
Phenotype Inference from Genotype in RNA
Viruses

Chuang Wu

CMU-CB-14-101

July 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Roni Rosenfeld, Chair

Jaime Carbonell
Elodie Ghedin (New York University)

Gilles Clermont (University of Pittsburgh

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2014 Chuang Wu



Keywords: Machine Learning, Combinatorial Filtering, Active Learning, Disjunctive Nor-
mal Form Learning, Phenotype Inference



For my wife, son and the upcoming princess



iv



Abstract
The phenotype inference from genotype in RNA viruses maps the viral genome/protein

sequences to the molecular functions in order to understand the underlying molecular
mechanisms that are responsible for the function changes. The inference is currently
done through a laborious experimental process which is arguably inefficient, incom-
plete, and unreliable. The wealth of RNA virus sequence data in the presence of
different phenotypes promotes the rise of computational approaches to aid the infer-
ence. Key residue identification and genotype-phenotype mapping function learning
are two approaches to identify the critical positions out of hitchhikers and elucidate
the relations among them.

The existing computational approaches in this area focus on prediction accuracy,
yet a number of fundamental problems have not been considered: the scalability
of the data, the capability to suggest informative biological experiments, and the
interpretability of the inferences. A common scenario of inference done by biol-
ogists with mutagenesis experiments usually involves a small number of available
sequences, which is very likely to be inadequate for the inference in most setups.
Accordingly biologists desire models that are capable of inferring from such lim-
ited data, and algorithms that are capable of suggesting new experiments when more
data is needed. Another important but always been neglected property of the models
is the interpretability of the mapping, since most existing models behave as ’black
boxes’.

To address these issues, in the thesis I design a supervised combinatorial filter-
ing algorithm that systematically and efficiently infers the correct set of key residue
positions from available labeled data. For cases where more data is needed to fully
converge to an answer, I introduce an active learning algorithm to help choose the
most informative experiment from a set of unlabeled candidate strains or mutagen-
esis experiments to minimize the expected total laboratory time or financial cost. I
also propose Disjunctive Normal Form (DNF) as an appropriate assumption over the
hypothesis space to learn interpretable genotype-phenotype functions.

The challenges of these approaches are the computational efficiency due to the
combinatorial nature of our algorithms. The solution is to explore biological plau-
sible assumptions to constrain the solution space and efficiently find the optimal
solutions under the assumptions.

The algorithms were validated in two ways: 1) prediction quality in a cross-
validation manner, and 2) consistency with the domain experts’ conclusions. The
algorithms also suggested new discoveries that have not been discussed yet. I ap-
plied these approaches to a variety of RNA virus datasets covering the majority of
interesting RNA phenotypes, including drug resistance, Antigenicity shift, Antibody
neutralization and so on to demonstrate the prediction power, and suggest new dis-
coveries of Influenza drug resistance and Antigenicity. I also prove the extension of
the approaches in the area of severe acute community disease.
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Chapter 1

The background and significance

1.1 RNA virus genotypes and phenotypes

RNA viruses (including retroviruses), such as HIV, Influenza, Dengue and West Nile, impose

very significant disease burdens throughout the world, e.g., HIV infected patients are at a high

risk of developing AIDS, which is now the fourth-leading cause of death worldwide [7]; In-

fluenza A viruses are pathogens causing respiratory tract infections: in 2009 a new H1N1 virus

emerged and caused a pandemic, infecting millions worldwide with 18,449 reported deaths

worldwide [8]. Even during typical epidemic years, approximately 250,000 - 500,000 people

worldwide die as a result of severe complications associated with influenza infections [9].

RNA viruses have a relatively small genome, this is probably because the lack of RNA error

correction mechanisms that puts a limit on the size of RNA genomes [10]. RNA viruses are char-

acterized as having short generation time, high replication rate and high mutation rate compared

to DNA viruses, i.e., 104 higher rate than that of DNA viruses [10]. Variations are dominated

by point mutations (rather than by cross over). Some viruses, e.g., influenza, have segmented

genome reassortment [11].

Because of their very short generation time and low replication fidelity, RNA viruses exhibit

extensive variability at the nucleic acid and protein level which results in fast adaptation rate,
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and great ability to escape the immune system and antiviral drugs. For example, resistance has

developed to all HIV drugs [12], and some drug resistance mutations are probably present before

the start of therapy [13]. Influenza resistance to Neuraminidase Inhibitor is rare but the resistance

mutations are emerging and the resistance is getting more prevalent [14]. Not all antibodies

actually neutralize the virus, and not all neutralizing antibody neutralize all variants of the virus.

A small number of mutations can render a viral antigen not neutralizable.

Understanding RNA virus phenotypes from genotype is in great need of computational tools

to guide infection treatment, yet the prediction of phenotypes from genotype has proved chal-

lenging. A few important phenotypes and details that have been studied in the thesis are listed in

appendix A.1.

1.2 Approaches to understand RNA virus Phenotypes from

Genotypes

Two major approaches to understand RNA virus Phenotypes are:

• Key protein protein residues identification

• Genotype-phenotype function learning

Key protein residues identification takes a set of aligned protein sequences with phenotype

labels as input, and identifies the position(s) that determine the phenotype changes, i.e., the

mutations at these positions are a cause of the phenotype change.

Genotype-phenotype function learning also takes the alignment of protein or DNA/RNA

sequences and their phenotype labels as input, and either learns a classification function f : X →

{+,−} that maps the genotype to a binary function, or learns a regression function f : X → {R}

that maps the genotype to real value.

These two approaches are important first steps in elucidating the mechanism responsible

for that phenotype. They are also crucial steps towards inferring the phenotype from sequence
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alone, which has broad uses in clinical decision making (e.g., antiviral drug choice based on

drug resistance) and in public policy (e.g. vaccine formulation based on immunogenicity and

cross-reactivity).

1.2.1 Current bench experiment approaches

In biological bench experiments, key identification is usually accomplished by a set of reverse-

genetics laboratory experiments involving point directed mutagenesis and/or crossover between

different strains, modifying a protein of interest or a section thereof. The procedure is laborious,

time consuming and expensive. Generating a single new data point involves extraction of the ap-

propriate nucleic acid sequence, mutagenesis, reconstitution of the slightly modified virus, and

testing of the phenotype. Generating a single data point can thus take weeks, and may fail for a

variety of reasons. The complete identification process can take many months. The positions to

be mutated are selected by the experimenter, often based on human analysis of a single pair of

viral strains which are maximally similar at the amino acid level yet exhibit opposite phenotypes.

The experimenter then focuses on the residue positions where these two strains differ. Various

combinations of the positions are introduced back and forth in an attempt to establish the nec-

essary and sufficient conditions for the change in phenotype. Note in particular that no use is

made of other available strains or isolates, even when (as is often the case) their sequence and/or

phenotype are already known or can be readily derived (both sequencing and phenotypic assay-

ing are often faster and cheaper than reverse-genetics experiments). This procedure is commonly

employed by many experimental labs, on diverse phenotypes and viruses, as well as in non-viral

contexts (e.g. [15], [16], [17], to name a few). From a computational perspective, though, the

procedure as currently practiced is highly suboptimal. It is vulnerable to inefficiency (more ex-

periments used than needed), incompleteness (settling on one explanation when other, equally

simple ones exist), and the occasional incorrect inference (since inference is done informally).
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1.2.2 Current computational approaches

Computational learning of genotype-phenotype mapping in RNA viruses explores machine learn-

ing techniques, such as support vector machine (SVM) regression [7], decision tree classification

[18], statistical models [19][20], neural networks [21][22], recursive partitioning [23], linear

stepwise regression [24], support vector regression [25], least-squares regression [25], and least

angle regression [25]. These models learn from a training data set and then test their performance

using a test data set. In terms of prediction accuracy, some classifiers outperform other classi-

fiers for some datasets but lose for others. For HIV drug resistance data, SVM was shown to be

superior to the other methods [26]. However, the performances of these methods were around

80% for HIV drug resistance datasets [25], suggesting that domain-specific knowledge has great

potential to improve performance.

Existing work on statistical inference of genotype-phenotype relationship focuses on popula-

tion genetics, using linkage analysis and association studies. Linkage analysis is not applicable

to our case because crossover is not a significant force in the evolution of most RNA viruses.

Similarly, association studies are not applicable here because they can only detect single-locus

associations, or else require exceedingly large datasets: for a typical scenario where up to a few

dozen labeled sequences are available and the phenotype depends on 2-4 key residues that inter-

act in a complex fashion, there is not enough power in statistical tests to identify these residues.

More specifically, tests like those described in [6][27][28] look for association between each in-

dividual residue position and the phenotype. But if the phenotype is determined by a complex

interaction among, say, four residue positions, then there will be only moderate association be-

tween any one of these positions and the phenotype label, and this association may not be reliably

detected with the limited number of labeled sequences that are usually available. This is a weak-

ness shared by all methods that look for phenotypic association with individual residue positions

(call these “position-specific association methods” (PSAM)). This deficiency in the real data was

described in [1]. Although position-specific association methods can be expanded to look for
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phenotypic associations with any pair or triplet of residues etc., the exponential growth in the

number of covariates further reduces the power of the tests. An even more serious limitation of

these methods is that they assume that the labeled data were independently sampled, a patently

false assumption in most cases of interest.

Rule induction algorithms, such as simultaneous covering by decision tree algorithm [29],

and ordered list of classification rules induction [30] can also mine if-then rules, but they only

discover small number of rules for efficient prediction or classification purposes, and their rule

forms are highly constrained by the tree structures. Sequence analyses using logic regression [31]

and Monte Carlo Logic regression [32] adaptively identify weighted logic terms that are associ-

ated with phenotypes. These approaches do not explore the whole hypothesis space to identify

all possible solutions, hence they are not guaranteed to extract the global optimal solution.

Many state-of-the-art machine learning approaches have been applied to RNA virus genotype-

phenotype mapping, such as support vector machine (SVM) regression [7], decision tree clas-

sification [18], statistical models [19][20], neural networks [21][22], recursive partitioning [23],

linear stepwise regression [24], support vector regression [25], least-squares regression [25], and

least angle regression [25]. These models learn from a training data set and then test their perfor-

mance using a test data set. The effort focuses on the prediction accuracy in the cross validation

manner. These approaches lack the intention to learn biological meaningful and interpretable

functions. Nonetheless, we will comprehensively compare our Disjunctive Normal Form (DNF)

learning algorithms with these approaches regarding prediction qualities.

We are also not aware of any statistical or computational methods designed specifically to

infer genotype-phenotype relationships in RNA viruses or other situations dominated by point

mutations and small to moderate size datasets.
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1.3 Goal and approaches

The goal is to appropriately exploit domain knowledge to design algorithms that can eliminate

the vulnerabilities in key residue identification, improve prediction performance of genotype-

phenotype mapping, and specifically solve three fundamental problems in these two approaches

that have not been addressed in RNA viruses research: the scalability of the data, the capability

to suggest new experiments, and the interpretability of the function.

• Scalability of the data. A common scenario of inference done by biologists with muta-

genesis experiments usually involves a small number of sequences. These sequences are

usually highly reliable since the mutations are Engineered. In this highly biased data, most

statistics based approaches would fail in establishing significant solutions. On the other

hand, high throughput sequencing generates huge amount of data with low reliability.

• Capability to suggest new experiments. This mostly applies to the study where the data are

insufficient to infer the solutions. Domain experts usually design combinatorial bench ex-

periments to narrow down the solutions. Without a computational algorithm to thoroughly

search the candidate space, this procedure is usually suboptimal and takes more time and

financial cost to finish.

• Interpretability of the mapping functions. This is an important but always neglected prop-

erty of computational approaches. Most existing models behave as ’black boxes’, and

provide limited insights to the domain experts for guidance of experiment design and de-

cision making.

We propose to design a combinatorial algorithm for key residue identification, and use Dis-

junctive Normal Form (DNF) to learn genotype-phenotype mapping. Combinatorial algorithms

perform better on the small and highly biased datasets, because they neglect the distributions at

each position throughout the data points and are capable of detecting any signal that potentially

leads to phenotype changes. Combinatorial algorithms require fewer sequences to establish the
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statistical power than statistical approaches. Nonetheless, the shortcomings shared by combina-

torial approaches are that they are computationally inefficient and very sensitive to errors. The

approaches are exploring biological plausible assumptions to constrain the solution space and

guarantee finding the optimal solutions in the setup, and increasing the reliability of the data and

designing soft versions of algorithms to allow appropriate amount of errors.

Specifically, for small to medium amounts of mutagenesis data, a combinatorial model is

designed to identify the key residues consistent with the data by testing all plausible hypotheses.

When the data is insufficient to learn the solution and more experiments are needed, the Active

Learning approach is applied to suggest the most informative experiment to reduce the amount

of further laboratory work and optimize the lab cost; Disjunctive Normal Form is proposed as an

appropriate bias over the solution space to learn the genotype-phenotype mapping function.

The algorithms are first evaluated and validated on the simulated data and retrospective data

where answers are known, and then proceeded to learn real biological datasets where no answers

are known yet.

The structure of the thesis is the following:

• Demonstrate that solutions to genotype-phenotype mapping often come from a constrained

space

Empirical evidence of domain knowledge

Spatial concentration of Key Residues (“Fingerprints”)

• Develop algorithms to exploit the constrained space(s)

Develop algorithms for Key Residue identification

− Algorithm description

− Demonstrate the usefulness of the approaches

· Validate consistency and convergent efficiency

· Retrospective validation of the algorithms
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· Application to unresolved problems

Develop Active Learning algorithms for these setups

− Algorithm description

− Demonstrate the usefulness of the approaches

· Application of the algorithms to unresolved problems

Develop algorithms for mapping function learning

− Algorithm description

− Demonstrate the usefulness of the approaches

· Validate consistency and convergence

· Retrospective validation of the algorithms

· Application of the algorithms to unresolved problems

• Applications to real unresolved problems

Influenza Antigenicity drift

Influenza drug resistance

Patient hospital mortality with severe community acquired pneumonia
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Chapter 2

A Demonstration that solutions to

Genotype-Phenotype mapping often come

from a constrained space

2.1 Evidence of a small number of key residues in determin-

ing the phenotype changes

We develop algorithms that assume the number of key residues in the genotype-phenotype map-

ping is small. This assumption is important because it reduces the number of hypotheses from

exponential (in the length of the protein) to polynomial, and constrains the form of the mapping

functions. This assumption is biologically plausible as can be seen from the following examples

representing diverse phenotypes:

• Drug resistance: Antiviral drug resistance of RNA viruses is a pervasive problem. Resis-

tance develops to nearly all antiviral drugs soon after they are introduced. In Influenza, re-

sistance to the M2 ion channel blockers amantadine and rimantadine is associated with two

mutations in the M2 protein [33]. Resistance to the neuraminadase inhibitor Oseltamivir is
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associated with mutations in the NA active site in positions 292, 294, 274, 119 [34], [35].

• Immunogenicity: In HIV-1, decreased immunogenicity was shown to be caused by three

mutations in the gag protein [36].

• Pathogenicity: In Avian Influenza, dramatically increased pathogenicity was found to be

associated with a small number of mutations in the polyprotein cleavage site [37].

• Antigenicity: In Influenza A, the investigation of the differences between vaccine strain

(A/Panama/2007/99) and the circulating (A/Fujian/411/02-like) viruses showed that two

mutations in the hemagglutinin protein are responsible for the antigenic drift [15].

• Neutralization: In HIV-1, neutralization escape was found to be associated with a small

number of point mutations in gp120, gp41 ectodomain and in the cytoplasmic tail of gp41

[38], [39]. In Dengue type 2 virus, neutralization by the 3H5 mab was found to be abro-

gated by mutations in the envelope protein at positions 383, 384 or 385 [17].

