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Abstract

The concentration of measure phenomenon was first discovered in the 1930’s by Paul Lévy and
has been investigated since then, with increasing intensity in recent decades. The probability-
theoretic results have been gradually percolating throughout the mathematical community, finding
applications in Banach space geometry, analysis of algorithms, statistics and machine learning.

There are several approaches to proving concentration of measure results; we shall offer a brief
survey of these. The principal contribution of this thesis is a functional norm inequality, which
immediately implies a concentration inequality for nonproduct measures. The inequality is proved
by elementary means, yet enables one, with minimal effort, to recover and generalize the best
current results for Markov chains, as well as to obtain new results for hidden Markov chains and
Markov trees.

As an application of our inequalities, we give a strong law of large numbers for a broad class of
non-independent processes. In particular, this allows one to analyze the convergence of inhomoge-
neous Markov Chain Monte Carlo algorithms. We also give some partial results on extending the
Rademacher-type generalization bounds to processes with arbitrary dependence.

We end the thesis with some conjectures and open problems.
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Chapter 1

Introduction

1.1 Background

The study of measure concentration in general metric spaces was initiated in the 1970’s by Vitali
Milman, who in turn drew inspiration from Paul Lévy’s work (see [65] for a brief historical ex-
position). Since then, various deep insights have been gained into the concentration of measure
phenomenon [40], with a particular surge of activity in the last decade.

The words “measure” and “concentration” suggest an interplay of analytic and geometric as-
pects. Indeed, there are two essential ingredients in proving a concentration result: the random
variable must be continuous in a strong (Lipschitz) sense1, and the random process must be mixing
in some strong sense. We will give simple examples to illustrate how, in general, the failure of
either of these conditions to hold can prevent a random variable from being concentrated.

A common way of summarizing the phenomenon is to say that in a high-dimensional space,
almost all of the probability is concentrated around any set whose measure is at least 1

2 . Another
way is to say that any “sufficiently continuous” function is tightly concentrated about its mean. To
state this more formally (but still somewhat imprecisely), let (Xi)1≤i≤n, Xi ∈ Ω, be the random
process defined on the probability space (Ωn,F ,P), and f : Ωn → R be a function satisfying some
Lipschitz condition – and possibly others, such as convexity. For our purposes, a concentration of
measure result is an inequality of the form

P{|f(X) − Ef(X)| > t} ≤ c exp(−Kt2) (1.1)

where c > 0 is a small constant (typically, c = 2) and K > 0 depends on the strong mixing
properties of P as well as the underlying metric. It is crucial that neither c nor K depend on f .2

A few celebrated milestones that naturally fall into the paradigm of (1.1) include Lévy’s original
isoperimetric inequality on the sphere (see the notes and references in [41]), McDiarmid’s bounded
differences inequality [51], and Marton’s generalization of the latter for contracting Markov chains
[45]. (Talagrand’s no-less celebrated series of results [65] does not easily lend itself to such a compact
description.)

Building on the work of Azuma [3] and Hoeffding [27], McDiarmid showed that if f : Ωn → R

has ‖f‖
Lip

≤ 1 under the normalized Hamming metric and P is a product measure on Ωn, we have

P{|f − Ef | > t} ≤ 2 exp(−2nt2) (1.2)

1 But see [70] for some recent results on concentration of non-Lipschitz functions.
2 See [40] for a much more general notion of concentration.
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(he actually proved this for the more general class of weighted Hamming metrics). Using coupling
and information-theoretic inequalities, Marton showed that if the conditions on f : Ωn → R are as
above and P is a contracting Markov measure on Ωn with Doeblin coefficient θ < 1,

P{|f −Mf | > t} ≤ 2 exp



−2n

(

t(1 − θ) −
√

log 2

2n

)2


 , (1.3)

where Mf is a P-median of f . Since product measures are degenerate cases of Markov measures
(with θ = 0), Marton’s result is a powerful generalization of (1.2).

Two natural directions for extending results of type (1.2) are to derive such inequalities for
various measures and metrics. Talagrand’s paper [65] is a tour de force in proving concentration for
various (not necessarily metric) notions of distance, but it deals exclusively with product measures.
Since the publication of Marton’s concentration inequality in 1996 – to our knowledge, the first of its
kind for a nonproduct, non-Haar measure – several authors proceeded to generalize her information-
theoretic approach [15, 16], and offer alternative approaches based on the entropy method [38, 60]
or martingale techniques [37, 13]. Talagrand in [65] discusses strengths and weaknesses of the
martingale method, observing that “while in principle the martingale method has a wider range of
applications, in many situations the [isoperimetric] inequalities [are] more powerful.” Bearing out
his first point we use martingales [37] to derive a general strong mixing condition for concentration,
applying it to weakly contracting Markov chains. Following up, we extend the technique to hidden
Markov [33] and Markov tree [34] measures.

Although a detailed survey of measure concentration literature is not our intent here, we remark
that many of the results mentioned above may be described as working to extend inequalities of type
(1.1) to wider classes of measures and metrics by imposing different strong mixing and Lipschitz
continuity conditions. Already in [45], Marton gives a (rather stringent) mixing condition sufficient
for concentration. Later, Marton [47, 48] and Samson [60] prove concentration for general classes
of processes in terms of various mixing coefficients; Samson applies this to Markov chains and
φ-mixing processes while Marton’s application concerns lattice random fields.

1.2 Main results

The main result of this thesis is a concentration of measure inequality for arbitrarily dependent
random variables. Postponing the technical details until the coming chapters, the inequality states
that for any (nonproduct) measure P on Ωn and any function f : Ωn → R, we have

P{|f − Ef | > t} ≤ 2 exp

(

− t2

2 ‖f‖2
Lip,w ‖∆nw‖2

2

)

(1.4)

where ∆n is the “η-mixing” matrix defined in Chapter 3.2 and ‖f‖
Lip,w is the Lipschitz constant of

f with respect to the weighted Hamming metric dw:

dw(x, y) =
n
∑

i=1

wi1{xi 6=yi} (1.5)

for some vector w ∈ Rn
+.
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It must be pointed out that (1.4) is not as novel as the author had hoped when proving it. A
thorough literature search as well as discussions with experts suggest that Marton’s [46, Theorem
2] should be considered the first result of comparable generality. Almost contemporaneously with
our proving (1.4), Chazottes et al. published a very similar result [13]. Our main contribution is
the proof technique – we offer the first (to our knowledge) non-coupling proof of (1.4), via Theorem
3.1.5, which may be of independent interest, as well as some novel applications.

Since ‖∆nw‖2 ≤ ‖∆n‖2 ‖w‖2, the utility of (1.4) will depend on our ability to control the
quantities ‖f‖

Lip,w, ‖w‖2, and ‖∆n‖2. In typical applications, we will have wi ≡ n−1 (corresponding
to the usual normalized Hamming metric) and ‖f‖

Lip,w ≤ 1 (though it would be interesting to find

a natural application that exploits the generality of weighted Hamming metrics3). The applications
we have considered admit a somewhat cruder version of (1.4), via the bound

‖∆nw‖2
2 ≤ n max

1≤i≤n
(∆nw)2i . (1.6)

Having fixed the metric at normalized Hamming and the Lipschitz constant of f at 1, our bound
on the deviation probability becomes

P{|f − Ef | > t} ≤ 2 exp

(

− nt2

2 ‖∆n‖2
∞

)

. (1.7)

Again, one hopes to find scenarios where the full sharpness of (1.4) would be used.

Once we establish (1.7), we will derive concentration bounds for various measures of interest
by bounding ‖∆n‖∞. The construction of ∆n in Chapter 3.2 implies 1 ≤ ‖∆n‖∞ ≤ n but as (1.7)
makes clear, this trivial bound is useless. We would need ‖∆n‖∞ = O(

√
n) for a meaningful bound;

for a number of interesting measures, we will actually have ‖∆n‖∞ = O(1).

Though a full statement of our concentration results for various measures will have to be deferred
to Chapter 4, we will attempt a brief summary. For Markov chains with contraction (Doeblin)
coefficient θ < 1, we have

‖∆n‖∞ ≤ 1/(1 − θ), (1.8)

which recovers Marton’s result (1.3) up to small constants and vanishing terms. Our bound is
actually a strict generalization of Marton’s since it is sensitive to the contraction coefficients θi at
different time steps 1 ≤ i < n and even allows then to achieve unity.

Expanding our class of measures to include the hidden Markov chains, we observe a surprising
phenomenon: ‖∆n‖∞ can be controlled by the contraction coefficients of the underlying Markov
chain. Thus a hidden Markov process is “at least as concentrated” as its underlying Markov process;
however, this property fails for general hidden/observed process pairs.

Our concentration result for Markov trees requires a bit of overhead to state so we defer it to
Chapter 4. It is stated in terms of the tree width and the contraction coefficients at each node and
reduces to our Markov chain bounds in the degenerate case of a single-path tree.

3 Since product measures (as we shall see) satisfy ‖∆n‖2 = 1, (1.4) recovers McDiarmid’s inequality (1.2) with a
slightly worse constant. In its full generality, the latter reads

P{|f − Ef | > t} ≤ 2 exp(−2t2/ ‖w‖2
2)

for any f with ‖f‖Lip,w
≤ 1.
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The concentration results for various processes in turn yield new tools in statistics and machine
learning. One of these is a law of large numbers for strongly mixing processes, which has already
found applications in statistics [11] . We also show how (1.7) can be used to generalize the classical
PAC results to non-independent samples.

1.3 Applications of concentration

The word applications means different things to different people. Computer scientists are typi-
cally concerned with algorithms and their performance analysis while statisticians often need a
handle on the asymptotics of estimators and samplers, and mathematicians are always looking for
new theorem-proving techniques – in short, each specialist wants to know what a given tool will
contribute to his field.

The remarkable thing about concentration of measure is that its uses span the wide gamut
from something as practical as decoding neural signals [10, 11] to esoteric topics such as analyzing
convex bodies in Banach spaces [4].

Whole books and monographs have been devoted to the different applications of concentration.
Toward the applied end of the spectrum, there is the forthcoming book of Dubhashi and Panconesi
on analysis of algorithms [20], while the more theoretical consequences of concentration (in par-
ticular, in Banach spaces and groups) are described in Schechman’s paper [61] and his book with
Milman [54].

A few celebrated applications of concentration include

• Milman’s proof [53] of Dvoretzky’s theorem [21] on sections of convex bodies

• a widely cited lemma of Johnson and Lindenstrauss [29] concerning low-distortion dimension-
ality reduction in Rn by random projections

• Shamir and Spencer’s work [62] on the concentration of a random graph’s chromatic number

• statistics and empirical processes [49] and machine learning [5].

Rather than reproduce these results here, we will focus on the areas in which our methods are
most readily applicable – viz., the last item. This will be covered in some detail in Chapter 4.3.

1.4 Thesis overview

This thesis is organized as follows. In Chapter 2 we define the notational conventions used through-
out the thesis (Chapter 2.1.2), prove some preliminary results concerning the total variation norm
(Chapter 2.2), review the main existing techniques for proving concentration (Chapter 2.3), and
prove our main inequality (Chapter 2.3) as well as the concentration bound following from it
(Chapter 3.3).

Chapter 4 will deal with applications of the main concentration result. First, we proceed to
apply the general inequality to various processes: Markov, hidden Markov, and Markov tree. In
the next application, we obtain a law of large numbers for strongly mixing processes, which in
particular yields an analysis of an inhomogeneous Markov Chain Monte Carlo algorithm; this is
joint work with Anthony Brockwell. Finally, we exhibit some applications of our techniques to
empirical process theory and machine learning.
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In Chapter 5, we collect some miscellaneous results, such as proving that ‖·‖Φ and ‖·‖Ψ are
valid norms (Chapter 5.2), giving examples where concentration fails if P is not mixing or f not
Lipschitz (Chapter 5.5), discuss the measure-theoretic nuances of conditioning on measure-zero
events (Chapter 5.4), extend our results to countable and continuous spaces (Chapter 5.1), as well
as the `p metrics (Chapter 5.3). We also construct some illustrative examples of measures with
specific mixing coefficients (Chapter 5.7).

Finally, Chapter 6 discusses some open problems, conjectures, and future research directions.
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Chapter 2

Methods

2.1 Preliminaries

2.1.1 Measure theory

When dealing with abstract measures, one must typically take care to ensure that all the objects
are in fact measurable, the conditional distributions well-defined, and so forth. On the other hand,
our main contribution is not measure-theoretic in nature; indeed, the Ω = {0, 1} case captures most
of the interesting phenomena. Furthermore, since our natural metric is a discrete one (Hamming),
it seems reasonable to restrict most of our attention on the case of countable Ω. In fact, we will
take Ω to be finite until Chapter 5.1, where we extend our results to countable and continuous Ω
without too much effort.

Thus, until further notice, Ω is a finite set and questions of measurability need not concern us
(no finiteness assumptions are made when we use the generic symbol X ).

2.1.2 Notational conventions

Random variables are capitalized (X), specified sequences (vectors) are written in lowercase (x ∈
Ωn), the shorthand Xj

i = (Xi, . . . ,Xj) is used for all sequences, and brackets denote sequence

concatenation: [xji x
k
j+1] = xki . Often, for readability, we abbreviate [y w] as yw.

We use the indicator variable 1{·} to assign 0-1 truth values to the predicate in {·}. The sign
function is defined by sgn(z) = 1{z≥0} − 1{z<0}. The ramp function is defined by (z)+ = z1{z>0}.
We denote the set (0,∞) by R+.

The probability P and expectation E operators are defined with respect the measure space
specified in context. To any probability space (Ωn,F ,P), we associate the canonical random
process X = Xn

1 , Xi ∈ Ω, satisfying

P{X ∈ A} = P(A)

for any A ∈ F . If we wish to make the measure explicit, we will write µ(A) for probabilities Pµ(A)
and µf for expectations Eµf .

If (X ,F , µ) is a (positive) measure space, we write Lp(X , µ) for the usual space of µ-measurable
functions f : X → R, whose Lp norm

‖f‖Lp(X ,µ) =

(∫

X
|f |pdµ

)1/p
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is finite. We will write ‖·‖Lp(X ,µ) as ‖·‖Lp(µ) or just ‖·‖Lp
if there is no ambiguity; when µ is the

counting measure on a discrete space, we write this as ‖·‖p.
Likewise, the L∞ norm, ‖f‖L∞

= ess sup |f | is defined via the essential supremum:

ess sup
x∈X

f(x) = inf{a ∈ [−∞,∞] : µ{f(x) > a} = 0}.

A weighted Hamming metric on a product space Ωn is a weighted sum of the discrete metrics
on Ω:

dw(x, y) =

n
∑

i=1

wi1{xi 6=yi}

for x, y ∈ Ωn and some fixed w ∈ R+. We will write d̄ for the (frequent) special case wi ≡ n−1.

2.2 Total variation norm: properties and characterizations

Remark 2.2.1. The results proved in this section were discovered independently by the author. It
came as no surprise that they are not new; even where concrete references are not available, these
inequalities are well-known in probability-theoretic folklore. We offer simple computational proofs,
in contrast to the typical coupling arguments used to obtain such results (see, for example, David
Pollard’s book-in-progress Asymptopia, or his online notes1). It is hoped that the technique used
here might some day facilitate a proof where the coupling method is less forthcoming. 3

If µ is a positive Borel measure on (X ,F) and τ is a signed measure on (X ,F), we define the
total variation of τ by

2 ‖τ‖
TV

= sup
∞
∑

i=1

|τ(Ei)| , (2.1)

where the supremum is over all the countable partitions Ei of X (this quantity is necessarily finite,
by Theorem 6.4 of [59]).2 It is a consequence of the Lebesgue-Radon-Nikodým theorem ([59],
Theorem 6.12) that if dτ = hdµ, we have

2 ‖τ‖
TV

=

∫

X
|h|dµ.

Additionally, if τ is balanced, meaning that τ(X ) = 0, we have

‖τ‖
TV

=

∫

X
(h)+ dµ; (2.2)

this follows via the Hahn decomposition ([59], Theorem 6.14).

If p and q are two probability measures on a (finite) set X , there are many different notions
of “distance” between p and q; we refer the reader to the excellent survey [24], which summarizes

1 http://www.stat.yale.edu/~pollard/607.spring05/handouts/Totalvar.pdf
2 Note the factor of 2 in (2.1), which typically does not appear in analysis texts but is standard in probability

theory, when τ is the difference of two probability measures.

http://www.stat.yale.edu/~pollard/607.spring05/handouts/Totalvar.pdf
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the relationships among the various definitions. A central role is occupied by the total variation
distance; it will also be of key importance in this work.

The discussion above implies the identities

‖p− q‖
TV

= 1
2 ‖p− q‖1 =

∥

∥(p− q)+
∥

∥

1
, (2.3)

which we will invoke without further justification throughout this work. Another widely used
relation is

‖p− q‖
TV

= sup
Borel A⊂X

|p(A) − q(A)| ; (2.4)

its proof is elementary and is traditionally left to the reader (see [9], p. 126 for a proof).
Given the measures p and q on X , define

M (p, q) =

{

u ∈ [0, 1]X×X :

∫

X
u(dx, ·) = q(·),

∫

X
u(·, dy) = p(·)

}

(2.5)

to be the set of all couplings of p and q – i.e., all joint distributions on X ×X whose marginals are
p and q, respectively. It is a basic fact (see, for example, [42, Theorem 5.2]) that

‖p− q‖
TV

= min
u∈M (p,q)

∫

X×X
1{x 6=y}du(x, y); (2.6)

the latter has the interpretation of P{X 6= Y } minimized over all joint measures u on X ×X with
X ∼ p =

∑

y u(·, y) and Y ∼ q =
∑

x u(x, ·). We will give a (possibly new) elementary proof of this
fact, in the case of finite X .

Let us define the (unnormalized) measure p ∧ q as the pointwise minimum of p and q:

(p ∧ q)(x) = min {p(x), q(x)} .

The quantity ‖p ∧ q‖1 is called the affinity between p and q and satisfies

Lemma 2.2.2. If p, p′ are probability measures on X and q̃ = p ∧ p′, then

∥

∥p− p′
∥

∥

TV
= 1 − ‖q̃‖1 . (2.7)

Proof. Define the function

F (u, v) = 1 −
∑

x∈X

min {ux, vx} − 1
2

∑

x∈X

|ux − vx|

over the convex polytope U ⊂ RX × RX ,

U =
{

(u, v) : ux, vx ≥ 0,
∑

ux =
∑

vx = 1
}

;

note that proving (2.7) is equivalent to showing that F ≡ 0 on U .
For any σ ∈ {−1,+1}X , let

Uσ = {(u, v) ∈ U : sgn(ux − vx) = σx};
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note that Uσ is a convex polytope and that U =
⋃

σ∈{−1,+1}X Uσ.3 Fix some σ ∈ {−1,+1}X .
Observing that for u, v ∈ Uσ,

min {ux, vx} = ux1{σx<0} + vx1{σx>0}

and

|ux − vx| = σx(ux − vx),

we define the function

Fσ(u, v) = 1 −
∑

x∈X

(ux1{σx<0} + vx1{σx>0}) − 1
2

∑

x∈X

σx(ux − vx)

over Uσ; note that Fσ agrees with F on this domain.

Observe that Fσ is affine in its arguments (u, v) and recall that an affine function is determined
by its values on the extreme points of a convex domain. Thus to verify that Fσ ≡ 0 on Uσ, we
need only check the value of Fσ on the extreme points of Uσ. The extreme points of Uσ are pairs
(u, v) such that, for some x′, x′′ ∈ X , u = δ(x′) and v = δ(x′′), where δ(z) ∈ RX is given by
[δ(z)]x = 1{x=z}.

Let (û, v̂) be an extreme point of Uσ. The case û = v̂ trivial, so assume û 6= v̂. In this case,

min {ûx, v̂x} ≡ 0

and
∑

x∈X

|ux − vx| = 2.

This shows that Fσ vanishes on Uσ and proves the claim.

An easy consequence of this lemma is the following minorization property of the total variation
distance:

Lemma 2.2.3. Let p, p′, q be probability distributions on X satisfying

p(x), p′(x) ≥ εq(x), x ∈ X (2.8)

for some ε > 0. Then

∥

∥p− p′
∥

∥

TV
≤ 1 − ε. (2.9)

Proof. Condition (2.8) implies

(p ∧ p′)(x) ≥ εq(x), x ∈ X .

Summing over x ∈ X , we have ε ≤ ‖p ∧ p′‖1, which implies (2.9) via Lemma 2.2.2.

Another consequence of Lemma 2.2.2 is a very simple proof of (2.6):

3 Note that the constraint
P

x∈X ux =
P

x∈X vx = 1 forces Uσ = {(u, v) ∈ U : ux = vx} when σ ≡ +1 and Uσ = ∅
when σ ≡ −1. Both of these cases are trivial.
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Lemma 2.2.4. If p and q are probability measures on X , then

‖p− q‖
TV

= min
u∈M (p,q)

∑

x,y∈X

u(x, y)1{x 6=y}.

