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Abstract

Given a water distribution network, where should we place sensors to quickly detect contam-
inants? Or, which blogs should we read to avoid missing important stories?
These seemingly different problems share common structure: Outbreak detection can be mod-
eled as selecting nodes (sensor locations, blogs) in a network, in order to detect the spreading
of a virus or information as quickly as possible.
We present a general methodology for near optimal sensor placement in these and related
problems. We demonstrate that many realistic outbreak detection objectives (e.g., detection
likelihood, population affected) exhibit the property of “submodularity”. We exploit sub-
modularity to develop an efficient algorithm that scales to large problems, achieving near
optimal placements, while being 700 times faster than a simple greedy algorithm. We also
derive online bounds on the quality of the placements obtained by any algorithm. Our al-
gorithms and bounds also handle cases where nodes (sensor locations, blogs) have different
costs.
We evaluate our approach on several large real-world problems, including a model of a water
distribution network from the EPA, and real blog data. The obtained sensor placements are
provably near optimal, providing a constant fraction of the optimal solution. We show that
the approach scales, achieving speedups and savings in storage of several orders of magni-
tude. We also show how the approach leads to deeper insights in both applications, answering
multicriteria trade-off, cost-sensitivity and generalization questions.





1 Introduction

We explore the general problem of detecting outbreaks in networks, where we are given a
network and a dynamic process spreading over this network, and we want to select a set of
nodes to detect the process as effectively as possible.

Many real-world problems can be modeled under this setting. Consider a city water
distribution network, delivering water to households via pipes and junctions. Accidental or
malicious intrusions can cause contaminants to spread over the network, and we want to
select a few locations (pipe junctions) to install sensors, in order to detect these contamina-
tions as quickly as possible. In August 2006, the Battle of Water Sensor Networks (BWSN)
[21] was organized as an international challenge to find the best sensor placements for a real
(but anonymized) metropolitan area water distribution network. As part of this paper, we
present the approach we used in this competition. Typical epidemics scenarios also fit into
this outbreak detection setting: We have a social network of interactions between people,
and we want to select a small set of people to monitor, so that any disease outbreak can be
detected early, when very few people are infected.

In the domain of weblogs (blogs), bloggers publish posts and use hyper-links to refer
to other bloggers’ posts and content on the web. Each post is time stamped, so we can
observe the spread of information on the “blogosphere”. In this setting, we want to select
a set of blogs to read (or retrieve) which are most up to date, i.e., catch (link to) most of
the stories that propagate over the blogosphere. Fig. 1 illustrates this setting. Each layer
plots the propagation graph (also called information cascade [3]) of the information. Circles
correspond to blog posts, and all posts at the same vertical column belong to the same blog.
Edges indicate the temporal flow of information: the cascade starts at some post (e.g., top-
left circle of the top layer of Fig. 1) and then the information propagates recursively by other
posts linking to it. Our goal is to select a small set of blogs (two in case of Fig. 1) which
“catch” as many cascades (stories) as possible1.A naive, intuitive solution would be to select
the big, well-known blogs. However, these usually have a large number of posts, and are time-
consuming to read. We show, that, perhaps counterintuitively, a more cost-effective solution
can be obtained, by reading smaller, but higher quality, blogs, which our algorithm can find.

There are several possible criteria one may want to optimize in outbreak detection. For
example, one criterion seeks to minimize detection time (i.e., to know about a cascade as
soon as possible, or avoid spreading of contaminated water). Similarly, another criterion
seeks to minimize the population affected by an undetected outbreak (i.e., the number of
blogs referring to the story we just missed, or the population consuming the contamination
we cannot detect). Optimizing these objective functions is NP-hard, so for large, real-world
problems, we cannot expect to find the optimal solution.

In this paper, we show, that these and many other realistic outbreak detection objectives
are submodular, i.e., they exhibit a diminishing returns property: Reading a blog (or placing
a sensor) when we have only read a few blogs provides more new information than reading
it after we have read many blogs (placed many sensors).

We show how we can exploit this submodularity property to efficiently obtain solutions
which are provably close to the optimal solution. These guarantees are important in practice,

1In real-life multiple cascades can be on the same or similar story, but we still aim to detect as many as
possible.
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Figure 1: Spread of information between blogs. Each layer shows an information cascade,
and all posts at the same vertical column belong to the same blog. Edges represent the flow
of information. We want to pick a few blogs quickly capture most cascades.

since selecting nodes is expensive (reading blogs is time-consuming, sensors have high cost),
and we desire solutions which are not too far from the optimal solution.

The main contributions of this paper are:

• We show that many objective functions for detecting outbreaks in networks are sub-
modular, including detection time and population affected in the blogosphere and water
distribution monitoring problems. We show that our approach also generalizes work by
[12] on selecting nodes maximizing influence in a social network.

• We exploit the submodularity of the objective (e.g., detection time) to develop an effi-
cient approximation algorithm, CELF, which achieves near-optimal placements (guaran-
teeing at least a constant fraction of the optimal solution), providing a novel theoretical
result for non-constant node cost functions. CELF is up to 700 times faster than simple
greedy algorithm. We also derive novel online bounds on the quality of the placements
obtained by any algorithm.

• We extensively evaluate our methodology on the applications introduced above – water
quality and blogosphere monitoring. These are large real-world problems, involving a
model of a water distribution network from the EPA with millions of contamination
scenarios, and real blog data with millions of posts.

• We show how the proposed methodology leads to deeper insights in both applications,
including multicriterion, cost-sensitivity analyses and generalization questions.

2 Outbreak Detection

2.1 Problem statement

The water distribution and blogosphere monitoring problems, even though in very differ-
ent domains, share essential structure. In both problems, we want to select a subset A of
nodes (sensor locations, blogs) in a graph G = (V, E), which detect outbreaks (spreading of
a virus/information) quickly.
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Figure 2: Blogs have posts, and there are time stamped links between the posts. The links
point to the sources of information and the cascades grow (information spreads) in the reverse
direction of the edges. Reading only blog B6 captures all cascades, but late. B6 also has
many posts, so by reading B1 and B2 we detect cascades sooner.

Fig. 2 presents an example of such a graph for blog network. Each of the six blogs consists
of a set of posts. Connections between posts represent hyper-links, and labels show the time
difference between the source and destination post, e.g., post p41 linked p12 one day after p12

was published).
These outbreaks (e.g., information cascades) initiate from a single node of the network

(e.g., p11, p12 and p31), and spread over the graph, such that the traversal of every edge
(s, t) ∈ E takes a certain amount of time (indicated by the edge labels). As soon as the
event reaches selected node, alarm is triggered. E.g., selecting blog B6, would detect the
cascades originating from post p11, p12 and p31, after 6, 6 and 2 timesteps after the start of
the respective cascades.

