result in a huge number of label requests from the domain
expert, which can be very expensive. Therefore, to reduce the labeling cost, we need more effective methods
for discovering the new types of fraud transactions. Take rare disease diagnosis as another example. Given
a small number of patients with a specific rare disease, how can we characterize this rare disease based on
a subset of the medical measurements? With this characterization, we hope to help domain experts better
understand the mechanism of this disease, distinguish it from other diseases for the best treatment, and
identify potential patients with the same disease. The major challenge here is the insufficiency of label
information, which might be alleviated by leveraging the information of health people as well as patients
with similar diseases. Yet another example is in Medicare fraud detection. Due to the large number of
medical claims submitted to the computer system for Medicare services, it is impossible for a domain expert
to examine each of them and report suspicious ones. Therefore, an automated program that is able to detect
complex fraud patterns with a high accuracy will greatly reduce the demand for human labor. The major
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2 CHAPTER 1. INTRODUCTION

challenge here is the lack of label information, which might be compensated by studying the properties of
known fraud patterns. All the above challenges are associated with rare category analysis, where the main
theme is to provide powerful tools for analyzing the rare categories in real applications.

1.2 Problem Definition

In rare category analysis, we are given an imbalanced data set, which is unlabeled initially. Depending
on the availability of the label information, rare category analysis can be performed in the supervised or
unsupervised fashion.

In supervised rare category analysis, we have access to a labeling oracle, which is able to provide us with
the label information of any example with a fixed cost. In this case, rare category analysis can be divided
into the following two tasks.

1. Rare category detection: in this task, we start from de-novo, and propose initial candidates of each
minority class to the labeling oracle (one candidate in each round) in an active learning fashion,
hoping to find at least one example from each minority class with the least total label requests. This
task serves as the initial exploration step of the data set, and generates a set of labeled examples from
each class, which can be used in the second task.

2. Rare category characterization: in this task, we have labeled examples from each class (both major-
ity and minority classes), which are obtained from the first task, as well as a set of unlabeled examples
as input. The goal is to find a compact representation for the minority classes in order to identify all
the rare examples with high precision and recall. This task serves as the exploitation step of the data
set, and constructs a reliable classifier, which can be used to identify future unseen examples from the
minority classes.

In unsupervised rare category analysis, we do not have such a labeling oracle, and the goal here is to
address the following two problems.

1. Rare category selection: selecting a set of examples which are likely to come from the same minority
classes;

2. Feature selection: selecting the features that are relevant to the minority classes.

1.3 General Assumptions

When dealing with examples with feature representations, we make the following general assumptions
throughout this thesis.

1. Smoothness assumption: the underlying distribution of each majority class is sufficiently smooth.

2. Compactness (clustering) assumption: the examples from the same minority class form a compact
cluster in the feature space or feature subspace;

An example of the underlying distribution where these assumptions are satisfied is shown in Fig. 1.1. It
shows the underlying distribution of a one-dimensional synthetic data set. The majority class has a Gaussian
distribution with a large variance; whereas the minority classes correspond to the two lower variance peaks.
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Figure 1.1: Underlying distribution of a one-dimensional synthetic data set: the majority class has a Gaus-
sian distribution with a large variance; whereas the minority classes correspond to the two lower variance
peaks.

The purpose of these assumptions is to make the minority classes identifiable. For example, if there are
only one majority class and one minority class, and both have the same underlying distribution, for the task
of rare category detection, no algorithms will perform better than random sampling. On the other hand, if the
distribution of the majority class is very bumpy, and each bump is as narrow and sharp as the distribution of
the minority class, then the minority classes can not be discovered very efficiently either. Empirical studies
support these assumptions. Furthermore, according to the experimental results shown in the following
chapters, our algorithms developed based on these assumptions often achieve good performance for rare
category analysis.

Furthermore, in this thesis, we focus on the cases where the support regions of the majority and minority
classes overlap with each other in the feature space (although some algorithms work well in both the separa-
ble and non-separable cases). The overlapping (non-separable) phenomenon can be observed in many real
applications. For example, the guileful fraudulent people often try to camouflage their transactions within
the normal transactions so that they can bypass the current fraud detection algorithms [Chau et al., 2006]; in
spam image detection, ‘advanced’ spam images are deliberately made like normal. Compared with the cases
where the majority and minority classes are separable / near-separable from each other, which are targeted by
most existing work in rare category analysis, such as [Fine & Mansour, 2006] and [Pelleg & Moore, 2004],
the overlapping (non-separable) cases are more realistic and more challenging, but have not been well stud-
ied before.

1.4 Thesis Outline

1.4.1 Rare Category Detection

I plan to address the following questions with respect to rare category detection.
1. How to detect the rare categories in an unlabeled, imbalanced data set with the help of a labeling
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oracle?

2. How to detect the rare categories for graph data, or relational data?

3. How to do rare category detection with the least prior information about the data set?
The first question is fundamental in rare category detection. Given an unlabeled, imbalanced data set,

a naive way for finding examples from the minority classes is to randomly select examples from the data
set to be labeled by the oracle until we have identified at least one example from each minority class. A
major drawback of this random sampling strategy is the following. If a minority class is extremely rare, say
its proportion in the data set is only 0.001%, in order to discover this minority class, the number of label
requests by random sampling would be very large. Therefore, we need more effective methods to address
the rare category detection challenge.

The second question is similar to the first one except that here we are interested in graph data (relational
data) instead of data points with feature representations. Since graph data is very common in real applica-
tions, how to adapt the rare category detection algorithms for data points with feature representations to this
data type is of key importance.

The third question aims at doing rare category detection with less prior information about the data set,
and the ultimate goal is prior-free rare category detection, i.e., the algorithm is given no prior information
about the data set, such as the number of classes, the proportions of different classes, etc. This question
is more difficult than the first two, and yet quite important, since in real applications, given an unlabeled
data set, it is sometimes difficult to estimate the number of classes in the data set a prior, not to mention the
proportions of different classes.

Although both Rare category detection and traditional active learning proceed by actively selecting ex-
amples to be labeled by an oracle, they are different in the following two aspects. First, in rare category
detection, initially we do not have any labeled examples; whereas in traditional active learning, initially we
have labeled examples from all the classes as input. Second, in rare category detection, our goal is to dis-
cover at least one example from each minority class with the least label requests from the oracle; whereas in
traditional active learning, the goal is to improve the performance of the current classifier with the least label
requests from the oracle. Furthermore, rare category detection is a bottleneck in reducing the overall sam-
pling complexity of active learning [Balcan et al., 2006, Dasgupta, 2005]. That is, the sampling complexity
of many active learning algorithms are dominated by the initial stage of finding at least one example from
each class, especially the minority classes. Therefore, effective rare category detection algorithms could
help reduce the sampling complexity of active learning by a large margin.

The major difference between rare category detection and outlier detection is the following. In rare
category detection, the examples from the same minority class are often self-similar, potentially forming
compact clusters in the feature space; and we assume that the support regions of the majority and minority
classes are NOT separable from each other, which is more challenging than the separable cases. On the other
hand, in anomaly detection (outlier detection), each anomaly (outlier) is a single data point; the anomalies
(outliers) are typically scattered in the feature space; and the anomalies (outliers) are often separable from
the normal points.

1.4.2 Rare Category Characterization

Rare category characterization follows rare category detection. Given labeled examples from all the classes
as input, the goal is to identify all the rare examples from the known minority classes with high precision
and recall. Here, our question is: how to characterize the minority classes with a compact representation?

Rare category characterization is of key importance in many applications, such as text retrieval where
the number of documents relevant to a particular query is very small, and the goal is to retrieve all of them
on the top of the ranked list returned to the user.
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Rare category characterization bears similarity but also some differences with imbalanced classification.
In both tasks, the data set is imbalanced, and we have labeled training examples from each class. However,
in imbalanced classification, the goal is to construct a classifier that optimizes a discriminative criterion for
both the majority and the minority classes, such as balanced accuracy, G-mean, etc [Chawla, 2009]; whereas
in rare category characterization, we only focus on the minority classes, and aim to identify all (or nearly
all) the rare examples from the unlabeled data set with high precision and recall. On the other hand, in rare
category characterization, we are able to obtain a compact representation for the minority classes, which
can be used to improve the interpretability of the learning results to domain experts who have no knowledge
in machine learning and data mining; whereas in imbalanced classification, such representations are not
provided.

1.4.3 Unsupervised Rare Category Analysis

In unsupervised rare category analysis, we do not have access to any labeling oracle. Under certain as-
sumptions, we can perform both rare category selection, which is to select a set of examples that are likely
to come from the minority classes, and feature selection, which is to select a set of feature relevant to the
minority classes.

Rare category selection is similar to rare category detection in that both start de-novo, i.e., no label
information is available at the beginning. However, in rare category detection, the labeling oracle gives the
label information of the candidate example selected in each round, and the learning algorithm can adjust its
model based on this information and propose new candidates, hoping to find at least one example from each
minority class with only a few label requests; whereas in rare category selection, no label information is
available during the training stage, and the goal is to select a set of examples which are likely to come from
the minority classes.

In many imbalanced data sets, the examples from the same minority class are close to each other in some
dimensions, and far apart in others. For example, in financial fraud detection, small-amount-probing type
of fraud transactions are similar to each other in terms of the small amount being stolen in each transaction;
however, different transactions may occur in different locations, at different time, etc. Therefore, to better
describe the minority classes, we need to identify the relevant features.

Notice that existing co-clustering algorithms would fail in our settings due to the following two reasons.
First, we are dealing with the cases where the majority and minority classes overlap in the feature space;
whereas existing co-clustering algorithms mainly work in the separable / near-separable cases. Second, in
our applications, we hope to find the features relevant to the minority classes; whereas existing co-clustering
algorithms would simply ignore the rare examples due to their scarcity, and the selected features would be
relevant to the majority classes only.

1.5 Main Contributions

To the best of our knowledge, this thesis is the first end-to-end investigation of rare categories in imbalanced
data sets in both the supervised and unsupervised settings1. To be specific, our main contributions can be
summarized below.

1. We distill different tasks in rare category analysis, namely rare category detection and rare category
characterization in the supervised settings; rare category selection and feature selection in the unsu-
pervised settings.

1Existing work on imbalanced data sets by researchers such as Gary Weiss and Nitesh Chawla mainly focuses on the supervised
settings when labeled examples from all the classes are given as input.
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2. For rare category detection, we develop different algorithms for data with feature representations and
graph data, given full prior information, partial prior information, or even no prior information. For
each of the proposed algorithms, we provide theoretical justification as well as empirical evaluations,
showing the effectiveness of these algorithms.

3. For rare category characterization, we propose an optimization problem which captures the idea of the
minimum-radius hyper-ball for the minority classes. Then we develop an effective algorithm to find
its solution based on projected subgradient method. Experimental results show that its performance is
better than some existing methods for imbalanced classification on benchmark data sets.

4. For unsupervised rare category analysis, we propose to co-select the rare examples and the relevant
features of the minority classes, which benefits both tasks. To this end, we design an optimization
framework, which is well justified theoretically, and an optimization algorithm based on augmented
Lagrangian method. The performance of this algorithm is evaluated by experiments on some bench-
mark data sets.

1.6 General Notation

Given a set of n unlabeled examples S = {x1, . . . , xn}, xi ∈ Rd, which come from m distinct classes,
i.e., yi ∈ {1, . . . , m}. Without loss of generality, assume that

∑n
i=1 xi = ~0 and 1

n

∑n
i=1(x

j
i )

2 = 1, where
xj

i is the jth feature of xi. For the sake of simplicity, assume that there is one majority class with prior p1,
which corresponds to yi = 1, and all the other classes are minority classes with priors p2, . . . , pm, p1 À pc,
c 6= 1. Notice that in real applications, we may have multiple majority classes. If all of them satisfy the
smoothness assumption introduced in Section 1.3, they can be seen as a single class for the purpose of rare
category analysis. This is because if a certain example is from one of the majority classes, we do not care
which majority class it comes from.

Let fc denote the probability density function (pdf) of class c, where c = 1, . . . , m. Based on our
discussion in Section 1.3, f1 for the majority class should satisfy the smoothness assumption; whereas fc,
c = 2, . . . ,m for the minority classes should satisfy the compactness assumption.

Table 1.1 summarizes the general notation used in this thesis.

Table 1.1: Notation
Symbol Definition

S The set of unlabeled examples
n The number of examples in S

m The number of classes in S

xi The ith unlabeled example
xj

i The jth feature of xi

d The dimensionality of the feature space
yi The class label of xi

fc The probability density function of class c, c = 1, . . . , m

Other more specific notation will be introduced where needed.



Chapter 2

Survey and Overview

In this chapter, we review related work in the following directions, including active learning, imbalanced
classification, anomaly detection (outlier detection), rare category detection, unsupervised feature selection,
clustering, and co-clustering.

2.1 Active Learning

The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with
fewer training labels if it is allowed to choose the data from which it learns [Settles, 2010]. In active learning,
we assume that the class labels are obtained from a labeling oracle with some cost, and under a fixed budget,
we hope to maximally improve the performance of the learning algorithm. According to [Settles, 2010],
there are three main settings in active learning: membership query synthesis, stream-based selective sam-
pling, and pool-based sampling.

Many early active learning algorithms belong to membership query synthesis, such as [Angluin, 1987]
[Angluin, 2001] [Cohn et al., 1996]. One major problem with membership query synthesis is that the syn-
thesized queries often have no practical meanings, and thus no appropriate labels. On the other hand, with
stream-based active learning and pool-based sampling, the queries always correspond to real examples.
Therefore, their label information can be readily provided by the oracle.

In stream-based selective sampling, given an unlabeled example, the learner must decide whether to
query its class label or to discard it. For example, in [Cohn et al., 1992], Cohn et al compute region of uncer-
tainty, and query examples within in; in [Dagan & Engelson, 1995], Dagan et al proposed committee-based
sampling, which evaluates the informativeness of an example by measuring the degree of disagreement
between several model variants and only queries the more informative ones.

On the other hand, in pool-based sampling, queries are selected from a pool of unlabeled examples. Its
major difference from stream-based selective sampling is the large amount of unlabeled data available at
query time, which reveals additional information about the underlying distribution. For example, Tong et
al [Tong et al., 2001] proposed an active learning algorithm that minimizes the size of the version space; Mc-
callum [Mccallum, 1998] modified the Query-by-Committee method of active learning to use the unlabeled
data for density estimation, and combined with EM to find the class labels of the unlabeled examples.

It should be mentioned that in traditional active learning, initially we have labeled examples from all
the classes in order to build the very first classifier, which can be improved by actively selecting the training
data. On the other hand, in rare category detection, initially we do not have any labeled examples, and
the goal is to discover at least one example from each minority class with the least label requests. Com-
bining rare category detection and traditional active learning, it has been noticed in [Balcan et al., 2006]

7
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and [Dasgupta, 2005] that if the learning algorithm starts de-novo, finding the initial labeled examples from
each class (i.e., rare category detection) becomes the bottleneck for reducing the sampling complexity. Fur-
thermore, in supervised rare category analysis, following rare category detection, the second task is rare
category characterization, which works in a semi-supervised fashion. In this task, in order to get a more
accurate representation of the minority classes, we can make use of active learning to select the most infor-
mative examples to be added to the labeled set.

2.2 Imbalanced Classification

In imbalanced classification, the goal is to construct an accurate classifier that optimizes a discriminative
criterion, such as balanced accuracy, G-mean, etc [Chawla, 2009]. Existing methods can be roughly catego-
rized into 3 groups [Chawla, 2009], i.e., sampling-based methods [Kubat & Matwin, 1997][Chawla et al., 2002],
adapting learning algorithms by modifying objective functions or changing decision thresholds [Wu & Chang, 2003]
[Huang et al., 2004], and ensemble based methods [Sun et al., 2006][Chawla et al., 2003]. To be specific,
in sampling-based methods, some methods under-sample the majority classes. For example, the one-sided
sampling strategy proposed in [Kubat & Matwin, 1997] employs Tomek links [Tomek, 1976] followed by
closest nearest neighbor [HART, 1968] to discard the majority class examples that lie in the borderline re-
gion, are noisy or redundant. In contrast, some sampling-based methods over-sample the hard examples.
For example, the DataBoost-IM method proposed in [Guo & Viktor, 2004] generates synthetic examples
according to the hard examples identified during the boosting algorithm; the SMOTEBoost algorithm pro-
posed in [Chawla et al., 2003] applies the SMOTE algorithm [Chawla et al., 2002] to create new examples
from the minority class in each boosting round. Furthermore, some methods combine over-sampling the
minority class and under-sampling the majority class. For example, the SMOTE algorithm combined with
under-sampling [Chawla et al., 2002] was proven to outperform only under-sampling the majority class and
varying the loss ratios; in [Tang et al., 2009], different rebalance heuristics were incorporated into SVM
modeling to tackle the problem of class imbalance, including over-sampling, under-sampling, etc.

Imbalanced classification and rare category characterization bear similarity but also some difference.
On one hand, both tasks need labeled examples from all the classes as input. On the other hand, imbal-
anced classification and rare category characterization have different goals as well as different output. To
be specific, in rare category characterization, we only focus on the minority classes, and aim to identify
all (or nearly all) the rare examples from the unlabeled data set with high precision and recall; whereas in
imbalanced classification, the goal is to construct a classifier that optimizes a discriminative criterion for
both the majority and minority classes. Furthermore, in rare category characterization, we are able to ob-
tain a compact representation for the minority classes, which can be provided to domain experts for better
understanding of the learning results; whereas in imbalanced classification, such representations are not
provided.

2.3 Anomaly Detection (Outlier Detection)

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behav-
ior [Chandola et al., 2009]. Anomalies are often referred to as outliers. According to [Chandola et al., 2009],
the majority of anomaly detection techniques can be categorized into classification based, nearest neighbor
based, clustering based, information theoretic, spectral, and statistical techniques. For example, in [Barbará et al., 2001],
the authors propose a method based on a technique called pseudo-Bayes estimators to enhance an anomaly
detection systems’s ability to detect new attacks while reducing the false alarm rate as much as possi-
ble. In [Ramaswamy et al., 2000], the authors propose a novel formulation for distance-based outliers that
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is based on the distance of a point from its kth nearest neighbor. Then they rank each point on the ba-
sis of its distance to its kth nearest neighbor and declare the top n points in this ranking to be outliers.
In [Yu et al., 2002], the authors propose the FindOut algorithm, which is an extension of the WaveCluster
algorithm [Sheikholeslami et al., 1998] in which the detected clusters are removed from the data and the
residual instances are declared as nomalies. In [He et al., 2005b], the authors formally define the prob-
lem of outlier detection in categorical data as an optimization problem from a global viewpoint based on
entropy minimization, and present a local-search heuristic based algorithm for efficiently finding feasible
solutions. In [Dutta et al., 2007], the authors describe distributed algorithms for doing Principal Component
Analysis (PCA) using random projection and sampling based techniques. Using the approximate principal
components, they develop a distributed outlier detection algorithm based on the fact that the last principal
component enables identification of data points which deviate sharply from the ‘correlation structure’ of
the data. And in [Aggarwal & Yu, 2001], the authors discuss a new technique for outlier detection which
is especially suited to very high dimensional data sets. The method works by finding lower dimensional
projections which are locally sparse, and cannot be discovered easily by brute force techniques because of
the number of combinations of possibilities.

In general, anomaly detection finds individual and isolated examples that differ from a given class in
an unsupervised fashion. Typically, there is no way to characterize the anomalies since they are often
different from each other. There exist a few works dealing with the case where the anomalies are clus-
tered [Papadimitriou et al., 2003]. However, they still assume that the anomalies are separable from the
normal data points. On the other hand, in rare category detection, each rare category consists of a group of
points, which form a compact cluster in the feature space and are self-similar. Furthermore, we are dealing
with the challenging cases where the support regions of the majority and minority classes overlap with each
other.

2.4 Rare Category Detection

Here, the goal is to find at least one example from each minority class with the help of a labeling oracle,
minimizing the number of label requests. Up till now, researchers have developed several methods for
rare category detection. For example, in [Pelleg & Moore, 2004], the authors assumed a mixture model
to fit the data, and experimented with different hint selection methods, of which Interleaving performs the
best; in [Fine & Mansour, 2006], the authors studied functions with multiple output values, and used active
sampling to identify an example for each of the possible output values; in [Dasgupta & Hsu, 2008], the
authors presented an active learning scheme that exploits cluster structure in the data, which was proven to
be effective in rare category detection; and in [Vatturi & Wong, 2009], the authors proposed a new approach
to rare category detection based on hierarchical mean shift, where a hierarchy is created by repeatedly
applying mean shift with an increasing bandwidth on the data. Different from most existing work on rare
category detection, which assume that the majority and minority classes are separable / near-separable from
each other in the feature space, in Chapter 3 of this thesis, we target the more challenging cases where the
support regions of different classes are not separable. Furthermore, besides empirical evaluations of the
proposed algorithms, we also proved their effectiveness theoretically; whereas most existing algorithms do
not have such guarantees.

2.5 Unsupervised Feature Selection

Generally speaking, existing feature selection methods in the unsupervised settings can be categorized as
wrapper models and filter models. The wrapper models evaluate feature subsets based on the clustering
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results, such as the FSSEM algorithm [Dy & Brodley, 2000], the mixture-based approach which extends
to the unsupervised context the mutual-information based criterion [Law et al., 2002], and the ELSA algo-
rithm [Kim et al., 2000]. The filter models are independent of the clustering algorithm, such as the feature
selection algorithm based on maximum information compression index [Mitra et al., 2002], the feature se-
lection method using distance-based entropy [Dash et al., 2002], and the feature selection method based on
Laplacian score [He et al., 2005a].

In unsupervised rare category analysis, one of the problems we want to address is feature selection, i.e.,
selecting a set of features relevant to the minority classes. In our settings, since the class proportions are
very skewed, the general-purpose wrapper and filter methods would fail by selecting the features primarily
relevant to the majority classes. Therefore, we need new feature selection methods that are tailored for rare
category analysis.

2.6 Clustering

According to [Glenn & Fung, 2001], clustering refers to the grouping together of similar data items into
clusters. Existing clustering algorithms can be categorized into the following 2 main classes [Glenn & Fung, 2001]:
parametric clustering and non-parametric clustering. In general, parametric methods attempt to minimize a
cost function or an optimality criterion which associates a cost to each example-cluster assignment. It can
be further classified into 2 groups: generative models and reconstructive models. In generative models, the
basic idea is that the input examples are observations from a set of unknown distributions. For example, in
Gaussian mixture models [Reynolds & Rose, 1995], the data are viewed as coming from a mixture of proba-
bility Gaussian distribution, each representing a different cluster; in C-means fuzzy clustering [Dunn, 1973],
the membership of a point is shared among various clusters. On the other hand, reconstructive methods gen-
erally attempt to minimize a cost function. For example, K-means clustering forms clusters in numeric
domains, partitioning examples into disjoint clusters [Duda et al., 2000]; in Deterministic Annealing EM
Algorithm (DAEM) [Hofmann & Buhmann, 1997], the maximization of the likelihood function is embed-
ded in the minimization of the thermodynamic free energy, depending on the temperature which controls
the annealing process. For nonparametric methods, two good representative examples are the agglomerative
and divisive algorithms, also called hierarchical algorithms [Johnson, 1967], that produce dendrogram.

