
Open Modules:

Modular Reasoning about Advice

Jonathan Aldrich

December 2004

CMU-ISRI-04-141

Institute for Software Research International

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

This technical report is an expanded version of a paper submitted

for publication. It supercedes Carnegie Mellon University Technical

Report CMU-ISRI-04-108, published in March 2004 and revised in

July 2004.

This work was supported in part by the High Dependability Computing Program

from NASA Ames cooperative agreement NCC-2-1298, NSF grant CCR-0204047, and the

Army Research Office grant number DAAD19-02-1-0389 entitled ”Perpetually Available

and Secure Information Systems.”

Abstract

Advice is a mechanism used by advanced object-oriented and aspect-oriented

programming languages to augment the behavior of methods in a program.

Advice can help to make programs more modular by separating crosscutting

concerns more effectively, but it also challenges existing ideas about modu-

larity and separate development.

We study this challenge using a new, simple formal model for advice as it

appears in languages like AspectJ. We then add a module system designed

to leave program functionality as open to extension through advice as possi-

ble, while still enabling separate reasoning about the code within a module.

Our system, Open Modules, can either be used directly to facilitate separate,

component-based development, or can be viewed as a model of the features

that certain AOP IDEs provide. We define a formal system for reasoning

about the observational equivalence of programs under advice, which can

be used to show that clients are unaffected by semantics-preserving changes

to a module’s implementation. Our model yields insights into the nature

of modularity in the presence of advice, provides a mechanism for enforce-

able contracts between component providers and clients in this setting, and

suggests improvements to current AOP IDEs.

Keywords: open modules, modular reasoning, pointcuts, advice, aspect-

oriented programming, TinyAspect, contextual equivalence, operational se-

mantics, type theory, type soundness, sealing, logical equivalence, bisimula-

tion, component-based software engineering

1. Modularity and Advice
The Common Lisp Object System introduced a construct called advice, which allows a developer to externally augment the

behavior of a method [2]. Advice comes in at least three flavors: before advice is run before the execution of a method body,
around advice wraps a method body, and after advice runs after the method body. In general, advice can view or change the
parameters or result of a method, or even control whether the method body is executed, allowing a rich set of adaptations to be
implemented through this mechanism.

This paper examines advice in the context of Aspect-Oriented Programming (AOP), the most widely-used application of
advice today [12]. The goal of AOP is to modularize concerns that crosscut the primary decomposition of a software system.
Many AOP systems allow developers to modularize these crosscutting concerns within a single, locally-defined module, using
an advice mechanism to allow definitions in that module to affect methods defined elsewhere in the system.

Although AOP in general and advice in particular provide many benefits to reasoning about concerns that are scattered and
tangled throughout the code in conventional systems, questions have been raised about the ability to reason about and evolve
code that is subject to advice. Advice appears to make reasoning about the effect of calling a method more challenging, for
example, because it can intercept that call and change its semantics. In turn, this makes evolving AOP systems without tool
support error-prone, because seemingly innocuous changes to base code could break the functionality of an aspect that advises
that code.

For example, an important issue in separate development is ensuring that improvements and bug-fixes to a third-party com-
ponent can be integrated into an application without breaking the application. Unfortunately, however, because the developer
of a component does not know how is deployed, any change she might make could potentially break some client’s advice.
Although we could solve the problem by prohibiting all advice to third-party components, we would prefer a compromise that
answers the research question:

1. How can developers specify an interface for a library or component that permits as many uses of advice as possible, while still allowing
the component to be changed in meaningful ways without affecting clients?

Another important issue is protecting the internal invariants of component implementations in the presence of advice. For
example, Consider the Java standard library, which is carefully designed to provide a ”sandbox” security model for running
untrusted code. In general, it is unsafe for a use to load any code that advises the standard library, because the advice could be
used by an attacker to bypass the sandbox.

One possible solution to ensuring the security of the Java library is to prohibit all advice to the standard library. Unfortunately,
this rule would prohibit many useful applications of advice. A better solution to the problem would allow as much advice as
possible, while still preserving the internal invariants of the Java standard library. We thus use our formal model of modularity
to address a second research question:

2. How can developers specify an interface for a library or component that permits as many uses of advice as possible, while still ensuring
correctness properties of the component implementation?

The research questions above imply a solution that prohibits certain uses of advice in the case of separate development. How-
ever, in practice, some applications may only be able to reuse a library or component if they can get around these prohibitions.
We think this should be an option for developers, but it should be a conscious choice: a developer should know when he is writ-
ing an aspect that may break when a new version of a component is released, and when he is writing an aspect that is resilient
to new releases. Similarly, a user uploading code should know whether that code only includes advice that is guaranteed not to
violate the Java sandbox, or whether the code contains advice that might violate the sandbox, and therefore ought to be signed
by a trusted principal. Our research is aimed at providing developers and users with these informed choices.

1.1 Outline and Contributions
The next section of the paper describes Open Modules, a novel module system for advice that provides informal answers to the

research questions. Open Modules is the first module system that supports many beneficial uses of advice, while still ensuring
that security and other properties of a component implementation are maintained, and verifying that advice to a component
will not be affected by behavior-preserving changes to the component’s implementation.

We would like to make these answers precise, and to do so, Section 3 proposes TinyAspect, a novel formal model of AOP
languages that captures a few core advice constructs while omitting complicating details. Section 4 extends TinyAspect with
Open Modules, precisely defining the semantics and typing rules of the system.

Section 5 describes a formal system for reasoning about the observational equivalence of modules in the presence of advice.
This is the first result to show that complete behavioral equivalence reasoning can be done on a module-by-module basis in a
system with advice, providing a precise answer to research question 2. It also precisely defines what changes can be made to a
component without affecting clients, answering research questions 1.

Section 6 discusses lessons learned from our formal model. Section 7 describes related work, and Section 8 concludes.

2. Open Modules
We propose Open Modules, a new module system for languages with advice that is intended to be open to extension with

advice but modular in that the implementation details of a module are hidden. The goals of openness and modularity are in
tension (at least in the case of separate development), and so we try to achieve a compromise between them.

1

pointcut moves;

package shape

void moveBy(int, int);

void animate(Motion);
...

Figure 1: A conceptual view of Open Modules. The shape module exports two functions and a pointcut. Clients can place
advice on external calls to the exported functions, or on the exported pointcut, but not on calls that are internal to the module.

In AOP systems, advice is used as a way to reach across module boundaries to capture crosscutting concerns. We propose
to adopt the same advice constructs, but limit them so that they respect module boundaries. In order to capture concerns that
crosscut the boundary of a module, we use AOP’s pointcut abstraction to represent abstract sets of events that external modules
may be interested in advising. As suggested by Gudmundson and Kiczales [9], exported pointcuts form a contract between a
module and its client aspects, allowing the module to be evolved independently of its clients so long as the contract is preserved.

Figure 1 shows a conceptual view of Open Modules. Like ordinary module systems, open modules export a list of data
structures and functions such as moveBy and animate. In addition, however, open modules can export pointcuts denoting
internal semantic events. For example, the moves pointcut in Figure 1 is triggered whenever a shape moves. Since a shape
could move multiple times during execution of the animate function, clients interested in fine-grained motion information
would want to use this pointcut rather than just placing advice on calls to animate.

By exporting a pointcut, the module’s maintainer is making a promise to maintain the semantics of that pointcut as the
module’s implementation evolves, just as the maintainer must maintain the semantics of the module’s exported functions.

Open Modules are “open” in two respects. First, their interfaces are open to advice; all calls to interface functions from outside
the module can be advised by clients. Second, clients can advise exported pointcuts.

On the other hand, open modules encapsulate the internal implementation details of a module. As usual with module
systems, functions that are not exported in the module’s public interface cannot be called from outside the module. In addition,
in the case of separate development, calls between functions within the module cannot be advised from the outside—even if the
called function is in the public interface of the module. For example, a client could place advice on external calls to moveBy, but
not calls to moveBy from another function within the shape module.

In concurrent work, Kiczales and Mezini propose the notion of Aspect-Aware Interfaces, which are ordinary functional inter-
faces augmented with information about the advice that applies to a module. They point out that in a local development setting,
analysis tools such as the AspectJ plugin for Eclipse (AJDT) [4] can compute aspect-aware interfaces automatically given whole-
program information. Their work shows that in the case of local development and tool support, the benefits of Open Modules
can be attained with no restrictions on the use of aspects. Instead, whenever an aspect that depends on internal calls is defined,
the tools simply add a new pointcut to the module’s aspect-aware interface, so that the new aspect conforms to the rules of
Open Modules.

We now provide a more technical definition for Open Modules, which can be used to distinguish our contribution from
previous work:

Definition [Open Modules]: Open Modules describes any module system that:

• allows external advice to interactions between a module and the outside world (including external calls to functions in the interface of
a module)

• allows external advice to pointcuts in the interface of a module

• does not allow external modules to directly advise internal events within the module, such as calls from within a module to other
functions within the module (including calls to exported functions).

For internal calls within a module, the open module system, originally presented at the FOAL 2004 workshop, corresponds
closely to the computation of aspect-aware interfaces that has since been proposed. Our proposal is more flexible, however, in
the case of advice on external calls to a module, which can be implemented without adding an explicit pointcut to the module’s
interface. This benefit is important when programmers write these interfaces (as in the case of separate development but not in
the case of local development with the AJDT), because many aspects rely only on interface calls, and writing explicit pointcuts
for all of these would be cumbersome.

3. Formally Modeling Advice

2

Names n ::= x

Expressions e ::= n | fn x:τ => e | e1 e2 | ()

Declarations d ::= • | val x = e d | pointcut x = p d | around p(x:τ) = e d

Pointcuts p ::= n | call(n)

General exp. E ::= e | d | p

Types τ ::= unit | τ1 → τ2

Decl. Types β ::= • | x:τ, β | x:π, β

Pcut. types π ::= pc(τ1 → τ2)

General types T ::= τ | β | π

Figure 2: TinyAspect Source Syntax

In order to reason formally and precisely about modularity, we need a formal model of advice. The most attractive models
for this purpose are based on small-step operation semantics, which provide a very simple and direct formalization and are
amenable to standard syntactic proof techniques.

