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Abstract 
The use of high throughput screening methods has aided the drug discovery process allowing 

for the testing of numerous compounds for effects on a single target protein.  However, by 
focusing primarily on a single target during high throughput screening, undesirable secondary 
effects are often detected late in the development process after substantial investment has been 
made.  In order to better detect effects on a system, high content screening methods have been 
developed utilizing imaging technology in conjunction with machine learning methods to detect 
effects on living systems as a result of exposure to a drug stimulus.  These have primarily been 
applied in animal systems, and we therefore explored approaches to extending high content 
screening methods to plant cells.  A pilot high content screening approach was developed and 
used to test the effects of nine compounds on protoplasts from six lines of Arabidopsis thaliana 
expressing different fluorescently-tagged proteins.  Various image analysis and machine learning 
techniques were used to determine which compounds affected the subcellular distributions of the 
proteins. 

Both high throughput and high content screening methods are primarily limited in that very 
few target proteins are measured directly in these experiments.  An alternative approach would 
be to do a more global screen against many undesired effects early in the process, but the number 
of possible secondary targets makes this prohibitively expensive due to the number of 
combinations of potential drugs and secondary targets.  Methods for making this global approach 
feasible through active machine learning were therefore developed. The active learning approach 
iteratively constructs models to predict the results of unobserved experiments and utilizes these 
models to guide experimentation efforts. Such methods were developed and applied to screening 
data for 20,000 compounds on 177 assays.  It was shown through simulations that nearly 60% of 
all hits (compounds that have an effect on a particular assay) could be identified after exploring 
only 3% of the experimental space. Finally, an automated approach to creating NIH 3T3 cell 
lines expressing fluorescently-tagged proteins via CD-tagging and identifying the tagged protein 
was developed.  This was used to create a set of lines used to test active learning for detection of 
compound effects on the location patterns of the tagged proteins.   

Our results suggest that active learning can be used to enable more complete characterization 
of compound effects across a diverse set of assays than otherwise affordable.  The methods 
described are also likely to find widespread application in biomedical research.  
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Chapter 1: Introduction 
Drug development is a lengthy, risky and expensive process initialized by the identification 

of compounds which affect disease-associated targets and ending after testing in clinical trials.  

Current estimates for the costs of the process are shown in Table 1.  The process is initialized by 

the identification of druggable targets.  In general, these targets are proteins that are integral parts 

of mechanisms hypothesized to be involved with disease.  Much initial information about these 

targets is gathered through basic science studies.  Once a target protein has been identified, the 

goal is to discover compounds which increase or decrease the function of a target protein. One 

common method for testing large numbers of compounds for effects on a single target is referred 

to as high throughput screening.  

Table 1: The attrition rate and costs for each phase of the drug discovery process are shown (Paul, et al., 2010).  
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High-throughput screening (HTS) is a process by which compounds are tested for effects on 

protein function resulting from compound exposure. The first step in a HTS process is to develop 

an assay to be used to detect the effects of compounds on the target protein.  In general, the goal 

for HTS assays is to detect the effects of many drugs on a single protein by running multiple 

experiments rapidly. There are multiple types of experimental assays which can be used for HTS.  

These screens are commonly performed by adding drugs to a protein in a microtiter plate or to a 

well of live cells. In either case, fluorescent readouts are commonly used. A plate reader can be 

used to measure absorbance, fluorescence or luminescence of an experimental well (Inglese, et 

al., 2007). Flow cytometry can be used to measure changes in cellular populations that result 

from the addition of drugs (Sklar, et al., 2007).  Fluorescence microscopy can be used to gather 

more information in a screen utilizing live cells (Trask, et al., 2009) in a process referred to as 

high-content screening.  The development of liquid handling robots has made it possible to test 

millions of compounds in a single pass for a single experimental configuration. 

Imaging is often used in high throughput screening. High-content screening (HCS) is used to 

describe experiments which require the combination of image analysis and machine vision 

methods to characterize large amounts of biological image data.  HCS experiments are typically 

executed to describe some physical characteristic of the cells.  Machine vision methods can be 

used in the context of HCS experiments to describe various physical characteristics of a 

biological system such as protein location patterns (Boland & Murphy, 2001), object motion 

(Meijering, et al., 2006) and gene expression levels (Peng & Myers, 2004).  Images can be 

captured at many different scales depending on the goals of the experiment.  These experiments 

can vary greatly in time scale depending on the organism being studied.  Images as small as 
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single cells or as large as whole organisms including zebrafish (Pardo-Martin, et al., 2010) and 

mice (Brommage, et al., 2008) can be used in high-content screening. 

In the context of drug discovery, HCS can be used to capture phenotypic changes which 

result from the addition of compounds.  Often these experiments are designed to detect 

perturbations in phenotypes resulting from the addition of potential drugs (Perlman, et al., 2004).  

For the analysis of cell-based imaging assays, multiple methods have been used to detect the 

desired characteristics.  Generally these involve calculating some sort of feature describing the 

images or subsets of the image and then running a machine learning algorithm on the resulting 

measurements.  Many methods have been developed for the analysis of HCS results; these 

include (but are not limited to): field and cell level feature calculation, segmentation (Duda & 

Hart, 1972), patch-based methods, interest point detection, and SURF (Bay, et al., 2008).  For 

some experiments, specific custom image analysis techniques for the experimental condition 

have been developed.  For example, image analysis for the study of neurons poses a complex 

problem that has been partially addressed using image tracing algorithms.  Once features have 

been calculated, a machine learning method is typically used.  There are three major classes of 

machine learning algorithms commonly used in high-content screening processes and other 

image analysis problems.  When phenotypes are known for certain experimental conditions, 

supervised classification techniques (Breiman, 2001; Burges, 1998) can be used to detect effects 

from drug treatment.  When some information is known about experimental conditions, such as 

the fact that duplicated conditions should have identical phenotypes, and positive controls are 

available, semi-supervised methods (Zhang, et al., 2008) can be used. When no information is 

known about the “correct” phenotypes for experimental conditions or information may be 
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unreliable such as in large scale location proteomics projects (Garcia-Osuna, et al., 2007; Barbe, 

et al., 2008), unsupervised methods (MacQueen, 1967) can be utilized.   

Once a compound has been identified as having an effect on a target, the compound may be 

advanced further into the drug development pipeline.  It is not uncommon, however, for 

previously unknown effects to be discovered after significant investment into a potential drug 

(Figure 1).  These are not discovered earlier because these processes are primarily designed to 

detect the effects of compounds on a single target protein without considering whether or not it 

has effects on other targets.  One solution to this problem is to test every small molecule 

compound (~106) against every possible protein target (~104).  However, an estimated 1010 

experiments would be required to explore this experimental space completely, the cost of which 

would likely be prohibitive.  A cellular systems biology approach to this problem would be to 

develop many assays to capture information about cell and tissue behaviors and exhaustively test 

compounds on those assays (Giuliano, et al., 2009) as shown in Figure 2.  By considering many 

effects of each potential drug earlier in the drug discovery process, the attrition rates in early 

phases would likely increase.  By rejecting the truly undesirable compounds earlier in the 

process, the attrition rates in the later more costly phases of the drug discovery process would 

decrease reducing downstream research costs.  

Given the prohibitively large number of experiments needed to exhaustively explore these 

experimental spaces, only a subset of experiments could actually be selected and executed.  The 

results of the remaining untested experiments can then only be predicted.  There are two clear 

approaches to this problem: experiments can be selected that are predicted to have the highest 

activity based on some model or experiments can be selected that are predicted to give the most 
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information about the experimental space.  The latter allows for more accurate predictions on the 

remainder of the experimental space.   

 

Figure 1: High-throughput screening can be used to test for the effects of a large number of compounds on a single 
protein target.  Often compounds are allowed to progress through the drug discovery process (ex. Drug 3) only to have 
deleterious off-target effects discovered during a later phase after significant costly effort to develop the drug. 

 

Figure 2: To avoid allowing potential drugs which might have off-target effects to progress through the drug 
discovery pipeline, one approach would be to test every potential drug against every protein and against a large number 
of cellular systems biology assays.   

Active learning is a machine learning method specifically developed to permit efficient 

exploration of such large experimental spaces.  Active learning consists of three phases 

performed in a loop.  A thread of experiments can be initialized either using prior results from 

literature or databases or by selecting a batch of random experiments from an experimental 

space.  (1) A model is generated to represent the currently available data. (2) From that model, 
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experiments which are expected to most improve the model are selected for execution.  (3)  The 

set of experiments is executed and the data gathered is agglomerated with previously collected 

experimental data.  The loop then continues from Step 1 until either a desired accuracy of 

predictions is achieved or a specified budget has been exhausted.   

The overall goal of an active learning process is to efficiently learn a predictive model or, as 

in the case of drug discovery, to find all possible hits.  Through simulations, one can compare 

different methods first by selecting an initial set of experiments and then using different selection 

methods to select the following batches of experiments to be executed until some budget is 

exhausted or a desired accuracy is reached.  If one has a fixed experimental budget, the resulting 

accuracies from each selection method can be compared.  The difference between these two 

results after the budget has been exhausted is the improvement from active learning to select 

experiments.  Alternatively, if one desires to reach a specific accuracy, a successful active 

learning method would reach that accuracy before the model learned using the alternative 

selection method.  These are illustrated in Figure 3.  
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Figure 3: The resulting accuracy or hits discovered as a function of percentage of experimental space explored is 
shown for an example active learning method (green) and an alternative selection method such as random selection (red).  
With a fixed budget, the improvement from using active learning is shown by the dashed line.  When perfect accuracy is 
desired, the experimental savings using active learning is shown by the dotted line.   

The overall goal of an active learning process is to improve a predictive model or to optimize 

an output.  These predictions could be of the discrete form in which one is trying to predict the 

discrete class of an observation or one is trying to predict the value of an observation in a 

continuous fashion.  There are various formulations of this problem.  Sometimes, knowledge of a 

set of features describing each experimental unit is available ahead of time.  In the context of 

drug discovery, an example of this sort of problem could be the availability of a set of features 

describing each compound that could be used in an experiment.  Sometimes, there may not be 

information available to describe the experiments to be executed.  This might be the case when 

information is unavailable about the compounds to be tested.  The final measure for an 

experiment may also take different forms.  The result could be a discrete class such as a 

phenotype discovered using high-content screening.  Alternatively, the result may be continuous, 

such as the measured activity from a high-throughput screening experiment.  A single 

experiment may also result in numerous measurements.   
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Another consideration for the application of active learning is the selection of the appropriate 

batch size.  If a single experiment is chosen each round, this is called myopic selection.  Most 

active learning work using batch selection has used a fixed batch size.  There has been some 

work showing a reduction in the total number of batches needed to reach a specific accuracy by 

selecting dynamically-sized batches (Chakraborty, et al., 2010).  In the case of HTS and HCS 

there are per-batch and per-experiment costs which need to be considered when selecting a batch 

size.  For example, it is likely for a set of HTS experiments, the costs of doing 10 experiments is 

comparable to the costs of doing 96 or 384 experiments because the per-experiment costs are 

relatively low compared to the per-batch costs.  In proactive learning, experimental costs and 

reliability of labeling are considered to optimally select experiments (Yang & Carbonell, 2009).   

Application of active learning to biological problems has been limited (Liu, 2004; Mohamed, 

et al., 2010; Stegle, et al., 2009).  In the area of drug discovery, very few applications of active 

learning have been published.  In these efforts, compound activity was considered to be binary in 

nature (active or inactive) and these efforts focused on only a single target at a time (Fujiwara, et 

al., 2008; Warmuth, et al., 2003; Cui & Schneider, 2010).  Work in the field of chemogenomics 

attempts to make predictions for the effect of compounds on protein targets using various 

methods (Koutsoukas, et al., 2011; Bredel & Jacoby, 2004; Keiser, et al., 2009).  To the best of 

my knowledge, active learning has not been used in any chemogenomic context.   

In context of active learning for directing high-content screening efforts, the value of active 

learning increases with the cost (computational or financial) of experimentation as active 

learning attempts to select for execution only those experiments from which the most benefit can 

be gained while avoiding experiments for which the results can be accurately predicted.   
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The successful implementation of an active-learning directed experimental process 

incorporating results from experiments involving multiple targets could result in a predictive 

model that can more accurately predict potential side effects of potential drugs reducing waste in 

their further experimentation.  Additionally, a model that is capable of predicting side effects 

may also be able to predict alternative uses for compounds currently in use pharmaceutically.   

Thesis Tasks 

The overall goal of this work is to demonstrate the utility of active learning for the efficient 

exploration of large experimental spaces and specifically for high-content screening experiments. 

To that end, we will begin by initially discussing the implementation, execution and 

subsequent analysis of a high-content screening campaign to identify drugs (27 treatments + 

control) that affect Arabidopsis thaliana protoplasts (six tagged proteins).  

Next, using simulations, we will assess the effect on model accuracy that would result from 

the utilization of active learning to explore a blindly duplicated experimental space (12 tagged 

proteins x 54 treatments + control). 

Next we will demonstrate through simulations the potential improvement in lead discovery 

efficiency resulting from the utilization of various active learning methods when applied across 

an experimental space consisting of diverse assays testing for effects on diverse target proteins 

and a large number of compounds. 

Finally, we will extend the RandTag project in such a way as to establish an efficient 

framework for the detection of phenotypic changes in location patterns of endogenously 
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expressed proteins in NIH 3T3 resulting from drug exposure and execute a campaign directed 

using active learning to do so.   
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Chapter 2: High Content Screening Using Arabidopsis thaliana 

Protoplasts 

Protoplast Experimentation 
Protoplasts can be generated through the enzymatic or physical removal of the cell wall.  

After the removal of the cell walls, turgor pressure causes the cells to assume a spherical shape.  

After a short recovery period, the cell wall regenerates.  The Arabidopsis protoplasts used for 

this experiment were generated by enzymatically removing the cell walls from all above ground 

tissues of the plant.  Because source tissues included stem, leaf and vasculature, the resulting 

populations of protoplasts were highly heterogeneous.  It has been shown in some systems that 

different subpopulations react differently to stimuli (Balaban, et al., 2004; Çağatay, et al., 2009).  

Additionally, it has been shown that the location pattern of a single protein can vary from cell 

type to cell type (Faraco, et al., 2011).  The vacuole also provides a unique challenge in the 

analysis of the location patterns of proteins in protoplasts.  As most of the volume within the cell 

is taken by the vacuole, unless a protein is found within the vacuole itself, there is relatively 

limited volume remaining for the protein to be found.  This can make distinguishing between two 

location patterns very difficult.  Protoplasts were generated from six cell lines expressing 

different tagged proteins (AHA-ATPase, ER-GK, Talin, 313-YFP, Rab-F2a, M4).  The location 

and function of each tagged protein are shown in Table 2.  Samples of these protoplasts were 

counted to ensure numerical consistency from well to well and across plates.  Sample false color 

images from each of the tagged lines are shown in Figure 4 through Figure 9. Three 

concentrations (2.0 µM, 0.5 µM, 0.1 µM) of nine drugs (benzylphosphonic acid, Brefeldin-A, 

Damnacanthal, endothall, N9-isopropyl olomoucine, oryzalin, tyrphostin, ZM-449829) were 
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used.  Information about each drug can be found in Table 3.   The drugs were robotically added 

to samples of the protoplasts to yield a total of 168 unique experimental conditions including 

untreated controls.  Each well was imaged in a single central slice for 16 fields per experimental 

well.  The location of this slice was determined as a distance relative to the bottom of the glass in 

the 96-well plate.  The robotic addition of compounds to each experimental well was 

synchronized with the timing of imaging on the microscope such that drug exposure times for all 

experiments were approximately equal (4 hours) across all wells in the multiwell plate.  At least 

two experimental wells were available for each combination of tagged protein and drug at each 

concentration.  Due to microscope equipment constraints, only 60 wells were available per 96-

well plate.  Of these, 12 wells were used for a pair of untreated wells per cell line and the 

remaining 48 were used for pairs of different experimental conditions. 

Table 2: This table shows the cellular location and protein function of tagged protein where available.  All 
information was gathered from Uniprot. 

Tagged Protein Location (Uniprot) Function (Uniprot) 

AHA-ATPase Cell Membrane Hydrogen ion transport 

ER-GK Endoplasmic Reticulum NA 

Talin Cytoskeleton Cytoskeletal 

313-YFP NA NA 

Rab-F2a Cell Membrane Transport 

M4 Cell Membrane Transport 
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Table 3: The actions of each compound utilized according to PubChem are shown. 

Drug Effect (PubChem) 

benzylphosphonic acid  tyrosine phosphatase inhibitor 

Brefeldin-A Transport inhibitor 

Damnacanthal p56lck tyrosine kinase inhibitor 

endothall Phosphatase inhibitor 

N9-isopropyl olomoucine Kinase inhibitor 

oryzalin Tubulin modulator 

tyrphostin Kinase inhibitor 

ZM-449829 Kinase inhibitor 

 

Each captured image contained four channels.  The GFP channel depicted the location of the 

tagged protein within the protoplasts.  The second channel showed the location of DAPI, a 

fluorescent stain that binds strongly to DNA.  In this experiment, DAPI served as an indicator of 

the health of the protoplast.  A single bright spot within the protoplast indicated that DAPI 

reached the DNA and the cell was dead or dying.  DAPI can also attach to the vacuole in healthy 

cells.  Because the vacuole is the largest organelle in the cell by volume, most of the cell can 

appear to be filled with DAPI fluorescence.  The third channel showed the autofluorescence of 

the chloroplasts within the protoplasts.  Across different types of protoplasts, the number and 
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distribution of chloroplasts can vary dramatically.  The fourth channel contained a DIC image of 

the cells.  