Depending on which nodes we select, we achieve a certain placement score. Fig. 2 illus-
trates several criteria one may want to optimize. If we only want to detect as many stories as
possible, then reading just blog B6 is best. However, reading B1 would only miss one cascade
(p31), but would detect the other cascades immediately. In general, this placement score
(representing, e.g., the fraction of detected cascades, or the population saved by placing a
sensor) is a set function R, mapping every placement A to a real number R(A) (our reward),
which we intend to maximize.

Since sensors are expensive, we also associate a cost c(A) with every placement A, and
require, that this cost does not exceed a specified budget B which we can spend. For example,
the cost of selecting a blog could be the number of posts in it (i.e., B1 has cost 2, while B6

has cost 6). In the water distribution setting, accessing certain locations in the network
might be more difficult (expensive) than other locations. Also, we could have several types
of sensors to choose from, which vary in their quality (detection accuracy) and cost. We
associate a nonnegative cost c(s) with every sensor s, and define the cost of placement A:
c(A) =

∑
s∈A c(s).

Using this notion of reward and cost, our goal is to solve the optimization problem
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max
A⊆V

R(A) subject to c(A) ≤ B, (1)

where B is a budget we can spend for selecting the nodes.

2.2 Placement objectives

An event i ∈ I from set I of scenarios (e.g., cascades, contaminant introduction) originates
from a node s′ ∈ V of a network G = (V, E), and spreads through the network, affecting other
nodes (e.g., through citations, or flow through pipes). Eventually, it reaches a monitored
node s ∈ A ⊆ V (i.e., blogs we read, pipe junction we instrument with a sensor), and gets
detected. Depending on the time of detection t = T (i, s), and the impact on the network
before the detection (e.g., the size of the cascades missed, or the population affected by a
contaminant), we incur penalty πi(t). Note that the penalty function πi(t) depends on the
scenario. We discuss concrete examples of penalty functions below. Our goal is to minimize
the expected penalty over all possible scenarios i:

π(A) ≡
∑

i

P (i)πi(T (i,A)),

where, for a placement A ⊆ V, T (i,A) = mins∈A T (i, s) is the time until event i is detected
by one of the sensors in A, and P is a (given) probability distribution over the events.

We assume πi(t) to be monotonically nondecreasing in t, i.e., we never prefer late detection
if we can avoid it. We also set T (i, ∅) =∞, and set πi(∞) to some maximum penalty incurred
for not detecting event i.
Proposed alternative formulation. Instead of minimizing the penalty π(A), we can con-
sider the scenario specific penalty reduction Ri(A) = πi(∞) − πi(T (i,A)), and the expected
penalty reduction

R(A) =
∑

i

P (i)Ri(A) = π(∅)− π(A),

describes the expected benefit (reward) we get from placing the sensors. This alternative
formulation has crucial properties which our method exploits, as described below.
Examples used in our experiments. Even though the water distribution and blogosphere
monitoring problems are very different, similar placement objective scores make sense for both
applications. The detection time T (i, s) in the blog setting is the time difference in days, until
blog s participates in the cascade i, which we extract from the data. In the water network,
T (i, s) is the time it takes for contaminated water to reach node s in scenario i (depending
on outbreak location and time). In both applications we consider the following objective
functions (penalty reductions):

(a) Detection likelihood (DL): fraction of information cascades and contamination events
detected by the selected nodes. Here, the penalty is πi(t) = 0, and πi(∞) = 1, i.e., we do
not incur any penalty if we detect the outbreak in finite time, otherwise we incur penalty 1.

(b) Detection time (DT) measures the time passed from outbreak till detection by one of
the selected nodes. Hence, πi(t) = min{t, Tmax}, where Tmax is the time horizon we consider
(end of simulation / data set).

(c) Population affected (PA) by scenario (cascade, outbreak). This criterion has different
interpretations for both applications. In the blog setting, the affected population measures
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the number of blogs involved in a cascade before the detection. Here, πi(t) is the size of
(number of blogs participating in) cascade i at time t, and πi(∞) is the size of the cascade
at the end of the data set. In the water distribution application, the affected population is
the expected number of people affected by not (or late) detecting a contamination event.

Note, that optimizing each of the objectives can lead to very different solutions, hence we
may want to simultaneously optimize all objectives at once. We deal with this multicriterion
optimization problem in Section 2.4.

2.3 Properties of the placement objectives

The penalty reduction function2 R(A) has several important and intuitive properties: Firstly,
R(∅) = 0, i.e., we do not reduce the penalty if we do not place any sensors. Secondly,
R is nondecreasing, i.e., R(A) ≤ R(B) for all A ⊆ B ⊆ V. Hence, adding sensors can
only decrease the incurred penalty. Thirdly, and most importantly, it satisfies the following
intuitive diminishing returns property: If we add a sensor to a small placement A, we improve
our score at least as much, as if we add it to a larger placement B ⊇ A. More formally, we
can prove that

Theorem 1 For all placements A ⊆ B ⊆ V and sensors s ∈ V \ B, it holds that

R(A ∪ {s})−R(A) ≥ R(B ∪ {s})−R(B).

A set function R with this property is called submodular.

Proof: Our proof is similar to the analysis of [19]. Fix scenario i. We first show that the
function Ri(A) = πi(∞)−πi(T (A, i)) is submodular. Consider A ⊆ B ⊆ V. Let s ∈ V\B. We
have three cases. (i) T (s, i) ≥ T (A, i). Then T (A∪{s}) = T (A) and T (B ∪{s}) = T (B) and
hence Ri(A∪{s})−Ri(A) = 0 = Ri(B∪{s})−Ri(B). (ii) T (B, i) ≤ T (s, i) < T (A, i). In this
case, Ri(A∪{s})−Ri(A) ≥ 0 = Ri(B ∪ {s})−Ri(B). Finally, (iii), T (s, i) < T (B, i). In this
case, Ri(A∪ {s})−Ri(A) = [πi(∞)− πi(T (s, i))]−Ri(A) ≥ [πi(∞)− πi(T (s, i))]−Ri(B) =
Ri(B∪{s})−Ri(B), where the inequality is due to the nondecreasingness of Ri(·). Hence, for
each scenario i, the function Ri is submodular. Now, R(A) =

∑
i P (i)Ri(A) is a nonnegative

linear combination of submodular functions, and hence submodular too.

Hence, both the blogosphere and water distribution monitoring problems can be reduced
to the problem of maximizing a nondecreasing submodular function, subject to a constraint
on the budget we can spend for selecting nodes. More generally, any objective function that
can be viewed as an expected penalty reduction is submodular. Submodularity of R will be
the key property exploited by our algorithms.

