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Abstract

Testing large-scale dynamic network simulation packagesuch as
NetWatch[34] requires a large quantity of test data to be aviable for each
of the experiments. The test data includes initial topologis of agents' social
networks and speci cation of knowledge networks for each tiie agents to
t an empirically derived distribution of knowledge.

Testing the software on machine-generated data, as oppostx empirical

data only, allows the user to conduct repeatable tests thattress certain
aspects of the software and help in debugging and optimizati of software
performance.

Keywords: Social Networks, social simulation, scale-free networksgl-
lular networks, random graphs, software testing



1 Introduction

Testing large-scale dynamic network simulation packagesch as NetWatch[34]
requires a large quantity of test data to be available for e&acof the exper-
iments. The test data includes initial topologies of agentsocial networks
and speci cation of knowledge networks for each of the agestio t an empir-
ically derived distribution of knowledge. Another task is eation of realistic
task structures that could be used to simulate performancd oomplex inter-
dependent projects by groups of agents.

The main concern in generation of arti cial data is its reabm. Based
on open-source empirical data (such as described in sec. #g articial
datasets need to approximate certain qualities or paramete found in the
empirical data. However, it is unclear at the outset what pameters need
to be emulated to achieve highest delity simulation.

Frequently, theories of network topologies in a particulasetting are pro-
posed. For example, large amount of social network reseanalies on as-
sumptions made by Erdes [15] regarding topology and distaes in ran-
dom graphs. As an elaboration of Erdes networks, small-wiok network
topologies[37] retain many properties of random graphs, tygroviding a
degree of structural realism that maps to macro-level striares of social
networks and communities[27] .

However, it is now clear that purely random graphs are not a gal approx-
imation of topology of social networks. Other proposed topagies include
scale-free networks[3], whose role in modeling social netks we discuss in
section 2.

While none of these theories has emerged as a clear winner aed/ ideas
of network topologies in large-scale social networks arefuently published,
it is important to make simulation tools independent of the nodels and theo-
ries of initial network topology. Furthermore, a simulatio tool that is proven
and validated through docking and comparison with empiridaesults can be
used as a means to test validity of multiple theories of netwk topology - or
test its own assumptions against all possible networks.

Testing the software on machine-generated data, as oppogedcempirical
data only, allows the user to conduct repeatable tests thattress certain
aspects of the software and help in debugging and optimizati of software
performance.

As number and complexity of social network analysis algohins grows,
it becomes more and more important to test these algorithm®if accuracy,



scalability, robustness. We de ne robustness of a measurent algorithm as
a function of degradation of quality of measurements with aay of the data
modelled as introduction of noise into inputs of the algoriims.

Robustness studies such as [6] and [11] measure impact ofageio ran-
dom networks on accuracy of computation of standard sociagtwork analysis
metrics. Such rigorous tests require large amounts of datdigh can be easily
manipulated to introduce errors. Networks used as input tohe robustness
study need to span di erent sizes and topologies, and be dgsinanipulated
to introduce a quanti able amount of noise for robustness &ing. This prob-
lem is much easier to solve using synthetic (generated) datahere size and
topology of the network are controlled by generation funatins[9]. SNA algo-
rithms need to be then tested against multiple network topalgies. Moreover,
parameters of the network generator can be manipulated in &isnti ¢ fash-
ion, thus allowing the measurement algorithm to be also testl on possible
variation of the topology.



2 Terrorist Organizations and Scale-Free Net-
works

An argument has been made[30] that terrorist networks may &ibit fea-
tures of scale-free networks and can thus be treated as suohanalysis and
derivation of attack scenarios.

Scale-free networks have been observed in many contexts gang from
networks of airline tra c to sexual networks and Web link patterns. The
high probability of emergence of scale-free networks, aspmsed to evenly
distributed random networks, is due to a number of factorsnicluding:

Rapid growth confers preference to early entrants. The loega node
has been in place the greater the number of links to it. First mver
advantage is very important.

In an environment of too much information people link to nodethat are
easier to nd - thus nodes that are highly connected. Thus pferential
linking is self-reinforcing.

The greater the capacity of the hub (bandwidth, work ethic, &.) the
faster its growth.

It has also been observed that scale-free networks are extiy tolerant of
random failures. In a random network, a small number of rando failures can
collapse the network. A scale-free network can absorb randdailures up to
80% of its nodes before it collapses. The reason for this ittnhomogeneity
of the nodes on the network { failures are much more likely toazur on
relatively small nodes.

