
On the identification and
investigation of homologous gene families,
with particular emphasis on the accuracy

of multidomain families

Jacob M. Joseph
August 2012

CMU-CB-12-103

Publisher:
Lane Center for Computational Biology

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Committee:
Dannie Durand (advisor)

Takis Benos
Tanya Berger-Wolf
Russell Schwartz

Mona Singh

This document is submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

c©2012 Jacob M. Joseph

This work has been funded by NIH T32 training grant T32 EB09403 as part of the HHMI-NIBIB Interfaces

Initiative, NSF grant DBI-0641313, NIH grant 1 K22 HG 02451-01, a Pittsburgh Supercomputing Center

grant, and a David and Lucille Packard Foundation fellowship. These organizations have had no role in the

design or execution of this work.



Keywords: genomics, gene family, homology, gene duplication, multidomain, network rewiring,
neighborhood correlation, homology network, domain mutual information, gene family classifica-
tion



Abstract

This dissertation addresses the identification and characterization of homologous gene
families in large-scale, genomic data. Particular emphasis is paid to multidomain gene
families, as multidomain sequences represent at least half of the sequence universe, but
present an especially challenging case for family classification. Often, these sequences are
excluded from analyses because they tend to interfere with classification performed with
existing methods. This thesis develops the theoretical context for family classification
of datasets that contain multidomain sequences, and demonstrates the implementation
necessary for performing classification on large data sets.

Five primary results are presented in this work. First, a definition of homology that
encompasses the evolutionary scenarios that result in multidomain families is formu-
lated. Second, the techniques and implementation of family classification are presented.
The methodology developed takes protein sequence data as input, and, by explicitly
considering the evolutionary signal of gene duplication inherent in a sequence similar-
ity network, derives a network that is an accurate estimate of homology. Third, the
structure of this network is examined, and compared to the theoretical construct of a
network of homology. Fourth, an approach for predicting families from this network is
developed. Importantly, a statistical framework is presented for evaluation of the result
using a limited set of curated families. Finally, the interplay between domains and the
clustering result is examined using an information-theoretic approach.









Contents

Contents v

1 Introduction 1

1.1 Areas addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Evolution of gene families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Locus model of multidomain homology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Classification of gene families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Relationship of domains and families . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and preliminaries 13

2.1 Study of multidomain gene families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Descriptive studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Domain consistency and Promiscuity . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The homology network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Family classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Challenges of multidomain families . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Curated family benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Network rewiring 25

3.1 Limitations of sequence similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Network rewiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Empirical classification performance . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 BLAST sequence similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Optimization for large scale 43

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Key data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



viii CONTENTS

4.2.1 Networks of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Hierarchical tree storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Implementation of Neighborhood Correlation . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Symmetric sequence similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Calculation order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Analysis of network properties 65
5.1 Network measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Measure definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Interpretation of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Analysis of Yeast networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Analysis of human and mouse networks . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Clustering and its evaluation 85
6.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Clustering methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Agglomerative, hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Sequence similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.2 Neighborhood Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.3 Influence of additional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 The relationship between domains and clusters 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Mutual Information Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Working Example of Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 Areas of focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.1 Structure of predicted families . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.2 Characteristics of domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4.3 Domain co-occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Clustering entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7 Relationship of domains and clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.8 Mutual information of domains versus entropy . . . . . . . . . . . . . . . . . . . . . 125
7.9 Characterization of clusters by domain content . . . . . . . . . . . . . . . . . . . . . 128

7.9.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.9.2 Projection of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusions and future directions 141

A Infrastructure 143
A.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.1 Existing tools and packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.1.2 Developed software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 SQL Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



B Data 153

C Family score distributions 155

D Domains and clusters – supplementary data 161
D.1 Examination across lineages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
D.2 Ordering of clusters by PCA component . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.3 Stability in single genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

List of Figures 189

List of Tables 195

List of Code 197

Bibliography 199

ix





Chapter 1

Introduction

This dissertation focuses upon the identification of multidomain gene families, and examination
of the genomic processes by which they arise. A gene family comprises the set of all sequences
that evolved by vertical descent from a single common ancestor. Gene duplication followed by
modification of one or both copies is the primary means by which new genes arise. Duplicated
genes, or homologs, lead to a number of evolutionary scenarios by which new functionality can
arise while still retaining the function of the ancestral gene. The novel function is most often
related to the original function of the gene, and as a consequence, families of genes tend to exhibit
similar properties of function. Gene families, and means of their identification, are of great interest
for characterization of the processes by which genomes evolve, and provide insight into the functions
of individual genes as a result of their memberships in gene families.

The structure of many proteins may be decomposed into domains, sequence fragments that fold to
unique structures independent of the rest of the protein. A gene that encodes a protein that contains
at least two domains is referred to as a multidomain gene, and a multidomain gene family includes
at least one multidomain gene. Domains typically correspond to functional units, and multidomain
proteins may exploit the combined function of all domains. Through domain insertion, the inclusion
of another domain into a new context, such function need not be independently evolved.

Multidomain genes comprise a large fraction of the total number of known genes, and are widely
recognized to be correlated with increases in organismal complexity, such as multicellularity. They
comprise approximately 37% of the genes in multicellular organisms, and 39% in metazoans [142].
Multidomain proteins are central to signal transduction [17, 118], apoptosis [9], tissue repair, and
the vertebrate immune system [142]. They often comprise scaffolds that facilitate the interaction of
the functional modules of signaling pathways [62]. Interestingly, multidomain proteins are highly
relevant to matters of human health; more than half of the members of the multidomain Kinase
family, the largest protein family, have known roles in one or more cancer processes [64].

Despite the high prevalence and intriguing evolutionary relevance of multidomain genes, the study
of multidomain gene families has been hindered in two primary ways. First, they do not fit the
model implicit to existing family classification methods and lead to inaccurate results. Second,
there has been ambiguity as to how gene families of multidomain sequences may be defined, and
debate as to whether they can be thought of as families at all. Both have led to a common practice

1



of omitting multidomain genes from efforts to classify families.

The underlying difficulty is that the sequence fragments that encode domains may be mobile: a
domain may arise in a sequence because it occurred in the ancestor of the sequence, but may also
arise through insertion from some other gene. Such a history of a gene does not fit the original
definition of homology proposed by Fitch, where all portions of a sequence must have the same
history [51]. This dissertation demonstrates an extension of Fitch’s definition, and allows reasoning
about multidomain gene families. Additionally, and according to this new definition, this work
presents a means of family classification that is robust to the complexities of multidomain gene
families.

Classification of families is an important prerequisite for a number of biological questions. Post-
genomic research relies heavily upon inference of the evolutionary relationships between genes. The
use of model organisms frequently presupposes a mapping of genes to corresponding orthologs in
other organisms, and an understanding of more complex relationships to other genes. Homologous
gene families are the basis of phylogenomic inference [24] and evolution-based methods for function
prediction and annotation transfer [71, 60, 61, 152]. Knowledge of family structure facilitates the
study of the processes that drive family evolution (e.g., [43]). Whole genome sequencing efforts
have inspired the construction of large-scale gene family databases with the goal of characterizing
the full complement of homologous families over a broad range of genomes [72, 150, 39, 137]. These
and other genome-scale applications require methods for accurate, automated, and high-throughput
family classification.

A substantial goal of this dissertation is to support those research efforts, while developing a ro-
bust system architecture that facilitates rapid investigation in new directions. A major emphasis
throughout this work has been to design and implement a framework that allows comprehensive,
flexible exploration of source and intermediate data, and clear means of delineating the evidence
used to reach conclusions in the output.

The approach undertaken in this dissertation is data-driven: amino acid sequences are the primary
input. Comparison of sequences within a genome, as well as among several genomes, is used to
derive signal to discover the underlying relationships among the proteins, and, in turn, infer the
organization of homologous gene families. The input data are heterogeneous in source, evolutionary
lineage, and degree of annotation, and are very large. Such data must be well organized to facil-
itate computation. Further, the scale of the data can present great computational requirements.
This dissertation develops the methods and demonstrates efficient implementation for performing
accurate family classification using practical resources, on large-scale genome data.

Much has been learned about the evolution of gene families from studies of specific families. These
studies comprise many examples of gene family evolution and illustrate a set of fundamental genomic
processes that drive their evolution. Yet, these are a small sampling of the protein space. Reliable,
general means of family classification can facilitate discovery of characteristic properties of families
and their evolution.

There are many unknowns about domains, and the relationship between domains and families.
To the extent that this has been studied, much of the focus has been upon the problems this
may cause for classifying families. The evolution of many families appears to be associated with
specific genomic processes, acting at a variety of levels. Abstractly, events upon genes include

2



duplication, the unifying characteristic of a family; wholesale gene loss; and mutation of single
codons. A hallmark of multidomain sequences is the transfer, or shuffling, of protein domains
between sequences. Identification of families allows for consideration of these processes within the
context in which they occur. For example, domain shuffling events modify individual sequences,
and the propensity for particular events appears to be conserved within families. These propensities
may only be evident, and will certainly be more clearly observed, when the relationships between
sequences are known.

This work presents the framework to study the interplay of domains and families. This is a
substantial, novel advancement over studies of bulk domain statistics within the context of in-
dividual sequences. Studies of families have constructed detailed histories of individual fami-
lies (e.g., [41, 66, 125, 140, 147]). Identification of these families is not automated, and, importantly,
these studies provide little ability to compare different families within a genome, or establish an
understanding of a “typical” family. Further, while domain events within the family may be char-
acterized, their scope is generally not such that they provide information about the contained
domains that also occur outside of the context of that family. In an attempt to understand do-
main behavior, other studies consider statistics such as domain order, position, or co-occurrence
within genes (e.g., [8, 27, 36, 144, 154]). These illustrate the distribution of domains over individual
sequences, but cannot resolve their relationship with the evolution of families.

The quantity of protein sequence data available is increasing exponentially [120]. This, alone, moti-
vates the development of methods that can cope with large datasets using practical computational
resources. Yet, it is important to clarify why one should consider large datasets, and identify the
realm of biological questions that one seeks to investigate. This is not merely of academic interest;
the rate of growth of sequence data is at least as fast as increases in computational capacity and
data storage. The use of more data increases the conserved phylogenetic signal. This allows iden-
tification of weak signal, and provides the level of discrimination necessary to identify disparate
signals, such as between lineages that exhibit distinct evolutionary histories. In all cases, it lends
greater confidence to the results obtained, distinguishing the hypotheses made from those merely
supported by background noise.1

The scope of the data required to support conclusions about gene families must be distinguished
from that of, say, use of the entire universe of available protein sequences. As in all disciplines, a
balance must be sought between the complexity and the quantity of data employed. More targeted
selection of genomes can enable the use of more sophisticated techniques that would be impractical
in extremely large datasets. Here, balance is sought to accommodate investigation within and
between evolutionary lineages. In practice, this means constraining the set of genomes used to
include as few genomes as may be required to address the granularity within a given lineage,
while sufficient to cover the breadth of lineages relevant to the study. Make no mistake: even a
carefully selected set of data remain sufficiently large to demand sophisticated approaches to data
management and careful optimization of techniques employed.

1Many types of signal and noise are addressed in this dissertation. Beyond the discussion in this Introduction,
these are developed in a more detailed manner in Chapter 2: Background and preliminaries (p.13).

3



1.1 Areas addressed

This work may be decomposed into, and is presented as, five major emphases:

First, I frame a definition of gene homology that encompasses multidomain sequences, developed
in early collaborative work [134].

Second, I present the techniques I have developed for performing family classification, including
the framing of homology as a transitive network of genes. This mathematical foundation is used
to reason about how closely homology may be estimated by typical measures, such as sequence
similarity. Further, such a framework motivates an approach to exploit the structure inherent in an
imperfect network. This can yield substantially better measures than what may be derived from
pairwise measurements alone. The developed network rescoring approach, Neighborhood Corre-
lation, uses the local structure of a weighted network of sequence similarity to correct for missed
or incorrect inferences between all members of a network. A final step in the family classification
pipeline developed in this work involves clustering of the resulting weighted network to establish a
partitioning into discrete families.

Third, I describe the techniques and methodology that facilitate this research. The scale of the data
sets under consideration requires careful attention to storage and computational demands. Most
of the results presented in this dissertation are derived from a dataset of 48 genomes of disparate
evolutionary lineage, comprising approximately 600k sequences [104]. The approach and methods
here have been developed with an eye toward substantially larger datasets. To meet these needs,
I have developed a robust, flexible infrastructure for exploratory research of evolutionary families
using proteome sequences. The value of such an architecture is multi-fold:

Exploratory research is undertaken within the frame of general research directions, though is best
accomplished when the data may be used to ask new questions and guide the specific methodology
undertaken. The general framework is comprised of a central data store that interacts with discrete
tools, each designed to accomplish a single task in a pipeline of related tools. This separation facil-
itates incremental, iterative development of the research. A central store of source, intermediate,
and output data reduces duplication of the data, and greatly aids in cross-checking of methods,
and, at least as importantly, consistency of the data itself. In this work, a wide range of input,
intermediate, and derived data must be handled, including sequences, sequence meta-data, domain
annotations, known families, networks of sequences, and derived clusters.

The scale of the data used here is not amenable to ad hoc approaches to computation, as when
individual, “quick and dirty” programs are used to each investigate a question using myriad data
sources. This is particularly relevant in that the goal of my research has not been solely to develop
potentially useful methods, but also to employ them to increase our understanding of genome
evolution. Organization and planning of infrastructure requirements become inevitable when one
cannot simply re-compute an entire pipeline throughout development.

Many of the solutions developed here generalize to other areas of research, where one may not
require a complete infrastructure built for sequence data and investigation of genome evolution. A
modular framework allows separation of components for use within other infrastructures, possibly
very different from that employed here.

Fourth, I discuss validation of family classification prediction. Evaluation is accomplished from two

4



primary perspectives: Extrinsic measures are used to evaluate accuracy of the classification using
known families that we have drawn from primary sources. Intrinsic measures, such as measures
of the connectivity of the sequence network, or the composition of clusters that are derived from
such a network, are used in the absence of ground-truth data. Since the composition of very few
families is known, intrinsic measures are especially valuable for demonstrating the consistency of
family classification predictions. Further, the measures developed provide insight into the structure
of gene families.

Finally, having proposed evolutionary families, it is possible to examine the biological properties of
the genome in the context of those families. The interplay between domains and families is explored
through an information-theoretic approach.

1.2 Evolution of gene families

The classical model of new gene formation is duplication of an existing gene, followed by muta-
tion. Redundancies due to duplication tend to reduce the evolutionary pressures that conserve the
function and composition of the gene. Four general scenarios of the fate of the duplicates are rec-
ognized [51, 74, 111, 156]. First, the redundant function may be neutral in pressure or deleterious,
with the result that one gene becomes non-functional. This is the most likely fate, and is evidenced
by the existence of large numbers of pseudogenes. Second, the duplication may facilitate greater
expression of a gene product that is required in large quantities. Both copies will be retained.
In this case, gene conversion or purifying selection can help preserve their identical composition.
With a third scenario, subfunctionalization, the duplicates of a multifunctional gene may exhibit
complementary loss of the duplicate functionality. Finally, one of the duplicates may acquire new
function. This is referred to as neofunctionalization.

Homologous genes are those that have descended from a common ancestral gene (i.e., by vertical
descent) [52]. An evolutionary gene family is the closure of all genes that are homologous. That
is, each member of a gene family is related to all other members of that family through a common
ancestor. By the same measure, any pair of genes that do not share a common ancestor are not
homologous, and cannot be members of the same family. These properties connote that families do
not overlap.

Duplication may arise at a continuum of scales, from small fragments to complete genes, chromo-
somes, and entire genomes. The processes of evolution by which point mutations occur are well
studied [63]. The processes of multidomain protein evolution are not well understood in comparison
with gene duplication.

The sharing and insertion of domains facilitates rapid evolution by reuse of components. Domains
inserted into existing genes are likely to be expressed and conserved if they lend auxiliary function
to the proteins in which they are found. Domains may evolve by vertical descent, being copied only
via gene duplication, or may be widely dispersed among sequence contexts. Canonical examples of
the latter include binding domains that may be integrated into several distinct proteins common
only in binding mechanism.

Domain insertion can be mediated by a number of biological mechanisms. A body of work has
looked at domain architectures observed in genomes to make inferences regarding domain pro-
cesses. These studies abstract away from specific biological mechanisms and seek to describe the

5



relation of domain shuffling operations [54]. Abstract domain shuffling operations include insertion,
duplication, and deletion. These act in concert with gene fusion and fission. Studies of genomic
sequence DNA have led to many conclusions about the processes of sequence evolution that drive
such operations.

The biological mechanisms responsible for rearrangement of sequences have been most extensively
studied in the context of new gene formation, where the mechanisms of atypical splicing, unequal
recombination, and retrotransposition are thought to dominate [11, 97]. For example, analyses of
genome context illustrate that fusion of neighboring genes may frequently be attributed to faulty
stop codons. Remote insertions are more likely at exon boundaries, via atypical splicing [11],
mobile elements, exon shuffling, and non-allelic homologous recombination [97]. Gene and domain
duplication by retrotransposition are evidenced by genes found in duplicate, but absent of introns.

1.3 Locus model of multidomain homology

The traditional definition of homologous families does not apply directly to multidomain proteins.
Homology is not a divisible property, though multidomain proteins regularly contain sequence
fragments of disparate lineage. Walter Fitch has stated that “We must recognize that not all parts
of a gene have the same history and thus, in such cases, that the gene is not the unit to which the
terms orthology, paralogy, etcetera apply” [52]. An inability to work at the level of genes limits our
ability to apply homology-based methods to multidomain families. The goal of this dissertation is
to employ the inferences about genes made possible by examining their evolutionary relationships,
and devise methods to identify families of these genes. Gene families are a particularly suitable
basis to examine the evolution of genomes. Domains are structural units, but genes are the units
that are ultimately expressed. Accordingly, it is necessary to extend this definition.

In preliminary, collaborative work [134], we proposed an extension to the definition of homology
that extends to multidomain sequences. The evolutionary unit, or gene, may be recognized as the
locus of that gene on a chromosome. Homologous genes are related through vertical descent, by
duplication and modification. In the context of a multidomain sequence, the locus may similarly
be duplicated, resulting in two homologous genes. This paragolous relationship remains unchanged
should one of the duplicates subsequently acquire mutations or acquire additional fragments of
genetic material from some other source. Here, the history of the gene locus, not the origin of an
inserted sequence fragment, defines the relationship between duplicates.

In this dissertation, I adopt the following definition of homology: Two sequences are homologous if
the loci that encode them are descendants of the same ancestral locus. This definition expands the
applicability of the gene family framework to a large and important class of proteins. It facilitates
family classification on datasets comprised of complete genomes, without removal of sequences that
may not fit the classification method.

A hypothetical history of such a multidomain family is illustrated in Figure 1.1. Here, we can
retrace the history of the loci that encode the currently observable genes w, x, y, and z. Gene loci
are represented as lines, and shaded polygons depict unique domains. Genes x, y, and z comprise a
family, having arisen from a common ancestor, a0, through gene duplication events. Their domain
composition differs; the ancestor of genes x and y acquired a domain through domain insertion,
whereas z diverged prior to this insertion event. This domain does not affect the relationship of

6



a0

z

Gene
duplication

w

Domain
insertion

a1

x y

Figure 1.1: The evolutionary history of a hypothetical multidomain family, showing both gene
duplications and domain insertions. Gene loci are depicted as lines, overlaid by polygons that
represent domains. Genes x, y, and z share a common ancestor (a0), but do not have identical
domain composition; a domain (diamond, in green) was inserted into the ancestral gene a1 after
the divergence of gene z. Gene w shares a homologous domain with these genes, though there is
no gene that is ancestral to both w and a member of the family.

x, y, and z to their common ancestor, a0. Genes z and w do contain a common domain, acquired
by insertion. This common domain does not confer homology; gene w shares no common ancestor
with z, or the other genes here.

The use of genes as the unit of evolution neither discounts the evolutionary history of single domain-
sequences that evolve purely by vertical descent, nor the evolutionary history of sequence fragments
acquired by insertion. Rather, it allows comprehensive study of the history of domains and of the
history of the families in which they occur. The definition of homology adopted here applies to gene
families that evolve through domain insertion into an existing gene. This is a plausible assumption
for the evolution of many families because existing genes already have in place the promoter and
regulatory components required for expression. Insertions into genes that already have regulatory
signals are more likely to be expressed, and retained, than those into other locations. However, this
also suggests that exceptions are possible. In what appear to be rare instances, a gene architecture
may be assembled de novo; for example, by recruitment of a promoter to an existing sequence.
Under the model used here, such a sequence would be considered the progenitor of a new family.

1.4 Classification of gene families

Grouping homologous genes into families facilitates (1) reasoning about the evolutionary history
of those families, especially as compared between diverse lineages, and (2) investigation of the
molecular or abstract processes that drive the evolution of families, in general.

Having formulated a formal definition of homologous families that includes domain shuffling, a
further step is to devise means of identifying family membership using real data. The goal of gene
family classification is to partition a set of unlabeled sequences into homologous families; i.e., sets
of sequences derived from a common ancestral gene by speciation, gene duplication, and, in some
species, horizontal gene transfer.2

2Note that this is distinct from orthology, in which only sequences related through speciation are considered.

7



Classification of multidomain gene families requires distinguishing genes related through verti-
cal descent from those related only through domain insertion [134]. For example, in Figure 1.1,
sequence-based approaches will tend to assign w to the homologous family, {x, y, z}, because genes
w and z share a homologous domain. This assignment is incorrect; there is no ancestral genome
that contains an entire gene that is ancestral to both w and z.

In the context of Figure 1.1, the task of family classification is to identify genes x, y, and z as
a family, while excluding gene w. Regions of high similarity, such as due to a recent domain
insertion, among unrelated sequences tend to confound traditional sequence-based approaches to
classification. This is the primary effect that may lead to inappropriate inference of gene w as a
member of the family illustrated.

At the same time, some families are highly divergent, resulting in weak sequence similarity among
members. This can result from drift of the sequence, as well as domain events such as insertion or
shuffling of the primary order of existing domains. Sequence divergence will decrease the similarity
between homologous pairs, to a degree related to the amount of time since divergence, and, inversely,
the extent to which the sequences are constrained by other evolutionary pressures. This can result
in weak sequence similarity between homologous sequences, an effect known as remote homology.

1.5 Relationship of domains and families

The mechanisms by which multidomain families evolve are varied, and complex. In particular, the
mechanisms by which they evolve are very different from single-domain families in ways that violate
the assumptions of existing classification methods. A primary complication is that some domains
are mobile within a genome, with the result that sequence fragments are transferred between gene
loci that do not share ancestry.

There is reason to believe that some domains are unique to, or characterize, specific families. Others
occur in many distinct families, and in concert with a variety of other domains. Some domains are
mobile within a genome, with the result that large sequence fragments – and the corresponding
function – are transferred between gene loci that do not share common ancestry. Others may
be mobile within a specific sequence context. Others still may not be mobile at all, arising only
through gene duplication.

I define the consistency of a domain to be the propensity of that domain to evolve exclusively in
genes that share common ancestry; i.e., within a single evolutionary family. A domain that appears
in multiple families is inconsistent, though this is not a binary property. For example, a domain
that occurs exclusively in a single family, save one other sequence, is rather similar in behavior to a
domain that does occur in only one family — and these patterns are quite distinct from a domain
that occurs, say, in one sequence each of many families. Note that this concept refers to a biological
property of a domain, not a count of the number of instances we may observe. (One estimate of
this property may be such a count, but the biological property, and observed instances of it, should
not be confounded.)

Domains, as single structural units, tend to confer a specific function to the protein in which
they occur. Insertion of domains is a means by which genes may acquire functional modules.
One may consider this interplay from the perspective of a domain, and characterize the functional
properties of the domain, as well as its propensity to be exchanged. This approach does not harness

8



information from the sequence context associated with an instance of a domain. Relevant properties
of a domain, including how likely it is to be inserted elsewhere, may depend upon sequence context.

An opposing, and equally extreme, perspective is to consider only the properties and functions of
genes. This would not delineate the function or evolution of the domains as separate from the
containing gene. In doing so, this disregards the value of aggregating information about a domain
from many sequence contexts, and other genes of well-characterized function.

Neither domains nor genes need be considered in isolation. A balanced perspective that considers
both the relevance of genes as units of evolution, and domains as elements that may be inserted, is
most appropriate. Automated identification of gene families facilitates a means for understanding
protein domains within the context of genes, and the families to which they belong.

While consistency is a conceptual property of a domain, it will be useful to estimate it numerically.
The approach taken in this work is to first identify families, and then evaluate the relationship of
domains to those families. It should be noted that study of the interplay between families and
domains requires that each be identified. The ability to accomplish either is dependent upon the
other, but such a degree of interdependence also means that a better understanding of one may
avail progress toward understanding the other. An effective estimate of consistency could make
it much easier to distinguish families. Examination of the relationship correlation between gene
families and domain consistency is a major focus of this work, and is specifically addressed in
Chapter 7: The relationship between domains and clusters (p.109).

At the same time, inconsistency presents a major obstacle to family identification. Modular
exchange violates many assumptions of methods for family classification that are based on sequence
similarity. Domains that occur in unrelated sequences are not evidence of homology, regardless of
how strongly similar the two instances of that domain may be. Sequence similarity does not
distinguish between consistent and inconsistent domains in comparing sequences.

1.6 Summary of results

The primary emphasis for family classification in this dissertation has been to develop methods
that perform well on datasets that include multidomain sequences.

Early, collaborative work focused on developing a scoring method, Neighborhood Correlation [134],
for pairs of multidomain proteins, where a high score indicates a prediction of homology. This
method used the local structure of the sequence similarity network, as calculated by BLAST, as
input.

In Song et al. [134], we demonstrated, using a curated set of known homologous sequences, that
Neighborhood Correlation achieves high accuracy on the pairwise classification problem. Develop-
ment of a curated set of homologous genes that included multidomain sequences was a significant
contribution of this work. In addition to its utility for evaluating our own methods, this allowed us
to elucidate the behavior of sequence similarity on such heterogeneous data. The success of Neigh-
borhood Correlation demonstrated the efficacy of exploiting the local structure of the sequence
similarity network to estimate homology.

In my dissertation research, I exploit this idea to obtain a novel and more powerful approach to
classifying protein families through a focus on rewiring a sequence similarity network to better

9



Protein
sequences

Blast [3]
Seq. similarity

network

Neighborhood
Correlation [3]NC network

Network
metrics [5]

Intrinsic evaluation

Clustering [6]

Hierarchical tree

Curated
families

Cluster
statistics [6]

Extrinsic evaluation

PFam domain
models

Domain search [7]

Domain
instances

Information
comparison [7]

NC

Domain
consistency

Key:

Input Data

Result

Method

Figure 1.2: Work-flow of data and methods used in this thesis. Arrows represent data flow. Double
lines represent parallel data paths; e.g., clustering is performed on either a sequence similarity
network or a Neighborhood Correlation network, and the resulting tree is specific to that data
input. Brackets indicate the chapter number in which a method is discussed.

approximate homology. This is followed by clustering nodes in this network to establish sets that
represent predicted homologous gene families. Figure 1.2 depicts the sources of data used in this
dissertation, the flow of intermediate derived data into individual methods, and the result of those
methods. My approach to network rewiring is detailed in Chapter 3: Network rewiring (p.25).
I applied this approach to a number of genome-scale data sets, described in Appendix B: Data
(p.153).

Application of these ideas to very large data sets poses challenges to computation and storage.
Most of the results presented in this dissertation are derived from a dataset of 48 genomes of
disparate evolutionary lineage, comprising approximately 600k sequences. To accommodate this
challenge, the approach and methods here have been developed with an eye toward substantially
larger datasets. I developed a robust, flexible infrastructure for exploratory research of evolutionary
families using proteome sequences. Briefly, this consists of a central SQL-based data store, a library
of code for fundamental functionality, and discrete tools for specific methods. The design choices
made and resulting architecture are discussed in Chapter 4: Optimization for large scale (p.43).

The underlying rationale of the rewiring approach used in this work is that the history of evolution
is reflected in the structure of the sequence similarity network. My work is based on the hypothesis
that this network structure reflects the events that occurred during evolution, and that it may be
used to reconstruct the network of homology. It is therefore particularly important to understand
the structural properties of networks based on real data. The results of these investigations are
presented in Chapter 5: Analysis of network properties (p.65).

10



Reconstruction of a network of homology from sequence similarity is a substantial step toward
family prediction, both in the theoretical constructs that may be employed, and toward a practical
means of predicting homology. If the goal is to predict complete families, a means of partitioning
this network into discrete families is required. Hierarchical clustering is employed to infer this
partitioning from residual noise in the estimated network of homology. The techniques considered,
and methods evaluation of the clustering result using curated data are discussed in 6: Clustering
and its evaluation (p.85).

I use the results of the family classification pipeline developed to investigate the relationship between
domain content and the underlying organization of protein families. In Chapter 7: The relationship
between domains and clusters (p.109), I introduce an information-theoretic approach to examine
these relationships. This allows for identification and quantitative comparison of the properties of
domains and sequences which best characterize family structure.

11





Chapter 2

Background and preliminaries

This chapter provides context for the challenge of family classification. The current understanding
of the relevance of multidomain gene families is reviewed first. These works frame the theoretical
concepts developed used to define the problem of family classification, and provide the empirical
backing necessary to demonstrate their relevance to biology. After the introduction of the theoreti-
cal concept of a homology network, this chapter reviews existing approaches for family classification,
and focuses upon the specific challenges that multidomain families pose for the accurate identifi-
cation of families. The final section of this chapter describes issues related to effective evaluation
of family predictions, and introduces the curated benchmark of 20 families used throughout this
work.

2.1 Study of multidomain gene families

The advent of genomic sequence data has facilitated large-scale, empirical studies to characterize the
structure of genomes and elucidate the processes by which they evolve. As the amount of genome
data has increased, it has become possible to pose broad questions about the underlying biological
processes, and examine the differences that exist between lineages. Two primary perspectives have
guided these studies. The first is a descriptive approach, whereby a set of characteristics about
genes and domains are enumerated and measured using the available data. The second perspective
aims to construct a generative model that can explain the data.

2.1.1 Descriptive studies

Complete genome sequences have facilitated the study of novel and complex domain architectures
in the evolution of new genes. Descriptive studies using this data have led to a characterization
of the processes by which new genes arise, and enumeration of the molecular mechanisms that
are responsible for abstract domain shuffling events. New genes are formed through duplication
of DNA, which is understood to occur through retro transposition and tandem duplication events
of single loci, segmental duplications of whole or partial chromosomes, as well as duplication of
complete genomes [97, 111, 138]. Highlighting the relevance of large-scale duplications, it has been

13



hypothesized that whole-genome duplication presents an opportunity for entire signaling cascades
to evolve en masse [37].

The formation of novel and varied domain architectures has been posited to have a driving role in
corresponding increases in regulatory and organismal complexity [11]. The structure of sequence
fragments that encode domains is correlated to a large degree with exon structure. As a conse-
quence, the processes of exon shuffling are thought to be a primary driver for the formation of novel
domain architectures [115]. This is particularly true in metazoa, where the rate of exon shuffling is
observed to have greatly accelerated, and is believed to have been key to the formation of structural
proteins involved in multicellularity [115]. A variety of molecular mechanisms are involved in exon
shuffling, including atypical splicing events, and incorporation of existing exons into new contexts
by mobile elements [11, 46, 54, 82, 107, 145]. Additionally, gene fission and fusion events can be
responsible for genes with novel architectures [21, 47, 48, 91].

The inferred history of biological mechanisms can depend upon context. Whereas some domain
instances may unambiguously correspond to genes derived through vertical descent, other instances
may be better explained through complex rearrangement. This may, for example, result in inser-
tion of a domain into different families. Further, the history of specific events responsible for a
gene’s evolution may not be fully defined by the resulting genome structure, and many genomic
mechanisms may be indistinguishable. For example, insertion of a domain by read-through error
or insertion at the C-terminus might be both be modeled simply as a domain insertion.

More generally, the organization of contemporary genomes has been measured, and the variation of
gene composition between lineages has been evaluated [98]. Increases in the complexity of genome
structure and regulatory networks has been attributed to the processes of modular construction
that result in multidomain genes [9, 142]. The evolution of individual domain families1 has been
studied extensively [27, 32, 62, 92].

Other studies have focused upon study of the functional consequences of new genes and domain
architectures. Genomic datasets have enabled direct study of the evolutionary fates of these new
genes with respect to regulation and function [55, 99]. Such studies of function have revealed
examples of how evolutionary scenarios can differ among distinct lineages [138].

2.1.2 Modeling

The second perspective taken by empirical studies has been to examine the structure of genomes by
fitting the data to parameters of a generalized model. These models tend to be based upon network
theory, in which a graph theoretical framework is used to make conclusions about the processes that
act upon the genome. In these, a network is typically constructed of nodes that represent either
genes or domains, joined by edges that represent similarity, co-occurrence, or functional interaction.
This approach is then typically defined by a fit of the data to a model of network growth. Such
models reflect the scenario of ongoing evolution as growth of the network [18, 50, 110, 139]. The
emergent behavior of such a network may then be ascribed to fundamental, natural processes
inherent to genome evolution [90]. A fit of the data to the results of a generative model can suggest
a mapping between the emergent properties of the model, and the underlying biological processes.

1Domain families, which are comprised of all instances of a particular domain, should not be confused with gene
families.

14



Network models have been used to describe general structural features of genomes [12, 21, 50,
105, 129, 154]. In response to the general explanatory power of some models of network growth,
much of the literature concerns the fitting of a given generative model based upon the degree
distribution observed in networks of sequence similarity and domain interaction networks. The most
frequent discussion concerns the fitting of such data to a power-law distribution of node degree.
Such distributions are inherent to many natural and physical processes [33], so it is plausible
to imagine that these distributions exist in genomic data. Such fits lead to direct inference of
the mode of duplication; i.e., through creation of a scale-free network by preferential attachment
of new nodes to existing nodes with a tendency directly related to the degree of those nodes.
This has led to a search for power-law distributions in genomic data. Finding such distributions
suggests an elegant analog to the processes of gene duplication and the formation of novel domain
architectures. The preferential attachment model of domain co-occurrence has been used to propose
fundamental models of modular gene formation [92, 153]. Similarly, birth-death models of gene
formation have been used to explain observed power-law distributions of the degree of related
genes [78, 80, 79, 86, 87]. Birth-death models are conceptual match for the processes of gene
duplication and loss.

Most modeling approaches are based upon fitting the observed genomic data to a theoretical model,
and then using that model to explain the dynamics of the genome. However, if biological conclusions
are to be reached, caution is necessary to consider the plausibility of the model with respect to un-
derlying biological processes, even when the data fit a model with high statistical significance [136].
That is, many models may fit the data, but lack explanatory power. These inferences are critically
dependent upon the accuracy of the fit to the data distribution. In the case of the universality of
power law distributions, there is reason to question whether the fit to a power law is warranted,
and whether such a fit is useful when used to explain the biological processes [33, 93, 136].

With respect to networks of domain co-occurrence, further evidence has suggested that a preferential
attachment model does not accurately describe homologous gene families [121, 122].

2.2 Domain consistency and Promiscuity

The concept of consistency was introduced in the preceding chapter is closely related to a property
sometimes referred to as Promiscuity [101]. That term was coined in reference to domains that
occur in several proteins, but are not evidence of a common biological function between those
proteins. The goal of that initial study was to identify protein-protein interactions from sequence,
and domains that could be identified as leading to incorrect inference of interaction were labeled
as promiscuous, and excluded. The term has since been more broadly used, and definitions in the
literature vary widely.

The most common usage is with respect to the frequency of co-occurrence of a domain with other
domains in a sequence. This has been used to infer a propensity of a domain to be found in
multidomain sequences [14, 142]. The underlying goal of many of these studies has been to better
describe domain occurrence in genomic datasets, and, in turn, better understand the processes at
work in the genomes. Toward such understanding, some have worked to extend statistics of domain
promiscuity to account for the background frequency of domain occurrence, including the domain
versatility index [148]. These measures consider the contexts in which a domain occurs, but do not

15



consider the dynamics of how the genes were formed. Others have explicitly related promiscuity
to the mobility of a domain in the genome [15], and the modes of formation of individual domain
families [27, 28]. Such studies tend to follow the initial usage of promiscuity, and frame it as a value
that may be calculated from the data at hand, rather than an independent biological property of
domains.

While domain promiscuity has been considered in the context of different lineages, and found to
vary [14, 35], these formulations do not posit, or necessarily have a relationship to homology of
the containing proteins. In this dissertation, consistency is defined as a theoretical concept, and
refers to the propensity of a domain to occur exclusively in genes that belong to a single homologous
family.

2.3 The homology network

Many approaches to gene family classification represent the sequence universe as a network of
sequences. Different networks use edges that correspond to a variety of measurable properties
between each pair of sequences, such as the degree of sequence similarity, protein-protein interaction,
or functional similarity. It is important to recognize that many such measures are not a prerequisite
of homology between a pair of sequences. For example, while functional similarity tends to follow
from homology, functional similarity is not a priori evidence of homology [52]. Homology is defined
by common ancestry. Accordingly, some measures, such as sequence similarity, may be expected to
comprise direct proxies of homology, in the absence of noise.

It is useful to frame this problem in the theoretical context, before proceeding toward a network
defined by some measure. I define the homology network, GH = (V,EH), where V is the set of
all sequences and (x, y) ∈ EH , if and only if x and y are homologous. Because gene families are
defined through vertical descent, each sequence is homologous to all other sequences in its family,
and only to those sequences. Otherwise stated, homology is a transitive property. If x and y share
common ancestry, and y and w share common ancestry, then x and w must also share common
ancestry. GH is a disjoint union of cliques, in which each clique corresponds to exactly one gene
family.

In practice, GH is unknown, and homology is typically estimated using sequence comparison. This
yields a sequence similarity network, GS = (V,ES), where (u, v) ∈ ES if the sequences u and
v have a significant degree of similarity. This network is weighted, by the measure of sequence
similarity. Since sequence similarity is not a perfect predictor of homology, GS will not, in general,
be a transitive graph. Remote homology will result in missing edges, while spurious similarity,
convergent evolution, and shared inconsistent domains will introduce false edges. As a result,
families no longer correspond to cliques or, in many cases, even to isolated connected components.

2.4 Family classification

The goal of family classification is to identify sets of sequences that share common ancestry. Con-
ceptualizing this problem in the context of the homology network, GH , provides a theoretical basis
common to many approaches. Namely, given a network of sequence similarity, GS , the goal of
family classification reduces to that of reconstructing the edges in GH , by restoring the edges that

16



are missing within the subgraphs that represent families, and removing spurious edges that may
exist between unrelated sequences.

The defining evolutionary process of homology is that of speciation and gene duplication. In the
context of the sequence similarity network, this may be represented as the creation of a new node,
with an edge of strong similarity to the corresponding duplicate. Additionally, and importantly, all
edges incident upon that corresponding node will be replicated to the new node. Were duplication
the only relevant process in family evolution, dense regions of the sequence similarity network could
readily be expected to directly correspond to families.

Sequences may also have similarity to other sequences that are not related. Such similarity is not
a reflection of family evolution. Some similarity may be spurious; i.e., the consequence of chance
in a large dataset. A short sub-string of one sequence is likely to be observed in another sequence
when the size of the dataset is sufficiently large. Similarity between unrelated sequences may also
arise due to convergent evolution.

Two strategies have been exploited to improve family classification accuracy. First, the prediction
of homology could be improved over that of sequence similarity, reducing the number of errors that
result in false or missing edges in GS . Second, a clustering methodology could be applied to the
network, to derive families from the structure of the network, without also including sequences that
are connected by false edges in GS . Efforts to improve family classification fall into both of these
categories.

Many efforts have focused upon accurate strategies of pairwise homology prediction. Sequence simi-
larity to a given sequence is typically measured by performing a Blast [4] search, which is a heuristic
to quickly identify regions of similarity between that sequence and any other similar sequence in a
database. This yields a measure of similarity based upon the length of the common region and a
model of the frequency of amino-acid substitutions [2, 3], as well as a statistical significance of this
similarity with respect to other sequences in the database. With continued development, Blast
has incorporated additional statistical measures that more accurately account for the composition
of sequences [7, 155]. Many studies have worked to improve the accuracy of sequence similarity
search heuristics by improving the initial seed used for searching the database [22, 26, 157]. Others
have sought to develop novel pairwise metrics that better correspond to homology [100].

Blast is reliant upon the possibility of achieving an initial degree of similarity between a specific
query sequence and another in the database. PSI-Blast [5, 128] extends this methodology to con-
sider queries based upon a profile constructed from one or more sequences. This approach facilitates
iterative searches that identify homologs that might not be found directly using a particular query
sequence. As a consequence, it greatly aids in the identification of remote homologs. Improvements
in remote homology detection have helped to identify members of distant protein families, but, by
design, they do not benefit the accuracy of homology detection that is not remote [134]. Addition-
ally, the iterative, interactive nature of these techniques is not ideally suited toward large-scale or
automated studies.

Both edges that are missing and those that exist, but falsely suggest homology in the sequence
similarity network, GS , may be thought of as the result of noise in the network. First, however,
it is useful to understand that the errors in GS are the result of biology, and generally are not
an effect of measurement noise. The recovery of community structure amid noise is a typical task

17



of clustering [56]. That is, if a network has an inherent structure, such as that of the homology
network, GH , a clustering algorithm could be applied to resolve this structure, even if false or
missing edges also exist. Clustering is a natural approach for organizing unstructured data, and a
myriad of methods have been proposed for sequence data [20, 58, 76, 81, 83, 85, 88, 89, 100, 106, 117,
127, 124, 131, 149, 151]. The goal in many studies to group sequences, without an emphasis upon
their evolutionary relationship. Others have pursued clustering for the application of identifying
homologous sequences, families, and sub-families [1, 25, 49, 69, 94, 102, 109, 113].

The approaches of improved homology detection and clustering are interdependent, and may be
combined. Many clustering algorithms seek specific structural features in graphs, based on the
assumption that GS still retains clique-like structures corresponding to families, despite noise.
Conversely, better pairwise homology prediction methods will yield a network that better approx-
imates homology and is more amenable to clustering algorithms. Reducing the amount of error
in the estimated network will lead to a graph that better approximates the homology network.
Clustering can then be applied to establish a partitioning that resolves the families.

2.4.1 Use cases

Two general use cases for family classification may be recognized. First, the construction of large-
scale databases of gene families requires automated means of predicting the relationships between
all genes in one, or, typically, a great many genomes. This demands methods that are robust to
differences in the evolutionary processes of distinct families, which vary widely, as well as differences
among disparate species lineages. Targeted, interactive homology detection methods represent a
second approach. Here, the typical use case is to begin with a sequence, and iteratively search for
other members of the same gene family. Widely used tools that fit this model include Blast, which
approximates an exhaustive search of pairwise similarities to the initial sequence, and PSI-Blast,
which iteratively performs searches using a model of sequences found in previous rounds.

Interactive tools exploit knowledge from the user and complement it with sequence data. They
constrain the problem greatly by performing a local search from a given sequence of interest.
However, note that this is not a general solution to discerning the organization of the entire space of
all sequences. Local searches are not designed to provide insight into the statistics of or relationships
between families not under immediate investigation. While this methodology has yielded much
insight, and many useful tools, it demonstrates a clear compromise where small portions of data
may be considered in detail, at the cost of robustness and consistency on large, heterogeneous data
sets.

General and targeted approaches remain separate largely because homology detection methods are
not perfect. If they were, a reasonable, perhaps preferable, approach would be to compute the
automated analysis, with interactive searches being reduced to mere look-up of the precomputed
result. The focus in this dissertation is upon automated, large scale classification and analysis.

2.4.2 Challenges of multidomain families

The evolutionary histories of multidomain sequences tend to violate key assumptions implicit in
the use of sequence similarity for homology prediction. Sequence similarity is a function of the
length and identity of the shared region between two sequences. Its use in family classification is

18



premised on the property that shared sequence is evidence of common ancestry. Additionally, it
relies upon the property that the entirety of two homologous sequences are of the same origin and
retain evidence of their relationship. Insertion of a domain into a sequence clearly violates each of
these criteria, and, in practice, disrupts the result of methods that use sequence similarity to predict
homology. Insertion of a domain from a non-homologous sequence has the effect of increasing the
similarity between non-homologous sequences, possibly to a large degree. Further, domain insertion
or permutation of the order of domains in a sequence can preclude alignment of the common regions
in homologs, masking their relationship when measured by sequence similarity.

Families containing multidomain sequences exhibit a variety of additional processes that can affect
sequence similarity. These processes yield events that act upon whole domains. That which poses
the greatest challenge to family classification based upon sequence similarity is the insertion of a
domain into an existing sequence. The result upon the sequence similarity network is the creation
of an edge, of potentially high similarity, between the sequence from which the domain was copied,
and the sequence into which it was inserted. Additionally, the recipient sequence will gain edges
to any other sequence that also contains the domain. The evolutionary history of a domain does
not necessarily match that of a sequence in which it is found. The edges in the sequence similarity
network that arise through domain insertion from outside a family do not, by definition, represent
homology of the sequences themselves. Such domains are inconsistent.

In family classification, the dominant issues with multidomain families arise due to the inconsis-
tency of some domains. Although domains are not explicitly considered in approaches that use
sequence similarity, domain content strongly influences their result. In particular, the inappropri-
ate merger of unrelated families via a series of one or more common domains plagues most family
classification methods when applied to datasets that contain multidomain sequences.