Jagadeesan et al. have proposed an operational semantics for the core of AspectJ, incorporating several different kinds of
pointcuts and advice in an object-oriented setting [10]. Their model is very rich and is thus ideal for specifying the semantics of
a full language like AspectJ [11]. However, we would like to define and prove the soundness of a strong equivalence reasoning
framework for the language, and doing so would be prohibitively difficult in such a complex model.

Walker et al. propose a much simpler formal model incorporating just the lambda calculus, advice, and labeled hooks that
describe where advice may apply [19]. As a foundational calculus, their model is ideal for studying compilation strategies for
AOP languages. However, because their model is low-level, it lacks some essential characteristics of advice in AOP, including
the obliviousness property since advice applies to explicit labels [8]. The low-level nature of their language also means that
certain properties of source-level languages like AspectJ—including the modularity properties we study—do not hold in their
calculus. Thus, previous small-step operational models of aspects are inappropriate for our purposes.

3.1 TinyAspect
We have developed a new functional core language for aspect-oriented programming called TinyAspect. The TinyAspect

language is intentionally small, making it feasible to rigorously prove strong properties such as the abstraction theorem in Sec-
tion 5. Nevertheless, it includes the typed lambda calculus with recursion and is thus Turing-complete. Although TinyAspect
leaves out many features of full languages, we directly model advice constructs similar to those in AspectJ. Thus our model
retains the declarative nature and oblivious properties of advice in existing AOP languages, helping to ensure that techniques
developed in our model can be extended to full languages.

Because our paper is focused on studying modular reasoning for advice, we omit many of the powerful pointcut constructs
of AOP languages like AspectJ. We do include simple pointcuts representing calls to a particular function in order to show how
pointcuts in the interface of a module can contribute to separate reasoning in the presence of advice. Our system can easily be
extended to other forms of static pointcuts, but an extension to a dynamic pointcut language with constructs like cflow [11] is
beyond the scope of this work.

Figure 2 shows the syntax of TinyAspect. Our syntax is modeled after ML [17]. Names in TinyAspect are simple identi-
fiers. Expressions include the monomorphic lambda calculus—names, functions, and function application. To this core, we add
a primitive unit expression, so that we have a base case for types. We could add primitive booleans and integers in a completely
standard way, and constructs like let can be encoded using lambdas. Since these constructs are orthogonal to aspects, we omit
them.

In most aspect-oriented programming languages, including AspectJ, the pointcut and advice constructs are second-class and
declarative. So as to be an accurate source-level model, a TinyAspect program is made up of a sequence of declarations. Each
declaration defines a scope that includes the following declarations. A declaration is either the empty declaration, or a value
binding, a pointcut binding, or advice. The val declaration gives a static name to a value so that it may be used or advised in
other declarations.

The pointcut declaration names a pointcut in the program text. A pointcut of the form call(n) refers to any call to
the function declaration n, while a pointcut of the form n is just an alias for a previous pointcut declaration n. The around
declaration names some pointcut p describing calls to some function, binds the variable x to the argument of the function, and
specifies that the advice e should be run in place of the original function. Inside the body of the advice e, the special variable
proceed is bound to the original value of the function, so that e can choose to invoke the original function if desired.
TinyAspect types τ include the unit type, function types of the form τ1 → τ2. We syntactically distinguish pointcut types

π and declaration types β in order to enforce the second-class nature of these constructs (e.g., they cannot be computed by
functions, nor can they be used to simulate fully general references).

3.2 Fibonacci Caching Example

3

val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

(* advice to cache calls to fib *)
val inCache = fn ...
val lookupCache = fn ...
val updateCache = fn ...

pointcut cacheFunction = call(fib)
around cacheFunction(x:int) =

if (inCache x)
then lookupCache x
else let v = proceed x

in updateCache x v; v

Figure 3: The Fibonacci function written in TinyAspect, along with an aspect that caches calls to fib.

Expression values v ::= () | fn x:τ => e | ℓ

Declaration values dv ::= • | val x ≡ ℓ dv | pointcut x ≡ call(ℓ) dv

Evaluation contexts C ::= � e2 | v1 � | val x = � d
| bind x ≡ V � | pointcut x = � d

General values V ::= v | dv | call(ℓ)

Figure 4: TinyAspect Values and Contexts

We illustrate the language by writing the Fibonacci function in it, and writing a simple aspect that caches calls to the function
to increase performance. While this is not a compelling example of aspects, it is standard in the literature and simple enough
for an introduction to the language.

Figure 3 shows the TinyAspect code for the Fibonacci function. We assume integers, booleans, and if statements have been
added to illustrate the example.
TinyAspect does not have recursion as a primitive in the language, so the fib function includes just the base case of the

Fibonacci function definition, returning 1.
We use around advice on calls to fib to handle the recursive cases. The advice is invoked first whenever a client calls fib.

The body of the advice checks to see if the argument is greater than 2; if so, it returns the sum of fib(x-1) and fib(x-2).
These recursive calls are intercepted by the advice, rather than the original function, allowing recursion to work properly. In
the case when the argument is less than 3, the advice invokes proceed with the original number x. Within the scope of an
advice declaration, the special variable proceed refers to the advised definition of the function. Thus, the call to proceed is
forwarded to the original definition of fib, which returns 1.

In the lower half of the figure is an aspect that caches calls to fib, thereby allowing the normally exponential function to run
in linear time. We assume there is a cache data structure and three functions for checking if a result is in the cache for a given
value, looking up an argument in the cache, and storing a new argument-result pair in the cache.

So that we can make the caching code more reusable, we declare a cacheFunction pointcut that names the function calls to
be cached—in this case, all calls to fib. Then we declare around advice on the cacheFunction pointcut which checks to see
if the argument x is in the cache. If it is, the advice gets the result from the cache and returns it. If the value is not in the cache,
the advice calls proceed to calculate the result of the call to fib, stores the result in the cache, and then returns the result.

In the semantics of TinyAspect, the last advice to be declared on a declaration is invoked first. Thus, if a client calls fib, the
caching advice will be invoked first. If the caching advice calls proceed, then the first advice (which recursively defines fib)
will be invoked. If that advice in turn calls proceed, the original function definition will be invoked. However, if the advice
makes a recursive call to fib, the call will be intercepted by the caching advice. Thus, the cache works exactly as we would
expect—it is invoked on all recursive calls to fib, and thus it is able to effectively avoid the exponential cost of executing fib
in the naı̈ve way.

3.3 Operational Semantics
We define the semantics of TinyAspect more precisely as a set of small-step reduction rules. These rules translate a series of

source-level declarations into the values shown in Figure 4.
Expression-level values include the unit value and functions. In TinyAspect, advice applies to declarations, not to functions.

We therefore need to keep track of declaration usage in the program text, and so a reference to a declaration is represented by
a label ℓ. In the operational semantics, below, an auxiliary environment keeps track of the advice that has been applied to each
declaration.

A pointcut value can only take one form: calls to a particular declaration ℓ. In our formal system we model execution of

4

(η, (fn x:τ => e) v) 7→ (η, {v/x}e)
r-app

η[ℓ] = v1

(η, ℓ v2) 7→ (η, v1 v2)
r-lookup

ℓ 6∈ domain(η) η′ = [ℓ 7→v] η

(η, val x = v d) 7→ (η′, val x ≡ ℓ {ℓ/x}d)
r-val

(η, pointcut x = call(ℓ) d) 7→
(η, pointcut x ≡ call(ℓ) {call(ℓ)/x}d)

r-pointcut

v′ = (fn x:τ => {ℓ′/proceed}e)
ℓ′ 6∈ domain(η) η′ = [ℓ 7→v′, ℓ′ 7→η[ℓ]] η

(η, around call(ℓ)(x:τ) = e d) 7→ (η′, d)
r-around

(η, e) 7→ (η′, e′)

(η, C[e]) 7→ η′, C[e′])
r-context

Figure 5: TinyAspect Operational Semantics

declarations by replacing source-level declarations with “declaration values,” which we distinguish by using the ≡ symbol for
binding.

Figure 4 also shows the contexts in which reduction may occur. Reduction proceeds first on the left-hand side of an applica-
tion, then on the right-hand side. Reduction occurs within a value declaration before proceeding to the following declarations.
Pointcut declarations are atomic, and so they only define an evaluation context for the declarations that follow.

Figure 5 describes the operational semantics of TinyAspect. A machine state is a pair (η, e) of an advice environment η
(mapping labels to values) and an expression e. Advice environments are similar to stores, but are used to keep track of a
mapping from declaration labels to declaration values, and are modified by advice declarations. We use the η[ℓ] notation in
order to look up the value of a label in η, and we denote the functional update of an environment as η′ = [ℓ 7→v] η. The reduction
judgment is of the form (η, e) 7→ (η′, e′), read, “In advice environment η, expression e reduces to expression e′ with a new advice
environment η′.”

The rule for function application is standard, replacing the application with the body of the function and substituting the
argument value v for the formal x. We normally treat labels ℓ as values, because we want to avoid “looking them up” before
they are advised. However, when we are in a position to invoke the function represented by a label, we use the rule r-lookup to
look up the label’s value in the current environment.

The next three rules reduce declarations to “declaration values.” The val declaration binds the value to a fresh label and adds
the binding to the current environment. It also substitutes the label for the variable x in the subsequent declaration(s) d. We
leave the binding in the reduced expression both to make type preservation easier to prove, and also to make it easy to extend
TinyAspect with a module system which will need to retain the bindings. The pointcut declaration simply substitutes the
pointcut value for the variable x in subsequent declaration(s).

The around declaration looks up the advised declaration ℓ in the current environment. It places the old value for the binding
in a fresh label ℓ′, and then re-binds the original ℓ to the body of the advice. Inside the advice body, any references to the special
variable proceed are replaced with ℓ′, which refers to the original value of the advised declaration. Thus, all references to
the original declaration will now be redirected to the advice, while the advice can still invoke the original function by calling
proceed.

The last rule shows that reduction can proceed under any context as defined in Figure 4.

3.4 Typechecking
Figure 6 describes the typechecking rules for TinyAspect. Our typing judgment for expressions is of the form Γ; Σ ⊢ e : τ ,

read, “In variable context Γ and declaration context Σ expression e has type τ .” Here Γ maps variable names to types, while Σ
maps labels to types (similar to a store type).

