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Abstract

The field of location proteomics seeks to characterize the distributions of
all proteins across all cell types and conditions over time. In order to further
understand the behavior of proteins in cells (systems biology), we need cell
simulations that take into account location information of the proteins (loca-
tion proteomics). One way this gap can be bridged is by building models in a
hierarchical, conditional manner so that models of all cell components can be
constructed by automated learning from cell images.

Building on the work done by Zhao and Murphy [2007] where models
of cell, nuclear and object-type proteins were described, this thesis focuses
on building models of microtubules. Microtubules are dynamic filamentous
structures in cells that are important in many cellular processes such as cell
division, motility and intracellular transport. Because of their small size and
high density in cells, high throughput imaging technologies such as fluores-
cence microscopy make it harder to trace to extract information such as num-
ber and length. Because of this, one of major challenges for building auto-
mated methods that ”learn” is the availability of limited or no ground truth
data of the traces.

I develop a 3D generative model of microtubules and a model parame-
ter estimation approach from confocal fluorescence microscopy images. The
estimation approach is an indirect method that compares simulated with real
images to estimate model parameters. The chapters in this thesis are organized
based on the type of image data (2D vs 3D) and the cell preparation for imag-
ing (fixed vs live cell preparations). Parameters are extracted from images
of microtubules in the presence of nocodazole (a microtubule depolymeriz-
ing drug), showing the numbers and lengths to decrease over time, and from
cell types of different lineages where their numbers and lengths are compared.
Continuing on theme of building hierarchical conditional models, I describe
a vesicle location model conditioned on a model of microtubules. The final
chapter concludes with a summary with its implications and future work.
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Chapter 1

Introduction1

Understanding the many complex cellular and subcellular processes underlying biological

phenomena will require approaches for obtaining spatiotemporal information for the tens

of thousands of proteins expressed in a typical cell. These measurements (in many cases

in the form of statistical estimates) can then be used in modeling and simulation efforts

where the goal is to predict and help understand cellular systems. Such measurements can

also be used to compare cell types across conditions.

Microtubules are filamentous structures located in the cytoplasm of cells that play crit-

ical biological roles in cell division, cell motiliy and intracellular transport. They are

present in many different cell types in the both eukaryotic and prokaryotic systems in

wide ranging intracellular locations such as the axons fibers of neurons and the hairs of

plant roots. Apart from their biological importance, microtubules are fascinating molec-

ular machines to study in vitro because of their self-organizing properties. This chapter

1Part of this chapter is from [Shariff et al., 2010b,a]
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introduces an automated method to build generative models of microtubule distributions

in cells and to quantify biologically relevant information from fluorescence microscopy

images of microtubules from intact cells.

1.1 Structure, behavior and distribution of Microtubules

Microtubules grow out from the microtubule organizing center (MTOC), such as the cen-

trosome in eukaryotic cells, for example forming a star networked structure. A protofila-

ment is formed by the polymerization of a heterodimer, that is made up of two monomers

- the α − tubulin and β − tubulin subunits. A microtubule consists of 13 such protofil-

aments that are held in a parallel fashion forming the wall of a tubular structure Lodish

et al. [2007]. See Figure 1.1 from [Li et al., 2002] for a model of a microtubule region

derived from cyro-electron microscopy.

Like actin filaments, microtubules have a polarity with a plus-end and a minus-end.

The minus-end is attached the centrosome where nucleation occurs, and the plus-end is

where the growth (and shrinkage) occurs. The nature of the growth and shrinkage is such

that they occur in phases: microtubules either grow or shrink and they do so rapidly and

appear to function in a stochastic manner. Their behavior is a function of (1) availability of

tubulin monomers, (2) forces acting on the microtubules, and (3) the availability of other

molecules such as Mg2+ and GTP . The concentration of monomers where the polymer-

ization equals the depolymerization is known as the critical concentration. Because of

these dependencies, the behaviors of microtubules can be controlled using temperature,

pH, drugs, mechanical stress, etc. Also, because of the dynamic nature of microtubules,
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the structure of microtubule network consists of varying numbers and lengths of filaments.

Microtubules attached to centrosomes are located in the cytosolic space of mammalian

cells where they form two different structures depending on the cell cycle stage. In the

interphase stage, the centrosome is located at the close to the nucleus [Malone et al.,

2003], and the microtubules grow out and away from the centrosome. The density of

microtubules is very high at the centrosome and the density decreases as we move away

from the centrosome with an exception at the cell membrane, where microtubules tend to

overlap increasing the density. In the mitotic stage, this apparatus dissipates and forms a

spindle-like structure [Lodish et al., 2007] shedding light on the highly dynamic nature of

microtubules. Figure 1.2 from [Alberts et al., 2002] shows a cartoon of the structure of

microtubules in these two stages of the cell cycle.

1.2 Interaction of microtubules with other proteins

Microtubules are known as cellular highways as they allow for vesicles to be transported

inside that cells that allow for vesicles to cruise using molecular motors [Bloom and Gold-

stein, 1998]. Proteins that interact with microtubules are known as microtubule associated

proteins or MAPs that include molecular motors such as dynein or kinesin. These proteins

are critical for intracellular transport of vesicles (in axons of neurons or in T-cytotoxic

cells) and also in the formation of mitotic or meiotic spindle during cell division.
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Figure 1.1: A cartoon of the tubular structure of microtubules based on a figure derived

using cryo-electron microscopy from [Li et al., 2002]
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Figure 1.2: Intracellular organization of microtubules based on figure from [Alberts et al.,

2002]
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1.3 Role of microtubules in disease

Microtubules are known to be a target in plenty of anti-cancer drugs [Jordan and Wilson,

2004]. Because of their importance in cell division, drugs such as taxol act on microtubules

by stabilizing them and preventing disassembly thereby inhibiting their ability to further

divide.

Malfunction in the microtubule-dependent vesicle transport is directly related to disor-

ders such as kidney disease [Hamm-Alvarez and Sheetz, 1998]. Many neurodegenerative

diseases such as Alzheimers and Parkinsons are related to the malfunction of microtubule

associated proteins and the microtubule network that leads to the accumulation of protein

aggregates in brain cells [Richter-Landsberg, 2008]. Hence, acquiring quantitative infor-

mation such as number of microtubules or the length distribution of microtubules may

help in quantifying the interaction between microtubules and vesicles. Other quantitative

information include kinetic parameters reflecting the dynamics of microtubules.

1.4 Simulations of microtubules

Because microtubule organize and interact with other molecules performing many criti-

cal cellular functions, cell simulations are necessary to take into account the behavior of

the entire microtubule system and the cell. Cells simulations of microtubules have been

performed in interphase cells [Tsaneva-Atanasova et al., 2009] and in cells undergoing

division [Loughlin et al., 2010] elucidating some of the biophysical interactions between

microtubules and its associated proteins within the cell. Automated methods that extract
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quantitative information directly from image data for the purposes of cell simulation are

critical to increase accuracy and to capture the heterogeneity of protein locations in cells,

and that in turn may potentially contribute to heterogeneity in behavior.

1.5 Existing work acquiring such quantitative informa-

tion

There are several direct methods for estimation of microtubule parameters by tracing de-

scribed in the current literature. For these, however, the imaging approach is either not

suitable for intact cells, or the image resolution is not sufficient to discern individual mi-

crotubules throughout the entire extent of the cell [Jiang et al., 2004, Lebbink et al., 2007,

Liang et al., 2002, Santamara-Pang et al., 2006, Sargin et al., 2007]. This can be seen in

Figure 1.3 in which the high density of microtubules near the centrosomal region makes it

impossible to visually or computationally extract individual tracks. Even in regions where

individual tracks can be discerned (often near the boundary of the cell), tracing algorithms

are invariably hindered by crossing tracks. One solution is to use specialized microscopy

methods that greatly enhance estimation of filament like structures: Fluorescence Speckle

Microscopy [Ponti et al., 2005], Fluorescence Correlation Spectroscopy [Sisan et al., 2006]

and Stimulated Emission Depletion microscopy [Donnert et al., 2006]. However, these

methods are not easy to apply on a proteome scale.

Indirect approaches, on the other hand, are more suitable for filament structures since

the structures themselves do not have to be matched exactly but rather the pattern they form

7



in an image is matched instead. A compelling example of such an approach was used to

validate models of the mitotic spindle [Sprague et al., 2003]. In that study, however, very

limited and simple image features such as mean of fluorescence intensity was used to

compare patterns in the images. Another excellent example of an indirect method was

analysis of the structure and dynamics of the actin filament network in the lamellipodia

of a migrating cell [Schaub et al., 2007]. However, images in this work were cropped to

a representative region in the lamellipodia that would not be expected to yield accurate

estimate parameters for the entire cell. The method of comparison used only a distribution

of correlation lengths from images, which may not be adequate to completely quantify

complex patterns in images resulting from overlapping filament structures.

1.6 Approach of this thesis to addressing these biological

questions

1.6.1 Bioimage Informatics

This thesis falls under the field of bioimage informatics where automated methods are

used to quantify and interpret images of cells and tissues from different modalities [Coelho

et al., 2010]. The origins of the field of bioimage informatics in the mid 1990s were in the

development of automated microscope systems that included hand-constructed automated

analysis algorithms [Giuliano et al., 1997] and the successful application of machine learn-

ing methods to recognize subcellular patterns [Boland et al., 1997]. The algorithms behind

bioimage informatics are firmly rooted in signal processing, providing a sound theoreti-
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Figure 1.3: Example image from the HeLa image showing the intracellular organization

of microtubules
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cal foundation for using machine learning techniques to extract meaningful information

from large sets of bioimages. Spatio-temporal events within a cell can be captured by

microscopy, and quantified through image processing and machine learning methods to

produce meaningful conclusions about the data within the experimental context.

