
Learning to Detect Phishing Emails

Ian Fette Norman Sadeh Anthony Tomasic
June 2006

CMU-ISRI-06-112

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This report also appears as Carnegie Mellon Cyber Laboratory
Technical Report CMU-CyLab-06-012

The work reported herein has been supported in part under the NSF Cyber Trust initiative (Grant #0524189) and
in part under ARO research grant D20D19-02-1-0389 (“Perpetually Available and Secure Information Systems”) to
Carnegie Mellon University’s CyLab. The authors would also like to thank Lorrie Cranor, Jason Hong, Alessandro
Acquisti, Julie Downs, Sven Dietrich, Serge Egelman, Mandy Holbrook, Ponnurangam Kumaraguru, and Steve Sheng.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation

Keywords: phishing, email, filtering, semantic attacks, learning

Abstract

There are an increasing number of emails purporting to be from a trusted entity that attempt to
deceive users into providing account or identity information, commonly known as “phishing”
emails. Traditional spam filters are not adequately detecting these undesirable emails, and this
causes problems for both consumers and businesses wishing to do business online. From a learn-
ing perspective, this is a challenging problem. At first glance, the problem appears to be a simple
text classification problem, but the classification is confounded by the fact that the class of “phish-
ing” emails is nearly identical to the class of real emails. We propose a new method for detecting
these malicious emails called PILFER. By incorporating features specifically designed to highlight
the deceptive methods used to fool users, we are able to accurately classify over 92% of phishing
emails, while maintaining a false positive rate on the order of 0.1%. These results are obtained on
a dataset of approximately 860 phishing emails and 6950 non-phishing emails. The accuracy of
PILFER on this dataset is significantly better than that of SpamAssassin, a widely-used spam filter.

1 Introduction

Phishers launched a record number of attacks in January 2006, as reported by the Anti-Phishing
Working Group [1]. These attacks often take the form of an email that purports to be from a trusted
entity, such as eBay or PayPal. The email states that the user needs to provide information, such as
credit card numbers, identity information, or login credentials, often to correct some alleged prob-
lem supposedly found with an account. Some number of users fall for these attacks by providing
the requested information, which can lead to fraudulent charges against credit cards, withdrawals
from bank accounts, or other undesirable effects.

The first attempts at applying learning to these problems took the form of browser toolbars,
such as the Spoofguard [2] and Netcraft [3] toolbars. Our research group is currently conducting
a study to determine the accuracy of these and other toolbars more precisely. Preliminary results
indicate that a large percentage of phishing emails make it past these toolbars. One of the biggest
drawbacks from a learning perspective is that toolbars in web browsers have access to less infor-
mation. In some sense, users have already partially fallen for the attack by clicking on a link in an
email, and this could potentially expose the user to spyware and malware loaded by attacks on in-
secure web browsers. Furthermore, now that detection is being done in the browser, the contextual
information and features from the email are no longer available. In theory, this reduced amount of
information should cause a similar reduction in the accuracy that such systems are able to achieve.
Aside from accuracy, toolbars suffer from a number of other problems.

Toolbars usually prompt users with a dialog box, which many users will simply dismiss or
misinterpret, or worse yet these warning dialogs can be intercepted by user-space malware [4].
Finally, by waiting until the user clicks on a link and goes to a website to address the problem,
we have allowed the user to be distracted by illegitimate email, and thereby failed to prevent
some loss of productivity and concentration on more important tasks at hand. Newer solutions
include attempts to warn users inside of their mail user agent (“client”). Examples of this include
Thunderbird 1.5 [5]. However, without formal studies and a fully detailed description of how such
filters work, it is difficult to assess their impact. Furthermore, although these solutions are able
to make use of the context of the email in which the phishing attack occurs, the user is often still
paying the mental price of reading the email, the warning can still be dismissed (either by the user
or by malware), and the ISP is still paying the cost of transmission for the junk email.