In unsupervised rare category analysis, another important problem we want to address is rare category
selection, i.e., selecting a set of examples which are likely to come from the minority classes. General-
purpose clustering algorithms do not fit here because the proportions of different classes are very skewed
and the support regions of the majority and minority classes overlap with each other. In this case, general-
purpose clustering algorithms tend to overlook the minority classes and generate clusters within the majority
classes. Therefore, we need to develop new methods for rare category selection which leverage the property
of the minority classes.

2.7 Co-clustering

The idea of using compression for clustering can be traced back to the information-theoretic co-clustering
algorithm [Dhillon et al., 2003], where the normalized non-negative contingency table is treated as a joint
probability distribution between two discrete random variables that take values over the rows and columns.
Then co-clustering is defined as a pair of mappings from rows to row clusters and from columns to column
clusters. According to information theory, the optimal co-clustering is the one that minimizes the difference
in mutual information between the original random variables and the mutual information between the clus-
tered random variables. The algorithm for minimizing the above criterion intertwines both row and column
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clustering at all stages. Row clustering is done by assessing closeness of each row distribution, in relative
entropy, to certain ‘row cluster prototypes’. Column clustering is done similarly, and this process is iterated
until it converges to a local minimum. It can be theoretically proved that the proposed algorithm never
increases the criterion, and gradually improves the quality of co-clustering.

Although the information-theoretic co-clustering algorithm can only be applied to bipartite graphs, the
idea behind this algorithm can be generalized to more than two types of heterogeneous objects. For example,
in [Gao et al., 2007], the authors proposed the CBGC algorithm. It aims to do collective clustering for star-
shaped inter-relationships among different types of objects. First, it transforms the star-shaped structure
into a set of bipartite graphs; then it formulates a constrained optimization problem, where the objective
function is a weighted sum of the Rayleigh quotients on different bipartite graphs, and the constraints are
that clustering results for the same type of objects should be the same. Follow-up work includes the high
order co-clustering [Greco et al., 2007]. Another example is the spectral relational clustering algorithm
proposed in [Long et al., 2006]. Unlike the previous algorithm, this algorithm is not restricted to star-shaped
structures. It is based on a general model, the collective factorization on related matrices. This model
clusters multi-type interrelated objects simultaneously based on both the relation and the feature information.
It exploits the interactions between the hidden structures of different types of objects through the related
factorizations which share matrix factors, i.e., cluster indicator matrices. The resulting spectral relational
clustering algorithm iteratively updates the cluster indicator matrices using the leading eigenvectors of a
specially designed matrix until convergence. More recently, the collective matrix factorization proposed
by Singh et al. [Singh & Gordon, 2008a] [Singh & Gordon, 2008b] can also be used for clustering k-partite
graphs.

Other related work includes (1) GraphScope [Sun et al., 2007], which uses a similar information-theoretic
criterion as cross association for time-evolving graphs to segment time into homogeneous intervals; and (2)
multi-way distributional clustering (MDC) [Bekkerman et al., 2005] which is demonstrated to outperform
the previous information-theoretic clustering algorithms by the time the algorithm was proposed.

At the first glance, one may apply co-clustering algorithms to simultaneously address the problem of rare
category selection and feature selection. The problem here is similar to the one mentioned in Section 2.6.
That is, due to the extreme skewness of the class proportions and the overlapping support regions, general-
purpose co-clustering algorithms may not be able to correctly identify the few rare examples or the features
relevant to the rare categories; whereas our proposed algorithm for co-selecting the rare examples and the
relevant features addresses this problem by making use of the clustering property of the minority classes.



Chapter 3

Rare Category Detection

In this chapter, we focus on rare category detection, the first task in the supervised settings. In this task,
we are given an unlabeled, imbalanced data set, which is often non-separable, and have access to a labeling
oracle, which is able to give us the class label of any example with a fixed cost. The goal here is to discover
an least one example from each minority class with the least label requests.

The main contributions of this chapter can be summarized as follows.

Algorithms with Theoretical Guarantees. To the best of our knowledge, we propose the first rare
category detection algorithms with theoretical guarantees;

Algorithms for Different Data Types. For data with feature representations and graph data (rela-
tional data), we propose different algorithms that exploit their specific properties. These algorithms
work with different amount of prior information.

The rest of this chapter is organized as follows. In Section 3.1, we introduce the detection algorithms
with prior information for data with feature representation. The prior-free algorithm is introduced in Sec-
tion 3.2. Then in Section 3.3, we present our detection algorithms for graph data, or relational data, given
full prior information or partial prior information. Finally, in Section 3.4, we give a brief summary of rare
category detection.

3.1 Rare Category Detection with Priors for Data with Features

In this section, we propose prior-dependent algorithms for rare category detection in the context of active
learning, which are designed for data with feature representations. We typically start de-novo, no category
labels, though our algorithms make no such assumption. Different from existing methods, we aim to solve
the difficult cases, i.e., we do not assume separability or near-separability of the classes. Intuitively, our
algorithms make use of nearest neighbors to measure local density around each example. In each iteration,
the algorithms select an example with the maximum change in local density on a certain scale, and ask the
oracle for its label. The algorithms stop once they have found at least one example from each class (given the
knowledge of the number of classes). When the two assumptions in Section 1.3 are satisfied, the proposed
algorithms will select examples both on the boundary and in the interior of the minority classes, and are
proven to be effective theoretically.

The rest of the section is organized as follows. In Subsection 3.1.1, we introduce our algorithm for the
binary cases and provide theoretical justification. In Subsection 3.1.2, we discuss about the more general
cases where there are more than one minority classes in the data set. Finally, Subsection 3.1.3 provides some
experimental results.

12
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3.1.1 Rare Category Detection for the Binary Cases

Algorithm

First let us focus on the simplest case where m = 2. Therefore, p1 = 1− p2, and p2 ¿ 1. Here, we assume
that we have an estimate of the value of p2 a priori. Next, we introduce our algorithm for rare category
detection based on nearest neighbors, which is presented in Alg. 1. The basic idea is to find maximum
changes in local density, which might indicate the location of a rare category.

The algorithm works as follows. Given the unlabeled set S and the prior of the minority class p2, we
first estimate the number K of minority class examples in S. Then, for each example, we record its distance
from the K th nearest neighbor, which could be realized by kd-trees [Moore, 1991]. The minimum distance
over all the examples is assigned to r′. Next, we draw a hyper-ball centered at each example with radius
r′, and count the number of examples enclosed by this hyper-ball, which is denoted as ni. ni is roughly in
proportion to the local density. To measure the change of local density around a certain point xi, in each
iteration of Step 3, we subtract nk of neighboring points from ni, and let the maximum value be the score
of xi. The example with the maximum score is selected for labeling by the oracle. If the example is from
the minority class, stop the iteration; otherwise, enlarge the neighborhood where the scores of the examples
are re-calculated and continue.

Before giving the theoretical justification, here, we give an intuitive explanation of why the algorithm
works. Assume that the minority class is concentrated in a small region and the probability density function
(pdf) of the majority class is locally smooth. Firstly, since the support region of the minority class is very
small, it is important to find its scale. The r′ value obtained in Step 1 will be used to calculate the local
density ni. Since r′ is based on the minimum K th nearest neighbor distance, it is never too large to smooth
out changes of local density, and thus it is a good measure of the scale. Secondly, the score of a certain point,
corresponding to the change in local density, is the maximum of the difference in local density between this
point and all of its neighboring points. In this way, we are not only able to select points on the boundary of the
minority class, but also points in the interior, given that the region is small. Finally, by gradually enlarging
the neighborhood where the scores are calculated, we can further explore the interior of the support region,
and increase our chance of finding a minority class example.

Algorithm 1 Nearest-Neighbor-Based Rare Category Detection for the Binary Case (NNDB)
Input: S, p2

1: Let K = np2. For each example, calculate the distance to its K th nearest neighbor. Set r′ to be the
minimum value among all the examples.

2: ∀xi ∈ S, let NN(xi, r
′) = {x|x ∈ S, ‖x− xi‖ ≤ r′}, and ni = |NN(xi, r

′)|.
3: for t = 1 : n do
4: ∀xi ∈ S, if xi has not been selected, then si = max

xk∈NN(xi,tr′)
(ni − nk); otherwise, si = −∞.

5: Query x = arg maxxi∈S si.
6: If the label of x is 2, break.
7: end for

Justification

Next we prove that if the minority class is concentrated in a small region and the pdf of the majority class is
locally smooth, the proposed algorithm will repeatedly sample in the region where the rare examples occur
with a high probability.

First of all, we make the following specific assumptions.
Assumptions
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1. f2(x) is uniform within a hyper-ball B of radius r centered at b, i.e., f2(x) = 1
V (r) , if x ∈ B; and 0

otherwise, where V (r) ∝ rd is the volume of B.

2. f1(x) is bounded and positive in B1, i.e., f1(x) ≥ κ1p2

(1−p2)V (r) , ∀x ∈ B and f1(x) ≤ κ2p2

(1−p2)V (r) ,
∀x ∈ Rd, where κ1, κ2 > 0 are two constants.

With the above assumptions, we have the following lemma and theorem. Note that variants of the
following proof apply if we assume a different minority class distribution, such as a tight Gaussian.
Lemma 1. ∀ε, δ > 0, if n ≥ max{ 1

2κ2
1p2

2
log 3

δ , 1
2(1−2−d)2p2

2
log 3

δ , 1
ε4V (

r2
2

)4
log 3

δ}, where r2 = r

(1+κ2)
1
d

, and

V ( r2
2 ) is the volume of a hyper-ball with radius r2

2 , then with probability at least 1 − δ, r2
2 ≤ r′ ≤ r and

|ni
n − E(ni

n )| ≤ εV (r′), 1 ≤ i ≤ n, where V (r′) is the volume of a hyper-ball with radius r′.

Proof. First, notice that the expected proportion of points falling inside B, E( |NN(b,r)|
n ) ≥ (κ1 + 1)p2, and

that the maximum expected proportion of points falling inside any hyper-ball of radius r2
2 , max

x∈Rd
[E( |NN(x,

r2
2

)|
n )] ≤

2−dp2. Then

Pr[r′ > r or r′ <
r2

2
or ∃xi ∈ S s.t., |ni

n
− E(

ni

n
)| > εV (r′)]

≤ Pr[r′ > r] + Pr[r′ <
r2

2
] + Pr[r′ ≥ r2

2
and ∃xi ∈ S s.t., |ni

n
−E(

ni

n
)| > εV (r′)]

≤ Pr[|NN(b, r)| < K] + Pr[max
x∈Rd

|NN(x,
r2

2
)| > K] + nPr[|ni

n
− E(

ni

n
)| > εV (r′)|r′ ≥ r2

2
]

= Pr[|NN(b, r)
n

| < p2] + Pr[max
x∈Rd

|NN(x, r2
2 )

n
| > p2] + nPr[|ni

n
− E(

ni

n
)| > εV (r′)|r′ ≥ r2

2
]

≤ e−2nκ2
1p2

2 + e−2n(1−2−d)2p2
2 + 2ne−2nε2V (r′)2

where the last inequality is based on Hoeffding bound.
Let e−2nκ2

1p2
2 ≤ δ

3 , e−2n(1−2−d)2p2
2 ≤ δ

3 and 2ne−2nε2V (r′) ≤ 2ne−2nε2V (
r2
2

)2 ≤ δ
3 , we obtain n ≥

1
2κ2

1p2
2
log 3

δ , n ≥ 1
2(1−2−d)2p2

2
log 3

δ , and n ≥ 1
ε4V (

r2
2

)4
log 3

δ .

Based on Lemma 1, we get the following theorem, which shows the effectiveness of the proposed
algorithm.
Theorem 1. If

1. Let B2 be the hyper-ball centered at b with radius 2r. The minimum distance between the points inside
B and the ones outside B2 is not too large, i.e., min{‖xi−xk‖|xi, xk ∈ S, ‖xi− b‖ ≤ r, ‖xk− b‖ >
2r} ≤ α, where α is a positive parameter.

2. f1(x) is locally smooth, i.e., ∀x, y ∈ Rd, |f1(x) − f1(y)| ≤ β‖x−y‖
α , where β ≤ p2

2OV (
r2
2

,r)

2d+1V (r)2
and

OV ( r2
2 , r) is the volume of the overlapping region of two hyper-balls: one is of radius r, the other

one is of radius r2
2 , and its center is on the sphere of the bigger one.

3. The number of examples is sufficiently large,
i.e., n ≥ max{ 1

2κ2
1p2

2
log 3

δ , 1
2(1−2−d)2p2

2
log 3

δ , 1
(1−p2)4β4V (

r2
2

)4
log 3

δ}.

then with probability at least 1 − δ, after d2α
r2
e iterations, NNDB will query at least one example whose

probability of coming from the minority class is at least 1
3 , and it will continue querying such examples until

the b( 2d

p2(1−p2) − 2) · α
r cth iteration.

1Notice that here we are only dealing with the hard case where f1(x) is positive within B. In the separable case where the
support regions of the two classes do not overlap, we can use other methods to detect the minority class, such as the one proposed
in [Pelleg & Moore, 2004].
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Proof. Based on Lemma 1, using condition 3, if the number of examples is sufficiently large, then with
probability at least 1 − δ, r2

2 ≤ r′ ≤ r and |ni
n − E(ni

n )| ≤ (1 − p2)βV (r′), 1 ≤ i ≤ n. According to
condition 2, ∀xi, xk ∈ S s.t., ‖xi − b‖ > 2r, ‖xk − b‖ > 2r and ‖xi − xk‖ ≤ α, E(ni

n ) and E(nk
n ) will not

be affected by the minority class, and |E(ni
n ) − E(nk

n )| ≤ (1 − p2)βV (r′) ≤ (1 − p2)βV (r). Note that α
is always bigger than r. Based on the above inequalities, we have

|ni

n
− nk

n
| ≤ |ni

n
−E(

ni

n
)|+ |nk

n
−E(

nk

n
)|+ |E(

ni

n
)− E(

nk

n
)| ≤ 3(1− p2)βV (r) (3.1)

From Inequality 3.1, it is not hard to see that ∀xi, xk ∈ S, s.t., ‖xi − b‖ > 2r and ‖xi − xk‖ ≤ α,
ni
n − nk

n ≤ 3(1− p2)βV (r), i.e., when tr′ = α,

si

n
≤ 3(1− p2)βV (r) (3.2)

This is because if ‖xk − b‖ ≤ 2r, the minority class may also contribute to nk
n , and thus the score may be

even smaller.
On the other hand, based on condition 1, there exist two points xk, xl ∈ S, s.t., ‖xk−b‖ ≤ r, ‖xl−b‖ >

2r, and ‖xk − xl‖ ≤ α. Since the contribution of the minority class to E(nk
n ) is at least p2·OV (

r2
2

,r)

V (r) , so

E(nk
n )− E(nl

n ) ≥ p2·OV (
r2
2

,r)

V (r) − (1− p2)βV (r′) ≥ p2·OV (
r2
2

,r)

V (r) − (1− p2)βV (r). Since for any example
xi ∈ S, we have |ni

n − E(ni
n )| ≤ (1− p2)βV (r′) ≤ (1− p2)βV (r), therefore

nk

n
− nl

n
≥ p2 ·OV ( r2

2 , r)
V (r)

− 3(1− p2)βV (r) ≥ p2 ·OV ( r2
2 , r)

V (r)
− 3(1− p2)p2

2 ·OV ( r2
2 , r)

2d+1V (r)

Since p2 is very small, p2 À 3(1−p2)p2
2

2d+1 ; therefore, nk
n − nl

n > 3(1− p2)βV (r), i.e., when tr′ = α,

sk

n
> 3(1− p2)βV (r) (3.3)

In Step 4 of the proposed algorithm, we gradually enlarge the neighborhood to calculate the change of local
density. When tr′ = α, based on inequalities (2) and (3), ∀xi ∈ S, ‖xi − b‖ > 2r, we have sk > si.
Therefore, in this round of iteration, we will pick an example from B2. In order for tr′ to be equal to α, the
value of t would be d α

r′ e ≤ d2α
r2
e.

If we further increase t so that tr′ = wα, where w > 1, we have the following conclusion: ∀xi, xk ∈ S,
s.t., ‖xi−b‖ > 2r and ‖xi−xk‖ ≤ wα, ni

n − nk
n ≤ (w+2)(1−p2)βV (r), i.e., si

n ≤ (w+2)(1−p2)βV (r).

As long as p2 ≥ (w+2)(1−p2)p2
2

2d , i.e., w ≤ 2d

p2(1−p2) − 2, then ∀xi ∈ S, ‖xi − b‖ > 2r, sk > si, and we
will pick examples from B2. Since r′ ≤ r, the algorithm will continue querying examples in B2 until the
b( 2d

p2(1−p2) − 2) · α
r cth iteration.

Finally, we show that the probability of picking a minority class example from B2 is at least 1
3 . To this

end, we need to calculate the maximum probability mass of the majority class within B2. Consider the case
where the maximum value of f1(x) occurs at b, and this pdf decreases by β every time x moves away from
b in the direction of the radius by α, i.e., the shape of f1(x) is a cone in (d + 1) dimensional space. Since
f1(x) must integrate to 1, i.e., V (αf1(b)

β ) · f1(b)
d+1 = 1, where V (αf1(b)

β ) is the volume of a hyper-ball with

radius αf1(b)
β , we have f1(b) = ( d+1

V (α))
1

d+1 β
d

d+1 . Therefore, the probability mass of the majority class within
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B2 is:

V (2r)(f1(b)− 2r

α
β) +

2r

α

β

d + 1
V (2r) < V (2r)f1(b)

= V (2r)(
d + 1
V (α)

)
1

d+1 β
d

d+1 = 2d V (r)

V (α)
1

d+1

(d + 1)
1

d+1 β
d

d+1

< (d + 1)
1

d+1 (2d+1V (r)β)
d

d+1 ≤ (d + 1)
1

d+1 (
p2
2 ·OV ( r2

2 , r)
V (r)

)
d

d+1 < 2p2

where V (2r) is the volume of a hyper-ball with radius 2r. Therefore, if we select a point at random from
B2, the probability that this point is from the minority class is at least p2

p2+(1−p2)·2p2
≥ p2

p2+2p2
= 1

3 .

3.1.2 Rare Category Detection for Multiple Classes

In many real applications, there are often more than one minority classes2. Therefore, we need to develop
an algorithm that is able to discover examples from all the minority classes.

Algorithm

In Subsection 3.1.1, we have discussed about rare category detection for the binary case. In this subsection,
we focus on the case where m > 2. To be specific, let p1, . . . , pm be the priors of the m classes, and
p1 À pc, c 6= 1. Our goal is to use as few label requests as possible to find at least one example from each
class.

The NNDB algorithm proposed in Subsection 3.1.1 can be easily generalized to multiple classes, which
is presented in Alg. 2. It works as follows. Given the priors for the minority classes, we first estimate the
number Kc of examples from class c in the set S. Then, for class c, at each example, we record its distance
from the K th

c nearest neighbor. The minimum distance over all the examples is the class specific radius,
and is assigned to r′c. Next, we draw a hyper-ball centered at example xi with radius r′c, and count the
number of examples enclosed by this hyper-ball, which is denoted as nc

i . nc
i is roughly in proportion to the

local density. To find examples from class c, in each iteration of Step 10, we subtract the local density of
neighboring points from nc

i , and let the maximum value be the score of xi. The example with the maximum
score is selected for labeling by the oracle. If the example is from class c, stop the iteration; otherwise,
enlarge the neighborhood where the scores of the examples are re-calculated and continue.

Justification

Similarly as before, next we prove that if the minority classes are concentrated in small regions and the pdf
of the majority class is locally smooth, the proposed algorithm will repeatedly sample in the regions where
the rare examples occur with a high probability.

First of all, we make the following specific assumptions.
Assumptions

1. The pdf fc(x) of minority class c is uniform within a hyper-ball Bc of radius rc
3 centered at bc,

c = 2, . . . , m, i.e., fc(x) = 1
V (rc)

, if x ∈ Bc; and 0 otherwise, where V (rc) ∝ rd
c is the volume of Bc.

2As discussed in Section 1.6, more than one majority classes can be seen as a single majority class if they all satisfy the
smoothness assumption introduced in Section 1.3

3This is the actual radius, as opposed to the class specific radius r′c.
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Algorithm 2 Active Learning for Initial Class Exploration (ALICE)
Input: S, p2, . . . , pm

1: Initialize all the minority classes as undiscovered.
2: for c = 2 : m do
3: Let Kc = npc, where n is the number of examples.
4: For each example, calculate the distance between this example and its K th

c nearest neighbor. Set r′c
to be the minimum value among all the examples.

5: end for
6: for c = 2 : m do
7: ∀xi ∈ S, let NN(xi, r

′
c) = {x|x ∈ S, ‖x− xi‖ ≤ r′c}, and nc

i = |NN(xi, r
′
c)|.

8: end for
9: for c = 2 : m do

10: If class c has been discovered, continue.
11: for t = 2 : n do
12: For each xi that has been selected, sc

i = −∞; for all the other examples, sc
i = max

xk∈NN(xi,tr′c)
(nc

i −
nc

k).
13: Select and query the label of x = arg maxxi∈S sc

i .
14: If the label of x is equal to c, break; otherwise, mark the class that x belongs to as discovered.
15: end for
16: end for

2. f1(x) is bounded and positive in Bc, c = 2, . . . ,m, i.e., f1(x) ≥ κc1pc

p1V (rc)
, ∀x ∈ Bc and f1(x) ≤

κc2pc

p1V (rc)
, ∀x ∈ Rd, where κc1, κc2 > 0 are two constants.4

Furthermore, for each minority class c, c = 2, . . . , m, let rc2 = rc

(1+κc2)
1
d

; and let OV ( rc2
2 , rc) be the

volume of the overlapping region of two hyper-balls: one is of radius rc; the other one is of radius rc2
2 , and

its center is on the sphere of the previous one.

To prove the performance of the proposed ALICE algorithm, we first have the following lemma.

Lemma 2. For each minority class c, c = 2, . . . , m, ∀εc, δc > 0, if n ≥ max{maxm
c=2

1
2κ2

c1p2
c
log 3m−3

δ ,

maxm
c=2

1
2(1−2−d)2p2

c
log 3m−3

δ , maxm
c=2

1
ε4V (

rc2
2

)4
log 3m−3

δ }, then with probability at least 1−δ, rc2
2 ≤ r′c ≤

rc and |nc
i

n −E(nc
i

n )| ≤ εV (r′c), 1 ≤ j ≤ n.