In general, the application of a method to a dataset that violates the inherent assumptions of
that method can generate artifacts in the result. An often-cited complication when using sequence
similarity is domain chaining [70]. Domain chaining is an artifact of the methodology used for
family classification. Figure 2.1(a) demonstrates how a series of families may be linked together by
domains that each are found in at least two families. Pairs of families are each incorrectly grouped
together because of at least one domain, and each of those is grouped with another family due to
some other domain.

It is relevant to differentiate domain chaining, as in Figure 2.1(a), from that resulting from in-
consistency of a single domain, as in Figure 2.1(b). With (a), absent any additional sequence
information, there is no reason to believe that all pairs of sequences in the merged cluster should
be grouped together. In particular, sequences in the left-most family have no domains in common
with the right-most family. They are grouped only because of intermediate sequences that contain
pairs of both intermediate domains. In (b), the common domain may be inconsistent, or the
clustering may be incorrect. The causes are different, and the resulting fault in classification may
be mitigated by different means.

Methods based upon sequence similarity and transitive closure are prone to this mode of error.
A single instance of a shared domain in a family can be sufficient for domain chaining to occur.
Domain chaining can be caused by inconsistency, but domain chaining should not be assumed
to be evidence of inconsistency. Further, solving domain chaining does not necessarily prevent
the incorrect grouping of inconsistent domains during family classification.

19



(a) Domain chain

(b) Domain “star”

Figure 2.1: (a) A set of families grouped together due to a chain of domains, each found in one or
more clusters. Note that no single domain is found throughout all families of the resulting cluster.
(b) A set of families grouped together due to a single shared domain. Families are depicted as
bounding circles, and domains as polygons on individual genes (lines).

In classification, inclusion of unrelated sequences can sometimes be cast as a problem of low pre-
cision. Ideally, one might increase the stringency of a threshold used to group families, while
retaining high recall, and thereby separating them. However, many instances of domain chain-
ing result in greater sequence similarity between non-homologous pairs than homologous pairs, for
some families. For many families, such as those which are highly diverged, increasing the threshold
has a propensity to discard the correct, but weak, relationships, while retaining those between the
inconsistent domains.

Although major gains have been made in the area of family classification overall, the problem
of domain chaining remains largely unaddressed. Most work on homology prediction has focused
on the problem of detecting remote homology without inappropriate inclusion of chance sequence
similarity. A few heuristics to eliminate domain chaining have been proposed [75, 19, 135], but due
to the lack of a gold standard, the effectiveness of these approaches was not evaluated.

2.4.3 Clustering

The underlying assumption implicit in recovering families from the sequence similarity network,
GS , is that the structure of this network does reflect the evolutionary history. If such structure
does exist, the problem resolves to one of devising a method to recognize it and to identify the sets
of sequences that comprise families. It is therefore helpful to consider the how the evolutionary
processes that result in gene families may be expected to encode a signature upon the sequence
similarity network. Insertion of a domain into a sequence from another sequence of the same family

20



yields a result in the similarity network whereby the recipient node gains edges to other sequences
that contain the domain. When the domain is consistent, this may have a similar result as gene
duplication, and increase the degree of similarity of the recipient sequence to other members of the
family. Though less often observed, the insertion may also decrease the similarity of the sequence
with other family members, as when the insertion disrupts a pairwise sequence alignment that
covered the region into which the domain is inserted.

Domain shuffling events, and domain insertion in particular, can disrupt the community structure
of the sequence similarity network, such that dense regions no longer correspond to families. De-
pending upon the magnitude of this disruption, a partitioning of GS , as based on maximization of
the closeness of nodes in a cluster and minimization of the similarity of disparate clusters, may not
necessarily correspond to the family structure of the homology network, GH .

While the structure of the sequence similarity network does not necessarily correspond to homology,
the processes of family evolution do confer distinct structure upon the sequence similarity network.
The underlying hypothesis here is that this structure may be recognized, and exploited to yield
accurate predictions of homologous families.

Graph clustering algorithms used for protein classification in previous studies are guided by as-
sumptions about the structure of the underlying similarity graph — in particular, that families
correspond to dense subgraphs [49, 124]. However, few empirical surveys have been conducted to
evaluate whether sequence similarity graphs, in fact, have these properties.

Unfortunately, these graph-based approaches tend to be either too permissive or two conservative.
It is difficult to find thresholds that eliminate spurious edges without fragmenting families into
much smaller subfamilies [95, 70, 114]. In the words of Liu and Rost [95], “...the dilemma between
the Skylla of ‘restrictive thresholds yielding many small clusters’ and the Charibdis of ‘permissive
thresholds yielding a few large clusters’ is a principle one.”

As further discussed in Chapter 6: Clustering and its evaluation (p.85), the data here is in the form
of a similarity matrix.

2.5 Evaluation

Most empirical evaluations of methods to improve gene family classification have not used data
sets designed to test sensitivity to domain chaining [6, 113, 151]. Many specifically exclude some
domains and low complexity sequences. For example, the Astral data set used in [6, 113, 151], is
a SCOP-based data set made up of single domain proteins. SCOP [108] and CATH [116] capture
the structure single protein domains, and offer a good standard for remote homology, but will not
evaluate domain chaining. Other benchmarks do include multidomain sequences, but are based on
properties other than ancestry. The Gene Ontology (GO) [10] examines functional properties, but
does not explicitly test evolutionary relationships.

Even when curated data is available, a lack of statistical metrics makes evaluation difficult. Chap-
ter 6: Clustering and its evaluation (p.85) addresses this challenge.

For this problem, the biological property of interest (families that share common ancestry) corre-
sponds to a precise mathematical property (graph transitivity). This ability to recast the problem
to an objective goal guides method design, and provides a natural basis for evaluation in the absence

21



Single Domain
Family Size Description

ACSL 15 Long chain acyl-CoA synthetase
FGF 46 Fibroblast growth factor
FOX 94 Forkhead box transcription factor
Tbox 32 T-box transcription factor
TNF 35 Tumor necrosis factor receptor
WNT 38 Wingless-related MMTV integration site

Multidomain, Conserved Domain Architecture
Family Size Description

DVL 6 Dishevelled
GATA 12 GATA binding protein
KIR 13 Killer cell immunoglobulin-like receptor
Notch 8 Notch
TRAF 12 Tumor necrosis factor receptor associated factor
USP 100 Ubiquitin specific protease

Multidomain, Varied Domain Architecture
Family Size Description

ADAM 61 A disintegrin and metalloprotease
Kinase 1057 Kinase
Kinesin 91 Kinesin
Laminin 23 Laminin
Myosin 51 Myosin
PDE 50 Phosphodiesterases
SEMA 41 Semaphorin
TNFR 56 Tumor necrosis factor receptor

Table 2.1: Curated benchmark of gene families, in the mouse and human genomes.

of a gold standard. This methodology is developed in Chapter 5: Analysis of network properties
(p.65).

Notably, evaluation of the agreement of different methods is not a robust means of validating family
classification. Such an approach is employed extensively for the closely related area of ortholog
prediction [31, 44]. Evaluation of agreement is a reasonable basis to check whether disparate
methods recapitulate the same information, but this is not a substitute for benchmarking against
ground-truth data.

2.5.1 Curated family benchmark

In response to the lack of a comprehensive datasets to evaluate family classification performance, in
early, collaborative work, we constructed a benchmark dataset of mouse and human families [134].
This test set was derived from the set of all 26,197 full length, mouse and human amino acid

22



sequences in the Swiss-Prot (version 50.9) database.

Twenty families with evidence of common ancestry were considered, including 1577 sequences in
all. This set was based on a synthesis of over 70 publications by experts on specific families. The
selection of families in this benchmark is necessarily limited by the availability of expert curation,
though we believe this test set to be a characteristic sampling of families in the mouse and human
genomes. The selected families represent single domain families, families of conserved multidomain
architecture, and families of variable architecture. These families also represent a range of sequence
conservation. Highly divergent single-domain families, such as the Tumor Necrosis Factors (TNF),
were included to test performance on remote homology prediction. Details of the family curation
procedure are given in [134].

Since initial publication of the benchmark of curated families, predictions of the set of genes in
mouse and human have changed, primarily by the addition of genes. Accordingly, the benchmark
dataset has been maintained to remain an accurate and complete listing of the genes in these
twenty families. This dissertation adopts the Panther 7.0 [104] database of protein sequences as
the set of sequences used in all analyses. Tables B.1 and B.2 list the set of genomes included in
the Panther database. Of the approximately 603k sequences in this dataset, 45,491 are mouse and
human sequences. Of these, 1841 sequences are a member of one of the families in this updated
benchmark. Table 2.1 lists the complete set of curated families.

In addition to discussion of individual families, two aggregate sets of families will be considered.
The set ALL is defined as the set of all sequences that are in the curated dataset. Because the
Kinase family comprises a substantial fraction of the curated set, and is larger than any other
family in our dataset, the set of all sequences, less kinase members is defined as ALL-kin to avoid
bias. When considering homology, note that these combined sets do not increase the number of
homolog pairs. That is, the set of homologous pairs in ALL is comprised of the merger of all pairs
of sequences that are homologous within each family, not all pairs of sequences within the aggregate
set of sequences from all families.

23





Chapter 3

Network rewiring

The goal of homologous family classification is to partition genes into discrete sets of sequences,
where each set comprises a single, entire gene family. As discussed in Chapter 2: Background
and preliminaries (p.13), many approaches to family classification have been considered. The
majority of these are based upon the principle of clustering a sequence similarity network. These are
premised upon the concept that sequence similarity is an accurate estimate of homology and that,
consequently, the structure of the sequence similarity network directly represents the relationship
between gene family members. Under this framework, the problem of family classification reduces
to one of establishing an accurate partitioning of the network (e.g., by maximizing compactness
of each predicted family, and maximizing their separation) through application of a clustering
algorithm.

However, sequence similarity as an estimate of homology is particularly prone to incorrect repre-
sentation of family structure when multidomain sequences are considered. The primary challenge
results from the property that many multidomain families contain sequences with domains that are
also observed in other gene families. Compact sub-networks of high density are not observed in
the sequence similarity network; rather, a common result is that groups of sequences are connected
because of similarity among one or more shared domains. This lack of dense substructure tends
to confound the basis of most clustering algorithms. It is also contrary to our understanding of
gene family structure. This issue manifests to such an extent that direct application of a clustering
algorithm to the sequence similarity network tends to fail to accurately represent datasets that
contain multidomain families.

This chapter introduces and explores the consequences of a fundamentally different approach. Here,
the strategy is to develop a rewiring method, to explicitly resolve the traces that evolutionary
events encode upon the local structure of the sequence similarity network. More specifically, this
approach is based upon the hypothesis that gene duplication imparts a unique signature upon the
local structure of the sequence similarity network, and that this structure can be used to identify
families. This inherent signal of family evolution is used to generate a new, weighted network that
is an accurate estimate of homology. The resulting network is used for direct interpretation as a
proxy for homology, and, in the following chapters, used as input to a clustering algorithm.

As motivation, this chapter details the limitations of sequence similarity when used as a basis for

25



family classification. These are demonstrated using empirical evidence from sequence similarity
networks comprised of several genomes. Next, discussion focuses upon how gene family evolution
imparts inherent local structure to a sequence similarity network. While the sequence similarity
network does not directly mirror the homology network, the structure of this network does encode
the traces of gene family evolution. This intuition is then mathematically specified, as Neighborhood
Correlation, the network rewiring approach investigated here. Finally, this chapter addresses how
Neighborhood Correlation may be calculated from real sequence similarity networks generated with
Blast.

3.1 Limitations of sequence similarity

The use of sequence similarity is premised on the concept that the entire length of two homologous
sequences may be used as a source of evidence of their common ancestry, and that sequence simi-
larity can detect such evidence. Consideration of the entire length is a reasonable constraint for a
large fraction of the sequence universe: Many sequences are characterized by evolution exclusively
through gene duplication and incremental substitution of individual amino acids. However, the
evolutionary histories of many multidomain families, in particular, do not adhere to this model.
Many multidomain families are characterized by sequences that have been modified by insertion of
consistent domains.

Most means of sequence similarity are accomplished by aligning sites in a pair of (or, in some
applications, many) sequences such that each pair of positions are presumed to have been derived
from a single position in the common ancestor. A measure of sequence similarity is then derived from
an evaluation of the degree to which these homologous sites have diverged since duplication from
their common ancestor. Fewer sequence changes are expected to have occurred between sequences
that have recently diverged or are highly conserved, and lower sequence similarity will result between
more distant pairs of sequences. Further, this relies upon the concept that sequences that are not
homologous do not have homologous sites, and, hence, cannot be aligned, modulo spurious regions
of similar sequence composition.

The evolution of multidomain families can preclude effective alignment of sequences. The insertion
of inconsistent domains into disparate families can lead to high values of sequence similarity
where there is no evidence of common ancestry. The occurrence of domains shared between a pair
of genes frequently results in strong sequence similarity. This is true even when such genes are not
homologous; the resulting similarity can be greater than that between genes that are members of
the same family. I recognize that this is the dominant mode of errant homology detection among
multidomain sequences [70, 134].

The abstract issues of domain chaining and remote homology manifest as concrete problems for
datasets that are comprised of families that vary in their level of sequence divergence and the
degree to which inconsistent domains are included. In heterogeneous datasets, such as those
with an unknown number of families, or those that include several genomes, the sequence similarity
of homologous pairs of sequences is not consistently higher than those of non-homologous pairs.
This may be examined empirically by comparing the distribution of scores between homologous
sequences with the distribution of non-homologous pairs. A correct measurement of homology will
yield higher and separable scores for pairs that are homologous, as compared to non-homologous

26



101 102 103 104

BIT score

100

101

102

103

104

105

106

O
th

er
p

ai
rs

100

101

102

103

104

105

106

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Figure 3.1: Histogram of the sequences similarity scores that result between homologous pairs of
sequences (in blue, wrt. right axis) of the 20-family benchmark, in the combined mouse and human
genomes.

sequences. Sequence similarity does not accomplish this.

Figure 3.1 demonstrates the result of sequence similarity for the mouse and human genomes. This
figure considers all sequence pairs where at least one sequence is a member of one of the 20 homol-
ogous families in the curated benchmark. Two distributions are depicted. First, the distribution
of scores between homologous sequences is shown in blue, with respect to the right vertical axis.
Second, the distribution of scores between non-homogous sequences is shown in red. Here, these
axes are of the same scale. In similar figures that follow, they differ, because the number of
non-homologous pairs increases by the square of the number of sequences in the dataset, while
the number of homologous pairs is a function of the square of the family sizes. These may be
very different in magnitude. The bit-score is a measure of sequence similarity, so application of a
more stringent threshold proceeds left-to-right. Clearly, the score distributions of homologous and
non-homologous pairs coincide, and may not be separated on the basis of sequence similarity as
calculated by Blast, for this heterogeneous dataset of several families.

The properties of multidomain evolution that challenge sequence similarity may differ depending
upon the specific family measured. With family classification, of course, the goal is to develop
methods that yield consistently accurate results when applied to datasets where the families, or their
evolutionary histories, are not known. Nonetheless, it is illustrative to examine specific families to
demonstrate the behavior of sequence similarity more concretely. This may guide the development
of methods that improve family classification.

For some families in the 20-family benchmark, sequence similarity can be an effective means of fam-
ily classification. For example, Figure 3.2 shows the sequence similarity distributions of four families
for which a bit-score threshold may be selected to distinguish homologous from non-homologous
pairs of sequences. The families ACSL and FGF are single-domain gene families. PDE and SEMA
are multi-domain. Members of the PDE family have only moderate conservation of sequence, but

27



101 102 103

BIT score

0

50

100

150

200

250

300

O
th

er
p

ai
rs

0

5

10

15

20

25

30

35

40

45

F
am

il
y

P
ai

rs

(a) ACSL

101 102 103

BIT score

0

5

10

15

20

O
th

er
p

ai
rs

0

100

200

300

400

500

600

700

F
am

il
y

P
ai

rs

(b) FGF

101 102 103 104

BIT score

0

50

100

150

200

250

300

O
th

er
p

ai
rs

0

50

100

150

200

250

300

350

400

F
am

il
y

P
ai

rs

(c) PDE

101 102 103 104

BIT score

0

200

400

600

800

1000

1200

1400

O
th

er
p

ai
rs

0

50

100

150

200

250

300

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

(d) SEMA

Figure 3.2: Histogram of the sequence similarity scores that result between homologous pairs of
sequences (in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in
the mouse and human genomes. These demonstrate that an effective bit-score threshold can be
selected for some families, though no single threshold is suitable for all families.

this family contains few inconsistent domains. The SEMA family has a high degree of sequence
conservation and a small number of inconsistent domains. For each of these families, there ex-
ists a bit-score threshold that separates homologous pairs from non-homologous pairs, to a large
extent. Of these, only the PDE family is completely separable from non-homologous pairs. How-
ever, note that even in families without complex and varied domain architectures, such as these, no
single threshold may be used to correctly separate homologs and unrelated sequence pairs over all
families. In general, the particular threshold appropriate for classification with sequence similarity
tends to be highly specific to an individual family. As a result, a sequence similarity threshold that
is useful for one family may not be applied to a more general dataset.

While Figure 3.2 demonstrated that sequence similarity may be used to separate homologous and
non-homologous pairs of sequences for some families, this is not possible for many other families.
Figure 3.3 shows four families from the 20-family benchmark for which no bit-score threshold may
be used to separate homologous and non-homologous pairs. Score distributions of all remaining
families are show in Figures C.1 and C.2. The families Kinase, Kinesin, and USP are comprised of
varied and complex domain architectures. Each contains a number of inconsistent domains. In

28



101 102 103 104

BIT score

0

10000

20000

30000

40000

50000

60000

70000

80000
O

th
er

p
ai

rs

0

50000

100000

150000

200000

250000

300000

350000

F
am

il
y

P
ai

rs

(a) Kinase

101 102 103 104

BIT score

0

5000

10000

15000

20000

25000

30000

35000

O
th

er
p

ai
rs

0

200

400

600

800

1000

1200

F
am

il
y

P
ai

rs

(b) Kinesin

101 102 103

BIT score

0

20

40

60

80

100

120

140

160

180

O
th

er
p

ai
rs

0

20

40

60

80

100

120

140

160

F
am

il
y

P
ai

rs

(c) TNF

101 102 103 104

BIT score

0

500

1000

1500

2000

2500

3000

O
th

er
p

ai
rs

0

500

1000

1500

2000

2500

3000

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

(d) USP

Figure 3.3: Histogram of the sequence similarity scores that result between homologous pairs of
sequences (in blue, wrt. right axis), and between non-homologous pairs (in red, wrt.. left axis), in
the human and mouse genomes. No bit-score threshold may be selected for any of these families to
effectively separate homologous and non-homologous pairs of sequences.

all cases, a more stringent threshold may be selected to include fewer non-homologous pairs, but
only at the cost of substantially reducing the number of homologous pairs included. This inability
to separate homologous sequence pairs is not constrained to multi-domain families. The members of
the TNF family are single-domain, although conservation of sequence identity is quite low, ranging
from 20–30% between pairs. Here too, no threshold may be selected to effectively separate the
homologous and non-homologous pairs.

A number of heuristics have been proposed to improve the performance of family classification
using sequence similarity. Many of these focus upon reducing the propensity for domain-chaining
in the result, by considering the length of the alignment between pairs, or the distribution of
domains [75, 19, 135]. Prior to our studies in [134], the effectiveness of these approaches had not been
evaluated on heterogeneous datasets, due to lack of an effective benchmark dataset of homologous
families. We found that these approaches did not improve family classification performance, and
that their application was detrimental in many cases.

In particular, alignment coverage has been proposed as an additional constraint beyond sequence
similarity to address domain chaining, with the assumption that alignments of greater length are

29



more likely between homologs. In practice, we found that while this can be effective in some cases,
this approach is foiled by repeated or long domain insertions, and tends to reduce the accuracy of
the family classification in the benchmark dataset [134].

PSI-Blast [6], which computes sequence similarity in an iterative process of model construction,
does improve remote homology detection. However, it is not well-suited to analyses on hetero-
geneous datasets because it exhibits optimal score thresholds that vary to a higher degree than
Blast.

Similarly, Song et al. [135] investigated the efficacy of a variety of means for explicit comparison of
domain architecture to improve family classification. These suggested that another approach was
required.

3.2 Network rewiring

The specific challenges demonstrated by the use of sequence similarity for family classification
inspired our targeted approach to recover a more accurate estimate of homology by explicitly
addressing these modes of error. The underlying premise is that gene duplication results in a
specific signature in the sequence similarity network. This property is the defining feature of the
mathematical concept of a homology network: a pair of duplicated genes each retain similarity to
the entire set of homologous genes in the same family. Even without direct comparison of two such
homologous genes, their homologous relationship can be revealed by their association with other
members of the family. The assumption, stated here, and empirically demonstrated in this chapter,
is that this signal is strong, and persists even when two homologous sequences have diverged to a
degree beyond that readily recognized with sequence similarity.

By contrast, the process of domain insertion imparts a different structural feature to the sequence
similarity network. Insertion of a domain into one sequence is likely to result in significant sequence
similarity to other sequences that share the domain. At the same time, all other portions of that
sequence will retain a degree of similarity to the members of the family to which it belongs. Similarly,
a domain shuffling event in one member of a family will likely preclude full-length alignment of that
sequence with other members of the family. That is, the degree of sequence similarity with each
other member will decrease. In both cases, however, the homology may still be recognized by
accounting for both the number and strength of these relationships.

Neighborhood Correlation takes a weighted network as input and calculates pairwise scores in the
range [−1, 1] between all pairs of nodes. Given a fully connected, weighted network, let wx be the
vector of similarity scores between x and all nodes in the network. The Neighborhood Correlation
score, NC(x, y), is the Pearson correlation coefficient between wx and wy. That is,

NC(x, y) =

∑
i∈N ((wx[i]− wx)(wy[i]− wy))√

(
∑

i∈N (wx[i]− wx)2)(
∑

i∈N (wy[i]− wy)2)
, (3.1)

where N is the number of sequences in the network, and wx is the mean of wx.

For every pair of nodes in the sequence similarity network, Neighborhood Correlation defines a new
score based upon the neighborhood of each node. Note that in Equation 3.1, for each node x, wx is
a vector of length N for a network of N nodes (the node itself is included). In practice, however, a

30



real sequence similarity network does not define a relationship between every pair of nodes. Pairs
of nodes with no, or very low similarity are not included. As a result, a pseudo-score, of weight
Smin, is used for each pair of nodes with no defined sequence similarity score. That is, the weight
of the edge between sequences x and i is

wx[i] =

{
log10 S(x, i) if S(x, i) exists
log10 Smin otherwise

}
, (3.2)

where S(x, i) is the sequence similarity bit-score between sequences x and i. For real networks, the
precise magnitude of Smin has little effect upon the result of Neighborhood Correlation. In practice,
it is set to a score of 95% of the smallest sequence similarity score.

A variant of Neighborhood Correlation, based on an unweighted input network can also be defined.
This may be defined by substituting a binary value for wx[i] dependent upon whether the edge
exists in the edge set, E, of the input network. That is,

wx[i] =

{
1 if (x, i) ∈ E
0 otherwise

(3.3)

This formulation will be used for discussion of the behavior of Neighborhood Correlation with
simple network motifs in this chapter, and during simulation, in Chapter 5: Analysis of network
properties (p.65).

There are both biological and mathematical motivations for this rewiring approach. From a biolog-
ical approach, the structure of the network encodes the evolutionary processes (domain insertion
and gene duplication) that give rise to multidomain families. Local network structure also reflects
domain architecture and sequence divergence. Intuitively, if x and y are members of the same gene
family, they will tend to have similar Blast scores when compared with other sequences in the
family, resulting in high values of NC(x, y). If y and z are sequences from different families that
share an inconsistent domain, y and z will tend to have similarity with a distinct set of sequences,
outside of the shared domain. This will result in low correlation between wy and wz, and low values
of NC(y, z).

Mathematically, the rationale for Neighborhood Correlation may be understood as follows. Since
gene families correspond to cliques in GH , sequences within a family should have numerous edges to
other members of the family. Tthese relationships can be used to support edges missed by sequence
comparison. This intuition suggests that a clique may be resolved from noise as long as a sufficient
fraction of homologous edges are retained. Conversely, spurious edges are more likely to be in
regions of low edge density and will not be supported by the surrounding local network structure.

Further, recent results by Sarkar et al. [126] demonstrate that link prediction based upon counts
of nodes in the neighborhood common to two nodes has strong theoretical basis. The data here do
not directly satisfy the constraints employed by that study; e.g., sequence similarity is not a metric,
and may not be a metric in any latent space. However, the close relationship of these theoretical
conclusions to the approach of Neighborhood Correlation suggests that the success of Neighborhood
Correlation for family classification may not only be the result of a good heuristic, but due to a
deeper relationship to network structure.

A few small examples may be used to illustrate how Neighborhood Correlation increases the tran-
sitivity of a network. Figure 3.4 illustrates three simple networks in which every edge is either zero

31



(a) (b) (c)

Figure 3.4: Example graph components for intuition. In (a), x and y are members of families fx
and fy, respectively, but joined by a single edge. (b) depicts a single family missing two edges,
while (c) illustrates a case where edge weights must be used to distinguish between edge addition
or deletion.

or one. First, an example of two unrelated families linked by a single edge suggests an appropriate
threshold for separating the cliques. The network depicted in (a) shows a connected component
consisting of two subgraphs, each of three nodes or more, corresponding to families fx and fy.
Node x is adjacent to at least two nodes in fx, and y is similarly adjacent to at least two nodes
in fy. In this scenario, NC(x, y) approaches 0.5. If x or y has more than two neighbors in its
respective family, then the NC(x, y) will decrease further. A threshold of NC > 0.5 will eliminate
the spurious edge (x, y), correctly splitting the component into two separate families. This suggests
that a threshold of 0.5 will separate unrelated families in GNC.

We next consider whether this threshold is low enough to restore missing edges to a clique. A family
of size four is shown in Figure 3.4(b). Two additional edges, (x, u) and (v, y), would be needed to
form a clique. Here, NC(x, u) and NC(v, y) approach 0.6, and NC(·, ·) → 0.8 for all edges already
present in the component. With a threshold of NC > 0.5, the existing edges will be retained and
transitivity is increased by the added edges, completing the clique. In general, for any connected
component of size k > 3, with at least k(k−1)

4 edges, more edges will be added with score NC > 0.5,
yielding a denser component and increasing network transitivity overall.

While the unweighted model is a useful abstraction for theoretical analysis and simulation, a
weighted graph based on sequence similarity scores should be used for real data. Consider the
example in Figure 3.4(c). If x, y, and z represent a family, then a third edge, (x, z) should be
added. On the other hand, if, say, x and y form a family of size two and z is unrelated, then
(y, z) should be removed. In this case, connectivity alone provides no information to make this
decision and Neighborhood Correlation can yield no additional confidence. In a weighted graph,
S(x, y) and S(y, z) would determine whether the edge should be added or subtracted. Therefore,
the information provided by edge weights should be utilized when working with a real sequence
similarity network.

3.2.1 Empirical classification performance

By empirically demonstrating that rewiring according to the understanding of family evolution
discussed above does yield accurate homology prediction, we demonstrate that structure captured
is typical of real families.

Figure 3.5 shows the distributions (in red and blue) of Neighborhood Correlation scores for four
families for which a sequence similarity threshold could be selected to partition homologous and

32



0.0 0.2 0.4 0.6 0.8 1.0
NC

0

20

40

60

80

100

120

O
th

er
p

ai
rs

0

10

20

30

40

50

F
am

il
y

P
ai

rs

(a) ACSL

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

50

100

150

200

250

O
th

er
p

ai
rs

0

20

40

60

80

100

120

140

F
am

il
y

P
ai

rs

(b) FGF

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

50

100

150

200

250

300

350

O
th

er
p

ai
rs

0

20

40

60

80

100

120

140

160

180

F
am

il
y

P
ai

rs

(c) PDE

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

100

200

300

400

500

600

700

O
th

er
p

ai
rs

0

50

100

150

200

250

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Unannotated genomes

(d) SEMA

Figure 3.5: Histograms of the Neighborhood Correlation scores for curated families in mouse and
human. Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt.
left axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of
a curated family, and one member from the 12-genome dataset, and not in mouse or human.

non-homologous pairs. More so than the performance of sequence similarity shown in Figure 3.2,
there exists a threshold of Neighborhood Correlation scores that can accurately partition family
and non-family members in each of these families. Indeed, for the FGF family, Neighborhood
Correlation yields no non-homologous pairs with scores of NC > 0.05, the minimal score stored on
disk in our databases. This success is a most basic sanity check that the application of rewiring does
not degrade performance on families that may be trivially classified, at least when each family is
considered alone. A valuable improvement with Neighborhood Correlation is that a single threshold
now may be selected to simultaneously yield good performance on all of these families. A threshold
of approximately NC > 0.3 − 0.5 is an acceptable compromise that will perform well here for all
families here. These thresholds will be examined more rigorously in Chapters 5: Analysis of network
properties (p.65) and 6: Clustering and its evaluation (p.85).

Neighborhood Correlation was designed with the goal of improving performance on complex, mul-
tidomain families. Figure 3.6 shows the score distributions of four families for which homologous
and non-homologous pairs of sequences could not be partitioned by sequence similarity (Figure 3.3).
This figure depicts (again, in red and blue) a marked improvement in the separation of these dis-

33



0.0 0.2 0.4 0.6 0.8 1.0
NC

0

20000

40000

60000

80000

100000

120000

140000
O

th
er

p
ai

rs

0

5000

10000

15000

20000

25000

30000

35000

F
am

il
y

P
ai

rs

(a) Kinase

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

5000

10000

15000

20000

25000

30000

35000

40000

O
th

er
p

ai
rs

0

100

200

300

400

500

600

F
am

il
y

P
ai

rs

(b) Kinesin

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

20

40

60

80

100

120

140

160

180

O
th

er
p

ai
rs

0

2

4

6

8

10

12

14

16

18

F
am

il
y

P
ai

rs

(c) TNF

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

500

1000

1500

2000

2500

3000

O
th

er
p

ai
rs

0

50

100

150

200

250

300

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Unannotated genomes

(d) USP

Figure 3.6: Histograms of the Neighborhood Correlation scores for curated families in mouse and
human. Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt.
left axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of
a curated family, and one member from the 12-genome dataset, and not in mouse or human.

tributions. A single threshold of approximately NC > 0.3− 0.4 will separate most homologous and
non-homologous pairs in all of these families. The TNF family is improved over bit-score, but re-
mains a challenging case. Score distributions for all remaining families may be found in Figures C.3
and C.4.

The above discussion considered the distributions of scores that result when Neighborhood Correla-
tion is applied to the mouse and human genomes. The 20 families in the benchmark are curated in
mouse and human, alone. That is, barring errors in curation, all members of each family are labeled
when only these genomes are considered. While not so labeled, members of these families do exist
in other lineages, and it is valuable to consider the distribution of scores involving these unlabeled
family members. For a family F , the set of homologous pairs is comprised of (x, y)∀x, y ∈ F . For
this family, the set of all non-homologous pairs is comprised of (x, n)∀x ∈ F, n ∈ N , where N
is the set of all mouse and human sequences that do not belong to the family. If the dataset is
expanded to include other genomes, this introduces another set of sequences, U , where family mem-
bership is unknown. Here, the set U includes all sequences in one of the genomes in the 12-genome
Panther dataset (see Table B.1), excluding mouse and human. A new set of pairs may be enumer-

34



0.0 0.2 0.4 0.6 0.8 1.0
NC

0

50000

100000

150000

200000

250000

O
th

er
p

ai
rs

0

5000

10000

15000

20000

25000

30000

35000

F
am

il
y

P
ai

rs

(a) ALL

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

20000

40000

60000

80000

100000

O
th

er
p

ai
rs

0

500

1000

1500

2000

2500

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Unannotated genomes

(b) ALL-kinase

Figure 3.7: Histograms of the Neighborhood Correlation scores for the aggregate of all curated
families in mouse and human. Homologous pairs are in blue (wrt. right axis), and non-homologous
pairs are in red (wrt. left axis). Additionally, in green (wrt. left axis) are scores of all pairs that
include one member of a curated family, and one member from the 12-genome dataset, and not in
mouse or human. ALL is the set of all 20 families, while ALL-kinase is the set of 19 families, with
the largest family, Kinase, excepted.

35



ated where one sequence is annotated, but the membership of the other sequence is unknown, or
(x, u)∀x ∈ F, u ∈ U .

The distribution of scores (x, u) is depicted in green in Figures 3.5 and 3.6. This distribution
may be used to evaluate the degree to which the scores within the mouse and human genomes
are representative of these families in other genomes. These distributions coincide to a very high
degree with the distributions observed for family and non-family pairs in mouse and human. This
suggests that the same scoring threshold suitable for accuracy in mouse and human would effectively
distinguish families in the complete dataset.

Figure 3.7 shows score distributions for the sets (x, y), (x, n), and (x, u) for the combined set of all 20
families (a), as well as the set of 19 families, when Kinase is excluded (b). This figure demonstrates
that the separability of family and non-family pairs observed with individual families also persists
when all families are considered at the same time. Additionally, this figure demonstrates that
the distributions of scores for families in the curated benchmark remains highly similar across the
12-genomes data set, as compared to that of mouse and human. The comparable distribution
of sequence similarity was shown in Figure 3.1, which demonstrated that no bit-score threshold
performed well over all families.

The discussion here has centered upon concrete, visual illustration of the score distributions that
result in typical families, without statistical evaluation. In early collaborative work [134], these score
distributions were evaluated in the context of a binary classification problem, where a particular
pair of sequences is predicted to be either homologous or not. Under this framework, the area under
a ROC curve (AUC) was used to determine the ability of Neighborhood Correlation to partition
homologous and non-homologous pairs. In this classification problem, the number of false (non-
homologous) pairs greatly outnumbers the count of true (homologous) pairs, because families are
much smaller than the size of the genome, and only members of the same family are homologous.
As a result, a variant of AUC that considers a fixed number of false positives was utilized. AUC was
used to evaluate the performance on individual families, as well as the aggregate set of all families
(ALL). Evaluated with AUC, Neighborhood Correlation performed well, and greatly exceeded the
pairwise classification accuracy of all other methods considered.

This dissertation expands the goals of evaluation from a pairwise classification of homologs, to an
evaluation of performance in identifying complete families as single units in the output network.
The identification of discrete families is the ultimate goal of family classification, so evaluation in
this context is most relevant. Further, evaluation on the basis of sets of sequences ameliorates the
issues that arise from a preponderance of false results in the data. It also allows for evaluation on
datasets that contain sequences not in the curated dataset. The means and result of evaluating
clusters using curated families is rigorously considered in Chapter 6: Clustering and its evaluation
(p.85).

3.3 BLAST sequence similarity

Neighborhood Correlation was developed with the premise that an all-against-all sequence compar-
ison is used to generate the input sequence similarity network. I, as many others, use the NCBI
Blast [4] tool for this computation. An all-against-all computation is accomplished by generating
a custom sequence database, followed by local execution of a query from every sequence against the

36



Parameter blastall

argument
Value Description

Expectation -e 10N E-value significance cutoff
Search length -Y Y 2 Effective length of the search

space
Matrix -M BLOSUM62 Scoring matrix
Descriptions -v 0 Max. number of one-line de-

scriptions returned
Alignments -b N Max. number of alignments

returned
Gap open -G 11 Gap open penalty
Gap extend -E 1 Gap extension penalty
Processors -a 2-8 Number of CPU cores to use

during search
Old engine -V F Do not force use of the legacy

Blast engine

Table 3.1: Blast parameters used for all-against-all sequence similarity calculation. N is the
number of sequences in the database, and Y is the number of residues. Parameters and values
correspond to blastall, version 2.2.16. All parameters not specified are left at default values in
this version of blast. Some of these parameters are the default, and are included for clarity.

database. NCBI Blast version 2.2.16 has been used for all sequence similarity computations in
this dissertation. Throughout, a Blast run refers to the calculation of a defined set of sequences
and the particular set of parameters used for Blast. Table 3.1 lists the full set of parameters
specified for a Blast run.

For Neighborhood Correlation, the sequence similarity score from each sequence to all N sequences
are implicitly considered. Pairs for which no sequence similarity score was computed by Blast are
assigned a minimal pseudo-score of Smin. Throughout the development of Neighborhood Correla-
tion, Blast parameters were chosen to maximize the number of similarity scores computed and
returned, before resorting to use of a pseudo-score. This maximizes the amount of information
encoded in the local network structure around each pair of sequences.

The Expectation and Search length parameters have been selected to embody the view that an
all-against-all Blast search is a single experiment. For a Blast query of a single sequence, the
Blast default of E = 10 is often used, which specifies that all hits with an E-value of less than 10
will be returned (up to the maximum number of alignments, typically 250). The default database
Search length is Y for a database comprised of Y residues. The parameters selected here are roughly
equivalent to conducting N single-query Blast searches with E = 10 and Y set to the number
of residues in the database. Treating the all-against-all Blast comparison as a single experiment
results in symmetric E-values in the absence of low complexity filtering. We define θ(x, y) = E(x,y)

10N
to be the expected number of chance hits per sequence in the dataset with a score equivalent to, or
better than, that of the alignment of query sequence x with matching sequence y. The significance
threshold of E = 10N corresponds to θ = 10 chance hits per sequence, in expectation.

37



The scores resulting from Blast are not necessarily symmetric; i.e., the score E(x, y) for a query
sequence x and hit y is not necessarily equal to E(y, x). Further, it is not necessarily true that
both results are returned by the corresponding queries. This can result because Blast filters low-
complexity regions in a query sequence before performing a search, but equivalent filtering is not
applied to database sequences. Before Neighborhood Correlation is computed, the greater of the
scores between x and y is assigned to both E(x, y), and E(y, x) to obtain a symmetric sequence
similarity score matrix.

The following chapter, 4: Optimization for large scale (p.43), discusses the data structures, al-
gorithms, and implementation that I developed to calculate Neighborhood Correlation on large
datasets. In practice, the success of these optimizations shift the computational burden to calcula-
tion of the input sequence similarity network. Calculation of sequence similarity with Blast is an
inherently computationally intensive task.

Many users of sequence data already compute all-against-all sequence similarity using Blast.
However, the parameters used there are typically very different from those we employ in conjunction
with Neighborhood Correlation. Two parameters have a particularly large effect on the sequence
similarity network that results. First, others typically specify a more stringent E-value threshold
to reduce the number of insignificant scores that are returned. Second, the total number of hits
per query is typically limited, generally to a default value of at most 250 hits per query. For
interactive use, or automated uses where sequence similarity scores are directly employed as a final
scoring metric, both parameters makes sense: very long lists of hits, or hits with very little sequence
similarity are unlikely to be useful.

In contrast, calculation of Neighborhood Correlation between two sequences depends upon both
the number and strength of edges incident upon these two sequences in the sequence similarity
network. The Blast parameters used have the result that effectively all initial hits from a query
sequence against the sequence database are extended, and returned by Blast. This exacts a
large performance penalty upon the Blast computation. The observed run-time of the NCBI
Blast implementation is highly dependent upon the number of hits returned. The number of hits
returned has a greater impact on performance than the database size or the number of queries.
The aggregate run-time is significant. For example, computation of all-against-all Blast of the 48-
genome Panther dataset of 600k sequences requires approximately 160-days on a single (circa 2010)
CPU core. Fortunately, the calculation of individual sequence queries are entirely independent,
therefore they may be computed in parallel in a distributed fashion with separate Blast processes.

The task here is to consider whether use of parameters more akin to the default Blast parameters
used by others would yield a substantial difference in the Neighborhood Correlation output. This
section does not aim to detail the specific changes that different Blast parameters have upon
the classification performance of Neighborhood Correlation. Instead, the purpose is to evaluate
whether existing Blast results computed for other purposes may be used as a direct substitute for
a complete Blast computation, without changing the result of Neighborhood Correlation.

Two alternate Blast scenarios are considered. First, the maximum number of hits per query
sequence is adjusted. This is equivalent to setting the Alignments Blast parameter to a value
smaller than the total number of sequences. Figure 3.8 shows a heatmap of the Neighborhood
Correlation score that results for each pair of sequences, as calculated using the complete Blast
all-against-all result, compared to using only the first 500 hits from each Blast query. (Pairs that

38



Figure 3.8: Heatmap of Neighborhood Correlation scores calculated using the complete network
of sequence similarity (horizontal axis) and the first 500 hits returned by Blast for each query
sequence (vertical axis).

have a score NC < 0.05 by either metric are not included in this plot, because we tend to not store
these due to space constraints.) Color in this plot represents the number of pairs with that particular
score by each method. Were the resulting Neighborhood Correlation score of all pairs identical in
each calculation, all points would lie upon the diagonal, illustrated in blue. This figure demonstrates
that inclusion of neighborhoods of size greater than 500 when calculating Neighborhood Correlation
does make a substantial contribution to the result. Most notably, because the distribution of scores
lies in the lower half of the plot, calculation of Neighborhood Correlation from a truncated Blast
result tends to decrease the score that results between pairs in the network. Additionally, this
truncation results in a substantial number of scores near one being assigned scores near zero, and
effectively mixed with all other low-scoring pairs. That is, the lower-right position in this plot has
a very high count of pairs.

A second evaluation of the effect of Blast parameters concerns the imposition of a sequence
similarity score threshold. This is equivalent to specifying a value for the E parameter that is
less than 10N . Figure 3.9 shows a heatmap of the scores between pairs when calculated using
a sequence similarity network that consists only of pairs where the bit-score exceeds 60, which
corresponds to an E-value of approximately 9x10−8. This is a relatively permissive threshold for
a dataset that consists of 600k sequences. As before, the calculation of Neighborhood Correlation
using the complete sequence similarity network is shown on the lower axis. Again, the use of a
truncated set of Blast sequence similarity scores decreases the Neighborhood Correlation score

39



Figure 3.9: Heatmap of Neighborhood Correlation scores calculated using the complete network of
sequence similarity (horizontal axis) 500-hits returned by Blast for each query sequence (vertical
axis).

of nearly all pairs of sequences. At higher scores of the complete calculation (NC > 0.6), the
dominant effect is to reduce the score but not yield a complete reordering of the returned set.
At lower thresholds, however, calculation using the truncated set of sequence similarity scores
compresses a large number of pairs with scores in the range NC = 0.0− 0.6 to a score of 0.1 or less.
The net result is that pairs in this scoring range may no longer be distinguished.

Typical approaches to sequence similarity calculation limit the number of Blast results using both
of the above means. Most users apply a threshold that specifies the maximum number of returned
hits for each query sequence, and consider only sequence similarity scores above some significance
threshold. Clearly, these change the result of Neighborhood Correlation as compared to a full result
from Blast. Yet, these comparisons do not evaluate whether the classification result is likely to
be substantially altered. Two properties suggest the observed changes in the scores of pairs will
translate to lower performance for family classification. Both parameters are likely to introduce
family-specific effects. Truncation of the size of a sequence neighborhood is more likely to change
the result in a larger family, because sequences in large families may be expected to have higher
degrees in the network than those in small families. Truncation of the set of neighbors of each
sequence will arbitrarily reduce the number of homologous and non-homologous pairs represented
by the network. Both are exploited by Neighborhood Correlation, and correct classification of such
families is likely to benefit from the use of as much local structure as possible. Further, truncation
of the Blast result by either means is likely to reintroduce the limitations of sequence similarity.

40



In effect, truncation filters pairs in the input network with respect to the value of their sequence
similarity, which we already understand to be a poor predictor of homology. As a result, I do not
recommend the use of more restrictive Blast parameters without careful evaluation of suitability
on the specific dataset at hand.

41





Chapter 4

Optimization for large scale

The unifying task of this work is to investigate genome evolution at a gradient of scales. These
range from duplication and modification of single sequences, especially through domain shuffling,
to consideration of the features of gene families, to the processes at work within a single genome,
through comparison at each of these scales among disparate lineages of organisms. The scope of the
questions posed necessitates a commensurate quantity of data to exploit sufficient signal over noise
to support conclusions about broad relationships. As a minimal set, all sequences within a single
genome may be considered; typically, an analysis is performed with the sequences of dozens (or
more) of genomes. For example, the primary dataset used throughout this work is a set carefully
chosen to be small, yet representative of a broad range of lineages [104]. Still, it is comprised
of approximately 600k sequences from 48 genomes. The approach and methods here have been
developed with an eye toward substantially larger datasets.

The approach throughout this work is data-driven, using protein sequences as input. The use of
larger data sets (1) increases the phylogenetic signal that is conserved, (2) allows identification
of small or disparate signals, as between lineages, and (3) lends greater confidence to the results
obtained. Overall, more data can only help.

The scale of this data is not amenable to ad hoc approaches to computation, as when individual,
“quick and dirty” programs are each used to investigate a different question from myriad data
sources. This is particularly relevant in that the goal of my research has not been solely to develop
stand-alone methods, but also to employ them to increase our understanding of genome evolution.
Organization and planning of infrastructure become inevitable — and especially valuable — when
one cannot simply re-compute an entire pipeline throughout development.