Proof. For a given u ∈ M (p, q), the r.h.s. becomes

∑

x,y∈X

u(x, y)1{x 6=y} =
∑

x

∑

y 6=x

u(x, y)

=
∑

x

[p(x) − u(x, x)]

= 1 −
∑

x

u(x, x).

The constraint u ∈ M (p, q) implies

0 ≤ u(x, x) ≤ min{p(x), q(x)}

and minimizing the r.h.s. means taking u = p ∧ q.

Another useful property of total variation is the following “tensorizing” inequality; the proof
below first appeared in [34]:

Lemma 2.2.5. Consider two finite sets X ,Y, with probability measures p, p′ on X and q, q′ on Y.
Then

∥

∥p⊗ q − p′ ⊗ q′
∥

∥

TV
≤

∥

∥p− p′
∥

∥

TV
+
∥

∥q − q′
∥

∥

TV
−
∥

∥p− p′
∥

∥

TV

∥

∥q − q′
∥

∥

TV
. (2.10)

Remark 2.2.6. Note that p⊗ q is a 2-tensor in RX×Y and a probability measure on X × Y.

Proof. Fix q, q′ and define the function

F (u, v) =
∑

x∈X

|ux − vx| +
∥

∥q − q′
∥

∥

TV

(

2 −
∑

x∈X

|ux − vx|
)

−
∑

x∈X ,y∈Y

∣

∣uxqy − vxq
′
y

∣

∣

over the convex polytope U ⊂ RX × RX ,

U =
{

(u, v) : ux, vx ≥ 0,
∑

ux =
∑

vx = 1
}

;

note that proving the claim is equivalent to showing that F ≥ 0 on U .
For any σ ∈ {−1,+1}X , let

Uσ = {(u, v) ∈ U : sgn(ux − vx) = σx};

note that Uσ is a convex polytope and that U =
⋃

σ∈{−1,+1}X Uσ.

Pick an arbitrary τ ∈ {−1,+1}X×Y and define

Fσ(u, v) =
∑

x

σx(ux − vx) +
∥

∥q − q′
∥

∥

TV

(

2 −
∑

x

σx(ux − vx)

)

−
∑

x,y

τxy(uxqy − vxq
′
y)
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over Uσ. Since σx(ux − vx) = |ux − vx| and τ can be chosen (for any given u, v, q, q′) so that
τxy(uxqy− vxq′y) =

∣

∣uxqy − vxq
′
y

∣

∣, the claim that F ≥ 0 on U will follow if we can show that Fσ ≥ 0
on Uσ.

Observe that Fσ is affine in its arguments (u, v) and recall that an affine function achieves its
extreme values on the extreme points of a convex domain. Thus to verify that Fσ ≥ 0 on Uσ,
we need only check the value of Fσ on the extreme points of Uσ. The extreme points of Uσ are
pairs (u, v) such that, for some x′, x′′ ∈ X , u = δ(x′) and v = δ(x′′), where δ(x0) ∈ RX is given
by [δ(x0)]x = 1{x=x0}. Let (û, v̂) be an extreme point of Uσ. The case û = v̂ is trivial, so assume
û 6= v̂. In this case,

∑

x∈X σx(ûx − v̂x) = 2 and

∣

∣

∑

x∈X ,y∈Y

τxy(ûxqy − v̂xq
′
y)
∣

∣ ≤
∑

x∈X ,y∈Y

∣

∣ûxqy − v̂xq
′
y

∣

∣

≤ 2.

This shows that Fσ ≥ 0 on Uσ and completes the proof.

Remark 2.2.7. Lemma 2.2.5 has a simple coupling proof and appears to be folklore knowledge
among probability theorists (we were not able to locate it in the literature). Our proof technique,
consisting of converting the inequality into an affine function taking nonnegative values over a
convex polytope, appears to be novel. Aside from being an alternative to coupling, this technique
can lead to natural insights and generalizations. For instance, our proof of Lemma 2.2.5 admits an
immediate generalization to the case of Markov kernels.

Let p0 be a probability measure on X , and p1(· |x), x ∈ X , a (conditional probability) kernel
from X to Y, and write µ = p0 ⊗ p1 for the measure on X × Y defined by

µ(x, y) = p0(x)p1(y |x), x, y ∈ X × Y.

Similarly, let q0 be a measure on X and q1 a kernel from X to Y; define ν = q0 ⊗ q1.

Then a straightforward modification of the proof of Lemma 2.2.5 yields

‖µ− ν‖
TV

≤ d0 + d1 − d0d1, (2.11)

where d0 = ‖p0 − q0‖TV
and

d1 = max
x∈X

‖p1(· |x) − q1(· |x)‖TV
.

There may well be a simple coupling proof of (2.11), though it seems to us that a bit of work
would be required. Our point is that our “affine-function” technique suggested the generalization
and offered a proof, with minimal effort. 3

2.3 Survey of concentration techniques

Given the excellent survey papers and monographs dealing with concentration of measure (in par-
ticular, [40], [61], and [43]), we will confine ourselves to briefly mentioning the main techniques and
refer the reader to the cited works for details and proofs.
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2.3.1 Lévy families and concentration in metric spaces

A natural language for discussing measure concentration in general metric spaces is that of Lévy
families. This definition is taken, with minor variations, from Chapter 6 of [54]. Let (X , ρ, µ) be a
metric probability space (that is, a Borel probability space whose topology is induced by the metric
ρ). Whenever we write A ⊂ X , it is implicit that A is a Borel subset of X . For t > 0, define the
t-enlargement of A ⊂ X :

At = {x ∈ X : ρ(x,A) < t}.
The concentration function α(·) = αX ,ρ,µ(·) is defined by:

α(t) = 1 − inf{µ(At) : A ⊂ X , µ(A) ≥ 1
2}.

Let (Xn, ρn, µn)n≥1 be a family of metric probability spaces with diamρn(Xn) <∞, where

diamρn(Xn) = sup
x,y∈Xn

ρn(x, y). (2.12)

This family is called a normal Lévy family if there are constants c1, c2 > 0 such that

αXn,ρn,µn(t) ≤ c1 exp(−c2nt2)

for each t > 0 and n ≥ 1.
The condition of being a normal Lévy family implies strong concentration of a Lipschitz f :

Xn → R about its median (and mean); this connection is explored in-depth in [40]. In particular, if
(X , ρ, µ) is a metric probability space and f : X → R is measurable, define its modulus of continuity
by

ωf (δ) = sup{|f(x) − f(y)| : ρ(x, y) < δ}. (2.13)

A number Mf ∈ R is called a µ-median of f if

µ {f ≤Mf} ≥ 1
2 and µ {f ≥Mf} ≥ 1

2

(a median need not be unique). These definitions immediately imply the deviation inequality
[40](1.9)

µ {|f −Mf | > ωf (δ)} ≤ 2αX ,ρ,µ(δ),

which in turn yields [40](1.13)

µ {|f −Mf | > t} ≤ 2αX ,ρ,µ(t/ ‖f‖Lip
), (2.14)

where the Lipschitz constant ‖f‖
Lip

is the smallest constant C for which ωf (δ) ≤ Cδ, for all δ > 0.
In particular, (2.14) lets us take ‖f‖

Lip
= 1 without loss of generality, which we shall do below. The

following result lets us convert concentration about a median to concentration about any constant:

Theorem (Thm. 1.8 in [40]). Let f be a measurable function on a probability space (X ,A,P).
Assume that for some a ∈ R and a non-negative function α on R+ such that limr→∞ α(r) = 0,

P{|f − a| ≥ r} ≤ α(r)
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for all r > 0. Then

P{|f −Mf | ≥ r + r0} ≤ α(r), r > 0,

where Mf is a P-median of f and where r0 > 0 is such that α(r0) < 1
2 . If moreover ᾱ =

∫∞
0 α(r)dr <∞ then f is integrable, |a− Ef | ≤ ᾱ, and for every r > 0,

P{|f − Ef | ≥ r + ᾱ} ≤ α(r).

Thus, for a normal Lévy family, deviation inequalities for the mean and median are equivalent
up to the constants c1, c2. Theorem 1.7 in [40] is a converse to (2.14), showing that if Lipschitz
functions on a metric probability space (X , ρ, µ) are tightly concentrated about their means, this
implies a rapid decay of αX ,ρ,µ(·). We remark that for typical applications it is usually most
convenient to bound the deviation of a variable about its mean.

2.3.2 Martingales

Let (X ,F ,P) be a probability space and consider some filtration

{∅,X} = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F . (2.15)

For i = 1, . . . , n and f ∈ L1(X ,P), define the martingale4 difference

Vi = E[f | Fi] − E[f | Fi−1]. (2.16)

It is a classical result,5 going back to Azuma [3] and Hoeffding [27] in the 1960’s, that

P{|f − Ef | > t} ≤ 2 exp(−t2/2D2) (2.17)

where D2 ≥ ∑n
i=1 ‖Vi‖2

∞ (the meaning of ‖Vi‖∞ will be made explicit later). Thus, the problem
of obtaining deviation inequalities of type (1.1) is reduced to the problem of bounding D2. This
will be the approach we take in this thesis, where our ability to control D2 will depend on the
continuity properties of f and the mixing properties of the measure P.

The most natural application of Azuma’s inequality is to a product measure P on X = Ωn and
f : Ωn → R with ‖f‖

Lip,w ≤ 1. In this case, it is straightforward to verify that ‖Vi‖∞ ≤ wi, and so6

P{|f − Ef | > t} ≤ 2 exp(−2t2/ ‖w‖2
2);

this is McDiarmid’s inequality [51], which has found particularly fruitful applications in computer
science and combinatorics. Kim and Vu [31] have recently used martingales to obtain a concentra-
tion result for a class of non-Lipschitz functions, again with combinatorial applications in mind.

Besides the present work, we are only aware of one systematic application of the martingale
method to nonproduct measures, namely that of Chazottes et al. [13]. The authors define a coupling
matrix Dσ, analogous to our ∆n, and use Chernoff exponential bounding together with Markov’s
inequality to obtain an inequality of a similar flavor to (1.4), applying it to random fields. The main

4 The sequence {E[f | Fi]}
n

i=0 is a martingale with respect to {Fi}
n

i=0.
5 See [40] for a modern presentation and a short proof of (2.17).
6 The improvement by a factor of 4 is obtained by observing that in fact supVi − inf Vi ≤ wi.
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result of Chazottes et al. is essentially identical (modulo small constants) to our Theorem 3.3.4;
their bound was obtained contemporaneously with ours via a totally different method (coupling).

We cannot resist mentioning a rather clever application of the martingale method. Let (Ω, ρ)
be any finite metric space. For a ∈ Rn

+, define an a-partition sequence of Ω to be a sequence

{Ω} = A0,A1, . . . ,An = {{x}}x∈Ω

of partitions of Ω such that Ai+1 refines Ai and whenever A ∈ Ak−1, B,C ⊂ A and B,C ∈ Ak,
there is a bijection h : B → C such that ρ(x, h(x)) ≤ ak for all x ∈ B. The length ` = ‖a‖2 of (Ω, ρ)
is defined to be the infimum over all a-partition sequences. Then we have (see [54], [61] or [40])

αΩ,ρ,µ(r) ≤ exp(−r2/8`2)

where µ is the normalized counting measure on Ω. In the case of the symmetric group of permu-
tations Sn with the (normalized Hamming) metric

ρ(σ, π) = n−1
n
∑

i=1

1{σ(i)6=π(i)},

we may bound its length by ` ≤
√

2/n and thus its concentration function by α(r) ≤ exp(−nr2/32),
recovering Maurey’s theorem [50].7 More results of this sort have been obtained on general groups;
see [54].

2.3.3 Isoperimetry

Classical isoperimetric results relate the measure of a set’s boundary to its full measure. Following
Ledoux [40], we endow a metric space (X , ρ) with a positive Borel measure µ, and define the
boundary measure (Minkowski content) of a Borel A ⊂ X to be

µ+(A) = lim inf
r→0

µ(Ar \ A)

where Ar is the r-enlargement of A defined in §2.3.1.
The isoperimetric function Iµ : [0, µ(A)] → R+ is defined, for each Borel A ⊂ X with µ(A) <∞,

to be the maximal value that satisfies

µ+(A) ≥ Iµ(µ(A)). (2.18)

Any set B achieving equality in (2.18) minimizes the boundary measure µ+(A) among all sets A
with µ(A) = µ(B) and is called an extremal set. One may obtain concentration from isoperimetry
by imposing mild conditions on µ and assuming the existence of a strictly increasing differentiable
function v : R → [0, µ(X )] for which Iµ ≥ v′ ◦ v−1. Under these assumptions, we can bound the
concentration function [40, Corollary 2.2]:

αX ,ρ,µ(r) ≤ 1 − v(v−1(1
2 ) + r).

The isoperimetric function is notoriously difficult to compute in general, but admits a few benign
special cases, among them the unit sphere Sn ⊂ Rn endowed with the uniform probability measure
σn and geodesic distance ρ. In this case, we have [40, Theorem 2.3]

αS,ρ,σn(r) ≤ exp(−(n− 1)r2/2),

7The latter also has an elementary proof; see §5.8.
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which is essentially Lévy’s inequality.
A more modern approach, pioneered by Talagrand [65], dispenses with the isoperimetric function

and works directly with enlargements. Endow any product probability space (Ωn,P) with the
weighted Hamming metric dw, w ∈ Rn

+ defined in (1.5) and define the convex distance

DA(x) = sup
‖w‖2≤1

dw(x,A)

for Borel A ⊂ Ωn.
Then Talagrand’s famous inequality [40, Theorem 4.6] reads

P{DA ≥ t} ≤ P(A)−1 exp(−t2/4). (2.19)

Though at first glance not much different from McDiarmid’s inequality, (2.19) is actually quite a
bit more powerful, with numerous applications given in [65].

2.3.4 Logarithmic Sobolev and Poincaré inequalities

Let (X , ρ, µ) be a metric probability space. In this case, |∇f | may be defined as

|∇f(x)| = lim sup
y→x

|f(x) − f(y)|
ρ(x, y)

(2.20)

without assigning independent meaning to ∇f . Define the following three functionals mapping
f ∈ RX to R+: entropy,

Entµ(f) =

∫

X
f log fdµ−

∫

X
fdµ log

∫

X
fdµ (2.21)

variance,

Varµ(f) =

∫

X
f2dµ−

(∫

X
fdµ

)2

, (2.22)

and energy,

Eµ(f) =

∫

X
|∇f(x)|2 dµ. (2.23)

(in each case we make the necessary assumptions for the quantities to be well-defined and finite).
The measure µ is said to satisfy a logarithmic Sobolev inequality with constant C if

Entµ(f
2) ≤ 2CEµ(f) (2.24)

and a Poincaré (or spectral gap) inequality with constant C if

Varµ(f) ≤ CEµ(f); (2.25)

in each case the inequality is asserted to hold for all f with ‖f‖
Lip

≤ 1 (with respect to ρ).
If (2.24) holds, we have [40, Theorem 5.3]

αX ,ρ,µ(r) ≤ exp(−r2/8C);

if (2.25) holds, we have [40, Corollary 3.2]

αX ,ρ,µ(r) ≤ exp(−r/3
√
C).

These inequalities are proved in [61], [40] and [39], the latter an encyclopedic source on the
subject. The reader is referred to [6] for recent results and literature surveys.
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2.3.5 Transportation

The technique of using transportation (alternatively: information) inequalities to prove concentra-
tion was pioneered by Marton in her widely cited paper on contracting Markov chains [45]. Since
the publication of Marton’s paper, several authors proceeded to generalize the information-theoretic
approach [16, 15, 17, 25]. These techniques are also at the heart of Samson’s result [60], which we
shall discuss in greater detail below. The material in this section is taken from [40]; a comprehensive
treatment is given in [69].

For a metric space (X , ρ) and two Borel probability measures µ, ν on X , define the transportation
cost distance (also referred to as Wasserstein 1, Monge-Kantorovich, or earthmover distance [55])
between µ and ν:

Tρ(µ, ν) = inf
π∈M (µ,ν)

∫

X×X
ρ(x, y)dπ(x, y), (2.26)

where M (µ, ν) is defined in (2.5). Define also the relative entropy (or Kullback-Leibler divergence)
of ν with respect to µ as

H(ν |µ) = Entµ

(

dν

dµ

)

=

∫

X
log

dν

dµ
dν (2.27)

whenever ν � µ with Radon-Nikodým derivative dν
dµ .

The measure µ is said to satisfy a transportation inequality with constant C if

Tρ(µ, ν) ≤
√

2CH(ν |µ) (2.28)

for every ν. This condition implies concentration for µ:

αX ,ρ,µ(r) ≤ exp(−r2/8C), r ≥ 2
√

2C log 2.

Note that computing Tρ (for finite X ) amounts to solving a linear program. A consequence of
our main inequality in Theorem 3.1.2 is a simple bound on Tρ; see Chapter 5.6.

The transportation cost distance Tρ can be vastly generalized by replacing ρ in (2.26) with a
(possibly non-metric) c̃ : X × X → R+ and numerous concentration results can be obtained via
these methods; see the references in [40] and [69] for details.

2.3.6 Exchangeable pairs

A novel technique for proving concentration was presented in Sourav Chatterjee’s 2005 PhD thesis
[12]. It is based on Stein’s method for exchangeable pairs, which is explained in Chatterjee’s
dissertation.

Let µ be a probability measure on Ωn, and X = (X1 . . . Xn) ∈ Ωn be a random variable with
law µ. For any x ∈ Ωn, let

x̄i = [xi−1
1 xni+1]

denote the element of Ωn−1 obtained by omitting the ith symbol in x. For each 1 ≤ i ≤ n and
x ∈ Ωn, let µi(· | x̄i) be the conditional law of Xi given X̄i = x̄i. One of the main results in
Chatterjee’s thesis is the following elegant inequality:
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Theorem (Thm. 4.3 of [12]). Suppose A = (aij) ∈ Rn×n
+ satisfies aii = 0 and

∥

∥µi(· | x̄i) − µi(· | ȳi)
∥

∥

TV
≤

n
∑

j=1

aij1{xj 6=yj},

for all x, y ∈ Ωn and 1 ≤ i ≤ n. Then, if f : Ωn → R satisfies ‖f‖
Lip,w ≤ 1 for some w ∈ Rn

+ and
‖A‖2 < 1, we have

P{|f − Ef | > t} ≤ 2 exp(−(1 − ‖A‖2)t
2/ ‖w‖2

2),

where ‖A‖2 is the `2 operator norm of A.

Chatterjee applies his technique, among other things, to spectra of random matrices.



Chapter 3

Linear programming inequality and

concentration

3.1 The inequality

In this section, taken almost verbatim from [32], we prove the main inequality of this thesis, which
is at the core of all of our concentration results. We extend the subsequence notation defined in
§2.1.2 to vectors w ∈ Rn: for 1 ≤ k ≤ ` ≤ n, we write w`k = (wk, . . . , w`) ∈ Rk−`+1. Fixing a finite
set Ω, n > 0 and w ∈ Rn

+, we make the following definitions.

1. Kn denotes the set of all functions κ : Ωn → R (and K0 = R)

2. the weighted Hamming metric dw on Ωn × Ωn is defined as in (1.5)

3. for ϕ ∈ Kn, its Lipschitz constant with respect to dw, denoted by ‖ϕ‖
Lip,w, is defined to be

the smallest c for which

|ϕ(x) − ϕ(y)| ≤ cdw(x, y)

for all x, y ∈ Ωn; any ϕ with ‖ϕ‖
Lip,w ≤ c is called c-Lipschitz

4. for v ∈ [0,∞), define Φ+v
w,n ⊂ Kn to be the set of all ϕ such that ‖ϕ‖

Lip,w ≤ 1 and

0 ≤ ϕ(x) ≤ ‖w‖1 + v, x ∈ Ωn;

we omit the +v superscript when v = 0, writing simply Φw,n

5. the projection operator (·)′ takes κ ∈ Kn to κ′ ∈ Kn−1 by

κ′(y) =
∑

x1∈Ω

κ(x1y), y ∈ Ωn−1;

for n = 1, κ′ is the scalar κ′ =
∑

x1∈Ω κ(x1)

6. for y ∈ Ω, the y-section operator (·)y takes κ ∈ Kn to κy ∈ Kn−1 by

κy(x) = κ(xy), x ∈ Ωn−1;

for n = 1, κy(·) is the scalar κ(y)
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7. the functional Ψw,n : Kn → R is defined by Ψw,0(·) = 0 and

Ψw,n(κ) = w1

∑

x∈Ωn

(κ(x))+ + Ψwn
2 ,n−1(κ

′); (3.1)

when wi ≡ 1 we omit it from the subscript, writing simply Ψn

8. the finite-dimensional vector space Kn is equipped with the inner product

〈κ, λ〉 =
∑

x∈Ωn

κ(x)λ(x)

9. two norms are defined on κ ∈ Kn: the Φw-norm,

‖κ‖Φ,w = sup
ϕ∈Φw,n

|〈κ, ϕ〉| (3.2)

and the Ψw-norm,

‖κ‖Ψ,w = max
s=±1

Ψw,n(sκ). (3.3)

Remark 3.1.1. For the special case wi ≡ 1, dw is the unweighted Hamming metric used in [37]. It
is straightforward to verify that Φw-norm and Ψw-norm satisfy the vector-space norm axioms for
any w ∈ Rn

+; this is done in [37] for wi ≡ 1. Since we will not be appealing to any norm properties
of these functionals, we defer the proof to Chapter 5.2. Note that for any y ∈ Ω, the projection
and y-section operators commute; in other words, for κ ∈ Kn+2, we have (κ′)y = (κy)

′ ∈ Kn and
so we can denote this common value by κ′y ∈ Kn:

κ′y(z) =
∑

x1∈Ω

κy(x1z) =
∑

x1∈Ω

κ(x1zy), z ∈ Ωn.