However, scale-free networks are extremely vulnerable tatentional at-
tacks on their hubs. Attacks that simultaneously eliminateas few as 5-15% of
a scale-free network's hubs can collapse the network. Sitauleity of an at-
tack on hubs is important. Scale-free networks can heal theselves rapidly if
an insu cient number of hubs necessary for a systemic coll@e are removed.

Scale-free networks are also very vulnerable to epidemicén random
networks, epidemics need to surpass a critical threshold famber of nodes
infected) before it propagates system-wide. Below the thsbkold, the epi-
demic dies out. Above the threshold, the epidemic spreadspmnentially.
Recent evidence[28] indicates that the threshold for epichécs on scale-free
networks is zero.



However, the reality of terrorist networks does not t neaty into the
scale-free network model. It has been observed[31] that nstate terrorist
networks are not only scale-free but also exhibit small watlproperties. This
means that while large hubs still dominate the network, the gesence of
tight clusters (cells) continue to provide local connectity when the hubs are
removed.

For example, attack on Al Qaeda's Afghanistan training camg did not
collapse its network in any meaningful way. Rather, it atonded the network
into anonymous clusters of connectivity until the hubs cod reassert their
priority again. Many of these clusters will still be able to onduct attacks
even without the global connectivity provided by the hubs.

Furthermore, critical terrorist social network hubs canno be identi ed
based on the number of links alone. For example, Krebs obsed§25] that
strong face-to-face social history is extremely importanfor trust develop-
ment in covert networks. Of similar importance is the relevace of skills
and training of agents inside a cell to the task at hand. Thusimportance
of any individual within the network should be rated on a veatr of factors
pertaining to its qualities as an individual as well as typesnd qualities of
its links.

Rothenberg[31] notes that postulating a path of a set lengtirom every-
one in the global network to everyone else (i.e. scale-fregture of a terrorist
network) runs contrary to the instructions for communicaton infrastructure
set forth in the Al Qaeda training manual[1]. Thus, if a terraist network
was observed to be scale-free, it can be argued that its schke nature is
not a matter of design and can possibly be an artifact of the da collection
routines. For example, snowball sampling[19] is biased tavd highly con-
nected nodes, so extensive use of this technique may resalbbservation of
scale-free core-periphery structures where none exist[5]

3 Developing the Formalism of a Cellular Net-
work

Given the case studies of Al Qaeda and other terrorist netwks, it is clear
that terrorist organizations cannot be adequately descrdd as random graphs
or as scale-free networks. Therefore, a di erent model ofrterist networks
has emerged, namely cellular networks [31][10][12]. Whileis model may



not t a simple mathematical de nition such as scale-free orsmall-world
network, its base is in empirical and eld data[18]. In sectin 5.3, | will show
that cellular networks in fact are not characterized by a ldc of a formal
representation but are de ned through a more complex procgeshich takes
as a goal improvement of t between the model network and empcal data.

Cellular networkg7] are di erent from traditional organizational forms as
they replace a hierarchical structure and chain of commandith sets of quasi-
independent cells, distributed command, and rapid abilityo build larger cells
from sub-cells as the task or situation demands. In these neirks, the cells
are often small and are only marginally connected to each a@h The cells
are distributed geographically, and may take on tasks indemdently of any
central authority[8].

Rothenberg[31] observed a number of properties of a cellulatwork:

The entire network is a connected component.

...It is likely that on the local level, individual ties are \ery
strong...On the higher level, individual ties are likely tobe
weaker but the strength of association [people known in com-
mon, doctrine] is likely to remain high...

The network is redundant on every level: Each person can réaother
people by multiple routes - which can be used for both transssion
of information as well as material. On the local level, theravill be a
considerable structural equivalence[35], which will amelate the loss
of an individual. The redundancy in communication channelmay also
be mirrored in the redundance of groups engaged in a partianltask.

On the local level, the network is small and dynamic, consisig of
small cells (4-6 people) that operate with relative indepetence and
little oversight on the operational level.

The network is not managed in a top-down fashion. Instead,stcom-
mand structure depends on vague directives and religiousalees, while
leaving local leaders the latitude to make operational dexions on their
own.

