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Abstract 

The increasing integration of patient-specific genomic data into clinical practice and research raises 
serious privacy concerns.  Various systems have been proposed that protect privacy by removing or 
encrypting explicitly identifying information, such as name or social security number, into pseudonyms.  
Though these systems claim to protect identity from being disclosed, they lack formal proofs.  In this 
paper, we study the erosion of privacy when genomic data, either pseudonymous or data believed to be 
anonymous, is released into a distributed healthcare environment.  Several algorithms are introduced, 
collectively called RE-Identification of Data In Trails (REIDIT), which link genomic data to named 
individuals in publicly available records by leveraging unique features in patient-location visit patterns.  
Algorithmic proofs of re-identification are developed and we demonstrate, with experiments on real-
world data, that susceptibility to re-identification is neither trivial nor the result of bizarre isolated 
occurrences.  We propose that such techniques can be applied as system tests of privacy protection 
capabilities. 
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1. INTRODUCTION 
Modern medicine is currently in the midst of a genomics revolution that promises significant 
opportunities for healthcare advancement [1, 2].  At the same time, the increased incorporation of 
genomic data into medical records and the subsequent sharing of such data raise complex patient privacy 
issues.  These issues have yet to be sufficiently addressed by the biomedical community.  In general, the 
term privacy is semantically overloaded and now encompasses many distinct topics, which makes 
discussions of privacy difficult.  This work addresses data anonymity, which provides provable 
assurances that data cannot be related to its subjects.  This work does not address security and policy 
components of privacy that have been discussed in various health communities [3, 4, 5]. 
 Recently, several identity protection solutions have been proposed to address the problem of 
anonymity.  Many methods advocate the use of encrypted pseudonyms [6, 7] or the de-identification [8, 
9] of explicit identifiers, such as name or social security number, initially associated with genomic data.  
However, these solutions lack proofs or guarantees of privacy afforded to the protected data.  Contrary to 
popular belief, the protection of a patient’s anonymity in genomic data is not as simple as removing, or 
replacing, explicit identifying attributes.  Though genomic data may look anonymous, anonymity can 
only be guaranteed when inferences that can be garnered from genomic data itself are accounted for.  
While encryption and de-identification prevent the direct linking of genomic data to explicit identity, 
research presented in this paper contends that they provide a false appearance of anonymity. 
 Specifically, this work is concerned with genomic data scattered across a set of locations. In a 
distributed data sharing environment, patients visit and leave behind data at multiple data collecting 
locations, such as hospitals.  Each location may sever genomic data from clinical data and, subsequently, 
release genomic data in order to enable such endeavors as basic research [10] and clinical trials [11, 12].  
Therefore, it is in this environment, where we prove that the anonymity of the genomic data can be 
compromised.  We develop and evaluate a general technique for re-identifying seemingly anonymous 
genomic data to the named individuals that the data was derived from. 
 Our work serves two main purposes.  First, it raises awareness that anonymity protection methods 
must account for healthcare and medical inferences that exist in a data sharing environment.  Second, this 
work provides the biomedical community with a formal computational model of a re-identification 
problem that pertains to genomic data.  We believe that our models, as well as others [13, 14], can be 
applied as tests of the privacy protection capabilities of existing and developing privacy protection 
systems. 
 The remainder of this paper is organized as follows.  In the following section, we present some 
deficiencies in current protection methods.  We present a simple model of re-identification that this work 
builds upon.  In Section 4, re-identification methods are formalized as a family of computational 
algorithms.  In Section 5, we analyze how the algorithms perform with real world data.  Finally, in 
Section 6 we discuss the limitations, possible extensions of our methods, and how this work can help 
researchers design more adequate anonymity protection techniques. 
 

2. BACKGROUND 
There are several reasons why current privacy protection methods fail to sufficiently protect the 
anonymity of genomic data.  One reason is that they neglect to protect identifying inferences drawn from 
the genomic data itself.  A second reason concerns the ability to relate genomic information to other 
publicly available information. 
 The ability to infer identifying features from genomic data is exemplified by our prior research into 
genotype-clinical phenotype relations.  We developed a general model with the capability to learning 
patient-specific genomic data from publicly available longitudinal medical information [15].  The model 
relates a disease’s symptoms to particular clinical states of the disease. Appropriate weighting of the 
symptoms is learned from observed diagnoses to subsequently identify the state of the disease presented 
in hospital visits. This approach is applicable to any simple genetic disorder with defined clinical 
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phenotypes.  The efficacy of our model was demonstrated by inferring specific DNA mutations of 
clinically positive Huntington’s disease patients.  Our model utilized existing knowledge about the strong 
inverse correlation between the disease age of onset and the number of CAG repeat mutations in the HD 
gene. 
 In other previous research, we presented a specific scenario where genomic data, devoid of any 
identifiers, was uniquely re-identified, through an algorithm called REID (RE-Identification DNA), to the 
name and demographics of the patients that the data was collected from [16].  The REID algorithm 
exploits what we now refer to as the trail generated by occurrences of the data across independent 
hospitals.  Releasing the genomic data alone, even devoid of pseudonyms, provides no guarantee of 
anonymity because the locations at which the genomic data appear can be compared to occurrences of 
patients at hospitals using hospital discharge data [17].  These trails of genomic data and trails of patient 
appearances in medical data can match uniquely. 
 The REID algorithm is limited in its scope, because genomic data re-identification can occur only if a 
strict set of assumptions hold.  Therefore, in this paper we both generalize our original re-identification 
technique and introduce a family of re-identification trail re-identification methods that relax these 
assumptions for more general applicability. 
 

