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Abstract
Transcription is the process during which RNA molecules are synthesized based

on the DNAs in cells. Transcription leads to gene expression, and it is the first
step in the flow of genetic information from DNA to proteins that carry out bio-
logical functions. Transcription is tightly regulated both spatially and temporally
at multiple levels, so that the amount of mRNAs produced for different genes is
controlled across different kinds of cells and tissues, as well as in different devel-
opmental stages and in response to different environmental stimulus. In eukaryotes,
transcription is a complicated process and its regulation involves both cis-regulatory
elements and trans-acting factors. By studying spatiotemporally what genes are reg-
ulated by which cis-elements and trans-factors, we can get a better understanding of
how we develop, how we react to environmental signals, and the mechanisms behind
diseases like cancer that, at least in part, result from failures in proper transcriptional
regulation.

In this thesis, we present a suite of computational methods and analyses that,
combined, provide a solution to problems related to the identification of DNA bind-
ing motifs, linking these motifs to the TFs that bind them and the genes that they con-
trol, and integrating these motifs and interactions with time series expression data to
model dynamic regulatory networks. Specifically, we first develop a novel method
for finding discriminative DNA motifs, motifs that are over-represented in a set of
positive sequences but depleted in a set of negative sequences. Second, we present
a new method of using protein binding microarray data combined with DNase I
hypersensitivity and conservation data to predict tissue-specific transcription factor
activities and binding sites. Finally, we extend the DREM framework which was
previously developed by our group to study dynamic regulatory networks, and we
use the improved version to analyze a biological dataset of gene responses in ara-
bidopsis following ethylene treatment. Together, the methods and analyses presented
contribute to the studying and understanding of transcriptional regulation.
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Chapter 1

Introduction

1.1 Background and motivation

Transcription is the process during which RNA molecules are synthesized based on the infor-

mation stored in DNAs in cells. Transcription leads to gene expression, and it is the first step

in the flow of genetic information from DNA to proteins that carry out biological functions.

In eukaryotes, three different types of RNA polymerases are involved in RNA synthesis, and

protein-coding genes are transcribed by RNA polymerase II into messenger RNAs (mRNAs).

Transcription is initiated by the binding of RNA polymerase II and a collection of proteins, called

general transcription factors (TFs), to the core promoters (regions immediately upstream of the

genes to be transcribed) to form the pre-initiation complex. Then in the elongation stage, the

RNA polymerase unwinds the double strand DNA helix ahead, moves along the DNA template,

and makes a complementary RNA molecule one base at a time. After the polymerase reaches

certain signals in the DNA template to terminate transcription, it disassociates with the DNA

template and the newly synthesized RNA is released.

Due to its importance, transcription is tightly regulated both spatially and temporally at mul-

tiple levels, so that the amount of mRNAs produced for different genes is controlled across
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different kinds of cells and tissues, as well as in different developmental stages and in response

to different environmental stimulus. In eukaryotes, transcription is a complicated process and

its regulation involves both cis-acting elements (DNA regions that are required for the proper

expression of the nearby genes) and trans-acting factors (TFs that bind to the cis-acting elements

to regulate the expression of other genes). In addition to the general TFs that bind to the core

promoters of most genes to drive basal transcription, numerous specific TFs called activators

(repressors) bind to cis-acting elements called transcription factor binding sites (TFBSs) around

specific sets of genes. Their binding brings them into contact with the transcriptional machinery

near the transcription start sites (TSSs) of these genes, and these TFs then increase (decrease) the

expression of these genes by altering the rate at which they are transcribed. [2]

Transcriptional control is tightly linked to development. During animal development, a lot of

the control of gene expression occurs at the transcription level. Several highly conserved families

of TFs have been known to play important role in the regulation of development. For example,

many Hox proteins, characterized by their homeobox domains, are important for forming the

anterior-posterior patterning during development [136]; several Fox proteins, characterized by

their forkhead domains, are involved in the development of liver, heart and many other tissues

[92]. The determination of cell fates, the differentiation of cells into more specialized cell types

and the change of cell morphologies during development are all under the delicate control of

such TFs at precise times and locations.

Cells also respond to environmental stimuli through changes in their transcriptional pro-

grams. For example, from yeast to human, cells respond to a sudden increase in environmental

temperature (heat shock response) by dramatically up-regulating the expression of Hsp (heat

shock protein) genes under the control of TFs in the Hsf (heat shock factor) family [100], and in

yeast this response also involves the activation of stress response TFs Msn2 and Msn4 [21]. The

timely activation of such TFs in response to various environmental stress is vital to the survival

and adaptability of the cells.
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Problems in transcriptional regulation can have catastrophic effects in humans leading to

many kinds of diseases. For example, dysregulation of genes that participate in cell cycle reg-

ulation, cell apoptosis, DNA replication and repair, and/or immunology have been frequently

observed in different types of cancers including breast cancer [69], prostate cancer [86], gastric

cancer [194], bladder cancer [141] and lung cancer [121], etc. In addition to cancer, dysreg-

ulation of genes have also been extensively observed in many other human diseases as well,

including metabolic diseases like diabetes [135], cardiovascular diseases like dilated cardiomy-

opathy [13], autoimmune diseases like systemic lupus erythematosus [122], and neurological

diseases like schizophrenia [197]. Such dysregulated genes are usually identified as differen-

tially expressed between diseased and control samples in experiments that measure genome-wide

expression levels using microarrays or more recently RNA sequencing. Their dysregulation in

diseased samples usually results from errors in transcription programs that control their expres-

sion, like trans-mutations in the TFs themselves that regulate such genes, cis-mutations in their

promoter regions that affect TF binding, or mutations higher up in the transcriptional cascade

that affect these genes indirectly. Indeed, in several cases mutations in TFs have been shown to

be associated with certain diseases. For instance, the transcription factor p53 is a famous tumor

suppressor in human that maintains genome stability, and mutations in p53 have been observed

across many types of cancers [120]. Mutations in the transcription factor Nkx2-5 have been

shown to cause congenital heart disease [157]. Moreover, the roles of cis-mutations have been

revealed by recent large-scale analysis [112], which reports that most of the single nucleotide

polymorphism (SNP) variants that are detected to be associated with hundreds of human dis-

eases locate in noncoding regions. Such noncoding variants are significantly enriched in DNase

I hypersensitive sites (DHSs) that typically represent open chromatin regions bound by TFs, and

the disease-associated variants often affect TF binding [112]. Therefore, transcriptional regula-

tion also plays crucial role in maintaining our well-being and overall health.

In summary, by studying spatiotemporally what genes are regulated by which cis-elements
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and trans-factors, we can get a better understanding of development, how we react to environ-

mental signals, and the mechanisms behind many diseases that result from failures in proper

transcriptional regulation.

In this thesis, we present a suite of computational methods and analyses that, combined, pro-

vide a solution to problems related to the identification of DNA binding motifs, linking these

motifs to the TFs that bind them and the genes that they control, and integrating these motifs and

interactions with time series expression data to model dynamic regulatory networks. Together,

the methods and analyses presented make valuable contributions to the studying and understand-

ing of transcriptional regulation from a computational perspective.

1.2 High-throughput experimental methods that facilitate the

study of transcriptional regulation

Many high-throughput experimental methods have been developed to study various aspects of

transcriptional regulation either directly or indirectly. Below we provide a brief overview of

several such methods that are relevant in various parts of this thesis.

1.2.1 Microarrays

Microarrays have been extensively used to measure the gene expression levels in cells in the

last two decades[159]. There are two major types of microarrays, the cDNA microarray (or

two-channel microararys) [154] and high-density oligonucleotide microarrays (or one-channel

microarrays) [137]; the latter has become more popular and we’ll focus on it here. In an oligonu-

cleotide microarray experiment, oligonucleotides (probes) designed previously with known se-

quences, often from the genes whose expression levels are to be measured, are printed or synthe-

sized in situ on the surface of a microarray chip using chemistry and photolithography. mRNAs
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are extracted from the samples, reverse transcribed into cDNAs, amplified, labeled, and added to

the microarray for hybridization. The relative abundance of the mRNAs of the genes represented

on the array are measured from their relative fluorescence intensities. Because the probes can be

arranged on the microarray surface with a very high density, modern oligonucleotide microar-

rays can be used to measure the expression levels of all genes in typical organisms in a high

throughput manner. In addition to measuring gene expression, specific types of microarrays have

also been designed to detect SNPs [187] and copy number variations (CNVs) [140], investigate

transcription factor binding preferences (see below), and detect genome-wide transcription factor

binding locations following ChIP experiments (see below)

1.2.2 Protein binding microarray

Protein binding microarray (PBM) is a specific kind of microarray that allows the investigation

of the binding specificities of a sequence-specific TF in a high-throughput and unbiased manner

[17, 119]. In a typical PBM experiment, the microarray is composed of about 44, 000 cleverly

designed probes of 60 nucleotide(nt) in length. Each probe contains a 24nt invariable primer

sequence that attaches it to the microarray surface, and then a 36nt variable region designed

using de Bruijn sequences of order 10, so that all possible 10-mers occur at least once on the

array (Figure 1.1a,b). At the first step, universal primers labeled with Cy5 is added to the array,

and then deoxyribonucleotides (dNTPs) labeled with Cy3 are added to synthesize double strand

DNAs. The TF to be studied is expressed with a glutathione S-transferase (GST) tag, purified and

then applied to the microarray. After this, fluorophore-conjugated antibody to GST is applied to

the array, and the binding strength of the TF to each probe is measured by fluorescent intensities

[17] (Figure 1.1c). Unlike ChIP-based techniques that study the in vivo genome-wide binding

locations of a TF (see below), PBM has the advantage that it does not require specific antibody

for the TF of interest, and it does not require knowledge about the genome of the species from

which the TF comes. PBM has been used to reveal the binding profiles of hundreds of TFs in

5



yeast [207], worm [60], mouse [6] and arabidopsis [24].

Figure 1.1: Protein binding microarray experiment. (a,b) Illustration of probes on a hypothetical

microarray with de Bruijn sequence of order 3, so that all 3-mers appear at least once on the array

surface (in practice an order 10 is used). (c) PBM experimental procedure. See text for details.

This figure is from [17].

PBM allows the elucidation of the sequence-specific binding preferences of invididual TFs

to an unprecedented scale and subtlety. However, it also poses computational problems in the

process of converting the intensity readouts to biological knowledge. Specifically, since the

length of a TFBS is typically 8-10bps, effective methods are needed for obtaining the real binding

profiles of a TF from the intensity measurements on the 36nt probes. Several methods have been

proposed for this purpose [1, 5, 17, 204, 207]. In this thesis, we develop a novel method, PLAR-

PBM, for using PBM data to infer TF binding profiles, and we show that our method outperforms

the other methods mentioned above in predicting in vivo TF binding sites (Chapter 3).
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1.2.3 RNA sequencing

In recent years, with the fast development and reduced cost of sequencing technology, RNA se-

quencing [188] is becoming a popular method for measuring gene expression levels. In a typical

RNA-seq experiment, RNAs extracted from samples are first converted to cDNA fragment li-

brary and amplified, and then specific sequencing adaptors are ligated to the ends of the cDNA

fragments in the library. Each fragment in the library is read by sequencers and a short read is

output. These reads are then aligned to the reference genome, generating a high-resolution map

of expression levels at each position in the genome. Compared with microarrays, RNA-seq has

the advantage that it has higher resolution and larger dynamic range, and it allows the detection

of novel gene fusion and alternative splicing isoforms. In this thesis, RNA-seq experiments were

used to measure gene expression profiles in arabidopsis following ethylene treatment (Chapter

4).

1.2.4 ChIP-chip and ChIP-seq experiments

Chromatin immunoprecipitation (ChIP) followed by microarray (ChIP-chip) [23] or sequencing

(ChIP-seq) [134] has been developed to study genome-wide TF binding in vivo (Figure 1.2). In

such experiments, the in vivo protein-DNA interactions are first cross linked by formaldehyde,

and then these cross linked chromatin is sheared into fragments. The TF of interest is immuno-

precipitated with specific antibody, and then the cross linking is reversed to release the bound

DNA fragments. The location of these DNA fragments bound by the TF is then determined by

either hybridization to specific microarray containing promoter regions from the genome (ChIP-

chip), or by direct sequencing and aligning to the reference genome computationally (ChIP-seq).

In this thesis, ChIP-chip experiments were performed to detect binding locations of different

forms of human p53 (Chapter 2), and ChIP-seq experiments were performed to identify binding

locations of EIN3 in arabidopsis at different time points following ethylene treatment (Chapter

4). Moreover, existing ChIP-seq datasets for several TFs were used to demonstrate the power of
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DECOD, a new discriminative motif finding method that we developed (Chapter 2), and to eval-

uate the performance of several methods that analyze PBM data, including ours, for classifying

known in vivo TF binding sites (Chapter 3).

Figure 1.2: ChIP-chip and ChIP-seq experiments. See text for details. This figure is modified

based on [185].

1.2.5 Motif and position weight matrices

Binding sites in the genome for the same TF are usually not exactly the same; instead, they are

often rigid at certain positions and flexible at others. These binding sites are often referred to

as occurrences of the motif for the corresponding TF. Such motifs are usually represented by a

position weight matrix (PWM; also called position-specific scoring matrix, PSSMs) to provide

a simple, intuitive and also informative view of the TF’s binding preference. Traditionally, the

PWM for a TF is constructed by first aligning a group of experimentally determined known

binding sites for the TF (Figure 1.3a). After the alignment, a count matrix can be generated by

counting the number of times each nucleotide is used at each position in the alignment (Figure
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1.3b), and this count matrix is then converted to a frequency matrix where the counts for each

nucleotide at each position are replaced by their probabilities at that position. Sequence logos

[156] are frequently used to visualize such count or frequency matrices, where at each position,

the relative height of each nucleotide reflects their relative frequencies (Figure 1.3c), and the total

height of each position reflects the information content at that position (Figure 1.3d). PWMs are

then generated by converting the nucleotide frequencies to log likelihood or log-odd ratios which

takes into account a background model, so that a new subsequence can be scored by summing

up the corresponding elements in the PWM. See [40] for a thorough introduction.

Figure 1.3: PWM model for TF motif. (a) A group of aligned short sequences known to be bound

by the TF. (b) Count matrix generated from (a). (c,d) Sequence logos generated from the count

matrix. See text for details. This figure is modified based on [40].

One of the major drawbacks of the PWM motif model is that it assumes independence be-

tween positions, which is not always true in reality [6, 105]. Recently, more complicated models

have been introduced to address this [163, 166, 206], but PWM is still most popularly used due

to its simplicity. In this thesis, we use PWM models in DECOD for discriminative motif finding

(Chapter 2), and later in PLAR-PBM, we show that by using a k-mer based model that does

not assume independence between positions to represent TF binding profiles, we indeed achieve
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better prediction accuracy when classifying real TF binding sites (Chapter 3).

1.2.6 DNase I hypersensitivity and DNase-seq

DNA in vivo are not naked but instead wrapped around by various histone proteins forming

nucleosomes, and these nucleosomes are the basic unit of the chromatin. For a TF to bind

to a segment of DNA in vivo, the DNA need to be exposed from nucleosome protection and

become accessible to the TF. Early studies showed that genomic regions that are sensitive to

DNase I cleavage, called DNase I hypersensitive sites (DHSs), correlate with open chromatins

that are accessible to TF binding [59]. Therefore, the incorporation of such DHS information

can help reduce false positives in predicting genome-wide TF binding sites. Recently, with the

advancement of sequencing technology, DNase-seq has been developed to measure genome-

wide in vivo DHSs in a high throughput manner [35]. Briefly, nuclei are extracted from the cells

under investigation and subjected to DNase I cleavage. The cleaved segments are sequenced and

mapped to the reference genome, and DHSs are revealed as regions that have a high number of

reads mapped. The ENCODE project has produced such DHS data for many tissues and cell

types in human and mouse [183]. In this thesis, we use such data for 55 mouse tissue/cell types

and combine them with PBM data to predict TF activities and binding sites (Chapter 3).

1.3 Overview of the thesis

This thesis is composed of three parts that together present novel computational approaches to

study various aspects of transcriptional regulation. Below we provide a brief overview of the

thesis.

In Chapter 2, we present DECOD, a new tool for discriminative motif finding. DECOD

allows the finding of motifs that are over-represented in one set of sequences and depleted in

another set. One unique feature of DECOD is that its running time does not depend on the size
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of the input sequences, and therefore it can be run on input sets that contain thousands of or even

more sequences to discover discriminative motifs. Input of this scale is typical in the current

era where large amount of data is generated by high-throughput sequencing methods such as

in ChIP-seq. We demonstrate that DECOD is superior in terms of both speed and accuracy as

compared with many other existing tools for discriminative motif finding. DECOD is written in

Java, and therefore can be run on different platforms. It comes with a friendly easy-to-use GUI

interface that is convenient for biologists to use. This chapter is based on our paper published

[70].

In Chapter 3, we develop a new method, PLAR-PBM, for analyzing protein binding microar-

ray data. We also present an integrated model that combines PBM data with DNase I hypersen-

sitivity data to predict tissue-specific TF binding. PLAR-PBM uses a biophysically-motivated

k-mer based model to infer binding preferences of TFs from PBM data, and it outperforms sev-

eral existing methods for the same purpose when evaluated on in vivo data. When combined

with DNase data, we were able to predict tissue-specific TF activities and binding sites with high

accuracy. This allowed us to generate a resource for computationally predicted tissue-specific TF

binding sites for 284 TFs across 55 mouse tissue/cell types. Such a resource can be very useful

to biologists studying transcriptional regulatory network. This chapter is based on our submitted

paper [205].

In Chapter 4, we extend DREM [46], a tool that studies dynamic transcriptional regulatory

network by integrating expression with binding data previously developed by our group, to allow

the use of dynamic binding data and the integration with DECOD [70] to perform discriminative

motif finding. These, among other new features, have been incorporated into a new version of

DREM 2.0. Using DREM 2.0, we analyzed gene responses in arabidopsis following ethylene

treatment, and showed that ethylene triggers four waves of gene transcriptions under the master

regulator EIN3. This chapter is based on our published paper for DREM 2.0 [158] and on the

submitted paper for the analyses in arabidopsis [24].
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Chapter 2

DECOD: Fast and accurate discriminative

motif finding

2.1 Introduction

DNA motif discovery has been a central problem in computational biology for almost two

decades. Many methods based on word enumeration or probabilistic models including posi-

tion weight matrices (PWMs) and Hidden Markov models (HMMs) have been developed for this

task [38]. Word enumeration-based methods are usually only able to find short motifs and tend

to fail when the motif includes weak positions [38]. Most probabilistic methods involve itera-

tively scanning the input sequences to identify potential motifs and then updating the motifs to

improve the likelihood of the model until convergence [8, 52, 87, 101, 151, 170, 181, 196]. In

such methods, motifs are usually defined as subsequences, which are present at a much higher

rate than expected when compared with a background model [40].

The use of motif discovery methods has dramatically increased over the last few years due to

the rise in sequencing capacity and the advancement of other high-throughput methods. These

methods are routinely used to identify and predict transcription factor binding sites [19, 68],

protein phosphorylation sites [148, 160], microRNA targets [72, 98] and alternative splicing lo-
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cations [179]. However, these high-throughput methods have also led to new requirements from

motif search algorithms. The first is speed. Many studies now routinely search for motifs in

very large sets of input sequences. For example, several ChIP-Seq experiments identify thou-

sands of targets for specific mammalian transcription factors [27, 74, 149, 199]. The second

requirement is for identifying discriminative motifs [168]. Unlike traditional motif searches that

are performed against a general background model, in discriminative motif search one looks for

motifs that are present at a high rate in a positive set compared to a negative set. These sets can

be genes that are up- or downregulated at a specific time point or condition [46], proteins that are

initially co-localized but later diverge [97], genes that are bound in one condition by a TF but not

in another [63], etc. These and other studies, including cross species analysis and methods for

modeling gene regulation, require discriminative motif discovery methods that can scale to large

datasets.

Several discriminative motif-finding methods have been developed so far. DIPS [169] uses a

probabilistic score to quantify the difference in the number of occurrences of a PWM between

two sets of sequences and uses heuristic hill climbing to search the sequences for motifs that

maximizes this score. ALSE [93] uses a target function based on the hypergeometric distribution.

This function searches for a PWM using an EM-like heuristic and then evaluates the likelihood

that the PWM it identified represents a real motif. DEME [143] performs a combination of global

and local search to find a PWM that maximizes the conditional log likelihood of the sequence

labels given the sequences and models parameters. Seeder [49] is a word-based enumerative

method. It first generates seeds by finding significantly enriched words in the positive set based

on a word-specific background probability distribution, and then iteratively extends these seeds

to form a new PWM and updates the seeds until convergence. CMF [109] is also a word-based

method that starts by finding enriched words in the positive set based on a z-score, and then

iteratively updates the motif model and rescans the sequences to update the seeds and avoid false

positives until convergence. See the next section for a more detailed description of these existing
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methods.

While the above methods can successfully identify discriminative motifs, they usually do not

scale well for large sequence datasets since they are based on repeated analysis of the positive and

negative sequences. For example, DIPS [169] was only suggested to be run on tens of sequences

with length around 1000bp, and even so its run time is very long (several hours). The running

time of DEME [143] depends quadratically on the size of the positive sequences, making it

prohibitive for most motif discovery tasks. Other methods are also slow when dealing with large

datasets as we show in Results.

DME [172] attempts to address the speed issue by enumerating over a discrete space of

pre-defined matrices representing possible motifs. It then uses a log likelihood ratio as a target

function to score the overrepresentation of a motif matrix in one set of sequences versus another.

However, while DME is indeed very fast, it is based on a pre-defined set of matrices and is thus

often restricted in terms of the set of motifs it can identify. In addition, DME ignores the context

information encoded as part of the sequences, which may lead to a shifted PWM that does not

accurately represent the real motif.

In this chapter, we present a new method that addresses both the speed and accuracy issues for

discriminative motif finding. Our method, deconvolved discriminative motif finder (DECOD),

only uses k-mer counts and so does not depend on the size of the input set. To compensate for

the errors introduced from ignoring the dependence between the consecutive and overlapping

k-mers in the sequences that they are from (the context of a k-mer), we use a deconvolution

method that accounts for the higher rates of k-mers containing subsets of the true motif. We

applied the method to simulated and biological benchmark data and compared it with previous

methods. As we show, our method enables motif discovery in cases that could not have been

studied before due to the size of the input, and it outperformed other methods in terms of both

accuracy and running time. We used our method to study various post- translational modification

of the human transcription factor p53. We performed new ChIP-chip experiments and identified
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different sets of binding targets for the p53 mutants. Using our new motif discovery algorithm

we were able to identify a number of potential co-factors of p53 and study the way in which they

interact with p53.

2.2 Existing methods for discriminative motif finding

In contrast to traditional motif finding methods, discriminative motif finding methods requires

a negative set of sequences to be supplied and compared against. Several discriminative motif

finding methods have been developed. Below we provide a detailed description of the methods

that we compared in this work, highlighting the similarities and differences between DECOD

and these methods when possible.

2.2.1 DME (discriminative matrix enumerator)

Assuming that each k-mer in the sequences is either motif or background, DME [172] uses

a likelihood model to score for motif overrepresentation in the positive sequences relative to

background sequences. It aims to maximize a target function that represents a modified version

of the log ratio of the likelihood of the motif and background models given the positive set to

that of the motif and background models given the negative set. And DME uses exhaustive

search to find the motif model that maximizes this target function. To improve search efficiency,

DME first only searches over a very sparse discrete PWM space in which the columns of the

PWMs are only of several representative types. Then DME uses a refinement step to extend

the search by including matrices in the neighborhood of the matrix found in the global search.

Moreover, instead of using the original log likelihood ratio as the target function, DME uses a

modified version which can be calculated very fast with the assumptions that the base frequencies

in the positive and negative sequences are close, and that the motif occurrences in the positive

sequences are not dense. Our method is similar to DME in that both assumes that each k-mer

16



comes from either a motif or a 0th-order background model, and that both employ global and

local searches to improve search speed. However, our method explicitly assumes the probability

of the motif and background models being used while DME does not model these. Moreover,

our target function is not based on likelihood models but instead based on the expected number

of times that the PWM is used in generating the sequences. Furthermore, our method does not

make the assumption as made by DME that the base frequencies are similar in the positive and

negative sequences, and our method uses deconvolution to take into account the k-mer contexts

that DME ignores. Also our method does not search over the PWM space directly but instead

searches over the k-mers from which the PWM model is constructed.