The organizational structure of a terrorist network was notplanned,
but emerged from the local constraints that mandated mainteance of
secrecy balanced with operational e ciency.
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Each cell is, at least in part, functionally self-su cient and is capable of
executing a task independently. Cells are loosely intercoected with each
other for purposes of exchanging information and resourcesiowever, the
information is usually distributed on a need-to-know basiand new cell mem-
bers rarely have the same exact skills as current members. ilessentially
makes each individual cell expendable. The removal of a cginerally does
not in ict permanent damage on the overall organization or onvey signi -
cant information about other cells. Essentially, the celliar network appears
to morph and evolve uidly in response to anti-terrorist actvity[32].

This leads to a hypothesis that cells throughout the networkontain struc-
turally equivalent[17] and essential roles, such as idegioal or charismatic
leaders, strategic leaders, resource concentrators anceeialized experts.

Given this hypothesis, one can further reason that operatis of a partic-
ular cell will be a ected in a negative way by the removal of arindividual
lling one of these roles. | further posit that a further devdopment of a cellu-
lar network formalism as an empirically driven and yet mathmatically sound
concept, is necessary for creation of computational modétsat combine face
validity towards real-world data as well as veridicality tavards formal models
of organizational evolution.



4 Open-Source Data on Terrorist Networks

Social network datasets were extremely di cult to obtain ard limited in size

and scope, until recently. The prevailing methodology foradlecting social
network data was by survey, either administered to an entirgroup of people
or collected in a snowball fashion. Collection of social netdrk data was done
in a way reminiscent of anthropological data collection - bg human observer
embedded into an organization to be studied.

This presented a number of problems. First of all, it was vergostly
to collect all but the smallest of datasets. While a number osampling
strategies were investigated, it was di cult or infeasibleto canvass a larger
organization or population. Furthermore, presence of an sbrver or a survey
instrument in an organization inevitably altered the behaiour of individuals
in the organization.

Finally, for some networks, especially terrorist networksit is physically
impossible to collect a dataset via direct survey adminisation. The modus
operandi of such networks is covertness and this necessatimits the data
that can be collected on them.

Thus, for study of terrorist organizations, one must obtainnformation
via indirect means. One approach to gathering indirect saai network data
is via analysis of texts. Originally used as manual coding ¢knique, text
analysis has now been automated to extract network structarfrom corpora
of text based on co-appearance of people, organizations asttier entities.
An example of such text coding is the representation of the Haas net-
work (gure 1), extracted by AutoMap from a set of documents é@scribing
organizational structure and operational constraints oflte Hamas terrorist
organization.

Between September 14, 2001 and November, 2001 Valdis Kr@b$assem-
bled a corpus of texts regarding events preceding Septemkitth attacks.
Manual analysis of these texts yielded a dataset which becanone of the
de nitive sources of data on terrorist organizations and sticture of a terror-
ist plot.

Since 2001, much larger datasets on covert networks are dahle due to
both increased interest in the research and improvements tiools for machine
collection of network data.

Some of the newer more complete datasets include these abéd by
IntelCenter[23], R. Renfro[29] and M. Sageman[32]

In the aftermath of the September 11th attacks, it was notedttat coher-
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Figure 1: Data on Hamas collected by AutoMap

ent information sources on terrorism and terrorist groups &re not available
to researchers[20]. Information was either available inggmentary form, not
allowing comparison studies across incidents, groups octecs, or made avail-
able in written articles - which are not readily suitable forquantitative anal-

ysis of terrorist networks. Data collected by intelligencand law-enforcement
agencies, while potentially better organized, is largelyat available to the

research community due to restrictions in distribution of ensitive informa-
tion.

To counter the information scarcity, a number of institutions developed
uni ed database services that collected and made availalgheiblicly accessible
information on terrorist organizations. This informationis largely collected
from open source media, such as newspaper and magazine ksicand other
mass media sources.

Such open-source databases include:

RAND Terrorism Chronology Database[14] - including interational
terror incidents between 1968 and 1997

RAND-MIPT (Memorial Institute for Prevention of Terrorism ) Terror-
ism Incident Database[21], including domestic and interni@nal terror-
ist incidents from 1998 to the present
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MIPT Indictment Database[33] - Terrorist indictments in the United
States since 1978.

Both RAND and MIPT databases rely on publicly available infema-
tion from reputable information sources, such as newspajeradio and
television.

IntelCenter Database (ICD)[22] includes information on teorist inci-
dents, groups and individuals collected from public soursgincluding
not only traditional media outlets and public information (such as in-
dictments), but also information learned from Middle Eastbased news
wire services. Separately, IntelCenter also collects imfpation from
Arabic chat-rooms and Internet-based publications - althagh value of
such data is questionable and data may be tainted by propagda.
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Figure 2: A Uniform Random Network

5 Generating Person-to-Person Networks

5.1 Erdss Random Graphs

The study of random graphs dates back to the work of Erdes an&enyi
whose seminal papers[15][16] laid the foundation for theebry of random
graphs.