The rules for expressions are standard. We look up the types for variables and labels in Γ and Σ, respectively. Other standard
rules give types to the () expression, as well as to functions and applications.

The interesting rules are those for declarations. We give declaration signatures β to declarations, where β is a sequence of
variable to type bindings. The base case of an empty declaration has an empty signature. For val bindings, we ensure that the
expression is well-typed at some type τ , and then typecheck subsequent declarations assuming that the bound variable has that
type. Pointcuts are similar, but the rule ensures that the expression p is well-typed as a pointcut denoting calls to a function of
type τ1 → τ2. When a val or pointcut binding becomes a value, the typing rule is the same except that subsequent declarations
cannot see the bound variable (as it has already been substituted in). The around advice rule checks that the declared type of
x matches the argument type in the pointcut, and checks that the body is well-typed assuming proper types for the variables x
and proceed.

Finally, the judgment Σ ⊢ η states that η is a well-formed environment with typing Σ whenever all the values in η have the
types given in Σ. This judgment is analogous to store typings in languages with references.

3.5 Type Soundness

5

x:τ ∈ Γ
Γ; Σ ⊢ x : τ

t-var
Γ; Σ ⊢ n : τ1 → τ2

Γ; Σ ⊢ call(n) : pc(τ1 → τ2)
t-pctype

ℓ:τ ∈ Σ
Γ; Σ ⊢ ℓ : τ

t-label
Γ; Σ ⊢ () : unit

t-unit

Γ, x:τ1; Σ ⊢ e : τ2

Γ; Σ ⊢ fn x:τ1 => e : τ1 → τ2

t-fn
Γ; Σ ⊢ e1 : τ2 → τ1 Γ; Σ ⊢ e2 : τ2

Γ; Σ ⊢ e1 e2 : τ1

t-app

Γ; Σ ⊢ • : •
t-empty

Γ; Σ ⊢ v : T Γ; Σ ⊢ d : β

Γ; Σ ⊢ bind x ≡ v d : (x:T, β)
t-vdecl

Γ; Σ ⊢ e : τ Γ, x:τ ; Σ ⊢ d : β

Γ; Σ ⊢ val x = e d : (x:τ, β)
t-val

Γ; Σ ⊢ p : π Γ, x:π; Σ ⊢ d : β

Γ; Σ ⊢ pointcut x = p d : (x:π, β)
t-pc

Γ; Σ ⊢ p : pc(τ1 → τ2) Γ; Σ ⊢ d : β
Γ, x:τ1,proceed:τ1 → τ2; Σ ⊢ e : τ2

Γ; Σ ⊢ around p(x:τ1) = e d : β
t-around

∀ℓ ∈ domain(Σ) . •; Σ ⊢ η[ℓ] : Σ[ℓ])

Σ ⊢ η
t-env

Figure 6: TinyAspect Typechecking

We now state progress and preservation theorems for TinyAspect. The theorems quantify over both expressions and dec-
larations using the metavariable E, and quantify over types and declaration signatures using the metavariable T . The progress
property states that if an expression is well-typed, then either it is already a value or it will take a step to some new expression.

Theorem 1 (Progress)
If •; Σ ⊢ E : T and Σ ⊢ η, then either E is a value
or there exists η′ such that (η, E) 7→ (η′, E′).

Proof: By induction on the derivation of •; Σ ⊢ E : T .
�

The type preservation property states that if an expression is well-typed and it reduces to another expression in a new envi-
ronment, then the new expression and environment are also well-typed.

Theorem 2 (Type Preservation)
If •; Σ ⊢ E : T , Σ ⊢ η, and (η, E) 7→ (η′, E′), then there exists some Σ′ ⊇ Σ such that •; Σ′ ⊢ E′ : T and Σ′ ⊢ η′.

Proof: By induction on the derivation of (η, E) 7→ (η′, E′). The proof relies on standard substitution and weakening lemmas.
�

Together, progress and type preservation imply type soundness. Soundness means that there is no way that a well-typed
TinyAspect program can get stuck or “go wrong” because it gets into some bad state.

Our type soundness theorem is slightly stronger than the previous result of Walker et al., in that we guarantee both type
safety and a lack of run time errors. Walker et al. model around advice using a lower-level exception construct, and so their
soundness theorem includes the possibility that the program will terminate with an uncaught exception [19].

4. Formalizing Modules
We now extend TinyAspect with Open Modules, a module system that allows programmers to enforce an abstraction

boundary between clients and the implementation of a module. Our module system is modeled closely after that of ML,
providing a familiar concrete syntax and benefiting from the design of an already advanced module system. In a distributed
development setting, our module system places restrictions on aspects in order to provide the strong reasoning guarantee in
Section 5. In a local development setting, however, our “module interfaces” could be computed by tools, and place no true
restrictions on developers.

6

Names n ::= . . . | m.x

Declarations d ::= . . . | structure x = m d

Modules m ::= n | struct d end | m :> σ | functor(x:σ) => m | m1 m2

Decl. types β ::= . . . | x:σ, β

Module types σ ::= sig β end | σ1 → σ2

Module values mv ::= struct dv end | functor(x:σ) => m

Contexts C ::= . . . | structure x = � d | struct � end
| � :> σ | � m2 | mv �

Figure 7: Module System Syntax, Values, and Contexts

structure Cache = functor(X : sig f : pc(int->int) end) =>
struct

around X.f(x:int) = (* same definition as before *)
end

structure Math = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

structure cacheFib =
Cache (struct pointcut f = call(fib) end)

end :> sig
fib : int->int

end

Figure 8: Fibonacci with Open Modules

Figure 7 shows the new syntax for modules. Names include both simple variables x and qualified names m.x, where m is
a module expression. Declarations can include structure bindings, and types are extended with module signatures of the form
sig β end, where β is the list of variable to type bindings in the module signature.

First-order module expressions include a name, a struct with a list of declarations, and an expression m :> σ that seals a
module with a signature, hiding elements not listed in the signature. The expression functor(x:σ) => m describes a functor
that takes a module x with signature σ as an argument, and returns the module m which may depend on x. Functor application
is written like function application, using the form m1 m2.

4.1 Fibonacci Revisited
Figure 8 shows how a more reusable caching aspect could be defined using functors. The Cache functor accepts a module

that has a single element f that is a pointcut of calls to some function with signature int->int. The around advice then
advises the pointcut from the argument module X.

The fib function is now encapsulated inside the Math module. The module implements caching by instantiating the Cache
module with a structure that binds the pointcut f to calls to fib. Finally, the Math module is sealed with a signature that
exposes only the fib function to clients.

4.2 Sealing
Our module sealing operation has an effect both at the type system level and at the operational level. At the type level, it

hides all members of a module that are not in the signature σ—in this respect, it is similar to sealing in ML’s module system.
However, sealing also has an operational effect, hiding internal calls within the module so that in a distributed development
setting, clients cannot advise them unless the module explicitly exports the corresponding pointcut.

For example, in Figure 8, clients of the Math module would not be able to tell whether or not caching had been applied, even
if they placed advice on Math.fib. Because Math has been sealed, external advice to Math.fib would only be invoked on
external calls to the function, not on internal, recursive calls. This ensures that clients cannot be affected if the implementation
of the module is changed, for example, by adding or removing caching.

4.3 Exposing Semantic Events with Pointcuts
Figure 9 shows how the shape example described above could be modeled in TinyAspect. Clients of the shape library

cannot advise internal functions, because the module is sealed. To allow clients to observe internal but semantically important
events like the motion of animated shapes, the module exposes these events in its signature as the moves pointcut. Clients can

7

structure shape = struct
val createShape = fn ...
val moveBy = fn ...
val animate = fn ...
...
pointcut moves = call(moveBy)

end :> sig
createShape : Description -> Shape
moveBy : (Shape,Location) -> unit
animate : (Shape,Path) -> unit
...
moves : pc((Shape,Location)->unit)

end

Figure 9: A shape library that exposes a position change pointcut

bind x ≡ v ∈ dv

(η, struct dv end.x) 7→ (η, v)
r-path (η, structure x = mv d) 7→

(η, structure x ≡ mv {mv/x}d)

r-structure

(η, (functor(x:σ) => m1) mv)
7→ (η, {mv/x}m1)

r-fapp
seal(η, dv, β) = (η′, dseal)

(η, struct dv end :> sig β end)
7→ (η′, struct dseal end)

r-seal

seal(η, •, •) = (η, •)
s-empty

seal(η, d, β) = (η′, d′)

seal(η, bind x ≡ v d, β) = (η′, d′)
s-omit

seal(η, d, β) = (η′, d′) η′′ = [ℓ 7→ℓ′] η′ ℓ 6∈ domain(η′)

seal(η,val x ≡ ℓ′ d, (x:τ, β)) = (η′′,val x ≡ ℓ d′)
s-v

seal(η, d, β) = (η′, d′)

seal(η,pointcut x ≡ call(ℓ) d, (x:pc(τ), β)) = (η′,pointcut x ≡ call(ℓ) d′)
s-p

seal(η, ds, βs) = (η′, d′

s) seal(η′, d, β) = (η′′, d′)

seal(η,structure x ≡ struct ds end d, (x:sig βs end, β))
= (η′′,structure x ≡ struct d′

s end d′)

s-s

seal(η, d, β) = (η′, d′)

seal(η,structure x ≡ functor(y:σy) => m d, (x:σ, β))
= (η′,structure x ≡ functor(y:σy) => m d′)

s-f

Figure 10: Module System Operational Semantics

advise this pointcut without depending on the internals of the shape module. If the module’s implementation is changed, the
moves pointcut must also be updated so that client aspects are triggered in the same way.

Explicitly exposing internal events in an interface pointcut means a loss of some obliviousness in the distributed development
case, since the author of the module must anticipate that clients might be interested in the event. On the other hand, we are
still better off than in a non-AOP language, because the interface pointcut is defined in a way that does not affect the actual
implementation of the module, as opposed to an invasive explicit callback, and because external calls to interface functions can
still be obliviously advised.