3. DATA MODEL 
The re-identification algorithms are best understood by structuring the data that is released by data 
holders.  In this section we discuss the process by which data is so structured and the properties that 
appear in the data structures.  We begin with an example of a data collecting and sharing example. 
 

3.1. Scenario 
Consider the following situation.  John Smith is admitted to a local hospital, where he is diagnosed, via a 
DNA diagnostic test, with a DNA-influenced disease, such as cystic fibrosis.  The hospital stores the 
clinical and DNA information in John’s electronic medical record.  For treatment, John visits several 
other hospitals, where his electronic medical record is collected and stored.  For research purposes, the 
hospitals forward certain DNA databases, including John’s DNA, onto a research group [1, 2].  The DNA 
records are tagged with the submitting institution and with pseudonyms for their submitted sequences [9].  
By state law, the hospital sends a copy of the discharge record onto a state-controlled database.  The 
discharge database is made publicly available in a de-identified format and can be re-identified [13, 18].  
The availability and potential of re-identification remain even under the new medical privacy resolution 
known as the Health Insurance Portability and Accountability Act (HIPAA). We can track which 
hospitals John visited in the discharge data and we can track his DNA information in the research data. 
The sets of locations John visited we call a trail, and the uniqueness features of trails allow DNA trails in 
the research data to be matched to trails from their identified discharge database counterparts. 
 

3.2. Basic Model 
The basic model elements are derived from relational database theory.  The term data refers to 
information held by a data-collecting location, such as a hospital.  The data is organized as a table τ(A1, 
A2,…,Ap), with attributes A = {A1, A2,…,Ap}.  Each row is a p-tuple consisting of patient information 
t[a1,…,ap], and represents the sequence of values, a1∈A1,…,ap∈Ap.  The size of the table is simply the 
number of tuples and is represented |τ|.  In our model, each data-collecting location releases a 2-table1 

                                                 
1 Actually, this is a specific case of re-identification from an n-table vertical partitioning, where data is released by a single 

location as n different tables.  This problem is the same as the 2-table problem, except it requires iterating the entire re-
identification process n-1 times.  For simplicity sake, we present only 2-table re-identification problem. 
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vertical partitioning of its data table. The first table, τ+, is called the identified subtable and contains 
explicitly identified data (e.g. name, address, social security number, etc…) with attributes A+, where A+ 
⊆ A. The second table, τ-, is called the DNA subtable and consists of DNA information only, with 
attributes A- ⊆ A. 
 

 
Fig. 1. Vertical data partitioning into an identified table (τ+) of patient demographics and a DNA 
table (τ-) containing de-identified sequences.  
 
As an example, consider the database records in Fig. 1, where generic clinical data is stored in τ+ and 
electronic DNA sequences are stored in τ-.  Notice that at the location housing the database, the 
relationship between DNA and identities is explicitly known, while in the partitioned release the order of 
the tuples may be changed. 
 Before continuing, several assumptions about the environment should be noted.  First, it is assumed 
that each data collecting location releases data that was collected by itself and from no external source.  
Therefore, it is not possible for hospital H to release the DNA sequences of patient X if patient X never 
visited hospital H.  Second, tuples released in the de-identified and identified tables are unique for each 
patient.  Though a patient may visit a hospital on multiple occasions, the information released by the 
hospital corresponds to a patient, but not to the frequency of the patient’s visits to a hospital. 
 

3.3. Data Structures 
The static nature of patient demographics and genomic information allows for data to be followed across 
releases from different locations.  We make the tracking of data explicit by constructing two matrices.  
The first matrix is called the DNA track N, and consists of information pertaining to shared DNA data.  
The dimensions of this matrix are |∪c∈C τc

-| × (|A-| + |C|) and each row in this matrix corresponds to a 
unique DNA sample released by the set of locations.  The cells of the first |A-| columns of the matrix 
represent the DNA information collected from τc

-.  The latter |C| cells are Boolean representations of the 
DNA data at each location.  Values associated with the locations are 1 if the DNA sample was released 
from the location and 0 otherwise.  The second matrix is called the identified track P and is similar to the 
first matrix, except it maintains a representation of the identified data in the first |A+| cells.  For a more 
concrete example, the data releases of three locations and the corresponding tracks P and N are provided 
in Fig. 2. 
 When every location releases tables, such that the only tuples present in τ- have corresponding tuples 
in τ+, and vice versa, we say that the tracks are unreserved.  The tracks P and N in Fig. 2 are unreserved.  
However, both data releasers and patients are autonomous entities, and either can choose to withhold 
certain information.  Thus, releases that are unreserved are not always practical and, at times, can be 
impossible.  Consequently, we say that track N is reserved to track P if for every location c, every tuple 
x∈τc

- there exists a tuple y∈τc
+, such that both x and y are derived from the same tuple in τ.  Similarly, P 

can be reserved to track N.  By substituting c′3 for c′3, in Fig. 2, the DNA track N′ is reserved to the 
identified track P. 
 The vector of binary values associated with the latter |C| attributes, we refer to as a trail.  We denote a 
trail for data d in an arbitrary track T as trail(T,d).  When a trail resides in an unreserved track, it is called 

 
τ 

τ+  τ - 
Name Birthdate Sex Zip Diagnosis Treatment Pseudonym DNA 

John Smith 2/18/45 M 15234 3330 132 SA9212OK19 cttg…a

Mary Doe 4/9/75 F 15097 33520 653 AS09D8LK1J atcg…t

Bob Little 2/26/49 M 15212 27700 742 D8A79AD133 acag…t

Kate Erwin 11/3/54 F 15054 3563 123 

 

ASSD834MS1 accg…a
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a complete trail because the binary values unambiguously convey the presence or absence of a patient at a 
location.  When a trail exists in a reserved track (e.g. N′ of Fig. 2) it is called an incomplete trail, since the 
value of 0 is ambiguous. 
 