 

Figure 4: This false color image shows a sample image from the set of protoplast images collected.  AHA-ATPase 
(green), DAPI (blue) and chloroplast autofluorescence (red) are shown.  AHA-ATPase is known to be found within the 
plasma membrane and is important for ion transport. 
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Figure 5: This false color image shows a sample image from the set of protoplast images collected.  ER-GK (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  ER-GK is known to be found in the endoplasmic 
reticulum.  

 

Figure 6: This false color image shows a sample image from the set of protoplast images collected.  Talin (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  Talin is a cytoskeletal protein.   
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Figure 7: This false color image shows a sample image from the set of protoplast images collected.  313-YFP (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  No information is available about the function or location 
of cellular location of 313-YFP. 

 

Figure 8: This false color image shows a sample image from the set of protoplast images collected.  Rab-F2a (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  Rab-F2a is involved in protein transport and is normally 
found in the membrane or surface of the vacuole. 
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Figure 9: This false color image shows a sample image from the set of protoplast images collected.  M4 (green), DAPI 
(blue) and chloroplast autofluorescence (red) are shown.  M4 is a transport-related protein found in the cell wall and 
other locations.   

Use of Hough Transform to Identify Cells 

The goal of the image analysis process is to detect and characterize changes in the population 

phenotypes.  In these particular Arabidopsis protoplasts, there was significant variation within 

the population of protoplasts.  As a result of the protoplasts being generated from above-ground 

tissues, cells were sourced from the stems, leaves and vasculature.  The diversity of the cells can 

be seen clearly in Figure 6.  Because of this significant variation and the possibility that different 

cell types might react differently to a compound, it would likely have been inappropriate to 

calculate field level features.  As a result of the cells being generally spherical in shape, we chose 

to utilize a circular Hough transform (Duda & Hart, 1972) to identify the circles within the 

images.  The Hough transform works by convolving a circle over a thresholded image.  The 

result is that centers of circles within the image tend to have high values after the convolution 
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with circles of matching radii.   In order to identify cells in these images, edges were detected 

using a Canny edge detector in the DIC channel.  The Hough transform was utilized on these 

images (Canny, 1986).  A single pass of the Hough transform can be utilized to detect circles of a 

single size.  Because of the diversity in the sizes of the circles, multiple passes of the Hough 

circle detector were used for various radii from 60 (smaller than the smallest protoplast 

observed) to 240 pixels (larger than the largest protoplast observed).  Each pass resulted in a 

matrix that was then normalized according to the circumference of the circle used for detection.  

This resulted in a three dimensional matrix (image width × image height × radii of circles) with 

each cell (x,y,r) representing the confidence of having a circle of radius r centered at position x,y.   

Circles were greedily accepted based on the probabilities.  The cells generally did not overlap 

significantly, so when a cell was accepted a cone was removed from consideration in the 

confidence matrix preventing subsequent selected protoplasts from overlapping with the selected 

protoplast.  The removed cone was centered at the detected center point (x,y), and at each r-slice 

had a radius equal to twice the r of that layer.  This minimized the number of overlapping cells 

selected.  A threshold was manually chosen such that the quality of segmentations was 

qualitatively maximized (15%).  Sometimes cells were identified within regions where there 

were no cells present.  It was hypothesized that local variation within the DIC channel allowed 

for the detection of “edge” pixels which were then detected as the edges of cells.  These 

incorrectly identified cells were removed by filtering circles with very low intensity variation in 

the DIC channel.  For each of these accepted circles, SLF34 

(http://murphylab.web.cmu.edu/services/SLF/) features were calculated with the GFP channel as 

the primary protein channel and with autofluorescence and DAPI separately as reference 

channels.  These features take into consideration the spatial distribution of color intensities 

http://murphylab.web.cmu.edu/services/SLF/
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within the protoplasts.  This resulted in two feature vectors that were largely identical.  For the 

resulting two feature vectors, the duplicated features were unduplicated to yield a single feature 

vector to describe each of the circles.   

The result of this effort was a set of feature vectors describing each found cell under each 

experimental condition as well as a the confidence that the found cell was actually a circle.  A 

histogram of resulting confidences and associated sample images is shown in Figure 10.  It is 

clear that as the confidence decreases, it is less likely that a complete circle will be found within 

that block.  This is hypothesized to be due to noise in the DIC channel images.   

 

Figure 10: A histogram of Hough circle confidences and associated patches from the images is shown.  False color 
images are shown in the same manner as in the previous figure along with the DIC image from the same patch.   
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Detecting Phenotype Differences using Mixture Models 
In order to test for differences in phenotypes, an approach to measure the overlap between 

distributions was utilized.  First, the protoplasts were clustered based on their features into 

clusters using K-means (MacQueen, 1967).  Using the resulting labels for all protoplasts, a 

mixture model was formed in which each experiment was represented by a vector of length K 

containing the proportion of protoplasts from that experiment belonging to each cluster.  The 

results of this process for K=10 are shown in Figure 11.  The mixture proportions are represented 

by the height of the blocks and they are sorted based on their deviation from cell line to cell line.  

Examples for four clusters are shown in each of the color coded boxes.  The first cluster (blue 

box, bottom left) showed the most variation across cell lines.  Protoplasts belonging to this 

cluster were largely absent from talin and present to varying degrees in the other cell lines.  The 

third cluster (green, bottom right) is present in significant amounts only in talin tagged cells.  

Cells across all lines have approximately equal proportions of protoplasts belonging to the tenth 

cluster (light purple, top right).     
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Figure 11: After clustering protoplasts, the proportion of cluster membership for each cluster was calculated across 
all images for each untreated cell line.  Samples images from four clusters are shown.  The mixtures are ordered by their 
variance across lines. 

Two parameters should be considered when building a model in this manner: an appropriate 

K and an appropriate confidence threshold for the acceptance of circles as protoplasts.  In order 

to select a model, it was assumed that replicated control experiments across should have similar 

mixtures (must link constraints).  Conversely, control experiments from different cell lines were 

assumed to be different (cannot link constraints).  The Manhattan distance was used to calculate 

the difference between two mixtures.  A range of K from 2 to 49 and confidence thresholds from 

5% to 65% in increments of 1% were tested.  Above 65%, some experiments were found to have 

no protoplasts and were thus immeasurable.  At each pair of parameters, the ratio of the mean 

cannot-link distance to the mean must-link distance was calculated.  We accepted parameters 
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which maximized this ratio.  These results are shown in Figure 12.  The best pair of parameters 

was K=3 and circle confidence > 0.17. 

 

Figure 12: Protoplasts with a circle confidence above a threshold were clustered into K clusters that were used to 
calculate mixtures for all wells.  The ratio of the mean distance between duplicated unlike control conditions (cannot link 
conditions)  to the mean distance between like control conditions (must link conditions) is shown.  A higher ratio indicates 
a better model.  The best pair of parameters was found at K=3 and confidence > 0.17.   

All protoplasts for each control condition were grouped together into a single experiment.  

Using the parameters discovered determined from Figure 12, (K=3 and confidence > 0.17) the 

pairwise distance between each control condition was calculated.  As shown in Figure 13, these 

results indicate that the distribution of protoplasts for the talin line was quite different from that 

for other tagged lines.  Based on a qualitative comparison of the images, this was not a surprising 

result.  These results also indicate that AHA-ATPase, 313 YFP and M4 are largely 

indistinguishable from one another and Rab-F2a and ER-GK were indistinguishable from one 

another.   
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Figure 13: Pairwise distances for mixtures were calculated using the aforementioned parameters.  The distributions 
of protoplasts for the Talin line appear to be the most different from the other lines. 

Detecting Phenotype Differences using PhenoRipper 
Alternative methods for identifying regions of interest within fields have been developed.  

PhenoRipper is a software system designed for the large scale analysis of high-content screening 

data (Rajaram, et al., 2012).  It was specifically designed to operate in experimental contexts in 

which heterogeneity provides a challenge for analysis.  Instead of attempting to carefully 

segment cells or calculate field-level features, this method looks for patterns in the colors found 

within the image.  First, images were thresholded based on a hand-selected threshold (20%).  

Then a random selection of pixels across numerous images was clustered using K-means based 

on their color intensities.  The images were then projected into the space of these discrete colors 

formed from the clustering of colors.  Then the image was broken into small non-overlapping 

blocks (100 x 100 pixels).  For each block, the mixture of colors within that block was 

calculated.  Blocks that were more than half “background color” were discarded.  A random 

selection of these blocks was clustered using K-means based on their color mixtures.  Then the 

images were projected into the block-type space.  Finally, superblocks were found by calculating 

the mixture of block types found in every 3 × 3 patch of blocks (superblocks were allowed to 

overlap).  The mixtures of block types within the superblocks were used to cluster superblocks 
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using K-means as well.  The final phenotype for an experiment was represented by the 

experiment’s mixture of superblock types.  For each run of K-means using PhenoRipper, a K of 

10 was used as that was the recommended default for the program.  This program was 

implemented in MATLAB and worked nicely for small sets of images.  However, with nearly 

60,000 images, there were stability issues, so the process was re-implemented in Python to 

alleviate those problems and take advantage of the cluster architecture to process the images 

more quickly.  The resulting mixtures were then analyzed in the same manner as the previous 

mixtures.  The Manhattan distance between the control mixtures is shown in Figure 14.  In this 

case, the talin line was again relatively different from other lines, but M4 was also found to be 

somewhat different from the other lines.     

 

 

Figure 14: Pairwise distances for mixtures were calculated using mixtures resulting from executing the PhenoRipper 
method on the collection of images.  The mixtures for the Talin line and M4 appear to be the most different from the 
other lines.   

Detecting Phenotype Differences Using 1-Nearest Neighbor Classifiers 
A third alternative method for this analysis was also developed.  Two distributions can be 

easily compared using a classifier trained to recognize each class.  If the accuracy of that 
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classifier is high, then the confusion between the two classes is low and thus the distributions are 

highly dissimilar.  In this case, we utilized a 1-nearest-neighbor classifier.  For two samples (of 

equivalent size) from classes with identical distributions, as the number of observations in each 

class increases, the accuracy is expected to approach 50%.  For two samples (of equivalent sizes) 

from classes with different distributions, as the number of observations in each class increases, 

the error of the classifier should approach a value directly proportional to the overlap of the two 

original distributions.   

Because the number of protoplasts between experiments varied, there would be significant 

effects on the resulting accuracy for the nearest neighbor classifier.  Thus, for each comparison 

to be made, a nearest neighbor classifier was “learned” on subsets of the data such that the 

number of samples from each class was balanced.  For each experimental condition this was 

executed multiple times and an average accuracy was calculated. 

In this case, the selection of a K was unnecessary, but the selection of a circle confidence for 

protoplasts was required.  For this analysis, we wanted to maximize the accuracy of classifiers 

trained on different control experiments and minimize the accuracy of classifiers trained on 

identical experiments.  We desired to maximize the ratio of the mean of these two values such 

that the distributions of different controls are most separated while like control distributions are 

most similar.  The resulting ratios as a function of circle confidence are shown in Figure 15.   
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Figure 15: The ratio of the mean error of classifiers trained with like control conditions to the error of a classifier 
trained with different control conditions is shown.  The best circle confidence is the value that maximizes the ratio 
(confidence > 0.15). 

Once the best circle confidence threshold was determined, the control experiments were 

compared.  The results of these comparisons are shown in Figure 16.  These results indicate 

again that talin is easily distinguishable from the other lines.  Relative to the differences between 

talin and the other lines, no other differences appear to be very significant.   

 

Figure 16: The accuracy of 1-nearest neighbor classifiers “trained” to recognize each control line is shown.  A higher 
accuracy indicates less similarity between the distributions of the protoplasts for the lines. 
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Figure 17: The results for the comparison of the control lines across all three methods are shown together for more 
direct comparison.  From left to right: protoplast mixture model, PhenoRipper assessment and protoplast classifier 
accuracy-based assessment. 

When comparing across the different phenotype comparison methods (Figure 17), it is clear 

that the protoplast mixture-based method (left) and classifier accuracy-based method (right) have 

very similar results.  This is not surprising as the basic unit (the Hough detected protoplast and 

the associated features) was identical in both analyses.  However, the model selection for these 

two methods yielded different cutoffs for circle confidence.  This probably contributes to the fact 

that the mixture based model appears to detect a slightly larger relative difference between Rab-

F2a and the other lines than does the classifier accuracy based method. When considering the six 

lines and all methods, the population distributions appear to fall into three groups.  Talin, a 

cytoskeletal protein, exhibited a unique phenotype when compared to all other lines.  Rab-F2a 

and ER-GK exhibited similar phenotypes to one another.  The phenotypes of the remaining three 

lines appeared very similar to one another.   

Detection of Drug Effects using Mixture Models 
To detect the effects of compounds from the distributions of protoplasts, a mixture based 

approach was utilized.  For each line, the distribution of Manhattan distances between all control 

experiments on separate plates was calculated (must-link distances).  All protoplasts across all 

plates coming from common conditions were grouped together, and a single mixture was 
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calculated for each experimental condition (cell line, drug).  Then the distances between 

mixtures from experimental conditions and their controls were calculated.  These results are 

shown in Figure 18.  By themselves, these results are not useful for making direct conclusions as 

they give no indication of the variance of a cell line.  To determine the probability of an effect, 

the intrinsic variation of the cell line without treatment must be considered.  In order to 

determine the significance of these distance calculations, the proportion of must-link distances 

derived from the same control lines that were greater than the measured difference between the 

controls and experimental conditions were calculated, giving a p-value.  The resulting p-values 

are shown in Figure 19. 

Overall, the results of the analysis shown in Figure 18 indicate that there may be somewhat 

large differences between experimental conditions and control experiments.  However, Figure 19 

indicates that these differences were not statistically significant.  Normally in this situation, some 

form of multiple hypothesis testing might be utilized, but in this case there were no distances 

which had a p-value < 0.05.  Some experimental conditions appeared to have relatively low p-

values, but their corresponding distances did not match any larger trend amongst drugs across 

concentrations that would be consistent with first-order concentration dependent effects.  There 

was weak evidence for effect from Damnacanthal across most lines except Talin.  Unfortunately, 

there was also weak evidence that media in the middle “concentration” had an effect on Rab F2a.  

As this experimental condition is equivalent a control, no hits were expected for media at any 

concentrations. 
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Figure 18: Mixtures were calculated based on the clustering of protoplasts for each unique condition (cell line, drug).  
The distances between each condition and the associated control condition were calculated and are shown.  Numbers 
accompanying the compound names indicate the relative dose of that compound for the experiment.   

 

Figure 19: For each experimental condition, the distance between its mixture and the corresponding control mixture 
was calculated.  A p-value was determined by calculating how many pairwise within control distances were greater than 
the experiment to control distance.  No distances were found to be statistically significant. 
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 Detection of Effects Utilizing PhenoRipper 
Likewise, the distances between experimental conditions and the corresponding control 

conditions were calculated (Figure 20).  The p-values for these distances were calculated as well 

(Figure 21).  Based on this analysis, Damnacanthal and Tyrphostin appeared to have statistically 

significant effects on M4, Rab-F2a, 313-YFP and AHA-ATPase.  At the highest concentration 

N9-isopropyl-olomoucine appeared to have an effect on AHA-ATPase. Tyrphostin appeared to 

have an effect on all lines, but not all effects were statistically significant.  There was no strong 

evidence for any of the media based “drugs” having any effect on the tagged lines.    

 
Figure 20: Mixtures were calculated using the PhenoRipper method.  The distances between each condition and the 

associated control condition were calculated and are shown.   

 
Figure 21: Using the PhenoRipper devised mixtures, for each experimental condition, the distance between its 

mixture and the corresponding control mixture was calculated.  A p-value was determined by calculating how many 
pairwise within control distances were greater than the experiment to control distance.   
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Detection of Effects from Drug Treatment Using 1-Nearest Neighbor Classifiers 
For each experimental condition, the accuracy of the classifiers when trained to recognize the 

experimental condition and the control condition was calculated.  These results are shown in 

Figure 22.  Confidence was assessed by calculating how often pairs of control wells from the 

same cell line had a higher accuracy than that calculated between the control condition and the 

experimental condition.  The resulting p-values are shown in Figure 26.  None of the effects were 

below a cutoff of 0.05, but there were some trends.  Damnacanthal showed evidence for having 

affected all lines except talin.  There was weak evidence for a low concentration of Tyrphostin 

having an effect on 313 YFP.  N9-isopropyl-olomoucine showed evidence for affecting AHA-

ATPase with this method as well.  As expected, there was no strong evidence for any of the 

media drugs having any effect on the protoplasts. 
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Figure 22: The mean errors of 1-nearest neighbor classifier are shown for when each classifier was “trained” to 
recognize the protoplasts from the experimental condition and protoplasts from the corresponding control condition.  A 
greater error indicates more similarity between the two distributions of protoplasts.   

 

Figure 23: For each experimental condition, the distance between its mixture and the corresponding control mixture 
was calculated.  A p-value was determined by calculating how many pairwise within control distances were greater than 
the experiment to control distance.  No distances were found to be statistically significant. 