Thus, sealing enforces the abstraction boundary between a module and its clients, allowing programmers to reason about
and change them independently. However, our system still allows a module to export semantically important internal events,
allowing clients to extend or observe the module’s behavior in a principled way.

4.4 Operational Semantics
Figure 10 shows the operational semantics for Open Modules. In the rules, module values mv mean either a struct with

declaration values dv or a functor. The path lookup rule finds the selected binding within the declarations of the module. We
assume that bound names are distinct in this rule; it is easy to ensure this by renaming variables appropriately. Because modules
cannot be advised, there is no need to create labels for structure declarations; we can just substitute the structure value for the
variable in subsequent declarations. The rule for functor application also uses substitution.

8

Γ;Σ ⊢ m : sig β end x:τ ∈ β

Γ; Σ ⊢ m.x : τ
t-name

Γ; Σ ⊢ m : σ Γ, x:σ; Σ ⊢ d : β

Γ; Σ ⊢ structure x = m d : (x:σ, β)
t-structure

Γ; Σ ⊢ d : β

Γ; Σ ⊢ struct d end : sig β end
t-struct

Γ; Σ ⊢ m : σm σm <: σ

Γ; Σ ⊢ m :> σ : σ
t-seal

Γ, x:σ1; Σ ⊢ m : σ2

Γ; Σ ⊢ functor(x:σ1) => m : σ1 → σ2

t-functor

Γ; Σ ⊢ m1 : σ1 → σ
Γ; Σ ⊢ m2 : σ2 σ2 <: σ1

Γ; Σ ⊢ m1 m2 : σ
t-fapp

Figure 11: Open Modules Typechecking

σ <: σ sub-reflex
σ <: σ′ σ′ <: σ′′

σ <: σ′′
sub-trans

β <: β′

sig β end <: sig β′ end
sub-sig

β <: β′

x : T, β <: β′
sub-omit

β <: β′ σ <: σ′

x : σ, β <: x : σ′, β′
sub-decl

σ′

1 <: σ1 σ2 <: σ′

2

σ1 → σ2 <: σ′

1 → σ′

2

sub-contra

Figure 12: Signature Subtyping

The rule for sealing uses an auxiliary judgment, seal, to generate a fresh set of labels for the bindings exposed in the signature.
This fresh set of labels insures that clients can affect external calls to module functions by advising the new labels, but cannot
advise calls that are internal to the sealed module.

At the bottom of the diagram are the rules defining the sealing operation. The operation accepts an old environment η, a
list of declarations d, and the sealing declaration signature β. The operation computes a new environment η′ and new list of
declarations d′. The rules are structured according to the first declaration in the list; each rule handles the first declaration and
appeals recursively to the definition of sealing to handle the remaining declarations.

An empty list of declarations can be sealed with the empty signature, resulting in another empty list of declarations and an
unchanged environment η. The second rule allows a declaration bind x ≡ v (where bind represents one of val, pointcut, or
struct) to be omitted from the signature, so that clients cannot see it at all. The rule for sealing a value declaration generates
a fresh label ℓ, maps that to the old value of the variable binding in η, and returns a declaration mapping the variable to ℓ.
Client advice to the new label ℓ will affect only external calls, since internal references still refer to the old label which clients
cannot change. The rule for pointcuts passes the pointcut value through to clients unchanged, allowing clients to advise the
label referred to in the pointcut. Finally, the rules for structure declarations recursively seal any internal struct declarations, but
leave functors unchanged.

4.5 Typechecking
The typechecking rules, shown in Figure 11, are largely standard. Qualified names are typed based on the binding in the

signature of the module m. Structure bindings are given a declaration signature based on the signature σ of the bound module.
The rule for struct simply puts a sig wrapper around the declaration signature. The rules for sealing and functor application
allow a module to be passed into a context where a supertype of its signature is expected.

Figure 12 shows the definition of signature subtyping. Subtyping is reflexive and transitive. Subtype signatures may have
additional bindings, and the signatures of constituent bindings are covariant. Finally, the subtyping rule for functor types is
contravariant.

4.6 Type Soundness
When extended with Open Modules, TinyAspect enjoys the same type soundness property that the base system has. The

theorems and proofs are similar, and so we omit them.

5. Reasoning about Equivalence
The example programs in Section 4 are helpful for understanding the benefits of TinyAspect’s module system at an intuitive

level. However, we would like to be able to point to a concrete property that enables separate reasoning about the clients and
implementation of a module.

Asking whether the implementation of a module is correct, or whether changes can be made to the module without affecting
clients, is asking about the equivalence between a module implementation and a specification or between two module imple-
mentations. For the purposes of this paper, we assume that a specification is given as a reference implementation, reducing both

9

(•, E1) diverges (•, E1) diverges

E1
∼= E2

(•, E1) 7→
∗ (η1, V1) (•, E2) 7→

∗ (η2, V2) Λ, Σ ⊢ (η1, V1) ≃ (η2, V2) : T
Λ = (domain(η1) ∪ domain(η2)) − (fl(V1) ∪ fl(V2)) Λ, Σ ⊢ η1 ≃ η2

E1
∼= E2

Figure 13: Logical Equivalence for Program Text

questions to comparing two implementations. This definition is limited, since many specifications are intended to leave some
behavior up to the implementor, but we leave a more flexible definition to future work.

A natural definition of equivalence is called contextual equivalence, meaning that no client context can distinguish two different
implementations of a component. A simple way to define contextual equivalence is to use program termination as the observ-
able variable: two expressions in a program are contextually equivalent if, for all client contexts, the client will either terminate
when linked to both implementations of a component, or will run forever when linked to both implementations. We formalize
this in the standard way:

Definition [Contextual Equivalence]: Two expressions E1 and E2 are contextually equivalent, written E1 ≡ E2, if and only if for all
contexts C such that •; • ⊢ C[E1] : τ and •; • ⊢ C[E2] : τ we have (•, E1) 7→

∗ (η1, V1) ⇐⇒ (•, E2) 7→
∗ (η2, V2).

By definition, two contextually equivalent modules cannot be distinguished by any client.1 Thus, it is adequate to answer
whether a change to a module might affect clients, or whether an optimized implementation of a module is semantically equiv-
alent to a reference implementation.

Although contextual equivalence intuitively captures the semantics of equivalence, it is not very useful for actually proving
that two modules are equivalent, because it requires quantifying over all possible clients. Instead, we give a more useful set of
logical equivalence rules that can be used to reason about a module in isolation from possible clients. We then prove that these
rules are sound with respect to the more natural, but less useful, contextual equivalence semantics. Finally, we briefly outline
how the logical equivalence rules can be used to prove equivalence between two implementations of a module.

5.1 Logical Equivalence
Figure 13 defines logical equivalence for TinyAspect expressions. If two expressions diverge, they are logically equivalent.

Otherwise, two expressions are equivalent if, in the empty context, they both reduce to environment-value pairs that obey a
value equivalence relation, defined below. Note that these equivalence rules apply only to closed expressions; this is not a
significant limitation, as expressions with free variables can easily be re-written as functions or functors.

The equivalence relation for values is somewhat more complex, because whether two values are equivalent depends both on
the environment bindings for free labels in the value, and on which labels clients can advise. For example, the Math module in
Figure8 is equivalent to the same module without caching if clients cannot advise the internal recursive calls to fib, but would
not be equivalent if clients can advise these calls.

We define an value equivalence judgment of the form Λ, Σ ⊢ (η, V) ≃ (η′, V ′) : T . Here, Λ represents a set of hidden labels
that a client cannot advise. Σ is the type of labels that the client can advise (i.e., those not in Λ). The equivalence judgment
includes both values and their corresponding environments, because whether two values are equivalent may depend on how
they each use their private labels in Λ. A similar judgment, Λ, Σ ⊢ η − 1 ≃ η2, used in the second logical equivalence rule and
defined in Figure 14, verifies that two environments map all labels not in Λ to logically equivalent values.

The second rule in Figure 13 sets Λ to be all of the labels in the two environments that are not free in the values being compared
(the set of free labels in V is written fl(V)). For the Math module in Figure8, only the label generated for the fib function as
part of the module sealing operation is free in the module value; all other labels, including the one that captures advice on
recursive calls to fib, are hidden in Λ. This is a technical explanation for why the special semantics of TinyAspect’s sealing
operation are important; without it, all internal calls to the public functions of a module would be available to advice.

This rule also shows the critical importance of keeping advice second-class in TinyAspect. In a system with second-class
advice, clients can only advise the free labels in a module value, as shown in the rule. If pointcuts and advice were first-class,
a function could compute a pointcut dynamically, return it to clients, which could then advise the pointcut. Keeping track of
which functions clients could advise would be extremely difficult in this setting.

The rules for logical equivalence of value/environment pairs are defined in Figure 14. In these rules, we consider machine
configurations to be equivalent up to alpha-conversion of label names in the environment.

Our rules are similar to typical logical relations rules, but have one important difference. Because TinyAspect supports a
limited notion of state through the advice mechanism, logical equivalence is defined as a bisimulation. That is, equivalent func-
tions must not only produce equivalent results given equivalent arguments, they must also trigger advice on client-accessible
labels in the same sequence and with the same arguments. Another way of saying this is that all possibly-infinite traces of pairs
of (client-accessible label, argument value) triggered by logically equivalent functions must be themselves equivalent.

1Note that since our formal system only models functional behavior, it cannot distinguish implementations with different per-
formance characteristics.