 
Fig. 2. Left) Identified (P) and DNA (N) tracks created from unreserved releases.  Both P and N are 
unreserved tracks.  Right) Resulting DNA track created from a reserved release.   N is now reserved 
to P. 

 Through the ambiguity present in the 0 value, there is a simple relationship between a patient’s 
incomplete trail and complete trail.  We say that a trail x is a subtrail of trail y (x ≤ y) if for every value of 
1 in x, there is a value of 1 in y. Similarly, y is the supertrail of x.  The ambiguity prevents a direct 
mapping of an incomplete trail in one track to its complete trail in the other track.  This is because, given 
an incomplete trail made up of n locations with m 0’s, there are 2m potential complete trails that the 
incomplete trail could be mapped to.  For example, using tracks P and N′ from Fig. 2, cttg...a[0,1,0] and 
acag...t[1,1,0] are subtrails of John[1,1,0].  Similarly, John[1,1,0] and Bob[0,1,1] are supertrails of 
cttg...a[0,1,0]. 
 We have now described the data sharing environment, the data structures, and their formal properties.  
In the following section, we provide a set of algorithms that utilize these data structures and properties for 
re-identification purposes. 
 

4. RE-IDENTIFICATION ALGORITHMS 
Given the tracks constructed above, the trail re-identification problem is how to properly and uniquely 
link identified data to DNA data through common features in their trails.  In this section will provide 
algorithms for doing exactly this.  The two algorithms presented in this section are collectively termed 
Re-identification of Data in Trails (REIDIT), since each exploits a different aspect of the relationships 
between trails. 
 

4.1.  REIDIT-Complete 
The first re-identification algorithm is called REIDIT-Complete, or REIDIT-C.  REIDIT-C performs 
exact matching on the trails in tracks N and P.  It assumes that both N and P are unreserved, and 
therefore, is only applicable with complete trails.  The pseudocode of REIDIT-C is provided in Fig. 3.  
For every tuple in n∈N, REIDIT-C determines if there exists one and only one tuple p∈P such that 
trail(N,n) equals trail(P,p).  When there is an exact and unique match, then the genomic data of trail(N,n) 

τ+  τ -               
Name  DNA  P       

c1  Name c1 c2 c3        
John  acag…t  John 1 1 0          
Mary  accg…a  Mary 1 0 1         

    Bob 0 1 1         
c2  Kate 0 0 1        

John  acag…t              
Bob  cttg…a  N  τ+  τ -   

  DNA c1 c2 c3  Name  DNA  N′ 
c3  accg…a 1 0 1  c′3  DNA c1 c2 c'3 

Mary  accg…a  cttg…a 0 1 1  Mary  accg…a  accg…a 1 0 1 
Bob  cttg…a  acag…t 1 1 0  Bob    cttg…a 0 1 0 
Kate  atcg…t  atcg…t 0 0 1  Kate    acag…t 1 1 0 
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is re-identified to explicitly identifying information in P.  If trail(N,n) is equivalent to both trail(P,p) and 
trail(P,p′), where p≠p′, then there is an ambiguity and no re-identification can occur. 
 

 
Fig. 3. Pseudocode for REIDIT-C. 

 
  REIDIT-C can generate the four possible results for two arbitrary trails trail(N,n) and trail(P,p), as 
shown in Table 1: 1) correct match, 2) correct non-match, 3) false non-match, and 4) false match.  The 
first three can occur, while the last is impossible.  The reasoning is as follows.  One of the main 
assumptions of the unreserved-release model is that both trails in P and N are complete.  Therefore, a 
correct match can only be made when trail(N,n) ≡ trail(P,p).  When there is only one equivalent trail in N 
for trail(P,p), as well as only one equivalent trail in P for trail(N,n), then this must be a correct match.  In 
the event that, there are multiple equivalent trails, then for trail(N,n) there will be a set of equivalent trails 
in P, one of which must be a correct match.  Since the correct trail is indistinguishable from the incorrect 
trails, no match will be made.  To prevent a false match from being assigned, a false non-match will 
occur.  When trail(N,n) ≠ trail(P,p), then the two trails can not refer to the same entity, and thus a correct 
non-match will be made.  Therefore, for each trail in P there must exist a minimum of one equivalent trail 
in N.  If there is only one equivalent trail in N, then both the trail in P and the trail N must correspond to 
the same individual. 
 

 Re-identification No Re-identification 
trail(N, n) = trail(P, p) True match False non-match 
trail(N, n) ≠ trail(P, p) False match True non-match 

Table 1. Classification of re-identifications made by REIDIT-C.  Light-shaded cells are possible 
outcomes and the darkened cell is an impossible outcome. 
 