2.4 Multicriterion optimization

In practical applications, such as the blogosphere and water distribution monitoring, we may
want to simultaneously optimize multiple objectives. Then, each placement has a vector of

2The objective R is similar to one of the examples of submodular functions described by [19]. Our objective,
however, preserves additional problem structure (sparsity) which we exploit in our implementation, and which
we crucially depend on to solve large problem instances.

5



scores, R(A) = (R1(A), . . . , Rm(A)). Here, the situation can arise that two placements A1

and A2 are incomparable, e.g., R1(A1) > R1(A2), but R2(A1) < R2(A2). So all we can hope
for are Pareto-optimal solutions [4]. A placement A is called Pareto-optimal, if there does
not exist another placement A′ such that Ri(A′) ≥ Ri(A) for all i, and Rj(A′) > Rj(A) for
some j (i.e., there is no placement A′ which is at least as good as A in all objectives Ri, and
strictly better in at least one objective Rj).

One common approach for finding such Pareto-optimal solutions is scalarization (c.f.,
[4]). Here, one picks positive weights λ1 > 0, . . . , λm > 0, and optimizes the objective
R(A) =

∑
i λiRi(A). Any solution maximizing R(A) is guaranteed to be Pareto-optimal [4],

and by varying the weights λi, different Pareto-optimal solutions can be obtained. One might
be concerned that, even if optimizing the individual objectives Ri is easy (i.e., can be ap-
proximated well), optimizing the sum R =

∑
i λiRi might be hard. However, submodularity

is closed under nonnegative linear combinations and thus the new scalarized objective is
submodular as well, and we can apply the algorithms we develop in the following section.

3 Proposed algorithm

Maximizing submodular functions in general is NP-hard [13]. A commonly used heuristic in
the simpler case, where every node has equal cost (i.e., unit cost, c(s) = 1 for all locations
s) is the greedy algorithm, which starts with the empty placement A0 = ∅, and iteratively, in
step k, adds the location sk which maximizes the marginal gain

sk = argmax
s∈V\Ak−1

R(Ak−1 ∪ {s})−R(Ak−1). (2)

The algorithm stops, once it has selected B elements. Considering the hardness of the
problem, we might expect the greedy algorithm to perform arbitrarily badly. However, in
the following we show that this is not the case.

3.1 Bounds for the algorithm

Unit cost case. Perhaps surprisingly – in the unit cost case – the simple greedy algorithm
is near-optimal:

Theorem 2 ([19]) If R is a submodular, nondecreasing set function and R(∅) = 0, then the
greedy algorithm finds a set AG, such that R(AG) ≥ (1− 1/e) max|A|=B R(A).

Hence, the greedy algorithm is guaranteed to find a solution which achieves at least a
constant fraction (1− 1/e) (≈ 63%) of the optimal score. The penalty reduction R satisfies
all requirements of Theorem 2, and hence the greedy algorithm approximately solves the
maximization problem Eq. (1).
Non-constant costs. What if the costs of the nodes are not constant? It is easy to see that
the simple greedy algorithm, which iteratively adds sensors using rule from Eq. (2) until the
budget is exhausted, can fail badly, since it is indifferent to the costs (i.e., a very expensive
sensor providing reward r is preferred over a cheaper sensor providing reward r− ε. To avoid
this issue, the greedy rule Eq. (2) can be modified to take costs into account:
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sk = argmax
s∈V\Ak−1

R(Ak−1 ∪ {s})−R(Ak−1)
c(s)

, (3)

i.e., the greedy algorithm picks the element maximizing the benefit/cost ratio. The
algorithm stops once no element can be added to the current set A without exceeding the
budget. Unfortunately, this intuitive generalization of the greedy algorithm can perform
arbitrarily worse than the optimal solution. Consider the case where we have two locations, s1

and s2, c(s1) = ε and c(s2) = B. Also assume we have only one scenario i, and R({s1}) = 2ε,
and R({s2}) = B. Now, R(({s1})−R(∅))/c(s1) = 2, and R(({s2})−R(∅))/c(s2) = 1. Hence
the greedy algorithm would pick s1. After selecting s1, we cannot afford s2 anymore, and
our total reward would be ε. However, the optimal solution would pick s2, achieving total
penalty reduction of B. As ε goes to 0, the performance of the greedy algorithm becomes
arbitrarily bad.

However, the greedy algorithm can be improved to achieve a constant factor approxi-
mation. This new algorithm, CEF (Cost-Effective Forward selection), computes the solution
AGCB using the benefit-cost greedy algorithm, using rule (3), and also computes the solution
AGUC using the unit-cost greedy algorithm (ignoring the costs), using rule (2). For both
rules, CEF only considers elements which do not exceed the budget B. CEF then returns the
solution with higher score. Even though both solutions can be arbitrarily bad, the following
result shows that there is at least one of them which is not too far away from optimum, and
hence CEF provides a constant factor approximation.

Theorem 3 Let R be the a nondecreasing submodular function with R(∅) = 0. Then

max{R(AGCB), R(AGUC)} ≥ 1
2
(1− 1/e) max

A,c(A)≤B
R(A).

Proof: The proof is presented in our technical report [14]

Theorem 3 was proved by [13] for the special case of the Budgeted MAX-COVER prob-
lem3, and here we prove this result for arbitrary nondecreasing submodular functions. The-
orem 3 states that the better solution of AGBC and AGUC (which is returned by CEF) is at
most a constant factor 1

2(1− 1/e) of the optimal solution.
Note that the running time of CEF is O(B|V|) in the number of possible locations |V| (if

we consider a function evaluation R(A) as atomic operation, and the lowest cost of a node is
constant). In [27], it was shown that even in the non-constant cost case, the approximation
guarantee of (1 − 1/e) can be achieved. However, their algorithm is Ω(B|V|4) in the size
of possible locations |V| we need to select from, which is prohibitive in the applications we
consider. In the following, we show, that even the solutions of CEF are provably very close
to the optimal score.

3.2 Online bounds for any algorithm

The approximation guarantees of (1− 1/e) and 1
2(1− 1/e) in the unit- and non-constant cost

cases are offline, i.e., we can state them in advance before running the actual algorithm. We
3In MAX-COVER, we pick from a collection of sets, such that the union of the picked sets is as large as

possible.
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can also use submodularity to acquire tight online bounds on the performance of an arbitrary
placement (not just the one obtained by the CEF algorithm).