2.2.2 DEME (discriminatively enhanced motif elicitation)

DEME [143] also uses a probabilistic approach to model the sequences. Given labeled se-

quences, DEME aims to find a set of parameters for the data model (including the motif model,

the background model, the probability of a positive sequence containing a motif and the prior

probability of a sequence being labeled positive), that maximizes a target function describing the

conditional log likelihood of the sequence labels given the sequences themselves and the above

parameters. DEME also uses a combination of global and local searches in the optimization pro-

cess. In global search, DEME performs substring search and branch search to find strings from

positive sequences, allowing mutations, whose corresponding motif model has the best objective

function score. It then uses conjugate gradient to perform local search to further refine the model

parameters. One unique feature of DEME is that it is able to work on protein sequences, and it

can incorporate prior knowledge about protein residue characteristics by using a Bayesian prior

on motif columns. DECOD is similar to DEME in that both uses 0th order background model,

and both involves global and local searches in the optimization of the target function. DECOD

takes the probability of motif occurrence in positive sequences as a user-input parameter (by de-

fault assuming it to be once per positive sequence), while DEME tries to learn it automatically.
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Notably, DEME can only find one discriminative motif from an input dataset, whereas DECOD

is able to probabilistically remove the signals of a previously found discriminative motif in order

to find the next one.

2.2.3 DIPS (discriminative PWM search)

DIPS [169] assumes that sequences are generated by a 0th order HMM, and it uses a probabilistic

score (w-score) to count the occurrences of a PWM in each sequence, which accounts for both

the number and strengths of motif occurrences. The w-score of a PWM in a sequence is the

sum of the number of times that the PWM is used in all possible parses of the sequence in the

HMM model, weighted by the probability of each parse. DIPS then uses the difference in the

average w-score of a PWM between sets of positive and negative sequences as the target function.

DIPS employs heuristic hill climbing to search for a PWM that maximizes the target function.

Our method is very similar to DIPS since both model the sequences by 0th order HMMs, and

both aim to maximize the differences in the expected number of times that a PWM is used in

generating the positive and negative sequences respectively. Also the search strategy that we

used is inspired by DIPS. However, the actual target functions used by the two methods are

different. Our method does not calculate the w-scores of a PWM by working on the sequences

and calculating the probability of each possible parse according to the HMM model. Instead

we work on the k-mers extracted from the sequences directly. This makes DECOD much faster

than DIPS. Moreover, in the search process we both reduce the search space and reduce the

amount of computation involved in calculating the target function score in order to speed up the

optimization process particularly for longer motifs, while DIPS did not make these attempts.

2.2.4 CMF (contrast motif f inder)

CMF [109] is a word-enumeration based method for discriminative motif finding. Given sets

of positive and negative sequences, CMF first calculates a z-score of all k-mers to find the k-
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mers and its neighborhood that are most enriched in the positive compared to the negative set. It

then uses the k-mers found to create two count matrices in the positive and negative sequences

(representing false positives) respectively to be used as seed, and a PWM is generated by taking

their differences. After that, CMF scans k-mers in all sequences in the positive and negative

set using the PWM and a 1st-order Markov background model, and calculate a likelihood ratio

score for each k-mer. It then applies a threshold on the likelihood ratios by controlling FDR, and

all k-mers that pass the threshold are used to create a new PWM. The process is iterated until

convergence.

2.2.5 ALSE (all sequences)

ALSE [93] aims to find a motif model that maximizes a target function that represents the likeli-

hood of the motif being the true one given the input positive and negative sequences. The target

function is calculated based on hypergeometric distribution. ALSE first finds a set of seed matri-

ces using a Voting algorithm, and then iteratively refines the matrices in EM-like iterations until

no further improvement can be made in the likelihood function.

2.2.6 Seeder

Seeder [49] is a word-enumeration based method that starts by enumerating all k-mers of a given

seed length. For each k-mer, the Hamming distance between the k-mer and its best matching

subsequence (called “substring minimal distance”, SMD) in the positive and negative sets are

then calculated respectively. The latter is used to calculate a word-specific background probabil-

ity distribution, which is in turn used to evaluate the significance of the enrichment of each k-mer

in the positive sequences based on the sum of its SMDs to positive sequences. Seed PWMs are

generated from matches to the most enriched k-mers in each positive sequence, and the seeds

are iteratively extended to form new PWMs of the desired motif width, and then the seeds are

updated. The entire process is repeated until convergence.
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2.3 Method: The DECOnvolved Discriminative motif discov-

ery method

Similar to other methods [49, 93, 143, 169, 172], DECOD starts with a user-specified motif

length k. Given k, we extract all k-mers from the positive and negative sequences (Figure 2.1).

Following this step the entire analysis is only performed on the k-mer counts table. Since the

size of this table is independent of the number and length of the input sequences, DECOD scales

very well to large datasets.

We assume a generative mixture model for k-mer distributions: Each k-mer is either gen-

erated by the motif model represented by a PWM, or by the background model (similar to a

zeroth-order HMM). Following [169], DECOD searches for a PWM that maximizes a discrim-

inative target function: the difference in the expected number of times that the motif model is

used to generate the positive and negative sequences (Figure 2.1, top). The PWM is constructed

from a subset of the k-mers which are selected based on the k-mer count table (termed “the site

set” [169], highlighted k-mers in Figure 2.1). While using only the k-mer counts provides sig-

nificant speed benefits with large input datasets, such representation ignores important context

information for each k-mer within a sequence. This may result in selecting shifted versions of

the same k-mers that lead to a convolved (and inaccurate) PWM (Figure 2.1, middle). To correct

for this we use a deconvolution method that accounts for the higher rates of k-mers that contain

a subset of the true motif in the positive set. In an iterative process we continuously improve

our PWM by adding and removing k-mers from the site set using heuristic hill climbing search

methods until convergence. Once the algorithm converges we remove instances of the identified

PWM from the k-mer count table, and then search for a second PWM and so forth. We discuss

each of these steps in details below.
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Figure 2.1: Overview of DECOD. We extract counts of all k-mers in the positive and negative

sequences (top) and store them in a k-mer count table. Next, we search for a discriminative

PWM that matches many k-mers on the positive set while only matching a few on the negative

set. The PWM is constructed using a site set containing a small number of k-mers (highlighted

in yellow). To determine which k-mers to include in the site set we use a deconvolution based

target function (middle) which overcomes the lack of context information for the k-mers. Once

appropriate k-mers are identified we revise the PWM (bottom) and the process is repeated until

no further improvement to the target function can be achieved.

2.3.1 The mixture model for k-mers

DECOD uses the following mixture model that includes a motif component Z and a background

component B to model the k-mer distribution M:
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M = pZ + (1− p)B (2.1)

Here, Z and B are the probability distributions over the k-mers (i.e. non-negative vectors of

dimension 4k whose entries sum to 1) generated by the motif and background models respec-

tively, and p is the probability of motif occurrence. The mixture model M can also be considered

as a zeroth order HMM that generates k-mers as follows: (i) choose a hidden state h from {z, b}

with state probabilities p and 1 − p respectively; (ii) if h = z, emit a k-mer according to the

distribution Z; if h = b, emit a k-mer according to the distribution B.

2.3.2 The motif component Z and deconvolution

The simplest way to model Z by a PWM θ is to define each element Za to be

Za = Pr(a|θ) =
k∏

i=1

θi,ai ≡ θa (2.2)

in which a = a1 . . . ak is a k-mer, θi,ai is the entry for the letter ai in the i’s column of θ and we

use θa as a shorthand notation for Pr(a|θ). We call such Z simple motif component.

However, our method for extracting overlapping k-mers, while greatly speeding up compu-

tational time for large input datasets, ignores the context of the k-mers. Thus, several k-mers

that do not fully match the motif may still overlap parts of it and thus may be overrepresented

in the data. To overcome this, note that each k-mer in its context can be generated by 2k − 1

combinations of the motif component and the background component (Figure 2.1). Thus instead

of the simple PWM mixture component, we define the following convolved motif component:

(2k − 1)Zconvolved = Z−(k−1) + · · ·+ Z0 + · · ·+ Zk−1, (2.3)

where Z0 is the k-mer frequencies obtained from the PWM θ, and Zj the k-mer frequencies from

a PWM obtained by taking the first j columns of θ (or the last j columns if j < 0), and adding

k− j columns of background as a prefix (or suffix if j < 0). Note that using the convolved motif
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component, the mixture model becomes

M = p(2k − 1)Zconvolved + [1− (2k − 1)p]B (2.4)

2.3.3 Target function of the discriminative PWM search

We are given a set of positive sequences S+ and a set of negative sequences S− as input. Normal-

ized k-mer counts are extracted and denoted by X for the positive set and Y for the negative set,

and together they form the input for DECOD. Assuming that X was generated by the mixture

model, the expected number of times that the motif component Z was used in the zeroth-order

HMM is

w(X;Z) =
∑
a∈Σk

(
pZa

pZa + (1− p)Ba

)
·Xa (2.5)

in which Za = Pr(a|θ) is the probability of observing a under the motif model, Ba = Pr(a|B)

is the probability of observing a under the background model, and Xa is the count of a in the

positive sequences. A similar expression can be written for Y . Following [169], given X, Y as

input, we aim to maximize the expected difference

F (Z) = w(X;Z)− w(Y ;Z) =
∑
a∈Σk

(
pZa

pZa + (1− p)Ba

)
· (Xa − Ya) (2.6)

in which Z and B represent the estimated distribution on k-mers as discussed above. The back-

ground B is estimated from the base frequencies of the input sequences using a simple zeroth-

order model. Below we will regard B as a PWM as well, with all columns being equal.

Assuming a simple motif component Z, let θ denote the PWM for Z. Then the discriminative

score can be written as

F (θ) := F (Z(θ)) =
∑
a∈Σk

(Xa − Ya)
pθa

pθa + (1− p)Ba
(2.7)

For a convolved motif component Z, a similar formula can be derived. For PWMs A,B of

length k, let [AiBk−i] denote the PWM obtained by concatenating the last i columns fromAwith
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the first k− i columns from B. Then the discriminative score for the convolved motif component

is:

F (θ) := F (Z(θ)) =
∑
a∈Σk

(Xa−Ya)·
p
[
θa +

∑k−1
j=1

(
[θjBk−j]

a + [Bjθk−j]
a
)]

p
[
θa +

∑k−1
j=1

(
[θjBk−j]a + [Bjθk−j]

a
)]

+ [1− (2k − 1)p]Ba

(2.8)

As before, our aim is to find a PWM θ that maximizes the above function. The details of the

search procedure is described in Section 2.3.4.

In practice, when the two input datasets are not equal in size and have different base frequen-

cies, we replace the counts Xa and Ya above with the frequencies of the k-mer a in the two sets,

and we use different Bs estimated from the two sets respectively, and calculate w(X;Z) and

w(Y ;Z) separately. Also for the probability of motif occurrence p, we show that similar to DIPS

[169], our method is not sensitive to the choice of this parameter (Section 2.6.5), and we set it

to be once per positive sequence.

2.3.4 Searching for the discriminative PWM that optimizes the target func-

tion

We adopt a discretized heuristic hill climbing approach very similar to DIPS [169] to search for

the PWM that optimizes Equation 2.8. The search space for θ is restricted to empirical PWMs

of the form θ(T ), where T is a subset of m k-mers in S+ called site set [169]. The subset size m

is a parameter called motif cardinality [169].

Heuristic hill climbing is used to find a local subset T that maximizes F (θ(T )). Each hill

climbing step of composed of (i) delete: remove one k-mer from T that contributes the least to

the score, and (ii) add: add one k-mer from S+\T to T that contributes the most to the score. In

the delete step, every possible t ∈ T is tested to find the ti that maximizes F (θ(T\ti)). Then T

is updated by setting T ← T\ti. This step is fast since the size of the PWM set is small (usually
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20). In the add step, every k-mer s ∈ S+\T is considered for being added to T . This step is slow

since it requires us to loop over all k-mers. To make the calculations faster, partial derivatives

are used to estimate F (θ(T ∪ s)) as follows:

F (θ(T ∪ s))− F (θ(T )) ≈ ∇F (θ(T )) · δ (2.9)

where δ = θ(T ∪ s) − θ(T ). Detailed derivation of the partial derivatives is provided below.

Choices of s are sorted according to their estimated values of F (θ(T ∪ s)). Then F (θ(T ∪ s)) is

computed exactly for each choice of s in sorted order until an s is found that satisfies F (θ(T ∪

s)) > F (θ(T )), and T is updated by setting T ← T ∪ s. In practice, we terminate the hill

climbing search if the top 500 k-mers on the ranked list do not lead to an improvement to the

discriminative score.

2.3.5 Computation of partial derivatives

For a simple motif component Z, partial derivatives of F can be written succinctly:

∂F

∂θij
= p · (1− p) ·

∑
a∈Σk

(Xa − Ya)
aijθ

−1
ij θ

aBa

(pθa + (1− p)Ba)2 (2.10)

Here the k-mer a is represented as a 4 × k matrix in which each element aij ∈ {0, 1} and the

columns sum to 1.

For a convolved motif component, partial derivatives of F is:

∂F (θ)

∂θmn

= p · [1− (2k − 1)p] ·
∑
a∈Σk

c(a)
Ba

(pA+ [1− (2k − 1)p]Ba)2 ·
∂A

∂θmn

(2.11)
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in which

∂A

∂θmn

=
k∏

i=1
i 6=n

(
4∑

j=1

θjiaji

)
· amn+

k−n∑
l=1

 l∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1
i 6=l+n

(
4∑

j=1

θj,i−laji

)
· am,l+n

+

k−1∑
l=k−n+1

 k∏
i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

i 6=n−k+l

(
4∑

j=1

θj,k−l+iaji

)
· am,n−k+l


(2.12)

Detailed derivation of the above is in Appendix A.

2.3.6 Identifying multiple PWMs representing combinatorial regulation

After a PWM is found, if desired, we remove the signals of that PWM from the k-mer count table

and start searching for a second PWM. Our hill climbing algorithm assumes (an estimate of) the

plant probability p is given. Initially p is estimated by assuming that the motif occurs once per

sequence in the positive sequences. To accurately remove a PWM signal from the data, we need

to re-estimate p for the estimated mixture component Z(θ̂). Following Equation 2.1, we have:

X −B ≈ p(Z(θ̂)−B) (2.13)

(with convergence as n → ∞, if θ̂ is a consistent estimator) since we assume the difference

between the observed k-mer counts and the background model results from the PWM. Given

our current estimate of θ̂ we can recover p from the above equation. To increase signal, we

only use the top 500 k-mers predicted by Z(θ̂) for this computation. Once estimates θ̂ and p̂ are

determined we assign new values to the number of observed k-mers in the positive and negative

sets by setting X ′ = X − pZ(θ̂) and then all entries are rescaled to sum to 1.

26



2.3.7 Speeding up the calculation and search

Although the running time of DECOD does not depend on the size of the input dataset, it grows

exponentially with k, the length of the motif, since the target function (Equation 2.8) includes

a summation over all possible k-mers. Moreover, the search space for the k-mers from which

a motif is constructed also grows exponentially with k. In the software implementation, the

followings are implemented as an option to speed up the optimization process.

To speed up the calculation of the target function particularly for larger ks, we alternatively

first calculate the frequencies of all k-mers in the positive and negative sets, and then the summa-

tion in Equation 2.8 is calculated only over those k-mers whose frequency differences are more

than 2 (if k < 10) or 3 (if k ≥ 10) standard deviations (sd) away (both sides) from the mean of

all k-mers, with the underlying assumption that those k-mers whose frequency differences are

small are likely to contribute little to the calculation of the target function.

To speed up the search process, we also limit the initial search space to those k-mers whose

frequency differences are more than 1 sd away from the mean. Moreover, we perform two

rounds of searches in each iteration. The first round is crude search in which we only use the

partial derivatives in Equation 2.9 to estimate the change brought about by adding a k-mer to

or removing a k-mer from the motif without doing exact calculation of the target function at

all. After a set of m k-mers (m is the motif cardinality) are obtained from the crude search that

leads to a motif θ with the maximum target function score at this stage, we expand this set by

including all other k-mers that are similar to θ (i.e. in the “neighborhood” of θ). Specifically, the

probability of each k-mer given θ is calculated and all k-mers whose probabilities are higher than

0.5k/2 ·0.1k/2 are added to this set. Then a second round of refined search is performed according

the optimization process for exact calculations as described in Section 2.3.4, using this set as the

new search space. The final motif found by this second round of search is reported.
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2.3.8 Method: Using more complicated motif models

In the above we have been using a simple PWM model for representing the motif, which assumes

independence between the positions within a motif. Theoretically any motif model that can be

constructed from a set of k-mers and can output the probability of observing a k-mer given

the motif model can be used. To further test if more complicated models that capture more

dependence between positions in a motif lead to better performance, we implemented a first-

order Markov motif model which is denoted as DECOD-Markov below. The parameters for the

Markov model is learned in the same way as those for the PWM model on the k-mers in the

current site set. For each k-mer a = a1 · · · ak and with the Markov model θ,

Pr(a|θ) = θ1,a1

k∏
i=2

θi,ai,ai−1
(2.14)

in which θi,ai,ai−1
is the probability of observing the nucleotide ai at position i given the previous

nucleotide at position i − 1 is ai−1, and θ1,a1 is the starting probability of observing a1 at the

first position. Note that with a more complicated motif model like this, using the approximation

(Equation 2.9) in the add step of the hill climbing is no longer possible, so we do full calculation

in the add step to get the target function score resulting from adding a k-mer to the site set,

and the k-mer giving the highest target function score is added. To make up for the additional

running time from this, we use the simple mixture component in the target function (Equation

2.7) instead of the convolved mixture component (Equation 2.8).

2.4 Method: Evaluation and comparison on simulated and

real data

2.4.1 Motif discovery on simulated data

For each simulated study, 100 simulated datasets were generated and results were averaged. In

each dataset, two groups of positive and negative sequences of length 400bp each were first
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generated using a multinomial background distribution with equal probabilities for A, C, G and

T respectively. Then, in the positive set, palindrome motif(s) of the specified width were planted

at randomly chosen positions. The information content of a column (column IC) in the PWM is

defined as

IC =
∑
i∈Σ

fi log2

fi
bi

(2.15)

in which Σ = {A,C,G, T}, fi is the base frequency of nucleotide i in that column of the motif,

and bi is the base frequency of nucleotide i in the background which is always 0.25 in our case.

We compared our method with other popular software specifically designed for discriminative

motif finding including: ALSE (v1.07, [93]), Seeder (v0.01, [49]), DME (v2 beta 2008.08.30,

[172]), DEME (v1.0, [143]), DIPS (v1.1, [169]) and CMF ([109]), in terms of the accuracy of the

recovered motif and the running time needed. For all cases, the accuracy was measured by the

average Kullback-Leibler (K-L) divergence per column (AKLD) between the recovered motif

and the known planted motif defined as

d =
1

k

k∑
i=1

∑
j∈Σ

(Mij −M ′
ij) log2(

Mij

M ′
ij

) (2.16)

in which k is the motif length, Σ = {A,C,G, T}, and Mij and M ′
ij are the corresponding posi-

tions in the two motifs being compared [172]. One position shifting was allowed in calculating

AKLD, i.e. when comparing two motifs A and B of length k, three AKLDs were calculated

over (i) the full length, (ii) the first k − 1 columns of A with the last k − 1 columns of B and

(iii) the last k − 1 columns of A with the first k − 1 columns of B. The lowest among the three

was reported. All methods were run on both strands of the input sequences. For DECOD, on

each dataset, both exact and speedup calculations (referred to as “DECOD-exact” and “DECOD-

speedup”) were run for 50 iterations (the default value) respectively, and the motif with the best

discriminative score was reported. The motif cardinality was set to 20 and the probability of mo-

tif occurrence was set to once per positive sequence (the default values) for all analyses, unless

otherwise noted. For DME, the option ‘-n 200’ was used to allow the program to return many
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motifs as suggested in its documentation, and for finding bimodal motifs the option ‘-i 0.5’ was

used to allow the program to search for column types with information content as low as 0.5.

For ALSE, the option ‘-b’ was used to specify the number of motifs to be 1 or 2 accordingly for

each comparison. For CMF, the option ‘-d 1’ was used to set the motif enrichment to be only in

the positive sequences and the option ‘-w 6 -l 6 -u 6’ was used to set the length of the motif to

be 6. For Seeder, the seed width was set to be 6. For DIPS, we compared running it for both 5

iterations (by default) and 20 iterations (by using ‘-niter 20’) (referred to as “DIPS-5iters” and

“DIPS-20iters”). Default values were used for the other parameters for all methods. Running

times were measured on a computer cluster with 2x Intel Xeon E5620 CPUs at 2.40Ghz and

24GB RAM.

Detailed descriptions about the motifs planted in generating each simulated dataset as dis-

cussed in Results is given below.

Single unimodal motifs

One motif with a dominating nucleotide at each position was planted. To more closely mimic

real cases, noise was added to each position of the motif so that the information contents (IC) of

each column of the motif ranges from 2 bits (corresponding to a completely deterministic motif)

to 0.64 bits (corresponding to a probability of 0.70 for the dominating nucleotide and 0.10 for

each of the other three nucleotides).

Single bimodal motifs

In this case, the IC for the unimodal positions in the planted motif was 1.15, and the IC for

the bimodal positions was 0.53 (the dominating two nucleotides had a probability of 0.45 each

and the other two nucleotides had a probability of 0.05 each). We generated 1,000 positive

and negative sequences respectively, and one instance of the motif was planted in each positive

sequence.
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Two motifs

Two different motifs having from 0 to 6 bimodal positions (column IC 0.53) and the rest positions

being unimodal (column IC 1.15) were planted in each of the positive sequences at different po-

sitions. When carrying out the comparisons, each method was set to report the top 2 motifs. The

AKLDs of both recovered motifs to the two planted motifs were calculated, and the recovered

motif that had the smallest AKLD to either of the planted motifs was reported as Motif 1 (Figure

2.8, upward), and the other was reported as Motif 2 (Figure 2.8, downward).

2.4.2 Motif discovery on the yeast dataset

For this analysis, probe sequences experimentally determined to be bound by each of the 65

yeast TFs tested in a ChIP-chip assay [63] were downloaded from http://fraenkel.mit.

edu/Harbison/release_v24/final_set/Final_Motifs/ and used as the positive

dataset for each TF. The numbers of bound sequences for each TF range from 14 to 195 with a

median of 56. A consensus motif for each of the 65 TFs was inferred systematically in [63] and

they were used as a gold standard to compare against in our analysis. The widths of these motifs

range from 6 to 18 with a median of 9. Note that not all bound sequences contained the motif for

the corresponding TF (Appendix B). The probes with highest binding p-values for each TF as

reported in [63] were collected and used as a negative dataset. The number of probe sequences

in the negative set is twice the number of those in the positive set for each TF. Then each method

studied was run on both strands of the input sequences to search for one motif of the known

width for each dataset.

2.4.3 Motif discovery on eukaryotic benchmark dataset

For this analysis, a benchmark dataset [184] was downloaded which contains binding sites for 52

TFs from yeast, fly, mouse and human as well as negative control sets in which no true TFBSs

exist [111]. We did not include the yeast data in this dataset in our study since we already
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performed the comparison on Harbison’s dataset. For each TF, the sequences containing the

motif within the original genomic context (the “real” background type) were used as the positive

sequences, and twice as many randomly selected sequences from the other TFs in the same

species were used as negative sequences. The motif width given as input to each motif finding

method was specified to be the minimum width of the true binding sites of that TF, as this should

be the most informative part of the motif. All methods were set to search for motifs on both

strands of the input sequences. For DECOD, only speedup calculation was used. After a motif

was found, it was converted to a log-odd scoring matrix using the background frequencies from

the positive sequences, and then used to scan both strands of each positive sequence. To allow

for flexibility, all k-mers with a score higher than 70% of the maximum possible score for the

log-odd scoring matrix were reported to be motif instances [63]. For the other methods, motif

instances reported in their output files were used directly. The prediction results for all methods

were formatted as required and submitted to the server at http://bio.cs.washington.

edu/assessment/ for evaluation. We focused on two metrics: the nucleotide level sensitivity

(nSn) and the nucleotide level positive prediction (nPPV). They are defined as follows:

nSn = nTP/(nTP + nFN) (2.17)

nPPV = nTP/(nTP + nFP ) (2.18)

in which nTP is the number of true positive predictions, nFN is the number of false negative

predictions and nFP is the number of false positive predictions (all at nucleotide level). See

[184] for detailed explanations.
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2.5 Method: ChIP-chip experiment of the p53 mutant bind-

ing

2.5.1 P53 array design

The p53-focused array was designed as previously described [162]. The array includes 540

p53-PET sites, 62 additional previously described p53 target regions and 846 randomly chosen

promoter regions. Each spot contains PCR product of the designated region with an average

length of about 800 bps.