 First, recall the underlying assumption of the unreserved-release model: tuples of both tracks N and P 
consist only of complete trails.  Thus, at website w, a visit from an entity must be recorded in both Tw

- and 
Tw

+.  Since this holds true for every website, for each trail(N,n), there must exist at minimum one 
equivalent trail(P,p).  If there exists more than one equivalent trail in P for trail(N,n), then multiple trails 
will be recognized and the singleton requirement will not be satisfied.  No re-identification will be 
recorded. 
 The computational complexity of REIDIT-C, as presented in Fig. 3, is quadratic in the size of the 
DNA table, O(|N|2).  We can count the number of steps as follows.  First, the outer loop iterates over all of 
the tuples in N, which is |N| iterations.  Second, for each iteration in N, the algorithm iterates a maximum 
of |P| times.  This provides O(|N|•|P|), which equals O(|N|2) because |N|=|P|.  However, the quadratic 
bound is an artifact of the way in which the pseudocode is written.  Another version based on sorting 
could be written, such that both set of trails are sorted and then compared.  Though more complex in the 
data structure, the new version would produce a complexity bound of O(|N|log|N|). 
 

REIDIT-C Algorithm 
Input: DNA and Identified Tracks N and P for the same data-collecting locations. 
Output: Set of trail re-identifications Reidentified 
Assumes: N and P are unreserved 
Steps: 
 let Reidentified be an empty set 
 for each tuple n in N 
  if there exists only one tuple p in P, such that trail(P,p) ≡ trail(N,n) 
   Reidentified = Reidentified ∪ [p, n] 
 return Reidentified 
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4.2. REIDIT-Incomplete 
The second re-identification algorithm is named REIDIT-Incomplete, or REIDIT-I.  It is applicable when 
one track is reserved to the other.  Fig. 4 provides pseudocode and commentary for the algorithm. The 
algorithm works as follows.  For each trail in the track containing incomplete trails, the set of its 
supertrails from the other track are determined.  If there is only one supertrail, then a correct re-
identification has occurred.  The re-identified trails from N and from P are then removed.  The removal of 
the re-identified trails is a crucial step.  Since the complete trail can have multiple subtrails, failure to 
remove the trail from consideration can prevent additional trails from being re-identified.  This process 
continues until no more re-identifications can be made because one of two conditions is satisfied: either 
(1) the track with incomplete trails has no more trails to process; or, (2) there are no re-identifications 
made in the current iteration. 
 REIDIT-I can generate the four possible results for two arbitrary trails trail(N,n) and trail(P,p), as 
shown in Table 2: 1) correct match, 2) correct non-match, 3) false non-match, and 4) false match.  The 
first three can occur, while the last is impossible.  The reasoning is as follows.  One of the main 
assumptions of the reserved-release model is that trails in N are incomplete, which means that only the 
1’s of the trails can be trusted.   Regardless, it must be true that for an arbitrary trail in N, there must exist 
a non-null set of supertrails in P.  If the set of supertrails is of size one, then this must be a correct match.  
In the event that there are multiple subtrails no re-identification will be made in the current iteration. Yet, 
in the current, and subsequent iterations, the set size may be reduced.  The minimum set size is equal to 1, 
since there must exist at least one supertrail for the trail in question.   When the set size does equal 1, then 
a correct re-identification will be made.  If the set size can not be reduced to 1, then a false non-match 
will occur.  In the case that trail(N,n) is not a subtrail of trail(P,p), it is not possible for a re-identification 
to be made.  Thus, for any two trails trail(N,n) and trail(P,p), where trail(N,n) is not a subtrail of 
trail(P,p), only true non-matches will be recorded. 
 

 
Fig. 4. Pseudocode for REIDIT-I-Fast, a version of REIDIT-I with an efficient data structure. 
 

Algorithm: REIDIT-I-Fast (X, Y) 
Input:  DNA and Identified Tracks N and P for the same data-collecting locations. X is the 
reserved table of N and P, and Y is the remaining table. 
Output: Set of trail re-identifications Reidentified 
Assumes: 1) X has incomplete trails and Y has complete trails. 2) X is the reserved track of Y 
Steps 

let Z be a |X| × |Y| matrix, such that Z[x,y] = 1 if trail(X,x) ≤ trail(Y,y) and 0 otherwise  
let S be a |X| × 1 column vector, such that S[x] is the sum of the xth row of Z 

 let Reidentified be an empty set 
 let FoundOne = False 
 do  
  FoundOne = False  
  for x=1 to |X| 
   if S[x] ≡ 1  
    FoundOne = True 

// find an incomplete trails that  
// has only one supertrail 

    for y=1 to |Y|  
     if Z[x,y] ≡ 1 
      Reidentified = Reidentified ∪ [y, x]  

// if found, find the supertrail and  
// add the [supertrail,subtrail] pair  
// to the re-identified set 

      for z=1 to |X|        
       if Z[z,y] ≡ 1 
        Z[z,y] = 0 
        S[z] = S[z] – 1 

// remove the re-identified  
// supertrail from further 
// consideration 

 while FoundOne ≡ True 
 return Reidentified 
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 For a complexity analysis of REIDIT-I, let N be reserved to P.  From a computational standpoint, the 
REIDIT-I algorithm is the basic structure of REIDIT-C with an additional outer loop.  Thus, by a simple 
extension to the complexity proof of REIDIT-C, we can potentially iterate |N| times, and it appears that 
the complexity of REIDIT-I is O(|N|2•|P|).  However, we can abstract information in such a way that the 
complexity can be reduced to O(|N|•|P|).  This method we call REIDIT-I-Fast and which is depicted in 
Fig. 4. 
 