• Tropism defines the cells and tissues of a host in which a particular virus can grow. In

HIV-1, mutations at positions 425, 426 and 427 make the virus lose its ability to infect a

monocyte cell [40].

2.2 Spatial concentration of Key Residues (“Fingerprints”) in

molecule bindings

RNA virus drug resistance, Antigen/Antibody binding, Infectivity, and so on, are determined by

the structure binding between two protein chains. Genotype changes that happen in the bind-

ing active sites modify the structure of the functional proteins and potentially lead to phenotype

changes. The binding is determined mostly by a binding region in the 3D space in which amino

acids interact. Taking Antigen/Antibody binding for example, the contact area is smaller than

600Å2, and the interaction involves a fraction of amino acids that reside outside facing the bind-
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ing partner. The majority of key residues are concentrated in “neighborhoods” in 3D spaces. To

better visualize the binding area, we plot the distances in 3D space against the position in pro-

tein sequence. The plots, named “contact maps” (Figure 2.1, 2.2) are generated for 250 Ag:Ab

binding complexes retrieved from Protein Data Bank (PDB) in order to visualize the interacting

regions of antigens, focusing on regions where the Ag and Ab are close to each other (e.g. ≤ 4Å).

The “contact maps” show that the small area is composed of a couple of short regions along pri-

mary sequence that are the determinants of Ag:Ab binding. We call these piecemeal contiguous

regions “fingerprints”. Hence, in our algorithm for identifying key residues in Ag:Ab binding,

we will assume that these key residues are spatially clustered into a small number of “fingers”.

Figure 2.1: Contact map. The black curve in the center indicates the antigen backbone and
the dots above and below the curve represent the atoms of each antigen amino acids (black dot:
carbon, red: oxygen, blue: nitrogen, yellow: sulphur). Each horizontal position corresponds
to one amino acid of the antigen. The bottom line designates the amino acids of the antibody.
The Y axis represents the closest distance between the atoms on the antigen to the antibody. In
this figure, there are two ”fingers” with a gap of 39 amino acids between them. Each fingers
is approximately 10 amino acids, although we expect that only a subset of amino acids in each
finger actually interact with the antibody.
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Figure 2.2: Contact map 2. Another example of a contact map. There are two ”fingers” with a
gap of 39 amino acids between them. Each finger is approximately 10 amino acids, although we
expect that only a subset of amino acids in each finger actually interact with the antibody. The
original crystal structure is Fab of an Ab PC283 complexed with its corresponding peptide Ag,
PS1 (HQLDPAFGANSTNPD), derived from the hepatitis B virus surface Ag was determined.
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Chapter 3

Key Residue identification approach -

Combinatorial Filtering (CF) algorithm

3.1 Background

We focus on typical mutagenesis experiments where a small number of sequences are available.

The limited amount of sequences are usually engineered by point-mutations from a couple of

“seed” sequences. Position-specific association methods (PSAM) (e.g. [6][27][28]) that measure

correlation or mutual information often fail in identifying key residues in such highly biased

datasets, especially when the key residues interact.

Combinatorial algorithms perform better than the PSAM algorithms on this type of highly

biased datasets, because they neglect the distributions at each position throughout the data points

and are capable of detecting any signal that potentially leads to phenotype changes. Combinato-

rial algorithms require fewer sequences to establish the statistical power than PSAM does; how-

ever, the shortcomings of combinatorial algorithms are that they are very sensitive to data errors

and the computational time is usually exponential to the number of data points. The sequences

in mutagenesis experiments are usually highly reliable due to the fact that major mutations are

engineered; furthermore, we designed soft version of the algorithms to make them robust to
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small amounts of errors; the computational time issues can be solved with the assumptions that

the number of key residues is usually small and that they are distributed in several continuous

regions along the sequences.

An important issue of mutagenesis experiments is that sometimes the data points are insuffi-

cient to infer the key residues, and biologists need to design more experiments to draw a conclu-

sion. An Active Learning algorithm systematically searches the candidate space to suggest the

most promising experiments in an incremental way to minimize the experimental costs.

In this chapter, we first describe the CF() algorithm, validate its performance with simulated

data, and proceed to validate the algorithm with real biological problems. At the end we will

describe an Active Learning algorithm and demonstrate its usefulness in a real evidence.

Combinatorial Filtering (CF) algorithm:

The CF() algorithm is essentially a List-then-Eliminate algorithm [41]. CF() represents all

hypotheses explicitly, and each hypothesis contains the set of protein residue positions that are

assumed to be “Key Residues” (KRs) – those affecting the target phenotype. By the assumption

discussed above, there can be up to k key residues, where k is a small positive integer. Therefore,

initially there are O(Lk) hypotheses, where L is the length of the protein. Often, prior biological

considerations can be brought to bear. In this case, only some regions or positions in the protein

will be considered, and L will represent the number of such considered positions. Typically the

lengths of RNA virus proteins are 100 < L < 500.

The CF() algorithm is described in table 3.1. It is deemed to have converged when a single

hypothesis remains in H . As described, the algorithm is applicable to binary phenotype as well

as to categorical and ranked categorical phenotype (e.g. drug resistance indicated by “low”, “in-

termediate” or “high”; or binding/neutralization phenotype with one of “-”, “+”, “++”, “+++”).

The filtering can be performed against every pair of different phenotypes, or a threshold can be

established such that filtering is carried out only between sequence pairs whose phenotypes differ

by at least that degree (e.g., “+” vs. “+++” but not “+” vs. “++”). The threshold can be chosen

to trade off the efficiency of the inference vs. its robustness to noise. Similarly, the algorithm
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Combinatorial Filtering Algorithm CF(S, k):
Input:

S: aligned set of protein sequences of length L with their phenotypic
labels
k: integer; assumed number of relevant residue positions

Algorithm:
1. Initialize the hypothesis space H to include all k-tuples over [1..L]
2. For each sequence pair (si, sj) with differing phenotypic labels:

2a. Identify all positions where si and sj differ from one another
2b. Eliminate from H all hypotheses that do not involve any of these

positions
Output:

The hypotheses remaining in H

Table 3.1: Combinatorial Filtering algorithm

can be applied to continuous phenotypes by establishing a numerical threshold and carrying out

filtering only among sequence pairs whose phenotypes differ by at least that amount.

The CF() algorithm aims to identify the minimum set of interacting key residues that explains

the labeled data. It is therefore first called with the smallest possible k value, namely k = 1. If

the output is the empty set, this means that no hypothesis of size k is consistent with the data. The

algorithm is then called again with the next higher value of k. This is repeated until the output is

not empty, resulting in the set of all minimal-size hypotheses consistent with the training dataset.

The initial size of the hypothesis space grows polynomially with the alignment length. The

degree of the polynomial depends on the number of simultaneously considered key residues.

The CF() algorithm described in table 3.1 can handle typical viral protein Multiple Sequence

Alignment (MSAs) of up to about 1000 Amino Acids (AAs), and up to 8 KRs. Two variants of

CF() algorithms, CF() with “fingerprints” and soft CF(), are designed to extend to large datasets

with larger numbers of KRs and reduce the sensitivity to errors.

CF() algorithm for exploiting spatial clustering (Fingerprint) CF() algorithm with finger-

prints is a natural extension of the CF() algorithm to consider the clustering of key residues in

continuous regions. When the number of key residues is larger than two, we assume that they

are clustered into C fingerprints where C < k, and the length of each cluster is not larger than
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Combinatorial Filtering Algorithm for Fingerprints CFF(S, k):
Input:

S: aligned set of protein sequences of length L with their phenotypic
labels
k: integer; assumed number of relevant residue positions
C: integer; assumed maximum number of fingerprints
L: integer; assumed maximum length of each fingerprint
L1: integer; assumed minimum length between two fingerprints

Algorithm:
1. Initialize the hypothesis space H to include all k-tuples

1a. Select C fingerprints, each at most L long with inter distances
smaller than L1.

1b. Combinatorially select k key positions within the C fingerprints
2. For each sequence pair (si, sj) with differing phenotypic labels:

2a. Identify all positions where si and sj differ from one another
2b. Eliminate from H all hypotheses that do not involve any of these

positions
Output:

The hypotheses remaining in H

Table 3.2: Combinatorial Filtering algorithm for Fingerprints

L. The inter distances between clusters need to be large enough (larger than L1) since the clus-

ters form the active sites in 3D spaces and the 1D sequence is folded to form such structures.

From the computational point of view, this assumption greatly reduces the number of candidate

hypotheses in step 1, and the CF() algorithm can manage large datasets. The algorithm of CF()

for fingerprints is shown in table 3.1.

The CF() for “fingerprints” is capable of learning KRs from large datasets with a large number

of KRs. The finger parameters can be learned in a cross-validation way and the ones that balance

the accuracy and running time are selected.

Another approach to managing large datasets is that while our main implementation is memory-

bound, for large datasets with larger numbers of key residues we can design a “lazy mode” al-

ternative implementation by pre-calculating the co-variance matrices of the genotype and then

filtering the hypotheses.

Soft version CF() algorithm:
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Soft Combinatorial Filtering Algorithm CF(S, k):
Input:

S: aligned set of protein sequences of length L with their phenotypic
labels
k: integer; assumed number of relevant residue positions
T : integer; the lowest score for the hypothesis to survive

Algorithm:
1. Initialize the hypothesis space H to include all k-tuples over [1..L]
2. For each sequence pair (si, sj) with differing phenotypic labels:

2a. Identify all positions where si and sj differ from one another
2b. Assign a penalty score -p to the hypothesis when all the positions

are the same between the two sequences
Output:

The hypotheses in {H, score(H) > T}, where T is a tunable threshold

Table 3.3: Soft Combinatorial Filtering algorithm

The soft CF() algorithm is modified from the CF() in table 3.1 to reduce the sensitivity to

errors in data. One problem of the algorithm in table 3.1 is that any error in the data would

potentially alter the solutions. A soft version CF() algorithm allows a small number of errors and

the number is tuned by thresholds. The essential modification made in soft CF() is that in step

2b, instead of eliminating the hypothesis entirely, it assigns a penalty score to the hypothesis,

and in the output step, a threshold is set to extract final hypotheses in the version space. The soft

CF() is shown in table 3.1.

Hypothesis Space Visualization:

It is difficult to manually explore and assess a potentially large set of subsets. To facilitate

interactive exploration by a domain expert, we depict the hypothesis space H using a histogram

we call a hypothesis density map. An example is shown in Figure 3.1. The Y axis denotes the

number of hypotheses remaining in H which involve the position of X . We can then use different

colors to show the gradual shrinking of H as more pairwise comparisons are performed.
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Figure 3.1: An example “Hypothesis Density Map”. The Y axis shows how many of the
remaining hypotheses involve position X.

3.2 Demonstrated CF consistency and convergence

The CF algorithm was first validated on simulated protein sequences with hypothetical target

functions. When generating simulated sequences, we matched the position-specific amino acid

distributions to those of a real protein dataset, then generated random phenotypic target func-

tions. We used 732 HIV-1 gp160 protein sequences (downloaded from Los Alomos National

Lab (LANL)), and assumed a variety of target functions. Each target function contains a small

number of key residues (1 to 5), and was used to label the sequences accordingly. Notice that this

method enables us to generate as many sequences as needed to test the algorithm’s convergence

under a variety of conditions.

We repeated this process many times, and in all of these cases the CF algorithm converged

to the correct answer. An example run is shown in Figure 3.2, with a target function of three key

residues, using 20 ’+’ labeled and 20 ’-’ labeled sequences (up to 400 comparisons).

3.2.1 Measured inference efficiency (convergence rate as function of dataset

size) of CF algorithm

Inference efficiency: To assess the efficiency of our inference method, we would like to un-

derstand the relationship between the complexity of the function to be learned and the number

of training examples needed to converge to it. Namely, we would like to know the conver-

gence rate as a function of the number and type of available sequences and the complexity of

the genotype-phenotype mapping. This is important because the available number of sequences
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Figure 3.2: CF consistency and convergence [1], visualized via a hypothesis density map. The
multi-colored hypothesis density map depicts the gradual shrinking of the hypothesis space H .
Once all pairwise comparisons were performed, the three correct key residues are identified by
the sharp peaks.

vary for different datasets. Based on the convergence rate we can assess the likelihood of conver-

gence, and whether (and how much) further experimentation will be needed. To do this, we used

911 aligned sequences of Influenza A H3N2 Hemagglutinin protein (HA) downloaded from the

National Center for Biotechnology Information (NCBI) website, with an aligned length of 310

(HA1 domain). We then randomly generated putative binary target functions, each depending

on a small number (1..5) of key residues. For each such target function, the 911 sequences were

labeled accordingly. The CF() algorithm was then run three times, each time assuming a different

number (k=1..3) of key residues. CF() was run incrementally, adding one sequence at a time, and

the hypothesis space size was tracked. The whole process was repeated 100 times with different

target functions to produce a statistically robust result.

Convergence Rate: As described in the introduction, the traditional discovery process uses

a single pair of viral strains which are maximally similar at the amino acid level yet exhibit

opposite phenotypes. The experimenter then focuses on the residue positions where these two

strains differ. It is therefore most meaningful to compare the convergence of the hypothesis

space under our algorithm with this method. Figure 3.3 shows the average log reduction in the

size of the hypothesis space relative to its size after making only the first pairwise comparison
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Figure 3.3: Convergence Rate (credit to Andrew Walsh). Average log reduction in number of
hypotheses as function of the true function complexity (# of key residues), the assumed function
complexity (Assumed # of key residues), and the number of positive and negative sequences (tick
marks). See text. Blue: no reduction; red, complete convergence.

(that of the maximally similar pair). This is depicted as a function of the number of key residues

in the target function (left-to-right), the number of key residues assumed by the algorithm (top-

to-bottom), and the number of positive and negative sequences (vertical and horizontal rows of

small colored squares, respectively, with values of 1, 5, 10, 20, 50, or 100 sequences each).

A blue square indicates little or no shrinkage of the space (i.e., same power as the traditional

method), whereas a red square indicates complete or nearly complete convergence. Since all the

target functions used in this particular run were defined as a disjunction (“OR”) of conditions

over their key residues, we expect negative sequences to be more informative than positive ones.

This is indeed borne out in the figure.

Another way to gauge the efficiency of our method is to let it make a wrong assumption and

observe how fast the hypothesis space collapses (namely, shrinks into an empty set). Figure 3.4

20



Figure 3.4: Rate of collapse of the hypothesis space (to an empty set) under incorrect as-
sumptions (credit to Andrew Walsh). As more sequences are used for inference, incorrect
assumptions are eventually detected. See text.

shows the fraction of trials resulting in a collapse of the hypothesis space (blue=0, red=1). When

the assumed number of key residues is equal to or larger than the correct number, naturally no

collapse occurs, since the correct hypothesis is guaranteed to be in the space. However, when the

assumed number of key positions is smaller than the true number, contradiction will eventually

result. This argues in favor of the incremental relaxation of the assumptions discussed earlier

(starting with k=1 and increasing it gradually).

Increased inference power: In the conventional discovery method, the positions that differ

between the maximally-similar pair of strains constitute the “working set”. New reverse-genetics

experiments are performed to reduce the size of this working set. One way to gauge the advantage

we gain by using all the available labeled sequences is to track how many of these “working

set” positions are eliminated by the filtering process. Figure 3.5 shows the average relative

reduction in this “working set” size. Notice that, under broad conditions, about half (green=0.5)

the working set is eliminated before even a single experiment is performed.
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Figure 3.5: Increased inference power over the traditional method (credit to Andrew
Walsh). Relative reduction in working set positions resulting from the filtering process. “Work-
ing set” positions are those that differ between the maximally similar +/- pair. Blue represents the
lowest value (0) and red the highest (1). Under a broad set of conditions, about half (green=0.5)
of the positions are eliminated without a single new experiment. See text.
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(Note: The analysis above shows the inferential inefficiency of the traditional method. An-

other deficiency of the traditional method is its incompleteness: since it focuses on the positions

that differ between the maximally similar sequence pair, it ignores other positions whose varia-

tion may affect the phenotype.)