There are three standard models for Erdes random graphs[2Each has
two parameters. One parameter controls the number of nodes the graph
and one controls the density, or number of edges.

For example, the random graph modeB(n; €) assigns uniform probability
to all graphs with n nodes ande edges while in the random graph model
G(n; p) each edge is chosen with probability.

5.2 Scale-Free Networks

One of the most interesting features of a large class of thenaplex networks
under study now is their scale-free behavior: each node ofetimetwork is

10
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Figure 3: Distribution of centralities in a Erdes random néwork: (a)Degree,
(b)Closeness, (c)Betweenness, and (d)Eigenvector

connected to some other k nodes. The number of connectionegb a power-
law distribution, i.e. P(k) Kk ;2 3 for most networks considered.

Such networks are dubbed "scale-free" because the uctuatis of the
distribution around the average valuek are in nite (they do not possess
any particular scale). The dierence between a scale-freeetwork and a
random network (where every link between di erent nodes isrpsent with a
probability p, resulting in a Poisson degree distribution) hints towardsome
mechanisms that generated the observed network featuresn®of the most
celebrated models that explains the emergence of scalefreetworks is the
Barabasi- Albert (BA) model[4].

According to the BA model, the two essential ingredients fothe forma-
tion of scale-free networks are growth and preferential atthment. Growth
implies that new nodes are added to the network over time at a one or
less constant rate. Preferential attachment means that a md¢y added node
connects preferentially to nodes that already have a high deee: a new node
tries to attach to authoritative nodes and the degree of a nais an e ective
representation of its authoritativeness. It has been showthat, if the proba-
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Figure 4: A Scale-Free Network generated by preferentialtathment

bility to connect to a site is linearly proportional to its degree, then growth
and preferential attachment indeed generate scale-freetwerks[24].

5.3 Cellular Networks

The above-mentioned algorithms for generating simulatedganizational data
can be summarized as creating an approximation of real sdcghenomena
(i.e., organizational structure) by means of an analyticé} solvable function
or a statistical mechanism.

Below we present an alternative approach, which relies onehobserva-
tions of organizational structure of extant covert network via creation of a
network pro le.

We de ne a generative network prole as a collection of obseations
and measurements that, when taken together, can be used asenerative
function for creating networks similar to ones observed irhe real world.

The method of generating simulated organizational structes from pro-
les should be generalizable to many di erent types of orgamations. How-

12
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Figure 5: Distribution of centralities in a scale-free netark: (a)Degree,
(b)Closeness, (c)Betweenness, and (d)Eigenvector

ever, for every type of organization the components of a geatve pro le
would be di erent.
In this section we present a generative pro le of a cellularovert network
based on the publicly available dataset on September 11thjdtkers[25].
Based on publicly available data collected by Krebs[25], éfollowing
pro le of the structure of covert networks has been derivedlP]:

The network consists of small cells (mean cell size of 6 men&)ewith
very low interconnection between cells.

Internally, the cells exhibit dense communication patters.

There is a very low probability of two individuals communicéing by
chance (0.007).

The probability of triad closure (link from x to y being more likely if
both x and y are linked to third party z) is 0.181.
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Figure 6: Red Team: A Cellular Covert Network

Senior members of each of the cells are often also parts of eatlitells
and interact with other senior members on the network.

Cell leaders are more knowledgeable than other members.

Cell members share an ideological doctrine but also spe@al knowl-
edge (i.e. bombmakers, drivers, operatives).

Cells use information technologies and electronic commaugation.

The aforementioned parameters form a statistical pro le sm which we
can generate simulated organizational networks. The plotnogure 6 shows
a covert network generated using parameters speci ed above

The algorithm for generating a network based on the above pte is
represented in listing 1

6 Generalization and Optimization of Net-
work Pro les

At this point, the choice of pro le components lies in the hads of the re-
searcher and creation of a pro le is a manual task. Howevemeation of such
pro les can be represented as an optimization problem.