 Re-identification No Re-identification 
trail(N, n) ≤ trail(P, p) True match False non-match 

Not (trail(N, n) ≤ trail(P, p) False match True non-match 
Table 2. Classification of re-identifications made by REIDIT-I.  Light-shaded cells are possible 
outcomes and the darkened cell is an impossible outcome. 
 
 Consider an adjacency matrix Z of size |N| × |P|, where each cell Z[n,p] has a value of 1 if trail(N,n) 
≤ trail(P,p).  In addition, let S be a column vector of size |N| where each cell is the rowsum of Z.  
Construction of the matrix and vector occurs in approximately O(|N|•|P|) steps.  In the do-while loop, the 
worst-case scenario occurs when each iteration yields one re-identification, thus taking |N| iterations.  
Within the loop, a sequential scan of the S vector takes place in |N| steps.  If a unique re-identification is 
found, realized when S[x] is 1, then a scan of one row of the Z matrix occurs using the inner for loop; this 
takes |P| steps.  When cell Z[x,y] with value 1 is found, the found column in Z and the S vector are 
updated with a scan taking  |N| steps.  Since, in worst case there is only one re-identification per do-while 
iteration, this process only occurs once per iteration. Thus, the total number of steps for the while loop 
and its internal processes is approximately |N|• (2•|N|+|P|), which is approximately O(|N|2 + |P|•|N|).  
Therefore, the order of complexity will be O(setup) + O(scanning) and since |P| ≥ |N|, complexity is 
O(|N|•|P|). 
 

4.3. Upper Bounds 
Since a trail is vector of Boolean values, the set of trails can be discussed in terms of binary strings.  For 
both REIDIT-C and REIDIT-I, the maximum number of trail re-identifications is dependent on the 
number of permutations of a binary string.  Let C be the set of data releasing location and P be the 
identified track.  The maximum number of trail re-identifications is bounded by the minimum of |P| and 
2|C|-1. When |P| ≤ 2|C|-1, then the maximum number of trail re-identifications is bounded by |P|, which is 
the number of distinct patients in the considered population. This implicates that all trails may be re-
identified.  When |P| > 2|C|-1, the maximum number of trail re-identifications is bounded by the number of 
different binary location visit patterns that can be generated from |C| locations. 
 

5. EXPERIMENTS 
Though in theory the re-identification limits of REIDIT-C and -I scale exponentially, this does not 
typically occur in the real world.  A main contributing factor is that people do not visit locations in a 
random manner.  On the contrary, many healthcare factors influence where an individual leaves data 
behind.  For example, many hospitals have referral programs, such that there is nontrivial correlation 
between the visits of several hospital visits.  Moreover, people tend to visit hospitals that are within close 
proximity to their residence.  A hospital that is situated in the middle of a city will see more patients than 
a hospital in a rural setting.  In addition, certain hospitals offer specialized care or treatment for particular 
diseases.  Given these, and additional  idiosyncrasies of the real world, REIDIT must be evaluated with 
real health data. 
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5.1. Description of Real World Data 
The dataset used for evaluation consists of publicly available hospital discharge data from the State of 
Illinois, for the years 1990 through 1997. There are approximately 1.3 million hospital discharges per year 
and collection has compliance with greater than 99% of discharges occurring in hospitals in the state [13].  
Typical discharge data is made up of demographic and clinical information.  The demographic data 
includes date of birth, gender, zip code of residence, and hospital visited, while clinical information per 
patient visit includes a set of one to nine International Classification of Disease, Version 9 (ICD-9) codes 
and procedure codes. 
 From the discharge databases, longitudinal medical profiles for patients diagnosed with genetic 
disorders were constructed as follows.  First, the set of patients that were diagnosed with a single gene 
disease was determined. A patient was represented by a distinct combination of the demographic values 
{date of birth, gender, five digit zip code}.  Next, the databases were requeried with the previous 
demographic data to append additional clinical information from other hospital visits.  Profiles were then 
probabilistically merged based on census demographics for {age, gender, zip code}, such that profiles 
likely to relate to the same person were combined. The uniqueness of patient identities making up profiles 
was 98-100% based on census data as reported previously [20].  Demographic data is considered to be 
identifying information, since each unique patient can be re-identified by simple linkage on demographics 
to publicly available identified data, such as voter registration lists [13].  In prior research we discovered 
that standard ICD-9 codes leak DNA-related data [20], such as genetic disorders and gender.  We utilize 
both of these features in our analysis. 
 