3.3 Retrospective validation of the CF() algorithm

We retrospectively validated the CF() algorithm by testing it on datasets with real viral protein

sequences where the genotype-phenotype mapping is already known and assumed to be correct.

We compiled a number of datasets covering several RNA viruses with varying degree of average

sequence identity (SI) and a variety of phenotypes, including Avian Flu High/Low pathogenicity

(4 mutations in HA proteins changed the pathogenicity from low to high in H5N2 Influenza HA)

[37], HIV Env U937 tropism (4 mutations in HIV Env proteins made the HIV unable to infect

U937 cells) [40], Influenza H3N2 antigenicity shift (2 mutations in HA shifted the antigenicity

of Influenza H3N2) [15], SIV Env neutralizability (2 mutations in SIV Env proteins determined

the neutralizability of SIV)[42], FIV tropism in CRFG cells (2 mutations in FIV polymerase PA

subunit made it unable to replicate in CRFK cells, SI: 95%)[43]. These conclusions were made

from mutagenesis experiments which were chosen empirically or by domain knowledge. We

applied our CF() algorithm on the same set of mutagenesis sequences to predict the key residues

for the phenotype changes. For all the tests performed, our algorithm converged to the correct

answer(s) (Fig. 3.6 a-e). In contrast, the conventional position-specific association method, while

correctly identifies the key residues in a, yields high false positive and false negative rates in the

other four datasets (Fig. 3.6 a-e).
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Figure 3.6: Retrospective and prospective comparisons of the CF algorithm on a variety of
datasets [1]. a, Avian H5N2 high/low pathogenicity; b, Influenza H3N2 antigenicity shift; c,
HIV Env U937 tropism; d, FIV polymerase PA CRFK tropism; e, Influenza H3N2 antigenicity
shift. Red, gold standard extracted from the literature. Green, predicted by CF(). Blue, pre-
dicted by a conventional position-specific association method. f, FIV fusogenicity, for which
a gold standard does not yet exist. CF() is able to suggest a set of key residues, but using the
conventional method no positions survive cross-validation.

24



3.3.1 Comparing CF() with position-specific association methods

Position-specific association methods (e.g. [6][27][28]) that measure correlation or mutual infor-

mation often fail to identify key residue positions when the number of available viral sequences

is as small as in typical mutagenesis experiments or when the key residues interact. This is be-

cause the moderate statistical association between each such position and the phenotype is often

not detectable from the several dozen labeled sequences that are typically available in computa-

tional studies or mutagenesis analysis. In contrast, a few dozen sequences are often enough for

the CF() algorithm to converge to the correct answer.

To demonstrate this effect systematically, we stochastically generated synthetic sequences

from a PSSM derived from a 99 residue long Multiple Sequence Alignment of HIV Protease.

This assured that the marginal distribution of each residue position matched that of real HIV

Protease data. The generated sequences were then labeled according to the desired target func-

tion, and used as the training set to both the CF() algorithm and several position-specific methods

as in [6].

As an illustrative example, consider the phenotypic Boolean function (9L AND 36N) OR

(70V AND 81A), which expresses two alternative mechanisms that confer some phenotype. This

is a typical situation with regard to, say, drug resistance, where alternative mechanisms of resis-

tance often develop in the patient population. When 40 positively-labeled and 40 negatively-

labeled randomly selected sequences were used as input, the CF() algorithm converged to the

correct set of key residues: (9,36,70,81). In comparison, the position-specific association method

described in [6] failed to fully identify the four key residue positions, ranking these positions as

#1, #2, #13 and #27 (out of 99). With the cut-off automatically determined as in [6], only 2

positions were captured, yielding a false negative rate of 2/4.
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3.4 Applying the algorithms to an unresolved problem in genotype-

phenotype mapping

We demonstrate the usefulness of our inference method with an application to an unresolved

genotype-phenotype mapping. In [44] the authors attempted to identify the key residues that

determine fusogenicity (the ability of the virus to fuse with the host cell) in FIV (Feline Im-

munodeficiency Virus), focusing on a highly conserved small region of the Env protein called

principal immunodominant domain (PID). To do so, they generated random mutations in this

domain, performed infectivity assays on the resulting mutants, and sequenced the respective PID

domains. This is a commonly used experimental method to infer the key residues and explain

the phenotype. In all they generated 24 labeled sequences that can be used to infer the key

residues. Since this inference is non-trivial to the human eye, it is not surprising that the authors

merely chose to state that “... there were no apparent common features of clones with mutations

maintaining and clones with mutations not maintaining envelope fusogenicity ...”.

Application of our CF() algorithm showed that a 1-key-residue hypothesis or 2-key-residue

hypothesis were not enough to explain the data, resulting in a collapsed hypothesis space. How-

ever, the following five 3-key-residue hypotheses were found to be consistent with the data:

[704,702,700], [704,703,700], [704,702,701], [704,703,701], [704,703,702] (the density map is

shown in Fig 3.6-f). Distinguishing between these hypotheses will require additional data. No-

tice that position 704 occurs in all of them. Notice also that the position-specific association

method, on the other hand, fails to identify any of the key residues (no peaks in the bottom half

of Fig 3.6-f).

We also ran our Active Learning algorithm on this data, starting from the wild-type sequence,

using the mutagenesis sequences as our candidate pool, and incrementally adding the next most

informative mutated sequence, breaking ties randomly. The algorithm converged to the same

hypothesis space shown in Fig 3.6-f, but did so using only a fraction of the 24 mutated sequences.
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The Active Learning process was repeated 100 times, and required an average of 9.58 ± 2.95

mutants to converge – less than half the total number of mutants used by the authors.

3.5 Active Learning (AL)

The number of hypotheses remaining in H will depend on k, on the protein length L, and on

the number of sequences and the entropy of their distribution. For biologically typical values of

these parameters, when several hundred labeled sequences are available the correct hypothesis

may be converged to by this procedure alone, without the need for any new data.

When the existing labeled data is not sufficient to converge, the experimenter needs to gen-

erate further labeled data by performing new mutagenesis experiments, reconstituting the virus,

and running the phenotypic assay. Typically, many experiments may be considered, e.g. single-

point mutagenesis of one of the given strains, crossover between two given strains, etc.

Usually some experiments are potentially more informative than the others, and active learn-

ing [45][46] algorithms are used to minimize the expected number of experiments to converge.

Two possible scenarios of using active learning in key residue identification are 1) a pool of

already-sequenced candidate strains is available with their labels are missing, in which case

the most informative strain within the pool will be selected and phenotyped (pool-based active

learning [47]); and 2) a set of potential mutagenesis experiments are planned, and only the one

selected by active learning will be carried out and then phenotyped. Our active learning algo-

rithm is designed to work with both situations (Table 3.4). More generally, the algorithm is made

to return the expected informational utility of every candidate sequence. The experimenter then

chooses an experiment with maximal utility, or they can choose a different experiment by fac-

toring in financial cost, time, or other external considerations. If a general cost factor can be

pre-assigned to each candidate experiment, the algorithm uses it to weigh the expected utility,

leading to minimization of the expected total cost to convergence.

The running time of the AL() algorithm is O(|H| · |S ′| · (N+ + N−)), where |H| is the
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Active Learning algorithm AL(S,H,S’):
Input:

A set S of already-available labeled sequences
The set H of surviving hypotheses (the output of applying Combinatorial Filtering to

S)
A set S’ of candidate sequences (each representing a candidate reverse-genetics

experiment to be performed)
Algorithm:
For each s in S’

1. Estimate p̂(ph|s): the probability distribution over the possible phenotypic
outcomes “ph” for experiment s, (e.g., for binary phenotypes, ph takes on the values “+”
and “-”.)

2. Calculate the expected entropy of the hypothesis space after performing such
an experiment, as given by: E[Ent(H|s)] =

∑
ph [p̂(ph|s) · Ent(H|s, ph)], where

Ent(H|s, ph) is the entropy of the hypothesis space H after performing experiment s, ob-
serving outcome ph, and filtering H based on that new labeled datapoint s and the already-
labeled set S. Unless a prior is imposed on the hypotheses, we take Ent(H) = log(|H|).
Output:

the experiment that maximizes the expected informational utility: s∗ =
argmins∈S′E[Ent(H|s)]

Table 3.4: The Active Learning algorithm chooses the next most informative experiment

number of remaining hypoheses, |S ′| is the number of candidate sequences, and N+ and N− are

the number of positively and negatively labeled sequences.

At times a set of related experiments can be performed together at a cost smaller than the

sum of their individual costs. In that case the set is added as a single, joint experiment to S’, in

addition to the component experiments.

Once the next experiment s is chosen, the experimenter performs it, observes the phenotypic

outcome, and further filters H based on the new labeled datapoint and the already-labeled set S.

s is then added to S, and AL() is called again with the remaining experiments in S’. This process

is continued until convergence to a single hypothesis, or until no experiment in S’ can further

reduce H .

Note that, in spite of the use of p̂(ph|s) in AL(), the CF () and AL() algorithms remain

fundamentally combinatorial, not probabilistic. This is important because we do not want to
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assume that the data in S is i.i.d. (usually it is not!). p̂(ph|s) is used only as a heuristic to estimate

informativeness; it affects the convergence rate but not the convergence itself or the ultimate

answer converged to. p̂(ph|s) can be estimated in a variety of ways depending on the setup,

domain knowledge, etc. In the experiments reported below we used nonparametric estimation

from the labeled data with a kernel based on sequence distance. This notwithstanding, AL()

can accommodate a prior on H, and the hard elimination step can be changed to a soft penalty,

effectively creating the equivalent of a likelihood function.

3.5.1 Visualization of Active Learning process:

Figure 3.7 shows an example of active learning on SIV Env neutralization data. SIV 17E-Cl

and Sivmac239 are two SIV Env proteins with different neutralizability. These two proteins are

well studied so they are chosen as the “already-labeled” sequences. Nine positions are different

between the two sequences and new sequences are needed to narrow down the solution of the

phenotype changes. While this is conventionally done by domain experts, we can instead use

Active Learning to choose the most informative sequence. The candidate sequence set S ′ could

be a set of mutagenesis experiments or existing sequences that are going to be phenotyped once

they are chosen by the algorithm. In this SIV Env neutralization data, we will use a set of

one-point mutation sequences and one-cross-over sequences as the candidate set because these

mutation setups are quite common in the lab. In Figure 3.7, the information utility is plotted

against each possible mutagenesis sequence. In this example figure, one-cross-over at the 4th

and 5th positions yield the highest information gain. Once the next experiment is selected and

phenotyped, this step is repeated to pick up the next experiment until a termination condition is

met.
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Figure 3.7: Active Learning (credit to Andrew Walsh). Expected information gain is plot-
ted against primary sequence position. Possible one-point mutations (circle) and single-point
crossovers (cross) are shown above the nine different positions that differ between the two strains.
Blue and red colors indicate possible positive and negative outcomes respectively. In this figure,
an experiment with a crossover between the fourth and fifth positions yields the highest informa-
tion gain.

3.5.2 Active Learning on FIV fusogenicity data (needed only half the num-

ber of sequences)

We also ran our Active Learning algorithm on this data, starting from the wild-type sequence and

incrementally adding the next most informative mutated sequence, breaking ties randomly. The

algorithm converged to the same hypothesis space listed above, but did so using only a fraction

of the 24 labeled sequences. The Active Learning process was repeated 100 times, and required

an average of 9.58 ± 2.95 sequences to converge – less than half the total number of sequences

used by the authors.
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Chapter 4

Genotype-phenotype mapping -

Disjunctive Normal Form

4.1 Background

RNA virus genotype changes that happen in the binding active sites modify the structure of func-

tional proteins, and potentially lead to phenotype changes. To learn genotype-phenotype map-

ping we first characterize the structural binding of viral proteins. For example, drug resistance

is often a steric-structural problem, and the physical interactions with inhibitors involve more

than one part of the target molecule, e.g. Protease Inhibitors (PIs) bind to four or more binding

pockets in the protease substrate cleft of HIV viruses [25]; a variety of active site properties

are playing roles in the binding determination, such as residue types, hydrophobicity, charges,

secondary structure, cavity volume, cavity depth and area etc. Therefore, multiple, alternative

potential mechanisms exist, and each mechanism involves only a small number of mutations

since it has to be “discovered” by the virus via random mutations. Therefore, a short Disjunctive

Normal Form (DNF, “OR” of “AND”) would be an appropriate bias over the hypothesis space

under these assumptions.

We propose to use short Disjunctive Normal Form (DNF, “OR” of “AND”) to learn genotype-
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phenotype mapping also because 1) DNF is a high order boolean function that examines com-

plicated solution space, 2) DNF offers great flexibility and allows identification of unforeseen

interactions, 3) DNF is a natural form of knowledge representation for humans to interpret and

provides clinical insights and rules to direct further executions, 4) DNF is scalable to large or

small datasets. A short DNF increases interpretability and mitigates overfitting bias.

Conceptually DNF is a disjunction of conjunctions where every variable or its negation is

represented once in each conjunction. The learning of DNFs is a machine learning technique to

infer Boolean function relevant with a class of interest. It has been extensively used in electric

circuit design, information retrieval [48], chess [49], and so on.

Considered as a core algorithm in concept learning, DNFs suffer from shortcomings: 1) the

learnability of DNFs has been a fundamental and hard problem in computational learning theory

for more than two decades, 2) DNFs are sensitive to errors in data, as are all Boolean function

learning algorithms, 3) without the constraint of size, DNFs may suffer from a severe overfitting

bias. We developed algorithms for accelerating and optimizing DNF learning and applied the

techniques to a variety of RNA virus phenotypes.

4.2 DNF learning algorithms

A DNF is a standardization Boolean function, consisting of a disjunction of conjunctions, where

the conjunctions consist of one or more positive and negative literals. Any given Boolean func-

tion f : {0, 1}d → {0, 1} can be converted into an equivalent DNF. The following is an example

DNF formula:

f(x1, x2, x3) = x1 ∧ x3 + x1 ∧ ¬x2 ∧ x3 + x2

where ‘∧’ denotes ‘AND’, ‘+’ denotes ‘OR’, ‘¬’ denotes negation, and ‘x’ is a binary literal,

indicating whether a particular test “Feature = Value” is true. A DNF formula is essentially a

set of Boolean logic if-then rules, describing how the Boolean outcome is calculated based on

Boolean inputs.
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In Machine Learning, DNFs are traditional binary classifiers that predict Boolean outcomes

from instance-based data. The size of DNF functions is two-dimensional: the number of con-

junctive clauses and the maximum number of literals in each clause, thus a DNF is usually

represented as k-term n-DNF, where k and n are the number of clauses and maximum number

of literals respectively. In DNF learning, k and n are usually regularized because, without con-

straints, k and n tend to become very large, result in overfitting and defeating the purpose of

interpretability.

Finding the minimum size DNF formula is a well-known NP-Complete problem [50, 51,

52]. There is no polynomial time learning algorithm, and existing practical solutions usually

sacrifice completeness for efficiency. The existing heuristic or approximation approaches fall into

deterministic [48, 53, 54] and stochastic algorithms [49, 55]. The deterministic methods include

bottom-up schemes (learning clauses first and building DNFs in a greedy way) and top-down

schemes (converting DNF learning to a Satisfiability problem). Stochastic methods randomly

walk through the solution space to search for clauses but are not guaranteed to yield optimal

solutions.