2.5.2 Cell growth and treatments

H1299 tet-off inducible cell lines were created as previously described [28]. The cells were

grown in DME-M (Sigma) supplemented with 10% FCS, 2.5ug/ml tetracycline (Teva), 300

ug/ml G418(Mercury). The wild-type p53 expressing cells had 2 ug/ml puromycin in the cul-

ture medium and the 6KQ/6KR cells were cultured with 100 ug/ml hygromycin (Roche) in the

medium. p53 induction was achieved by omitting tetracycline from the medium for 24 hours

followed by three washes with PBS and either incubation of (6KQ) cells for 24 hours with 2.5

ng/ml tetracycline or wild-type and 6KR cells with 5 ng/ml tetracycline. The levels of p53 in

these three clones were similar to each other as determined by Western blotting (Section 2.5.3)

and were also similar to the amount of p53 in HCT116 cells treated with 375 uM 5-fluorouracil

for 6 hours.

2.5.3 Western analysis

The cellular lysates were separated on 10% polyacrylamide gel, with equal protein amounts

loaded on the gel for each sample, then transferred to a nitrocellulose membrane and incu-

bated with mouse anti-p53 (DO-I; Santa Cruz), goat anti-β-actin (I-19; Santa Cruz) antibod-
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ies and horseradish peroxidase-conjugated secondary antibodies. The signal was visualized via

enhanced chemiluminescence reaction and exposure to film (Figure 2.2)

Figure 2.2: H1299 cells with inducible wild type and mutant p53. Western analysis of p53

and beta actin protein levels in WT p53, 6KR p53 and 6KQ p53 H1299 cell clones induced

with different concentrations of tetracycline (0-5 ng/ml tet). Cells treated with high amounts of

tetracycline (2500ng/ml) to shut off p53 expressions are designated by a plus sign. The final

concentration of tet used for induction of p53 in the ChIP analysis is 5 ng/ml for wt and 6KR

mutant containing H1299 cells and 2.5 ng/ml for 6KQ mutant containing cells. HCT116 cells

without treatment (NT), or treatment with 5-uorouracil (5FU) are shown for comparison of p53

protein levels.

2.5.4 Chromatin immunoprecipitation-on-chip

Chromatin immunoprecipitation (ChIP)-on-chip analysis was performed essentially, as previ-

ously described [88], using 10 µg anti-p53 antibody DO-1 (Santa Cruz). Approximately 5× 107

cells were used. The array was scanned and analyzed with GenePix Pro software, and the fluo-

rescence intensity in both channels was obtained for each spot. As the array is spotted four times,

median Cy3 and Cy5 intensities were calculated for each spot. The two channels were normal-

ized according to the median intensity of the random human promoter spots, and the Cy5/Cy3

ratio of each spot was calculated. The experiment was performed in duplicate, and the average

binding ratio for each spot was calculated. The significance of the enrichment observed in each

spot was determined by calculating the deviation of each ratio from the mean of the random pro-

moters control spots (Z score). Only ∼ 1% of the random promoters obtained Z of > 2.5; thus,

34



this cutoff is equivalent to an FDR of 0.01. For gene-specific validation (data not shown), the

ChIP assay was performed as described above and the nonamplified immunoprecipitation and

input fractions were subjected to 36 cycles of semiquantitative PCR.

For each comparison, sequences identified to be bound by both factors are only put into the

negative set. In the WTP53-6KR comparison, there are 81 sequences in the positive set and 255

in the negative set. In the 6KR-6KQ comparison, there are 110 sequences in the positive set

and 158 in the negative set. In the 6KQ-control comparison, 147 sequences in the positive set

and 36 in the negative set. For motif finding, both strands of the repeat-masked sequences were

searched.

2.6 Result: Discriminative motif finding on simulated data

We first tested the performance of DECOD by comparing it to several other discriminative motif

finding methods including DME (v2 beta 2008.08.30, [172]), DIPS (v1.1, [169]), ALSE (v1.07,

[93]), DEME (v1.0, [143]), Seeder (v0.01, [49]) and CMF [109] using simulated data. For each

simulated study, 100 datasets were generated and results were averaged. In each dataset, two

groups of positive and negative sequences of length 400bp each were first generated with equal

probabilities for A, C, G and T, respectively. Then, in the positive set, palindrome motif(s)

of various strength [as represented by the information content of each column (column IC),

see Section 2.4.1] were planted at randomly chosen positions. For all cases, the accuracy was

measured by the average Kullback-Leibler (K-L) divergence per column (AKLD) between the

recovered motif and the known planted motif [172] (see Section 2.4.1). The lower the AKLD,

the closer the recovered motif is to the planted motif. In addition, for DECOD, both the exact

and speedup calculations were compared (referred to as ‘DECOD-exact’ and ‘DECOD-speedup’

hereafter, see Section 2.3). For DIPS, we considered running for 5 iterations and 20 iterations

(referred to as ‘DIPS-5iters’ and ‘DIPS-20iters’ hereafter).
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2.6.1 Single unimodal motif, small input size

We first planted one palindrome motif of width 6 into each positive sequence. Each position of

the motif had one dominating nucleotide (thereby unimodal), with column IC ranging from 2 bits

to 0.64 bits (Section 2.4.1). One hundred positive and negative sequences were generated respec-

tively for each dataset and we compared the ability of each method to recover the planted motifs.

When the planted motif was strong with a column IC≥1.58, most methods including DECOD-

exact, DECOD-speedup, DME, DEME, DIPS-5iters, DIPS-20iters and CMF (to a lesser extent

with larger variance) were able to accurately recover the planted motif (average AKLD leq1,

Figure 2.3A). However, when the column IC was reduced to 1.15, using CMF, DIPS-5iters and

DIPS-20iters led to an AKLD higher than 1, while DECOD-exact, DECOD-speedup, DME and

DEME still performed well and were also stable (AKLD≤0.6 with small variance, Figure 2.3A).

When the column IC was further reduced to 0.64, the planted motif instances became too noisy

with few instances preserving the dominating positions of the motif, and with the small num-

ber of sequences available, virtually all methods except ALSE failed (AKLD≥2, Figure 2.3A).

However, among all the tested methods, ALSE and Seeder performed poorly when the planted

motif was strong. For Seeder, its weak performance for the strong-planted motifs may have been

related to the motif length. The seed width for Seeder as input should be shorter than the motif

width, but in this case the two were set to be equal since the minimum possible seed width for

Seeder was 6. For ALSE, the apparent decreasing AKLD with weaker motif was because ALSE

reported matrices in which the distribution at each column is diluted (e.g. [0.5 0.167 0.167 0.167]

instead of [1 0 0 0]). In terms of running time, DEME and DIPS required a long time to run (∼15

min for DEME,∼25 min for DIPS-5iters and≥1.5 h for DIPS-20iters, Figure 2.3B). In contrast,

DECOD (particularly the speedup version) and DME were the fastest taking ≤1 min.

To further mimic real cases in which the motif of interest does not necessarily exist in all

positive sequences, we generated simulated datasets in which only some of the 100 positive

sequences (percentage denoted as q, varying from 50% to 90%) contained the planted motif (with
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Figure 2.3: Performance comparison on the simulated data planting one motif of width 6 in each

of the 100 positive sequences. (A) Average accuracy as measured by AKLD (B) Actual running

time. The error bars represent standard deviation based on results from 100 datasets.

an column IC of 1.15). In all the ranges of q tested, DECOD-exact, DECOD-speedup and DEME

outperformed the other methods, including DME, in terms of the accuracy of the recovered motif

(Figure 2.4). Note that the running time for DEME was more than 15 times longer than DECOD

(Figure 2.3B). When q was high (≥0.8), both DECOD-exact and DECOD-speedup had a small

variance suggesting that their performance was relatively stable. In contrast, DME had a much
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larger variance, indicating that it failed on a lot more of the 100 simulated datasets than DECOD

(Figure 2.4).

Figure 2.4: Performance comparison of accuracy as measured by AKLD on the simulated dataset

in which the motif is only planted in some (x-axis) of the 100 positive sequences.

In order to better evaluate the ability of DECOD to find longer motifs, we further generated

simulated datasets in which a palindrome motif of length 8 is planted in some (not all) of the

positive sequences (the other settings remain the same as above). We compared the top motif

recovered by each method in terms of the AKLD to the known motif and each method’s running

time. As shown in Figure 2.5A, in all ranges of q tested, the ALKD of the motif that DEME

recovered is slightly better than DECOD, which is in turn slightly better than DME. All the

above three methods perform much better than the other methods we tested. However, in terms

of running time, DEME took about 6 times longer than DECOD (Figure 2.5B). In addition, we

did not include DIPS in this comparison due to its excessive running time (≥2hrs for each run).

2.6.2 Single unimodal motif, large input size

To investigate how well each method scales with the size of the input data, we next increased

the number of sequences for each dataset to 1,000, and we still planted one motif with varying
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Figure 2.5: Performance comparison on simulated dataset in which a motif of width 8 was

planted in some (percentage q, ranging from 50% to 90%) of the 100 positive sequences. (A)

Accuracy as measured by AKLD (B) Actual running time (seconds)

column IC in each positive sequence. With this large input dataset size, DIPS failed to run,

the running time for DEME and Seeder became prohibitively long (≥6h), and the running time

for ALSE increased to more than 1.5 h. We thus excluded them from the analysis and only

compared DECOD-exact, DECOD-speedup, DME and CMF. All four methods were able to pre-

cisely recover the planted motif and the AKLDs were very similar for all the methods, although
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the AKLDs increased with lower column IC of the planted motif as expected (Figure 2.6A).

In terms of running time, DECOD-speedup and DME were the fastest (≤1 min), followed by

DECOD-exact (∼2 min) and CMF (∼6 min, Figure 2.6B).

Figure 2.6: Performance comparison on the simulated data planting one motif in each of the 1000

positive sequences. (A) Accuracy as measured by AKLD (B) Actual running time (seconds)

2.6.3 Single bimodal motif

We next tested a more difficult case where some positions (ranging from one to all six) in the

planted motif are bimodal (column IC 0.53, see Section 2.4.1). Such cases, in which a motif

contains a few weak positions, are very common in practice. As the number of bimodal positions

increased, the recovered motifs by all methods tended to diverge further from the planted motif

(Figure 2.7). However, the AKLDs of the motifs recovered by both DECOD-exact and DECOD-

speedup were in most cases comparable to DME and both were better than CMF.

2.6.4 More than one motif per sequence

In real data, genes are often combinatorially regulated by multiple TFs. To test the ability of our

method to recover more than one motif from a dataset and compare with the other methods, we

next planted two different motifs in each positive sequence in a simulated dataset containing 1000
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Figure 2.7: Performance comparison on recovering bimodal motifs. A motif containing bimodal

positions is planted in each of the 1000 positive sequences

sequences each. The planted motifs had 0-6 bimodal positions (column IC 0.53) and the other

positions were unimodal (column IC 1.15) (see Section 2.4.1). Both DECOD-exact and DECOD-

speedup were able to correctly recover the two planted motifs (AKLD≤1) and outperformed

DME, especially when the number of bimodal positions were ≥3 (Figure 2.8 and Section 2.4.1).

Interestingly, CMF was able to correctly recover one of the two motifs in most cases and always

failed to recover the other (Figure 2.8, downward bars representing the recovered motif with

larger AKLD, see Section 2.4.1).

2.6.5 Robustness of DECOD to parameters

To investigate whether DECOD is sensitive to the choice of the motif occurrence probability

(p) and cardinality (C) parameters, we ran DECOD on simulated data using a range of different

values for these parameters. We also tested the ability of DECOD to predict motifs longer than

6 (k≥6). Similar as before, 1,000 simulated positive and negative sequences, length 400bp each,
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Figure 2.8: Performance comparison of accuracy as measured by AKLD on the simulated dataset

in which two motifs were planted in each of the 1000 positive sequences. Each method was set

to report 2 motifs. Upward, the AKLD of the recovered motif closer to the two known motifs.

Downward, the AKLD of the other recovered motif to the corresponding known motif.

were generated. One motif with column IC 1.15 was planted once in each positive sequence.

DECOD was able to successfully recover the planted motif starting with a p as low as 0.25 or

as high as 5 times per positive sequences (Figure 2.9A). In reality, some motifs may be more

likely to occur more than once in a positive sequence. The insensitivity of DECOD to the value

of p suggests that DECOD has the advantage of still being able to correctly recover the motif

in such cases. We suggest assuming one occurrence per positive sequence as a starting point.

Second, motif cardinality might affect the resolution of the recovered motif. However, for strong

motifs as used in our experiments, DECOD works well for C ranging between 5 and 100 (Figure

2.9B). Increasing it to 100 does not affect the result much, though it does increase the run time

(not shown) since the search process will necessarily take longer time to converge. On the other

hand, with a small C the method is more likely to be stuck in a local optima due to the reduced

resolution. Therefore we used C = 20 in all further analyses which is also the default choice

of Sinha in DIPS [169]. In the command-line version of the program (downloadable from the
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Supplementary Website), both of the above parameters (the probability of motif occurrence and

motif cardinality) can be user-specified.

Figure 2.9: Robustness of DECOD to various parameters. (A) Robustness to the probability of

motif occurrence parameter p (B) Robustness to the motif cardinality parameter C (C) Robust-

ness to the motif width parameter k. AKLD, Average K-L divergence per position.

DECOD also works well with longer motifs (Figure 2.9C, see also Section 2.6.1 on simulated

data, Section 2.7.1 on yeast data and Section 5.2.1 on ChIP-seq data). Since the exact calcula-

tion includes a summation over all k-mers, the running time using exact calculation increases

exponentially with k, and therefore when k is too large (e.g. longer than 10), exact calculation

is impractical. However, the speedup calculation does not suffer from this since it only makes

use of those k-mers that show the most frequency difference between the positive and negative

set (Section 2.3.7 and Figure 2.9C), and the accuracy of the speedup calculation is comparable
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in almost all cases to the results from exact calculations (Figure 2.9C).

2.7 Result: Performance comparison on recovering motifs from

biological benchmark datasets

2.7.1 Discriminative motif finding on yeast benchmark dataset

We next applied DECOD to identify transcription factor binding sites (TFBSs) in real biological

datasets. For this purpose, we first used a benchmark dataset in Saccharomyces cerevisiae [63]

and compared DECOD’s results with the other methods. For each of the 65 TFs with high-

confidence known motifs determined as reported in [63], the probe sequences bound by the

TF were used as the positive set (Section 2.4.2). Note that not all bound sequences contained

the motif for the corresponding TF. Negative datasets were constructed for each TF by using

the probes most unlikely to be bound (Section 2.4.2). We then run each method to search for

one motif of the known width for each dataset, and we matched the motifs discovered against

a database containing all the motifs for those TFs reported in [63] using STAMP [106]. A

discovered motif is considered to be correct if the true TF is within the top 5 matches returned

by STAMP. We did not include DIPS in our comparison due to its prohibitive running time. For

our method, we only used the speedup version since many motifs are longer than 8.

Out of all the 65 motifs, DECOD was able to recover 28, compared to 31 for DME and 34

for DEME (none of the other methods correctly recovered more than 34 motifs, Table 2.1 and

Appendix B). However, the motifs for these 65 TFs are not equally reliable. An enrichment score

for each motif was calculated in [63] to measure the relative enrichment of the motif in the bound

probes compared with all intergenic sequences in yeast. Motifs with a higher enrichment score

occur more densely in the bound probes and are therefore more reliable. Of the 21 motifs with

an enrichment score ≥25, DECOD was able to recover 15, similar to the number recovered by

DEME (also 15) and higher than the number recovered by DME (13) (Table 1). It should be
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noted that many of the motifs correctly recovered by DECOD are longer than 10 (B), and that

the running time for DECOD is always much faster than DEME. Therefore, DECOD performs

well in recovering yeast motifs from this dataset especially for highly reliable motifs.

Table 2.1: Comparison of discriminative motif finding methods on the yeast dataset

TF DECOD DME DEME CMF Seeder ALSE Width Enrichment
ABF1 + a + + + + 13 99
CBF1 + + + + + 7 99
FHL1 + + + + + 10 99
RAP1 + + + + 10 79.92
REB1 + + + + + 7 77.93
UME6 + + + + + 8 72.32
RPN4 9 72.02
GCN4 + + + + + 7 64.62
YAP7 8 62.65

MCM1 + + 11 55.28
NRG1 + 7 45.42
MBP1 + + + + + 7 40
SKN7 + 9 38.79
CIN5 + + + 8 38.36
SUM1 + + + + 10 36.47
SWI6 + + + + + 7 33.62
HSF1 + 13 32.96
SWI4 + + + + + 7 31.96
TYE7 + + + + + + 8 30.56
SFP1 9 26.64
FKH2 + + + + 7 26.62

Total (Top)b 15 13 15 14 11 3
Total (All)c 28 31 34 24 17 9
a +: Correctly recover the known motif.
b Total (Top) : The total number of the top 21 motifs with enrichment score≥25 correctly

recovered by each method.
c Total (All): The total number of all motifs correctly recovered by each method (see

Appendix B for details).

We also compared two DECOD variants on this yeast dataset: (1) DECOD-simple, in which

we only used the simple mixture component in the target function(i.e. Equation 2.7) instead of

the convolved mixture component, in order to see how much improvement the deconvolution

brought about; and (2) DECOD-altseed, in which instead of seeding DECOD randomly and
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performing several restarts with different seeds, we seeded DECOD from k-mers sampled from

the known motif for each TF directly. This allows us to identify cases where the original DECOD

failed because it did not come up with the best seeds. While the original DECOD recovered 28 of

the 65 yeast TFs, DECOD-simple was able to recover 26, and DECOD-altseed recovered 34 (see

details in Appendix B). Therefore, deconvolution indeed led to improvements in the performance

of DECOD at least for some cases. Moreover, DECOD-altseed recovered several more TFs than

the original DECOD. The reason that the original DECOD failed on these cases may be either

that an insufficient number of restarts were performed so that the best seeds were not reached, or

that the best seeds were completely excluded from the search space due to the limitation of the

search space to only those k-mers with extreme frequency differences between the two sets of

sequences in the speedup process (Section 2.3.7). For the former case, more random restarts can

be performed as a remedy. For the latter case, the limitation on the search space can be relaxed

or completely removed in order to allow more k-mers to be considered in the seed.

2.7.2 Discriminative motif finding on eukaryotic benchmark dataset

To further examine the ability of DECOD to discover motifs in more complex organisms, we

tested its performance and compared with the other methods using another benchmark dataset

[184]. This dataset contains the binding sites for 52 TFs from yeast, fly, mouse and human as

well as negative control sets in which no true TFBSs exist. This is a challenging dataset due

to the small number of sequences for each TF. Since we already performed a comprehensive

comparison on yeast, we only used the 46 TFs from the other three species in this comparison.

For consistency with previous analysis of this data, and because unlike the previous data we

used in this case the input data contain motif occurrence information, we evaluate the results for

each method in terms of the metrics used by [184], particularly the sensitivity(nSn) and positive

prediction values (nPPV), at the nucleotide level (Section 2.4.3).

Although the performance for all methods was not great for this subset of the data, at the
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nucleotide level, DECOD performs better than most of the other methods including DEME,

DME and CMF (Figure 2.10). Moreover, the sensitivity (nSn) of DECOD was slightly higher

than DEME, DME and Seeder (Figure 2.10). Therefore, DECOD is also competitive with the

other methods on recovering TFBS in higher eukaryotes from this dataset. Interestingly, although

ALSE performed poorly on the simulated and yeast dataset, it outperforms the other methods

on this dataset. Notice that here the nSn and nPPV values we obtained for all methods were

generally lower than the results reported in [184] for general (not discriminative) motif finders.

This is because in [184] the dataset was sent to the authors of each motif finder software, and

many authors performed additional filtering steps, many including inspection by eyes, to improve

their predictions. In our scenario we did not attempt to do these because our purpose was only

to perform a fair comparison of the methods being evaluated using a consistent standard. We

expect that after performing careful post-processing of the motifs reported by each software, the

results can be further improved.

Figure 2.10: Sensitivity (nSn) and positive prediction value (nPPV) at the nucleotide level for

each method on the fly, mouse and human TFBS benchmark dataset [184]
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2.8 Result: Discriminative motif discovery from p53 mutant

binding targets

We next looked at the tumor suppressor p53 in human, a TF which plays a major role in can-

cer by binding numerous targets [189]. P53 is regulated by many posttranslational modifica-

tions, primarily at the amino and carboxyl terminal regions [147]. In particular multiple lysines

within the C-terminal domain (CTD) have been reported to undergo numerous modifications in-

cluding acetylation, methylation, ubiquitination, and SUMOylation [84]. The functions of the

acetylation of these lysines have remained elusive. To study the role of the acetylation of these

CTD lysines in p53 binding, we performed ChIP-on-chip experiments comparing three H1299

cell lines expressing p53 variants expressed from a tetracycline-regulatable promoter (tet-off) in

which the levels of p53 protein can be regulated by varying the amount of tetracycline in the

culture medium (Section 2.5). The levels of p53 were calibrated so that equivalent amounts of

p53 were expressed in each of the following three cell lines containing: (i) wild-type p53 (WT

p53); (ii) mutant p53 in which the six lysine residues in the C-terminus were mutated to arginine

(6KR p53), which conserve charge but disallow any lysine modification; and (iii) mutant p53 in

which the same six lysines were mutated to glutamine (6KQ p53) which is thought in some cases

to mimic acetylation [77] (Section 2.5). To determine their relative affinity for p53 target sites,

we used a p53 custom array containing promoters for 600 of p53’s targets binding sites.

We found that WT p53 bound to 330 targets, 6KR p53 bound to 255 targets and 6KQ p53

bound to only 150 targets. Interestingly, the 6KQ targets were included in the 6KR targets, which

in turn were included in the WT targets. Thus, each of the p53 forms bound a smaller subset of

related targets (Figure 2.11A). Since all genes on the array contain a strong p53 binding motif,

motif discovery on one target set would lead to the same motif. Thus we used DECOD to search

for discriminative motifs that are enriched in one set of these targets versus another. The bound

sequences identified in the ChIP-chip experiment in each pairwise comparison of the wild-type
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p53 and two mutant p53 (6KR and 6KQ) were repeat masked and then used for this analysis.

Since the experiment is not strand-specific, both strands were included in the input sequences.

We used STAMP [106] to match the motifs we recover with known transcription factor binding

sites in the TRANSFAC 11.3 database [111].

Figure 2.11: Results on the p53 dataset. (A) Number of targets and inclusion patterns for the

three p53 forms we tested. (B-D) Discriminative motifs identified by DECOD for the p53 binding

datasets. Left: Motifs found by DECOD. Right: matched motifs in TRANSFAC using STAMP

[106] (E-values provided by STAMP). (B) The SOX4 motif found in the comparison of the WT

p53 targets against the 6KR p53 targets. (C) The IRF-1 motif found in the comparison of the

6KR p53 targets against 6KQ p53 targets. (D) The p53 motif found in the comparison of the

6KQ p53 targets against the control sequences.