Theorem 4 For a placement Â ⊆ V, and each s ∈ V \ Â, let δs = R(Â ∪ {s})−R(Â). Let
rs = δs/c(s), and let s1, . . . , sm be the sequence of locations with rs in decreasing order. Let
k be such that C =

∑k−1
i=1 c(si) ≤ B and

∑k
i=1 c(si) > B. Let λ = (B − C)/c(sk). Then

max
A,c(A)≤B

R(A) ≤ R(Â) +
k−1∑
i=1

δsi + λδsk
. (4)

Proof: For all nodes s ∈ V \A, let δs = R(A∪{s})−R(A). Let us assume the costs c(s) and
B are rational . Without loss of generality, we can multiply costs and budget by their least
common multiple, and hence we are left with integral costs and budget. Let us replicate all
elements according to their cost, and assign weights to them according to their benefit cost
ratio, i.e., for all replica s′ of element s, set weight δ′s′ = δs/c(s). Also, let A′ be the set of all
replicas corresponding to the nodes in A. Let B′ be the replicas of all elements in the optimal
solution B. Since R is monotonic, R(A′ ∪ B′) ≥ R(B′) = OPT . Due to submodularity,

R(A′ ∪ B′) ≤ R(A′) +
∑
s′∈B′

δ′s′ .

Furthermore, ∑
s′∈B′

δ′s′ ≤ max
C′:|C′|≤B

∑
s′∈C′

δ′s′ .

Now we have a unit-cost modular optimization problem: We want to pick the best set C′ of B
elements, maximizing the sum of their weights δ′s′ . The ordinary unit cost greedy algorithm
solves this optimally. More specifically, we can sort the new weights δ′s′ in decreasing order
(in case of ties we keep the replicas of the elements in contiguous blocks), and pick the B
first elements. Hence, the greedy algorithm on the replicated unit cost problem will have to
integrally pick the first k − 1 original elements, and will fractionally pick the last (k − th)
element, selecting M = (B−

∑k−1
i=1 c(sj)) elements. Summing up the weights of the unit cost

elements will give us
∑

i = 1k−1δsi + λ ∗ δsk
, where λ = M/c(sk).

Theorem 4 presents a way of computing how far any given solution Â (obtained using CEF
or any other algorithm) is from the optimal solution. This theorem can be readily turned
into an algorithm, as formalized in Algorithm 2.

We empirically show that this bound is much tighter than the bound 1
2(1 − 1/e), which

is roughly 31%.

4 Scaling up the algorithm

4.1 Speeding up function evaluations

Evaluating the penalty reductions R can be very expensive. For example, in the water
distribution application, we need to run physical simulations, in order to estimate the effect
of a contamination at a certain node. In the blog networks, we need to consider several
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millions of posts, which make up the cascades. However, in both applications, most outbreaks
are sparse, i.e., affect only a small area of the network (c.f., [15, 18]), and hence are only
detected by a small number of nodes. Hence, most nodes s do not reduce the penalty incurred
by an outbreak (i.e., Ri({s}) = 0). Note, that this sparsity is only present if we consider
penalty reductions. If for each sensor s ∈ V and scenario i ∈ I we store the actual penalty
πi(s), the resulting representation is not sparse. Our implementation exploits this sparsity
by representing the penalty function R as an inverted index 4, which allows fast lookup of the
penalty reductions by sensor index s. By looking up all scenarios detected by all sensors in
our placement A, we can quickly compute the penalty reduction

R(A) =
∑

i:i detected by A
P (i) max

s∈A
Ri({s}),

without having to scan the entire data set.
The inverted index is the main data structure we use in our optimization algorithms. After

the problem (water distribution network simulations, blog cascades) has been compressed
into this structure, we use the same implementation for optimizing sensor placements and
computing bounds.

In the water distribution network application for example, exploiting this sparsity allows
us to fit the set of all possible intrusions considered in the BWSN challenge in main memory
(16 GB), which leads to several orders of magnitude improvements in the running time, since
we can avoid hard-drive accesses.

Function:LazyForward(G = (V, E),R,c,B,type)
A ← ∅; foreach s ∈ V do δs ← +∞;
while ∃s ∈ V \ A : c(A ∪ {s}) ≤ B do

foreach s ∈ V \ A do curs ← false;
while true do

if type=UC then s∗ ← argmax
s∈V\A,c(A∪{s})≤B

δs;

if type=CB then s∗ ← argmax
s∈V\A,c(A∪{s})≤B

δs

c(s)
;

if curs then A ← A∪ s∗; break ;
else δs ← R(A ∪ {s})−R(A); curs ← true;

return A;

Algorithm:CELF(G = (V, E),R,c,B)

AUC ←LazyForward(G, R, c, B,UC);
ACB ←LazyForward(G, R, c, B,CB);
return argmax{R(AUC), R(ACB)}

Algorithm 1: The CELF algorithm.

4The index is inverted, since the data set facilitates the lookup by scenario index i (since we need to
consider cascades, or contamination simulations for each scenario).
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Algorithm:GetBound(G = (V, E),A,R,c,B)

A ← ∅; B ← ∅; R̂ = R(A);
foreach s ∈ V do δs ← R(A ∪ {s})−R(A); rs = δs

c(s) ;
while ∃s ∈ V \ (A ∪ B) : c(A ∪ B ∪ {s}) ≤ B do

s∗ ← argmax
s∈V\{A∪B},c(A∪B∪{s})≤B

rs;

R̂← R̂ + δs∗ ; B ← B ∪ {s∗};
s∗ ← argmax

s∈V\{A∪B},c(A∪B∪{s})≤B
rs; λ← B−c(A∪B)

c(s∗) ;

return R̂ + λδs∗ ;
Algorithm 2: Getting bound R̂ on optimal solution.

4.2 Reducing function evaluations

Even if we can quickly evaluate the score R(A) of any given placement, we still need to
perform a large number of these evaluations in order to run the greedy algorithm. If we
select k sensors among |V| locations, we roughly need k|V| function evaluations. We can
exploit submodularity further to require far fewer function evaluations in practice. Assume
we have computed the marginal increments δs(A) = R(A ∪ {s})− R(A) (or δs(A)/c(s)) for
all s ∈ V \ A. The key idea is to realize that, as our node selection A grows, the marginal
increments δs′ (and δs′/c(s)) (i.e., the benefits for adding sensor s′) can never increase: For
A ⊆ B ⊆ V, it holds that δs(A) ≥ δs(B). So instead of recomputing δs ≡ δs(A) for every
sensor after adding s′ (and hence requiring |V| − |A| evaluations of R), we perform lazy
evaluations: Initially, we mark all δs as invalid. When finding the next location to place a
sensor, we go through the nodes in decreasing order of their δs. If the δs for the top node
s is invalid, we recompute it, and insert it into the existing order of the δs (e.g., by using
a priority queue). In many cases, the recomputation of δs will lead to a new value which
is not much smaller, and hence often, the top element will stay the top element even after
recomputation. In this case, we found a new sensor to add, without having reevaluated δs for
every location s. The correctness of this lazy procedure follows directly from submodularity,
and leads to far fewer (expensive) evaluations of R. We call this lazy greedy algorithm5 CELF
(Cost-Effective Lazy Forward selection). In our experiments, CELF achieved up to a factor
700 improvement in speed compared to CEF when selecting 100 blogs. Algorithm 1 provides
pseudo-code for an implementation of CELF.