When comparing the p-values for the drug affects across different analysis methods (shown 

together for convenience in Figure 24 to Figure 26), some trends were observed.  Across all 

analysis methods, there was only weak evidence for any of the drugs having an effect on talin.  

Damnacanthal showed effects across most lines to some degree.  When considering 

Damnacanthal effects against M4, one sees that there may be a concentration dependent effect 

whose relative strength was detected across all analysis methods.   



33 
 

 

Figure 24: For each experimental condition, the distance between its mixture and the corresponding control mixture 
was calculated.  A p-value was determined by calculating how many pairwise within control distances were greater than 
the experiment to control distance.  No distances were found to be statistically significant. 

 
Figure 25: Using the PhenoRipper devised mixtures, for each experimental condition, the distance between its 

mixture and the corresponding control mixture was calculated.  A p-value was determined by calculating how many 
pairwise within control distances were greater than the experiment to control distance.   

 

Figure 26: The probability of the condition-control classifiers having an error drawn from the same distribution as 
the control-control errors. 
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Full Assessment of Effects Across Concentrations and Methods 
We desired to completely assess each drug across all concentrations.  Because it is possible 

for drugs to exhibit non-linear effects, we opted to calculate the probability that all observations 

for the effects of a single compound across concentrations on a single tagged line came about 

randomly.  For each drug and each line, this is simply the product of the p-values from each of 

Figure 23, Figure 25 and Figure 26.  These results are shown in Figure 27.  This method reduced 

our sensitivity to variations in experiments which had few observations.  Firstly, across all 

analysis methods, there was no strong evidence for media having any effect on the protoplasts.  

There were no effects detected at all using the protoplast-based mixture model detection method.  

Using PhenoRipper, evidence for effects was detected for Damnacanthal across all lines except 

for talin.  Again it appeared that the probability for a false-positive detection of effects from N9-

isopropyl-olomoucine on AHA-ATPase was small.  Using the classifier error-based assessment, 

Damnacanthal showed the strongest effects across all lines except for talin.   

 

Figure 27: For each drug, all concentrations were combined such that the resulting p-value is the probability that the 
detected differences between the drug conditions and the control conditions arose randomly.  The heat maps from left to 
right represent the following analysis methods: protoplast mixture model, PhenoRipper mixture model, classifier error-
based detection. 

To globally assess the effects of drugs on all proteins across all analysis methods, a similar 

approach was taken to measure the probability of all measurements across all methods having 
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come about as a result of random chance.  The results of this final assessment are shown in 

Figure 28. These results indicate that Damnacanthal is likely to have actually affected all 

proteins, except for talin.  Also Tyrphostin is likely to have affected all proteins except for talin.  

The effect of N9-isopropyl-olomoucine appears to be confirmed based on the combination of all 

analyses.   

 

Figure 28: Across all three analysis methods, for each drug, all concentrations were combined such that the resulting 
p-value is the probability that the detected differences between the drug conditions and the control conditions arose 
randomly. 

Discussion 

Biological Insights 
When considering the six lines, the population distributions appear to fall into three 

groups.  Talin, a cytoskeletal protein, exhibited a unique phenotype when compared to all other 

lines.  Rab-F2a and ER-GK exhibited similar phenotypes to one another.  The phenotypes of the 

remaining three lines appeared very similar to one another.  As a result of the similarities in these 

phenotypes, one might expect to see that, if affected at all, similar proteins would be affected by 
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the same drugs.  Talin, in a phenotypic cluster by itself appeared to be largely unaffected by any 

of the drugs.  AHA-ATPase, 313-YFP and M4 which could be clustered based on their 

phenotypic similarity appeared to each be affected by Damnacanthal and Tyrphostin.  Rab-F2a 

and to a lesser degree ER-GK also appeared to be affected Damnacanthal and Tyrphostin as well.  

AHA-ATPase showed some evidence of having been affected by N9-isopropyl-olomoucine.  The 

similarity of the effects detected can also be seen in a hierarchical clustering of the lines based on 

their observed effects in Figure 29.  

 
Figure 29: The tagged proteins and drugs were sorted using hierarchical clustering along both axes. 

 
 

Conversely, if a drug affects some tagged protein, it would be reasonable to expect that a 

similar drug might affect the same protein.  That appears to be the case for these observed 

effects.  Damnacanthal and Tyrphostin are both tyrosine kinase inhibitors and there was 

significant evidence that both affected Rab-F2a, 313-YFP, M4 and AHA-ATPase.  N9-
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isopropyl-olomoucine and ZM-449829 are both cyclin dependent kinase inhibitors.  There was 

not strong evidence that they affected Rab-F2a or 313 YFP, but there was some evidence that 

they both affected M4 and AHA-ATPase.  Of the remaining drugs, Brefeldin A and Endothall 

are both phosphatase inhibitors and did not appear to have any significant effects.  Oryzalin is a 

tubulin modulator and as such, one might have expected it to have an effect on a cytoskeletal 

protein such as talin, but an affect was not observed.  Perhaps the concentration was too low or 

the exposure duration was too short to observe an effect.  Using mixture based methods, the 

distances between mixtures were calculated.  These distances represented the changes in relative 

populations of different types of protoplasts as a result of drug exposure.  Given the 

heterogeneity of the populations, it is conceivable that only a subset of the population might have 

been affected.  Relatively small, but statistically significant differences might give evidence for 

either small effects on large populations or significant effects on small populations.  Because of 

the relatively poor segmentation of these protoplasts, it was difficult to determine the types of 

protoplasts affected by these drugs.  An improved segmentation method may have allowed for a 

more thorough assessment of subtle population changes which could also have given evidence 

for biological reason underlying these effects.     

 

One common task in location proteomics is to predict the subcellular location pattern of a 

protein from images.  In the case of protoplasts, this task is made more challenging as many 

proteins are found outside of the vacuole.  As showed previously, our cell lines easily clustered 

into three groups and members of each group were indistinguishable.  With the inclusion of drug 

effect data, we can now separate these proteins from one another.  Talin can be separated from 

the other lines using only on the control images.  Using only control images, Rab-F2a and ER-
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GK were easy to distinguish from the rest of the cell lines, but impossible to distinguish from one 

another.  With the addition of information about how each protein is affected by Tryphostin or 

Damnacanthal, these two lines are easy to distinguish because ER-GK shows only a weak effect 

as a result of these drugs while Rab-F2a is strongly affected.  For the remaining group of 313 

YFP, M4 and AHA-ATPase, it is easy to distinguish 313 YFP when testing with N9-isopropyl-

olomoucine because it is not affected.  A test with Benzylphosphonic acid would then allow for 

the separation of M4 and AHA-ATPase as M4 is unaffected.    

 

The biological interpretations of the classifier error-based assessment and the PhenoRipper 

methods are also difficult to determine.  For that reason, sample images from lines under 

conditions which showed some effect in these analyses are shown.  Sample images are shown for 

M4 untreated (Figure 30) and treated with Damnacanthal (Figure 31) and Rab-F2a untreated 

Figure 32and treated with Tyrphostin (Figure 33).  The sample images shown were selected 

based on the focus and the number of cells in the images in order to best give an impression of 

the population. 

 
  



39 
 

 

Figure 30: This false color image shows a sample image from the set of protoplast images collected.  M4 (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  M4 is a transport-related protein found in the cell wall 
and other locations.   

 

 
Figure 31: This image was selected from a well that contained cells tagged for M4 and treated with Damnacanthal.  

An image of untreated cells taken from the same plate is shown in Figure 9. 
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Figure 32: This false color image shows a sample image from the set of protoplast images collected.  Rab-F2a (green), 
DAPI (blue) and chloroplast autofluorescence (red) are shown.  Rab-F2a is involved in protein transport and is normally 
found in the membrane or surface of the vacuole. 

 

Figure 33: This image was selected from a well that contained cells tagged for Rab-F2a and treated with Tyrphostin.  
An image of untreated cells taken from the same plate is shown in Figure 8. 
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Hough Detected Protoplasts 
It was hypothesized that the lack of focus in the entire field contributed to the difficulty in 

identifying cells very well using the Hough transform.  The features calculated for these images 

were heavily dependent on the spatial distribution of the detected fluorescence in each image.  

Because of the lack of focus for some fields that resulted from the highly variable size of 

protopalsts, these sorts of features some information may have been lost.   

 

One reason for choosing the mixture model based approach was to have the ability to 

apply a biological interpretation to the results if necessary.  By visualizing the clusters of cells 

for the K and circle confidence chosen, an expert could rather easily interpret the effects of these 

drugs.  However, using our model selection criteria, a K of 3 was selected.  With a K of 3, each 

cluster appeared to be composed of cells with diverse visual appearances.  An alternative model 

selection method could improve this issue.  The underlying assumption in model selection that 

all lines were different from one another may have been too strong an assumption to use with 

this particular method.  Using minimal expert intervention, one could select a model which 

separates the controls into the three visually similar groups: talin; ER-GK, Rab-F2a; M4, 313 

YFP, AHA-ATPase.     

 

The final conclusions resulting from the mixture model based approach did not indicate 

that any differences were statistically significant.  It is possible that this could have been 

remedied by taking more images, but the fact that some effects were very close to being 

statistically significant using the classifier error-based assessment, which used the same 

protoplast data would indicate that the problem actually lied in the model selection.   
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PhenoRipper-Based Mixture Models 
 

The results from the PhenoRipper based methods indicated that there were significant 

effects detected.  There is a significant difference between the Hough transform based feature 

calculation and those of the PhenoRipper method.  This is that the spatial arrangement of the 

colors within a protoplast makes a significant difference in the feature calculation, whereas in the 

PhenoRipper calculations, the spatial distribution of colors within a patch does not make a 

difference in the calculation.  Because of the variation in the size of cells and the effect on focus 

within images, this may have made the PhenoRipper method more suitable for the task of 

recognizing drug effects as the results were likely much less affected by images being out of 

focus.   

 

Confirmatory Efforts 
As a result of these efforts further imaging experiments have been executed to confirm 

these results.  These were executed using confocal microscopy, likely allowing for a more 

thorough assessment of the location patterns using feature calculations based on the spatial 

distribution of the tagged protein within the cell relative to the reference channels.  It would also 

be interesting to try to induce a phenotype change in talin using a larger dose of Oryzalin or 

possibly nocodazole.   
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Chapter 3:  Active Learning for High Content Screening Using 

Arabidopsis thaliana Protoplasts 
One fundamental weakness in much active learning work has been the demonstration of 

utility in the real world.  Many publications have relied on simulations to demonstrate the 

success of active learning processes.  In addition, many active learning simulation papers have 

utilized experimental data that is already in the final form that will be utilized by the active 

learner.  The primary difference between this work and that of standard active learning papers is 

that when the “oracle” is queried for answers in standard active learning, answers are given.  In 

this case, the “oracle” is queried and data is given implying that the act of processing that data is 

built into the active learning process in some capacity.  In the case of high-content screening 

processes, it is possible that novel phenotypes may be discovered and the presence of these 

phenotypes may force changes in phenotype assessment results.  In this chapter, the results from 

a partially completed active learning-driven HCS campaign are described as well as simulations 

demonstrating performance for completion of the remainder of the available experimental space.   

 

Protoplast Preparation 
Protoplasts were prepared as described in Chapter 2.  Protoplasts were generated from six 

cell lines expressing different proteins tagged with GFP (AHA-ATPase, ER-GK, Talin, 313-

YFP, Rab-F2A, M4).  Three concentrations of nine drugs (benzylphosphonic acid, Brefeldin-A, 

Damnacanthal, endothall, N9-isopropyl olomoucine, oryzalin, tyrphostin, ZM-449829, media + 

vehicle) were used.  This resulted in a true experimental space of (27 drugs + 1 control) × 6 lines 

or 168 experiments.  It is hypothesized that across all proteins there will be some proteins that 

show correlated effects from the treatment with the same drugs and some drugs that will have 
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correlated effects when treating the same proteins.  If this is not the case, it would be impossible 

to understand the entire experimental space without testing exhaustively.  Because we wanted to 

demonstrate the potential of an active learning process without testing a very large number of 

targets and drugs, we chose to duplicate the experimental space along the drug and tagged 

protein axes.  This resulted in an experimental space of 12 proteins × (54 drugs + 1 control) or 

660 total experiments.   

Two active learning threads were initialized.  For each round, a set of experiments was 

selected.  On the day prior to the selection of experiments and plating of cells, protoplasts were 

manually prepared from fresh Arabidopsis plants.  Cells were allowed to recover overnight.  On 

the first day of the round, cells were plated by hand into 60 wells of a 96 well plate.  Of these 60 

wells, 12 were untreated controls and the remaining 48 were duplicated experimental conditions.  

Because protoplasts are very fragile, robotic plating of the cells was not an option.  After cell 

plating, drugs were robotically added to the wells in the order in which they were to be imaged.   

The timing of the addition of the drugs was matched to the timing of the imaging so that total 

exposure time would be synchronized across all experiments.  The two active learning threads 

were executed until they were approximately 12% and 25% complete.  At this point, experiment 

execution timing became a significant issue and data was more rapidly gathered using a random 

selection method to fill out the remainder of the unduplicated experimental space with at least 

two wells of every condition.   

Active Learning Method 
Active learning was performed using an active learning method developed by Armaghan 

Naik.  This method utilizes discrete phenotype information to describe the experimental space.  

This method detects correlations between proteins across different conditions and correlations 
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between conditions across different proteins.  Utilizing this correlation information, predictions 

can be made using imputation.  An example of such imputation would include the situation in 

which Target A under Condition D is observed to be the same as Target B under Condition D.  If 

we then observed Target A under condition C, we could predict that Target B under Condition C 

would have the same phenotype.  This active learning method attempts to build a model around 

clusters of targets and conditions.  It then chooses experiments that are expected to improve this 

model.  

Image Analysis 
For this active learning method, a discrete label was required for each experimental 

condition. The first step of the image analysis process was identical to that used in Specific Aim 

1.  A Hough transform was used to identify protoplasts.  Features were then calculated for these 

protoplasts, which were then filtered and clustered using K-means and a threshold on the circle 

confidence from the Hough transform.  A mixture model was formed at each round to describe 

all experimental conditions observed up to that point in the active learning process. 

Phenotype Clustering 
We utilized a hierarchical clustering method to determine the phenotype labels.  In each 

round of clustering an entire hierarchical clustering tree was formed.  At each point in which two 

cluster labels were merged, the product of the distance between the two clusters and the total 

number of members in each cluster was calculated.  The clustering was stopped at the step prior 

to the step that had the highest product avoiding combining the observations that are the most 

distant and the most numerous.   
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Active Learning Simulations 
All images from both active learning threads and the additional thread used to fill out the 

experimental space were divided into wells.  The wells were then divided as evenly as possible 

into experimental conditions (i.e., protein-drug pairs).  For some unduplicated conditions, only 

two wells worth of images were available.  Because the experimental space was duplicated along 

both the proteins and drugs, there were some duplicated conditions for which there were no 

experimental wells (114 duplicated conditions missing resulting in 83% coverage of the 

duplicated space).  These experimental conditions were left empty for the duration of the 

simulations.  During the actual active learning threads, a batch size of 24 was utilized and this 

was maintained for all simulations.   

In order to assess our active learning process, the final model and its associated predictions 

were considered to be the ground truth.  However, as the rounds progressed, the phenotype labels 

for a single experimental condition were likely to change from round to round as new conditions 

were added to the pool of data used in clustering.  As a result a comparison that ignored the value 

of the resulting labels was needed.  In order to calculate the equivalence of a clustering, all inter-

observation relationships were considered meaning that if they have the same label in one 

clustering, an equivalent clustering would also have them in the same cluster but it may not have 

the same label.  This is illustrated in Figure 34 with an example clustering compared to two 

alternative clusterings.  One of these clusterings is a perfect match in terms of recovering label 

information while having different labels.  The other is an imperfect match and the agreement 

calculation is shown for both.  The agreement calculation is the mean of the proportion of must 

link relationships recovered and the proportion of cannot link relationships recovered.   
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Figure 34: One clustering is compared to two possible clusterings.  One of which is a perfect recapitulation of the 
label information but with different labels.  The other is imperfect and the agreement calculation is shown for both.  

Because we artificially duplicated the experimental space, we also calculated how well the 

hidden duplications were recovered.  In a round, for each pair of duplicated drugs, all pairs of 

predictions were compared for equivalence.  The fraction of matching pairs was reported as the 

duplication recovery.  

In order to test the utility of the active learning method, multiple simulations (>10) were run 

in which the initial starting set included only the control wells.  From this initial set, a model was 

learned using hierarchical clustering to determine the final phenotypes.  Regardless of the model 

used to generate the phenotypes, all simulations used the predictions resulting from the active 

learning model.  At each step, the current model predictions were compared to the final model.  

The results are shown in Figure 35.  For both traces, the phenotypes were determined and the 

predictions were made using identical methods, but the difference between these two traces lies 

in the selection method used.  There was no statistical difference between the resulting traces.   
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Figure 35: The mean and standard error are shown for the resulting agreement between simulated active learning 
runs using hierarchical clustering to determine the final phenotype labels.  The green line indicates the performance using 
random selection and the red line indicates performance using active learning selection.  There was no significant 
improvement using active learning. 

The ability for the model to recover the line and drug duplications at each round was 

measured and the results are shown in Figure 36 and Figure 37.  In both cases, using active 

learning to select the experiments resulted in an improvement in the duplication recovery rate. 
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Figure 36: The mean and standard error of the line duplication recovery is shown as a function of experimental 
space exploration is shown.  The red line indicates the recovery while selecting experiments using active learning and the 
green line represents recovery using random selection. 