DECOD identified several such discriminative motifs in pairwise comparisons between these

sets (Figure 2.11B-D). The motifs identified provide new insights regarding co-factors of p53

and the post-translational modification that it undergoes. For example, when comparing targets

of WT p53 that are not targets of 6KR p53 to targets of 6KR p53, DECOD identified a motif

closely matching the PWM for Sox4 (Figure 2.11B, E-value = 6.35e-8). Sox4 participates in

a wide range of cellular processes particularly in cancer [146], and recently it was reported to

physically interact with p53 and regulate p53 stability at the protein level [132]. Both the DNA-
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binding domain (DBD) and the C-terminal domain (CTD) of p53 were shown to be involved in

forming the interaction with Sox4 [132]. Since the Sox4 motif was only found to be enriched in

comparing the WT p53 targets against 6KR p53 (in which the CTD was mutated) but not in the

other comparisons, our result confirms this finding and also suggests that the CTD lysines might

be important in maintaining the conformation of the binding site between the p53 and Sox4

proteins. Another example is the motif closely matching the PWM for interferon regulatory

factor 1 (IRF-1) when comparing the 6KR p53 against the 6KQ p53 targets (Figure 2.11C, E-

value = 2.75e-7). IRF-1 acts synergistically with p53 at the p21 promoter and is coordinately

upregulated with p53 during DNA damage response [131]. On the p21 promoter IRF-1 and p53

interact through the p300 acetyl transferase, and this interaction is important for the acetylation

of p53 [41]. If p300 is indeed necessary for IRF-1 - p53 interaction, we expect it to be lost after

p53 is fully acetylated. Indeed, we found that IRF-1 binding sites are depleted from promoters of

the acetylation mimicking mutation (6KQ) raising the possibility that p53 needs the interaction

with the IRF-1 protein to control a subset of its targets. Finally, in comparing the 6KQ targets

against a control set, DECOD was able to recover the motif corresponding to the PWM for p53

(Figure 2.11D, E-value = 1.09e-11). Note that the p53 motif was not found in either of the

previous comparisons due to the discriminative nature of the method, which is what we desired

since all the three sets of targets contains the motif.

To see if the other methods can recover these motifs, we also run DME and CMF on this

dataset. Each method was set to search for 10 motifs of width 8 in each comparison, and all

methods were run on both strands of the repeat-masked input sequences (same as used for DE-

COD). The results were again compared to known motifs in TRANSFAC [111] using STAMP

[106] in the same way we did for DECOD. We did not test DEME and DIPS due to their ex-

cessive running time and the fact that DEME is able to find only one discriminative motif. Also

ALSE and Seeder were not included since they could not work properly with repeat-masked

sequences as in our input dataset. Both DME and CMF were able to find the motif matching
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IRF-1 in the 6KR-6KQ comparison (for DME, E-value = 2.59e-6; for CMF, E-value = 1.46e-7;

Figure 2.12). However, DME was not able to recover the known p53 motif from the 6KQ-control

comparison. Although CMF was able to find a motif similar to that for p53 in the 6KQ-control

comparison, the match was very weak (E-value = 1.30e-4, Figure 2.12) compared with the one

recovered by DECOD (E-value = 1.09e-11, Figure 2.11D). Neither methods were able to find

the motif matching Sox4 that DECOD identified from the WTP53-6KR comparison. The full

list of all motifs identified by each method and their matches to known motifs using STAMP is

available on the Supplementary Website at http://www.sb.cs.cmu.edu/DECOD/.

Figure 2.12: Motifs recovered by DECOD and CMF on the P53 dataset (see Supplementary

Website for full details)

2.9 Result: Using DECOD to find motifs from ChIP-seq dataset

The running time of DECOD does not depend on the size of the input sequences, therefore

DECOD is particularly suited for motif finding from data generated by large scale sequencing

efforts such as ChIP-seq experiments. Here we demonstrate the ability of DECOD to recover

known motifs for transcription factors from several published ChIP-seq dataset from the EN-
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CODE project [44]. Genomic sequences (peaks) determined to be bound in ChIP-seq studies by

the following five TFs that have known motifs in JASPAR [22] were downloaded and used as the

positive set for each TF: c-Jun (K562 cells), c-Myc (K562 cells), Max (K562 cells), Egr-1 (K562

cells) and NFkB (GM12878 cells). Each set contains tens of thousands of sequences, and the

lengths of the peak regions are typically a few hundreds (Figure 2.13). For negative sequences,

we used both the upstream and downstream sequences flanking the peak regions, and the length

of each flanking sequence was chosen to be the same as the corresponding peak region. Thus

the negative set contains twice as many sequences as the corresponding positive set for each TF.

We used DECOD to search for motifs of about the width of the known motif (Figure 2.13) on

both strands of the input sequences. As shown in Figure 2.13, DECOD was able to correctly

recover all 5 motifs even for relatively longer and more complex motifs like CTCF. For 4 of the

5 motifs (c-Jun, Max, CTCF and NFkB), the correct motif that DEOCD recovered was also the

first one reported. For c-Myc, the correct motif was the second motif that DECOD recovered.

Therefore, DECOD works well on finding motifs from ChIP-seq datasets in which the number

of input sequences can be too big for other motif finding software to handle.

In higher organisms like human, it has been suggested that there can be dependencies be-

tween positions in a motif that cannot be represented with a PWM model [6, 105]. Here we

evaluated using a more complicated first-order Markov motif model that is able to capture de-

pendencies between adjacent positions in DECOD (DECOD-Markov, see Section 2.3.8 for de-

tails). In order to evaluate the performance of DECOD-Markov and compare with the original

DECOD (DECOD-PWM), we run both on this human TF ChIP-seq dataset. For each of the

5 TFs, the positive and negative sequences were randomly split into two halves. Each method

was run on one half to search for a discriminative motif, and the resulting motif models were

used to scan sequences in the other half using log likelihood ratio scores. Since both positive

and negative sequences are present, we consider this as a classification problem, and we use the

area under the ROC curve (AUC) as the criteria to evaluate how well each method works. For
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Figure 2.13: Using DECOD to find motifs from ChIP-seq datasets. 1The ChIP-seq peak

regions were downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/encodeDCC/

DECOD-Markov, in order to avoid over-fitting, we considered both using a motif cardinality of

20 and 100. In Figure 2.14 we show the AUC and actual running times for each method on c-Jun,

c-Myc and Max that have widths 7-8. As can be seen, in all three cases the AUC achieved by the

Markov motif model for both motif cardinalities of 20 and 100 is very close to that achieved by

DECOD-PWM. However, the running time for DECOD-Markov (several hours) is much longer

than that for DECOD-PWM (several minutes). In addition, in Figure 2.15 we show the AUC of

DECOD-PWM on the two longer TFs, CTCF and NFkB. For these longer motifs DECOD-PWM

takes 1.2 hours (NFkB, 11bps) and 4.3 hours (CTCF, 12bp) respectively, but DECOD-Markov
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did not finish within 7 days for either. Therefore, overall at least for this specific dataset, the

Markov motif model does not lead to further improvement for DECOD in recovering the known

motifs.
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Figure 2.14: Comparison of ROCs and running times for DECOD-Markov and DECOD-PWM

on c-Jun, c-Myc and Max. Shown on the top are the ROCs and AUCs for each method, and on

the bottom are the actual running times for each method.

2.10 Discussion

We presented DECOD, a novel method for discriminative motif finding in DNA sequences. DE-

COD uses a deconvolution method which allows it to have a run time independent of the input

data size while still taking into account context information.

While DECOD’s run time is independent of the input data size, calculating the exact tar-

get function (DECOD-exact) increases exponentially with the motif length k. We presented a

solution for speeding up the calculation by only using the most informative k-mers (DECOD-
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Figure 2.15: ROCs and AUCs for DECOD-PWM on CTCF and NFkB. DECOD-Markov did not

finish within 7 days on these longer motifs.

speedup), and showed that it yields motifs that are almost as accurate as those obtained using

DECOD-exact while the running time is greatly reduced. As we discuss, DECOD is robust to

several input parameters including the choice of the probability of motif occurrence.

When tested on simulated data for which the correct motif is known, DECOD outperforms all

other methods when searching for complicated motifs with bimodal position and when looking

for combinatorial regulation. It is also much faster than most other methods making it applica-

ble to large sequencing datasets. On real biological benchmark datasets (both yeast and higher

eukaryotes), we showed that DECOD was comparable, or better, than other discriminative motif

finding methods with the possible exception of DEME for the yeast data. However, as mentioned

above, DEME is very slow and so may not be a useful method when studying large datasets. Us-

ing DECOD we were also able to identify motifs that are differentially enriched in different p53

mutants which allowed us to identify co-factors of this important TF. Additional experiments

are crucial for deciphering the exact interactions between p53 and these other factors, and our
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bioinformatics analysis using DECOD paves the way for future experiments. We have also tested

DECOD using large-scale ChIP-Seq dataset for 5 TFs. For all five DECOD was able to identify

the correct motif indicating that it works well on high-throughput datasets as well.

While DECOD was successful in our analysis, it also has limitations. Since DECOD depends

on k-mer counts, it does not work well on motifs with large gaps in the middle, since the signals

for the k-mers corresponding to the occurrences of such motifs will be more uniform due to the

gaps. In future we hope to further extend DECOD to deal with such cases. In addition, when

the occurrence of motifs in the positive set is much more sparse than once per positive sequence,

DECOD may fail as the default value for motif frequency p is much larger than the actual value.

Currently to address this the user is allowed to manually specify the value for this parameter

according to their expectations when running DECOD. It would be interesting to develop ways

to automatically determine the best value for p. Moreover, we also hope to further improve

DECOD by developing ways to automatically determine the length of the motif to be searched

for, which can be important when presented with new dataset in which the motif is completely

unknown.

2.11 Software availability

DECOD is available for download at http://www.sb.cs.cmu.edu/DECOD. DECOD is

written in Java and therefore can be run on multiple platforms. It has an easy-to-use graphi-

cal user interface (GUI, Figure 2.16), and it can also be run in command line mode for batch

processing.
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Figure 2.16: Screenshot of DECOD graphical user interface.
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Chapter 3

Predicting tissue-specific transcription

factor binding

While DECOD is a useful method for de novo motif discovery, for many TFs knowledge about

their binding is already available. Recently, high-throughput protein binding microarrays were

used to measure the binding preferences for hundreds of TFs in an unbiased manner. A key

question in these experiments is how to use such data to determine genome-wide binding sites

for a specific TF in vivo. Such knowledge is important for better understanding transcriptional

regulatory networks. In this chapter, we present methods and analyses that provide a solution for

this task.

3.1 Introduction

Deciphering transcriptional regulatory network (TRN) requires knowledge about the genome-

wide binding sites of transcription factors (TFs) [27, 63]. Chromatin immunoprecipitation(ChIP)

followed by microarray (ChIP-chip) [23] or sequencing (ChIP-seq) [134] have been extensively

used to interrogate the in vivo binding locations of individual transcription factors and coactiva-

tors in a wide range of species and tissues [27, 63, 74, 78, 144, 155, 200]. Despite their popular-
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ity, such methods require the availability of specific antibody to the TF being studied, and they

only study a single cell type, under a specific condition, in one experiment. Thus it is difficult, by

using such experiments alone, to obtain a comprehensive understanding of the complicated mam-

malian TRNs that involve thousands of TFs whose activties change across different tissues and

conditions. Computational predictions using other genomic resources to predict tissue-specific

transcription factor binding is therefore an important research challenge.

Universal protein binding microarray (PBM) is a high-throughput technique that measures

the in vitro binding specificity of a sequence-specific transcription factor in an unbiased manner

[17, 119], and it has been used to reveal the binding profiles of hundreds of TFs in yeast [207],

worm [60] and mouse [6]. Compared with ChIP-based experiments, PBM has the advantage

that it does not require a specific antibody to the TF of interest, and is independent of the tissue

or condition being studied and so only one experiment is performed for each TF. A number of

methods have been proposed for using PBM data to identify TF binding sites (TFBSs). Many of

the proposed methods represent TF binding preference extracted from the PBM data by position

weight matrices (PWMs) [17, 129, 204]. Such representation, although popularly used due to

its simplicity, assumes independence between positions, an assumption which may not hold in

many cases [6, 105]. In addition, conflicting results have been reported with regard to whether

many TFs have more than one binding preference represented by PWMs [6, 204]. A recent study

[129] compared the performances of using PWM representations derived from the PBM data

by several methods in predicting in vivo binding sites, and concluded that almost all methods

performed poorly.

The fact that PBM is an in vitro technique is also its biggest weakness. In vivo binding is

affected not just by motif recognition but also by other tissue-specific conditions that are not

observed with PBM experiments including chromatin accessibility, the presence of co-factors,

etc [177]. Thus, effective computational methods and additional information are needed when

attempting to use the raw fluorescence intensities provided by PBMs to determine tissue- and
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condition-specific TFBSs. Recently, a number of studies have reported that epigenetic informa-

tion including certain histone modifications and hypersensitivity to DNase I cleavage correlate

with TF binding in vivo [73, 95]. Moreover, functional TFBSs tend to be under stronger neg-

ative selection, leaving a “phylogenetic footprint” in the genomic sequences. Several methods

for predicting in vivo TF binding sites have successfully combined such information with PWMs

[36, 48, 124, 139]. However, while these approaches led to useful results, relying on PWM-

based representation leads to missing real targets as we show in Results. In addition, none of

these methods have so far been applied to elucidate the complete set of targets for TFs across

a large number of tissues. What is lacking is an integrated model that combines the strength of

PBM data with the additional information from epigenetic and/or evolutionary data to predict

biologically important TF binding events in multiple tissues.

To address these issues we developed a new method for using PBM data to search for

TFBS. Our method, PLAR(positive lasso regularized)-PBM, uses a biophysically-motivated k-

mer based model which allows secondary binding profiles and nucleotide dependencies in differ-

ent position of the TF binding sites. As we show, when predicting in vivo TF binding locations

determined from ChIP-seq experiments, our method outperforms several other methods sug-

gested for using such data. We then develop an integrative model that combines PBM data with

DNase I hypersensitivity data and evolutionary conservation data to predict tissue-specific TFBS

in vivo. We demonstrate that such an integrative model significantly boosts prediction results

compared with using PBM data alone, and show that it improves upon other methods developed

to combine such data with PWMs. Finally, we created a resource for tissue-specific TRNs using

PBM data for 284 mouse TFs from UniPROBE [126] and DNase I hypersensitivity data for 55

mouse tissue/cell types from the mouse ENCODE project [118]. As we show, many of our pre-

dicted tissue specific TFs agree with current knowledge, and global analysis strongly supports

our predictions as well. The comprehensive resource of TF binding sites we built thus provides

a reference map for understanding complex gene expression patterns.
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3.2 Method: PLAR-PBM - Using PBM data to predict TF

binding

The binding specificities of TFs are often represented by position weight matrices, which assume

that each position of a site contributes independently to the overall binding affinity of the site

(independence assumption). The PBM data simultaneously measures binding of a TF to tens of

thousands of probes, and can be used to construct a much more detailed and accurate model of

TF binding specificities.

3.2.1 A biophysically-motivated model for PBM data

Our k-mer based PBM model, PLAR-PBM (Figure 3.1), is motivated by the biophysics of TF

binding to the probes in PBM experiments. Following Zhao et al. [204], we denote by Yi the

experimentally measured intensity of the i-th probe on the PBM array. We denote by F (i) the

(unobserved) binding probability of the TF to this probe. While these two quantities are related,

due to experiential errors and scaling they are not identical. We thus assume a simple linear

model for the mapping between the two:

Yi = a+ cF (i) + εi (3.1)

where εi is the error term and a and c are scaling factors. Since each probe is much longer than

the motif itself (probe length is 36bp while motifs are often between 6-10bp) we follow BEEML-

PBM [204], and express the binding probability F (i) as the sum of the binding probabilities over

all possible motifs encoded by the probe. Let k be the length of a TF binding site and L be the

length of the variable region on the probe, we have:

F (i) =
L−k+1∑
j=1

λj · βSi(j) (3.2)

where λj is the position effect at position j (see below for the details on the position effect) and

βSi(j) is the binding probability to Si(j), the k-mer at the j-th position of the i-th probe. The
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term βs is symmetric for any k-mer s, i.e. βs = βs̄, where s̄ is the reverse complement of s.

Plugging in the equation of F (i) into the linear model, we have:

Yi = a+ c

(
L−k+1∑
j=1

βSi(j) · λj

)
+ εi. (3.3)

We can rewrite this model as:

Yi = a+ c

(∑
s∈Σk

βsXis

)
+ εi (3.4)

where Σk denotes all k-mers, and Xis is the number of times the k-mer s occurs in the i-th probe

(weighted by the position effects):

Xis =
∑

j:Si(j)=s

λj (3.5)

(Xis = 0 if s does not occur in probe i).

Note that c and the β’s are coupled in the above model and so they can not be estimated

individually. Thus we can write the equation as a linear model:

Yi = β0 +
∑
s∈Σk

βsXis + εi (3.6)

subject to the constraints that (1) βs ≥ 0 for any s; and (2) βs is symmetric, resulting in 4k/2

parameters that we need to learn.

Our model differs from the PWM models of BEEML-PBM [204] since PWMs cannot capture

the possibility of secondary motifs and the possible dependency of nucleotides at different posi-

tions of a motif. In our model, no such constraint is imposed, and we deal with the model com-

plexity problem (too many parameters) through sparse linear regression (see below). However,

both models use similar assumptions regarding the biophysical nature of PBM measurements

and how these relate to k-mer binding probabilities. Thus our model enjoys the same benefits

as those of the BEEML-PBM model: the parameters for the k-mers have clear meanings, and

certain experimental artifacts (e.g. handling biases due to position and background effects) can

be naturally incorporated (see below).
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3.2.2 Position and background effects in modeling PBM data

Zhao et al. [204] considered several experimental artifacts that should be removed in order to

improve the accuracy of PBM data. These include the position effect and the background effect

that we adopted in our model, described briefly below. We refer to [204] for more details.

Berger et al. [17] observed that the position along a probe at which the TF binds affects

the binding strength and thereby the fluorescence intensity. Zhao et al. [204] used a position

effect term to explicitly model this effect. The position effect of the j-th position along a probe,

denoted as λj , is defined as [204]

λj =

〈
Iavg(Si,j)

Iavg(Si)

〉
n∑L

m=1

〈
Iavg(Si,m)

Iavg(Si)

〉
n

(3.7)

in which Iavg(Si,j) denotes the average intensities of all probes containing k-mer Si at position

j, Iavg(Si) denotes the average intensities of all probes containing Si at any position, and <>n

denotes the average over the top n k-mers with the highest median intensities (n = 25).

Zhao et al. [204] observed that in a typical PBM experiment, only a small fraction of the

probes have high intensities due to TF binding, and most other probes have low intensities due

to background hybridization. They estimated the distribution of background intensities from

the lower half of the binned distribution of all fluorescent intensities, and then the i-th probe is

weighted by

Wi =
Oi −Bi

Oi

(3.8)

in which Oi and Bi denote the observed and expected number of probes in the corresponding

bin. We similarly weigh each probe by Wi in the regression model.

3.2.3 Learning the parameters of the linear model

The above linear model has approximately 4k/2 parameters (one for each k-mer and its reverse

complement). To avoid overfitting, we use the lasso regression [43] to estimate the coefficients.
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Lasso is a widely used approach to linear regression that encourages a sparse model where most

of the coefficients are zero. In our problem, we have the additional requirement that the coef-

ficients must be non-negative, and this is known as positive lasso [43]. We implemented the

positive lasso by modifying the lars package in R according to [43]. To estimate the tuning pa-

rameter for the regularization terms, we used 5-fold cross validation. In order to enforce sparsity,

we chose the maximum tuning parameter such that the training error of the model is within one

standard deviation of the minimum training error achievable.

After learning the model parameters using positive lasso, we set β′s = βs/maxs βs to be the

binding probability of the TF to the k-mer s up to a scaling constant.

Since we do not know the width of the motif bound by each TF, PLAR-PBM searches for

k-mers of different lengths. In order to speed up the calculation, we first run positive lasso using

all short 4-6 mers. To allow longer k-mers to be considered, after the first run, all pairs from

the top 100 such k-mers (based on regression coefficients) are tested to see if the prefix of one

matches the suffix of the other, yielding longer (k + 1)-mers. This process is repeated until up

to 8-mers have been added to the feature set. In addition, we also allow for gapped k-mers to be

considered (see below).

3.2.4 Allowing gapped and longer k-mers

Since we do not know the width of the motif bound by each TF, PLAR-PBM searches for k-mers

of different lengths. In order to speed up the calculation, we first run positive lasso using all

short 4-6 mers. To allow longer k-mers to be considered, after the first run, all pairs from the top

100 such k-mers (based on regression coefficients) are tested to see if the prefix of one matches

the suffix of the other, yielding longer (k + 1)-mers. In addition, to allow gapped k-mers to be

considered, we look at all pairs of 4- and 5-mers. If any pair of such k-mers, after connected

by up to 3 gaps, appear more than once in the top 1, 000 probes with highest intensities, we add

this gapped k-mer to the potential feature set as well. The entire process is repeated until up to
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8-mers (not counting gaps) have been considered to be included in the feature set.

3.2.5 PBM data

The PBM data for 284 mouse TFs were downloaded from UniPROBE[126] at http://the_

brain.bwh.harvard.edu/uniprobe/ (see Appendix C for a full list). For many TFs,

the PBM data contains two versions of microarrays that differ in their probe designs. In such

cases, for simplicity, we only run our method on the first version denoted by “v1” in the corre-

sponding PBM dataset.

3.2.6 Predicting TF binding to any sequences

Our model is trained on sequences of 36bp in length (the length of the variable region of probes

in PBM experiments), however, in practice, we often need to predict TF binding to longer se-

quences, e.g. promoter regions up to thousands of base pairs long. To predict the binding of a

TF to a longer sequence (Figure 3.1b), we first define the binding probabilities of the TF to each

overlapping 36bp region (“site”, which is the same length as the variable region on the probe on

which the coefficients were learned) in that sequence:

B =
1

Bmax

∑
s∈Σk

βsCs (3.9)

in which βs is the binding probability to the k-mer s learned by the regression model, Cs is

the number of times that s occurs in this site, and Bmax is the highest possible unscaled binding

probability of any 36-mer that can be achieved for the TF and is used as a scaling constant.

The interpretation of this equation is that the binding probability to a 36bp sequence is the sum

of binding probabilities to each of the k-mer of the 36bp sequence [50, 66]. In practice, Bmax

is estimated, for each TF, from the highest unscaled binding probabilities to 100,000 randomly

sampled 36bp sites. Then, the binding probability to the entire sequence is defined as the highest

binding probability to any 36bp site in that sequence.
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3.3 Method: Integrated model of TF binding in vivo

PBM experiments measure TF binding in vitro. In vivo binding depends on several factors in-

cluding the cellular environment and the chromatin state of the bound region. In addition, it has

been shown that functional TFBSs tend to be evolutionary constrained [173, 195]. In this section,

we describe integrated models that integrates our PBM motif learning and scanning method with

these additional data sources in order to determine tissue specific binding.

3.3.1 Incorporating DNase I hypersensitivity data

LetBi be the probability of binding of the TF of interest to a 36bp genomic region (a site) indexed

by i based on the PBM model (Equation 3.9), reflecting the potential of TF binding in vitro. We

are interested in the in vivo occupancy of the site, denoted asXi. We assume thatXi is influenced

by the chromatin state, which can be represented as a simple binary indicator variable, Ai (it is 1

if the chromatin is open/accessible and 0 otherwise). When the chromatin is open (Ai = 1), the

occupancy Xi equals Bi; whereas a closed chromatin at that location means that Xi = 0. Thus,

Xi is simply the product of Bi and P (Ai = 1):

Xi = Bi · P (Ai = 1) (3.10)

The chromatin state variable can be partially determined using experimental data. Here we use

DNase I hypersensitivity (HS) data (Figure 3.1c) which is available for several mouse tissues.

The DNase I hypersensitivity data for 55 mouse tissue/cell types are downloaded from the

mouse ENCODE project website at http://hgdownload.cse.ucsc.edu/goldenPath/

mm9/encodeDCC/wgEncodeUwDnase/[118] (see Appendix D for a full list). For each tis-

sue/cell type, the “Signal” track that represents the normalized tag density is used. Chromatin in

genomic regions with higher tag density are more open and therefore more accessible. For each

input sequence (600bp genomic region), the tag density in the corresponding tissue at all posi-

tions are extracted, and for each overlapping 36bp window in the sequence, the max density is
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used as the density measurement for that window. For tissue/cell types where multiple replicates

are available, the median values of all replicates are used.

The DNase I tag densities (integer data) are modeled using a mixture of negative binomial

distributions similar to [139]: each region has probability π1 to be open (π1 = P (Ai = 1)), and

probability 1− π1 otherwise. The tag densities of regions follow two different negative binomial

distributions depending on whether Ai = 1 or not. To estimate the model parameters, we sample

100,000 random 36bp regions from the upstream 10kb of all genes in the data. Parameters are

estimated by maximizing the likelihood function:

L(r,p, π1) = P (D|r,p, π1) =
N∏
i=1

[(1− π1) ·NB(Di|r0, p0) + π1 ·NB(Di|r1, p1)] (3.11)

in which D = (D1, · · · , DN) denotes the DNase I tag densities of the sampled regions, and

rk, pk(k = 0, 1) are the parameters of the negative binomial distributions of the two components.