Finally, recall that a norm ‖·‖ is called absolute if ‖x‖ = ‖|x|‖, where |·| is applied componentwise
and monotone if ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y| componentwise. Norms having these properties are
also called Riesz norms; the two conditions are equivalent for finite-dimensional spaces [28]. Neither
Φw-norm nor Ψw-norm is a Riesz norm; these should be thought of as measuring oscillation as
opposed to magnitude. Indeed, for nonnegative κ, we trivially have

‖κ‖Φ,w = ‖κ‖Ψ,w = ‖w‖1 ‖κ‖1 ,

so the inequality is only interesting for κ with oscillating signs. 3

The main result of this section is

Theorem 3.1.2. For all w ∈ Rn
+ and all κ ∈ Kn, we have

‖κ‖Φ,w ≤ ‖κ‖Ψ,w . (3.4)

Remark 3.1.3. We refer to (3.4) – more properly, to (3.8), from which the former immediately
follows – as a linear programming inequality for the reason that F (·) = 〈κ, ·〉 is a linear function
being maximized over the finitely generated, compact, convex polytope Φw,n ⊂ RΩn

. We make
no use of this simple fact and therefore forgo its proof, but see [37, Lemma 4.4] for a proof of a
closely related claim. The term “linear programming” is a bit of a red herring since no actual LP
techniques are being used; for lack of an obvious natural name, we have alternatively referred to
precursors of (3.4) in previous papers and talks as the “Φ-norm bound” or the “Φ-Ψ inequality.”
3
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The key technical lemma is a decomposition of Ψw,n(·) in terms of y-sections, proved in [37] for
the case wi ≡ 1:

Lemma 3.1.4. For all n ≥ 1, w ∈ Rn
+ and κ ∈ Kn, we have

Ψw,n(κ) =
∑

y∈Ω



Ψwn−1
1 ,n−1(κy) + wn





∑

x∈Ωn−1

κy(x)





+



 . (3.5)

Proof. We proceed by induction on n. To prove the n = 1 case, recall that Ω0 is the set containing
a single (null) word and that for κ ∈ K1, κy ∈ K0 is the scalar κ(y). Thus, by definition of Ψw,1(·),
we have

Ψw,1(κ) = w1

∑

y∈Ω

κ(y),

which proves (3.5) for n = 1.
Suppose the claim holds for some n = ` ≥ 1. Pick any w ∈ R`+1

+ and κ ∈ K`+1 and examine

∑

y∈Ω



Ψw`
1,`

(κy) +w`+1





∑

x∈Ω`

κy(x)





+





=
∑

y∈Ω







w1

∑

x∈Ω`

(κy(x))+ + Ψw`
2,`−1(κ

′
y)



 +w`+1





∑

x∈Ω`

κy(x)





+





=
∑

y∈Ω



Ψw`
2,`−1(κ

′
y) + w`+1





∑

u∈Ω`−1

κ′y(u)





+



+ w1

∑

z∈Ω`+1

(κ(z))+

(3.6)

where the first equality follows from the definition of Ψw`
1,`

in (3.1) and the second one from the
easy identities

∑

y∈Ω

∑

x∈Ω`

(κy(x))+ =
∑

z∈Ω`+1

(κ(z))+

and
∑

x∈Ω`

κy(x) =
∑

u∈Ω`−1

κ′y(u).

On the other hand, by definition we have

Ψw,`+1(κ) = w1

∑

z∈Ω`+1

(κ(z))+ + Ψw`+1
2 ,`(κ

′). (3.7)

To compare the r.h.s. of (3.6) with the r.h.s. of (3.7), note that the w1
∑

z∈Ω`+1 (κ(z))+ term is
common to both and

∑

y∈Ω



Ψw`
2,`−1(κ

′
y) + w`+1





∑

u∈Ω`−1

κ′y(u)





+



 = Ψw`+1
2 ,`(κ

′)

by the inductive hypothesis. This establishes (3.5) for n = `+ 1 and proves the claim.
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Our main result, Theorem 3.1.2, is an immediate consequence of

Theorem 3.1.5. For all n ≥ 1, w ∈ Rn
+, v ∈ [0,∞) and κ ∈ Kn, we have

sup
ϕ∈Φ+v

w,n

〈κ, ϕ〉 ≤ Ψw,n(κ) + v

(

∑

x∈Ωn

κ(x)

)

+

. (3.8)

Proof. We will prove the claim by induction on n. For n = 1, pick any w1 ∈ R+, v ∈ [0,∞) and
κ ∈ K1. Since by construction any ϕ ∈ Φ+v

w1,1
is w1-Lipschitz with respect to the discrete metric on

Ω, ϕ must be of the form

ϕ(x) = ϕ̃(x) + ṽ, x ∈ Ω,

where ϕ̃ : Ω → [0, w1] and 0 ≤ ṽ ≤ v (in fact, we have the explicit value ṽ = (maxx∈Ω ϕ(x) −w1)+).
Therefore,

〈κ, ϕ〉 = 〈κ, ϕ̃〉 + ṽ
∑

x∈Ω

κ(x). (3.9)

The first term in the r.h.s. of (3.9) is clearly maximized when ϕ̃(x) = w11{κ(x)>0} for all x ∈ Ω,
which shows that it is bounded by Ψw1,1(κ). Since the second term in the r.h.s. of (3.9) is bounded
by v

(
∑

x∈Ω κ(x)
)

+
, we have established (3.8) for n = 1.

Now suppose the claim holds for n = `, and pick any w ∈ R`+1
+ , v ∈ [0,∞) and κ ∈ K`+1. By

the reasoning given above (i.e., using the fact that 0 ≤ ϕ ≤ v +
∑`+1

i=1 wi and that ϕ is 1-Lipschitz
with respect to dw), any ϕ ∈ Φ+v

w,`+1, must be of the form ϕ = ϕ̃ + ṽ, where ϕ̃ ∈ Φw,`+1 and
0 ≤ ṽ ≤ v. Thus we write 〈κ, ϕ〉 = 〈κ, ϕ̃〉 + ṽ

∑

x∈Ω`+1 κ(x) and decompose

〈κ, ϕ̃〉 =
∑

y∈Ω

〈κy, ϕ̃y〉 , (3.10)

making the obvious but crucial observation that

ϕ̃ ∈ Φw,`+1 =⇒ ϕ̃y ∈ Φ
+w`+1

w`
1,`

.

Then it follows by the inductive hypothesis that

〈κy, ϕ̃y〉 ≤ Ψw`
1,`

(κy) + w`+1





∑

x∈Ω`

κy(x)





+

. (3.11)

Applying Lemma 3.1.4 to (3.11), we have

∑

y∈Ω

〈κy, ϕ̃y〉 ≤
∑

y∈Ω



Ψw`
1,`

(κy) + w`+1





∑

x∈Ω`

κy(x)





+



 = Ψw,`+1(κ). (3.12)

This, combined with (3.10) and the trivial bound

ṽ
∑

x∈Ω`+1

κ(x) ≤ v





∑

x∈Ω`+1

κ(x)





+

proves the claim for n = `+ 1 and hence for all n.
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Remark 3.1.6. The power of Theorem 3.1.2 comes from its bound of a natural but not readily
computable (in closed form) quantity by a less intuitive but easily computed quantity. Although
our main application of this inequality is to bound the martingale difference in Theorem 3.3.4, one
hopes that it will find other applications. One such possibility is a bound on the transportation
cost distance, via Kantorovich’s duality theorem; see §5.6. 3

3.2 η-mixing

The notion of mixing we define here is by no means new; it can be traced (at least implicitly)
to Marton’s work [46] and is quite explicit in Samson [60] and Chazottes et al. [13]. We are
not aware of a standardized term for this type of mixing, and have referred to it as η-mixing in
previous work [37]. That choice of terminology is perhaps suboptimal in light of the unrelated
notion of η-dependence of Doukhan et al. [19], but the sufficiently distinct contexts should help
avoid confusion. We will observe a few simple facts about η-mixing coefficients.

3.2.1 Definition

Let (Ωn,F ,P) be a probability space and (Xi)1≤i≤n its associated random process. For 1 ≤ i <
j ≤ n and x ∈ Ωi, let

L(Xn
j |Xi

1 = x)

be the law (distribution) of Xn
j conditioned on Xi

1 = x. For y ∈ Ωi−1 and w,w′ ∈ Ω, define

ηij(y,w,w
′) =

∥

∥L(Xn
j |Xi

1 = yw) − L(Xn
j |Xi

1 = yw′)
∥

∥

TV
, (3.13)

where

η̄ij = max
y∈Ωi−1

max
w,w′∈Ω

ηij(y,w,w
′). (3.14)

Let ∆n = ∆n(P) be the upper-triangular n× n matrix defined by (∆n)ii = 1 and

(∆n)ij = η̄ij . (3.15)

for 1 ≤ i < j ≤ n. Recall that the `∞ operator norm is given by

‖∆n‖∞ = max
1≤i<n

(1 + η̄i,i+1 + . . .+ η̄i,n). (3.16)

We say that the process X on (ΩN,F ,P) is η-mixing if

sup
n≥1

‖∆n(P)‖∞ <∞. (3.17)

Let us collect some simple observations about ‖∆n(·)‖∞:

Lemma 3.2.1. Let µ be a probability measure on Ωn. Then

(a) 1 ≤ ‖∆n(µ)‖∞ ≤ n

(b) ‖∆n(µ)‖∞ = 1 iff µ is a product measure
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(c) if ν is a measure on Ωm then

‖∆n+m(µ⊗ ν)‖∞ ≤ max {‖∆n(µ)‖∞ , ‖∆m(ν)‖∞} .

Proof. (a) is immediate from η̄ij ≤ 1; (b) the “if” direction is trivial; “only if” is established by
proving the (straightforward) n = 2 case and applying induction; (c) follows by observing that
∆m+n(µ⊗ ν) is a block-diagonal matrix.

Remark 3.2.2. A careful reader will note that η̄ij may also depend on the sequence length n;
thus any meaningful bound on this quantity must either take this dependence into account or be
dimension-free. The bounds we derive below are of the latter type. 3

3.2.2 Connection to φ-mixing

Samson [60], using techniques quite different from those here, showed that if Ω = [0, 1], and
f : [0, 1]n → R is convex with ‖f‖

Lip
≤ 1 (in the `2 metric), then

P{|f(X) − Ef(X)| > t} ≤ 2 exp

(

− t2

2 ‖Γn‖2
2

)

(3.18)

where ‖Γn‖2 is the `2 operator norm of the matrix

(Γn)ij =
√

(∆n)ij , (3.19)

where
√· is applied to Γn component-wise. Following Bradley [7], for the random process (Xi)i∈Z

on (ΩZ,F ,P), we define the φ-mixing coefficient

φ(k) = sup
j∈Z

φ(F j
−∞,F∞

j+k), (3.20)

where F j
i ⊂ F is the σ-algebra generated by the Xj

i , and for the σ-algebras A,B ⊂ F , φ(A,B) is
defined by

φ(A,B) = sup{|P(B |A) − P (B)| : A ∈ A, B ∈ B,P(A) > 0}. (3.21)

Samson observes that

η̄ij ≤ 2φj−i, (3.22)

which follows from
∥

∥L(Xn
j |Xi

1 = yi−1
1 w) − L(Xn

j |Xi
1 = yi−1

1 w′)
∥

∥

TV
≤

∥

∥L(Xn
j |Xi

1 = yi−1
1 w) −L(Xn

j )
∥

∥

TV

+
∥

∥L(Xn
j |Xi

1 = yi−1
1 w′) − L(Xn

j )
∥

∥

TV
.

This observation, together with (3.16), implies a sufficient condition for η-mixing:

∞
∑

k=1

φk < ∞; (3.23)

this certainly holds if (φk) admits a geometric decay, as assumed in [60].
Although η-mixing seems to be a stronger condition than φ-mixing (the latter only requires φk →

0), we are presently unable to obtain any nontrivial implications (or non-implications) between η-
mixing and either φ-mixing or any of the other strong mixing conditions discussed in [7]. A fuller
discussion of mixing is deferred until Chapter 6.5.1.
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3.3 Concentration inequality

The main probability-theoretic inequality of this thesis is the following:

Theorem 3.3.1. Let Ω be a finite set and P a measure on Ωn, for n ≥ 1. For any w ∈ Rn
+ and

f : Ωn → R, we have

P{|f − Ef | > t} ≤ 2 exp

(

− t2

2 ‖f‖2
Lip,w ‖∆nw‖2

2

)

where ‖·‖
Lip,w is defined in §3.1 and ∆n is the η-mixing matrix defined in (3.15).

It is proved by bounding the martingale difference and appealing to Azuma’s inequality. The
first order of business is to bound the martingale difference by a slightly more tractable quantity.

For f : Ωn → R, 1 ≤ i ≤ n and yi1 ∈ Ωi, define

Vi(f ; yi1) = E[f(X) |Xi
1 = yi1] − E[f(X) |Xi−1

1 = yi−1
1 ]; (3.24)

this is just the martingale difference. It will be more convenient to work with the modified martin-
gale difference:

V̂i(f ; yi−1
1 , zi, z

′
i) = E[f(X) |Xi

1 = yi−1
1 zi] − E[f(X) |Xi

1 = yi−1
1 z′i], (3.25)

where zi, z
′
i ∈ Ω. These two quantities have a simple relationship, which may be stated symbolically

as ‖Vi(f ; ·)‖∞ ≤ ‖V̂i(f ; ·)‖∞ and is proved in the following lemma, adapted from [35]:

Lemma 3.3.2. Suppose f : Ωn → R and yi1 ∈ Ωi. Then there are zi, z
′
i ∈ Ω such that

∣

∣Vi(f ; yi1)
∣

∣ ≤
∣

∣V̂i(f ; yi−1
1 , zi, z

′
i)
∣

∣. (3.26)

Remark 3.3.3. Here and below p(xnj | yi1) will occasionally be used in place of P
{

Xn
j = xnj |Xi

1 = yi1

}

;

no ambiguity should arise.

Proof. Let

a = E[f(X) |Xi
1 = yi1] =

∑

xn
i+1∈Ωn−i

p(xni+1 | yi1)f(yi1x
n
i+1);

then

Vi(f ; yi1) = a−
∑

xn
i ∈Ωn−i+1

p(xni | yi−1
1 )f(yi−1

1 xni )

= a−
∑

z∈Ω

p(z | yi−1
1 )





∑

xn
i+1∈Ωn−i

p(xni+1 | yi−1
1 z)f(yi−1

1 zxni+1)





We use the simple fact that for g, h : Ω → R+

minh(z)
∑

g(z) ≤
∑

g(z)h(z) ≤ maxh(z)
∑

g(z),
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together with
∑

z∈Ω p(z | yi−1
1 ) = 1, to deduce the existence of a z′i ∈ Ω such that

∣

∣Vi(f ; yi1)
∣

∣ ≤

∣

∣

∣

∣

∣

∣

a−
∑

xn
i+1∈Ωn−i

p(xni+1 | yi−1
1 z′i)f(yi−1

1 z′ix
n
i+1)

∣

∣

∣

∣

∣

∣

.

Taking zi = yi, this proves the claim.

The next step is to notice that V̂i(·; yi−1
1 , zi, z

′
i), as a functional on Kn (see §3.1), is linear; in

fact, it is given by

V̂i(f ; yi−1
1 , zi, z

′
i) =

∑

x∈Ωn

f(x)ĝ(x) = 〈f, ĝ〉 , (3.27)

where

ĝ(x) = 1{xi
1=y

i−1
1 zi}p(x

n
i+1 | yi−1

1 zi) − 1{xi
1=y

i−1
1 z′i}p(x

n
i+1 | yi−1

1 z′i). (3.28)

An application of Theorem 3.1.2 to ĝ yields a bound on the martingale difference.

Theorem 3.3.4. Let Ω be a finite set, and let (Xi)1≤i≤n, Xi ∈ Ω be the random process associated
with the measure P on Ωn. Let ∆n be the upper-triangular n × n matrix defined in (3.15). Then,
for all w ∈ Rn

+ and f : Ωn → R, we have

n
∑

i=1

V̄ 2
i (f) ≤ ‖f‖2

Lip,w ‖∆nw‖2
2 (3.29)

where

V̄i(f) = max
yi
1∈Ωi

∣

∣Vi(f ; yi1)
∣

∣ . (3.30)

Remark 3.3.5. Since V̄i(f) and ‖f‖
Lip,w are both homogeneous functionals of f (in the sense that

T (af) = |a|T (f) for a ∈ R), there is no loss of generality in taking ‖f‖
Lip,w = 1. Additionally,

since Vi(f ; y) is translation-invariant (in the sense that Vi(f ; y) = Vi(f + a; y) for all a ∈ R), there
is no loss of generality in restricting the range of f to [0,diamdw

(Ωn)]. In other words, it suffices
to consider f ∈ Φw,n. Since essentially this result (for wi ≡ 1) is proved in [37] in some detail, we
only give a proof sketch here, highlighting the changes needed for general w.

Proof. It was shown in Section 5 of [37] that if dw is the unweighted Hamming metric (that is,
wi ≡ 1) and f : Ωn → R is 1-Lipschitz with respect to dw, then

V̄i(f) ≤ 1 +

n
∑

j=i+1

η̄ij. (3.31)

This is seen by combining Lemma 3.3.2 with (3.27) to conclude that for 1 ≤ i ≤ n and y ∈ Ωi,
there are zi, z

′
i ∈ Ω and ĝi : Ωn → R (whose explicit construction, depending on y, zi, z

′
i and P, is

given in (3.28)), such that for all f : Ωn → R, we have

|Vi(f ; y)| ≤ |〈ĝi, f〉| . (3.32)
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It is likewise easily verified (as done in [37, Theorem 5.1]) that

〈ĝi, f〉 = 〈Ty ĝi, Tyf〉 ,

where the operator Ty : Kn → Kn−i+1 is defined by

(Tyh)(x) = h(yx), for all x ∈ Ωn−i+1.

Appealing to Theorem 3.1.5 with wi ≡ 1, we get

〈Tyĝi, Tyf〉 ≤ Ψn(Ty ĝi). (3.33)

It is now a simple matter to apply the definition of Ψn and recall a characterization of ‖·‖
TV

(namely,
(2.3)), to obtain

Ψn(Ty ĝi) ≤ 1 +

n
∑

j=i+1

η̄ij, (3.34)

establishing (3.31). To generalize (3.31) to wi 6≡ 1, we use the fact that if f ∈ Kn is 1-Lipschitz
with respect to dw, then Tyf ∈ Kn−i+1 is 1-Lipschitz with respect to dwn

i
. Thus, applying Theorem

3.1.5, we get

〈Ty ĝi, f〉 ≤ Ψwn
i ,n−i+1(Ty ĝi). (3.35)

It follows directly from the definition of Ψw,n and the calculations above that

V̄i(f) ≤ wi +
n
∑

j=i+1

wj η̄ij (3.36)

=

n
∑

j=1

(∆n)ijwj = (∆nw)i. (3.37)

Squaring and summing over i, we obtain (3.29).

Proof of Theorem 3.3.4. Since by definition of the `2 operator norm, ‖∆nw‖2 ≤ ‖∆n‖2 ‖w‖2, the
claim follows immediately via (2.17) and (3.29).
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Chapter 4

Applications

We will have three sections dealing with applications. First, we proceed to apply the general in-
equality to various processes: Markov, hidden Markov, and Markov tree. The next application
deals with laws of large numbers for strongly mixing processes and yields an analysis of an inhomo-
geneous Markov Chain Monte Carlo algorithm; this is joint work with Anthony Brockwell. Finally,
we exhibit some applications of our techniques to empirical process theory and machine learning.

4.1 Bounding η̄ij for various processes

4.1.1 Notational conventions

Sums will range over the entire space of the summation variable; thus
∑

xj
i

f(xji ) stands for

∑

xj
i
∈Ωj−i+1

f(xji ).

By convention, when i > j, we define
∑

xj
i

f(xji ) ≡ f(ε)

where ε is the null sequence.