 

Figure 37: The mean and standard error of the drug duplication recovery is shown as a function of experimental 
space exploration is shown.  The red line indicates the recovery while selecting experiments using active learning and the 
green line represents recovery using random selection. 
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Figure 38: The mean and standard error of the number of phenotypes detected as a function of experimental space 
exploration is shown.  Active learning selection is shown with the red line and random selection is shown with the green 
line. 

Discussion 
There was no improvement in the agreement with the final model that resulted from using 

active learning to select experiments.  There are a number of possible reasons for this.   

Phenotype Detection Model 
It is important to fully understand what the duplication recovery metrics signify.  A method 

which said that every single phenotype for all experimental conditions was identical would have 

perfect recovery so these measures alone alone cannot tell the whole story.     

The mixture model appeared to have sub-optimal performance.  One would have expected 

that if the model was working well, it would have easily identified the line duplications in the 

first round as all lines were observed in their control conditions.  A perfect model would have 

continued to recognize these duplications as the simulation progressed and the duplication 
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recovery would never have changed.  In this case, the line duplication recovery dropped 

dramatically indicating that it was detecting differences between lines when no such differences 

should have been detected based on the fact that the data used by the model to make these 

assessments came from experiments with identical experimental conditions.  At the end of both 

traces, the line recovery rate was at nearly 100% meaning that most line duplications were 

recovered with complete data which is a positive sign.  Additionally, the number of phenotypes 

at the end of each trace (Figure 38) was approximately six indicating the recovery of line 

duplications was not attributed to just a single phenotype being detected.   

A similar argument can be made for the drug duplication recovery.  Because there was no 

requirement that every drug be tested at least once for a single line, it could take significantly 

more experiments to guarantee that all duplications would be detected for a perfect model.  In 

this case, even with complete data, the drug duplication recovery was poor at the end of each 

trace.  

Active Learning Method 
A discrete experimental space composed of lines and drugs such as this has a set of 

parameters that can be used to describe it: drug uniqueness, line uniqueness and responsiveness.  

Line uniqueness refers to how similar the lines are to one another in terms of their affectability as 

a result of drug exposure.  Drug uniqueness refers to how similar the drugs are to one another in 

terms of what targets lines they can affect.  The less unique a system is, the easier it is to learn an 

accurate predictive model.  The more unique a system is the more difficult it is to learn an 

accurate predictive model.  This simulation was utilizing an experimental space which was less 

than or equal to 50% unique because of the duplications.  There is a range of uniqueness in 

which the active learner used can improve the prediction accuracy relative to that achieved by 
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the same model trained with randomly selected experiments.  Responsiveness is the frequency 

with which a line is affected by a drug.  This active learner has been shown to improve 

prediction accuracy for low ranges of uniqueness and relatively high ranges of responsiveness.  

There is a risk in the area of drug discovery that the responsiveness may be far too low to see a 

significant difference between active learning based selection and random selection. 

An additional issue with this active learner is that it does have good performance 

characteristics when the phenotypes appear to be very noisy in nature.  Due to the nature of the 

prediction method used by the active learner, many simulated threads were terminated after 

exploring only 20-30% of the experimental space.  This correlates with a significant drop in the 

drug duplication recovery rate.  The results shown are for the simulated traces that were able to 

complete (most likely the simulations with the best model accuracy for both random selection 

and active learning based selection). 

Potential Improvements 
One possible reason for the problems with the model predictions could be a result of having 

to split the data up to fulfill the duplicated conditions.  It is conceivable that more fields would 

have helped to give more stable phenotype assessments.  Additionally, the phenotype assessment 

model could have been improved by using the mixtures from a PhenoRipper-based method.  

With an iterative approach to high-content screening, one must decide whether to analyze new 

images once or reanalyze the images every round. Using the PhenoRipper method in the first 

round of a simulation generates a set of superblock definitions that can be used to rapidly process 

any new images to determine their superblock mixtures.  The risk of this approach is that if a 

new phenotype is observed, but it is measured using old superblock definitions, the new 

phenotype may not be detected as such.  For that reason, it could be advantageous to rerun the 
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entire PhenoRipper pipeline to analyze every image for every round.  For these simulations, per 

round PhenoRipper assessments would have taken a substantial amount of time. For that reason, 

the mixture model was chosen for use in these simulations.  
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Chapter 4: Prediction of Biological Responses Using Protein and 

Compound Features and their Discovery using Active Learning 

Introduction 
 

       Drug development is a lengthy process that begins with the identification of potential drug 

targets and ends after testing in clinical trials. The targets are generally identified through basic 

science studies as being critical components of processes believed to be affected in a disease.  

Once a target has been identified, the goal is to identify drug-like compounds that either increase 

or decrease the activity of a target protein. High throughput screening (HTS) is a common way to 

ascertain the effects of many compounds on a single protein.   

The first step in an HTS campaign is to develop an assay that detects the effects of 

compounds on the target protein. Multiple types of experimental assays can be used for HTS.  

These screens are commonly performed by adding compounds to a protein in a microtiter plate 

or to a well of live cells. A plate reader can be used to measure absorbance, fluorescence or 

luminescence as a reflection of target activity (Inglese, et al., 2007). Alternatively, flow 

cytometry can be used to measure changes in cellular populations that result from the addition of 

compounds (Sklar, et al., 2007).  Lastly, fluorescence microscopy can be used to detect changes 

in target localization (Trask, et al., 2009) in a process sometimes referred to as high-content 

screening.  The development of liquid handling robots has made it possible to test millions of 

compounds in a single pass. 

Even with automation, exhaustive high throughput screening can be prohibitively expensive.  

One approach to reducing the need for experimentation is to generate a model for compound 
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effects in silico, a process referred to as virtual screening. There are two common methods 

(Patani & LaVoie, 1996). During a quantitative structure activity relationship (QSAR) analysis, 

molecules are checked for the presence or absence of specific structural elements.  The vectors 

describing the molecules are referred to as a “fingerprint.”  QSAR methods have been used to 

make predictions about the activity of compounds on target proteins (Kearsley, et al., 1996) 

(Sheridan, et al., 1996). Molecular docking is an alternative method that requires knowledge of 

the structure of both target and compound (Lengauer & Rarey, 1996) (Huang & Zou, 2010). 

Computer simulations are run in which the target and compound are forced into contact and the 

interaction energy between the target and compound molecule are then estimated.  These 

methods take into consideration features of the target protein and potential drugs.  Beyond virtual 

screening, efforts have also been made to apply machine learning techniques to the wealth of 

information available in the PubChem database, paying particular attention to the gross 

imbalance of active to inactive compounds (Han, et al., 2008) (Li, et al., 2009). 

Once a compound has been identified as having an effect on a target, the compound may be 

advanced further along the drug development pipeline.  It is not uncommon for previously 

unknown effects to be discovered after significant investment in a potential drug.  These are not 

discovered earlier because HTS processes are primarily designed to detect the effects of 

compounds on a single target protein without considering whether or not it affects other targets.  

One solution to this problem would be to test every compound (~106) against every possible 

protein target (~104).  This would require an estimated 1010 experiments, the cost of which would 

likely be prohibitive.  An obvious alternative is to use some method to choose a subset of 

possible experiments that is expected to provide sufficient information to make decisions.  This 

is the province of machine learning approaches termed active learning, which have been 
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specifically developed to permit efficient exploration of large experimental spaces.  While active 

learning is widely used in some fields, its application has been limited in biological problems 

(Tong & Koller, 2001) (Pournara & Wernisch, 2004) (Liu, 2004) (Stegle, et al., 2009) (Danziger, 

et al., 2009) (Mohamed, et al., 2010).  

Active learning consists of three phases performed in a loop (as illustrated for the work 

described here in Figure 39).  A campaign of experiments can be initialized either using prior 

results from literature or databases or by randomly selecting a batch of experiments from an 

experimental space.  (1) A model is generated to represent the currently available data. (2) From 

that model, experiments are selected for execution that are expected to improve the model.  (3)  

The set of experiments is executed and the resulting data are combined with previously collected 

experimental data.  The loop then continues from Step 1 until either a desired accuracy of 

predictions is achieved or a specified budget has been exhausted.  There have been limited 

previous applications of active learning to the drug discovery process.  In these efforts, 

compound activity was considered to be binary (active or inactive) and effort was focused on 

only a single target (Warmuth, et al., 2003) (Fujiwara, et al., 2008). 
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Figure 39: An active learning pipeline is shown for an experimental space with N proteins and M compounds.  (a)  
For each round of active learning, the results from a new set of experiments are observed and added to the current set of 
data.  (b) A model is constructed using the compound features to make predictions for experimental results.  (c) A model 
is constructed using target features to make predictions for experimental results.  (d) For the dual regression approach, 
two predictions are usually made and combined (as shown for Protein 2, Compound 4).  (e) Observed experiment values, 
values predicted from the model, and experiments that would be chosen for the next round of acquisition by different 
methods are shown. 

Here, we designed two models to make predictions about activities for large numbers of 

combinations of compounds and targets.  Our model uses features developed for virtual 

screening to describe compounds, and features from sequence analysis to describe target 
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proteins.  Most importantly, we investigated the utility of applying active learning in 

combination with these models in order to efficiently discover active compound-target pairs.  In 

tests using data from the PubChem database, we found that active compound-target pairs could 

be discovered as much twenty-four times faster using active learning than by random selection of 

experiments. 

Results 

Dataset 
To evaluate our proposed approaches, we chose to use existing experimental results for 

assays on many targets and many compounds.  We therefore began by assembling a large set of 

compound effect scores from PubChem (http://pubchem.ncbi.nlm.nih.gov).  In total, compound 

activity scores for 177 assays were assembled.  Of these assays, 108 were from in vitro assays 

and 69 were from in vivo assays.  During collection, assay scores were adjusted so that they 

ranked from -100 (strong inhibitory effect) to 100 (strong activation effect) with scores of zero 

implying no effect.  Of the 600,000 compounds in PubChem across the 177 assays, an average of 

30% had a reported activity score for a given assay.  (We do not know but assume that the 

missing values are approximately missing at random.)  Of these, we created a dataset of all assay 

data for 20,000 randomly-chosen compounds, resulting in a system with 3.5 million possible 

experiments.  All combinations of target and compound with scores above 80 or below -80 were 

marked as hits.  (Note that each PubChem assay includes its own rank score cutoff above which 

a chemical is considered to be “active”.  Our cutoff of 80 is more stringent than that used for 

most assays.) Because it is difficult to know what is most relevant to measure about a compound 

or a target, we calculated many features for each.  For each compound, 1559 fingerprint features 

were calculated.  For each assay, 388 features were calculated from the amino acid sequence of 
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the associated protein.  These features did not have to be perfect descriptors of molecular 

properties, but only to reflect aspects of similarity among compounds or proteins.  

Model Definition 
As an initial approach to constructing a predictive model, we explored using linear 

combinations of features.  Given the large numbers of features involved, lasso regression 

(Tibshirani, 1996) was used because it allows for efficient feature selection for linear regression 

models.  We note that while the assay scores may be non-linearly related to true activity, and 

while estimates of true activity may be obtained by further manipulation or testing, we expect 

them to be good approximate predictors of which combinations of compounds and targets will 

show high activity. 

Three approaches to prediction of the assay scores were used.  The first approach used all 

compound features to predict the activity of each compound in a given assay (analogously to 

QSAR).  Using lasso regression, compound features were selected that were strongly indicative 

of the activity of a compound on a single target.  A regression model was learned for each 

individual target allowing for the selection of compound features unique to a target (Figure 39b).  

The second approach used all target features to predict the effect on each target of a given 

compound.   When considering all experiments that involved a single compound, lasso 

regression allowed us to select features of the target protein that were indicative of the likelihood 

for a target to be affected by that single compound (Figure 39c).   The third approach made a 

combined prediction by averaging the two predictions for each compound-target combination 

(Figure 39d).   We refer to this approach as the dual regression model.  
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Evaluating Model Performance 
We first sought to determine how accurately these models could predict target-compound hits 

as a function of how much training data was available.  To do this, we randomly sampled a 

sequence of experiments one at a time until 3% of the experimental space had been sampled 

(note that each combination of assay and compound was considered independently when 

selecting random experiments).  As each experiment was sampled, we combined it with all 

previous experiments from that sequence to train a model and evaluated its ability to predict hits 

for all remaining data.  

A receiver-operator characteristic (ROC) curve was calculated for each of these models by 

varying the classification threshold to predict a hit (note that only the prediction threshold was 

varied; the definition of an actual hit as having an absolute value above 80 was unchanged). 

Finally, the area under the ROC curve was calculated for each sequence.  This process was 

repeated ten times for each of the three prediction approaches described above.  The means and 

standard errors of the area under the ROC curve for the ten trials for each prediction approach 

are shown in Figure 39.  Two methods were used to generate random predictions for comparison.  

In the first method, scores were randomly chosen from the set of all scores for all assays.  

Because these were globally random, the area under the ROC curve was expected to be 0.5.  

Predictions using all methods performed better than this expectation.  For the second method, 

scores were randomly chosen from those for all compounds for a given target.  The predictions 

from this sort of random predictor were expected to be more accurate than randomizing across 

all observations (since targets with a lot of hits will be randomly predicted to have a lot of hits), 

thus it is a more stringent standard for comparison.  Predictions using drug features alone or 
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using dual regression performed better than random by this standard.  This is despite the fact that 

less than 0.1% of the combinations were active according to our definition. 

 

Figure 40: Area under ROC curve for prediction of positive experiments with increasing amounts of random 
training data.  Ten random sequences of experiments were used to select data used for training regression models.  After 
each experiment was chosen, a ROC curve was constructed by gradually raising the threshold on the predicted assay 
score at which an experiment was considered to be positive. The mean and standard error of the area under the ROC 
curve after each experiment is plotted for each regression method.  The prediction methods shown are within target 
random prediction (red), regression using target features only (magenta), regression using compound features only (teal) 
and dual regression (green). 

We also considered which features were more informative than others.  To make a single set 

of predictions across the entire space of 20,000 compounds and 177 targets requires the training 

of 20,177 lasso regression models.  The final models trained at 3% of the experimental space 

(from Figure 40) were analyzed and the proportion of models where the coefficient for each 

feature was non-zero was calculated.  To determine the magnitude of the effect of a feature on 

prediction, the mean absolute coefficient for each feature (only when it was selected) was 

calculated.  For targets, the most frequently selected features (and those with the largest 
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coefficients) were the amino acid compositions.  For compounds, the most frequently selected 

feature was “Group IIa (Alkaline earth)” and the feature with the largest absolute coefficient was 

“4M Ring”.  Further details about features that were most frequently selected are found in Table 

4 and Table 5. 

  

Table 4: The five most frequently selected compound features are shown with their source, description, selection 
frequency and mean Beta when selected using lasso regression. 

 

Table 5: The five most frequently selected target features are shown with their source, description, selection 
frequency and mean Beta when selected using lasso regression. 

 

We also were interested in how applicable a trained model would be to a new target or a new 

compound.  We utilized the same random sampling approach described above.  However, for 

each of the ten trials, the experimental results were held out for a unique 10% of all targets or 

compounds and a ROC curve was calculated for only the held out experiments.  The results 

(Figure 41) show that when holding out entire compounds or targets, relatively accurate 

predictions can be made about activities from the remainder.  As expected from the results in 

Figure 40, the predicted activities for held out compounds are more accurate than those for held 

Source Content Selection Frequency Mean Absolute Beta
MACCS  4M Ring 0.49 0.70
MACCS  Group IIa (Alkaline earth) 0.58 0.64
MACCS  CSN 0.48 0.62
MACCS  QAAA@1 0.17 0.61
MACCS  OACH2A 0.31 0.58

Source Description Selection Frequency Mean Absolute Beta
ProtParam AAComp-(A) 0.62 3.31
ProtParam AAComp-(E) 0.60 1.23
ProtParam AAComp-(D) 0.55 1.92
ProtParam AAComp-(H) 0.54 0.76
ProtParam AAComp-(C) 0.53 2.85



64 
 

out targets.  Both, however, perform better than random prediction (AUC = 0.5).  The results 

confirm that the regression approach can capture important information about compound effects, 

even when no information about a compound is provided during training.  The fact that scores 

could be predicted better for new compounds than for new targets may be due to the fact that 

data was available for many more compounds than targets (and thus there is a higher chance that 

the model has already seen a similar compound versus a similar target).  

 

Figure 41: Area under ROC curve for prediction of positive experiments in held out targets or compounds with 
increasing amounts of random training data.  The same approach as in Figure 40 was used, except that only predictions 
for held out compounds (red) or targets (green) were considered and only dual regression was used.  The mean and 
standard error of the area under the ROC curve after each experiment is plotted. 

Active Learning Simulation 
Given that our modeling approach performed better than random at predicting relative 

activity scores, we next determined whether it could be used to successfully drive an active 

learning process (i.e., to find hits faster than expected at random or to rapidly maximize 

predictive accuracy). For this, simulations were run for an experimental space of all 177 assays 
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(129 unique gene targets) and all 20,000 compounds.  For this experimental space, rank scores 

were available in PubChem for 1,043,300 experiments out of 3,540,000 possible experiments.  

Simulated experiments were restricted to those for which results were available; requests from an 

active learner for other experiments were skipped. 