After the parameters φ = {π1, r0, p0, r1, p1} are estimated, the probability of each site being open

can be calculated by

P (Ai = 1|Di) =
π1 ·NB(Di|r1, p1)

(1− π1) ·NB(Di|r0, p0) + π1 ·NB(Di|r1, p1)
. (3.12)

3.3.2 The full integrated model

To further incorporate the conservation data into the integrative model, we consider the following

graphical model:

Xi ← Zi → Ci → Si (3.13)

in which Xi is the score of the site i that combines PBM and DNase data as described in the

previous section, Zi is a binary variable indicating whether the site i is a true binding site in vivo

or not (hidden variable), Ci is a binary variable indicating whether the site i is conserved or not

(hidden), and Si is a measure of the evolutionary conservation of the site. The model assumes

that true TFBSs have a higher occupancy score. Similarly, when Zi = 1, Ci is more likely to

be 1 as well (a true binding site is more likely to be conserved), and this is reflected by a higher
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conservation score Si. The goal is to infer Zi from the observed dataXi and Si. The evolutionary

conservation measure we used is the PhastCons scores [167] (phastCons 46way vertebrates)

downloaded from the the UCSC Genome Browser (http://genome.ucsc.edu). For each

36bp segment, we chose the max score over the 36bp window as the PhastCons score of the

sequence itself.

We model the first part (Xi ← Zi) by a Beta distribution:

P (Xi|Zi = k) ∼ Beta(νkρk, νk(1− ρk)), k = 0, 1 (3.14)

where ρk is the mean of Xi|Zi = k and νk is the pseudocount for Beta distribution.

For the second part (Zi → Ci → Si), we define α1 = P (Ci = 1|Zi = 1) as the fraction

of conserved sites among true TFBSs, and similarly α0 = P (Ci = 1|Zi = 0) as the fraction of

conserved sites among non-binding sites. The conditional distribution of Si given Zi is:

P (Si|Zi = 1) = P (Si, Ci = 1|Zi = 1) + P (Si, Ci = 0|Zi = 1) (3.15)

= P (Ci = 1|Zi = 1)P (Si|Ci = 1) + P (Ci = 0|Zi = 1)P (Si|Ci = 0) (3.16)

= α1P (Si|Ci = 1) + (1− α1)P (Si|Ci = 0) (3.17)

= α1
P (Ci = 1|Si)P (Si)

P (Ci = 1)
+ (1− α1)

P (Ci = 0|Si)P (Si)

P (Ci = 0)
(3.18)

= P (Si)

[
α1
Si

γ
+ (1− α1)

1− Si

1− γ

]
(3.19)

where Equation 3.19 follows because according to the definition of phastCons score, P (Ci =

1|Si) = Si, and γ = P (Ci = 1) is the total fraction of conserved sequences in the genome which

can be estimated simply as the average of Si:

γ = P (Ci = 1) (3.20)

=
∑
Si

P (Ci = 1|Si)P (Si) (3.21)

=
∑
Si

SiP (Si) (3.22)

= E(Si) (3.23)
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Similarly,

P (Si|Zi = 0) = P (Si)

[
α0
Si

γ
+ (1− α0)

1− Si

1− γ

]
(3.24)

Let p = P (Zi = 1) be the fraction of the functional TFBSs, the likelihood function over the

entire dataset is given by:

P (X,S|θ) ∝
∏
i

[p · Beta(Xi|ρ1, ν1)P (Si|Zi = 1) + (1− p) · Beta(Xi|ρ0, ν0)P (Si|Zi = 0)]

(3.25)

where θ = (ρ1, ν1, ρ0, ν0, α1, α0, p) represents the model parameters. Note that the terms P (Si)

are not shown because they are independent of model parameters. We estimate θ by maximizing

the likelihood function for each TF and tissue/cell type on 100,000 randomly sampled sites from

gene promoters. The vast majority of sequences are not bound by a TF, so we could use all the

data to fit ρ0, ν0 and α0 and then fix them. Thus only (ρ1, ν1, α1, p) are the free parameters to be

estimated.

After the parameters are estimated, given any new site, its probability of being bound is

predicted by
P (Zi = 1|Si, Xi, θ̂)

P (Zi = 0|Si, Xi, θ̂)
=
P (Xi|Zi = 1, θ̂)

P (Xi|Zi = 0, θ̂)
· P (Si|Zi = 1, θ̂)

P (Si|Zi = 0, θ̂)
. (3.26)

3.4 Method: Comparison with other methods

To evaluate the performance of our method, we obtained ChIP-seq data for 8 TFs for which

PBM data and tissue specific DNase I hypersensitivity data were available (Table 3.1). For

each dataset, the top 3000 peaks with highest enrichment are extracted, and the 600bp genomic

regions centered on the reported peaks are used as the positive sequences bound by the TF. Then,

600bp sequences that (1) are upstream of and (2) 300bp apart from each positive sequence, and

(3) do not overlap with any other positive sequences, are used as negative sequences. For each

sequence to be tested, the binding probabilities of the TF to each overlapping 36bp window (site)

in that sequence is calculated based on the model learned (see Section 3.2.6), and the maximum
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probability is defined as the binding probability to that sequence.

Table 3.1: List of TFs and ChIP-seq experiments used in evaluation

TF in ChIP-seq TF in PBM Tissue/Cell type GEO ID Reference

Esrrb Esrra Embryonic stem (ES) cells GSM288355 [27]

Klf4 Klf7 ES cell GSM288354 [27]

Sox2 Sox12 ES cell GSM288347 [27]

Oct4 Pou2f1 ES cell GSM288346 [27]

FoxA2 FoxA2 Liver GSE25836 [174]

Crx Crx Retina GSM499736 [32]

Nkx2-5 Nkx2-5 Heart GSM558906 [65]

Srf Srf Heart GSM558907 [65]

We performed a comprehensive comparison of PLAR-PBM with several other methods that

could be or have been used in predicting TF binding on real sequences, using area under the ROC

curve (AUC) as the criteria. A detailed description of all methods is provided below.

3.4.1 Methods that only use PBM data

1. PWM-based methods (including PBM PWM and BEEML PWM). The PWMs are con-

verted to a log-odd scoring matrix using a zeroth-order background estimated from each

input sequence respectively, and then all overlapping k-mers (k being the width of the

PWM) on both strands are scored by the log-odd scoring matrix. The maximum score is

used as the score for the sequence. In cases where a secondary PWM was reported, only

the primary one was considered.

2. BEEML Energy. The binding energy matrices reported by BEEML-PBM [204] are used

to score each overlapping k-mers (k being the width of the energy matrix). The score

for a k-mer is the summation of the binding energies of the corresponding bases at each
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position. The minimum energy is used as the score for the sequence.

3. Max E-score. The E-score [17] for each k-mer in the sequence is considered and the

maximum E-score is used as the score for the sequence.

4. Occupancy score. The background-subtracted median intensities of all k-mers with E-

scores higher than 0.35 is summed and the sum is used as the score for the sequence [207].

5. SVR. The SVR-based method [1] is run on overlapping 36bp windows in each input se-

quences and the maximum score is reported as the score for that sequence. The number of

k-mers used is set to 1000 to speed the calculations, and default values are used for other

parameters (k = 13 and m = 5).

3.4.2 Methods that combine sequence with DNase data

Neph et al. [124] predicted tissue-specific TF binding sites in human by overlapping motif

scanning results with DNase I footprints, the actual locations bound by TFs within DNase I

hypersensitive sites that are protected from DNase I cleavage [55]. In order to compare our

method with this under a similar framework, we applied a similar approach by first using FIMO

([57], in the MEME suite v4.8.1) to scan the sequences for occurrences of the PWMs reported

with the PBM data, and then overlapping the motif occurrences (p-value < 1e− 4) with DNase

I hypersensitivity data. When a secondary PWM is available, both PWMs are used to scan the

sequences. Default parameters are used for FIMO. AUC is obtained by varying the cutoff on the

DNase data.

3.5 Method: Identifying tissue-specific TF activities

We use the PBM predictions (sequence-specific, but common in all tissues) as well as the tissue-

specific DNase I HS data to identify TFs likely to be active in each tissue. Intuitively, if a TF f is

active in a tissue T , then the binding sites of f should be overrepresented in the open chromatin
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regions of T . To quantify this overrepresentation, we define R(f, T ) as the fraction of DNase

hypersensitive sites in tissue T that contain high-scoring binding sites of f . The high scoring sites

are defined as those that have binding probabilities (according to the PBM model, as defined in

Equation 3.9) higher than the top 0.1% of the binding probabilities for all possible sites for that

TF. In practice the binding probability distribution of a TF is estimated from the 100,000 sampled

sites. For each tissue, the open sites are defined as sites within the promoter regions of all genes

with DNase tag densities higher than 15 (so that P (Ai = 1|Di) is close to 1). Sites that are

constitutively open in more than 1/3 of all tissues considered are excluded from the counting.

The activity score of a TF f in tissue T is defined as:

Activity(f, T ) =
R(f, T )

R(f, T̄ )
(3.27)

where T̄ denotes all tissues other than T . This is used as a measure of the likely activity of the

TF in that tissue.

3.6 Results

An overview of our method is shown in Figure 3.1. Starting with raw fluorescent intensities

measured by PBM that represents binding strength of the TF of interest to each probe on the array,

we first infer binding probabilities to each individual k-mers with a biophysically-motivated

model PLAR-PBM (Figure 3.1a), and such information based on PBM alone can be used to

score a new sequence for potential TFBS (Figure 3.1b). To predict tissue-specific TF binding,

we model DNase I hypersensitivity data for each tissue that represents chromatin accessibility

(Figure 3.1c, d), and combine such information, possibly together with sequence conservation

and other types of data, with the inferred binding probabilities mentioned above to predict in vivo

binding sites (Figure 3.1e). See below and also Methods for details.
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Figure 3.1: Overview of our method. (a,b) Starting with raw PBM data for a TF represented as

fluorescence intensities to each individual probes, we first infer binding probabilities to individual

short k-mers, and then a given sequence can be scored by such inferred binding probabilities.

(c,d) To predict in vivo TF binding, we take as input the tissue-specific DNase I hypersensitivity

data (tag counts) and convert them to probabilities that represent chromatin accessibility for each

position in the genome at each tissue/cell types. (e) The PBM data, DNase data and other types

of data including sequence conservation are combined using an integrative model. See Section

3.4 for details.
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3.6.1 The biophysically-motivated PBM model accurately infers binding

specificities of TFs

We developed a biophysically-motivated k-mer based model, named PLAR-PBM, to infer the

binding profiles of a TF from protein binding microarray (PBM) data (Figure 3.1a). The model

combines the benefits of recent PWM-based biophysical methods (for example, BEEML-PBM

[204]) with the ability of PBMs to capture dependencies between positions in a given motif.

The parameters of our model have well-defined meanings, and it naturally accounts for the ex-

perimental artifacts such as positional biases (Section 3.2.2). On the other hand, it avoids the

independence assumption made by BEEML-PBM that each position of the binding site con-

tributes additively to the total binding energy of the site. This allows a richer representation of

the binding specificities of TFs. In addition, since we do not rely on PWMs, there is no need to

pre-specify the motif length, which makes the model much more general. We use lasso regres-

sion to learn model parameters that represent binding probabilities to individual k-mers, where k

is determined in the learning procedure. This results in a sparse model with relatively few k-mers

having nonzero binding probabilities.

We illustrate the results of PLAR-PBM using four TFs including Sox12, Esrra, Klf7 and

Pou2f1. Figure 3.2 presents the PWMs derived from the PBM data for these TFs by the Seed-and-

Wobble algorithm [17] (denoted as PBM PWMs) and the BEEML-PBM method [204] (denoted

as BEEML PWMs), PWMs in TRANSFAC [111] for the corresponding TFs when available,

as well as all the k-mers estimated by PLAR-PBM that have binding probabilities above 0.5.

For PBM PWMs, when a secondary binding preference was derived [6], both the primary and

secondary PWMs are shown. For Sox12, the learned k-mers match well with both the primary

and secondary PBM PWMs (Figure 3.2a). For Esrra and Klf7, k-mers matching the consensus

sequences of their primary PBM PWMs respectively are all predicted to have high binding proba-

bilities (Figure 3.2b and c). But there are subtle yet important differences between the PWMs and

the predicted k-mers. Some of the top k-mers of Esrra and Klf7 are different from the consensus
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CAAGGTTA	  1.00	  
CAAGGGCA	  0.93	  
CAATGTCA	  0.82	  
CAAGGTCG	  	  0.77	  
CAAGGTCA	  0.76	  
AAGGTCA	   0.67	  
CAAGGTGA	  0.65	  
CAAGGACA	  0.54	  

PBM 

BEEML 

Pou2f1 Sox12 Klf7 

Primary 

Secondary 

Esrra 

ATTGTTCT	   1.00	  
GAAA.AATA	   0.98	  
TATTGTT	   0.97	  
TATTGTC	   0.69	  
AACAAAG	   0.66	  
AAACAATG	   0.62	  
ATTGTTC	   0.62	  
ATGTTA	   0.57	  
ATTGTCTT	   0.50	  
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CCCCGCCC	   1.00	  
CCACGCCC	   1.00	  
CCCCACCC	   0.68	  
GCCACACC	   0.64	  
CCACACCC	   0.64	  
CCACGCCT	   0.51	  
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Primary 
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BEEML 
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TRANSFAC (M00161) 

ATTTGCAT	  1.00	  
ATTAGCAT	  0.92	  
ATTTACAT	  0.79	  
CTCATTA	   0.68	  
TTAGCATA	  0.59	  
TTTACATA	  0.55	  
ATTTAAAT	  0.52	  
ATTAACAT	  0.51	  

TRANSFAC (M00511) 

Figure 3.2: Top inferred k-mer binding probabilities for (a) Sox12, (b) Esrra, (c) Klf7 and (d)

Pou2f1. The PBM PWMs, BEEML PWMs and TRANSFAC motifs (when available) for these

four factors are also shown. k-mers are colored according to whether they match the consensus

sequences of the primary PBM PWM (red), secondary PBM PWM (blue) or the TRANSFAC

motif (green).
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sites in the PWMs in one or two highly-specific positions, yet have strong predicted binding. For

example, the second strongest k-mer of Esrra, CAAGGGCA, is predicted to have a binding prob-

ability of 0.93, and it also had a high associated E-score [17]; yet it does not match either PBM

PWM at the 6th position. Such k-mers, identified by PLAR-PBM but missed by the PWMs, may

have important influences on TFBS predictions. Furthermore, PLAR-PBM provides important

quantitative information about binding. For example, for both Esrra and Klf7, k-mers matching

the consensus sequences of the secondary PBM PWMs respectively only have predicted binding

probabilities ranging from 0.2 to 0.44, much less than those matching the primary PWM. In the

case of Pou2f1, none of the inferred top k-mers match the PBM PWM, and the BEEML PWM is

not very specific (Figure 3.2d). However, many of these top k-mers closely match the consensus

sequence of the TRANSFAC motif for Pou2f1 derived from literature evidence (Figure 3.2d).

Overall, the binding probabilities to individual short oligonucleotides that PLAR-PBM inferred

from PBM data are largely consistent with known motifs for the corresponding factors, and they

provide a more reliable and high-resolution representation of TF binding preferences compared

with PWM representations.

3.6.2 PLAR-PBM outperforms other methods in predicting in vivo and in

vitro TF binding from PBM data

We next used the inferred binding probabilities to predict in vivo TF binding. We collected 8

published mouse ChIP-seq datasets for which the PBM data for the same TF or for a TF with a

similar DNA-binding domain is available (Table 3.1). From each ChIP-seq dataset, the top 3000

peaks with highest enrichment are extracted, and the 600bp genomic regions centered on the

reported peaks are used as the positive sequences bound by the TF. Then, 600bp sequences that

(1) are upstream of and (2) 300bp apart from each positive sequence, and (3) do not overlap with

any other positive sequences, are used as negative sequences. We evaluated multiple methods by

their abilities to correctly classify the two sets of sequences (see Methods).
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We compared PLAR-PBM with several other methods that predict affinities of TF binding

to given sequences. Three of these methods use PWMs or energy matrices derived from the

PBM data to scan a given sequence. These include (1) the PBM PWM method which uses PWM

derived from the PBM data by the Seed-and-Wobble algorithm [6, 17], (2) the BEEML Energy

method which uses an energy matrix derived from the PBM data based on BEEML-PBM [204],

a biophysical TF-DNA binding model, and (3) the BEEML PWM method which uses the PWM

converted from the BEEML energy matrix. We also compared against methods that directly use

the PBM data itself. These include the max E-score method [17] and the occupancy score method

[207] which are based on a rank-based statistic called E-score derived from the PBM data. In

addition, we also compared with a support vector regression (SVR) based method [1] which uses

a novel string kernel to map sequences to intensities measured by PBMs (see Section 3.4 for

details).

Performances of the methods are evaluated by area under the ROC curve (AUC) and are

summarized in Figure 3.3. As can be seen, for 4 of the 8 TFs tested (Esrrb, Sox2, Oct4 and

Crx) PLAR-PBM outperforms all other methods (Esrrb, p=1.10e-6; Sox2, p=1.98e-9; Pou2f1,

p=1.49e-2; Crx, p=3.24e-3 comparing the AUC of PLAR-PBM against the second best method

using one-sided DeLong test [39] implemented in the pROC package in R [150]). More gen-

erally, PLAR-PBM is always either the top or second in terms of performance. Importantly, in

all cases where PLAR-PBM ranks the second, its AUC is still comparable to the highest AUC

achieved by the top method for that TF and is usually significantly higher than the AUC by the

3rd method (see details in Table 3.2). As for the other methods, two of the methods that use

PBM data directly (E-score and Occupancy score) perform well overall though in some cases

have significantly lower AUC than PLAR-PBM (for example, Srf for occupancy score and Crx

for E-score). PWM-based methods, in general, do not perform as well indicating that the de-

pendency between nucleotides in the motif, which is ignored by PWMs, may be important for

accurate identification of TF targets.
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Figure 3.3: Area under ROC curve (AUC) of difference methods that use PBM data alone to

predict in vivo binding sites. Shown on the x-axis are 8 TFs with ChIP-seq data available for

the same TF or for a TF with a similar DNA-binding domain. In the latter case the PBM TF is

shown in front and the ChIP-seq TF is shown in the parentheses.
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Table 3.2: p-values of AUC comparisons for the 4 TFs for which PLAR-PBM ranks the 2nd

TF 1st method AUC(1st) p (1st>2nd) AUC(PLAR) 3nd method AUC(3rd) p (2nd>3rd)

FoxA2 Max E 0.7716 8.58e-5 0.7519 Occ 0.6757 7.44e-53

Klf4 Occ 0.8658 0.360 0.8647 Max E 0.8519 1.09e-4

Nkx2-5 Occ 0.7829 4.31e-2 0.7760 Max E 0.6842 1.56e-82

Srf Max E 0.5740 5.00e-4 0.5450 Occ 0.3744 9.75e-75

Max E: Max E-score;

Occ: Occupancy score;

AUC(1st): AUC of the 1st ranking method;

AUC(3rd): AUC of the 3rd ranking method;

p (1st vs 2nd): p-value testing whether the AUC of the 1st ranking method is higher than that of

the 2nd ranking method (PLAR-PBM in all cases);

p (2nd vs 3rd): p-value testing whether the AUC of the 2nd ranking method (PLAR-PBM in all

cases) is higher than that of the 3rd ranking method;

All p-values are calculated using one-sided DeLong test [39] implemented in the pROC package

in R [150]
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To further evaluate the ability of PLAR-PBM to predict in vitro TF binding, we applied

PLAR-PBM on 98 mouse TFs with PBM data measured on a second array with a different probe

design available, and investigated how accurately PLAR-PBM can predict the probe intensities

on the alternative array. To evaluate its performance, we compared PLAR-PBM with the two

best performing methods in the evaluation on in vivo data mentioned above, namely max E-score

and occupancy score. The following two criteria is used: (1) the overall Pearson correlation

coefficients of the predicted values and the original values for each probe; and (2) out of the top

100 probes on the alternative array with highest known intensities, how many are still predicted

to have an intensity within the top 100 [1]. The first measure above provides an overview of how

each method works in general, and the second measure above specifically focuses on probes with

highest intensities which are more likely to be bound bona fide by the TF being studied. Figure

3.4 provides the result for these evaluations. As can be seen, PLAR-PBM clearly outperforms

the max E-score method on 83% and 86% of the TFs studied under the two criteria respectively.

For occupancy score, although PLAR-PBM ties with it in terms of the correlations, for 69% of

the TFs PLAR-PBM correctly predicted more of the top 100 probes than occupancy score. Thus,

PLAR-PBM also works well on reproducing in vitro binding data from PBM experiments.

3.6.3 Integrated model of PBM and DNase I hypersensitivity data signifi-

cantly improves TFBS prediction accuracy

PBM data, although powerful, only measures in vitro binding. Therefore, even with sophisticated

methods, the ability of using PBM data alone to predict in vivo binding is limited. DNase I

hypersensitive (HS) sites are regions of chromatin that are very sensitive to DNaseI cleavage [59],

and previous studies have shown that such hypersensitivity correlates with TF binding [73, 95].

To better predict tissue-specific in vivo binding sites, we developed a model for integrating DNase

I HS data with PBM data. For each 36bp genomic region (“site”), we assume the chromatin of

the site could exist in two states: open or closed, and only in the open state, the chromatin is

81



●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pearson correlation coefficient (Max E−score)

Pe
ar

so
n 

co
rre

la
tio

n 
co

ef
fic

ic
en

t (
PL

AR
−P

BM
)

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
20

40
60

80

Correct predictions of top 100 (Max E−score)

C
or

re
ct

 p
re

di
ct

io
ns

 o
f t

op
 1

00
 (P

LA
R
−P

BM
)

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pearson correlation coefficient (Occupancy score)

Pe
ar

so
n 

co
rre

la
tio

n 
co

ef
fic

ie
nt

 (P
LA

R
−P

BM
)

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0
20

40
60

80

Correct predictions of top 100 (Occupancy score)

C
or

re
ct

 p
re

di
ct

io
ns

 o
f t

op
 1

00
 (P

LA
R
−P

BM
)

51% 69% 

86% 83% 

            Correlation coefficient                               Top 100 predictions  

Comparing 
with max E-
scores 

Comparing 
with 
occupancy 
scores 

Figure 3.4: Comparing PLAR-PBM with max E-score (top) and occupancy scores (bottom)

in predicting the intensities of PBM data for 98 mouse TFs with an alternative array design

available. All methods are evaluated using two criteria: overall Pearson correlation coefficient

(left) and out of the top 100 probes with highest known intensities, how many are still predicted

to be within the top 100 (right) (see text for details). Each point represents the result of one TF.

Percentages reflect the percent of TFs for which PLAR-PBM works better than the method being

compared using the corresponding criteria.

82



accessible to binding by a TF molecule. We infer the chromatin state by using a mixture model

for the DNase HS data: the open state should be associated with higher tag densities from the

DNase data, and the closed state with lower densities. The in vivo occupancy of a site is then

estimated as the probability of binding in vitro estimated from the PBM data as described in the

previous section, multiplied by the probability that the site is in an open state inferred from the

DNase HS data (see Section 3.3.1 for details).
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Figure 3.5: AUC of different methods that integrate PBM data or PWM scanning with DNase I

hypersensitivity and/or sequence conservation data to predict in vivo TF binding.

Figure 3.5 presents the AUCs from applying the integrated model to predict in vivo TF bind-

ing in the corresponding tissues for the same 8 TFs studied in the previous section. Compared

with using PBM data alone (black bars), the incorporation of DNase I HS data in the corre-

sponding tissues (red bars) significantly improves performance for 7 of the 8 TFs. The biggest

improvements are seen for TFs for which the results when using only PBM data are relatively

poor. For example, when predicting Srf binding sites in heart, even the best methods analyzed

above achieve an AUC only slightly greater than random (Figure 3.3). Combined the DNase
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data, the performance of our method is improved by 43% from 0.5450 to 0.7793 (Figure 3.5).

Similar improvement is also observed for Oct4 (from 0.5325 to 0.8468).