The number of sequences considered can be large, though the means of analyses present substan-
tially greater challenges. Most of the values considered are inherently comparison-based, and reduce
to an evaluation of all pairs of sequences. Homology, in particular, is a definition on pairs: two
sequences are either homologous or not. In the absence of optimization, N2 pairs of sequences
must be labeled in a dataset of N sequences — a count that quickly becomes untenable. The task
of homology classification is to define the relationship among all pairs of sequences under study
(e.g., x, y are homologous, or not, ∀x ∈ S, y ∈ S, where S is the set of all sequences.) Generally,
this involves implicit calculation over all pairs, at least. Consideration of gene families reduces this

43



complexity to sets of sequences, although these are typically found only after consideration of all
pairwise relationships. Worse yet, the previous chapters have demonstrated that the direct pair-
wise comparison of sequences is insufficient to capture their evolutionary relationships [134]. For
example, the Neighborhood Correlation calculation between two sequences uses the relationship
between those sequences and all others.

Especially during exploration of methodology, it is necessary to be able to compute quickly, and
without large fixed resources. As importantly, the emphasis throughout this work is to perform ex-
haustive, deterministic computation. The goal has not been to devise heuristics or approximations,
at least as a first step. This decision was made to avoid introducing new independent variables, and
to strengthen confidence in the conclusions reached. Such an approach is of particular value during
exploratory research, as here. It is not necessarily evident which features of the data are most
relevant, and important to support biological conclusions. For understanding during development,
and for discovery of potentially weak signal, such abstraction can add a new class of uncertainty to
the results, and cloud conclusions. Once the behavior of a method is well characterized on distinct
datasets, it may become appropriate to consider approximations to a complete calculation.

One option toward reducing the computational and infrastructure demands might be to re-frame
the problem to avoid such challenges of large data. This can become necessary. Here, this is not
the case. This chapter demonstrates that it is possible to efficiently compute with the data of
interest here, using practical, commodity, resources. It is not necessary to resort to sampling or
heuristics. However, an integrated approach that considers all computational steps toward a usable,
biologically relevant result is required. This consists of a balance of infrastructure development,
design of efficient algorithms, and practical implementation. These goals are not independent, and
their solutions do not stand alone.

Computation with some methods imposes fewer computational demands as more data is added, by
further constraining the problem space. Others become more computationally challenging. This can
depend heavily upon the real distribution of data. We can tune an algorithm and implementation
for the empirical nature of the data (e.g., density).

The techniques and optimizations developed here comprise a general framework for analysis of
hundreds of thousands of sequences, and exploration of source, intermediate, and derived data.
These address constraints of storage, memory efficiency, and available computational resources. The
approach undertaken is illustrated through examples of the infrastructure developed to organize
and store sequences, networks of sequences, and families. This consists of a strong emphasis on
implementation at a variety of levels, from on-disk storage, to in-memory data structures, to efficient
algorithms, and to implementation of these in a manner optimized for computation on real machines,
such as by ensuring good cache-locality.

Algorithmic efficiency is not the end-all solution to an efficient implementation. The means of actual
implementation can be the key to practical use. The implementation can affect absolute run-time in
meaningful ways, often by orders of magnitude. Further, the infrastructure used may influence the
choice of a particular algorithm, and greatly alter the degree of computation required. Note that
the data structures and organization of the infrastructure must not be inherently computationally
difficult to initialize.

This chapter provides a high-level overview of the challenges posed by utilizing large sequence

44



datasets and presents the solutions developed to facilitate efficient, large-scale family classification.
Many of the solutions developed in this dissertation generalize to areas of research beyond family
classification. I present these with the understanding that their value is great when needed, but that
their utility is best understood by means of example. I do not expect that the entire infrastructure
will be directly employed elsewhere. However, the design is such that portions may be readily
separated.

The architecture developed here facilitates management of input, intermediate, and output data.
A variety of data types are used. This chapter details two fundamental data structures that
underlie most of the methods used through this dissertation: networks and trees. It is vital that
these structures may efficiently be stored on disk, be accessed in an efficient manner, consume
practical amounts of program memory, and be amenable to the algorithms employed. Of course, the
algorithms and data structures are inseparable; this chapter extends this dependency to permanent
storage and data management.

The system architecture is such that each method (e.g., obtaining source data, Blast, Neighbor-
hood Correlation, clustering, ...) is a stand-alone module. A detailed discussion of the implemen-
tation of Neighborhood Correlation is used as a working example of one module. This exemplifies
a need for efficiency and the means to achieve it within the infrastructure developed.

All source code is available. See Appendix A.1.1.

4.1 Architecture

I have developed a robust, flexible infrastructure for exploratory research of homologous families
using protein sequences. This mode of incremental, iterative development has been accommodated
by constructing what is classically termed as a “blackboard” architecture. This is a data-centric
approach, using a central data store shared by many discrete tools, each developed for some task.

In this work, a relational database is used as a common data store. All source, intermediate, and
derived data are interfaced to this database. This allows multiple tools to operate on the same
data, and facilitates construction of a pipeline of tools, each working with the result of one or more
other tools. This yields benefits for practical use: one need not re-run an entire pipeline of tools to
change, for example, a parameter of a single method. The benefits for practical development are
greater: one can develop or experiment with one method independent of others, while preserving a
well-defined data interface. Such experimentation then carries little risk of inadvertently affecting
the data stored in the database.

A further design choice not directly specified by a blackboard architecture is that of designing
the data store such that new data may be appended, but existing data may neither be altered
nor removed. All data is assigned a version (effectively, the date), and relationships map to all
parameters that describe the data (e.g., program arguments of a method). The goals include
tracking of the data source of each sequence, retention of all versions ever imported, and de-
duplication to facilitate updates with only incremental storage and access cost.

A major emphasis is the requirement to cross-reference all stored data, to reduce the possibility
of storing inconsistent data, and to aid in verification of what is stored. The design is such that
results may be interpreted separately from the implementation used to generate them. As with

45



1 CREATE TABLE prot_seq_str (

2 seq_str_id serial,

3 sequence text NOT NULL,

4 crc text NOT NULL,

5 length integer NOT NULL,

6 molecular_weight integer NOT NULL, -- (0 if not known)

7 PRIMARY KEY (seq_str_id),

8 UNIQUE (crc, length, molecular_weight)

9 );

10 CREATE TABLE prot_seq (

11 seq_id serial,

12 seq_str_id integer NOT NULL REFERENCES prot_seq_str,

13 PRIMARY KEY (seq_id)

14 );

Code 4.1: SQL table definitions for the storage of amino acid strings. prot_seq_str, short for
“protein sequence string”, defines storage of an amino acid sequence. crc, a checksum, length, and
molecular weight are stored to optimize look-up using an index when a sequence string is known,
typically to check for an existing, duplicate sequence string. prot_seq establishes an internal
sequence identifier (seq_id), and a pointer to a single protein sequence string. Many sequence
identifiers may map to one sequence string, but every string stored in the table is unique.

source data, each “run” of some method is stored anew, without overwriting previous data.

A wide range of input, intermediate, and derived data must be handled. For example, the source
data consists of sequences and meta-data about those sequences, such as data source, organism,
name, description, and any functional annotations. Additional sequence data may be calculated;
a particular example is the use of domain models to identify instances of domains in the source
sequences. The eventual output data are predictions of gene families, each a set of sequences. The
primary data type and conceptual framework used throughout this work is a weighted network.

More concretely, this architecture is implemented as a central SQL database, with all data unified
through defined, and enforced relationships. That is, consistency is preserved to the greatest extent
possible by the database definition, to be robust to bugs in or failures of the individual programs
that interact with the database. Each method throughout this work takes some input data, such as
strings representing sequences, and computes a result. The resulting data type tends to be specific
to the method at hand; a separate database table is defined to accommodate any intermediate and
resulting data from computation of a method. For example, separate tables are used for the networks
that result from Blast comparisons, networks from rewiring with Neighborhood Correlation, and
the hierarchical trees that result from clustering.

The database is designed such that there are three logical classes of tables. The description given
here of how these tables are designed and related illustrates the general strategy. A full database
schema is listed in the Appendix. First, a set of definitions facilitate storage of protein sequences
from some input dataset. These table definitions store the amino acid strings, associate an internal
database sequence identifier, and relate these sequences to a source database are listed in Code 4.1.

46



1 CREATE TABLE prot_seq_source (

2 source_id serial,

3 source_name text UNIQUE NOT NULL,

4 PRIMARY KEY (source_id)

5 );

6 CREATE TABLE prot_seq_source_ver (

7 source_ver_id serial,

8 source_id integer NOT NULL REFERENCES prot_seq_source,

9 version text NOT NULL,

10 date timestamp NOT NULL,

11 PRIMARY KEY (source_ver_id),

12 UNIQUE (source_id, version, date)

13 );

14 CREATE TABLE prot_seq_version (

15 seq_id integer NOT NULL REFERENCES prot_seq,

16 source_ver_id integer NOT NULL REFERENCES prot_seq_source_ver,

17 primary_acc text NOT NULL,

18 PRIMARY KEY (seq_id, source_ver_id),

19 UNIQUE (source_ver_id, primary_acc)

20 );

Code 4.2: SQL table definitions used to represent the data source and version from which a sequence
was obtained. As is most appropriate in relational databases, separate tables are used to specifically
define many-to-one relationships, such as many versions (prot_seq_source_ver) of the same data
source (prot_seq_source).

The structure of these tables is such that the string that represents an amino acid is stored only
once in the database and is referenced when an internal database sequence identifier seq_id is
defined.

The sequence identifier (seq_id) defined in the prot_seq table is the basic unit of a specific
biological sequence stored in the database. That is, a seq_id refers to a single amino acid sequence
in one organism, analogous to a Uniprot identifier. A number of additional tables represent the
metadata associated with that sequence identifier, such as the source, and version of the database
the sequence was obtained from, or the name and description of the sequence. To illustrate, Code 4.2
demonstrates the tables and relationships used to represent the source database and version. Note
that an internal sequence identifier (seq_id) may be assigned to multiple source database versions.
This facilitates storage of multiple versions of some source database with only the incremental
storage cost of new seq_id entities for entities that have changed in the source database. Other
tables of similar construction are used to represent all other aspects of a sequence, such as the
corresponding organism, predicted function, or human-readable descriptions.

A second logical class of tables in the database define sets of sequence identifiers. All of the methods
described in this dissertation operate on sets of sequences; e.g., all human protein sequences, or
all sequences in a collection of 48-genomes. These sets of sequences are represented by the table

47



1 CREATE TABLE prot_seq_set (

2 set_id serial,

3 name text NOT NULL,

4 description text NOT NULL,

5 PRIMARY KEY (set_id),

6 UNIQUE (name, description)

7 );

8 CREATE TABLE prot_seq_set_member (

9 set_id integer NOT NULL REFERENCES prot_seq_set,

10 seq_id integer NOT NULL REFERENCES prot_seq,

11 PRIMARY KEY (set_id, seq_id)

12 );

Code 4.3: SQL table definitions for sets of sequences. prot_seq defines a unique identifier for the
set (set_id) and a human-readable name and description. prot_seq_set_member then associates
sequence identifiers with that set instance.

definitions listed in Code 4.3.

A third class of tables represent the data for specific methods employed in the family classification
pipeline developed in this dissertation. Discrete tables are used to represent the output data of, for
example, Blast, Neighborhood Correlation, domain identification within amino acid sequences,
and clustering. Where a method is dependent upon output from another method, this relationship
is explicitly defined within the database. To illustrate this organization, Code 4.4 lists the table
definitions of individual runs of Blast (blast_run), and associated parameters. For Blast, a run
describes the computation of an all-against-all sequence comparison of a particular set of sequences,
using a particular set of parameters. The figure similarly illustrates storage of instances of runs
of Neighborhood Correlation (nc_run). Neighborhood Correlation is calculated with respect to a
single Blast sequence similarity network, so this relationship is explicitly defined via br_id.

The full database schema is listed in the Appendix A.1.2.

48



1 CREATE TABLE blast_run (

2 br_id serial,

3 set_id integer NOT NULL REFERENCES prot_seq_set,

4 date timestamp NOT NULL,

5 num_sequences integer NOT NULL,

6 num_residues integer NOT NULL,

7 params text NOT NULL,

8 comment text,

9 blastall_path text,

10 query_set_id integer NOT NULL REFERENCES prot_seq_set,

11 PRIMARY KEY (br_id)

12 );

13 CREATE TABLE nc_run (

14 nc_id serial,

15 br_id integer NOT NULL REFERENCES blast_run,

16 date timestamp NOT NULL,

17 e_thresh double precision NOT NULL,

18 bit_thresh double precision,

19 nc_thresh double precision NOT NULL,

20 blast_hit_limit integer,

21 smin double precision NOT NULL,

22 smin_factor double precision NOT NULL,

23 use_symmetric boolean NOT NULL,

24 score_type text NOT NULL,

25 self_hits smallint NOT NULL,

26 PRIMARY KEY (nc_id),

27 UNIQUE (br_id, date, e_thresh, bit_thresh, nc_thresh, blast_hit_limit,

28 smin, smin_factor, use_symmetric, score_type)

29 );

Code 4.4: SQL table definitions to represent complete “runs” of Blast, and Neighborhood Cor-
relation. The latter dependency upon Blast is encoded by the table definitions. Each of these
tables detail the complete set of parameters used during execution of the method.

4.2 Key data structures

The family classification approach developed in this dissertation is data-intensive. Two data struc-
tures recur throughout, and are key to the success of these methods. These two are presented
because of their central importance to this dissertation, and as working examples in the algorithms
described in the following section.

1 The first several steps of the family classification pipeline developed in this dissertation involve
weighted networks of sequences. In these, a node represents a sequence, and an edge represents a
derived measure of comparison, such as the sequence similarity, or the Neighborhood Correlation

49



network. The goal is to establish a better approximation of the true, but unknown, homology
network. These networks contain large numbers of nodes and implicitly represent comparisons
between every pair of nodes. The goal is to develop a single data structure that need not be
translated in any significant manner between in-memory representation and native representation
in an SQL database. It must be efficient for the methods of interest here.

2 Hierarchical clustering is applied to refine these sequence networks, and to provide a means of
partitioning into proposed families. Hierarchical data structures are inherently difficult to store in
a traditional relational database, particularly if they are to be accessed by SQL. The description
in this chapter focuses upon the SQL representation of hierarchical clusters of sequences, with a
particular focus on their means of construction and rapid access.

Implementation of both of these data structures requires consideration of many factors. Efficiency
of computation for the algorithms and methods designed in this dissertation define their utility.
Efficiency of use of real machines is equally important, and is achieved by different means, such as
through ordering the computation of an algorithm to facilitate effective caching of memory pages.
Due to the size of the data, compactness (both in memory, and on disk) is vital to the use of
commodity hardware. Since an SQL relational database is used as a central data store, all data
structures must be suitable for representation, and granular access, via SQL, in a native format to
the greatest extent possible. This is distinct from, for example, storage of a data structure as a large
binary object in the database, which might represent the in-memory layout of a data structure, but
could not be interrogated by SQL. Finally, the goal has been to maintain a close mapping between
the data structures stored in the database and their in-memory representations. This reduces the
amount of translation required during loading or storage.

In this chapter, I discuss implementations for storage of graphs and of hierarchical clusters. Notably,
most SQL engines1 do not have native representations of graphs or hierarchical data structures,
and these can be especially expensive to represent in SQL. Of course, these can be represented in
SQL, but typically with great loss of efficiency in either storage or look-up. Achieving efficiency
and compactness is the focus here. Description of those data structures that may be directly
implemented in SQL is reserved for Appendix A.1.2.

The design goals here are to tailor storage and access optimizations to the genomic data and
methods employed here — not to design general tools applicable to all manner of tasks. However,
wherever possible, attention is paid to flexibility for unplanned research directions.

4.2.1 Networks of sequences

The concept of a homology network provides a theoretical context for consideration of gene families.
Additionally, the use of a network is central to the approaches to family classification developed
in this dissertation. The sequence similarity or Neighborhood Correlation calculations between all
pairs of sequences inherently produce weighted networks. Sequences are represented as nodes, and
the measure of interest is represented by a weighted edge between two sequences.

The fraction of edges in a network tends to define the mode of storage of that network, as well as
the approach taken for computation when the network is constructed or used. In short, networks

1Here, all implementation was performed in the PostgreSQL[65] database.

50



tend to be described as either sparse (having very few edges relative to the number of possible node
pairs) or dense (having a large fraction of all edges).

The homology network is sparse by definition. Edges exist only within families, and these families
are small relative to the size of the network, yielding |E| << |V |2. The sequence similarity (GS) and
Neighborhood Correlation networks (GNC) are also sparse, in practice. Implicitly, these networks
represent all edges in the network; however, and importantly, most of those edges actually would
have weight zero. Accordingly, they may be omitted. Typical edge densities are 0.1% for sequence
similarity, and 0.4% (e.g., 1, 675M/600, 0002 ) for Neighborhood Correlation.

There is a small set of classical data structures used to represent weighted networks [38]. These
exhibit distinct properties of mode of construction, storage space required, and efficiency for certain
access and modification patterns. To better understand the decisions made and implementation
developed here, it is useful to briefly review these typical data structures, and consider how they
are optimized for varying modes of use.

For a network of N nodes, the most direct means of storing is a matrix, of size N × N . An
undirected network may be stored in N × N/2 space. When using a matrix representation, the
size of the data structure is independent of the number of edges represented, and sparse networks
result in a great deal of wasted space. The data type of the matrix may be a binary value, to
represent an unweighted network, or a scalar, such as a float to represent edge weight. A matrix
is very amenable to look-up or modification of an edge; the edge between nodes i and j may be
found in O(1) time, at the index [i, j]. As a consequence, this data structure may be constructed
incrementally, provided the total number of nodes is known in advance. All neighbors of node i
may be identified by iterating over the row [i, ·]. However, this data structure is very inefficient
for iteration over the neighbors of a node if the network is sparse. Further, when storage of an
undirected network is optimized by storing half of the matrix, iteration of the neighbors of a node
also requires iteration over columns, with indices [·, j]. For a row-wise memory representation of
the matrix, this is a worst-case access pattern in terms of cache locality; i.e., it is slow.

Use of a linked-list to represent the neighbors and edge weights of a node yields particular benefit
to space-efficiency of sparse networks. Here, a list of nodes is maintained, each with a pointer to a
linked-list of neighbors. For a network of N nodes and M edges, M space is required for the edge
data (e.g., a float), plus a pointer for each of those M edges to the next neighbor in the linked-list.
For sparse networks, the total space required, M × [sizeof(pointer) + sizeof(edge)] is much
less than N ×N × [sizeof(edge)]. This structure may be constructed incrementally by appending
or inserting neighbors into the neighbor linked-list associated with a node, provided one does not
need to check for duplicate edges. This structure lends itself to fast look-up of all neighbors of a
node; however, look-up of a particular edge requires iteration over the linked-list. Iterating over a
linked-list is considerably slower than over an array, primarily because the memory accesses are not
contiguous, resulting in poor cache locality. The linked-list may be sorted to help this procedure,
but the efficiency difference remains substantial.

A linked list may be replaced by an associative array (e.g., a hash structure), with a different
set of access properties. The means of construction are similar to when a linked-list is associated
with each node. The space required does depend upon the space efficiency of the associative
array implementation, but the total size may approach the size of a linked-list. Additional, and
potentially substantial overhead is incurred as the associative arrays are grown dynamically. The

51



greatest benefit of this structure is that it restores fast look-up of edges as compared to a linked-list,
but without the space requirement of a full N × N matrix. Look-up of a node in an associative
array is a constant-time operation, and tends to be fast, and constant on real machines. The result
is that duplicate edges may be resolved efficiently during construction. However, iteration over an
associative array tends to be slow, again, depending upon the implementation.

The overhead for storing the neighbors, whether due to the pointer required for a linked-list, or
that of an associative array, can be ameliorated though use of an array to represent the neighbors
of a node. This results in Msizeof(edge) memory space for a network of M edges. In this case,
construction may be performed incrementally, in cases where it is not necessary to check for du-
plicate edges. Iteration over all neighbors of a node is extremely fast because iterating over a flat
array is ideal in terms of cache locality. However, look-up of a single edge is slower, since the array
must be traversed, as with a linked-list. Yet, as with iterating over all neighbors, this look-up can
be extremely fast on real machines, because the list will remain in the cache and not necessitate
memory accesses. This is particularly true if the list is maintained in sorted-order, where binary
search may be used, for O(logN) access time. Because of these caching effects, binary search of a
list is extremely fast on real machines, and can approach or exceed the speed of associative array
look-ups for lists of even very long length.

There exist other means of compressed network storage, or storage schemes optimized for matrix
operations. These are beyond the scope of structures required or described here. A sampling are
implemented in [77].

Guided by these typical means of sparse network storage, a hybrid data structure is used here. The
general data structure is an adjacency list representation, where every node is associated with two
lists: one to represent the neighbors of that node, and another to represent the weight of edges to
those nodes. With the data here, it is necessary to resolve duplicate edges during construction;
this is a slow operation for a list-of-lists network representation. This construction overhead may
be deferred as a post-processing step, and incurred once for each node, rather than for each edge
insertion. Similarly, the overhead for maintaining the order of the adjacency lists may be deferred
until after all edges are inserted. This data structure is referred to as a dictarray, and is detailed
in Code 4.5.

A dictarray defines two invariants of the data. First, the adjacency list for each node contains
each neighbor at most once. Second, these neighbors are represented in ascending numerical order.
(Nodes are represented by unsigned integers.) These properties yield a very space-efficient data
structure, and facilitate fast look-up of all neighbors of a node. However, a key benefit is that these
invariants may be established after, rather than throughout, population of the data structure. This
deferral results in substantial computational benefits. In particular, insertion of an edge into a
dictarray involves finding the index for the node in the adjacency list in O(logN) time, followed
by a movement of all subsequent nodes by one index. This results in O(N) time per insertion.
Further, this assumes the list has been allocated in memory to be longer than necessary before
insertion; otherwise more time may be incurred to copy and extend the list. If sorted order is
maintained, this cost is incurred for each inserted edge. Instead, the sorted order may be imposed
after the entire neighbor list is populated by appending to the end of a list that is grown dynamically,
as detailed below.

None of the methods in this dissertation require that the partial data structure to be consistent

52



1 {

2 Node_0 : uint32 -> [Node_x, Node_y, Node_z, ... ] : uint32

3 [E_0x, E_0y, E_0z, ...] : float64

4

5 Node_1 : uint32 -> [Node_a, Node_b, Node_c, ... ] : uint32

6 [E_1a, E_1b, E_1c, ...] : float64

7 } : hash

Code 4.5: A dictarray: the network adjacency list representation. The nodes in a network are
represented by a set of consecutive unsigned integers. Edge weights are represented as floating-
point values. A hash data structure is used to map each Node to two arrays, one a list of nodes
connected, and another a list of the corresponding edge weights. These lists are in order of the
Node integer.

during construction; each utilizes only a complete network. As a consequence, edge insertion may
be reduced to a process of appending each edge to the adjacency list. For a given edge (i, j), the
edge to node j is appended to the adjacency list of node i, and the edge to node i is appended to the
list of node j. This insertion may be done in constant time, save extension of the adjacency lists.
These lists are dynamically grown by a tunable parameter, such as a 1.5-fold increase in allocated
space, whenever the number of neighbors exceeds the space already allocated. This balances the
amount of additional space allocated for edges that do not exist, with the a reduction in time
incurred to copy the adjacency lists to new memory locations (as when realloc() cannot extend the
memory allocation directly). Every edge is inserted twice, once for each node it is incident upon.
That is, no attempt is made to store each edge only once. This is an efficiency tradeoff over space,
to optimize for look-up of all neighbors of a node.

After the network is fully populated, each adjacency list is sorted, in O(logN) time, for a total
construction cost of O(E + N logN) time for the complete network. This may be contrasted
with at a potential cost of O(E × (E + logN)), if the data structure were maintained throughout
construction. During the sort procedure, duplicate edges that may be present in the adjacency list
are reconciled, with only one remaining. This latter procedure is described as symmetric sequence
similarity calculation, below. Symmetric calculation would not be necessary if duplicate edges were
resolved during construction, but the cost of insertion would far exceed this post-processing step.

The preceding discussion has focused upon efficiency of use as an in-memory data structure. The
dictarray is also amenable to storage in a relational database, and access via native SQL mecha-
nisms. Again, it is worthwhile to consider the trade-offs of implementation to better understand the
relevant issues. Here, the most direct and common scheme of storage is to represent each edge with
a table row, as in Code 4.6. This may seem like an efficient means of storage, with 3× 4 + 8 = 182

bytes required per row. However, the storage overhead of each row is large, requiring in excess of
32-bytes in MySQL, and of similar size in PostgreSQL. The size of the index (i.e., the PRIMARY

KEY, here) over all rows induces additional storage overhead, proportional to the size of the data
types indexed and their count. Access of a single edge, on account of the index, is fast, though

2Unsigned integers are of size 4-bytes and doubles are of size 8-bytes.

53



1 CREATE TABLE blast_hit_nc_rowwise (

2 nc_id integer UNSIGNED NOT NULL,

3 seq_id_0 integer UNSIGNED NOT NULL,

4 seq_id_1 integer UNSIGNED NOT NULL,

5 nc_score double NOT NULL,

6 PRIMARY KEY (nc_id,seq_id_0,seq_id_1),

7 );

Code 4.6: Definition of the table for storage of network edges as individual rows. Each row contains
an integer identifying the network the edge corresponds to (nc_id), two node endpoints, and the
edge weight. Beyond the size of the datatypes defined, each row in the database incurs an additional
20–40 bytes for internal representation, making this an inefficient means of network storage.

1 CREATE TABLE blast_hit_nc_arr (

2 nc_id integer NOT NULL REFERENCES nc_run,

3 seq_id_0 integer NOT NULL REFERENCES prot_seq(seq_id),

4 hit_list int[],

5 nc_score double precision[],

6 PRIMARY KEY (nc_id, seq_id_0)

7 );

Code 4.7: SQL table definition for storage of network edges, directly mirroring a dictarray. In
contrast to blast_hit_nc, the row overhead as compared to the size of the data is minimal, and
access to all neighbors of a node may be achieved by querying a single row.

queries to retrieve all edges in the network can require significant amounts of time, primarily as a
consequence of disk speed because the stored table is large.

Despite the very large space overhead of the network storage scheme in Code 4.6, and the overhead
incurred for querying the entire network, it is not necessary to forego the utility of SQL as a means
of access. Rather, a dictarray may be more directly represented, with the benefit that little
translation is required between the in-memory data structure and that used for permanent storage.
The resulting table schema is presented in Code 4.7. This listing also includes the foreign key
relationships to the tables that describe individual runs of Neighborhood Correlation (i.e., nc_id)
points to table nc_run, described in Code 4.4, and to the base table of protein sequences (i.e.,
prot_seq), from Code 4.3). In this case, a single row is used per node, negating the row overhead
for each node. The adjacency list for a sequence, seq_id_0, is stored as an array (hit_list), as
is the list of edge weights (nc score). Note that the array data type, [], is PostgreSQL specific,
though widely implemented among SQL engines. Querying for all neighbors of a node translates
to a request of a single row, and is consequently a very fast operation.

The blast_hit_nc_arr table definition sacrifices some ease of iteration when querying with SQL.
Because individual edges are not represented as single rows, they may not be directly queried. Ac-
cess to single edges is most useful when working with the database in an interactive manner. Most of

54



1 CREATE OR REPLACE VIEW blast_hit_nc_rowwise AS

2 SELECT nc_id,

3 seq_id_0,

4 unzip(hit_list) AS seq_id_1,

5 unzip(nc_score) AS nc_score

6 FROM blast_hit_nc_arr;

Code 4.8: Definition of an SQL view to transparently emulate the blast_hit_nc table from the
structure of a blast_hit_nc_arr table. The function unzip() transforms the array data type to
a list of individual rows.

the programmatic methods throughout this work require all neighbors of a node. Much of the conve-
nience of access to individual rows may be achieved by a view to mimic the blast_hit_nc_rowwise
table from blast_hit_nc_arr. The view described in Code 4.8 emulates the table structure of a
single edge per row. The only drawback of such a view is that some means of table joins may not
be performed in an optimized manner.

4.2.2 Hierarchical tree storage

The family classification pipeline developed in this dissertation uses hierarchical clustering to refine
and ultimately partition the sequence network. This establishes a hierarchy of nested clusters of
sequences. In keeping with the goal of a central data store, this structure must be represented in
SQL. The primary challenge is representing a hierarchical tree in a relational database (as opposed
to in-memory representation), so the discussion here focuses upon representation in and access by
SQL.

Hierarchical, or recursive data structures are not directly amenable to storage in relational databases.
Recursive SQL queries can be done, but tend to rely upon an encoding of the relationships between
entities as foreign key references (i.e., pointers to a value in the same or a different table). Even
if the complexity of a recursive query is overcome, the database engine would still be required to
traverse the height, or depth, of a tree. For example, a query to determine the leaves of a tree would
necessarily traverse all nodes step-by-step, until each leaf is reached. For very deep trees, as with a
binary hierarchical clustering of the 600k sequences in the 48-genome dataset used throughout this
dissertation, such traversal can be extremely time consuming.

With appropriate indexing of nodes, traversal of a tree may be avoided, yielding a structure
amenable to interaction via SQL. The nested set structure developed by Joe Celko [30], and
described in Figure 4.1 is particularly suitable for this purpose. This illustration is of a binary
tree, though the representation may be generalized. The hierarchical clusters in this dissertation
are binary, and the following discussion is constrained to the binary case. Here, each node n is
enumerated with two integers, ln and rn, corresponding to the left and right indices of a node.
These are assigned from a counter, i, that is incremented during a depth-first traversal from the
root of the tree. At initialization, i = 1, and lroot is assigned 1, and i is incremented. For each
node, the index ln is assigned the current value of i, which is then incremented. When all children
of a node have been traversed, the index rn is assigned to be i during the back-trace, and i is,

55



A

(1,12)

/ \

B E

(2,7) (8,11)

/ \ \

C D F

(3,4) (5,6) (9,10)

Figure 4.1: Demonstration of nested set tree indexing. For each node (n) in the tree, two integers
are stored. These are left (ln) and right (rn) indices are generated by sequential numbering of nodes
during a depth first search. The value ln is assigned when a node is first traversed, and rn is assigned
when the depth-first search revisits the node. All descendants of a node with indices (x, y) have
values (ln > x, rn < y), allowing them to be directly identified. All leaves have indices of the form
rn = ln + 1.

again, incremented. This proceeds until traversal of all nodes have been completed. Note that this
procedure requires a static tree; insertion into a nested set is more involved, and is inherently
a slow process. The number of nodes in, and structure of, the trees used in this dissertation are
fixed.

The nested set has a number of favorable access properties. First, all children of a node may be
identified without traversal of the edges in the tree. For a node with indices (ln, rn) = (x, y), all
children that comprise the subtree beneath the node have indices such that ln > x and rn < y.
Additionally, all leaves may be directly identified, without graph traversal, because only leaves have
indices of the form (x, x+1). The nearest common ancestor of two nodes may be identified without
traversal of nodes that are not common ancestors; for two nodes, with indices (a, b) and (x, y),
respectively, all common ancestors have indices of the form (i < min(a, x), j > max(b, y)). The
nearest common ancestor has the minimal value of (rn − ln) of this set of all common ancestors.

The node data and indices of a nested set may be stored in a relational table, with a single row
assigned to each node. The table definition in Code 4.9 demonstrates quantities stored at each node
in the hierarchical trees used in this work, as well as the nested set indices. This table definition
is designed such that a tree may be defined recursively, and constructed in an incremental manner
without pre-calculation of ln (lft) and rn (rgt). That is, every node is assigned an identifier,
cluster_id, and the identifier of the parent of a node is stored in parent_id. Upon full population
of a tree, and prior to any queries that rely upon the nested set properties, the entire tree may
be fetched from the database, ln and rn may be calculated, and every row in the table may be
updated. No recursion is necessary when querying the entire tree.

The column distance corresponds to the measure of distance between the children of a node.
Neighborhood Correlation scores, and sequence similarity, are similarity measures, so distance
measures are derived. For average-linkage clustering of a network of Neighborhood Correlation
scores, this is defined as 1.0, less the mean score of the all edges between the sets of nodes in each
child. For sequence similarity, the mean score is subtracted from the maximum value in the dataset.
Refer to Chapter 6: Clustering and its evaluation (p.85) for details of the hierarchical clustering
procedure that generates these distances. Similarly, parent_distance is the distance of the parent

56



1 CREATE TABLE jj_hcluster (

2 cr_id INTEGER NOT NULL REFERENCES jj_cluster_run,

3 cluster_id INTEGER NOT NULL,

4 distance DOUBLE PRECISION NOT NULL,

5 parent_distance DOUBLE PRECISION,

6 parent_id INTEGER,

7 seq_id INTEGER,

8 lft INTEGER,

9 rgt INTEGER,

10 PRIMARY KEY (cr_id, cluster_id)

11 );

12 CREATE INDEX jj_hcluster_parent ON jj_hcluster (cr_id, parent_id);

13 CREATE INDEX jj_hcluster_nested ON jj_hcluster (cr_id, lft, rgt);

14

15 CREATE INDEX jj_hcluster_nested_seq ON jj_hcluster (cr_id, lft, rgt)

16 WHERE seq_id IS NOT NULL;

Code 4.9: SQL table definition to represent hierarchical clustering trees. The indices created
facilitate rapid arithmetic comparison of the lft and rgt nested set indices.

node. Both of these distances are stored at each node to optimize lateral cuts of the tree, where a
chosen distance threshold may be used to select all nodes immediately below the threshold.

Finally, seq_id stores the identifier of a sequence associated with a node in the tree. Only leaf
nodes represent actual sequences. The database indices listed in Code 4.9 facilitate queries based
upon arithmetic comparison of lft and rgt, facilitating rapid identification of all rows that are
children of a selected node. An additional index, jj_hcluster_nested_seq is an index only over
the leaf nodes, because only leaves have a seq_id value.

A typical query is that of cutting the tree at a chosen distance threshold, where the returned clusters
are defined to be those nodes with distance less than the threshold, but where the distance of the
parent is greater than the threshold. Typically, the most desirable output is a set of leaf nodes,
not the internal nodes, nor the structure of the subtree that comprises each cluster. This query
may be performed in two steps. First, the tree nodes at the boundary of the specified distance
threshold are selected. As demonstrated in Code 4.10, these nodes have distances less than the
threshold, but their parent has a greater distance. Second, now that the set of internal nodes has
been identified, the leaves that correspond to the subtree defined by each may be efficiently queried
using the nested set indexing. This is performed as a separate query for each subtree, using the
query specified in Code 4.11.

57



1 SELECT cluster_id

2 FROM jj_hcluster

3 WHERE cr_id = %(cr_id)s

4 AND distance <= %(distance)s

5 AND (parent_distance > %(distance)s

6 OR parent_id is NULL)

Code 4.10: SQL query to select all tree nodes immediately adjacent to a chosen threshold, specified
by the parameter %(distance)s. The parameter %(cr_id)s references a specific tree stored in the
table jj_hcluster.

1 WITH node AS (

2 SELECT lft, rgt

3 FROM jj_hcluster

4 WHERE cr_id = %(cr_id)s

5 AND cluster_id = %(cluster_id)s)

6

7 SELECT seq_id

8 FROM jj_hcluster

9 WHERE cr_id = %(cr_id)s

10 AND lft >= (SELECT lft FROM node)

11 AND lft <= (SELECT rgt FROM node)

12 AND seq_id IS NOT NULL

Code 4.11: SQL query to select all leaves under a given node, specified by parameter
%(cluster_id)s in a given tree, which is specified by %(cr_id)s.

4.3 Implementation of Neighborhood Correlation

Neighborhood Correlation derives much of its utility from the network structure local to a pair of
sequences to be rescored. This same property necessitates calculations that are computationally
intensive. Näıvely, for a network comprised of N nodes, Neighborhood Correlation rescores all
N2/2 pairs of sequences in the network. In turn, each of these calculations depends upon the set of
nodes in the neighborhoods of the each pair of sequences. While an O(N2) calculation is tenable
for the networks of the size considered here, the additional complexity of each computation, which
is highly dependent upon local network density, results in substantially higher complexity. At least
as importantly, the performance of this method on real machines can vary by orders of magnitude
depending upon details of the implementation, even for the same basic algorithm. Further, these
networks can consume considerable quantities of memory. Fortunately, all of these challenges may
be addressed to facilitate computation of large networks on commodity hardware. This section
details the algorithms and use of data structures that facilitate this result.

The primary goals are to perform the computation in a manner that achieves good algorithmic
complexity, and does so in a manner that is efficient on contemporary computer architectures. The

58



first requires efficient reuse of the data, and a reduction of duplicated work. This is insufficient,
however, if high performance on real computers is also a goal. This second requirement necessitates
careful ordering of the computation to optimize memory access patterns. A final goal is to produce
readable, reusable code. To balance usability and enable fast prototyping of new ideas, the Python
language is used for all code. Native Python is not necessarily ideal for data-intensive loops,
though it is highly suitable for further optimization where needed. First, for simplicity in relating
the data structures to concrete in-memory representations, all arrays are represented as C arrays,
using numpy[112]. Additionally, the data-intensive “inner loop” of Neighborhood Correlation is
implemented as a C-extension to the Neighborhood Correlation Python code.

4.3.1 Symmetric sequence similarity

Neighborhood Correlation takes as input a weighted, undirected network. However, the input
sequence similarity network, as calculated by Blast, is effectively a directed network. The score
from sequence x to y (i.e., when sequence x is used as a query) may differ from that of y to x.
Moreover, in some cases, the score from either may be sufficiently low that Blast does not return
one pair at all. In this case, the network may consist of, for example, a directed edge from x to y, but
lack a corresponding edge from y to x. These disparities result from the heuristic Blast employs
for identification of initial seed hits; low-complexity regions of one sequence may be masked in this
initial search. (Further explanation of this effect are discussed in Chapter 3: Network rewiring
(p.25).) To address this, prior to computing Neighborhood Correlation, the sequence similarity
network is converted into an undirected network. An undirected edge is created if either of the two
possible directed edges exist. The procedure involves creation of a symmetric sequence similarity
network, where the score between x and y is identical to that of y and x, and that this score is the
maximum similarity returned by Blast. Where no edge exists in either query order, no edge will
be added to the symmetric network.

The dictarray described earlier in this chapter is central to efficient calculation of the symmetric
network, with practical memory constraints. First, recall that the dictarray data structure
represents every edge in the network twice, to facilitate fast look-up of the complete neighborhood
of a node. Construction of a symmetric network consists of insertion of every edge in the Blast
sequence similarity network into a dictarray precursor, twice. That is, for every edge (x, y),
with weight w, the dictarray is populated with edges (x, y) and (y, x), each with weight w. As
described with the introduction of this data structure, these insertions are performed lazily, by
appending the new neighbor to the end of the adjacency list of each node, and deferring the sort of
these adjacency lists. Should the Blast result also contain the edge (y, x), with weight z, this edge
will also be inserted twice, resulting in duplicate edges (x, y) and (y, x) in the dictarray, though
with weight z. Resolution of this duplicity is deferred. Upon insertion of the complete Blast result
of M edges, this lazy dictarray will contain 2M edges, with memory requirements inflated by as
much as a factor of two over the corresponding dictarray. Additionally, there will exist potential
space overhead from maintaining adjacency lists that may be extended dynamically, as opposed to
being reallocated with each added element.

The invariants of a dictarray are established after all sequence similarity edges are inserted. That
is, duplicate edges are reconciled, retaining the edge with greatest weight, and order of the adjacency
lists is established. This may be performed quickly, with a calculation over each adjacency list in

59



1 PyObject *resolvesymmdups( PyObject *s, PyObject *args) {

2 PyObject *pyelem, *pyvals, *pynelements;

3 int i = 0, shift = 0, nelements;

4 int *elem;

5 double *vals;

6

7 if (!PyArg_ParseTuple( args, "OOO", &pyelem, &pyvals, &pynelements))

8 return NULL;

9

10 elem = (int *)PyArray_DATA( pyelem);

11 vals = (double *)PyArray_DATA( pyvals);

12 nelements = PyLong_AsLong( pynelements);

13

14 while (i + shift + 1 < nelements) {

15 if ( elem[i] == elem[i+shift+1]) {

16

17 if ( isgreaterequal( vals[i+shift+1], vals[i]))

18 vals[i] = vals[i+shift+1];

19

20 shift += 1;

21 continue;

22 }

23 else {

24 if (shift > 0) {

25 elem[i+1] = elem[i+shift+1];

26 vals[i+1] = vals[i+shift+1];

27 }

28 i += 1;

29 }

30 }

31

32 return Py_BuildValue("i", shift);

33 }

Code 4.12: Python C-extension function to resolve duplicate edges after lazy insertion of all edges
from a non-symmetric Blast sequence similarity network.

isolation. First, the order is established by a simple O(N logN)) sort. Then, duplicates are resolved
in linear time, as detailed by the function listed in Code 4.12. The function resolvesymmdups() is
written as a C-extension to Python, operating on numpy data types, which, for these purposes, may
be regarded as simple C arrays. This function uses three arguments: the list of neighbors, elem,
the list of edge weights, vals, and the number of neighbors, nelements. Because the adjacency
list (vals) has been sorted, duplicate edges will be proximal. These are identified by a loop over
all elements in elem. When adjacent positions in elem encode an identical neighbor, the weight of

60



the first is set to the greater of the two weights in vals. The following, duplicate, neighbor could
then be removed from elem and vals, although this is not explicitly performed because this would
needlessly result in an N2 iteration over all subsequent neighbors to move each from position i
to i − 1. Instead, shift keeps the count of how many positions should have been removed from
the adjacency list. Iteration proceeds until all neighbors have been considered. Finally, shift is
returned, so that the calling function may truncate the adjacency lists to the actual number of non-
duplicate edges. The sorted order is preserved. Beyond algorithmic efficiency, this in-order, linear
traversal of this procedure is exceptionally well suited to cache usage on contemporary computer
architectures.

4.3.2 Calculation order

The task of Neighborhood Correlation is to rescore all of the N × N possible edges between all
sequences in a network of size N . A most direct approach to calculation is to iterate over each
node, x, and to calculate NC(x, y) for all neighbors y, of that node. Performed in this way, all
data associated with node x (i.e., the adjacency list and weights of x) is not repeatedly accessed
from memory while iterating over its neighbors. Effectively, the calculation for node x involves an
iteration over the complete data structure representing the network for every other node, y, which
is a potentially slow endeavor. The following discussion addresses the substantial improvements
that may be made over this approach.

An immediate observation is that it is only necessary to iterate over half of the sequences in the
network, since NC(x, y) = NC(y, x). This reduces the computation, but does not fundamentally
alter the complexity involved, or the amount of data that must be considered during each calculation
from each node. The inefficiency of this approach becomes especially clear when one considers
that no more than 0.5-1% of the edges in a typical network of N sequences actually have defined
Neighborhood Correlation scores. Recall that NC(x, y) = 0 if sequences x and y share no common
neighbors. More graphically, nodes separated by a minimum path length of greater than two edges
necessarily share no neighbors, and thus have no Neighborhood Correlation score defined, beyond
the default of a score of zero. Such pairs represent over 99% of the number of possible edges in the
network.

The calculation of Neighborhood Correlation scores may be greatly improved by exploiting these
structural properties of typical networks with no added cost to atypical networks. Since a Neigh-
borhood Correlation score needs to be calculated only for pairs of nodes which are connected by a
path length of at most two edges, one could identify those pairs of nodes first, and then calculate
their scores. Unfortunately, identifying such nodes is itself a procedure that iterates over the en-
tire network, and following this with Neighborhood Correlation is not likely to be a net-win. The
book-keeping necessary for this procedure is likely to consume a substantial quantity of memory,
and inefficient cache use results from repeated iteration over the complete network. Neighborhood
Correlation may instead be calculated concurrent with a search for all paths at most two edge in
length.

The general scheme is to perform a breadth-first search from each node to calculate the score
between a node x and all immediate neighbors. Iteration over each of those neighbors neces-
sarily enumerates (but does not access) the set of neighbors of each of those nodes (called, the
next-neighbors). For each node x, Neighborhood Correlation is first computed between x and all

61



1 def covariance_xy( hits_0, scores_0, expect_tup_0,

2 hits_1, scores_1, expect_tup_1,

3 num_seqs, logsmin):

4 (n_0, sum_0, Ex) = expect_tup_0

5 (n_1, sum_1, Ey) = expect_tup_1

6 n_01 = s01_sum = s01_prodsum = 0

7 ind_0 = ind_1 = 0

8 len_0 = hits_0.size

9 len_1 = hits_1.size

10

11 while ind_0 < len_0 and ind_1 < len_1: # hit lists are in sorted order

12 h0 = hits_0[ind_0]

13 h1 = hits_1[ind_1]

14 if h0 < h1:

15 ind_0 += 1

16 continue

17 elif h0 > h1:

18 ind_1 += 1

19 continue

20

21 # elif h0 == h1:

22 n_01 += 1

23 s01_sum += scores_0[ind_0]

24 s01_sum += scores_1[ind_1]

25 s01_prodsum += scores_0[ind_0] * scores_1[ind_1]

26 ind_0 += 1

27 ind_1 += 1

28

29 n_others = num_seqs - (n_0 + n_1 - n_01)

30 Exy = (s01_prodsum + (logsmin**2) * n_others +

31 (sum_0 + sum_1 - s01_sum) * logsmin

32 ) / num_seqs

33 var_xy = Exy - Ex * Ey

34 return (n_01, var_xy)

Code 4.13: Calculation of the covariance between the adjacency lists of two sequence neighborhoods.
Shown here in Python, this procedure is implemented as a C-extension of identical flow.

neighbors, y, of x. During the calculation of the correlation with each neighbor, y, the set of
next-neighbors is constructed. Once the Neighborhood Correlation score to all neighbors has been
computed, NC(x, z) is computed, for all next-neighbors, z. The Neighborhood Correlation score
between x and all neighbors, and all next-neighbors, is necessarily defined because they share at
least one neighbor. This methodology computes Neighborhood Correlation for the minimal set of
pairs for each node, x.