10

Λ, Σ ⊢ (η1,()) ≃ (η2,()) : unit

ℓ 6∈ Λ

Λ, Σ ⊢ (η1, ℓ) ≃ (η2, ℓ) : Σ[ℓ]

ℓ ∈ Λ Λ, Σ ⊢ (η1, η1[ℓ]) ≃ (η2, v) : τ

Λ, Σ ⊢ (η1, ℓ) ≃ (η2, v) : τ

ℓ ∈ Λ Λ, Σ ⊢ (η1, v) ≃ (η2, η2[ℓ]) : τ

Λ, Σ ⊢ (η1, v) ≃ (η2, ℓ) : τ

ℓ 6∈ Λ Λ, (Σ, ℓ:τ ′) ⊢ (η1, (fn x:τ ′ => e1) ℓ) ∼= (η2, (fn x:τ ′ => e2) ℓ) : τ

Λ, Σ ⊢ (η1,fn x:τ ′ => e1) ≃ (η2,fn x:τ ′ => e2) : τ ′ → τ

Λ, Σ ⊢ (η, •) ≃ (η′, •) : (•)

ℓ 6∈ Λ Λ, Σ ⊢ (η, dv) ≃ (η′, d′

v) : β

Λ, Σ ⊢ (η,val x ≡ ℓ dv) ≃ (η′,val x ≡ ℓ d′

v) : (x:Σ[ℓ], β)

ℓ 6∈ Λ Λ, Σ ⊢ (η, dv) ≃ (η′, d′

v) : β

Λ, Σ ⊢ (η,pointcut x ≡ call(ℓ) dv) ≃ (η′,pointcut x ≡ call(ℓ) d′

v) : (x:pc(Σ[ℓ]), β)

Λ, Σ ⊢ (η, mv) ≃ (η′, m′

v) : σ Λ, Σ ⊢ (η, dv) ≃ (η′, d′

v) : β

Λ, Σ ⊢ (η,structure x ≡ mv dv) ≃ (η′,structure x ≡ m′

v d′

v) : (x:σ, β)

Λ, Σ ⊢ (η, dv) ≃ (η′, d′

v) : β

Λ, Σ ⊢ (η,struct dv end) ≃ (η′,struct d′

v end) : sig β end

∀m3, m4 ∅ ⊢ (•, m3) ∼= (•, m4) : σ′ =⇒
Λ, Σ ⊢ (η1, m

1
v m3) ∼= (η2, m

2
v m4) : σ

Λ, Σ ⊢ (η1, m
1
v) ≃ (η2, m

2
v) : σ′ → σ

∀ℓ . ℓ ∈ (domain(η1) ∪ domain(η2)) ∧ ℓ 6∈ Λ =⇒ Λ, Σ ⊢ (η1, η1[ℓ]) ≃ (η2, η2[ℓ]) : Σ[ℓ]

Λ, Σ ⊢ η1 ≃ η2

Figure 14: Logical Equivalence for Machine Values

This bisimulation cannot be defined inductively on types as is usual for logical relations, because a function of type τ → τ ′

may trigger advice on labels whose types are themselves bigger than τ or τ ′. Instead, the rules in Figure 14 should be interpreted
coinductively for ordinary types–and thus all the rules for ordinary types τ are designed to be monotonic to ensure that the
greatest fixpoint of the equivalence relation exists. We can still use an inductive definition of equivalence for module types σ,
since module definitions cannot be advised (only functions exported by the module can be advised).

The first rule states that all unit values are equivalent. The second states that we can assume that any non-private label (i.e.,
one not in Λ) is equivalent to itself. Other labels can be judged equivalent to another value by looking up the label in the
environment.

Two functions are equivalent if, when invoked with a fresh label, they execute with that label in a bisimilar way (using the
machine expression equivalence judgment from Figure 15). We cannot use the usual logical relations rule for function equiv-
alence, because this rule quantifies over logically equivalent pairs of arguments and is thus non-monotonic and incompatible
with our co-inductive definition of equivalence.

Two empty declarations are equivalent to each other. Two val declarations are equivalent if they bind the same variable to
the same label (since labels are generated fresh for each declaration we can always choose them to be equal when we are proving
equivalence). Since the label exposed by the val declaration is visible, it must not be in the private set of labels Λ. Pointcut
and structure declarations just check the equality of their components. All three declaration forms ensure that subsequent
declarations are also equivalent. Two first-order modules are equivalent if the declarations inside them are also equivalent.

For functors, we use the usual logical relations rule: two functors are equivalent if they produce logically-equivalent module
results for any logically-equivalent module arguments. This definition is well-formed because equivalence for module types σ
is defined inductively rather than coinductively, using the coinduction only for the base case of simple modules.

Figure 15 shows the rules for logical equivalence of expressions. These rules enforce bisimilarity with respect to values
returned by a function or passed to a non-private label. Our definitions are similar to weak bisimilarity in the π-calculus, with
ordinary reductions or lookups of private labels corresponding to τ -transitions in the standard notion of weak bisimilarity.

The first rule states that two expressions are equivalent if they take any number of non-observable steps (written 7→∗

Λ) to
reduce to values that are also equivalent. The non-observable step relation →Λ is equivalent to ordinary reduction →, except
that the r-lookup rule may only be applied to labels in Λ (i.e., those that cannot be advised by clients).

The second rule allows two expressions to each take one or more non-observable steps (indicated by the + superscript instead
of the ∗ superscript for zero or more steps), resulting in observationally-equivalent expressions. Finally, the last rule states that
if two equivalent expressions are both at the point where they need to look up a label that is not in Λ in order to continue,
we must verify that the values to which the labels are applied are also equivalent, and that the contexts are equivalent once a

11

(η1, E1) 7→
∗

Λ (η′

1, V1) (η2, E2) 7→
∗

Λ (η′

2, V2) Λ, Σ ⊢ (η′

1, V1) ≃ (η′

2, V2) : T

Λ, Σ ⊢ (η1, E1) ∼= (η2, E2) : T

(η1, E1) 7→
+

Λ (η′

1, E
′

1) (η2, E2) 7→
+

Λ (η′

2, E
′

2) Λ, Σ ⊢ (η′

1, E
′

1) ∼= (η′

2, E
′

2) : T

Λ, Σ ⊢ (η1, E1) ∼= (η2, E2) : T

ℓ, ℓ′ 6∈ Λ Λ, Σ ⊢ (η1, v1) ≃ (η2, v2) : τ
Σ[ℓ] = τ → τ ′ Λ, (Σ, ℓ′:τ ′) ⊢ (η1, C1[ℓ

′]) ∼= (η2, C2[ℓ
′]) : T

Λ, Σ ⊢ (η1, C1[ℓ v1]) ∼= (η2, C2[ℓ v2]) : T

Figure 15: Logical Equivalence for Machine Expressions

Λ, Σ ⊢ (η, x) ≈1 (η′, x) : Σ[x]
b-var

Λ, Σ ⊢ (η, V) ≃ (η′, V ′) : T

Λ, Σ ⊢ (η, V) ≈1 (η′, V ′) : T
b-val

Λ, Σ ⊢ (η, E) ∼= (η′, E′) : T E, E′ are not values

Λ, Σ ⊢ (η, E) ≈1 (η′, E′) : T
b-equiv

ℓ, ℓ1..n 6∈ Λ Λ, (Σ, ℓ : T ′, ℓ1..n:T1..n) ⊢ (η, C[ℓ]) ∼= (η′, C′[ℓ]) : T
Λ, Σ ⊢ (η, E) ≈n (η′, E′) : T ′ ∀i ∈ {1..n}.Λ, Σ ⊢ (η, Ei) ≈mi

(η′, E′

i) : Ti

E, E′ are not values

Λ, Σ ⊢ (η, [E1..n/ℓ1..n]C[E]) ≈n (η′, [E′

1..n/ℓ1..n]C′[E′]) : T
b-ctx

ℓ1..n 6∈ Λ Λ, (Σ, ℓ1..n:T1..n) ⊢ (η, E) ∼= (η′, E′) : T
∀i ∈ {1..n}.Λ, Σ ⊢ (η, Ei) ≈mi

(η′, E′

i) : Ti [E1..n/ℓ1..n]E is not a value
m = maxi∈1..n(mi)

Λ, Σ ⊢ (η, [E1..n/ℓ1..n]E) ≈m (η′, [E′

1..n/ℓ1..n]E′) : T
b-eval

Λ, (Σ, x : τ) ⊢ (η, e) ≈n (η′, e′) : τ ′ fv(e) = fv(e′) ⊃ {x}

Λ, Σ ⊢ (η,fn x:τ => e) ≈n+1 (η′,fn x:τ => e′) : τ → τ ′
b-fn

Λ, Σ ⊢ (η, E1) ≈n1
(η′, E′

1) : T2 → T1

Λ, Σ ⊢ (η, E2) ≈n2
(η′, E′

2) : T2

Λ, Σ ⊢ (η, E1 E2) ≈n1+n2
(η′, E′

1 E′

2) : T1

b-app

Λ, Σ ⊢ (η, e) ≈n1
(η′, e′) : τ Λ, Σ ⊢ (η, d) ≈n2

(η′, d′) : β

Λ, Σ ⊢ (η, bind x = e d) ≈n1+n2
(η′, bind x = e′ d′) : x:τ, β

b-bind

Λ, Σ ⊢ (η, •) ≈1 (η′, •) : •
b-empty

Figure 16: Bisimulation Relation

fresh label (representing the (unknowable due to client advice) result of the application) is substituted into the contexts. Since
our definition of equivalence is coinductive, we can use an infinite sequence of the second and third rules to conclude that two
non-terminating expressions are logically equivalent.

Now that we have defined logical equivalence, we can state a soundness theorem relating logical and contextual equivalence:

Theorem 3 (Soundness of Logical Equivalence)
If E1

∼= E2 then E1 ≡ E2.

5.2 Proving Soundness of Logical Equivalence
In this section we give the proof of soundness for logical equivalence. In order to prove the theorem, we need we will

need a definition of equivalence that includes logical equivalence as a special case but explicitly relates structurally equivalent
expressions such as the contexts in the definitino of contextual equivalence. We define the structural bisimilarity relation, written

12

Λ, Σ ⊢ (η, m) ≈n (η′, m′) : σ

Λ, Σ ⊢ (η, m.x) ≈n+1 (η′, m′.x) : σ[x]
b-path

Λ, Σ ⊢ (η, d) ≈n (η′, d′) : β d, d′ are not values

Λ, Σ ⊢ (η,struct d end) ≈n+1 (η′,struct d′ end) : sig β end
b-struct

Λ, Σ ⊢ (η, m) ≈n (η′, m′) : σ′

Λ, Σ ⊢ (η, m :> σ) ≈n+1 (η′, m′ :> σ) : σ
b-seal

Λ, (Σ, x : σ) ⊢ (η, m) ≈n (η′, m′) : σ′ fv(m) = fv(m′) ⊃ {x}

Λ, Σ ⊢ (η,functor(x:σ) => m) ≈n+1 (η′,functor(x:σ) => m′) : σ → σ′
b-ftor

Figure 17: Bisimulation Relation

≈n, to be structural equality of expressions except that closed expressions or values embedded at corresponding places in the
expressions may only be logically equivalent. A bisimilarity judgment is labeled with its complexity n, roughly (but not exactly)
denoting the number of steps in the derivation.