While to the best of our knowledge no method has been used to predict global TF binding

across a large number of tissues, a simple strategy for this purpose is to intersect sites that have

high-scoring PWM matches for the TF with DNase HS sites. Such strategy has been used by

several papers including Neph et al. [124]. We thus compare our approach with this simple

intersection method by identifying sequence locations that lie in the overlap of high scoring

PWM sites and high DNase I HS regions for the above 8 TFs (Section 3.4.2). As shown in Figure

3.5 (purple bars), this strategy, although intuitive and easy to use, lead to AUCs significantly

lower than ours for all eight TFs. These results thus demonstrate that our integrated model using

both PBM and DNase HS data is an effective approach to predicting TF binding sites in vivo.

In addition to DNase I hypersensitivity data, bona fide TF binding sites are usually under

evolutionary pressure and therefore more conserved [173, 195]. In order to see whether conser-

vation data could help in predicting in vivo binding sites, we further extended the above model to

incorporate phastCons scores [167] for each site (see Section 3.3.2 for details). Performance of

the full model that incorporates this additional information is shown in Figure 3.5 (green bars).

As can be seen, while in some cases adding the conservation information very slightly improves

performance (for example for Srf and Oct4), overall using conservation data does not lead to a

significant improvement in prediction accuracy. Note however that our method is general and for

other species with PBM data the use of sequence conservation may be more beneficial.

3.6.4 Combining PBM and DNase data enables the prediction of tissue-

specific TF activities

The recently released mouse ENCODE project data provides DNase I hypersensitivity data for

more than 50 mouse tissue/cell types (Section 3.3.1 and Appendix D). We set out to combine the

PBM data for 284 mouse TFs in UniPROBE with such DNase data to predict tissue-specific TF
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targets and determine tissue-specific TF activities (Section 3.3).

Identifying TFs that are highly active in specific tissues is useful for determining the function

of such TFs, and serves as an initial step for reconstructing the tissue-specific transcriptional

regulatory networks. We predict how likely a TF is functional in any given tissue/cell type with

an activity score for each TF-tissue pair. Our hypothesis is that if the TF is active in a tissue, it

will bind a number of target sequences, thus the putative TF binding sites will be overrepresented

in the DNase HS regions (see Section 3.3.1 for details). A higher activity score indicates that

the TF is more active in the corresponding tissue (the expected value is 1 for non-active TFs).

The complete results are provided on the Supplementary Website. In Figure 3.6a we illustrate

these results by focusing on the activity scores calculated for 4 TFs (Gata3, Pou6f1, Crx and

Hnf4a) across 18 representative tissue/cell types. Gata3 is known to function in mouse fetal liver

haematopoiesis [133], and its expression had also been observed in leukemia cells [115]. Our

results are in good agreement with the prior knowledge regarding Gata3’s activity: the top two

tissues predicted for Gata3 are E14.5 liver cells and the adult leukemia cell line. Similarly the top

tissue for Pou6f1 is E14.5 whole brain, in agreement with its known role in brain development

[201]. Crx is an important TF for regulating photoreceptor genes in retina [32, 67], and our

method correctly determined that its activity score in that tissue is the highest. Finally, Hnf4a is a

well known master regulator of liver- and kidney-specific genes [64, 102], as correctly predicted

by our method. While we only show 18 tissues, for all four TFs the correct tissues shown in

Figure 3.6a have the highest scores among all 55 tissues we tested (Supplementary Website).

To more globally validate these tissue-specific TF activities, we compared the correlation

between our predicted TF activity scores and mRNA levels for the same TFs in the corresponding

tissue (measured by qRT-PCR [142]) . Eight tissues and 222 TFs that are common to both

datasets are used. Even though the two types of data (PBM and DNase vs. expression) measure

completely different aspects of cellular activity, we observe a Pearson correlation coefficient of

0.229, which is highly statistically significant (p < 10−8, permutation test, Figure 3.6b). Since
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Figure 3.6: Results for tissue-specificity TF activity prediction. (a) Predicted tissue activity

scores for 4 TFs across 18 representative tissue/cell types. Arrows indicate known functions of

the TF in the corresponding tissue as supported by literature evidence. In all cases, the highest

activity score matches a known tissue for the factor. (b) Pearson correlation coefficients between

tissue specific expression experiments and the activity level predicted by our method. The distri-

bution is based on 108 permutations of the activity scores. The value from the real predictions is

indicated by the arrow on the right.
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many TFs are only post-transcriptionally regulated, such a significant correlation provides strong

support to the predictions computed by our method.

3.6.5 Existing literature strongly supports predicted TF activities in sev-

eral tissues

To further validate our predictions and investigate their potentials to lead to new biological in-

sights, we took a closer look at the TFs predicted to be active in the adult liver tissue. The top

five such predictions are shown in Table 3.3A. Besides Hnf4a discussed above, Rara, Nr2f2,

Rxra and Tcf7 are all known to either regulate liver-specific genes or are involved in maintaining

liver metabolism and homeostasis (Table 3.3A). The 7th ranked factor Tcf7l2 (activity score of

1.38) was linked to type 2 diabetes risk in previous studies using SNP data [58], but the mech-

anism for its involvement was unclear. Our result indicates that it may have a regulatory role

in liver metabolism. Indeed, a very recent study confirms its role in regulating key liver-specific

metabolic genes[20]. Our result also assign a high liver activity score to Cutl1 (1.36, rank 8/284).

Cutl1 was a known transcriptional repressor of terminal differentiation genes in several cell lin-

eages including hepatocyte [153]. Recently, Cutl1 was identified as target of the liver-specific

microRNA miR122 and a central mediator of the effects caused by the deregulation of miR122

in hepatocellular carcinoma [83]. Further down the list, Foxa2 (1.32, rank 10/284) is known

to regulate lipid metabolism and ketogenesis related genes in liver [192], and Lef1 (1.31, rank

11/284) is a prognostic biomarker for liver metastasis in colorectal cancer. Other TFs ranked

within the top 20 for liver include Tcf1 and Tcf2, members of the T-cell factor (Tcf) family that

are critical for hepatocyte metabolism and function [128, 165]; Bhlhb2, which is involved in the

regulation of lipogenesis in liver [71]; and Hmbox1, whose expression levels was shown to be re-

duced in liver cancer compared with surrounding normal tissues [37]. Overall, our predicted set

of liver regulators is comprehensive, spanning several different classes of liver related activities

including glucose and lipid metabolism and cancer, and including both repressors and activators.
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In addition, Table 3.3B and C presents the top 5 predicted TFs for two more tissues (retina and B

cell). As can be seen, for almost all of these TFs there is strong support for their tissue-specific

activity in the predicted tissue.

3.6.6 Predicting genome-wide tissue-specific TF binding sites

We provide a resource for genome-wide tissue-specific TF binding sites predicted for 284 mouse

TFs with PBM data available (Section 3.2.5) and 55 tissue/cell types with DNase data available

(Section 3.3.1). A list of all the TFs and tissue/cell types is provided in Appendix C and D.

To predict targets of TFs, the promoter regions (+/- 10kb around transcription start sites) for all

mouse genes were scanned. The complete prediction results are available for download from the

Supplementary Website at http://www.sb.cs.cmu.edu/PLAR-PBM.

3.7 Discussion

We presented a computational strategy which relies on a biophysically-motivated model, PLAR-

PBM, to identify top scoring k-mers in PBM data. Our extensive evaluations demonstrate that

using the selected k-mers to predict in vivo TF targets improves upon PWM-based methods

suggested for this task, including methods that derived PWMs from the same PBM data used

in our paper. This indicates that at least in some cases dependencies exist between bases in a

motif and that using models that utilize such dependencies may improve the accuracy of the

predicted targets. We next developed a strategy to integrate PBM, DNase HS data and sequence

conservation data to provide the first comprehensive map of more than 200 TFs across 50 tissues.

The combined model was shown to be highly accurate at predicting in vivo TF binding. Several

of our predictions agree well with existing knowledge in literature regarding the role that some

TFs play in specific tissues. The overall results are significantly correlated with independent gene

expression data measured for these TFs across tissues even though such expression data was not
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Table 3.3: Top five predicted TFs for liver, retina and B cell

TF Score Known functions in the corresponding tissue

A. Liver

Hnf4a 2.22 Essential for maintaining hepatic gene expression and lipid homeostasis [64]

Rara 1.90 Important in maintaining liver homeostasis, and its disruption is linked to

hepatocarcinogenesis [81]

Nr2f2 1.56 Expressed in liver, and known to regulate liver-specific genes [202]

Rxra 1.45 Important role in liver metabolism [186]

Tcf7 1.44 Downstream regulator in Wnt signaling which is critical in liver physiology

and pathology [182]

B. Retina

Crx 4.28 Regulates photoreceptor gene expression [32]

Pitx3 4.26 Required for normal retina formation in Xenopus and zebrafish [82, 164]

E2F3 4.06 Involved in retina progenitor cell development [26]

Pitx2 3.92 Pitx2-deficient mouse exhibits ocular abnormalities [54]

Gsc 3.89 Unknown function in retina.

C. CD19+ B cell

Sfpi1 2.09 Essential regulator of B-cell differentiation [175]

Pou2f2 2.08 Required for T-cell independent B cell activation [33]

Spic 1.98 Promotes B cell differentiation [161]

Pou2f3 1.94 Unknown function in B cell, but has almost the same binding preference as

Pou2f2

Elf4 1.70 Regulates proliferation of B cells [85]
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used at all in our analysis.

Two broad strategies have been developed to extract TF binding properties from PBM data.

The first strategy involves estimation of PWM using the PBM data. Berger et al. [17] devel-

oped a rank-based statistic called E-score to quantify a TF binding strength to 8-mers, and a the

constructed a PWM from the 8-mers with the highest E-scores. Zhao et al. [204] developed

BEEML-PBM, a biophysical model of TF-probe binding, that directly estimates the binding en-

ergy from the PBM data while accounting for several experimental artifacts. The second strategy

does not fit a single PWM; instead it uses information of all k-mers from the PBM data to predict

TF binding to any sequences. The simplest method from this category sums over the strength

(defined as median probe intensities) of all k-mers in a sequence [207]. More sophisticated meth-

ods have also been proposed. For example, Agius et al. [1] developed a support vector regression

(SVR)-based method using a novel string kernel. A recent large scale comparison of dozens of

methods for using PBM data has identified BEEML-PBM as one of the best methods in both

reproducing in vitro and predicting in vivo binding.

There has been considerable debate on whether the binding specificity of a TF can be rep-

resented by a single PWM. While Badis et al. [6] reported that about half of the TFs in mouse

have two distinct sets of binding profiles, Zhao et al. [204] contended that once the experimental

artifacts were removed, most of the variation in the PBM data could be explained by predicted

binding affinities based on a single PWM. We believe the best metric for addressing this question

is the predictive accuracy on in vivo TF binding from ChIP-seq data. Using this metric, we show

that the PLAR-PBM generally outperform methods imposing a single PWM. The advantage of

PLAR-PBM over other k-mer based ones (Figure 3.3) results from its several features: the sparse

linear model that helps avoid overfitting, the biophysical nature of the model that allows the ex-

perimental artifacts (e.g. biases due to position in the probe) to be easily addressed. In this way,

PLAR-PBM combines the strengths of both the biophysical approach (BEEML-PBM) and the

k-mer based methods.
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We demonstrated that incorporating additional information, most notably, chromatin accessi-

bility from DNase I HS data, further improves the accuracy of TF binding prediction. While the

utility of the DNase data has been demonstrated before (e.g. [76]), the simple method of inter-

secting the DNase I hypersensitive sites and the PWM matches tends to lose a significant amount

of information as we demonstrated in Figure 3.5. In contrast, our model uses a probabilistic

framework which improves the accuracy of the predictions. A somewhat unexpected observa-

tion from our experiments is that evolutionary conservation did not provide additional benefits

(beyond the ones obtained from using the DNase data) for TFBS predictions. One explanation is

that even functional TFBS may undergo rapid turnover over evolutionary timescale [155].

Several recent papers explored related ideas. Chromia [193] used a hidden Markov model to

combine sequence-specific TF binding with histone modification data, but their predictions were

based on PWM scoring and only focused on a dozen of TFs in mouse embryonic stem cells.

CENTIPEDE [139] used a graphical model to integrate TF-DNA interaction, epigenetic and

evolutionary data. However, CENTIPEDE also used PWM representation, and their predictions

were focused only on lymphoblast cell lines. Similarly, Ernst et al. [48] combined experimental

data from a number of tissues to generate a single (global) TF-target prediction map. However,

that method has also relied on PWMs and no tissue specific predictions were made. Another

recent strategy of analyzing PWM and DNase data relies on a “footprint” in the data that TFs

leaves and that could be experimentally detected [125]. Recently, Neph et al. [124] used this

data and PWMs to predict TF-TF interactions (though not TF-gene interactions) across a large

number of human tissues. However, DNase I footprint data is only available for few tissue

types, and similar strategy to overlap PWM hits with DNase data does not perform as well, as

we demonstrated in Results. It is not entirely clear that such footprint is a universal feature of

all TFs and to identify such footprints in mouse would require sequencing data with very high

coverage, which is not currently available for most of the tissues we analyzed.

Our work represents the first major effort to provide a systematic map of all targets for hun-
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dreds of TFs across a large number of tissues. We complied a resource that provides TF-target

predictions for all 284 TFs studied across the 55 tissue/cell types (Section 3.6.6) and Supple-

mentary Website). We hope that such comprehensive resource would prove useful for researcher

studying specific tissues or attempting to reconstruct regulatory networks in such tissues using

one of several network modeling methods rely on TF-gene interactions to seed their models

[46, 94, 107, 158].
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Chapter 4

DREM 2.0 and analysis of dynamic gene

responses in arabidopsis following ethylene

treatment

Transcription factors (TFs) regulate gene expression by binding to their promoters, and together

the TFs and their target genes form a complicated transcriptional regulatory network (TRN). In

the previous chapter, we developed methods to computationally predict tissue-specific TRNs.

However, in eukaryotes, such networks are not only tissue-specific, but also dynamic with dif-

ferent (overlapping) sets of transcription factors activating genes at different points in time or

developmental stages. Reconstructing such dynamic networks requires the integration of dif-

ferent types of data and is a non-trivial task. In this chapter, we extend previous works by our

group on DREM for inferring dynamic TRNs [46] (see below) by integrating it with DECOD

that was developed in Chapter 2 to allow discriminative motif finding within DREM, and also

allowing the use of time course binding data. In addition, the tissue-specific TRNs that were

made available by methods presented in the previous chapter can also be used as input to model

tissue-specific TRNs with expression data in the corresponding tissue. We apply the new method

to analyze dynamic gene responses in arabidopsis following ethylene treatment.
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4.1 Introduction

4.1.1 Extending DREM

Many methods have been proposed for reconstructing TRNs ([51, 89, 108]). Most of such meth-

ods involve the integration of static gene expression measurements with TF-DNA binding data

either from computational predictions or from existing databases, with a focus on reconstructing

static TRNs that does not change with time. Such static TRNs are not realistic in nature, par-

ticularly in what happens following treatments with stimulants or in processes that are temporal

themselves such as cell cycle and development.

Recently, more and more studies measure gene expression changes over time (time series

gene expression, [10]) in many species using either microarray [56, 154] or RNA-seq [116, 178].

Several methods have been developed specifically for analyzing such time-series expression data

from various perspectives including unsupervised clustering [34, 45, 171], detecting differen-

tially expressed genes [11, 31, 90] and reconstructing dynamic TRNs by using the time series

expression data alone [9, 96, 176, 190] (see [12] for a comprehensive review). However, com-

pared with the availability of such time series expressions data, most TF-DNA interaction data

are still static. Combining the dynamic expression data with the static TF-DNA interaction data

remains a computational challenge.

To provide a general method that can be widely applied to reconstructing dynamic regula-

tory networks, our group previously developed DREM [46] (dynamic regulatory event miner), a

method that integrates times series and static data using an Input-Output Hidden Markov Model

(IOHMM) [15]. DREM learns a dynamic TRN by identifying bifurcation points, places in the

time series where a group of co-expressed genes begins to diverge. These points are annotated

with the TFs controlling the split, leading to a combined dynamic model that can determine when

TFs activate genes and what genes they regulate. Since its release 5 years ago, the DREM soft-

ware has been used for modeling a wide range of GRNs for example stress response in yeast [46]
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and E. coli [47], development in fly by the modENCODE consortium[116], stem cell differenti-

ation in mice [114] and disease progression in human [61].

While DREM has been successfully used for multiple species, there are several limitations

in the original version of DREM. As mentioned above, DREM identifies bifurcation points at

which the expression profiles of two sets of coexpressed genes begin to diverge, and DREM

then associates TFs with such splits. But for some splits, no TFs would be annotated. This

may happen when the TF-DNA interaction data is incomplete and so is unable to explain a split

node that DREM identifies. In the original DREM, no further investigation could be performed

for such occasions. It would be useful to be able to apply discriminative motif finding tools like

DECOD [70] (Chapter 2) on such split paths and search for de novo motifs that are present in one

path but not in the other, and match such motifs with potential TF binding sites. Moreover, the

original DREM only supports the use of static TF-DNA binding data. Although most TF-DNA

interaction data is still static, dynamic binding data measured by ChIP experiments is becoming

available [127, 191]. The ability to incorporate such dynamic binding data would lead to more

accurate dynamic TRN models.

To address these issues, we developed a new version of DREM, DREM 2.0, that enables

running DECOD for discriminative motif finding within DREM and also enables the use of

dynamic TF-DNA binding data. These, together with other features including the availability of

more comprehensive TF-DNA binding data for many species, the ability to use the expression

levels of TFs in the modeling, and the ability to use continuous (instead of binary) binding data,

are incorporated into DREM 2.0 [158].

4.1.2 Gene responses in arabidopsis following ethylene treatment

In plant, a simple hydrocarbon gas, ethylene, regulates many biological processes including fruit

ripening, stem cell division, differential cell growth, stress and pathogen responses, and senes-

cence, etc [79]. Despite its importance, we lack a comprehensive understanding of how ethylene

95



mediates this myriad of morphological responses. The dynamic nature of the ethylene response, a

rapid growth inhibition independent of the master transcriptional regulator ETHYLENE INSEN-

SITIVE3 (EIN3), followed by an EIN3-dependent sustained growth inhibition, calls for a tempo-

ral study of the ethylene response [18]. The transcription factor EIN3 is necessary and sufficient

for the ethylene response and accumulates upon a duration of exogenous ethylene gas treatment

[62]. Although hundreds of ethylene response genes have been identified, because some tar-

gets of EIN3 are transcription factors (e.g. ETHYLENE RESPONSE FACTOR1 (ERF1)), it

is challenging to distinguish immediate early targets from those further downstream. To un-

derstand the dynamics of the EIN3-mediated ethylene transcriptional response, we performed

a genome-wide study of dynamic ethylene-induced EIN3 protein-DNA interactions using chro-

matin immunoprecipitation followed by sequencing (ChIP-Seq) and simultaneously determined

the repertoire of target genes that are transcriptionally regulated by ethylene (RNA-Seq) in Ara-

bidopsis thaliana. Tracing the transcriptional cascade, we used DREM 2.0 which allows the use

of dynamic binding data to investigate if EIN3-mediated genes contribute to a component of the

ethylene transcriptional response.

4.2 Method: DREM 2.0

4.2.1 Integrating DECOD with DREM

During learning DREM assigns genes to paths in the network model and uses split nodes to

represent sets of genes that change their expression between consecutive time points. TFs are

assigned to split nodes allowing DREM to infer their time of activation. When the protein-DNA

interaction data is unable to explain some of the split nodes (i.e. no TF is assigned to that split),

it could mean that the interaction data is incomplete. To still allow the identification of such TFs,

we integrated with DREM 2.0 the discriminative motif finder DECOD [70] (Chapter 2). Now

user can search for discriminative DNA motifs between promoters of genes assigned to diverging
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paths emerging out of any split node, and the motifs that DECOD reports can be matched against

known motif databases directly within DECOD in a user-friendly manner using STAMP [106]

(Figure 4.1).

Figure 4.1: DECOD motif search in DREM 2.0. (left) DECOD motif search was performed for

one node (+ sign). (middle) After clicking the node, the DREM split table opens which shows

the enrichment of TFs on gene sets divided by the split. As this split has three outgoing paths,

DECOD can be run in three different ways. Here, we compared genes in the highest path against

the other two paths (Tab High vs. Others) by clicking the Run DECOD button (circled). (right)

Illustration of one of the TF motifs found by DECOD and its most similar match in TRANSFAC

according to STAMP

4.2.2 Allowing the use of dynamic TF-DNA binding data

In the original DREM, only static TF-DNA interaction tables are supported (Figure 4.2a). The

underlying Input-Output Hidden Markov Model learning can now accommodate dynamic TF-

DNA binding data for each time point in DREM 2.0 in the following way. The transition proba-

bilities for the IOHMM are derived from a logistic regression classifier that uses the protein-DNA

interaction data as supervised input and utilizes them to classify genes into diverging paths at a

split node in the model. In the new version the nodes in the input layer can be dynamic, so that

at different times, a different set of TF-DNA binding data can be used, and the logistic function
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can depend on input from the specific time point it is associated with (Figure 4.2b). Since dy-

namic binding data is often only available for a (small) subset of TFs, DREM 2.0 supports a joint

static-dynamic input format for TF-DNA interactions as well (Figure 4.2c).

Figure 4.2: Possible IOHMM topologies in DREM 2.0. The basic topology for a DREM 2.0

IOHMM is shown. The hidden states represent the network nodes (in blue) that we are interested

in. The observations (black nodes) are the gene expression ratios which are given to the model,

these are dynamic and dependent on the time point. The protein-DNA interaction data (green

nodes) are used as supervised input data to construct the network. (a) In the original DREM

formulation only one static input node is connected to all hidden nodes. In DREM 2.0 the nodes

in the input layer can be dynamic and dependent on the time point with a topology either fully

dynamic (b) or a mix of static and dynamic input.

4.3 Method: ethylene responses in arabidopsis

The ChIP-seq and RNA-seq experiments (from 4.3.1 to 4.3.8) were performed and analyzed by

collaborators in Salk Institute, and relevant details are provided below for completeness.
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4.3.1 Plant material

The Arabidopsis thaliana ecotype Columbia (Col-0) was the parent strain for these experiments.

Genotypes used for this study include wildtype Col-0, and mutants ein3-1 [25], ein3-1/eil1-1 [4],

hls1-1 (hls1) [91], hlh1, hlh2, hlh3.

4.3.2 Growth of Arabidopsis seedlings

Three-day-old etiolated seedling tissue was used for these experiments unless otherwise noted.

Seeds were sterilized and sown on Murashige and Skoog (cat#LSP03, Caisson) media pH 5.7,

containing 1% sucrose and 1.8% agar. After stratification for three days in the dark at 4◦C,

exposure to light for 2-4 hours to induce germination, seeds were dark-grown in hydrocarbon

free air at 24◦C for three days. Etiolated seedlings were subsequently treated with ethylene gas

at 10 µL L−1 for 0, 0.25, 0.5, 1, 4, 12, and 24 hours.

4.3.3 Chromatin preparation and immunoprecipitation

Etiolated seedlings were collected in the dark, immersed in 1% formaldehyde solution, and cross-

linked under vacuum for 15 minutes. A final concentration of 125 mM glycine was used to

quench the formaldehyde for 5 minutes under vacuum. Cross-linking under vacuum resulted

in translucent etiolated seedling tissue. Tissue was liquid nitrogen ground and extraction of

chromatin was performed as described in [99].

Chromatin immunoprecipitation (ChIP) was performed as described in [99] with modifica-

tions, including the use of the Bioruptor sonicator (Diagenode). Bioruptor settings used were: H,

25 cycles of 0.5 min on, 0.5 min off, with 5 minute rests between every 5 cycles. Sonication was

performed in a cooling water bath at 4◦C. A small amount of chromatin (10 µl) was evaluated

for shearing; the size range of chromatin was 150-700 bp, the majority of fragments at 300-400

bp.

Affinity-purified rabbit polyclonal antibodies capable of detecting the C-terminus of EIN3
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were used in immunoprecipitation reactions. Details regarding the generation of EIN3 antibodies

were previously described [62]. Prior to the experiments in this study, the amount of purified

EIN3 antisera per immunoprecipitation reaction was optimized and 8 µl of purified EIN3 antisera

was determined to yield the optimal enrichment of the ERF1 promoter, the known target of

EIN3 (data not shown). We then substituted Dynabeads Protein A (Invitrogen, cat#100-1D) and

Dynabeads M-280 Sheep anti-Rabbit IgG (Invitrogen, cat#112-04D) for the salmon sperm DNA

blocked Protein A agarose beads recommended in the protocol [99], as to avoid sequencing of

salmon sperm DNA. Immunoprecipitation and washing of Dynabeads were performed using the

buffers in [99], otherwise Dynabeads were used as per the manufacturers instructions. Multiple

pipetting steps were performed while washing the beads to reduce non-specific binding carryover.