To initialize a simulation, all experimental results were hidden from the active learner and 

384 experiments were selected randomly for “execution.”  During the execution phase (Figure 

39a), results from selected experiments were “revealed” and used for training of a predictive 

model (Figure 39b-d). A new batch of experiments was then selected using one of a number of 

active learning methods (Figure 39e).  Finally, the data for the selected experiments were added 

to the pool of previously selected data and the loop continued until 3% of the possible 

experimental space was explored.  Each round consisted of the selection of 384 experiments.  

Ten separate simulations were run for each method, each starting out with a different set of 

initial experiments. At each round, the discoveries (combinations whose absolute activity score 

was greater than or equal to 80) were counted, and the mean count and associated standard error 

were recorded as a function of the fraction of experimental space so far explored. 

We first considered a greedy active learning approach in which unobserved experiments that 

had the greatest predicted effect (inhibition or activation) were selected for measurement in the 

next round.  This greedy approach was used in combination with dual regression, single 

regression with predictions from compound features for each protein target and single regression 

with predictions from protein target features for each compound. For comparison, a random 

selection method was also included.  As shown in Figure 42, the greedy dual regression method 

performed best.  After exploration of 3% of the experimental space, an average of approximately 

38% of possible discoveries were made.   Results for the single regression approaches are also 
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shown.  As might be expected from the results in Figure 40, results for prediction from target 

features only are nearly the same as for random selection. Results using compound features only 

are much better, but not as good as for dual regression. 

 

Figure 42: Active learning to discover compound-target hits. The average number of discoveries and standard error 
for 10 separate trials are shown.  The methods were random choice (red), dual regression with greedy selection (green), 
single regression using only compound features for prediction (blue) and single regression using only target features for 
prediction (cyan). 

The rate of discovery for the greedy method using dual regression decreased as the 

simulations progressed.  Exploration of the experimental space with the greedy algorithm was 

limited to regions of the feature space that were predicted to have large activities.  We 

considered the possibility that this limited the system’s ability to learn a better model, and that 

this could be overcome by acquiring data in regions where few observations have been made or 

where the model predictions are uncertain. Therefore, a “density-based” approach was also tested 

that selected experiments so as to explore the experimental space efficiently without regard to 
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predicted values or experimental results.  In this approach experiments were tested that were 

most similar to unobserved experiments and least similar to observed experiments (Fujii, et al., 

1998).  A variation on this idea, diversity sampling, was also tested, along with uncertainty 

sampling in which experiments with the highest uncertainty of their prediction are selected.  

Results for these approaches are shown in Figure 43.  The uncertainty-based selection method 

performed much better than random but not as well as dual regression with greedy sampling.  

Density-based and diversity-based sampling performed similarly to random selection.  These 

three classical active learning methods are generally designed to select experiments for execution 

that will yield the most accurate model, while the results in Figure 43 are for finding hits.  We 

therefore considered the accuracies of the models for each method by calculating the area under 

the ROC curve (as previously described for Figure 40).  As shown in Figure 44, all selection 

methods, except for uncertainty sampling, resulted in an initial peak followed by a slight, gradual 

reduction in the accuracy of the models.  The better performance of uncertainty sampling 

compared to dual regression with greedy sampling is consistent with the opposite result in Figure 

43.  This is because uncertainty sampling does not prefer finding hits over non-hits. 
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Figure 43: Evaluation of compound-target hit discovery for different active learning methods. The average number 
of discoveries and standard error for 10 separate trials are shown.  The methods were random choice (red), dual 
regression with greedy selection (green), uncertainty sampling (blue), density-based sampling (teal) and diversity selection 
(magenta). 
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Figure 44: Evaluation of model accuracy for unobserved experiments for different active learning approaches. A 
dual regression model was trained using all experiments selected with each selection method.  The mean and standard 
error of the area under ROC curve for each regression method is plotted.  The selection methods were random choice 
(red), dual regression with greedy selection (green), uncertainty sampling (blue), density-based sampling (teal) and 
diversity selection (magenta). 

Because uncertainty, diversity and density-based selection methods were designed to yield an 

accurate model we also tested hybrids of greedy dual regression with each of these methods.  

The hybrids with density and diversity performed worse than greedy dual regression by itself 

(not shown) but the hybrid with uncertainty performed slightly better (Figure 45).   
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Figure 45: Improved active learning approaches’ discovery rates. The average number of discoveries and standard 
error for 10 separate trials are shown.  The methods were random choice (red), greedy dual regression (green), greedy 
dual regression-uncertainty hybrid (blue), and greedy selection-uncertainty hybrid using memory limits of five (cyan) and 
ten rounds (magenta). 

We also considered the possibility that the decrease in rate of learning for greedy dual 

regression was due to excessive testing of a given target for new discoveries after all of them 

have already been made.  To address this possibility, we developed a modified approach (which 

we termed “limited memory”) in which only information from a given number of previous 

rounds was used in the model generation and active learning process.  Any requests from the 

active learner for experiments previously selected and subsequently hidden were skipped.  As 

shown in Figure 45, limiting memory to only the previous 5 or 10 rounds significantly improved 

the discovery rate. Almost 60% of discoveries were made after only 3% of the experimental 

space was explored.   We also found that limiting memory in the context of hybrid uncertainty 
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methods also improved the quality of the predictive model as measured by the area under the 

ROC curve in Figure 46.  

 

Figure 46: Improved active learning approaches’ accuracy. A dual regression model was trained using all 
experiments selected with each selection method.  The mean and standard error of the area under ROC curve for each 
regression method is plotted.  The methods were random choice (red), greedy dual regression (green), greedy dual 
regression-uncertainty hybrid (blue), and greedy selection-uncertainty hybrid using memory limits of five (cyan) and ten 
rounds (magenta). 

For reasons of computational time, we restricted our analysis to 20,000 compounds.  It was 

therefore of interest to estimate how performance might change if more compounds were 

included.  As a preliminary indication of this, we performed simulations for smaller sets of 

compounds.  The results (Figure 47) show that the learning rate is significantly worse for 5,000 

compounds than for 20,000, but that it is not much different for 10,000 than for 20,000.  This 

suggests performance for larger sets might be similar. 
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Figure 47: Discovery rates for different numbers of compounds. Simulations were run for multiple active learning 
methods for the exploration of 2% of the experimental space with various subsets of the compounds.  For all runs, dual 
regression with greedy sampling was used.  The average number of discoveries and standard error are shown (n = 10).  
The drug selection subsets were of the following sizes: 20,000 (black), 10,000 (dark gray) and 5,000 (light gray). 

Discussion 
We have described a pipeline for executing experiments driven by an active learning system 

and demonstrated that it can produce the rapid discovery of compounds that affect target proteins 

using a set of heterogeneous assays.  We found that the selection of experiments based only on 

predictions calculated using compound features (predicting the effect of a compound on a single 

target) performed significantly better than the selection of experiments based only on predictions 

from target features (predicting the sensitivity of a target protein to a single compound).  Decent 

performance of the prediction models using compound features is to be expected given past 

results with QSAR approaches to modeling compound activity on a given target.  The 

comparatively poor performance of the protein models could be a result of multiple issues: poor 

features, limited data, and heterogeneous data sources.  The system included only features that 
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could be calculated from sequence information, and it is likely that this feature set could be 

improved by the inclusion of features calculated from protein structural information.  

Importantly, the addition of memory limitations to these models further improves the discovery 

rate.  In this experiment, only information from 177 assays was used.  As information from more 

assays becomes available, predictive models are expected to improve. 

Our system could have two closely related purposes.  First, this system could be used to 

predict and test for previously uncharacterized side-effects on other important target proteins.  

Compared to current high throughput screening methods, the rate of discovery of such effects 

would be expected to be greatly improved.  Alternatively, a set of many target proteins could be 

constructed (e.g., for a number of diseases), and compounds that affect one or all of these targets 

could be rapidly discovered concurrently.  The analysis of many targets and many compounds in 

a coordinated fashion increases the average number of experiments performed to find a 

compound that affects a single target, but decreases the average number per target. 

The selection of an appropriate batch size is an important consideration for the utilization of 

an active learning system.  Some experiments might be well suited for dynamic experimentation 

because a batch of experiments requires relatively little overhead cost and a short time is 

required to execute the experiments relative to computational time.  In this case, a smaller batch 

size may be chosen.  

It is important to note the differences between the approaches presented here and those 

described previously.  In particular, they are distinguished from QSAR and virtual screening 

approaches by simultaneous consideration of many targets and many compounds, and from 

chemogenomics approaches by utilizing ligand similarity (Keiser, et al., 2009).  However, the 
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most important difference is the emphasis on active rather than passive learning.   We believe 

active learning will be particularly important as drug development efforts increasingly consider 

variation among cell types and among individuals.  The size of this experimental space clearly 

precludes exhaustive experimentation. 

Many variations on the approaches described here can be considered, including different 

feature sets and different active learning algorithms (such as information-theoretic scoring 

(MacKay, 1992) (Settles & Craven, 2008).  An exhaustive evaluation of these variations is 

beyond the scope of this paper, but we have firmly established that significant improvement in 

learning rates can be achieved.  The results also suggest that the paradigm of exploring 

combinatorial experimental spaces through active learning may be widely applicable in 

biomedical research beyond drug discovery.  This includes any study that seeks to determine the 

effects of large numbers of perturbagens (such as compounds, siRNAs, or induced mutations) on 

large numbers of molecular, cellular or histological behaviors (such as enzyme activities, cell 

shapes or motility, protein expression or localization).  As the size of the experimental space 

grows larger, the more impractical exhaustive experimentation becomes but the more 

improvement may be expected from active learning.  These methods are particularly expected to 

be valuable for high content screening and analysis, such as for determining where all proteins 

are located in all cell or tissue types under many conditions. 
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Methods 

Data Preparation 

Each assay from the PubChem database (Bolton, et al., 2008) contains gene target 

information, chemical identifier information and activity scores for all compounds tested in the 

assay.  Various features describing the primary structure of the target protein were calculated 

using ProtParam (Wilkins, et al., 1998), Protein Recon 

(http://reccr.chem.rpi.edu/Software/Protein-Recon/Protein-Recon-index.html ) (Sukumar, et al., 

n.d.) and Prosite (de Castro, et al., 2006).    In total the assays were described by 388 features.  

All non-binary features were were z-scored.  The compounds in the assays were described with 

1559 binary features calculated using OpenBabel (http://openbabel.org) (Guha, et al., 2006).  

Assays from PubChem targeting human proteins with more than 15,000 entries were manually 

annotated.  For each assay, it was determined what type of effect was being detected for the 

target (inhibition, excitation, etc.) and the nature of the activity scores reported.   Only assays 

whose activity scores were scaled with a measured effect from the compound were kept for 

simulation.  In general, activity scores were scaled from 0 to 100.  When scores were found 

above 100 in an assay, all scores in that assay were reduced by a constant factor such that the 

maximum score in the assay was 100.  For all assays testing for inhibition, scores were made 

negative.  From the ~600,000 possible compounds, 20,000 were selected randomly for use in 

simulations of the active learning processes.   

 

 

 

http://reccr.chem.rpi.edu/Software/Protein-Recon/Protein-Recon-index.html
http://openbabel.org/
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Lasso Regression 

Linear regression models were trained with the following equations where 𝑌𝑜𝑏𝑠(∗,𝑝) and 

𝑋𝑜𝑏𝑠(∗,𝑝) are the matrices of scores and compound features respectively from all executed 

experiments with protein p.  The regression coefficients learned using lasso regression on the 

compound features to predict activity across target p are found in 𝛽𝑝𝑃.  Additionally, 𝑌𝑜𝑏𝑠(𝑑,∗) and 

𝑋𝑜𝑏𝑠(𝑑,∗) are the matrices of scores and protein features respectively from all executed 

experiments with compound d.  The regression coefficients learned using lasso regression on the 

target features to predict activity across compound d are found in 𝛽𝑑𝐷. 

𝑌𝑜𝑏𝑠(∗,𝑝)𝑃 =  𝑋𝑜𝑏𝑠(∗,𝑝)𝛽𝑝𝑃 (1) 

𝑌𝑜𝑏𝑠(𝑑,∗)𝐷 =  𝑋𝑜𝑏𝑠(𝑑,∗)𝛽𝑑𝐷 (2) 

Lasso selects a set of features that gives a fit where |𝛽| < 𝑠.  The penalty s was selected 

using cross validation for each linear regression model.  Once a model has been trained, 

predictions about single experiments was made with the following equations:   

𝑌(𝑑,𝑝)𝑃 =  𝑋𝑝𝛽𝑝𝑃 (3) 

𝑌(𝑑,𝑝)𝐷 =  𝑋𝑑𝛽𝑑𝐷 (4) 

A combined prediction for 𝑌(𝑑,𝑝) was calculated by taking the mean of the predictions from 

Equations 3 and 4.   

𝑌(𝑑,𝑝) =  (𝑌(𝑑,𝑝)𝑃 + 𝑌(𝑑,𝑝)𝐷)/2 (5) 
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All regression models were trained using the Least Angle Regression method (Efron, et al., 

2004) implemented in SciKits (http://scikits.appspot.com).  Penalties were tested between 10-4 

and 104.  Penalties were selected which minimized the mean squared error of five-fold cross 

validation within the training data. 

 

Greedy Selection Algorithm 

Experiments were selected which had the greatest absolute value of predicted rank score.  In 

some cases, no information was available to make a prediction for an experiment.  If no 

prediction could be made from available data for an experiment, that experiment was predicted 

to have a rank score of zero.  All experiments with equivalent values were treated in random 

order.   

Density-based Selection Algorithm 

Each experiment (target, compound) was represented by a single feature vector formed by 

concatenating the target features and the compound features for that experiment.  For 

computational efficiency, a maximum of 2000 observed and 2000 unobserved experiments were 

used.  Among the two thousand unobserved experiments, selections were made using a density-

based sampling method (Fujii, et al., 1998) which attempted to choose experiments which were 

most distant from already observed experiments.   

Uncertainty Sampling Selection Algorithm 

For each unobserved experiment, predictions were made using five subsampled training sets 

for each model.  Twenty-five 25 predictions were calculated for each experiment by calculating 
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the mean of each compound prediction with each protein prediction.  If a model was impossible 

to calculate because of a lack of common observations, only five predictions were used.  

Experiments were selected which had the largest standard deviation of predictions. 

Diversity Selection Algorithm 

Each experiment was represented by a single vector formed by concatenating the target 

features and the compound features for that experiment.  A random set of 4000 experiments was 

clustered using the k-means algorithm (with k being the size of the batch desired, in our case 

384).  The experiment nearest to each centroid was selected for execution. 

Hybrid Selection Algorithms 

For each round, half of the experiments were selected using one method and half were 

selected using another method. 
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Chapter 5: Automated Generation and Identification of Randomly 

Tagged Cell Lines for use in an Active Learning Pipeline 

RandTag Project 
In order to begin to understand the function of a protein within the cell, it is useful to 

determine where that protein can be found within the cell.  To investigate the location patterns of 

many proteins, the RandTag project (Garcia-Osuna, et al., 2007) was initiated to randomly tag as 

many proteins as possible using CD-tagging (Jarvik, et al., 1996).  A guest exon coding for GFP 

was inserted into the genome of NIH 3T3 cells using a retrovirus.  This allowed for the 

endogenous expression of stable GFP-tagged proteins.  An extensive pipeline was developed to 

culture these tagged cells for imaging, sequencing and further experimentation.  Automation was 

utilized to rapidly and reliably perform many of the steps in this pipeline.  All of this effort 

resulted in a set of cell lines with tagged proteins that is being utilized in a large active learning 

process to test for the effects of drugs on protein location pattern.   

Manual Tissue Culture 
During the infection process, a retrovirus was used to insert a guest exon into the genome of 

NIH 3T3 cells.  If the guest exon is not inserted into an intron, it is highly unlikely that GFP will 

be expressed.  For this reason, this process has a high failure rate.  One consequence of this high 

failure rate is that it was highly unlikely that more than one protein would be tagged in any single 

cell.  Additionally, the result of an infection process was that most cells were not affected.  After 

infection, the cells were allowed to recover which gave the cells time to begin expressing the 

GFP tagged-protein.   After sufficient time (~2 days), the cells were sorted using a flow 

cytometer.  Each tagged cell expressing GFP was sorted into a single well in a 96-well plate.  

Any cells not expressing GFP (or not at a sufficiently high level) were discarded.   The sorted 
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cells were allowed to grow up for 4 – 5 days.  In spite of the parent cells being genetically 

identical to one another, the addition of the GFP tag sometimes significantly affected the 

viability of the cells.  Some cells died in the 96-well plate, some grew slowly and others 

flourished.  After sufficient time, the “fast growing” cells (defined qualitatively) were plated into 

a 96 well imaging plate along with imaging control lines (mitochondria, nuclear, plasma 

membrane and endoplasmic reticulum tagged lines in addition to untagged parental lines).  The 

newly infected lines were concurrently plated into a separate 96-well plate for freezing prior to 

sequencing.  Prior to imaging, the media was replaced with optical media and Hoechst was 

added to the wells.  These steps were manually executed at the outset of the RandTag project. 