62



Note that this scheme accesses the adjacency lists in the network twice, because the breadth-first
search is repeated from each node in the network. Additionally, this procedure is performed for every
node in the network, without taking advantage of the symmetry of Neighborhood Correlation (i.e.,
NC(x, y) = NC(y, x)). The benefits of this procedure are algorithmic, and practical. Algorithmicly,
no book-keeping need be performed to record which edges have been calculated. A substantial
practicality results: this procedure may be implemented in a highly parallel manner because the
underlying data structure is not changed, and no synchronization is required between calculations
from each node. Calculating the complete network is not without advantage because, ultimately,
the complete network is desired when querying for the set of neighbors connected to a node x
in the Neighborhood Correlation network. Here, calculation of Neighborhood Correlation may be
performed twice for every pair more quickly than it would be to restore the symmetric edge through
post-processing.

Discussion to this point has focused upon of the calculation of Neighborhood Correlation over the
entire network. A number of optimizations are key to efficient computation of the score for an
individual pair of nodes. The inner loop of NC(x, y) calculates the covariance of the weights (see
Code 4.13). The covariance between the neighbors of node x and the neighbors of node y must
account for pseudo-edges of weight log(Smin), and so is more involved than a direct calculation of
covariance. In this code, n0 and n1 are the sizes of the neighborhoods of nodes 0 and 1, respectively.
sum_0 and sum_1 are the sum of all edge weights in the neighborhood of a node, and Ex and Ey

are the mean score of these edges, accounting for log(Smin). During this calculation, the ordering
of the adjacency lists is exploited to facilitate a linear traversal of the arrays. This function returns
the size of the common neighborhood and the covariance.

63





Chapter 5

Analysis of network properties

A major challenge in the development of means for family classification is a shortage of effective
evaluation metrics. This dissertation develops two fundamentally different, but complementary,
approaches to measuring the performance of classification methods. First, this chapter describes
the framework and methodology to evaluate family classification using intrinsic measures of the
data; i.e, by measuring the inherent properties of the input and output data that are believed to
correlate with common ancestry. A second approach may be employed when curated data, such as
a labeling of complete families, is available. The use of extrinsic measures based on labeled data
is developed in Chapter 6: Clustering and its evaluation (p.85). The approach here considers the
structure of a network representation of proteins, where nodes are sequences, and edges represent
sequence similarity, derived measures such as Neighborhood Correlation, simulated values, or, when
considering the theoretical context, true homology.

This chapter considers the scenario of evaluation in the absence of ground-truth knowledge. Of
course, when evaluating a specific method with intrinsic measures, it is worth considering whether
there is circularity between the method applied and those measures. It is unlikely that the methods
and measures will be orthogonal, and ensuring so would be an unattainable goal. The compromise
sought in this work is to develop a theoretical expectation for the structure of a homology network,
and to then measure the discrepancy between real networks and this theoretical ideal.

Reliance on measures that can be calculated directly from the data yields a number of substantial
benefits which are not offered by extrinsic measures based on curated families. The data upon
which the evaluation is based necessarily increase in size with the input; they are the same data.
In contrast, the pace of expert family curation lags far behind that of genome sequencing. The
evaluation is fine-grained: It is not necessary to process the data to a form that directly corresponds
to the output (e.g., clusters representing families) prior to evaluation. Instead, the structure of the
initial input, intermediate, and derived networks may be measured separately, and compared. In
particular, these may be compared to a theoretical expectation. Intrinsic measures may reveal
why a method behaves as it does, more so than when only the result is examined. Finally, the
approach is amenable to evaluation of targeted simulation of portions of the family classification
pipeline. Without such means of incremental evaluation, it is difficult to delineate the scope of any
simulation; more complex simulations necessarily introduce a great many unknowns and untested

65



hypotheses.

The concept of a homology network was introduced in Chapter 2: Background and preliminaries
(p.13). To review, the mathematical concept is as follows. A homology network, GH = (V,EH),
is comprised of nodes that correspond to sequences. Edges are not weighted: an edge (x, y) exists
in EH iff x and y are homologous. The definition of a gene family implies certain structural
properties of the network. Most notably, the network is transitive; all members of a gene family
are, by definition, homologous to all other members. The members of each family comprise a clique
in the network, discrete from all other families. The distribution of sizes of cliques in the network
are defined by the sizes of families in the dataset. Note that this homology network may represent
sequences from one or many genomes. Families that are conserved among several genomes will tend
to scale in size with the size of the dataset. That is, the size of such a family relative the size of
the dataset will tend to remain constant, whether the dataset is comprised of a single genome, or
of many.

The homology network is unknown for real data; indeed, the goal of this body of work is to estimate
it. Several networks are considered in this chapter: Common estimates of homology include use of
a network of sequence similarity, GS = (V,ES), where edges in ES are weighted, and encode the
degree of pairwise similarity between two sequences. The result of rewiring GS with Neighborhood
Correlation is encoded in GNC = (V,ENC), where the weight of an edge in ENC represents the
Neighborhood Correlation score between a pair of sequences. Additionally, for simulation purposes,
synthetic, unweighted networks are considered.

The overall goal of measuring the properties of the graph is to evaluate how well a particular
network approximates the structural properties inherent in a homology network. For this problem,
the biological property of interest (families that share common ancestry) corresponds to a precise
mathematical property (graph transitivity). This ability to recast the problem to an objective goal
guides method design and provides a natural basis for evaluation in the absence of a gold standard.
Figures of merit that assess the transitivity of a graph are appropriate internal validation methods.

An additional goal is to facilitate effective means of comparing two networks. What are the bases
upon which two estimates of homology may be compared? For example, a comparison of two
unweighted networks, G1 = (V,E1) and G2 = (V,E2), might consist of the Hamming distance
between the two edge sets, E1 and E2. I investigate how meaningful comparison may also be
made when the edge weights represent very different properties. The networks here are weighted,
requiring methods of evaluation and comparison that take the weights of edges, not just their
presence or absence, into account. Similarly, practical application to sequence networks requires
means of comparison of networks in which the node sets differ, as when a network comprised of one
genome is to be compared to a network comprised of many genomes.

In this chapter, I describe a set of measures that capture various aspects of network structure.
These measures are designed to reflect graph transitivity, and particular attention is paid to their
application to the weighted networks utilized throughout this dissertation. The first aspect of
this evaluation is within simulated data, where the “true” homology network, GH is explicitly
defined. Behavior of the measures is empirically observed as the network is degraded through a
simple shuffling of edges, meant as a most basic model of the effects of domain shuffling upon a
sequence similarity network. This simulation provides an empirical demonstration of behavior of
the network metrics, and as a sanity check for Neighborhood Correlation. The structure of the

66



simulated homology network, the degraded network, and GNC are compared.

Next, these measures are applied to real data, to evaluate the performance of sequence similarity
and compare this with the result of Neighborhood Correlation. Two sources of data are considered.
The first is comprised of nine closely related yeast genomes, where little is known about families
of sequences. This allows detailed examination of the behavior of Neighborhood Correlation as the
size and composition of the dataset is varied. Second, the network measures are applied to the
dataset comprised of the mouse and human genomes.

5.1 Network measures

The intrinsic evaluation performed here involves use of network measures designed to quantify the
degree of transitivity inherent in a network, and to capture general properties of the network. They
draw from a long line of fundamental measures of network properties [12]. These network measures
have been selected to characterize a wide spectrum of network structure. All are intended to capture
abstract properties such as the degree to which individual connected components are connected,
or the degree to which they are separated from the rest of a network. The variety of measures
used are intended to each capture a specific property of network structure, and together provide a
perspective of the overall structural differences between different networks.

Nearly all of the real networks considered in this work are weighted. However, the meaning rep-
resented by those weights differs in each specific network. For example, an edge weight in the
sequence similarity network is typically the score associated with the alignment of the sequences
represented by a given pair of vertices. Throughout this dissertation, the similarity value used the
bit-score reported by Blast. The bit-score is a positive value bounded by a weighted function of
sequence length, and sequence composition using an amino acid substitution matrix. The bit-score
has no defined upper limit. Further, edges are defined only between pairs of sequences exceeding
(1) the E-value threshold used1, and (2) the ability of the Blast heuristic to achieve a seed hit
from one sequence to another. By contrast, a Neighborhood Correlation network may be thought
to have an edge between all pairs of sequences. The weight of these edges ranges from zero to one,
depending upon the local network structure. The edge weight is zero if no common neighbor exists
between two sequences in the sequence similarity network.

Thus, the primary task is to compare networks that have the same set of nodes, but different edge
sets, with weights that represent very different units; e.g., are defined on different numerical scales,
and have different numerical distributions. Additionally, the edge weights of a network cannot be
transformed by a function of edge weight to correspond to those of another network that represents
fundamentally different information. For example, in the sequence similarity network, edge weights
depend only upon the sequences associated with a given pair of nodes, whereas the Neighborhood
Correlation calculation is derived from the local neighborhood of pairs of sequences in the network.
This yields not only a different distribution of weights between sequences, but these weights also
define a different ordering of edges.

Clearly, edge weight needs to be considered in evaluating a particular network and when comparing
different networks. To do otherwise necessarily discards a great amount of information inherent to

1In this work, the significance threshold is set to a minimal value, such that effectively all Blast seed hits result
in an edge. See 3: Network rewiring (p.25) for details.

67



the network. How the edge weights are used in these applications is not necessarily a straightforward
problem. Consider graph density. In the context of an unweighted network, the fraction of edges
that exist relative to the number of possible edges in the network, DG = |E|

N(N−1)/2 , has a meaning
that may be directly interpreted.

A common scheme for use of a weighted network is to apply a threshold, yielding a new unweighted
network comprised of the same nodes, but only edges with a weight above (or, alternately, below) a
given value of edge weight. Transformation to an unweighted network enables the use of unweighted
measures, and allows comparison of the structure of networks derived from different data. This is
a step in the right direction. The simple strategy of counting the edges that exist in a weighted
network is a special extreme of thresholding. However, thresholding still has the potential to
discard important structural features. How might more of this information be preserved, while still
facilitating consideration of the network with unweighted measures?

Edge weight could be utilized by performing a sum of the edge weights rather than a count. Most
of the measures presented in the following could be so transformed. However, this strategy does not
solve the issue of network comparison. Simply weighting any given measure, such as graph density,
by the edge weight in lieu of existence is insufficient for the comparison of networks with edges
that represent different values: the value that the edge weight captures is only consistent within
one type of network. Even ignoring meaning or magnitude, the scale of the weights in one network
type is not necessarily linearly related to the weight used in another network. Further, between
networks that represent very different information, such as sequence similarity or Neighborhood
Correlation, no transformation, linear or otherwise, should be expected to exist.

The strategy undertaken here is to consider edge weights as an ordering of those edges, disregarding
the specific meaning inherent to the type of network it is within. This ordering is established by an
implicit linear transformation of the original score range; i.e., only the order and relative distances
are retained. A particular network measure may be applied to any weighted network, to produce
not a single value for one static network, but rather a distribution of that network measure over all
possible networks as the edges are added (or subtracted), in the order defined by their edge weight.
The above procedure is similar to, but subtly distinct from, application of a threshold. It implicitly
considers application of all possible thresholds to a network. The result is a profile of that network
measure over the complete edge weight range of a network, from most inclusive to most stringent.
These may then be compared without respect to the value that the edge weights represented.

5.1.1 Measure definitions

This section establishes the specific vocabulary used for discussion of the networks to come and
defines the specific properties of interest. First, an undirected network, G = (V,E) is comprised
of vertices, individually enumerated as vi ∈ V , and edges, similarly enumerated as ejk ∈ E. Edges
may exist between any two vertices, but no self-edges are permitted.

First, we may consider a global property of the network. The network density is a measure of
the number edges in the network, expressed as a fraction of the possible edges in fully-connected
network:

D =
2|E|

|V |(|V | − 1)
. (5.1)

68



The network density provides a constraint upon the structure of any network. For networks of
equal density, the distribution of edges between pairs of nodes defines the structural properties of
each network; e.g., whether it is transitive. It is evident that a network of zero density cannot be
transitive, as no edges exist, and a network with a density of 1 is maximally transitive (though
uninformative). When comparing networks, network density is maintained to be equal whenever
possible.

One means of directly evaluating the transitivity of a network is the mean clustering coefficient.
The clustering coefficient, Ci is a measure of the local connectivity of the network with respect to
a node i. Specifically, this is a count of the number of edges that exist between the neighbors of
node i, or

Ci =
2|{ejk}|

|Ni|(|Ni| − 1)
∀j ∈ Ni, k ∈ Ni, and ∀ejk ∈ E, (5.2)

where Ni = vj∀vj ∈ V, where eij ∈ E, the set of all neighbors of node i. To obtain a single measure
of the clustering coefficient over the complete network, an average of Ci is taken. In some cases,
the total number of nodes in the network (|V |) is used as a normalization constant. However,
to provide a more sensitive measure of the clustering coefficient, the convention adopted in this
dissertation is to normalize only the count of nodes that have a defined clustering coefficient. That
is, the clustering coefficient is a measure of how well the neighbors of a node are connected. For a
node of degree 0 or 1, there are no possible edges between neighbors (i.e., Ci = 0, when calculated
as above). To consider only the vertices that have neighbors that may or may not be connected to
each other, we normalize over all nodes of degree greater than one, or

W = vi ∈ V , where |Ni| ≥ 2

C =
1

|W |
∑
i∈W

Ci. (5.3)

C = 1 iff the network is transitive.

Any network may be decomposed into a set of connected components, or sets of nodes in which
each node in a component is connected by some path to every other node in the component.
Nodes in different connected components, by definition, have no edge path between them. In the
convention adopted here, connected components are distinguished from singleton nodes, which have
no neighbors. That is, a connected component must contain at least one edge. In the following, CC
refers to set of all connected components in given network. The set of nodes in a specific connected
component c ∈ CC is denoted Vc, and the set of edges in the component is Ec.

Just as we may measure the overall density of a network, we may define a more local measure
of density, by considering proportion of edges present within components in the network. The
network component density, D, is a measure of global transitivity. This is also known as the
average compactness index. The density of a single component c, containing nodes Vc and edges
Ec, is defined to be

dc =
2|Ec|

|Vc|(|Vc| − 1)
. (5.4)

69



To provide an aggregate measure of component density over the entire network, the densities of all
components may be summed, and normalized. Because the unit of summation is a count of edges,
this summation is weighted by the number of edges in each component, as follows:

D =

∑
c∈CC |Vc|(|Vc| − 1)dc∑
c∈CC |Vc|(|Vc| − 1)

=
2
∑

c∈CC |Ec|∑
c∈CC |Vc|(|Vc| − 1)

. (5.5)

The network component density, D, is equivalent to the ratio of the total number of edges in G
to the number of possible edges within the components of G. Note that D = 1 iff the network is
transitive.

The clustering coefficient (C) and network component density (D) each increase with transitivity,
reaching unity in a fully transitive graph. Although, in general, high values of C and D for a se-
quence similarity network, GS , suggest that the structure of the network more closely approximates
GH , these measures can be misleading in extremely dense or sparse graphs. In a graph consisting
of one, or a very small number, of dense connected components, both C and D will be close to
one. However, this is not a realistic gene family model. At the other end of the spectrum, D will
be unity in a graph consisting entirely of components of size two, but these, again, are not typical
of gene families in real data. Moreover, the clustering coefficient is not informative for very sparse
graphs, since C is not defined on connected components of size two.

The mean connected component size is calculated as

Nc =

∑
c∈CC |Vc|
|CC| . (5.6)

5.2 Interpretation of measures

As described above, the networks generated by the methods applied throughout this dissertation
are weighted networks. The network measures developed here are of most value for evaluating
the structure of a network as it is perturbed, either in the scenario of successive edge removal
(or addition), or that of comparison of two networks of wholly different edge composition. Each
measure, in isolation, provides only a limited perspective about the structure of a network. For
example, consider a process where edges are continually removed from the network. That edges have
been removed between steps will necessarily be reflected by a decrease in graph density. However,
what might an increase in the clustering coefficient or network component density indicate? What
of a decrease? In fact, example networks may be easily contrived to yield an increase or decrease
of any of these measures, save a necessary decrease in graph density as edges are removed from the
network.

Intuition about the structure of a network may be gained by considering the joint behavior of
the network measures. Figure 5.1 considers the restricted case where a given component motif is
modified by edge-removal. The arrow for each measure indicates whether the magnitude of that
measure will necessarily increase, decrease, remain unchanged, or, as in one case, may either increase
or decrease. The trends in this figure are based on the assumption that the motif is embedded in
a larger network, of arbitrary construction, that does not simultaneously change.

70



Low Thresh Hi Thresh N
et

w
or

k
d
en

si
ty

M
ea

n
cl

u
st

er
in

g
co

effi
ci

en
t

#
C

on
n
ec

te
d

C
om

p
on

en
ts

#
S
in

gl
et

on
s

M
ea

n
C
C

si
ze

N
et

w
or

k
co

m
p

on
en

t
d
en

si
ty

A

ttt tt t




� @
J
J

ttt tt t



J
J ↓ ↑ – ↑ ↓ ↑

B
t tttt t�@�
@

t tttt t�@�
@ ↓ ↑ ↑ – ↓ ↑

C
tt tt ↓ – ↓ ↑ ↑ ↓

D t t t t t t t t t t ↓ ↑ ↓ ↑ ↑ or ↓ ↑

E tt t@� tt t@ ↓ ↓ – ↑ ↓ –

Figure 5.1: Scenarios involving various connected component motifs. The indicated change in
magnitude of a network measure is reported as edges are removed from a component. Arrows
indicate either an increase or decrease in the magnitude of a measure. These projections assume
the component is embedded within a larger network of other components, and that larger network
does not change.

The illustrated component motifs are not meant to be exhaustive. Further, complex, simultaneous
changes in a network may yield a mixture of scenarios. However, the network measure behaviors
they illustrate are representative of the real networks considered in this work. This is especially
true when incremental changes are observed over a limited range of edge weight thresholds. A
typical observation upon closer examination of the sequence networks considered here is that, within
discrete ranges of the distribution of edge weights, a particular component motif is responsible for
the structural changes observed in the network. That is, despite a lack of generality, the motifs in
Figure 5.1 are representative of the types of networks considered in this dissertation.

With the aforementioned caveats, a number of key observations may be made about the behavior
of the network measures. The scenario considered throughout is that of a continual process of edge-

71



removal. (The following sections will include plots of this process in simulated and real networks.)
First, note that removal of edges from a network necessarily decreases graph density. The behavior
of other measures of the network capture aspects of the structural changes in the network, such as
whether the edge removal results in complete loss of structure (resulting in singletons) or whether
components of higher density result.

Consider scenario in Figure 5.1A. Initially, a trio of nodes is maximally connected, and each node
has a single edge to one of three other nodes. Suppose the three outer edges are removed during
an in-order removal of edges. This necessarily increases the clustering coefficient of the network;
the value Ci of each central node increases from 1

3 to 1. The number of connected components is
unchanged, though the count of singleton nodes increases on account of the three isolated nodes. At
the same time, the density of the remaining component increases (to 1) and the size decreases. This
component is representative of dense components or cliques with a few spurious edges to otherwise
disconnected nodes. These are common in real sequence networks.

Figure 5.1A may be contrasted with the subtly different network measure behavior in 5.1B. The
latter is representative of dense components that are connected by a small number of weaker edges.
In this case, the count of connected components necessarily increases as edges are removed, with
no change in the number of singletons.

In many instances, removal of a strong edge between two sequences would suggest that too many
edges are being removed from the network, as with selection of too stringent an edge weight thresh-
old, leading to loss of the inherent structure of the network. This can indicate that a less stringent
threshold should be considered. For example, the datasets under consideration here frequently have
pairs of genes that are very closely related. This is especially true when the dataset is comprised
of two very closely related genomes. In this case, a large number of connected components of size
two are observed. The scenario in 5.1C demonstrates such a case. Here, as edges are removed, the
connected component is removed in entirety, and is replaced by singletons. The network component
density decreases whenever a component of maximal density is removed from a network not already
of density 1, which is a robust assumption here. Similarly, the mean size of components increases if
the size of the degraded component was below the original mean. Here, the mean component size
necessarily increases because a component of size two is the smallest possible.

Figure 5.1D represents a pervasive motif in sequence similarity networks, one that is highly unlikely
to represent actual biology. Here, a series of nodes is connected as a “string”, each to two other
nodes. Such a component is of minimal density, so its removal necessarily increases the network
component density. However, the mean size of the components may increase or decrease, dependent
upon whether the mean of the graph is above or below the number of nodes in the degraded
component. Of course, the count of connected components decreases, and the number of singletons
increases.

The final scenario, 5.1E, illustrates removal of two edges, and one node, from a minimally sized
clique of size 3. This can be illustrative of a pair of strongly connected orthologs that are more
weakly connected to a third sequence. Here, transitivity of the network is decreased, as reflected
by a decrease in the clustering coefficient. The number of singletons increases. Note that the
network component density remains unchanged, as the initial and remaining components are each
maximally dense.

72



5.3 Simulation

Simulation of the types of networks under consideration here is performed to address two primary
goals. First, simulation of networks with structure mirroring theoretical homology networks may be
used to better understand the behavior of the network measures introduced in the previous section.
Second, simulation can be used to investigate the ability of Neighborhood Correlation to restore
transitivity to artificially degraded homology networks. In both cases, simulation provides a means
of evaluation, where a full history of the input data is known, and allows targeted investigation
of a method’s behavior in the absence of the ambiguity present in real data. Importantly, the
complexity of the simulation may be chosen, and varied.

I construct an artificial, unweighted network, GH = (V,EH), to mirror the theoretical expectation
of a homology network. This network is comprised of a disjoint set of cliques, intended to emulate
the structure of a set of families. The general strategy is then to degrade GH by adding and
removing edges in a process designed to mirror the effects of faulty homology detection. The
changes to the network are then quantified using the network measures developed in this chapter.
Finally, Neighborhood Correlation is applied to the simulated network to test its ability to restore
the transitive structure of the original network of cliques.

The structure of GH is subject to two parameters, the number of families, and the distribution of
sizes of those families. Each family induces a discrete clique in the network. For the purposes of
this study, I have considered networks comprised of families of varying sizes, ranging from 4 to 64
nodes each. Small cliques are more likely to be disrupted by random permutations of the network,
while large cliques may be thought to have more “redundant” edges that prevent disintegration of
the component upon permutation of the network. Typical family sizes may be estimated from our
curated data set, though, in reality, much uncertainty exists. The clique sizes selected here are
consistent with the absolute size of many known families, and their size relative to the size of the
entire network.

A single mode of perturbation is used to impose noise upon GH in the simulations presented
here. Edges are selected uniformly at random from GH , and removed from the network with a
deletion probability of Pd. That is, for a network of |V | nodes, and |E| edges, |E|Pd edges are
removed, in expectation. Since the original network GH is comprised entirely of cliques, these
edges are necessarily removed from cliques. At the same time, the network density is preserved, in
expectation, by a corresponding addition of edges between the original cliques. The probability of
edge addition, Pa is calculated from Pd, as

|E|Pd = Pa

[ |V |(|V | − 1)

2
− |E|

]
Pa =

|E|Pd

|V |(|V |−1)
2 − |E|

, (5.7)

where the quantity
[
|V |(|V |−1)

2 − |E|
]

is the count of edges not present in GH . A value of Pd = 0.5

represents exchange of half of the edges in GH for an equivalent number of edges between cliques,
on average.

This simulation procedure is intended to mirror the effects of faulty homology detection. The
resulting network is referred to as GS = (V,ES), akin to a sequence similarity network. Removal

73



of edges simulates the failure to recognize remote homology between family members. Added
edges represent similarity that is not evidence of homology, especially as induced by inconsistent
domains. The net result in GS is a shuffling of edges from within the cliques of GH to between
them.

Neighborhood Correlation is then applied to the simulated network GS to generate the network
GNC. The definition of Neighborhood Correlation (Equation 3.1) is specified over a network that
is weighted. Here, the network GS is unweighted. The corresponding calculation of Neighborhood
Correlation uses edge weights of 0 or 1 in this case, and a more succinct equation may be derived.
That is, for a network of N nodes, the score between a pair of nodes is

NC(x, y) =
NNxy −NxNy√

Nx(N −Nx) ·Ny(N −Ny)
, (5.8)

where Nx and Ny are the degree of nodes x and y in the network, and Nxy is the size of the
intersection of their neighborhoods. The network GNC is weighted with the resulting score.

Throughout this chapter, networks are compared under the condition that network density is held
constant. Graph density is a suitable basis for normalization, because D is directly, and C is
indirectly, dependent on overall graph density. Intuitively, since the goal here is to examine structure
of the network, we wish to evaluate the rearrangement of existing edges, more so than to study the
behavior as edges are added or removed.

The simulation procedure produces GS such that GS and GH have the same number of edges in
expectation, and, hence, have identical network densities. The network GNC implicitly consists of
all edges, with weights in the range 0 to 1. To facilitate comparison, a Neighborhood Correlation
edge threshold must be selected such that the network GNC has density equivalent to GH (and
GS). Procedurally, this is accomplished by computing GNC, followed by optimization of the edge
threshold such that the density of GNC is within epsilon of that of GH , or D(GNC)/D(GH) = 1± ε.
Here, ε = 0.001.

Figures 5.2 and 5.3 illustrate the results of the simulation procedure for networks of 1024 nodes,
and differ in the size distribution of cliques. Each figure depicts: (a) the number of connected
components, (b) the number of singleton nodes, (c) the network component density, and (d) the
mean clustering coefficient. Note that the network density is entirely determined by the size dis-
tribution of cliques, and, hence, is constant for all plots and values of the noise parameter, Pd, for
a given network. In all figures of simulated data, the value of a measure for the original network
(GH) is depicted in red; this value is a line and does not vary with respect to the noise parameter
Pd. Values for the simulated network GS are shown in blue, and those for the network rescored by
Neighborhood Correlation are shown in green. Vertical bars represent the standard error over 1000
network simulations.

First, we focus upon a network comprised of cliques of mixed size. Figure 5.2 is based upon a
network of 48 cliques: 16 cliques of size 4, and 8 each of sizes 8, 16, 32, and 64. The choice of this
distribution is intended to illustrate the behavior of the simulation process and network measures
in components of heterogeneous sizes. The absolute sizes and sizes relative to the network size were
guided by the observed family sizes in the curated mouse and human family benchmark.

Relative transitivity is assessed by comparing the values of C and D for GS and GNC. Recall that
GH is, by definition, transitive, and both C and D equal 1. A very small number of mis-assigned

74



0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0

10

20

30

40

50

(a) Connected component count

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0

2

4

6

8

10

12

Simulation (GS)

NC (GNC)

Original (GH)

(b) Singleton count

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Network component density

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0.0

0.2

0.4

0.6

0.8

1.0

(d) Mean clustering coefficient

Figure 5.2: Component and transitivity measures of simulated networks of cliques degraded by
noise. A network of 1024 nodes is used, comprised of 16 cliques of size 4, and 8 each of sizes 8, 16,
32, and 64 nodes. The vertical bars represent the standard error over 1000 trials.

edges is sufficient to completely disrupt the clique structure of the network GH , as shown by the low
values of both D(GS) and C(GS) in Figure 5.2. Similarly, effectively any value of Pd > 0 collapses
the network to a single connected component. This is to be expected, because each edge added by
the simulation procedure necessarily connects two original cliques. On average, the cliques contain
enough edges such that removal of edges uniformly at random does not disconnect any nodes from
the network, and the singleton count for GS approaches zero.

By contrast, Neighborhood Correlation is able to completely restore transitivity to GS , whenever
Pd ≤ 0.1. In addition, the network GNC contains 48 components, for low values of noise. This is
strong evidence that Neighborhood Correlation is able to reconstruct GH perfectly, at low error
rates. The number of singleton nodes (b) may be understood as follows. Rewiring with Neighbor-
hood Correlation can never join singleton nodes with the rest of the network, but it can separate

75



0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0

50

100

150

200

250

300

(a) Connected component count

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0

5

10

15

20

25

30

35

40

45

Simulation (GS)

NC (GNC)

Original (GH)

(b) Singleton count

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Network component density

0.0 0.1 0.2 0.3 0.4 0.5

Noise (Pd)

0.0

0.2

0.4

0.6

0.8

1.0

(d) Mean clustering coefficient

Figure 5.3: Component and transitivity measures of simulated networks of cliques degraded by
noise. A network of 1024 nodes is used, comprised of 256 cliques of size 4. The vertical bars
represent the standard error over 1000 trials.

weakly connected nodes. As a result, GNC is observed to produce a small number of singleton
nodes.

The degree to which Neighborhood Correlation restores transitivity and structure to the network
decreases as GS is subjected to more noise. However, even with Pd as high as 0.2, Neighborhood
Correlation is still able to raise the number of connected components to half of the original count in
GH , and these are of high density. The clustering coefficient (d) demonstrates that even when the
added noise is such that rewiring with Neighborhood Correlation does not restore a fully transitive
network, the local transitivity of this network is consistently high — above 0.8 for the entire range.

The preceding simulation was performed to achieve a better understanding of behavior in heteroge-
neous networks. A simulated network comprised entirely of very small cliques is likely to be affected
to a greater degree by noise. The number of edges in the network GH is related to the square of

76



the size of each clique. As a result, for a network of the same number of nodes, fewer edges exist
when GH is comprised of a large number of small cliques, as compared to cliques of larger size.

Figure 5.3 demonstrates how a GH constructed from cliques of size 4 is disrupted by noise. As
compared to Figure 5.2, note that the network GS does not coalesce to a single component until
Pd > 0.25. This is the result of two factors. First, this network is comprised of 256 components, as
opposed to 48. A greater number of randomly placed edges is required to connect more components.
Second, the noise parameter Pd is a probability of deletion for any edge in the network. Since a
network of cliques of size 4 has fewer total edges, the absolute number of edges removed and added
(|E|Pd) differs from Figure 5.2 for a given value of the noise parameter.

As a consequence of these structural differences, the network component density of GS decreases
more gradually than in Figure 5.2. However, because fewer “redundant” edges exist in the net-
work, the component density restored in GNC is lower in this simulation, for equivalent values of
noise. Similarly, because small cliques are more easily degraded to singleton nodes, Figure 5.3(b)
demonstrates a creation of many more singletons in GS and GNC.

Finally, the mean clustering coefficient of GS is observed to differ very little between a network
of small cliques, and a network composition of cliques of varied, and larger sizes. The clustering
coefficient is a measure of local network structure, which does not take the overall structure of
components into account. Yet, the simulation procedure removes a larger relative fraction of the
edges in a clique for small cliques as compared to large cliques. The clustering coefficient remains
roughly equivalent in networks of small or large cliques (GS in Figures 5.3 and 5.2, (d)). This
reflects the property that the local structure does not differ much when either type of network is
degraded, but that only the network with larger cliques retains the redundant information necessary
to restore the structure. As a consequence, Neighborhood Correlation is unable to restore the local
transitive structure to the network of small cliques as well as it does for a network that contains
large cliques.

5.4 Analysis of Yeast networks

Having gained some intuition into how the network metrics presented here may behave on different
network motifs and simulated networks, we can apply them to networks of real data. Consideration
of yeast presents a real use case, in that there exists no comprehensive curated dataset of yeast
genes that comprise evolutionary families. Additionally, there are a number of closely related yeast
genomes; this data may be exploited to measure stability, and possible improvement, of the result
as similar genomes are added to an analysis.

The amino acid sequences from nine yeast genomes were obtained from the YGOB, version 2
database [29]. Three groupings of these genomes were considered: (1) the set of all genes in S.
cerevisiae alone, totaling 5616 sequences; (2) those in four genomes (S. cerevisiae, C. glabrata, A.
gossypii, and K. lactis), totaling 20839 sequences; and (3) those in all nine genomes in YGOB2
(S. bayanus, S. castellii, K. Polysporus, and S. kluyveri, in addition to those above), totaling 46060
sequences.

All-against-all Blast comparisons were carried out in each of these three datasets. Similarly,
Neighborhood Correlation scores were then calculated for all pairs within each. The results of these
calculations comprise three sequence similarity networks and three corresponding Neighborhood

77



Figure 5.4: Visualization of the S. cerevisiae genome after rescoring with Neighborhood Correlation.
Edge color signifies the Neighborhood Correlation score, where gray indicates NC ≥ 0.3, violet
≥ 0.4, green ≥ 0.6, orange ≥ 0.8, and yellow ≥ 0.9. The dense component at top-right contains all
Kinases. Singleton nodes have been omitted for clarity.

Correlation networks. To establish a common basis for comparison, these networks were then
pruned to the set of nodes that represent sequences in S. cerevisiae only; i.e., each network has the
same nodes but potentially different edge connectivity and weights. Note that, after pruning, all
three sequence similarity networks actually have the same set of edges. The sequence similarity of
two nodes is not dependent upon the number of nodes in the network, nor upon the connectivity of
other nodes. In the following, this network is denoted as GS−1, as a reminder that it contains nodes
of the 5616 sequences in one yeast genome. In contrast, the calculation of Neighborhood Correlation
between a pair of sequences is dependent upon the number of sequences in the network, and their
connectivity. Three distinct Neighborhood Correlation networks result, GNC−1, GNC−4, andGNC−9.
Each represents the scores induced between all pairs of sequences in S. cerevisiae when the sequence
similarity network is comprised of the one, four, and nine-genome datasets, respectively.

Figure 5.4 is a visual representation of the GNC−9. The layout is force-based, as calculated by
Neato [59], where larger edge weights (NC scores) tend toward shorter edge distances in the plotted
figure. From this representation, it is apparent that the network has rich substructure, and that

78



Neighborhood Correlation results in a network with disjoint components. Many of these are cliques.
No rigorously curated gold-standard for evolutionary families is available in yeast. As a result, the
network measures are the sole basis by which the performance in yeast is evaluated in this work.
However, visual inspection reveals that many of these components do correspond to groups of genes
commonly considered families. For example, Actin and the seven Actin Related Proteins (ARPs)
form an isolated clique, and the large cluster in the upper right-hand corner corresponds to the
Kinases.

The network measures described in this chapter are used to achieve a quantitative evaluation of the
yeast sequence similarity network. They are also used to evaluate the performance of Neighborhood
Correlation on real data that fits a particular and typical use-case. That is, it is common to perform
family classification on a smaller dataset, such as a single genome, and then expand the dataset to
a larger number of genomes. Two properties are of great interest in such a scenario. First, it is
desirable for the addition of data to not substantially change the output. Analysis would be very
difficult if the structure (loosely, the clusters) of the network were to change with each addition or
removal of a genome from the dataset. This would also cast doubt on the accuracy of the method.
A second desirable property is that of increasing confidence in a result with the addition of data,
since increasing the data should increase the amount of signal that may be used. Specifically, the
yeast networks may be used to test the hypothesis that Neighborhood Correlation is able to perform
better as data is added. Since NC(x, y) effectively compares the relationship between x and other
sequences with the relationship between y and other sequences, growth of the size of the network
by addition of related genomes will increase the set of sequences similar to x and y, without similar
increases in the strength of spurious similarity.

An assessment of transitivity of the yeast networks is presented in Figure 5.5. For each network
measure, these plots illustrate the structure of the sequence similarity network GS−1 (in blue),
and the three Neighborhood Correlation networks, GNC−1, GNC−4, and GNC−9 (in yellow, red, and
green, respectively). Neighborhood Correlation is plotted with respect to the lower axis, and the
bit-score of sequence similarity is plotted with respect to the upper axis. As demonstrated in the
simulated data, comparison of networks is performed under the condition that network density is
held constant. Here, this is accomplished by deriving a piece-wise linear scale for bit-score with
respect to the NC score axis, such that the network density of GS−1 at bit-score threshold y has
equal density to GNC−9 at the corresponding NC threshold on the lower axis. Intermediate positions
are calculated by linear interpolation. The difference in density between the three Neighborhood
Correlation networks is minimal for NC > 0.15, so they have not been transformed in any manner.
Figure 5.5(f) illustrates the density of these networks.

Comparison of the yeast sequence similarity network with those of Neighborhood Correlation
demonstrates substantial differences in the structure and transitivity of these networks. Recall
that all of these networks have the same nodes. For particular horizontal position on the plot, all
networks have the same number of edges. A direct measure of transitivity, the clustering coefficient,
is consistently and substantially higher in GNC than in GS−1 (Figure 5.5(e)). This demonstrates
higher local connectivity for components of size three or larger. Similarly, the network component
density (d) is consistently higher for Neighborhood Correlation than for sequence similarity. Taken
together, these measures show that in yeast, as in simulated networks, Neighborhood Correlation
increases transitivity. For all but the highest thresholds, components in GS are less numerous (a),
and more sparse than in GNC. Outside of these sparse clusters, at least half of the nodes in GS are

79



●

●

●

● ●
●

●
●

● ●
● ●

●
●

●

●
●

●
●
●
●
●
●
●●
●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.050
15

0
30

0
45

0
60

0
75

0

●

●

●

● ●
●

●
●

● ●
● ●

●
●

●

●
●

●
●
●
●
●
●
●●
●

31 35 40 50 60 70 125
Bit score

●

●

●

●

● ●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

NC score

●

●

●

●
●

●
● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
● ●

●
●

●

●

●

●

●

●

(a) Connected component count

●

●

●

●

●

●

●
● ● ● ● ●

●
●●●●●●●●●●

●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5
10

20
50

●

●

●

●

●

●

●
● ● ● ● ●

●
●●●●●●●●●●

●●●

31 35 40 50 60 70 125
Bit score

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

NC score

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

Sequence similarity
NC: Four genomes
NC: Nine genomes
NC: S cerevisiae

(b) Connected component mean size

●

●

●

●

●

●

●

●
● ●

● ●
●

●
●

●
●
●●

●●
●●
●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50
0

15
00

25
00

35
00

45
00

55
00

●

●

●

●

●

●

●

●
● ●

● ●
●

●
●

●
●
●●

●●
●●
●●●

31 35 40 50 60 70 125
Bit score

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

NC score

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

(c) Singleton count

● ● ● ● ●

●

●
● ● ● ● ●

●

●●●
●
●
●
●
●
●

●
●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ●

●

●
● ● ● ● ●

●

●●●
●
●
●
●
●
●

●
●●●

31 35 40 50 60 70 125
Bit score

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

NC score

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

● ●

●

(d) Network component density

●

●

●

●

●

●

●
●

● ●
●

● ●
●

●
●
●●●●

●●●

●
●
●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

●

●

●

●

●

●

●
●

● ●
●

● ●
●

●
●
●●●●

●●●

●
●
●

31 35 40 50 60 70 125
Bit score

●

●

●
●

● ● ●
● ● ● ●

●
● ● ● ● ● ●

●

●

NC score

●

●
● ● ● ●

● ● ●
● ● ●

● ●
● ● ● ●

●

●

●

●

●

●

●
●

●
● ● ●

● ● ● ● ●
●

●
●

●

●

(e) Mean clustering coefficient

●

●

●

●
●

●

●
●

● ● ● ● ● ●●●●●●●●●●●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.
00

00
0.

00
20

0.
00

40
0.

00
60

●

●

●

●
●

●

●
●

● ● ● ● ● ●●●●●●●●●●●●●

31 35 40 50 60 70 125
Bit score

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●
●

●
●

NC score

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

●
●

●
● ●

(f) Network density

Figure 5.5: Measures of the networks comprised of the 5616 genes in S. cerevisiae, with edges
from sequence similarity, and Neighborhood Correlation calculated with one, four, and nine yeast
genomes. NC score thresholds range from 0–1. The bit-score axis ranges from 31–1000 and is
aligned with NC such that the density of the sequence similarity network is equivalent to the NC
network of nine genomes.

80



singletons, for even minimally stringent thresholds, such as bit-score greater than 34. The number
of singletons rapidly increases, without the network resolving to components that are compact.
Overall, this illustrates a network of structure unlike that of homology, GH .

The overall behavior of the Neighborhood Correlation networks may be understood as follows. As
more stringent thresholds are selected and edges are removed from the network, the number of
connected components in GNC reaches a relatively stable count between 0.15 ≤ NC ≤ 0.85, and the
size of these components (b) remains very stable throughout the range. (Note that (b) is plotted
with a log-scale vertical axis.) The primary observation is a process of separation of the network
into singleton nodes at a constant rate (c), and retention of connected components of constant size,
and high density (d).

The network component density of GNC decreases markedly as the threshold is changed from
NC ≥ 0.75 to NC ≥ 0.9. First, approximately 10% of components of size two break up into
singletons in this range. Since the density of a two-node component is one, loss of such pairs will
substantially reduce the average value of D(G). In addition, large components become sparser as
the threshold becomes more stringent. For example, the largest component in the network at this
range (the Kinases), decreases in density from 0.85, to 0.33. At very high stringencies, all of these
networks consist primarily of singletons, two-node components, and a few very small cliques of size
three or more, leading to values of C(G) and D(G) close to one.

The individual plots of Neighborhood Correlation demonstrate the incremental improvement yielded
by the addition of related genomes to the analysis. The performance of rescoring is expected to
increase as related sequences are added, because the strength and size of the common neighborhood
of homologous sequences can be expected to increases as more sequences belonging to each family
are added. The number and weight of edges to sequences with spurious similarity will not grow in
proportion.

Comparison of GNC−1, GNC−4 and GNC−9 in Figure 5.5 shows that including more genomes in the
calculation of Neighborhood Correlation further increases transitivity, as measured by the network
component density and the clustering coefficient. It is interesting to note that this is manifested
in an increase in the number of connected components, especially at low thresholds, suggesting
a network of slightly smaller, more dense components. It is reassuring to note that while the
clustering coefficient and component density are higher with the addition of more genomes, the
overall trends are unaffected. Moreover, most of the change is achieved when moving from GNC−1
to GNC−4, rather than the with the addition of another five genomes in GNC−9. This demonstrates
that the use of more data is beneficial for Neighborhood Correlation, but is not a strict necessity.
It also illustrates that most of the gains are achieved early, with the addition of a small amount of
data.

5.5 Analysis of human and mouse networks

The genomes of human and mouse are relatively better characterized with respect to homology, as
compared to the genomes of yeast. This section examines the behavior of the network measures
on two complex genomes that contain large, multidomain families. The following chapter, Chapter
6: Clustering and its evaluation (p.85), discusses the techniques and means of extrinsic evaluation
using the benchmark families for evaluation in the mouse and human genomes.

81



●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.010
00

30
00

50
00

70
00

90
00

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

NC score

●

●

●

●

●

●

●

●

●

●

●

●
●

29 40 50 60 70 90
Bit score

(a) Connected component count

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5
10

20

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

NC score

●

●

●

●

●

●

●
●

●

●

●
●
●

29 40 50 60 70 90
Bit score

●

●

NC
Sequence similarity

(b) Connected component mean size

●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

30
00

60
00

90
00

12
00

0
16

00
0

●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

NC score

●
●

●

●
●

● ●
●

●

●

●

●

●

29 40 50 60 70 90
Bit score

(c) Singleton count

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ●

NC score

● ● ● ● ● ● ●

●
●

●

●

●

●

29 40 50 60 70 90
Bit score

(d) Average component density

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

NC score

●

●

●

●

●

●

●
●

●

●
●

●●

29 40 50 60 70 90
Bit score

(e) Mean clustering coefficient

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.
00

10
0.

00
25

0.
00

40
0.

00
55

0.
00

70

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

NC score

●

●

●

●

●

●

●
●

●

●

●
●
●

29 40 50 60 70 90
Bit score

(f) Network density

Figure 5.6: Component and transitivity measures of the sequence similarity and Neighborhood
Correlation networks. These networks are comprised of all Human and Mouse sequences in the
48-genome Panther dataset, and contain 45491 sequences.

82



Figure 5.6 shows the network measures as applied to both the sequence similarity network (in blue)
and the Neighborhood Correlation network (orange). As with the plots of yeast networks, the
upper bit-score axis is aligned to the lower Neighborhood Correlation axis, such that the density
of the two networks are equal at any horizontal position along these axes. The structure of these
networks may be understood as follows. As compared to Neighborhood Correlation, the sequence
similarity network is consistently structured of large (b), but weakly connected components (d).
For sequence similarity, there are many fewer components for the same number of edges, ranging
from 25% to 75% as many connected components. Throughout nearly the entire scoring range,
the sequence similarity network is substantially less transitive than the Neighborhood Correlation
network (e).

For a scoring metric that captures family structure, it would be desirable for the network to coalesce
into a large number of dense components. For sequence similarity, this does occur to an extent;
the number of connected components increases, the mean component size decreases, and the mean
clustering coefficient increases. However, the consistently low network component density (d) illus-
trates that while a large number of small, transitive components exist in the network, there remain
one or a few very large components of extremely low density. That is, a “hairball” remains amid
some structure. As the bit-score threshold is increased further yet, the network rapidly degrades
to one dominated by singletons. By a bit-score of 80, more than 50% of the network is comprised
of singleton nodes. The components that do remain are smaller (b), but the density of these com-
ponents remains low (d). The non-monotonic behavior of the sequence similarity network above a
bit-score of 200 is the result of sensitivity to the few components that do not become singletons.
At no point does the network resolve to a set of small, but dense components.