We developed two heuristic algorithms to accelerate the DNF learning by narrowing the

solution space under the domain assumptions: standalone DNF learning and monotone DNF

learning (MtDL).

1. Converts DNF learning to learning k-DNF where k ≥ 1 is the maximum size of conjunc-

tive clauses. (Standalone DNF learning algorithm)

2. Exhaustively learns monotone DNF(s) after feature selection (MtDL)

3. Greedily learns DNFs for hard problem settings.

4. Extracts biologically meaningful solutions and better predicts phenotypes from genotypes.
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4.2.1 Standalone DNF learning

Valiant [56] showed that for every constant k ≥ 1, k term DNF can be PAC learned in polyno-

mial time by k-CNF, i.e. CNFs with at most k literals in each clause. K-term DNF learning is

essentially a combinatorial problem. The standalone DNF learning algorithm first learns a set

of conjunctive clauses deterministically with the maximum clause length of k (Table 4.1), and

then converts the DNF learning process to a typical SET-COVER problem (Table 4.2). The DNF

learning algorithm is equivalent to finding the minimum number of sets that cover all the positive

sequences. The SET-COVER problem is again NP-Complete, by limiting the maximum clause

length, for typical RNA virus problem settings the number of clauses is usually manageable and

the SET-COVER can be exhaustively completed. Typically, the number of possible clauses of

sizek is up to Lk, where L is the sequence length. The actual number of clauses that appear in the

dataset is much smaller than this number, especially for biologically conserved datasets. After

equivalence filtering (see Section 4.2.5), the number of learned clauses is usually on the order of

several hundreds in the RNA virus domain. The standalone algorithm can efficiently infer DNFs

from small (a couple of sequences) to medium size (hundreds of sequences) datasets, or large

conserved datasets.

Clause Learning Algorithm (S, k):
Input:

A set S of already-available labeled sequences
k: assumed upper-bound length of clauses (a small positive integer)

Steps:
1. Enumerate all combination of literals to form conjunction clauses
2. Record the set of (positive and negative) sequences that each clause covers
(n+

j , n
−
j )

Output:
The set of clauses C and the corresponding sequence index sets (N+, N−)

Table 4.1: Clause learning algorithm
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Disjunctive Normal Form Learning Algorithm(C, n+):
Input:

A set C of clauses
n+: the set of positive sequence index to be covered by the clauses

Steps:
1. Equivalent filtering (see Section 4.2.5)
2. Among the clauses that cover only the positive sequences, find a minimum
set of clauses that cover all the positive sequences:

2a. start from the clauses that cover the positive sequences which are rarely
covered by other clauses

2b. repeat 2a recursively until all the positive sequences n+ are covered
Output:

The set of the shortest DNFs

Table 4.2: DNF learning algorithm

4.2.2 Monotone DNF learning after feature selection (MtDL)

MtDL utilizes feature selection to narrow the feature space and infer DNFs within the space. The

choice of feature selector is critical to the MtDL algorithm. The best feature selector needs to

guarantee that the selected feature space is a superset of the DNF solution space, and best limit

the feature space for efficient learning. The Combinatorial Filtering (CF) algorithm (in Table 3.1)

works seamlessly with MtDL as a feature selector. CF() efficiently identifies the smallest set of

features that completely explains the differences between classes, such that MtDL is guaranteed

to learn DNFs. In this study, MtDL always runs together with CF() to infer DNFs (Table 4.3).

Notwithstanding, other feature selection methods, such as LASSO, Logistic Regression with

regularization, or dimension reduction methods like PCA, are also good candidate selectors, but

in these cases, the coverage threshold might need to be set.

Upon completion of feature selection, the MtDL enumerates literals in the selected features

and then combines them into conjunctive clauses (Table 4.3). MtDL differs from the standalone

algorithm in that it does not limit the maximum size of clauses but completely considers all

2M possible combinations. Take a typical example: once L features are selected in step 1, there

should be at most M = V ∗L possible literals, where V is the size of value space. Because literals

from the same feature will not appear in the same conjunctive clause, we do not need to consider
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all 2M combinations, but only combinatorially choose up to L literals from M. Hence the total

number of clauses is at most N = (MchooseL). In reality, depending on the divergence and the

amount of the data, the actual number of possible literals is always much smaller. Furthermore, in

step 4, the N clauses will be pre-filtered by removing clauses that cover any negative sequences.

When the clause pool is ready, in step 5 the algorithm incrementally constructs the combination

of clauses to be candidate DNFs and examines the coverage of data points. MtDL starts from

one clause, and checks the next larger number if no solution is found. The algorithm terminates

when the DNFs exclusively cover all positively labeled data points but not any of the negatively

labeled ones.

Monotone DNF Learner (F , S):
Input:

F: A set of selected features (by CF(), for example)
S: the labeled training datasets

Steps:
1. Construct {L}, the list of literals in the features (e.g. 5A).
2. Throw out L that does not cover any positive sequences.
3. Combinatorial construct {Clauses}, the list of conjunctive clauses from
{L}, (e.g. 5A ∧ 8C). The possible combinations are |L| chooses 1, 2, .., |F |.
4. Throw out the conjunctive clauses that cover any negative sequences.
5. Incrementally construct {DNF}, the list of disjunctive normal form that cov-
ers all positive sequences but no negative sequences: starts from 1 clause, con-
struct DNFs from {Clauses}, try the next larger number if no solution learned.

Output:
The set of the shortest DNFs

Table 4.3: Monotone DNF learning algorithm

4.2.3 DNF learning for Fingerprints

Similar to the extension of the CF() algorithm for Fingerprints, the two DNF learning algorithms

above can be naturally modified to learn DNFs within continuous clusters. Since both DNF

learning algorithms are bottom-up approaches, in the clause construction step, instead of enu-

merating all combinations, we set cluster limitations similar to that in Table 3.1. DNF learning

for Fingerprints can learn DNFs from datasets where the assumption holds, or for very large
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datasets to reduce the computational running time.

4.2.4 Greedy versions of both algorithms

The greedy versions of the two DNF learning algorithms are designed to rapidly learn DNFs.

In the DNF construction step, the greedy algorithms iteratively select the clause that covers the

largest number of the uncovered positive sequences and zero negative sequences until all positive

sequences are covered.

4.2.5 Equivalence filtering

Computationally equivalent clauses cover the same set of sequences while differing in their com-

position literals. Replacing one clause with its equivalent clauses in a DNF will not change the

predictions of the DNF on the same training set. Equivalent clauses are very common in clinical

datasets; therefore, during DNF learning process equivalent clauses are filtered and only one of

them is used as the representative to construct DNFs. By using equivalence filtering the DNF

learning running time is greatly reduced. Note that the equivalence filtering is only for compu-

tational efficiency purpose. After learning DNFs, all clauses that have equivalent clauses will be

expanded to recover all the DNFs.

4.2.6 Avoiding over-fitting and robustness to noise

We used pruning and threshold setting to mitigate over-fitting and improve the algorithms’ ro-

bustness.

1. DNF pruning: similar to the pruning of decision tree, clauses that only cover a small num-

ber of sequences may be pruned if removing them results in an increase of the prediction

accuracy on the test dataset. The advantages of pruning are:

• Avoiding over-fitting, because irrelevant clauses are removed,
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• Shortening DNFs, which makes them easier to understand and more biologically

meaningful and

• Increasing robustness to noise, because pruned DNFs ignore the clauses/literals ren-

dered meaningless by noise.

2. Threshold setting: Setting thresholds on the fractions of the sequences that the learned

DNF(s) cover: the DNF learning algorithms can be easily modified to terminate when at

least a fraction p of the positive sequences are covered, and at most a fraction n of the

negative sequences can be covered by the DNFs. The thresholds p and n are determined

by cross-validation. Similar to pruning, threshold setting can also avoid over-fitting, learn

shorter DNFs and be robust to noise. One advantage of threshold setting over pruning is

that the former technique usually achieves better prediction quality.

4.2.7 Extension of literals

The literals can also be extended to negation of one amino acid or a subset of the amino acids.

4.2.8 Extension to multiple class data

The algorithm is applicable to multiple class data by running the algorithm multiple times. Each

time, one of the classes is designated as the positive class and the rest are merged as the negative

class.

4.3 Demonstrating DNF learning algorithms consistency

The DNF learning algorithms are first validated on simulated viral sequences to assess the con-

sistency and learning efficiency in a practical way. When generating the simulated sequences,

we match the position-specific amino acid distributions to those of a real protein dataset, and

generate random phenotypic target functions (making sure they did not label the entire dataset

38



Figure 4.1: The evaluation of MtDL algorithm on simulated sequences [2]. From left to
right, the number of CNF clauses, the number of DNFs, running time, prediction sensitivity
and specificity are plotted as functions against the number of key residues assumed in the target
function (rows), and the number of positive sequences and negative sequences (vertical columns
and horizontal rows of small colored squares). The numerical values of the colors are shown in
the colorbar. Take the top left chart for example, when the key residues are assumed to be 2 in
the target function, with say 100 positive and 2 negative sequences used, the number of CNF
clauses is about 12 (red color means higher value as indicated in the colorbar).

with the same value). We use 732 HIV-1 gp160 protein sequences (downloaded from LANL),

and a new hypothetical DNF is proposed in each study, (e.g. (70a ∧ 9l ∧ 11p ∧ 70t) + (62l ∧

45m ∧ 36y ∧ 9l) + (62P ∧ 53V ∧ 36s) + (83i ∧ 45I) = +), and is used to label the sequences

accordingly. This method enables us to generate as many sequences as needed to test algorithm

convergence under a variety of conditions. We repeated this process many times, and in all of

these cases both standalone algorithm and MtDL algorithm converge to the target functions with

a moderate number of sequences.
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4.4 Measuring inference efficiency (convergence rate as a func-

tion of dataset size)

The convergence rate is studied as a function of the number of available sequences and the

complexity of the genotype-phenotype mapping functions. This study is important because the

available number of sequences varies dramatically in different datasets. Once we know the con-

vergence rate we can assess the likelihood of convergence, and whether (and how much) further

experimentation will be needed for DNF learning algorithms to converge.

Five hundred eighty-eight aligned sequences of HIV protease protein are downloaded from

the Stanford HIV database. Hypothetical DNFs are randomly generated as target functions,

each depending on a small number (2..5) of literals. For each such target function, the 588

sequences were labeled accordingly. The DNF learning algorithm was then run 20 times, each

time assuming a different target function to produce a statistically robust result. The evaluation

results of MtDL are discussed and shown in the following sections, and the simulation result of

the standalone algorithm is similar.

Convergence Rate: Figure 4.1 shows the number of learned DNFs as a function of the num-

ber of literals in the target function (# of key residues, top-to-bottom), and the number of positive

and negative sequences (vertical and horizontal rows of small colored squares, respectively, with

values of 2, 5, 10, 20, 50, 100 sequences each). Blue indicates convergence (i.e. one single DNF

is learned given the amount of data, and the learned DNF is exactly the same as the target func-

tion), and red indicates not converged yet (additional DNFs are also learned). With this simulated

dataset the MtDL algorithm converges using only about 50 positively labeled and 50 negatively

labeled sequences.

Running time: DNF learning running time is exponential to the number of sequences and

sequence length. RNA viruses tend to have shorter protein lengths with 100-500 amino acids.

The constrains on the clause length and the feature selection approaches greatly reduce the clause
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pool size and exhaustive learning is now manageable. We also use ”equivalent filtering” (section

4.2.5) to accelerate the learning speed. The running time on the simulated sequences is on the

order of seconds.

The prediction sensitivity and specificity showed that the algorithms converge with only mod-

erate numbers of sequences. Interestingly, the prediction quality charts are symmetric such that

if we flip the labels of the data, the prediction accuracy will remain the same. This is important

because although our DNF learning algorithms identify DNFs that only cover the whole positive

space, the sequences in both classes contribute equally to the learning.

4.5 Retrospectively validating DNF learning algorithms when

ground truth is known

The DNF learning algorithms are retrospectively validated with a variety of phenotypes where

the genotype-phenotype mappings are already known and assumed to be correct, including Avian

Flu High/Low pathogenicity (four mutations in HA proteins changed the pathogenicity from low

to high in H5N2 Influenza HA) [37], Influenza H3N2 antigenicity shift (two mutations in HA

shifted the antigenicity of Influenza H3N2) [15], SIV Env neutralizability (two mutations in

SIV Env proteins determined the neutralizability of SIV)[42], FIV tropism in CRFG cells (two

mutations in FIV polymerase PA subunit made it unable to replicate in CRFK cells)[43]. The

MtDL+CF algorithm learns the mapping functions in each dataset and the functions contain

exactly the same set of positions as in the known answers (Table 4.5).

In contrast, the conventional position-specific association method (PSAM) we selected as

comparison [6] only correctly identifies the positions in one of the four datasets, and yields high

false positive and false negative rates in the other three datasets (Table 4.5). For an H5N2 hema

Pathogenicity dataset, PSAM identifies the key residues correctly because the sequences are

very conservative and only differ in those key residue positions. PSAM tends to have high false
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Data set name
(# pos/# neg seq)

Golden standard
(identified mutations)

DNF(s) learned by
MtDL

Positions identified by
Traditional method

H3N2 hema Anti-
genicity shift
(490pos/421neg)

145H, 146Q 145H+146Q 18, 67, 122, 145, 146

H5N2 hema
Pathogenicity
(4pos/11neg)

275K, 275T, 323K,
324R, 325K

323K+324R+325K 275, 323, 324, 325

FIV tropism
(3pos/7neg)

30E, 32K 30K∧32E 32

SIV Envelope Neutral-
izability (8pos/5neg)

179N, 337R 179N+337R 331, 348

Table 4.4: Comparing DNF learning with position-specific association methods Retrospec-
tive comparisons of the DNF learning algorithm on a variety of datasets.

positive especially when the dataset is biased, and performs poorly with very few sequences or

when the key residues interact in a complex fashion.

4.6 DNF learned from HIV resistance datasets

HIV resistance to all available drugs is a persistent problem[12], and some drug resistance mu-

tations are probably present before the start of therapy [13]. A good number of HIV protein

sequences have been collected and labeled with the resistance level to 20 anti-viral drugs from

the Stanford HIV database, including seven Protease Inhibitor drugs and eleven Reverse Tran-

scriptase Inhibitor drugs. The numerical resistance values were converted to multiple class labels

using resistance thresholds from the Stanford HIV database, and the sequences with significant

resistant values and susceptible values are selected.

The shortest DNFs learned for each anti-viral drug are shown in Table 4.5. The learned DNFs

are very short in terms of the number of clauses, and in most of the cases, two to three clauses

are enough to explain the resistance. In spite of the short length, these DNFs show a very high

prediction quality of sensitivity and specificity as shown in Table 4.5. For LPV drugs, the 2-term

DNF discriminates the resistance and susceptible classes with sensitivity and specificity of 96.1%

and 96.5%. The literals 36s, 45m for APV drugs, and 89I for RTV drugs have been identified
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by experiments and reported in literatures. These DNFs may also suggest mechanisms for HIV

drug resistance that have not been discovered yet.