Automation of Tissue Culture 
The first major improvement to the RandTag pipeline was the implementation of automated 

tissue culture methods using an Eppendorf epMotion Liquid Handling Robot.  This robot is 

computer controlled, allowing users to develop protocols using a graphical interface supplied by 

Eppendorf.  Using this interface, one could design protocols by first setting up the robot deck  

with the necessary equipment and then by adding action commands to the protocol.  For each 

command there were numerous parameters to set such as the aspiration and dispense speed as 

well as the pattern to be used for motions involving equipment utilizing multiple wells (i.e. 

multi-well plates, multi-channel reservoirs, tube racks).  Seven tools were available for 

manipulating experimental materials: 50 uL, 300 uL and 1000 uL single and eight-channel 

pipettors as well as a gripper arm.  The gripper could be used to move plates around the robot 

deck as needed.  For example plates that needed to be warmed could be moved to a block 

referred to as the Thermomixer, which could warm, cool and mix objects placed on that location.    
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One of the first tasks was to use the robot to change media prior to imaging.  After significant 

testing, optimal parameters for the removal and addition of media to 96 well plates were 

determined such that cells were not disturbed in the media change process, but the protocol 

execution itself was sufficiently fast to make the automation worthwhile.   

The second major task was to learn how to pass cells using the robot.  These simple tasks by 

themselves did not prove to be the most useful tasks for the RandTag project but they taught us 

the appropriate parameters to use when executing these steps as part of more substantial 

protocols. 

Automated Protocol Script Generation for EPMotion Robot 
In order to design and execute a protocol using the EPMotion, we needed to use a GUI and 

manually program each individual step of our protocol.  In the software supplied with the robot, 

there was some functionality that allowed the user to define patterns based on a number of 

samples giving more flexibility to the user for large protocols with many sequential steps 

between the same starting plate and ending plate.  Once a protocol was designed, it was saved to 

the hard drive for later use.  When the protocol was to be run, it was simply loaded and executed.  

During the actual execution of the robotic protocol, there is no opportunity for dynamic human 

involvement making it impossible to make changes to a protocol in the middle of execution.    

In the case of the plating of cells for imaging, we wanted to be able to tell the robot which 

wells to plate for imaging and sequencing.  We then desired to plate the cells from each well 

based on their growth rates into three separate plates: imaging plate, sequencing plate and 

backup plate.  The protocol is illustrated in Figure 48.  For every good well of cells, there were at 
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least eight unique steps that would need to be programmed differently for every plate.  It became 

obvious that we needed to work around the user interface.   

 

Figure 48: The tissue culture pipeline for the RandTag project is illustrated.  After infection, cells were sorted using a 
flow cytometer.  Single cells which expressing GFP were sorted into individual wells in 96-well plates.  After a few days of 
recovery time, different growth rates were observed for the cells.  Some cells did not recover at all (red), some grew slowly 
(yellow) and some grew rapidly (green).  The cells from fast and slow growing lines were plated into three identical plates 
in batches of 60 allowing for the addition of controls to imaging plates.  One plate was kept as a reserve in the event that 
we desired to continue working with a cell line after sequencing or imaging.   

In order to implement this procedure using the robot we reverse engineered the protocol files 

generated by the Eppendorf software.  We then designed a robot scripting system that allowed us 

to programmatically build custom protocols rapidly without using the GUI for the protocol 

design.  We then designed a script such that it would take as input a list of wells and their 

associated growth rate labels.  This script generated protocols that would efficiently plate only 



83 
 

the selected cells from the source plate allowing cells in remaining wells to continue growing.  

The desired cells were plated at identical concentrations in identical positions in the three needed 

plates: imaging plate, sequencing plate, reserve plate. 

Sequencing of RandTag Clones   
The RandTag clones were generated through the introduction of a guest exon coding for GFP 

into an intron of a gene.  To determine which protein was tagged, we needed to sequence the 

genomic DNA around the insertion site.  This task was performed using a Splinkerette based 

method (Devon, et al., 1995) as illustrated in Figure 49.  The challenge here was to amplify DNA 

outside of the region of the insertion site.  First, the genomic DNA was digested using DpnII.  

DpnII was selected because its recognition site is four base pairs; we therefore expect a cut site 

on average every 256 base pairs, so it is unlikely that the reads will be too long for Sanger 

sequencing.  Also, DpnII can be easily heat inactivated.  Splinkerettes were formed by annealing 

two oligos together.  When these two oligos were annealed together, the shorter oligo resulted in 

the creation of an overlap that matched the cut site for DpnII.  On the other end of the oligo, a 

hairpin loop was formed which was not amplifiable.  The longer oligo contained the three primer 

sites (Splink1, Splink2 and Seq).  The splinkerettes were ligated to the ends of the digested 

DNA.  PCR was utilized to amplify between Splink1 and Nest1 within the guest exon to the 

outermost primer site in the splinkerette.  During the first cycle, Splink1 primers cannot bind and 

thus there is no extension from the splinkerette.  Once there is extension from the Nest1 primer, a 

Splink1 site is created which is then used for extension in the following cycle from Splink1 

primers.  Next, another PCR reaction was executed such that the amplified region was between 

Splink2 and Nest2, which were both situated internally to Splink1 and Nest1.  Finally, the DNA 

was sequenced from the Seq primer site in the splinkerette using Sanger sequencing (Sanger, et 
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al., 1977).  This sequencing run resulted in a final sequencing read that included the sequence 

from the splinkerette, followed by a DpnII cut site, followed by the genomic DNA of interest.  If 

the distance between the DpnII cut site in the insertion was not too distant from the next DpnII 

cut site in the genomic DNA, the LTR could be identified within the read as well.  This 

information was used to confirm the quality of the sequencing read.  
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Figure 49: The splinkerette sequencing process is illustrated in order to show how the insertion site is identified.  The 
first step is to isolate the genomic DNA, which is then digested with DpnII.  Splinkerettes are ligated to the ends of the 
digested genomic DNA.  DNA is amplified using PCR between a primer site (Splink1) in the splinkerette and a known 
primer site in the guest exon (Nest1).  A second nested PCR amplification is done to further amplify the region of interest 
between Nest2 and Splink2.  The DNA is sequenced from a final primer site (Seq) in the splinkerette for as long as 
possible. 
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Sequencing Protocol Optimization 
We took advantage of the configuration of the guest exon to test each phase of our preparation 

for sequencing process.  Two primer sites (FDB and RDB) were found within the guest exon;  

between them was a DpnII cut site.   

Genomic DNA Extraction 
Two protocols were tested in order to find an appropriate genomic DNA isolation method.  

We tested two protocols for the quality of the extractions.  Because we were trying to execute 

this process in a high-throughput manner, we wanted the process to be well suited for 96 well 

plates.  We also wanted the extraction process to be as simple as possible.  We initially tried a 

new product called Evogen One (http://www.evogen.com/products/evogen_one.html) as it was 

claimed that this would be a one-step method for the extraction of PCR ready genomic DNA.  

We tested the quality of the extraction by assessing our ability to amplify the region of DNA 

between the FDB and RDB within the insertion site in tagged lines and that we could not amplify 

that same sequence in DNA extracted from untagged cells.  We were unable to amplify the 

region of interest in the tagged lines, so we investigated other DNA extraction methods.  The 

resulting gel is shown in Figure 50. 

 

Figure 50: Evogen ONE was used to extract genomic DNA from tagged cells.  PCR was run using FDB and RDB 
primers which should have resulted in a product from DNA from tagged cells.  It is clear this failed. 

http://www.evogen.com/products/evogen_one.html
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We next tested a proteinase K genomic DNA extraction method.  This was a standard 

proteinase K extraction reaction in which cells were lysed.  Proteinase K was used to help to 

break down proteins during an overnight incubation period.  The following day, an ethanol-NaCl 

DNA precipitation procedure was used.  The resulting DNA was spun down and gently washed 

using 70% ethanol.  Water was then added to the DNA in preparation for the initial steps of the 

sequencing process.  Using samples of DNA extracted from tagged and untagged cells using the 

Proteinase K based extraction method, we ran multiple PCR reactions to amplify the region 

between the RDB and FDB.  As expected, we were able to successfully amplify DNA within in 

tagged lines, but not in the untagged (Figure 51).  We also determined that the product was of the 

appropriate length.  We utilized this proteinase K extraction method for the duration of the 

project.   

 

Figure 51: PCR with forward and reverse digest brackets should have resulted in a 512-bp product from genomic 
DNA from cells tagged with GFP.  It appears that is the case; non-specific products were formed from DNA from 
untagged parental cells. 
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Digestion with DpnII 
In order to test the digestion with DpnII, we extracted DNA and ran a digestion reaction with and 

without DpnII. We then ran a gel to compare the lengths of the resulting products.  With DpnII in 

the digestion reaction, the lengths were much shorter than for the reactions without DpnII 

implying that the digestion process was successful.   

 

Figure 52: Digestion of genomic DNA with DpnII absent (lane 1) and present (lane 2) yielded smaller products (lane 
2) according to the ladder (lane 3). 

Splinkerette Ligation with T4 Ligase 
In order to test the ligation reactions, we extracted genomic DNA and compared the length of 

the DNA prior to ligation with the length of the DNA following ligation.  The DNA was longer 

after ligation, implying that the ligation reaction was working as expected (Figure 53).   
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Figure 53: Ligation of genomic DNA (lanes 1- 5) yields larger genetic products (lanes 6-8) according to the ladder 
(lane 9). 

Nested PCR Reaction Tuning 
Prior tests (not shown) revealed that the PCR reaction protocol we were using seemed to be 

rather sensitive.  We wanted to optimize two parameters of the protocol: MgCl2 concentration 

and annealing temperature.  In order to do this, we took advantage of the liquid handling robot 

and a PCR machine with a heating block capable of generating a temperature gradient.  For both 

nested PCR steps, five concentrations of MgCl2 were tested: 0.0 mM, 0.5 mM, 1.0 mM, 3 mM, 5 

mM.  We tested twelve annealing temperatures ranging between 53 ˚C and 65 ˚C.  It appeared 

that the first nested PCR reaction was not sensitive to temperature, but was very sensitive to 

MgCl2 concentration.  The best concentration was 5mM MgClz.  These results are shown in 

Figure 54. 
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Figure 54: Results from tuning the first nested PCR step are shown for five different concentrations and twelve 
temperatures ranging from 53 ˚C to 65 ˚C from left to right in each block of lanes between the ladders.  These results 
showed that the first nested PCR step is very sensitive to the MgCl2 concentration. 

Using the product from the reaction using 5mM MgCl2 and 59 ˚C annealing temperature, a 

round of optimization for the second nested PCR step was tested for the same MgCl2 

concentrations and temperatures.  In this case, there appeared to be a dependence on annealing 

temperature at lower concentrations of MgCl2.  In the second reaction it was found that the best 

concentration was 3.0 mM for MgCl2 and there did not appear to be any significant dependence 

on the annealing temperature at that concentration so 59 ˚C was selected again.  The resulting gel 

is shown in Figure 55. 

Samples were cleaned up in preparation for sequencing by using EXO-SAP-IT to eliminate 

any remaining oligos.  Finally, samples were transferred into 96-well plates with the appropriate 
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oligo for sequencing from the final primer site (Seq) in the splinkerette.  Samples were sent to 

GeneWiz (www.genewiz.com) for sequencing. 

 

Figure 55: Results from tuning the second nested PCR step are shown for five different concentrations and twelve 
temperatures ranging from 53 ˚C to 65 ˚C from left to right in each block of lanes between the ladders.  These results 
showed that the second nested PCR was more sensitive to annealing temperature at low concentrations of MgCl2. 

Sequencing Read Assessment 
In order to maximize our ability to determine what proteins were tagged in each of the 

clones, we duplicated the ligation protocol for every plate.  The pipeline was then completed for 

each ligation separately.  The result was that every single well had two reads from the 

sequencing facility that were each assessed independently.  Using BLAT and the associated tools 

http://www.genewiz.com/
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from UCSC (Kent, 2002) (Karolchik, et al., 2004), the mouse genome was queried for the 

entirety of the sequencing read.  For each hit, that query returned, a start point within the read 

and a start point in the genome for the beginning of the alignment.  It also included a stop point 

in both the read and the hit.  Using the information from the genomic alignment start and stop 

points, we were able to determine what genes were found in that area.   

According to the protocol used to generate the DNA for sequencing, a perfect sequencing read 

should have started with the ending segment of the long arm of the splinkerette.  At the end of 

that segment should be genomic DNA.  The hit from BLAT should begin before or immediately 

after the end of the splinkerette sequence.  The hit may begin before the end of the splinkerette 

sequence as the end of the splinkerette may match the genomic DNA which was replaced by the 

splinkerette after digestion and ligation.  After the genomic DNA, the LTR from the guest exon 

should be found.  Based on these constraints, the quality of the read was determined by five 

characteristics of the read that were measured: 

 

Was the LTR present in the read? 

Was the splinkerette present in the read? 

Was the hit bounded at the beginning by the splinkerette? 

Was the hit bounded at the end by the LTR? 

What was the hit score above 90? 

 

A sequence was considered present in the read if the p-value for the local alignment of the 

objective sequence and the read was < 0.01.  A hit was considered bounded by a sequence if the 

hit and the element considered (splinkerette end or LTR beginning) began and ended within 
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seven base pairs of one another.   In order to assess how well these measurements could predict 

the quality of a read, we analyzed all reads.  A read for which the splinkerette was present 

followed by the hit which was followed by the LTR was considered to be a “perfect” hit.  All 

pairs of reads in which at least one of them was perfect were used for assessment.  A class 

system was developed to describe each kind of read.  This is described in Table 6.  The presence 

of the splinkerette was a strong indication of the accuracy of the read.  Of more than 3,000 

sequencing reads, there were more than 400 reads that were considered high accuracy meaning 

their class accuracy was greater than 95%. More than 370 wells were represented in this list of 

high quality reads.  Amongst these 370 wells, 166 unique accession sets were discovered based 

on the hits.   

 
Table 6: All reads with a BLAT score greater than 90 are classified into one of these nine classes based on the 

presence and location relative to the hit of the splinkerette and LTR.  The comparable read column shows how many 
reads of this class were found that had a duplicate read from the same well that was a “perfect” or Class 0 read.  The 
agreement column shows how often the Class 0 agreed with the class in the first column.  The final column shows how 
many total reads of that class were found during all sequencing efforts to date.   

 
 

Imaging for RandTag 
When plating cells, only the inner 60 wells were used for new RandTag clones.  The 

remainder of the wells were reserved for imaging controls which consisted of an untagged 

parental line, a mitochondrial tagged line, an endoplasmic reticulum tagged line, a nuclear tagged 

line and a plasma membrane tagged line.  These wells were imaged using the IC100 which is an 

Class LTR Present Splinkerette Present LTR Bounded Splinkerette Bounded Comparable Reads Agreement Total Reads
0 TRUE TRUE TRUE TRUE 106 98% 340
1 TRUE TRUE TRUE FALSE 5 80% 38
2 TRUE TRUE FALSE TRUE 0               NA 0
3 TRUE TRUE FALSE FALSE 0               NA 0
4 TRUE FALSE TRUE FALSE 6 50% 164
5 TRUE FALSE FALSE FALSE 0               NA 0
6 FALSE TRUE FALSE TRUE 24 100% 80
7 FALSE TRUE FALSE FALSE 1 100% 14
8 FALSE FALSE FALSE FALSE 47 79% 387
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automated widefield microscope.  All cells were imaged with 2 µM Hoechst because the DNA 

channel has proven useful for classification and the bright stain of Hoechst was used by the 

microscope to automatically focus on the cells.  Tweny-five fields were imaged for each well. 

 
All images taken from the RandTag project and the associated sequence information were 

made publicly available (http://pslid.org).  The results for the high-quality reads that are 

published are shown in Table 7. Table 6 includes the gene name, the number of times a clone 

was sequenced with a given gene tagged, the number of infection runs which resulted in that 

gene being tagged, subcellular locations from other databases (i.e. Uniprot) and the classification 

for the gene based on features calculated from images taken of the cells with the tagged protein.  

In considering the number of unique clones sequenced and the number of unique infections, if 

there is only a single infection, it is most likely that the unique clones sequenced are sister cells 

from the same infection.  There does seem to be a strong preference toward tagging some genes.  

For example, the gene “complement component 1, q subcomponent binding protein” was 

sequenced four times from four different infections.  The implication is that either that region of 

the genome is prone to infection or something about that region of the genome makes it easier to 

successfully sequence. 

 
Table 7: A list of all tagged targets which were sequenced with high confidence is shown.  The target name, number 

of times a clone with that target tagged was sequenced, the number of unique infections after which that target was found 
to be tagged, and the documented subcellular location of that target. 