Ideally, phishing detection algorithms require minimal user interaction, either as a server-side
filter to compliment existing spam filters, or as a filter running locally in the client. This approach
has several benefits over other methods. First, by removing user interactions, there is no chance
for the user to dismiss warning dialogs and proceed to provide information to an attacker. Second,
contextual information is available in the email. Finally, by operating on the email rather than in
the browser, server-side detection is possible. Server-side detection avoids paying a transmission
cost for sending the email (and subsequent requests for images linked to in an HTML image) to the
user, as well as the cost of evaluating certain features (such as doing WHOIS lookups, whose results
can be cached for re-use). We present in this an algorithm, which we call “PILFER” - phishing
identification by learning on features of email received. Our implementation is not optimal. It does
not make use of all the information potentially available to a server-side filter. However, we obtain
high accuracy rates, and posit that further work in this area is warranted.

1

The remainder of this paper is organized in the following manner. Section 2 discusses previous
approaches at filtering spam email, while section 3 gives an overview of learning and how we apply
it to the task of classifying phishing emails. Section 4 covers the results of empirical evaluation, as
well as some challenges presented therein, and in section 5 we present concluding remarks.

2 Background

Many people have proposed ways in which to eliminate spam emails (see, for example, [6, 7,
8, 9, 10, 11]) Many of these approaches use a naı̈ve methodology, ranging from “bag-of-words”
approaches, where the features of an email are the presence or absence of highly frequent and rare
words, to analysis of the entropy of the messages. While these approaches looking at the text of the
email appear to do well for spam, phishing messages still get through these filters. On some level,
this makes sense, as phishing emails are designed to look as close as possible to a real, non-spam
email that a legitimate company would (or already has) sent out. As such, it is our belief that to
stop phishing emails, we need to look at features selected specifically to detect this class of emails.

Looking at class-specific features is not a new approach in email filtering. SpamAssassin [12],
for instance, has a number of rules that try to detect features common in spam email that go
beyond just the text of the email. Such tests include things like the ratio of pixels occupied by
text to those occupied by images in a rendered version of the mail, presence of certain faked
headers, and the like. Spamato [13] is another extensible filtering platform that ships with a number
of advanced filters, such as Vipul’s Razor [14] (a collaborative algorithm using both URLs and
message hashes), that work in tandem to detect spam emails. Our contribution is a new approach
focused on learning to detect phishing, aka semantic attacks. Our solution can easily be used in
conjunction with existing spam filters. The solution significantly reduces the amount of phishing
emails with minimal cost in terms of false positives.

3 Method

3.1 Learning Overview

PILFER is a machine-learning based approach to classifying emails. Classification is a heavily
studied problem within the learning community, and classification problems typically consist of
the following components. First, there is a notion of “classes”, to which instances of data belong.
In this context, we have two classes, namely the class of phishing emails, and the class of good
(“ham”) emails. Next, there is a notion of features. Features are properties of the instances being
classified, and are the source of information upon which the classification decision is made. If we
were trying to distinguish between birds and fish, we might use features such as whether or not the
creature had wings, whether it had legs, and so forth. A learning algorithm is then used to create
a model, which accepts input in terms of a set of assignments to the known features, and returns
a class label as an output. This model is first trained by supplying a set of “training data”, which
is comprised of pairs of feature assignments and class labels. A separate set of “test data” is then

2

supplied to the model, and the predicted class of the data (phishing or ham) is compared to the
actual class of the data to compute the accuracy of the model.

In PILFER, we first run a set of scripts to extract a set of ten features, which are described in
the next section, subsection 3.2. Once the features are extracted, we train and test a classifier using
10-fold cross validation. (The dataset is divided into ten distinct parts. Each part is then tested
using the other nine parts of the data as the training data. This ensures that the training data is
separate from the test data, and is called “cross-validation”.) For our reference implementation,
of PILFER, we use a support vector machine as a classifier. A support vector machine creates
a multi-dimensional decision boundary that tries to separate the margin (distance) between the
closest instances of opposite classes, while penalizing misclassifications. Our implementation
uses libsvm [15] - a freely available SVM library, with a slack penalty of 10, as our classifier. We
also tried a number of different classifiers, including rule-based approaches, decision trees, and
Bayesian approaches, but the overall accuracies of most of the classifiers were not different with
statistical significance. Accuracies for some of these other classifiers are shown in appendix A. For
a complete discussion of SVM and other classifiers, the reader is directed to a machine learning
text such as [16] or [17].