The Neighborhood Correlation network has structure considerably more akin to a homology net-
work. First, the network exhibits a high transitivity of 0.90–0.95 throughout the full range of scores
(Figure 5.6(e)). There are 1.5 to 4 times as many connected components than in the sequence sim-
ilarity network. For most of the scoring range, the components in the Neighborhood Correlation
network have half as many nodes, on average (b). The density of these components is consistently
higher; more than half of the edges exist in any component for NC > 0.75. This occurs without
rapidly degrading to singletons or minimally-sized components: until the very highest thresholds,
the network is comprised of approximately 5 to 15% singleton nodes. Notably, there are no marked
points of sharp inflection for any of the network measures as the threshold is changed. This suggests
that the components are relatively stable within local ranges of edge weight.

The structure of the network observed for the human and mouse dataset differs from that of yeast,
considered in the previous section. This can be understood in light of what is known about the
domain content of these genomes. The human and mouse networks present a challenging scenario for
sequence similarity, and highlight the ability of Neighborhood Correlation to recover the structure
of the homology network amid greater degrees of remote homology, spurious similarity, and domain
shuffling. For illustration, the combined set of the human and mouse genomes is comprised of
45,491 sequences, 19,330 of which have a domain recognized by a PFam [16] domain model (42%).
Of these, 7513 sequences have more than one domain (38.9% of these, 16.0% overall). Those
sequences with an identifiable domain have an average of 2.01 domains. Further, 1508 different
domains are represented, with an average of 1.36 different domains per sequence containing an
identifiable domain.

83



In contrast, 2093 of 5616 sequences in S. cerevisiae have an identifiable domain; of these, 565
sequences are multidomain (27.0% of these, 10.0% overall). Sequences with at least one recognizable
domain have a mean of 1.39 domains, and 1.29 different domains. In total, 922 different domains
are represented.

84



Chapter 6

Clustering and its evaluation

The preceding chapters have discussed the challenges that multidomain families pose for successful
family classification and introduce a network-based means of reasoning about homology. Chapter 3:
Network rewiring (p.25) described a method to exploit the structure of the sequence similarity
network, and rewire it under this framework, to yield a more accurate estimate of homology.
Chapter 5: Analysis of network properties (p.65) considered the structural network features that
guide this approach, and examined how these features can be used to compare a rewired network
with the structure of the theoretical, unknown homology network. Ultimately, the goal of family
classification is to establish a discrete partitioning of sequences into families, in which, by definition,
all members share a common ancestor. This chapter describes a strategy to cluster the rewired
sequence network, and details an approach to quantify the accuracy of the resulting clusters using
the curated benchmark of 20 families.

The use of the term clustering in this dissertation refers to the partitioning of data, specifically
of the nodes that comprise a network of pairwise scores. The approach undertaken here is to
use clustering as a means of establishing a “final” partitioning after building a sequence similarity
network, and rescoring it using Neighborhood Correlation. These steps encode the biological data
(sequence similarity) into the structure and weight of a network, and serve to enhance the signal that
results common ancestry, the biological property of interest to family classification. General-purpose
clustering methods are employed; that is, specific biological features of the data are captured using
sequence similarity and Neighborhood Correlation, to make the data amenable as input to existing
algorithms.

Clustering the rewired network serves two purposes. First, clustering establishes a discrete par-
titioning of the sequences, with a granularity that may be optimized in concert with evaluation.
Second, it serves to refine the network that results from rewiring with Neighborhood Correlation.
The process of clustering can derive additional inferential power from the structure of the network,
beyond that reflected by individual network edges. As a consequence, the result of clustering can be
different from that which might be obtained by simply applying a score threshold to the sequence
network, and predicting families based on the connected components that arise. For a network that
imperfectly represents the underlying structure of the data, application of a clustering algorithm
can improve our ability to resolve that structure.

85



A major emphasis of this chapter is the development of metrics to evaluate clusters using ground-
truth data of gene families. Collectively, these metrics are referred to as extrinsic measures, whereby
accuracy of the result is assessed by comparison to benchmark data. These measures may be con-
trasted with the intrinsic measures discussed in Chapter 5: Analysis of network properties (p.65),
which require no additional data about ground-truth. The most concrete means to evaluate family
classification is validation with known families. As has been mentioned, there is a paucity of such
annotated gene families, so the utility of this approach is necessarily limited. The evaluation result
may be expected to be representative of the curated families in the benchmark. The 20-family
benchmark, discussed further in Chapter 2: Background and preliminaries (p.13), encompasses
approximately 4% of the sequences in the mouse and human genomes. These families have been
selected to be representative of the variety of evolutionary histories that we believe to be typical
of these genomes. In particular, the benchmark contains families with a broad spectrum of se-
quence conservation, families comprised exclusively of single-domain sequences, and, most targeted
by this dissertation, those with sequences that are multidomain, of varied or conserved domain
architectures.

Measurement of the overlap between curated families and clusters is a natural fit for Precision and
Recall. Such an approach is detailed by Brohée and van Helden for a different application [23]. The
empirical evaluation of the clustering result on biological data has been considered at length, as
surveyed in [68]. In many cases, the evaluation approach must be tailored to the properties of the
problem, and the data used to address it. A typical bifurcation is that of whether the clusters, or
their labeling may overlap. For example, in studies of protein function, several proteins may share
a particular function, and a single protein may have multiple functions [133]. Families are discrete,
and a protein belongs to only one family, framing the clustering approach. At the same time, the
available data, a set of benchmark families, covers a small fraction of the entire set of sequences
in mouse and human, and a substantially smaller fraction of all 48 genomes in the Panther 7.0
dataset.

Many statistics, such as the direct application of Precision and Recall, do not address a means of
evaluating partially labeled data. One typical approach is to restrict their application to datasets
that are completely labeled, or, restricting the dataset to include only labeled sequences. The
circumstance here is such that the curated data does not cover the entire dataset, but that each
curated family labels all sequences that do belong to the family, to our knowledge. For example,
consider a cluster that contains all members of a curated family, as well as other, unlabeled se-
quences. Because the curation procedure was designed to label all sequences that comprise a family,
this clustering result would necessarily be incorrect. However, exclusion of the unlabeled sequences
prior to analysis would suggest a perfect result.

Further, how may the evaluation be performed so that it captures properties of families that are not
clustered perfectly, as when members are assigned between several clusters, rather than one? One
approach is to consider only the most-represented, or best, cluster for a single family, though this
discards valuable information about the performance of the clustering methodology. It is useful to
distinguish between, for example, a case where a family is partitioned between two or more clusters,
but not co-mingled with other, unrelated sequences in any cluster, from the case where that family
is split between several clusters, each with many other unrelated sequences. Both cases reflect an
undesirable quality, although the latter is due to a clustering result that has little correlation with
families. The former may instead be a reflection of family sub-structure, and could be rectified

86



by selection of clustering parameters that yield a clustering with granularity that is more coarse –
rather than a wholesale restructuring of the result.

The remainder of this chapter is organized as follows. First, a set of extrinsic evaluation metrics is
developed to quantify the degree to which a clustering result corresponds to ground truth data as
provided by a set of curated families. The second section discusses the properties that best define
the suitability of a clustering algorithm to the family classification task. Finally, this chapter bench-
marks the performance of the complete family classification pipeline developed in this dissertation:
sequence similarity, Neighborhood Correlation, and clustering.

6.1 Evaluation metrics

The case considered here is a dataset comprised of all sequences in one or more genomes. Curated
data consists of m families, where each family is a set of the sequences that comprise the family.
By definition, a sequence may belong to at most one family. Not all sequences in the genomes
considered are assigned to a family; the family membership of unannotated sequences is unknown.
A clustering of the data consists of a discrete partitioning of all sequences into n clusters. Each
sequence in the genome is in exactly one cluster.

The overlap between families is described by a contingency table, T , of m families and n clusters,

T =


t1,1 t1,2 · · · t1,n
t2,1 t2,2 · · · t2,n

...
...

. . .
...

tm,1 tm,2 · · · tm,n

 . (6.1)

Each value, tf,c in this matrix is the number of sequences that exist in both family f and cluster c.

Marginal sums may be defined as follows. Let Mf be the size of family f , or

Mf =

n∑
c=1

tf,c. (6.2)

Let Nc be the size of cluster c. Note that Nc is not the sum of a column in T , because clusters
may contain sequences that are not annotated as belonging to a curated family. The value OC is
defined as the count of all annotated sequences within the cluster c, or

Oc =

m∑
f=1

tf,c. (6.3)

The Precision, P is the fraction of sequences in each cluster that are also members of a family.
That is, the elements of the matrix P , for family f and a cluster c, are

pf,c =
tf,c
Nc

. (6.4)

Similarly, the Recall, represented by the matrix R is the fraction of sequences in each family that
are found in a cluster, with elements

rf,c =
tf,c
Mf

. (6.5)

87



The F-statistic, F , is the harmonic mean of Precision and Recall, and is a measure of the compromise
that may be obtained between maximizing each. Elements of the matrix F , for a family f and
cluster c, are defined as

ff,c =
2pf,crf,c
pf,c + rf,c

. (6.6)

One goal here is to consider performance per family, over all clusters that represent it. Family-wise
aggregates of Precision, Recall, and the F-statistic are calculated as the mean of the corresponding
statistic, weighted by the representation of the family in a particular cluster. In these calculations,
it is useful to enumerate the clusters that contain at least one member of the family f . The set of
such clusters is defined as

Uf = {c ∈ {1..n} | tf,c > 0} . (6.7)

The family-wise Precision, Pf , for a family f is then defined as the weighted average of Pf,c over
all clusters, or

Pf =
1

Mf

∑
c∈Uf

tf,cpf,c

=
1

Mf

∑
c∈Uf

(tf,c)
2

Nc
. (6.8)

The family-wise Recall, Rf , for a family f is similarly defined:

Rf =
1

Mf

∑
c∈Uf

tf,crf,c

=
1

(Mf )2

∑
c∈Uf

(tf,c)
2. (6.9)

Finally, the family-wise F-statistic, Ff is

Ff =
1

Mf

∑
c∈Uf

Tf,cFf,c. (6.10)

The family-specific measures capture the classification performance on individual families. The
mean of the family-wise statistic, weighted by the size of the each family, gives an aggregate
performance measure over multiple families. The overall Precision, Recall, and F-statistic of
a set of families, S, are defined as follows.

PS =

∑
f∈SMfPf∑
f∈SMf

. (6.11)

RS =

∑
f∈SMfRf∑
f∈SMf

. (6.12)

FS =

∑
f∈SMfFf .∑
f∈SMf

. (6.13)

88



6.2 Clustering methodology

The purpose of family classification is to partition sequences, where all members of each cluster
are homologous. The approach taken here is to use the result of Neighborhood Correlation, GNC

as input. The problem then resolves to that of partitioning a sequence network, where the edge
weight between two sequences is presumed to be an accurate estimate of homology. Clustering is
used to establish a discrete partitioning of the sequences in the network, and to compensate for
errors that remain in the network.

The aim of this work is not to design a new clustering algorithm. Instead, this dissertation separates
an explicit step of resolving biological signal with Neighborhood Correlation, from a final step of
clustering. A wide variety of clustering algorithms exist. In choosing an algorithm, it is useful
to again consider the theoretical structure of the homology network, and the structure of the
network that results from Neighborhood Correlation. The true homology network is comprised of
one clique for each family. Modulo any errors, the Neighborhood Correlation network is comprised
of components that each correspond to a family, with many edges and strong weights, joined by
fewer, and weaker edges to other components. The quality most needed in a clustering algorithm
is to extract the dense components that represent families without falsely joining families because
of spurious network edges.

Several properties of the application here guide selection of the class of clustering algorithm to be
used. Many clustering methods are based upon a euclidean feature space, and cluster upon those
features. Implicitly, a Euclidean distance may be calculated in such a context, but a majority
of clustering algorithms depend upon the embedding, and a matrix may not be substituted. Of
clustering algorithms that are not inherently reliant upon a feature space, many of their imple-
mentations preclude use of a matrix. For this application, the data is in the form of a pairwise
matrix, requiring a method that can use this directly as input. This greatly constrains the choice
of clustering algorithms suitable for this problem.

All clustering algorithms have one or more parameters that determine the granularity of the result;
i.e., that determine whether many, small clusters are returned, or whether fewer, large clusters
result. In this problem, the correct number and size of clusters is unknown. It is useful, generally,
and especially here, for the clusters that result at coarse granularity to be a super-set of the clusters
produced by parameter values that specify a result that is more fine-grained. This nesting of the
clusters at varying parameters can be used to fine-tune the result, without broad changes in the
structure of the clustering. Considered another way, the partitioning established with parameter
values that yield a coarse clustering is stable as more stringent values are applied.

Here, it can be recognized that gene family evolution is inherently the result of a hierarchical evo-
lutionary process. As a consequence, the use of a clustering algorithm based upon a hierarchical
model is a good conceptual match. There are a number of additional practical benefits for hierar-
chical output when working with gene families. While the tree that results from the clustering may
not directly correspond to the phylogeny of a family, its structure can be used to better understand
family substructure. For the development of methodology, it is also extremely beneficial to be
able to directly examine how and why the partitioning of the sequences would change when the
hierarchical tree is cut above or below a given threshold.

89



6.2.1 Agglomerative, hierarchical clustering

The general procedure of agglomerative, hierarchical clustering algorithms is to initialize a set of
N clusters that each represent a single element – here, a sequence. Clustering then proceeds by
iteratively merging the nearest pair of clusters, and repeating, until only a single cluster remains.
The result is a nested hierarchy of clusters that may be represented by a binary tree. Leaves consist
of the singleton clusters that each represent one element. Every other, internal, node represents
the merger of two child clusters. Each node is associated with the distance between the two child
clusters that were merged into a single cluster by that node. As a result, the hierarchy may be cut
with respect to this value of distance, to yield a partitioning of sub-trees, each of which includes a
distinct set of sequences.

This methodology is predicated upon a measure of distance (or similarity) between individual
elements, as well as between the sets of elements represented by clusters. A sequence network,
or similarity matrix of all pairs of sequences, necessarily encodes the measure between sequences.
However, neither this, nor the algorithm framework above, specifies how one might calculate the
distance between two clusters. A wide array of agglomerative hierarchical clustering methods have
been proposed, using a variety of measures of the calculation of closeness between clusters. Day
and Edelbrunner [40] review how these methods reduce to a single algorithm, differing only in the
definition of distance between clusters, and propose an efficient algorithm that is common to all
approaches.

Depending upon the structure of the input data, the choice of the distance measure to be used
between clusters can have a significant impact upon the clustering result. First, consider one of the
most direct, and well-studied approaches to defining the distance: the single-linkage, or nearest-
neighbor approach [53]. Here, the distance between two clusters is defined to be the shortest
distance between any pair of sequences where one sequence is in each cluster. Use of the shortest
distance represents an extreme, in that a single distance between pairs defines the distance between
two clusters, irrespective of the shape of those clusters. Conceptually, the single-linkage approach
will not distinguish between the merger of two clusters in the sequence network that have a single
edge between them, from two clusters that each comprise half of the nodes in a single clique. A
cut of the hierarchy produced via single-linkage at a given closeness threshold is exactly equivalent
to identification of connected components in the input sequence network, when only network edges
above the same threshold are retained.

An opposite extreme is specified by the complete-linkage, or furthest-neighbor, approach. Here,
the distance between two clusters is defined to be the maximal distance between any sequence in
one cluster, and any sequence in the other cluster. Again, this measure bases the distance between
two clusters upon a single distance between pairs. Here, however, the shape of two clusters with
respect to one another does impact the distance between the clusters. Because the maximal distance
between sequences in different clusters is considered, this approach favors the merger of clusters
only when the result is compact, and the extremes of distance within the cluster are minimal.

A variety of other distance definitions incorporate the distances of other pairs of sequences between
two clusters. The average-linkage, or UPGMA, approach defines the distance between clusters as
the mean of all input pairwise distances from any sequence is one cluster to any sequence in the
other cluster; i.e., the mean over all pairs of sequences that span the two clusters [132]. This is
subtly distinct from the mean of all pairs of sequences in the resulting, merged cluster.

90



The computational complexity of agglomerative, hierarchical clustering is large. Day and Edels-
brunner [40] showed that all methods for pairwise cluster distance can be implemented asymptotic
run-time of O(n2 log n) and space of O(n2). The single-linkage method may be implemented with
O(n2) run-time, and O(n) space, by taking advantage of the property that the distance between
two merged clusters and all other clusters is the lesser of the two original distances [130]. For
the same reasons, the complete-linkage method may be implemented in O(n2) run-time and O(n)
space [42].

When the input is a matrix, the average-linkage method may be computed in O(M logN) time and
O(M) space, where M is the number of edges in the network, or distances in the sparse input matrix,
and N is the number of sequences [96]. Further, Loewenstein et al. developed an algorithm, coined
MC-UPGMA, that computes the average-linkage result by incrementally loading the matrix into
memory. This facilitates efficient parallel computation, as well as decreased memory requirements.
They also provide an efficient implementation, which is used for average-linkage clustering in this
dissertation.

6.3 Results

Agglomerative hierarchical clustering was performed for the 48-genome, 600k sequence dataset
used throughout this dissertation. Three variants of cluster distance were used for this hierarchical
clustering: single, average, and complete-linkage. As described in the previous section, the single-
linkage method is equivalent to identifying the connected components that remain in the network
comprised of all edges above a chosen score threshold. When the resulting clusters are compared
to families, this is, therefore, a direct reflection of the degree to which the edge weights repre-
sent homology. As a consequence, this is expected to be suitable only when the network weight
and structure is an accurate estimate of homology. By contrast, the complete-linkage method is
particularly well-suited to a network comprised exclusively of dense components, or cliques.

With the average-linkage method of calculating cluster distance, multiple edges are considered
between pairs of clusters. The intended result is that the network structure is refined, to yield a
more accurate partitioning with respect to homology than any single edge would represent. It should
be more robust to spurious, or a few missing edges. Height in an average-linkage tree is a mean of
weights between the two children of a cluster. As a consequence, this height is a transformation of
the original score, and is not equivalent to selection of a single edge threshold in the network.

The accuracy of clustering has been evaluated using the benchmark dataset of 20 curated families.
The metrics developed earlier in this chapter are relevant to a partitioning of all sequences in the
human and mouse genomes, because the benchmark comprises a labeling of family members that
exist in these genomes.

Two fundamentally different sets of data are considered as input to the clustering applied here.
First, and most direct, the set of sequences in the human and mouse genomes is used as input
to the clustering algorithm. The input score matrix consists of pairwise scores between sequences
in these genomes, as calculated by either sequence similarity, or Neighborhood Correlation. The
hierarchical clustering tree then consists only of sequences in human and mouse.

An alternate approach, considered later in this chapter, is to construct a hierarchical clustering
tree that consists of all sequences in the 48-genome dataset, with a score matrix of all pairwise

91



relationships between the 600k sequences. Here, the clustering result is a tree with 600k leaves,
each corresponding to a sequence. The partitioning of human and mouse sequences may then be
considered by extracting the subset of sequences in these genomes, but using the structure induced
by the complete tree. Similar to the dependence of Neighborhood Correlation upon other sequences
in the network, the structure that results from clustering can depend upon other sequences in the
input, even if these are not members of the subset of human and mouse sequences that are used as
the basis for evaluation.

The following discussion is organized to first introduce the evaluation performed, by considering a
clustering of the sequence similarity network. This methodology is then employed to demonstrate
a comparison with the result of Neighborhood Correlation.

6.3.1 Sequence similarity

Figure 6.1 shows the performance of clustering the sequence similarity network using the single-
linkage measure of inter-cluster distance. This figure depicts an evaluation based upon the entire
benchmark (a), as well as evaluation using the set of all families, excepting kinase (b). Because
the granularity of the clustering becomes more fine left-to-right in these plots, Recall necessarily
decreases monotonically, and Precision increases monotonically.

Because the single-linkage method is equivalent to partitioning the network using an edge weight
threshold, the bit-score thresholds discussed here are directly comparable to the edge weights de-
scribed in Chapter 5: Analysis of network properties (p.65), as well as the score histograms in
Chapter 3: Network rewiring (p.25).

On the ALL set of families, in Figure 6.1(a), it can be observed that clustering the sequence
similarity network using the single-linkage method does not yield particularly good performance,
at any score threshold. As the hierarchical clustering tree (and, equivalently, the network) is
partitioned into smaller clusters, the Precision increases markedly in the range of 41 − 56. Those
smaller clusters mix fewer family and non-family members. However, this threshold range also
displays a sharp decrease in Recall, such that, overall, the one or more clusters that represent a
family each contain a very small fraction of the family. (Remember that these measures are weighted
averages over all clusters that contain a family member.) When both measures are considered
using the F-statistic, it is clear that no single threshold can yield good performance, and F never
exceeds 0.35. When the kinase family is excepted (b), Recall decreases more gradually. This result
may be understood because kinase, as a very large family, is more prone to being split among
several clusters, each of which represent a small fraction of the family. Overall, an F-statistic of
approximately 0.6 is achievable for the bit-score range of 41− 56.

The performance of clustering the sequence similarity network using the average-linkage method
is considered in Figure 6.2. As compared to the single-linkage method, this greatly increases the
performance of clustering the sequence similarity network. A substantial fraction of this improve-
ment may be attributed to more accurate clustering of the kinase family. The maximum F-statistic
achieved on the ALL dataset is approximately 0.8 (a), as compared to 0.35 for the single-linkage
method. The ALL-kin dataset (b) exhibits a corresponding increase from approximately 0.61 to
0.83.

Here, the thresholds reported are the distance threshold used to laterally cut the hierarchical

92



33
6

23
6

21
6

19
6

17
6

15
6

13
6

11
6967656413121111

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

33
6

23
6

21
6

19
6

17
6

15
6

13
6

11
6967656413121111

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.1: Performance of hierarchical clustering of sequence similarity, using the single-linkage
method. This figure depicts the Precision, Recall, and F that result from selection of the partitioning
induced by cutting the tree at a range of cluster distance thresholds.

clustering tree. The distances between children in this tree are derived from the mean bit-score of
edges between clusters, not the bit-score of any particular edge, or the mean score of all edges in the
merged cluster. As a consequence, the average-linkage threshold here is not directly comparable
to the bit-score threshold of the corresponding sequence similarity network, nor with the score
histograms in Chapter 3: Network rewiring (p.25).

The preceding figures considered the aggregate performance over all families in the curated bench-
mark. It is illustrative to consider performance on individual families, to better understand the
clustering result. Figure 6.4 depicts a heatmap of the F-statistic for each of the 20 families, as well
as the two aggregate datasets already considered. Color in this heatmap represents the value of the
F-statistic, ranging from 0 (blue) to 1 (red). Refer to Figure 6.3 for a color legend that corresponds
to all heatmaps in this chapter. These families are ordered top-to-bottom roughly in terms of
complexity. The families ACSL–WNT are single-domain families. The families DVL–USP are mul-

93



33
6

23
6

21
6

19
6

17
6

15
6

13
6

11
6967656413121111

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

33
6

23
6

21
6

19
6

17
6

15
6

13
6

11
6967656413121111

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.2: Performance of hierarchical clustering of sequence similarity, using the average-linkage
method. This figure depicts the Precision, Recall, and F that result from selection of the partitioning
induced by cutting the tree at a range of cluster distance thresholds.

tidomain families in which the domain architecture of all sequences are relatively constant. These
families contain very few inconsistent domains. Finally, the families ADAM–TNFR are multido-
main families with variable domain architectures. These contain many inconsistent domains.
In addition to the influence of domain architecture, sequence divergence can have a substantial
impact upon the family classification result. The families, FGF, TNF, TNFR, and USP each have
a particularly high degree of sequence divergence.

Clustering by single-linkage is highly dependent upon how well the pairwise scoring metric reflects
homology. Figure 6.4 illustrates that application of single-linkage clustering to the sequence simi-
larity network can achieve good performance, for a few families. These families are most consistent
with the observation that single-domain families, and those with highly-conserved multidomain ar-
chitectures, are a good fit for the use of sequence similarity as a proxy for homology. In particular,
note that for most families in the top half of the single-linkage plot, there exists a threshold that

94



0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

S
u
p
p
o
rt

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Density

S
P
IC

i A
LL (F)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.3: Color legend for all heatmaps in this chapter

can achieve a good clustering. However, as observed in Chapter 3: Network rewiring (p.25), no
single threshold can yield good performance on all of these families.

As expected from the performance of average-linkage clustering on the aggregate dataset, Figure 6.4
demonstrates that the application of average-linkage clustering greatly improves the partitioning of
families. In particular, the performance on single-domain families remains high, and the optimal
threshold range for each becomes considerably more broad. Additionally, these threshold ranges
coincide for a majority of single-domain families. The most notable performance gains are found
with multidomain families. While a particular threshold may be used to partition each family with
relatively high accuracy, the optimal threshold is highly specific to each family.

In addition to the single and average-linkage methods of inter-cluster distance, Figure 6.4 shows the
performance achieved by using the complete-linkage method. Its performance is nearly identical to
that of single-linkage, when applied to sequence similarity networks.

Figures 6.5 and 6.6 show the Precision and Recall, respectively, for the benchmark of families. These
may be used to better understand which factors play into the F-statistic shown in Figure 6.4.

95



16 36 66

10
6

14
6

18
6

22
6

BIT score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

average linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

complete linkage

Figure 6.4: Heatmap of the F-statistic for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete
linkage methods has been performed for the set of mouse and human sequences using bit-score.

96



16 36 66

10
6

14
6

18
6

22
6

BIT score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

average linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

complete linkage

Figure 6.5: Heatmap of Precision for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete
linkage methods has been performed for the set of mouse and human sequences using bit-score.

97



16 36 66

10
6

14
6

18
6

22
6

BIT score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

average linkage

16 36 66

10
6

14
6

18
6

22
6

BIT score

complete linkage

Figure 6.6: Heatmap of Recall for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete linkage
methods has been performed for the set of mouse and human sequences using bit-score.

98



6.3.2 Neighborhood Correlation

The family classification result of Neighborhood Correlation is examined using a methodology that
mirrors that used to consider sequence similarity, in the preceding subsection. First, Figure 6.7
shows the performance of the single-linkage on the Neighborhood Correlation network of human
and mouse sequences. Here, it is notable that Neighborhood Correlation scores are a very accurate
estimate of homology for the benchmark of 20 families. On both the ALL (a) and ALL-kin (b)
aggregate sets of families, the F-statistic is greater than 0.74. Notably, the maximum F-statistic is
highest for the ALL dataset, suggesting that many of the increases in performance are the result
of better estimates of homology on the kinase family, a particular challenge to sequence similarity.
These observations are consistent with the increases in local network density observed in Chapter 5:
Analysis of network properties (p.65).

The application of the average-linkage method to the Neighborhood Correlation network yields
further gains in clustering performance. On both aggregate sets, the maximum F-statistic is ap-
proximately 0.85 (Figure 6.8). Notably, the optimal choice of Neighborhood Correlation threshold
broadens significantly in this figure, with an F-statistic greater than 0.7 throughout the range of
0.025 ≤ NC ≤ 0.70 for the ALL set (a) and 0.15 ≤ NC ≤ 0.725 for the ALL-kin set (b). This
suggests that selection of a threshold within a broad range will yield accurate clusters of families.

Figure 6.9 shows the F-statistic for individual families. Here, with the exception of the TNF
family, it is evident that Neighborhood Correlation yields an accurate estimate of homology for
single-domain families, and that the application of average-linkage clustering serves to broaden the
range thresholds that will perfectly partition these families.

As compared to sequence similarity, Neighborhood Correlation yields good estimates of homology
for multidomain families as well. In particular, the single-linkage plot of Figure 6.9 indicates
that a threshold of NC 0.85 partitions most of the multidomain families with high accuracy, and,
consequently, yields good performance on the aggregate of all families. It is interesting to note
that although we developed Neighborhood Correlation specifically to address the domain chaining
problem, Neighborhood Correlation exhibits great improvement over sequence similarity in cases
of remote homology. This is evidenced by increased performance on highly diverged families such
as TNF and USP.

The application of the complete-linkage method to the Neighborhood Correlation network yields a
result that differs from the single-linkage method. Overall, the result is a broadening of the optimal
scoring threshold. The optimal F-statistic on the ALL dataset decreases from that observed with
single-linkage, while that of ALL-kin increases. While the complete-linkage method would not be
preferred over the average-linkage method, here, its behavior is illustrative of the structure that
results from Neighborhood Correlation. The complete-linkage method is particularly well suited
toward identifying cliques in a network. That the optimal score ranges decrease for complete-linkage,
with respect to single-linkage, suggests that the cliques and dense components in the Neighborhood
Correlation network are connected, on average, by much weaker edges than are necessary to connect
families.

Figures 6.10 and 6.11 show heatmaps of the Precision and Recall, respectively, of clustering the
Neighborhood Correlation network.

99



0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.7: Clustering performance of single-linkage clustering of the Neighborhood Correlation
network.

100



0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.8: Clustering performance of average-linkage clustering of the Neighborhood Correlation
network.

101



0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

average linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

complete linkage

Figure 6.9: Heatmap of the F-statistic for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete
linkage methods has been performed for the set of mouse and human sequences using Neighborhood Correlation scores computed
with the 48-genome dataset.

102



0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

average linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

complete linkage

Figure 6.10: Heatmap of Precision for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete
linkage methods has been performed for the set of mouse and human sequences using Neighborhood Correlation scores computed
with the 48-genome dataset.

103



0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

single linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

average linkage

0.
05

0

0.
12

5

0.
20

0

0.
27

5

0.
35

0

0.
42

5

0.
50

0

0.
57

5

0.
65

0

0.
72

5

0.
80

0

0.
87

5

0.
95

0

NC score

complete linkage

Figure 6.11: Heatmap of Recall for all 20 benchmark families. Hierarchical clustering, by the single, average, and complete linkage
methods has been performed for the set of mouse and human sequences using Neighborhood Correlation scores computed with
the 48-genome dataset.

104



6.3.3 Influence of additional data

The preceding analyses considered the hierarchical tree that results from clustering the dataset
comprised of the mouse and human genomes. Because the curated benchmark includes only se-
quences from mouse and human, this provides a natural basis for evaluation. An alternate scenario
can be considered where additional genomes are clustered concurrently, yielding a tree with leaves
from mouse, human, and several other genomes. Evaluation is then performed using the curated
mouse and human sequences, by examining the structure induced upon the subset of leaves that
are mouse and human sequences.

The analysis provides an opportunity to examine any differences that result from clustering when
other sequences are added to the dataset. Most notably, is the clustering of the curated families
stable when other family and non-family members are added to the dataset? Beyond stability, the
addition of sequences could be expected to decrease clustering accuracy, as if intermediate sequences
lead to the merger of families, or increase it as more data strength correct relationships and reduce
the effect of spurious network edges.

An effective test of the behavior of the result as more data is either added or removed, is, of course
sensitive to which sequences are included in the dataset. That is, a test of stability can be evaluated
through sampling, but the test can be highly dependent upon the sampling process employed.
For genome data, the structure of families is largely uncharacterized, so it is difficult to devise
an approach to sample individual sequences from one or more genomes. For example, uniformly
random selection of sequences in a dataset is particularly prone to inaccurate representation of small
families, particularly because their size relative to other families may differ greatly in the discrete
case. The addition (or exclusion) of complete genomes is a natural sampling of the sequence space.
Additionally, the inclusion several of complete genomes mirrors the approach taken for most large-
scale analyses.

The remainder of this section considers average-linkage clustering of all 48 genomes in the Pan-
ther 7.0 dataset, comprised of approximately 603k sequences. Figure 6.12 shows the Precision,
Recall, and F-statistic for the clustering of 48 genomes using sequence similarity. Compared to the
corresponding performance when only the sequences of mouse and human are clustered, shown in
Figure 6.2, it is evident that the performance is nearly identical. The maximum F-statistic, and the
range of scores over which it is achieved, are effectively identical, for both the ALL and ALL-kin
benchmark sets. The most notable difference in each is a more smooth behavior of Precision as the
bit-score threshold is increased from minimal values. This data illustrates that the addition of 46
more genomes to the data set of mouse and human sequences does not alter the clustering result
of sequence similarity when evaluated with the curated benchmark.

The average-linkage clustering performance of Neighborhood Correlation on the curated benchmark
families improves to a very small degree when the complete 48-genome dataset is clustered, as
compared to a clustering result with only the mouse and human sequences as input. Figure 6.13
shows the Precision, Recall, and F-statistic for the ALL and ALL-kin benchmark sets. As compared
to Figure 6.8, the clustering performance on the ALL dataset (a) is virtually unchanged. Within
the ALL-kin dataset (b), the use of all genomes in the clustering yields an increase in Precision at
low values, NC ≤ 0.350, with a resulting increase in the F-statistic. The net result is that, with the
48-genome dataset, an F-statistic of at least 0.8 is achieved in the range of 0.225 through 0.575,
as compared to a lower limit of 0.325 when only the mouse and human sequences are clustered.

105



31
0

21
0

11
0907055453525155

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

31
0

21
0

11
0907055453525155

BIT score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.12: Clustering performance of average-linkage clustering of the sequence similarity network
of all 48 genomes in the Panther 7.0 dataset.

Overall, this comparison suggests that average-linkage clustering of Neighborhood Correlation is
very stable as the input dataset is changed from the mouse and human genomes, alone, to a dataset
of 48 genomes.

Evaluation using aggregate sets of families from the curated benchmark, above, suggested that the
clustering accuracy is relatively independent of the number of genomes over which the clustering
is performed. While remaining small in magnitude, differences are observed for individual families.
Figure 6.14 shows heatmaps of the F-statistic for each family, for both sequence similarity (left) and
Neighborhood Correlation (right), when 48 genomes are used as clustering input. As with earlier
heatmaps, the bottom rows depict the ALL and ALL-kin aggregates.

First consider the accuracy of sequence similarity, as compared to the central heatmap of Figure 6.4,
which shows the F-statistic that results from average-linkage clustering of mouse and human se-
quences. For the majority of families, the performance as measured by the F-statistic is nearly

106



0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ALL

0.
97

5

0.
92

5

0.
87

5

0.
82

5

0.
77

5

0.
72

5

0.
67

5

0.
62

5

0.
57

5

0.
52

5

0.
47

5

0.
42

5

0.
37

5

0.
32

5

0.
27

5

0.
22

5

0.
17

5

0.
12

5

0.
07

5

0.
02

5

NC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision

Recall

F

(b) ALL-kinase

Figure 6.13: Clustering performance of average-linkage clustering of the Neighborhood Correlation
network of all 48 genomes in the Panther 7.0 dataset.

identical. For other families, an increase in the maximum value of the F-statistic does occur. This
includes the families DVL and USP, for which the ideal range of bit-score thresholds becomes more
broad. For other families, such as KIR, Laminin, and SEMA, the ideal scoring range appears to
become more narrow. As previously examined, the net performance on ALL and ALL-kin remains
unchanged between the two clustering input datasets.

The F-statistic for individual families changes to a small degree when average-linkage clustering
of Neighborhood Correlation scores is performed for the 48-genome dataset as compared to that
of mouse and human sequences. The above discussion considered a slight increase in F-statistic
on the ALL-kin dataset. When compared to the average-linkage clustering result in Figure 6.9,
no marked change in performance occurs for any single family. Of those for which a change in
the maximum or breadth of the range of F-statistic is observed, the magnitude of this change is
small. Most notably, the lower threshold range achieves a higher F-statistic for the DVL family,

107



0 10 20 30 40 50 60 80

10
0

16
0

26
0

BIT score

ACSL

FGF

FOX

Tbox

TNF

WNT

DVL

GATA

KIR

Notch

TRAF

USP

ADAM

Kinase

Kinesin

Laminin

Myosin

PDE

SEMA

TNFR

ALL

ALL-kin

average linkage

0.
02

5
0.

07
5

0.
12

5
0.

17
5

0.
22

5
0.

27
5

0.
32

5
0.

37
5

0.
42

5
0.

47
5

0.
52

5
0.

57
5

0.
62

5
0.

67
5

0.
72

5
0.

77
5

0.
82

5
0.

87
5

0.
92

5
0.

97
5

NC score

average linkage

Figure 6.14: Heatmap of the F-statistic for all 20 benchmark families when clustering is performed
on the full 600k, 48-genome dataset. Results for hierarchical clustering using the average-linkage
method is shown for both sequence similarity, and Neighborhood Correlation.

because of greater Precision in that range. Conversely, while the range of high scores changes very
little for the Laminin family, the maximum F-statistic achieved does decrease, from an F-statistic
of approximately 1.0 to 0.8.

108



Chapter 7

The relationship between domains and
clusters

7.1 Introduction

The focus of this chapter is investigation of the interplay of domain content and the sequences
that comprise gene families. The intent is to provide insight into the occurrence of domains among
gene families in one or several genomes, and additional means of evaluating the quality of a family
classification result. Although domains are not explicitly considered in approaches that use sequence
similarity, there is reason to believe that domain content influences the outcome of such clustering.
An information theoretic approach will be employed to characterize domains, and address these
relationships.

Because most gene families are unknown, this study necessarily considers the interdependence of
the family prediction methodology with the extent to which domain content has played a role in
the evolution of predicted families. That is, when evaluating domain evolution within the context
of families, it is important to consider that families proposed through clustering are putative. In
earlier chapters, annotated gene families have been used as a means of evaluating and tuning the
performance of family classification. Here, those same families will be used to examine properties of
domain content. Similarly, domain content can be used to evaluate classification performance, but
only so well as one can identify domains, or combinations thereof, that correspond to individual
gene families. To clarify discussion, the term family will be used when describing a known or
hypothetical set of sequences related through common ancestry. Cluster will be used to refer to a
set of sequences that are predicted to comprise a family. Finally, a clustering refers to a complete
dataset, partitioned into clusters.

Throughout this chapter, the set of sequences in the human and mouse genomes of the Panther
7.0 dataset will be considered. These have been partitioned using a pipeline of Neighborhood
Correlation, followed by hierarchical clustering by the average-linkage method, as described in
Chapter 6: Clustering and its evaluation (p.85). The particular portioning here is derived from the
clustering of all sequences in the 48-genome Panther dataset, and imposition of a tree threshold of
0.425, which was shown to perform well when evaluated with the curated family benchmark (see

109



Figure 6.14).

The task of considering these factors will be decomposed as follows:

First, this chapter investigates the influence of domain content upon a clustering. Specifically, the
degree to which protein domain content influences the clustering is measured. Key questions include:
Can this clustering be completely explained by the domain content of the clustered sequences? If
only the domain content of sequences, rather than their sequence similarity, were used as input to a
family classification pipeline, could the same partitioning be obtained as by clustering the sequence
network? An information theoretic approach is used to address whether the domain content is
sufficient to explain the family classification result.

Second, a family classification may be used to identify domains that are specific to individual
families, and provide a way of examining the evolutionary history of inconsistent domains, which
occur in many families. A correct family classification would group family members together,
while avoiding effects such as domain chaining. Can inconsistent domains be identified by their
discordance with the clustering? Some domains are known to be inconsistent among annotated
families, providing a means of initial validation. Questions of interest include: Are most clusters
characterized by a single domain? Do most domains occur in only one cluster? Is there a clear
signal that differentiates domains consistent with the clustering from those that are found in many
clusters? Which domains exhibit evidence of consistency or inconsistency?

Third, I will consider how domain information may be used as a means of evaluating the quality
of a clustering. There is an obvious relationship in that domain content can influence the sequence
similarity measures that underlie our approach to family classification. Domain chaining is one
dominant effect we have sought to eliminate, and one that is readily evidenced by a large “hairball”.
A cluster characterized by very many domains, each of low count relative to the size of the cluster,
does not fit our understanding of gene family evolution. The methods developed here are suitable
for simultaneously evaluating the co-occurrence of domains and clusters.

7.2 Mutual Information Formulation

Here I describe an approach to addressing the above questions by considering the mutual infor-
mation of domains and a set of proposed or annotated families. Using an information theoretic
approach is a suitable way to capture the complexity of a partitioning, and directly measure to
what degree the correspondence of other features (here, domain presence) can be used to explain
that complexity.

Consider a clustering of sequences. Additionally, each sequence is associated with (i.e., contains)
zero or more known domain types. (Note that excepting intrinsically disordered proteins [45], a
sequence that contains no identifiable domains almost certainly still folds to a structural unit that
is not yet described in domain databases.) We will not consider the number of instances of each
domain type in a sequence. Similarly, domain order will not be captured. Our interest is to capture
two properties of a protein p: whether p is in cluster i, and whether p has one or more copies of
domain j.

110



The following notation is used:

Ck : Number of sequences in cluster k

Dl : Number of sequences with domain l

Dl,k : Number of sequences with domain l and in cluster k

N : Total number of sequences

NC : Total number of clusters

The probability that a sequence is in cluster k is

PC(k) =
Ck

N
. (7.1)

Similarly, the probability that a sequence has domain l is

PD(l) =
Dl

N
. (7.2)

The entropy of the clustering is then

H(C) = −
∑

k∈clusters
PC(k) log2(PC(k)), (7.3)

and the entropy of a domain is

H(D) = −[PD(l) log2(PD(l)) + (1− PD(l)) log2(1− PD(l))]. (7.4)

The entropy of a clustering captures the complexity of that partitioning, from the perspective of
how uncertain one is about the assignment of a single sequence to a cluster, and how many bits are
required to optimally encode the assignment of each sequence to a particular cluster. This is based
solely upon the distribution of cluster sizes (only on PC(k)), independent of the specific counts.
Taken to extremes, representing cluster assignments in a partitioning that contains only a single
cluster requires no information, and H(C) = 0. Conversely, the maximal entropy of the clustering
is achieved when the probability that a sequence p is assigned to a cluster i is the same for all
clusters. In this case, H(C) = log2(NC).

The mutual information of two variables may be defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

SMI(x, y), where

SMI(x, y) = p(x, y) log2
p(x, y)

pX(x)pY (y)
. (7.5)

Considering two random variables, X and Y , mutual information can be cast as the degree to which
knowledge of a particular value of X reduces the uncertainty of knowing the value of Y . Note that
mutual information is a symmetric measure. If X and Y are independent, I(X;Y ) = 0, indicating

111



that knowledge of one variable provides no information about the values of other variables. By
contrast, if values of X and Y were identical, or entirely dependent, then I(X;Y ) = I(X;X) =
H(X). the mutual information of x and y is bounded above by the lesser of the entropies of x and
y. One way to understand this is to consider the formulation:

I(X;Y ) = H(X) +H(Y )−H(X;Y )

= H(X)−H(X|Y ), (7.6)

where

H(X|Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x)

p(x, y)
. (7.7)

That is, mutual information is the reduction of entropy (H(X)) obtained through knowledge of Y .
When X = Y , H(X|Y ) = H(X|X) = 0, and I(X;Y ) = I(X;X) = H(X). Conversely, when Y
does not explain X, H(X|Y ) = H(X), and I(X;Y ) = 0.

Here, I will primarily consider the mutual information between the clustering, C, and a single
domain, l,

I(C; l) =
1

N

∑
k∈C

Dl,klog2
Dl,k

DlCk
+ (Ck −Dl,k)log2

Ck −Dl,k

DlCk
. (7.8)

Mutual information between pairs of domains will also be considered where noted.

7.3 Working Example of Framework

This methodology can be best understood by following a concrete example. Consider a clustering
of N = 14 sequences into two clusters. Cluster x has 8 single-domain sequences, with domain
architectures: (a, a, a, a, b, b, e, e). Cluster y has 6 sequences with architectures: (cd, cd, cd, cd,
e, e).

The particular partitioning of sequences and domain assignments in this example are intended to
facilitate a rough intuition of cases where a domain is found only in a single cluster, estimated fam-
ilies but possibly not in all of the sequences of a cluster. Additionally, it illustrates a case (domain
e) where a domain is distributed among many clusters, but in slightly varying proportions of the
respective cluster sizes. This is interesting because such a domain, despite uniform distribution
among the clusters, does have a non-zero mutual information with the clustering. This is because
it comprises a larger fraction of the smaller cluster, y. Typically, more skew will be present in real
data.

The following is a table of the domain content of clusters x and y:

112



Domain
a b c d e

Cluster
x 4 2 2
y 4 4 2

4 2 4 4 4

Note that while this table summarizes the domain content of clusters, it is not a contingency table.
Because a sequence may simultaneously contain more than one domain type, the sum of a row may
exceed Ck, and the sum of all values may exceed N . Column sums are equal to Dl, the number of
sequences in the cluster that have domain l, as noted.

Instead of directly using this table, we can construct a separate contingency table for each domain
over all clusters. This describes the count of sequences with the presence (1) or absence (0) of each
domain, tabulated by cluster. Marginal sums are as shown:

Domain a Presence
0 1

Cluster
x 4 4 8 Cx

y 6 0 6 Cy

10 4 14 N
N −Da Da

Domain b Presence
0 1

Cluster
x 6 2 8 Cx

y 6 0 6 Cy

12 2 14 N
N −Db Db

Domain c, d Presence
0 1

Cluster
x 8 4 8 Cx

y 2 0 6 Cy

10 4 14 N
N −Dc Dc

Domain e Presence
0 1

Cluster
x 6 2 8 Cx

y 4 2 6 Cy

10 4 14 N
N −De De

Here, H(C) = 0.9852, or just under one bit, owing to the slight imbalance in cluster size. The
maximum entropy would be achieved when the probability of assignment of a given sequence to
each of the clusters is equally probable. In that case, the entropy would be log2(NC) = log2(2) = 1.
In the current example, the sizes are slightly unequal, so the entropy is slightly lower.

The entropies of the domains above are

H(a) = H(c) = H(d) = H(e) = 0.8631

H(b) = 0.4917.