Creation of general-purpose generative pro les can be dométh using
the following assumptions:

Let the network consist of a nite number of layered grouping. For ex-
ample, a corporate network may be viewed as a collection of)jj@ople,

14



Listing 1: "Generating Cellular Networks"

/IGenerate Cells
CREATE cells with
cell_size ()=normally distributed random variable
(mean=average cell size, std.dev = 0.17mean);

/IAssign agents to cells
FOR all agents DO
current_cell=random cell
IF current_cell is not full THEN
assign an agentto current_cell
ELSE pick a new cell; repeat this operation.
END |

B\D FOR

/[IFill in connections inside cells
FOR all cells DO
PICK a random agent inside the cell to serve as a leader

/llnternally , generate a uniform network

FOR all agents inside the cell DO

generate links within cell with the given density
D FOR

/[IBring the probability of triad closure in line with the
measurements

IE probability of triad closure significantly less then
measured value

Add a small random number of edges;repeat the measurements

ELSE

Drop a small random number of edges;repeat the measurements

B\D IF

BE\D FOR

FOR all cell leaders picked in previous step

Generate links among cell leadersto produce required inter
cell density

B\D FOR

15
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Figure 7: Distribution of centralities in a cellular netwok: (a)Degree,
(b)Closeness, (c)Betweenness, and (d)Eigenvector

(b) workgroups, (c)departments, (d)divisions, and (e)an mtire corpo-
ration - resulting in a 5 levels of groupings.

Assume that groupings at each of the levels (e.g. departmehtconnect
to each other with a network structure that can be expressedith a
generative function (unform, scale-free, etc).

A generalized algorithm for generation of complex organitzan network
can be described as a traversal of the hierarchy of layeredogpings from
most speci ¢ to most general while applying a generative fution for each
of the layers to generate edges at the given layer.

Thus, generation of a complex network can be parameterizedthwa pro-
le consisting of (a)number of layers , (b)size of groupingat each layer, and
(c)a simple generative function for each layer.

Given that number of simple generative functions is nite soh parametriza-
tion can be then viewed as an optimization problem, de ned asaversal of
a state-space of generative pro les and evaluating the t ofach generative
pro le to a population of known networks.
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7 Generating Knowledge Networks

Knowledge is represented in the MetaMatrix as a set of nodewjth each
representing facts or groups of facts. Knowledge that an agepossesses is
referred to as an edge between akgent node and aKnowledge knowledge
that is required to accomplish an primitive task is represdad as an edge
betweenT ask and Knowledge nodes; etc.

Based on data available on structure of terrorist trainindl2], NetWatch
generates agent-knowledge networks using a pro le of thedwledge network
of a cellular organization.

The knowledge that the agents possess is divided into a thremain cat-
egories. These categories encompass (a) general doctrind aeology of
the organization, (b) shared training and skills in MO of theorganization
(e.g. communication procedures, clandestine operation$g) specialist task-
related skills (e.g. bomb-making, sniper skills, getawayac driving), and (c)
knowledge of overall organizational structure.

The algorithm for generating the knowledge network presursethe exis-
tence of well-formed cells, as generated by the algorithm section 5.3. The
following principles are followed:

Cell leaders are more knowledgeable than other members. Adl tead-

ers are recruited from the ranks of experienced operativabgeir doctri-
nal knowledge is high and they possess many of the sharedIskilf the

17



other agents. They also possess a small amount of knowledgesach
of the specialist areas. This knowledge is not su cient to rnelace spe-
cialist agents but is su cient to pro ciently delegate subtasks during
execution of a complex operation.

Cell members share an ideological doctrine andnaodus operandifur-
ther referred to as"shared knowledge" Adherence to a militant ideol-
ogy is a driving factor in recruiting of operatives in terroist organiza-
tions and is further ampli ed during training of studies in an a militant
religious academy.

Shared M.O. skills are derived from shared training camp egpences
that terrorist organization recruits undergo. Shared ski$ include com-
munication procedures, clandestine operation skills, pervation of se-
crecy during planning and preparation of operations.

Cell members possess specialized knowledge that outlinksit speci c
function within a cell; these facts are further referred to s1"specialist
knowledge®

A specialized portion of the knowledge network deals with evall knowl-
edge of the organizational structure and policies. This kmdedge is
privileged information distributed only to cell leaders ad is further
referred to asprivileged knowledge However, rank-and- le cell mem-
bers may obtain small amounts of the privileged informationhrough
interaction with other agents outside the primary cell.

The algorithm that generates knowledge networks as outlideabove is
fairly simple. The knowledge network is divided into portios based on pur-
pose of each fact(e.g. shared knowledge, specialist knalgle, privileged
knowledge)(see gure 8).