3.2 Features

Some spam filters use hundreds of features to detect unwanted emails. We have tested a number
of different features, and present in this paper a list of the ten features that are used in PILFER,
which are either binary or continuous numeric features. As the nature of phishing attacks changes,
additional features may become more powerful, and PILFER can easily be adapted by providing
such new features to the classifier. At this point, however, we are able to obtain high accuracy with
only ten features, which makes the decision boundaries less complex, and therefore less prone to
over-fitting and faster to evaluate. We explain these features in detail below. Some of these features
are already implemented in spam filters (namely the presence of IP-based URLs); these features
are also a useful component of a phishing filter.

3.2.1 IP-based URLs

Some phishing attacks are hosted off of compromised PCs. These machines may not have DNS
entries, and the simplest way to refer to them is by IP address. Companies rarely link to pages by
an IP-address, and so such a link in an email is a potential indication of a phishing attack. As such,
anytime we see a link in an email whose host is an IP-address (such as
http://192.168.0.1/paypal.cgi?fix_account), we flag the email as having an IP-
based URL. As phishing attacks are becoming more sophisticated, IP-based links are becoming
less prevalent, with attackers purchasing domain names to point to the attack website instead.
However, there are still a significant number of IP-based attacks, and therefore this is still a useful
feature. This feature is binary.

3

3.2.2 Age of linked-to domain names

Phishers are learning not to give themselves away by using IP-based URLs. Name-based attacks,
in which a phisher will register a similar or otherwise legitimate-sounding domain name (such as
playpal.com or paypal-update.com) are increasingly common. These domains often have a limited
life, however. Phishers may register these domains with fraudulently obtained credit cards (in
which case the registrar may cancel the registration), or the domain may be caught by a company
hired to monitor registrations that seem suspicious. (Microsoft, for instance, watches for domain
name registrations involving any of their trademarks.) As such, the phisher has an incentive to
use these domain names shortly after registration. We therefore perform a WHOIS query on each
domain name that is linked to, and store the date on which the registrar reports the domain was
registered. If this date is within 60 days of the date the email was sent, the email is flagged with
the feature of linking to a “fresh” domain. This is a binary feature.

3.2.3 Nonmatching URLs

Phishers often exploit HTML emails, in which it is possible to display a link that says paypal.com
but actually links to badsite.com. For this feature, all links are checked, and if the text of a link
is a URL, and the HREF of the link is to a different host than the link in the text, the email is flagged
with a “nonmatching URL” feature. Such a link looks like
 http://www.paypal.com . This is
a binary feature.

3.2.4 “Here” links to non-modal domain

Phishing emails, often contain text like “Click here to restore your account access”. In many cases,
this is the most predominantly displayed link, and is the link the phisher intends the user to click.
Other links are maintained in the email to keep the authentic feel, such as the link to a privacy
policy, a link to the user agreement, and others. We call the domain most frequently linked to the
“modal domain” of the email. If there is a link with the text “link”, “click”, or “here” that links to
a domain other than this “modal domain”, the email is flagged with a “here” link to a non-modal
domain feature. This is a binary feature.

3.2.5 HTML emails

Most emails are sent as either plain text, HTML, or a combination of the two in what is known as
a multipart/alternative format. The email is flagged with the HTML email feature if it contains a
section that is denoted with a MIME type of text/html. (This includes many multipart/alternative
emails). While HTML email is not necessarily indicative of a phishing email, it does make many
of the deceptions seen in phishing attacks possible. For a phisher to launch an attack without using
HTML is difficult, because in a plain text email there is virtually no way to disguise the URL to
which the user is taken. Thus, the user still can be deceived by legitimate-sounding domain names,
but many of the technical, deceptive attacks are not possible. This is a binary feature.