From this, we can read that no single domain has sufficient power to fully describe the partitioning
into two clusters (all domains have lower entropy than H(C)). Here, each domain represents a
relatively high fraction of the clustering entropy. In practical cases, where more than two clusters
exist, it is not possible for the existence or absence of a single domain in each cluster to explain the
structure of the entire clustering.

113



To quantify the degree to which each domain can be used to explain the clustering, we can calculate
mutual information from each domain’s contingency table:

I(C; a) = 0.2917

I(C; b) = 0.1281

I(C; c) = I(C; d) = 0.4696

I(C; e) = 0.0060

Here, it is evident that those domains which one would intuitively observe to be correlated with
one cluster (a with x, c and d with y) exhibit higher mutual information, and those that comprise
a large fraction of a cluster are most informative. Domain b, though unique to cluster x, is less
informative than a, c, and d due to there being fewer instances of it.

Domain e might be expected to have zero mutual information because it has the same number
of instances in both clusters. However, it has mutual information greater than zero because it
comprises a larger fraction of cluster y than x. As mentioned above, such skew is likely to be more
dramatic in real data.

Another way to consider the magnitude of mutual information of a domain with respect to a
clustering is to compare it with the maximum mutual information that would result from existence
of a domain in all sequences in a single cluster, and only that cluster. Consider a hypothetical
domain α that occurs in all sequences of cluster x, and β in those of cluster y:

I(C;α) = 0.9852

I(C;β) = 0.9852

This mutual information cluster maximum will be reported for families in the analysis that follows.

The specific mutual information (SMI) is the contribution of the joint probability between two
particular values of the two variables considered. Here, a domain is either present or not in each
cluster. Both the presence and absence of a domain contributes to the mutual information. To
isolate the contribution of the presence of a domain in a particular cluster, the presence SMI will
be used to refer to the SMI of a cluster and the presence of a domain in that cluster (pSMI (c, 1, a),
for existence of domain a in cluster c). Do note that the absence of a domain from other clusters
will typically contribute a positive quantity to I, so pSMI should not be considered to be the only
positive, or even dominant, component of I.

To fully illustrate the contribution of individual values of a contingency table to mutual information,
consider the SMI of all positions of the contingency tables of the domains below. Recall that the
pSMI refers to the “1” column only, for each cluster.

114



x
(8)

y
(6)

Cluster

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
u

tu
al

In
fo

rm
at

io
n

(b
it

s)

MI

presence SMI

MI cluster maximum

Figure 7.1: Mutual information of all domains in the working example, separated by cluster. For
each domain found in a cluster, there are two points in the column of that cluster: MI, the mutual
information of this domain with the entire clustering, and the pSMI of this domain and the partic-
ular cluster. Additionally, the MI cluster maximum is the maximal mutual information attainable
for a hypothetical domain that occurs in every sequence of that cluster and no sequence outside of
the cluster.

Domain a Presence
0 1

Cluster
x -0.147 0.231
y 0.208 0

Domain b Presence
0 1

Cluster
x -0.083 0.115
y 0.095 0

Domain c, d Presence
0 1

Cluster
x 0.277 0
y -0.157 0.349

Domain e Presence
0 1

Cluster
x 0.030 -0.028
y -0.028 0.032

The pSMI of domain a is 0.231 in cluster x and 0 in cluster y. This domain is unique to cluster
x, and the high pSMI reflects this. To again caution against an excess of interpretation of pSMI,
note that the absence of domain a in cluster y also yields a strong positive contribution to I(C; a).
Also note that the negative component of SMI of domain a in cluster x reduces the value of I(C; a)
from what might be inferred if only the presence in x and absence in y were considered. Domain
e, distributed uniformly among clusters x and y, has a pSMI of -0.0275 with cluster x and 0.0318
with cluster y. These values are not each zero because of the discrepancy of cluster sizes.

Figure 7.1 illustrates a summary of the values derived above. Each column in this figure represents
a single cluster, and depicts all domains found within it. Similar construction will be used to
describe clusterings of real data, where there are many more clusters than the two here.

115



Cluster x contains three domains, a, b, and e. These have mutual information values of 0.2917,
0.1281, and 0.0060, respectively, and are represented by the three green circles in the column of
cluster x. For each domain, it is useful to be able to consider whether the mutual information
attained by a domain found in a cluster is due primarily to its association with that cluster. For
each domain in a cluster, the pSMI (blue crosses) convey this information. For example, in cluster
x, domain a has a pSMI value at 0.231.

The value of this figure is greatest when one can identify which blue cross and green dot correspond
to the same domain. The construction of this figure does not unambiguously illustrate this relation-
ship. However, often the pairing is obvious, and a number of relevant measures may be inferred.
In practice, one or a few domains stand out for each cluster, with high mutual information and
high pSMI, allowing clear visual association of which correspond to single domains, in the absence
of intervening points. In all instances, the distribution of pSMI values for the domains found in a
cluster indicate whether any are highly associated with that cluster.

Cluster y also contains three domains, c, d, and e, yielding three mutual information points in that
column, but only two are visible because domains c and d have identical mutual information values of
0.4696, and overlap. Notice that domain e occurs in both clusters, so the same mutual information
point occurs in both columns. However, the pSMI of domain e does differ between clusters x
and y. In cluster y, the pSMI of domain e is 0.0318 and is larger than its mutual information,
0.0060. Typically, the pSMI is below the mutual information, though this is not always the case.
The measured values, here, of domain e can be seen largely as an artifact of having very, few
(two) clusters, allowing a single domain to be evenly distributed. In real clusterings, there are
almost always fewer sequences of a particular domain than the number of clusters, which effectively
eliminates this behavior.

7.4 Areas of focus

A number of biological and methodological questions will be considered using this framework. These
fall into three major areas: (1) characterization of clusters and families, (2) characterization of the
relationship between domains and those clusters and families, and (3) measurements of the co-
occurrence, or exclusion, of pairs of domains. The following is a brief guide to the results presented
in the following sections, and the questions that motivate their consideration.

The central goal of this study is to investigate the relationship between domains and families. The
results here are presented with an emphasis upon distinguishing a number of views into the data,
accompanied by a discussion of the relevant variables and conclusions.

7.4.1 Structure of predicted families

There is need for a framework that allows comparison among single methods applied to different
datasets, and among different analyses and methods on the same dataset. Chapters 5 and 6
investigated the use of structural properties of the sequence network and evaluated the ability of
this network to recapitulate families. To what extent does entropy facilitate evaluation of the
structure of a clustering?

The structure of biological families may change between datasets. Closely related genomes might

116



be expected to have roughly the same set of gene families, with similar relative sizes and domain
content. (For example, see Ye and Godzik [154].) In contrast, when comparing distantly related
genomes, one might expect to see families that are unique to each genome. Families that occur in
both genomes might have different size distributions and greater differences in domain content.

A typical case in practice is first to consider a small set of data (e.g., one or two genomes) before
expanding to a larger super-set (i.e, many genomes). In the case of closely related genomes, the
addition of genomes would be expected to increase the number of sequences in each family propor-
tionate to the number of added genomes. Because the cluster sizes, relative to each other, would
differ very little, and the entropy of the clustering depends only upon these relative sizes, the en-
tropy of the clustering would change little between the smaller and larger datasets. A particularly
useful side effect of this property is that the mutual information values of domains against the two
clusterings may be directly compared.

A set of predicted families may change due to use of a different clustering method, different param-
eters, or coverage of the data set to which it is applied. Practical scenarios include adding more
genomes to an analysis, comparing different clustering methods, or switching taxonomic lineages.

When the sequences in two datasets are very different, or are clustering performed at widely varying
granularity (e.g., sub-families versus families in a correct clustering), the entropy can vary widely.
Such changes are an indication of a very different clustering or very different family structure,
which should be investigated independently. The entropy of a clustering provides an indication of
when one should investigate differences in the clusterings to be considered, before moving on to a
detailed examination of the mutual information of domains. When the entropy of two clusterings
are similar, the clusterings are of similar granularity–even if quite different in cluster content–and
it is useful to compare domain content of those clusters.

Note that a domain found in several clusters, but occurring in most or all sequences in those clus-
ters will have high mutual information. When a clustering is too coarse, grouping many families
together, or entirely incorrect, partitioning the dataset independent of families, the mutual infor-
mation of such a domain will be lower. Conversely, a (correct) partitioning that is too fine will split
families into separate clusters, but those clusters will each remain comprised of related sequences.
Domains that correspond to each of those clusters will retain high mutual information. This yields
robustness: The mutual information of a consistent domain decreases when a clustering does not
correspond to family boundaries, but far less so when a family is split into sub-families. This also
provides a means of calibrating the granularity of a clustering.

7.4.2 Characteristics of domains

Exploration of the interplay of domains and family structure is of primary interest in this study.
A number of canonical examples of domain and family correspondence motivate this approach.
Single domain families are an obvious case of direct association of a domain and a family. Among
multidomain families, inconsistent domains introduce an additional layer of complexity. It is an
open question whether families typically have a single domain that occurs in all members of the
family, to which additional domains contribute auxiliary function, such as a specific binding mode.
There are a number of examples of this case, including the Kinases. Absent such a defining domain,
are there families defined by the co-occurrence of several domains?

117



Rather than looking for specific cases of domain content, the intent with this approach is to examine
how typical they are in real genomes, and to remain flexible enough to be able to identify and
characterize other interesting paradigms of domain occurrence. Questions that will be addressed
include: Does a family contain one or more domains that can be used to define that family (e.g.,
all members have the domain, and no other sequences do)? Conversely, does a given domain define
one or more families (e.g., the domain occurs in two families, possibly sub-families, and never
elsewhere)? May a family be defined by co-occurrence of a combination of domains? Is a given
domain consistent?

The mutual information of each domain and a clustering of a particular dataset can be used to
compare the occurrence of different domains within that clustering. In particular, the above formu-
lation and examples exhibit how domains with close correspondence to families, predicted or real,
have high mutual information. This highlights domains that “correlate” well with the partitioning
(as domain c, in the example, which has high mutual information) as well as those that do not, and
are inconsistent (e.g., domain e, which has low mutual information).

Additionally, mutual information is useful for comparing domain content across different clusterings
and datasets. Consider, first, different clusterings of a single dataset. Here, the number of sequences
(N) remains constant, but the partitioning of sequences may differ, and the distribution of the
counts of sequences in clusters may vary widely. In an extreme example, one clustering may have
many clusters all of equal size, and another may assign nearly all sequences to a single, large
cluster. These clustering will have very different entropies. Further, observed mutual information
of domains will change greatly. The clustering that groups nearly all sequences together will exhibit
very low mutual information for all domains, since no domain would be in most of the sequences.
When partitioned more finely, domains that do correspond to clusters will show higher mutual
information than other, inconsistent, domains in the same set.

It is useful to consider the range of mutual information with respect to family structure. The max-
imum attainable mutual information for a domain is limited by two primary factors. Numerically,
the total number of sequences in which a domain occurs limits the entropy of that domain, and,
accordingly, the mutual information of the domain and the set of families. A domain that occurs
in very few sequences will necessarily have low mutual information, but such a low value does not
necessarily reflect promiscuity. Comparison with the entropy of that domain can determine whether
this is the case. Further, the pSMI of a domain and family indicates whether a domain has high
mutual information because of a particular family. When a domain is uniquely associated with a
cluster or family, even if in only a subset of sequences, the pSMI of a domain will be below the
corresponding mutual information of that domain because the absence of a domain in other clusters
also contributes to the mutual information.

A second situation is when a domain occurs among many families. Such a domain is inconsistent.
This property is captured by the mutual information. A domain that is found in most sequences of
one cluster will have high mutual information. Similarly, a domain that is found in several clusters,
but occurs in most sequences of those clusters, will retain high mutual information. (This scenario
is more typical of a clustering that is too fine-grained than a inconsistent domain.) By contrast,
a domain that is scattered among many clusters, but not found in the majority of sequences in
those clusters will have low mutual information.

118



7.4.3 Domain co-occurrence

Two other patterns arise for which the mutual information of a single domain with the clustering
may not be sufficiently expressive to capture of the properties of interest. Many families are
characterized by a “primary” domain that appears almost exclusively in members of the family,
often in various combinations with other, auxiliary domains. A particularly notable example is the
kinase family. The above example captures some aspects of such families.

An interesting case is that where a particular combination of domains is found to characterize a
cluster, but where each domain, singly, is found in many other clusters. A concrete example of this
is the Laminin family. It comprises 23 sequences in Mouse and Human and contains seven distinct
domains. All sequences have unique architectures. Only one domain, Laminin EGF is found in all
Laminin sequences, but it also is present in 41 unrelated sequences. None of the other six domains
in the Laminin family are present in all 23 members. Only two of these are unique to the Laminin
family, but there are Laminins without either of these. This is a situation where consideration of at
least three domains would be necessary to correctly group the Laminin family using only domain
content.

A combination of domains need not strictly correspond to the presence of the domains, but could
instead refer to relationships such as the XOR of two domains. The Kinase family provides an
illustration of this scenario. Based on annotations from the PFam database, members of this family
are characterized by the presence of either the Pkinase-C domain or the Pkinase-Tyr domain, but
never both. Here, to group the Kinase family together using domain content alone, this exclusivity
would need to be captured. Note that in Kinase, this situation arises due more to convention in
the database than to disparate domains. The two Pkinase domains are very similar, and can be
considered classes of the same domain.

A multivariate formulation of mutual information would be necessary to simultaneously consider
two or more domains and the clustering. However, this will introduce complexity in interpretation of
the result and a risk of over-fitting the limited, discrete data available. To gauge the necessity of this
complication, I have structured the results given here with an eye toward determining (1) whether
a single domain is sufficient to characterize every cluster, and to what degree, and (2) whether
the joint consideration of multiple domains (multivariate MI) could be expected to improve this
characterization for individual clusters.

One approach to the latter is to consider a loose upper bound on the (joint) mutual information of all
domains and the clustering. This may be considered by summing the pairwise mutual information
of all domains, each against the clustering. This sum accurately represents the mutual information
of all variables, together, only if the domains are each independently distributed, which is not the
case here. Thus, this bound may be very loose. Similar summation of pairwise mutual information
values among many variables has been employed, for example, in image registration as an effective
estimate of the scale (i.e., not the numerical value) of a multivariate mutual information [84].

Without full development of a multivariate formulation of the framework here, specific questions
that will be addressed include: Which domain pairs tend to co-occur? Which pairs never co-occur?

119



7.5 Data

To investigate the effectiveness of this approach, I have applied a series of analyses to two clusterings,
one of curated families, the other a result of a clustering pipeline stemming from sequence similarity.

The sequence data considered here is the combined set of Human and Mouse sequences from Panther
7.0, comprising 45,491 sequences in all. Domains have been annotated by performing a search using
domain HMM profiles from a recent version of the PFam database.

The influence of domains upon family classification can most directly be evaluated when a ground-
truth clustering is known, using curated families. Use of independent evidence for curation ensures
that the signal of domains may be measured independently of how sequences are associated with
predicted families. However, it is limited to consideration of sequences, and families, that have
been curated. This is typically a small fraction of the genome.

Conversely, an automated clustering of the dataset facilitates analysis of the full dataset, but
introduces the variable of whether a clustering accurately corresponds to the evolutionary families
we aim to identify. Families and partitions generated by automated clustering are complementary,
and related: selection of clustering parameters, and, indeed, design of the clustering pipeline has
been informed by our set of known families. A critical interest is whether we can evaluate how
typical our curated families are of the entire genome.

Here, two datasets representing these extremes are considered. First, the curated benchmark of
families is considered alone. As detailed in Chapter 2: Background and preliminaries (p.13), this
dataset is comprised of 1841 sequences, spanning 20 families. The sequences in this set cumulatively
contain 203 unique domains. Second, the set of sequences in the mouse and human genomes are
considered. This dataset contains annotations for 4304 distinct domains.

7.6 Clustering entropy

It is useful to consider the granularity of a clustering; i.e, into how small of groups the sequences are
partitioned. Biologically, this is akin to the concept of grouping at a given level of specificity, such
as families, or subfamilies. In the sense of hierarchical clustering, this may be intuited as cutting
the tree at different levels. Entropy can be used to capture this property. It is dependent upon the
distribution of cluster sizes in a clustering, but not the particular assignment of sequences to those
clusters, the specific number of sequences in the clusters, or even the number of sequences in the
dataset. These latter properties are of particular benefit when working with varied data considered
here.

Within a particular dataset, it is useful to consider the overall behavior of a clustering method
with different parameter values, or with different methods entirely. Entropy is a reasonable means
of identifying pathological cases such as a one cluster (H = 0) or a clustering of singletons (H =
log2N), as well as cases between. Similar values of entropy between clusterings indicate a similar
granularity, while large changes indicate wholesale differences in the structure of a clustering.

It is frequently desirable to compare clusterings across different datasets. Recall that a typical
use-case is exploration of a small dataset followed by study of a larger, inclusive set. Here, a lack
of dependence upon the specific cluster or dataset sizes is particularly useful.

120



0.0 0.2 0.4 0.6 0.8 1.0
NC score

0

2

4

6

8

10

12

14

16

(b
it

s)

Entropy

MI sum

Figure 7.2: Clustering entropy as a function of the threshold used to partition the Neighborhood
Correlation average-linkage clustering result. The entropy of each partitioning is in blue. The MI
sum is the sum of the mutual information, over all domains. This latter value is a loose upper
bound of the combined joint mutual information of all domains, calculated as in [84].

Figure 7.2 illustrates the entropy of Neighborhood Correlation, after hierarchical clustering (blue
line). Specifically, it displays how the entropy of the clustering varies across the range of all possible
clustering thresholds. The entropy of the clustering necessarily increases as the clustering becomes
finer. At NC = 0, all sequences are part of one cluster, and H = 0; NC = 1 separates nearly all
sequences into singletons.

The primary conclusion from these data is that the granularity of the clustering changes slowly
throughout the full scoring range, and that substantial changes to the granularity of the clustering
are constrained to the first 0.01 and the very high values, above 0.9. This suggests that the structure
of the clustering is such that, as the threshold is increased, a single “hairball” cluster disintegrates
(inflection around 0.01), separating into a number of smaller clusters, but retaining a structure
beyond singletons. As the threshold is increased further yet, some of these smaller clusters are
split, and some sequences do become singletons. Only at the highest thresholds (inflection around
0.98) does the clustering degrade entirely to very small clusters and singletons.

An identifiable region of relative stability is of most value for predictions. Within such a broad
region, a range of thresholds can be selected to yield clusterings of similar structure, but with
tunable specificity. Small changes within this range of thresholds will not result in dramatic changes
in output.

Plotting entropy as a function of threshold can distinguish this behavior from an alternate scenario
in which increasing the threshold incrementally removes singletons from such a hairball, but never
recovers intermediate structure. Such data would not be hierarchical in nature.

Consideration of the entropy of the clustering can provide some guidance about the significance
of the mutual information of a domain with respect to that clustering. As no single domain can

121



be expected to represent the entire clustering, the mutual information of domains will typically be
small compared to the entropy of the clustering. A rough way to address how well all domains may
jointly characterize the clustering is to sum the mutual information values of all domains, each with
respect to the clustering. In the case where domains are distributed over sequences independent
of all other domains, this sum would represent the maximum information gained by knowing the
assignment of domains to sequences. The sum would not exceed the entropy of the clustering;
indeed, the entropy is also an upper bound on the joint mutual information.

When the MI sum is less than the entropy, the domain content of sequences is certainly not sufficient
to account for the clustering.

7.7 Relationship of domains and clustering

Notable questions of interest addressed by this construction include (1) whether one or more do-
mains is unique to each cluster, (2) whether there exists a broad distribution of mutual information
of domains within each cluster (i.e., are most clusters characterized by a single domain, or are
there generally several domains exclusive to each cluster), and (3) to what degree the presence of a
domain in a cluster contributes to high values of mutual information, as compared to its absence.

This will be approached by considering a number of perspectives to identify properties of each the
set of domains and the set of families, as well as their joint contribution. First, to facilitate a detailed
look at the behavior of the mutual information formulation provided here, Figure 7.3 illustrates
the mutual information of every domain found in each of the 20 families. Similarly, Figure 7.4
illustrates the same content for each cluster in the NC Average Linkage clustering. These figures
are constructed in an identical manner as Figure 7.1.

It is helpful to first understand the mechanics of what is presented:

For each domain found in a family, there are two points in the column of that family: (1) MI, the
mutual information of that domain with the set of all families, and (2) the pSMI of this domain
in the family. Additionally, the MI Cluster Maximum for each family is the maximal mutual
information attainable for a hypothetical domain that occurs in every sequence of only that family.

This plot separates the contribution to the mutual information of a domain by family, allowing
consideration of the data from the perspective of domains (e.g., how many families contain domain
X; are they defined by it?), as well as by family (e.g., how many domains occur in family F; do
any define it?). At a glance, this provides information about how many distinct domains are found
within a family, by counting the number of MI points in the corresponding column. The MI value
of a domain illustrates how closely that domain corresponds to the set of all families; those with
higher values are associated with a few specific families, not spread among all.

Note that a domain may have a mutual information higher than the MI maximum for a family
owing to close association with one or more other families. For example, in Figure 7.4, note that
several domains, including, from the top, 7-trans-membrane-1 (MI 0.27) and Pkinase (MI 0.11)
occur in several clusters.

For each MI point (green dot) representing a domain found in a family, a corresponding pSMI
point (blue cross) shows the specific contribution of occurrences within that family to the mutual
information. Blue crosses closely aligned to or just below green circles almost certainly represent

122



K
in

ase
(1057)

U
S

P
(100)

F
O

X
(94)

K
in

esin
(91)

A
D

A
M

(61)

T
N

F
R

(56)

M
yosin

(51)

P
D

E
(50)

F
G

F
(46)

S
E

M
A

(41)

W
N

T
(38)

T
N

F
(35)

T
b

ox
(32)

L
am

in
in

(23)

A
C

S
L

(15)

K
IR

(13)

G
A

T
A

(12)

T
R

A
F

(12)

N
otch

(8)

D
V

L
(6)

Family

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
u

tu
al

In
fo

rm
at

io
n

(b
it

s)

MI

presence SMI

MI cluster maximum

Figure 7.3: Mutual information of all domains in the 20-family benchmark set, separated by family.
Families are ordered by descending size, indicated in parentheses. For each domain found in a
family, there are two points in the column of that family: MI, the mutual information of that
domain with the set of all families, and pSMI of this domain in the family. Additionally, the MI
cluster maximum for each family is the maximal mutual information that would be obtained by a
hypothetical domain that occurs exclusively in every sequence of that family.

the same domain, though matching the corresponding points can be ambiguous when several do-
mains have similar mutual information. The pSMI of a domain will typically be lower than the
corresponding mutual information of that domain because the absence of a domain in other clusters
also contributes to the mutual information.

Focusing upon the 20 families (Figure 7.3), nearly every family exhibits a single domain that
overlaps or is very near to the MI maximum for that family. A notable exception is the Kinase
family, in which all sequences are characterized by presence of either the Pkinase-C or Pkinase-
Tyr domains. These domains never co-occur in the same sequence. These are the top two green
points, respectively. These domains are also represented by the top two pSMI points. Recall that
the distinction between the Pkinase-C and Pkinase-Tyr domains is primarily one of annotation
convention, rather than distinct biology. These domains are very similar, though are maintained
as separate entities by the PFam database.

Note that very few domains occur in more than one family, in this dataset. Many of these domains
are found elsewhere in the genome in members of other, un-curated families. However, these
sequences are not part of this dataset. As a result, with the analysis constrained only to our
annotated families, most domains are consistent relative to the data set.

123



(a) All clusters

22315754
(1568)

22315094
(1380)

22315320
(920)

22315593
(530)

22314059
(489)

22315736
(346)

22306915
(343)

22312677
(314)

22314758
(270)

22315636
(246)

22313010
(245)

22315814
(244)

22314165
(213)

22315613
(175)

22311642
(172)

22306856
(166)

22311844
(160)

22314034
(160)

22308815
(147)

22312272
(147)

22315129
(145)

22314339
(128)

22283534
(125)

22315678
(118)

22281455
(115)

22307665
(114)

22315347
(113)

22309455
(106)

22310992
(104)

22312210
(98)

22313794
(97)

22314461
(96)

22288496
(94)

22314359
(93)

22315315
(92)

22308014
(92)

22310583
(89)

22315618
(85)

22315198
(84)

22312855
(83)

22314962
(83)

22311301
(81)

22312509
(79)

22314516
(79)

22314277
(77)

Cluster

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u

tu
al

In
fo

rm
at

io
n

(b
it

s)

MI

presence SMI

MI cluster maximum

(b) Largest clusters

Figure 7.4: Mutual information of all domains in clusters of human and mouse sequences. (a)
contains the full set of 9000 clusters. (b) depicts only the largest clusters, of size indicated in
parentheses. Clusters are ordered by descending size. The properties of each contained domain are
represented by two points in the column of a cluster: MI, the mutual information of that domain
with the entire clustering, and pSMI of this domain in the cluster. Additionally, the MI cluster
maximum is depicted.

124



In contrast, consider the full set of sequences in the Mouse and Human genomes (Figure 7.4).
Here, it becomes obvious that many domains do occur in more than one cluster. The apparent
horizontal bands are domains that occur in multiple clusters. Additionally, very many clusters
contain domains that have mutual information values greater than the maximum attainable by
association with only that particular cluster. These values are the result of close association with
larger clusters.

This figure illustrates clusters where there exists a domain that occurs in every sequence of that
cluster. Such domains are perfectly correlated with the clustering: all sequences that contain it
comprise a single cluster. These domains have mutual information equal to the cluster maximum,
and a pSMI value immediately below the mutual information. Recall that the difference in value
between mutual information and pSMI of such perfectly correlated domains is due only to consid-
eration of the absence of the domain in all other clusters with the mutual information.

Also illustrated are clusters that contain one domain that has high mutual information, relative to
the MI cluster maximum, and which has a high pSMI value. The assignment of sequences to such
clusters could be performed by considering only the presence or absence of the domain of interest.
When the cluster represents a family that is single-domain, this is a trivial case.

7.8 Mutual information of domains versus entropy

In the preceding section, we considered the data from a perspective of family or cluster structure.
Now, the analysis will target the behavior of domains with respect to a clustering.

Figures 7.5 and 7.6 show the entropy of the distribution of that domain over all sequences on
the horizontal axis. The vertical position gives the mutual information of that domain and the
clustering, or family structure. The objective of this construction is to identify how closely domains
correspond to a clustering as a whole. Comparison of the mutual information and entropy of each
domain is a measure of the degree to which sequences that contain that domain are clustered
together. It is important to approach this from a perspective that is invariant to the number of
instances of a domain. Domains that occur in very few sequences can contribute less knowledge of
relationships among the full set of sequences. (Each domain can define at most one bi-partitioning
of the sequences.) Most domains occur in relatively low count, however; taken together, it is these
domains that most define families.

More formally, recall that the upper bound of mutual information of two variables is the lesser of
the entropies of those variables (see page 112). Here, the entropy of a domain is directly related to
the number of sequence instances. The entropy of the clustering is much greater than that of any
domain in both the benchmark families (H(C) = 2.6) and the Neighborhood Correlation clustering
(H(C) = 11.2). The mutual information of a domain, d, is equal to the entropy of d if and only if
the clusters containing d do not contain any sequences that lack domain d.

Beyond identifying domains that have mutual information tending toward their entropy, which
indicates a perfect correspondence with one or more clusters, this construction can be used to
identify whether there exists a set of domains that are inconsistent and disparate from the
clustering. These would be identified by a mutual information much less than the entropy.

This figure is intended to address (1) whether domains tend to have mutual information tending

125



0.0 0.2 0.4 0.6 0.8 1.0

Entropy (bits)

0.0

0.1

0.2

0.3

0.4

0.5

M
u

tu
al

In
fo

rm
at

io
n

(b
it

s)

PF00069 (753)

PF07714 (239)

PF00443 (100)

PF00250 (94)

PF00225 (89)

PF00433 (75)

PF00200 (60)
PF01421 (58)

PF00063 (55)

PF01403 (45)

PF00130 (37)

PF00020 (36)

PF00907 (32)

PF00612 (30)

PF01437 (27)

Figure 7.5: Mutual information as compared to the entropy of each domain in the family benchmark.
The most numerous domains are labeled by PFam identifier, with the number of sequence instances
in parentheses.

toward their entropy, which would indicate perfect correspondence with one or more clusters, and
(2) whether there is a set of inconsistent domains that are disparate from the clustering, and
identifiable by having much greater entropy than mutual information.

In the 20 Families, the majority of the 203 domains lie on or very close to the diagonal (note the
different axis scales), indicating perfect association with the structure of the families. This could be
anticipated from Figure 7.3. A notable lower line of domains is apparent, and interesting. This set
of domains includes PF00041 (FN3), PF00433 (Pkinase C), PF07714 (Pkinase Tyr) and PF00069
(Pkinase). These domains exist only in the Kinase family, but are limited in mutual information
because they occur in only some of the sequences. Note that the domain FN3 is not believed to
be a consistent domain, but no other families in the benchmark have an instance of it. Domains
that are found in low count in large clusters, but perfectly associated with one cluster, will have
lower I/H than those that are found in smaller clusters, even if those found in smaller clusters are
not consistent.

This effect appears to be an artifact of limiting the dataset under study. Recall that few domains
are actually inconsistent between our curated families, but do occur in un-curated sequences in
the genomes. Including those other sequences ameliorates the effect, and the distinction does not
persist in the clustering of all human and mouse sequences.

Figure 7.6 represents the mutual information and entropy of domains in the clustering of all mouse

126



Figure 7.6: Mutual information as compared to the entropy of each domain in the clustering of
mouse and human sequences. The most numerous domains are labeled by PFam identifier, with
the number of sequence instances in parentheses.

and human sequences. This figure demonstrates, again, that most domains lie upon the I = H
diagonal, and thus are maximally informative. This may be interpreted to mean that most instances
of an individual domain occur in clusters where nearly all sequences contain that domain. This
could correspond to a single cluster, or several clusters, each of which have many instances of the
domain.

Notable, highly informative domains include PF00001 (7-transmembrane-1), PF00096 (zinc-finger
C2H2), and PF00069 (Pkinase). From other analyses, we expect all curated families, especially
the Kinase family, to be very well reconstructed with the average linkage threshold used here. It
is an open question whether the 7-transmembrane-1 and zinc-finger domains are inconsistent
domains. This data, and the following analyses suggest that irrespective of this question, they do
not, however, lead to domain-chaining and the inclusion of sequences with other domains when
Neighborhood Correlation is used.

Interestingly, and perhaps contradictory, PF00400 (WD40) occurs in 75 clusters and 508 sequences,
which would suggest inconsistency, a conclusion consistent with other evidence about the WD40
domain [134]. The combined size of all 75 clusters is 714 sequences, suggesting that while the
domain may be inconsistent, it does tend to be found in nearly all sequences within the clusters
where it does occur.

127



Factor Aggregate
function

Description

num domains mean, sum Number of domains in a cluster, on average
per sequence, or in total.

seq length mean Amino acid length of sequences in a cluster,
on average per sequence.

cluster max - Highest possible mutual information for a do-
main that occurs exclusively in all sequences
of that cluster.

domain mi maximum Mutual information of the domain in that
cluster with greatest mutual information.

domain psmi median pSMI of each domain in a cluster.
domain mi psmi median For each domain in a cluster, the difference be-

tween the mutual information and its pSMI.
clmax less psmi median For each domain in a cluster, the difference

between cluster max and its pSMI.
clmax less mi median For each domain in a cluster, the difference

between cluster max and its mutual infor-
mation.

Table 7.1: Features of clusters.

7.9 Characterization of clusters by domain content

Beyond the ability to accurately classify families, as covered in earlier chapters, it is valuable to
identify defining features of those predicted families. For example, the families in Figure 7.3 and
clusters in Figure 7.4 have been ordered by descending size. In previous chapters, they have been
organized with respect to the number and variety of domains observed in the family. Each of these
figures suggest that rich structure results from the information-theoretic approach pursued here.
This section investigates whether this structure can be used to reliably group families and predicted
families into classes that mirror our intuition about the modes of family evolution.

To this end, the results presented in Figures 7.3 and 7.4 have been used to derive a range of
features about the domain content of individual clusters. The goal at this stage is not to ascertain
whether any particular feature is biologically relevant, but whether it, in combination with the
other features, can be used to explain the structure observed in the domain mutual information
data. A second step of considering the biological relevance of these features will be discussed as
they are evaluated in the following pages.

The complete set of features considered is listed in Table 7.1. The purpose of these features is
for each to result in a single value for each cluster or family. The majority of these features are
calculated for individual domains in every cluster or family, which results in as many values as there
are domains. A single value for a cluster or family is achieved by applying an aggregate function,
such as the sum, mean, or median, over all instances in the cluster. Other features, such as the
number of domains or the sequence length, are not based on the domain information theoretic
values derived in this chapter.

128



0 1 2 3 4 5 6 7 8
Principal component

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

va
ri

an
ce

Cumulative contribution

Component

Figure 7.7: Fraction of variance explained by successive PCA components. The first two com-
ponents, alone, explain more 60% of the total data variance. The first three components explain
approximately 75% of the variance.

Many possible features are highly correlated. For example, the mean and median are unlikely to
differ greatly for any of these features. To reduce the set of features considered here, this table lists
the aggregate functions that were not observed to be highly correlated, as described in the following
section. That is, this restricted set is as explanatory as the inclusion of all aggregate functions for
each of these factors.

7.9.1 Principal component analysis

The calculation of features for each cluster yields a k × N matrix, for k features and N clusters.
Principal component analysis (PCA) [73] has been performed upon this matrix to accomplish two
goals. First, PCA reduces the dimensionality of this feature space. Second, it facilitates the
investigation of which individual features are most explanatory. The space derived from PCA lacks
discrete, identifiable features, reducing one’s ability to intuit about what a value in a dimension
might mean. If a small number of features are equivalent in explanatory power as the derived PCA
component space, the use of the features directly would allow greater intuition of the result.

The result of PCA is the construction of a new parameter space where each dimension, or compo-
nent, is a vector in the original feature space. Each vector is aligned along the axis of maximum
variance of the data, such that the first component accounts for the greatest variance, followed by
successive components. For the dimensionality of the space to be reduced in an effective manner,
the desired result is that the first few components explain the majority of the variance in the original
feature space. The amount of variance explained by individual components is given in Figure 7.7.
The standard deviation of the fraction explained by each component is indicated by individual
error bars, and are effectively of magnitude zero. These have been calculated over 1000 trials where
75% of the data is sampled. This Scree plot indicates the fraction of variance explained by each
successive component in the transformed PCA space. The primary observation to be made is that

129



−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Component 0

−0.2

−0.1

0.0

0.1

0.2

C
om

p
on

en
t

1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster sizemed clmax less psmi

max domain mi

med domain mi psmi

−0.2 0.0 0.2 0.4 0.6

Component 0

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi

max domain mi

med domain mi psmi

−0.2 0.0 0.2 0.4 0.6

Component 1

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi

max domain mi

med domain mi psmi

Figure 7.8: Coefficients of individual features in the PCA component space. Error bars indicate
the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

130



the first two components account for in excess of 60% of the variance in the feature space, and
the first three explain greater than 75% of the variance. As a result, the remainder of this section
considers the first three components.

Figure 7.8 shows the contribution of individual features to the PCA component space. Points in-
dicate the component values when computed on the entire dataset. Error bars again indicate the
standard deviation over 1000 trials where 75% of the clusters are used as input to the PCA proce-
dure. A low standard deviation of the magnitude to which a feature contributes to a component
indicates that the component is stable with respect to variation of the input data. A high standard
deviation can result from several causes, and does not necessarily indicate that the features that
contribute to a component are sensitive to the data. For example, consider that the sign of the
coefficients of a component may be reversed, without changing the significance of component, or
the features that contribute to it. Oscillation of sign would contribute to a high standard deviation.
This effect appears to be responsible for the majority of the standard deviations measured here.
Overall, the PCA component space is observed to be stable.

Figure 7.8 also provides insight into the relationship between individual features. For example,
cluster-size and med-clmax-less-psmi are co-located in components 0 and 1, suggesting that
their values are very similar, at least with respect to the approximately 60% of the variance that
these components capture. The omission of either feature would not qualitatively alter either of
the first two components, or the total proportion of variance that they explain. Component 2 does
separate these features widely.

Other features, such as med-clmax-less-mi have large magnitudes and are distinctly separate
from the other features, in both components 0 and 1. Such features may be interpreted to measure
a property that is not captured by any other feature. Additionally, the contribution of features
derived from values other than the information theoretic measures developed in this chapter may
be investigated. Notably, the features mean-seq-length and mean-num-domains are found in a
region of components 0 and 1 that does not substantially overlap with the coefficient of any other
feature.

7.9.2 Projection of clusters

A primary goal of the information theoretic measures developed in this chapter is to characterize
the properties of clusters. Figure 7.4 considered the individual domains that comprise each cluster,
but that presentation does not directly facilitate the comparison or grouping of clusters into classes
related to their biological properties. The projection of clusters into the PCA coordinate space
allows one to group clusters with respect to features derived from the domain information measures.

Figure 7.9 represents a projection of all clusters in the human and mouse clustering into the PCA
component space. These figures do not directly represent biological properties, though empirical
examination of individual clusters provides some insight into the dominant structural properties
captured by the PCA coordinate space. The following discussion is a sampling of notable clusters.

The most notable feature of Figure 7.9(a) is a bifurcation of clusters, approximately along the lines
y = x and y = −x. This separation does appear to correspond to a biologically relevant separation.
In particular, clusters that lie approximately along the upper line, from coordinate (0,0), tend to
be very large in size (Figure 7.10), and contain a great many domains (Figures 7.11). The domain

131



0 3 7 12 16 20 25 29 33 37
Component 0

-11

-5

0

6

12

18

24

31

37

43

C
om

p
on

en
t

1

100

101

102

103

0 3 7 12 16 20 25 29 33 37
Component 0

-32

-27

-22

-16

-11

-6

-1

4

9

14

C
om

p
on

en
t

2

100

101

102

103

-11 -5 0 6 12 18 24 31 37 43
Component 1

-32

-27

-22

-16

-11

-6

-1

4

9

14

C
om

p
on

en
t

2

100

101

102

103

Figure 7.9: Projection of clusters into PCA component space. This figure is a heatmap of 100x100
bins, where black points indicate a single cluster, and increasingly bright points represent as 3000
clusters at that coordinate.

132



content of these large clusters may also be observed in Figure 7.4(b).

For example, the two clusters near coordinate (26,42) are large. The upper cluster contains 1380
sequences, and 21 different domains. This cluster contains all of the 1115 zinc-finger C2H2 domains
in human and mouse, as well as the majority (662 of 682) of KRAB domains. The other cluster
contains 920 sequences and a total of 89 different domains. This cluster corresponds to the curated
Kinase family. It contains most (696 of 753) Pkinase domains in these genomes.

The cluster at coordinate (38,37) is comprised of 1568 sequences, nearly all of which (1552) contain
a 7-transmembrane-1 domain, representing a majority of the total of 2150 sequences that have this
domain. None of these sequences contain any other domain found in the PFam database.

Note, however, that not all clusters in this area of the PCA coordinate space necessarily have a
single domain that is found in the majority of the sequences that comprise a cluster. The cluster
near coordinate (19,31) contains 530 sequences, and 93 different domains, including SH3, CH, and
Spectrin. While a large number of different domains are represented, no single domain occurs in
greater than 15 sequences of this cluster.

Consistent with the large cluster sizes observed along the line y = x, the three clusters nearest to
coordinate (13,15) range in size from 314 to 489 sequences, with 6 to 40 different domains in each
cluster. Sequences within each of these clusters predominantly contain a single domain. Top to
bottom, these clusters are characterized by (1) the Ankarin repeat and SOCS box domains (2) the
majority (489) of the 7-transmembrane-1 domains not accounted for above, and (3) the Leucine
Rich Repeat 1 and I-set domains.

Continuing further down the y = x line toward the origin, cluster sizes decrease (Figure 7.10),
with clusters of approximately 100 sequences near the coordinate (3,3). Clusters near this position
contain 1-15 different domains (Figure 7.11), with a single domain found in the majority of sequences
in each cluster.

Clusters along the line y = −x in Figure 7.9(a) are very small. Near coordinate (0,0), most
clusters are pairs of sequences. Continuing downward, toward (3,-4), clusters are comprised almost
entirely of singletons (Figure 7.10). The clusters below a value of -6 for component 1 are small
clusters, ranging in size from 1 to 42 sequences. Interestingly, all of these clusters contain the 7-
transmembrane-1 domain, and these sequences account for nearly all of the remaining instances of
this domain not already noted above. Only one cluster, at (10.6,-6.35), contains any other domain.
That domain, Sp100, is found in a single sequence.

Correspondence with biological features

Having considered the general trends of cluster size and number of contained domains when clusters
are projected into the PCA component space, it is useful to consider how the separation of clusters
in this space corresponds to our intuition of categories of families. For example, the 20-family
benchmark used throughout this dissertation is most directly categorized into families of single-
domain architectures and those that are multidomain, with either conserved or variable domain
architectures. Further intuition suggests that the majority of families are characterized by a single
domain found in nearly all members of the family, and other domains contribute auxiliary or specific
function to individual sequences.

133



Figure 7.10: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the number of sequences in found in that cluster.

134



Figure 7.11: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the total number of distinct domains found in that cluster.

135



Does the PCA coordinate space highlight other classes of families that are not represented by
our family benchmark? To address this question, Figure 7.12 overlays the curated families atop
a scatter-plot of clusters the space of PCA components 0 and 1. Families have been colored by
the categories listed in Table 2.1, with single-domain families in red, multidomain families with
conserved architectures in cyan, and those with variable architectures in orange. Because the
clustering result does not necessarily assign all members of a family to a single cluster, more than
one cluster may have sequences of a particular family. In those cases, the most representative
cluster is depicted as a solid color, and each other cluster is outlined.

Considering the entire space, the most notable observation is that a very few families share charac-
teristics with the Kinase family. Domain content of the clusters surrounding the most representative
Kinase cluster were discussed above. A second dominant observation is that clusters which are not
highly representative of a family, but contain some members, are widely separated from more ac-
curate clusters, and lie along the lower y = −x line in the space of components 0 and 1. These
clusters tend also to be very small, containing only approximately 1−5 sequences per cluster. With
respect to known families, this characteristic suggests that clusters along this line may represent
sequences that were inappropriately partitioned from the containing family.

Looking closer, with the lower two plots in Figure 7.12, the clusters that best represent families
appear to separate to some degree by category. Excepting the TNF family, which presents particular
challenge to the clustering performed here, all single-domain families are localized to a small region
near coordinate (1,2), though the FOX family is at coordinate (2,4), most likely because it is a very
large in comparison to the other single-domain families in the benchmark.

Multidomain families with conserved architectures are found distinctly lower with respect to com-
ponent 1. Note that the Notch family is particularly poorly represented by the use of the Neigh-
borhood Correlation threshold chosen here. The F-statistic, shown in Figure 6.9, illustrates that a
very high threshold would be required to correctly classify this family. The 8 members of Notch
are found in a single cluster at coordinate (8.4,12.4), though these sequences are commingled with
160 sequences in total, and 47 domains. That is, this cluster does have composition as would be
seen in a large family of variable domain architecture, but happens not to correspond to what we
believe is a correct, curated family. Similarly, members of the KIR family are found in a larger
cluster that contains other unrelated sequences.

The USP family cluster appears separate from other families with conserved architectures. Here,
the clustering result is quite accurate. While the USP family is regarded as having a conserved
architecture, the family does contain domains that are found only in a small minority of sequences in
the family. The cluster at (3.2,5.6) contains 86 of the 100 USP family members, and 11 sequences
that are not known to be part of USP. Each of the remaining clusters are of size 1–4 and each
contain only members of USP. As may be observed from Figure 6.9, the threshold selected here is
slightly too stringent for this family.

Multidomain families with variable architectures are found more distant from the origin than either
single-domain or multidomain families with conserved architecture. Nearly all are in the region of
coordinate (3,3). As can be expected from the size distribution observed in Figure 7.10, larger
families are found more distant from the origin along the line y = x.

Overall, these data suggest that the curated benchmark has broad coverage of families with at least

136



Figure 7.12: Projection of clusters into PCA component space. Clusters that contain at least one
curated family member are outlined. The most representative cluster is shaded, and the number of
clusters is in parentheses.

137



approximately 10 members. Among larger clusters, there do not exist broad regions of the PCA
component space where no family is found. However, no family is found near the origin, or below
the coordinate of 0 in component 1. As seen in Figure 7.10, these clusters contain fewer than 20
sequences each. It remains to be seen whether the curated benchmark therefore fails to represent
the class of families found in this region, or whether they result from an artifact of clustering. Those
clusters at the lowest extreme, along y = −x, are most likely to be fragments of larger families,
such as the Kinase family members observed in this region.

Correspondence with information features

The preceding discussion concerned the characterization of the PCA component space with respect
to (1) features that correspond directly to intuitive measures, such as the size of a cluster, or the
number of domains found within it, and (2) known families. This section considers features that
directly correspond to the information measures developed in this chapter.

Figure 7.13 depicts clusters, annotated by med-clmax-less-psmi. The value med-clmax-less-psmi
represents the maximum possible cluster mutual information less the presence specific mutual in-
formation of each contained domain. To recall, the specific mutual information is the quantity
that the presence of a domain in a specific cluster contributes to the summation for the mutual
information of a domain with respect to all clusters. The difference between this value and the
maximum possible mutual information for a cluster is used as a means of normalizing for cluster
size.