For any given task, in order to determine how many images should be acquired, it is

best to be able to accurately characterize the variability for a given cell type under a given

condition. Hence the more data, the better. In a task where the desire is to assign a label

to a protein location pattern, images for one to ten cells can be sufficient to place a protein

into a known location class. However, it may require images for as many as 50 to 100 cells

to adequately learn a new category.

Depending on the biological domain, image processing techniques such as segmenta-

tion/object detection [Coelho et al., 2009], tracing [Al-Kofahi et al., 2008], tracking [Smal

et al., 2008] and registration [Al-Kofahi et al., 2003] can be used. See Figure 1.4 for an

outline of the steps that is adapted from [Shariff et al., 2010b]. Briefly, image segmentation

is used to separate cells in a field, object detection can be used to get the shapes of objects

such as cell, nucleus, vesicle and other organelle boundaries, tracing is used to quantify

the numbers, lengths and relative sizes of branching or filamentous structures in images,

tracking is used to capture the dynamics of movement inside cells from one image frame

to the next, and finally image registration is the application of a geometric transformation

to align an object in one image to a template object in another image.

For interpretation of the data, machine learning can be used to train an automated

method [Bishop, 2006]. Image features, numerical descriptors that can be computed di-
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Figure 1.4: Outline of the steps in Bioimage Informatics. Adapted from [Shariff et al.,

2010b]
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rectly from an image to represent its important aspects or the pixel values can be directly

used. Feature selection and extraction methods can be used to select a subset of the features

or create new sets of features by recombining the original features that are most informa-

tive in discriminating the various classes. Unsupervised methods such as clustering or

semi-supervised methods can be used when there are no or limited instances respectively

of labeled data.

1.6.2 Fluorescence microscopy images are useful to acquire images of

proteins localized in intact cells

Many approaches have been described for obtaining subcellular location data of large num-

bers of protein distributions [Ross-Macdonald et al., 1999, Hoja et al., 2000, Jarvik et al.,

2002, Koroleva et al., 2005, Kumar et al., 2002]. Green fluorescent protein (GFP) tagging

has emerged as the most widely used tool for this purpose and has enabled proteome-scale

studies (see [Huh et al., 2003] for a prominent example using GFP-fusions in yeast). A

notable exception is the work by the Human Protein Atlas project [Barbe et al., 2008,

Uhln et al., 2005], which uses antibody-based methods and has generated millions of im-

ages for over six thousand antisera against various proteins. In either case, fluorescence

microscopy is used to acquire and to interpret the information content in such collections

visually, although automated approaches can play an important role in extracting more

detailed quantitative information from them [Glory and Murphy, 2007].
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1.6.3 The need for generative models

Potential frameworks to characterize protein location patterns from such image data in-

clude descriptive techniques and generative models. In short, descriptive techniques seek

to describe the content of images using numerical feature vectors, one vector per cell or

image. These techniques enable automated subcellular location determination using su-

pervised learning approaches (see [Boland and Murphy, 2001], for an example) but, in the

absence of any associated modeling technique, they cannot be used to provide quantitative

physical information pertaining to the protein distributions. Generative models, on the

other hand, generalize from examples by learning a description of the underlying process

believed to give rise to the image [Pece and Larsen, 2007, Murphy, 2007]. We have pre-

viously described a framework to learn generative models of multiple subcellular location

patterns from cells [Zhao and Murphy, 2007]. Cell membrane, nuclear and protein object

models were constructed so that simulated images representing seven different subcellular

location patterns could be generated. In short, one way to fully understand the location

patterns of individual proteins in a given cell type is to summarize this information in the

form of a model that can accurately represent the statistical variation contained in a set of

fluorescence microscopy images.
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1.7 Microtubule generative models and model parame-

ters

In the context of generative models, this thesis seeks to demonstrate that physically mean-

ingful parameters describing the process by which microtubule distributions are generated

can also be learned from fluorescence microscopy images. The work presented in this the-

sis is builds on the previous modeling framework, which represented protein distributions

as a collection of distinct objects [Zhao and Murphy, 2007], to protein distributions such

as microtubule networks, that cannot be easily represented as objects.

Specifically, this thesis describes a generative model of microtubules, and an indirect

approach for the estimation of model parameters. The publications that resulted in the

context of the work in this thesis is described below:

1. L. P. Coelho, A. Shariff, and R. F. Murphy. Nuclei Segmentation In Microscope Cell

Images: A Hand-Segmented Dataset And Comparison Of Algorithms. Proceedings

of the 2009 IEEE International Symposium on Biomedical Imaging (ISBI 2009),

pp. 518-521.

2. A. Shariff, G. K. Rohde, and R. F. Murphy. Indirect learning of generative models

for microtubule distribution from fluorescence microscope images. Proceedings of

the ICML-UAI-COLT 2009 Workshop on Automated Interpretation and Modeling

of Cell Images (Cell-Image Learning 2009).

3. A. Shariff, R. F. Murphy, and G. K. Rohde. A Generative Model of Microtubule Dis-

tributions, and Indirect Estimation of its Parameters from Fluorescence Microscopy
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Images. Cytometry A. 2010 May;77(5):457-66.

4. L. P. Coelho, E. Glory-Afshar, J. Kangas, S. Quinn, A. Shariff, and R. F. Murphy

(2010) Principles of Bioimage Informatics: Focus on machine learning of cell pat-

terns. Lecture Notes in Computer Science 6004:.8-18.

5. A. Shariff, J. Kangas, L. P. Coelho, S. Quinn and R. F. Murphy (2010). Automated

Image Analysis for High Content Screening and Analysis. J Biomol Screen. 2010

Aug;15(7):726-34.

6. A. Shariff, R.F. Murphy, and G.K. Rohde (2011) Automated Estimation of Micro-

tubule Model Parameters from 3-D Live Cell Microscopy Images. Proceedings of

the 2011 IEEE International Symposium on Biomedical Imaging (ISBI 2011), pp.

1330-1333.

7. J. Li*, A. Shariff*, G.K. Rohde, and R.F. Murphy (2012) Estimating and comparing

microtubule distributions from fluorescence microscopy images of different human

cell types. Submitted.

Chapter 2 focuses on describing microtubule generative models and estimation of

model parameters from 3D fixed cell fluorescence microscopy images where an assump-

tion of no free tubulin is made. Chapter 3 focuses on both polymerized and free tubulin

generative models and its respective model parameter estimation from 3D live cell fluores-

cence microscopy images. Chapter 4 describes a method to extract 3D model parameters

from 2D fixed cell fluorescence microscopy images. Chapter 5 describes how to build
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models of protein locations conditional on microtubules. Chapter 6 concludes with a sum-

mary of the thesis, with implications of the work.
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Chapter 2

Microtubule generative models and

estimation from 3D fixed cell

fluorescence microscopy images1

2.1 Background

One of the major challenges in developing a system that can automatically acquire quanti-

tative structural information about microtubules is the availability of image data that shows

all the location information describing microtubules. Microtubules are a three-dimensional

filamentous structure inside cells that grow out from the centrosome and dynamically oc-

cupy the cytosolic space including the volume around the nucleus. In this chapter, 3D

1Part of this chapter is from [Shariff et al., 2010a]
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fluorescence microscopy images of microtubules are used because 3D images capture all

the intensity information of all microtubules present in the cell. There are basic two com-

ponents to the methods in this chapter: generative modeling of simulated images, and

model parameter estimation from 3D images.

2.1.1 Generative Modeling of Microtubules

In order to extract biologically relevant information from microtubules, domain knowledge

is incorporated into the system by formulating models of proteins from which artificial

images are generated (according to initial estimates of the parameters of the model). As

described in Chapter 1, since microtubules have a filamentous structure, a Gaussian object

representation cannot be used as was the case for generating vesicle-like structures [Zhao

and Murphy, 2007]. Although, texture synthesis approach that was previously used for

nuclear texture can be applied to microtubules, biologically sensible parameters such as

number of microtubules cannot be used for modeling.

2.1.2 Model parameter estimation from 3D images

It is hard to directly estimate structural information about microtubule networks from raw

fluorescence microscopy images. This is because there is a high density of microtubules

at the centrosomal region making it hard to discern one filament to another. To account

for this drawback the model parameters are iteratively modified until a specified similarity

measure between the real input images and the simulated ones is maximized. The critical

steps in this procedure are shown in Figure 2.1 and include microtubule pattern genera-
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tion, image simulation, and comparison with a real microscopic image. These steps are

assembled into an optimization procedure to be detailed below.

2.2 Three dimensional Image Data and Preprocessing

Images of 3D HeLa cells previously obtained by three-color confocal immunofluores-

cence microscopy [Velliste and Murphy, 2002] were used. This collection contains ap-

proximately 50 images for each of nine different proteins, including tubulin. Each im-

age consists of three channels, one reflecting the distribution of DNA (as visualized with

propidium iodide after RNAse digestion), total protein (as visualized with a non-specific

reactive probe), and a specific protein (as visualized with a well-characterized monoclonal

antibody). The spacing between voxels in the image is 0.05 microns in the focal plane

(the X and Y directions) and 0.2 microns in the axial dimension (the Z direction). The raw

images were first downsampled in the X-Y dimension due to memory and computational

issues from 0.05 microns to 0.2 microns per voxel. Hence the final voxel spacing is uni-

form in all three directions; the number of voxels in the X or Y dimension reduced from

1024 to 256.