Proof. First, notice that for each minority class c, the expected proportion of points falling inside Bc,
E( |NN(bc,rc)|

n ) ≥ (κc1 + 1)pc, and that the maximum expected proportion of points falling inside any

4Notice that here we are only dealing with the hard case where f1(x) is positive within Bc. In the separable case where the
support regions of the majority and the minority classes do not overlap, we can use other methods to detect the minority classes,
such as the one proposed in [Pelleg & Moore, 2004].
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hyper-ball of radius rc2
2 , max

x∈Rd
[E( |NN(x,

rc2
2

)|
n )] ≤ 2−dpc. Then

Pr[∃c, s.t., r′c > rc OR ∃c, s.t., r′c <
rc2

2
OR ∃c,∃xi ∈ S s.t., |n

c
i

n
− E(

nc
i

n
)| > εV (r′c)]

≤
m∑

c=2

Pr[r′c > rc] +
m∑

c=2

Pr[r′c <
rc2

2
] +

m∑

c=2

Pr[r′c ≥
rc2

2
AND ∃xi s.t., |n

c
i

n
− E(

nc
i

n
)| > εV (r′c)]

≤
m∑

c=2

Pr[|NN(bc, rc)| < Kc] +
m∑

c=2

Pr[max
x∈Rd

|NN(x,
rc2

2
)| > Kc] +

m∑

c=2

n Pr[|n
c
i

n
− E(

nc
i

n
)| > εV (r′c)|r′c ≥

rc2

2
]

=
m∑

c=2

Pr[|NN(bc, rc)
n

| < pc] +
m∑

c=2

Pr[max
x∈Rd

|NN(x, rc2
2 )

n
| > pc] + n

m∑

c=2

Pr[|n
c
i

n
−E(

nc
i

n
)| > εV (r′c)|r′c ≥

rc2

2
]

≤
m∑

c=2

e−2nκ2
c1p2

c +
m∑

c=2

e−2n(1−2−d)2p2
c + 2n

m∑

c=2

e−2nε2V (r′c)2

where the last inequality is based on Hoeffding bound.
Let e−2nκ2

c1p2
c ≤ δ

3m−3 , e−2n(1−2−d)2p2
c ≤ δ

3m−3 and 2ne−2nε2V (r′c) ≤ 2ne−2nε2V (
rc2
2

)2 ≤ δ
3m−3 , we

obtain n ≥ 1
2κ2

c1p2
c
log 3m−3

δ , n ≥ 1
2(1−2−d)2p2

c
log 3m−3

δ , and n ≥ 1
ε4V (

rc2
2

)4
log 3m−3

δ .

Based on Lemma 2, we get the following theorem, which shows the effectiveness of the proposed
algorithm.
Theorem 2. If

1. For minority class c, c = 2, . . . , m, let B2
c be the hyper-ball centered at bc with radius 2rc. The mini-

mum distance between the points inside Bc and the ones outside B2
c is not too large, i.e., maxm

c=2 min{‖xi−
xk‖|xi, xk ∈ S, ‖xi − bc‖ ≤ rc, ‖xi − bc‖ > 2rc} ≤ α.

2. The minority classes are far apart, i.e., if xi, xk ∈ S, ‖xi − bc‖ ≤ rc, ‖xk − bc′‖ ≤ rc′ , c, c′ =
2, . . . , m, and c 6= c′, then ‖xi − xk‖ > α.

3. f1(x) is locally smooth, i.e., ∀x, y ∈ Rd, |f1(x)− f1(y)| ≤ β‖x−y‖
α , where β ≤ minm

c=2
p2

cOV (
rc2
2

,rc)

2d+1V (rc)2
.

4. The number of examples is sufficiently large, i.e., n ≥ max{maxm
c=2

1
2κ2

c1p2
c
log 3m−3

δ ,

maxm
c=2

1
2(1−2−d)2p2

c
log 3m−3

δ ,maxm
c=2

1
p4
1β4V (

rc2
2

)4
log 3m−3

δ }.

then with probability at least 1 − δ, in every iteration of Step 8, after d 2α
rc2
e rounds of Step 10, ALICEwill

query at least one example whose probability of coming from a minority class is at least 1
3 .

Proof. Based on this Lemma 2, using condition 4, let ε = p1β, if the number of examples is sufficiently
large, then with probability at least 1 − δ, for each minority class c, c = 2, . . . , m, rc2

2 ≤ r′c ≤ r and
|nc

i
n − E(nc

i
n )| ≤ p1βV (r′c), 1 ≤ i ≤ n.

To better prove the theorem, given a point xi ∈ S, we say that xi is ‘far from all the minority classes’ iff
for every minority class c, ‖xi − bc‖ > 2rc, i.e., xi is not within B2

c . According to condition 3, ∀xi, xk ∈ S

s.t., xi and xk are far from all the minority classes and ‖xi−xk‖ ≤ α, E(nc
i

n ) and E(nc
k

n ) will not be affected
by the minority classes. Therefore, in iteration i of Step 8 where we aim to find examples from minority
class c, |E(nc

i
n )−E(nc

k
n )| ≤ p1βV (r′c) ≤ p1βV (rc). Furthermore, since α is always bigger than rc, we have

|n
c
i

n
− nc

k

n
| ≤ |n

c
i

n
− E(

nc
i

n
)|+ |n

c
k

n
− E(

nc
k

n
)|+ |E(

nc
i

n
)−E(

nc
i

n
)| ≤ 3p1βV (rc) (3.4)
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From Inequality 3.4, it is not hard to see that ∀xi, xk ∈ S, s.t., xi is far from all the minority classes and
‖xi − xk‖ ≤ α, nc

i
n − nc

k
n ≤ 3p1βV (rc), i.e., when tr′c = α,

sc
i

n
≤ 3p1βV (rc) (3.5)

This is because if xk is not far from any of the minority classes, the minority classes may also contribute to
nc

k
n , and thus the score of xi may be even smaller.

On the other hand, based on conditions 1 and 2, there exist two points xu, xv ∈ S, s.t., ‖xu − bc‖ ≤ rc,
xv is far from all the minority classes, and ‖xu − xv‖ ≤ α. Since the contribution of minority class c to

E(nc
u

n ) is at least pc·OV (
rc2
2

,rc)

V (rc)
, so E(xc

u
n )−E(xc

v
n ) ≥ pc·OV (

rc2
2

,rc)

V (rc)
−p1βV (r′c) ≥ pc·OV (

rc2
2

,rc)

V (rc)
−p1βV (rc).

Since for any example xi ∈ S, we have |nc
i

n −E(nc
i

n )| ≤ p1βV (r′c) ≤ p1βV (rc), therefore

nu

n
− nv

n
≥ pc ·OV ( rc2

2 , rc)
V (rc)

− 3p1βV (rc)

≥ pc ·OV ( rc2
2 , rc)

V (rc)
− 3p1p

2
c ·OV ( rc2

2 , rc)
2d+1V (rc)

Since pc is very small, pc À 6p1p2
c

2d+1 ; therefore, nc
u

n − nc
v

n >
3p1p2

c ·OV (
rc2
2

,rc)

2d+1V (rc)
≥ 3p1βV (rc), i.e., when tr′c = α,

sc
u

n
> 3p1βV (rc) (3.6)

In Step 10 of the proposed method, we gradually enlarge the neighborhood to calculate the change of local
density to continue seeking an example of the minority class. When tr′c = α, based on Inequalities 3.5
and 3.6, ∀xi ∈ S s.t., xi is far from all the minority classes, we have sc

u > sc
i . Therefore, in this round

of iteration, we will pick an example that is NOT far from one of the minority classes, i.e., there exists a
minority class ct s.t., the selected example is within B2

ct
. Note that ct is not necessarily equal to c, which is

the minority class that we would like to discover in Step 8 of the method.
Finally, we show that the probability of picking an example that belongs to minority class ct from B2

ct

is at least 1
3 . To this end, we need to calculate the maximum probability mass of the majority class within

B2
ct

. Consider the case where the maximum value of f1(x) occurs at bct , and this pdf decreases by β every
time x moves away from bct in the direction of the radius by α, i.e., the shape of f1(x) is a cone in (d + 1)
dimensional space. Since f1(x) must integrate to 1, i.e., V (αf1(bct )

β ) · f1(bct )
d+1 , where V (αf1(bct )

β ) is the

volume of a hyper-ball with radius αf1(bct )
β , we have f1(bct) = ( d+1

V (α))
1

d+1 β
d

d+1 . Therefore, the probability
mass of the majority class within B2

ct
is:

V (2rct)(f1(bct)−
2rct

α
β) +

2rct

α

β

d + 1
V (2rct)

< V (2rct)f1(bct) = V (2rct)(
d + 1
V (α)

)
1

d+1 β
d

d+1

= 2d V (rct)

(V (α))
1

d+1

(d + 1)
1

d+1 β
d

d+1

< (d + 1)
1

d+1 (2d+1V (rct)β)
d

d+1

≤ (d + 1)
1

d+1 (
p2

ct
·OV ( rct2

2 , rct)
V (rct)

)
d

d+1 < 2pct

where V (2rct) is the volume of a hyper-ball with radius 2rct . Therefore, if we select a point at random from
B2

ct
, the probability that this point is from minority class ct is at least pct

pct+p1·2pct
≥ pct

pct+2pct
= 1

3 .
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Implementation Issues

According to our theorem, in each iteration of Step 8, with high probability, we may pick examples belong-
ing to the rare classes after selecting a small number of examples. However, the discovered rare class ct may
not be the same as the rare class c that we hope to discover in this iteration of Step 8. Furthermore, we may
repeatedly select examples from class ct before finding one example from class c. To address these issues,
we have modified the original ALICE algorithm to produce MALICE, which is shown in Alg. 3.

Algorithm 3 Modified Active Learning for Initial Class Exploration (MALICE)
Input: S, p2, . . . , pm

1: Initialize all the rare classes as undiscovered.
2: for c = 2 : m do
3: Let Kc = npc.
4: For each example, calculate the distance between this example and its K th

c nearest neighbor. Set r′c
to be the minimum value among all the examples.

5: end for
6: Let r′1 = maxm

c=2 r′c.
7: for c = 2 : m do
8: ∀xi ∈ S, let NN(xi, r

′
c) = {x|x ∈ S, ‖x− xi‖ ≤ r′c}, and nc

i = |NN(xi, r
′
c)|.

9: end for
10: for c = 2 : m do
11: If class c has been discovered, continue.
12: for t = 2 : n do
13: For each xi that has been selected, ∀xk ∈ S, s.t., ‖xi − xk‖ ≤ r′yi

, sc
k = −∞; for all the other

examples, sc
i = max

xk∈NN(xi,tr′c)
(nc

i − nc
k).

14: Select and query the label of x = arg maxxi∈S sc
i .

15: If the label of x is equal to c, break; otherwise, t = t − 1, mark the class that x belongs to as
discovered.

16: end for
17: end for

There are two major differences between MALICE and ALICE. (1) In Step 12 of MALICE, once we have
labeled an example, any unlabeled example within the class specific radius of this example will be precluded
from selection. Since we have proved that with high probability, the class specific radius is less than the
actual radius, this modification will help prevent examples of the same class from being selected repeatedly.
(2) In Step 14 of MALICE, if the labeled example belongs to a rare class other than class c, we will not
enlarge the neighborhood based on which the scores of the examples are re-calculated. This is to increase
the chance that if tr′c is close to α, we will select examples from B2

c .

3.1.3 Experimental Results

In this subsection, we compare our algorithms (NNDB and MALICE) with the best method proposed in
[Pelleg & Moore, 2004] (Interleave) and random sampling (RS) on both synthetic and real data sets. In
Interleave, we use the number of classes as the number of components in the mixture model. For both
Interleave and RS, we run the experiments 100 times and report the average results.
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Synthetic Data Sets

Fig. 3.1(a) shows a synthetic data set where the pdf of the majority class is Gaussian and the pdf of the
minority class is uniform within a small hyper-ball. There are 1000 examples from the majority class and
only 10 examples from the minority class. Using Interleave, we need to label 35 examples, using RS, we
need to label 101 examples, and using NNDB, we only need to label 3 examples in order to sample one
from the minority class, which are denoted as ‘x’s in Fig. 3.1(b). Notice that the first 2 examples that NNDB
selects are not from the correct region. This is because the number of examples from the minority class is
very small, and the local density may be affected by the randomness in the data.

In Fig. 3.2(a), the X-shaped data consisting of 3000 examples correspond to the majority class, and the
four characters ‘NIPS’ correspond to four minority classes, which consist of 138, 79, 118, and 206 examples
respectively. Using Interleave, we need to label 1190 examples, using RS, we need to label 83 examples,
and using MALICE, we only need to label 5 examples in order to get one from each of the minority classes,
which are denoted as ‘x’s in Fig. 3.2(b). Notice that in this example, Interleave is even worse than RS. This
might be because some minority classes are located in the region where the density of the majority class is
not negligible, and thus may be ‘explained’ by the majority-class mixture-model component.

Real Data Sets

In this subsection, we compare different methods on two real data sets: Abalone [Asuncion & Newman, 2007]
and Shuttle [Asuncion & Newman, 2007]. The first data set consists of 4177 examples, described by 7 di-
mensional features. The examples come from 20 classes: the proportion of the largest class is 16.50%, and
the proportion of the smallest class is 0.34%. For the second data set, we sub-sample the original training
set to produce a smaller data set with 4515 examples, described by 9 dimensional features. The examples
come from 7 classes: the proportion of the largest class is 75.53%, and the proportion of the smallest class
is 0.13%.

The comparison results are shown in Fig. 3.3 and Fig. 3.4 respectively. Further, Table 3.1 and Table 3.2
show the confidence intervals for the number of label requests needed to discover a certain number of classes
in the data set for different methods. This is obtained via bootstrapping5. Notice that the number of classes in
the two tables always starts from 2, since with all the methods, the first label request always results in a new
class being discovered. From these results, we have the following observations. First, when the number of
classes discovered is small, the average number of label requests by RS is smaller than MALICE; however,
we are only interested in the classes whose proportions are much smaller than the rest, and to discover
those classes, RS needs much more label requests compared with MALICE. Second, the performance of
Interleave is not as good as MALICE in terms of the average number of label requests on the two data sets.
This is because as the number of components becomes larger, the mixture model generated by Interleave
is less reliable due to the lack of labeled examples, thus we need to select more examples. Furthermore,
the majority and minority classes may not be near-separable, which is a disaster for Interleave. On the
other hand, MALICE does not assume a generative model for the data, and only focuses on the change in
local density, which is more effective on the two data sets. Finally, the confidence intervals by MALICE are
always significantly smaller than those by both Interleave and RS, showing that the performance of MALICE
is much more stable.

5Notice that different runs of bootstrapping are not independent of each other. However, since MALICE is a determinist method,
bootstrapping may be the only way to obtain its confidence intervals given that we only have one sample from each domain
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Table 3.1: Confidence intervals for the number of label requests needed by different methods to discover a
certain number of classes in the Abalone data set.

No. of Classes 2 3 4 5 6 7
MALICE 2±0.00 3±0.00 4±0.00 6±0.42 13±2.20 14±3.10
Interleave 2±0.00 4±0.50 7±2.96 37±9.11 38±11.37 39±14.90

RS 2±0.00 4±0.75 5±0.45 8±2.25 11±4.18 12±4.55
No. of Classes 8 9 10 11 12 13

MALICE 15±3.62 18±4.58 25±5.80 31±8.12 55±10.10 56±11.84
Interleave 40±16.76 42±21.29 53±25.95 76±29.50 78±34.75 88±39.11

RS 14±6.94 15±9.11 22±12.79 23±16.74 40±21.87 63±28.50
No. of Classes 14 15 16 17 18 19 20

MALICE 57±13.03 59±13.46 61±16.50 62±17.06 108±29.02 114±35.74 125±40.03
Interleave 89±49.69 95±61.92 108±80.80 138±94.93 206±119.71 248±152.71 270±196.23

RS 67±35.47 71±42.81 104±54.43 136±73.05 145±101.53 273±138.06 483±165.23

Table 3.2: Confidence intervals for the number of label requests needed by different methods to discover a
certain number of classes in the Shuttle data set.

No. of Classes 2 3 4 5 6 7
MALICE 6±2.61 17±3.95 48±8.64 49±9.92 76±5.77 87±12.64
Interleave 2±0.00 52±9.90 107±16.15 109±30.59 115±45.30 140±58.83

RS 7±2.85 9±5.14 13±8.82 63±27.51 100±57.92 512±109.56

Imprecise Priors

The proposed algorithms need the priors of the minority classes as input. In this subsection, we test the
robustness of MALICE against modest mis-estimations of the class priors. The performance of NNDB
is similar to MALICE so we omit the results here. In the experiments, we use the same data sets as in
Subsubsection 3.1.3, and add/subtract 5%, 10%, and 20% from the true priors of the minority classes. The
results are shown in Fig. 3.5 and Fig. 3.6. Further, Table 3.3 and Table 3.4 show the confidence intervals
for the number of label requests needed by MALICE with different priors to discover a certain number of
classes in the data set. This is obtained via bootstrapping. From these results, we can see that MALICE is
very robust to small perturbations in the priors. For example, with Abalone data set, if we subtract 10%
from the true priors, only one more label request is needed in order to find all the classes. Furthermore,
small perturbations in the priors do not affect the width of the confidence intervals by a large margin.
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Table 3.3: Confidence intervals for the number of label requests needed by MALICE with different priors to
discover a certain number of classes in the Abalone data set.

No. of Classes 2 3 4 5 6 7
MALICE 2±0.00 3±0.00 4±0.00 6±0.42 13±2.20 14±3.10
−20% 2±0.00 3±0.00 5±0.25 8±2.18 14±3.05 15±3.69
−10% 2±0.00 3±0.00 5±0.19 13±1.86 16±2.62 17±3.20
−5% 2±0.00 3±0.00 5±0.96 7±1.47 13±2.11 14±3.16
+20% 2±0.00 3±0.00 5±0.02 6±0.62 10±2.16 11±3.18
+10% 2±0.00 3±0.00 4±0.00 9±1.55 12±2.14 13±3.24
+5% 2±0.00 3±0.00 4±0.00 13±1.60 14±2.23 15±3.22

No. of Classes 8 9 10 11 12 13
MALICE 15±3.62 18±4.58 25±5.80 31±8.12 55±10.10 56±11.84
−20% 16±3.84 24±4.62 26±7.36 31±9.22 64±11.46 65±13.96
−10% 22±4.16 23±5.30 29±6.32 35±8.06 57±10.71 58±13.18
−5% 15±4.00 19±4.72 26±6.63 31±8.65 56±10.70 57±11.33
+20% 15±4.05 20±4.65 32±6.62 38±7.56 39±8.07 40±8.87
+10% 14±3.78 16±4.78 17±5.87 20±7.96 49±10.38 50±12.47
+5% 16±4.01 17±5.29 21±6.38 26 ±7.58 51±9.03 52±10.59

No. of Classes 14 15 16 17 18 19 20
MALICE 57±13.03 59±13.46 61±16.50 62±17.06 108±29.02 114±35.74 125±40.03
−20% 66±16.37 70±19.54 72±22.21 73±21.80 74±34.68 135±52.07 230±61.22
−10% 59±14.23 60±14.56 62±19.30 65±17.77 114±30.04 117±43.54 126±46.66
−5% 58±13.11 60±17.08 62±18.90 63±17.53 107±29.29 109±40.29 116±51.17
+20% 41±11.40 60±13.80 73±16.32 77±23.88 80±28.08 82±35.04 141±41.34
+10% 51±12.39 53±15.64 88±16.96 93±25.83 94±34.57 101±36.38 171±48.17
+5% 53±13.74 55±16.27 56±16.77 57±21.88 95±31.84 97±39.92 105±48.60

Table 3.4: Confidence intervals for the number of label requests needed by MALICE with different priors to
discover a certain number of classes in the Shuttle data set.

No. of Classes 2 3 4 5 6 7
MALICE 6±2.61 17±3.95 48±8.64 49±9.92 76±5.77 87±12.64
−20% 7±3.08 10±4.36 47±9.26 48±11.37 74±6.60 85±14.40
−10% 7±2.76 18±4.07 52±8.28 53±10.48 80±6.70 91±14.62
−5% 7±2.71 18±4.10 50±8.10 51±9.98 78±6.19 89±13.87
+20% 5±2.45 9±3.36 28±7.30 46±7.52 65±9.90 76±9.85
+10% 7±2.18 8±3.43 46±7.80 47±8.61 71±7.51 82±12.38
+5% 7±2.31 8±3.77 47±8.12 48±9.26 72±7.72 83±12.07
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(a) Data set: there are 1000 examples from the majority class, denoted as
blue dots, and only 10 examples from the minority class, denoted as red
balls.
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(b) Examples selected by NNDB, denoted as green ‘x’s.

Figure 3.1: Synthetic data set 1.
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(a) Data set: there are 3000 examples from the majority class, denoted as
blue dots; there are 138, 79, 118, and 206 examples from each minority
class, denoted as red balls.
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(b) Examples selected by MALICE, denoted as green ‘x’s.

Figure 3.2: Synthetic data set 2.
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Figure 3.3: Learning curve for Abalone data set.
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Figure 3.4: Learning curve for Shuttle data set.
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Figure 3.5: Robustness study on Abalone data set: -5%, -10%, and -20% denote the performance of MALICE
after we subtract 5%, 10%, and 20% from the true priors; +5%, +10%, and +20% denote the performance
of MALICE after we add 5%, 10%, and 20% to the true priors.
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Figure 3.6: Robustness study on Shuttle data set: -5%, -10%, and -20% denote the performance of MALICE
after we subtract 5%, 10%, and 20% from the true priors; +5%, +10%, and +20% denote the performance
of MALICE after we add 5%, 10%, and 20% to the true priors.
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3.2 Prior-free Rare Category Detection for Data with Features

In the last section, we have discussed rare category detection algorithms that need prior information about
the data set as input, including the number of classes and the proportions of different classes. However,
in some real applications, it is often the case that we do not know the number of classes in the data set,
not to mention the proportions of different classes. For example, in outbreaks of epidemics, the number
of classes (indicating the number of different diseases) and the class proportions could vary drastically
over time as new diseases occur, strain or die out. To address this problem, in this section, we focus on
the more challenging case where we do not have any prior information about the data set. The proposed
method, SEmiparametric Density Estimation based Rare category detection (SEDER), implicitly performs
semiparametric density estimation using specially designed exponential families, and selects the examples
with the largest norm of the gradients for labeling by the oracle. In this way, it focuses on the areas with the
maximum change in the local density. Different from existing methods, SEDER does not require any prior
information about the data set. Therefore, it is more suitable for real applications.

The rest of the section is organized as follows. In Subsection 3.2.1, we introduce the specially designed
exponentially families used in SEDER and derive the scoring function. The complete algorithm of SEDER
is presented in Subsection 3.2.2. Finally, in Subsection 3.2.3, we compare SEDER with state-of-the-art
techniques on both synthetic and real data sets.

3.2.1 Semiparametric Density Estimation for Rare Category Detection

In rare category detection, based on our assumptions introduced in Section 1.3, abrupt changes in local
density indicate the presence of rare classes. By sampling in these areas, we have a high probability of
finding examples from the rare classes. Following this line of reasoning, our proposed method SEDER
implicitly estimates the density using specially designed exponential families, which essentially define a
semiparametric model. At each data point, we set the score to be the norm of the gradient of the estimated
density, which measures the maximum change rate of the local density, and pick the examples with the
largest scores to be labeled by the oracle. Although the intuition of SEDER and ALICE (MALICE) is quite
similar: to pick the examples with the maximum change in the local density, ALICE (MALICE) is a nearest-
neighbor-based method, it depends on the proportions of different classes to set the size of the neighborhood,
and the scores of the examples roughly indicate the change in the local density; whereas SEDER is based on
semiparametric density estimation, it is prior-free, i.e., it does not require any prior information about the
data set, and the scores measure exactly the maximum change rate in the local density.

Additional Notation

Besides the general notation introduced in Section 1.6, we further define the following additional notation
in Table 3.5.