Resulting ChIP DNA was purified as in [99].

Quantitative PCR revealed that relative ChIP enrichment for the promoter of ERF1 performed

with the Dynabeads M-280 Sheep anti-Rabbit IgG was higher in comparison to Dynabeads

Protein A. Thus, Dynabeads M-280 Sheep anti-Rabbit IgG was used in all subsequent exper-

iments. Primers for the ERF1 promoter encompassing the EIN3 binding site, are as follows:

F-GGGGGCATGTATCTTGAATC, R-TGCTGGATCAACTCAACAAAA. Actin primers were

as in [110]. Enrichment was calculated using the Delta-Delta-Ct method with normalization to

the reference Actin; fold change was calculated relative to the control for non-specific binding

(EIN3 ChIP performed in ein3-1 mutant).

ChIP was performed in chromatin derived from wildtype Col-0 three-day-old etiolated seedlings

treated with 0, 0.25, 0.5, 1, 4, 12, and 24 hours of ethylene. Two independent biological repli-

cates were used in two replicates experiments for timepoints, 0, 0.5, 1, 4 hours ethylene gas

treatment. Single replicates exist for 0.25, 12, 24 hours of ethylene gas treatment.
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4.3.4 Total RNA extraction

Total RNA was extracted from liquid nitrogen ground etiolated seedlings using the Qiagen

RNeasy Plant Mini Kit with Qiashredder columns (cat#74904), with DNaseI (Qiagen, cat#79254)

treatment prior to RNA precipitation in sodium acetate and ethanol. Concentrations of RNA were

determined using the ND-1000 spectrometer (Nanodrop). Experiments were performed in three

biological replicates for timepoints, 0, 0.25, 0.5, 1, 4, 12, 24 hours ethylene gas treatment.

4.3.5 ChIP-Seq library generation and sequencing

Resulting ChIP DNA from two pooled ChIP reactions above was used to generate a sequencing

library as per the Illumina ChIP-Seq manufacturers instructions. The Illumina Genome Analyzer

II was used to sequence the single-read ChIP-Seq libraries as per manufacturers instructions, for

36-43 bps. Raw sequencing data was analyzed using the Genome Analyzer Pipeline v.1.4.0.

4.3.6 PolyA selection and mRNA-Seq library generation

At least 80 µg total RNA was subject to polyA selection using the Poly(A)Purist MAG Kit (Am-

bion, cat#AM1922). PolyA RNA was subsequently concentrated by ammonium acetate ethanol

precipitation and concentrations were determined using the Qubit fluorometer (Invitrogen) and

the Quant-iT RNA Assay Kit (Invitrogen, cat#Q33140). 50-100 ng of polyA RNA was used

in a strand-specific library preparation as per the SOLiD Total RNA-Seq Kit protocol (Invitro-

gen, cat#4445374) and AMPure XP beads (Agencourt, cat#A63881) were used for purification

of cDNA and amplified DNA. Samples were barcoded for multiplexing using the SOLiD RNA

Barcoding Kit (Invitrogen, Module 1-16 cat#4427046, Module 17-32 cat#4453189, Module 33-

48 cat#4453191) as per manufacturers instructions; final size selection was performed using

AMPure XP beads instead of the PAGE purification recommended in the protocol. Size selected

libraries were then purified using the MinElute Gel Extraction Kit (Qiagen, cat#28604). Result-

ing concentrations of libraries were detecting using the Qubit fluorometer and Quant-iT dsDNA
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High-Sensitivity Assay Kit (Invitrogen, cat #Q33120). RNA libraries were sequenced for 50 bps

on the SOLiD4 platform (Life Technologies).

4.3.7 ChIP-seq data analysis

The Illumina GERALD module was used to align the sequenced reads to the Col-0 reference

genome, version TAIR10 (ftp://ftp.arabidopsis.org/). The analysis variable for the

ELAND alignment program was set to eland extended, as read length was greater than 32 bases

(e.g. 36-43). Resulting aligned unique single copy reads were used in ChIP-Seq peak analysis .

Saturation analysis of the ChIP libraries conducted using the spp software [80] revealed that

all samples were at least within 15% of saturation. Peak analysis was performed individually

on each timepoint in each biological replicate using the corresponding 0 hour ethylene treated

wildtype Col-0 EIN3 ChIP sample as a control. Two additional ethylene treated (4 hour) wild-

type EIN3 ChIP biological replicates were included in the analysis, with corresponding mutant

ein3-1 ethylene treated (4 hour) EIN3 ChIP samples as controls. Three software packages: spp

[80], MACS [203], PeakSeq [152] were originally used to identify peaks/regions of binding. Pa-

rameters for each software were as follows: MACS (p-value = 0.01), spp (FDR = 0.1), PeakSeq

(FDR = 0.1, mingap = 200, minhit = 20, minratio = 3.5). Binding regions were merged when the

maximum gap between two peaks was less than 200 bp determined by separate software pack-

ages. Subsequent analysis was performed in R. Overlapping peaks in one biological replicate

in one timepoint by more than one software package were retained as binding regions. Because

of the variation of the number of called peaks in each software and each timepoint, we used a

majority vote to call peaks to identify all high stringent EIN3 targets. PeakSeq results differed

significantly from spp and MACS (12-76%), therefore only spp and MACS were ultimately used.

Using this method, 1460 EIN3 binding regions were identified. For each EIN3 binding re-

gion, the reads per kbp of binding site per million sample reads (RPKM) were calculated. Median

normalization of the RPKM values between timecourse biological replicates was performed in R.
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Resulting RPKMs were log2 transformed with respect to the 0 hour ethylene treatment wildtype

Col-0 EIN3 ChIP. Normalization with respect to an input genomic control did not produce dis-

tinctively different EIN3 binding pattern profiles (data not shown). EIN3 binding regions were

then associated to a gene if located within 5 kbp. The nearest expressed gene (RPKM ≥ 1) was

assigned if there were more than one gene within 5 kbp. If both genes were not expressed, the

nearest gene was selected. Distance was determined from the binding region center to the gene

feature using the TAIR10 annotation (ftp://ftp.arabidopsis.org).

4.3.8 mRNA-Seq analysis

The SOLiD Bioscope v1.3 software was used to align the reads to the Col-0 reference genome

TAIR10 (ftp://ftp.arabidopsis.org/). Two perfect matches per location were al-

lowed. Exonic expression was determined (RPKM) using mRNA-Seq reads mapping in exons in

the direction of transcription. Genes were denoted as expressed if they contained RPKM values

greater than one for at least one biological replicate in one timepoint. Differentially expressed

genes were then called (t-test p-value = 0.05, 50% difference from prior timepoint of ethylene

gas treatment), and log2 normalized with respect to the 0 hour ethylene gas treatment control.

4.3.9 Data analysis with DREM 2.0

In order to reconstruct the dynamic regulatory networks that were activated following ethylene

treatment, we used DREM 2.0 to analyze the ethylene transcriptional responses as measured

by RNA-seq using a combination of the dynamic EIN3 binding data and static TF-DNA binding

data for other arabidopsis TFs. To obtain the static interaction data, we extracted 11,355 TF-DNA

interactions from the AtRegNet AGRIS database [198]. For each EIN3 target gene, the average

RPKM values from two input control samples at 0 and 4h were used as a cutoff to determine

whether it was bound by EIN3 or not at each time point. We ran DREM 2.0 using the RNA-seq

data allowing for 3-way splits. We filtered out genes that did not change at least 2-fold (up or
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down) at any time point, and we used the default values for all other parameters.

4.3.10 Hormone-related genes

To identify genes associated with a hormone signal or response (hormone-related), we used

the annotation in the Arabidopsis Hormone Database [138](http://ahd.cbi.pku.edu.

cn/) in addition to other datasets including relevant ethylene microrarray studies in etiolated

seedlings [3, 123]. The amount of genes involved in hormone responses in the genome was 21%

(5729/27416), where as the amount of genes involved in our EIN3 target group was 46%.

4.4 Result

4.4.1 ChIP-seq of EIN3 binding and RNA-seq of gene responses following

ethylene treatment

We performed ChIP-Seq using a native antibody that recognizes EIN3 [62] and mRNA-Seq in

three-day-old dark grown seedlings during a timecourse of ethylene treatment (0, 0.25, 0.5, 1,

4, 12 and 24 hours following the treatment). We identified 1460 EIN3 binding regions in the

Arabidopsis genome associated with 1314 genes by stringent analysis of the temporal ChIP-Seq

data (Section 4.3.5 and 4.3.7). Genes associated with EIN3 binding regions are referred to as

EIN3 targets hereafter.

Overall, of the 1314 EIN3 target genes, 29% (381) were transcriptionally ethylene-regulated

(EIN3-R; t-test p-value ≤0.05 and fold difference ≥50% compared with time 0h), 67% (880)

were not transcriptionally ethylene-regulated (EIN3-NR) and a negligible amount of target tran-

scripts were below detection (EIN3-ND, 4%). This is consistent with previous reports that tran-

scription factor binding does not necessarily coincide with changes in transcription [103], es-

pecially for master regulators targeting other transcription factors or other factors involved in

chromatin state regulation. The majority of studies that exist in the literature have shown that
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EIN3 acts as an activator. We observed this activation at the genome-wide level (Figure 4.3).

We found that a majority of EIN3-R are induced (85%). We observe over-representation of

up-regulation of EIN3 targets when compared to the regulation of all genes that respond to ethy-

lene (Figure 4.3 and 4.4A). Many EIN3-R are transcription factors (∼14%), and EIN3 targets

are significantly enriched in gene ontology (GO) terms related to transcription factor regulation,

confirming that EIN3 initiates a transcriptional cascade (Figure 4.4B) [25]

4.4.2 DREM 2.0 identifies waves of activated transcriptional regulation

regulated by EIN3

We used DREM 2.0 to analyze this time course transcriptional ethylene response data, taking

advantage of its ability to integrate the dynamic EIN3 binding data with other static TF-binding

data extracted from existing databases (see Section 4.3.9 for details). The average expression

levels for each trajectory in the model that DREM identifies are shown in Figure 4.5. DREM

identifies that the ethylene response occurs in four waves of transcription significantly regulated

by EIN3 (overall pathway hypergeometric p-value < 10−10, the top four paths in Figure 4.5 and

also shown in Figure 4.6A). These waves display distinct temporal transcription behaviors, and

reduction of transcriptional noise occurs in successive temporal waves (Figure 4.6B and Figure

4.7). Genes were enriched in specific biological functions within these four transcriptional waves

(hypergenometric p-value < 10−3), e.g. RNA binding/translation (Wave 1, Wave 3), cell wall

maintenance (Wave 2), response to endogenous stimulus (Wave 4). The second wave is enriched

for genes involved in cell wall maintenance, and the expression of these genes steadily increases

following one hour of ethylene treatment, consistent with kinetics of EIN3-dependent growth

inhibition [18].

The four waves of the ethylene transcriptional response each contain a unique subset of EIN3

targets. The first wave is highly variable, lower in steady-state levels of transcription, and also

contains the lowest percentage of EIN3 targets and hormone-related genes (Figure 4.6B). The

105



Figure 4.3: Patterns of EIN3 binding and expression of ethylene-regulated targets are strikingly

evident over a timecourse of ethylene gas treatment. EIN3 binding increases with ethylene treat-

ment to a maximum at 4 hours of ethylene treatment for all targets. Each line in the heatmap

represents the logarithm RPKM value for the representative EIN3 binding site (left panel) and

transcript (right panel).

next three waves of transcription are successively less variable and contain higher percentages of

EIN3 targets and hormone-related genes. The four waves of ethylene-induced transcription ac-

count for 50% of the transcriptionally ethylene-regulated EIN3 targets (EIN3-R), the remaining

EIN3 targets are distributed among other patterns of transcription that do not contain significant

numbers of EIN3 targets in each transcriptional trajectory (Figure 4.5). The expression kinet-
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Figure 4.4: (A) The number of ethylene-regulated genes. (Upper panel) Equivalent numbers of

genes are up- and down-regulated upon ethylene treatment. (Lower panel) Majority of EIN3 tar-

gets differentially expressed upon ethylene treatment are up-regulated. (B) Functional categories

over-represented for EIN3 targets that are ethylene-regulated (EIN3-R). Network was generated

using BiNGO ([104], v 2.44) using the GOSlim Plants ontology, Benjamini and Hochberg p-

value legend is indicated below.

ics and reduction of transcriptional noise we observe in the ethylene-induced waves can be tied

to distinct mechanisms of transcriptional control, or may reflect heterogeneity of the ethylene

response in different tissues, which can be resolved using single cell analysis. Taken together,

it appears that the initial early ethylene transcriptional response is noisy and less focused func-

tionally, whereas during exogenous ethylene application, EIN3 accumulates, and the established

ethylene transcriptional response is hormone-focused and less noisy.
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Figure 4.5: Ethylene-regulated transcription kinetics from DREM analysis. EIN3-modulation is

significant (10−10) in the four trajectories with the highest expression ratios, indicated by red,

yellow, dark blue, dark green lines.

4.5 Discussion

Up to now, most studies that investigate TF binding have been static and few dynamic binding

studies have been conducted[127, 145, 208]. Integrating such dynamic binding data with time

course expression data to elucidate the underlying transcriptional regulatory network has been

a major computational challenge. By extending DREM [46], we present the first tool, DREM

2.0 [158], that reconstructs the dynamic regulatory networks using such data. The ability to

incorporate temporal binding data allows DREM to reduce false positive assignments by only

assigning TFs that are active at that time point (based on the time points binding data). This

in turn can both help identify co-regulators for which only computational predictions exists and

also lead to the identification of different waves of transcriptional regulation, where the same
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Figure 4.6: ) DREM paths representing waves of induction of steady-state levels of transcription

by ethylene for genes that are regulated by EIN3, implicating different modes of transcriptional

regulation in the ethylene response. Right panels contain all genes for each wave.

Figure 4.7: The EIN3-modulated ethylene transcriptional response occurs in four waves with

various levels of noise. A decrease in standard deviation correlates to an increase of hormone-

related genes.
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TFs activate different sets of genes at different time points. Using DREM 2.0, we found that

in arabidopsis, transcription factor binding upon a timecourse of ethylene treatment resulted in

an induction of EIN3 binding for all targets. The ethylene transcriptional response occurred

in waves of transcription that were temporally distinct, variable in the amount of noise, and

significantly regulated by EIN3.

In addition to allowing dynamic binding data, DREM 2.0 also incorporates the de novo dis-

criminative motif finding tools DECOD (Chapter 2, [70]) to allow the discovery of previously

undocumented transcription factors that drives the expression divergence of genes at specific

time points. Other new features of DREM 2.0 includes the availability of binding data for more

species and the support of using continuous instead of binary binding data [158]. Like its pre-

decessor, DREM 2.0 also comes with an easy-to-use GUI. Together, these new features and

improvements will make DREM 2.0 a more widely used software package for studying dynamic

regulatory networks.
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Chapter 5

Conclusions and future works

5.1 Summary of contributions

The flow of information from DNA to proteins is regulated at multiple levels. Transcriptional reg-

ulation directly controls the rate at which RNA molecules are synthesized from DNA templates,

and it is one of the first and key steps in regulating such information flow. In this thesis, we have

presented several computational methods and analyses that facilitate a better understanding of

transcriptional regulation from different perspectives.

We first developed DECOD, a fast and accurate method for discriminative motif finding.

DECOD can be used to study differential regulation, where two groups of genes show differ-

ent transcriptional behaviors under the control of different TF or cofactors. This happens when

two sets of coexpressed genes start to diverge in their expression profiles after a particular time

point in time series expression analysis, and when two sets of genes show similar expression

profiles in one condition but distinct profiles in another, etc. DECOD can also be used to dis-

cover binding motifs for TFs with unknown binding preference from large scale sequencing data

generated by experiments like ChIP-seq when a proper set of background sequences is used. The

ability to scale up well to such large number of input sequences is one of the key features that

distinguishes DECOD from many other tools for similar purposes. Using DECOD on a new
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experimental dataset that studies p53 mutant binding, we were able to identify several p53 co-

factors and suggest new mechanisms about p53 activation. DECOD has a GUI interface that can

be run across different platforms, and can be easily used by experimental biologists with little

computational experience. In addition, DECOD is linked with the motif matching online tool

STAMP [106], so that the user can directly match a discriminative motif discovered to known

TFBS databases within DECOD. These features make DECOD a valuable computational tool to

study TF binding and transcriptional regulation.

We next developed a new method, PLAR-PBM, which uses protein binding microarray data

to infer TF binding profiles. PLAR-PBM uses a biophysically motivated model to predict the

binding probabilities to individual short k-mers from the PBM data for a TF. PLAR-PBM does

not depend on a PWM model which assumes independence between positions, and it outper-

forms several other methods when classifying known binding sites from ChIP-seq data. We

then used an integrated model that combines DNase I hypersensitivity data and also possibly

conservation data with PLAR-PBM to predict in vivo tissue-specific TF activities and binding

sites. We were able to accurately predict top TFs in several tissues including liver, retina, and

B cells, etc. that have known functions specifically in these tissues. Up to now, most transcrip-

tional regulatory network studies have used only general binding data, and our work is one of

the first to computationally predict tissue-specific TF binding sites. The ability to quantify and

predict tissue-specific TF activities further enables the discovery of potentially novel biological

functions for the top TFs in each tissue with unknown functions. We provide a comprehensive

resource for computationally predicted tissue-specific binding sites for hundreds of mouse TFs

across 55 tissues/cell lines. This will be of value to the study of tissue-specific transcriptional

regulatory networks.

Finally, we presented DREM 2.0 that combines time-series expression data with binding data

to analyze dynamic regulatory networks. Compared with its predecessor, DREM 2.0 integrates

with DECOD to allow discriminative motif finding directly on two sets of genes showing di-

112



verged expression patterns after a specific time point but with no known TF regulations from

the binding data, and it is also able to use dynamic and continuous binding data to more accu-

rately model the transcriptional regulatory network and assign TFs to specific time points based

on when they are activated. Using DREM 2.0, we analyzed an experimental dataset measuring

gene responses in arabidopsis following ethylene treatment with dynamic EIN3 binding data,

and identified interesting patterns of transcriptional activation regulated by EIN3 in successive

waves. DREM 2.0 comes with binding data for several more species collected from literature

and databases than its predecessor, and it is also implemented in Java and has an easy-to-use

GUI. In addition, the tissue-specific mouse regulatory networks predicted above based on PBM

and DNase data can also be directly used in DREM 2.0. Therefore, we expect DREM 2.0 to be

a widely used tool in studying dynamic regulatory networks.

To conclude, this thesis first introduced new methods for finding discriminative motifs and

predicting genome wide tissue-specific transcription factor binding sites. Then, the former is

used to extend the DREM modeling framework (among other new features) leading to an im-

proved tool that allows de novo identification of transcription factors that function in dynamic

regulatory networks, and the latter provides tissue-specific binding data that can be directly used

by DREM to allow more accurate modeling of tissue-specific dynamic regulatory networks when

combined with expression data in the same tissue. Taken together, the thesis makes new contri-

butions to the studying and understanding of transcriptional regulation from a computational

perspective.

5.2 Future directions

Several future studies can be performed to further extend the work presented in this thesis.
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5.2.1 More complicated model that allows dependence in discriminative

motif finding

In DECOD, the PWM motif model is used when searching for the discriminative motif between

two sets of sequences. One of the biggest disadvantages of PWM model is that it assumes

independence between positions in a motif, and there has been controversies regarding whether

this is oversimplied and not true in nature [6, 16, 105, 117, 204]. More complicated models than

PWM to represent TF binding motifs have been proposed [163, 166, 206]. When comparing

the performance of PWM-based models with our k-mer based model to infer TF binding profile

from PBM data, we also showed that our model outperforms PWM-based models in predicting

binding sites in vivo (Chapter 3). In Section we tested using a Markov motif model in DECOD on

human data but it did not appear to bring much improvement over the PWM model. Still it would

be interesting to study whether adopting a more complicated model such as a profile Hidden

Markov model or conditional random field in place of PWM would lead to an improvement in

performance for DECOD. As already discussed in Section , plugging in a more complicated

model into the target function without deconvolution is straightforward, but depending on the

specific model to be used, it might be difficult to incorporate the new model using the convolved

motif component. Moreover, with a more complicated model it would be difficult to make the

search process fast in the add step (Section 2.3.4), as the calculation of partial derivatives with

respect to model parameters (Section 2.3.5) may become computationally intractable - this is

one of the key steps that make DECOD faster than many other tools. In addition, with a more

complicated model that allows interdependence between positions, the number of parameters to

learn will increase, and therefore the motif cardinality (the number of k-mers used to construct

the model, Section 2.3.7) will also need to be increased, and this will further slow down the

search process. Therefore, changes in the optimization process may be necessary in order to use

such more complicated models.
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5.2.2 Evaluating the statistical significance of the discriminative motifs iden-

tified by DECOD

Currently DECOD only reports the target function score together with the discriminative motifs

that it find. The user can only evaluate whether the reported motif is biologically meaningful

by relying on its match E-value with the most similar known motif, and its relative rank among

all the reported motifs. It would be very helpful if a p-value representing the significance of the

discriminative motif DECOD found could be reported, with the null hypothesis being that the

motif is equally enriched (or depleted) in the positive and negative sequences. However, this is

not an easy task [172]. Several relevant methods have been proposed. For example, Sinha et al.

[168] first introduced a method to compute p-values for discriminative motifs, but that method

is prohibitively slow for large datasets. A more recent discriminative motif finding method,

DREME [7], uses an enumerative approach to find regular expression motifs with Fisher’s exact

test p-value over a cutoff. A similar method might be considered to calculate p-values for the

PWM motifs that DECOD finds.

5.2.3 More accurate methods that assign binding sites for a TF to the genes

that it regulates

In many studies that predict genome wide TF binding events and regulatory networks including

ours presented in Chapter 3, a specific TF is assumed to regulate a target gene if its binding

site (either as a high scoring genomic region from scanning by a PWM or integrative model,

or as a ChIP-seq peak) can be found within the promoter (a specific distance range from the

transcription start site) of that gene [24, 27, 48, 124, 205]. Although this is simple and intuitive,

it has the disadvantage that it does not take into account the distance between the binding site

and the potential target gene. In addition, such an approach could not incorporate long range

interactions as usually the range of the promoter region being considered is limited, yet it has
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been demonstrated that certain TFs can regulate genes that are over 100kbps away [112, 113].

Recently, to address the concerns mentioned above, several computational methods have been

proposed to assign TF binding sites to the genes that they regulate in a more principled manner

using ChIP-seq data alone [29, 130], or with the help of additional expression [14] or DNase data

[112]. It would be useful to develop a similar method to assign the tissue-specific binding sites of

each TF inferred from the PBM and DNase data to its target genes, as more accurate knowledge

about this will directly improve the quality of the tissue-specific TRNs inferred. Experimental

methods to determine long range interactions have also been developed including chromosome

conformation capture carbon copy (5C) [42] and chromatin interaction analysis by paired-end tag

sequencing(ChIA-PET) [53], and such information can be used to evaluate the performance of

the assignment method or develop new predicative models for long range TF-gene interactions.