When computing the online bounds discussed in Section 3.2, we can use a similar lazy
strategy. The only difference is that, instead of lazily ensuring that the best δs is correctly
computed, we ensure that the top k (where k is as in Eq. (4)) δs improvements have been
updated.

5[24] suggested a similar algorithm for the unit cost case.
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Figure 3: Cascade and outbreak size distributions for blog network and the water distribution
network.

5 Case study: Blog Network

5.1 Experimental setup

In this work we are not explicitly modeling the spread of information over the network, but
rather consider cascades as input to our algorithms.

Here we are interested in blogs that actively participate in discussions, we biased the
dataset towards the active part of the blogosphere, and selected a subset from the larger set
of 2.5 million blogs of [8]. We considered all blogs that received at least 3 in-links in the first
6 months of 2006, and then took all their posts for the full year 2006. So, the dataset that
we use has 45,000 blogs, 10.5 million posts, and 16.2 million links (30 GB of data). However,
only 1 million links point inside the set of 45,000 blogs.

Posts have rich metadata, including time stamps, which allows us to extract information
cascades, i.e., subgraphs induced by directed edges representing the temporal flow of informa-
tion. We adopt the following definition of a cascade [18]: every cascade has a single starting
post, and other posts recursively join by linking to posts within the cascade, whereby the
links obey time order. We detect cascades by first identifying starting post and then following
in-links. We discover 346,209 non-trivial cascades having at least 2 nodes. Since the cascade
size distribution is heavy-tailed, we further limit our analysis to only cascades that had at
least 10 nodes. The final dataset has 17,589 cascades, where each blog participates in 9.4
different cascades on average.

5.2 Objective functions

We use the penalty reduction objectives DL, DT and PA as introduced in Section 2.2. We
normalize the scores of the solution to be between 0 and 1. For the DL (detection likelihood)
criterion, the quality of the solution is the fraction of all detected cascades (regardless of
when we detect it). The PA (population affected) criterion measures what fraction of the
population included in the cascade after we detect it, i.e., if we would be reading all the blogs
initiating the cascades, then the quality of the solution is 1. In PA our reward depends on
which fraction of the cascades we detect, and big cascades count more than small cascades.
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Figure 4: (a) Performance of CELF algorithm and off-line and on-line bounds for PA objective
function. (b) Compares objective functions.

5.3 Solution quality

First, we evaluate the performance of CELF, and estimate how far from optimal the solution
could be. Note, that obtaining the optimal solution would require enumeration of 245,000

subsets. Since this is impractical, we compare our algorithm to the bounds we developed in
Section 3. Fig. 4(a) shows scores for increasing budgets when optimized the PA (population
affected) criterion. As we select more blogs to read, the proportion of cascades we catch
increases (bottom line). We also plot the two bounds. The off-line bound (Section 3.1) shows
that the unknown optimal solution lies between our solution (bottom line) and the bound
(top line). Notice the discrepancy between the lines is big, which means the bound is very
loose. On the other hand, the middle line shows the online bound (Section 3.2), which again
tells us that the optimal solution is somewhere between our current solution and the bound.
Notice, the gap is much smaller. This means (a) that the our on-line bound is much tighter
than the traditional off-line bound. And, (b) that our CELF algorithm performs very close
to the optimum.

In contrast to off-line bound, the on-line bound is algorithm independent, and thus can be
computed regardless of the algorithm used to obtain the solution. Since it is tighter, it gives
a much better worst case estimate of the solution quality. For this particular experiment, we
see that CELF works very well: after selecting 100 blogs, we are at most 13.8% away from
the optimal solution.

Figure 4(b) shows the performance using various objective functions (from top to bottom:
DL, DT, PA). DL increases the fastest, which means that one only needs to read a few blogs
to detect most of the cascades, or equivalently that most cascades hit one of the big blogs.
However, the population affected (PA) increases much slower, which means that one needs
many more blogs to know about stories before the rest of population does. By using the
on-line bound we also calculated that all objective functions are at most 5% to 15% from
optimal.
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Figure 5: (a) Comparison of the unit and the number of posts cost models. (b) For fixed
value of PA R, we get multiple solutions varying in costs.

5.4 Cost of a blog

The results presented so far assume that every blog has the same cost. Under this unit cost
model, the algorithm tends to pick large, influential blogs, that have many posts. For example,
instapundit.com is the best blog when optimizing PA, but it has 4,593 posts. Interestingly,
most of the blogs among the top 10 are politics blogs: instapundit.com, michellemalkin.
com, blogometer.nationaljournal.com, and sciencepolitics.blogspot.com. Some pop-
ular aggregators of interesting things and trends on the blogosphere are also selected: boingboing.
net, themodulator.org and bloggersblog.com. The top 10 PA blogs had more than 21,000
thousand posts in 2006. They account for 0.2% of all posts, 3.5% of all in-links, 1.7% of out-
links inside the dataset, and 0.37% of all out-links.

Under unit cost model large blogs are important, but reading a blog with many posts is
time consuming. This motivates the number of posts (NP) cost model, where we set the cost
of a blog to the number of posts it had in 2006.

First, we compare the NP cost model with the unit cost in Fig. 5(a). The top curve
shows the value of the PA criterion for budgets of B posts, i.e., we optimize PA such that the
selected blogs can have at most B posts total. Note, that under the unit cost model, CELF
chooses expensive blogs with many posts. For example, to obtain the same PA objective
value, one needs to read 10,710 posts under unit cost model. The NP cost model achieves the
same score while reading just 1,500 posts. Thus, optimizing the benefit cost ratio (PA/cost)
leads to drastically improved performance.

Interestingly, the solutions obtained under the NP cost model are very different from the
unit cost model. Under NP, political blogs are not chosen anymore, but rather summarizers
(e.g., themodulator.org, watcherofweasels.com, anglican.tk) are important. Blogs se-
lected under NP cost appear about 3 days later in the cascade as those selected under unit
cost, which further suggests that that summarizer blogs tend to be chosen under NP model.