2.3 Estimation of the point spread functions (PSF)

Three point spread functions were estimated for the cell membrane, nuclear membrane

and alpha-tubulin-GFP channels. The point spread functions for the cell membrane and

nuclear channels were estimated using the Diffraction PSF 3D ImageJ plugin:
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http://www.optinav.com/Diffraction-PSF-3D.htm. The plugin outputs the emission point

spread function. The confocal point spread function is approximated as the square of the

emission point spread function. The point spread function for alpha-tubulin-GFP channel

was directly estimated from the fluorescence microscopy image. Line intensities along the

X dimension and along the Z dimension were computed with clearly distinguishable and

well separated microtubules wrapped around the nucleus. The line profiles were registered

and truncated to size 7, and averaged for the X and Z dimension. A 3D Gaussian was

manually fit and was used as the point spread function.

2.4 Segmentation to estimate the cytosolic space

Each channel of each image was corrected for background fluorescence by subtraction of

the most common pixel value and deconvolved with a theoretical point spread function

for the nuclear channel and the cell membrane channel. The images were segmented into

single cell regions using seeded watershed segmentation. The cell boundary and nuclear

boundary in each slice was then found using the active contour method on the deconvolved

cell membrane channel and nucleus channel respectively [Chan and Vese, 2001].

2.5 Generative Model of Microtubule Patterns

Typically, microtubules grow out from the centrosome and grow within the cytosolic space

of the cell. Hence, a generative model of the microtubule pattern must be conditioned (de-

pendent) on a nuclear model and a cell membrane model. In order to build a model from
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a 3D cell image, the nuclear and cell membrane channels were deconvolved with their re-

spective point spread functions described above and segmented semi-automatically using

the Active Contour without Edges approach. The central point from which microtubules

grow is the centrosome, and its position can be directly estimated from the tubulin channel.

The tubulin image was convolved with a 3x3x3 averaging filter. The location of the cen-

trosome was estimated to be the voxel with the maximum intensity. Figure 2.3 shows the

cell boundary, the nucleus boundary and the centrosome location for a slice of the image

in Figure 2.2.

The growth model consists of generating different numbers of microtubules (each with

a specified length) by extending short segments starting from a single point in the cytosolic

space (the centrosome). The model of microtubule distribution was constructed using a

growth model conditioned on the centrosome location, cytosolic space and the parameters

of the model. The growth model consists of generating microtubules as points on a star

network with the hub as the centrosome. Let X denote the location, in three dimensions,

of the center of the centrosome of a given cell. Assuming the centrosome a sphere, the

diameter of a centrosomal structure was fixed to be approximately 0.4 µm. N random

points were generated Xi,j : i ∈ Z, 1 ≤ i ≤ N, 1 ≤ j ≤ ni inside the volume of the

sphere where N is the number of microtubules to be generated, and ni is the number of

points for each microtubule i. Each point in the sphere is extended in a random direction to

a new point Xi,1 with steplength γ. These short segments are further extended by picking

a point Xi,2 with step length γ that satisfies two constraints. The stiffness constraint is as

follows:

cosα ≤ υ1 · υ2 ≤ 1
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where

υ1 =
X1 −X0

‖X1 −X0‖

υ2 =
X2 −X1

‖X2 −X1‖

and α is the angle between (X2 −X1) and (X1 −X0). In our model, cos(α) is called the

collinearity parameter. Points are also constrained to be generated in the cytosolic space

using a lookup image that was estimated using segmentation.

The length distribution was modeled as a truncated normal distribution [Johnson et al.,

1994]. The normal distribution is truncated such that there can be no negative lengths.

This distribution was shown earlier to fit the lengths of microtubules well in the meiotic

spindle [Yang et al., 2007]. The random variableX ∼ N(µ, σ2) conditioned on (0 < X <

∞) follows a probability density function:

f(x;µ, σ, a, b) =
1
σ
φ(x−µ

σ
)

1− Φ(−µ
σ

)

where φ is the probability density function of the standard normal distribution and Φ is

the cumulative distribution function. This distribution is sampled N times, where N is

the number of microtubules. The microtubule elongation procedure is iterated for each

of N microtubules, until the sampled lengths of the microtubule polymer is satisfied. The

following are thus the model parameters:

1. Diameter of the centrosomal sphere: 0.4 µm (fixed)

2. step length: γ (fixed)

3. number of microtubules: n
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4. collinearity: cosα

5. mean of the normal distribution: µ

6. standard deviation of the normal distribution: σ

2.6 Simulated Pattern to Simulated Image

The microtubule structure model is convolved with the estimated point spread function to

simulate a fluorescence microscopy image generation process. The resulting polymerized

tubulin image is multiplied by a scalar such that the single microtubule peak intensity from

the simulated image matches the mean of the peak single microtubule intensity in the raw

image. Given specific values for each parameter, an image can be generated that simulates

a microtubule distribution, as it would be imaged under the specified condition. Figure 2.4

shows a model of the microtubule network generated by this method and an image that

results from convolving it with a point spread function.

2.7 Grid Generation

The model parameters that are varied are the number of microtubules, the mean and stan-

dard deviation of the length distribution of microtubules, and the collinearity. The range of

the values for the standard deviation of the length distribution and the collinearity (cosα)

did not take all possible values, but was based on how much real variation is believed to

be present. The parameters varied took the following values:
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• n = 5, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300

• µ = 5, 25, 50, 75, 100, 125, 150 microns

• σ = 1, 5, 10, 15, 20, 25 microns

• cosα = 0.9, 0.95, 0.98

Thus, for a given cell morphology, a total of 1651 images were generated.

2.8 Feature Computation

Image features, numerical descriptors that encode the image content, were then calculated

for both real and simulated images. (1) Thirteen 3D Haralick texture features were com-

puted from a single co-occurrence matrix for all the 13 directions for each image [Chen

et al., 2003]. Two more sets of these features were computed by downsampling the image

by two and by four. (2) The image was discretized in subvolumes radially starting from

the centrosome. Radial intensity features were calculated by computing the total intensity

in these subvolumes and normalizing by their respective volumes. (3) Histogram features

were computed that consist of standard measures such as Mean, Variance, Skewness, Kur-

tosis, Energy and Entropy. (4) The total intensity was computed as a feature that is the

sum total of all graylevels values in the 3D image.
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2.9 Model Parameter Estimation

We measured the similarity between the query image and each of the simulated images

by computing the Normalized Euclidean distance in feature space. In order to do this,

a diagonal matrix D was first computed that contain the variances of the features. This

variance matrix was then used to compute the Normalized Euclidean distance between a

feature vector xs computed from a set of simulated microtubules (simulated image) and a

feature vector xr corresponding to the image based on which the microtubule simulation

was computed (raw image). In this case, the Normalized Euclidean distance is given by

drs = (xr − xs)D−1(xr − xs)′

For any query image, the Normalized Euclidean distances were computed from each of the

large grid of simulated images. The optimization problem estimates best fit parameters by

minimizing the Normalized Euclidean distance: [n, µ, σ, cosα] = argmin drs

2.10 Evaluating the Matching Procedure using Simulated

Data

In order to check the models ability to recover parameters when these are known, images

of microtubule patterns were simulated using the methodology described. For each sim-

ulation we tested whether the estimation procedure could be used to recover the known

parameter values. The cost function is dependent on the choice of features computed from

the images and the distance metric in feature space. A plot of the Normalized Euclidean
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distance as a function of different parameters around the vicinity of the optimal parameters

(Number of microtubules = 150, Mean of length distribution = 75 microns, Standard De-

vation of length distribution = 10 microns, Collinearity = 0.95) is shown in Figure 2.5. The

cost functions for the parameters show clear minima for the number of microtubules and

the mean of the length distribution of microtubules, suggesting that the method of mini-

mization could potentially recover parameters. However, in order to test this, we computed

the accuracy of the method on simulated data. To determine how well model parameters

can be recovered by matching, 400 parameter sets were randomly selected from the grid.

Images were generated based on these parameter sets with different random number gen-

erator seeds than those from the images in the image grid. Image matching was done with

each of the 400 query images.

The error metric used was the mean absolute percentage error (MAPE).