4.1.2 Markov chains

Although technically this section might be considered superfluous – its results are strictly general-
ized in both §4.1.4 and §4.1.5, it is instructive to work out the simple Markov case as it provides the
cleanest illustration of our techniques. This was, in fact, the motivating example that prompted
the investigation of the more general case, culminating in Theorem 3.1.2.

Let µ be an inhomogeneous Markov measure on Ωn, induced by the kernels p0 and pi(· | ·),
1 ≤ i < n. Thus,

µ(x) = p0(x1)

n−1
∏

i=1

pi(xi+1 |xi).
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Define the ith contraction coefficient:

θi = max
y,y′∈Ω

∥

∥pi(· | y) − pi(· | y′)
∥

∥

TV
;

this quantity turns out to control the η-mixing coefficients for µ:

Theorem.

η̄ij ≤ θiθi+1 . . . θj−1.

This fact is proved in [60] using coupling. We will take a different route, via the Markov
contraction lemma:

Lemma 4.1.1. Let P : RΩ → RΩ be a Markov operator:

(Pν)(x) =
∑

y∈Ω

P (x | y)ν(y),

where P (x | y) ≥ 0 and
∑

x∈Ω P (x | y) = 1. Define the contraction coefficient of P as above:

θ = max
y,y′∈Ω

∥

∥P (· | y) − P (· | y′)
∥

∥

TV
.

Then

‖Pν‖
TV

≤ θ ‖ν‖
TV

for any balanced signed measure ν on Ω (i.e., ν ∈ RΩ with
∑

x∈Ω ν(x) = 0).

This result is sometimes credited to Dobrushin [18]; in fact, θ is also known as Dobrushin’s
ergodicity coefficient. However, the inequality seems to go as far back as Markov himself [44]; see
[37] for a proof.

Proof of Theorem 4.1.2. Fix 1 ≤ i < j ≤ n and yi−1
1 ∈ Ωi−1, wi, w

′
i ∈ Ω. Then

ηij(y,w,w
′) = 1

2

∑

xn
j

∣

∣µ(xnj | yi−1
1 wi) − µ(xnj | yi−1

1 w′
i)
∣

∣

= 1
2

∑

xn
j

π(xnj ) |ζ(xj)|

where

π(u`k) =
`−1
∏

t=k

pt(ut+1 |ut)

and

ζ(xj) =



















∑

zj−1
i+1

pj−1(xj | zj−1)π(zj−1
i+1 )

(

pi(zi+1 |wi) − pi(zi+1 |w′
i)
)

, j − i > 1

pi(xj |wi) − pi(xj |w′
i), j − i = 1.

(4.1)
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Define h ∈ RΩ by hv = pi(v |wi) − pi(v |w′
i) and P (k) ∈ RΩ×Ω by P

(k)
u,v = pk(u | v). Likewise,

define z ∈ RΩ by zv = ζ(v). It follows that

z = P (j−1)P (j−2) . . . P (i+2)P (i+1)h.

Therefore,

ηij(y,w,w
′) = 1

2

∑

xn
j

π(xnj )
∣

∣zxj

∣

∣

= 1
2

∑

xj

∣

∣zxj

∣

∣

∑

xn
j+1

π(xnj )

= 1
2

∑

xj

∣

∣zxj

∣

∣ = ‖z‖
TV
.

The claim follows by the contraction lemma.

4.1.3 Undirected Markov chains

For any graph G = (V,E), where |V | = n and the maximal cliques have size 2 (are edges), we can
define a measure on Ωn as follows

µ(x) ≡ P{X = x} =

∏

(i,j)∈E ψij(xi, xj)
∑

x′∈Ωn

∏

(i,j)∈E ψij(x
′
i, x

′
j)

≡
∏

(i,j)∈E ψij(xi, xj)

ZG

for some ψij ≥ 0.
Consider the very simple case of chain graphs; any such measure is a Markov measure on Ωn.

We can relate the induced Markov transition kernel pi(· | ·) to the random field measure µ as follows:

pi(x | y) =

∑

vi−1
1

∑

zn
i+2

µ[v y x z]
∑

x′∈Ω

∑

v′i−1
1

∑

z′ni+2
µ[v′ y x′ z′]

, x, y ∈ Ω.

Our goal is to bound the ith contraction coefficient θi of the Markov chain:

θi = max
y,y′∈Ω

1

2

∑

x∈Ω

∣

∣pi(x | y) − pi(x | y′)
∣

∣ .

in terms of ψij . We claim a simple relationship between θi and ψij :

Theorem 4.1.2.

θi ≤ Ri − ri
Ri + ri

(4.2)

where
Ri = max

x,y∈Ω
ψi,i+1(x, y)

and
ri = min

x,y∈Ω
ψi,i+1(x, y).
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First we prove a simple lemma:

Lemma 4.1.3. Let α, β, γ ∈ Rk+1
+ and r,R ∈ R be such that 0 ≤ r ≤ αi, βi ≤ R , for 1 ≤ i ≤ k+1.

Then

1
2

k+1
∑

i=1

∣

∣

∣

∣

∣

αiγi
∑k+1

j=1 αjγj
− βiγi
∑k+1

j=1 βjγj

∣

∣

∣

∣

∣

≤ R− r

R+ r
. (4.3)

Proof. When p, q ∈ Rk+1
+ are two distributions satisfying 0 < r ≤ pi, qi, it is straightforward to

verify that ‖p− q‖1 may be maximized, with value d, by choosing a ∈ [r, (1 − d)/k], b = a + d/k
and setting pi = a, qi = b for 1 ≤ i ≤ k and pk+1 = 1 − ka, qk+1 = 1 − kb. Applying this principle
to (4.2), we obtain

k+1
∑

i=1

∣

∣

∣

∣

∣

αiγi
∑k+1

j=1 αjγj
− βiγi
∑k+1

j=1 βjγj

∣

∣

∣

∣

∣

≤ gkR− g′r

gkR+ g′r
− g′R− gkr

g′R+ gkr

=
2g′′k(R2 − r2)

(R+ g′′kr)(g′′kR+ r)

where g =
∑k

i=1 γi, g
′ = γk+1 and g′′ = g/g′.

Define f : R+ → R by

f(x) =
2(R2 − r2)x

(R + rx)(Rx+ r)
;

elementary calculus verifies that f is maximized at x = 1.

Proof of Theorem 4.1.2. Let us define the shorthand notation:

π(ulk) =

l−1
∏

t=k

ψt,t+1(ut, ut+1)

Then we expand

pi(x | y) =

∑

vi−1
1

∑

zn
i+2

π(vi−2
1 )ψi−1,i(vi−1, y)ψi,i+1(y, x)ψi+1,i+2(x, zi+2)π(zni+2)

∑

x′∈Ω

∑

v′i−1
1

∑

z′ni+2
π(v′i−2

1 )ψi−1,i(v′i−1, y)ψi,i+1(y, x′)ψi+1,i+2(x′, z′i+2)π(z′ni+2)

=
ψi,i+1(y, x)ayx

∑

x′∈Ω ψi,i+1(y, x′)ayx′

where

ayx =
∑

vi−1
1

∑

zn
i+2

π(vi−2
1 )ψi−1,i(vi−1, y)ψi+1,i+2(x, zi+2)π(zni+2)

(we take the natural convention that ψi,j(· | ·) = 1 whenever (i, j) /∈ E).
Fix y, y′ ∈ Ω. Define the quantities, for each x ∈ Ω:

αx = ψi,i+1(y, x)

βx = ψi,i+1(y
′, x)

γx = ayx

γ′x = ay′x.
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Then

∑

x∈Ω

∣

∣pi(x | y) − pi(x | y′)
∣

∣ =
∑

x∈Ω

∣

∣

∣

∣

αxγx
∑

x′∈Ω αx′γx′
− βxγ

′
x

∑

x′∈Ω βx′γ
′
x′

∣

∣

∣

∣

(4.4)

=
∑

x∈Ω

∣

∣

∣

∣

αxγx
∑

x′∈Ω αx′γx′
− βxγx
∑

x′∈Ω βx′γx′

∣

∣

∣

∣

; (4.5)

the last equality follows since γ′x = cγx, where c =
ψi−1,i(vi−1,y

′)
ψi−1,i(vi−1,y)

. Now Lemma 4.1.3 can be applied

to establish the claim.

Since all the inequalities invoked are tight, so is the bound in Theorem 4.1.2.

4.1.4 Hidden Markov chains

The material in this section is taken almost entirely from [33]. Consider two finite sets, Ω̂ (the
“hidden state” space) and Ω (the “observed state” space). Let (Ω̂n, µ) be a probability space,
where µ is a Markov measure with transition kernels pi(· | ·). Thus for x̂ ∈ Ω̂n, we have

µ(x̂) = p0(x̂1)

n−1
∏

k=1

pk(x̂k+1 | x̂k).

Suppose (Ω̂n × Ωn, ν) is a probability space whose measure ν is defined by

ν(x̂, x) = µ(x̂)

n
∏

`=1

q`(x` | x̂`), (4.6)

where q`(· | x̂) is a probability measure on Ω for each x̂ ∈ Ω̂ and 1 ≤ ` ≤ n. On this product space
we define the random process (X̂i,Xi)1≤i≤n, which is clearly Markov since

P
{

(X̂i+1,Xi+1) = (x̂, x) | (X̂i
1,X

i
1) = (ŷ, y)

}

= pi(x̂ | ŷi)qi+1(x | x̂)

= P
{

(X̂i+1,Xi+1) = (x̂, x) | (X̂i,Xi) = (ŷi, yi)
}

.

The (marginal) projection of (X̂i,Xi) onto Xi results in a random process on the probability space
(Ωn, ρ), where

ρ(x) = P{X = x} =
∑

x̂∈Ω̂n

ν(x̂, x). (4.7)

The random process (Xi)1≤i≤n (or measure ρ) on Ωn is called a hidden Markov process (resp.,
measure); it is well known that (Xi) need not be Markov to any order1. We will refer to (X̂i) as
the underlying process; it is Markov by construction.

1 One can easily construct a hidden Markov process over Ω̂ = {0, 1, 2} and Ω = {a, b} where, with probability 1,
consecutive runs of b will have even length. Such a process cannot be Markov.
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Theorem 4.1.4. Let (Xi)1≤i≤n be a hidden Markov process, whose underlying process (X̂i)1≤i≤n
is defined by the transition kernels pi(· | ·). Define the kth contraction coefficient θk by

θk = sup
x̂,x̂′∈Ω̂

∥

∥pk(· | x̂) − pk(· | x̂′)
∥

∥

TV
.

Then for the hidden Markov process X, we have

η̄ij ≤ θiθi+1 · · · θj−1,

for 1 ≤ i < j ≤ n.

Since the calculation is notationally intensive, we emphasize readability, sometimes at the slight
expense of formalistic precision. We will consistently distinguish between hidden and observed state
sequences, indicating the former with a .̂

As usual, sums range over the entire space of the summation variable; thus
∑

xj
i

f(xji ) stands for

∑

xj
i∈Ωj−i+1

f(xji ) with an analogous convention for
∑

x̂j
i

f(x̂ji ).

The probability operator P{·} is defined with respect to (Ωn, ρ) whose measure ρ is given in
(4.7). Lastly, we use the shorthand

µ(û`k) = p0(ûk)
1{k=1}

`−1
∏

t=k

pt(ût+1 | ût)

ν(u`k | û`k) =
∏̀

t=k

qt(ut | ût)

ρ(u`k) = P
{

X`
k = u`k

}

.

The proof of Theorem 4.1.4 is elementary – it basically amounts to careful bookkeeping of
summation indices, rearrangement of sums, and probabilities marginalizing to 1. As in the ordinary
Markov case in §4.1.2, the Markov contraction Lemma (4.1.1) plays a central role.

Proof of Theorem 4.1.4. For 1 ≤ i < j ≤ n, yi−1
1 ∈ Ωi−1 and wi, w

′
i ∈ Ω, we expand

ηij(y
i−1
1 , wi, w

′
i) = 1

2

∑

xn
j

∣

∣P
{

Xn
j = xnj |Xi

1 = [yi−1
1 wi]

}

− P
{

Xn
j = xnj |Xi

1 = [yi−1
1 w′

i]
}∣

∣

= 1
2

∑

xn
j

∣

∣

∣

∣

∣

∑

zj−1
i+1

(

P
{

Xn
i+1 = [zj−1

i+1 x
n
j ] |Xi

1 = [yi−1
1 wi]

}

−P
{

Xn
i+1 = [zj−1

i+1 x
n
j ] |Xi

1 = [yi−1
1 w′

i]
} )

∣

∣

∣

∣

∣

= 1
2

∑

xn
j

∣

∣

∣

∣

∣

∑

zj−1
i+1

∑

ŝn
1

µ(ŝn1 )

(

ν([yi−1
1 wi z

j−1
i+1 x

n
j ] | ŝn1 )

ρ([yi−1
1 wi])

−
ν([yi−1

1 w′
i z
j−1
i+1 x

n
j ] | ŝn1 )

ρ([yi−1
1 w′

i])

) ∣

∣

∣

∣

∣

= 1
2

∑

xn
j

∣

∣

∣

∣

∣

∑

zj−1
i+1

∑

ŷi
1

∑

ẑj−1
i+1

∑

x̂n
j

µ([ŷi1 ẑ
j−1
i+1 x̂

n
j ])ν(x

n
j | x̂nj )ν(zj−1

i+1 | ẑj−1
i+1 )ν(yi−1

1 | ŷi−1
1 )δ(ŷi)

∣

∣

∣

∣

∣

,
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where

δ(ŷi) =
qi(wi | ŷi)
ρ([yi−1

1 wi])
− qi(w

′
i | ŷi)

ρ([yi−1
1 w′

i])
.

Since
∣

∣

∑

ij aibj
∣

∣ ≤∑i ai
∣

∣

∑

j bj
∣

∣ for ai ≥ 0 and bi ∈ R, we may bound

ηij(y
i−1
1 , wi, w

′
i) ≤ 1

2

∑

x̂n
j

∑

xn
j

µ(x̂nj )ν(x
n
j | x̂nj )

∣

∣ζ(x̂j)
∣

∣ (4.8)

= 1
2

∑

x̂n
j

µ(x̂nj )
∣

∣ζ(x̂j)
∣

∣, (4.9)

where

ζ(x̂j) =
∑

zj−1
i+1

∑

ẑj−1
i+1

∑

ŷi
1

µ([ŷi1 ẑ
j−1
i+1 x̂j ])ν(y

i−1
1 | ŷi−1

1 )ν(zj−1
i+1 | ẑj−1

i+1 )δ(ŷi)

=
∑

ẑj−1
i+1

∑

ŷi
1

µ([ŷi1 ẑ
j−1
i+1 x̂j ])ν(y

i−1
1 | ŷi−1

1 )δ(ŷi).

Define the vector h ∈ RΩ̂ by

hv̂ = δ(v̂)
∑

ŷi−1
1

µ([ŷi−1
1 v̂]) ν(yi−1

1 | ŷi−1
1 ). (4.10)

Then

ζ(x̂j) =
∑

ẑj−1
i+1

∑

ŷi

µ([ŷi ẑ
j−1
i+1 x̂j ])hŷi

.

Define the matrix A(k) ∈ RΩ̂×Ω̂ by A
(k)
û,v̂ = pk(û | v̂), for 1 ≤ k < n. With this notation, we

have ζ(x̂j) = zx̂j
, where z ∈ RΩ̂ is given by

z = A(j−1)A(j−2) · · ·A(i+1)A(i)h. (4.11)

In order to apply Lemma 4.1.1 to (4.11), we must verify that
∑

v̂∈Ω̂

hv̂ = 0, ‖h‖
TV

≤ 1. (4.12)

From (4.10) we have

hv̂ =

(

qi(wi | v̂)
ρ([yi−1

1 wi])
− qi(w

′
i | v̂)

ρ([yi−1
1 w′

i])

)

∑

ŷi−1
1

µ([ŷi−1
1 v̂]) ν(yi−1

1 | ŷi−1
1 ).

Summing over v̂, we get

∑

v̂∈Ω̂

(

qi(wi | v̂)
ρ([yi−1

1 wi])

)

∑

ŷi−1
1

µ([ŷi−1
1 v̂]) ν(yi−1

1 | ŷi−1
1 ) =

1

P
{

Xi
1 = [yi−1

1 wi]
}

∑

ŷi
1

µ(ŷi1) ν([y
i−1
1 wi] | ŷi1)

= 1;
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an analogous identity holds for the
qi(w

′
i | ŷi)

ρ([yi−1
1 w′

i])
term, which proves (4.12).

Therefore, combining (4.9), (4.11), and Lemma 4.1.1, we have

ηij(y
i−1
1 , wi, w

′
i) ≤ 1

2

∑

x̂n
j

µ(x̂nj )
∣

∣zx̂j

∣

∣

= 1
2

∑

x̂j

∣

∣zx̂j

∣

∣

∑

x̂n
j+1

µ(x̂nj )

= ‖z‖
TV

≤ θiθi+1 · · · θj−1.

Observe that the η-mixing coefficients of a hidden Markov chain are bounded by those of the
underlying Markov one. One might thus be tempted to pronounce Theorem 4.1.4 as “obvious”
in retrospect, based on the intuition that the observed sequence Xi is an independent process
conditioned the hidden sequence X̂i. Thus, the reasoning might go, all the dependence structure
is contained in X̂i, and it is not surprising that the underlying process alone suffices to bound η̄ij
– which, after all, is a measure of the dependence in the process.

Such an intuition, however, would be wrong, as it fails to carry over to the case where the
underlying process is not Markov. As a numerical example, take n = 4, Ω̂ = Ω = {0, 1} and define
the probability measure µ on Ω̂4 as given in Figure 4.1. Define the conditional probability

q(x | x̂) = 1
41{x=x̂} + 3

41{x 6=x̂}.

Together, µ and q define the measure ρ on Ω4:

ρ(x) =
∑

x̂∈Ω̂4

µ(x̂)

4
∏

`=1

q(x` | x̂`).

Associate to (Ω̂4, µ) the “hidden” process (X̂i)
4
1 and to (Ω4, ρ) the “observed” process (Xi)

4
1. A

straightforward numerical computation (whose explicit steps are given in the proof of Theorem
4.1.4) shows that the values of µ can be chosen so that η̄24(X) > 0.06 while η̄24(X̂) is arbitrarily
small.

Thus one cannot, in general, bound η̄ij(X) by cη̄ij(X̂) for some universal constant c; we were
rather fortunate to be able to do so in the hidden Markov case.

4.1.5 Markov trees

The material in this section is taken almost entirely from [34]. We begin by defining some notation
specific to this section. A collection of variables may be indexed by subset: if I = {i1, i2, . . . , im}
then we write xI ≡ x[I] = {xi1 , xi2 , . . . , xim}; we will write xI and x[I] interchangeably, as dictated
by convenience. To avoid cumbersome subscripts, we will also occasionally use the bracket notation
for vector components. Thus, u ∈ RΩI

, then

uxI
≡ ux[I] ≡ u[x[I]] = u(xi1

,xi2
,...,xim) ∈ R
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x̂n1 µ(x̂n1 )

0000 0.000000

0001 0.000000

0010 0.288413

0011 0.000000

0100 0.000000

0101 0.000000

0110 0.176290

0111 0.000000

1000 0.000000

1001 0.010514

1010 0.000000

1011 0.139447

1100 0.000000

1101 0.024783

1110 0.000000

1111 0.360553

Figure 4.1: The numerical values of µ on Ω̂4

for each x[I] ∈ ΩI . A similar bracket notation will apply for matrices. If A is a matrix then
A∗,j = A[∗, j] will denote its jth column.

We will use |·| to denote set cardinalities. Sums will range over the entire space of the summation

variable; thus
∑

xj
i

f(xji ) stands for
∑

xj
i∈Ωj−i+1

f(xji ), and
∑

x[I]

f(x[I]) is shorthand for
∑

x[I]∈ΩI

f(x[I]).

We will write [n] for the set {1, . . . , n}. Anytime ‖·‖ appears in this section without a subscript,
it will always denote the total variation norm ‖·‖

TV
.

If G = (V,E) is a graph, we will frequently abuse notation and write u ∈ G instead of u ∈ V ,
blurring the distinction between a graph and its vertex set. This notation will carry over to set-
theoretic operations (G = G1 ∩G2) and indexing of variables (e.g., XG).

Graph-theoretic preliminaries

Consider a directed acyclic graph G = (V,E), and define a partial order ≺G on G by the transitive
closure of the relation

u ≺G v if (u, v) ∈ E.

We define the parents and children of v ∈ V in the natural way:

parents(v) = {u ∈ V : (u, v) ∈ E}

and

children(v) = {w ∈ V : (v,w) ∈ E}.
If G is connected and each v ∈ V has at most one parent, G is called a (directed) tree. In a

tree, whenever u ≺G v there is a unique directed path from u to v. A tree T always has a unique
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minimal (w.r.t. ≺T ) element r0 ∈ V , called its root. Thus, for every v ∈ V there is a unique
directed path r0 ≺T r1 ≺T . . . ≺T rd = v; define the depth of v, depT (v) = d, to be the length
(i.e., number of edges) of this path. Note that depT (r0) = 0. We define the depth of the tree by
dep(T ) = supv∈T depT (v).