The formal definition is largely straightforward and is shown in Figure 16. A variable is bisimilar to itself at complexity
1, while a value is bisimilar to a logically equivalent value, also at complexity 1. Equivalent (non-value) expressions are also
equivalent at complexity 1. We allow bisimilar expressions to be nested within logically equivalent contexts. It is important that
the complexity of the b-ctx judgment be the same as the complexity of the underlying expression bisimilarity judgment (rather
than adding something for the equivalent contexts) because as two bisimilar expressions execute in parallel, we will need to
add additional contexts without increasing the overall complexity of the judgment.

The rest of the bisimilarity definitions are straightforward; for example, two functions are bisimilar if their bodies are, etc.
An important lemma in the proof shows that only the values of labels in Λ matter in the definitions of bisimilarity and logical

equivalence. Intuitively, this property allows clients to apply advice consistently to any label not in Λ–or create any new labels
with consistent values–without affecting equivalence relations on the underlying program.

Lemma 4 (Extension)
If Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , then for all η′

1, η
′

2 such that ℓ ∈ Λ =⇒ η1[ℓ] = η′

1[ℓ], ℓ ∈ Λ =⇒ η2[ℓ] = η′

2[ℓ], and
Λ, Σ′ ⊢ η′

1 ≃ η′

2 for Σ′ ⊇ Σ, we have Λ, Σ′ ⊢ (η′

1, E1) ≈n (η′

2, E2) : T

Proof: [Extension] By induction on the structure of Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T . Cases b-var and b-empty are trivially
satisfied. All the other cases except b-val, b-equiv and b-ctx follow directly from the induction hypothesis. The remaining three
cases depend on the corresponding property holding true for logical equivalence of values and expressions.

We prove this by considering the set S of expression pairs (E, E′) and context pairs (C, C′) such that Λ, Σ ⊢ (η1, E) ∼=
(η2, E

′) : T (and similarly for C and C′). We wish to show that Λ, Σ′ ⊢ (η′

1, E) ∼= (η′

2, E
′) : T for all η′

1, η
′

2, Σ
′ satisfying the

conditions above. We do so by showing that the rules for logical equivalence of expressions (and values and contexts) are closed
with respect to the cross product of these expression pairs and environment pairs. This means that the cross product is a fixed
point of the rules, and thus by the coinduction principle is within their greatest fixed point. The proof is by a case analysis on
the rule used to conclude that Λ, Σ ⊢ (η1, E) ∼= (η2, E

′) : T .
Most of the cases are easy because they do not depend on η1 or η2. In fact, the only rules that do are the expression

equivalence rules that allow evaluation according to the 7→∗

Λ and 7→+

Λ relations, and the value equivalence rules that allow
labels to be looked up. But these rules only allow the lookup of labels in Λ, which are assumed to be the same as before in the
new environments η′

1, η
′

2. Therefore, the proof is complete. �

We next show that the bisimulation is preserved by substitution of logically equivalent values.

Lemma 5 (Substitution)
If Λ, Σ ⊢ η1 ≃ η2, Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T ,
x : T ′, Σ1 ⊢ E1 : T , x : T ′, Σ2 ⊢ E2 : T , and Λ, Σ ⊢ (η1, V1) ≃ (η2, V2) : T ′,
where Σ1 ⊇ Σ, Σ2 ⊇ Σ, and (domain(Σ1) ∪ domain(Σ2)) ⊆ (domain(Σ) ∪ Λ)
then Λ, Σ ⊢ (η1, {V1/x}E1) ≈m (η2, {V2/x}E2) : T , where m ≤ n.

Proof: [Substitution]
By induction on the complexity of the judgment Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , as defined by the subscript n. The induction

is simultaneous with the corresponding inductions for the pointcut substitution, preservation and equivalence lemmas, below.
This simultaneous induction is necessary because the lemmas are interdependent; however, each lemma only depends on the

13

other lemmas at complexity n − 1, except for the equivalence lemma which depends on the preservation lemma at complexity
n. Thus the overall induction is well-founded.

Base case: complexity = 1. We do a nested induction on the derivation of the judgment, with a case analysis on each rule that
could result in a complexity of 1:

Subcase b-var: If the substitution variable is equal to the variable in the expression, the case holds because the values being
substituted are equivalent, and the judgment remains at complexity 1. Otherwise, the expressions stay the same and thus remain
bisimilar at complexity 1.

Subcase b-val: Since the values are closed, the expressions stay the same and remain bisimilar at complexity 1.
Subcase b-equiv: All ∼= judgments relate closed expressions, since otherwise the expressions would not be values or would

not be able to take a step. This implies that expressions E1 and E2 are closed and thus are unaffected by the substitution,
remaining bisimilar at complexity 1.

Subcase b-ctx: By the nested induction hypothesis, the substitution for the underlying expression must preserve equivalence
at complexity 1. The contexts themselves must be closed and therefore unaffected by the substitution, so we can apply the b-ctx
rule to show that after the substitution the expressions are still bisimilar at complexity 1.

Inductive case: Assume the complexity of the judgment is n > 1. We assume the truth of the substitution and preservation
lemmas for size n−1, and prove the substitution lemma for size n with a nested induction on the derivation of Λ, Σ ⊢ (η1, E1) ≈n

(η2, E2) : T , with a case analysis on the last rule used.
Subcase b-ctx: Same as in the b-ctx subcase of the base case, above.
Subcase b-fn,b-ftor: The induction hypothesis implies that the bodies of the functions or functors remain bisimilar after

substitution, with complexity n− 1 or less. If the functions or functors are not closed values after the substitution, we can apply
the rules b-fn or b-ftor to show that the functors are bisimilar with complexity n or less.

If the functions or functors become closed values as a result of the substitution, then we must show that the values are logically
equivalent. By the definition of logical equivalence for function or functor values, we must show that they execute in a logically
equivalent way when invoked with any freshly generated labels not in Λ.

Since freshly generated labels not in Λ are logically equivalent, we can use the induction hypothesis again to show that
substitution of the labels into the function bodies preserves the bisimilarity of the function bodies, at complexity n − 1 or less.
We then apply the Bisimilarity implies Equivalence lemma at complexity n − 1 to show that the subsituted function bodies are
logically equivalent. Therefore, the functions themselves are logically equivalent and thus bisimilar at complexity 1.

Other subcases: All other subcases hold trivially by applying the induction hypothesis. �

There is also a version of the substitution lemma for pointcuts:

Lemma 6 (Pointcut Substitution)
If Λ, Σ ⊢ η1 ≃ η2, ℓ 6∈ Λ,
Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , x : pc(τ), Σ1 ⊢ E1 : T ,
x : pc(τ), Σ2 ⊢ E2 : T , where Σ1 ⊇ Σ, Σ2 ⊇ Σ,
and (domain(Σ1) ∪ domain(Σ2)) ⊆ (domain(Σ) ∪ Λ)
then Λ, Σ ⊢ (η1, {call(ℓ)/x}E1) ≈n (η2, {call(ℓ)/x}E2) : T .

Proof: [Pointcut Substitution] By induction on the complexity of the judgment Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , as defined by
the subscript n. The cases are the same as the proof of substitution above. �

The most critical lemma in the proof of abstraction states that structural bisimilarity is preserved by reduction:

Lemma 7 (Bisimilarity Preservation)
If Λ, Σ ⊢ η1 ≃ η2,
Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , •, Σ ⊢ E1 : T , and •, Σ ⊢ E2 : T then either:

• there exist η′

1, V1, η
′

2, V2, and Σ′ such that (η1, E1) 7→
∗

Λ (η′

1, V1),
(η2, E2) 7→

∗

Λ (η′

2, V2), Λ, Σ′ ⊢ (η′

1, V1) ≃ (η′

2, V2) : T , and Λ, Σ′ ⊢ η′

1 ≃ η′

2, for some Σ′ ⊇ Σ, or

• there exist η′

1, E
′

1, η
′

2, E
′

2, and Σ′ such that (η1, E1) 7→
+

Λ (η′

1, E
′

1),
(η2, E2) 7→

+

Λ (η′

2, E
′

2), Λ, Σ′ ⊢ (η′

1, E
′

1) ≈m (η′

2, E
′

2) : T ,
and Λ, Σ′ ⊢ η′

1 ≃ η′

2, for some Σ′ ⊇ Σ, m ≤ n, or

• there exist E′

1 and E′

2 such that (η1, E1) 7→ (η1, E
′

1), (η2, E2) 7→ (η2, E
′

2)
and Λ, Σ ⊢ (η1, E

′

1) ≈m (η2, E
′

2) : T for some m ≤ n.

Proof: [Bisimilarity Preservation]
By induction on the complexity n of the judgment Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T . The induction is simultaneous with the

corresponding induction for the substitution lemma, above.
Base case: complexity = 1. We do a nested induction on the derivation of the judgment, with a case analysis on each rule that

could result in a complexity of 1:
Subcase b-var: Does not apply, since E1 and E2 are well-typed in an environment that has no variable bindings.

14

Subcase b-val: Then E1 and E2 are both values such that Λ, Σ ⊢ (η1, E1) ≃ (η2, E2) : T , as in the first subcase of bisimilarity
preservation (where no steps need to be taken in the 7→∗

Λ relation).
Subcase b-equiv: Perform another case analysis on the definition of ∼=. Each subcase corresponds exactly to the correspond-

ing case of bisimilarity preservation, meaning that the resulting expressions are logically equivalent and therefore bisimilar at
complexity 1.

Subcase b-ctx: By the nested induction hypothesis, bisimilarity preservation must hold for the subexpressions E and E′. We
perform a case analysis on the cases of bisimilarity preservation for the subexpressions.

In each subsubcase, we make possibly repeated application of the rule r-context to show that the entire expression takes the
same reduction steps as the subexpressions, except with the contexts in place.