Then, for each agenty and fact f¢ the algorithm generates a probability
Pix of existence of a an edge fy based on the group that the agent belongs
to (i.e. cell leader vs. rank-and- le) and what group the fatbelongs to (i.e.
shared, specialist or privileged).

The edges are then instantiated with a roll of the dice.

7.0.1 Algorithm Parameters

The knowledge network generator depends on the following naaneters:

18



Figure 9: Construction of a Task Network as a Precedence Giap

Proportion of shared knowledge
Proportion of specialist knowledge

Proportion of privileged knowledge

8 Generating Task Structures

The task network consists of a set oprimitive and compound taskswith
their precedence relations expressed assk Task edges in the MetaMa-
trix. The complexity of the task network in terms of feasibiity of execution
can be controlled by varying theaverage connectivity(sum of predecessors
and successors) of a task[13]. This parameter can be essgiytithought as
controlling the parallelism within the task network.

If the people-to-people network was generated as a cellulaetwork, as-
signments of people to subtasksPerson Task edges) are uniformly dis-
tributed within each cell. This results in various degreesfsubtask di culty
(amount of resource seeking and delegation required to aogaish the task).
When people-to-people networks are created as random orlsefree graphs,
the task assignments are distributed uniformly throughouthe entire network
which results in some tasks being not feasible.

9 Scalability

To estimate e ciency of the network generation algorithms,we have con-
ducted timing runs of each of the algorithms for generationfgeople-to-
people networks: Erdes random graphs, scale-free netwerwith preferential
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Figure 10: Time requirements to generate networks

attachment, and cellular networks. We varied the size of thaetwork to be
generated from 100 to 3500 nodes.

Figure 10 shows the time in seconds to generate a network of &em
size with each of the algorithms. The least e cient of the algrithms is
the preferential attachment algorithm, which grows expontially. Use of
this algorithm becomes impractical for networks over 2000gants, where
generation of the graph took approximately 10000 seconds, alittle under
3 hours. While the computational complexity of this algoribm is very high,
it can be executed by a parallel machine in near linear time 62

Erdes random graphs have been shown[15] to have a quadratmmplexity
(( n?). However, one iteration of edge generation is a very fasperation,
so the algorithm remains practical in generating networksfoup to 20000
nodes (generation time is 120 seconds).

The cellular network generation algorithm performs in nealinear time
due to the fact that cells are small and self-contained. Theomputational
complexity of the cellular network generator is ( Ce”Ek2 + intercell N) =
( cetNK + intercen N) Where n is the number of nodesk is the mean size
of a cell, and ¢ and inercenn are, respectively, densities inside the cell and
between cells. Thus, wherk is much smaller thenn, the complexity of the
cellular network generator is close to (). In practical terms, this means
that even very large networks can be generated in relativeghort times, with
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a 20,000 node network taking less then 20 seconds to generate

10 Conclusion

All of the network generation algorithms described above arused as a means
of testing NetWatch, a large-scale multi-agent simulatiorof covert networks.

While realism of data generated by any of these algorithms cae dis-
puted and nothing is more realistic then empirical data, theuse of diverse
techniques for generating initial data allows the simulatin researcher to test
the multi-agent system on networks of widely varying sizesnd topologies.
Due to small quantities of available empirical data, this igurrently not pos-
sible to do without resorting to arti cially generated data.

This report is not comprehensive in regards to generation afl possible
network topologies. In this work, we did not consider smallvorld networks,
as generation of small-world topologies is addressed well [27] and [37].
Further, we did not consider issues of generating hierarcal networks.

In the eld of modeling social and organizational networksit is important
to address organizations as comprehensive network strupts, incorporating
structures of task interdependency, information and resoce requirements
as well as person-to-person structures. This compreheresiapproach would
allow modeling organizations based on their form, e.g. depa&ental, func-
tional, or matrix organizations.

While the generalized generative approach described in 8en 6 allows
for wide exibility in the topology of generated networks, t is not designed
for modeling organically emerging network forms, such asdble of markets.
For example, market-driven network may exhibit emergent ggnentation
processes[36], which, due to the complexity of the market quess, can be
only generated via simulation of the market environment.

As a software engineering tool, the network generation paafe provides
a consistent interface to all of its generation functions -hterefore enabling
the user (e.g. NetWatch) to test performance of the simuladh tools on a
wide variety of source networks. This also forces the simtilan to remain
independent of the initial network topology and thus allow ér multi-theory
testing of simulation tools.
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