5.2. Re-identifiability with REIDIT-C 
Eight populations afflicted with single gene disorders are analyzed.  These populations are cystic fibrosis 
(CF), Friedrich’s Ataxia (FA), hereditary hemorrhagic teleganictasia (HT), Huntington’s disease (HD), 
phenylketonuria (PK), Refsum’s disease (RD), sickle cell anemia (SC), and tuberous sclerosis (TS). 
 To evaluate re-identification with REIDIT-C, we make the following assumption about patient data.  
It is assumed that if a discharge profile specifies that a patient made a visit to a particular hospital, then 
both clinical and DNA data are released by the hospital about the patient.  REIDIT-C was used with the 
set of profiles for each of the eight populations and gender-specific subpopulations.  As specified in the 
previous section, all re-identifications returned by REIDIT-C are a true match.  The results are presented 
in Table 3. 
 Since, the number of patients, for each population, is less than two to the number of total hospitals 
visited, the maximum number of re-identifications in theory is the number of patients.  However, the 
observed number of re-identifications only achieves this maximum for the RD population, where there is 
only one patient with the disease at each of the hospitals considered.  For the remaining populations, it 
appears that healthcare factors have a profound effect on the uniqueness of trails.  A quick inspection 
reveals that the re-identifiability of these populations is related to the average number of patients visiting 
a hospital.  This effect is graphically depicted in Fig. 5.  It is apparent that as the number of people per 
hospital increases, the more difficult it is for re-identifications to occur.  This phenomenon is due, in part, 
to the fact that an increase in population size, over a fixed set of locations, increases the probability that 
multiple patients will have the same trail.  The average number of patients per hospital is a gross measure 
of re-identification.  There are additional features about the environment that affect the re-identifiability 
of a population, which we expect to explore in future studies. 
 The belief that each location in a health environment will collect and release genomic data may be 
unrealistic given the current state of the health care market.  Though such an environment may exist in the 
future, we must consider a more fine-grained perspective by analyzing how particular locations and sets 
of locations can affect the re-identifiability of patients in a population.  It is more realistic that only a 
fraction of hospitals will be releasing genomic data about patients.  As exemplified in Figure 5, the 
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number of patients per location affects re-identifiability.  Yet, this does not indicate which locations have 
an effect. 
 

Disease 
Gender 

Number of 
Patients 

Number of 
Hospitals 

Average Number of 
Patients Per Hospital % Re-identified 

CF 1149 174 11.92 32.90% 
Female 557 142 7.28 43.09% 

Male 592 150 6.94 39.36% 
FA 129 105 2.08 68.99% 

Female 60 68 1.47 80.00% 
Male 69 72 1.65 78.26% 

HD 419 172 4.37 50.00% 
Female 236 149 2.76 79.14% 

Male 183 127 2.70 50.63% 
HT 429 159 4.83 52.21% 

Female 244 140 3.06 64.34% 
Male 185 114 2.98 63.24% 

PK 77 57 2.15 75.32% 
Female 52 48 1.85 80.77% 

Male 25 25 1.36 80.00% 
RS 4 8 1 100.00% 

Female 2 4 1 100.00% 
Male 2 4 1 100.00% 

SC 7730 207 88.89 37.34% 
Female 4175 189 55.87 43.76% 

Male 3555 191 41.01 36.51% 
TS 220 119 3.82 51.60% 

Female 97 88 2.60 78.35% 
Male 123 87 2.60 61.79% 

Table 3. Susceptibility of Genetic Disease Populations to REIDIT-C Re-identification. 
 
To answer this question, we study the effect of location popularity on re-identifiability of a population.  
We investigate the case where a certain set of locations are releasing data.  More specifically, as can be 
seen in Figure 6, we consider an environment where an increasing number of hospitals participate in 
representative data sharing.  We compare the re-identifiability for CF, where the number of patients per 
location is relatively large (~11.92), to PK, where the average is closer to a single individual per location 
(~2.15).  Each hospital is ranked by the number of distinct patients visiting the location.  A total rank 
ordering of the locations was achieved by randomly ordering locations with the same number of patients. 
 

 
Fig. 5.  REIDIT-C re-identification of populations as a function of the average number of people 
per location. 
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 Given a set of locations from highest rank (i.e. most popular) down to a particular rank x, we 
measured the re-identifiability of the trails that were discovered (i.e. non-null trails over the set of 
locations ranked 1 to x).  For both CF and PK, the rate of trail discovery is logarithmic as can be seen in 
Fig. 6.  The r2 correlation coefficients for fit curves were 0.92 and 0.97, respectively.  However, while the 
rate of trail re-identification for CF is logarithmic (r2 = 0.92), the rate for PK is linear (r2 = 0.98).  It 
appears that this is an artifact of the slope in the logarithmic discovery rate.  The slope of trail discovery 
for CF is much greater than for PK.  This implies that most individuals visited the more popular locations 
for CF, while for PK patients are more dispersed in hospitals. 
 

 
Fig. 6.  REIDIT-C re-identification as a function of hospital rank by visit popularity; first row) in 
order, second row) reverse order. 
 
 One would expect that incorporation of less popular locations would make re-identification easier and 
that more popular locations would make re-identification more difficult. To evaluate this claim, we added 
locations in reverse rank, and measured the re-identifiability of the non-null trails constructed from the 
contributing locations.  We find that for the first quarter of reverse rank websites, almost all patients in the 
population are re-identified.  This is due to the fact that for most of these hospitals, the number of patient 
trails found and the number of re-identifications increases approximately linearly with slope equal to 1.  
This means that at these locations, usually only one patient existed at the hospital with the disorder.  Thus, 
the first part of our hypothesis is true.  After the first quarter locations, the re-identification rate for PH 
remains linear, with a slightly lower rate than the rate of trail discovery.  However, the trail discovery rate 
for CF becomes exponential, and subsequently, after a delay, so too does the CF trail re-identification 
rate.  This is due to the fact that as the number of people per location increases, the ability to distinguish a 
larger number of trails increases as well. 
 