MAPE =
1

400

400∑
t=1

∣∣∣∣Rt − St
Rt

∣∣∣∣
where

Rt −Query Image parameters, St − Estimated Image parameter

Table 2.1 shows the average over four realizations of the mean absolute percent error

(MAPE) as a measure of the accuracy of recovering model parameters. Various feature

sets were tested in various combinations, and the error was observed to be minimum when

all the six sets of features were used in the distance function. All the subsequent analyses

were performed using all six feature sets in the distance function. Since, the growth model

is stochastic, we also studied the error as a function of number of average realizations
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Table 2.1: MAPE - Mean Absolute Percent Error estimates (average over four realizations)

for recovery of Number of microtubules (N ), Mean (µ) and Standard Deviation (σ) of

length of microtubules in microns and Collinearity (cosα)

FEATURE SETS MAPE

N µ σ cosα Total

tot 70 102 141 3.9 316.9

his 12 17 221 2.5 252.5

har 10 19 226 1.5 256.5

ha2 14 24 230 1.7 269.7

ha4 17 32 233 1.7 283.7

rad 30 53 235 1.7 319.7

har, rad 10 19 233 1.2 263.2

tot, har 10 18 223 1.5 252.5

tot, rad 27 48 232 1.5 308.5

his, har 8 15 231 1.3 255.3

har, ha2, ha4 12 21 223 1.5 257.5

tot, har, ha2, ha4 12 21 222 1.4 256.5

har, ha2, ha4, rad 12 21 235 1.3 269.3

his, har, ha2, ha4, rad 9 15 227 1.2 252.2

tot, his, har, ha2, ha4, rad 9 15 226 1.2 251.2

rad - Radial intensity features

his - histogram features

har - Haralick texture features

ha2 - Haralick texture features downsampled by 2

ha4 - Haralick texture features downsampled by 4

tot - total intensity feature
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(computing a distance between a query feature vector and an average feature vector over

the number of realizations for each parameter set). The error was only observed to decrease

by at most a few percentage points (e.g., from an error of 8.7% to 7% for the number of

microtubules) as we increased the number of realizations (data not shown). Hence, in order

to reduce computation costs, all subsequent comparisons of query images with synthetic

images were performed for only a single realization of the parameter set.

2.11 Estimating Parameters from a 3D HeLa Image Dataset

Using this approach, we next estimated parameters from the images in the 3D HeLa

dataset. In these computations we restricted the search to be conducted over parameter

values that produced images of similar total tubulin as the input real image. This was done

by first estimating the amount of variation in the peak intensity of a single microtubule.

We chose one standard deviation of this variation and converted it into a standard deviation

of total tubulin using the following formula:

Total Tubulinlim =

(∑
pixels

image

)
Imean

τIlim

where Imean is the mean of peak single microtubule intensity estimated, Ilim is the upper

or lower limit of intensity that is one standard deviation away from Imean, and τ is the

total intensity from a simulated microtubule point. The simulated images in the grid were

searched over this band of total tubulin.

For the 3D image shown in Figure 2.2, the optimal parameters are: number of mi-
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crotubules = 175; mean of the length distribution = 25 microns; standard deviation of the

length distribution = 15 microns and the collinearity = 0.9. The simulated image cor-

responding to the optimal parameter set based on the matching is shown in the center

column of Figure 2.6. In order to check if a visually reasonable match was picked by

the algorithm, variations across the best match are also shown with images of varying

number of microtubules (A), mean of the length distribution (B), standard deviation of the

length distribution (C), and the collinearity of the microtubules (D). The leftmost image of

Figure 2.6A shows an example of a bad parameter set that has very few microtubules. Fig-

ure 2.7 shows the estimated images and parameters for three cells in the 3D HeLa dataset.

We also present the estimated parameters for 42 images from the dataset as histograms for

each of the parameters (Figure 2.8).

2.12 Discussion

A model-based approach is presented here to generate microtubule patterns that mimic

some of the aspects of microtubule distributions in live cells. The algorithm generates im-

ages and measures similarity between each of the generated images and the query image

by computing a Normalized Euclidean distance in feature space. The structural informa-

tion about the microtubule distribution in a query image is approximated as the parameters

of the generative model that generated the simulated image with the smallest Normalized

Euclidean distance.

A stochastic path generation algorithm is used to create microtubule distributions.

The microtubule segments in our growth model are extended using a persistent random

29



walk procedure where successive segments are related by a range of correlation coeffi-

cients Rudnick and Gaspari [2004]. The collinearity parameter used here is a lower bound

on the correlation coefficient (with the upper bound fixed at one) that can be understood

as a single stiffness parameter. A related stiffness parameter that is commonly used in

persistent random walk methods is the persistence length that can also be estimated from

our growth model. The persistent random walk growth model is simple approach but has

been used previously to generate microtubule filament patterns [Brangwynne et al., 2007].

The parameter estimation approach is validated using simulated data. Using the same

modeling for simulation and recovery, results showed that the average error for recovering

the number of microtubules in an image was about 9% while the error in the recovery of the

mean length parameter was around 15%. We have also extracted microtubule distribution

parameters from real images. In this case results are harder to interpret since the correct

values are unknown. Overall, the recovered parameters are able to generate images of

similar overall appearance to those of the corresponding real images. Also, the ranges

of recovered parameter values (Figure 2.8) are of the appropriate order according to the

findings in a study of microtubules in intact cells [Gorbsky and Borisy, 1985].

Although the methods have been validated using simulated data, and have used them to

estimate parameters that appear to be reasonable from real data, more can be done to fur-

ther increase confidence in these estimates. In the next chapter, parameters are estimated

from cells under conditions where the number and length of microtubules are expected to

change (specifically in the presence of microtubule depolymerizing drug: nocodazole).

In addition, the modeling approach can be easily expanded to incorporate more bio-
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logically relevant information. For example, the growth model can be made to include

kinetic parameters such as growth and shrinkage rates to model dynamic instability of

microtubules, or parameters that capture its interaction with molecular motors [Karsenti

et al., 2006]. It may be possible to incorporate some of these parameters by mapping them

to the current model parameters (such as length distribution).
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Figure 2.1: Overview of the approach using 3D images
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Figure 2.2: Example image from the 3D HeLa dataset. (A) shows the sum X-Y projection

of the image (B) shows a slice along the X-Z and (C) shows a slice along the X-Y. The

scale bar is 10 µm.
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Figure 2.3: Cell and nuclear boundaries and centrosome location

Figure 2.4: An example rendering of a microtubule 3D model (view from a 3D corner)

converted to image (sum projected along Z-axis) using a point spread function. The back-

ground color is changed to reflect model and image.
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Figure 2.5: Cost function plots for (A) Number of microtubules (B) The mean and standard

deviation (C) of the length distribution of microtubules and (D) Collinearity
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Figure 2.6: Variation on the optimal match for the (A) number of microtubules (B) mean

and standard deviation (C) of the length distribution of microtubules and (D) collinearity.

The scale bar is 10 µm.
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Figure 2.7: Query images (left column) from the 3D HeLa dataset and estimated images

(right column) along with the estimated model parameters. The scale bar is 10 µm.
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Figure 2.8: Histograms of the parameters estimated for 42 cells of the 3D HeLa dataset.

(A) number of microtubules (B) the mean and standard deviation (C) of the length distri-

bution of microtubules and (D) collinearity
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Chapter 3

Polymerized and free tubulin generative

models and parameter estimation from

3D live cell fluorescence microscopy

images1

3.1 Background

Fixed cell preparations for imaging requires the use of detergents like Triton-X that perme-

abilizes the cell membrane that causes the free monomeric tubulin to diffuse away. Since

the live cell preparation does not require this, presence of free tubulin must be modeled to

1Part of this chapter is from [Shariff et al., 2011]
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estimate parameters for the indirect estimation approach.

In the previous chapter, a generative model of microtubules was described and an in-

direct method of estimating its parameters from images that were assumed to not include

free tubulin was developed. Also, since whole cell images with known parameters were

not available, the ability of the method to accurately estimate model parameters using syn-

thetic images generated using the model was tested. These tests revealed a low error in

estimation but estimates for real images could only be described as generally consistent

with current knowledge. Here estimation of microtubule model parameters is described

from 3D fluorescence microscopy images of live cells under conditions in which changes

in those parameters are expected. This was done by acquiring images of living NIH 3T3

cells expressing fluorescently-tagged tubulin in the presence and absence of nocodazole, a

drug that is known to depolymerize microtubules [Solomon, 1980].

3.2 Data Acquisition of live cell images of tubulin

3D confocal microscopy images were acquired at five different time points in the presence

and absence of nocodazole, keeping all imaging parameters fixed. NIH 3T3 cells express-

ing EGFP-tagged alpha tubulin were cultured in DMEM supplemented with 10% Fetal

Calf Serum and 100 U/ml penicillin and 100 ug/ml streptomycin. The cells were grown

to 80% confluency. On the day of imaging, the media was changed to Opti-MEM and

a final concentration of 0.5 ug/ml of Hoechst was added to the imaging dish to label the

nuclei. The dish was incubated for at least 3 hours in a CO2 incubator before the image

acquisition. The imaging dish was placed in a heated chamber that was maintained at 37 C
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throughout the image acquisition. 3D images were acquired using a confocal fluorescence

microscope. The spacing between voxels was 0.09 microns in the focal plane and 0.48

microns along the axial dimension. 3D images of five different cells were acquired at 0,

10, 20, 30, 40 min after addition of nocodozale or buffer. Due to photobleaching, full 3D

images could not be acquired for the same cell at each time point, and therefore different

cells were imaged at each time point (only interphase cells were selected).

Figure 3.1 shows an example set of such images for various times of treatment with

nocodazole. Cells treated with nocodazole for 40 min appear to have all of their micro-

tubules depolymerized.

3.3 Fluorescent bead acquisition

As described in Chapter 2, the modeling approach requires a model of the point spread

function of the microscope used for acquisition. An empirical estimate of the function

was generated using 20 nm fluorescent beads (488 nm absorption). An empirical estimate

was used directly instead of a theoretical one since the former tends to be more accurate

than the latter. 0.1 ml of a suspension of beads in optiMEM was placed on a clean glass

slide and quickly covered by a coverslip. 3D images were acquired as above.