Specially Designed Exponential Families

Traditional density estimation methods belong to two categories [Efron & Tibshirani, 1996]: by fitting a
parametric model via maximum likelihood, or by nonparametric methods such as kernel density estimation.
For the purpose of rare category detection, parametric models are not appropriate since we can not assume
a specific form of the underlying distribution for a given data set. On the other hand, the estimated density
based on nonparametric methods tends to be under-smoothed, and the examples from rare classes will be
buried among numerous spikes in the estimated density.
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Table 3.5: Notation
Symbol Definition
gβ(x) The density defined by specially designed

exponential families
g0(x) The carrier density
β0 The normalizing parameter in gβ(x)

t(x) The p× 1 vector of sufficient statistics
tj(x) The jth component of t(x)
β1 The p× 1 parameter vector
βj

1 The jth component of β1

σj The bandwidth for the jth feature
β (β1, β0)
β̂ The maximum likelihood estimate of β

l(β) The log-likelihood of the data
gj
β(xj) The marginal distribution of the jth feature

based on gβ(x)
gj(xj) The true marginal distribution of the jth

feature
bj Positive parameter which is a function of βj

1

b̂j The maximum likelihood estimate of bj

A 1
n

∑n
k=1

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)(xj

i )
2

∑n
i=1 exp(− (x

j
k
−x

j
i
)2

2(σj)2
)

B (σj)2

C 1
n

∑n
k=1(x

j
k)

2

Di(x) 1
n

∏d
j=1

1√
2πbjσj

exp(− (xj−bjxj
i )

2

2(σj)2bj )
si The score of xi

As proposed in [Efron & Tibshirani, 1996], these two kinds of methods can be combined by putting an
exponential family through a kernel density estimator, the so-called specially designed exponential families.
It is a favorable compromise between parametric and nonparametric density estimation: the nonparametric
smoother allows local adaptation to the data, while the exponential term matches some of the data’s global
properties, and makes the density much smoother [Efron & Tibshirani, 1996]. To be specific, the estimated
density gβ(x) = g0(x) exp(β0 + βT

1 t(x)) [Efron & Tibshirani, 1996]. Here, x ∈ Rd, g0(x) is a carrier
density, t(x) is a p× 1 vector of sufficient statistics, β1 is a p× 1 parameter vector, and β0 is a normalizing
parameter that makes gβ(x) integrate to 1. In our application, we use the kernel density estimator with

the Gaussian kernel as the carrier density, i.e., g0(x) = 1
n

∑n
i=1

∏d
j=1

1√
2πσj exp(− (xj−xj

i )
2

2(σj)2
), where xj is

the jth feature of x, xj
i is the jth feature of the ith data point, and σj is the bandwidth for the jth feature.

In SEDER, σj is determined by cross validation [Scott, 1992] on the jth feature. Here, the parameters
β = (β1, β0) can be estimated according to the following theorem.
Theorem 3. The maximum likelihood estimate β̂ of β satisfies the following conditions [Efron & Tibshirani, 1996]:
∀j ∈ {1, . . . , p} ∫

x1

· · ·
∫

xd

tj(x)gβ̂(x)dxd · · · dx1 =
1
n

n∑

i=1

tj(xi)
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where tj(x) is the jth component of the vector t(x).

Proof. Firstly, notice that β0 is a normalizing parameter that makes gβ(x) integrate to 1, i.e.,

β0 = − log
∫

x1

· · ·
∫

xd

g0(x) exp(βT
1 t(x))dxd · · · dx1

Therefore, ∀j ∈ {1, . . . , p}
∂β0

∂βj
1

= −
∫
x1 · · ·

∫
xd tj(x)g0(x) exp(βT

1 t(x))dxd · · · dx1

∫
x1 · · ·

∫
xd g0(x) exp(βT

1 t(x))dxd · · · dx1

= −
∫

x1

· · ·
∫

xd

tj(x)g0(x) exp(β0 + βT
1 t(x))dxd · · · dx1

= −
∫

x1

· · ·
∫

xd

tj(x)gβ(x)dxd · · · dx1

where βj
1 is the jth component of the vector β1.

Secondly, the log-likelihood of the data is l(β) =
∑n

i=1 log(gβ(xi)) =
∑n

i=1 log(g0(xi)) + nβ0 +∑n
i=1 βT

1 t(xi). Taking the partial derivative of l(β) with respect to βj
1, we have:

∂l(β)

∂βj
1

= n
∂β0

∂βj
1

+
n∑

i=1

tj(xi) = −n

∫

x1

· · ·
∫

xd

tj(x)gβ(x)dxd · · · dx1 +
n∑

i=1

tj(xi)

Setting the partial derivative to 0, we have that the maximum likelihood estimate β̂ of β satisfies∫
x1 · · ·

∫
xd tj(x)gβ̂(x)dxd · · · dx1 = 1

n

∑n
i=1 tj(xi), ∀j ∈ {1, . . . , p}.

In SEDER, we set the vector of sufficient statistics to be t(x) = [(x1)2, . . . , (xd)2]T 6. If we estimate the
parameters according to Theorem 3, different parameters will be coupled due to the normalizing parameter
β0. Let βj

1 be the jth component of the vector β1. In order to de-couple the estimation of different βj
1s, we

make the following changes. Firstly, we decompose β0 into βj
0s such that

∑d
j=1 βj

0 = β0, then gβ(x) can be

seen as a kernel density estimator with a ‘special’ kernel, i.e., gβ(x) = 1
n
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i )
2
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) exp(βj
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1(x

j)2)]. Next, we relax the constraint on βj
0s, and let them depend on xj

i in such a way that
∫

xj

1√
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exp(−(xj − xj
i )

2

2(σj)2
) exp(βj

0i + βj
1(x

j)2)dxj = 1 (3.7)

where βj
0i implies the dependence of βj

0 on xj
i . In this way, the marginal distribution of the jth feature is

gj
β(xj) =

∫

x1

· · ·
∫

xj−1

∫
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6Note that the following analysis also applies to other forms of the sufficient statistics, such as t(x) = [x1, . . . , xd]T . In all our
experiments, the second order sufficient statistics perform the best. So we use this form in SEDER.
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To estimate the parameters in our current model, we have the following theorem.
Theorem 4. The maximum likelihood estimates β̂j

1 and β̂j
0i of βj

1 and βj
0i satisfy the following conditions:

∀j ∈ {1, . . . , d}
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Proof. First of all, according to Equation 3.7, we have βj
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Setting the partial derivative to 0, we have that the maximum likelihood estimate β̂j
1 and β̂j

0i of βj
1 and
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.

Notice that according to Theorem 4, βj
1s can be estimated separately, which greatly simplifies our prob-

lem. At the first glance, Equation 3.8 is hard to solve. Next, we let βj
1 = (1 − 1

bj ) 1
2(σj)2

, where bj 6= 1 is
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a positive parameter, the introduction of which will simplify this equation. According to Equation 3.7, βj
0i

can be expressed in terms of bj , i.e.,

βj
0i = − log
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Therefore, the estimated density becomes
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Replacing β̂j
1 and β̂j

0i with functions of b̂j (the maximum likelihood estimate of bj) in the definition of
Ej

i ((x
j)2), we have Ej

i ((x
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2, and Equation 3.8 becomes
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In general, the value of β̂j
1 is very close to 0, and gβ̂(x) is a smoothed version of g0(x). Therefore, b̂j

should be close to 1, and we can re-write the above equation as follows.
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This is a second-degree polynomial equation of b̂j , and the roots can be easily obtained by Vieta’s
theorem7, i.e., ∀j ∈ {1, . . . , d}
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, B = (σj)2, and C = 1
n

∑n
k=1(x

j
k)

2.

Theorem 5. Let gj(xj) be the true density for the jth feature. If 1
n

∑n
i=1

xj
i

gj(xj
i )
· dgj(xj

i )

dxj
i

≥ −1 + O(1), then

b̂j ≤ 1 and β̂j
1 ≤ 0.

Proof. For the sake of simplicity, let z = xj , h = σj , and f(z) = gj(xj). Then A = 1
n

∑n
k=1

∑n
i=1 exp(− (zk−zi)

2

2h2 )(zi)
2

∑n
i=1 exp(− (zk−zi)

2

2h2 )
,

B = h2, and C = 1
n

∑n
k=1(zk)2. Consider the following regression problem where the true regres-

sion function r(z) = z2, the noise has mean 0, and we use kernel regression to estimate this function.
Then A − C is the bias of kernel regression on the training data, i.e., A − C = 1

n

∑n
i=1 h2(1

2r′′(zi) +
r′(zi)f

′(zi)
f(zi)

)
∫

z2k(z)dz + O(h2) [Wasserman, 2005], where k(z) is the Gaussian kernel used in kernel

regression, i.e., k(z) = 1√
2π

exp(− z2

2 ). Therefore, A − C = h2 + h2

n

∑n
i=1

2zif
′(zi)

f(zi)
+ O(h2), and

7Note that the other root −B−
√

B2+4AC

2A
is disregarded since it is negative.
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A + B − C ≥ 0 if and only if 1
n

∑n
i=1

zif
′(zi)

f(zi)
≥ −1 + O(1). Given that A + B − C ≥ 0, we can

show that b̂j = −B+
√

B2+4AC
2A ≤ −B+

√
B2+4A(A+B)

2A = 1, and β̂j
1 = (1− 1

b̂j
) 1
2(σj)2

≤ 0.

In Section 1.3, we have made the following assumptions: 1) the distribution of the majority classes is
sufficiently smooth; and 2) the minority classes form compact clusters in the feature space. In this case, the
first order derivative of the density would be close to 0 for most examples, and have large absolute values
for a few examples near the rare classes. Therefore, the condition in Theorem 5 is always satisfied, and the
exponential term appended to the carrier density decreases away from the origin.

Scoring Function

Once we have estimated all the parameters using Equation 3.10, we can measure the change in the local
density at each data point based on the estimated density in Equation 3.9. Note that at each data point, if we
pick a different direction, the change in local density would be different. In SEDER, we measure the change
along the gradient, which gives the maximum change at each data point.
Theorem 6. Using the estimated density in Equation 3.9, ∀x ∈ Rd, the maximum change rate of the density

at x is

√∑d
l=1

(
∑n

i=1 Di(x)(xl−blxl
i))

2

((σl)2bl)2
, where Di(x) = 1

n

∏d
j=1

1√
2πbjσj

exp(− (xj−bjxj
i )

2

2(σj)2bj ) is the contribution

of xi to the estimated density at x.

Proof. ∀x ∈ Rd, let the gradient vector be w ∈ Rd. We have ∀l ∈ {1, . . . , d}

wl =
∂g̃b(x)

∂xl
=

1
n

n∑

i=1

(−xl − blxl
i

(σl)2bl
)

d∏

j=1

exp(− (xj−bjxj
i )

2

2(σj)2bj )
√

2πbjσj
= −

n∑

i=1

Di(x)(xl − blxl
i)

(σl)2bl

where wl is the lth component of w.
Therefore, the maximum change rate of the density at x is

‖w‖2 =

√√√√
d∑

l=1

(−
n∑

i=1

Di(x)(xl − blxl
i)

(σl)2bl
)2 =

√√√√
d∑

l=1

(
∑n

i=1 Di(x)(xl − blxl
i))2

((σl)2bl)2

If the distribution of the majority classes is sufficiently smooth, and the minority classes form compact
clusters in the feature space, the minority classes are always located in the regions where the density changes
the most. Therefore, in SEDER, to discover the rare classes, we set the score of each example to be the
maximum change rate of the density at this example, i.e., ∀k ∈ {1, . . . , n}

sk =

√√√√
d∑

l=1

(
∑n

i=1 Di(xk)(xl
k − blxl

i))2

((σl)2bl)2
(3.11)

where sk is the score of xk. We pick the examples with the largest scores for labeling until we find at least
one example from each class.
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3.2.2 Algorithm

The intuition of SEDER is to select the examples with the maximum change in the local density for labeling
by the oracle. As introduced in Subsubsection 3.2.1, the scores of the examples measure the maximum
change rate in the local density, and they do not take into account the fact that nearby examples tend to have
the same class label. Therefore, if we ask the oracle to label all the examples with large scores, we may
repeatedly select examples from the most distinctive rare class, rather than discovering all the rare classes.
To address this problem in SEDER, we make use of the following heuristic: if xi ∈ S has been labeled,
∀xk ∈ S, xk 6= xi, if ∀j ∈ {1, . . . , d}, |xj

i −xj
k| ≤ 3σj , we would preclude xk from being selected. In other

words, if an unlabeled example is very close to a previously labeled one, it is quite likely that the labels of
the two examples are the same, and labeling that example will not have a high probability of detecting a
new rare class. The size of the neighborhood is set to 3σj such that the estimated density for the examples
outside this neighborhood using Gaussian kernel is hardly affected by the labeled example. It should be
pointed out that the feedback strategy is orthogonal to the remaining parts of the proposed algorithm. In our
experiments, we find that despite its simplicity, the current strategy leads to satisfactory performance.

Algorithm 4 SEmiparametric Density Estimation based Rare category detection (SEDER)
Input: Unlabeled data set S
Output: The set I of selected examples and the set L of their labels

1: Initialize I = φ and L = φ.
2: for j = 1 : d do
3: Calculate the bandwidth σj using cross validation [Scott, 1992].
4: Calculate the maximum likelihood estimate b̂j of the parameter bj according to Equation 3.10.
5: end for
6: for i = 1 : n do
7: Calculate the score si of the ith example according to Equation 3.11 using the estimated parameters.
8: end for
9: while the labeling budget is not exhausted do

10: Set S′ = {x|x ∈ S,∀i ∈ I, ∃j ∈ {1, . . . , d}, s.t., |xj − xj
i | > 3σj}

11: Query x = argmaxxi∈S′si for its label yx

12: I = I ∪ {x}, L = L ∪ {yx};
13: end while

The proposed method, SEDER, is summarized in Alg. 4. It works as follows. Firstly, we initialize the
set I of selected examples and the set L of their labels to empty sets. Then step 2 to step 5 calculate the
parameters in our model. Step 6 to step 8 calculate the score for each example in S. Finally, step 9 to step
13 gradually include the example with the maximum score into I and its label into L until we run out of the
labeling budget. In each round, the selected example should be far away from all the labeled examples.

Note that: 1) unlike the methods proposed in Section 3.1, SEDER does not need to be given the number
of classes in S or any other information, hence it is more suitable for real applications; 2) in SEDER, we do
not need to explicitly calculate the density at each example; 3) SEDER does not depend on the assumption
that the majority and minority classes be separable or near-separable.

3.2.3 Experimental Results

In this subsection, we compare SEDER with MALICE proposed in Section 3.1, Interleave (the best method
proposed in [Pelleg & Moore, 2004]), random sampling (RS) and SEDER with bj = 1 for j = 1, . . . , d
(abbreviated as Kernel, which is equivalent to using kernel density estimator to estimate the density and to
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get the scores) on both synthetic and real data sets. For this purpose, we run these methods until all the
classes have been discovered, and compare the number of label requests by each method in order to find a
certain number of classes. Note that SEDER MALICE and Kernel are deterministic, whereas the results for
Interleave and random sampling are averaged over 100 runs.

Here we would like to emphasize that only SEDER RS and Kernel do not need any prior information
about the data set, whereas MALICE and Interleave need extra information about the data set as inputs,
such as the number of classes and the proportions of different classes. When such prior information is not
available, which is quite common in real applications, MALICE and Interleave are not applicable.

Synthetic Data Sets

Fig. 3.7(a) shows the underlying distribution of a 1-dimensional synthetic data set. The majority class with
2000 examples has a Gaussian distribution with a large variance; whereas the minority classes with 50
examples each correspond to the two lower-variance peaks. As can be seen from this figure, the first two
examples selected by SEDER (red stars) are both from the regions where the density changes the most.

Fig. 3.7(b) shows a 2-dimensional synthetic data set. The majority class has 2000 examples (blue dots)
with a Gaussian distribution. The four minority classes (red balls) all have different shapes, and each has 267,
280, 84 and 150 examples respectively. This data set is similar to the one used in [He & Carbonell, 2008].
To discover all the classes, SEDER only needs to label 6 examples, which are represented by green ‘x’s in
the figure; whereas random sampling needs to label more than 50 examples on average.

Real Data Sets

In this subsubsection, we present the experimental results on some real data sets. The properties of the data
sets are summarized in Table 3.6. Notice that all these data sets are skewed: the proportion of the smallest
class is less than 5%. For the last three data sets (Page Blocks, Abalone and Shuttle), it is even less than 1%.
We refer to these three data sets as ‘highly’ skewed; whereas the remaining two data sets (Ecoli and Glass)
are referred to as ‘moderately’ skewed.

First, let us focus on the ‘moderately’ skewed data sets, which are shown in Fig. 3.8 and Fig. 3.9. With
Ecoli data set, to discover all the classes, MALICE needs 36 label requests, Interleave needs 41 label requests
on average, RS needs 43 label requests on average, Kernel needs 78 label requests, and SEDER only needs
20 label requests; with Glass data set, to discover all the classes, MALICE needs 18 label requests, Interleave
needs 24 label requests on average, RS needs 31 label requests on average, Kernel needs 102 label requests,
and SEDER needs 22 label requests. Therefore, on these ‘moderately’ skewed data sets, the performance
of SEDER is better than or comparable with MALICE, which requires more prior information than SEDER
including the number of classes in the data set and the proportions of different classes.
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(a) Underlying distribution of a one-dimensional synthetic data set: the
majority class has a Gaussian distribution with a large variance; whereas
the minority classes correspond to the two lower variance peaks.
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(b) Two-dimensional synthetic data set: there are 2000 examples from the
majority class, denoted as blue dots; there are 267, 280, 84, and 150 exam-
ples from each minority class, denoted as red balls.

Figure 3.7: Synthetic data sets: examples selected by SEDER are denoted as green ‘x’s.

Next, let us look at the ‘highly’ skewed data sets. For example, in Shuttle data set, the largest class has
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580 times more examples than the smallest class. With Page Blocks data set (Fig. 3.10), to discover all the
classes, SEDER needs 36 label requests, MALICE needs 23 label requests, Interleave needs 77 label requests
on average, RS needs 199 label requests on average, and Kernel needs more than 1000 label requests; with
Abalone data set (Fig. 3.11), to discover all the classes, SEDER needs 316 label requests, MALICE needs
179 label requests, Interleave needs 333 label requests on average, RS needs 483 label requests on average8,
and Kernel needs more than 1000 label requests; with Shuttle data set (Fig. 3.12), to discover all the classes,
SEDER needs 249 label requests, MALICE needs 87 label requests, Interleave needs 140 label requests on
average, RS needs 512 label requests on average, and Kernel needs more than 1000 label requests.
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Figure 3.8: Ecoli data set.

Based on the above results, we have the following observations. First, SEDER, RS and Kernel require
no prior information about the data set, and yet SEDER is significantly better than RS and Kernel in all the
experiments. Second, the performance of Interleave is sometimes worse than SEDER (except Fig. 3.12),
even though it is given the additional information about the number of classes in the data set. Finally,
although MALICE is better than SEDER for these ‘highly’ skewed data sets, in real applications, it is very
difficult to estimate the number of classes in the data set, not to mention the proportions of the different
classes. If the information provided to MALICE is not accurate enough, the performance of MALICE may
be negatively affected. Moreover, when such information is not available, MALICE is not applicable at all.

8Note that with Abalone data set, the results of MALICE and Interleave are slightly different from [He & Carbonell, 2007]. This
is due to the effect of normalization on the data.
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Figure 3.9: Glass data set.
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Figure 3.10: Page Blocks data set.
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Figure 3.11: Abalone data set.
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Figure 3.12: Shuttle data set.
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Table 3.6: Properties of the data sets used

Data Set n d m Largest Class Smallest Class
Ecoli [Asuncion & Newman, 2007] 336 7 6 42.56% 2.68%
Glass [Asuncion & Newman, 2007] 214 9 6 35.51% 4.21%

Page Blocks [Asuncion & Newman, 2007] 5473 10 5 89.77% 0.51%
Abalone [Asuncion & Newman, 2007] 4177 7 20 16.50% 0.34%
Shuttle [Asuncion & Newman, 2007] 4515 9 7 75.53% 0.13%

3.3 Rare Category Detection for Graph Data

In the previous two sections, we have discussed rare category detection algorithms for data with feature
representations. In many real applications, sometimes the data is given to us as a graph, such as transaction
networks and social networks, and we hope to discover minority classes on the graph data, such as collusion-
type of fraud transactions and groups of terrorists who constantly interact with each other. To address this
problem, in this section, we propose a new rare category detection method for graph data, or relational
data: Graph-based Rare Category Detection (GRADE). The basic idea is to utilize the global similarity
matrix and get more compact clusters for the examples from the minority classes, which is motivated by
the manifold ranking algorithm [Zhou et al., 2003b] and the consistency method [Zhou et al., 2003a]. This
results in sharp changes in local density near the boundary of the minority classes and thus makes it easier
to discover those classes. Furthermore, we improve the GRADE algorithm to get the GRADE-LI algorithm,
which requires less prior information compared with the GRADE algorithm, and thus is more suitable for
real applications. Notice that our algorithms can deal with both data with feature representations and graph
data, whereas existing rare category detection methods can only work with data with feature representations.

The rest of this section is organized as follows. In Subsection 3.3.1, we describe the GRADE algorithm
for rare category detection and analyze its effectiveness. The improved algorithm GRADE-LI is presented
in Subsection 3.3.2. In Subsection 3.3.3, we show some experimental results of GRADE and GRADE-LI
compared with existing methods. Finally, we discuss about some implementation issues in Subsection 3.3.4.

3.3.1 GRADE Algorithm

In this subsection, we first introduce the GRADE algorithm for data with feature representation. Then we
discuss its application to graph data.

Algorithm

The GRADE algorithm for examples with observed features is described in Alg. 5.
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Algorithm 5 Graph-based Rare Category Detection (GRADE)
Input: Unlabeled data set S, p1, . . . , pm, α
Output: The set I of selected examples and the set L of their labels

1: Let K = maxm
c=2 n× pc.

2: For each example, calculate the distance between this example and its K th nearest neighbor. Set σ to be
the minimum value of all such distances.

3: Construct the pair-wise similarity matrix W ′, n × n, where n is the number of examples, and ∀i, k =
1, . . . , n,

W ′
ik = exp(−‖xi − xk‖2

2σ2
)I(i 6= k) (3.12)

where I(·) is the indicator function.
4: Construct the diagonal matrix D, n× n, where Dii =

∑n
k=1 W ′

ik, i = 1, . . . , n.
5: Calculate the normalized matrix W = D−1/2W ′D−1/2.
6: Calculate the global similarity matrix A = (In×n − αW )−1, where In×n is an n× n identity matrix.
7: for c = 2 : m do
8: Let Kc = npc.
9: For each row of A, find the (Kc)th largest element. Set ac to be the largest value of all such elements.

10: ∀xi ∈ S, let NN(xi, ac) = {x|x ∈ S,A(x, xi) ≥ ac}, and nc
i = |NN(xi, ac)|, where A(x, xi) is

the corresponding element in A.
11: end for
12: for c = 2 : m do
13: If class c has been discovered, continue.
14: for t = 2 : n do
15: For each xi that has been labeled yi, ∀xk ∈ S, if A(xi, xk) ≥ ayi , sk = −∞; for all the other

examples, si = max
xk∈NN(xi,

ac
t

)
(nc

i − nc
k).