For d = 0, 1, . . . define the dth level of the tree T by

levT (d) = {v ∈ V : depT (v) = d};

note that the levels induce a disjoint partition on V :

V =

dep(T )
⋃

d=1

levT (d).

We define the width2 of a tree as the greatest number of nodes in any level:

wid(T ) = sup
1≤d≤dep(T )

|levT (d)| . (4.13)

We will consistently take |V | = n for finite V . An ordering J : V → N of the nodes is said to
be breadth-first if

depT (u) < depT (v) =⇒ J(u) < J(v). (4.14)

Since every finite directed tree T = (V,E) has some breadth-first ordering,3 we will henceforth blur
the distinction between v ∈ V and J(v), simply taking V = [n] (or V = N) and assuming that
depT (u) < depT (v) ⇒ u < v holds. This will allow us to write ΩV simply as Ωn for any set Ω.

Note that we have two orders on V : the partial order ≺T , induced by the tree topology, and
the total order <, given by the breadth-first enumeration. Observe that i ≺T j implies i < j but
not vice versa.

If T = (V,E) is a tree and u ∈ V , we define the subtree induced by u, Tu = (Vu, Eu) by
Vu = {v ∈ V : u �T v}, Eu = {(v,w) ∈ E : v,w ∈ Vu}.

Markov tree measure

If Ω is a finite set, a Markov tree measure µ is defined on Ωn by a tree T = (V,E) and transition
kernels p0, {pij(· | ·)}(i,j)∈E . Continuing our convention above, we have a breadth-first order < and

the total order ≺T on V , and take V = {1, . . . , n}. Together, the topology of T and the transition
kernels determine the measure µ on Ωn:

µ(x) = p0(x1)
∏

(i,j)∈E

pij(xj |xi). (4.15)

A measure on Ωn satisfying (4.15) for some T and {pij} is said to be compatible with tree T ; a
measure is a Markov tree measure if it is compatible with some tree.

2 Note that this definition is nonstandard.
3 One can easily construct a breadth-first ordering on a given tree by ordering the nodes arbitrarily within each

level and listing the levels in ascending order: levT (1), levT (2), . . ..
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Suppose Ω is a finite set and (Xi)i∈N, Xi ∈ Ω is a random process defined on (ΩN,P). If for
each n > 0 there is a tree T (n) = ([n], E(n)) and a Markov tree measure µn compatible with T (n)

such that for all x ∈ Ωn we have
P{Xn

1 = x} = µn(x)

then we call X a Markov tree process. The trees {T (n)} are easily seen to be consistent in the sense
that T (n) is an induced subgraph of T (n+1). So corresponding to any Markov tree process is the
unique infinite tree T = (N, E). The uniqueness of T is easy to see, since for v > 1, the parent of
v is the smallest u ∈ N such that

P{Xv = xv |Xu
1 = xu1} = P{Xv = xv |Xu = xu} ;

thus P determines the topology of T .
It is straightforward to verify that a Markov tree process {Xv}v∈T compatible with tree T has

the following Markov property: if v and v′ are children of u in T , then

P
{

XTv = x,XTv′
= x′ |Xu = y

}

= P{XTv = x |Xu = y}P
{

XTv′
= x′ |Xu = y

}

.

In other words, the subtrees induced by the children are conditionally independent given the parent;
this follows directly from the definition of the Markov tree measure in (4.15).

Statement of result

Theorem 4.1.5. Let Ω be a finite set and let (Xi)1≤i≤n, Xi ∈ Ω be a Markov tree process, defined
by a tree T = (V,E) and transition kernels p0, {puv(· | ·)}(u,v)∈E . Define the (u, v)- contraction
coefficient θuv by

θuv = max
y,y′∈Ω

∥

∥puv(· | y) − puv(· | y′)
∥

∥

TV
. (4.16)

Suppose max(u,v)∈E θuv ≤ θ < 1 for some θ and wid(T ) ≤ L . Then for the Markov tree process X
we have

η̄ij ≤
(

1 − (1 − θ)L
)b(j−i)/Lc

(4.17)

for 1 ≤ i < j ≤ n.

To cast (4.17) in more usable form, we first note that for L ∈ N and k ∈ N, if k ≥ L then

⌊

k

L

⌋

≥ k

2L− 1
(4.18)

(we omit the elementary number-theoretic proof). Using (4.18), we have

η̄ij ≤ θ̃j−i, for j ≥ i+ L (4.19)

where
θ̃ = (1 − (1 − θ)L)1/(2L−1).

In the (degenerate) case where the Markov tree is a chain, we have L = 1 and therefore θ̃ = θ;
thus we recover the Markov chain concentration results in [37, 45, 60].
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Proof of Theorem 4.1.5

The proof of Theorem 4.1.5 is combination of elementary graph theory and tensor algebra. We
start with a graph-theoretic lemma:

Lemma 4.1.6. Let T = ([n], E) be a tree and fix 1 ≤ i < j ≤ n. Suppose (Xi)1≤i≤n is a Markov
tree process whose law P on Ωn is compatible with T (this notion is defined above). Define the set

T ji = Ti ∩ {j, j + 1, . . . , n},

consisting of those nodes in the subtree Ti whose breadth-first numbering does not precede j. Then,
for y ∈ Ωi−1 and w,w′ ∈ Ω, we have

ηij(y,w,w
′) =

{

0 T ji = ∅
ηij0(y,w,w

′) otherwise,
(4.20)

where j0 is the minimum (with respect to <) element of T ji .

Remark 4.1.7. This lemma tells us that when computing ηij it is sufficient to restrict our attention
to the subtree induced by i.

Proof. The case j ∈ Ti implies j0 = j and is trivial; thus we assume j /∈ Ti. In this case, the
subtrees Ti and Tj are disjoint. Putting T̄i = Ti \ {i}, we have by the Markov property,

P
{

XT̄i
= xT̄i

,XTj
= xTj

|Xi
1 = yw

}

= P
{

XT̄i
= xT̄i

|Xi = w
}

P
{

XTj
= xTj

|Xi−1
1 = y

}

.

Then from (3.13) and (2.1), and by marginalizing out the XTj
, we have

ηij(y,w,w
′) = 1

2

∑

xn
j

∣

∣P
{

Xn
j = xnj |Xi

1 = yw
}

− P
{

Xn
j = xnj |Xi

1 = yw′
}∣

∣

= 1
2

∑

x
T

j
i

∣

∣

∣
P
{

X
T j

i

= x
T j

i

|Xi = w
}

− P
{

X
T j

i

= x
T j

i

|Xi = w′
}∣

∣

∣
.

If T ji = ∅ then obviously ηij = 0; otherwise, ηij = ηij0 , since j0 is the “first” element of T ji .

Next we develop some basic results for tensor norms; recall that unless specified otherwise, the
norm used in this paper is the total variation norm. If A is an M ×N column-stochastic matrix:
(Aij ≥ 0 for 1 ≤ i ≤ M , 1 ≤ j ≤ N and

∑M
i=1 Aij = 1 for all 1 ≤ j ≤ N) and u ∈ RN is balanced

in the sense that
∑N

j=1 uj = 0, we have, by Lemma 4.1.1

‖Au‖ ≤ ‖A‖ ‖u‖ , (4.21)

where

‖A‖ = max
1≤j,j′≤N

∥

∥A∗,j − A∗,j′
∥

∥ , (4.22)

and A∗,j ≡ A[·, j] denotes the jth column of A. An immediate consequence of (4.21) is that ‖·‖
satisfies

‖AB‖ ≤ ‖A‖ ‖B‖ (4.23)

for column-stochastic matrices A ∈ RM×N and B ∈ RN×P .
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Remark 4.1.8. Note that if A is a column-stochastic matrix then ‖A‖ ≤ 1, and if additionally u is
balanced then Au is also balanced. 3

If u ∈ RM and v ∈ RN , define their tensor product w = v ⊗ u by

w(i,j) = uivj,

where the notation (v ⊗ u)(i,j) is used to distinguish the 2-tensor w from an M ×N matrix. The

tensor w is a vector in RMN indexed by pairs (i, j) ∈ [M ]× [N ]; its norm is naturally defined to be

‖w‖ = 1
2

∑

(i,j)∈[M ]×[N ]

∣

∣w(i,j)

∣

∣ . (4.24)

To develop a convenient tensor notation, we will fix the index set V = {1, . . . , n}. For I ⊂ V ,

a tensor indexed by I is a vector u ∈ RΩI

. A special case of such an I-tensor is the product
u =

⊗

i∈I v
(i), where v(i) ∈ RΩ and

u[xI ] =
∏

i∈I

v(i)[xi]

for each xI ∈ ΩI . To gain more familiarity with the notation, let us write the total variation norm
of an I-tensor:

‖u‖ = 1
2

∑

xI∈ΩI

|u[xI ]| . (4.25)

In order to extend Lemma 2.2.5 to product tensors, we will need to define the function αk : Rk → R

and state some of its properties:

Lemma 4.1.9. Define αk : Rk → R recursively as α1(x) = x and

αk+1(x1, x2, . . . , xk+1) = xk+1 + (1 − xk+1)αk(x1, x2, . . . , xk). (4.26)

Then

(a) αk is symmetric in its k arguments, so it is well-defined as a mapping

α : {xi : 1 ≤ i ≤ k} 7→ R

from finite real sets to the reals

(b) αk takes [0, 1]k to [0, 1] and is monotonically increasing in each argument on [0, 1]k

(c) If B ⊂ C ⊂ [0, 1] are finite sets then α(B) ≤ α(C)

(d) αk(x, x, . . . , x) = 1 − (1 − x)k

(e) if B is finite and 1 ∈ B ⊂ [0, 1] then α(B) = 1.

(f) if B ⊂ [0, 1] is a finite set then α(B) ≤∑x∈B x.
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Remark 4.1.10. In light of (a), we will use the notation αk(x1, x2, . . . , xk) and α({xi : 1 ≤ i ≤ k})
interchangeably, as dictated by convenience.

Proof. Claims (a), (b), (e), (f) are straightforward to verify from the recursive definition of α and
induction. Claim (c) follows from (b) since

αk+1(x1, x2, . . . , xk, 0) = αk(x1, x2, . . . , xk)

and (d) is easily derived from the binomial expansion of (1 − x)k.

The function αk is the natural generalization of α2(x1, x2) = x1 + x2 − x1x2 to k variables, and
it is what we need for the analog of Lemma 2.2.5 for a product of k tensors:

Corollary 4.1.11. Let {u(i)}i∈I and {v(i)}i∈I be two sets of tensors and assume that each of
u(i),v(i) is a probability measure on Ω. Then we have

∥

∥

∥

∥

∥

⊗

i∈I

u(i) −
⊗

i∈I

v(i)

∥

∥

∥

∥

∥

≤ α
{

∥

∥u(i) − v(i)
∥

∥ : i ∈ I
}

. (4.27)

Proof. Pick an i0 ∈ I and let p = u(i0), q = v(i0),

p′ =
⊗

i0 6=i∈I

u(i), q′ =
⊗

i0 6=i∈I

v(i).

Apply Lemma 2.2.5 to ‖p⊗ q − p′ ⊗ q′‖ and proceed by induction.

Our final generalization concerns linear operators over I-tensors. An I, J-matrix A has dimen-
sions |ΩJ | × |ΩI | and takes an I-tensor u to a J-tensor v: for each yJ ∈ ΩJ , we have

v[yJ ] =
∑

xI∈ΩI

A[yJ , xI ]u[xI ], (4.28)

which we write as Au = v. If A is an I, J-matrix and B is a J,K-matrix, the matrix product BA
is defined analogously to (4.28).

As a special case, an I, J-matrix might factorize as a tensor product of |Ω| × |Ω| matrices
A(i,j) ∈ RΩ×Ω. We will write such a factorization in terms of a bipartite graph4 G = (I + J,E),
where E ⊂ I × J and the factors A(i,j) are indexed by (i, j) ∈ E:

A =
⊗

(i,j)∈E

A(i,j), (4.29)

where
A[yJ , xI ] =

∏

(i,j)∈E

A(i,j)
yj ,xi

for all xI ∈ ΩI and yJ ∈ ΩJ . The norm of an I, J-matrix is a natural generalization of the matrix
norm defined in (4.22):

‖A‖ = max
xI ,x

′
I
∈ΩI

∥

∥A[·, xI ] − A[·, x′I ]
∥

∥ (4.30)

4 Our notation for bipartite graphs is standard; it is equivalent to G = (I∪J, E) where I and J are always assumed
to be disjoint.
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where u = A[·, xI ] is the J-tensor given by

u[yJ ] = A[yJ , xI ];

(4.30) is well-defined via the tensor norm in (4.25). Since I, J matrices act on I-tensors by ordinary
matrix multiplication, ‖Au‖ ≤ ‖A‖ ‖u‖ continues to hold when A is a column-stochastic I, J-
matrix and u is a balanced I-tensor; if, additionally, B is a column-stochastic J,K-matrix, ‖BA‖ ≤
‖B‖ ‖A‖ also holds. Likewise, since another way of writing (4.29) is

A[·, xI ] =
⊗

(i,j)∈E

A(i,j)[·, xi],

Corollary 4.1.11 extends to tensor products of matrices:

Lemma 4.1.12. Fix index sets I, J and a bipartite graph (I + J,E). Let
{

A(i,j)
}

(i,j)∈E
be a

collection of column-stochastic |Ω| × |Ω| matrices, whose tensor product is the I, J matrix

A =
⊗

(i,j)∈E

A(i,j).

Then

‖A‖ ≤ α
{

∥

∥A(i,j)
∥

∥ : (i, j) ∈ E
}

.

We are now in a position to state the main technical lemma, from which Theorem 4.1.5 will
follow straightforwardly:

Lemma 4.1.13. Let Ω be a finite set and let (Xi)1≤i≤n, Xi ∈ Ω be a Markov tree process, defined by
a tree T = (V,E) and transition kernels p0, {puv(· | ·)}(u,v)∈E . Let the (u, v)-contraction coefficient
θuv be as defined in (4.16).

Fix 1 ≤ i < j ≤ n and let j0 = j0(i, j) be as defined in Lemma 4.1.6 (we are assuming its
existence, for otherwise η̄ij = 0). Then we have

η̄ij ≤
depT (j0)
∏

d=depT (i)+1

α {θuv : v ∈ levT (d)} . (4.31)

Proof. For y ∈ Ωi−1 and w,w′ ∈ Ω, we have

ηij(y,w,w
′) = 1

2

∑

xn
j

∣

∣P
{

Xn
j = xnj |Xi

1 = yw
}

− P
{

Xn
j = xnj |Xi

1 = yw′
}∣

∣ (4.32)

= 1
2

∑

xn
j

∣

∣

∣

∣

∣

∑

zj−1
i+1

(

P
{

Xn
i+1 = zj−1

i+1 x
n
j |Xi

1 = yw
}

−P
{

Xn
i+1 = [zj−1

i+1 x
n
j ] |Xi

1 = yw′
} )

∣

∣

∣

∣

∣

. (4.33)
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Let Ti be the subtree induced by i and

Z = Ti ∩ {i+ 1, . . . , j0 − 1} and C = {v ∈ Ti : (u, v) ∈ E, u < j0, v ≥ j0}. (4.34)

Then by Lemma 4.1.6 and the Markov property, we get

ηij(y,w,w
′) =

1
2

∑

x[C]

∣

∣

∣

∣

∣

∑

x[Z]

(

P{X[C ∪ Z] = x[C ∪ Z] |Xi = w} − P
{

X[C ∪ Z] = x[C ∪ Z] |Xi = w′
}

)

∣

∣

∣

∣

∣

(4.35)

(the sum indexed by {j0, . . . , n} \ C marginalizes out).

Define D = {dk : k = 0, . . . , |D|} with d0 = depT (i), d|D| = depT (j0) and dk+1 = dk + 1 for
0 ≤ k < |D|. For d ∈ D, let Id = Ti ∩ levT (d) and Gd = (Id−1 + Id, Ed) be the bipartite graph
consisting of the nodes in Id−1 and Id, and the edges in E joining them (note that Id0 = {i}).

For (u, v) ∈ E, let A(u,v) be the |Ω| × |Ω| matrix given by

A
(u,v)
x,x′ = puv(x |x′)

and note that
∥

∥

∥
A(u,v)

∥

∥

∥
= θuv. Then by the Markov property, for each z[Id] ∈ ΩId and x[Id−1] ∈

ΩId−1, d ∈ D \ {d0}, we have

P
{

XId = zId |XId−1
= xId−1

}

= A(d)[zId , xId−1
],

where

A(d) =
⊗

(u,v)∈Ed

A(u,v).

Likewise, for d ∈ D \ {d0},

P{XId = xId |Xi = w} =
∑

x′
I1

∑

x′′
I2

· · ·
∑

x
(d−1)
Id−1

P
{

XI1 = x′I1 |Xi = w
}

P
{

XI2 = x′′I2 |XI1 = x′I1
}

· · ·
P
{

XId = xId |XId−1
= x

(d−1)
Id−1

}

= (A(d)A(d−1) · · ·A(d1))[xId , w]. (4.36)

Define the (balanced) Id1-tensor

h = A(d1)[·, w] − A(d1)[·, w′], (4.37)

the Id|D|
-tensor

f = A(d|D|)A(d|D|−1) · · ·A(d2)h, (4.38)
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and C0, C1, Z0 ⊂ {1, . . . , n}:

C0 = C ∩ IdepT (j0), C1 = C \ C0, Z0 = IdepT (j0) \ C0, (4.39)

where C and Z are defined in (4.34). For readability we will write P(xU | ·) instead of P{XU = xU | ·}
below; no ambiguity should arise. Combining (4.35) and (4.36), we have

ηij(y,w,w
′) = 1

2

∑

xC

∣

∣

∑

xZ

(

P(x[C ∪ Z] |Xi = w) − P(x[C ∪ Z] |Xi = w′)
)∣

∣ (4.40)

= 1
2

∑

xC0

∑

xC1

∣

∣

∣

∣

∣

∑

xZ0

P(x[C1] |x[Z0])f [C0 ∪ Z0]

∣

∣

∣

∣

∣

(4.41)

= ‖Bf‖ (4.42)

where B is the |ΩC0∪C1 | × |ΩC0∪Z0| column-stochastic matrix given by

B[xC0 ∪ xC1 , x
′
C0

∪ xZ0 ] = 1n

xC0
=x′

C0

oP(xC1 |xZ0)

with the convention that P(xC1 |xZ0) = 1 if either of {Z0,C1} is empty. The claim now follows by
reading off the results previously obtained:

‖Bf‖ ≤ ‖B‖ ‖f‖ Eq. (2.1)

≤ ‖f‖ Remark 4.1.8

≤ ‖h‖∏|D|
k=2

∥

∥

∥A(dk)
∥

∥

∥ Eqs. (4.23,4.38)

≤ ∏|D|
k=1 α{

∥

∥A(u,v)
∥

∥ : (u, v) ∈ Edk
} Lemma 4.1.12.

Proof of Theorem 4.1.5. We will borrow the definitions from the proof of Lemma 4.1.13. To upper-
bound η̄ij we first bound α{

∥

∥A(u,v)
∥

∥ : (u, v) ∈ Edk
}. Since

|Edk
| ≤ wid(T ) ≤ L

(because every node in Idk
has exactly one parent in Idk−1

) and

∥

∥

∥
A(u,v)

∥

∥

∥
= θuv ≤ θ < 1,

we appeal to Lemma 4.1.9 to obtain

α{
∥

∥A(u,v)
∥

∥ : (u, v) ∈ Edk
} ≤ 1 − (1 − θ)L. (4.43)

Now we must lower-bound the quantity h = depT (j0) − depT (i). Since every level can have up to
L nodes, we have

j0 − i ≤ hL

and so h ≥ b(j0 − i)/Lc ≥ b(j − i)/Lc.
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The calculations in Lemma 4.1.13 yield considerably more information than the simple bound
in (4.17). For example, suppose the tree T has levels {Id : d = 0, 1, . . .} with the property that the
levels are growing at most linearly:

|Id| ≤ cd

for some c > 0. Let di = depT (i), dj = depT (j0), and h = dj − di. Then

j − i ≤ j0 − i ≤ c

dj
∑

di+1

k

=
c

2
(dj(dj + 1) − di(di + 1))

<
c

2
((dj + 1)2 − d2

i )

<
c

2
(di + h+ 1)2

so

h >
√

2(j − i)/c− di − 1,

which yields the bound, via Lemma 4.1.9(f),

η̄ij ≤
h
∏

k=1

∑

(u,v)∈Ek

θuv. (4.44)

Let θk = max{θuv : (u, v) ∈ Ek}; then if ckθk ≤ β holds for some β ∈ R, this becomes

η̄ij ≤
h
∏

k=1

(ckθk)

<

√
2(j−i)/c−di−1
∏

k=1

(ckθk)

≤ β
√

2(j−i)/c−di−1. (4.45)

This is a non-trivial bound for trees with linearly growing levels: recall that to bound ‖∆‖∞ (3.16),
we must bound the series

∞
∑

j=i+1

η̄ij .