Target Clones 

Sequenced 

Uniqu

e 

Infections 

Locations from Other Databases 

NADH 1 1 mitochondrial inner 

http://pslid.org/
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dehydrogenase 

(ubiquinone) 1 

alpha subcomplex, 

7 (B14.5a) 

membrane,mitochondrion,respiratory 

chain,mitochondrial respiratory chain 

complex i,membrane; extracellular 

region,cytoplasm,mitochondrion,nucleus,endo

plasmic reticulum 

RAB11a, 

member RAS 

oncogene family 

1 1 mitochondrion,recycling endosome 

membrane,plasma membrane,cleavage 

furrow;endosome,cleavage furrow,trans-golgi 

network,membrane,mitochondrion,recycling 

endosome,transport vesicle,plasma 

membrane; golgi 

apparatus,cytoplasm,nucleus,peroxisome,mito

chondrion,cytoskeleton,plasma membrane 

RAN, member 

RAS oncogene 

family 

1 1 nucleus,melanosome; nucleoplasm,cytoso

l,protein 

complex,nucleus,cytoplasm;mitochondrion,cy

toplasm,nucleus,golgi apparatus,peroxisome 

UTP14, U3 

small nucleolar 

ribonucleoprotein, 

homolog A (yeast) 

1 1 nucleolus,small-subunit 

processome; cellular_component,nucleus,smal

l-subunit processome;extracellular 

region,cytoplasm,nucleus,endoplasmic 

reticulum 

actin related 2 1 cell leading edge,focal adhesion,cell 
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protein 2/3 

complex, subunit 2 

projection,arp2/3 protein complex; golgi 

apparatus,cytoplasm,cell leading edge,focal 

adhesion,arp2/3 protein 

complex,cytoskeleton,cell projection 

collagen, type 

IV, alpha 2 

1 1 collagen type iv; extracellular 

region,basement membrane,proteinaceous 

extracellular matrix,collagen,collagen type 

iv; lysosome,extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,mitochondrion 

collagen, type 

V, alpha 1 

1 1 basement membrane; extracellular 

matrix,extracellular region,collagen,collagen 

type v,basement membrane,proteinaceous 

extracellular matrix; lysosome,extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,mitochondrion 

collagen, type 

XXVIII, alpha 1 

1 1 collagen,basement 

membrane; extracellular region,basement 

membrane,proteinaceous extracellular 

matrix,collagen 

complement 

component 1, q 

subcomponent 

4 4 mitochondrion,extracellular 

space,membrane,nucleus,cytoplasm; extracell

ular 
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binding protein region,cytoplasm,mitochondrion,endoplasmic 

reticulum 

filamin C, 

gamma 

1 1 

guanine 

nucleotide binding 

protein (G protein), 

alpha inhibiting 2 

1 1 midbody,cytosol,extrinsic to internal side 

of plasma membrane,membrane 

fraction,membrane,centrosome,nucleus,cytopl

asm,heterotrimeric g-protein 

complex,cytoskeleton,membrane raft,plasma 

membrane; extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,mitochondrion 

heat shock 

protein 90, beta 

(Grp94), member 1 

1 1 plasma membrane part,endoplasmic 

reticulum lumen,melanosome; endoplasmic 

reticulum 

membrane,cytosol,microsome,endoplasmic 

reticulum,perinuclear region of 

cytoplasm,plasma membrane 

part,endoplasmic reticulum 

lumen,midbody; extracellular 

region,cytoplasm,nucleus,endoplasmic 

reticulum 

myosin, heavy 1 1 
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polypeptide 9, non-

muscle 

parvin, alpha 1 1 cytoplasm,focal 

adhesion,nucleus,lamellipodium; protein 

complex,cytosol,cytoplasm,focal 

adhesion,nucleus,membrane,lamellipodium,cy

toskeleton,actin cytoskeleton,cell 

junction,plasma membrane; extracellular 

region,cytoplasm,mitochondrion,nucleus,pero

xisome 

phosphoribosyl

aminoimidazole 

carboxylase, 

phosphoribosylami

noribosylaminoimi

dazole, 

succinocarboxamid

e synthetase 

1 1 cellular_component; mitochondrion,cytop

lasm,endoplasmic reticulum,peroxisome 

prolactin 

family 2, subfamily 

c, member 3 

1 1 extracellular space; extracellular 

region,extracellular space; extracellular 

region,cytoplasm,endoplasmic 

reticulum,lysosome 

proteasome 1 1 
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(prosome, 

macropain) subunit, 

alpha type 5 

protein kinase, 

cAMP dependent 

regulatory, type II 

beta 

2 1 camp-dependent protein kinase 

complex,soluble fraction,cell 

fraction,mitochondrial inner 

membrane,cytoplasm,insoluble 

fraction,centrosome,cytosol,perinuclear 

region of cytoplasm,membrane raft,plasma 

membrane; mitochondrion,cytoplasm,nucleus,

endoplasmic reticulum,peroxisome 

protein 

phosphatase 2A, 

regulatory subunit 

B (PR 53) 

2 1 cytoplasm,nucleus; cytoplasm,calcium 

channel complex,nucleus; extracellular 

region,cytoplasm,mitochondrion,endoplasmic 

reticulum,peroxisome 

ribosomal 

protein, large, P1 

1 1 ribosome; cytosol,cytoplasm,ribosome,int

racellular,ribonucleoprotein complex 

signal sequence 

receptor, delta 

2 1 endoplasmic reticulum membrane,integral 

to membrane; sec61 translocon 

complex,endoplasmic reticulum,integral to 

membrane,membrane; lysosome,extracellular 

region,cytoplasm,endoplasmic 

reticulum,peroxisome,plasma membrane 
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solute carrier 

family 1 (neutral 

amino acid 

transporter), 

member 5 

1 1 extracellular 

region; mitochondrion,cytoplasm,plasma 

membrane,endoplasmic reticulum,peroxisome 

tubulin, alpha 

1C 

1 1 cytoplasmic 

microtubule; microtubule,cytoplasm,cytoskele

ton,cytoplasmic microtubule,protein 

complex; lysosome,extracellular 

region,cytoplasm,nucleus,peroxisome,cytoske

leton 

tyrosine 3-

monooxygenase/try

ptophan 5-

monooxygenase 

activation protein, 

epsilon polypeptide 

1 1 mitochondrion,melanosome; kinesin 

complex,cytoplasm,mitochondrion,axon 

part,cytosol;extracellular 

region,cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

BCL2-

associated 

athanogene 3 

1 1 cytosol,synaptosome; cytoplasm,nucleus,e

ndoplasmic reticulum,peroxisome 

DEAD (Asp-

Glu-Ala-Asp) box 

polypeptide 21 

1 1 nucleolus,nucleus; cytoplasm,nucleus,plas

ma membrane,peroxisome 
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DEAH (Asp-

Glu-Ala-Asp/His) 

box polypeptide 57 

1 1 cellular_component; cytoplasm,nucleus,e

ndoplasmic reticulum,peroxisome 

E2F 

transcription factor 

3 

1 1 transcription factor 

complex; nucleoplasm,transcription factor 

complex,nucleus;mitochondrion,cytoplasm,nu

cleus,plasma membrane,endoplasmic 

reticulum 

Ewing sarcoma 

breakpoint region 1 

1 1 cajal 

body,nucleolus,cytoplasm,intracellular,nucleu

s,membrane,plasma membrane;extracellular 

region,cytoplasm,nucleus,plasma 

membrane,peroxisome 

KDM1 lysine 

(K)-specific 

demethylase 6B 

1 1 nucleus; nucleus; extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,plasma 

membrane 

LIM domain 

containing 

preferred 

translocation 

partner in lipoma 

1 1 cytoplasm,nucleus; cytoplasm,focal 

adhesion,nucleus,cell junction; extracellular 

region,cytoplasm,nucleus,peroxisome 
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MACRO 

domain containing 

2 

2 1 cellular_component; extracellular 

region,cytoplasm,mitochondrion,nucleus,pero

xisome 

PDZ and LIM 

domain 5 

1 1 cytosol,postsynaptic density,membrane 

fraction,actin cytoskeleton,z 

disc; extracellular 

region,cytoplasm,mitochondrion,nucleus 

RAS-related 

C3 botulinum 

substrate 1 

1 1 cytosol,lamellipodium,membrane 

fraction,melanosome,extrinsic to plasma 

membrane;cytosol,cytoplasm,membrane 

fraction,intracellular,golgi 

membrane,cytoplasmic vesicle,cytoplasmic 

membrane-bounded 

vesicle,membrane,lamellipodium,cell 

projection,plasma membrane,extrinsic to 

plasma membrane; golgi 

apparatus,extracellular 

region,cytoplasm,nucleus,peroxisome,mitoch

ondrion,plasma membrane 

RNA binding 

motif protein 3 

1 1 cytoplasm,nucleus,dendrite; large 

ribosomal subunit,cytoplasm,nucleus,cell 

projection,dendrite 

SET nuclear 2 2 cytosol,nucleoplasm,perinuclear region of 
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oncogene cytoplasm,endoplasmic 

reticulum;nucleus,cytoplasm,protein 

complex,perinuclear region of 

cytoplasm,endoplasmic 

reticulum;extracellular 

region,cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

SH3-domain 

kinase binding 

protein 1 

1 1 synaptosome,cytoplasmic vesicle 

membrane,focal 

adhesion,cytoskeleton,synapse;synaptosome,s

ynapse,cytosol,cytoplasm,cytoplasmic 

vesicle,nucleus,membrane,cytoskeleton,cell 

junction,plasma 

membrane;cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

Sec61 beta 

subunit 

1 1 

U2 small 

nuclear 

ribonucleoprotein 

auxiliary factor 

(U2AF) 2 

1 1 nuclear speck; ribonucleoprotein 

complex,nucleus,spliceosomal 

complex,nuclear 

speck;mitochondrion,cytoplasm,nucleus,endo

plasmic reticulum,peroxisome 

WD repeat 1 1 nucleolus; cellular_component,nucleus; c
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domain 43 ytoplasm,nucleus,plasma 

membrane,endoplasmic reticulum,peroxisome 

acetyl-

Coenzyme A 

acetyltransferase 1 

1 1 mitochondrial inner 

membrane; mitochondrion,mitochondrial 

inner membrane,mitochondrial 

matrix; mitochondrion,cytoplasm,endoplasmi

c reticulum,peroxisome 

actinin alpha 4 1 1 cortical cytoskeleton,ribonucleoprotein 

complex,stress fiber,pseudopodium; protein 

complex,nucleolus,ribonucleoprotein 

complex,pseudopodium,stress 

fiber,cytoplasm,nucleus,perinuclear region of 

cytoplasm,cortical cytoskeleton,actin 

cytoskeleton; cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

adenosine 

kinase 

5 2 cytosol,nucleus; cytosol,nucleus; cytoplas

m,nucleus,endoplasmic reticulum,peroxisome 

annexin A2 1 1 melanosome,basement 

membrane,sarcolemma,early 

endosome,schmidt-lanterman 

incisure,extrinsic to plasma 

membrane; protein complex,stress 

fiber,extracellular 
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region,cytoplasm,membrane fraction,cell 

junction,myelin sheath,basement 

membrane,perinuclear region of 

cytoplasm,sarcolemma,early 

endosome,proteinaceous extracellular 

matrix,schmidt-lanterman 

incisure; extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,plasma 

membrane 

annexin A5 1 1 cytoplasm,intracellular,sarcolemma,interc

alated disc,cell projection,plasma 

membrane;extracellular 

region,cytoplasm,nucleus,peroxisome,mitoch

ondrion,plasma membrane 

bromodomain 

containing 2 

1 1 cytoplasm,nucleus; cytoplasm,nucleus; ex

tracellular 

region,cytoplasm,mitochondrion,nucleus 

caldesmon 1 9 4 actin filament,membrane 

fraction,neuronal cell body,dendrite,focal 

adhesion,actin cap,dendritic 

spine,postsynaptic density,actin 

cytoskeleton,plasma membrane; extracellular 

region,cytoplasm,nucleus,endoplasmic 
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reticulum,peroxisome 

cytochrome b5 

reductase 3 

2 1 cytosol,endoplasmic reticulum 

membrane,mitochondrial inner 

membrane,mitochondrial outer 

membrane; endoplasmic reticulum 

membrane,soluble fraction,mitochondrial 

inner membrane,cytoplasm,endoplasmic 

reticulum,membrane,mitochondrion,mitochon

drial outer membrane; golgi 

apparatus,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,mitochondrion 

death-

associated protein 

1 1 cellular_component 

epidermal 

growth factor-

containing fibulin-

like extracellular 

matrix protein 1 

1 1 extracellular space,proteinaceous 

extracellular matrix; extracellular 

region,extracellular space,proteinaceous 

extracellular matrix; golgi 

apparatus,extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,plasma 

membrane 

eukaryotic 

translation 

1 1 cytoplasm,mrna cap binding 

complex; cytoplasm,mrna cap binding 
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initiation factor 4E 

member 2 

complex;mitochondrion,cytoplasm,nucleus,pe

roxisome 

glutamate 

dehydrogenase 1 

1 1 mitochondrial inner 

membrane,mitochondrial matrix 

hedgehog 

interacting protein-

like 1 

1 1 extracellular 

region,membrane; extracellular 

region,cellular_component,membrane 

hematological 

and neurological 

expressed 1-like 

1 1 cytoplasm,nucleus; cytoplasm,nucleus 

heterogeneous 

nuclear 

ribonucleoprotein 

A3 isoform a 

1 1 spliceosomal complex; neuron 

projection,nucleolus,ribonucleoprotein 

complex,heterogeneous nuclear 

ribonucleoprotein 

complex,cytoplasm,catalytic step 2 

spliceosome,spliceosomal 

complex,nucleus; mitochondrion,cytoplasm,n

ucleus,peroxisome 

leucine rich 

repeat containing 

59 

1 1 

minichromoso 2 1 mcm complex; nucleoplasm,mcm 
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me maintenance 

deficient 4 

homolog (S. 

cerevisiae) 

complex,nucleus;mitochondrion,cytoplasm,nu

cleus,endoplasmic reticulum 

mitogen-

activated protein 

kinase kinase 1 

1 1 cytosol; axon part,perikaryon,golgi 

apparatus,microtubule,cytosol,cytoplasm,cell 

cortex,dendrite,perinuclear region of 

cytoplasm,dendrite cytoplasm,soluble 

fraction,plasma 

membrane; cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

nascent 

polypeptide-

associated complex 

alpha polypeptide 

1 1 cytoplasm,nucleus; cytoplasm,nucleus 

nidogen 1 1 1 extracellular 

region,cytoplasm,proteinaceous extracellular 

matrix,basement membrane,basal 

lamina; extracellular region,plasma 

membrane,endoplasmic reticulum,golgi 

apparatus,lysosome 

nuclear protein 

1 

1 1 nucleus; nucleus; extracellular 

region,cytoplasm,mitochondrion,nucleus 
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paired related 

homeobox 1 

7 3 nucleus; nucleus; mitochondrion,cytoplas

m,nucleus,endoplasmic reticulum,peroxisome 

phosphoenolpy

ruvate 

carboxykinase 2 

(mitochondrial) 

1 1 mitochondrion; mitochondrion,soluble 

fraction; golgi 

apparatus,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,mitochondrion 

plectin 1 1 1 insoluble 

fraction,hemidesmosome,contractile 

fiber,sarcolemma; insoluble fraction,basal 

plasma membrane,cytosol,cytoplasm,apical 

plasma 

membrane,hemidesmosome,intermediate 

filament cytoskeleton,focal 

adhesion,perinuclear region of 

cytoplasm,sarcolemma,cytoskeleton,plasma 

membrane,contractile fiber; golgi 

apparatus,extracellular 

region,cytoplasm,nucleus,peroxisome,mitoch

ondrion,plasma membrane 

polymerase I 

and transcript 

release factor 

2 1 cytosol,microsome,endoplasmic 

reticulum,mitochondrion,nucleus,caveola;nucl

eoplasm,cytoplasm,microsome,endoplasmic 

reticulum,mitochondrion,nucleus,membrane,c

aveola,plasma 
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membrane;cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

protein kinase 

C and casein kinase 

substrate in neurons 

2 

2 2 cytosol,cytoplasmic membrane-bounded 

vesicle; cytosol,cytoplasm,cytoplasmic 

vesicle,trans-golgi 

network; cytoplasm,nucleus,golgi 

apparatus,peroxisome 

recombination 

signal binding 

protein for 

immunoglobulin 

kappa J region 

1 1 cytoplasm,transcription factor 

complex; cytoplasm,nucleolus,nucleus,transcr

iption factor 

complex; cytoplasm,nucleus,plasma 

membrane,endoplasmic reticulum,peroxisome 

ribosomal 

protein L18 

1 1 ribosome; cytosol,cytoplasm,ribosome,int

racellular,ribonucleoprotein complex 

ribosomal 

protein L23 

1 1 ribosome,nucleolus; cytosolic 

ribosome,nucleolus,ribonucleoprotein 

complex,cytosol,cytoplasm,ribosome 

ribosomal 

protein L23A 

1 1  

ribosomal 

protein L7 

3 3 cytosolic large ribosomal 

subunit; ribonucleoprotein complex,large 

ribosomal 



111 
 

subunit,ribosome,intracellular,cytosol,cytosoli

c large ribosomal 

subunit;mitochondrion,cytoplasm,nucleus,per

oxisome 

ribosomal 

protein S26 

1 1 ribosome 

septin 9 6 3 microtubule,cytoplasm,cytoskeleton,perin

uclear region of cytoplasm,stress 

fiber;cytoplasm,nucleus,plasma 

membrane,peroxisome 

small nuclear 

ribonucleoprotein 

D1 

1 1 

spectrin beta 2 1 1 sarcomere,cuticular plate,spectrin,plasma 

membrane; protein 

complex,nucleolus,cytosol,cytoplasm,spectrin

,cuticular 

plate,nucleus,membrane,cytoskeleton,cortical 

cytoskeleton,plasma 

membrane;cytoplasm,nucleus,plasma 

membrane,golgi apparatus,peroxisome 

sphingosine-1-

phosphate receptor 

1 1 integral to plasma membrane; integral to 

plasma membrane,plasma membrane,integral 
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3 to 

membrane,membrane; mitochondrion,nucleus

,plasma membrane,endoplasmic 

reticulum,peroxisome 

staphylococcal 

nuclease and tudor 

domain containing 

1 

1 1 mitochondrion,nucleus,melanosome,rna-

induced silencing 

complex;mitochondrion,cytoplasm,nucleus,rn

a-induced silencing 

complex;mitochondrion,cytoplasm,nucleus,en

doplasmic reticulum,peroxisome 

stearoyl-

Coenzyme A 

desaturase 1 

1 1 endoplasmic reticulum membrane,integral 

to membrane; membrane,endoplasmic 

reticulum,integral to 

membrane,microsome; golgi 

apparatus,lysosome,cytoplasm,endoplasmic 

reticulum,peroxisome,mitochondrion,plasma 

membrane 

suppression of 

tumorigenicity 13 

1 1 cytoplasm; cytosol,cytoplasm,protein 

complex; cytoplasm,nucleus,endoplasmic 

reticulum,peroxisome 

syntaxin 3 1 1 apical plasma membrane,integral to 

membrane; neuron projection,snare 

complex,azurophil granule,cell-cell 
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junction,plasma membrane enriched 

fraction,apical plasma membrane,specific 

granule,integral to 

membrane,membrane,growth cone,plasma 

membrane; golgi apparatus,extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,plasma 

membrane 

thymopoietin 2 2 chromatin,nuclear 

envelope,nucleus,nuclear membrane,nuclear 

inner 

membrane;mitochondrion,cytoplasm,nucleus,

endoplasmic reticulum,golgi apparatus 

tissue inhibitor 

of 

metalloproteinase 3 

1 1 basement membrane; extracellular 

region,cytoplasm,proteinaceous extracellular 

matrix,basement membrane; extracellular 

region,cytoplasm,endoplasmic 

reticulum,lysosome 

tropomyosin 4 1 1 cortical 

cytoskeleton,podosome; filamentous 

actin,stress 

fiber,cytoplasm,cytoskeleton,podosome,cortic

al cytoskeleton; extracellular 

region,cytoplasm,endoplasmic 



114 
 

reticulum,nucleus,peroxisome,cytoskeleton 

tubulin cofactor 

A 

1 1 microtubule,cytoplasm; microtubule,cyto

plasm,cytoskeleton; extracellular 

region,cytoplasm,endoplasmic 

reticulum,nucleus,peroxisome,mitochondrion 

vimentin 1 1 

vinculin 1 1 

zinc finger 

protein 207 

1 1 nucleus; cytoplasm,nucleus,golgi 

apparatus,peroxisome 

 