Drug type Drug DNF = sensitivity/specificity; in the DNFs, lowercases mean negation
PI NFV 9l + (63l ∧ 9i ∧ 87n) = 0.902/0.834

RTV (81i ∧ 81v) + 83i+ (70a ∧ 70l ∧ 89l ∧ 70t) = 0.981/0.988
LPV (9l ∧ 53i) + (9l ∧ 45m ∧ 9h ∧ 9m) = 0.961/0.965
APV (36s ∧ 45m ∧ 36y ∧ 9l) = 0.787/0.961
IDV (70a∧9l∧11p∧70t)+(62l∧45m∧36y∧9l)+(62P∧53V ∧36s)+(83i∧45I) =

0.965/0.982
SQV (9r∧ 83i)+ (62q ∧ 53i∧ 89l∧ 70l)+ (45i∧ 89l∧ 70t∧ 70a)+ (76V ∧ 89l∧

81v ∧ 9l) = 0.899/0.963
ATV (70a ∧ 9l) + (89l ∧ 76V ∧ 81a) = 0.833/0.910

NRTI DDI 150M + (68s ∧ 68t ∧ 68d ∧ 68n) + (74v ∧ 42n ∧ 74t) = 0.738/0.985
AZT (73v ∧ 34− ∧214t ∧ 214d) = 0.848/0.988
D4T (209l∧214d∧34t∧214t)+(68t∧34m∧214d∧214t)+(68T∧117I∧66N) =

0.797/0.956
TDF (34i∧66N ∧214t∧183v)+(68g∧19r∧214Y ∧68t)+(34V ∧68t∧214f ∧

214t) = 0.784/0.980
ABC 183V +(214d∧121p∧209l∧82k)+(82k∧66d∧214Y ∧180c) = 0.940/0.944

NNRTI NVP (102k ∧ 102r) + (189g ∧ 102n) + (180y ∧ 100e) = 0.868/1.0
DLV (210t ∧ 102N) + (180y ∧ 100q ∧ 226F ∧ 210t) = 0.915/0.994
EFV (102r ∧ 102k) + (102s ∧ 189g) = 0.871/0.997

Table 4.5: DNFs learned from HIV drug resistance dataset

4.7 Improved prediction performance of DNF learning algo-

rithms on the HIV drug resistance problem

We examine the prediction performance of both standalone and MtDL learning algorithms on

two well-known benchmark datasets: the HIV drug resistance dataset and the UCI promoter

gene dataset (details in section 4.8). Many state-of-the-art machine learning models, including

Support Vector Machine, Decision Trees, Neural Networks, Nave Bayes, etc., have been tested

on these datasets, and the five-fold cross-validation prediction quality was reported [25]. The

five-fold cross-validation prediction accuracies of Protease Inhibitor are shown in Table 4.6. The

standalone DNF learning algorithm outperforms other machine learning algorithms in 4 out of

the 7 PI datasets (Table 4.6). The result suggests that the exhaustive algorithms achieve better
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Prediction accuracy (%) NFV SQV IDV RTV APV LPV ATV
#pos/#neg sequences 194/211 119/321 115/279 154/244 47/308 103/142 42/111
Standalone DNF 93.5 91.8 91.7 96.1 96.1 88.2 93.3
Z-score 74.6 87.3 91.7 87.4 92.3 90.5 88.8
NaiveBayes 95.1 75.1 78.4 93.2 87.3 92.7 73.1
SVM (svm light) 77.2 74.2 83.4 92.2 87.5 86.3 72.6
DT 94.0 89.0 90.1 98.6 91.8 98.6 78.5
Winnow 91.1 84.7 89.9 94.6 91.1 94.6 85.9

Table 4.6: Comparing Standalone DNF learning with published machine learning algo-
rithms on HIV Protease Inhibitor datasets. The numbers of positively labeled and negatively
labeled sequences in the datasets are shown, as well as and the prediction accuracies of 1) Stan-
dalone DNF, 2) Z-score [6], 3) Naive Bayes (from Weka), 4) SVM (svm light software, default
parameters), 5) Decision Tree (Weka, ID3 algorithm), 6) Winnow (Weka). The highest accuracy
of each drug is highlighted in bold

prediction performance, and DNF turns out to be a reasonable bias on the hypothesis space as

genotype-phenotype mapping functions for HIV drug resistance. Though Decision Tree (DT)

can be converted to DNF, DT is less flexible due to the tree structure, and the roots and branch

nodes are prefix in each clauses; However, the DT algorithm does not limit the tree height in

the learning algorithm, while our DNF learning aims to learn the shortest DNF, DT outperforms

DNF in two of the drug datasets.

4.8 Improved prediction performance on the UCI Promoter

Gene dataset

The UCI’s promoter gene dataset has been studied with many machine learning models and is

used as a benchmark dataset. The goal is to predict whether a DNA sequence contains promoters.

The dataset has 53 promoter sequences and 53 non-promoter DNA sequences. In Biology, the

promoters are characterized by special motifs at certain positions from the transcription starting

location, e.g. “cttgac” motif at +37 position indicates a promoter region. However, deriving all

such domain theories is impractical and not meaningful. Machine learning algorithms showed

promising prediction performance on this dataset (Table 4.7). Among them the knowledge-based
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System Errors Comments
MtDL + CF 4/106 No domain knowledge required
KBANN 4/106 A hybrid ML system that uses domain knowledge to

initialize the network structure
BP 8/106 Std backprop with one hidden layer
O’Neill 12/106 Ad hoc technique from the bio. lit.
Nearest neighbor 13/106 k-nearest neighbor, k = 3.
ID3 19/106 Quinlans decision-tree builder

Table 4.7: Comparing MtDL+CF with published machine learning algorithms on Promoter
Gene dataset

artificial neural network (KBANN) [57] achieves the best accuracy of 4 out of 106 errors in a

held-out test manner.

The KBANN model is a hybrid system of both Explanation-based learning (EBL)(a system

that incorporates pre-existing knowledge) and the Empirical learning system (learning solely

from training examples). In [57] the authors argue that the hybrid system should be superior, in

terms of classification accuracy, to empirical learning systems. On the Promoter Gene dataset,

KBANN learns a neural network model and translates a set of domain theories to initial the

neural network structure. The error rate is the number of wrongly predicted examples in a leave-

one-out cross-validation (LOOCV) manner. Three other machine learning algorithms, standard

back propagation, Quinlan’s ID3, O’Neill’s ad hoc partial pattern matching, and the “nearest

neighbor” are compared in Table 4.7.

We employed the same LOOCV validation using MtDL algorithm with CF() as the feature

selector. Although the prediction performance of MtDL+CF is the same as the best one KBANN,

MtDL+CF does not require any pre-existing domain knowledge as KBANN does.

4.9 The feature selector of MtDL

MtDL highly relies on the feature selector whose responsibility is to narrow the solution space

to the greatest degree and without any false dismissals. The best feature selector would natu-

rally be a hard version combinatorial algorithm but not a statistical algorithm because statistical
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algorithms often yield false dismissals. CF() works seamlessly with the MtDL because DNF

functions learned from MtDL algorithm are a proper subset of the hypothesis space of CF(),

which can be seen as a general set of hypothesis positions with simple logic between them, e.g.

OR or AND. To demonstrate this we chose two other popular feature selectors as a comparison

with CF(), Logistic Regression (LR) and K-nearest-neighbor (KNN), and applied MtDL on top

of them separately. We still chose the Promoter DNA dataset as the test standard, and LOOCV

was applied when testing the prediction accuracy. CF() outperformed the other two as the feature

selector for MtDL.

System Errors Comments
MtDL + CF 4/106 False positive: 1; False negative: 3
MtDL + LR 9/106 False positive: 6; False negative: 3
MtDL + KNN 25/106 False positive: 3; False negative: 22

Table 4.8: Comparing feature selectors with published machine learning algorithms on
Promoter Gene dataset
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Chapter 5

Applications to real unresolved problems

After demonstrating the convergence, correctness and efficiency of the algorithms on retrospec-

tive datasets, we proceed to test them on prospective data, where the target functions are not

known. We have identified two important open genotype-phenotype mapping problems in RNA

viruses, where current prediction methods had proven unsatisfactory in spite of the availability

of significant amounts of labeled data. We demonstrate the competitiveness of our algorithms,

identify specific strains (sequences) where our prediction differs most strongly from that of the

currently used methods, and test them empirically in the laboratories of our thesis committee

members from the University of Pittsburgh. At the end we also identify a critical clinical prob-

lem and prove the utility of our algorithms in other biomedical areas.

Truly prospective evaluation of Active Learning will require dozens of separate experimental

sequences, each carried out over several months. Therefore, we will not be able evaluate the

active learning algorithm prospectively.
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5.1 Antigenicity evolution of Influenza viruses

5.1.1 Background and significance

Influenza viruses are responsible for about 500,000 deaths annually and are a substantial threat

to human health. Besides seasonal infections caused by Influenza viruses, four major pandemics

over the last 100 years have resulted in about 50 million deaths worldwide. Influenza A and B

viruses evolve rapidly and continuously accumulate amino acid changes in the antibody binding

(epitope) sites of the surface proteins, resulting in changes in antigenicity. As a result, new

antigenic types regularly emerge and rise to predominance, causing worldwide epidemics despite

existing vaccination programs.

Influenza viruses’ high mutation rates induce antigenically variable pathogens that can es-

cape from immunity induced by prior infection or vaccination. Antibodies against the viral

surface glycoprotein hemagglutinin (HA) provide protective immunity to influenza virus infec-

tion, which is therefore the primary component of influenza vaccines. However, the antigenic

structure of HA has changed significantly over time, a process known as Antigenic Drift, and in

most years, the influenza vaccine has to be updated to ensure sufficient efficacy against newly

emerging variants. Influenza viruses antigenic properties are characterized using hemagglutina-

tion inhibition (HI) assay, a binding assay based on the ability of influenza viruses to agglutinate

red blood cells and the ability of animal antisera raised against the same or related strains to

block this agglutination.

Retrospective quantitative analyses of the genetic data have revealed important insights into

the evolution of influenza viruses. However, the antigenic data are largely unexplored quantita-

tively because of difficulties in interpretation, even though antigenicity is a primary criterion for

vaccine strain selection and is thought to be the main driving force of influenza virus evolution.

When antigenic data have been analyzed quantitatively, it has usually been with the methods of,

or methods equivalent to, numerical taxonomy. These methods have provided insights; however,
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they sometimes give inconsistent results, and do not properly interpret data that are below the

sensitivity threshold of the assay.

The antigenic impact of amino acid substitutions in the antigenic evolution of influenza A

viruses can reliably be determined by time- and cost-intensive experimental analysis. As an

alternative, our key residue identification algorithm can be used to efficiently identify the amino

acid changes that impact the Antigenicity Drift, thus providing guidance for further experimental

analysis and insights into the underlying mechanisms.

5.1.2 HI types data

HI type data of NewYork State strains and New Zealand strains contain antigenic strain match

and genotypes of Influenza Hemagglutinin (HA) proteins from 1989 to 2004. These strains are

characterized using the HI assay to determine their antigenicity, and the phenotypes are pre-

sented as a predominance worldwide epidemical strain names (HI types), such as Beijing1989,

Panama1999, etc. The key residues that cause the antigenic drift are identified by grouping the

strains with the same HI types and comparing against each other. The HI types and the number

of HA strains are shown in table 5.1.

Table 5.1: HI type data
HI type phenotypes
(strain name)

Number of strains

Beij89 100
Shan93 49
Joha94 94
Wuha95like 11
Sydn97 30
Pana99like 9
Fuji02like 64
Kore02like 20
Well04like 29
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5.1.3 Substitutions in antigenic type transitions

Amino acid changes from eight type transitions between adjacent years are identified using the

CF() algorithm (Table 5.2). The average number of identified substitutions in each pair is 4.1,

and 2.2 of them happen in epitope sites; the average number of substitutions each year (from

year 1989 to 2004) is 2.0, and 1.0 in epitope sites. The number of substitutions of each pair is

not strongly correlated to the genetic distances.

In the transition Beij89-Shan93, the key residue S63P(E) (mutation from S to P at posi-

tion 63 in epitope site E) substitution adds an extra sugar ring in the amino acid residue lo-

cated in epitope site and may modify the epitope site E’s 3D structure to alter the antigenicity.

This also applies to Q172H(D), Y121H(D), W238R(D) in transition Pana99like-Fuji02like. Re-

sults also show that substitutions may involve amino acid charge changes that modify the anti-

body binding property, including D140N(A) in Beij89-Shan93 transition, D140G(A) in Shan93-

Joha94 transition, R213Q(D) in Joha-Wuha95like transition, K172Q(D) in Wuha95like-Sydn97

transition, N142D(A), Q172H(D), Y121H(D), W238R(D) in Pana99like-Fuji02like transition,

and D142N(A) in Kore02like-Well04like transition. Some substitutions are hydrophobic to hy-

drophilic changes that cause the type transition, e.g., V160N(B) in Wuha95like-Sydn97 transi-

tion.

Among the eight type transitions, in six of them substitutions happen in one or two epitope

sites, suggesting that small numbers of mutations are sufficient to change the structure of the

binding sites. In transition Shan93-Joha94, three epitope sites are involved in the changes, though

S294N(C) does not change the residue structure or property as strongly as the other substitution.

In transition Sydn97-Pana99like, none of the substitutions are in epitope sites; this may suggest

that substitutions that are not in the epitope site still affect the epitope binding globally. The

substitution positions are not generally shared among different transitions.
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Table 5.2: Substitutions between adjacent groups
Strain names Substitutions (epitope site) Genetic

distance*
Beij89-Shan93 S63P(E), D140N(A), N232D, S235Y 9.6
Shan93-Joha94 G291D, P63S(E), S294N(C), D232N, Y235S, D140G(A) 10.1
Joha94-Wuha95like N278S(C), K151T, N161K, D149N, R213Q(D) 13.2
Wuha95like-Sydn97 K172Q(D), S263C, K108T, V160N(B) 19.4
Sydn97-Pana99like C263S, T108K 13.4
Pana99like-Fuji02like N142D(A), Q172H(D), E402G, Y121H(D), W238R(D),

G241D
19.6

Fuji02like-Kore02like H121Y(D), P243S 4.3
Kore02like-Well04like K161N, D142N(A), S243P, D204Y 8.5

*Genetic distance is defined as the average amino acids changes between two groups of Hemagglutinin proteins.

5.1.4 Fixed and emerged substitutions

We define fixed substitutions in antigenic type transitions as the substitutions of type transitions

that remain as the only amino acid after the substitutions happen; on the other hand, emerged

substitutions temporarily emerge in only one type and disappear in other types.

The full list of fixed substitutions is compiled in figure 5.1.4. Fixed substitutions are com-

mon and occur in all of the eight type transitions. More than five substitutions are fixed in

transition Jona94-Wuha95like, Wuha95like-Sydn97, and Pana99like-Fuji02like, while only one

fixed substitution occur in the other transitions. On average, 2.8 fixed substitutions are observed

in each transition and 1.4 per year. There can be multiple fixed substitutions happened at one

position throughout different HI types, e.g., position 213 is amino acid “R” in Beij89, Shan93,

and Joha94, and it is mutated to amino acid “Q” from Wuha95like to Well04like. For position

142 and 161, the substitutions regress to the previously fixed amino acids, i.e. “A”⇒ “B”, and

then mutate back to “A”. These fixed substitutions may not play a role in the type transitions,

and are most likely hitchhikers. Fifteen out of the twenty two fixed substitutions are located

in the epitope sites. Fixed substitutions H91Q and W238R between Pana99like-Fuji02like are

huge structure changes in the residues; D140N, K151T, R231Q, D149N, K78E, E174K, K172Q,

H91Q are the charge changes in residues; S294N and N278S are perhaps hitchhikers due to the

small differences between the two amino acids properties.
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Figure 5.1: Fixed substitutions in the eight type transitions. The rows are chronologically HI
types, and columns are positions along the HA proteins sorted by the time when the substitutions
happen. Bolded positions indicate epitope sites. The amino acids in light background are the
original amino acids, and dark colors are fixed substitutions. Transition states are marked in
light grey. Three positions, 140, 137 and 172 involve fixed substitutions twice and the final fixed
substitutions are marked in black.