By the limit comparison test with the series
∑∞

j=1 1/j2, we have that

∞
∑

j=i+1

β
√

2(j−i)/c−di−1

converges for β < 1. Similar techniques may be applied when the level growth is bounded by
other slowly increasing functions. It is hoped that these techniques will be extended to obtain
concentration bounds for larger classes of directed acyclic graphical models.
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4.2 Law of large numbers

The material in this section is taken, with minor modifications, from a paper in progress with
Anthony Brockwell [36].

Roughly speaking, laws of large numbers assert the convergence of empirical averages to true
expectations, and, under appropriate assumptions, ensure that inferences about persistent world
phenomena become increasingly more valid as data accumulates. When this convergence is in
probability, we have a weak law of large numbers (LLN); when the convergence is almost sure we
have a strong LLN, and the Borel-Cantelli lemma [63] allows one to convert a sufficiently rapidly
converging weak LLN into a strong LLN.

We give a brief survey of strong LLNs in [36], with a special emphasis on results for non-
independent processes. Even this specialized field has produced a formidable body of work – to do
each result justice could easily require a book. We refer the reader to
http://www.stats.org.uk/law-of-large-numbers/

in the hope that the list of papers is both comprehensive and regularly updated. Keeping in mind
the necessarily limited nature of any such endeavor (i.e., confined to a single thesis chapter), we
nevertheless attempt a rough summary of the state of affairs in non-independent strong LLNs.

From Birkhoff’s ergodic theorem we get a law of large numbers for ergodic processes; this has
been strengthened by Breiman [8] to cover the case where the stationary distribution is singular
with respect to the Lebesgue measure. Assumptions of ergodicity are typically too weak to provide
a convergence rate – this requires a stronger mixing condition. A classical (and perhaps first of
its kind) example of the latter is the paper by Blum, Hanson and Koopmans [26], which proves a
strong law of large numbers under a mixing condition known in a modern form as ψ-mixing [7].
This mixing condition guarantees exponentially fast convergence, but the proof does not directly
yield rate constants.

For many practical applications, one actually wants to know for how many steps to run an
algorithm to achieve a specified accuracy at a given confidence level – and this is precisely the
problem we wish to address. Our strong LLN provides a finite-sample bound with readily com-
putable (at least in principle) rate constants. The downside is that we must assume a stronger
mixing condition, though it turns out to be quite realistic in many applications [11].

We state our LLN for a real-valued random process. Though all of our results so far have been
for finite Ω, they readily generalize to the continuous case, as shown in Chapter 5.1.

Theorem 4.2.1. Let (Ω,B, µ) be a (positive) Borel measure space. Define the random process
X∞

1 on the measure space (ΩN,BN,P), and assume that for all n ≥ 1 we have Pn � µn, where
Pn is the marginal distribution on Xn

1 and µn is the corresponding product measure on (Ωn,Bn).
Suppose further that for any measurable A ⊂ Ω, its empirical measure defined by

P̂n(A) =
1

n

n
∑

i=1

1{Xi∈A}

has uniformly converging expectation:

lim
n→∞

∥

∥

∥
EP̂n(·) − ν(·)

∥

∥

∥

TV

→ 0;

define n0 = n0(ε) to be such that
∥

∥

∥EP̂n(·) − ν(·)
∥

∥

∥

TV

< ε for all n > n0(ε).

http://www.stats.org.uk/law-of-large-numbers/
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Then P̂n(A) converges to ν(A) almost surely, exponentially fast:

Pn

{∣

∣

∣
P̂n(A) − ν(A)

∣

∣

∣
> t+ ε

}

≤ 2 exp(−nt2/2 ‖∆n‖2
∞)

for all n > n0(ε), where ∆n is the η-mixing matrix defined in (3.15).

Modulo questions regarding the generalization from finite Ω to R (which are addressed in
Chapter 5.1), this result follows directly from Theorem 3.3.1, by observing that the function ϕA :
Xn

1 7→ R defined by ϕA(Xn
1 ) = P̂n(A) has Lipschitz constant 1/n. For a recent application of this

result in statistics, see Brockwell’s forthcoming paper [11] on a Monte Carlo estimator for a particle
filter.

4.3 Empirical processes and machine learning

Empirical process theory is concerned with establishing the almost sure convergence of path func-
tionals to their expected values, uniformly over classes of permissible functionals. A classical ref-
erence is Pollard’s excellent book [57]; for a more recent treatment, focusing on non-iid processes,
see [14].

In the simplest setting, we have a set X (sample space) and collection of subsets C ⊂ 2X (concept
class). If P =

⊗∞
i=1 P is a product measure on XN, we say that C is a Glivenko-Cantelli class if for

all ε, δ > 0 there is an m0 = m0(ε, δ) such that for all distributions P on X , we have

sup
n≥m0

Pn
{

sup
A∈C

∣

∣

∣P̂n(A) − P (A)
∣

∣

∣ > ε

}

< δ, (4.46)

where P̂n(A) is the empirical measure defined by

P̂n(A) =
1

n

n
∑

i=1

1{Xi∈A}.

In general, measurability issues may arise concerning A ⊂ X and – more subtly – the possibly
uncountable supremum over C in (4.46); these are addressed in detail in [57], and following Pollard,
we call C permissible if it avoids such pathologies.

Machine-learning theorists define learnability in essentially the same way, though they use the
language of oracles and learners [30]. An oracle labels examples x ∈ X as “positive” or “negative,”
depending on their membership in some target C ∈ C. Given a random P -iid labeled sample
Xn

1 , Xi ∈ X , the learner produces a hypothesis H = H(Xn
1 ), whose empirical error Ê(H) is

the normalized count of the examples it mislabels and whose true error E(H) = P (C∆H) is the
probability of misclassifying a P -random example5. The concept class C is said to be Probably
Approximately Correct (PAC) learnable if for all distributions P and all ε, δ > 0 there is an
m0 = m0(ε, δ) such that for all samples of size n ≥ m0, with Pn-probability at least 1 − δ, we
have E(H) ≤ Ê(H) + ε. The main difference between the empirical process and machine learning
approaches is that the latter imposes the additional constraint that the problem of finding an
H ∈ C with low empirical error be efficiently solvable, while the former is mainly concerned with
characterizations and rates of convergence.

5 C∆H = (C \ H) ∪ (H \ C) is the symmetric set difference.
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The necessary and sufficient conditions for C to be a Glivenko-Cantelli class (and therefore also
PAC-learnable) are stated in terms of a combinatorial property known as the VC-dimension (see,
for example [30] or [67]) and have been generalized to real-valued (as opposed to binary) concepts
[2].

In this work, we are concerned with relaxing the independence assumption in Glivenko-Cantelli
laws. Extensions of uniform laws of large numbers to non-iid processes are fairly recent. Nobel and
Dembo [56] show that if C satisfies (4.46) for an iid process, then the statement also holds for a
β-mixing process having identical marginals (see [7]). Following up, Yu [71] gave asymptotic rates
for β- and φ-mixing stationary processes. For the more specialized setting of homogeneous Markov
chains, Gamarnik [23] gives a finite sample PAC-type bound in terms of the spectral gap.

We shall depart from the methods above, emphasizing uniform laws of large numbers as con-
sequences of measure concentration results. Our goal is to obtain finite-sample (as opposed to
asymptotic), possibly data-dependent bounds for arbitrary processes having identical marginals.
Our result hinges on a decoupling conjecture, which though still open, has accumulated much
numerical evidence.

Boucheron, Bousquet and Lugosi [5] present a powerful and aesthetic technique for deriving
generalization bounds from concentration inequalities. We begin with a condensed summary of
empirical risk minimization, taken from [5], pp. 3-7. In this section, Ω = X × Y, where X is the
instance space and Y = {−1,+1} are the labels. Our random process (sample) is a sequence of
labeled instances, (Zi, Yi)1≤i≤n, and we take it to be iid for now.

Let C be a collection of classifiers g : X → {−1,+1} and take the loss function

L(g) = P{g(Z) 6= Y }

which we estimate by the empirical error

Ln(g) =
1

n

∑

i

1{g(xi)6=yi}.

Let g∗n be such that

Ln(g
∗
n) ≤ Ln(g) for all g ∈ C.

We wish to control the amount by which the empirical error Ln(g
∗
n) can differ from the true

error L(g∗n), so we are interested in bounding the quantity

sup
g∈C

|Ln(g) − L(g)|,

called the uniform deviation.

We investigate this problem in a general setting. Let X = (X1, . . . ,Xn) consist of iid random
variables taking values in Ω and let F be a class of bounded functions f : Ω → [−1, 1]. We use
Pollard’s convention of writing Pf = Ef(X1) and Pnf = 1

n

∑

i f(Xi). The quantity of interest is
supf∈F |Pf − Pnf | , which is a random variable of the sample:

ϕ(Xn
1 ) = sup

f∈F

∣

∣

∣

∣

∣

∑

x∈Ω

P (x)f(x) − 1

n

n
∑

i=1

f(Xi)

∣

∣

∣

∣

∣

. (4.47)
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Boucheron et al. begin by observing that ϕ is 2/n-Lipschitz with respect to the (wi ≡ 1)
Hamming metric, and so McDiarmid’s inequality applies:

P{ϕ(Xn
1 ) − Eϕ(Xn

1 ) > t} ≤ exp
(

−nt2/2
)

,

meaning that with probability at least 1 − δ, we have

sup
f∈F

|Pf − Pnf | ≤ E

[

sup
f∈F

|Pf − Pnf |
]

+

√

2 log(1/δ)

n
. (4.48)

It remains to bound the quantity E
[

supf∈F |Pf − Pnf |
]

, which Boucheron et al. do in terms of
Rademacher averages. Define the Rademacher sequence of iid variables {σi}1≤i≤n, with σi taking
on the values ±1 with equal probability. Then (via Jensen’s inequality and some calculations) one
obtains

EPn

[

sup
f∈F

|Pf − Pnf |
]

≤ 2EPn,σ sup
f∈F

n
∑

i=1

σif(Xi) = 2EPnRn(F(Xn
1 )), (4.49)

where
F(Xn

1 ) = {f(Xi) : 1 ≤ i ≤ n, f ∈ F}
is the projection of F onto the sample, and the Rademacher average Rn is defined for any bounded
A ⊂ Rn by

Rn(A) = Eσ sup
a∈A

1

n

∣

∣

∣

∣

∣

n
∑

i=1

σiai

∣

∣

∣

∣

∣

.

Now Rn(F(Xn
1 )) is once again a 1/n-Lipschitz function of the sample, and so will be very close to

its mean with a high probability. Thus one obtains

Theorem 4.3.1 (Thm. 3.2 of [5]). With probability at least 1 − δ, we have

sup
f∈F

|Pf − Pnf | ≤ 2ERn(F(Xn
1 )) +

√

2 log(1/δ)

n
(4.50)

and

sup
f∈F

|Pf − Pnf | ≤ 2Rn(F(Xn
1 )) +

√

2 log(2/δ)

n
. (4.51)

The inequality in (4.50) reduces the problem of bounding the generalization error to one of
bounding ERn(F(Xn

1 )); the latter is a property of the function class F alone, and may be bounded
(for {0, 1}-valued f) by c

√

dVC/n where dVC is the VC-dimension of F and c is a universal constant.
The bound in (4.51) has the useful property of being data-dependent: its value will vary depending
on the observed sequence and thus it has the potential of being significantly sharper when the
learner gets a particularly “friendly” sample6.

6 It may not be obvious how to compute Rn(F(Xn
1 )) for a given sample; Boucheron et al. suggest Monte Carlo

integration as one method.
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We would like to extend this technique to non-iid processes. The analog of (4.48) comes essen-
tially for free. Indeed, let P be a measure on ΩN having identical marginals P . Then it follows
directly from Theorem 3.3.1 that

P{ϕ(Xn
1 ) − Eϕ(Xn

1 ) > t} ≤ exp
(

−nt2/4 ‖∆n‖2
∞

)

,

where ϕ is the uniform deviation (4.47), from which we get that

sup
f∈F

|Pf − Pnf | ≤ E

[

sup
f∈F

|Pf − Pnf |
]

+ 2 ‖∆n‖∞
√

log(1/δ)

n

holds with P-probability at least ≥ 1−δ. Observe also that the bounds in (4.50) and (4.51) continue
to hold for non-iid processes, with the confidence term modified as above.

The crux of the matter is to generalize (4.49) to non-iid processes. We attempted to modify the
definition of a Rademacher average, but this approach yielded no fruit. Instead, we shall pursue a
path of further abstraction. Let us now state a conjecture, for which there is strongly compelling
numerical evidence; for partial results, see Chapter 6.

Conjecture 4.3.2. Let µ be an arbitrary probability measure on Ωn. Let µ̃ be the unique product
measure on Ωn having the same marginals as µ. Let ϕ : Ωn → [0,∞) be 1-Lipschitz with respect to
the unnormalized Hamming metric. Then

∑

x∈Ωn

µ(x)ϕ(x) ≤ 1 + ‖∆n(µ)‖∞
∑

x∈Ωn

µ̃(x)ϕ(x).

If this conjecture were true, we would have

EP [Rn(F(Xn
1 ))] ≤ ‖∆n(P)‖∞ EPn [Rn(F(Xn

1 ))] +
1

n
(4.52)

and the latter can be bounded by the numerous classical methods for bounding Rademacher com-
plexities of function classes (see the amply documented references in [5]).
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Chapter 5

Examples and extensions

5.1 Countable and continuous state space

This section borrows heavily from [35]. Our concentration results extend quite naturally to the
countable case Ω = N and the continuous case Ω = R. We need to clear three potential hurdles:

(1) check that the martingale difference is well-defined and Azuma’s inequality (2.17) continues
to hold

(2) check that Φw-norm and Ψw-norm are well-defined

(3) check that the various inequalities – (3.26), (3.4), (3.29) – continue to hold.

In the Ω = N case, no measurability issues arise, so we only need to verify (2). Let `1(Ω
n) be

the set of all summable κ : Ωn → R. The Ψw-norm continues to be well-defined by (3.1) and is
finite since

‖κ‖Ψ,w ≤ n ‖f‖1 , (5.1)

as shown in Theorem 5.2.2 below. The definition of Φw-norm in (5.12) is likewise unchanged, and
again a trivial bound holds by Hölder’s inequality:

‖κ‖Φ,w ≤ ‖w‖1 ‖κ‖1 . (5.2)

The requisite inequality follows from Sec. 8.1 of [35]:

Theorem 5.1.1. For Ω = N and κ ∈ `1(Ω
n), we have

‖κ‖Φ,w ≤ ‖κ‖Ψ,w .

Proof. Pick any ϕ, κ in `1(Ω
n), with the additional constraint that ϕ : Ωn → [0, ‖w‖1] have

‖ϕ‖
Lip,w ≤ 1. For m ≥ 1, let Ωm = {k ∈ Ω : k ≤ m} and define the m-truncation of κ to be

the following function in `1(Ω
n):

κm(x) = 1{x∈Ωn
m}κ(x).

Then we have, by Theorem 3.1.2,

〈κm, ϕ〉 ≤ Ψw,n(κm)
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for all m ≥ 1, and limm→∞ κm(x) = κ(x) for all x ∈ Ωn. Let hm(x) = κm(x)ϕ(x) and note that
|hm(x)| ≤ ‖w‖1 |k(x)|, the latter in `1(Ω

n). Thus by Lebesgue’s Dominated Convergence theorem,
we have 〈κm, ϕ〉 → 〈κ, ϕ〉. A similar dominated convergence argument shows that Ψw,n(κm) →
Ψw,n(κ), which proves the claim.

The continuous version of Theorem 3.1.2 likewise follows by a straightforward approximation
argument. We consider the function spaceKn = L1(R

n,Bn, µn), where µn is the Lebesgue measure.
Sums are replaced with integrals over Rn with respect to µn (see §5.2 for formal details); the
finiteness of the corresponding Φw and Ψw norms is easily established (Theorems 5.2.3 and 5.2.2).

Theorem 5.1.2 (Thm. 3.3 of [36]). Let µn be the Lebesgue measure on Rn. Then, for all
f, g ∈ L1(R

n, µn) with g : Rn → [0, ‖w‖1] and ‖g‖
Lip,w ≤ 1, we have

∫

Rn

f(x)g(x)dµn(x) ≤ Ψw,n(f). (5.3)

Proof. For readability we take wi ≡ 1 and suppress it from the subscripts; this incurs no loss
of generality. To avoid ambiguity we will indicate explicitly when inner products, Φ-norms and
Ψ-norms are computed over Rn using the notation ΦR, ΨR(·), and 〈·, ·〉

R
.

Let Cc denote the space of continuous functions f : Rn → R with compact support; it follows
from [59, Theorem 3.14 of] that Cc is dense in L1(R

n, µn), in the topology induced by ‖·‖L1
. This

implies that for any f ∈ L1(R
n, µn) and ε > 0, there is a g ∈ Cc such that ‖f − g‖L1

< ε/n and
therefore (via (5.6) and (5.9)),

‖f − g‖Φ < ε and ‖f − g‖Ψ < ε

so it suffices to prove (5.3) for f ∈ Cc.
For m ∈ N, define Qm ⊂ Q to be the rational numbers with denominator m:

Qm = {p/r ∈ Q : r = m} .

Define the map γm : R → Qm by

γm(x) = max {q ∈ Qm : q ≤ x}

and extend it to γm : Rn → Qnm by defining [γm(x)]i = γm(xi). The set Qnm ⊂ Rn will be referred
to as the m-grid points.

We say that g ∈ L1(R
n, µn) is a grid-constant function if there is an m > 1 such that g(x) = g(y)

whenever γm(x) = γm(y); thus a grid-constant function is constant on the grid cells induced
by Qm. Let Gc be the space of the grid-constant functions with compact support; note that
Gc ⊂ L1(R

n, µn). It is easy to see that Gc is dense in Cc. Indeed, pick any f ∈ Cc and let
M ∈ N be such that supp(f) ⊂ [−M,M ]n. Now a continuous function is uniformly continuous on
a compact set, and so for any ε > 0, there is a δ > 0 such that ωf (δ) < ε/(2M)n, where ωf is the
`∞ modulus of continuity of f . Take m = d1/δe and let g ∈ Gc be such that supp(g) ⊂ [−M,M ]n

and g agrees with f on the m-grid points. Then we have

‖f − g‖L1
≤ (2M)n ‖f − g‖L∞

< ε.

Thus we need only prove (5.3) for f ∈ Gc, g ∈ Gc ∩ ΦR.
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Let f ∈ Gc and g ∈ Gc ∩ ΦR be fixed, and let m > 1 be such that f and g are m-grid-constant
functions. Let κ̄, ϕ̄ : Qnm → R be such that κ̄(γm(x)) = f(x) and ϕ̄(γm(x)) = g(x) for all x ∈ Rn.
As above, choose M ∈ N so that supp(f) ∪ supp(g) ⊂ [−M,M ]n. Thus we have

〈f, g〉
R

=

(

2M

m

)n

〈κ̄, ϕ̄〉

and

ΨR(f) =

(

2M

m

)n

Ψn(κ̄).

Now Qm is finite and by construction, ϕ̄ ∈ Φn, so Theorem 3.1.5 applies. This shows 〈f, g〉
R
≤

ΨR(f) and completes the proof.

The next order of business is item (1) above. The simplest way to ensure that Azuma’s inequality
continues to apply is to assume that P � µn, where µn is the Lebsegue measure on Rn. This allows
us replace ‖·‖∞ on Vi with ess sup with respect to µn; Azuma’s inequality only requires that the
martingale difference be bounded almost surely. Similarly, the max in the definition of η̄ij (3.14)
gets replaced by ess sup with respect to µn. The subtleties of conditioning on measure-zero events
(and indeed, the existence of conditional distributions) are addressed in §5.4.

5.2 Norm properties of ‖·‖Φ and ‖·‖Ψ

In this section, taken almost entirely from [35], we take wi ≡ 1 without loss of generality and
suppress it in the subscripts. It was proved in [37] that ‖·‖Φ and ‖·‖Ψ are valid norms when Ω
is finite. We now do this in a significantly more general setting, and examine the strength of the
topologies induced by these norms. We begin with a formal definition of the two norms in abstract
metric spaces.

Let (X , ρ) be a metric space and define Lip(X , ρ) to be the set of all f : X → [0,diamρ(X )]
such that

sup
x 6=y∈X

|f(x) − f(y)|
ρ(x, y)

≤ 1; (5.4)

note that Lipschitz-continuity does not guarantee measurability (indeed, no measure has been
specified as of yet).

Let µ be a positive Borel measure on Ω and let Fn = L1(Ω
n, µn) be equipped with the inner

product

〈f, g〉 =

∫

Ωn

f(x)g(x)dµn(x). (5.5)

Since f, g ∈ Fn might not be in L2(Ω
n, µn), the expression in (5.5) in general might not be finite.