Implementation and Execution of Active Learning Process Using RandTag 

Clones 
In order to further demonstrate the utility of active learning for high content screening 

experiments, an experiment was planned such that we would select 47 cell lines from the 

RandTag project and 47 drugs to treat these cell lines.  These cell lines and drugs were selected 

concurrently so that we would have a set that included some experimental conditions in which 

we would expect to see location pattern changes when imaging.  If we had very few location 

pattern changes, the learning problem would have been trivial and active learning would not 

have been worth the effort.  We would then duplicate the experimental space as in Chapter 3 for 

a total of 96 drugs including two vehicles and 96 lines including two untagged parental lines.  

The fact that these lines and drugs were duplicated was to be hidden from the active learner.  
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Each round, we would attempt to execute 96 experiments selected using active learning.  Each 

experiment was to be executed in triplicate using 384 well imaging plates.   

Clone Selection for Active Learning 
The reserve plates were generated during the RandTag project primarily to serve as a source 

from which to gather cell lines for use in further experimentation.  As the RandTag project 

progressed, the phenotypes of new images were monitored so that we could select 47 tagged 

lines representing a broad spectrum of phenotypes.  We also watched closely as new sequencing 

results were delivered and assessed; if an interesting protein was tagged, we would collect the 

cells from the reserve plate for use in the active learning experiment.  For cell lines that appeared 

to grow at a good rate and also had potentially interesting phenotypes, some drugs were tested 

for effects on the location patterns.  The results of these short experiments were assessed only by 

eye.   

Because of the possibility for passage number-dependent phenotypes, we decided to only use 

cells for experiments that were within 3 passes of one another.  In order to synchronize cells at a 

single passage, cells were grown up in bulk in “tissue culture factories” that provided 

approximately 2400 square centimeters of growth area.  This allowed us to grow up and 

subsequently freeze enough cells to last the duration of the experiment with some to spare.   In 

total, we selected 47 lines that represented 18 phenotypes which were qualitatively identifiable 

when untreated.   

Drug Selection for Active Learning 

An initial large set of drugs (~60) were selected and purchased.  If we determined 

through literature review that a compound was known to affect the location pattern of a protein, 
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we accepted that drug for the active learning project.  Other compounds which we hypothesized 

to have effects were tested.  If any effects were observed the drugs were accepted.  Nearly half of 

the initial set of compounds had no observed effects so we adjusted concentrations of some of 

the accepted drugs in that way creating new drug conditions for the active learning experiment.  

We desired to avoid repeatedly freezing and thawing of the drugs, so in order to only freeze and 

thaw once, drugs were solubilized in pure DMSO and a very small volume (~1.3 µL) of each 

drug in DMSO was added to 1.5 mL tubes.  These tubes were then frozen.   

Experiment Execution 

Experiments were selected using the same active learner as in Chapter 3.  A batch of 96 

experiments was selected for execution in triplicate each round and an additional 18 control 

experiments were added.  A program was developed to take in a list of experiments.  This list of 

experiments would then be randomly assigned to positions on the 384-well plate such that 

experiments of like conditions would not likely be found next to one another.  Three kinds of 

protocols were generated for each set of experiments. 

 
In order to plate the cells reliably from round to round, each line was counted by hand 

using a hemocytometer and diluted such that the final count of cells in each well would be close 

to 5400 cells in a volume of 80 µL per well.  The cell plating protocol was designed to pause 

after plating every single cell line so that it would not progress beyond our ability to count cells 

for plating.  When a new cell line was counted, we would simply allow the protocol to proceed 

and the next cell line would be plated where it needed to go on the imaging plate.  Because of 

equipment constraints the program generating these protocols was designed to split any plating 

process into multiple individual protocols where necessary.  For example, only 24 lines could be 
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plated in a single cell plating protocol, so for every round two protocols needed to be made 

because all rounds had experiment selections calling for more than 24 lines. 

 
The drugs were pre-plated prior to being added to the experimental wells.  By pre-plating, 

we had better control over the timing of the final plating process as well as a reduction in the 

total number of tips used during the experiments.  A set of frozen 1.5 mL tubes were gathered 

based on the drugs required for the experiments selected.  For each tube, 1 mL of Optimem + 2 

µM Hoechst was added.  The volume and temperature of the media was significantly greater 

than the tiny frozen droplet of DMSO and drug, so the droplet thawed quickly in the media.  It 

was then vigorously mixed.  After mixing, the drug was plated into a separate drug plate.   

 
Just prior to actually running the experiments, a 384-well plate was made that contained 

only 1x PBS.  By making a plate containing PBS, a wash step could be utilized while not 

contaminating a reservoir of PBS and yet minimizing wasted tips.  For each set of experiments, 

the final robot protocols developed were for the final plating of the drugs. During the 

development of these protocols it was discovered that the robot software was unable to handle 

more than ~1100 steps in a protocol, so the final plating protocol needed to be split into a pair of 

protocols as each well required four steps: aspirate media and move to waste, add PBS from 

corresponding well in PBS plate to imaging plate, aspirate PBS and move to waste and add 

drug/imaging media solution from corresponding position in drug plate.  These actions were 

undertaken in the same order in which they would be imaged on the IC100 at approximately the 

same rate in order to maintain constant exposure time to the drug.  On the IC100, 12 fields were 

taken per well. 
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Image Processing for RandTag Active Learning  
The active learner took discrete class labels as input.  In order to determine these labels, 

field level features were calculated for all fields.  Despite of our best efforts to accurately count 

cells and setup the microscope, some fields were poor either because of a lack of cells or poor 

focus.  In order to prevent these sorts of images from affecting our final phenotype 

determination, a Support vector machine classifier was trained to recognize good and bad images 

and used to filter out the bad images.  For the remaining images, field level features were 

calculated using “field+” features using PySLIC which took into consideration the protein 

channel as well as the reference DNA channel when calculating feature values. 

 
Once these features were calculated, we clustered experimental conditions using a 

hierarchical approach with the distance between two conditions represented by the mean 

accuracy of a set of balanced nearest neighbor classifiers as was calculated in Chapter 2.  A tree 

was built clustering such that at each level, the pair of clusters with the most overlap (lowest 

accuracy classifier) was combined to form a new cluster.  In order to determine at what threshold 

to stop clustering, all fields from each experimental condition were randomly divided into two 

subsets which were then each treated as a new experimental conditions in a new clustering.  The 

clustering of these divided true conditions was continued until the point at which 90% of all pairs 

of original conditions were clustered into the matching clusters.  This process was executed five 

times and the mean threshold for 90% recovery was used to select the clustering stopping point 

in the original clustering with undivided experimental conditions.  The resulting labels were used 

as inputs for the active learner in order to select the next batch of experiments to be executed.  
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Discussion 
In this chapter, the implementation of a highly automated active learning pipeline from a 

largely manual process was described.  This required the implementation and testing of a 

sequencing methodology.  The most significant result from this work was the sequencing of 175 

clones and their publication. 
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Chapter 6: Conclusions and Future Work 
In this thesis, the primary effort was focused around utilizing active learning in 

conjunction with high-content screening.  This approach was undertaken for two model 

organisms which required different sorts of experimental efforts, image analysis and machine 

learning techniques.   

 
In Chapter 2, images gathered from an abbreviated active learning campaign were 

analyzed using multiple methods to discover drug effects on Arabidopsis thaliana protoplasts.  

These protoplasts were sourced from all above ground tissues.  As a result, there was substantial 

heterogeneity within the populations of protoplasts.  In order to address the issue of 

heterogeneity, methods were utilized whose measurements were based on small regions of the 

images (circles using Hough transform and small square patches using PhenoRipper).  Using 

these methods, many features were calculated per experimental condition and thus comparison 

methods were needed that allowed for the comparison of distributions with wildly different 

sample sizes.  We chose to utilize mixture models and measure pairwise classification error 

between experimental conditions.  The results of these analyses seem to indicate that 

Damnacanthal was likely to affect the distribution of protoplasts and that Tyrphostin may have 

had an effect as well. 

 
In Chapter 3, active learning simulations were executed to demonstrate the utility of 

using active learning methods to direct high-content screening campaigns.  In this case, 

protoplast based mixture models were calculated every round.  As a result, the inputs to the 

active learning process were much less stable than those normally utilized for most active 

learning problems.  A comparison between models was utilized to show the benefit of using 
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active learning.  For the first half of most simulations, the active learning model had accuracy 

which was worse than the accuracy of a model trained using randomly selected data.  In the 

second half of the simulations, the active learning method showed higher accuracy than the 

model trained using randomly selected data.  The utility of the active learning method in this 

case is limited to only situations in which an experimenter is willing to execute at least half of 

the experiments. 

 
In Chapter 4, methods were described to utilize active learning to dramatically improve 

the discovery rate and predictive accuracy of models developed to predict the effects of 

compounds across multiple diverse targets as measured by diverse experimental means.  

Approaches of this nature could allow for earlier detection of deleterious side effects from new 

pharmaceuticals saving research efforts as well as improving the safety of new drugs. 

 
In Chapter 5, significant improvements in the RandTag project were implemented 

including the automation of many crucial steps allowing for an increase in throughput.  As a 

result of the efforts in the RandTag project an active learning experiment was setup using 48 cell 

lines and 48 drugs.  The final experimental space tested was actually 96 cell lines by 96 drugs in 

size.  This required substantial effort in terms of the selection and preparation of the cell lines 

and drugs to be used.  An image analysis method was implemented to detect changes in 

phenotypes from the treatment with drugs which was based around a hierarchical clustering 

algorithm using classifier accuracy to determine the difference between two distributions. 

Thesis Contributions 
1. We executed a high-content screening campaign to detect the effects of drugs on multiple lines of 

protoplasts with different tagged proteins. 
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2. We developed methods for the comparison of distributions of observations using nearest neighbor 

classifiers. 

3. We determined that Damnacanthal and Tyrphostin had effects on the protoplasts tested.   

4. We demonstrated that in spite of the inability to identify a protein by its location pattern in 

untreated cells, observing the effects of treatment with a small number of drugs can allow one to 

accurately identify a tagged protein. 

5. We implemented an actual active learning pipeline to test plant protoplasts for effects resulting 

from drug exposure.  

6. We designed a predictive model for the effects of multiple compounds on multiple target proteins 

utilizing external protein and compound information concurrently.  

7. We demonstrated that the predictive model can learn from diverse sources of experimental 

information.   

8. We demonstrated that using that predictive model in conjunction with active learning yields 

significant rewards in terms of hit discovery rate and accuracy improvement.   

9. We substantially improved the throughput of the RandTag project through the addition of 

automated methods to perform many of the most tedious tasks.   

10. We implemented a system for generating customized protocols for the Eppendorf epMotion 

liquid handling robot using a programmatic interface instead of the graphical interface allowing 

for significantly more sophisticated protocols. 

11. We optimized the sequencing protocol used to determine which proteins were tagged in the 

RandTag project resulting in the successful sequencing and subsequent publication of 175 unique 

clones. 

12. We sequenced and imaged more than 300 tagged clones for the RandTag project and imaged 

thousands more. 

13. We implemented an active learning pipeline to test for the effects of 48 drug treatments on the 

location patterns of 48 NIH 3T3 cell lines. 
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14. We developed a hierarchical clustering method for the clustering of groups of fields with field 

level features calculated.     

Future Work 
In the high-content screening analysis of the protoplast experiments, the PhenoRipper 

methods seemed to show promise in that detected effects had relatively low p-values and seemed 

to be somewhat consistent across concentrations.  These results could be improved by testing 

alternative parameter sets.  The parameters chosen were essentially the recommended parameters 

used in the original software package.  In the current work, the optimal model was selected based 

on the assumption that duplications of the same experimental condition should have similar 

measurements.  For positive controls, each of the experimental lines was considered to be 

distinct from all other lines in the control conditions.  Some lines do indeed appear to be similar.  

If more cell lines were to be added, the problem of model selection choosing models that 

attempted to separate similar phenotypes would be exacerbated.  As an alternative, these 

relationships could be assessed by a protoplast expert.  The assessments of these relationships 

could then be used to drive the model selection process across various sets of parameters using 

PhenoRipper which could improve the final analysis.   

 

Another potential avenue for improvement would be to increase the accuracy of the 

protoplast segmentation.  In the work presented, protoplasts are found in regions which do 

contain protoplasts, but these patches were relatively infrequently centered tightly over single 

protoplasts.  Because of the poor segmentation, the best approach was to measure a large number 

of features for each patch.  As a result, we could only assess that populations were different, and 

we could not assess what systems were being affected by the compounds.  With good 
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segmentation, one could utilize approaches from cell-based generative modeling which seek to 

automatically build compact and statistically accurate models from images which can be used 

generatively to build new example images of cells based on cell shape, nuclear morphology, 

object distribution and microtubule patterns (Zhao & Murphy, 2007; Shariff, et al., 2009).  By 

utilizing these methods, one could conceivably infer the effects of compounds on specific 

systems within the protoplasts. 

 

In order to improve the active learning simulations utilizing the protoplast data, the 

greatest improvement could be gained by generating a more stable phenotype assessment model 

than the k-means and hierarchical clustering models that were tested using the protoplast mixture 

model.  This may be as simple as using one of these clustering methods in conjunction with an 

alternative image analysis method, such as the PhenoRipper system or using the nearest neighbor 

classifier based approach to assessing differences between protoplasts distributions. 

 

Improvements could be made to the work in Chapter 4 through the development of 

predictive models that may or may not make use of the features describing each of the targets 

and compounds.  This would allow for the inclusion of diverse sets of treatments not limited to 

small molecule compounds as well as a diverse set of protein targets.  When not using external 

features, the actual experiments used for the assays could be anything ranging from high-

throughput screening results to the results of FDA trials as long as the independent variable 

across an assay is the treatment.  A model for that could be rapidly trained using active learning 

to make accurate predictions for these sorts of assays would be very useful for drug discovery 

and development.  In order to effectively extend this work, it would be of use to consider the 
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composition of an ideal dataset.  First one must consider the source of the data to be used to 

populate the matrix.  Some experimental protocols are very noisy and would be less well suited 

for this purpose without a large number of experimental replicates per experimental condition.  

The results of some experiments are categorical in nature, particularly for some high-content 

screening processes and these could not be used directly in the final matrix without some 

modification.  Additionally, one must consider the experimental protocols in use to generate the 

data.  In the process simulated, a heterogeneous set of experiments were selected for 

“execution”.  It might be the case that for some of these experiments it is more practical to run 

numerous experiments rather than a single experiment.  Efficiency improvements in a discovery 

process using this method would be best realized for experimental processes which have high 

costs per experiment relative to the costs of executing a single batch of experiments.   

 

The RandTag based active learning project has been implemented and the primary future 

effort involves the actual execution of the pipeline.  To date, 28 out of a total of 96 rounds 

selected using active learning have been executed.  Additional cell lines with new tagged 

proteins as well as new drugs may be added to the system to demonstrate the ability to make 

predictions for new proteins and drugs. 
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