3.4 Generative model of microtubules

The generative model of polymerized tubulin distribution previously described for HeLa

cells [Shariff et al., 2010a] was applied to NIH 3T3 with only minor modifications. While
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the plasma membrane position for HeLa images was estimated using a fluorescence chan-

nel showing total cell protein, this channel was not available in the 3T3 images. The

tubulin image itself was therefore used for this purpose since the presence of free tubulin

allowed for a reliable estimate of cell boundaries.

3.5 Point spread function

3D images of beads were segmented into individual bead regions using Ridler-Calvard

thresholding and registered using the 3D centroid of the bead. The beads were then aver-

aged to estimate the point spread function.

3.6 Free tubulin distribution estimation and generation

As mentioned earlier, the generative model described in the previous chapter only took into

account polymerized tubulin because the images were acquired by immunofluorescence

staining of fixed cells lacking appreciable free tubulin. This is because permeabilization

of cells with detergents like Triton-X to allow antibody penetration causes most of the

free tubulin to diffuse away. However, live cell imaging of fluorescently-tagged tubulin

detects both free tubulin monomers and polymerized microtubules. Therefore the previous

model was extended to account for free tubulin by estimating histograms of free tubulin

intensities h(reg, nz) for each nuclear or cytoplasmic region reg and for each 2D slice

number nz. Free tubulin regions in each of the 2D slices was estimated by first detecting

and removing the polymerized tubulin regions, as follows. The input image was blurred
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using a Gaussian filter with standard deviation of 3, and the resulting image was subtracted

from the input image. The subtracted image was binarized to separate zero and non-

zero pixels. Since the binary image has small clusters of disconnected objects seemingly

forming microtubule fibers, the binary image is blurred again to connect objects that are

close to each other. This operation was performed using a Gaussian filter with standard

deviation of 2. The resulting image was again binarized. This ad hoc approach resulted

in a reasonable definition of microtubules (as shown in Figure 3.2). In order to generate

free tubulin images for simulations, the histograms h(reg, nz) were sampled to generate

the corresponding distribution of free tubulin in all regions of the cell, f(x).

3.7 Tubulin Image Formation

Here, the tubulin fluorescence image formation used for generating simulated images is

described. Let I(x) be the tubulin fluorescence image. Let p(x) and f(x) be the polymer-

ized tubulin and free tubulin images respectively. Let ∗ denote a 3D convolution. Then,

I(x) = psf ∗ [p(x) + f(x)], where psf is the point spread function of the imaging system

(estimated as above). This can be written as:

I(x) = [psf ∗ p(x)] + [psf ∗ f(x)]

psf ∗ p(x) = psf ∗ [λp′(x)] = λ[psf ∗ p′(x)]

where p′(x) is the model generated in pixel coordinates by the generative model for a given

set of parameters and λ is the scaling factor that matches the single polymerized tubulin

intensities in the simulated images to the real images (see below). Let f2(x) = psf ∗f(x).
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Figure 3.1: Example images of NIH 3T3 cells expressing EGFP-tagged alpha-tubulin at

various time points after addition of 20 uM nocodazole (from left to right, 0, 10, 20, 30,

and 40 min).

Figure 3.2: (A) 2D slice from a 3D image stack of a cell untreated with nocodazole. (B)

Removal of polymerized tubulin (C) Regeneration of free tubulin distribution by sampling

from free tubulin intensity histograms estimated from (B).
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The above equation then becomes:

I(x) = λ.[psf ∗ p′(x)] + fx(x)

Hence, for a given set of parameters Θ, I(x|Θ) can be generated. For a given set of

parameters, the amount of free tubulin was adjusted by scaling f2(x) according to the total

amounts (total intensity) available (see Figure 3.3 for an example).

3.8 Single microtubule intensity estimation

The intensity of a single microtubule was estimated from the 2D slice and region just

below the nucleus of the cell. The reason for this is that the microtubules (if present) in

this region have a very minimal overlap and are generally traceable. λ was defined as:

λ =
ϕ[pR(x)]

ϕ[pS(x)]

where ϕ[.] is the single microtubule intensity in the real (R) and simulated (S) images.

ϕ[pR(x)] was estimated by averaging tubular pixel values and subtracting out the aver-

age free tubulin pixel values. The tubular pixel regions were detected using the method

described by Frangi et al. [Frangi et al., 1998] (see Figure 3.4 for an example). The re-

maining regions were assumed to be free tubulin. ϕ[pS(x)] was estimated directly from

generated polymerized tubulin images p(x). λ was estimated from many images across

the dataset and a single average value λ was used.
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Figure 3.3: A 2D slice in the 3D stack of a simulated image. The image was generated with

the number of microtubules set to 100, the mean of the length distribution to 60 microns,

the standard deviation of length to 6 microns and the collinearity to 0.9961
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3.9 Library generation

As described in Chapter 2, a library of simulated images was generated for all combina-

tions of discrete values of the four parameters:

• Number of microtubules = 0, 5, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220

• Mean of length distribution () = 5, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220

microns

• Coefficient of variation of length = 0, 0.1, 0.2, 0.3

• Collinearity (cosα) = 0.97, 0.984, 0.992, 0.996, 1

3.10 Feature selection and Matching

As described in Chapter 2, parameters are indirectly estimated by choosing the synthetic

image from the library that is most similar to a given real image. This choice is made

using numerical features calculated to describe the fluorescence distributions, and a critical

component of this approach is the choice of features and distance function. We describe

here a feature selection method to include in the distance function using training data.

All but one of the five images at this time point were therefore used to train the feature

selection approach, and the features selected were used to estimate model parameters from

all the images except the ones that were used for training. Cells corresponding to the 40-

min time point do not appear to have polymerized tubulin.
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Therefore features were selected so as to minimize the normalized Euclidean distance

in feature space between 4 images of the 40-min time point of nocodazole treated cells

and simulated images for 0 microtubules (only free tubulin).

This procedure was repeated by holding out each image in turn (five-fold cross-validation).

Figure 3.5 shows the parameter estimates averaged over the five folds and the five repli-

cates per time point. Hence all points are averaged over 25 (5 folds x 5 replicates) except

that the last time point is averaged over five folds only. The number and mean of length

distribution for nocodazole-treated cells decrease as a function of time, but in the control

case, these parameters do not show a decreasing trend. The standard deviation error bars

are very large in some of the points. This is because the parameters are averaged over

different cells that are likely to have varying numbers and lengths of microtubules because

of their varying sizes. However, there is a clear decrease in the number and mean of the

length from the first and last time points in the nocodazole treated case as opposed to the

untreated case.

3.11 Discussion

A microtubule distribution estimation system was validated by estimating parameters from

an image set of live cells. The estimated parameters follow the expected trend: cells treated

with nocodazole tend to have less polymerized tubulin. Future work will include improv-

ing many of the image processing routines to achieve higher efficiency and robustness,

as well as exploring the dependence of the estimates on the accuracy of the point spread

function.
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Figure 3.4: Single microtubule intensity detection on microtubules in a slice just below the

nucleus. The tubulin image is shown in blue and the points identified as showing a single

microtubule are marked in red.
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Figure 3.5: Parameter estimates of the number (A) and mean length (B) averaged over

different folds and repetitions.
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Chapter 4

Microtubule generative models and

estimation from 2D fixed cell

fluorescence microscopy images

4.1 Background

While limited information is available about microtubule distributions [Brinkley et al.,

1981, Reaven, 1982], information on those distributions in intact cells for different cell

types has not been readily available. One of the main reasons for this is the difficulty

of measuring individual microtubules in whole intact cells. Electron microscopy can be

used to trace microtubules, but the specimen preparation for imaging does not allow for

intact cells to be imaged. Fluorescence microscopy can be used to image intact cells, but
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microtubules typically overlap and are often densely packed inside cells. To accurately

trace them, and to make estimation of quantitative parameters, is very hard in intact cells.

Hence previous work comparing cell types has often focused on the tips of microtubules

where tracing is possible or the comparison is only qualitative [Wolf and Spanel-Borowski,

1995].

In the previous chapters, an indirect method for estimating quantitative parameters

such as the number and the mean length of microtubules was developed from 3D fluores-

cence microscopy images of microtubules [Shariff et al., 2011, 2010a]. 3D image data

of intact whole cells, however, can be difficult to obtain in a high throughput (several

thousand cells) fashion. 2D images of microtubule structure, on the other hand, are more

common. In this chapter, a method of estimating 3D microtubule model parameters of an

intact cell from its 2D image fluorescence microscopy data is described.

4.2 Data Acquisition

4.2.1 3D image data of HeLa cells

3D images of HeLa cells previously obtained by three color confocal immunofluorescence

microscopy were used to visualize three cell components: the cell membrane, nucleus and

microtubules [Velliste and Murphy, 2002].
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4.2.2 2D image data of eleven cell types from the Human Protein At-

las

The data used here are confocal fluorescence microscopy images of fixed cells of three

different cell types: A-431, U-251MG and U-2OS, from the Human Protein Atlas [Barbe

et al., 2008]. The images are analyzed as 8-bit TIFF images, with two files each obtained

using a different emission wavelength of fluorescence from a single image field. These

two channel files show the locations of (i) microtubules and (ii) nuclei. Each of the field

images are of size 1728 x 1728 and the pixel size is 0.08 microns in the sample plane.