However, for g ∈ Lip(Ωn, ρ), we have

|〈f, g〉| ≤ diamρ(Ω
n) ‖f‖L1(µn) . (5.6)



56 Examples and extensions

The continuous analog of the projection operator π : Fn → Fn−1 is defined as follows. If
f : Ωn → R then (πf) : Ωn−1 → R is given by

(πf)(x2, . . . , xn) =

∫

Ω
f(x1, x2, . . . , xn)dµ(x1). (5.7)

Note that by Fubini’s theorem (Thm. 8.8(c) in [59]), πf ∈ L1(Ω
n−1, µn−1). Define the functional

Ψn : Fn → R recursively: Ψ0 = 0 and

Ψn(f) =

∫

Ωn

(f(x))+ dµ
n(x) + Ψn−1(πf) (5.8)

for n ≥ 1. The latter is finite since

Ψn(f) ≤ n ‖f‖L1(µ) , (5.9)

as shown in Theorem 5.2.2 below.
We say that the metric space (Ωn, ρ) is Ψ-dominated with respect to a positive Borel measure

µ on Ω if the inequality

sup
g∈Lip(Ωn,ρ)

〈f, g〉 ≤ Ψn(f) (5.10)

holds for all f ∈ L1(Ω
n, µn).

Lemma 5.2.1. Suppose (Ωn, ρ) is a Ψ-dominated metric space with respect to some (positive Borel)
measure µ and (Ωn, τ) is another metric space, with τ dominated by ρ, in the sense that

τ(x, y) ≤ ρ(x, y), x, y ∈ Ωn. (5.11)

Then (Ωn, τ) is also Ψ-dominated with respect to µ.

Proof. By (5.11), we have

Lip(Ωn, τ) ⊂ Lip(Ωn, ρ),

which in turn implies

sup
g∈Lip(Ωn,τ)

|〈f, g〉| ≤ sup
g∈Lip(Ωn,ρ)

|〈f, g〉| ≤ Ψn(f).

The Φ-norm and Ψ-norm are defined as before:

‖f‖Φ = sup
g∈Lip(Ωn,ρ)

|〈f, g〉| (5.12)

and

‖f‖Ψ = max
s=±1

Ψn(sf); (5.13)

note that both depend on the measure µ and Φ-norm also depends on the metric.
Establishing the norm properties of ‖·‖Ψ is straightforward:
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Theorem 5.2.2. Let Fn = L1(Ω
n, µn) for some positive Borel measure µ. Then

(a) ‖·‖Ψ is a vector-space norm on Fn

(b) for all f ∈ Fn,

1
2 ‖f‖L1

≤ ‖f‖Ψ ≤ n ‖f‖L1
.

Proof. We prove (b) first. Since

‖f‖L1 = ‖ (f)+ ‖L1 + ‖ (−f)+ ‖L1 ,

we have that ‖f‖Ψ (defined in (5.8) and (5.13)) is the sum of n terms, each one at most ‖f‖L1
and

the first one at least 1
2 ‖f‖L1

; this proves (b).
To prove (a) we check the norm axioms:
Positivity: It is obvious that ‖f‖Ψ ≥ 0 and (b) shows that ‖f‖Ψ = 0 and iff f = 0 a.e. [µ].
Homogeneity: It is immediate from (5.8) that Ψn(af) = aΨn(f) for a ≥ 0. From (5.13) we have

‖f‖Ψ = ‖−f‖Ψ. Together these imply ‖af‖Ψ = |a| ‖f‖Ψ.
Subadditivity: It follows from the subadditivity of the function h(z) = (z)+ and additivity of

integration that ‖f + g‖Ψ ≤ ‖f‖Ψ + ‖g‖Ψ.

Theorem 5.2.3. Let Fn = L1(Ω
n, µ) for some measure space (Ωn, µn). Then ‖·‖Φ is a seminorm

on Fn, for any metric ρ.

Proof. Nonnegativity: ‖f‖Φ ≥ 0 is obvious from the definition (5.12).
Homogeneity: It is clear from the definition that ‖af‖Φ = |a| ‖f‖Φ for any a ∈ R.
Subadditivity: ‖f + g‖Φ ≤ ‖f‖Φ + ‖g‖Φ follows from the linearity of 〈·, ·〉 and the triangle

inequality for |·|.

Under mild conditions on the Borel measure space (Ωn, µn), ‖·‖Φ is a genuine norm. Let µ be
a Borel measure on X , whose σ-algebra is generated by some topology T . The measure µ is called
outer regular if

µ(E) = inf {µ(V ) : E ⊂ V, V is T -open}

for all measurable E ⊂ X ; µ is called non-atomic if µ(x) = 0 for all x ∈ X .

Theorem 5.2.4. Let µ be a non-atomic outer regular Borel measure on X . Then for any f ∈
L1(X , µ), for any metric ρ on X , ‖f‖Φ = 0 iff f = 0 a.e. [µ].

Proof. Suppose f ∈ L1(X , µ). The case f ≤ 0 a.e. [µ] is trivial, so we assume the existence of a
T -closed Borel E ⊂ X such that

0 < µ(E) <∞, f > 0 on E.

Since µ is outer regular, there is a sequence of T -open sets Vn ⊂ X such that E ⊂ Vn and
limn→∞ µ(Vn) = µ(E). Define

hn(x) =
ρ(x, V c

n )

ρ(x,E) + ρ(x, V c
n )
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where V c
n = X \Vn; assuming without loss of generality diamρ(X ) ≥ 1 it is straightforward to verify

that hn ∈ Lip(X , ρ).
By non-atomicity of µ, we have

lim
n→∞

〈f, hn〉 =

∫

E
fdµ > 0,

which implies that 〈f, ·〉 cannot vanish on all of Lip(X , ρ), and so ‖f‖Φ > 0.

Theorem 5.2.2 shows that ‖·‖Ψ is topologically equivalent to ‖·‖L1
. The norm strength of ‖·‖Φ

is a more interesting matter. In the case of finite Ω, Fn = `1(Ω
n) is a finite-dimensional space so

all norms on Fn are trivially equivalent. Suppose Ω is a countable set (equipped with the counting
measure) and ρ has the property that

d0 = inf
x 6=y

ρ(x, y) > 0.

The functions g(x) = d01{f(x)>0} and h(x) = d01{f(x)<0} are both in Lip(Ω, ρ), and since d0 ‖f‖1 =
|〈f, g〉| + |〈f, h〉|, we have

1
2d0 ‖f‖1 ≤ ‖f‖Φ ≤ diamρ(Ω) ‖f‖1 (5.14)

for all f ∈ Fn, so the norms ‖·‖Φ and ‖·‖1 are equivalent in this case.
Suppose, on the other hand, that T = {x1, x2, . . .} forms a Cauchy sequence in the countable

space Ω, with δi = ρ(xi, xi+1) approaching zero. Let f ∈ `1(Ω) be such that f(x2k) = −f(x2k−1)
for k = 1, 2, . . . and f(x) = 0 for x /∈ T ; then

‖f‖Φ ≤
∞
∑

k=1

|f(x2k−1)| δ2k−1 ≤ ‖f‖1

∞
∑

k=1

δ2k−1. (5.15)

If Ω = Q∩ [0, 1] (the rationals in [0, 1]) with ρ(x, y) = |x−y| as the metric on Ω, the r.h.s. of (5.15)
can be made arbitrarily small, so for this metric space,

inf {‖f‖Φ : ‖f‖1 = 1} = 0

and ‖·‖Φ is a strictly weaker norm than ‖·‖1.
Similarly, when Ω is a continuous set, ‖·‖Φ will be strictly weaker than ‖·‖L1

in a fairly general
setting. As an example, take n = 1, Ω = [0, 1], µ the Lebesgue measure on [0, 1], and ρ(x, y) =
|x− y|. For N ∈ N, define γN : [0, 1] → N by

γN (x) = max {0 ≤ k < N : k/N ≤ x} .

Consider the function

fN(x) = (−1)γN (x),

for N = 2, 4, 6, . . .; note that f is measurable and ‖f‖L1
= 1.

For a fixed even N , define the kth segment

Ik = {x ∈ [0, 1] : k ≤ γN (x) ≤ k + 2} =

[

k

N
,
k + 2

N

]

,
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for k = 0, 2, . . . , N − 2. Since diam Ik = 2/N , for any g ∈ Lip(Ω, ρ), we have

sup
Ik

g(x) − inf
Ik
g(x) ≤ 2/N ;

this implies

∫

Ik

fN(x)g(x)dµ(x) ≤ 2/N2.

Now [0, 1] is a union of N/2 such segments, so

∫ 1

0
fN (x)g(x)dµ(x) ≤ 1/N.

This means that ‖f‖Φ can be made arbitrarily small while ‖f‖L1
= 1, so once again and ‖·‖Φ is a

strictly weaker norm than ‖·‖L1
.

5.3 `p and other Ψ-dominated metrics

In this section, we show how our concentration results extend to metrics other than Hamming,
such as the `p metrics on Rn. Throughout this discussion, we will take Ω = [0, 1] and µ to be
the Lebesgue measure. For f : Rn → R, we define ‖f‖

Lip,p to be the Lipschitz constant of f with
respect to the metric d(x, y) = ‖x− y‖p, where 1 ≤ p ≤ ∞.

We begin with the simple observation that the unnormalized Hamming metric on [0, 1]n domi-
nates `1([0, 1]

n). Recall also that for any 1 < p ≤ ∞ and any x ∈ Rn, we have

‖x‖p ≤ ‖x‖1 ≤ n1/q ‖x‖p , (5.16)

where 1/p+1/q = 1. The first inequality holds because the convex function x 7→ ‖x‖p is maximized
on the extreme points (corners) of the convex polytope {x ∈ Rn : ‖x‖1 = 1}. The second inequality
is checked by applying Hölder’s inequality to

∑

xiyi, with y ≡ 1. Both are tight. Thus, in light
of Lemma 5.2.1, the Ψ-dominance (with respect to the Lebesgue measure), of ‖·‖1 implies the
Ψ-dominance of ‖·‖p.

We are now in a position to attempt a rough comparison between the results obtained here
and the main result of Samson’s 2000 paper [60]. Assume for simplicity that for a given random
process X on [0, 1]n, the two quantities ‖∆n‖∞ and ‖Γn‖2 (defined in (3.19)) are of the same order
of magnitude. For example, for the case of contracting Markov chains with contraction coefficient
θ < 1, we have

‖∆n‖∞ ≤ 1

1 − θ
, ‖Γn‖2 ≤ 1

1 − θ1/2

(as computed in §4.1.2 and [60], respectively).

Suppose f : [0, 1]n → R has ‖f‖
Lip,2 ≤ 1. Samson gives the deviation inequality

P{|f − Ef | > t} ≤ 2 exp

(

− t2

2 ‖Γn‖2
2

)
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with the additional requirement that f be convex. By (5.16) we have ‖f‖
Lip,1 ≤ 1 and we have

established above that the `1 metric is Ψ-dominated. Thus, Theorem 3.3.1 applies:

P
{

|f − Ef | > t
√
n
}

≤ 2 exp

(

− t2

2 ‖∆n‖2
∞

)

(5.17)

for any f : [0, 1]n → R with ‖f‖
Lip,2 ≤ 1 (convexity is not required).

To convert from the bound in Theorem 3.1.2 to Samson’s bound, we start with a convex
f : [0, 1]n → R, having ‖f‖

Lip,1 ≤ 1. By (5.16), this means that ‖f‖
Lip,2 ≤ √

n, or equivalently,
∥

∥n−1/2f
∥

∥

Lip,2
≤ 1. Applying Samson’s bound to n−1/2f , we get

P
{

|f − Ef | > t
√
n
}

≤ 2 exp

(

− t2

2 ‖Γn‖2
2

)

, (5.18)

while the bound provided by Theorem 3.1.2 remains as stated in (5.17).
We stress that the factor of

√
n in (5.17) and (5.18) appears in the two bounds for rather

different reasons. In (5.17), it is simply another way of stating Theorems 3.3.1 for ‖f‖
Lip,1 ≤ 1;

namely, P{|f − Ef | > t} ≤ 2 exp(−t2/2n ‖∆n‖2
∞). In (5.18), the

√
n was the “conversion cost”

between the `1 and the `2 metrics.

5.4 Measure-theoretic subtleties

Measurability issues typically arise in probability theory when one considers continuous-time pro-
cesses [66], takes suprema over uncountable function classes [64], or considers set enlargements
with respect to a metric incompatible with the topology generating the Borel σ-algebra [65]. Our
martingale approach involves neither, so the only potentially sticky issue is the existence and well-
behavedness of the conditional distributions we so heavily rely upon.

Let us illustrate the sort of difficulty that arises when conditioning on measure-zero events, with
the following example. Let Ω = {0, 1} and define the measure µ on Ω3 as follows:

µ(x) = 1
21{x1=x2=x3}. (5.19)

What value does the definition in (3.14) imply for η̄2,3(µ)? One might consider slightly perturbing
µ to make it strictly positive and appeal to the continuity of ηij . Conditional distributions are
indeed well-behaved if they are well-defined:

Lemma 5.4.1. Let X be a measurable space and suppose the sequence of probability measures µn
converges in ‖·‖

TV
to some probability measures µ. If A,B ⊂ X are measurable, with µ(B) > 0 and

µn(B) > 0 for all n, then
lim
n→∞

µn(A |B) = µ(A |B).

Proof. Let the measures ν and ν ′ be such ‖ν − ν ′‖
TV
< ε. Then

∣

∣

∣

∣

ν(A ∩B)

ν(B)
− ν ′(A ∩B)

ν ′(B)

∣

∣

∣

∣

≤
∣

∣

∣

∣

ν(A ∩B)

ν(B)
− ν ′(A ∩B)

ν(B) + ε

∣

∣

∣

∣

≤
∣

∣

∣

∣

ν(B)(ν(A ∩B) − ν ′(A ∩B)) − εν(A ∩B)

ν(B)2

∣

∣

∣

∣

≤ 2ε

ν(B)2
.
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However, when conditioning on sets of measure zero, all bets are off. Define the sequence of
measures {µk}k≥3 on {0, 1}3 as follows:

µk(x) =







1
2 − 1

k , if x1 = x2 = x3

1
3k , else

.

It is straightforward to verify that µk converges in ‖·‖
TV

to the measure µ defined in (5.19), and
that η̄2,3(µk) → 1/2. On the other hand, consider the homogeneous Markov measure νk on {0, 1}3

given by p0(0) = p0(1) = 1/2 and

p(a | b) = 1{a=b}(1 − k−1) + 1{a6=b}k
−1

for a, b ∈ {0, 1} and k ≥ 2. Again, it is easily seen that νk → µ, but this time η̄2,3(νk) → 1. The
moral of the story is that when conditioning on sets of measure zero via a limiting process, the
limit is not uniquely defined.

Fortunately, this is no cause for despair. Our overarching goal is to bound the deviation probabil-
ity µ {|f − µf | > r}, and this quantity is surely insensitive to small perturbations of µ. Thus we may
safely approximate a measure µ on a countable set by a sequence of strictly positive measures µk.
Though different limiting sequences will give rise to different values of D∗ = limk→∞ ‖∆n(µk)‖∞,
we are justified in using the best (i.e., smallest) value we obtain from any limiting sequence to
bound the deviation probability.

The case of Ω = R is somewhat simpler – mostly due to our requirement that the probability
measure µ on Rn have a density with respect to the Lebesgue measure. The conditional densities
may be obtained by dividing the joint by the marginal; Theorem 3.12 of Pollard [58] assures that
under mild conditions the ratio will be well-defined and well-behaved almost everywhere. (Pollard
also gives a fascinating discussion of disintegration – the mild yet subtle topological conditions
under which a joint measure decomposes into a kernel product.)

Most relevant to us is the observation that since D2 in Azuma’s inequality (2.17) need only
bound

∑n
i=1 ‖Vi‖2

∞ almost surely, we may define η̄ij via the ess sup in the continuous case:

η̄ij = ess sup
y∈Ri−1,w,w′∈R

ηij(y,w,w
′), (5.20)

where ess sup is taken with respect to the Lebesgue measure.

5.5 Breakdown of concentration

Lipschitz continuity and strong mixing have been a prevailing theme throughout this work; let us
demonstrate by example (taken from [35]) how concentration can fail if either of these conditions
is dropped.

Let µ be the uniform probability measure on {0, 1}n and (Xi)1≤i≤n be the associated (indepen-
dent) process. Though different notions of mixing exist [7], X trivially satisfies them all, being an
iid process. Define f : {0, 1}n → [0, 1] by

f(x) = x1 ⊕ x2 ⊕ . . .⊕ xn,
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where ⊕ is addition mod 2. Since P{f(X) = 0} = P{f(X) = 1} = 1
2 , f is certainly not con-

centrated about its mean (or any other constant). Though X is as well-behaved as can be, f is
ill-behaved in the sense that flipping any single input bit causes the output to fluctuate by 1.1

For the second example, take f : {0, 1}n → [0, 1] to be

f(x) =
1

n

n
∑

i=1

xi.

If (Xi)1≤i≤n is the iid process from the previous example, it is easy to show that the martingale
difference Vi is bounded by 1/n, and so by Azuma’s inequality, f is concentrated about its mean.
What if we relax the independence condition? Consider the (degenerate) homogeneous Markov pro-
cess: P{X1 = 0} = P{X1 = 1} = 1

2 and Xi+1 = Xi with probability 1. This process trivially fails
to satisfy any (reasonable) definition of mixing [7]. Our well-behaved f is no longer concentrated,
since we again have P{f(X) = 0} = P{f(X) = 1} = 1

2 .

5.6 Using Ψ-norm to bound the transportation cost

Recall the definition of the transportation cost distance from Chapter 2.3.5. Villani [69] gives a
fascinating account of the independent discovery of this distance by Monge and Kantorovich, and
explains the origin of the synonym “earthmover”.

Recall the transporation cost distance between two Borel probability measures µ, ν on a metric
space (X , ρ), defined by

Tρ(µ, ν) = inf
π

∫

X×X
ρ(x, y)dπ(x, y), (5.21)

where the infimum is taken over all couplings of µ and ν.
Our main interest in this distance is due to Marton’s transportation cost inequality (2.28), but

this notion extends well beyond measure concentration into areas such as mathematical physics
and economics; again, Villani [69] is an encyclopedic source on the matter.

A fortuitous consequence of our linear programming inequality (Theorem 3.1.2) is a simple
analytic bound on Tρ(µ, ν), for the case where ρ is any metric dominated2 by the weighted Hamming
metric dw on Ωn. This bound is made possible by the Kantorovich duality theorem [69, Thm. 5.9],
which states that

Tρ(µ, ν) = sup
ϕ∈Lip0(X ,ρ)

(
∫

X
ϕdµ −

∫

X
ϕdν

)

,

where Lip0(X , ρ) is the set of all ϕ : Ωn → R such that ‖ϕ‖
Lip

≤ 1 (with respect to ρ) and ϕ(x0) = 0
for some x0 ∈ X . Applying this to X = Ωn and ρ = dw (and noting the translation invariance:
〈ϕ, µ− ν〉 = 〈ϕ+ a, µ− ν〉 for any a ∈ R), we have that

Tρ(µ, ν) = ‖µ− ν‖Φ,w

≤ ‖µ− ν‖Ψ,w .

1 Without making far-reaching claims, we comment on a possible connection between the oscillatory behavior of f
and the notorious difficulty of learning noisy parity functions [22]. By contrast, the problem of learning conjunctions
and disjunctions under noise has been solved some time ago [30].

2 in the sense of ρ(x, y) ≤ dw(x, y) for all x, y ∈ Ωn
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Then point is that Tρ, both in its primal and dual form, involves solving a linear program,
and is not, in general, computable in closed form, while the Ψw,n functional provides a simple,
closed-form bound. We hope that this observation leads to new concentration results via Marton’s
transportation cost inequality, and perhaps finds other applications.

5.7 A “worst-case” family of measures with constant ‖∆n‖∞
The brief investigation we embark upon in this section was motivated in [35] by a comparison
between our main indicator of mixing, ‖∆n‖∞, and Samson’s [60] closely related quantity ‖Γn‖2,
given in (3.18). We proved in [35] that neither is uniformly a sharper indicator of the mixing
properties of a measure:

Theorem (Thm. 5.3 of [35]). There exist families of probability spaces (Ωn, µn)n≥1 such that
Rn → 0 and also such that Rn → ∞, where

Rn =
‖Γn(µn)‖2

‖∆n(µn)‖∞
.

Since Samson’s concentration result is for convex, `2-Lipschitz functions while ours is for dw-
Lipschitz ones (without the convexity requirement), it is not clear how meaningful such a compar-
ison is in general – though we attempt one in §5.3.