5.3. Re-identifiability with REIDIT-I 
For analysis of REIDIT-I, we continue with the CF population profiles from above.  The CF complete 
trails were used to generate incomplete trails for analysis of the REIDIT-I algorithm.  To do so, we utilize 
a simple model of how locations create reserved releases. Each location withholds identifying information 
on a patient with the same probability x.  Thus, the track of complete information consists of identified 
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clinical data trails and the track of incomplete information consists of genomic data trails.  We varied the 
probability of information being withheld and attempted re-identification with REIDIT-I.  As specified in 
the previous section, all re-identifications returned by REIDIT-I are a true match.  Graphs of the results 
for x equal to 0, 0.1, 0.5, and 0.9 are shown in Fig. 7.  Each point of a graph depicts the average result for 
10 experiments of random information withholding. 
 As the probability of withholding information increases, the probability that an individual will not 
show up at all (i.e. no trail generated) in the population of incomplete trails.  Thus, in the graphs we show 
three lines. The topmost line represents the number of non-null identified clinical data trails for a given 
set of hospitals.  The middle line represents the number of non-null genomic data trails.  And the lowest 
line represents the number of genomic data trails that were re-identified.  As expected, we find that as the 
amount of information withheld increases, the number of releasing locations necessary to perform re-
identification increases as well.  This is due to the fact that as additional information is withheld, the 
incomplete trail becomes less complex and informative. However, even though trails become less 
complex, there remains a significant disposition toward re-identification.  This is observable even after 
50% of a trail is obscured.  We find that there is an inverse relationship between the slope of re-
identification (as a function of website rank) and the amount of information withheld. 
 

 
Fig. 7.  Re-identification of CF incomplete trails with REIDIT-I as an increasing amount of 
identifying information is withheld from the release.  From left to right: 0.0, 0.1, 0.5, and 0.9 
probability of withholding. 
 

6. DISCUSSION 
Appearances can be deceiving.  This concept has been uttered by countless people in many different eras, 
but it characterizes genomic data as well.  Simply because genomic data is de-identified or 
pseudonymized does not mean that anonymity can be assumed.  It is necessary that features about the 
data, as well as the environment in which the data is shared, are taken into account before data can be 
declared as anonymous.  The REIDIT algorithms described in this paper are a prime example of how and 
why techniques that function in one environment, such as the use of encryption to protect security, can 
not be blindly relied upon to protect anonymity. 
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6.1. Privacy Protection Systems Testing 
Various privacy protection schemas have been published and deployed for genomic data. These methods 
utilize protections such as encrypted pseudonyms provided by trusted third parties [6, 9] or de-
identification of explicit identifiers [8, 21].  Each claims that it protects the privacy of the data subjects.  
While advocates of such techniques recognize that there exist re-identification threats from inferences 
about data itself [9], they deem such threats as minimal and unjustifiable as an impediment to research.  
Our experimental results demonstrate otherwise; the re-identification risk of de-identified data is non-
trivial. 
 Though privacy protection schemas do not explicitly model protection against trail re-identification, 
not all schemas are susceptible to the attack.  Here, we analyze two protection models, one that is 
susceptible to trail re-identification and one that is not. One susceptible model has been proposed by de 
Moor, Claerhout, and de Meyer [9].  In this model, a set of data holders, such as a set of hospitals, transfer 
data to a central repository maintained by a trusted third party.  Both parties encrypt the identifying 
information associated with the DNA data.  For a set of locations A, B, …, Z, the trusted third party 
maintains a set of datasets A-{g(fA(IdentityA)), DNA}, B-{g(fB(IdentityB)), DNA}, …, Z-{g(fZ(IdentityZ)), 
DNA}, where g is the encryption function of the trusted party, fi is an encryption function for location i, 
and Identityi is the set of identifying attributes used by location i for the encrypted pseudonym.  When a 
new researcher requests sTTP for data, sTTP supplies the appropriate set of doubly-encrypted lists.  This 
method protects direct access to the identity of the individual, but completely neglects the DNA data.  A 
DNA track can easily be constructed from the released information.  When identified clinical information 
is subsequently shared, an identified track can also be constructed.  With a DNA track and an Identified 
track structured from multiple locations, trail re-identification can be conducted.  It should be noted that 
masking the identity of the data location does not necessarily prevent trail re-identification.  For example, 
in Fig. 8, an unreserved release is made, but the DNA datasets do not have locations explicitly listed.  The 
ordering of bits in trails for the identified and DNA tracks are not necessarily the same.  Regardless, a 
correct match on trails can be made by using the number of locations visited. 

 
Fig. 8. Left) Unreserved release where locations are not explicitly identified.  Right) Resulting 
identified (P) and DNA (N) tracks. Re-identifications are made through uniqueness in the number 
of locations visited. 
 
 In contrast, consider a privacy protection model proposed by deCODE Genetics, Inc. [6] of Iceland.  
deCODE researchers determine, with the assistance of physicians that attend to the general population, a 
set of individuals of research interest.  The set of participating patients donate a blood sample at a facility 
run by the Data Protection Commission (DPC) of Iceland. The patients’ Social Security Number is 
encrypted (using strong encryption) into a pseudonym, and is forwarded with the sample onto deCODE. 
In this system, an individual’s clinical information is distributed and annotated with location information 
from multiple locations, thus an identified track can be constructed.  However, an individual’s DNA is 
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collected and annotated with one location only.  Even if there are multiple locations run by the DPC for 
data collection, each individual’s DNA trail will have a solitary location.  Thus, the only susceptibility 
this system reveals to trail re-identification is when a single individual visits only one DPC location. 
 To be susceptible to trail re-identification does not imply that a protection model is impregnable to re-
identification.  In the following section, we briefly discuss additional susceptibility tests that can be 
employed. 
 