In practice, the cost of reading a blog is not simply proportional to the number of posts,
since we also need to navigate to the blog (which takes constant effort per blog). Hence, a
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Figure 6: Heuristic blog selection methods. (a) unit cost model, (b) number of posts cost
model.

combination of unit and NP cost is more realistic. Fig. 5(b) interpolates between these two
cost models. Each curve shows the solutions with the same value R of the PA objective, but
using a different number of posts (x-axis) and blogs (y-axis) each. For a given R, the ideal
spot is the one closest to origin, which means that we want to read the least number of posts
from least blogs to obtain desired score R. Only at the end points does CELF tend to pick
extreme solutions: few blogs with many posts, or many blogs with few posts. Note, there is
a clear knee on plots of Fig. 5(b), which means that by only slightly increasing the number
of blogs we allow ourselves to read, the number of posts needed decreases drastically, while
still maintaining the same value R of the objective function.

5.5 Comparison to heuristic blog selection

Next, we compare our method with several intuitive heuristic selection techniques. For ex-
ample, instead of optimizing the DT, DL or PA objective function using CELF, we may just
want to select the most popular blogs and hope to detect many cascades. We considered
several such heuristics, where we order blogs by some “goodness” criteria, and then pick top
blogs (until the budget is exhausted). We consider the following criteria: the number posts
on the blog, the cumulative number of out-links of blog’s posts, the number of in-links the
blog received from other blogs in the dataset, and the number of out-links to other blogs in
the dataset.

As Fig. 6(a) shows, the CELF algorithm greatly outperforms all the heuristic selection
techniques. More interestingly, the best heuristics (doing 45% worse than CELF) pick blogs
by the number of in- or out-links from/to other blogs in the dataset. Number of posts, the
total number of out-links and random blog selection do not perform well.

Number of in-links is the indicator of a blog’s tendency to create cascades, while number
of out-links (to other blogs) indicates blog’s tendency to summarize the blogosphere. We
also note, that the surprisingly good performance of the number of out-links to blogs in the
dataset is an artefact of our “closed-world” dataset, and in real-life we can not estimate this.
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The results also agree well with our intuition that the number of in-links is a good heuristic,
since it directly indicates the of propagation of information.

Fig. 6(b) explores the same setting under the NP cost model. Here, given a budget of B
posts, we select a set of blogs to optimize PA objective. For the heuristics, we select a set of
blogs to optimize chosen heuristic, e.g., the total number of in-links of selected blogs while
still fitting inside the budget of B posts. Again, CELF outperforms the next best heuristics
by 41%, and again the number of in- and out-links are the best heuristics.

These results show that simple heuristics that one could use to identify blogs to read
do not really work well. There are good summarizer blogs that may not be very popular,
but which, by using few posts, catch most of the important stories propagating over the
blogosphere.

5.6 Fractionally selecting blogs

Our framework also allows fractional selection of blogs, which means that instead of reading
a large blog every day, we can read it, e.g., only one day per week. This also allows us to
ask: what is the best day of the week to read blogs?

In order to study whether fractional selection allows to achieve better benefit cost ratio,
we split the blogs which had at least one post per day into 7 blogs, one for each day of the
week. Fig. 7(a) shows, that by splitting big blogs, the population affected (PA) objective
function increases for 12% over the setting where only whole blogs can be selected.

Returning to the original question, we performed the following experiment: given a bud-
get of 1000 posts, what is the best day of the week to read posts (optimizing PA)? We found
that Friday is the best day to read blogs. The value of PA for Friday is 0.20, while it is 0.13
for the rest of the week. We consider this surprising, since the activity of the blogosphere
(number of posts and links created) drops towards the end of the week, and especially over
the weekend [18].
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Figure 8: Generalization to future data when CELF can select any blog (a), or only big blogs
(b).

5.7 Generalization to future data

Since the influence and popularity of the blogs also evolves over time we also want to know
how well the selected blogs will detect cascades in the future. To evaluate the generalization
to unknown future, we use the first 6 months of the dataset as historic data to select a set of
blogs, and then use second 6 months of the dataset to evaluate the performance of selected
blogs on unseen future cascades.

Fig. 8 compares the performance on the unknown future data. Top dashed curve in both
plots shows the optimal performance on future data, i.e., we select the blogs directly using
the (unknown) future data. The bottom curve presents the realistic case where we select the
blogs using historic data and evaluate using hidden future data.

As Fig. 8(a) shows, CELF overfits when evaluated on the future data, i.e., it selects small
blogs with very few posts that just by chance participate in cascades, and then these blogs
do not generalize well for the second half of the year. One way to overcome this overfitting
is to prevent CELF from picking very small blogs. To understand this restriction we show in
Fig. 8(b) the performance when CELF can only select blogs with at least one post per day
(365 posts per year).

Comparing Fig. 8(a) and Fig. 8(b) we see that the optimal performance (top curve) drops
if CELF is limited on only picking big blogs. This is expected since CELF has less choice of
which blogs to pick, and thus performs worse. However, when limiting the selection to only
big blogs (Fig. 8(b)) the gap between the curves is very small (compared to the big gap of
Fig. 8(a)). Moreover, the performance on the future data does not drop, and the method
generalizes well.

5.8 Scalability

Figure 5(b) plots the running time of selecting k blogs. We see that exhaustively enumerating
all possible subsets of k elements is infeasible (the line jumps out of the plot for k = 3). The
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simple greedy algorithm scales as Ω(k|V|), since for every increment of k we need to consider
selecting all remaining |V| − k blogs. The bottom line overlapping the x-axis of Fig. 5(b)
shows the performance of our CELF algorithm. For example, for selecting 100 blogs, greedy
algorithm runs 4.5h, while CELF takes 23 seconds (700 times faster). Calculation of the
on-line bounds while running CELF takes 54s.

Exploiting the sparsity of the problem (c.f., Section 4) allowed us to reduce the size of
the inverted index from originally 3.5 GB to 50 MB, easily fitting it in main memory.

6 Case study: Water networks

6.1 Experimental setup

In the water distribution system application, we used the data and rules introduced by the
Battle of Water Sensor Networks (BWSN) challenge [21]. We considered both the small
network on 129 nodes (BWSN1), and a large, realistic, 12,527 node distribution network
(BWSN2) provided as part of the BWSN challenge. In addition we also consider a third water
distribution network (NW3) of a large metropolitan area in the United States. The network
(not including the household level) contains 21,000 nodes and 25,000 pipes (edges). To our
knowledge, this is the largest water distribution network considered for sensor placement
optimization so far. The networks consist of a static description (junctions and pipes) and
dynamic parameters (time-varying water consumption demand patterns at different nodes,
opening and closing of valves, pumps, tanks, etc.)

As Fig. 3(b) shows, the distribution of outbreak sizes for the water network is rather
different than for a blog network. The blog network is a typical scale free network with small
diameter and power-law degree distribution. On the other hand, the water networks are
composed of several connected grid networks corresponding to different neighborhoods, and
thus the outbreak size distribution is different.