4.3 Point Spread Function (PSF) estimation

The confocal PSF was generated theoretically using the SVI PSF calculator for the Zeiss

LSM 510 confocal microscope (http://www.svi.nl/NyquistCalculator). The pinhole size

was set to 1 Airy Unit. The numerical aperture was 1.4 and the emission-excitation data

used to generate the PSF was for the Alexa555 dye

(http://probes.invitrogen.com/handbook/boxes/0442.html).
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4.4 3D Cell and Nuclear Shape Generation from a 2D

Slice of Microtubule Channel and Nucleus Channel

The generative model of microtubules that was conditioned on the shape of the cell and the

nucleus (Shariff et al. [2010a]). These shapes were estimated from a 3D confocal stack of

images of a total protein stain and a DNA stain respectively. A method for how to generate

an approximate 3D shape of a cell and nucleus from a 2D slice (purely for the purpose of

being able to generate a synthetic microtubule distribution) is first described. For the 3D

shape generation, an assumption was made that the 2D slice contains information about the

3D structure because of the nature of the point spread function of the confocal microscope,

which allows some of the out-of-focus light to reveal information about the structure along

the Z-dimension.

The field images were first downsampled for computational efficiency from 0.08 mi-

crons to 0.2 microns. They were then segmented into single cell regions using a seeded

watershed method and the 2D cell boundaries were found by thresholding the single cell

regions for above zero pixels. This was used for cell size calculation and for 3D morphol-

ogy generation (see below). The 3D shape of each cell was estimated by interpolating

from the bottom of the cell to a small ellipse whose major axis is aligned with that of

the cell. The microtubule channel image acquired at the center of the cell was used, i.e.

z = Z/2, where Z is the height of the cell.

This image contains information about the cell boundary at the bottom-most region

because the out of focus light from the bottom slice is visible in the center slice (as mi-
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crotubules of very low intensity). Hence, the boundary of the bottom slice was found by

thresholding for above zero intensity pixels. The size (pixel area) of the ellipse is mod-

eled as a fraction of the area of the bottom slice: this is given by a = 2−zA, where A

is the pixel area of the bottom slice, and z is the distance from the bottom. This equa-

tion was estimated from the average area profile of the 2D slices in the 3D HeLa stack

(data not shown). The shape of each cell was then estimated by using distance transform

based shape interpolation [Luo and Hancok, 1997]. Given the height of the cell and the

z-sampling step-size (0.2 microns), a 3D stack of the shape of the cell was generated. The

nuclear morphology was generated based on the same procedure above using the nucleus

channel image.

Figure 4.1 shows an example of microtubule and nucleus images and the resulting 3D

cell and nucleus shape models.

4.5 Centrosome location detection (in 3D)

The 3D coordinate of the centrosome was estimated by breaking the problem into two

parts. First, the XY-coordinate was estimated and second, the Z-coordinate. The XY-

coordinate was chosen as the pixel with the maximum intensity value in the vicinity of the

nucleus after smoothing with an averaging filter of size 25 pixels. For the Z-coordinate,

linear regression was used to estimate the location as a function of the following predictor

variables: (i) Maximum intensity of the microtubule image, (ii) Mean intensity of the

microtubule image, and (iii) pixel intensity of the XY coordinate in the microtubule image.

The parameters of the linear regression were estimated from the 3D HeLa images where
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the 3D centrosome was estimated using the method described in [Shariff et al., 2010a].

The models and centrosome location were then used to generate microtubules in the

cytosolic space.

4.6 Growth model of microtubule patterns:

The growth model of microtubule patterns is similar to the one used in Shariff et al., 2010a,

with one modification: if the microtubule is required to make a turn in 3D space such

that the 3D angle is greater than 56.6 degrees (this value is chosen manually to account

for appearance of real microtubules as well as the generability of the model), the growth

procedure for it is terminated. In order to ensure that the input parameters are exactly the

same as the output parameters, the Algorithm 1 was used to generate the images.

4.7 Simulated image library generation

The model was convolved with a theoretical point spread function and multiplied it with a

scalar to match the microtubule intensity estimated. The single microtubule intensity for

each cell type was estimated using the method described in Chapter 3 or in [Shariff et al.,

2011]. Using this approach, a library of simulated images was generated for each cell

geometry (cell shape and nucleus shape) and contained all combinations of the following

parameter values:

1. Number of microtubules = 5, 50, 100, 150, 200, 250, 300, 350, 400, 450;
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Figure 4.1: Generation of 3D cell geometry from 2D slices of microtubule and nucleus

channel
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Algorithm 1 Microtubule Generative Model
1. Input parameters: number of microtubules (n), mean of the length distribution

(mu), coefficient of variation of length, collinearity and cell height;

2. Sample lengths from Truncated Normal distribution;

3. Sort lengths from longest to shortest;

4. Iterate until all lengths are generated, starting with the longest microtubule:

for i = 1 to n do

if storage has microtubule of desired length generated then

(1) use the generated microtubule length;

(2) remove chosen microtubule from storage;

(3) continue, to the next microtubule.

end if

loop

(1) Generate the microtubule using the method in Shariff et al., 2010a and two

modifications.

if the microtubule length cannot be generated then

(a) add to storage and re-generate the microtubule.

if repeating 100 times does not generate the microtubule of desired length then

return declare “input parameters cannot be generated”.

end if

end if

end loop

end for
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2. Mean of length distribution = 5, 10, 15, 20, 25, 30, 35, 40, 45 microns;

3. Coefficient of variation of length = 0, 0.1, 0.2, 0.3;

4. Collinearity (cosα) = 0.97, 0.98466, 0.9961;

5. Cell Height = 1.2, 1.4, 1.6 microns.

4.8 Features and matching

For all the 3D simulated images in the library, the central 2D slice was used to compute

2D versions of the features that were used in Shariff et al., 2010a. More details about the

implementations of the 2D version of the features can be found in [Boland and Murphy,

2001], and in addition we appended the feature vector with edge features. Following

feature computation, the normalized euclidean distance in feature space was minimized

for matching to estimate the parameters of distribution of microtubules in real 2D HPA

images [Shariff et al., 2010a].

4.9 Recovering 3D Microtubule Generative Model Param-

eters from 2D Images: comparisons with real 3D esti-

mates

In Chapter 2, the method of parameter estimation involves computing features from 3D

stacks of fluorescence microscopy images of microtubules from HeLa cells. Since esti-
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mates need to be made from 2D images, 2D versions of the features were computed and

applied the 2D method of matching on the central slice (at half height of the cell) of the

3D HeLa image data, and compared it with the 3D method. The half height was chosen

as the preferred slice because the 2D images from the HPA were also acquired at half the

height of the cell. The mean absolute percentage error (MAPE) was computed.

MAPE =
1

n

n∑
i=1

|(Pi − P̂i)/Pi| ∗ 100 (4.1)

where Pi is the true parameter and P̂ is the estimate, between the estimates from 2D image

data and the estimates obtained using the 3D generative method over 42 cells. The error

was 43% for the number of microtubules, and 49% for the mean of length distribution. The

estimates from a single 2D slice are reasonably close to those from the entire 3D image.

4.10 Comparing the model parameters from the three cell

types shows differences

3D Microtubule model parameters were estimated from 2D fluorescence microscopy im-

ages of three different cell types from the HPA [Barbe et al., 2008], with the application of

the whole framework including library generation, feature calculation and matching. Fig-

ure 4.2 shows examples of query images and corresponding images synthesized using the

parameters estimated from them. A t-test comparing the estimates of the number, mean of

length of microtubules, and their product, from 100 cells of each of the three cells types

suggests that there is a significant difference in the means of the distributions across the
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three cell types.

4.11 Discussion

4.11.1 Summary

An automated method to estimate 3D microtubule model parameters from 2D images is

developed here. The method is dependent on the 3D structure of the cell and the nucleus,

and the centrosome location. An automated approach is described to generate the same

using only the 2D microtubule image and 2D nucleus image acquired at the center (half

height) of the cell. This method was applied to compare model parameter estimates from

over 400 images of cells and 11 cell types from a set of cells obtained from the HPA.

4.11.2 Comparison with Existing Methods.

To my knowledge, this study is the first attempt to quantify the number and mean of the

length distribution of microtubules in intact cells across different cell types. Methods such

as electron microscopy can image intact cells, but have interference from other cell com-

ponents [Osborn et al., 1978]. More invasive methods of preparation such as extraction of

microtubule network can allow electron microscopy to generate traceable images, but are

no longer representative of the intact cells [Letourneau, 1982]. Fluorescence microscopy,

on the other hand, can be used to obtain information about proteins at monomer-level

resolution of localization without interference from other cell components in intact cells.
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Figure 4.2: Best match simulated images center slice (right) for the real images (on the

left), and estimates of parameters
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One reason for studying microtubule distributions across cell types is to understand

the correlation between subcellular localization patterns of microtubule associated pro-

teins (MAPs) and the microtubule network. There is evidence of varying levels of proteins

across cell types [Duerr et al., 1981], and also cell-specific proteins regulating micro-

tubules [Shestakova et al., 1998]. In this paper, the cell types chosen for the HPA are from

varying lineages such as mesenchymal, epithelial and glial tumors, that are hence expected

to have different localization patterns of microtubule associated proteins (MAPs). Analy-

sis done here shows that some cell types have significant differences in the number and the

mean of the length distribution of microtubules. Although analysis of the images acquired

from the HPA reveals that about half (49%) of the antibodies analyzed showed identical

subcellular localization in all three cell lines, and over 82% in two cell lines [Barbe et al.,

2008], it is unclear what proportion of these are microtubule associated proteins. It is

possible that the proteins involved in regulating the number and length are not identical in

their distributions across cell types.