5.2.4 Applications to human data and the study of tissue-specific regula-

tory network

Our method for using protein binding microarray data has primarily focused on mouse TFs, as

currently most of the available PBM data for TFs in higher eukaryotes are in mouse. However,

it has been known that the binding preferences of many TFs between human and mouse are

highly conserved, although individual binding events themselves may show rapid turnovers [155,

195]. Moreover, TFs that have similar DNA binding domains also usually have similar binding

preferences, as we have showed using several cases in the evaluation of PLAR-PBM. Therefore,

it would be interesting to transfer knowledge about the TF binding profiles learned from PBM

data in mouse to corresponding TFs in human. Moreover, recently, Jolma et al. [75] used high-

throughput SELEX techniques to study the binding specificities of over 800 human TFs. It would

be a rich resource if such knowledge can be utilized and combined with the DNase-seq data

available for hundreds of human tissue/cell types to predict a tissue-specific TF binding map for

human, as such resource would be directly relevant in understanding transcriptional regulation in
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human and uncovering novel mechanisms in human diseases. Furthermore, although our current

works enabled the study of both tissue-specific binding and dynamic regulatory networks, so

far they have been two separated pieces. It would be interesting to run DREM 2.0 on a dataset

where the time-series expression data in a specific tissue and the tissue-specific binding data for

the same tissue is available, and compare the resulting tissue-specific regulatory network model

with a non-tissue-specific model in which general binding data is used, to observe how much

improvement is obtained.
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Appendix A

Calculating the derivative for the

deconvolved mixture component in

DECOD

1. The definition of F (θ) in the convolved mixture model is

F (θ) =
∑
a∈Σk

c(a)
pA

pA+ [1− (2k − 1)p]Ba
(A.1)

=
∑
a∈Σk

c(a)

[
1− [1− (2k − 1)p]Ba

pA+ [1− (2k − 1)p]Ba

]
(A.2)

in which Σk denotes all possible k-mers, c(a) := X(a)− Y (a) is the frequency difference

of the k-mer a in the positive and negative sequences, p is the probability of the motif

occurrance, k is the motif length, B is the background model, and

A : = θa + ([B1θk−1]a + · · ·+ [Bk−1θ1]a) + ([θ1Bk−1]a + · · ·+ [θk−1B1]a) (A.3)

: = X + Y + Z (A.4)

in which θ is a 4 × k PWM matrix of the motif with columns sum to 1. We represent

the k-mer a also as a 4 × k matrix, each element aij ∈ {0, 1} and the columns sum to 1.
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[P jQk−j] denote the PWM obtained by taking the last j columns from the PWM P and the

first k − j columns from the PWM Q. We regard the background model B as a PWM also

with all columns equal. We use θa as a shorthand for Pr(a|θ).

2.

∂F (θ)

∂θmn

=
∑
a∈Σk

c(a)
[1− (2k − 1)p]Ba · p

(pA+ [1− (2k − 1)p]Ba)2 ·
∂A

∂θmn

(A.5)

= p · [1− (2k − 1)p] ·
∑
a∈Σk

c(a)
Ba

(pA+ [1− (2k − 1)p]Ba)2 ·
∂A

∂θmn

(A.6)

∂A

∂θmn

=
∂X

∂θmn

+
∂Y

∂θmn

+
∂Z

∂θmn

(A.7)

3. For X ,

X = θa (A.8)

=
k∏

i=1

(
4∑

j=1

θjiaji

)
(A.9)

∂X

∂θmn

=
k∏

i=1
i 6=n

(
4∑

j=1

θjiaji

)
· amn (A.10)

(A.11)

4. For Y ,

Y = [B1θk−1]a + · · ·+ [Bk−1θ1]a (A.12)

[B1θk−1]a =
1∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=2

(
4∑

j=1

θj,i−1aji

)
(A.13)

[B2θk−2]a =
2∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=3

(
4∑

j=1

θj,i−2aji

)
(A.14)

... (A.15)

[Bk−1θ1]a =
k−1∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=k

(
4∑

j=1

θj,i−(k−1)aji

)
(A.16)
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There are k−1 rows above. The last n−1 rows do not contain θmn so the partial derivative

of them with respect to θmn for these rows will be 0. For the first k − n rows,

∂[B1θk−1]a

∂θmn

=
1∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=2

i 6=n+1

(
4∑

j=1

θj,i−1aji

)
· am,n+1 (A.17)

∂[B2θk−2]a

∂θmn

=
2∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=3

i 6=n+2

(
4∑

j=1

θj,i−2aji

)
· am,n+2 (A.18)

... (A.19)

∂[Bk−nθn]a

∂θmn

=
k−n∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=k−n+1

i 6=k

(
4∑

j=1

θj,i−(k−n)aji

)
· am,k (A.20)

Thus,

Y =
k−1∑
l=1

[
l∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1

(
4∑

j=1

θj,i−laji

)]
(A.21)

(A.22)

and

∂Y

∂θmn

=
k−n∑
l=1

 l∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1
i 6=l+n

(
4∑

j=1

θj,i−laji

)
· am,l+n

 (A.23)

5. For Z,

Z = [θ1Bk−1]a + · · ·+ [θk−1B1]a (A.24)

[θ1Bk−1]a =
1∏

i=1

(
4∑

j=1

θj,k+i−1aji

)
·

k∏
i=2

(
4∑

j=1

bjaji

)
(A.25)

[θ2Bk−2]a =
2∏

i=1

(
4∑

j=1

θj,k+i−2aji

)
·

k∏
i=3

(
4∑

j=1

bjaji

)
(A.26)

... (A.27)

[θk−1B1]a =
k−1∏
i=1

(
4∑

j=1

θj,k+i−(k−1)aji

)
·

k∏
i=k

(
4∑

j=1

bjaji

)
(A.28)
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There are k−1 rows above. The first k−n rows do not contain θmn so the partial derivative

of them with respect to θmn for these rows will be 0. For the last n− 1 rows,

∂[θk−n+1Bn−1]a

∂θmn

=
k∏

i=k−n+2

(
4∑

j=1

bjaji

)
·
k−n+1∏
i=1
i 6=1

(
4∑

j=1

θj,k−(k−n+1)+iaji

)
· am,1 (A.29)

∂[θk−n+2Bn−2]a

∂θmn

=
k∏

i=k−n+3

(
4∑

j=1

bjaji

)
·
k−n+2∏
i=1
i 6=2

(
4∑

j=1

θj,k−(k−n+2)+iaji

)
· am,2 (A.30)

... (A.31)

∂[θk−1B1]a

∂θmn

=
k∏

i=k

(
4∑

j=1

bjaji

)
·

k−1∏
i=1

i 6=n−1

(
4∑

j=1

θj,k−(k−1)+iaji

)
· am,n−1 (A.32)

Thus,

Z =
k−1∑
l=1

[
k∏

i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

(
4∑

j=1

θj,k−l+iaji

)]
(A.33)

and

∂Z

∂θmn

=
k−1∑

l=k−n+1

 k∏
i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

i 6=n−k+l

(
4∑

j=1

θj,k−l+iaji

)
· am,n−k+l

 (A.34)

6. In summary,

A = X + Y + Z (A.35)

=
k∏

i=1

(
4∑

j=1

θjiaji

)
+

k−1∑
l=1

[
l∏

i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1

(
r∑

j=1

θj,i−laji

)]
+

k−1∑
l=1

[
k∏

i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

(
4∑

j=1

θj,k−l+iaji

)] (A.36)
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and

∂A

∂θmn

=
k∏

i=1
i 6=n

(
4∑

j=1

θjiaji

)
· amn+

k−n∑
l=1

 l∏
i=1

(
4∑

j=1

bjaji

)
·

k∏
i=l+1
i 6=l+n

(
4∑

j=1

θj,i−laji

)
· am,l+n

+

k−1∑
l=k−n+1

 k∏
i=l+1

(
4∑

j=1

bjaji

)
·

l∏
i=1

i 6=n−k+l

(
4∑

j=1

θj,k−l+iaji

)
· am,n−k+l


(A.37)
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Appendix B

Full DECOD evaluation results on the 65

yeast TFs

Table B.1: Evaluation of 6 discriminative motif finding methods

on recovering the 65 yeast TFs. See Section 2.7.1 for details.

TF DC DC-S DC-A DME DEME CMF Sd ALSE N BOUND %Contain W Enrich

ABF1 + + + + + + + 178 86.50% 13 99

CBF1 + + + + + + 195 68.70% 7 99

FHL1 + + + + + + + 131 73.30% 10 99

RAP1 + + + + + + 109 74.30% 10 79.92

REB1 + + + + + + + 99 86.90% 7 77.93

UME6 + + + + + + + 93 68.80% 8 72.32

RPN4 70 80.00% 9 72.02

GCN4 + + + + + + + 143 65.00% 7 64.62

YAP7 101 80.20% 8 62.65

MCM1 + + 77 66.20% 11 55.28

(Continued on next page. . . )
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TF DC DC-S DC-A DME DEME CMF Sd ALSE N BOUND %Contain W Enrich

NRG1 + 108 59.30% 7 45.42

MBP1 + + + + + + + 92 47.80% 7 40

SKN7 + 148 37.20% 9 38.79

CIN5 + + + + + 118 42.40% 8 38.36

SUM1 + + + + + + 51 88.20% 10 36.47

SWI6 + + + + + + + 121 51.20% 7 33.62

HSF1 + + 74 67.60% 13 32.96

SWI4 + + + + + + + 130 49.20% 7 31.96

TYE7 + + + + + + + + 56 53.60% 8 30.56

SFP1 37 73.00% 9 26.64

FKH2 + + + + + 91 58.20% 7 26.62

HAP1 + + 116 28.80% 11 24.72

INO4 + + + + + + + 32 68.80% 8 24.15

FKH1 + + + + + + + 104 76.90% 8 23.43

CAD1 + + + 29 65.50% 10 21.69

SNT2 + + + + + 20 70.00% 9 21.64

SUT1 + + 67 37.30% 10 21.01

STE12 + + + + + 142 88.00% 7 20.86

NDD1 94 28.70% 11 20.74

LEU3 + + 32 40.60% 10 20.45

HAP4 + + + + + + 54 50.00% 7 20.32

AFT2 76 63.20% 6 19.4

MSN2 74 40.50% 9 18.81

PHD1 + 103 57.30% 8 17.93

YDR026c + + + + + + + 15 86.70% 9 17.26

YAP1 + + 37 51.40% 9 15.55

(Continued on next page. . . )
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TF DC DC-S DC-A DME DEME CMF Sd ALSE N BOUND %Contain W Enrich

THI2 49 28.60% 12 15.38

INO2 + + + + + + 35 71.40% 7 14.97

SPT2 + + + 36 63.90% 11 14.4

SIP4 + 24 37.50% 13 14.36

SIG1 + + 16 87.50% 12 13.48

STB5 + + + + 44 40.90% 9 13.44

GAL4 37 32.40% 18 13.42

RDS1 + + 49 24.50% 6 12.65

ZAP1 18 27.80% 14 12.35

SOK2 + + + 73 64.40% 6 12.28

MET4 + 37 21.60% 15 12.26

STB1 + + + + + + + 23 47.80% 9 11.95

GLN3 + 79 55.70% 7 11.65

RFX1 + + 25 28.00% 13 11.48

AZF1 + + 24 54.20% 18 10.85

RCS1 + 41 46.30% 7 10.44

PHO2 14 50.00% 11 10.2

IME1 36 61.10% 11 9.92

RLR1 + + + + 25 64.00% 12 9.76

PDR1 + 68 22.10% 11 9.21

PHO4 24 45.80% 7 9.17

DIG1 + 66 54.50% 7 8.74

TEC1 + + + + + + 37 78.40% 7 6.4

BAS1 + + + + + + + 17 52.90% 6 4.99

SPT23 45 91.10% 8 4.79

ACE2 + + 71 28.20% 7 4.78

(Continued on next page. . . )
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TF DC DC-S DC-A DME DEME CMF Sd ALSE N BOUND %Contain W Enrich

STB4 28 21.40% 9 3.69

DAL82 62 41.90% 6 3.33

GAT1 49 36.70% 6 2.25

Sum(Top) 15 14 13 13 15 14 11 3

Sum(All) 28 26 34 31 34 24 17 9

DC: DECOD

DC-S: DECOD Simple without deconvolution

DC-A: DECOD with alternative seed

Sd: Seeder

+: Correclty recovered

N BOUND: Number of probes bound by the TF in the ChIP-chip experiment

%Contain: The percentage of the bound probes containing the motif of the TF

W: The width of the motif

Enrich: The enrichment score of the motif.
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Appendix C

284 mouse TFs with PBM data available

Table C.1: List of the 284 mouse TFs with PBM data avail-

able. See Section 3.2.5 for details

Alx4 Elf2 Gm397 Hoxb9 Lhx1 Nr2f2 Prrx1 Spic Zic3

Arid3a Elf3 Gm4881 Hoxc10 Lhx2 Obox1 Prrx2 Srf Zif268

Arid5a Elf4 Gm5454 Hoxc11 Lhx3 Obox2 Rara Sry Zscan4

Arx Elf5 Gmeb1 Hoxc12 Lhx4 Obox3 Rax Tbp

Ascl2 Elk1 Gsc Hoxc13 Lhx5 Obox5 Rfx3 Tcf1

Atf1 Elk3 Gsh2 Hoxc4 Lhx6 Obox6 Rfx4 Tcf2

Bapx1 Emx2 Hbp1 Hoxc5 Lhx8 Og2x Rfxdc2 Tcf3

Barhl1 En1 Hdx Hoxc6 Lhx9 Osr1 Rhox11 Tcf7

Barhl2 En2 Hic1 Hoxc8 Lmx1a Osr2 Rhox6 Tcf7l2

Barx1 Eomes Hlx1 Hoxc9 Lmx1b Otp Rxra Tcfap2a

Barx2 Erg Hlxb9 Hoxd1 Mafb Otx1 Sfpi1 Tcfap2b

Bbx Esrra Hmbox1 Hoxd10 Mafk Otx2 Shox2 Tcfap2c

Bcl6b Esx1 Hmx1 Hoxd11 Max Pax4 Six1 Tcfap2e

(Continued on next page. . . )
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Bhlhb2 Ets1 Hmx2 Hoxd12 Meis1 Pax6 Six2 Tcfe2a

Bsx Etv1 Hmx3 Hoxd13 Meox1 Pax7 Six3 Tgif1

Cart1 Etv3 Hnf4a Hoxd3 Mrg1 Pbx1 Six4 Tgif2

Cdx2 Etv4 Homez Hoxd8 Mrg2 Phox2a Six6 Titf1

Cphx Etv5 Hoxa1 IRC900814 Msx1 Phox2b Smad3 Tlx2

Crx Etv6 Hoxa10 Ipf1 Msx2 Pitx1 Sox1 Uncx4

Cutl1 Evx1 Hoxa11 Irf3 Msx3 Pitx2 Sox11 Vax1

Dbx1 Evx2 Hoxa13 Irf4 Mtf1 Pitx3 Sox12 Vax2

Dbx2 Fli1 Hoxa2 Irf5 Myb Pknox1 Sox13 Vsx1

Dlx1 Foxa2 Hoxa3 Irf6 Mybl1 Pknox2 Sox14 Zbtb12

Dlx2 Foxj1 Hoxa4 Irx2 Myf6 Plagl1 Sox15 Zbtb3

Dlx3 Foxj3 Hoxa5 Irx3 Nkx1-1 Pou1f1 Sox17 Zbtb7b

Dlx4 Foxk1 Hoxa6 Irx4 Nkx1-2 Pou2f1 Sox18 Zfp105

Dlx5 Foxl1 Hoxa7 Irx5 Nkx2-2 Pou2f2 Sox21 Zfp128

Dmbx1 Gabpa Hoxa9 Irx6 Nkx2-3 Pou2f3 Sox30 Zfp161

Dobox4 Gata3 Hoxb13 Isgf3g Nkx2-4 Pou3f1 Sox4 Zfp187

Dobox5 Gata5 Hoxb3 Isl2 Nkx2-5 Pou3f2 Sox5 Zfp281

Duxl Gata6 Hoxb4 Isx Nkx2-6 Pou3f3 Sox7 Zfp410

E2F2 Gbx1 Hoxb5 Jundm2 Nkx2-9 Pou3f4 Sox8 Zfp691

E2F3 Gbx2 Hoxb6 Klf7 Nkx3-1 Pou4f3 Sp100 Zfp740

Egr1 Gcm1 Hoxb7 Lbx2 Nkx6-1 Pou6f1 Sp4 Zic1
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Appendix D

55 mouse tissue/cell types with DNase data

available

Table D.1: List of the 55 mouse tissue/cell types with DNase data

available. See Section 3.3.1 for details. Descriptions for the tis-

sue/cell types are from the ENCODE project website

Name Description Category Tissue

3134RiiiMImmortal Mammary cellLine mammary

416bC57bl6MAdult8wks myeloid progenitor cells, CD34+ cellLine blood

A20BalbcannMAdult8wks B cell lymphoma line derived from a spontaneous

reticulum cell neoplasm

cellLine blood

Bcellcd19pC57bl6MAdult8wks B Cell , CD19+ primaryCells blood

Bcellcd43nC57bl6MAdult8wks mouse spleen B cells, CD43-,CD11b- primaryCells blood

CerebellumC57bl6MAdult8wks Cerebellum Tissue cerebellum

CerebrumC57bl6MAdult8wks Cerebrum Tissue cerebrum

Ch122a4bFImmortal B-cell lymphoma (GM12878 analog) cellLine blood

EpcmppCd1ME14half liver fraction CD117-,CD71+,TER119+ primaryCell blood

(Continued on next page. . . )
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Name Description Category Tissue

EpcpmmCd1ME14half liver fraction CD117+,CD71-,TER119- primaryCell blood

EpcppmCd1ME14half liver fraction CD117+,CD71+,TER119- primaryCell blood

EpcpppCd1ME14half liver fraction CD117+,CD71+,TER119+ primaryCell blood

Escj7S129ME0 ES-cells were originally isolated from 129S1/SVImJ

mice [180]

primaryCells

Ese14129olaME0 mouse embryonic stem cell line E14 primaryCells

Esww6koUknME0 Histone H1c, H1d, H1e triple null mouse embryonic

stem cell line derived from ES-WW6 cells.

primaryCells

Esww6UknME0 ES-cells isolated from mix of 20% C57/B6J, 75%

129/Sv and 5% SJL strains

primaryCells

FatC57bl6MAdult8wks Adipose tissue Tissue adipose

FibroblastC57bl6MAdult8wks Fibroblast Tissue lung

FlbudCd1ME11half embryo forelimb buds Tissue limb

GfatC57bl6MAdult8wks Genital Adipose tissue Tissue adipose

HeartC57bl6MAdult8wks Heart Tissue heart

HlbudCd1ME11half embryo hindlimb buds Tissue limb

HlembryoCd1ME11half Whole embryos with heads removed Tissue embryo

KidneyC57bl6MAdult8wks Kidney Tissue kidney

LgintC57bl6MAdult8wks Large Intestine Tissue large intes-

tine

Liver129dlcrME14half Liver Tissue liver

LiverC57bl6MAdult8wks Liver Tissue liver

LiverC57bl6ME14half Liver Tissue liver

LiverS129ME14half Liver Tissue liver

LungC57bl6MAdult8wks Lung Tissue lung

MelC57bl6MAdult8wks Leukemia (K562 analog) cellLine blood

(Continued on next page. . . )
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Name Description Category Tissue

MesodermCd1ME11half axial somatic and lateral plate mesoderm from evis-

cerated headless, limbless embryos

Tissue mesoderm

MgerUknImmortalDiffc24h MEL-GATA-1-ER, This is a mouse suspension cell

line derived from MEL cells by stable transfection

with a GATA-1-ER fusion protein construct [30].

These cells can be terminally differentiated into ma-

ture erythroid cells with β-estradiol treatment

cellLine blood

MgerUknImmortalDiffc48h MEL-GATA-1-ER, Same as above cellLine blood

MgerUknImmortal MEL-GATA-1-ER, Same as above cellLine blood

Nih3t3NihsMImmortal fibroblast cellLine blood

PatskiSpbl6MImmortal Mouse Embryonic Kidney Fibroblast cellLine kidney

RetinaC57bl6MAdult1wks Retina Tissue brain

RetinaC57bl6MAdult8wks Retina Tissue brain

RetinaC57bl6MNew1days Retina Tissue brain

SkmuscleC57bl6MAdult8wks Skeletal Muscle Tissue skeletal

muscle

SpleenC57bl6MAdult8wks Spleen Tissue spleen

ThelpaC57bl6MAdult8wks Activated primary CD4 effector cells, isolated ex

vivo

primaryCells blood

ThymusC57bl6MAdult8wks Thymus Tissue thymus

TnaiveC57bl6MAdult8wks Thymus Tissue thymus

TregaC57bl6MAdult8wks Activated primary T regulatory cells, isolated ex

vivo

primaryCells blood

TregC57bl6MAdult8wks Regulatory T cells CD4+,CD25+ primaryCells blood

WbrainC57bl6MAdult8wks Whole Brain Tissue brain

WbrainC57bl6ME14half Whole Brain Tissue brain

(Continued on next page. . . )
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Name Description Category Tissue

WbrainC57bl6ME18half Whole Brain Tissue brain

WholebrainC57bl6MAdult8wks Whole Brain Tissue brain

WholebrainC57bl6ME14half Whole Brain Tissue brain

Zhbtc4129olaME0Diffb24h ndifferentiated mouse embryonic stem cells primaryCells

Zhbtc4129olaME0Diffb6h ndifferentiated mouse embryonic stem cells primaryCells

Zhbtc4129olaME0 ndifferentiated mouse embryonic stem cells primaryCells
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Mokry, Andrea Haegebarth, Maaike van den Born, Pierre Chambon, Peter Voshol, Yuval Dor, Ed-

win Cuppen, Cristina Fillat, and Hans Clevers. Diabetes risk gene and Wnt effector Tcf7l2/TCF4

controls hepatic response to perinatal and adult metabolic demand. Cell, 151(7):1595–1607, De-

cember 2012. (Cited in 3.6.5)

[21] E Boy-Marcotte, G Lagniel, M Perrot, F Bussereau, A Boudsocq, M Jacquet, and J Labarre. The

heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and

Hsf1p regulons. Mol. Microbiol., 33(2):274–283, July 1999. (Cited in 1.1)

[22] Jan Christian Bryne, Eivind Valen, Man-Hung Eric Tang, Troels Marstrand, Ole Winther, Isabelle

137



da Piedade, Anders Krogh, Boris Lenhard, and Albin Sandelin. JASPAR, the open access database

of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids

Res., 36(Database issue):D102–6, January 2008. (Cited in 2.9)

[23] Michael J Buck and Jason D Lieb. ChIP-chip: considerations for the design, analysis, and appli-

cation of genome-wide chromatin immunoprecipitation experiments. Genomics, 83(3):349–360,

March 2004. (Cited in 1.2.4, 3.1)

[24] Katherine N Chang, Shan Zhong, Matthew T Weirauch, Gary C Hon, Mattia Pelizzola, Hai Li,

Shao-shan Carol Huang, Robert J Schmitz, Mark A Urich, Dwight Kuo, Joseph Nery, Hong Qiao,

Ally Yang, Abdullah Jamali, Trey Ideker, Bing Ren, Ziv Bar-Joseph, Timothy R Hughes, and

Joseph R Ecker. Temporal transcriptional response to ethylene gas drives growth hormone cross-

regulation in Arabidopsis. Submitted. (Cited in 1.2.2, 1.3, 5.2.3)

[25] Qimin Chao, Madge Rothenberg, Roberto Solano, Gregg Roman, William Terzaghi, and Joseph R

Ecker. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein

ETHYLENE-INSENSITIVE3 and related proteins. Cell, 89(7):1133–1144, June 1997. (Cited in

4.3.1, 4.4.1)

[26] Danian Chen, Marek Pacal, Pamela Wenzel, Paul S Knoepfler, Gustavo Leone, and Rod Bremner.

Division and apoptosis of E2f-deficient retinal progenitors. Nature, 462(7275):925–929, December

2009. (Cited in 3.3)

[27] Xi Chen, Han Xu, Ping Yuan, Fang Fang, Mikael Huss, Vinsensius B Vega, Eleanor Wong, Yuriy L

Orlov, Weiwei Zhang, Jianming Jiang, Yuin-Han Loh, Hock Chuan Yeo, Zhen Xuan Yeo, Vipin

Narang, Kunde Ramamoorthy Govindarajan, Bernard Leong, Atif Shahab, Yijun Ruan, Guillaume

Bourque, Wing-Kin Sung, Neil D Clarke, Chia-Lin Wei, and Huck-Hui Ng. Integration of external

signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6):

1106–1117, June 2008. (Cited in 2.1, 3.1, 3.1, 5.2.3)

[28] Xinbin Chen, Linda J Ko, Lata Jayaraman, and Carol Prives. p53 levels, functional domains, and

DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev., 10(19):

2438–2451, October 1996. (Cited in 2.5.2)

138



[29] Chao Cheng, Renqiang Min, and Mark Gerstein. TIP: a probabilistic method for identifying tran-

scription factor target genes from ChIP-seq binding profiles. Bioinformatics, 27(23):3221–3227,

December 2011. (Cited in 5.2.3)

[30] Kevin S Choe, Farshid Radparvar, Igor Matushansky, Natasha Rekhtman, Xing Han, and Arthur I

Skoultchi. Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by

GATA-1. Cancer Res., 63(19):6363–6369, October 2003. (Cited in D.1)
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