The full list of emerged substitutions is compiled in figure 5.1.4. Each antigenic type is

compared against the rest of types to identify the unique mutations. The result shows that each

group has at least one unique emerged substitution, e.g., 61G for type Wuha95like, 175F for

type Pana99like. Eight out of night types have only one or two emerged substitutions, except for

Shan93 which has four such substitutions. Some substitutions may be compensatory mutations

to retain function, and others may be hitchhikers carried along by chance. Five of the unique

substitutions occur in the epitope sites. On average, 1.5 emerged substitutions happen in each

HI type, and 0.45 in epitope sites; 1 emerged substitutions happen each year, and 0.33 in epitope

sites. The sites and substitutions identified by our method may be of particular relevance for

influenza A (H3N2) virus antigenic evolution, which has not been described before.

Figure 5.2: Emerged substitutions in the nine HI types. The HI types are sorted chronolog-
ically in rows, and positions along the HA proteins are sorted in columns by when the substi-
tutions happen. Bolded positions are epitope sites. Each HI type contains at least one emerged
substitutions marked in dark grey.

The fixed and emerged substitutions are identified using the “soft version” CF() algorithm
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(table 3.1). We used the threshold of 95%, allowing 5% errors and outliers in the data. In the

fixed substitutions learning, all the HI types are sorted chronologically, and split into two groups

by a year threshold, i.e. the types before year 1990 as class ’+’ and types after 1990 as class ’-’.

This is repeated using different year thresholds until all the combinations are studied. On the

other hand, in the emerged substitutions learning, each time one type is selected as class ’+’ and

all the rest types are merged as class ’-’.

Another interesting study is to learn the unique substitutions in one type against the types

right before and after this type, e.g. type ’Shan93’ against ’Beij89’ plus ’Joha94’. This study

shows the emerged substitutions in a shorter time range. The results are shown in table 5.3.

Table 5.3: Unique substitutions in a shorter time range
Strain name Emerged substitutions
Beij89 140D, 232N, 235S
Shan93 140N, 232D, 235Y, 63P
Joha94 140G
Wuha95like 61G
Sydn97 66G, 21V, 160N, 263C, 107T
Pana99like 65S/D, 175N, 183A
Fuji02like 243P
Kore02like 142D
Well04like 377I, 243P, 204Y, 175F

5.2 The Neuraminidase Inhibitor (NAI) resistance

Influenza Neuraminidase protein (NA) is an integral type II membrane glycoprotein. It has 1453

nucleotides encoding 454 amino acids. Neuraminidase promotes the release of influenza from

infected cells and accelerates virus spread by cleaving stalic acid [34]. Because of the essential

role of NA in influenza replication and its highly conserved active site, NA inhibitors (NAIs)

become promising drugs [34]. Zanamivir and Oseltamivir are NAIs that have shown efficacy

against influenza A and B viruses [58].

After oseltamivir treatment NAI resistant viruses were infrequent in clinical trials with es-

timated resistance rates varying from 0.4% to 1% in the adult population [59]. This is much
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Figure 5.3: Structure of N1 neuraminidase complexes and NAIs [3]. Structure of N1 neu-
raminidase complexes and NAIs [3]. a, sialic acid (colored blue) docked into the active site of
wild-type N1 Neuraminidase (ribbons colored yellow) from superposition of the sialic acid com-
plex of N2. b, the structures of sialic acid (carbons colored blue), zanamivir (carbons colored
grey) and oseltamivir (carbons colored yellow) are shown in similar orientations with selected
carbon atoms numbered.

less than the resistance to M2 ion-channel inhibitors which is 92.3% amount Human Influenza A

(H3N2) viruses in United States [60], and neuraminidase inhibitor resistance tends to revert when

the drug pressure is removed [61]. However, it is reported that the resistance to oseltamivir is get-

ting more prevalent, especially in Europe (25%) [14]. While oseltamivir resistance had become

more prevalent for seasonal H1N1, the 2009 H1N1 pandemic strain appeared to be Oseltamivir

sensitive [62, 63].

To learn the drug resistance associated mutations, influenza strains are isolated and tested

with phenotypic/genotypic assays. The resistance to NAIs is mostly determined by the mutations

on neuraminidase proteins; however some mutations on hemagglutinin are also correlated [64].

Once drug resistant strains are identified, the neuraminidase proteins are sequenced, and the

associated mutations are identified. Mutagenesis experiments are carried out on neuraminidase

to identify such resistant mutations to understand the mechanism [3][61][65].

A number of both wild-type and genetically engineered neuraminidase variants have been

reported in the literature, often including their sequences and NAI-resistance phenotype. And

yet, no accurate prediction algorithms have yet been devised to date. I have compiled a dataset of

about 300 such influenza neuraminidase proteins, including 48 engineered sequences and about

250 clinical or in vitro isolates. The hemagglutinin sequences of these variants are not always
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available in their entirety, a fact that will complicate our analysis.

5.2.1 Compiled Influenza sequences

The NAI resistance data are collected from the literature reporting NAI experiment. Isolated or

mutagenesis Influenza virus resistance to NAIs, Zanamivir and Oseltamivir, were represented as

IC50. The following sequences were compiled:

1. Phenotype: the sequence phenotype need to be explicitly reported as ’resistant’ or ’sus-

ceptible’ to at least one of the NAI drugs. The sequences with IC50 or folds of resistance

reduction reported, but no cutoff provided were discarded.

2. Genotype: the neuraminidase protein sequences are provided directly or the mutagenesis

experiments as well as the wildtype sequences are both provided, or the sequences can be

retrieved given the strain name.

We focused on the neuraminidase genotype of Influenza A and neuraminidase subtype N1

and N2. The subtype of Influenza A viruses were represented as HxN1 (N1 neuraminidase

subtype, any hemagglutinin type) and HxN2 (N2 neuraminidase subtype, any hemagglutinin

type. The number of sequences is shown in parentheses (table 5.4).

Table 5.4: Drug resistance data size:
Zanamivir drug:
HxN1 resistant (3) vs. HxN1 susceptible (66)
HxN2 resistant (18) vs. HxN2 susceptible (52)
Oseltamivir drug:
HxN1 resistant (15) vs. HxN1 susceptible (47)
HxN2 resistant (2) vs. HxN2 susceptible (62)

5.2.2 The ground truth of resistant mutations identified by domain expert

We did a thorough literature search and compiled the drug resistant mutations that have been

identified and proven to be key residues. These serve as ground truth when comparing the pre-
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diction performance of CF() and ’position-specific’ algorithms.

HxN1 resistant to Zanamivir

H131N and G254R [66] are identified in two influenza H1N1 NA proteins isolated in patients.

The resistance level was determined as ’low resistance’ (the resistance IC50 is smaller than mean

of IC50 value plus three times of standard deviation). The sequences were retrieved from WHO

and tested using a commercially available NA-Star kit. V121A was identified in a chicken H5N1

NA protein. The position was highly conserved.

HxN2 resistant to Zanamivir

E119A, E119D, E119G [66]are three Zanamivir-selected mutant from ”A/turkey/ Minnesota/833/80”

(H4N2).

R152K ?? is mutagenesis from A/Tokyo/67(H3N2) sequence. The WT sequence as down-

loaded and made zanamivir sensitive sequence. The resistant sequence is manually generated

from the WT sequence.

Fourteen sequences [66] are also collected from three consecutive seasons (2004-2007). Ten

of them are determined to have ’low resistance’ to Zanamivir. Within these 14 sequences, 143V,

387N and 439L always occur together.

HxN1 resistant to Oseltamivir

Six strains with H274Y [66] mutation are also collected from three consecutive seasons (2004-

2007). Another six strains with H274Y [67] are isolated clinically. V116A is identified in

A/chicken/Vietnam/486A/2004(H5N1) NA protein. The position is highly conserved.

I117V and I314V are co-occurring in A/Chicken/Indonesia/Wates/77/2005 NA protein. 46S

and 206V are co-occurring in A/Hanoi;30408/2005 [68], isolated from a 14-year-old Vietnamese

girl. The mutation reported in the literature was H274Y.
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HxN2 resistant to Oseltamivir

One strain with R293K [66] are Zanamivir-selected mutant from A/turkey/ Minnesota/833/80

(H4N2). Another R293K [69] is clinically isolated influenza virus A/Sydney/5/97(H3N2).

5.2.3 Comparison between the ground truth, CF(), DNF learning, and the

traditional method (Z-score)

We retrospectively validate the performance of CF(), DNF learning, and one traditions method

“z-score” algorithm with the ground truth. The DNF learning algorithm learned almost exactly

the same function as the ground truth, whereas CF() has slightly higher false positive and false

negative rates in Zanamivir HxN1 and Oseltamivir HxN2 datasets. The traditional method failed

in learning the correct answer in all of the four datasets (Table 5.5).

Table 5.5: NAI retrospective validation
Data Ground

truth
Key
residues
by
CF()

DNF learning Traditional method
(Z-score)

Zanamivir -
HxN1

H131N,
G254R,
V121A

121,
254,
354

121A + 131N + 254R =
+

254, 441, 443, 445,
465, 466, 477, 478,
479, 480, 481

Zanamivir -
HxN2

E119A,
E119D,
E119G,
R152K

119,
152

119A + 119D + 119G +
143V + 152K = +

18, 23, 30, 42, 93, 143,
151, 216, 221, 309,
387, 439

Oseltamivir
- HxN1

H274Y,
V116A,
I117V,
I314V, 46S,
206V

274,
116,
117,
314

46S + 116A + 117V +
275Y = +

17, 23, 52, 64, 105,
275, 3666, 386, 418

Oseltamivir
- HxN2

R293K 293 293K = + 43, 127, 172, 199, 291,
293, 333, 402
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5.3 Using Data-driven Rules to Predict Mortality in Severe

Community Acquired Pneumonia

The CF() and DNF learning algorithms can be naturally extended to other domains where similar

assumptions apply. Prediction of outcome in the intensive care is in great need of computational

tools to optimize hospital performance benchmarking, yet their use by clinicians is limited by the

complexity of available tools and amount of data required. A large set of instance-based patient

data are collected from patients admitted to an acute care hospital with community acquired

pneumonia. Early detection of patients at high risk of developing organ dysfunction and death

from the data has proved challenging, yet it is critical to allocate the resources and guide decisions

regarding active treatment and withdrawal of care. In the early prediction setting, the features are

limited to those available immediately when the patients are hospitalized, including demography,

cytokine data, genetic information, and early bedside measurements. DNF learning algorithms

can fast learn an intuitive set of prediction rules using the limited size of features, and thus is of

greater practical usefulness than currently available prediction tools in this population.

5.3.1 Introduction and background

Among inflammatory illnesses, pneumonia often presents as sepsis, defined as infection accom-

panied by systemic signs and symptoms of infection [70], including rapid heart rate, rapid respi-

ratory rate, and fever. Approximately 750,000 patients develop severe sepsis each year in the US,

with a hospital mortality rate of 28.6%, or 215,000 deaths per year [71]. A significant number of

these patients have pneumonia [72]. Interventions for severe sepsis that decrease morbidity and

mortality could profoundly impact public health [73]. There is ample pre-clinical and clinical

evidence that immunomodulation improves the outcome of patients at higher risks of death, yet

pre-clinical data and simulation have also indicated that harm may ensue from targeting some

subpopulations of patients [74, 75, 76]. Early detection of patients at high risk of developing
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organ dysfunction and death has proved challenging.

Tools to predict the outcomes of critical illness have been developed for three decades [77, 78,

79, 80, 81]. Most of these prediction tools are logistic regression models, presumably because of

their popularity and ease of interpretation of odds ratios associated with predictors of outcome.

Yet, logistic regression is intolerant of missing data, does not readily deal with correlated data,

and it may be difficult to quickly generate a prediction for the non-expert. A desirable prediction

tool should possess the following properties: discrimination (the ability to classify the outcome

of patients who will develop hospital mortality and who will not), learnability (the ability to

achieve the discrimination from moderate quantity of data and few features, especially in the

early detection of critical care where fewer data are available), completeness (explore the solution

space as completely as possible under appropriate assumptions), transparency (not behave as a

“black box”), and having the ability to be easily interpretable by the end-user, typically a non-

expert.

We propose to use short Disjunctive Normal Form (DNF; “OR” of “AND”) as an appropriate

representation of the hypothesis space to predict critical care outcomes because 1) DNF is a high

order boolean function that examines potentially complicated relationships between predictors

and outcomes, 2) DNF offer great flexibility and allows identification of unforeseen interactions

between predictors, 3) DNF is a natural form of knowledge representation for humans to interpret

and they provide clinical insights and clear rules to assist in decision making, 4) DNF is scalable

to large or small datasets. A short DNF increases interpretability of the rules and mitigates

overfitting bias. The aim of this study was to illustrate the ability of DNF to predict hospital and

90-day mortality within 2 days of admission in patients with community acquired pneumonia.

Related work

Previous models have been limited by retrospective design, [82, 83, 84, 85] the dependence on

large hospitalization data [82, 83, 84, 85, 86, 87, 88], the lack of interpretability of complex

59



models [85], restricted applicability to single study sites [84, 87, 89], and bias to certain patient

populations [84, 85, 87]. Time dependent techniques as alternatives to standard Cox proportional

hazard models [90] and dynamic microsimulation [91] have also been published [92] [93]. Both

microsimulation and Markov transition kernels derived in these publications are learned from

population-level inference and are not instance-based (i.e. patient-specific). We also have the

intuition that, outside the framework of a clinical study, clinical data are collected on the basis of

perceived clinical need and thus missingness is highly likely not random. Accordingly, there is a

very good case to be made that models based on instances might perform better than population

models.

5.3.2 Materials and Methods

The GenIMS study cohort

Patients with community acquired pneumonia (CAP), a common cause of sepsis, were recruited

as part of the Genetic and Inflammatory Markers of Sepsis (GenIMS) study, a large, multicenter

study of subjects presenting to the EDs of 28 teaching and non-teaching hospitals in 4 regions

in the United States (Western Pennsylvania, Connecticut, Michigan, and Tennessee) between

November 2001 and November 2003. Eligible subjects were > 18 years and had a clinical and

radiologic diagnosis of pneumonia, as per the criteria of Fine, et al. [90]. Further details on

inclusion and exclusion criteria are provided elsewhere [91]. The GenIMS study was approved

by the Institutional Review Boards of the University of Pittsburgh and all participating sites. The

current study used fully de-identified data and was approved by the University of Pittsburgh IRB.

Of the 2320 patients enrolled, we restricted our analysis to 1815 subject admitted to the

hospital and with measurements of serum inflammatory markers data on enrollment day. Our

primary outcomes were all-cause mortality at hospital discharge and at 90 days after enrollment.
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Measurements

The dataset included demographic information, diagnostic information as to bacterial etiology

and anatomical site of sepsis, admission APACHE III as an indicator of overall disease severity

[92], organ level physiologic variables to quantify organ dysfunction, routine laboratory mark-

ers, and interventions. Relevant to our analysis, the inflammatory markers IL-6, IL-10, tumor

necrosis factor (TNF), and lipopolysaccharide binding protein (LBP) were collected on days 1,

2, 3, 4, 5, 6, 7, 8, 15, 22 and 30 while patients were still in the intensive care unit. An extended

set of coagulation studies was collected on day 1, as well as an array of fluorescent antibody

cell sorting (FACS) markers to quantify different immune cell populations on day 1. Finally,

DNA information on 27 single nucleotide polymorphism (SNP), each segregating the study pop-

ulation in non-overlapping binary or ternary genotypic categories, was also collected. There

were chosen because they were previously shown or suspected to have prognostic value in sepsis

[93, 94, 95, 96].