16: Select and query the label of x = arg maxxi∈S si.
17: If the label of x is equal to c, break; otherwise, mark the class that x belongs to as discovered.
18: end for
19: end for

Here α is a positive parameter which is very close to 1. It works as follows. First of all, we calculate the
maximum number of examples K in each minority class. Then using this number, we pick the parameter
σ, which is the smallest distance to the K th nearest neighbor. Next, we construct the pair-wise similarity
matrix W ′, whose elements are calculated using the Gaussian kernel. In Step 4, we construct the diagonal
matrix D, whose elements are the row sums of W ′. Next, we calculate the normalized matrix W and the
global similarity matrix A. The specific form of the global similarity matrix has been used in the manifold
ranking algorithm [Zhou et al., 2003b] for ranking data with respect to a query point and the consistency
method [Zhou et al., 2003a] for semi-supervised learning. The following steps are based on the similarity
measure in A. For each class c, we calculate the number of examples Kc from this class, and find the largest
global similarity to the (Kc)th nearest neighbor, which is the class specific similarity ac. Then, for each
example xi, we find all of its neighbors with global similarity bigger than or equal to ac, which is denoted
NN(xi, ac), and let nc

i be the number of examples in this set. In Step 12 to Step 19, we calculate the score
for each example and ask the oracle to label the example with the largest score. To be specific, for each class
c, if we have not found any example from this class, we set the score of xi to be the maximum difference
of nc

i and that of the neighboring points with similarity bigger than or equal to ac
t , where t is the iteration

index. By querying the label of the example with the largest score, we are focusing on the regions where
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the underlying density changes the most. If this example is not from class c, we increase t by 1 and repeat;
otherwise, we proceed to the next class. Notice that for a labeled example, any unlabeled example with
global similarity bigger than or equal to the class specific similarity will not be selected in the future.

Justification

Global similarity matrix ∀c = 1, . . . , m, let Sc be the subset of S that consists of all the examples from
class c, which are denoted Sc = {x1(c), . . . , xKc(c)} ⊂ S. Let W ′c be the associated pair-wise similarity
matrix, Kc × Kc, whose elements are defined as in Equation 3.12. Notice that by setting σ to be the
smallest distance to the K th nearest neighbor, we guarantee that for any example from a minority class,
its pair-wise similarity with at least another example from the same minority class is reasonably large.
Next, define the diagonal matrix Dc, Kc × Kc, where Dc

ii =
∑Kc

k=1 W ′c
ik. Finally define the normalized

matrix W c = (Dc)−1/2W ′c(Dc)−1/2. Notice that W c is positive semi-definite, so its eigen-values are non-
negative, which are denoted λc

1 ≥ λc
2 ≥ . . . ≥ λc

Kc
≥ 0, and the corresponding eigen-vectors are denoted

uc
1, . . . , u

c
Kc

, s.t., ‖uc
i‖ = 1, i = 1, . . . , Kc. Furthermore, the largest eigen-value λc

1 is 1, with eigen-vector
uc

1 ∝ (Dc)1/21Kc×1, where 1Kc×1 is a vector of 1s. With respect to uc
1, we have the following lemma.

Lemma 3. If σ changes with the number of examples n such that limn→∞ σ = 0 and limn→∞ n(σ)d = ∞,
then as n goes to infinity, ∀c = 1, . . . , m, uc

1·(uc
1)

T converges in probability to CcU
c, where Cc is a constant,

U c is a Kc × Kc matrix, its elements at the ith row and kth column U c
ik =

√
fc(xi(c))× fc(xk(c)), and

fc(xi(c)) is the probability density function of class c at xi(c).

Proof. As we have mentioned before, the ith element of uc
1: uc

1(i) ∝
√

Dc
ii. On the other hand, as n

goes to infinity, Kc = npc goes to infinity, and Dc
ii

(Kc−1)(
√

2πσ)d =
∑Kc

k=1,k 6=i exp(− ‖xi(c)−xk(c)‖2
2σ2 )

(Kc−1)(
√

2πσ)d converges in

probability to E(δ(xi(c), x)) =
∫

δ(xi(c), x)fc(x)dx = fc(xi(c)), where δ(xi(c), x) is a delta function at

x = xi(c). This is based on both the law of large numbers and the fact that as σ goes to 0,
exp(− ‖xi(c)−x‖2

2σ2 )

(
√

2πσ)d

converges to δ(xi(c), x). Therefore, as n goes to infinity, uc
1(i) is in proportion to

√
fc(xi(c)), and uc

1 ·(uc
1)

T

converges in probability to CcU
c, where U c

ik =
√

fc(xi(c))fc(xk(c)).

If we knew the class labels of all the examples in S, we can group the examples from the same class, and
put the examples from the majority class at the end. To start with, suppose that if xi and xk are from different
classes, Wik = 0. Then the normalized matrix W is block-diagonal, i.e., W = diag(W 2, . . . ,Wm−1,W 1).
Therefore A = (In×n − αW )−1 is also block-diagonal, and it satisfies the following lemma.
Lemma 4. If xi and xk both belong to class c, Aik =

∑Kc
l=1

1
1−αλc

l
uc

l (i)u
c
l (k); otherwise, Aik = 0.

Proof. It is easy to see that the eigen-values of A are 1
1−αλc

i
, c = 1, . . . , m, i = 1, . . . , Kc, and the eigen-

vectors have the same value as uc
i if the corresponding example is from class c, and 0 otherwise. Recon-

structing A based on eigen-decomposition, we get the above lemma.

If α is very close to 1, A can be approximated as follows. If xi and xk both belong to class c,
Aik ≈ 1

1−αuc
1(i)u

c
1(k). According to Lemma 3, as n goes to infinity, Aik converges in probability to

Cc
1−α

√
fc(xi)fc(xk).

Notice that ‖uc
i‖ = 1, c = 1, . . . , m, i = 1, . . . , Kc. In general, the absolute value of the elements of uc

1

for the minority classes are much larger than that for the majority class since the majority class has far more
examples than the minority classes. Therefore, if two examples are both from a minority class, their global
similarity tends to be much larger than that if they are both from the majority class.
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Compared with the pair-wise similarity matrix W ′, the global similarity matrix A is better suited for
rare category detection. This is because if the minority class has a manifold structure, two examples on
this manifold may be far away from each other in terms of Euclidean distance, so their pair-wise similarity
is very small; whereas their global similarity is large since it is roughly in proportion to the density of
the minority class at both points. Fig.3.13a shows an example where the majority class (blue dots) has a
uniform distribution, and the minority class (red balls) forms a 1-dimensional manifold. The black triangles
at both ends of the manifold have a small pair-wise similarity. However, in terms of the global similarity,
they are quite similar, which matches our intuition. Furthermore, if we take the global similarity matrix
as the pair-wise similarity matrix, and map all the points to the original feature space while preserving the
pair-wise similarity, the examples from the minority classes tend to form more compact clusters compared
with the original feature representation (Fig.3.13b), whereas the probability density function of the majority
class is still quite smooth, which makes the following querying process more effective. This is particularly
beneficial if the manifold structures of the minority classes are elongated, as shown in Fig.3.13a.

Querying process Step 7 to Step 19 select examples to be labeled by the oracle. According to our
discussion in the last subsubsection, if we reconstruct the features according to the global similarity matrix,
the minority classes will form compact clusters and the probability density function of the majority class will
be locally smooth. Generally speaking, the querying process selects the examples from the regions where
the local density changes the most, which have a high probability of coming from the minority classes. To
be specific, as discussed before, if two examples are both from a minority class, their global similarity tends
to be much larger than that if they are both from the majority class. So the class specific similarity ac is
likely to be determined by the examples from the minority classes. Furthermore, as n goes to infinity, Aik is
roughly in proportion to the density of class c at xi and xk if they both belong to minority class c. Therefore,
if fc(xi) is large, the global similarity between xi and the other examples from class c tends to be large,
and nc

i is large accordingly. In other words, if we take the global similarity as the pair-wise similarity based
on the new feature representation, nc

i is the number of neighbors within a fixed distance. Therefore, nc
i is

roughly in proportion to the local density at xi.

For each class c, we calculate the score of each example xi, which is the maximum difference in the local
density between xi and the other examples with global similarity bigger than or equal to ac

t . By querying
the data point with the largest score, we focus on the regions where the local density changes the most, so
we have a high probability of finding examples from the minority classes. Furthermore, by increasing the
value of t, we gradually enlarge the size of the neighborhood. In this way, we are not only able to select
points on the boundary of the minority classes, but also points in the interior, thus increase our chance of
finding the minority class examples. Finally, we make use of a simple feedback strategy: if an unlabeled
example is quite similar to a labeled one, we preclude it from being selected in the future. In this way, we
avoid wasting the labeling effort on the minority classes that have been discovered already. Notice that the
feedback strategy is orthogonal to the other components of our algorithm. Currently, we are exploring more
effective feedback strategies.

It should be mentioned that we do not make any assumption about the separability between the majority
class and the minority classes, which is different from [Fine & Mansour, 2006] and [Pelleg & Moore, 2004].
In fact, our algorithm works well when the support regions of the majority class and the minority classes
overlap.
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(a) Original feature space: the two black triangles at both ends of the man-
ifold have a small pair-wise similarity.
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(b) Mapped feature space: the two black triangles are close to each other
after we map the data points to the feature space according to the global
similarity.

Figure 3.13: Synthetic data set: blue dots denote the majority class, and red balls denote the minority class.
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The NNDB algorithm proposed in Section 3.1 can be seen as a special case of our algorithm for the binary
case. If we use the pair-wise similarity matrix W ′ instead of the global similarity matrix A, and the update
of the neighborhood size is slightly modified in Step 15, our algorithm queries the same examples as NNDB.
In the NNDB algorithm, it has been proven that under certain conditions, with a high probability, after a few
iteration steps, NNDB queries at least one example whose probability of coming from the minority class is at
least 1

3 . If the new feature representation based on the global similarity matrix satisfies these conditions, our
algorithm shares the same theoretical properties as NNDB. In real applications, our algorithm is better than
NNDB or MALICE (the counterpart of NNDB for multiple classes) since we make use of the global similarity
instead of the pair-wise similarity, which makes the minority class examples more tightly clustered with the
new feature representation.

Application to Graph Data

The proposed GRADE algorithm essentially makes use of the graph structure to help with rare category
detection. Previously we have discussed its application on data with feature representations, which is based
on the construction of the pair-wise similarity matrix using features. In this paper, we mainly focus on this
type of data. On the other hand, for graph data, it can be readily applied on the input graph. To be specific,
given a graph G = (V, W ′), where V = {v1, . . . , vn} consists of all the vertices, and W ′ is the connectivity
matrix, i.e., W ′

ik is the edge weight if vi is connected with vk, and W ′
ik = 0 otherwise. W ′ can be either

binary or real-valued (non-negative). Notice that the elements of W ′ denote the pair-wise similarity, which is
similar to the pair-wise similarity matrix constructed in Step 3 of Alg. 5 for data with feature representation.
To detect the rare categories using Alg. 5, we input the graph G, p1, . . . , pm and α. Then, we skip Step 1 to
Step 3. All the other steps are the same as before.

It is worth mentioning that in graph mining, researchers have developed algorithms for detecting dense
subgraphs or communities [Flake et al., 2000, Kumar et al., 2003, Gibson et al., 2005]. If we want to use
these approaches for rare category detection, it is labor-intensive to have the oracle label the whole sub-
graph. Conversely, the problem of picking representative vertices of the subgraphs for the oracle to label for
detection purposes has not been addressed by existing work.

3.3.2 GRADE-LI Algorithm

In the GRADE algorithm, we need to input the proportions of all the classes. Notice that in practise, it is
often difficult to estimate the number of classes in the data set, not to mention the priors of different classes.
However, it may be relatively easier to obtain an upper bound on the proportions of the minority classes of
interest to us. In this subsection, we relax this requirement to produce the GRADE-LI algorithm, which only
needs an upper bound p on the proportions of all the minority classes. Compared with GRADE, GRADE-LI
is more suited for real applications.

The GRADE-LI algorithm is summarized in Alg. 6. It works as follows. Step 1 to Step 3 construct the
pair-wise similarity matrix. The only difference from the GRADE algorithm is that here we use the upper
bound p to set the value of K. Step 4 to Step 6 calculate the global similarity matrix, which is the same as in
the GRADE algorithm. Step 7 calculates the largest global similarity to the K th nearest neighbor and assigns
it to a. Then in Step 8, for each example xi, we find the number ni of its neighbors with global similarity
bigger than or equal to a. The while loop in Step 9 is essentially the same as in the GRADE algorithm except
that we are using a single similarity a instead of a set of class specific similarities.

If we only have one minority class, and p = p2, GRADE and GRADE-LI produce the same result. If we
have multiple classes, GRADE-LI requires less information than GRADE. The larger the number of minority
classes, the greater the reduction in the amount of information needed as input. If the proportions of different
minority classes do not vary a lot, a well represents the set of class specific similarities, and the performance
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of GRADE-LI is similar to GRADE. Furthermore, as we will show in the next subsection, GRADE-LI is
quite robust to small perturbations in the upper bound p.

Algorithm 6 Graph-based Rare Category Detection with Less Information (GRADE-LI)
Input: Unlabeled data set S, p, α
Output: The set I of selected examples and the set L of their labels

1: Let K = n× p.
2: For each example, calculate the distance between this example and its K th nearest neighbor. Set σ to be

the minimum value of all such distances.
3: Construct the pair-wise similarity matrix W ′, n × n, where n is the number of examples, and ∀i, k =

1, . . . , n,

W ′
ik = exp(−‖xi − xk‖2

2σ2
)I(i 6= k)

4: Construct the diagonal matrix D, n× n, where Dii =
∑n

k=1 W ′
ik, i = 1, . . . , n.

5: Calculate the normalized matrix W = D−1/2W ′D−1/2.
6: Calculate the global similarity matrix A = (In×n − αW )−1.
7: For each row of A, find the K th largest element. Set a to be the largest value of all such elements.
8: ∀xi ∈ S, let NN(xi, a) = {x|x ∈ S, A(x, xi) ≥ a}, and ni = |NN(xi, a)|.
9: while not all the classes have been discovered do

10: for t = 2 : n do
11: For each xi that has been labeled yi, ∀xk ∈ S, if A(xi, xk) ≥ a, sk = −∞; for all the other

examples, si = max
xk∈NN(xi,

a
t
)
(ni − nk).

12: Select and query the label of x = arg maxxi∈S si.
13: Mark the class that x belongs to as discovered.
14: end for
15: end while

3.3.3 Experimental Results

In this subsection, we present the experimental results on both synthetic and real data sets to show the
effectiveness of GRADE and GRADE-LI.

Synthetic Data Sets

Fig. 3.14 shows the result of applying GRADE on the synthetic data set in Fig. 3.13a. There are 1000 ex-
amples from the majority class, and only 20 examples from the minority class. Using random sampling, we
need to label 51 examples to discover the minority class on average, whereas using the GRADE algorithm,
we only need to label 1 example, denoted as the green ‘x’. Note that in this data set, we only have one
minority class. If we run GRADE-LI with the prior of the minority class as input, we get exactly the same
result as GRADE.

Fig. 3.15 shows another synthetic data set. It has one majority class (blue dots) and 4 minority classes
(red balls), which form the 4 characters. The majority class has 1000 examples, whereas each minority
class has 100 examples. In order to find all the minority classes, using random sampling, we need to label
29 examples on average, whereas using the GRADE algorithm, we only need to label 4 examples, one from
each minority class, which are denoted as green ‘x’s. Similar as GRADE, if we apply GRADE-LI on this data
set with the exact upper bound, i.e., p = maxm

c=2 pc, we also need 4 label requests to find all the minority
classes.
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Based on the synthetic data set in Fig. 3.15, we gradually reduce the number of examples that form the
character ‘I’, and compare the total number of label requests needed by GRADE and GRADE-LI in Fig. 3.16.
As the number of examples from ‘I’ decreases, the proportions of different minority classes become more
skewed, and the difference between GRADE and GRADE-LI becomes significant. This matches our intuition
since GRADE-LI only has access to an upper bound on the proportions of all the minority classes. Therefore,
if the proportions of different minority classes are quite different, it may not be very good at discovering the
smallest class.

Real Data Sets

In this subsubsection, we perform experiments on 4 real data sets, which are summarized in Table 3.7. Note
that we have pre-processed the data so that each feature component has mean 0 and standard deviation
1. In the following experiments, we have compared GRADE and GRADE-LI with the following methods:
MALICE, Interleave (the best method proposed in [Pelleg & Moore, 2004]) and random sampling (RS).
Notice that the results for Interleave and RS are averaged over 100 runs.

Table 3.7: Properties of the data sets used.

Data Set n d m Largest Class Smallest Class
Ecoli [Asuncion & Newman, 2007] 336 7 6 42.56% 2.68%
Glass [Asuncion & Newman, 2007] 214 9 6 35.51% 4.21%

Abalone [Asuncion & Newman, 2007] 4177 7 20 16.50% 0.34%
Shuttle [Asuncion & Newman, 2007] 4515 9 7 75.53% 0.13%
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Figure 3.14: Synthetic data set: the example selected by GRADE is denoted as green ‘x’.
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Figure 3.15: Synthetic data set: the examples selected by GRADE are denoted as green ‘x’s.
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Figure 3.16: Comparison between GRADE and GRADE-LI on the synthetic data set in Fig. 3.15.

Fig. 3.17 to Fig. 3.20 show the comparison results on the 4 data sets. Note that for GRADE-LI, we use
the exact upper bound as input. With the Ecoli data set, to discover all the classes, Interleave needs 41
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label requests on average, MALICE needs 36 label requests, RS needs 43 label requests on average, GRADE
needs 6 label requests, and GRADE-LI needs 32 label requests; with the Glass data set, to discover all the
classes, Interleave needs 24 label requests on average, MALICE needs 18 label requests, RS needs 31 label
requests on average, and both GRADE and GRADE-LI need 14 label requests; with the Abalone data set, to
discover all the classes, Interleave needs 333 label requests on average, MALICE needs 179 label requests,
RS needs 483 label requests on average, GRADE needs 149 label requests, and GRADE-LI needs 318 label
requests; with the Shuttle data set, Interleave needs 140 label requests on average, MALICE needs 87 label
requests, RS needs 512 label requests on average, GRADE needs 33 label requests, and GRADE-LI needs
36 label requests.

From these results, we have the following observations. First, with all the data sets, GRADE is much
better than MALICE, which is the prior best method for rare category detection. Notice that both of the
two algorithms need the number of classes as well as the proportions of all the classes as input. Second,
the performance of GRADE-LI is better than MALICE on all the data sets except the Abalone data set. The
reason might be the following. With the Abalone data set, the proportion of the majority class is 16.50%,
the proportion of the largest minority class is 15.18%, and the proportion of the smallest minority class is
0.34%. As we have shown with the synthetic data set in the last subsubsection, if the proportions of different
minority classes do not vary a lot, which is the case for the other 3 data sets, the performance of GRADE-LI
is similar to GRADE. On the other hand, if the proportions of different minority classes vary a lot, which is
the case for the Abalone data set, the performance of GRADE-LI is worse than GRADE. It should be pointed
out that compared with MALICE, GRADE-LI needs much less information: only an upper bound on the
proportions of the minority classes is needed. The reduction in the prior knowledge about the data set is
significant especially when the number of classes in the data set is large, as with the Abalone data set.
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Figure 3.17: Comparison on Ecoli data set.
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Figure 3.18: Comparison on Glass data set.
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Figure 3.19: Comparison on Abalone data set.
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Figure 3.20: Comparison on Shuttle data set.

The GRADE-LI algorithm needs an upper bound on the proportions of all the minority classes as input.
Next we study the robustness of GRADE-LI with respect to this upper bound using the 4 real data sets. To
this end, we add and subtract 15% from the exact upper bounds, and provide GRADE-LI with the perturbed
upper bounds. In Fig. 3.21, we compare the following 5 methods in terms of the total number of label
requests: MALICE, GRADE, GRADE-LI, GRADE-LI with p = 0.85 × maxm

c=2 pc, and GRADE-LI with
p = 1.15×maxm

c=2 pc.
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Figure 3.21: Robustness study: -15% denotes the performance of GRADE-LI after we subtract 15% from
the exact upper bounds; +15% denotes the performance GRADE-LI after we add 15% to the exact upper
bounds.
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From Fig. 3.21, we can see that GRADE-LI is quite robust against small perturbations in the upper
bounds. For example, with the Glass data set, to find all the classes, using GRADE-LI, if p = maxm

c=2 pc,
we need 14 label requests; if p = 0.85 ×maxm

c=2 pc, we need 16 label requests; if p = 1.15 ×maxm
c=2 pc,

we need 18 label requests.

3.3.4 Discussion

In this subsection, we discuss about some implementation issues of GRADE and GRADE-LI.

Pair-wise similarity

Note that in Step 3 of Alg. 5 and Alg. 6, the Gaussian kernel is used to get the pair-wise similarity
(Equation 3.12). In general, we can use the function ϕ(·, ·) to define W ′, which satisfies the follow-
ing conditions: ϕ(xi, xk) = φ(xi−xk

σ ), ∀x ∈ Rd, φ(x) ≥ 0,
∫

φ(x)dx = 1, supx φ(x) < ∞, and
lim‖x‖→∞ φ(x)

∏d
j=1 xj = 0, where xj is the jth feature component of x. In this case, it can be proven

that Lemma 3 still holds. In practise, besides the above similarity functions, we can use the one that is best
suited for our application, such as the cosine similarity for text data.

Calculating the global similarity matrix

The time complexity of both GRADE and GRADE-LI is dominated by the matrix inversion in calculating
the global similarity matrix in Step 6 of Alg. 5 and Alg. 6, which is O(n3) with naive implementation, and
O(n2.376) with Coppersmith and Winograd’s implementation [Coppersmith & Winograd, 1987]. To speed
up this process, we can make use of one of the following two strategies.

• The global similarity matrix A is defined as (In×n − αW )−1. Based on Taylor’s expansion, we
have A = In×n +

∑∞
i=1 αiW i. Therefore, we can use the following iterative process to get A, i.e.,

A0 = In×n, Al = αW × Al−1 + In×n. It is easy to see that A = A∞, and we can approximate
A with AL, i.e., A ≈ In×n +

∑L
i=1 αiW i. This strategy is best suited for the cases where W is

a sparse matrix with z non-zero elements. In this case, with naive implementation, the complexity
of calculating A is O(Lnz), which can be further improved with more sophisticated methods such
as [Yuster & Zwick, 2005].

• Another way to accelerate the calculation of the global similarity matrix is by means of eigen-
decomposition of W . Let W =

∑n
i=1 λiuiu

T
i , where λi is the ith largest eigen-value, and ui is the

corresponding eigen-vector s.t., ‖ui‖ = 1. Therefore, A =
∑n

i=1
1

1−αλi
uiu

T
i . We can approximate

W using the r largest eigen-values, i.e., W ≈ ∑r
i=1 λiuiu

T
i . In this way, A ≈ ∑r

i=1
1

1−αλi
uiu

T
i .

Since we are only interested in the r largest eigen-values of W , by making use of efficient algorithms
such as [Lehoucq & Sorensen, 1996], the processing time will be greatly reduced.

Stopping criterion

In GRADE-LI the querying process is stopped once we have at least one labeled example from each class.
Note that the rest of GRADE-LI does not need the information of the number of classes to work. When this
information is not available, we need to design a stopping criterion for the querying process. One possible
criterion is to set a threshold on the number of consecutive uninformative label requests, which is the number
of consecutive labeled examples whose classes have already been discovered, and stop the querying process
once the threshold is reached. A very small threshold may result in the overlooking of certain minority
classes; whereas a very large threshold may result in unaffordable labeling efforts. Therefore, we need to
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set a proper threshold according to specific applications. It should be pointed out that when the stopping
criterion is not based on the number of classes in the data set, GRADE-LI may need to label more examples,
but the number of label requests to discover all the class is the same as reported in Subsection 3.3.3.