4

3.2.6 Number of links

The number of links present in an email is a feature. The number of links is the number of links in
the html part(s) of an email, where a link is defined as being an ¡a¿ tag with a href attribute. This
includes mailto: links. This is a continuous feature.

3.2.7 Number of domains

For all URLs that start with eitherhttp:// or https:// , we extract the domain name for the
purpose of determining whether the email contains a link to a “fresh” domain. For this feature,
we simply take the domain names previously extracted from all of the links, and simply count
the number of distinct domains. We try to only look at the “main” part of a domain, e.g. what
a person actually would pay to register through a domain registrar. It should be noted that this is
not necessarily the combination of the top- and second-level domain. For instance, we consider
the “main” part ofwww.cs.university.edu to beuniversity.edu , but the “main” part
of www.company.co.jp would becompany.co.jp , as this is what is actually registered
with a registrar, even though technically the top-level domain is .jp and the second-level domain
is .co. This feature is simply the number of such “main” domains linked to in the email, and is a
continuous feature.

3.2.8 Number of dots

There are a number of ways for attackers to construct legitimate-looking URLs. One of which is
to have a subdomain, likehttp://www.my-bank.update.data.com . Another is to use a
redirection script, such as
http://www.google.com/url?q=http://www.badsite.com/update.cgi , which
to the user may appear like a site hosted at google.com, but in reality will redirect the browser to
badsite.com. In both of these examples, either by the inclusion of a URL into an open redirect
script or by the use of a number of subdomains, there are a large number of dots in the URL. Of
course, legitimate URLs also can contain a number of dots, and this does not make it a phishing
URL, however there is still information conveyed by this feature, as its inclusion increases the
accuracy in our empirical evaluations. This feature is simply the maximum number of dots (‘.’)
contained in any of the links present in the email, and is a continuous feature.

3.2.9 Contains javascript

JavaScript is used for many things, from creating popup windows to changing the status bar of a
web browser or email client. It can appear directly in the body of an email, or it can be embedded
in something like a link. Attackers can use JavaScript to hide information from the user, and
potentially launch sophisticated attacks. An email is flagged with the “contains javascript” feature
if the string “javascript” appears in the email, regardless of whether it is actually in a<script>
or <a> tag. This might not be optimal, but it makes parsing much simpler, especially when dealing
with attacks that contain malformed HTML. This is a binary feature.

5

3.2.10 Untrained SpamAssassin Output

Many mail clients already have a spam filter in place, and as such it seems natural to leverage the
ability of existing solutions in combating the phishing problem. We therefore include as a feature
the result of whether SpamAssassin labels an email as spam, using the default threshold of 5 and
an untrained SpamAssassin installation.

3.3 Testing SpamAssassin

SpamAssassin is a widely-deployed freely-available spam filter that is highly accurate in classi-
fying spam emails. For comparison against PILFER, we classify the exact same dataset using
SpamAssassin version 3.1.0, using the default thresholds and rules. The results reported for “un-
trained” SpamAssassin are obtained by simply treating the entire dataset as a test set, and not
training on any emails. This represents an out-of-the-box install of SpamAssassin. (To be sure
that SpamAssassin was untrained, we ransa-learn --clear before testing the emails). The
results reported for the “trained” SpamAssassin are from the same version, except that we now use
10-fold cross validation, where before each fold we clear SpamAssassin’s internal database (by
calling sa-learn --clear), and then train on all the emails in the train part of the fold and
test on those in the test part of the fold.