A potentially interesting byproduct of this investigation is the problem of constructing families
of measures µ whose mixing coefficients ∆n(µ) behave in some prescribed way. In particular, we
construct a process (Xi)1≤i≤n that achieves a sort of “worst-case” mixing behavior while still having
‖∆n‖∞ = 2:

Lemma (Lemma 5.1 of [35]). There exists a family of probability spaces (Ωn, µn)n≥1 such that

η̄ij(µn) = 1/(n − i) (5.22)

for 1 ≤ i < j ≤ n.

Proof. Let Ω = {0, 1} and fix an n ∈ N. For 1 ≤ k < n, we will call x ∈ {0, 1}n a k-good sequence

if xk = xn and a k-bad sequence otherwise. Define A
(k)
n ⊂ {0, 1}n to be the set of the k-good

sequences and B
(k)
n = {0, 1}n \A(k)

n to be the bad sequences; note that
∣

∣A
(k)
n

∣

∣ =
∣

∣B
(k)
n

∣

∣ = 2n−1. Let

µ
(0)
n be the uniform measure on {0, 1}n:

µ(0)
n (x) = 2−n, x ∈ {0, 1} .

Now take k = 1 and define, for some pk ∈ [0, 1/2],

µ(k)
n (x) = αkµ

(k−1)
n (x)

(

pk1n

x∈A
(k)
n

o + (1 − pk)1n

x∈B
(k)
n

o

)

, (5.23)

where αk is the normalizing constant, chosen so that
∑

x∈{0,1}n µ
(k)
n (x) = 1.

We will say that a probability measure µ on {0, 1}n is k-row homogeneous if for all 1 ≤ ` ≤ k
we have

(a) h`(µ) := η̄`,`+1(µ) = η̄`,`+2(µ) = . . . = η̄`,n(µ)
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(b) η̄ij(µ) = 0 for k < i < j

(c) hk is a continuous function of pk ∈ [0, 1/2], with hk(0) = 1 and hk(1/2) = 0.

It is straightforward to verify that µ
(1)
n , as constructed in (5.23), is 1-row homogeneous.3 Therefore,

we may choose p1 in (5.23) so that h1 = 1/(n − 1). Iterating the formula in (5.23) we obtain the

sequence of measures
{

µ
(k)
n : 1 ≤ k < n

}

; each µ
(k)
n is easily seen to be k-row homogeneous. Another

easily verified observation is that h`(µ
(k)
n ) = h`(µ

(k+1)
n ) for all 1 ≤ k < n − 1 and 1 ≤ ` ≤ k. This

means that we can choose the {pk} so that hk(µ
(k)
n ) = 1/(n − k) for each 1 ≤ k < n. The measure

µn := µ
(n−1)
n has the desired property (5.22).

5.8 The significance of ordering and parametrization

An important feature of the martingale method is that it is sensitive to the ordering and the
parametrization of the random process. We illustrate the first point with a simple (if not trivial)
example.

Define the measure µ on {0, 1}n as assigning equal probability to the x ∈ {0, 1}n with x1 = xn
and zero probability to the rest:

µ(xn1 ) = 2−n+11{x1=xn},

and let (Xi)1≤i≤n be the associated random process. For this measure, it is easy to see that

η̄ij = 1{i=1}, 1 ≤ i < j ≤ n,

which forces ‖∆n(µ)‖∞ = n. Let π be the permutation on {1, . . . , n} that exchanges 2 and n, leaving
the other elements fixed, and define the random process Y = π(X) by Yi = Xπ(i), 1 ≤ i ≤ n. It
is easily verified that ‖∆n(Y )‖∞ = 2. Thus if f : {0, 1}n → R is invariant under permutations
and ξ1, ξ2 ∈ R are random variables defined by ξ1 = f(X), ξ2 = f(π(X)), we have ξ1 = ξ2
with probability 1, yet the martingale technique proves much tighter concentration for ξ2 than for
ξ1. Of course, knowing this special relationship between ξ1 and ξ2, we can deduce a corresponding
concentration result for ξ1; what is crucial is that the concentration for ξ1 is obtained by re-indexing
the random variables.

Our second example is perhaps more interesting. Recall from Chapter 2.3.2 that a martingale-
derived method, using the notion of metric-space length, can be used to prove Maurey’s theorem:
if µ is the Haar measure on the symmetric group Sn then

µ {|f − µf | > r} ≤ exp(−nr2/32) (5.24)

for any f : Sn → R with ‖f‖
Lip

≤ 1 with respect to the normalized Hamming metric [61].
A naive attempt to re-derive (5.24) from McDiarmid’s inequality might proceed as follows. Let

Ω = {1, 2, . . . , n} and define µ to be the measure on Ωn that assigns equal weight to permutations
(i.e., sequences x ∈ Ωn without repeating symbols) and zero weight to all other sequences. This
approach is doomed to fail, since an easy computation yields η̄1j = (n − j + 1)/(n − 1) for this
process, forcing ‖∆n‖∞ is to grow linearly with n.

3 The continuity of hk follows from Lemma 5.4.1 and the perturbation argument.
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A more clever parametrization (communicated to us by Jim Pitman) does enable one to recover
(5.24) via martingale bounds. Let Ωk = {1, . . . , k} and consider the independent process (Xi)1≤i≤n,
with Xi ∈ Ωi distributed uniformly. A sequence x ∈ Ω1 × Ω2 × . . . × Ωn encodes a permutation
on {1, . . . , n} by specifying the location into which the next element gets inserted. Applying
McDiarmid’s inequality to the independent process Xn

1 , we get

µ {|f − µf | > r} ≤ exp(−2nr2),

which is even an improvement over (5.24).
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Chapter 6

Open problems, conjectures, future

directions

One of the joys of mathematics is that the right questions have a way of asking themselves, and
in the course of writing this thesis, many more fascinating problems came up than I could hope
to solve within the timeframe of a doctorate. That a novice is able to stumble onto such deep
problems so early in his journey indicates that the field of measure concentration has no risk of
running dry in the near future, and promises to be a fertile ground for fundamental ideas for many
years to come. Therefore, I end this thesis by listing some open problems, conjectures, and future
directions – both as personal goals and an invitation to the readers to join in the exploration.

6.1 Further applications

The principal contribution of this thesis is the linear programming inequality of Theorem 3.1.2
and the concentration results it implies for nonproduct measures. Anthony Brockwell and I did
find an application of these bounds to a concrete real-world problem, and a general application
to empirical processes was sketched out in Chapter 4. However, the applications we surveyed
in Chapter 1.3 make one optimistic about exploiting the nonproduct nature of our inequalities
to extend the corresponding results for product measures. It would be particularly good to find a
learning problem, randomized algorithm, or Banach space phenomenon where the random variables
have a dependence structure that lends itself to Theorem 3.3.1. We are also hopeful about finding
novel ways to apply the linear programming inequality in functional analysis.

6.2 Decoupling

Decoupling inequalities deal with bounding the expectation of a random variable under a nonproduct
measure by the same expectation under a product measure; see [68] for a survey of results. As
discussed in Chapter 4.3, we need just such a result in order to extend the method of Rademacher
averages to non-independent processes.

We conjecture that whenever µ is a measure on Ωn and µ̃ is its product approximation (i.e., the
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unique product measure on Ωn having the same marginals as µ), we have

∑

x∈Ωn

µ(x)ϕ(x) ≤ 1 + ‖∆n(µ)‖∞
∑

x∈Ωn

µ̃(x)ϕ(x).

for any ϕ : Ωn → [0,∞) that is 1-Lipschitz with respect to the unnormalized Hamming metric.
There is compelling numerical evidence supporting this conjecture, and if true, it will have impor-
tant implications for empirical process theory. I thank Richard Bradley, Richard Dudley, Magda
Peligrad and Vı́ctor de la Peña for the helpful correspondence regarding this question.

Another intriguing decoupling possibility is the following. As above, µ and µ̃ are measures on
Ωn. For A ⊂ Ωn with µ(A) ≥ 1/2, we conjecture

(c0 ‖∆n(µ)‖∞)−1 ≤ µ̃(A)

µ(A)
≤ c0 ‖∆n(µ)‖∞ (6.1)

for some universal constant c0 ≈ 2. If true, (6.1) would provide a generalization of Talagrand’s
inequality (see below) for nonproduct measures; the evidence for (6.1) is currently scant, however.

6.3 Extending Talagrand’s inequality to nonproduct measures

We mentioned Talagrand’s powerful inequality in Chapter 2.3.3. Let dw, w ∈ Rn
+ be the weighted

Hamming metric on some product probability space (Ωn, µ), and recall the definition of the convex
distance:

DA(x) = sup
‖w‖2≤1

dw(x,A)

for Borel A ⊂ Ωn. Talagrand’s inequality reads

µ(At) ≤ µ(A)−1 exp(−t2/4) (6.2)

where At = Ωn \At and At = {x ∈ Ωn : DA(x) ≥ t} is the t-enlargement of A.

A natural problem, posed to us by Amir Dembo, is to extend (6.2) for nonproduct measures. Let
µ be a nonproduct measure on Ωn and µ̃ its product approximation; fix A ⊂ Ωn with µ(A) ≥ 1/2.
If (6.1) holds, then we have

µ(At) ≤ kµ̃(At) ≤ kµ̃(A)−1 exp(−t2/4) ≤ k2µ(A)−1 exp(−t2/4),

where k = c0 ‖∆n(µ)‖∞; this would provide the desired nonproduct generalization.
Alternatively, one could work with (6.2) directly. Going out on a limb, one might be tempted

to conjecture the following generalization:

µ(At) ≤ µ(A)−1 exp

(

− t2

4 ‖∆n‖2
2

)

, (6.3)

where ‖∆n‖2 is the `2 operator norm of the η-mixing matrix defined in (3.15). Set-measure in-
equalities have a disadvantage over functional inequalities in that they are much more difficult to
test numerically; the evidence in favor of (6.3) is at this point rather scant.
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Consider, however, the following variant. Let F be a countable (to avoid measurability issues)
subset of the unit ball Bn = {x ∈ Rn : ‖x‖2 ≤ 1}. Define ϕ : [0, 1]n → R by

ϕ(x) = sup
w∈F

n
∑

i=1

wixi. (6.4)

Let us write V̄i(ϕ) for the maximal ith martingale difference, as in (3.30):

V̄i(ϕ) = max
yi
1∈Ωi

∣

∣Vi(ϕ; yi1)
∣

∣

(see (3.24) to recall the definition of Vi(ϕ; ·)).

Conjecture 6.3.1. If ϕ : [0, 1] → R is defined as in (6.4) then we have

n
∑

i=1

V̄i(ϕ)2 ≤ c log(n) ‖∆n‖2
2 (6.5)

for some universal constant c.

Being a functional inequality, (6.5) lends itself more easily to numerical investigation and has
accumulated a fair amount of evidence to lend it credence. The conjectured bound is not quite
dimension-free, but is significantly stronger than the one furnished by Theorem 3.3.4:

n
∑

i=1

V̄i(ϕ)2 ≤ ‖∆n1‖2
2 ≤ n ‖∆n‖2

∞ ;

the first place to start would be to prove Conjecture 6.3.1 for the product case.

6.4 Spectral transportation inequality

Let A = (aij) be a column-stochastic matrix, meaning that aij ≥ 0 and
∑

i aij = 1. Compute its
(complex) eigenvalues, take absolute values, sort in decreasing order (keeping multiplicities), and
let λ2 be the second value on the list1; this value is known as second largest eigenvalue modulus
(SLEM), [9].

Define the contraction coefficient of A to be

θ = max ‖Ai −Aj‖TV
,

where Ai and Aj range over the columns of A; θ is alternatively referred to as Doeblin’s or Do-
brushin’s coefficient.

Consider the metric probability space (Ωn, d̄, µ), where Ω is a finite set, d̄ is the normalized
Hamming metric on Ωn and µ is a homogeneous Markov measure on Ωn.

We may represent the transition kernel of µ by a column-stochastic matrix A, and define λ2 and
θ as above. We know (either from [37] or, in a slightly different form from [45]) that the contraction
coefficient θ controls the concentration of µ:

µ {|f − µf | > r} ≤ 2 exp(−n(1 − θ)2r2/2) (6.6)

1 The largest-modulus eigenvalue is always 1, by the Perron-Frobenius theorem [28].
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for any f : Ωn → R with ‖f‖
Lip

≤ 1 (with respect to d̄).

It is also well-known (see, for example, [1] or [52]) that λ2 controls the rate of convergence (in
‖·‖

TV
) of the Markov chain to the stationary distribution:

‖Pn − P∗‖TV
<

1

2

√
N exp(−(1 − λ2)n) (6.7)

where N = |Ω|, Pn is the marginal distribution at time step n, and P∗ is the stationary distribution.

Now θ can be a rather crude indicator of the mixing properties of the Markov chain. Consider,
for example,

A =





0 0 0
0 1 1
1 0 0



 ;

here, θ = 1 and yields a trivial bound, while λ2 = 0, correctly indicating that the chain is actually
very rapidly mixing. For 2 × 2 matrices, it is straightforward to verify that θ = λ2; in general we
have

λ2 ≤ θ. (6.8)

A proof may be found in [1] or [9, Corollary 7.2] and I thank David Aldous, Pierre Brémaud, and
Cristopher Moore for providing proof sketches and pointing me to the references.

In light of (6.7) and (6.8), it is tempting to conjecture a bound of the type

µ {|f − µf | > r} ≤ 2 exp(−n(1 − λ2)
2r2) (6.9)

which would be a significant strengthening of (6.6). In the discussion following Proposition 4′,
Marton [46] discusses a similar spectral bound, but hers depends on the stationary distribution of
the chain and blows up if the latter takes small values.

One approach for proving (6.6) would be via a transportation inequality (see Chapter 2.3.5):

Tρ(µ, ν) ≤ 1

1 − λ2

√

1

n
H(ν |µ) (6.10)

where Tρ is the transportation cost distance (with respect to ρ = d̄) and H(ν |µ) is the Kullback-
Leibler divergence. If true, (6.10) would strengthen Marton’s analog of Pinsker’s inequality [45];
some preliminary numerical evidence indeed supports this conjecture. I thank Michel Ledoux for
helpful correspondence.
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6.5 Questions regarding η-mixing

6.5.1 Connection to other kinds of mixing

Let (X ,F , P ) be a probability space and A,B ⊂ F be two σ-algebras. Following Bradley [7], we
recall some common measures of dependence:

α(A,B) = sup {|P (A ∩B) − P (A)P (B)| , A ∈ A, B ∈ B} (6.11)

φ(A,B) = sup {|P (B |A) − P (B)| , A ∈ A, B ∈ B, P (A) > 0} (6.12)

ψ(A,B) = sup

{∣

∣

∣

∣

P (A ∩B)

P (A)P (B)
− 1

∣

∣

∣

∣

, A ∈ A, B ∈ B, P (A) > 0, P (B) > 0

}

(6.13)

β(A,B) = sup
1

2







∑

i∈I

∑

j∈J

|P (Ai ∩Bj) − P (Ai)P (Bj)|







(6.14)

where the last sup is over all pairs of finite partitions {Ai : i ∈ I} and {Bj : j ∈ J} of X such that
Ai ∈ A and Bj ∈ B. (See [7] for other types of mixing.) The following relations are known and
elementary:

2α(A,B) ≤ β(A,B) ≤ φ(A,B) ≤ (1/2)ψ(A,B).

If X = ΩZ and X∞
−∞ is the associated random process, we can define the various mixing coefficients

as follows:

α(i) = sup
j∈Z

α(F j
−∞,F∞

j+i);

φ(i) = sup
j∈Z

φ(F j
−∞,F∞

j+i);

ψ(i) = sup
j∈Z

ψ(F j
−∞,F∞

j+i);

β(i) = sup
j∈Z

β(F j
−∞,F∞

j+i),

where Fb
a denotes the σ-algebra induced by Xb

a. The process X is said to be

• strongly or α-mixing if α(i) → 0 as i→ ∞

• φ-mixing if φ(i) → 0 as i→ ∞

• ψ-mixing if ψ(i) → 0 as i→ ∞

• absolutely regular or weak Bernoulli or β-mixing if β(i) → 0 as i→ ∞;

each type of mixing is additionally called geometric if the corresponding quantity decays to zero as
λi, for 0 < λ < 1. We have shown in Chapter 3.2.2 that2

η̄ij ≤ 2φj−i, (6.15)

which implies that for processes with summable φ-mixing coefficients we have supn≥1 ‖∆n‖∞ <∞.

2 This observation seems to have been first made by Samson [60].
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As discussed in Chapter 3.2.2, η-mixing appears to be a stronger condition than φ-mixing; but
it would be good to obtain some nontrivial implications (or non-implications) between η-mixing
and the other types of mixing mentioned here.

We conjecture that for any measure µ on Ωn, we have

1

2

n−1
∑

i=1

φi ≤ ‖∆n‖∞ ≤ 2

n−1
∑

i=1

φi; (6.16)

note that the second inequality is nothing else than (6.15). There is a fair amount of evidence for
(6.16).

6.5.2 Local independence and mixing

A question worth investigating is the following: if a measure µ satisfies some “local” independence
properties, what can be said about (any) mixing properties of µ? Throughout this section, Ω will
be a finite set and Pn will denote the set of all probability measures on Ωn.

To formalize the notion of local independence, consider some I ⊂ 2{1,...,n}. For I ∈ I, define the
I-marginal operator TI : Pn → P|I| by

(TIµ)(y) =
∑

x∈Ωn,x[I]=y

µ(x), y ∈ ΩI .

The notation x[I] is to be interpreted as follows: for I = (i1, i2, . . . , ik) and x ∈ Ωn,

x[I] = (xi1 , xi2 , . . . , xik);

also, we will henceforth write µI to denote TIµ. We say that a measure µ ∈ Pn is I-independent
if for each I ∈ I, µI is a product measure on ΩI .

A natural indicator of how dependent the components of X ∈ Ωn under measure µ ∈ Pn is the
quantity

dep(µ) = ‖∆n(µ)‖∞ ;

recall that dep(µ) = 1 iff µ is a product measure.
This leads to a quantitative notion of I-independence. For I ⊂ 2{1,...,n}, define the quantity

RI = sup
µ∈Pn

dep(µ)
∏

I∈I dep(µI)
(6.17)

(the sup is actually a max since Pn is a compact set). We have the trivial bound 0 < RI ≤ n. Note
that if we are able to upper-bound RI by some constant independent of n, we will have shown that
any I-independent measure is η-mixing.

The first notion of independence we will consider is a “sliding window” of width k. Formally,
define Vk ⊂ 2{1,...,n} by

Vk = {I ⊂ {1, . . . , n} : |I| = k, max I − min I = k − 1} .

It appears that the sliding window is a very weak notion of independence – far too weak to say
anything about the η-mixing of µ. Formally, we have
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Conjecture 6.5.1.

RVk
= n (6.18)

for all 1 ≤ k < n.

(Trivially, RVn = 1.) This means that a measure µ on Ωn can be such that all of its windows of
width n− 1 have marginal product measures, yet µ itself has the worst η-mixing constant possible.
There is compelling numerical evidence to support this conjecture.

Our second notion is k-wise independence, formalized by defining

Ik = {I ⊂ {1, . . . , n} : |I| = k} .

Conjecture 6.5.2.

RIk
= n− k + 1 (6.19)

for all 1 ≤ k < n.

(Trivially, RIn = 1.) Again, there is compelling numerical evidence for this conjecture. This is
not a strong result. It means that a k-wise independent measure µ can have ‖∆n(µ)‖∞ = n−k+1.
To give a meaningful concentration bound, ‖∆n(µ)‖∞ must be of order O(

√
n). To achieve this

bound on the rate of growth, we have to require k ∼ n−√
n.

Proving the conjecture in (6.18) should not be difficult; it suffices to construct the measures
µ ∈ Pn that achieve the requisite RVk

. Proving (6.19) might be more involved, but it’s not clear
how worthwhile the effort would be, given its relative uninformativeness. One possible direction
for the future is to define a stronger (yet still realistic) notion of local independence, which does
imply nontrivial bounds on ‖∆n(µ)‖∞.

6.5.3 Constructing ∆n with given entries

By the construction in Chapter 3.2, ∆n = (η̄ij) is an upper-triangular matrix whose entries are in
[0, 1]. It is easy to see that for all 1 ≤ i < n and i < j1 < j2 ≤ n, we have η̄i,j1 ≥ η̄i,j2. Do these
constraints completely specify the set of the possible ∆n – or are there other constraints that all
such matrices must satisfy? We are inclined to conjecture the former, but leave this question open
for now.

6.5.4 A structural decomposition of ∆n

Let µ be a probability measure on Ωn, and for y ∈ Ω, define µ|y to be the law of Xn
2 conditioned

on X1 = y:

µ|y (x) = P{Xn
2 = x |X1 = y} , x ∈ Ωn−1.

Define p1(·) to be the marginal law of X1. Then we conjecture that

∑

y∈Ω

p1(y)
∥

∥

∥
∆n−1(µ|y)

∥

∥

∥

∞
≤ ‖∆n(µ)‖∞ . (6.20)

Though there is substantial numerical evidence for (6.20), its applications (or indeed a proof) are
waiting to be discovered.
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