Model hierarchy and benchmark classifiers

We construct a hierarchy of models 1 to 8 incrementally including features pertaining to differ-

ent domains of data (Table 5.6). Model 8 is the most complete model containing all available

features; Model 7 is a complete set of features, but restricted to data available only on day 1

of hospital, while Models 1 to 6 include selective domains of features. No data beyond day 2

post-enrollment were included in the predictions.

To compare the performance of the DNF learning algorithm, a number of other classifiers

were constructed. These include simple Logistic Regression, Naive Bayes, SVM, Multi-layer

Perceptron (Neural Network), and tree-based algorithms, (e.g. Random Tree, and Random For-

est). Prior to classification, all continuous data were discretized in terciles (age), or quartiles (all

analytes and APACHE score). For each model, two feature selection algorithms (information

gain ranking and chi-square ranking) were run to select a maximum of 15 predictor variables
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(features). Feature selection was applied using 10-fold cross-validation to mitigate overfitting.

Benchmark classifiers used the union of feature sets identified by the selection algorithms.

Table 5.6: Predictors (features) inluded in the different models.
Model Features included
Model 1 Demographics (age, sex, race, chronic disease), Macro-

physiology (APACHI II score, Severe sepsis on enrollment)
Model 2 Demographics, physiology, Day 1 cytokines
Model 3 Demographics, physiology, SNP profile
Model 4 Demographics, physiology, day 1 cytokines, SNP profile
Model 5 Demographics, physiology, day 1 cytokines, SNP profile,

coagulation data
Model 6 Demographics, physiology, FACS
Model 7 Demographics, physiology, day 1 cytokines, SNP profile,

coagulation data, FACS
Model 8 Demographics, physiology, all available cytokines, SNP

profile, coagulation data, FACS

Early prediction capabilities of the classifiers

For each model, we attempted classification using the following classifiers: Nave Bayes (NB),

Neural Network (NN), logistic regression (LOG), boosted logistic regression (BL), support vec-

tor machines (libSVM and SMO implementations in Weka 3.5.7), Random Forest and Random

trees algorithms, and finally the KStar lazy classifier. Their performance on each model was

compared, using a 10-fold cross-validation strategy.

Prior to classification, all continuous data was discretized in terciles (age), or quartiles (all

analytes and APACHE score). Two feature selection algorithms (information gain ranking and

chi-square ranking) were run to select a maximum of 15 predictor variables (features). These

algorithms were also run using a 10-fold cross-validation procedure.
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Performance metrics

We evaluate the models ability to discriminate outcome by received operating characteristics

(ROC) area under the curve. Sensitivity and specificity are also provided. We computed the

Brier score as a global measure of calibration. For DNF, we also adapted the Hosmer-Lemeshow

H-statistic (AHL) to binary outcomes [97]. Because DNF learning outcomes are either 0s or

1s, we created five bins including a geometrically larger number of predicted deaths. We ran-

domly choose predicted survivors to complete the bins which comprised an approximately equal

number of patients. The AHL was then computed as a chi-squared statistic across the five bins

[98]. For the probability-based models, e.g., Logistic Regression and SVM, we use their binary

outcomes instead of the continuous probability to compute the AHL statistics scores. All metrics

are reported in the entire population and in the external validation cohort.

Results

Patient characteristics

All 1815 patients had demographic, disease severity and at least two inflammatory markers mea-

sured on day 1. The number of patients where different domains of data were available varied and

was least for FACS (Figure 5.4). This distribution strongly determined the hierarchy of models

examined. A complete description of cohort demographics and physiology has been published

[91].

Predictors identified by benchmark classifiers

Clinical markers of severity (APACHE score and number of failing organ systems) were the

strongest predictors of both hospital and 90-day mortality. Of demographic features, only age and

the presence of chronic illness were included in most predictive models. Most SNPs examined

were uncorrelated to 90-day mortality, but IL6M174 (GG), L100M1048 (G/T) and MIFM173
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Figure 5.4: Cohort sizes across different domains of data [4].

(GG) were consistently predictive, even in multivariate models. IL18M137 was less consistently

associated with outcome. Features also consistently selected in the hierarchy of models included

monocyte positivity for CD-14 and CD-120a, and monocytic and granulocytic positivity for toll-

like receptor (TLR)-2. Although it could be that the 10-fold cross-validation procedure admitted

significant overfitting (N=124), it is an interesting hypothesis that the profile of activation of

immune cells conveys as much or more information than cytokines and SNP polymorphisms.

5.3.3 DNF learning algorithm consistency and efficiency

The DNF learning algorithms are first validated on simulated clinical data to assess the consis-

tency and learning efficiency in a practical way. When generating the simulated data a new hypo-

thetical DNF is proposed in each study, e.g. (age > 3∧Sepsis > 1+Nil6 2 > 1 = mortality,

see section 5.3.4 for the explanation of DNF functions) and the data is randomly produced fol-

lowing the features distributions in the real patient data and labeled according to the target func-

tion. When learning the DNFs the positively labeled and negatively labeled data are shuffled and

used in an incremental way to monitor the solution space size against the number of data used.

The step is repeated 20 times and the DNF learning algorithm converge to a single DNF solution

with 50 positively labeled data and 50 negatively labeled data, and more importantly the learned

single DNF is consistent with the target function in all of the studies.
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5.3.4 DNF learning algorithm prediction performance

The DNF learning prediction quality is first evaluated by its discrimination. The ROC curve (Fig-

ure 5.5) is generated upon tuning the sensitivity/specificity weights in the optimization objective

function. The AUC for hospital mortality dataset in Model 8 is 0.937, which is very similar to

the performance obtained with Model 7, suggesting that serum inflammatory markers levels af-

ter day 1 do not contribute much to the predictive ability. This is a meaningful result as hospital

mortality is by and large determined by data obtained on the first admission day.

90-day mortality is considerably more difficult to predict than hospital mortality with the

AUC decreasing to 0.785. We again compare the performance on Model 7, Model 8, and also

add day 2 serum inflammatory marker levels to Model 7, without significant improvement in pre-

dictive ability (Figure 5.5). The DNF learning algorithm outperforms other benchmark classifiers

built from Model 7 and Model 8 (Table 5.6), even if Model 8 contains a much more complete

set of features; however Naive Bayes and Logistic Regression model prediction performance are

lower than that of Model 7 because these two models lack regularization; Random tree and Ran-

dom Forests’ implementations we used do not implement pruning and result in severe overfitting

issues; on the other hand, Boosted Logistic and DNF naturally implements regularizations and

perform as well as Model 7 (Table 5.6).

When removing features from Model 7 (Models 1 to 6), the DNF learning accuracy decreases

(Table 5.6). DNF learning also outperforms other classifiers on Model 6, suggesting that mod-

els which include FACS data perform well despite the modest size of the cohort. For less rich

Models 1 to 5, the performances of DNF and benchmark classifiers were comparable, suggesting

that richness of the set of features contributes more to the predictive ability of DNF compared

to other classifiers. This conjecture could be examined in computational experiments. Interest-

ingly, Logistic Regression-based classifiers performed consistently better than other benchmark

classifiers through Model 5 (Table 5.6).
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Figure 5.5: Prediction performance of DNF learning on hospital mortality and 90-day
mortality data [4]. The 10-fold cross validation is applied to access the prediction performance
of DNF learning on the two datasets, and compare the performance when using the whole feature
set and only day 1 and/or day 2 cytokine.

DNF learning algorithm external validation

To evaluate the external validity of predictions from DNF learning, we developed models using

patients from a random subset of 27 hospitals, comprising approximately two-thirds of the pa-

tients. The prediction performance of DNF rules are then tested on patients from the remaining

six hospitals, where the numbers of patients per hospital varied between 1 to 343.

Using 90-mortality as the outcome of interest the DNF learning ROC achieves 0.789 which

is similar to that we learned in cross-validation over the entire cohort when using all the features.
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Table 5.7: Comparative performance of models on predicting 90-day mortality.
Model NB SVM NN LOG BL RT RF DNF

Model 1 .740 .623 .746 .748 .755 .705 .743 .752
Model 2 .733 .625 .690 .747 .752 .673 .681 .740
Model 3 .709 .578 .742 .762 .763 .670 .696 .755
Model 4 .745 .630 .733 .762 .755 .662 .711 .749
Model 5 .770 .678 .728 .774 .766 .650 .654 .756
Model 6 .739 .682 .696 .728 .739 .690 .699 .759
Model 7 .783 .747 .751 .785 .766 .701 .715 .791
Model 8 .704 .744 .756 .723 .768 .575 .628 .785

NB-Naive Bayes, SVM-Support vector machine, NN-neural network, LOG-Logistic regression,
BL-Boosted logistic regression, RT-Random tree, RF-Random forest, DNF-Disjunctive Normal
Form learning.

The external validation performance of DNF learning compared advantageously with that of

benchmark models (Table 5.8). Of note, DNF learning was the best calibrated model (AHL=9.06,

p=0.06 with 4 df).

Table 5.8: Comparative performance of models on predicting 90-day mortality.
Scores NB SVM NN LOG BL RT RF DNF
ROC .747 .752 .757 .738 .748 .655 .698 .789

1 - Brier Score .712 .750 .844 .822 .867 .792 .874 .891
NB-Naive Bayes, SVM-Support vector machine, NN-neural network, LOG-Logistic regression,
BL-Boosted logistic regression, RT-Random tree, RF-Random forest, DNF-Disjunctive Normal
Form learning.

Specific rules learned from the data

The DNF learning algorithm simultaneously optimizes the prediction quality and minimizes the

length of DNF functions, because without constraining the function length, the DNF functions

can be complicated and lead to severe over-fitting problems. The DNF learning algorithms aim

to learn the shortest functions (see section 4.1 for the definition of the function length), i.e. the

most generic functions extracted from the data that can discriminate the mortality outcomes. The

DNF learned to predict hospital mortality is:
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(Ssday1 > 1) OR ((Ssday1 > 0) AND (Npct > 1) AND (NIL6 2 > 1)) = + (5.1)

Where Feature = t means the value of the feature falls into group t; Feature > t means

the feature value is larger than that of group t. Recall that the feature values are discretized into 3

to 5 groups, and the group values are indexed from 0 to N − 1 where N is the number of groups.

The full explanation of literals appeared in this study is shown in Table 5.9.

Function (1) indicates that if either one of two conditions is satisfied, the outcome is predicted

to be hospital death, where the two conditions are 1) Ssday1 value is larger than 1 (failure in more

than one organ system), or 2) Ssday1 value is larger than 0 AND Npct value is larger than 1 AND

NIL6 2 value (quartile of IL-6 levels on the second day) is larger than 1. The positive symbol on

the right side of function (1) is positive label, i.e., hospital mortality. Since all the DNF predict

positive class, the ‘+’ symbol on the right side is replaced with the sensitivity/specificity metrics

of the DNF. For representation purposes a DNF will be written as DNF = sensitivity/specificity,

and the above function is now:

(Ssday1 > 1) OR ((Ssday1 > 0) AND (Npct > 1) AND (NIL6 2 > 1)) = 93.6%/82.3%

(5.2)

This DNF contains 2 terms of 4 literals covering 3 different features: Ssday1, Npct, and

NIL6 2, comprising only 3% of all features available in the data, suggesting that DNF functions

discriminate the outcomes by only using a small fraction of the feature sets (< 10% features in

all cases).

The prediction procedure implied by a DNF (3) is illustrated in Figure 5.6. The prediction

procedure of DNF is represented in three layers: the top layer is the DNF itself; the middle

layer is the clause level; and the bottom layer is the final outcome. Red color rectangles indicate
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that patient data is above the threshold and a severity condition is met; green rectangles indicate

that patient data is below and the condition is not met. Three example patients are shown. For

patient A, Ssday1, Npct and NIL6 2 are all above the threshold and results in a positive Clause

2 so the predicted outcome is mortality. For patient B, Clause 2 is negative due to the low

Npct (procalcitonin in the lowest quartile); however high Ssday1 turns on Clause 1 and predicts

mortality too. Patient C has high Npct but it is not sufficient to turn on either Clause 1 or 2 and

she is therefore predicted to survive.

Figure 5.6: Interpreting DNF models on three patients [4]. The prediction procedure of
DNF is represented in three layers: the top layer is the DNF itself; the middle layer is the clause
level; and the bottom layer is the final outcome. Red color rectangles indicate that patient data is
above the threshold and a severity condition is met; green rectangles indicate that patient data is
below and the condition is not met. Three example patients are shown. For patient A, Ssday1,
Npct and NIL6 2 are all above the threshold and results in a positive Clause 2 so the predicted
outcome is mortality. For patient B, Clause 2 is negative due to the low Npct (procalcitonin in
the lowest quartile); however high Ssday1 turns on Clause 1 and predicts mortality too. Patient C
has high Npct but it is not sufficient to turn on either Clause 1 or 2 and she is therefore predicted
to survive.

The DNF learned from the data are shown in Table 5.10. For hospital mortality, Ssday1 is a

strong predictor. A high level of Ssday1 is associated with high risk of mortality. IL6 and IL10

are strong predictors too, and appear to be consistently predictive, which can possibly support

the concept that total inflammation, as opposed to a balance between pro-inflammation and anti-

inflammation, is predictive of outcome [90]. IL6 on day 2 turns out to be a strong predictor, yet

needs two other conditions to also be present (Equation (1) in Table 5.10). In Model 7, IL10 1
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is selected instead, and it needs 3 other conditions too: age > 1, Ssday1 > 0 and IL1R901827

SNP is not A/G (Equation (2) in Table 5.10).

To predict 90-day mortality, the number of terms in DNF increases to 5, and the sensitivity

decreases to 80%, suggesting that Ssday1 is not as strong a predictor of 90-day mortality as

it is of hospital mortality. In Model 8, Ssday1 combines with Npct factor to form a single

clause, and in Model 7 it needs Nap3. Higher Nap3 is also an indication of high death risk.

Interestingly although SNP generally has low correlation with the 90-day mortality, IL1R895495

and IL1R901827 are learned in the DNF.

The highest discriminator of poor outcome was the day 1 to day 2 trend in the product of IL-

10 and IL-6. Trends in day 1 to day 2 TNF, IL-10, IL-6, were also retained in the models. This is

a very interesting, and somewhat refreshing observation, raising the hypothesis that interventions

significantly impacting early cytokine profiles might indicate biological activity resulting in more

favorable long-term outcome..

In the external validation, the DNF learned from the development set is:

(Npct > 1 AND Ssday1 > 0 AND Nap3 > 1) OR

(Nap3 = 4 AND IL1R895495 AG! = G/A AND Npct > 1 AND Nfcd120a < 4) OR

(chronic t > 0 AND NIL6 3 > 1 AND IL1R895495 AG! = G/A AND Ssday1 > 0) = 81.8%/71.4%

(5.3)

The first two clauses are similar to those learned in Table 5, which indicated that 1) the

process of DNF learning is robust in identifying predictive rules if data used in development

is consistent with population data, and that 2) correlations in data may allow similar, but not

identical rules, when different development sets are selected.
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Table 5.9: DNF literals explanation
literal meaning value type num

of
value
groups

Ssday1 Presence of some organ dysfunction on
day 1 [49]

integer 5*

Npct Quartile of procalcitonin [50] integer 5
NIL6 2 Quartile of the inflammatory marker IL-6

on the second day of admission
integer 5

IL1R901827A15 Genetic polymorphism of IL-1 receptor
antagonist protein

Gene 3

Nage Quartile of age integer 5
NIL10 1 Quartile of the inflammatory marker IL-

10 on the day of admission
integer 5

IL1R895495 AG Genetic polymorphism of IL-1 receptor
antagonist protein

Gene 5

Nap3 Quartile of APACHE III score integer 5
chronict Burden of chronic illness, as determined

by the Charlson index [51]
integer 5

Nfactor Quartile of coagulation Factor IX activity integer 5
Note*: when missing values present in the data, they are treated as a literal, but they are never
selected in the DNF learning.