6.2 Objective functions

In the BWSN challenge, we want to select a set of 20 sensors, simultaneously optimizing the
objective functions DT, PA and DL, as introduced in Section 2.2. To obtain cascades we use
a realistic disease model defined by [21], which depends on the demands and the contaminant
concentration at each node. In order to evaluate these objectives, we use the EPANET
simulator [26], which is based on a physical model to provide realistic predictions on the
detection time and concentration of contaminant for any possible contamination event. We
consider simulations of 48 hours length, with 5 minute simulation timesteps. Contaminations
can happen at any node and any time within the first 24 hours, and spread through the
network according to the EPANET simulation. The time of the outbreak is important,
since water consumption varies over the day and the contamination spreads at different rates
depending on the time of the day. Altogether, we consider a set of 3.6 million possible
contamination scenarios and each of these is associated with a “cascade” of contaminant
spreading over the network.
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6.3 Solution quality

We first used CELF to optimize placements of increasing size, according to the three criteria
DL, DT, PA. We again normalized the scores to be between 0 and 1, where 1 is the best
achievable score when placing sensors at every node.

Fig. 9 (a) presents the CELF score, the off-line and on-line bounds for PA objective on the
BWSN2 network. Consistently with the blog experiments, the on-line bound is much tighter
than the off-line bound, and the solutions obtained by our CELF algorithm are very close to
the optimum.

Fig. 9 (b) shows CELF’s performance on all 3 objective functions. Similarly to the blog
data, the population affected (PA) score increases very quickly. The reason is that most
contamination events only impact a small fraction of the network. Using few sensors, it is
relatively easy to detect most of the high impact outbreaks. However, if we want to detect
all scenarios, we need to place a large number of sensors (2,263 in our experiment). Hence,
the DL (and correspondingly DT) increase more slowly than PA.

Fig. 10 shows two 20 sensor placements after optimizing DL and PA respectively on
BWSN2. When optimizing the population affected (PA), the placed sensors are concentrated
in the dense high-population areas, since the goal is to detect outbreaks which affect the
population the most. When optimizing the detection likelihood, the sensors are uniformly
spread out over the network. Intuitively this makes sense, since according to BWSN challenge
[21], outbreaks happen with same probability at every node. So, for DL, the placed sensors
should be as close to all nodes as possible.

We also compared the scores achieved by CELF with several heuristic sensor placement
techniques, where we order nodes by some “goodness” criteria, and then pick top nodes. We
consider the following criteria: population at the node, water flow through the node, and the
diameter and the number of pipes at the node. Fig. 13(a) shows the results for PA objective
function. CELF outperforms best heuristic for 45%. Best heuristics are placing nodes at
random, by degree or their population. We see heuristics perform poorly, since nodes which
are close in the graph tend to have similar flow, diameter and population, and hence the
sensors will be spread out too little. Even the maximum over one hundred random trials
performs far worse than CELF. Figure 11(a) shows the statistics of choosing 100 random
random placements on the water distribution network for the PA objective function. Notice
that even best out of 100 random trials performs far worse than CELF. Figure 11(b) shows
how many outbreaks one needs so that the score approaches the true score that one obtains
if data on all outbreaks is available. Notice that estimates soon converge to true score and
data on less than 100,000 outbreaks is needed. See ?? for more details.

6.4 Multicriterion optimization

Using the theory developed in Section 2.4, we traded-off different objectives for the water
distribution application. We selected pairs of objectives, e.g., DL and PA, and varied the
weights λ to produce (approximately) Pareto-optimal solutions. In Fig. 12 (a) we plot the
tradeoff curves for different placement sizes k. By adding more sensors, both objectives DL
and PA increase. The crves also show, that if we, e.g., optimize for DL, the PA score can be
very low. However, there are points which achieve near-optimal scores in both criteria (the
knee in the curve). This sweet spot is what we aim for in multi-criteria optimization.
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Figure 9: (a) CELF with offline and online bounds for PA objective. (b) Different objective
functions.

(a) PA (b) DL

Figure 10: Water network sensor placements: (a) when optimizing PA, sensors are concen-
trated in high population areas. (b) when optimizing DL, sensors are uniformly spread out.

19



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Number of sensors selected

P
en

al
ty

 r
ed

uc
tio

n

CELF solution

Median of 100
random placements

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

Number of samples

S
co

re
 o

n 
su

bs
am

pl
e True score

Median estimate

(a) Random placements (b) Variance

Figure 11: (a) Performance of 100 random placements on the water distribution network for
the PA objective function. (b) Performance with the number of simulated outbreaks. As
more outbreaks are available we get better performance.

We also traded off the affected population PA and a fourth criterion defined by BWSN,
the expected consumption of contaminated water. Fig. 12 (b) shows the trade-off curve for
this experiment. Notice that the curves (almost) collapse to points, indicating that these
criteria are highly correlated, which we expect for this pair of objective functions. Again,
the efficiency of our implementation allows to quickly generate and explore these trade-off
curves, while maintaining strong guarantees about near-optimality of the results.

6.5 Scalability

In the water distribution setting, we need to simulate 3.6 million contamination scenarios,
each of which takes approximately 7 seconds and produces 14KB of data. Since most of the
computer cluster scheduling systems break if one would submit 3.6 million jobs into the queue,
we developed a distributed architecture, where the clients obtain simulation parameters and
then confirm the successful completion of the simulation. We run the simulation for a month
on a cluster of around 40 machines. This produced 152GB of outbreak simulation data. By
exploiting the properties of the problem described in Section 4, the size of the inverted index
(which represents the relevant information for evaluating placement scores) is reduced to 16
GB which we were able to fit into main memory of a server. The fact that we could fit the
data into main memory alone sped up the algorithms by at least a factor of 1000.

Fig. 13 (b) presents the running times of CELF, the naive greedy algorithm and exhaustive
search (extrapolated). We can see that the CELF is 10 times faster than the greedy algorithm
when placing 10 sensors. Again, a drastic speedup.
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Figure 12: (a) Trading off PA and DL. (b) Trading off PA and consumed contaminated water.

7 Discussion and related work

7.1 Relationship to Influence Maximization

In [12], a Triggering Model was introduced for modeling the spread of influence in a so-
cial network. As the authors show, this model generalizes the Independent Cascade, Linear
Threshold and Listen-once models commonly used for modeling the spread of influence. Es-
sentially, this model describes a probability distribution over directed graphs, and the influ-
ence is defined as the expected number of nodes reachable from a set of nodes, with respect
to this distribution. Kempe et al. showed that the problem of selecting a set of nodes with
maximum influence is submodular, satisfying the conditions of Theorem 2, and hence the
greedy algorithm provides a (1 − 1/e) approximation. The problem addressed in this paper
generalizes this Triggering model:

Theorem 5 The Triggering Model [12] is a special case of our network outbreak detection
problem.