Picking the value of α

As we have discussed in Subsection 3.3.1, if the pair-wise similarity between examples from different classes
is 0, and the value of α is close to 1, the global similarity matrix A can be approximated using the eigen-
vectors that correspond to eigen-value 1. In real applications, the pair-wise similarity between examples
from different classes is rarely 0. In this case, if the value of α is close to 1, the resulting matrix A would be
unreliable since the eigen-vectors that correspond to eigen-value 1 are not directly related to the probability
density function of each class. Therefore, for the synthetic data sets, we set α = 0.8; whereas for the real
data sets, we set α = 0.6.

3.4 Summary of Rare Category Detection

In this chapter, we have discussed our work on rare category detection. Different from existing work, we
target the challenging cases where the support regions of the majority and minority classes overlap with
each other in the feature space. The overlapping phenomenon is observed in many real applications, such as
financial fraud detection and spam image detection. Yet it has not been well studied before.

For data with feature representations, we propose NNDB, ALICE, and MALICE algorithms, which need
full prior information of the data set as input, including the number of classes and the proportions of different
classes. We also propose SEDER algorithm, which is prior-free. The basic idea of these algorithms is to
select the examples from the regions where the density changes the most, since these examples have a
high probability of coming from the minority classes. For graph data (relational data), we propose GRADE
algorithm, which needs full prior information of the data set as input, and GRADE-LI algorithm, which
only needs an upper bound on the proportions of the minority classes. The basic idea of these algorithms
is to perform implicit feature transformation based on the global similarity, which results in more compact
clusters of the minority classes. Furthermore, we provide theoretical guarantees for these algorithms under
the smoothness assumption of the majority classes and the compactness assumption of the minority classes.
Based on the experimental results on both synthetic data sets and real data sets, we have the following
conclusions.

1. Given full prior information about the data set, including the number of classes and the proportions of
different classes, the proposed GRADE algorithm performs the best on our data sets, since it enjoys
the benefits of both the global similarity and the MALICE algorithm.

2. If we only know an upper bound on the proportions of the minority classes, but do not know the
number of classes or the exact proportions of different classes, we can apply the GRADE-LI algorithm
to detect the rare categories.

3. The GRADE-LI algorithm is robust to small perturbations in the upper bound.

4. The GRADE and GRADE-LI algorithms essentially make use of the graph structure to help with rare
category detection. They can be applied to both data with feature representations and graph data. For
data with feature representations, we first need to construct a pair-wise similarity matrix based on the
features.

5. In our experiments, the performance of GRADE is better than MALICE, and both of them are much
better than existing methods, such as random sampling and Interleave (the best method proposed
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in [Pelleg & Moore, 2004]). However, the processing time of GRADE is more than MALICE since it
needs to compute the global similarity for each pair of data points.

6. The MALICE algorithm is robust to small perturbations in the class priors.

7. If we do not have any prior information about the data set, we can apply the SEDER algorithm to
detect the rare categories. In our experiments, if a data set is ‘moderately’ skewed, its performance
is comparable to MALICE; if a data set is ‘highly’ skewed, its performance is not as good as MAL-
ICE. However, based on our experiments, the performance of SEDER is always better than random
sampling.

3.4.1 Limitations

The limitations of the current work on rare category detection can be summarized as follows.

1. Violations of the assumptions. It is not clearly how the performance of our algorithms will deteriorate
if one of more of the assumptions are not satisfied. For example, the majority class may consist of
several sub-classes of different sizes.

2. Computational issues. Some of the proposed algorithms do not scale well to very large data sets.
For example, in MALICE, a major component is nearest neighbor search. This can be very time-
consuming even with a well designed data structure such as kd-trees [Moore, 1991]. Parallelizing
these algorithms may be one way to address this problem.

3. Application to real world data sets. The current algorithms are evaluated using benchmark data sets
only. It is of great interest to test their performance on real world data sets, e.g., financial fraud
detection.

4. Other density estimators. In SEDER, the specially designed exponential families are used to estimate
the density as well as to calculate the scores for each data point. However, there is no systematic com-
parison between this density estimator and the large number of other methods on density estimation
from both theoretical and practical point of view.



Chapter 4

Rare Category Characterization

In Chapter 3, we have introduced various algorithms for rare category detection, which result in a set of
labeled examples. Based on this labeled set, a natural follow-up step is rare category characterization, i.e.,
to characterize the minority classes in order to identify all the rare examples in the data set. For example, in
Medicare fraud detection, once we have discovered a bogus claim for durable equipments (e.g., wheelchairs,
breathing machines), we may want to find the fraud patterns related to such equipments in order to prevent
similar fraudulent claims in the future. To this end, in this chapter, we focus on rare category characteriza-
tion, the second task in the supervised settings.

Rare category characterization is to characterize the minority classes for the purpose of understand-
ing and correctly classifying those classes. Here, our key observation is that the minority classes often
exhibit compactness. That is, each minority class often forms a compact cluster. For example, the fraudu-
lent people often make multiple similar transactions to maximize their profits [Chau et al., 2006]. For rare
diseases, the patients with the same type of rare disease often share similar genes or chromosomal abnor-
malities [EURODIS, 2005].

In this chapter, we propose RACH by exploring such compactness for rare category characterization. The
core of RACH is to represent the minority classes with a hyper-ball. We present the optimization framework
as well as an effective algorithm to solve it. Furthermore, we show how RACH can be naturally kernelized.
We also analyze the complexity of RACH. Finally, we justify the effectiveness of the proposed RACH by
both theoretical analysis and empirical evaluations.

The main contributions of this chapter can be summarized as follows.

Problem Formulation. We formulate the problem of rare category characterization as an optimiza-
tion problem, which takes into account both labeled an unlabeled examples, and imposes different
constraints for different types of data;

Algorithm Design. We design an effective algorithm to find the solution of the optimization problem.
It repeatedly converts the original problem into a convex optimization problem, and solves it in its
dual form by a projected subgradient method, which is well justified theoretically.

The rest of this chapter is organized as follows. In Section 4.1, we propose the optimization framework
to provide a compact representation for the minority class with justification, followed by the conversion of
this framework to the convex optimization problem as well as its dual form. Then we introduce the RACH
algorithm to solve the dual problem with performance guarantees in Section 4.2, and the kernelized RACH
algorithm in Section 4.3. Finally, following the experimental results presented in Section 4.4, we give a brief
summary of rare category characterization in Section 4.5.

55
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4.1 Optimization Framework

In this section, we present our optimization framework, after we introduce the additional notation and the
pre-processing step.

4.1.1 Additional Notation

For the sake of simplicity, we assume that there is only one majority class and one minority class in the
data set, i.e., m = 2. (Multiple majority and minority classes can be converted into several binary prob-
lems.) Throughout this chapter, we will use calligraphic capital letters to denote sets. Let x1, . . . , xn1 ∈
Rd denote the labeled examples from the majority class, which correspond to yi = 1, i = 1, . . . , n1;
let xn1+1, . . . , xn1+n2 ∈ Rd denote the labeled examples from the minority class, which correspond to
yj = 2, j = n1 + 1, . . . , n1 + n2; let x′n1+n2+1, . . . , x

′
n′ ∈ Rd denote all the unlabeled examples. Here, n1,

n2, and n′ denote the number of labeled examples from the majority class, the number of labeled examples
from the minority class, and the total number of examples, both labeled and unlabeled. d is the dimension-
ality of the input space. Our goal is to identify a list of unlabeled examples which are believed to come from
the minority class with high precision and recall.

4.1.2 Assumptions

In many imbalanced problems, it is often the case that the rare examples from the same minority class
are very close to each other, whereas the examples from the same majority class may be scattered in the
feature space. This assumption is also used in [Wu et al., 2007][Pelleg & Moore, 2004], etc, when dealing
with imbalanced data sets, either explicitly or implicitly. For example, in financial fraud detection, fraud
transactions of the same type are very similar to each other, whereas the normal transactions are more
scattered in terms of their features compared with these fraud transactions. Furthermore, we also assume
that the rare examples can be enclosed by a minimum-radius hyper-ball in the input space without including
too many majority class examples. This seemingly rigorous assumption will become more flexible when we
use the high-dimensional feature space instead of the input space via the kernel trick in Section 4.3. With
this assumption, we allow the support regions of the majority and minority classes to overlap with each
other. In other words, our algorithms works in both the separable and non-separable cases, which makes it
more suitable for real applications.
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4.1.3 Pre-processing: Filtering

Algorithm 7 Filtering Process for Rare Category Characterization
Input: x1, . . . , xn1+n2 , x

′
n1+n2+1, . . . , x

′
n′

Output: xn1+n2+1, . . . , xn

1: if n2 > 1 then
2: Estimate the center b of the hyper-ball by one-class SVM [Schölkopf et al., 2001], using all the la-

beled minority examples
3: else
4: Set the center b = xn1+1

5: end if
6: for i = n1 + n2 + 1, . . . , n′ do
7: Calculate the distance di = ‖x′i − b‖
8: end for
9: Calculate p = n2

n1+n2
; set Dthre as the (n′ − n1 − n2)× pth smallest value among all di (i = n1 + n2 +

1, . . . , n′);
10: n = n1 + n2

11: for i = n1 + n2 + 1, . . . , n′ do
12: if di ≤ 3 ·Dthre then
13: n = n + 1, xn = x′i
14: end if
15: end for

In the unlabeled data, there might be some examples which are far away from the hyper-ball. These
examples can be safely classified as majority class examples without affecting the performance of our clas-
sifier. Therefore, we first filter the unlabeled data to exclude such examples from the following optimization
framework, and only focus on the examples that are close to the hyper-ball. The filtering process is described
in Alg. 7. It takes both the labeled and the unlabeled examples as input, and outputs a set of unlabeled ex-
amples which are close to the hyper-ball. Here, n − n1 − n2 is the number of unlabeled examples after
the filtering process. The algorithm works as follows. It first estimates the center b of the hyper-ball using
one-class SVM [Schölkopf et al., 2001] or a single labeled example; then it estimates the proportion p of
the rare examples in the unlabeled data using the labeled data; finally, it calculates the distance threshold
Dthre based on p, which is used to filter out the unlabeled examples far away from the hyper-ball. Notice that
3×Dthre is actually used to filter the unlabeled data. This is to ensure that we do not miss any rare example.
We should point out that the filtering process is orthogonal to the other parts of the proposed algorithm.
In the remainder of this chapter, unlabeled data (unlabeled examples) refer to the examples output by the
filtering process.

4.1.4 Problem Formulations

Now, we are ready to give the problem formulations for rare category characterization. We first give its
original formulation and illustrate its intuitions. Then, we present its convex approximation together with
its dual form.

Original Formulation. To find the center and radius of the minimum-radius hyper-ball, we construct the
following optimization framework, which is inspired by one-class SVM [Schölkopf et al., 2001].



58 CHAPTER 4. RARE CATEGORY CHARACTERIZATION

Problem 4.1

min
R2,b,α,β

R2 + C1

n1∑

i=1

αi + C2

n−n1−n2∑

k=1

βk

s.t., ‖xi − b‖2 ≥ R2 − αi, i = 1, . . . , n1

αi ≥ 0, i = 1, . . . , n1

‖xj − b‖2 ≤ R2, j = n1 + 1, . . . , n1 + n2

‖xk − b‖2 ≤ R2 + βk−n1−n2 , k = n1 + n2 + 1, . . . , n

βk−n1−n2 ≥ 0, k = n1 + n2 + 1, . . . , n

where R is the radius of the hyper-ball; b is the center of the hyper-ball; C1 and C2 are two positive constants
that balance among the three terms in the objective function; α and β correspond to the non-negative slack
variables for the labeled examples from the majority class and the unlabeled examples; αi and βk are the ith

and kth component of α and β respectively.
In Problem 4.1, we minimize the squared radius of the hyper-ball and a weighted combination of the

slack variables. Furthermore, we have three types of constraints with respect to the training data. The
first type is for the labeled examples from the majority class, i.e., they should be outside the hyper-ball.
Notice that these are not strict constraints, and the labeled examples from the majority class falling inside
the hyper-ball correspond to positive slack variables αi. In this way, we allow the support regions of the
majority and minority classes to overlap with each other. The second type is for the labeled examples from
the minority class, i.e., they should be inside the hyper-ball. In contrast, these are strict constraints, and the
hyper-ball should be large enough to enclose all the labeled rare examples. The last type is for the unlabeled
examples, i.e., we want the hyper-ball to enclose as many unlabeled examples as possible. Different from
the second type of constraints, these constraints are not strict, and the examples falling outside the hyper-ball
correspond to positive slack variables βk. The intuition of this type of constraints is that after the filtering
process, the unlabeled examples are all in the neighborhood of the minority class. The support region of
the minority class should have a higher density compared with the rest of the neighborhood. Therefore, we
want the hyper-ball to enclose as many unlabeled examples as possible.

Convex Approximation of Problem 4.1. Note that Problem 4.1 is difficult to solve due to the first type of
constraints on the labeled examples from the majority class, which make this framework non-convex in the
center b. To address this problem, we approximate these constraints based on first-order Taylor expansion
around the current center b̃, and have the following optimization problem, which is convex.

Problem 4.2 (Convex Approximation of Problem 4.1)

min
R2,b,α,β

R2 + C1

n1∑

i=1

αi + C2

n−n1−n2∑

i=1

βi

s.t., R2 − αi − ‖xi‖2 + ‖b̃‖2 + 2(xi − b̃)T b ≤ 0, i = 1, . . . , n1

αi ≥ 0, i = 1, . . . , n1

‖xj − b‖2 ≤ R2, j = n1 + 1, . . . , n1 + n2

‖xk − b‖2 ≤ R2 + βk−n1−n2 , k = n1 + n2 + 1, . . . , n

βk ≥ 0, k = 1, . . . , n− n1 − n2

Based on Problem 4.2, we find the solution to Problem 4.1 in an iterative way. To be specific, in each
iteration step, we form Problem 4.2 based on the current estimate b̃ of the center, find the optimal R2, b, α
and β, and then update Problem 4.2 based on the new center b. We stop the iteration when the solutions
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in two consecutive steps are very close to each other or when the maximum number of iteration steps is
reached.

Dual Problem for Problem 4.2. It is obvious that Problem 4.2 satisfies Slater’s condition [Boyd & Vandenberghe, 2004].
Therefore, we solve this problem via the following dual problem.

Problem 4.3 (Dual Problem for Problem 4.2)

max
λ

n∑

j=n1+1

λj‖xj‖2 −
n1∑

i=1

λi‖xi‖2 +
n1∑

i=1

λi‖b̃‖2 − ‖∑n
j=n1+1 λjxj −

∑n1
i=1 λi(xi − b̃)‖2

∑n
j=n1+1 λj

s.t., 1 +
n1∑

i=1

λi =
n∑

j=n1+1

λj

0 ≤ λi ≤ C1, i = 1, . . . , n1

0 ≤ λj , j = n1 + 1, . . . , n1 + n2

0 ≤ λk ≤ C2, k = n1 + n2 + 1, . . . , n

where λ is the vector of Lagrange multipliers, λi, i = 1, . . . , n1 are associated with the constraints on the
labeled examples from the majority class, λj , j = n1 + 1, . . . , n1 + n2 are associated with the constraints
on the labeled examples from the minority class, and λk, k = n1 + n2 + 1, . . . , n are associated with the
constraints on the unlabeled examples. Furthermore, based on the KKT conditions of Problem 4.2, the
center b of the hyper-ball can be calculated as follows.

b =

∑n
j=n1+1 λjxj −

∑n1
i=1 λi(xi − b̃)∑n

j=n1+1 λj
(4.1)

4.2 Optimization Algorithm: RACH

Here, we present the proposed optimization algorithm to solve Problem 4.1. The basic idea is as follow:
after an initialization step; we will recursively formulate Problem 4.2 using the current estimate b̃ for the
center of the hyper-ball; and then solve Problem 4.2 in its dual form (Problem 4.3) by a projected subgradient
method.

4.2.1 Initialization Step

First, we need to initialize the center b of the hyper-ball and the Lagrange multipliers λ in Problem 4.3,
which is summarized in Alg. 8. It takes as input both the labeled and the unlabeled examples (after the
filtering process), and outputs the initial estimates of the center b and the Lagrange multipliers λ. In Step
1, it initializes the center b and the radius R of the hyper-ball using one-class SVM [Schölkopf et al., 2001]
if we have more than one labeled examples from the minority class; otherwise, it uses the only labeled rare
example as the center b, and the smallest distance between this example and the nearest labeled example
from the majority class as R. In Step 2, it initializes the Lagrange multipliers based on the KKT conditions
of Problem 4.1. For a labeled example from the majority class, if its distance to the center b is bigger than
R, λi = 0; if the distance is less than R, λi = C1; and if the distance is equal to R, we use C1

2 as the value
for λi. For a labeled example from the minority class, if its distance to the center b is less than R, λj = 0;
otherwise, we use C1+C2

2 as the value for λj . For an unlabeled example, if its distance to the center b is less
than R, λk = 0; if the distance is bigger than R, λk = C2; and if the distance is equal to R, we use C2

2 as
the value for λk.
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Algorithm 8 Initialization for RACH
Input: x1, . . . , xn

Output: initial estimates of b and λ
1: if n2 > 1 then
2: initialize the center b and the radius R of the hyper-ball using one-class SVM [Schölkopf et al., 2001]
3: else
4: set b = xn1+1, and set R as the smallest distance between xn1+1 and the nearest labeled example

from the majority class
5: end if
6: Initialize λ as follows.

For 1 ≤ i ≤ n1, if ‖xi − b‖ > R, λi = 0; if ‖xi − b‖ < R, λi = C1; if ‖xi − b‖ = R, λi = C1
2

For n1 + 1 ≤ j ≤ n1 + n2, if ‖xj − b‖ < R, λj = 0; if ‖xj − b‖ = R, λj = C1+C2
2

For n1 +n2 +1 ≤ k ≤ n, if ‖xk−b‖ < R, λk = 0; if ‖xk−b‖ > R, λk = C2; if ‖xk−b‖ = R,
λk = C2

2

4.2.2 Projected Subgradient Method for Problem 4.3

Projected subgradient methods minimize a convex function f(λ) subject to the constraint that λ ∈ X , where
X is a convex set, by generating the sequence {λ(t)} via

λ(t+1) =
∏

X
(λ(t) − τt∇(t))

where∇(t) is the (sub)gradient of f at λ(t), τt is the step size, and
∏
X (x) = arg miny{‖x− y‖ : y ∈ X} is

the Euclidean projection of x onto X . To solve Problem 4.3, the gradient descent step is straight-forward.1

Next, we will focus on the projection step, where X = {λ : 1+
∑n1

i=1 λi =
∑n

j=n1+1 λj , 0 ≤ λi ≤ C1, i =
1, . . . , n1; 0 ≤ λj , j = n1 + 1, . . . , n1 + n2; 0 ≤ λk ≤ C2, k = n1 + n2 + 1, . . . , n}.

In the projection step, we consider the following optimization problem.
Problem 4.4 (Projection Step of Problem 4.3)

min
λ

1
2
‖λ− v‖2

2 s.t.,
n∑

i=1

aiλi = z, 0 ≤ λi ≤ εi

where ai (i = 1, . . . , n) denote a set of constants which are either 1 or -1; z is a constant; v can be seen
as the updated vector for λ based on gradient descent in each iteration step of the projected subgradient
method, or λ(t) − τt∇(t); and εi is the upper bound for λi. Without loss of generality, we assume that
εi > 0, i = 1, . . . , n. For this optimization problem, define S+ = {i : 1 ≤ i ≤ n, ai = 1}, and
S− = {i : 1 ≤ i ≤ n, ai = −1}.

Before we give our optimization algorithm for Problem 4.4, we first give the following lemma, which is
the key for solving Problem 4.4.2

Lemma 5. Let λ be the optimal solution to Problem 4.4. Let s and t be two indices such that s, t ∈ S+ or
s, t ∈ S−, and vs > vt. If λs = 0, then λt must be zero as well. On the other hand, let s′ and t′ be two
indices such that s′, t′ ∈ S+ or s′, t′ ∈ S−, and vs′ − εs′ < vt′ − εt′ . If λs′ = εs′ , then λt′ must be εt′ as
well.

1Note that in our case, we are maximizing a concave function in Problem 4.3, and gradient ascent is actually used in RACH.
2Note that in [Duchi et al., 2008], the authors addressed a much simpler problem where ai = 1, and εi = ∞, i = 1, . . . , n.
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Proof. The Lagrange function of Problem 4.4:

L(λ, θ, ζ, η) =
1
2
‖λ− v‖2 + θ(

n∑

i=1

aiλi − z)−
n∑

i=1

ζiλi −
n∑

i=1

ηi(εi − λi)

where θ is a Lagrange multiplier associated with the equality constraint; ζ and η are two vectors of Lagrange
multipliers associated with the inequality constraints whose elements are ζi and ηi respectively. Taking the
partial derivative of L(λ, θ, ζ, η) with respect to λ and set it to 0, we get

λi = vi − aiθ + ζi − ηi (4.2)

For the first half of Lemma 1, suppose that s, t ∈ S+. If λs = 0 and λt > 0, we have ζs ≥ 0, ηs = 0, ζt = 0
and ηt ≥ 0. Therefore, vs− θ + ζs = 0 and vt− θ− ηt > 0, which can not be satisfied simultaneously since
vs > vt. Therefore, if λs = 0, λt must be zero as well. Similar proof can be applied when s, t ∈ S−. For
the second half of Lemma 1, suppose that s′, t′ ∈ S+. If λs′ = εs′ and λt′ < εt′ , we have ζs′ = 0, ηs′ ≥ 0,
ζt′ ≥ 0 and ηt′ = 0. Therefore, λs′ − εs′ = vs′ − εs′ − θ − ηs′ = 0 and λt′ − εt′ = vt′ − εt′ − θ + ζt′ < 0,
which can not be satisfied simultaneously since vs′ − εs′ < vt′ − εt′ . Similar proof can be applied when
s, t ∈ S−.

Besides the vector v, define the vector v′ such that its ith element v′i = vi − εi. Based on Lemma 5,
for S+ (S−), we can keep two lists: the first list sorts the elements of v whose indices are in S+ (S−) in an
ascending order, and only a top portion of the list corresponds to 0 in λ; the second list sorts the elements
of v′ whose indices are in S+ (S−) in a descending order, and only a top portion of the list corresponds to
the elements of λ that reach their upper bounds. For the remaining indices in S+ (S−), their corresponding
elements in λ are between 0 and the upper bound, and the Lagrange multipliers ζi = ηi = 0. Therefore,
according to Equation 4.2, λi = vi − θ (λi = vi + θ). Finally, with respect to the value of θ, we have the
following lemma.
Lemma 6. Let λ be the optimal solution to Problem 4.4. Let S1

+, S2
+ and S3

+ denote subsets of S+ which
correspond to the elements in λ that are equal to 0, equal to the upper bound, and between 0 and the upper
bound respectively. S1

+

⋃
S2

+

⋃
S3

+ = S+. Let S1−, S2− and S3− denote subsets of S− which correspond
to the elements in λ that are equal to 0, equal to the upper bound, and between 0 and the upper bound
respectively. S1−

⋃
S2−

⋃
S3− = S−. θ can be calculated as follows.