There is evidence that the number and lengths of microtubules are correlated with the

size of the cell [Brinkley et al., 1981, Goniakowska-Witalinska and Witalinski, 1976].

Therefore, the area of the bottom-most slice (sum of pixel values of the binary image)

was computed as the value reflecting the size of the cell, for each of the cell types. To

quantify the correlation, the correlation coefficient was computed between the cell size

and the product estimated. The values were 0.81 for A431 cells (red), 0.64 for U2OS

cells (green), and 0.80 for U251-MG cells (blue). Figure 4.3 shows a plot of the all the

cells and a best fit line indicating the relationship between the cell size and total tubulin

content indicated by the product estimated. The correlation coefficient for all the cell
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Figure 4.3: Correlation between the cell size and the product of number and mean length

estimated.
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types together was 0.76. This adds more confidence to the estimates of the automated

approach and further confirms the existing hypothesis using the work done by alternative

approaches.

In future, reducing the error in the comparison between the parameter estimates from

the 2D and 3D methods will be required. A potential improvement would be to identify

optimal focal plane (or planes) for acquisition (z-location) of the microtubule image that

better approximates the microtubule in the whole 3D cell. Another improvement would be

to perform the MAPE comparison of estimates using the 2D and 3D methods on a larger

number of 3D images instead of just 42 cells.

Another future work can be to estimate from more cells and cell types from both 2D

and 3D datasets across different cell lines and across species. This would give more insight

into the distribution of microtubules across cells from different lineages, cell morpholo-

gies, etc. We also plan to estimate parameters from time series data sets. Acquisition of

3D time series data sets for microtubules has been difficult because of issues with photo-

bleaching and phototoxicity. Since a method of 2D analysis is now possible, the problem

can be minimized allowing the acquisition of time series. The generative model and esti-

mation approach can also be extended to estimate microtubule dynamics parameters such

as growth and shrinkage kinetics in live intact cells.
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Chapter 5

Building models conditional on

microtubules: A vesicle location model

5.1 Background

Cytoplasmic vesicles are membrane-covered organelles that are localized inside the cell

and are important for various cellular tasks such as endocytosis and exocytosis. For ex-

ample, synaptic vesicles are released from the axon terminal to release neurotransmitters

that are required for propagating nerve impulses. Depending on the contents of vesicles

and markers present on the vesicle membrane, they are targeted towards specific locations

inside the cell. There are least five major types of vesicles, endosomes, peroxisomes, lyso-

somes, phagosomes, and exosomes. They are also categorized according to their contents

(e.g.. digestive enzymes in lysosomes) and functionality (e.g.. endosome for endocytosis)
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A critical component of vesicle targeting is the association of vesicles and microtubules

for intracellular transport. Although microtubules are not necessary for short-range trans-

port, they are required for rapid transport of vesicles [Bloom and Goldstein, 1998]. Fig-

ure 5.1A shows a two-color fluorescence microscopy image of an A431 cell that is fluores-

cently tagged to shown the distributions of a vesicle and microtubule protein. The image

suggests that vesicles are spatially localized in a close proximity to microtubules.

Cell modeling and simulations are important tools for understanding the various roles

vesicles play inside cells. As described in Chapter 1, cell simulations, for example, are of-

ten used to model behavior of vesicle transport on microtubules [Tsaneva-Atanasova et al.,

2009]. Such simulations invariably require vesicle location information that is representa-

tive of that cell type and condition. Modeling the spatial distribution of vesicles inside cells

taking into account information from image data remains an important unsolved problem

that could have a significant impact in measuring and understanding related biological

processes. Although descriptive parameters can be extracted that are useful for tasks such

as classification of subcellular patterns [Zhao et al., 2005], only generative models can

generate instances that can be used in cell simulations.

In previous chapters, a generative model was described for microtubules conditional

on the cell membrane and nucleus along with a method to estimate parameters describing

the spatial distribution from fluorescence microscopy images of HeLa cells. Previously, a

vesicle location generative model that is conditional on the nucleus and cell membrane was

described [Zhao and Murphy, 2007]. However, such models for vesicle distribution should

be conditional on microtubules. In this chapter, an approach for modeling vesicular distri-

butions conditioned on models of microtubule distributions is described. An approach for
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Figure 5.1: (A) A two-color image of a vesicle protein (green) and microtubules (blue) (B)

segmentation of the two channels (C) distributions of the distances between vesicles and

nearest microtubules
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how to estimate model parameters is also described from confocal microscopy images of

microtubules and vesicle proteins using examples from the Human Protein Atlas [Barbe

et al., 2008]. Cluster analysis is performed to analyze the variation in microtubule associ-

ation among a group of vesicle proteins. Using the parameters estimated from images of

lysosomes and endosomes, a model of vesicles is constructed in a hierarchical framework.

5.2 Image Collections

The data used here are 392 confocal fluorescence microscopy images of fixed A431 cells

from the Human Protein Atlas [Barbe et al., 2008]. The images are analyzed as 8-bit

TIFF images with three files each obtained using a different emission wavelength of flu-

orescence from a single image field. The three images show the locations of (1) vesicle-

dependent proteins, (2) nuclei and (3) microtubules. The vesicle-related protein images

were acquired using 128 fluorescently labeled antibodies and the other two using fluores-

cent stains [Barbe et al., 2008]. Each of the field images are of size 1728 x 1728 and the

pixel size is 0.08 microns in the sample plane.

5.3 Dependence of vesicle location on microtubules

The goal of this work is to be able to generate a model of vesicle distribution given quantifi-

able parameters conditional on microtubules. Since microtubules and vesicles are known

to interact, this affinity is quantified by computing the distances between vesicles and the

nearest microtubule. Using confocal microscopy image data of the microtubule and vesicle
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channel, the spatial distribution of microtubules and vesicles are estimated by segmenta-

tion. The input image was blurred using a Gaussian filter with standard deviation of 3,

and the resulting image was subtracted from the input image. The subtracted image was

binarized to separate zero and non-zero pixels. Since the binary image has small clusters

of disconnected objects seemingly forming microtubule fibers or vesicle-like structures,

the binary image is blurred again to connect objects that are close to each other. This op-

eration was performed using a Gaussian filter with standard deviation of 2. The resulting

image was again binarized. This ad hoc approach resulted in reasonable definition of both

vesicles and microtubules.

Figure 5.1B shows the segmentation of microtubules (blue) and vesicles (green) of the

cell in Figure 5.1A. Next, the distance between a vesicle and its nearest microtubule was

computed. First, the centroids of all vesicles were computed using the segmented binary

image. Then, the distance between each vesicle and its nearest microtubule was found

using a distance transform of the binarized microtubule image. Figure 5.1C shows the

distribution of distances between the centroid of vesicles and the nearest microtubule for

the same cell. The distribution was fit with an exponential (solid line). The mean of the

exponential is used in our analysis as measure of the distance between a specific vesicle

localized protein and microtubules.

5.4 Identification of multiple populations in vesicle data

The data from the Human Protein Atlas are images of labels tagged as proteins and the

corresponding microtubule channel. Since, vesicles can be classified either as lysosomes,
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endosomes, peroxixomes or phagosomes, cluster analysis was performed to identify po-

tential multiple populations where one of parameters is based on affinity of vesicles and

microtubules: the mean of the exponential distributed microtubule-vesicle distances. In

addition to the proteins being localized in vesicles, there is also non-vesicle fluorescence.

Hence, two more features were computed: the fraction of fluorescence in the vesicle and

the protein fluorescence fraction overlapping with nucleus. The feature vectors were clus-

tered by k-means clustering using Normalized Euclidean as the distance metric. For each

value of k-clusters, the clustering was repeated using 100 different random starts. The

number of clusters was chosen as the one that minimized the Akaike Information Crite-

rion. Figure 5.2 shows the distributions of the three features across the clusters. The green

cluster had two points that are outliers because of high noise levels in the field images

where some regions get incorrectly detected as vesicular objects. From Figure 5.2A, it

was concluded that the vesicle objects could not be clustered into different classes on the

basis of microtubule-vesicle affinity. However, clusters appeared to be significant across

fluorescence fractions in vesicles and those overlapping with the nucleus.

5.5 Generative model of vesicles conditioned on micro-

tubules

I now describe how vesicle locations are simulated taking into account the affinity (esti-

mated as described above) as well as a given microtubule distribution. The method uti-

lizing a lysosomal protein pattern is illustrated. The mean of the exponential distribution
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Figure 5.2: Clustering of vesicle image data. (A) Distributions across clusters of mean

exponential parameter, (B) fluorescence fractions in vesicles and (C) fluorescence fraction

overlapping with the nucleus. Max. bin size = 10.
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of distances was estimated from fluorescence microscopy images of a lysosomal protein:

LAMP-2. Next, a model for microtubules was generated using the procedure described

in [Shariff et al., 2010a]. The model parameters are the number of microtubules, the mean

and standard deviation of the length distribution, and collinearity. These parameters were

sampled from the distributions that were estimated from HeLa cells [Shariff et al., 2010a].