If the resulting nested expressions are not values, then we know the b-ctx rule still applies, and so the whole resulting expres-
sions are bisimilar.

If the resulting nested expressions are values, then they must be equivalent by the induction hypothesis. Then we can apply
the b-eval rule to conclude that the context with the resulting nested value inserted into it is bisimilar at complexity 1.

Subcase b-eval: Consider the rule justifying the equality of E and E′. In the case of the first two expression logical equivalence
rules, the two expressions E and E′ take reduction steps that only involve basic expressions or labels in Λ. If the result of
reduction is not a value, the resulting expressions remain bisimilar at complexity 1 by the b-eval rule. If the result of reduction is
a value, then there are two cases. First, the result can be one of the labels ℓi, in which case we know by the definition of b-eval
that the expressions Ei and E′

i are bisimilar at complexity 1. Second, the results can be other values, in which case we know
that they are logically equivalent and thus also bisimilar at complexity 1.

In the case of the last expression logical equivalence rule, there is a function application with a label as the receiver, where the
label is not in Λ. By the the last expression logical equivalence rule, we know that we can generate a fresh label ℓn+1 and the
overall expressions will be logically equivalent with that fresh label substituted in at the execution point. We use this knowledge
and apply the rule b-ctx with the same set of labels ℓ1..n, the expressions Ei/E′

i, the contexts C1, C2 from the expression logical
equivalence rule.

For the expression in the hole of the context, we have two cases. If the label from the application in the last expression logical
equivalence rule is not one of ℓ1..n, then we use the looked-up label applied to its argument. If the label is one of the labels ℓi,
we use the corresponding expresions Ei/E′

i applied to the argument value. In either case, we know that the expressions in the
context are bisimilar at complexity 1, so by b-ctx so are the overall expressions.

Inductive case: Assume the complexity of the judgment is n > 1. We assume the truth of the preservation and substitution
lemmas for any size m < n, and prove the lemma for size n by nested induction on the derivation of Λ, Σ ⊢ (η1, E1) ≈n

(η2, E2) : T , with a case analysis on the last rule used.
Subcase b-ctx: Same as in the b-ctx subcase of the base case, above.
Subcase b-fn,b-ftor: Does not apply, since by assumption the expressions were closed and these rules apply only to open

expressions.
Subcase b-app: If both of the subexpressions E1 and E2 are values, then they are logically equivalent to the corresponding

values E′

1 and E′

2. If E1 is a label, then the labels refer to logically equivalent values, so bisimilarity is preserved at complexity n
through the reduction step that looks up the labels. If E1 is a functor, the definition of logical equivalence implies that function
application will result in logically equivalent expressions, which are bisimilar at complexity 1.

If E1 is a function, then we know from the definition of logical equivalence that the function bodies E1 and E2 are logically
equivalent when we substitute in a fresh label. This means that we can apply rule b-eval to conclude that the function bodies,
substituted with the values being applied, are bisimilar at complexity 1.

If one of the subexpressions is not a value, then rule r-context must apply. We apply the same logic as in the rule b-ctx,
using the induction hypothesis to show that the subexpressions remain bisimilar and concluding that the applications remain
bisimilar as well at complexity n.

Subcase b-bind: If the subexpressions are not values, then the analysis used in rule b-ctx applies. If they are values, then one
of the binding rules applies. We do a case analysis on which one applies:

Subsubcase r-val: The values being bound must be logically equivalent by the definition of bisimilarity. We apply the
Extension lemma together with the logical equivalence of the values to show that extending the environments with the bound
values preserves bisimilarity and the logical equivalence of the environments. We can then apply the Substitution lemma to
show that substitution of the new label into the following definitions preserves bisimilarity. The subcase is completed by noting
that the resulting val declarations are bisimilar according to rule b-bind.

Subsubcase r-pointcut: Here we apply the Pointcut Substitution lemma to show that the substituted declarations remain
bisimilar. The subcase is completed by noting that the resulting pointcut declarations are bisimilar by rule r-bind.

Subsubcase r-structure: The substitution lemma shows that the resulting expressions remain bisimilar.
Subsubcase r-around: ℓ 6∈ Λ since it is free in the around expression, and so the values that ℓ maps to in η1 and η2 must be

logically equivalent. Therefore, by the substitution lemma, the expressions e in the around declaration remain bisimilar after
the substitution. By the Bisimilarity implies Equivalence lemma (below) at complexity n1 < n, the constructed functions v′

are logically equivalent. We apply the Extension lemma together with the logical equivalence of the original and constructed
functions to show that extending the environments preserves bisimilarity and the logical equivalence of the environments.

Subcase b-path: If the module subexpression is not a value, then the analysis used in rule b-ctx applies. If it is a value, then
by assumption the corresponding values in the structure are logically equivalent, so we apply rule r-path and the case holds.

Subcase b-struct: By assumption, the declarations are not values. Thus, rule r-context applies, and we can use the analysis in
rule b-app.

15

Subcase b-seal: If the module subexpression is not a value, then the analysis used in rule b-app applies. If it is a value, then
rule r-seal applies. It is easy to see that these new labels are logically equivalent, since they are only pointers to the corresponding
old labels which are known to be logically equivalent by assumption. By applying the extension lemma we see that the extended
environments remain logically equivalent, and through simple applications of the b-struct and b-bind rules we can see that the
generated module values are bisimilar at a complexity that is less than or equal to n.

�

Next we show that structural bisimilarity implies logical equivalence:

Lemma 8 (Bisimilarity implies Equivalence)
If Λ, Σ ⊢ η1 ≃ η2 : Σ,
Λ, Σ ⊢ (η1, E1) ≈n (η2, E2) : T , •, Σ ⊢ E1 : T , and •, Σ ⊢ E2 : T
then Λ, Σ ⊢ (η1, E1) ∼= (η2, E2) : T

Proof: [Bisimilarity implies Equivalence]
By induction on n, simultaneous with the above lemmas. We then apply the bisimulation preservation theorem to show

that bisimilar expressions at complexity n remain bisimilar under application of one of the rules in Figure 15, and the type
preservation theorem to show that the result is well-typed. Since Figures 14 and 15 coinductively define logical equivalence
(i.e., logical equivalence is the greatest fixpoint of these rules), and since the set of bisimilar expressions at complexity n is a
fixpoint of these rules, it follows by the coinduction principle that set of bisimilar expressions at complexity n is within the set of
logically equivalent expressions (i.e., within the greatest fixpoint of the rules). Therefore we have Λ, Σ ⊢ (η1, E1) ∼= (η2, E2) : T .

�

We now prove the soundness of logical equivalence:
By assumption, E1

∼= E2. By the definition of this judgment, we have two cases.
In the first case, both (•, E1) and (•, E2) diverge.So therefore for any context C both (•, C[E1]) and (•, C[E2]) diverge, because

the expressions are by definition at the evaluation point in context C. Therefore E1 ≡ E2.
In the second case, (•, E1) 7→∗ (η1, V1) and (•, E2) 7→∗ (η2, V2) where Λ = (domain(η1) ∪ domain(η2)) − (fl(V1) ∪ fl(V2)),

and Λ, Σ ⊢ η1 ≃ η2.
By definition, this means that ∅ ⊢ (•, E1) ∼= (•, E2) : T for some T . Therefore, by the coinductive definition of ∼= it must

be the case that this is justified either by a conceptually infinite number of applications of rules 2 and 3 of logical equivalence
for machine expressions, or else by a finite number of applications of rules 2 and 3 followed by a single application of rule 1.
Consider each case:

Case infinite application of rules 2 and 3: It is easy to see that both (•, E1) and (•, E2) must diverge, since application of
either rule 2 or 3 requires that each expression take at least one step, and these rules can be applied to the executing expression
infinitely many times. So therefore for any context C both (•, C[E1]) and (•, C[E2]) diverge, because the expressions are by
definition at the evaluation point in context C. Therefore E1 ≡ E2.

It is easy to see that (•, C[E1]) 7→∗ (η1, C[V1]) and (•, C[E2]) 7→∗ (η2, C[V2]) for the same η1, η2. By the definition of the
bisimilarity relation ≈, we know that Λ, Σ ⊢ (η1, C[V1]) ≈n (η2, C[V2]) : T for some n. By the Bisimilarity implies Equivalence
theorem, we can conclude that Λ, Σ ⊢ (η1, C[V1]) ≃ (η2, C[V2]) : T .

But by the coinductive definition of ∼= it must be the case that this is justified either by a conceptually infinite number of
applications of rules 2 and 3 of logical equivalence for machine expressions, or else by a finite number of applications of rules
2 and 3 followed by a single application of rule 1. In the former case, both (η1, C[V1]) and (η2, C[V2]) diverge; in the latter, they
both reduce to a value. Therefore E1 ≡ E2 in this case as well.

5.3 Applying Logical Equivalence
The definition of logical equivalence can be used to ensure that changes to the implementation of one module within an

application preserve the application’s semantics. For example, consider replacing the recursive implementation of the Fibonacci
function in Figure 8 with an implementation based on a loop. In AspectJ, or any module system that does not include the
dynamic semantics of our sealing operation, this seemingly innocuous change does not preserve the semantics of the application,
because some aspect could be broken by the fact that fib no longer calls itself recursively.

Open Modules ensure that this change does not affect the enclosing application, and the logical equivalence rules can be used
to prove this. When the module in Figure 8 is sealed, fib is bound to a fresh label that forwards external calls to the internal
implementation of fib. We can show that the two implementations of the module are logically equivalent by showing that
no matter what argument value the fib function is called with, the function returns the same results and invokes the external
label in the same way. But the external label is fresh and is unused by either fib function, so this reduces to proving ordinary
function equivalence, which can easily be done by induction on the argument value. We can then apply the abstraction theorem
to show that clients are unaffected by the change.

6. Discussion
In this section, we reconsider the research questions from the introduction in light of the formal model of Open Modules and

the logical equivalence definition. Since the formal model can be used to represent the tool support provided by IDEs like the
AJDT, we consider how these tools might be enhanced in light of the model.

16

1. How can developers specify an interface for a library or component that permits as many uses of advice as possible, while
still ensuring critical properties of the component implementation?