θ =

∑
k∈S3

+
vk +

∑
j∈S2

+
εj −

∑
k∈S3

−
vk −

∑
j∈S2

−
εj − z

|S3
+|+ |S3−|

(4.3)

Proof. According to the definition of S1
+, S2

+, S3
+ and S1−, S2−, S3−, ∀i ∈ S1

+

⋃
S1−, λi = 0, ζi ≥ 0, ηi = 0;

∀j ∈ S2
+

⋃
S2−, λj = εj , ζj = 0, ηj ≥ 0; ∀k ∈ S3

+

⋃
S3−, 0 < λk < εk, ζk = ηk = 0. Furthermore,

∀k ∈ S3
+, λk = vk − θ; ∀k ∈ S3−, λk = vk + θ. Therefore,

z =
n∑

i=1

aiλi =
∑

i∈S2
+

⋃
S3

+

λi −
∑

i∈S2
−

⋃
S3
−

λi =
∑

j∈S2
+

εj +
∑

k∈S3
+

(vk − θ)−
∑

j∈S2
−

εj −
∑

k∈S3
−

(vk + θ)

Solving this equation with respect to θ, we get Equation 4.3.
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Based on Lemma 5 and Lemma 6, to solve Problem 4.4, we gradually increase the number of elements
in S1

+, S2
+, S1− and S2−, calculate θ accordingly, and determine the value of λ which has the smallest value

of 1
2‖λ− v‖2

2. Alg. 9 gives the details for solving Problem 4.3 in RACH.

Algorithm 9 Projected Subgradient Method for Problem 4.3

Input: x1, . . . , xn; step size τ ; C1, C2; N2; b̃; initial estimate of λ
Output: λ

1: Define S+ = {n1 + 1, . . . , n} and S− = {1, . . . , n1}
2: for step = 1 to N2 do
3: Calculate ∇ as follows:

l = 1, . . . , n1 :

∇l = −‖xl‖2 + ‖b̃‖2 +
2(

∑n
j=n1+1 λj(xj)T −∑n1

i=1 λi(xi − b̃)T )(xl − b̃)∑n
j=n1+1 λj

l = n1 + 1, . . . , n :

∇l = ‖xl‖2 − (
∑n

j=n1+1 λj(xj)T −∑n1
i=1 λi(xi − b̃)T )

(
∑n

j=n1+1 λj)2
· (

n∑

j=n1+1

λj(2xl − xj) +
n1∑

i=1

λi(xi − b̃))

4: Update λ via gradient ascent to obtain: v = λ + τ∇
5: Calculate v′ as follows:

v′i = vi − C1, i = 1, . . . , n1

v′j = −∞, j = n1 + 1, . . . , n1 + n2

v′k = vk − C2, k = n1 + n2 + 1, . . . , n

6: Set D = ∞
7: for I1 = 1, I2 = 1, I3 = 1, I4 = 1 to I1 = |S+|+1, I2 = |S−|+1, I3 = |S+|+1, I4 = |S−|+1 do
8: Let S1

+ ⊂ S+ denote the subset of indices in S+ such that the corresponding elements in v are no
larger than the I th

1 largest element; let S2
+ ⊂ S+ denote the subset of indices in S+ such that the

corresponding elements in v′ are no smaller than the I th
3 smallest element

9: If S1
+

⋂
S2

+ 6= ∅ or S2
+

⋂{n1 + 1, . . . , n1 + n2} 6= ∅, continue; otherwise, S3
+ = S+\(S1

+

⋂
S2

+)
10: Let S1− ⊂ S− denote the subset of indices in S− such that the corresponding elements in v are no

larger than the I th
2 largest element; let S2− ⊂ S− denote the subset of indices in S− such that the

corresponding elements in v′ are no smaller than the I th
4 smallest element

11: If S1−
⋂

S2− 6= ∅, continue; otherwise, S3− = S−\(S1−
⋂

S2−)

12: Calculate θ =
∑

k∈S3
+

vk−
∑

k∈S3−
vk+|S2

+|C2−|S2
−|C1−1

|S3
+|+|S3

−|
13: Calculate w as follows: wi = 0, i ∈ S1

+

⋃
S1−; wi = C2, i ∈ S2

+; wi = C1, i ∈ S2−; wi =
vi − θ, i ∈ S3

+; wi = vi + θ, i ∈ S3−
14: If ‖v − w‖ < D, set λ = w and D = ‖v − w‖.
15: end for
16: end for

In Step 3 of Alg. 9, we calculate the gradient of the objective function in Problem 4.3 at the current value
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of λ and b̃; then in Step 4, λ is updated via gradient ascent to obtain v. The remaining steps (Step 5- 16)
are for the projection step (i.e., for solving Problem 4.4): in Step 5, we calculate the vector v′ using both v
and the upper bounds; to calculate the projection of v on X , in Step 7 to Step 15, we try different sizes for
S1

+, S2
+, S1− and S2−, calculate θ and λ accordingly, and determine the projection of v based on the distance

between v and w, where w is calculated based on the current sets S1
+, S2

+, S3
+, S1−, S2− and S3−.

4.2.3 RACH for Problem 4.1

Algorithm. Now, we are ready to present the RACH algorithm (Alg. 10) to solve Problem 4.1. It is given
the training data, the step size τ , C1, C2, and the numbers of iteration steps N1, N2. (Note that N2 is
used in Alg. 9 in Step 3 of RACH.) The output is the unlabeled examples whose predicted class labels are
class #2. RACH works as follows. First of all, it initializes the center b and the Lagrange multipliers λ
using Alg. 8; then it repeatedly forms Problem 4.3 based on the current estimate of the center b, and applies
Alg. 9 to solve it, which is based on the projected subgradient method; after solving Problem 4.3, the center
b is updated using Equation 4.1; finally, we classify the unlabeled examples based on their corresponding
Lagrange multipliers λk. The last step can be justified as follows. In Problem 4.1, for the unlabeled instances
xk, k = n1 + n2 + 1, . . . , n, if ‖xk − b‖ < R, λk = 0, then yk = 2; if ‖xk − b‖ = R, 0 < λk < C2, then
yk = 2; if ‖xk − b‖ > R, λk = C2, then yk = 1.

Algorithm 10 RACH: Rare Category Characterization
Input: x1, . . . , xn; step size τ ; C1, C2; N1, N2

Output: unlabeled examples whose predicted class labels are 2
1: Initialize the hyper-ball center b and the Lagrange multipliers λ by Alg. 8
2: for step = 1 to N1 do
3: Update the Lagrange multipliers λ by Alg. 9 based on the current center b
4: Update the center b based on Equation 4.1
5: end for
6: for k = n1 + n2 + 1 to n do
7: if λk < C2 then
8: set yk = 2
9: else

10: set yk = 1
11: end if
12: end for

Concise Representation of the Minority Class. From Alg. 10, we can also compute the radius R of the
hyberball, which is the maximum distance from the center b to xn1+1, . . . , xn whose Lagrange multipliers
are less than the corresponding upper bounds. The resulting hyberball (fully described by the center b and
the radius R) provides a concise representation for the minority class. This representation can help us better
understand the minority class. We can also use it to predict an unlabeled example as follows: if it is within
the hyberball (i.e., its distance to the center b is less than R), we classify it as a rare example; otherwise,
it belongs to the majority class. Furthermore, domain experts who have no knowledge in machine learning
and data mining may be able to better understand the learning results based on this representation.

Computational Complexity of RACH. It can be shown that the time complexity of RACH is O(N1N2(n−
n1)2(n1)2). In practice, we can reduce the running time in the following three ways. First, we find that in our
experiments RACH converges very quickly, often within a few tens of iterations. Second, in the applications
that we are interested in, there are very few labeled examples from both the majority and the minority
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classes. A typical value for n1 is a few tens, and a typical value for n2 is less than 10. Finally, recall that
in Section 4.1, we have applied Alg. 7 to filter out the unlabeled examples which are far away from the
minority class. After this operation, only a small portion of the unlabeled data (typically less than 10%) is
passed on to Alg. 10.

4.3 Kernelized RACH Algorithm

In this section, we briefly introduce how to generalize RACH to the high-dimensional feature space induced
by kernels. The major benefit of kernelizing the RACH algorithm is that, instead of enclosing the rare
examples by a minimum-radius hyper-ball, we can now use more complex shapes, which make our algorithm
more flexible and may lead to more accurate classification results.

Compared with the original Alg. 10 which is designed for the input space, in the kernelized RACH
algorithm, we only need to make the following changes. First, instead of directly calculating the center
b, we keep a set of coefficients γi, i = 1, . . . , n such that b =

∑n
i=1 γixi. Therefore, Step 1 of Alg. 10

generates a set of initial coefficients for b, and Step 4 updates the coefficients of b based on Equation 4.1.
In this way, b · x =

∑n
i=1 γiK(xi, x), and ‖b‖2 =

∑n
i=1

∑n
j=1 γiγjK(xi, xj), where K(·, ·) is the kernel

function. Next, notice that Alg. 10 and Alg. 9 are dependent on the examples only through the inner products
or distances, which can be replaced by the kernel calculation.

4.4 Experimental Results

In this section, we present some experimental results showing the effectiveness of RACH.

4.4.1 Synthetic Data Set

Fig. 4.1(a) shows a synthetic data set where the majority class has 3000 examples drawn from a Gaussian
distribution, and the 4 minority classes correspond to 4 different shapes with 84, 150, 267, and 280 examples
respectively. In this figure, the green circles represent labeled examples from the minority classes, and the
red pluses represent labeled examples from the majority class. Here we construct 4 binary problems (the
majority class vs. each minority class). Fig. 4.1(b) shows the classification result where the green dots
represent the rare examples, and the red dots represent the majority class examples. From this figure, we can
see that almost all the rare examples have been correctly identified except for a few points on the boundary.
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(a) Input data set: the green circles represent labeled examples from the
minority classes, and the red pluses represent labeled examples from the
majority class.

(b) Classification results: the examples in green are classified as rare exam-
ples, and the examples in red are classified as majority class examples.

Figure 4.1: Rare category characterization on the synthetic data set. (Best viewed in color.)
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4.4.2 Real Data Sets

We also did experiments on 7 real data sets, which are summarized in Table 4.1. For each data set,
we construct several binary problems consisting of one majority class and one minority class, and vary
the percentage of labeled examples. For the sake of comparison, we also tested the following meth-
ods: (1) KNN (K-nearest neighbor); (2) Manifold-Ranking [Zhou et al., 2003b]; (3) Under-Sampling; (4)
TSVM [Joachims, 1999] with different costs for the examples from different classes; (5) SVM-Perf [Joachims, 2005].
We used the RBF kernel in RACH. All the parameters are tuned by cross validation. The comparison results
in terms of the F-score (harmonic mean of precision and recall) of the minority class are shown in Fig. 4.2
to Fig. 4.8 where the x-axis is the percentage of labeled examples. Under each figure, the numbers outside
the brackets are the class indices included in the binary problem, and the numbers inside the brackets are the
number of examples from each class.

From these figures, we can see that the performance of RACH is consistently better than the other meth-
ods across all the data sets, especially when the percentage of labeled examples is small, which is the case
we are most interested in. In particular, the performance of RACH is better than SVM-Perf in most cases,
although the latter directly optimizes the F-score. This might be due to the fact that the objective function
of SVM-Perf is only an upper bound of the training loss regularized by the L2 norm of the weight vector.
And also, SVM-Perfs is designed for the purpose of a general classification problem; and it might ignore
the skewness and the compactness properties of the minority class. On the other hand, the performance of
the other methods varies a lot across the different data sets. For example, in Fig. 4.2(a), the performance of
KNN is only worse than RACH; whereas in Fig. 4.3(b), the performance of KNN is worse than TSVM, and
as the percentage of labeled examples increases, KNN performs not as good as Under-Sampling.

Table 4.1: Summary of the data sets
Data Set Abalone Ecoli Glass Yeast Page Blocks Shuttle 20 Newsgroups

No. of Examples 4177 336 214 1484 5473 4515 18774
No. of Features 7 7 9 8 10 9 61188
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(a) Class 1 (689 examples) vs. Class 14 (67 examples)
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(b) Class 2 (634 examples) vs. Class 4 (57 examples)

Figure 4.2: Results on Abalone data set
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(a) Class 1 (143 examples) vs. Class 2 (77 examples)
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(b) Class 2 (77 examples) vs. Class 3 (52 examples)

Figure 4.3: Results on Ecoli data set



4.4. EXPERIMENTAL RESULTS 69

0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Label Percentage

F
−

sc
or

e

 

 

KNN
Manifold−Ranking
Under−Sampling
TSVM
RACH
SVM−Perf

(a) Class 1 (70 examples) vs. Class 3 (17 examples)
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(b) Class 1 (70 examples) vs. Class 5 (9 examples)

Figure 4.4: Results on Glass data set
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(a) Class 1 (463 examples) vs. Class 6 (44 examples)
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(b) Class 3 (244 examples) vs. Class 8 (30 examples)

Figure 4.5: Results on Yeast data set
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(a) Class 2 (329 examples) vs. Class 4 (88 examples)
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(b) Class 2 (329 examples) vs. Class 5 (115 examples)

Figure 4.6: Results on Page Blocks data set
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(a) Class 3 (132 examples) vs. Class 2 (37 examples)
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(b) Class 2 (37 examples) vs. Class 7 (11 examples)

Figure 4.7: Results on Shuttle data set
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(a) comp (4852 examples) vs. misc.forsale (964 examples)
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(b) rec (3968 examples) vs. comp.os.ms-windows.misc (963 examples)

Figure 4.8: Results on 20 Newsgroups data set



74 CHAPTER 4. RARE CATEGORY CHARACTERIZATION

4.5 Summary of Rare Category Characterization

In this chapter, we have discussed our work on rare category characterization. It follows the task of rare
category detection, and makes use of labeled data from all the classes to find a compact representation for
the minority classes. The goal is to identify all (or nearly all) the rare examples in the data set with high
precision and recall. Different from the large amount of work on imbalanced classification, we only focus
on the rare examples, and we are able to generate a compact representation for the minority classes for the
sake of interpretability.

In our algorithm, the basic idea is to enclose the rare examples with a minimum-radius hyper-ball based
on the clustering property of the minority classes. We formulate this idea as an optimization problem and
present the effective optimization algorithm RACH to find its solution. In RACH, we repeatedly (1) convert
the original problem into a convex optimization problem, and (2) solve it in its dual form by a projected
subgradient method. Furthermore, we generalize RACH to the high-dimensional feature space induced by
kernels. Experimental results demonstrate the effectiveness of the proposed RACH.

4.5.1 Limitations

The limitations of the current work on rare category characterization can be summarized as follows.

1. Interactions with domain experts. In RACH, the compact representations for the minority classes are
used to help domain experts better understand the learning results. However, in our current work, we
did not perform experiments to validate the effectiveness of these representations.

2. Application to data sets with multiple minority classes. The current version of RACH can only be
applied to the binary settings, i.e., there is one majority class and one minority class in the data set.
The generalization of RACH to multiple majority and minority classes in the data set may greatly
improve its applicability to real world problems.

3. Computational issues. The proposed RACH algorithm does not scale well to very large data sets
(see the analysis on its computational complexity in Subsection 4.2.3). This may be addressed by
parallelism and simple yet effective heuristics, such as localized analysis.



Chapter 5

Unsupervised Rare Category Analysis

In this chapter, we focus on unsupervised rare category analysis, i.e., no label information is available in the
learning process, and address the following two problems: (1) rare category selection, i.e., selecting a set of
examples which are likely to come from the minority class; (2) feature selection, i.e., selecting the features
that are relevant to identify the minority class.

The key observation is that the above two tasks are correlated with each other. On one hand, the analysis
of the minority class examples helps us identify the relevant features; on the other hand, the identification
of the relevant features is crucial to the selection of the minority class examples. Therefore, we propose to
jointly deal with the two tasks so that they can benefit from each other. To this end, we formulate the problem
as a well justified optimization framework, which co-selects the relevant features and the examples from the
minority class. Furthermore, we design an effective search procedure based on augmented Lagrangian
method. The basic idea is to alternatively find the relevant features and the minority class examples. Finally,
we demonstrate the performance of the proposed method by experimental results on some benchmark data
sets.

The main contributions of this chapter can be summarized as follows.

Problem Definition. To the best of our knowledge, we are the first to address the two important tasks
in unsupervised rare category analysis; and we propose to jointly deal with them;

Problem Formulation. We design an optimization framework for the co-selection of features and
examples, which is well justified theoretically;

Search Procedure. We develop an effective algorithm to solve the optimization problem which is
based on augmented Lagrangian.

The rest of this chapter is organized as follows. In Section 5.1, we present the optimization framework
with theoretical justification. Section 5.2 introduces the algorithm for solving the optimization problem.
Experimental results are given in Section 5.3. Finally, we conclude this chapter with a brief summary in
Section 5.4.

5.1 Optimization Framework

In this chapter, we focus on the binary case, i.e., one majority class and one minority class, and our goal is
to (1) select a set of examples which are likely to come from the minority class, and (2) identify the features
relevant to this minority class. In this section, we formulate this problem as an optimization framework, and
provide some theoretical justification.

75
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5.1.1 Additional Notation

In this chapter, we are dealing with the binary cases, i.e., m = 2. Therefore, p1 = 1 − p2. Furthermore,
of the d features, only dr features are relevant to the minority class. In other words, the examples from the
minority class have very similar values on those features, and their values on the other features may be quite
diverse. For the sake of simplicity, assume that the dr features are independent to each other. Therefore,
the examples from the minority class are tightly clustered in the dr-dimensional subspace spanned by the
relevant features, which we call the relevant subspace.

Let Sdr denote the set of all dr-dimensional subspaces of Rd, and let Smin denote the relevant sub-
space, Smin ∈ Sdr . Let f(x) denote the probability density function (pdf) of the data in Rd, i.e., f(x) =
(1 − p2)f1(x) + p2f2(x), where f1(x) and f2(x) are the pdf of the majority and minority classes in Rd

respectively. Given feature subspace S ∈ Sdr and x ∈ Rd, let x(S) denote the projection of x on S, and
f (S)(x(S)), f

(S)
1 (x(S)) and f

(S)
2 (x(S)) denote the projection of f(x), f1(x) and f2(x) on S respectively.

To co-select the minority class examples and the relevant features, we define two vectors: a ∈ Rn and
b ∈ Rd. Let ai and bj denote the ith and jth elements of a and b respectively. ai = 1 if xi is from the
minority class, and 0 otherwise; bj = 1 if the jth feature is relevant to the minority class, and 0 otherwise.

5.1.2 Objective Function

Given the prior p2 of the minority class and the number of relevant features dr, we hope to find np2 data
points whose corresponding ai = 1, and dr features whose corresponding bj = 1. Intuitively, the np2 points
should form a compact cluster in the relevant subspace, and due to the characteristic of the minority class,
this cluster should be more compact than any other np2 data points in any dr-dimensional subspace. To be
more strict, we have the following optimization problem.

Problem 5.1

min f(a, b) =
1

np2

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(x
j
i − xj

k)
2)

s.t.,
n∑

i=1

ai = np2, ai = 0, 1

d∑

j=1

bj = dr, bj = 0, 1

In the objective function f(a, b),
∑d

j=1 bj(x
j
i − xj

k)
2 is the squared distance between xi and xk in the

subspace Sb spanned by the features with non-zero bj . This squared distance contributes to f(a, b) if and
only if both ai and ak are equal to 1. Given a set of np2 points, define the set distance of every data point
to be the sum of the squared distances between this point and all the points within this set. Therefore, by
solving this optimization problem, we aim to find a set of np2 points and dr features such that the average
set distance of these points to this set in the corresponding subspace Sb is the minimum.

Problem 5.1 can be easily applied to the case where either a or b is known, and we want to solve for
the other vector. To be specific, if a is known, i.e., we know the examples that belong to the minority class,
and we want to find the dr-dimensional subspace where the minority class can be best characterized, we can
use the same objective function f(a, b), and solve for b using the minority class examples. Similarly, if b is
known, i.e., we know which features are relevant to the minority class, and we want to find the examples
from the minority class, we can also use f(a, b), and solve for a in the subspace Sb spanned by the relevant
features.
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5.1.3 Justification

The optimization problem we introduced in the last subsection is reasonable intuitively. Next, we look at it
from a theoretical perspective.

∀S ∈ Sdr , define function ψS as follows. ∀S ∈ Sdr , x ∈ Rd, let ψS(x(S)) = minDnp2⊂D,|Dnp2 |=np2

1
np2∑

y∈Dnp2
‖x(S) − y(S)‖2 = 1

np2

∑np2
i=1 ‖x(S) − z

(i)

x(S)‖2, where z
(i)

x(S) denotes the ith nearest neighbor of

x(S) within x
(S)
1 , . . . , x

(S)
n , i.e., ψS(x(S)) is the average squared distance between x(S) and its np2 nearest

neighbors. Furthermore, define function φS as follows. φS(x(S)) = E(ψS(x(S))). Here, the expectation is
with respect to z

(i)

x(S) , i = 1, . . . , np2.
Based on the above definitions, we have the following theorem.

Theorem 7. If
1. In Smin, the support region of the minority class is within hyper-ball B of radius r;
2. The support region of f in any dr-dimensional subspace is bounded, i.e.,

maxS∈Sdr
maxx,y∈Rd,f (S)(x(S))>0,f (S)(y(S))>0 ‖x(S) − y(S)‖ = α < +∞;

3. The density of the majority class in hyper-ball B is non-zero, i.e.,
miny∈Rd,y(Smin)∈B(1− p2)f

(Smin)
1 (y(Smin)) = f0 > 0;

4. The function value of φS is big enough if the projection of the data point in the dr-dimensional
subspace S is not within B, i.e., minS∈Sdr ,x∈Rd,x(S) /∈B φS(x(S))− 4r2 > β > 0;

5. The number of examples is sufficiently large, i.e., n ≥ max{ 1
2(VBf0)2

log 2
δ , α8

4p2
2β4 log 2Cdr

d
δ }, where

VB is the volume of hyper-ball B, and Cdr
d is the number of d choose dr;

then with probability at least 1− δ, in the solution to Problem 5.1, the subspace Sb spanned by the features
with bj = 1 is the relevant subspace Smin, and the data points with ai = 1 are within B.

Proof. The basic idea of the proof is to show that if the selected feature subspace Sb is NOT Smin, or at
least one point in the set of np2 points is outside B in Smin, we can always use Smin, and find another set
of np2 points such that all the points are within B, and its objective function is smaller than the original set.
To do this, first, notice that according to condition (3), the expected proportion of data points falling inside
B, E(nB

n ) ≥ p2 + VBf0, where nB denotes the number of points within B. Second, according to condition

(2), ∀x ∈ D, Pr[0 ≤ ‖x(S) − z
(i)

x(s)‖2 ≤ α2] = 1, i = 1, . . . , np2. Therefore,

Pr[
nB

n
< p2 or ∃x ∈ D, ∃S ∈ Sdr , s.t., ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
< p2] + Pr[∃x ∈ D,∃S ∈ Sdr , s.t., ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
− E(

nB

n
) < −VBf0] + nCdr

d Pr[ψS(x(S)) < φS(x(S))− β]

≤ Pr[
nB

n
− E(

nB

n
) < −VBf0] + nCdr

d

∫

z
(np2+1)

x(S)

Pr[ψS(x(S)) < φS(x(S))− β|z(np2+1)

x(S) ]dPr[z(np2+1)

x(S) ]

≤ exp(−2n(VBf0)2) + nCdr
d exp(−2np2β

2

α4
)

where Cdr
d is an upper bound on the number of subspaces in Sdr , and the last inequality is based on Hoeffd-

ing’s inequality1.