This figure demonstrates that values of med-clmax-less-psmi are relatively constant along any
line y = −2

3x, and increase in a nearly monotonic fashion from the lower left coordinate of this plot
to the upper right. First, this illustrates that neither component directly recapitulates the variance
of med-clmax-less-psmi. Indeed, looking back to Figure 7.8, such a result may be expected from
the large coefficients of this value in both components 0 and 1.

Figure 7.14 is of similar construction to the previous figure. Here, the difference between the
maximum possible mutual information and the mutual information of each domain is considered.
Values in this figure are observed to increase monotonically with increasing values of component 1.
A notable exception to this trend is the cluster found at (38,37), which, as discussed above, contains
only sequences with the 7-transmembrane-1 domain. Our understanding of families suggests that
that cluster is an oddity, and is unlikely to be a true family.

Clusters in the lower portion of this figure tend to have negative values, meaning that they contain
domains that have large values of mutual information, but not due to their membership in these
clusters. This provides further evidence that the lowest clusters with respect to component 1 are
likely to correspond to partial families.

138



Figure 7.13: Projection of clusters into PCA component space. Clusters in this figure are colored
according to med-clmax-less-psmi.

139



Figure 7.14: Projection of clusters into PCA component space. Clusters in this figure are colored
according to med-clmax-less-mi for that cluster.

140



Chapter 8

Conclusions and future directions

This dissertation has presented a theoretical context for family classification, and has demonstrated
effective means for performing classification on large data sets. A specific summary of results is
presented in Section 1.5. This chapter addresses the broader implications of the work.

The underlying rationale throughout this dissertation is that the history of evolution is reflected
in the structure of the sequence similarity network. Here, this structure has been exploited to
yield an effective family classification methodology, particularly by distinguishing the traces of
gene duplication from those of domain shuffling. This suggests that network structure is indeed
a reflection of the evolutionary processes. It leaves open the intriguing question of what other
evolutionary processes may be identified using a similar framework.

A lack of knowledge about genome-wide properties of gene families has posed a challenge for the
development and validation of effective family classification methods. A complicating factor in
considering those existing methods designed to detect homology is that some do not appear to use
the definition of homology, which is an evolutionary relationship. Often the definition used is only
implicit and ambiguous. In other cases, where the definition used is explicit, statements such as
“...we use the term ‘phylogenetic’ in the sense of ‘relatedness of biological functions”’ [83] are not
uncommon. Disagreements in definitions affect the data used to evaluate the accuracy of a method,
and weaken the basis for biologically motivated conclusions. The definition of homology developed
in this dissertation encompasses multidomain gene families, and defines of a concrete goal for family
classification.

A rigorous definition of the goal of family classification also facilitates evaluation. Validation of
the result of family classification is of critical importance if these methods are to receive broader
use. To this end, two primary means of validation have been introduced. First, a statistical
framework for extrinsic evaluation has been presented, and the accuracy of the family classification
methodology developed here has been concretely demonstrated. The observed performance on a
curated benchmark suggests that the methodology may be well-suited for classification of families
in other data sets. Additionally, a framework for intrinsic validation using features of the data
itself has been developed. This is key to use when little is known before classification about the
family structure of the data set — a typical scenario.

The combination of family classification methods and approaches for validation suited toward large

141



data sets addresses a critical niche in the contemporary analysis of genomic sequence data. For
much of the past decade, these data have increased exponentially in size, at least as fast as increases
in computational capacity. Beyond the value of addressing the engineering challenges, the ability
to use large data sets expands the range of possible studies. The availability of such data makes
it practical to ask questions and pose hypotheses that may be addressed only only at large scale.
For example, the investigation of evolutionary differences between lineages tends to requires data
sets that are large enough to encompass the lineages under study, and most likely, other related
lineages. Other, novel biological properties may only be evident when a very large quantity of data
is used, sometimes because the signal is weak, and, in other instances, because the property is only
observed across broad evolutionary distances.

Efforts to develop large public databases of gene families has illustrated that the biological commu-
nity has a need for such data [72, 103, 119, 146]. Toward fostering broader use, and addressing the
practical engineering challenges of large-scale classification, I have collaborated with the Princeton
Protein Orthology Database [72] to bring more accurate family predictions to their database. The
PLAZA database [119] has also shown interest in the classification pipeline I have developed.

The relationship between domain content and gene function has long been a focus of study in
this field. This work extends the range of study to include gene families, a natural grouping of
evolutionary properties. For example, it is widely believed that family members tend to share
biological function. The accurate prediction of families can be used to evaluate the generality
of this hypothesis in families that as yet have not been identified, or predicted. Additionally,
the information-theoretic approach developed in this dissertation comprises an initial step toward
characterizing the domain content of predicted families. The results in Chapter 7 support the
conclusion that domain content, alone, cannot be used to recapitulate the family structure predicted
by the methods developed in this thesis. Rather than a detriment, this quality suggests that domain
content may now be used to better describe the predicted families. Predicted families may be
better understood when they may be organized based on such description. Toward this end, a set
of features have been used to group predicted families into classes that facilitate intuition about
biology similarities, and differences.

In the greater context, this dissertation comprises the groundwork for large scale studies of the bio-
logical properties of gene families. Currently, studies of biological properties have been partitioned
into two extremes. Detailed studies of individual families have provided a wealth of knowledge
of the evolutionary processes that give rise to gene families. These have provided many examples
of families, and have guided the methodology developed in this dissertation. At the same time,
large-scale studies of complete genomes have focused upon individual entities, such as domains or
sequences. However, an inability to accurately identify gene families has stymied inference with
respect to the evolutionary background of gene families in large-scale data.

142



Appendix A

Infrastructure

A.1 Software

Please refer to http://www.jjoseph.org/phd_dissertation for repositories of my software and
data.

A.1.1 Existing tools and packages

Much of the software implementation in this dissertation has been produced in the Python [143]
programming language. A variety of additional Python packages have been employed, including the
following. The numerical packages, Scipy [77] and Numpy [112], have been used to facilitate efficient
numerical computation. The NetworkX [67] has been used for calculation of network metrics. The
Biopython [34] package has been used to parse Blast and source database XML formats. Most
plots in this document have been produced with Matplotlib [13]; R [123] has been used for the
remainder.

The relational database structure described in this document has been implemented using Post-
gresql [65].

The implementation by Lowenstein et al. [96] has been used for average-linkage, hierarchical clus-
tering.

A.1.2 Developed software

All software developed as part of this dissertation is supplied under the terms of the GNU General
Public License, Version 3 [57]. This includes implementations of all methods described in this
document, the schema of the relational database, and all code used to produce the data presentation
(i.e., figures) in this document. Copyright to all of the above is retained by myself, Jacob Joseph,
and Carnegie Mellon University.

Additionally, and central to the use of this work, I will supply the contents of the relational database
used as the central data source in this dissertation work. A variety of data sources comprise the
source data used in this database, including NCBI, SwissProt, Ygob, and Panther. I place all derived
data in the public domain. However, not all of these sources provide a clear license for reuse or

143

http://www.jjoseph.org/phd_dissertation


distribution. Nonetheless, to the best of my knowledge, these data sources exist to facilitate broad
use.

A.2 SQL Schema

durandlab2_schema.sql
1 CREATE TABLE taxon (

2 tax_id integer,

3 name text NOT NULL,

4 common_names text[],

5 PRIMARY KEY (tax_id)

6 );

7

8 CREATE TABLE prot_seq_source (

9 source_id serial,

10 source_name text UNIQUE NOT NULL,

11 PRIMARY KEY (source_id)

12 );

13

14 CREATE TABLE prot_seq_source_ver (

15 source_ver_id serial,

16 source_id integer NOT NULL REFERENCES prot_seq_source ON DELETE RESTRICT,

17 version text NOT NULL,

18 date timestamp NOT NULL,

19 PRIMARY KEY (source_ver_id),

20 UNIQUE (source_id, version, date)

21 );

22

23 -- these entries should be unique. Unfortunately mysql cannot have a

24 -- unique entry longer than 767 bytes (if sequence were a varchar) or

25 -- include a text field. BEWARE of (crc,length) conflicts! This

26 -- restriction may later be removed if it poses a problem. Length

27 -- need not be stored, but it could help in the event of conflicts.

28 -- adding molecular_weight eliminates all conflicts so far

29 CREATE TABLE prot_seq_str (

30 seq_str_id serial,

31 sequence text NOT NULL,

32 crc text NOT NULL,

33 length integer NOT NULL,

34 molecular_weight integer NOT NULL,

35 PRIMARY KEY (seq_str_id),

36 UNIQUE (crc, length, molecular_weight)

37 );

38

39 CREATE TABLE prot_seq (

40 seq_id serial,

41 seq_str_id integer NOT NULL REFERENCES prot_seq_str ON DELETE RESTRICT,

42 PRIMARY KEY (seq_id)

43 );

44

144



45 CREATE TABLE prot_seq_version (

46 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

47 source_ver_id integer NOT NULL REFERENCES prot_seq_source_ver ON DELETE RESTRICT,

48 primary_acc text NOT NULL,

49 PRIMARY KEY (seq_id, source_ver_id),

50 UNIQUE (source_ver_id, primary_acc)

51 );

52

53 CREATE TABLE prot_seq_accession (

54 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

55 source_id integer NOT NULL REFERENCES prot_seq_source ON DELETE RESTRICT,

56 acc_order smallint NOT NULL, -- 0,1,2,...

57 accession text NOT NULL,

58 PRIMARY KEY (seq_id, acc_order)

59 );

60

61 CREATE TABLE prot_seq_set (

62 set_id serial,

63 name text NOT NULL,

64 description text NOT NULL,

65 PRIMARY KEY (set_id),

66 UNIQUE (name, description)

67 );

68

69 CREATE TABLE prot_seq_set_member (

70 set_id integer NOT NULL REFERENCES prot_seq_set ON DELETE RESTRICT,

71 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

72 PRIMARY KEY (set_id, seq_id)

73 );

74

75 --------------------------------

76 -- Swiss-Prot specific info

77 --------------------------------

78 CREATE TABLE sp_gb_tax_id (

79 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

80 gb_tax_id integer NOT NULL,

81 PRIMARY KEY (seq_id)

82 );

83

84 CREATE TABLE sp_feature_key_str (

85 feature_key_strid serial,

86 feature_key text UNIQUE NOT NULL,

87 PRIMARY KEY (feature_key_strid)

88 );

89

90 CREATE TABLE sp_feature (

91 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

92 feature_key_strid integer NOT NULL REFERENCES sp_feature_key_str ON DELETE RESTRICT,

93 from_pos text NOT NULL,

94 to_pos text NOT NULL,

95 comment text NOT NULL,

145



96 ftid text NOT NULL

97 -- PRIMARY KEY (seq_id, feature_key_strid, from_pos, to_pos, comment, ftid)

98 );

99 CREATE INDEX seq_id_key on sp_feature(seq_id);

100

101 CREATE TABLE sp_keyword_str (

102 keyword_strid serial,

103 keyword text UNIQUE NOT NULL,

104 PRIMARY KEY (keyword_strid)

105 );

106

107 CREATE TABLE sp_keyword (

108 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

109 keyword_strid integer NOT NULL REFERENCES sp_keyword_str ON DELETE RESTRICT,

110 PRIMARY KEY (seq_id, keyword_strid)

111 );

112

113 CREATE TABLE sp_xtra (

114 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

115 -- data_class enum(’STANDARD’,’PRELIMINARY’) NOT NULL,

116 entry_name text NOT NULL,

117 gene_name text NOT NULL,

118 description text NOT NULL,

119 -- created datetime NOT NULL,

120 -- sequence_update datetime NOT NULL,

121 -- annotation_update datetime NOT NULL,

122 PRIMARY KEY (seq_id)

123 );

124

125 -- store swissprot cross references

126 -- since the DR line does not seem well defined, simply store the

127 -- db name and next 4 semi-colon delimited fields

128 CREATE TABLE sp_cross_ref (

129 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

130 source_id integer NOT NULL REFERENCES prot_seq_source ON DELETE RESTRICT,

131 id_0 text NOT NULL,

132 id_1 text NOT NULL,

133 id_2 text NOT NULL,

134 id_3 text NOT NULL,

135 --PRIMARY KEY (seq_id, source_id, id_0, id_1, id_2, id_3)

136 );

137 -- a primary key of all columns is very large. Just put a key for faster lookups

138 CREATE INDEX sp_cross_ref_seq_id on sp_cross_ref (seq_id, source_id);

139

140

141 --------------------------------

142 -- BLAST

143 --------------------------------

144 CREATE TABLE blast_run (

145 br_id serial,

146 set_id integer NOT NULL REFERENCES prot_seq_set ON DELETE RESTRICT,

146



147 date timestamp NOT NULL,

148 num_sequences integer NOT NULL,

149 num_residues integer NOT NULL,

150 params text NOT NULL,

151 comment text,

152 blastall_path text,

153 query_set_id integer NOT NULL REFERENCES prot_seq_set ON DELETE RESTRICT,

154 PRIMARY KEY (br_id)

155 );

156

157 CREATE TABLE blast_lock (

158 br_id integer NOT NULL REFERENCES blast_run ON DELETE RESTRICT,

159 query_set_id integer NOT NULL REFERENCES prot_seq_set ON DELETE RESTRICT,

160 set_id integer NOT NULL REFERENCES prot_seq_set ON DELETE RESTRICT,

161 chunk_size integer NOT NULL,

162 max_chunk integer NOT NULL,

163 chunk integer NOT NULL,

164 start_time timestamp,

165 end_time timestamp,

166 hostname text,

167 PRIMARY KEY (br_id,chunk)

168 );

169

170

171 CREATE TABLE blast_hit_arr (

172 br_id integer NOT NULL REFERENCES blast_run ON DELETE RESTRICT,

173 hit_rank smallint NOT NULL,

174 seq_id_0 integer NOT NULL REFERENCES prot_seq(seq_id) ON DELETE RESTRICT,

175 hit_list int[], -- int array. allows indexing and fast searching

176 bit_score double precision[],

177 e_value double precision[],

178 seq_start_0 integer[],

179 seq_end_0 integer[],

180 seq_start_1 integer[],

181 seq_end_1 integer[],

182 identities integer[],

183 gaps integer[],

184 positives integer[],

185 low_complexity boolean[],

186 coverage double precision[],

187 PRIMARY KEY (br_id, hit_rank, seq_id_0)

188 );

189

190 -- store symmetric scores.

191 CREATE TABLE blast_hit_symmetric_arr (

192 br_id integer NOT NULL REFERENCES blast_run ON DELETE RESTRICT,

193 seq_id_0 integer NOT NULL REFERENCES prot_seq(seq_id) ON DELETE RESTRICT,

194 hit_list int[],

195 bit_score double precision[],

196 e_value double precision[],

197 PRIMARY KEY (br_id, seq_id_0)

147



198 );

199

200 CREATE TABLE nc_run (

201 nc_id serial,

202 br_id integer NOT NULL REFERENCES blast_run ON DELETE RESTRICT,

203 date timestamp NOT NULL,

204 e_thresh double precision NOT NULL,

205 bit_thresh double precision,

206 nc_thresh double precision NOT NULL,

207 blast_hit_limit integer,

208 smin double precision NOT NULL,

209 smin_factor double precision NOT NULL,

210 use_symmetric boolean NOT NULL,

211 score_type text NOT NULL,

212 self_hits smallint NOT NULL,

213 PRIMARY KEY (nc_id),

214 UNIQUE (br_id, date, e_thresh, bit_thresh, nc_thresh, blast_hit_limit,

215 smin, smin_factor, use_symmetric, score_type)

216 );

217

218 CREATE TABLE blast_hit_nc_arr (

219 nc_id integer NOT NULL REFERENCES nc_run ON DELETE RESTRICT,

220 seq_id_0 integer NOT NULL REFERENCES prot_seq(seq_id) ON DELETE RESTRICT,

221 --num_match_seq_0 integer NOT NULL,

222 hit_list int[],

223 -- Using a composite type for the record means that indexing

224 -- the array takes O(i) time, as postgres assumes a varable

225 -- length element, and does a scan through the array. Using

226 -- fixed types allows O(1) access

227 -- record_list nc_record[],

228 nc_score double precision[],

229 --num_match_seq_1 integer[],

230 --num_match_seq_both integer[],

231 PRIMARY KEY (nc_id, seq_id_0)

232 );

233

234 CREATE TABLE nc_lock (

235 nc_id integer NOT NULL REFERENCES nc_run ON DELETE RESTRICT,

236 chunk integer NOT NULL,

237 chunk_min integer NOT NULL,

238 chunk_max integer NOT NULL,

239 start_time timestamp,

240 end_time timestamp,

241 hostname text,

242 PRIMARY KEY (nc_xid, chunk)

243 );

244

245 CREATE TABLE prot_seq_taxonomy (

246 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

247 gb_tax_id integer NOT NULL,

248 PRIMARY KEY (seq_id)

148



249 );

250

251 --------------------------------

252 -- Pfam

253 --------------------------------

254 CREATE TABLE prot_seq_pfam (

255 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

256 align_start integer NOT NULL,

257 align_end integer NOT NULL,

258 envelope_start integer NOT NULL,

259 envelope_end integer NOT NULL,

260 hmm_acc text NOT NULL,

261 hmm_name text NOT NULL,

262 hmm_type text NOT NULL,

263 hmm_start integer NOT NULL,

264 hmm_end integer NOT NULL,

265 hmm_length integer NOT NULL,

266 bit_score double precision NOT NULL,

267 e_value double precision NOT NULL,

268 significance integer NOT NULL,

269 clan text NOT NULL,

270 PRIMARY KEY (seq_id, hmm_acc, align_start, align_end)

271 );

272

273

274 --------------------------------

275 -- Generic (FASTA insertion)

276 --------------------------------

277 CREATE TABLE fa_descr (

278 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

279 descr text,

280 PRIMARY KEY (seq_id)

281 );

282

283 -- Allow mapping from FASTA sequence id to another id (typically

284 -- Uniprot with annotations)

285 CREATE TABLE fa_map (

286 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

287 seq_id_1 integer NOT NULL REFERENCES prot_seq(seq_id) ON DELETE RESTRICT,

288 PRIMARY KEY (seq_id)

289 );

290

291 -- Annotation of FASTA sequences, primarily for those from PPOD

292 CREATE TABLE fa_annotate (

293 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

294 synonyms text,

295 descr text,

296 PRIMARY KEY (seq_id)

297 );

298

299

149



300 --------------------------------

301 -- Derived data

302 --------------------------------

303 -- PFAM domain promiscuity

304 CREATE TABLE sp_promisc (

305 set_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

306 id_0 text NOT NULL,

307 cnt integer NOT NULL,

308 promiscuity double precision NOT NULL,

309 PRIMARY KEY (set_id, id_0)

310 );

family_schema.sql
1 CREATE TABLE family_set (

2 fam_set_id serial,

3 name text NOT NULL,

4 description text NOT NULL,

5 PRIMARY KEY (fam_set_id),

6 UNIQUE (name, description)

7 );

8

9 CREATE TABLE family (

10 family_id serial,

11 name text NOT NULL,

12 abbrev text NOT NULL,

13 description text,

14 PRIMARY KEY (family_id)

15 );

16 -- case insensitive unique

17 CREATE UNIQUE INDEX family_abbrev_unique on family (lower(abbrev));

18

19 CREATE TABLE family_member (

20 seq_id integer NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

21 fam_set_id integer NOT NULL REFERENCES family_set ON DELETE RESTRICT,

22 family_id integer NOT NULL REFERENCES family ON DELETE RESTRICT,

23 PRIMARY KEY (seq_id, fam_set_id)

24 );

cluster_schema.sql
1 CREATE TABLE jj_cluster_run (

2 cr_id serial,

3 date timestamp not null,

4 br_id INTEGER REFERENCES blast_run ON DELETE RESTRICT,

5 nc_id INTEGER REFERENCES nc_run ON DELETE RESTRICT,

6 stype text,

7 set_id_filter INTEGER REFERENCES prot_seq_set ON DELETE RESTRICT,

8 use_symmeric BOOLEAN,

9 score_threshold DOUBLE PRECISION,

10 params text,

11 comment text,

150



12 PRIMARY KEY (cr_id)

13 );

14

15 CREATE TABLE jj_hcluster (

16 cr_id INTEGER NOT NULL REFERENCES jj_cluster_run ON DELETE RESTRICT,

17 cluster_id INTEGER NOT NULL,

18 distance DOUBLE PRECISION NOT NULL,

19 parent_distance DOUBLE PRECISION,

20 parent_id INTEGER,

21 seq_id INTEGER,

22 lft INTEGER,

23 rgt INTEGER,

24 PRIMARY KEY (cr_id, cluster_id)

25 );

26 CREATE INDEX jj_hcluster_parent ON jj_hcluster (cr_id, parent_id)

27 CREATE INDEX jj_hcluster_nested ON jj_hcluster (cr_id, lft, rgt);

28

29 CREATE INDEX jj_hcluster_nested_seq ON jj_hcluster (cr_id, lft, rgt)

30 WHERE seq_id IS NOT NULL;

31

32 CREATE TABLE jj_flatcluster (

33 cr_id INTEGER NOT NULL REFERENCES jj_cluster_run ON DELETE RESTRICT,

34 cluster_id INTEGER NOT NULL,

35 seq_id INTEGER NOT NULL REFERENCES prot_seq ON DELETE RESTRICT,

36 PRIMARY KEY (cr_id, cluster_id, seq_id),

37 );

151





Appendix B

Data

12-genome subset
Organism NCBI taxonomy id Number of sequences

Arabidopsis thaliana 3702 27005
Caenorhabditis elegans 6239 19811
Danio rerio 7955 20886
Dictyostelium discoideum 44689 12445
Drosophila melanogaster 7227 13399
Escherichia coli K-12 83333 4119
Gallus gallus 9031 18204
Homo sapiens 9606 19372
Mus musculus 10090 26119
Rattus norvegicus 10116 27636
Saccharomyces cerevisiae 4932 5813
Schizosaccharomyces pombe 4896 4943

Table B.1: Table (part 1 of 2) of the 48-genomes included in the Panther 7.0 data set [141] used
throughout this dissertation.

153



All other genomes
Organism NCBI taxonomy id Number of sequences

Anopheles gambiae 7165 12433
Aquifex aeolicus VF5 224324 1556
Bacillus subtilis 1423 4103
Bacteroides thetaiotaomicron 818 4775
Bos taurus 9913 20767
Bradyrhizobium japonicum 375 8256
Canis lupus familiaris 9615 19268
Chlamydia trachomatis A/HAR-13 315277 919
Chlamydomonas reinhardtii 3055 14272
Chloroflexus aurantiacus J-10-fl 324602 3850
Ciona intestinalis 7719 14172
Deinococcus radiodurans 1299 3164
Emericella nidulans 162425 9528
Entamoeba histolytica 5759 8032
Eremothecium gossypii 33169 4716
Geobacter sulfurreducens 35554 3414
Gloeobacter violaceus 33072 4409
Leishmania major 5664 8003
Leptospira interrogans 173 4690
Macaca mulatta 9544 21880
Methanosarcina acetivorans 2214 4468
Monodelphis domestica 13616 19468
Neurospora crassa 5141 9804
Ornithorhynchus anatinus 9258 17948
Oryza sativa Japonica Group 39947 26844
Pan troglodytes 9598 19776
Plasmodium yoelii yoelii 73239 7302
Pseudomonas aeruginosa PA7 381754 6246
Saccharomyces cerevisiae 4932 5813
Streptomyces coelicolor 1902 8039
Strongylocentrotus purpuratus 7668 28574
Sulfolobus solfataricus 2287 2922
Takifugu rubripes 31033 18517
Tetrahymena thermophila 5911 25921
Thermotoga maritima 2336 1857
Xenopus (Silurana) tropicalis 8364 18015

Table B.2: Table (part 2 of 2) of the 48-genomes included in the Panther 7.0 data set [141] used
throughout this dissertation.

154



Appendix C

Family score distributions

155



101 102 103 104

BIT score

0

500

1000

1500

2000

2500

O
th

er
p

ai
rs

0

500

1000

1500

2000

2500

F
am

il
y

P
ai

rs

(a) FOX

102 103 104

BIT score

0

50

100

150

200

250

300

350

400

O
th

er
p

ai
rs

0

50

100

150

200

250

300

F
am

il
y

P
ai

rs

(b) Tbox

102 103

BIT score

0

5

10

15

20

25

30

35

O
th

er
p

ai
rs

0

50

100

150

200

250

300

F
am

il
y

P
ai

rs

(c) WNT

102 103

BIT score

0

100

200

300

400

500

600

700

O
th

er
p

ai
rs

0

1

2

3

4

5

6

7

8

F
am

il
y

P
ai

rs

(d) DVL

102 103

BIT score

0

20

40

60

80

100

120

140

O
th

er
p

ai
rs

0

10

20

30

40

50

F
am

il
y

P
ai

rs

(e) GATA

102 103

BIT score

0

50

100

150

200

250

O
th

er
p

ai
rs

0

5

10

15

20

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

(f) KIR

Figure C.1: Histogram of the sequence similarity scores that result between homologous pairs of
sequences (in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in
the mouse and human genomes. These demonstrate that an effective bit-score threshold can be
selected for some families, though no single threshold is suitable for all families. See Figures 3.2,
3.3, and C.2.

156



103 104

BIT score

0

500

1000

1500

2000

2500

3000

3500

4000

4500

O
th

er
p

ai
rs

0

1

2

3

4

5

6

7

8

F
am

il
y

P
ai

rs

(a) Notch

102 103

BIT score

0

500

1000

1500

2000

2500

3000

3500

O
th

er
p

ai
rs

0

5

10

15

20

25

30

F
am

il
y

P
ai

rs

(b) TRAF

101 102 103 104

BIT score

0

1000

2000

3000

4000

5000

6000

7000

O
th

er
p

ai
rs

0

50

100

150

200

250

300

350

400

450

F
am

il
y

P
ai

rs

(c) ADAM

102 103 104

BIT score

0

2000

4000

6000

8000

10000

12000

14000

O
th

er
p

ai
rs

0

10

20

30

40

50

60

70

80

F
am

il
y

P
ai

rs

(d) Laminin

102 103 104

BIT score

0

5000

10000

15000

20000

25000

30000

35000

40000

O
th

er
p

ai
rs

0

50

100

150

200

250

300

350

400

F
am

il
y

P
ai

rs

(e) Myosin

101 102 103

BIT score

0

500

1000

1500

2000

O
th

er
p

ai
rs

0

100

200

300

400

500

600

700

800

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

(f) TNFR

Figure C.2: Histogram of the sequence similarity scores that result between homologous pairs of
sequences (in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in
the mouse and human genomes. These demonstrate that an effective bit-score threshold can be
selected for some families, though no single threshold is suitable for all families. See Figures 3.2,
3.3, and C.1.

157



0.0 0.2 0.4 0.6 0.8 1.0
NC

0

500

1000

1500

2000

O
th

er
p

ai
rs

0

200

400

600

800

1000

1200

F
am

il
y

P
ai

rs

(a) FOX

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

100

200

300

400

500

O
th

er
p

ai
rs

0

50

100

150

200

250

F
am

il
y

P
ai

rs

(b) Tbox

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
NC

0

200

400

600

800

1000

1200

1400

O
th

er
p

ai
rs

0

100

200

300

400

500

600

700

F
am

il
y

P
ai

rs

(c) WNT

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

50

100

150

200

O
th

er
p

ai
rs

0

5

10

15

20

F
am

il
y

P
ai

rs

(d) DVL

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

10

20

30

40

50

60

70

O
th

er
p

ai
rs

0

5

10

15

20

25

30

F
am

il
y

P
ai

rs

(e) GATA

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

20

40

60

80

100

120

O
th

er
p

ai
rs

0

10

20

30

40

50

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Unannotated genomes

(f) KIR

Figure C.3: Histograms of the Neighborhood Correlation scores for curated families in mouse and
human. Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt.
left axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of
a curated family, and one member from the 12-genome dataset, and not in mouse or human. See
Figures 3.5, 3.6, and C.4.

158



0.0 0.2 0.4 0.6 0.8 1.0
NC

0

200

400

600

800

1000

1200

O
th

er
p

ai
rs

0

5

10

15

20

25

30

F
am

il
y

P
ai

rs

(a) Notch

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

500

1000

1500

2000

2500

3000

3500

O
th

er
p

ai
rs

0

5

10

15

20

F
am

il
y

P
ai

rs

(b) TRAF

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

1000

2000

3000

4000

5000

6000

7000

8000

O
th

er
p

ai
rs

0

100

200

300

400

500

600

700

F
am

il
y

P
ai

rs

(c) ADAM

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

2000

4000

6000

8000

10000

12000

14000

O
th

er
p

ai
rs

0

10

20

30

40

50

60

70

F
am

il
y

P
ai

rs

(d) Laminin

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

5000

10000

15000

20000

25000

30000

O
th

er
p

ai
rs

0

50

100

150

200

250

300

F
am

il
y

P
ai

rs

(e) Myosin

0.0 0.2 0.4 0.6 0.8 1.0
NC

0

500

1000

1500

2000

2500

3000

3500

4000

O
th

er
p

ai
rs

0

10

20

30

40

50

60

F
am

il
y

P
ai

rs

M,H: homologs

M,H: not homologs

Unannotated genomes

(f) TNFR

Figure C.4: Histograms of the Neighborhood Correlation scores for curated families in mouse and
human. Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt.
left axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of
a curated family, and one member from the 12-genome dataset, and not in mouse or human. See
Figures 3.5, 3.6, and C.3.

159





Appendix D

Domains and clusters – supplementary
data

D.1 Examination across lineages

The analysis in Chapter 7: The relationship between domains and clusters (p.109) considered the domain
content of human and mouse sequences. The clustering of those sequences was derived from construction
of a hierarchical clustering result that contained all 600k sequences in the Panther dataset. The data here
illustrates that the trends observed in human and mouse persist in other lineages. In particular, this appendix
presents domain data for four organisms at increasing phylogenetic distance from human and mouse. The
same hierarchical tree of 600k sequences was used in this data, and, as with human and mouse, the clustering
of sequences within an organism is obtained by selecting leaf nodes only from the chosen organism.

The following figures show the domain and PCA data for S. purpuratus, D. melanogaster, C. elegans, and S.
cerevisiae.

161



−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
C

om
p

on
en

t
1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size
med clmax less psmi

max domain mi

med domain mi psmi

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Component 0

−0.5

0.0

0.5

1.0

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster sizemed clmax less psmimax domain mi
med domain mi psmi

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Component 1

−0.5

0.0

0.5

1.0

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster sizemed clmax less psmimax domain mi
med domain mi psmi

Figure D.1: S. purpuratus: Coefficients of individual features in the PCA component space. Error
bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

162



Figure D.2: S. purpuratus: Projection of clusters into PCA component space. Clusters in this
figure are colored according to the number of sequences in found in that cluster.

163



Figure D.3: S. purpuratus: Projection of clusters into PCA component space. Clusters in this
figure are colored according to the total number of distinct domains found in that cluster.

164



−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Component 0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

C
om

p
on

en
t

1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size
med clmax less psmi

max domain mi

med domain mi psmi

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
om

p
on

en
t

2

num domainsmed clmax less mimean num domainsmed domain psmimean seq lengthcluster sizemed clmax less psmimax domain mimed domain mi psmi

−0.6 −0.4 −0.2 0.0 0.2

Component 1

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
om

p
on

en
t

2

num domainsmed clmax less mi
mean num domains

med domain psmi
mean seq length

cluster sizemed clmax less psmimax domain mimed domain mi psmi

Figure D.4: D. melanogaster : Coefficients of individual features in the PCA component space.
Error bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the clus-
tering.

165



Figure D.5: D. melanogaster : Projection of clusters into PCA component space. Clusters in this
figure are colored according to the number of sequences in found in that cluster.

166



Figure D.6: D. melanogaster : Projection of clusters into PCA component space. Clusters in this
figure are colored according to the total number of distinct domains found in that cluster.

167



−0.4 −0.2 0.0 0.2 0.4

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4
C

om
p

on
en

t
1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size
med clmax less psmi

max domain mi

med domain mi psmi

−0.4 −0.2 0.0 0.2 0.4

Component 0

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2 num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mi
med domain mi psmi

−0.6 −0.4 −0.2 0.0 0.2 0.4

Component 1

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2 num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi max domain mi
med domain mi psmi

Figure D.7: C. elegans: Coefficients of individual features in the PCA component space. Error
bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

168



Figure D.8: C. elegans: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the number of sequences in found in that cluster.

169



Figure D.9: C. elegans: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the total number of distinct domains found in that cluster.

170



−0.4 −0.2 0.0 0.2 0.4

Component 0

−0.4

−0.2

0.0

0.2

0.4
C

om
p

on
en

t
1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi

max domain mi

med domain mi psmi

−0.4 −0.2 0.0 0.2 0.4

Component 0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mi
med domain mi psmi

−0.4 −0.2 0.0 0.2 0.4

Component 1

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi max domain mi
med domain mi psmi

Figure D.10: S. cerevisiae: Coefficients of individual features in the PCA component space. Error
bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

171



Figure D.11: S. cerevisiae: Projection of clusters into PCA component space. Clusters in this
figure are colored according to the number of sequences in found in that cluster.

172



Figure D.12: S. cerevisiae: Projection of clusters into PCA component space. Clusters in this
figure are colored according to the total number of distinct domains found in that cluster.

173



D.2 Ordering of clusters by PCA component

174



(a) PCA component 0

(b) PCA component 1

Figure D.13: Ordering of clusters in mouse and human by their position within PCA components
0 (a) and 1 (b).

175



Figure D.14: Ordering of clusters in mouse and human by their position within PCA component 2.

D.3 Stability in single genomes

The analyses in Chapter 7: The relationship between domains and clusters (p.109) and Section D.1 were
based upon Neighborhood Correlation and hierarchical clustering of all 600k sequences in the Panther dataset.
The partitioning of sequences from one or several organisms was achieved by cutting this tree at a particular
height (NC ≥ 0.425) to induce a partitioning of the leaves, followed by selection of leaves that represent the
sequences of interest.

This section considers whether similar results would be obtained if the set of input sequences to the family
classification pipeline consisted only of the set of sequences that were used to filter the set of leaves. The
same NC ≥ 0.425 tree threshold was applied in all cases. The following figures demonstrate the results when
the set of sequences is constrained to sequences from (1) human, (2) mouse, and (3) human and mouse.

176



−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

1

num domains

med clmax less mi

mean num domains med domain psmi
mean seq length

cluster sizemed clmax less psmi

max domain mi
med domain mi psmi

−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Component 0

−1.0

−0.5

0.0

0.5

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mimed domain mi psmi

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8

Component 1

−1.0

−0.5

0.0

0.5

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mimed domain mi psmi

Figure D.15: Human: Coefficients of individual features in the PCA component space. Error bars
indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

177



Figure D.16: Human: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the number of sequences in found in that cluster.

178



Figure D.17: Human: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the total number of distinct domains found in that cluster.

179



Figure D.18: Human: Projection of clusters into PCA component space. Clusters that contain at
least one curated family member are outlined. The most representative cluster is shaded, and the
number of clusters is in parentheses.

180



−0.4 −0.2 0.0 0.2 0.4 0.6

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
om

p
on

en
t

1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster sizemed clmax less psmi

max domain mi

med domain mi psmi

−0.4 −0.2 0.0 0.2 0.4 0.6

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2 num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi
max domain mi

med domain mi psmi

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Component 1

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2 num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmi
max domain mi

med domain mi psmi

Figure D.19: Mouse: Coefficients of individual features in the PCA component space. Error bars
indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering.

181



Figure D.20: Mouse: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the number of sequences in found in that cluster.

182



Figure D.21: Mouse: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the total number of distinct domains found in that cluster.

183



Figure D.22: Mouse: Projection of clusters into PCA component space. Clusters that contain at
least one curated family member are outlined. The most representative cluster is shaded, and the
number of clusters is in parentheses.

184



−0.4 −0.2 0.0 0.2 0.4 0.6

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

1

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster sizemed clmax less psmi

max domain mi

med domain mi psmi

−0.4 −0.2 0.0 0.2 0.4 0.6

Component 0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mimed domain mi psmi

−0.6−0.4−0.2 0.0 0.2 0.4 0.6

Component 1

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
om

p
on

en
t

2

num domains

med clmax less mi

mean num domains

med domain psmi

mean seq length

cluster size

med clmax less psmimax domain mimed domain mi psmi

Figure D.23: Human and mouse: Coefficients of individual features in the PCA component
space. Error bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the
clustering.

185



Figure D.24: Human and mouse: Projection of clusters into PCA component space. Clusters in
this figure are colored according to the number of sequences in found in that cluster.

186



Figure D.25: Human and mouse: Projection of clusters into PCA component space. Clusters in
this figure are colored according to the total number of distinct domains found in that cluster.

187



Figure D.26: Human and mouse: Projection of clusters into PCA component space. Clusters
that contain at least one curated family member are outlined. The most representative cluster is
shaded, and the number of clusters is in parentheses.

188



List of Figures

1.1 The evolutionary history of a hypothetical multidomain family, showing both gene duplications
and domain insertions. Gene loci are depicted as lines, overlaid by polygons that represent
domains. Genes x, y, and z share a common ancestor (a0), but do not have identical domain
composition; a domain (diamond, in green) was inserted into the ancestral gene a1 after the
divergence of gene z. Gene w shares a homologous domain with these genes, though there is no
gene that is ancestral to both w and a member of the family. . . . . . . . . . . . . . . . . . . . . 7

1.2 Work-flow of data and methods used in this thesis. Arrows represent data flow. Double lines
represent parallel data paths; e.g., clustering is performed on either a sequence similarity network
or a Neighborhood Correlation network, and the resulting tree is specific to that data input.
Brackets indicate the chapter number in which a method is discussed. . . . . . . . . . . . . . . . 10

2.1 (a) A set of families grouped together due to a chain of domains, each found in one or more
clusters. Note that no single domain is found throughout all families of the resulting cluster.
(b) A set of families grouped together due to a single shared domain. Families are depicted as
bounding circles, and domains as polygons on individual genes (lines). . . . . . . . . . . . . . . . 20

3.1 Histogram of the sequences similarity scores that result between homologous pairs of sequences
(in blue, wrt. right axis) of the 20-family benchmark, in the combined mouse and human genomes. 27

3.2 Histogram of the sequence similarity scores that result between homologous pairs of sequences
(in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in the mouse
and human genomes. These demonstrate that an effective bit-score threshold can be selected for
some families, though no single threshold is suitable for all families. . . . . . . . . . . . . . . . . 28

3.3 Histogram of the sequence similarity scores that result between homologous pairs of sequences
(in blue, wrt. right axis), and between non-homologous pairs (in red, wrt.. left axis), in the
human and mouse genomes. No bit-score threshold may be selected for any of these families to
effectively separate homologous and non-homologous pairs of sequences. . . . . . . . . . . . . . . 29

3.4 Example graph components for intuition. In (a), x and y are members of families fx and fy,
respectively, but joined by a single edge. (b) depicts a single family missing two edges, while (c)
illustrates a case where edge weights must be used to distinguish between edge addition or deletion. 32

3.5 Histograms of the Neighborhood Correlation scores for curated families in mouse and human.
Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt. left
axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of a
curated family, and one member from the 12-genome dataset, and not in mouse or human. . . . 33

189



3.6 Histograms of the Neighborhood Correlation scores for curated families in mouse and human.
Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt. left
axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of a
curated family, and one member from the 12-genome dataset, and not in mouse or human. . . . 34

3.7 Histograms of the Neighborhood Correlation scores for the aggregate of all curated families in
mouse and human. Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are
in red (wrt. left axis). Additionally, in green (wrt. left axis) are scores of all pairs that include
one member of a curated family, and one member from the 12-genome dataset, and not in mouse
or human. ALL is the set of all 20 families, while ALL-kinase is the set of 19 families, with the
largest family, Kinase, excepted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Heatmap of Neighborhood Correlation scores calculated using the complete network of sequence
similarity (horizontal axis) and the first 500 hits returned by Blast for each query sequence
(vertical axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Heatmap of Neighborhood Correlation scores calculated using the complete network of sequence
similarity (horizontal axis) 500-hits returned by Blast for each query sequence (vertical axis). . 40

4.1 Demonstration of nested set tree indexing. For each node (n) in the tree, two integers are
stored. These are left (ln) and right (rn) indices are generated by sequential numbering of nodes
during a depth first search. The value ln is assigned when a node is first traversed, and rn is
assigned when the depth-first search revisits the node. All descendants of a node with indices
(x, y) have values (ln > x, rn < y), allowing them to be directly identified. All leaves have indices
of the form rn = ln + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Scenarios involving various connected component motifs. The indicated change in magnitude of
a network measure is reported as edges are removed from a component. Arrows indicate either
an increase or decrease in the magnitude of a measure. These projections assume the component
is embedded within a larger network of other components, and that larger network does not change. 71

5.2 Component and transitivity measures of simulated networks of cliques degraded by noise. A
network of 1024 nodes is used, comprised of 16 cliques of size 4, and 8 each of sizes 8, 16, 32, and
64 nodes. The vertical bars represent the standard error over 1000 trials. . . . . . . . . . . . . . 75

5.3 Component and transitivity measures of simulated networks of cliques degraded by noise. A
network of 1024 nodes is used, comprised of 256 cliques of size 4. The vertical bars represent the
standard error over 1000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Visualization of the S. cerevisiae genome after rescoring with Neighborhood Correlation. Edge
color signifies the Neighborhood Correlation score, where gray indicates NC ≥ 0.3, violet ≥ 0.4,
green ≥ 0.6, orange ≥ 0.8, and yellow ≥ 0.9. The dense component at top-right contains all
Kinases. Singleton nodes have been omitted for clarity. . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Measures of the networks comprised of the 5616 genes in S. cerevisiae, with edges from sequence
similarity, and Neighborhood Correlation calculated with one, four, and nine yeast genomes. NC
score thresholds range from 0–1. The bit-score axis ranges from 31–1000 and is aligned with NC
such that the density of the sequence similarity network is equivalent to the NC network of nine
genomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Component and transitivity measures of the sequence similarity and Neighborhood Correlation
networks. These networks are comprised of all Human and Mouse sequences in the 48-genome
Panther dataset, and contain 45491 sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Performance of hierarchical clustering of sequence similarity, using the single-linkage method.
This figure depicts the Precision, Recall, and F that result from selection of the partitioning
induced by cutting the tree at a range of cluster distance thresholds. . . . . . . . . . . . . . . . . 93

190



6.2 Performance of hierarchical clustering of sequence similarity, using the average-linkage method.
This figure depicts the Precision, Recall, and F that result from selection of the partitioning
induced by cutting the tree at a range of cluster distance thresholds. . . . . . . . . . . . . . . . . 94

6.3 Color legend for all heatmaps in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Heatmap of the F-statistic for all 20 benchmark families. Hierarchical clustering, by the single,
average, and complete linkage methods has been performed for the set of mouse and human
sequences using bit-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Heatmap of Precision for all 20 benchmark families. Hierarchical clustering, by the single, aver-
age, and complete linkage methods has been performed for the set of mouse and human sequences
using bit-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Heatmap of Recall for all 20 benchmark families. Hierarchical clustering, by the single, average,
and complete linkage methods has been performed for the set of mouse and human sequences
using bit-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Clustering performance of single-linkage clustering of the Neighborhood Correlation network. . . 100

6.8 Clustering performance of average-linkage clustering of the Neighborhood Correlation network. . 101

6.9 Heatmap of the F-statistic for all 20 benchmark families. Hierarchical clustering, by the single,
average, and complete linkage methods has been performed for the set of mouse and human
sequences using Neighborhood Correlation scores computed with the 48-genome dataset. . . . . 102

6.10 Heatmap of Precision for all 20 benchmark families. Hierarchical clustering, by the single, aver-
age, and complete linkage methods has been performed for the set of mouse and human sequences
using Neighborhood Correlation scores computed with the 48-genome dataset. . . . . . . . . . . 103

6.11 Heatmap of Recall for all 20 benchmark families. Hierarchical clustering, by the single, average,
and complete linkage methods has been performed for the set of mouse and human sequences
using Neighborhood Correlation scores computed with the 48-genome dataset. . . . . . . . . . . 104

6.12 Clustering performance of average-linkage clustering of the sequence similarity network of all 48
genomes in the Panther 7.0 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.13 Clustering performance of average-linkage clustering of the Neighborhood Correlation network
of all 48 genomes in the Panther 7.0 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.14 Heatmap of the F-statistic for all 20 benchmark families when clustering is performed on the full
600k, 48-genome dataset. Results for hierarchical clustering using the average-linkage method is
shown for both sequence similarity, and Neighborhood Correlation. . . . . . . . . . . . . . . . . . 108

7.1 Mutual information of all domains in the working example, separated by cluster. For each domain
found in a cluster, there are two points in the column of that cluster: MI, the mutual information
of this domain with the entire clustering, and the pSMI of this domain and the particular
cluster. Additionally, the MI cluster maximum is the maximal mutual information attainable for
a hypothetical domain that occurs in every sequence of that cluster and no sequence outside of
the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Clustering entropy as a function of the threshold used to partition the Neighborhood Correlation
average-linkage clustering result. The entropy of each partitioning is in blue. The MI sum is the
sum of the mutual information, over all domains. This latter value is a loose upper bound of the
combined joint mutual information of all domains, calculated as in [84]. . . . . . . . . . . . . . . 121