4 Empirical Evaluation

4.1 Overview

In this section, we present the results of running PILFER and SpamAssassin on a dataset of emails,
described in subsection 4.2. Certain challenges are present when trying to do post-hoc analysis of
phishing attacks, the specifics and impact of which are discussed in subsection 4.3. Subsection 4.4
shows our results in classifying the dataset, and subsection 4.5 discusses the impact of the choice
of classifier in PILFER.

4.2 Datasets

Two publicly available datasets were used to test our implementation: the ham corpora from the
SpamAssassin project [18] (both the 2002 and 2003 ham collections, easy and hard, for a total
of approximately 6950 non-phishing non-spam emails), and the publicly available phishingcor-
pus [19] (approximately 860 email messages). We use a series of short scripts to programmatically
extract the above features, and store these in a database for quick reference. We label emails as be-
ing non-phishing if they come from the SpamAssassin ham corpora, and as phishing if they come
from the phishingcorpus. It should be noted that the content of the phishingcorpus is less than
ideal, and depending on your particular definition of phishing, it may contain emails that might not
be considered phishing. For these experiments we used the entire dataset and did not re-label any
of its contents.

6

4.3 Additional Challenges

There are a number of challenges posed by doing post-hoc classification of phishing emails. Most
of these challenges only apply to the phishing emails in the dataset and materialize as a form of
missing information, which has the net effect of increasing the false negative rate. Without the
challenges outlined below, which are mostly artifacts of tesing after the fact as opposed to live in a
real system, even better accuracy should be possible.

The age of the dataset poses the most problems, which is particularly relevant with the phishing
corpus. Phishing websites are short-lived, often lasting only on the order of 48 hours. Some of our
features can therefore not be extracted from older emails, making our tests difficult. For instance,
in one of our features, we are interested in the age of domains linked to. We perform a WHOIS
query to determine the date a domain was registered, and subtract this date from the date the email
was sent according to its headers to determine its age. In many cases of phishing attacks, however,
these domains are not still live at the time of our testing, resulting in missing information.

The average phishing site stays live for approximately 2.25 days [20]. After the phishing site
is discovered and taken down by web hosts or authorities, the domain name may be turned over to
the spoofed company, it may be allowed to simply expire, or it may be canceled by the registrar.
In some cases, the domain used may have been purchased with a stolen credit card, in which case
there is a good chance that the charge will be reversed and the domain name registration canceled.
In any case, it becomes very hard to get accurate WHOIS data from a domain used in an attack
so far in the past. The most recent email in the phishing dataset is from November 2005, fully six
months prior to the writing of this paper.

Matters are further complicated by the fact that different registrars report different amounts of
data for domains, and all the registrars seem to use a different format. For instance, a WHOIS
query on example.de will usually return the date of last change, but will usually not give the date
on which the domain was registered. A WHOIS query on example.com will usually return a
create date, but the format of the result is entirely different than that used for example.de. This
has a definite effect of introducing noise into our feature set. Of the 870 distinct domain names
referenced in our data set, we were only able to programmatically extract registration dates for 505
of these as of when this paper was written.

4.4 Results

On our dataset, PILFER achieves an overall accuracy of 99%, with a false positive rate (non-
phishing emails marked as phishing) of less than 1%. PILFER’s false negative rate (missing a
phishing email) on the dataset is on the order of 7-8%, which is approximately half that of Spa-
mAssassin’s. These results are compared in detail with those of SpamAssassin in Table 1. As seen
in the table, either with or without the input from SpamAssassin, our classifier has orders of mag-
nitude fewer false positives on the dataset, and approximately half the false negatives. Curiously,
SpamAssassin seems to perform slightly worse when trained and tested under 10-fold cross vali-
dation. This might be due to the fact that the phishing emails SpamAssassin catches are triggering
a number of sufficiently-weighted rules without explicit training, such as blacklist rules like DNS
FROM RFC ABUSE, and the learning rules like Naı̈ve Bayes might not actually help the classifier