1Note that given z
(np2+1)

x(S) , ψS(x(S)) can be seen as the average of np2 independent items.
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Let exp(−2n(VBf0)2) ≤ δ
2 , and nCdr

d exp(−2np2β2

α4 ) ≤ δ
2 , we get n ≥ 1

2(VBf0)2
log 2

δ , and n ≥
α8

4p2
2β4 log 2Cdr

d
δ . In other words, if the number of examples n is sufficiently large, i.e.,

n ≥ max{ 1
2(VBf0)2

log
2
δ
,

α8

4p2
2β

4
log

2Cdr
d

δ
}

then with probability at least 1−δ, there are at least np2 points within hyper-ball B, and ∀x ∈ D, ∀S ∈ Sdr ,
ψS(x(S)) ≥ φS(x(S)) − β. Furthermore, according to condition (4), ∀x ∈ D, ∀S ∈ Sdr , if x(S) /∈ B,
ψS(x(S)) > 4r2.

Notice that ∀a, ∀b, f(a, b) ≥ ∑
i:ai=1 ψSb(x(Sb)

i ). On the other hand, if Sb = Smin, and the points with
ai = 1 are within B in Smin, then f(a, b) < 4np2r

2. This is because the squared distance between any two
points within B in Smin is no bigger than 4r2.

Given a and b, if Sb is not Smin, we can design a′ and b′ in such a way that Sb′ is Smin, and the
points that correspond to a′i = 1 are within B in Smin. We can always find such a vector a′ since we
have shown that there are at least np2 points within B. Therefore, f(a, b) ≥ ∑

i:ai=1 ψSb(x(Sb)
i ) >

4np2r
2 > f(a′, b′). On the other hand, if Sb is Smin, but at least one point with ai = 1 is outside

B, we can design a′ and b′ in such a way that b′ = b, and a′ replaces the points with ai = 1 that are
outside B with some points within B that are different from existing points in a. For the sake of simplic-
ity, assume that only xt is outside B. Therefore, f(a, b) = 1

np2

∑
i6=t

∑
k 6=t aiak‖x(Smin)

i − x
(Smin)
k ‖2 +

2
np2

∑n
i=1 ai‖x(Smin)

i − x
(Smin)
t ‖2 ≥ 1

np2

∑
i 6=t

∑
k 6=t aiak‖x(Smin)

i − x
(Smin)
k ‖2 + 2ψSmin(x(Smin)

t ) >

1
np2

∑
i6=t

∑
k 6=t aiak‖x(Smin)

i − x
(Smin)
k ‖2 + 8r2 ≥ f(a′, b′). The above derivation can be easily gener-

alized to the case where more than one point with ai = 1 are outside B. Therefore, in the solution to
Problem 5.1, Sb is the relevant subspace Smin, and the data points with ai = 1 are within B.

The conditions of Theorem 7 are straight-forward except condition (4). According to this condition,
∀S ∈ Sdr , if x(S) /∈ B and y(Smin) ∈ B, φS(x(S)) is bigger than φSmin(y(Smin)) by at least β when there
are at least np2 points within B in Smin. Therefore, this condition can be roughly interpreted as follows.
The density around x(S) is smaller than the density around y(Smin) such that the expected average squared
distance between x(S) and its np2 nearest neighbors is much larger than that between y(Smin) and its np2

neighbors. In this way, assuming the other conditions in Theorem 7 are also satisfied, with high probability,
we can identify the relevant subspace and pick the examples within B according to a.

It should be pointed out that if we want to select np2 points from the minority class, picking them from
hyper-ball B is the best we can hope for. In this way, each selected example has a certain probability of
coming from the minority class. On the other hand, if some selected points are outside B, their probability
of coming from the minority class is 0.

5.2 Partial Augmented Lagrangian Method

In this section, we introduce the Partial Augmented Lagrangian Method (PALM) to effectively solve Problem
4.1. In our method, we alternate the optimization of a and b, i.e., given the current estimate of a, we solve
for b that leads to the minimum value of f(a, b); given the current estimate of b, we solve for a that decreases
the value of f(a, b) as much as possible.

To be specific, f(a, b) can be rewritten as f(a, b) =
∑d

j=1 bj
∑n

i=1

∑n
k=1

1
np2

aiak(x
j
i−xj

k)
2. Therefore,

given a, we can solve for b as follows. For each feature j, calculate its score sa
j = 1

np2

∑n
i=1

∑n
k=1 aiak(x

j
i−

xj
k)

2. Then find the dr features with the smallest scores, and set their corresponding bj = 1. It is easy to
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show that this vector b minimizes f(a, b) given a. On the other hand, given b, solving for a is not straight-
forward, since f(a, b) is not a convex function of a. In this chapter, we first relax the constraints on a:
instead of requiring that ai be binary, we require that ai ∈ [0, 1], i.e., we solve the following optimization
problem of a:

Problem 5.2

min gb(a) =
1

np2

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(x
j
i − xj

k)
2)

s.t.,
n∑

i=1

ai = np2, ai ∈ [0, 1]

Next we use augmented Lagrangian method [Nocedal & Wright, 1999] to solve Problem 5.2 in an it-
erative way. The reason for using augmented Lagrangian method is the following: it is a combination of
Lagrangian and quadratic penalty methods; the addition of the penalty terms to the Lagrangian function
does not alter the stationary point of the Lagrangian function, and can help damp oscillations and improve
convergence. Here, we define the following augmented Lagrangian function

LA(a, λ, σ) =
1

np2

n∑

i=1

n∑

k=1

aiak(
d∑

j=1

bj(x
j
i − xj

k)
2)−

2n+1∑

i=1

λidi(a) +
σ

2

2n+1∑

i=1

d2
i (a) (5.1)

where λi, i = 1, . . . , 2n + 1 are the Lagrange multipliers, σ is a positive parameter, and di(a), i =
1, . . . , 2n + 1 are a set of functions defined as follows.

di(a) =
{ ci(a) if i ≤ 1 or ci(a) ≤ λi

σ
λi
σ otherwise

c1(a) =
n∑

i=1

ai − np2 = 0

cj+1(a) = aj ≥ 0, 1 ≤ j ≤ n

ck+n+1(a) = 1− ak ≥ 0, 1 ≤ k ≤ n

Here ci(a), i = 1, . . . , 2n + 1, denote the original constraints on a, both equality and inequality, and di(a)
are truncated versions of ci(a), i.e., di(a) is equal to ci(a) if and only if the corresponding constraint is
active or near-active; it is fixed at λi

σ otherwise.
We minimize LA(a, λ, σ) based on Algorithm 4.20 in [Madsen et al., 2004]. Putting together the opti-

mization of a and b, we have the Partial Augmented Lagrangian Method, which is presented in Alg. 11.
The algorithm works as follows. Given the initial values λ0 and σ0 of λ and σ, and the maximum number

of iteration steps stepmax, it will output vectors a and b that correspond to a local minimum of f(a, b). In
Step 1, we initialize a and b. Next, in Step 2, we assign λ and σ to their initial values, and calculate Kprev,
which is the maximum absolute value of all the di(a) functions, i = 1, . . . , 2n + 1. Then Step 4 to Step 16
are repeated stepmax times. In Step 4, we minimize the augmented Lagrangian function with respect to a,
given the current estimates of λ, σ, and b. To be specific, we use gradient descent to update a, and gradually
decrease the step size until convergence. Once we have obtained an updated estimate of a, calculate K,
which is the maximum absolute value of the current di(a) functions. If the value of K is less than a half
of Kprev, then we update the Lagrange multipliers using the formula in Step 7, which is called the steepest
ascent formula in [Madsen et al., 2004]. Furthermore, we update Kprev using the smaller value of K and
Kprev. Otherwise, if the value K is bigger than a half of Kprev, we double the value of σ. Next, we update
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the value of b based on the current estimate of a. To be specific, for each feature, we calculate its score
based on the formula in Step 14. Then in Step 16, we pick dr features with the smallest scores, and set the
corresponding bj to 1, which minimizes f(a, b) given a. In our experiments, the algorithm always converges
around 20 iteration steps, so we set stepmax = 30.

Algorithm 11 Partial Augmented Lagrangian Method (PALM)
Input: Initial values of λ and σ: λ0 and σ0, stepmax

Output: a and b
1: Initialize a and b
2: λ = λ0, σ = σ0, Kprev = ‖d(a)‖∞
3: for step = 1 to stepmax do
4: a := arg mina LA(a, λ, σ), K := ‖d(a)‖∞
5: if K ≤ Kprev

2 then
6: for i = 1 to 2n + 1 do
7: λi := λi − σdi(a)
8: end for
9: Kprev := min(K, Kprev)

10: else
11: σ := 2× σ
12: end if
13: for j = 1 to d do
14: Calculate the score for the jth feature sa

j = 1
np2

∑n
i=1

∑n
k=1 aiak(x

j
i − xj

k)
2

15: end for
16: Pick dr features with the smallest scores, and set their corresponding bj to 1
17: end for

Notice that the vectors a and b generated by PALM correspond to a local minimum of f(a, b). To
improve its performance, we can run PALM with different initializations of a and b in Step 1 of Alg. 11, and
pick the best values of a and b that correspond to the smallest f(a, b).

The vectors a and b can be interpreted as follows. For b, its dr non-zero elements correspond to the
relevant features. For a, ideally the minority class examples should correspond to ai = 1. However, this
may not be the case in practice. Therefore, we rank the elements of a from large to small, and hope to find
all the minority class examples from the top of the ranked list.

5.3 Experimental Results

In this section, we demonstrate the performance of PALM from the following perspectives: (1) the quality
of rare category selection; (2) the quality of feature selection; (3) the benefit of co-selecting features and
instances.

In our experiments, we retrieve the minority class examples from the ranked list generated by differ-
ent methods, and use the following performance measures: (1) the precision-scope curve, i.e., the per-
centage of the minority class examples when a certain number of examples are retrieved, such as 10% ×
np2, . . . , 100%×np2; (2) the recall-scope curve, i.e., the percentage of the minority class examples when a
certain number of MINORITY class examples are retrieved, such as 10%× np2, . . . , 100%× np2.
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5.3.1 Synthetic Data Sets

To demonstrate the performance of PALM, we first use a simple synthetic data set shown in Fig. 5.1. In
this figure, there are 1000 examples from the majority class, denoted as blue dots, which are uniformly
distributed in the feature space, and only 10 examples from the minority class, denoted as red balls, whose
features on Z are uniformly distributed. Of the 3 features, only 2 features (X and Y ) are relevant to the
minority class, i.e., the minority class examples have very similar values on these features; and 1 feature (Z)
is irrelevant to the minority class, i.e., the minority class examples spread out on this feature. Using PALM,
given the number of minority class examples and the number of relevant features, we are able to identify the
relevant features, with the corresponding bj = 1. Of the 10 examples with the largest ai values, 9 examples
are from the minority class, and the remaining minority class example has the 11th largest ai value.

−0.5
0

0.5

−0.5

0

0.5
−0.5

0

0.5

X
Y

Z

Figure 5.1: Synthetic data set: there are 1000 examples from the majority class, denoted as blue dots, and
only 10 examples from the minority class, denoted as red balls. (Best viewed in color)

Next we test the precision of the selected features of PALM using synthetic data sets with different
prior p2. Fig. 5.2, Fig. 5.3, and Fig. 5.4 show the comparison results of PALM with Laplacian score
method [He et al., 2005a], feature variance method (selecting the features with the largest variance), CRO
[Kim & Choi, 2007], and random sampling. The x-axis is the proportion of irrelevant features, and the y-
axis is the precision of the selected features. From these results, we can see that PALM is much better than
the other 4 methods especially when the prior p2 is small. As for Laplacian score method, although it is
comparable with PALM for large p2, its performance quickly deteriorates as p2 decreases (e.g., Fig. 5.2a and
b), which is the case we are interested in for rare category analysis.
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(a) p2 = 0.01
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(b) p2 = 0.015

Figure 5.2: Precision of selected features on synthetic data sets (part 1).
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(a) p2 = 0.02
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(b) p2 = 0.05

Figure 5.3: Precision of selected features on synthetic data sets (part 2).
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(b) p2 = 0.2

Figure 5.4: Precision of selected features on synthetic data sets (part 3).
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5.3.2 Real Data Sets

In this subsection, we test the performance of PALM on rare category selection. To the best of our knowledge,
there are no existing methods for this task. Therefore, we have designed the following methods for the sake
of comparison.

1. Random: randomly rank all the examples, and select the first np2 points from the ranked list as the
minority class examples.

2. NNDB-based: calculate the score of each example using NNDB [He & Carbonell, 2007]. Note that
no feedback from the labeling oracle is available, so the scores are not updated.

3. Interleave-based: calculate the score of each example using the Interleave principle [Pelleg & Moore, 2004].
Similar as the NNDB-based method, the scores of the examples are not updated in this method.

4. PALM-full: assume that all the features are relevant to the minority class, i.e., bj = 1, j = 1, . . . , d,
and run PALM with dr = d.

Note that NNDB-based method and Interleave-based method are both derived from rare category detection
methods.

Here we use 4 real data sets, which are summarized in Table 5.1. In this chapter, we focus on binary
problems, i.e., there is only one majority class and one minority class in the data set. Therefore, for each
data set, we construct several subproblems as follows. We combine the examples from two different classes
into a smaller binary data set, using the larger class as the majority class, the smaller class as the minority
class, and test the different methods on these binary data sets. For PALM, we tune the number of relevant
features dr without any label information. For each data set, we present the results on 2 binary subproblems,
which are shown in Fig. 5.5 to Fig. 5.12. On the other binary subproblems, similar results are observed and
therefore omitted for space. In these figures, the left figure shows precision vs. scope, and the right figure
shows recall vs. scope.

On all the data sets, PALM performs the best: the precision and recall sometimes reach 100%, such
as Fig. 5.10 and Fig. 5.11. As for the other methods (Interleave-based, NNDB-based, and PALM-full),
their performance depends on different data sets, and none of them is consistently better than Random.
Comparing with Random, Interleave-based, and NNDB-based, we can see that PALM does a better job at
selecting the minority class examples; comparing with PALM-full, we can see that the features selected by
PALM indeed help improve the performance of rare category selection.

Notice that in some figures (Fig. 5.5b, Fig. 5.6b, Fig. 5.7b, Fig. 5.9b, and Fig. 5.10b), at the end of the
recall curves, the different methods seem to overlap with each other. This is because with no supervision,
it is sometimes difficult to retrieve all the examples from the minority class, and the last example from the
minority class tends to appear towards the end of the ranked list. Therefore, the recall value at 100%np2 is
often close to the prior of the minority class in the data set.

Table 5.1: Properties of the data sets [Asuncion & Newman, 2007] used.
Data Set n d Largest Class Smallest Class

Ecoli 336 7 42.56% 2.68%
Glass 214 9 35.51% 4.21%

Abalone 4177 7 16.50% 0.34%
Yeast 1484 8 31.20% 1.68%
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Figure 5.5: Abalone data set: class 1 vs. class 7, p2 = 0.362, 4 features selected by PALM.
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Figure 5.6: Abalone data set: class 2 vs. class 7, p2 = 0.381, 4 features selected by PALM.
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Figure 5.7: Ecoli data set: class 1 vs. class 4, p2 = 0.197, 3 features selected by PALM.
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Figure 5.8: Ecoli data set: class 2 vs. class 4, p2 = 0.313, 4 features selected by PALM.
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Figure 5.9: Glass data set: class 1 vs. class 3, p2 = 0.195, 2 features selected by PALM.
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Figure 5.10: Glass data set: class 2 vs. class 3, p2 = 0.183, 3 features selected by PALM.
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Figure 5.11: Yeast data set: class 2 vs. class 6, p2 = 0.093, 2 features selected by PALM.
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Figure 5.12: Yeast data set: class 2 vs. class 9, p2 = 0.055, 3 features selected by PALM.

Finally, we test the performance of PALM when there are small perturbations in the number of relevant
features. To this end, we run PALM with dr increased by 1 (PALM+1) and decreased by 1 (PALM-1)
respectively, and compare their performance with PALM and PALM-full in Fig. 5.13. From this figure, we
can see that PALM is quite robust against small perturbations in dr in most cases (Abalone, Ecoli, and Glass),
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and in all the cases, the performance of PALM+1 and PALM-1 is better than PALM-full (i.e., PALM without
feature selection).
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Figure 5.13: Perturbation on the number of relevant features. (Best viewed in color)

5.4 Summary of Unsupervised Rare Category Analysis

In this chapter, we have discussed our work on unsupervised rare category analysis. Different from the
supervised settings, in the unsupervised settings, we do not have access to the labeling oracle. Under certain
assumptions, we are able to address the following two problems: (1) rare category selection, and (2) feature
selection. Here, our key observation is that jointly dealing with the two tasks benefits both of them. To this
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end, we propose an optimization framework, which is well justified theoretically. To solve this optimization
problem, we design the Partial Augmented Lagrangian Method (PALM), which alternatively finds the rele-
vant features and the minority class examples. The effectiveness of PALM is demonstrated by experimental
results.

5.4.1 Limitations

The limitations of the current work on unsupervised rare category analysis can be summarized as follows.

1. Violations of the assumptions. It is not clearly how the performance of PALM will deteriorate if one
of more of the assumptions are not satisfied. For example, the support region of the minority class is
elongated.

2. Application to data sets with multiple minority classes. The current version of PALM can only be
applied to the binary settings, i.e., there is one majority class and one minority class in the data set.
PALM can be generalized to multiple majority and minority classes in the data set by targeting the
minority classes one at a time. However, no experiments have been performed in this respect.



Chapter 6

Conclusion and Future Directions

Rare categories are of key importance in many real applications: although the occurrence of such examples
is rare, their impact is significant. Applications of rare category analysis include: financial fraud detection,
Medicare fraud detection, network intrusion detection, astronomy, spam image detection and health care.
Based on our empirical studies, we make the following two assumptions: (1) smoothness assumption for the
majority classes, and (2) compactness assumption for the minority classes. Notice that we do not assume
the majority and minority classes are separable / near-separable from each other in the feature space, which
is assumed by most existing work on rare category analysis. In other words, we target the more challenging
cases where the support regions of the majority and minority classes overlap with each other in the feature
space (although some algorithms work well in both the separable and non-separable cases), since many real
applications exhibit the overlapping phenomenon.

In this thesis, we have focused on rare category analysis in both the supervised and unsupervised settings.
In particular, the following three tasks are addressed.

1. Rare category detection: discovering at least one example from each minority class with the least
label requests from the labeling oracle. For data with feature representations, we propose the NNDB,
ALICE, and MALICE algorithms that need full prior information of the data set as input, including
the number of classes and the proportions of different classes; we also propose the SEDER algorithm,
which is prior-free. For graph data (relational data), we propose the GRADE algorithm that needs full
prior information as input; we also generalize this algorithm to produce the GRADE-LI algorithm that
only needs an upper bound on the proportions of all the minority classes. For each of these algorithms,
we provide theoretical justifications as well as empirical evaluations, showing their effectiveness on
our data sets.

2. Rare category characterization: given labeled examples from all the classes, finding a compact
representation for the minority classes in order to identify all the rare examples with high precision and
recall. To this end, we propose to enclose the rare examples with a minimum-radius hyper-ball based
on the clustering property of the minority classes. This idea is further formulated as an optimization
problem, and we design the RACH algorithm to find its solution. There are two key components in
RACH: (1) converting the original problem into a convex optimization problem, and (2) solving it in
its dual form by a projected subgradient method. RACH can be easily kernelized. Experimental results
demonstrate the effectiveness of RACH. Furthermore, with the compact representation, we are able to
let domain experts (who have no knowledge in machine learning and data mining) better understand
the learning results.

3. Unsupervised rare category analysis: selecting the examples that are likely to come from the minor-
ity classes and selecting the features relevant to the minority classes in an unsupervised fashion. We
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propose to co-select the rare examples and the relevant features, which benefits both tasks. To this end,
we design an optimization framework, which is well justified theoretically. To solve this optimization
problem, we propose the Partial Augmented Lagrangian Method (PALM), which alternatively finds
the relevant features and the minority class examples. The effectiveness of PALM is demonstrated by
experimental results.

Rare category analysis can be extended in multiple dimensions. For example,

1. Understanding the dynamics of rare categories. To be specific, how does a rare category emerge
and evolve over time? Take emerging research topics as an example. A new research topic may start
from a single paper exploring a new research direction, which can be followed by more researchers
working in the same area, forming a minority class. Finally, it may become a major research topic.
Understanding the dynamics of rare categories can help us gain deeper insights of these categories
and provide tools for predicting the occurrence of these categories. To address this problem, as a first
step, we may want to monitor the number of papers on a new research topic over time to see if there is
any change in the distribution once the research topic has become a minority class. Then we may use
the above observation to predict if a new research topic will eventually become a major research topic
or gradually disappear. These techniques can also be used in disease evolution to monitor possible
variations of a certain disease over time.

2. Understanding complex fraud. In many real world problems, the fraud patterns may be more com-
plex than a single fraudulent transaction or a bogus claim. For example, in eBay, the fraudsters and
accomplices form a bipartite core. The fraud identities are eventually used to carry out the actual
non-delivery fraud, while the accomplices exist only to help the fraudsters by boosting their feedback
rating [Chau et al., 2006]. Such bipartite cores are a tell-tale sign of a popular fraud scheme, which
has resulted in the total loss in the order of millions. To discover these fraud patterns, we need to focus
on the subgraph level. As a first step, we may apply the GRADE or GRADE-LI algorithms proposed
in Section 3.3 on the whole transaction graph to discover the complex fraud. Then we can incorporate
the bipartite nature of the subgraphs into the algorithms. For example, we may try to modify the
global similarity so that vertices in the same bipartite graph tend to have larger global similarity.

3. Transfer learning for rare category analysis. In this aspect, we focus on both inter-domain and
intra-domain transfer learning. In the first case, the goal is to leverage the information of rare cate-
gories in a source domain to help us understand the rare categories in the target domain. Here, the
major challenge is the lack of label information related to the rare categories in the target domain.
For example, compared with financial fraud, Medicare fraud is less studied, but the different areas
may share common fraud patterns. To address this problem, first of all, in order to leverage the label
information from the source domain, we need to build some connection between the rare categories
in the source domain and the target domain. Do they have similar distributions in the feature space?
Are certain parameters shared by these rare categories across different domains? Do they evolve over
time in a similar way? Then based on the shared properties of these rare categories, we can effectively
transfer the label information from the source domain to the target domain.

In the second case, we work in a single domain, and the goal is to make use of known rare categories
to help us detect new rare categories. Here, the major challenge is the lack of label information related
to the new rare categories. For example, in disease diagnosis, studying patients with known flu types
may help us detect new flu variants. Similar as before, to address this problem, we first need to find
the shared properties of the rare categories, both known and unknown. Then we may have a better
clue of the support regions for the new rare categories. By sampling in these regions, we may be able
to reduce the number of label requests from the labeling oracle.
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4. Rare category exploration system. We would like to build a complete system for rare category
exploration. The goal here is to provide the domain experts, who have little or no engineering knowl-
edge, with an intuitive user interface. In this way, it may be easier for the domain experts to interact
with the data, convert domain knowledge into certain parameters, understand the learning results, and
provide feedback. On the input side, the system should be able to deal with different types of data,
make use of different amount of prior information, and if some label information is available, it should
also be able to use this information to improve the performance. Some major modules of the system
include detection, characterization, prediction, feature selection, transfer learning, modeling, etc. On
the output side, we hope to discover new minority class as well as new examples from known minority
classes; identify key features to the minority classes as well as find their compact representations; built
statistical models for the rare categories, etc. Furthermore, we plan to incorporate relevant feedback
into the system to better serve the users’ need.
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