They can do so by declaring explicit pointcuts in the interface of the component that describe “supported” internal events.
These pointcuts form a contract between a component provider and a client: The provider promises that if the client obeys
the rules of the Open Module system, then the system will have the desired properties, and upgrades to the component will
preserve client functionality. The client’s side of the contract can be enforced by a compiler, while the component provider’s
side can be verified using the logical equivalence rules (and their principled extension to a full AOP language)

Once the proper interface has been declared, our logical equivalence rules show how to prove the full functional correctness
of a module in a completely modular way, given that an aspect-aware interface has been computed and that an appropriate
specification (e.g., in the form of a reference implementation) is available.

Of course, this answer is also limited: we give formal rules for a core language, and full languages are far more complex.
However, our system could be used to prove the correctness of compiler optimizations for the constructs that are expressed
in the core language. Our system may also be the foundation for a richer set of equivalence rules that can be applied to a full
system. Finally, the formal rules in our system may be most helpful by showing engineers how to reason informally about the
correctness of changes to an aspect-oriented program. Our system yields strong theoretical support to the intuitive notion that
changes to a module will not affect clients as long as functions compute the same result and trigger pointcuts in the same way
as the original module does.

While our theorem does not explicitly cover non-functional characteristics like performance or reliability, it suggests ways of
reasoning about these characteristics. For example, to reason about meeting a real-time performance, one could use assume-
guarantee reasoning of the form “assuming all advice to pointcuts in an interface runs in some time bound, we can guarantee
that the various functions in the interface will run in some other time bound.” Future work includes developing modular
aspect-oriented analyses for non-functional and partial correctness properties.

2. How can developers specify an interface for a library or component that permits as many uses of advice as possible, while
still allowing the component to be changed in meaningful ways without affecting clients?

The same kind of interface can be defined as in the question above. In the context of software evolution, however, the
logical equivalence rules can be used to ensure that a proposed change to a module cannot affect that module’s clients, even
if the clients themselves are unknown. As long as the client code obeys the Open Module interface, it cannot be broken by an
upgraded version of a third-party component.

Note that the client is free to choose to bypass the Open Module rules; a future compiler for Open Modules might issue
a warning but compile the code anyway. In this case the client would lose the guarantee that upgrades would preserve the
correctness of client code, but gain the ability to reuse or adapt the component in more flexible ways than are permitted by the
Open Module system. Depending on the precise circumstances, the reuse benefits might outweigh the potential costs of fixing
code that breaks after an upgrade.

Tool Support. As Parnas argued, the primary goal of modularity is to ease software evolution. The model we have developed
shows that evolving a module’s implementation might also involve changing the pointcuts that act on the module, so that
they capture events in the new module’s implementation that correspond to the events captured by the original pointcut in
the original module specification. Currently the AJDT IDE aids this process by identifying what these pointcuts are, but the
pointcuts must still be changed at their definition points, making the implementation task non-local. Our model suggests an
improvement to IDEs: providing an editable view of the portion of each pointcut that intersects with a module’s source code
would allow many changes to be made in a more local way.

With respect to separate development, our model suggests that IDEs could be built to warn when client code declares a
pointcut that depends on implementation characteristics of a third-party component, helping programmers to write code that
is more robust to change. Sometimes such implementation-dependent pointcuts are necessary, however, and in these cases an
IDE could remind the programmer to recheck the semantics of these pointcuts whenever a new version of the component is
delivered.

Language Design. Although our formal model is limited to a few core AOP constructs, it offers insights into the modularity
of more complicated constructs. For example, the requirement that modules behave in a bisimilar way with respect to point-
cuts implies that when a language contains cflow pointcuts, the modularity rules are exactly the same except that semantics-
preserving changes to a module must preserve control-flow relationships between calls to and from a module. Handing off
control to another thread to make a call, for example, is an example of an implementation change that could break cflow client
aspects.

Our module system’s distinction between internal and external calls to the interface to a module implies that some pointcuts—
namely, pointcuts advising internal calls or executions within a module—are more ”invasive” than others in terms of depending
on implementation rather than interfaces. Designers of aspect-oriented programming languages could distinguish these point-
cuts syntactically, making it easy to program using only non-invasive pointcuts where this is possible, and making it clear when
invasive pointcuts are used so that programmers can make an informed decision about whether this is the right choice or not.

7. Related Work
Formal Models. The most closely related formal models are the foundational calculus of Walker et al. [19], and the model of
AspectJ by Jagadeesan et al. [10], both of which were discussed in the beginning of Section 3. In other work on formal systems for
aspect-oriented programming, Lämmel provides a big-step semantics for method-call interception in object-oriented languages

17

[14]. Wand et al. give an untyped, denotational semantics for advice and dynamic join points [20]. Masuhara and Kiczales
describe a general model of crosscutting structure, using implementations in Scheme to give semantics to the model [16]. Tucker
and Krishnamurthi show how scoped continuation marks can be used in untyped functional languages to provide static and
dynamic aspects [18].

Aspects and Modules. Dantas and Walker are currently extending the calculus of Walker et al. to support a module system
[7]. Their type system includes a novel feature for controlling whether advice can read or change the arguments and results of
advised functions. In their design, pointcuts are first-class, providing more flexibility compared to the second-class pointcuts
in TinyAspect. This design choice makes it much more difficult to prove logical equivalence properties, however, because it
means that a pointcut can escape from a module even if it is not explicitly exported in the module’s interface. In their system,
functions can only be advised if the function declaration explicitly permits this, and so their system is not oblivious in this
respect [8]. In contrast, TinyAspect allows advice on all function declarations, and on all functions exported by a module,
providing significant “oblivious” extensibility without compromising modular reasoning.

Lieberherr et al. describe Aspectual Collaborations, a construct that allows programmers to write aspects and code in separate
modules and then compose them together into a third module [15]. Since they propose a full aspect-oriented language, their
system is much richer and more flexible than ours, but its semantics are not formally defined. Their module system does not
encapsulate internal calls to exported functions, and thus does not provide as strong an abstraction boundary as Open Modules
does.

Other researchers have studied modular reasoning without the use of explicit module systems. For example, Clifton and
Leavens propose engineering techniques that reduce dependencies between concerns in aspect-oriented code [5]. Krishna-
murthi et al. show how to check properties of base code and advice separately, assuming that the analysis has information
about where advice might apply (similar to the pointcuts in Open Module interfaces) [13].

Our module system is based on that of standard ML [17]. TinyAspect’s sealing construct is similar to the freeze operator
that is used to close a module to future extensions in module calculi such as Jigsaw [3] and related systems [1].

The name Open Modules indicates that modules are open to advice on functions and pointcuts exposed in their interface.
Open Classes is a related term indicating that classes are open to the addition of new methods [6].

8. Conclusion
This paper described TinyAspect, a minimal core language for reasoning about aspect-oriented programming systems.

TinyAspect is a source-level language that supports declarative aspects. We have given a small-step operational semantics to
the language and proven that its type system is sound. We have described a proposed module system for aspects, formalized the
module system as an extension to TinyAspect, and proved that the module system enforces abstraction. Abstraction ensures
that clients cannot affect or depend on the internal implementation details of a module. As a result, programmers can both
separate concerns in their code and reason about those concerns separately.

9. Acknowledgments
I thank Gregor Kiczales, Mira Mezini, Shriram Krishnamurthi, Ralf Lämmel, Mitch Wand, Karl Lieberherr, David Walker,

Tim Halloran, Curtis Clifton, Derek Dreyer, Todd Millstein, Robert Harper, and anonymous reviewers for comments on this
material. This work was supported in part by the High Dependability Computing Program from NASA Ames cooperative
agreement NCC-2-1298, NSF grant CCR-0204047, and the Army Research Office grant number DAAD19-02-1-0389 entitled
”Perpetually Available and Secure Information Systems.”

10. REFERENCES
[1] D. Ancona and E. Zucca. A Calculus of Module Systems. Journal of Functional Programming, 12(2):91–132, March 2002.

[2] D. G. Bobrow, L. G. DiMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon. Common Lisp Object System
Specification. In SIGPLAN Notices 23, September 1988.

[3] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. Ph.D. Thesis, Dept. of
Computer Science, University of Utah, 1992.

[4] A. Clement, A. Colyer, and M. Kersten. Aspect-Oriented Programming with AJDT. In ECOOP Workshop on Analysis of
Aspect-Oriented Software, July 2003.

[5] C. Clifton and G. T. Leavens. Observers and Assistants: A Proposal for Modular Aspect-Oriented Reasoning. In
Foundations of Aspect Languages, April 2002.

[6] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular Open Classes and Symmetric Multiple
Dispatch for Java. In Object-Oriented Programming Systems, Languages, and Applications, October 2000.

[7] D. S. Dantas and D. Walker. Aspects, Information Hiding and Modularity. Princeton University Technical Report
TR-696-04, 2004.

[8] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantification and Obliviousness. In Advanced
Separation of Concerns, October 2000.

[9] S. Gudmundson and G. Kiczales. Addressing Practical Software Development Issues in AspectJ with a Pointcut Interface.
In Advanced Separation of Concerns, July 2001.

[10] R. Jagadeesan, A. Jeffrey, and J. Riely. An Untyped Calculus of Aspect-Oriented Programs. In European Conference on
Object-Oriented Programming, July 2003.

18

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview of AspectJ. In European
Conference on Object-Oriented Programming, June 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In European Conference on Object-Oriented Programming, June 1997.

[13] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying Aspect Advice Modularly. In Foundations of Software Engineering,
Nov. 2004.

[14] R. Lämmel. A Semantical Approach to Method-Call Interception. In Aspect-Oriented Software Development, Apr. 2002.

[15] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining Modules and Aspects. The Computer
Journal, 46(5):542–565, September 2003.

[16] H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mechanisms. In European Conference on
Object-Oriented Programming, July 2003.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

[18] D. B. Tucker and S. Krishnamurthi. Pointcuts and Advice in Higher-Order Languages. In Aspect-Oriented Software
Development, March 2003.

[19] D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. In International Conference on Functional Programming, 2003.

[20] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic Join Points in Aspect-Oriented
Programming. Transactions on Programming Languages and Systems, 26(5):890–910, September 2004.

19