7

Table 1: Accuracy of classifier compared with baseline spam filter

CLASSIFIER False Positives False Negatives

PILFER, with S.A. feature 0.12% 7.35%
PILFER, without S.A. feature 0.30% 8.40%
SpamAssassin (Untrained) 10.96% 14.35%
SpamAssassin (Trained) 11.13% 15.87%
PILFER OR SpamAssassin (Untrained) 11.12% 2.08%

Table 2: Percentage of emails matching the binary features

Feature Non-Phishing Matched Phishing Matched

Has IP link 0.06% 45.04%
Has “fresh” link 0.98% 12.49%
Has “nonmatching” URL 0.14% 50.64%
Has non-modal here link 0.82% 18.20%
Is HTML email 5.55% 93.47%
Contains JavaScript 2.30% 10.15%
Untrained S.A. Output 10.96% 85.65%

on this dataset as the text of phishing emails are often similar to the text of legitimate emails.
Table 2 shows the exact percentages of emails (by class) matching each of the seven binary

features. All of the binary features are matched more frequently by phishing emails than by non-
phishing emails. For the three non-binary features, their averages and standard deviations per-class
are shown in Table 3. These features have higher mean values for phishing emails.

We also tested to see if the emails SpamAssassin classified as spam were a subset of those that
PILFER detected, or separate emails. If one were to classify an email as phishing if identified
by either our classifier (PILFER) or SpamAssassin (shown in Table 1 as “PILFER OR SpamAs-
sassin”), one would detect 97.9% of the phishing emails, but would suffer a false positive rate of
11.1%. This comparison suggests that the emails detected by one classifier are not a strict subset
of those detected by the other.

In summary, PILFER can be either deployed in a stand-alone configuration to catch a large
percentage of phishing emails with very few false positives, or in conjunction with an existing
spam filter such as SpamAssassin for even fewer false negatives. If a filter like SpamAssassin is
already deployed, then adding PILFER has the advantage of significantly reducing the number of
phishing emails making it to the user, while having no significant effect on the number of emails
erroneously caught by the filtering system.

8

Table 3: Mean, standard deviation of the continuous features, per-class

Feature µphishing σphishing µnon-phishing σnon-phishing

Number of links 3.87 4.97 2.36 12.00
Number of domains 1.49 1.42 0.43 3.32
Number of dots 3.78 1.94 0.19 0.87

5 Concluding Remarks

In this paper, we have shown that it is possible to detect phishing emails with high accuracy by
using a specialized filter, using features that are more directly applicable to phishing emails than
those employed by general purpose spam filters. Although phishing is a subset of spam (after all,
who asks to receive emails from a person pretending to be their bank for the purpose of fraud and
identity theft?), it is characterized by certain unique properties that we have identified.

One might be inclined to think that phishing emails should be harder to detect than general
spam emails. After all, phishing emails are designed to sound like an email from a legitimate
company, often a company with which the attacker hopes the user has a pre-existing relationship.
Models based on naı̈ve assumptions, such as certain words like “viagra” being indicative of a class
of un-desirable emails, no longer hold when the attackers are using the same words and the same
overall “feel” to lure the user into a false sense of security. With that said, phishing emails present
unique opportunities for detection that are not present in general spam emails.

In general spam emails, the sender does not need to misrepresent their identity. A company
offering to sell “viagra” over the Internet does not need to convince potential buyers that they
are a pharmacy that the user already has a relationship with, such as CVS or RiteAid. Instead,
a spammer can actually set up a (quasi-)legitimate company called Pharmacy1283, and identify
themselves as such, with no need to try to convince users that they are receiving a communication
from their bank, or some other entity with which they have an established relationship. It is this
mis-representation of sender identity that is key to the identification of phishing emails, and further
work in the area should concentrate on features to identify this deceptive behavior.

There are a number of emerging technologies that could greatly assist phishing classifica-
tion that we have not considered. For instance, Sender ID Framework (SIDF) [21] and Do-
mainKeys [22], along with other such sender authentication technologies, should help to both
reduce false positives and make detection of spoofed senders much simpler in the time to come.
In the meantime, however, we believe that using features such as those presented here can signifi-
cantly help with detecting this class of phishing emails. We are currently in the process of building
a live filtering solution based around PILFER, which we will start making available to a small
number of users for testing for further data collection and analysis.