Table 5.10: DNF of the patient mortality
Hospmort
mortality
(model 8)

(Ssday1 > 1) OR ((Ssday1 > 0)AND(Npct > 1)AND(NIL6 2 >
1)) = 93.6/82.3

Hospmort
mortality
(model 7)

((Ssday1 > 1)OR((Ssday1 > 0)AND(IL1R901827 A15! =
A/G)AND(Nage > 1)AND(NIL10 1) > 1)) = 91.0/89.3

90-day mortal-
ity (model 8)

((Ssday1 > 0)AND(Npct > 1))OR ((IL1R895495 AG ! =
A/G)AND(Npct > 1)AND(Nap3 = 4)AND(chronic t >
0)) =70.1/76.4

90-day mortal-
ity (model 7)

((Ssday1 > 0)AND(Nap3 > 0)AND(Npct >
0))OR(IL1R901827 A15 ! = A)AND(Nap3 = 4)AND(Npct >
0)AND(Nfactor 0 > 0)) =69.6/76.6
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5.3.5 Discussion of the learned DNFs

We present a new class of models, DNF learning, which produce data-driven rules predicting

mortality in patients hospitalized with severe community acquired pneumonia (see Appendix for

details). A distinctive feature of DNF, compared to commonly presented prediction models, is

that the resulting rules are readily interpreted by clinicians and can be used to enhance clinical

decision making in a variety of contexts. These rules are created under the assumption that DNF

are an appropriate representation of the manner data relate to outcome in severe community ac-

quired phenomena. In other words, several alternative (disjunctions) mechanisms can contribute

to the outcome, each mechanisms represented by the conjunction of conditions. The assump-

tion is clinically plausible and important as we develop algorithms to compute the DNF, because

it reduces the hypothesis space greatly and makes the computational hard problem solvable in

reasonable time. We demonstrated learning efficiency and consistency on simulated sequences,

showed the strength of the methods in learning meaningful mapping functions and showed supe-

rior prediction accuracy compared to other machine learning methods on real clinical data.

The use of DNF as a prediction tool has several strengths. Prediction rules are intuitive and

easy to apply at the bedside (Figure 5.6). They could be easily interfaced with the electronic

health record. Because a rule is comprised of separate disjunctive statements, each or which

can be true or false, its veracity can typically be assessed even if partial data is available, and

very soon following an initial assessment of the patient. A popular mortality prediction model,

APACHE [99], requires 24 hours of observation before formulating a prediction. Another pop-

ular tool, MPM [100], uses information available upon initial encounter, but is less accurate and

requires many more data elements to formulate a prediction. Prediction models not based on

logistic regression are essentially black-box classifiers which provide little insight as to which

feature drives the prediction. In this regard, DNF are very transparent in their use of data to

generate a prediction.

We aimed to learn the minimum size DNF in spite of the fact that the exact learning task
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is NP-complete [50, 51]. Compared to existing heuristic algorithms that only focus on learning

time and learnability [48, 49, 53, 54, 55], we exploit domain knowledge and develop efficient

exhaustive algorithms to learn the shortest DNF. We also applied a number of techniques to

accelerate the DNF learning process (see Appendix for details), including setting the maximum

length of clauses in standalone algorithm, using feature selector (CF) in MtDL to narrow down

the searching space, equivalence filtering of the clauses, and extending both algorithms to greedy

versions. This enables the algorithms to run efficiently on large datasets. The DNF learning

algorithms are also powerful in extracting DNF from only a small numbers of sequences where

the data are reliable.

The approach achieves equivalent or higher prediction performance compared to a set of

state-of-the-art machine learning models, and unveils insights unavailable with standard meth-

ods. For example, we have shown that although predictive on their own, the added benefit of

genetic and cytokine data over physiology and demographics-based classifiers was not spectac-

ular in identifying poor long-term outcome. It also appears that, if one were to choose between

a serum assay and a DNA profile (or SNP screen) as an early predictor of outcome, both convey

comparable information with the possible exception of the product of serum levels of IL6 and

IL10, plausibly a (quite naive) integrator of the magnitude of the inflammatory response. There

are no currently available point-of-care kits to measure cytokine panels reliably, although a rapid

kit exists for IL-6. The same is true of SNP profiling. Our exploration suggests that we probably

do not need both a cytokine and SNP profile at this time, but the jury is certainly not out. Yet,

it cannot be anticipated that such detailed physiotyping will be commonly performed at the bed-

side in the foreseeable future. Therefore, it would seem appropriate to expand data available to

the DNF algorithms to include a larger overlap with data used by currently available mortality

prediction tools. Indeed, one could conceive of DNF rules as representing phenotypes, confined

to data that is already available, and that could be refined if more data were available to develop

a more complete set of rules. The level of sophistication with which these phenotypes would be

described would increase from purely clinical, to phenotypes characterized by a combination of
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clinical, laboratory, and genetic markers.

Our exploration was limited to 27 SNPs and 3 cytokines, and several leukocytic surface mark-

ers in a subset of the population therefore our representation of the cellular and genetic compo-

nent to physiotyping is very limited. Other analytes are now becoming available in this database,

including SNPs for coagulation genes, which are definitely strong predictors of outcome. This

can be understood mechanistically when that considering excessive activation of coagulation,

with subsequent microthrombosis and perfusion deficit, is a plausible cause of cellular energetic

failure with ensuing organ dysfunction [80].

It can be argued that 90-day mortality is an inappropriate outcome and that one would expect

early physiotyping to perform better on predicting outcome on a shorter time scale. However,

it is apparent, especially in this dataset that our current concept of what constitute acute illness

extends well beyond the intensive care unit, or a specific hospitalization episode [101, 102]. It

makes entire sense that wider genetic screens might be more predictive than early physiology in

teasing late death. Different classes of predictive models are required to tease out time-varying

hazard ratios [103]. Such a study would be a natural extension of this work. It could also be

argued that predicting mortality does not mean the ability to predict response to treatment, a

holy grail of acute care medicine. Any signal in the possible effectiveness of immunomodulatory

therapies has been observed in the sickest individuals. [104, 105], suggesting the relevance of

more detailed physiotyping in the prediction of the response to treatment. This is also suggested

by in silico studies [76]. The DNF formulation can generally be applied to a variety of out-

comes of clinical interest. For example, enrollment and decision points in clinical trials are often

criteria-based. The applications of data-driven rules computed from DNF learning to the profiles

of patients currently screened or enrolled in clinical trials could be quite helpful to assist clinical

trial design, enrich enrollment, or eventually adapt design based on observed response.

In conclusion, we presented DNF as a novel prediction tool which perform comparably or

better than currently available tools to predict outcome in patients with hospitalized community

acquired pneumonia, and which presents the added advantage to be criteria-based and easily im-
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plemented as a decision support system at the bedside. We believe DNF are generally applicable

to a range of clinically relevant patient-centered outcomes. Despite its apparent simplicity, DNF

do require the input of expert quantitative scientists to develop and implement.
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Chapter 6

Conclusions

6.1 Conclusions and future work of key residue identification

We described a commonly used process for identifying key protein residue positions affecting

a given viral phenotype, and argued that it is inefficient, incomplete, and unreliable. We then

introduced a combinatorial filtering algorithm to systematically infer these positions using all

available labeled data. We demonstrated the consistency of this algorithm, and described its use

under incremental relaxation of constraints.

For cases when new data are needed to fully converge to an answer, we introduced an active

learning algorithm to help choose the most informative experiment from a set of candidates to

minimize the expected total laboratory time or financial cost. When additional strains are avail-

able or can be acquired from other labs, they need only be phenotyped and/or sequenced, both of

which are typically much cheaper and faster than creating new mutants via reverse genetics. This

enables us to make use of existing resources to optimize the identification process. The active

learning algorithm can suggest which of these should be phenotyped and/or sequenced and in

what order, to further minimize cost. Otherwise, the active learning algorithm suggests the next

mutant to be generated.

The soft CF() algorithm can be readily generalized to tolerate errors in the data. Another
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way to achieve this is via a Bayesian framework: a (possibly uniform) prior is defined over the

hypotheses, and a cost (negative likelihood) function is defined based on the estimated probability

that two sequences that were empirically found to have differing phenotypes in fact have the same

phenotype. Possible sequencing errors are handled similarly, via a cost function. Then, in step

2b 3.1, hypotheses are merely penalized instead of eliminated and are ranked by their posterior

(the product of their prior and likelihoods) at the end. We chose to avoid this approach for

the time being because (1) the Bayesian framework must make assumptions regarding the data

distribution and sampling method, whereas naturally occurring sets of biological sequences are

hardly ever acquired by uniform sampling and often their method of acquisition is unknown; and

(2) in many datasets, including the ones we discuss above, both the sequences and the phenotypic

labels are considered reliable - indeterminate values are usually omitted from the analysis. In an

Active Learning scenario, experimental results are typically much more reliable than those of

high throughput setups. Nonetheless, we did use the Bayesian framework in a limited way in the

Active Learning algorithm discussed above.

The CF() algorithm outperforms conventional position specific association methods on mu-

tagenesis data especially when only a moderate number of data are available, and are naturally

suited for active learning. It is also potentially applicable to other types of genotype-phenotype

mapping inference.

Our goal for the CF() algorithm has been to aid biological investigation by identifying the

key residue positions, which is the more combinatorially demanding part of the full genotype-

phenotype mapping problem. Since this is our focus, we compared our method to other methods

designed to do the same (e.g. [6][27][28]). We note that any conventional classifier (e.g. KNN

or logistic regression) can be applied to the hypothesized positions selected by our algorithm.

Given the limited data, such techniques would be ineffective if they were to be applied to the full

set of protein positions, because of the so-called “curse of dimensionality”.
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6.2 Conclusions of Genotype-Phenotype Mapping using DNF

learning

As discussed in section 4.1, we propose to use short Disjunctive Normal Form (DNF, “OR” of

“AND”) as the appropriate bias over the hypothesis space because 1) DNF is a high order Boolean

function that examines complicated solution space, 2) DNF offers great flexibility and allows

identification of unforeseen interactions, 3) DNF is a natural form of knowledge representation

for humans to interpret and provides clinical insights and rules to direct further executions, 4)

DNF is scalable to large or small datasets. A short DNF increases interpretability and mitigates

overfitting bias.

The shortcomings shared by Boolean function learning algorithms are the difficult learnabil-

ity and inefficient running time. While existing heuristic algorithms sacrifice completeness for

efficiency, we focus on the completeness and designed two efficient DNF learning algorithms

utilizing biologically plausible assumptions. We applied a number of techniques to accelerate

the DNF learning process, including setting the maximum lengths of clauses in the Standalone

algorithm, using a feature selector (CF) in MtDL to narrow down the searching space, using

equivalence filtering of the clauses, and extending both algorithms to greedy versions. These

methods enable the algorithms to run on very large datasets. Notwithstanding, as shown in the

result section, the DNF learning algorithms are also powerful in extracting DNFs from only a

small numbers of sequences.

The mutagenesis RNA virus data are highly reliable. For the high throughput viral sequences

with low quality alignment we use pruning and set thresholds to tolerate errors. The algorithms

show superior prediction performances to the other state-of-the-art approaches on two benchmark

datasets, and unveil biologically meaningful explanations that are unavailable to other statistical

models. The DNF learning algorithms can be extensively used on other domains where similar

assumptions hold.
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Appendix A

Supplementary materials

A.1 RNA virus phenotypes

• Drug resistance: the development of effective antiviral drugs is an important biomedical

scientific achievement of the late 20th century. However, drug resistance is a major factor

contributing to therapy failure. The genetic basis of drug resistance is an RNA virus’ high

mutation rate and very high replication rate. Researchers have estimated that each single

mutation in the 9-kbp (kilobase pair) viral genome appears once daily in each infected

individual in Influenza. Some mutations lead to a slightly altered 3D protein structure that

enables the viral enzyme to fulfill its task even in an inhibitor’s presence (see Figure A.1).

These mutants have a selective advantage under drug pressure and become dominant in

the virus population. So, persistent viral replication due to subinhibitory drug levels or

host immune failure leads to the evolution of drug-resistant variants and consequently to

therapy failure.

Drug resistance is defined as a reduced susceptibility to a drug in a laboratory culture

system and is expressed as an altered IC50 or IC90 (drug concentration required to inhibit

viral growth by 50% or 90% respectively). This phenotype is caused by specific mutations

in the viral genome, which leads to a structure change of drug target proteins. The high
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Figure A.1: Crystal structure of the ternary complex of HIV-1 RT [5]. Crystal structure of the
ternary complex of HIV-1 RT, double-stranded DNA and incoming dNTP (A). Ribbon represen-
tations of the backbones of the p66 and p51 subunits are shown in blue and green respectively.
The incoming dNTP (in purple) is located in the palm subdomain of the p66 subunit. (B) shows
the dNTP binding site with the side chains of Lys65 and Arg72 making hydrogen bonds with
the phosphate groups of the incoming nucleotide. Van der Waals surface of the side-chains of
residues 74 (Leu), 115 (Tyr), 151 (Gln) and 184 (Met) are shown in pink. T and P stand for tem-
plate and primer, respectively. Atomic coordinates were obtained from PDB file 1RTD (Huang
et al., 1998)

rate of RNA virus genome mutations results in high antiviral resistance. Some resistance

exists in untreated infected people already.

• Neutralizability: A neutralizing antibody is one which not only binds to the virus but in so

doing prevents or at least interferes with viral replication, typically via steric hindering of

viral attachment to the host cell. Not all antibodies neutralize virus, and not all the neu-

tralizing antibody neutralize all variants of the protein. A small number of mutations can

render a viral antigen not neutralizable. A neutralizing Abs ability to neutralize depends on

the Ag:Ab binding affinity. (Neutralization can also be affected by more global conforma-

tional change in the protein.) For HIV, research has focused on vaccination development

and after more than two decades of limited success with vaccines, researchers are returning

to the importance of antibody-mediated neutralization.

• Antigenecity: Much of the burden of infectious disease today is caused by antigenically
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variable pathogens that can escape from immunity induced by prior infection or vaccina-

tion [106] RNA viruses utilize Antigenic drift to escape the immune system. When the

viruses constantly mutate, they produce new forms of these antigen. When the new form

is sufficiently different from the old antigen, it will no longer bind to the receptor and the

virus evade the immune system. Human Influenza viruses cause annual epidemics due to

antigenic drifts in the hemmagglutinin protein [107].

A.2 Predictors identified by benchmark models of patient hos-

pital mortality with Severe CAP

Consistently selected features in the hierarchy of models included monocyte positivity for CD-

14 CD-120a, and monocytic and granulocytic positivity for toll-like receptor (TLR)-2 receptors.

Note that the choice of fluorescent antibody was based on expected activation by pathogen asso-

ciated molecular patterns. Although it could be that the 10-fold cross-validation procedure ad-

mitted significant overfitting (N=124), it is an interesting hypothesis that the profile of activation

of immune cells conveys as much or more information than cytokines and SNP polymorphisms.

Markers of severity were the strongest predictors of 90-day mortality (table 5.5). Of de-

mographic features, only age tercile and the presence of chronic illness were included in most

predictive models. Most SNPs examined were uncorrelated to 90-day mortality, but IL6M174

(GG), L100M1048 (G/T) and MIFM173 (GG) were consistently predictive, even in multivariate

models. IL18M137 was less consistently associated.
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