6.2. Alternate Re-identification Models 
Obviously, the REIDIT algorithms do not re-identify all genomic data samples.  But does this guarantee 
that the unidentified data is anonymous?  While it would be nice to unequivocally proclaim yes, this 
would be extremely naïve.  While the REIDIT algorithms provide a single model of how re-identification 
can occur in a distributed environment, however, trail re-identification is not the only manner by which 
genomic data can be re-identified.  An earlier re-identification model we introduced utilizes features 
about the genomic data [15] and simple relationships that may exist between DNA and clinical 
information (i.e. this sample contains a mutation for cystic fibrosis).  Currently, one of the main focuses 
of research in personalized medicine is the study of how variation in an individual’s genome affects their 
clinical phenotype [1, 22].  Though useful for research and clinical healthcare purposes, these same 
relationships also pose challenges to personal privacy. 
 For example, in previous work we demonstrated that specific DNA sequences of an individual’s 
genomic data could be inferred from publicly available longitudinal clinical information [15].  In the 
study, we utilized a subset of the patient profiles of the Huntington’s disease patients described 
previously.  The identities of Huntington’s Disease patients were determinable.  The relation of each 
person’s genomic information to their publicly available clinical information proceeds as follows.  
Through an intelligent model we were able to determine a small bound for the age of onset of the disease 
for the patients.  Since there is a strong correlation between the age of onset and the size of the CAG 
repeat mutation that causes Huntington’s disease, we were able to correctly infer the CAG repeat for 19 of 
22 patients in the study.  It is feasible that the models we utilized, or other models [13, 14], could be 
employed to infer the genomic information of individuals diagnosed with other genetic diseases and 
thereby re-identify the genomic information. 
 

6.3. Limitations and Future Research 
Though the REIDIT algorithms provide correct re-identifications, they are limited by their assumptions.  
First, in the reserved release model assumes that only one of the data types is reserved.  If one location 
withholds genomic data, then all locations withhold genomic data.  Yet, if one location withholds 
genomic data, and a different location withholds identified data, then both constructed tracks will consist 
of incomplete trails.  In this scenario, trails from either track can have their 0’s can be truthfully flipped to 
1’s in.  The deterministic REIDIT-I algorithm can not handle such a scenario.  Use of the REIDIT-I 
algorithm can result in an increased number of false negatives or missed re-identifications.  Even worse, 
REIDIT-I may cause false re-identifications, which under the current error-free model is impossible to 
achieve. 
 Second, the model assumes that the released data is error-free.  However, this may not be the case.  In 
certain cases, typographical errors or false recordings of information in a database may occur.  In this 
situation, not only can a 0 in a trail be flipped to a 1, but a 1 in a trail can correctly be flipped to a 0.  
Again, the REIDIT-I algorithm can miss and cause false re-identifications. 
 In light of these deficiencies, we are developing more robust trail re-identification algorithms. One 
possible direction is the development of trail re-identification methods based on record linkage models.  
Record linkage has been used in the biomedical community to link records from one database to records 
from another database.  In [24], a deterministic record linkage model is proposed, where features selection 
of the best linkage attributes are determined. More complex record linkage model incorporate 
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probabilistic models to account for typographical error [25, 26]. For instance, “John H. Smith” in 
Database 1 and “Jon H. Smitth” in Database 2 may both be the same individual, but neither John and Jon, 
nor Smith and Smitth, are not equivalent.  Variations on these probabilistic methods may be useful for 
designing new trail matching models.  For example, consider a simple reserved release: an identified track 
with two trails, s1[1,0,1] and s2[0,1,1], and a DNA track with two trails, t1[0,0,1] and t2[1,1,1].  If each 
location has an equal amount of error in their released data, then no matches of identified to DNA trails 
can be made; both s1 and s2 differ from t1 and t2 by 2 bits.  However, when the first location is known to 
have a high rate of data error and the remaining locations have little or no error, then it is more probable 
that s1 and t1 correspond to the same entity, and similarly for s2 and t2.  Granted, the ability to make such a 
decision must be made in the context of the set of all trails in the tracks. 
 

7. CONCLUSION 
In this research, we proved that genomic data can often be re-identified in a distributed health 
environment.  We developed and evaluated several algorithms, collectively termed RE-Identification of 
Data in Trails (REIDIT), that re-identify by using unique features in the sets of locations that patients 
visit.  The REIDIT algorithms demonstrate that anonymity protection techniques neglecting to 
incorporate both computational and healthcare factors can be susceptible to re-identification.  Moreover, 
the development of our models in a computational manner shifts the problem of anonymity analysis from 
ad hoc methods into a formal model.  In the future, to evaluate anonymity protocols it necessary that 
researchers attack the problem with context dependent aspects in mind.  Privacy protection methods can 
be tested against the current array of re-identification techniques, such as trail re-identification, to certify 
anonymity and thereby guarantee patient privacy. 
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