9

References

[1] “Phishing activity trends report,” Anti-Phishing Working Group, Tech. Rep., Jan. 2005.
[Online]. Available: http://www.antiphishing.org/reports/apwgreport jan 2006.pdf

[2] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell, “Client-side defense against
web-based identity theft.” inNDSS, 2004. [Online]. Available: http://www.isoc.org/isoc/
conferences/ndss/04/proceedings/Papers/Chou.pdf

[3] “Netcraft toolbar,” 2006. [Online]. Available: http://toolbar.netcraft.com/

[4] A. Alsaid and C. J. Mitchell, “Installing fake root keys in a pc.” inEuroPKI, 2005, pp.
227–239. [Online]. Available: http://dx.doi.org/10.1007/1153373316

[5] “Mozilla thunderbird,” 2006. [Online]. Available: http://www.mozilla.com/thunderbird/

[6] B. Leiba and N. Borenstein, “A multifaceted approach to spam reduction,” inProceedings
of the First Conference on Email and Anti-Spam (CEAS), 2004. [Online]. Available:
http://www.ceas.cc/papers-2004/127.pdf

[7] W. Cohen, “Learning to classify English text with ILP methods,” inAdvances in Inductive
Logic Programming, L. De Raedt, Ed. IOS Press, 1996, pp. 124–143. [Online]. Available:
citeseer.ist.psu.edu/cohen96learning.html

[8] P. Graham, “Better bayesian filtering,” inProceedings of the 2003 Spam Conference, Jan
2003. [Online]. Available: http://www.paulgraham.com/better.html

[9] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A bayesian approach to filtering
junk e-mail,” in Learning for Text Categorization: Papers from the 1998 Workshop.
Madison, Wisconsin: AAAI Technical Report WS-98-05, 1998. [Online]. Available:
http://robotics.stanford.edu/users/sahami/papers-dir/spam.ps

[10] I. Rigoutsos and T. Huynh, “Chung-kwei: a pattern-discovery-based system for the
automatic identification of unsolicited e-mail messages (spam),” inProceedings of
the First Conference on Email and Anti-Spam (CEAS), 2004. [Online]. Available:
http://www.ceas.cc/papers-2004/153.pdf

[11] T. Meyer and B. Whateley, “Spambayes: Effective open-source, bayesian based, email
classification system,” inProceedings of the First Conference on Email and Anti-Spam
(CEAS), 2004. [Online]. Available: http://www.ceas.cc/papers-2004/136.pdf

[12] “Spamassassin homepage,” 2006. [Online]. Available: http://spamassassin.apache.org/

[13] K. Albrecht, N. Burri, and R. Wattenhofer, “Spamato - An Extendable Spam Filter System,”
in 2nd Conference on Email and Anti-Spam (CEAS), Stanford University, Palo Alto, Califor-
nia, USA, July 2005.

10

http://www.antiphishing.org/reports/apwg_report_jan_2006.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chou.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chou.pdf
http://toolbar.netcraft.com/
http://dx.doi.org/10.1007/11533733_16
http://www.mozilla.com/thunderbird/
http://www.ceas.cc/papers-2004/127.pdf
citeseer.ist.psu.edu/cohen96learning.html
http://www.paulgraham.com/better.html
http://robotics.stanford.edu/users/sahami/papers-dir/spam.ps
http://www.ceas.cc/papers-2004/153.pdf
http://www.ceas.cc/papers-2004/136.pdf
http://spamassassin.apache.org/

[14] “Vipul’s razor,” 2006. [Online]. Available: http://razor.sourceforge.net

[15] C.-C. Chang and C.-J. Lin,LIBSVM: a library for support vector machines, 2001, software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[16] T. M. Mitchell, Machine Learning. McGraw-Hill Higher Education, 1997.