Figure 5.3A shows a three-dimensional rendering of microtubules generated (and its

nucleus) that was used for our vesicle model of LAMP-2. Next the sampled values of the

number of vesicles per cell, size and fluorescence intensities of the vesicles distribution

from HeLa data were used to generate the vesicles using Gaussian object based generative

models. The parameters for generating vesicles conditioned on microtubules are: (1) mean

fluorescence intensity, (2) size of the vesicle (3) number of vesicles per cell, and (4) the

mean of the exponential distribution fit using the distances between vesicles and the nearest

microtubule and object centers. All the parameters for the vesicles except for the mean

of the exponential parameter were estimated from HeLa cells as described in [Zhao and

Murphy, 2007].

For the vesicle locations, the estimates from the HPA data were used to compute a

single mean for the exponential distribution. The mean was converted into a 3D spa-

tial probability distribution by convolving the generated 3D microtubule model with a

3D Gaussian filter whose standard deviation is approximated to have the decay of a two

tailed exponential distribution with the mean parameter as input. This empirical density

is sampled to generate the spatial locations of the vesicle points. In order to generate the

distribution of vesicles (XV C), we require the locations of the vesicles that are generated

by sampling from a 3D spatial probability density function (P ) that is a function of the
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locations of the microtubules XMT and the affinity parameter.

XV C ∼ P (XMT , µLAMP2)

A two dimensional slice from P is shown in Figure 5.3B. Figure 5.3C is a two dimen-

sional slice from a 2-color three dimensional simulated microscopy image of the vesicles

(green) and the corresponding microtubules (blue). This procedure was repeated using

estimates from an endosomal protein TfR and an example image generated is shown in

Figure 5.3D.

5.6 Discussion

This article describes a method to build a model of vesicle distribution that is conditional

on microtubules. The model outputs locations of the vesicles based on (1) microtubule

location information and (2) the estimate of the mean of the exponentially distributed dis-

tances between vesicles and the nearest microtubule. We used estimates of two vesicle

proteins: Transferrin receptor (endosomal) and LAMP-2 (lysosomal) and generated im-

ages of vesicles distributions conditioned on microtubules.

The work described here represents an important step towards bridging detailed mod-

els learned from large collections of images for proteins contained in discrete objects with

models of microtubule growth learned by inverse modeling. We plan to extend this work

by merging it with models of vesicle movement obtained by automated tracking. It is

hoped that approaches like this will enable the construction of models that capture essen-

tial cell behaviors without requiring the simultaneous measurement of the thousands of
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Figure 5.3: Generative Model of vesicles. (A) A 3D rendering of a generated microtubule

distribution (B) a spatial probability distribution of vesicle locations of a 2D slice (C) a

simulated image of vesicle locations and microtubules of LAMP-2 and (D) Transferrin

receptor
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proteins in the same living cell, something that is not possible with current technology.
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Chapter 6

Conclusion

This chapter summarizes the contribution of this thesis in the field of systems biology.

Specifically, this chapter outlines how the tools developed allow the extraction of biolog-

ically relevant parameters from images of microtubules in the framework of generative

modeling. The chapters in this thesis can be classified based on the type of image data

(2D vs 3D image acquisition, appearance of free vs polymerized tubulin) that are used

to extract quantitative parameters (see below). Implications of each of the chapters and

future work based on this thesis is also outlined.
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6.1 Contribution of this thesis - Generative model of mi-

crotubules

This thesis uses the framework of generative modeling for models of microtubules as it

allows for generating patterns that reflect the development of cellular components that is

very intuitive in biology. This further allows the parameters of the generative model to be

realistic - number, length distribution and stiffness of microtubules. The models are also

generated in a conditional manner. Specifically, the model of microtubules are described

here as dependent on cell and nuclear shape models.

The growth model used is a persistent random walk for extending microtubule seg-

ments where successive segments are related by a range of correlation coefficients. The

collinearity parameter used here is a lower bound on the correlation coefficient (with the

upper bound fixed at one) that can be understood as a single stiffness parameter that has

been frequently used to explain growth models of microtubules.

6.2 Contribution of this thesis - Model parameter estima-

tion from confocal fluorescence microscopy images

The model parameters for the generative model of microtubules are the following:

1. number of microtubules

2. collinearity
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3. mean of the normal distribution of length

4. standard deviation of the normal distribution of length

These model parameters are biological relevant quantitative information that is hard

to extract from fluorescence microscopy images. Features are numerical values computed

as a function of an image or pixel intensity values that are required to be mapped to these

biological relevant parameters. Using the generative model of images of microtubules for a

given set of model parameters, features can be computed. In order to map the features back

to model parameters, an estimation approach needs to be described. As mentioned earlier,

this thesis describes extraction of these parameters from different classes of images: 2D

vs 3D images and free vs polymerized tubulin.

6.3 3D fixed cell preparations

In fixed cell preparations, the free tubulin monomers escape the cell leaving only the poly-

merized filaments in the cell to appear intact. Chapter 2 describes how to estimate these

parameters from 3D images. Using a non-parametric approach of minimizing the normal-

ized euclidean distance between the query image and a library of simulated images, it is

possible to recover the parameters with low errors: 9% for the number of microtubules

and 15% for the mean of the length distribution.
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6.4 2D fixed cell preparations

Chapter 4 describes how to estimate 3D model parameters from 2D images. In this chapter,

a method for how to generate the 3D shape of the cell using a center 2D slice of the tubulin

channel is described. A method for estimating the 3D coordinates of the centrosome is also

described. Estimating the model parameters from the three different cell types from the

Human Protein Atlas reveals significant differences in the means of the parameters taking

into account their variances. Estimating parameters from different cell types allows for

comparing cell types in terms of their microtubule distributions.

6.5 3D live cell preparations

In chapter 3, fluorescence microscopy images of live GFP-tagged cells to alpha-tubulin

were acquired revealing the presence of free tubulin monomers and the polymerized mi-

crotubules. A microtubule depolymerizing drug nocodazole was used and images of cells

at different time points was acquired. A feature selection approach is described to select

for features that reliably estimate the model parameters. The results show that the number

and the mean of the length of microtubules decrease in the presence of nocodazole.

6.6 Models conditioned on microtubules

Chapter 5 shows an example of how to build models conditioned on microtubules. Specif-

ically, the chapter descibes a vesicle location model by sampling from a 3D spatial dis-
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tribution where the higher probability indicates the location of a microtubule. The work

showed that it was possible to estimate vesicle location model parameters from images of

lysosomal protein LAMP2 and an endosomal protein TfR.

6.7 How does this work change with improving technolo-

gies such as resolution of the images with image ac-

quisition?

Simulations have been used across various scientific fields in order to test models and

understand behavior. The work presented here allows parameters of these models to be

estimated automatically from biological images. Specifically, the work here shows that

when the resolution of images is such that filamentous structures are not traceable, an

indirect approach can be used where simulated images are compared with real images

to estimate model parameters. Direct approaches such as tracing can used when future

technologies that allow for clear distinction of microtubules in a high throughput manner

are available.
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6.8 Implications and Future work

6.8.1 Conditional Models

Ultimately, we seek to build models in a hierarchical, conditional manner so that models

of all cell components can be constructed by automated learning from cell images. In

the future, we anticipate that this model can be merged with generative models of other

protein patterns. Microtubules are critical for intracellular transport and vesicles that are

transported by molecular motors along microtubules. There are numerous other protein

pattern images of microtubule associated proteins (MAPs), such as the microtubule end

binding protein (mEB1), that are dependent on microtubule network.

6.8.2 Other filamentous structures

The current approach can be used to learn models for other structures that have a net-

work/filamentous appearance. Particularly, patterns that make up the cell cytoskeleton,

such as actin and intermediate filaments, or proteins that make up the connective tissue,

such as collagen fibers, may be quantified by this method. For example, in an analysis of

actin images, there are quantitative measures that can be used as features for the indirect

approach described in this thesis [Weichsel et al., 2010].
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6.8.3 Comparing microtubules

In future, biologically relevant parameters from different cell types across species and

conditions, such as temperature, pH and drugs, can be estimated so that comparisons based

on their microtubule distributions can be made.

6.8.4 Regression to predict parameters of distribution of microtubules

From a computational point of view, using a brute-force search where many simulated

images need to be generated, demands a large amount of computational effort, and the

resulting values of parameters can be only chosen from the grid of the library generated.

Therefore, in future the library of images can be adaptively expanded to generate more

detail where it is needed, or a regression model can be trained to create a mapping function

between model parameters and the features of the synthetic or real images.

6.8.5 Are we estimating all quantitative information required to an-

swer biological questions regarding microtubules?

This thesis describes building static representations of microtubule distributions, but in

order to simulate the behavior of microtubules, critical information such as the kinetic

parametes of microtubules need to be estimated. Data acquisition of 3D time series images

of microtubules has been difficult because of issues with photobleaching and phototoxicity.

Since the 2D method of parameter estimation from images is now possible, analysis of

time series is possible. However, the generative model and estimation approach needs to
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be extended to estimate microtubule dynamics parameters such as growth and shrinkage

kinetics in live intact cells.

6.9 Availability

All the code for the work is available on the Murphy lab software website http://

murphylab.cbi.cmu.edu/software/software_from_papers.html. These

models and training data will also be available in PSLID [Huang et al., 2002], and in future

will be integrated with cell simulations software such as V-cell [Moraru et al., 2002].
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