In order to prove Theorem 5, we consider fixed directed graphs sampled from the Trigger-
ing distribution. If we revert the arcs in any such graph, then our PA objective corresponds
exactly to the influence function of [12] applied to the original graph.

Proof: Let P be a distribution over directed graphs G1 = (V, E1), . . . ,GN (V, EN ) on a fixed
set of vertices V, defined according to the Triggering Model. For each i, let G′i be the graph
obtained from G′i by reverting the arcs Ei. Then, the penalty reduction Ri(A) by the set of
nodes A using the population affected score (PA) corresponds exactly to the number of nodes
influenced by set A under the Triggering Model. Hence, also the expected penalty reduction
R(A) =

∑
i P (i)Ri(A) is exactly equal to the influence function σ(A) of [12].

Theorem 5 shows that spreading influence under the general Triggering Model can be con-
sidered a special case of our outbreak detection formalism. The problems are fundamentally
related since, when spreading influence, one tries to affect as many nodes as possible, while

21



0 5 10 15 20
0

0.2

0.4

0.6

0.8

Number of sensors

R
ed

uc
tio

n 
in

 p
op

ul
at

io
n 

af
fe

ct
ed CELF

Degree
Random

Population

Diameter
Flow

2 4 6 8 10
0

100

200

300

Number of sensors selected

R
un

ni
ng

 ti
m

e 
(m

in
ut

es
)

 

 

Exhaustive search
(All subsets)

Naive
greedy

CELF,
CELF + Bounds

(a) Comparison with random (b) Runtime

Figure 13: (a) Solutions of CELF outperform heuristic selections. (b) Running time of ex-
haustive search, greedy and CELF.

when detecting outbreak, one wants to minimize the effect of an outbreak in the network.
Secondly, note that in the example of reading blogs, it is not necessarily a good strategy
to affect nodes which are very influential, as these tend to have many posts, and hence are
expensive to read. In contrast to influence maximization, the notion of cost-benefit analysis
is crucial to our applications.

7.2 Related work

Optimizing submodular functions. The fundamental result about the greedy algorithm
for maximizing submodular functions in the unit-cost case goes back to [19]. The first ap-
proximation results about maximizing submodular functions in the non-constant cost case
were proved by [27]. They developed an algorithm with approximation guarantee of (1−1/e),
which however requires a number of function evaluations Ω(B|V|4) in the size of the ground
set V (if the lowest cost is constant). In contrast, the number of evaluations required by
CELF is O(B|V|), while still providing a constant factor approximation guarantee. A lazy
greedy algorithm for optimizing submodular functions in the context of experimental design
was described by [24]. Their work however did not consider the case of non-constant cost
functions, as we consider in this paper.
Virus propagation and outbreak detection. Work on spread of diseases in networks and
immunization mostly focuses on determining the value of the epidemic threshold [1], a critical
value of the virus transmission probability above which the virus creates an epidemic. Several
strategies for immunization have also been proposed: uniform node immunization, targeted
immunization of high degree nodes [22], acquaintance immunization, which focuses on highly
connected nodes [5], and immunization on based on spectral properties of the network [7].
In the context of our work, uniform immunization strategy corresponds to randomly placing
sensors in a water network. Similarly, targeted immunization corresponds to selecting blogs
based on their in- or out-degree. As we have seen in Figures 6 and 13, both strategies perform
much worse than direct optimization of the population affected criterion.

22



Information cascades and blog networks. Cascades have been studied for many years
by sociologists concerned with the diffusion of innovation [25]; more recently, cascades we
used for studying viral marketing [9, 17], selecting trendsetters in social networks [23], and
explaining trends in blogspace [10, 16]. Studies of blogspace either spend effort mining
topics from posts [10] or consider only the properties of blogspace as a graph of unlabeled
URLs [16]. Recently, [18] studied the properties and models of information cascades in blogs.
While previous work either focused on empirical analyses of information propagation and/or
provided models for it, we develop a general methodology for node selection in networks while
optimizing a given criterion.
Water distribution network monitoring. A large number of approaches have been
proposed for optimizing water sensor networks (c.f., [2] for a concise overview of the prior
literature). Most of these approaches are only applicable to small networks up to approxi-
mately 500 nodes. Many approaches are based on heuristics (such as genetic algorithms [20],
cross-entropy selection [6], predator-prey heuristics [11], etc.) that cannot provide provable
performance guarantees about the solutions. Closest to ours is an approach by [2], who
equate the placement problem with a p-median problem, and make use of a large toolset
of existing algorithms for this problem. The problem instances solved by [2] are a factor
72 smaller than the instances considered in this paper. In order to obtain bounds for the
quality of the generated placements, the approach in [2] needs to solve a complex (NP-hard)
mixed-integer program. Our approach is the first algorithm for the water network placement
problem, which is guaranteed to provide solutions which achieve at least a constant fraction
of the optimal solution within polynomial time. Additionally, it handles orders of magnitude
larger problem instances than previously considered.

8 Conclusions

In this paper, we presented a novel methodology for selecting nodes to detect outbreaks
of dynamic processes spreading over a graph. We showed that many important objective
functions, such as detection time, likelihood and affected population are submodular. We
then developed the CELF algorithm, which exploits submodularity to find near-optimal node
selections – the obtained solutions are guaranteed to achieve at least a fraction of 1

2(1−1/e) of
the optimal solution, even in the more complex case where every node can have an arbitrary
cost. Our CELF algorithm is up to 700 times faster than standard greedy algorithm. We also
developed novel online bounds on the quality of the solution obtained by any algorithm. We
used these bounds to prove that the solutions we obtained in our experiments achieve 90%
of the optimal score (which is intractable to compute).

We extensively evaluated our methodology on two large real-world problems: (a) detec-
tion of contaminations in the largest city water distribution network considered so far in
the literature, and (b) selection of informative blogs in a network of more than 10 million
posts. We showed how our CELF algorithm greatly outperforms intuitive heuristics. We also
demonstrated that our methodology can be used to study complex application-specific ques-
tions such as multicriteria tradeoff, cost-sensitivity analyses and generalization behavior. In
addition to demonstrating the effectiveness of our method, we obtained some counterintuitive
results about the problem domains, such as the fact that the popular blogs might not be the
most effective way to catch relevant information cascades.
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We are convinced that the methodology introduced in this paper can apply to many other
applications, such as computer network security, immunization and viral marketing.
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