[17] N. Cristianini and J. Shawe-Taylor,An introduction to support Vector Machines: and other
kernel-based learning methods. New York, NY, USA: Cambridge University Press, 2000.

[18] “Spamassassin public corpus,” 2006. [Online]. Available: http://spamassassin.apache.org/
publiccorpus/

[19] “phishingcorpus homepage,” Apr. 2006. [Online]. Available: http://monkey.org/%7Ejose/
wiki/doku.php?id=PhishingCorpus

[20] “Putting an end to account-hijacking identity theft,” FDIC, Tech. Rep., Dec. 2004. [Online].
Available: http://www.fdic.gov/consumers/consumer/idtheftstudy/identitytheft.pdf

[21] “Sender ID framework,” 2006. [Online]. Available: http://www.microsoft.com/senderid

[22] “Domainkeys,” 2006. [Online]. Available: http://antispam.yahoo.com/domainkeys

A Accuracies of other classifiers

Table 4 shows the accuracies in terms of false positive and false negative rates when different
classifiers are used instead of the SVM used in PILFER. For almost all of the high-performing
classifiers, the difference in accuracy is not statistically significant, and none are statistically sig-
nificantly better than SVM.

11

http://razor.sourceforge.net
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://spamassassin.apache.org/publiccorpus/
http://spamassassin.apache.org/publiccorpus/
http://monkey.org/%7Ejose/wiki/doku.php?id=PhishingCorpus
http://monkey.org/%7Ejose/wiki/doku.php?id=PhishingCorpus
http://www.fdic.gov/consumers/consumer/idtheftstudy/identity_theft.pdf
http://www.microsoft.com/senderid
http://antispam.yahoo.com/domainkeys

Table 4: Accuracy of different classifiers on same features

Classifier False Positive
Rate

False Positive
Std. Dev

False Negative
Rate

False Negative
Std. Dev

SVM, C = 10 0.12% 0.15% 7.35% 2.67%
RIPPER 0.19% 0.18% 7.48% 2.79%
Decision Table 0.12% 0.13% 8.91% 3.00%
Nearest Neighbor w/ Gen-
eralization

1.25% 3.20% 6.68% 3.12%

1R 0.92% 0.35% 9.02% 2.83%
PART 0.20% 0.17% 7.43% 2.63%
Alternating Decision Tree 0.23% 0.23% 7.56% 2.96%
Decision Stump 5.14% 0.72% 6.93% 2.41%
Pruned C4.5 Tree 0.23% 0.1% 7.28% 2.75%
Hybrid tree w/ Näıve Bayes
leaves

0.22% 0.18% 7.18% 2.92%

Random Tree (1 random at-
tribute/node)

0.15% 0.15% 7.16% 2.75%

AdaBoosted C4.5 tree 0.23% 0.18% 7.28% 2.75%
AdaBoosted Decision
Stump

0.24% 0.17% 10.99% 3.11%

Voted Perceptron 0.76% 0.36% 13.28% 3.45%
Bayes Net 3.96% 0.75% 6.89% 2.43%
Näıve Bayes 1.06% 0.31% 7.83% 2.55%

12

	1 Introduction
	2 Background
	3 Method
	3.1 Learning Overview
	3.2 Features
	3.2.1 IP-based URLs
	3.2.2 Age of linked-to domain names
	3.2.3 Nonmatching URLs
	3.2.4 ``Here" links to non-modal domain
	3.2.5 HTML emails
	3.2.6 Number of links
	3.2.7 Number of domains
	3.2.8 Number of dots
	3.2.9 Contains javascript
	3.2.10 Untrained SpamAssassin Output

	3.3 Testing SpamAssassin

	4 Empirical Evaluation
	4.1 Overview
	4.2 Datasets
	4.3 Additional Challenges
	4.4 Results

	5 Concluding Remarks
	A Accuracies of other classifiers