7.3 Mutual information of all domains in the 20-family benchmark set, separated by family. Families
are ordered by descending size, indicated in parentheses. For each domain found in a family, there
are two points in the column of that family: MI, the mutual information of that domain with the
set of all families, and pSMI of this domain in the family. Additionally, the MI cluster maximum
for each family is the maximal mutual information that would be obtained by a hypothetical
domain that occurs exclusively in every sequence of that family. . . . . . . . . . . . . . . . . . . 123

191



7.4 Mutual information of all domains in clusters of human and mouse sequences. (a) contains the
full set of 9000 clusters. (b) depicts only the largest clusters, of size indicated in parentheses.
Clusters are ordered by descending size. The properties of each contained domain are represented
by two points in the column of a cluster: MI, the mutual information of that domain with the
entire clustering, and pSMI of this domain in the cluster. Additionally, the MI cluster maximum
is depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Mutual information as compared to the entropy of each domain in the family benchmark. The
most numerous domains are labeled by PFam identifier, with the number of sequence instances
in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Mutual information as compared to the entropy of each domain in the clustering of mouse and
human sequences. The most numerous domains are labeled by PFam identifier, with the number
of sequence instances in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Fraction of variance explained by successive PCA components. The first two components, alone,
explain more 60% of the total data variance. The first three components explain approximately
75% of the variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.8 Coefficients of individual features in the PCA component space. Error bars indicate the standard
deviation over 1000 samplings of 75% of the clusters in the clustering. . . . . . . . . . . . . . . . 130

7.9 Projection of clusters into PCA component space. This figure is a heatmap of 100x100 bins,
where black points indicate a single cluster, and increasingly bright points represent as 3000
clusters at that coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.10 Projection of clusters into PCA component space. Clusters in this figure are colored according
to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.11 Projection of clusters into PCA component space. Clusters in this figure are colored according
to the total number of distinct domains found in that cluster. . . . . . . . . . . . . . . . . . . . . 135

7.12 Projection of clusters into PCA component space. Clusters that contain at least one curated
family member are outlined. The most representative cluster is shaded, and the number of
clusters is in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.13 Projection of clusters into PCA component space. Clusters in this figure are colored according
to med-clmax-less-psmi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.14 Projection of clusters into PCA component space. Clusters in this figure are colored according
to med-clmax-less-mi for that cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.1 Histogram of the sequence similarity scores that result between homologous pairs of sequences
(in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in the mouse
and human genomes. These demonstrate that an effective bit-score threshold can be selected for
some families, though no single threshold is suitable for all families. See Figures 3.2, 3.3, and C.2.156

C.2 Histogram of the sequence similarity scores that result between homologous pairs of sequences
(in blue, wrt. right axis), and between non-homologous pairs (in red, wrt. left axis), in the mouse
and human genomes. These demonstrate that an effective bit-score threshold can be selected for
some families, though no single threshold is suitable for all families. See Figures 3.2, 3.3, and C.1.157

C.3 Histograms of the Neighborhood Correlation scores for curated families in mouse and human.
Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt. left
axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of a
curated family, and one member from the 12-genome dataset, and not in mouse or human. See
Figures 3.5, 3.6, and C.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.4 Histograms of the Neighborhood Correlation scores for curated families in mouse and human.
Homologous pairs are in blue (wrt. right axis), and non-homologous pairs are in red (wrt. left
axis). Additionally, in green (wrt. left axis) are scores of all pairs that include one member of a
curated family, and one member from the 12-genome dataset, and not in mouse or human. See
Figures 3.5, 3.6, and C.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

192



D.1 S. purpuratus: Coefficients of individual features in the PCA component space. Error bars
indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . 162

D.2 S. purpuratus: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . 163

D.3 S. purpuratus: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the total number of distinct domains found in that cluster. . . . . . . . . . 164

D.4 D. melanogaster : Coefficients of individual features in the PCA component space. Error bars
indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . 165

D.5 D. melanogaster : Projection of clusters into PCA component space. Clusters in this figure
are colored according to the number of sequences in found in that cluster. . . . . . . . . . . . . . 166

D.6 D. melanogaster : Projection of clusters into PCA component space. Clusters in this figure
are colored according to the total number of distinct domains found in that cluster. . . . . . . . 167

D.7 C. elegans: Coefficients of individual features in the PCA component space. Error bars indicate
the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . . . . . . 168

D.8 C. elegans: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . . . . . 169

D.9 C. elegans: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the total number of distinct domains found in that cluster. . . . . . . . . . . . . . . 170

D.10 S. cerevisiae: Coefficients of individual features in the PCA component space. Error bars
indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . 171

D.11 S. cerevisiae: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . 172

D.12 S. cerevisiae: Projection of clusters into PCA component space. Clusters in this figure are
colored according to the total number of distinct domains found in that cluster. . . . . . . . . . 173

D.13 Ordering of clusters in mouse and human by their position within PCA components 0 (a) and 1
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.14 Ordering of clusters in mouse and human by their position within PCA component 2. . . . . . . 176
D.15 Human: Coefficients of individual features in the PCA component space. Error bars indicate

the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . . . . . . 177
D.16 Human: Projection of clusters into PCA component space. Clusters in this figure are colored

according to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . . . . . 178
D.17 Human: Projection of clusters into PCA component space. Clusters in this figure are colored

according to the total number of distinct domains found in that cluster. . . . . . . . . . . . . . . 179
D.18 Human: Projection of clusters into PCA component space. Clusters that contain at least one

curated family member are outlined. The most representative cluster is shaded, and the number
of clusters is in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.19 Mouse: Coefficients of individual features in the PCA component space. Error bars indicate
the standard deviation over 1000 samplings of 75% of the clusters in the clustering. . . . . . . . 181

D.20 Mouse: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the number of sequences in found in that cluster. . . . . . . . . . . . . . . . . . . . 182

D.21 Mouse: Projection of clusters into PCA component space. Clusters in this figure are colored
according to the total number of distinct domains found in that cluster. . . . . . . . . . . . . . . 183

D.22 Mouse: Projection of clusters into PCA component space. Clusters that contain at least one
curated family member are outlined. The most representative cluster is shaded, and the number
of clusters is in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

D.23 Human and mouse: Coefficients of individual features in the PCA component space. Error
bars indicate the standard deviation over 1000 samplings of 75% of the clusters in the clustering. 185

D.24 Human and mouse: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the number of sequences in found in that cluster. . . . . . . . . . . . . . 186

D.25 Human and mouse: Projection of clusters into PCA component space. Clusters in this figure
are colored according to the total number of distinct domains found in that cluster. . . . . . . . 187

193



D.26 Human and mouse: Projection of clusters into PCA component space. Clusters that contain
at least one curated family member are outlined. The most representative cluster is shaded, and
the number of clusters is in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

194



List of Tables

2.1 Curated benchmark of gene families, in the mouse and human genomes. . . . . . . . . . . . . . . 22

3.1 Blast parameters used for all-against-all sequence similarity calculation. N is the number of
sequences in the database, and Y is the number of residues. Parameters and values correspond
to blastall, version 2.2.16. All parameters not specified are left at default values in this version
of blast. Some of these parameters are the default, and are included for clarity. . . . . . . . . . . 37

7.1 Features of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1 Table (part 1 of 2) of the 48-genomes included in the Panther 7.0 data set [141] used throughout
this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Table (part 2 of 2) of the 48-genomes included in the Panther 7.0 data set [141] used throughout
this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

195





List of Code

4.1 SQL table definitions for the storage of amino acid strings. prot_seq_str, short for “protein
sequence string”, defines storage of an amino acid sequence. crc, a checksum, length, and
molecular weight are stored to optimize look-up using an index when a sequence string is
known, typically to check for an existing, duplicate sequence string. prot_seq establishes an
internal sequence identifier (seq_id), and a pointer to a single protein sequence string. Many
sequence identifiers may map to one sequence string, but every string stored in the table is unique. 46

4.2 SQL table definitions used to represent the data source and version from which a sequence was
obtained. As is most appropriate in relational databases, separate tables are used to specifically
define many-to-one relationships, such as many versions (prot_seq_source_ver) of the same
data source (prot_seq_source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 SQL table definitions for sets of sequences. prot_seq defines a unique identifier for the set
(set_id) and a human-readable name and description. prot_seq_set_member then associates
sequence identifiers with that set instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 SQL table definitions to represent complete “runs” of Blast, and Neighborhood Correlation.
The latter dependency upon Blast is encoded by the table definitions. Each of these tables
detail the complete set of parameters used during execution of the method. . . . . . . . . . . . . 49

4.5 A dictarray: the network adjacency list representation. The nodes in a network are represented
by a set of consecutive unsigned integers. Edge weights are represented as floating-point values.
A hash data structure is used to map each Node to two arrays, one a list of nodes connected,
and another a list of the corresponding edge weights. These lists are in order of the Node integer. 53

4.6 Definition of the table for storage of network edges as individual rows. Each row contains an
integer identifying the network the edge corresponds to (nc_id), two node endpoints, and the
edge weight. Beyond the size of the datatypes defined, each row in the database incurs an
additional 20–40 bytes for internal representation, making this an inefficient means of network
storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 SQL table definition for storage of network edges, directly mirroring a dictarray. In contrast
to blast_hit_nc, the row overhead as compared to the size of the data is minimal, and access
to all neighbors of a node may be achieved by querying a single row. . . . . . . . . . . . . . . . . 54

4.8 Definition of an SQL view to transparently emulate the blast_hit_nc table from the structure
of a blast_hit_nc_arr table. The function unzip() transforms the array data type to a list of
individual rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 SQL table definition to represent hierarchical clustering trees. The indices created facilitate rapid
arithmetic comparison of the lft and rgt nested set indices. . . . . . . . . . . . . . . . . . . . 57

4.10 SQL query to select all tree nodes immediately adjacent to a chosen threshold, specified by the
parameter %(distance)s. The parameter %(cr_id)s references a specific tree stored in the table
jj_hcluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

197



4.11 SQL query to select all leaves under a given node, specified by parameter %(cluster_id)s in a
given tree, which is specified by %(cr_id)s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.12 Python C-extension function to resolve duplicate edges after lazy insertion of all edges from a
non-symmetric Blast sequence similarity network. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 Calculation of the covariance between the adjacency lists of two sequence neighborhoods. Shown
here in Python, this procedure is implemented as a C-extension of identical flow. . . . . . . . . . 62

198



Bibliography

[1] F. Abascal and A. Valencia. Clustering of proximal sequence space for the identification of protein
families. Bioinformatics, 18(7):908–921, 2002. (Cited on p. 18.)

[2] S. Altschul. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol,
219:555–565, 1991. (Cited on p. 17.)

[3] S. Altschul. A protein alignment scoring system sensitive at all evolutionary distances. J Mol Evol,
36(3):290–300, Mar 1993. (Cited on p. 17.)

[4] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment search tool. Journal
of Molecular Biology, 215:403–410, 1990. (Cited on p. 17, 36.)

[5] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res,
25(17):3389–3402, Sep 1997. (Cited on p. 17.)

[6] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res,
25(17):3389–3402, 1997. (Cited on p. 21, 30.)

[7] S. Altschul, J. Wootton, E. Gertz, R. Agarwala, A. Morgulis, A. Schaffer, and Y. Yu. Protein database
searches using compositionally adjusted substitution matrices. FEBS J, 272(20):5101–5109, Oct 2005.
(Cited on p. 17.)

[8] G. Apic, J. Gough, and S. Teichmann. Domain combinations in archaeal, eubacterial and eukaryotic
proteomes. J Mol Biol, 310(2):311–325, Jul 2001. (Cited on p. 3.)

[9] L. Aravind, V. Dixit, and E. Koonin. Apoptotic molecular machinery: vastly increased complexity in
vertebrates revealed by genome comparisons. Science, 291(5507):1279–84, Feb 2001. (Cited on p. 1,
14.)

[10] M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, et al. Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet, 25:25–29, 2000. (Cited on p. 21.)

[11] D. Babushok, E. Ostertag, and H. Kazazian. Current topics in genome evolution: molecular mecha-
nisms of new gene formation. Cell Mol Life Sci, 64:542–554, Mar 2007. (Cited on p. 6, 14.)

[12] A. Barabasi and Z. Oltvai. Network biology: understanding the cell’s functional organization. Nat Rev
Genet, 5(2):101–113, Feb 2004. (Cited on p. 15, 67.)

199



[13] P. Barrett, J. Hunter, J.T. Miller, J.C. Hsu, and P. Greenfield. matplotlib–a portable python plotting
package. In Astronomical Data Analysis Software and Systems XIV, volume 347, page 91, 2005. (Cited
on p. 143.)

[14] M. Basu, L. Carmel, I. Rogozin, and E. Koonin. Evolution of protein domain promiscuity in eukaryotes.
Genome Res, Jan 2008. (Cited on p. 15, 16.)

[15] M. Basu, E. Poliakov, and I. Rogozin. Domain mobility in proteins: functional and evolutionary
implications. Brief Bioinform, 10:205–216, Jan 2009. (Cited on p. 16.)

[16] A. Bateman, L. Coin, R. Durbin, R. Finn, V. Hollich, S. Griffiths-Jones, A. Khanna, M. Marshall,
S. Moxon, E. L. L. Sonnhammer, D. Studholme, C. Yeats, and S. Eddy. The Pfam protein families
database. Nucleic Acids Res, 32(Database issue):D138–41, Jan 2004. (Cited on p. 83.)

[17] I. Ben-Shlomo, S. Yu Hsu, R. Rauch, H. Kowalski, and A. Hsueh. Signaling receptome: a genomic and
evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE,
2003(187):RE9, Jun 2003. (Cited on p. 1.)

[18] A. Bhan, D.J. Galas, and T.G. Dewey. A duplication growth model of gene expression networks.
Bioinformatics, 18(11):1486–1493, 2002. (Cited on p. 14.)

[19] A. Bjorklund, D. Ekman, S. Light, J. Frey-Skott, and A. Elofsson. Domain rearrangements in protein
evolution. J Mol Biol, 353(4):911–923, Nov 2005. (Cited on p. 20, 29.)

[20] E. Bolten, A. Schliep, S. Schneckener, D. Schomburg, and R. Schrader. Clustering protein sequences—
structure prediction by transitive homology. Bioinformatics, 17:935–941, 2001. (Cited on p. 18.)

[21] E. Bornberg-Bauer, F. Beaussart, S. Kummerfeld, S. Teichmann, and J. Weiner. The evolution of
domain arrangements in proteins and interaction networks. Cell Mol Life Sci, 62(4):435–445, Feb
2005. (Cited on p. 14, 15.)

[22] B. Brejova, D. Brown, and T. Vinar. Optimal spaced seeds for homologous coding regions. In R. Baeza-
Yates, E. Chávez, and M. Crochemore, editors, Proceedings of Symposium on Combinatorial Pattern
Matching (CPM’03), volume 2676 of Lecture Notes in Computer Science, pages 42–54, Morelia, Mexico,
2003. Springer. (Cited on p. 17.)

[23] S. Brohée and J. van Helden. Evaluation of clustering algorithms for protein-protein interaction net-
works. BMC Bioinformatics, 7, Nov 2006. (Cited on p. 86.)

[24] D. Brown and K. Sjolander. Functional classification using phylogenomic inference. PLoS Comput
Biol, 2(6):479–483, Jun 2006. (Cited on p. 2.)

[25] D.P. Brown, N. Krishnamurthy, and K. Sjölander. Automated protein subfamily identification and
classification. PLoS computational biology, 3(8):e160, 2007. (Cited on p. 18.)

[26] J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in genomic DNA. In Martin
Vingron, Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors, RECOMB’03: Proceedings of
the Seventh Annual International Conference on Research in Computational Molecular Biology, pages
67–75. ACM Press, 2003. (Cited on p. 17.)

[27] M. Buljan and A. Bateman. The evolution of protein domain families. Biochem Soc Trans, 37:751–755,
Aug 2009. (Cited on p. 3, 14, 16.)

[28] M. Buljan, A. Frankish, and A. Bateman. Quantifying the mechanisms of domain gain in animal
proteins. Genome Biol, 11:R74, Jul 2010. (Cited on p. 16.)

200



[29] K. P. Byrne and K. Wolfe. The Yeast Gene Order Browser: combining curated homology and syntenic
context reveals gene fate in polyploid species. Genome Res, 15(10):1456–1461, Oct 2005. (Cited on
p. 77.)

[30] J. Celko. Joe Celko’s Trees and Hierarchies in SQL for Smarties, Second Edition. Morgan Kaufmann,
Feb 2012. (Cited on p. 55.)

[31] F. Chen, A. Mackey, J. Vermunt, and D. Roos. Assessing performance of orthology detection strategies
applied to eukaryotic genomes. PLoS ONE, 2(4):e383, 2007. (Cited on p. 22.)

[32] C. Chothia and J. Gough. Genomic and structural aspects of protein evolution. Biochem J, 419:15–28,
Apr 2009. (Cited on p. 14.)

[33] A. Clauset, C. Shalizi R., and M. Newman. Power-law distributions in empirical data. SIAM Rev,
51:661–703, 2009. (Cited on p. 15.)

[34] P.J.A. Cock, T. Antao, J.T. Chang, B.A. Chapman, C.J. Cox, A. Dalke, I. Friedberg, T. Hamelryck,
F. Kauff, B. Wilczynski, et al. Biopython: freely available python tools for computational molecular
biology and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009. (Cited on p. 143.)

[35] I. Cohen-Gihon, J. Fong, R. Sharan, R. Nussinov, T. Przytycka, and A. Panchenko. Evolution of domain
promiscuity in eukaryotic genomes-a perspective from the inferred ancestral domain architectures. Mol
Biosyst, 7:784–792, Mar 2011. (Cited on p. 16.)

[36] I. Cohen-Gihon, R. Nussinov, and R. Sharan. Comprehensive analysis of co-occurring domain sets in
yeast proteins. BMC genomics, 8(1):161, 2007. (Cited on p. 3.)

[37] G. Conant and K. Wolfe. Increased glycolytic flux as an outcome of whole-genome duplication in yeast.
Mol Syst Biol, 3:129, 2007. (Cited on p. 14.)

[38] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 2nd Edition. MIT
Press/McGraw-Hill, 2001. (Cited on p. 51.)

[39] J. Crabtree, S. Angiuoli, J. Wortman, and O. White. Sybil: methods and software for multiple genome
comparison and visualization. Methods Mol Biol, 408:93–108, 2007. (Cited on p. 2.)

[40] W. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods.
Journal of Classification, 1(1):7–24, 1984. (Cited on p. 90, 91.)

[41] A. de Mendoza, H. Suga, and I. Ruiz-Trillo. Evolution of the MaGuK protein gene family in premeta-
zoan lineages. BMC Evol Biol, 10:93, Apr 2010. (Cited on p. 3.)

[42] D. Defays. An efficient algorithm for a complete link method. The Computer Journal, 20(4):364–366,
1977. (Cited on p. 91.)

[43] J. Demuth, T. Bie, J. Stajich, N. Cristianini, and M. Hahn. The evolution of mammalian gene families.
PLoS ONE, 1:e85, 2006. (Cited on p. 2.)

[44] C. Dessimoz, T. Gabaldón, D.S. Roos, E. Sonnhammer, J. Herrero, et al. Toward community standards
in the quest for orthologs. Bioinformatics, 2012. (Cited on p. 22.)

[45] A.K. Dunker, J.D. Lawson, C.J. Brown, R.M. Williams, P. Romero, J.S. Oh, C.J. Oldfield, A.M.
Campen, C.M. Ratliff, K.W. Hipps, et al. Intrinsically disordered protein. Journal of Molecular
Graphics and Modelling, 19(1):26–59, 2001. (Cited on p. 110.)

[46] D. Ekman, A. Björklund, and A. Elofsson. Quantification of the elevated rate of domain rearrangements
in metazoa. J Mol Biol, 372:1337–1348, Oct 2007. (Cited on p. 14.)

201



[47] A. Enright, I. Iliopoulos, N. Kyrpides, and C. Ouzounis. Protein interaction maps for complete genomes
based on gene fusion events. Nature, 402(6757):86–90, Nov 1999. (Cited on p. 14.)

[48] A. Enright and C. Ouzounis. Functional associations of proteins in entire genomes by means of ex-
haustive detection of gene fusions. Genome Biol, 2(9):RESEARCH0034, 2001. (Cited on p. 14.)

[49] A. Enright, S. Van Dongen, and C. Ouzounis. An efficient algorithm for large-scale detection of protein
families. Nucleic Acids Res., 30:1575–1584, 2002. (Cited on p. 18, 21.)

[50] K. Evlampiev and H. Isambert. Modeling protein network evolution under genome duplication and
domain shuffling. BMC Syst Biol, 1:49, Nov 2007. (Cited on p. 14, 15.)

[51] W. Fitch. Distinguishing homologous from analogous proteins. Syst Zool, 19(2):99–113, Jun 1970.
(Cited on p. 2, 5.)

[52] W. Fitch. Homology: a personal view on some of the problems. Trends Genet, 16(5):227–231, May
2000. (Cited on p. 5, 6, 16.)

[53] K. Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus, and S. Zubrzycki. Sur la liaison et la division des
points d’un ensemble fini. In Colloquium Mathematicum, volume 2, pages 282–285, 1951. (Cited on
p. 90.)

[54] J. Fong, L. Geer, A. Panchenko, and S. Bryant. Modeling the evolution of protein domain architectures
using maximum parsimony. J Mol Biol, 366(1):307–315, Feb 2007. (Cited on p. 6, 14.)

[55] A. Force, W.A. Cresko, F.B. Pickett, S.R. Proulx, C. Amemiya, and M. Lynch. The origin of subfunc-
tions and modular gene regulation. Genetics, 170(1):433–446, 2005. (Cited on p. 14.)

[56] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010. (Cited on p.
18.)

[57] Free Software Foundation. Gnu general public license, version 3, June 2007. (Cited on p. 143.)

[58] D. Fulton, Y. Li, M. Laird, B. Horsman, F. Roche, and F. Brinkman. Improving the specificity of
high-throughput ortholog prediction. BMC bioinformatics, 7(1):270, 2006. (Cited on p. 18.)

[59] E.R. Gansner and S.C. North. An open graph visualization system and its applications. Software -
Practice and Experience, 30:1203–1233, 1999. (Cited on p. 78.)

[60] H. Gerstein and M. Gerstein. Annotation transfers for genomics: measuring functional divergence in
multi-domain proteins. Genome Res., 11:1632, 2001. (Cited on p. 2.)

[61] M. Gerstein, C. Bruce, J. Rozowsky, D. Zheng, J. Du, J. Korbel, O. Emanuelsson, Z. Zhang, S. Weiss-
man, and M. Snyder. What is a gene, post-ENCODE? History and updated definition. Genome Res,
17(6):669–681, Jun 2007. (Cited on p. 2.)

[62] M.C. Good, J.G. Zalatan, and W.A. Lim. Scaffold proteins: Hubs for controlling the flow of cellular
information. Science, 332(6030):680–686, 2011. (Cited on p. 1, 14.)

[63] D. Graur and W. Li. Fundamentals of Molecular Evolution. Sinauer Associates Inc., Sunderland, MA.,
1999. (Cited on p. 5.)

[64] C. Greenman, P. Stephens, R. Smith, G. Dalgliesh, C. Hunter, et al. Patterns of somatic mutation in
human cancer genomes. Nature, 446:153–158, Mar 2007. (Cited on p. 1.)

[65] PostgreSQL Global Development Group. Postgresql, 2012. (Cited on p. 50, 143.)

[66] M. Grunt, V. Zárský, and F. Cvrcková. Roots of angiosperm formins: the evolutionary history of plant
FH2 domain-containing proteins. BMC Evol Biol, 8:115, Apr 2008. (Cited on p. 3.)

202



[67] A.A. Hagberg, D.A. Schult, and P.J. Swart. Exploring network structure, dynamics, and function
using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15,
Pasadena, CA USA, August 2008. (Cited on p. 143.)

[68] J. Handl, J. Knowles, and D. Kell. Computational cluster validation in post-genomic data analysis.
Bioinformatics, 21:3201–3212, Aug 2005. (Cited on p. 86.)

[69] T. Harlow, J.P. Gogarten, and M. Ragan. A hybrid clustering approach to recognition of protein
families in 114 microbial genomes. BMC bioinformatics, 5(1):45, 2004. (Cited on p. 18.)

[70] A. Heger and L. Holm. Towards a covering set of protein family profiles. Prog Biophys Mol Biol,
73(5):321–337, 2000. (Cited on p. 19, 21, 26.)

[71] H. Hegyi and M. Gerstein. Annotation transfer for genomics: measuring functional divergence in
multi-domain proteins. Genome Res, 11:1632–1640, Oct 2001. (Cited on p. 2.)

[72] S. Heinicke, M. Livstone, C. Lu, R. Oughtred, F. Kang, et al. The Princeton Protein Orthology
Database (P-POD): a comparative genomics analysis tool for biologists. PLoS ONE, 2:e766, Aug 2007.
(Cited on p. 2, 142.)

[73] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417, 1933. (Cited on p. 129.)

[74] A.L. Hughes and R. Friedman. Expression patterns of duplicate genes in the developing root in
arabidopsis thaliana. Journal of Molecular Evolution, 60:247–256, 2005. (Cited on p. 5.)

[75] M. Huynen and P. Bork. Measuring genome evolution. PNAS, 95(11):5849–5856, May 1998. (Cited
on p. 20, 29.)

[76] P. Jiang and M. Singh. Spici: a fast clustering algorithm for large biological networks. Bioinformatics,
26(8):1105–1111, 2010. (Cited on p. 18.)

[77] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001. (Cited on p. 52, 143.)

[78] G. Karev, Y. Wolf, F. Berezovskaya, and E. Koonin. Gene family evolution: an in-depth theoretical
and simulation analysis of non-linear birth-death-innovation models. BMC Evol Biol, 4:32, Sep 2004.
(Cited on p. 15.)

[79] G. Karev, Y. Wolf, A. Rzhesky, F. Berezovskaya, and E. Koonin. Birth and death of protein domains:
a simple model of evolution explains power law behavior. BMC Evol Biol, 2:18–43, 2002. (Cited on
p. 15.)

[80] G. Karev, Y. Wolf, A. Rzhetsky, F. Berezovskaya, and E. Koonin. Birth and death of protein domains:
a simple model of evolution explains power law behavior. BMC Evol Biol, 2(1):18, 2002. (Cited on p.
15.)

[81] H. Kawaji, Y. Takenaka, and H. Matsuda. Graph-based clustering for finding distant relationships in
a large set of protein sequences. Bioinformatics, 20(2):243–252, 2004. (Cited on p. 18.)

[82] T. Kawashima, S. Kawashima, C. Tanaka, M. Murai, M. Yoneda, et al. Domain shuffling and the
evolution of vertebrates. Genome Res, 19:1393–1403, Aug 2009. (Cited on p. 14.)

[83] A. Kelil, S. Wang, R. Brzezinski, and A. Fleury. Cluss: Clustering of protein sequences based on a
new similarity measure. BMC bioinformatics, 8(1):286, 2007. (Cited on p. 18, 141.)

203



[84] J.P. Kern, M. Pattichis, and S.D. Stearns. Registration of image cubes using multivariate mutual
information. In Signals, Systems and Computers, 2003. Conference Record of the Thirty-Seventh
Asilomar Conference on, volume 2, pages 1645–1649. IEEE, 2003. (Cited on p. 119, 121, 191.)

[85] S. Kim and J. Lee. Bag: A graph theoretic sequence clustering algorithm. International Journal of
Data Mining and Bioinformatics, 1(2), 2006. (Cited on p. 18.)

[86] E. Koonin, Y. Wolf, and G. Karev. The structure of protein universe and genome evolution. Nature,
420:218, 2002. (Cited on p. 15.)

[87] E. Koonin, Y. Wolf, and G. Karev. Power Laws, Scalefree Networks and Genome Biology. Landes
Bioscience, Georgetown, TX, 2005. (Cited on p. 15.)

[88] A. Krause, J. Stoye, and M. Vingron. Large scale hierarchical clustering of protein sequences. BMC
Bioinformatics, 6(1):15, Jan 2005. (Cited on p. 18.)

[89] N. Krishnamurthy, D. Brown, and K. Sjölander. Flowerpower: clustering proteins into domain ar-
chitecture classes for phylogenomic inference of protein function. BMC evolutionary biology, 7(Suppl
1):S12, 2007. (Cited on p. 18.)

[90] A. Krishnan, M. Tomita, and A. Giuliani. Evolution of gene regulatory networks: Robustness as an
emergent property of evolution. Physica A: Statistical Mechanics and its Applications, 387(8-9):2170–
2186, 2008. (Cited on p. 14.)

[91] S. Kummerfeld and S. Teichman. Relative rates of gene fusion and fission in mutli-domain proteins.
Trends in Genetics, 21:25–30, 2005. (Cited on p. 14.)

[92] M.C. Lagomarsino, A.L. Sellerio, P.D. Heijning, and B. Bassetti. Universal features in the genome-level
evolution of protein domains. Genome biology, 10(1):R12, 2009. (Cited on p. 14, 15.)

[93] J. Laherrere and D. Sornette. Stretched exponential distributions in nature and economy: “fat tails”
with characteristic scales. The European Physical Journal B-Condensed Matter and Complex Systems,
2(4):525–539, 1998. (Cited on p. 15.)

[94] L. Li, C. Stoeckert, and D. Roos. OrthoMCL: identification of ortholog groups for eukaryotic genomes.
Genome Res, 13(9):2178–89, Sep 2003. (Cited on p. 18.)

[95] J. Liu and B. Rost. Domains, motifs and clusters in the protein universe. Curr. Opin. Chem. Biol.,
7(1):5–11, Feb 2003. (Cited on p. 21.)

[96] Y. Loewenstein, E. Portugaly, M. Fromer, and M. Linial. Efficient algorithms for accurate hierarchical
clustering of huge datasets: tackling the entire protein space. Bioinformatics, 24:i41–i49, Jul 2008.
(Cited on p. 91, 143.)

[97] M. Long, E. Betran, K. Thornton, and W. Wang. The origin of new genes: glimpses from the young
and old. Nat Rev Genet, 4(11):865–75, Nov 2003. (Cited on p. 6, 13.)

[98] M. Lynch and J. Conery. The origins of genome complexity. Science, 302(5649):1401–1404, Nov 2003.
(Cited on p. 14.)

[99] M. Lynch and A. Force. The probability of duplicate gene preservation by subfunctionalizatio. Genetics,
154(1):459–473, 2000. (Cited on p. 14.)

[100] Q. Ma, G.W. Chirn, R. Cai, J. Szustakowski, and NR Nirmala. Clustering protein sequences with
a novel metric transformed from sequence similarity scores and sequence alignments with neural net-
works. BMC bioinformatics, 6(1):242, 2005. (Cited on p. 17, 18.)

204



[101] E. Marcotte, M. Pellegrini, H. Ng, D. Rice, T. Yeates, and D. Eisenberg. Detecting protein function
and protein-protein interactions from genome sequences. Science, 285(5428):751–753, Jul 1999. (Cited
on p. 15.)

[102] D. Medini, A. Covacci, and C. Donati. Protein homology network families reveal step-wise diversifica-
tion of type III and type IV secretion systems. PLoS Comput Biol, 2(12):e173, Dec 2006. (Cited on
p. 18.)

[103] T. Meinel, A. Krause, H. Luz, M. Vingron, and E. Staub. The SYSTERS protein family database in
2005. Nucleic Acids Research, 33:D226–D229, 2005. (Cited on p. 142.)

[104] H. Mi, Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis, and P. Thomas. PANTHER version 7: improved
phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids
Res, 38:D204–D210, Jan 2010. (Cited on p. 4, 23, 43.)

[105] M. Middendorf, E. Ziv, C. Adams, J. Hom, R. Koytcheff, et al. Discriminative topological features
reveal biological network mechanisms. BMC Bioinformatics, 5:181, Nov 2004. (Cited on p. 15.)

[106] S. Mohseni-Zadeh, P. Brezellec, and J. Risler. Cluster-C, an algorithm for the large-scale clustering of
protein sequences based on the extraction of maximal cliques. Comput Biol Chem, 28(3):211–218, Jul
2004. (Cited on p. 18.)

[107] A. Moore, A. Björklund, D. Ekman, E. Bornberg-Bauer, and A. Elofsson. Arrangements in the modular
evolution of proteins. Trends Biochem Sci, 33:444–451, Sep 2008. (Cited on p. 14.)

[108] A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. J Mol Biol, 247(4):536–40, Apr 1995.
(Cited on p. 21.)

[109] M. Nikolski and D.J. Sherman. Family relationships: should consensus reign?âĂŤconsensus clustering
for protein families. Bioinformatics, 23(2):e71–e76, 2007. (Cited on p. 18.)

[110] A. Novozhilov, G. Karev, and E. Koonin. Biological applications of the theory of birth-and-death
processes. Brief Bioinform, 7(1):70–85, Mar 2006. (Cited on p. 14.)

[111] S. Ohno. Evolution by genome duplication. Berlin: Springer Verlag, 1970. (Cited on p. 5, 13.)

[112] T. E. Oliphant. Python for scientific computing. Computing in Science & Engineering, 9:10–20, May
2007. (Cited on p. 59, 143.)

[113] A. Paccanaro, J. Casbon, and M. Saqi. Spectral clustering of protein sequences. Nucleic Acids Res,
34(5):1571–1580, 2006. (Cited on p. 18, 21.)

[114] J. Park, S. Teichmann, T. Hubbard, and C. Chothia. Intermediate sequences increase the detection of
homology between sequences. J Mol Biol, 273(1):349–354, Oct 1997. (Cited on p. 21.)

[115] L. Patthy. Genome evolution and the evolution of exon-shuffling–a review. Gene, 238(1):103–114, Sep
1999. (Cited on p. 14.)

[116] F. Pearl, C. Bennett, J. Bray, A. Harrison, N. Martin, A. Shepherd, I. Sillitoe, J. Thornton, and
C. Orengo. The CATH database: an extended protein family resource for structural and functional
genomics. Nucleic Acids Res, 31(1):452–455, Jan 2003. (Cited on p. 21.)

[117] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg, and R. Schrader. ProClust:
improved clustering of protein sequences with an extended graph-based approach. Bioinformatics, 18
Suppl 2:182–191, 2002. (Cited on p. 18.)

205



[118] A. Pires-daSilva, R.J. Sommer, et al. The evolution of signalling pathways in animal development.
Nature Reviews Genetics, 4(1):39–49, 2003. (Cited on p. 1.)

[119] S. Proost, M. Van Bel, L. Sterck, K. Billiau, T. Van Parys, et al. PLAZA: a comparative genomics
resource to study gene and genome evolution in plants. Plant Cell, 21:3718–3731, Dec 2009. (Cited
on p. 142.)

[120] K.D. Pruitt, T. Tatusova, W. Klimke, and D.R. Maglott. Ncbi reference sequences: current status,
policy and new initiatives. Nucleic acids research, 37(suppl 1):D32–D36, 2009. (Cited on p. 3.)

[121] T. Przytycka, G. Davis, N. Song, and D. Durand. Graph theoretical insights into evolution of mul-
tidomain proteins. Journal of Computational Biology, 13(2):351–363, 2006. (Cited on p. 15.)

[122] T. Przytycka and Y. Yu. Scale-free networks versus evolutionary drift. Comput Biol Chem, 28:257–264,
Oct 2004. (Cited on p. 15.)

[123] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0. (Cited on p. 143.)

[124] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and S. Böcker. Exact and heuristic
algorithms for weighted cluster editing. Comput Syst Bioinformatics Conf, 6:391–401, 2007. (Cited
on p. 18, 21.)

[125] N. Rebscher, C. Deichmann, S. Sudhop, J.H. Fritzenwanker, S. Green, and M. Hassel. Conserved intron
positions in fgfr genes reflect the modular structure of fgfr and reveal stepwise addition of domains to
an already complex ancestral fgfr. Development genes and evolution, 219(9):455–468, 2009. (Cited on
p. 3.)

[126] P. Sarkar, D. Chakrabarti, and A.W. Moore. Theoretical justification of popular link prediction heuris-
tics. In International Conference on Learning Theory (COLT), pages 295–307, 2010. (Cited on p.
31.)

[127] O. Sasson, A. Vaaknin, H. Fleischer, E. Portugaly, Y. Bilu, N. Linial, and M. Linial. ProtoNet:
hierarchical classification of the protein space. Nucleic Acids Res, 31(1):348–352, Jan 2003. (Cited on
p. 18.)

[128] A. Schaffer, L. Aravind, T. Madden, S. Shavirin, J. Spouge, Y. Wolf, E. Koonin, and S. Altschul.
Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics
and other refinements. Nucleic Acids Res, 29(14):2994–3005, Jul 2001. (Cited on p. 17.)

[129] B.E. Shakhnovich, E. Deeds, C. Delisi, and E. Shakhnovich. Protein structure and evolutionary history
determine sequence space topology. Genome research, 15(3):385–392, 2005. (Cited on p. 15.)

[130] R. Sibson. SLINK: An optimally efficient algortithm for the single-link cluster method. The Computer
Journal, 16(1):30–34, 1973. (Cited on p. 91.)

[131] B. Snel, G. Lehmann, P. Bork, and M. Huynen. STRING: a web-server to retrieve and display the
repeatedly occurring neighbourhood of a gene. Nucleic Acids Res, 28(18):3442–4, 2000. (Cited on p.
18.)

[132] R.R. Sokal and C.D. Michener. A statistical method for evaluating systematic relationships. University
of Kansas Science Bulletin, 38:1409–1438, 1958. (Cited on p. 90.)

[133] J. Song and M. Singh. How and when should interactome-derived clusters be used to predict functional
modules and protein function? Bioinformatics, 25(23):3143–3150, 2009. (Cited on p. 86.)

206



[134] N. Song, J. Joseph, G. Davis, and D. Durand. Sequence similarity network reveals common ancestry
of multidomain proteins. PLoS Comput Biol, 4:e1000063, Apr 2008. (Cited on p. 4, 6, 8, 9, 17, 22,
23, 26, 29, 30, 36, 44, 127.)

[135] N. Song, R. Sedgewick, and D. Durand. Domain architecture comparison for multidomain homology
identification. J Comput Biol, 14(4):496–516, May 2007. (Cited on p. 20, 29, 30.)

[136] Michael P. H. Stumpf and Mason A. Porter. Critical truths about power laws. Science, 335(6069):665–
666, 2012. (Cited on p. 15.)

[137] R. Tatusov, N. Fedorova, J. Jackson, A. Jacobs, B. Kiryutin, E. Koonin, D. Krylov, R. Mazumder,
S. Mekhedov, A. Nikolskaya, B. Rao, S. Smirnov, A. Sverdlov, S. Vasudevan, Y. Wolf, J. Yin, and
D. Natale. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4(1):41,
Sep 2003. (Cited on p. 2.)

[138] J. Taylor and J. Raes. Duplication and divergence: the evolution of new genes and old ideas. Annu
Rev Genet, 38:615–643, 2004. (Cited on p. 13, 14.)

[139] S. Teichmann and M. Babu. Gene regulatory network growth by duplication. Nat Genet, 36(5):492–496,
May 2004. (Cited on p. 14.)

[140] A. Theodosiou, S. Arhondakis, M. Baumann, and S. Kossida. Evolutionary scenarios of notch proteins.
Molecular biology and evolution, 26(7):1631–1640, 2009. (Cited on p. 3.)

[141] P. Thomas, A. Kejariwal, M. Campbell, H. Mi, K. Diemer, et al. PANTHER: a browsable database of
gene products organized by biological function, using curated protein family and subfamily classifica-
tion. Nucleic Acids Res, 31(1):334–341, Jan 2003. (Cited on p. 153, 154, 195.)

[142] H. Tordai, A. Nagy, K. Farkas, L. Banyai, and L. Patthy. Modules, multidomain proteins and organ-
ismic complexity. FEBS J, 272(19):5064–5078, Oct 2005. (Cited on p. 1, 14, 15.)

[143] G. Van Rossum and F.L. Drake. Python language reference manual. Network Theory Limited, 2003.
(Cited on p. 143.)

[144] C. Vogel, C. Berzuini, M. Bashton, J. Gough, and S. Teichmann. Supra-domains: evolutionary units
larger than single protein domains. J Mol Biol, 336(3):809–823, Feb 2004. (Cited on p. 3.)

[145] C. Vogel, S. Teichmann, and J. Pereira-Leal. The relationship between domain duplication and recom-
bination. J Mol Biol, 346(1):355–365, Feb 2005. (Cited on p. 14.)

[146] R.M. Waterhouse, E.M. Zdobnov, F. Tegenfeldt, J. Li, and E.V. Kriventseva. Orthodb: the hierarchical
catalog of eukaryotic orthologs in 2011. Nucleic acids research, 39(suppl 1):D283–D288, 2011. (Cited
on p. 142.)

[147] P.A. Watkins, D. Maiguel, Z. Jia, and J. Pevsner. Evidence for 26 distinct acyl-coenzyme a synthetase
genes in the human genome. Journal of lipid research, 48(12):2736–2750, 2007. (Cited on p. 3.)

[148] J. Weiner, A. Moore, and E. Bornberg-Bauer. Just how versatile are domains? BMC Evol Biol, 8:285,
Oct 2008. (Cited on p. 15.)

[149] J. Weston, A. Elisseeff, D. Zhou, C. Leslie, and W. Noble. Protein ranking: from local to global
structure in the protein similarity network. PNAS, 101:6559–6563, 2004. (Cited on p. 18.)

[150] D. Wheeler, T. Barrett, D. Benson, S. Bryant, K. Canese, V. Chetvernin, D. Church, M. Dicuccio,
R. Edgar, S. Federhen, M. Feolo, L. Geer, W. Helmberg, Y. Kapustin, O. Khovayko, D. Landsman,
D. Lipman, T. Madden, D. Maglott, V. Miller, J. Ostell, K. Pruitt, G. Schuler, M. Shumway, E. Se-
queira, S. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, R. Tatusov, T. Tatusova, L. Wagner, and
E. Yaschenko. Database resources of the National Center for Biotechnology Information. Nucleic Acids
Res, 36:D13–D21, Jan 2008. (Cited on p. 2.)

207



[151] T. Wittkop, J. Baumbach, F. Lobo, and S. Rahmann. Large scale clustering of protein sequences with
FORCE -a layout based heuristic for weighted cluster editing. BMC Bioinformatics, 8:396, Oct 2007.
(Cited on p. 18, 21.)

[152] C. Wu, H. Huang, L. Yeh, and W. Barker. Protein family classification and functional annotation.
Comput Biol Chem, 27(1):37–47, Feb 2003. (Cited on p. 2.)

[153] S. Wuchty. Scale-free behavior in protein domain networks. Mol. Biol. Evol, 18:1694–1702, 2001.
(Cited on p. 15.)

[154] Y. Ye and A. Godzik. Comparative analysis of protein domain organization. Genome Res, 14(3):343–
353, Mar 2004. (Cited on p. 3, 15, 117.)

[155] Y.K. Yu, E.M. Gertz, R. Agarwala, A.A. Schäffer, and S.F. Altschul. Retrieval accuracy, statistical
significance and compositional similarity in protein sequence database searches. Nucleic Acids Research,
34(20):5966–5973, 2006. (Cited on p. 17.)

[156] J. Zhang. Evolution by gene duplication: an update. Trends in Ecology and Evolution, 18(6):292–298,
June 2003. (Cited on p. 5.)

[157] Z. Zhang, A. Schaffer, W. Miller, T. Madden, D. Lipman, E. Koonin, and S. Altschul. Protein sequence
similarity searches using patterns as seeds. Nucleic Acids Res, 26(17):3986–3990, Sep 1998. (Cited on
p. 17.)

208


	Contents
	Introduction
	Areas addressed
	Evolution of gene families
	Locus model of multidomain homology
	Classification of gene families
	Relationship of domains and families
	Summary of results

	Background and preliminaries
	Study of multidomain gene families
	Descriptive studies
	Modeling

	Domain consistency and Promiscuity
	The homology network
	Family classification
	Use cases
	Challenges of multidomain families
	Clustering

	Evaluation
	Curated family benchmark


	Network rewiring
	Limitations of sequence similarity
	Network rewiring
	Empirical classification performance

	BLAST sequence similarity

	Optimization for large scale
	Architecture
	Key data structures
	Networks of sequences
	Hierarchical tree storage

	Implementation of Neighborhood Correlation
	Symmetric sequence similarity
	Calculation order


	Analysis of network properties
	Network measures
	Measure definitions

	Interpretation of measures
	Simulation
	Analysis of Yeast networks
	Analysis of human and mouse networks

	Clustering and its evaluation
	Evaluation metrics
	Clustering methodology
	Agglomerative, hierarchical clustering

	Results
	Sequence similarity
	Neighborhood Correlation
	Influence of additional data


	The relationship between domains and clusters
	Introduction
	Mutual Information Formulation
	Working Example of Framework
	Areas of focus
	Structure of predicted families
	Characteristics of domains
	Domain co-occurrence

	Data
	Clustering entropy
	Relationship of domains and clustering
	Mutual information of domains versus entropy
	Characterization of clusters by domain content
	Principal component analysis
	Projection of clusters


	Conclusions and future directions
	Infrastructure
	Software
	Existing tools and packages
	Developed software

	SQL Schema

	Data
	Family score distributions
	Domains and clusters – supplementary data
	Examination across lineages
	Ordering of clusters by PCA component
	Stability in single genomes

	List of Figures
	List of Tables
	List of Code
	Bibliography

