
Understanding and Designing
Mechanisms for Attracting and Retaining

Open-Source Software Contributors

Huilian Sophie Qiu

CMU-ISR-22-109
September 2022

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15213

Thesis Committee:
Dr. Bogdan Vasilescu, Chair

Dr. Laura Dabbish
Dr. James Herbsleb

Dr. Emerson Murphy-Hill (Google Research)

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophyin Societal Computing

© Huilian Sophie Qiu, 2022
All rights reserved.

This research was sponsored by the Alfred P. Sloan Foundation and the National
Science Foundation (IIS2107298). Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the
funding agencies.

Keywords: Diversity and Inclusion, Collaborative Software Development, Dis-
tributed Collaboration, Social Coding, Open-Source Software

iii

Abstract
Open-source software (OSS) is now ubiquitous and indispensable, supporting
applications in virtually every domain. Therefore, sustaining this digital infras-
tructure is of utmost societal importance. One of the significant challenges in
OSS sustainability is its low gender diversity. It is a well-known fact that the
open-source software community is heavily skewed towards men. A low gender
diversity environment is non-inclusive to non-male people. Women are one of
the under-represented groups, taking up at most 10% of the OSS population.
Several studies have demonstrated that women face more discrimination; for
example, in some ecosystems, women have lower code acceptance rates, longer
code review delays, and doubts about their skills and abilities. The low diversity
and non-inclusive culture can lead to three major challenges. First, it limits the
contributor pool, which harms OSS sustainability because OSS projects need a
constant supply of effort for development and maintenance. Second, it impedes
project success because evidence shows that a higher gender diverse team is
more productive and performs better. Third, it affects gender representation
and equity, thus preventing all contributors from enjoying the benefits of OSS,
such as finding a job.

With much evidence showing the presence of gender discrimination, this
dissertation studies why this happens and what might be an effective interven-
tion. The first three studies in this dissertation are mixed-methods empirical
studies that aim to explain the low representation of women among other
marginalized groups. Because OSS development is a socio-technical activity, I
use theories from social sciences and humanities, such as sociology, economics,
and linguistics, to derive hypotheses and explain and contextualize results.
The first three studies are arranged by the phases of an OSS contributor,
with one chapter on each of the phases: newcomer, contributor and long-term
contributor, and disengaged.

To conclude the dissertation, I take one step further to develop an interven-
tion to improve the overall diversity and inclusion in OSS. As the curb-cutting
phenomenon describes, designs that cater to marginalized groups also benefit a
wider range of people. I use insights from the first three studies to inform the
design of a dashboard for maintainers to monitor the health of their project
community. I tested the dashboard through two rounds of think-aloud studies
and one round of longer-term diary studies with OSS maintainers for usabil-
ity and effectiveness. Overall, maintainers are excited about our dashboard’s
information and agree that our health indicators are informative and helpful.

v

Acknowledgements
I wanted to earn a doctoral degree when booking a ticket with a company in
the U.K. I saw that, instead of Ms., Miss., or Mrs., Dr. could also be a title.
Moreover, it is gender neutral. Dr. also reflects one’s intellectual accomplishment.
So I decided I wanted a Dr. title. At that time, I did not realize it was a lonely,
long, and rugged journey. A journey I could never reach the end without support
from all my friends and families! I list them here to pay my gratitude.

First and foremost, I would like to thank my family for their unconditional
love. YeYe was strict on my study and homework when I was in elementary
school. Although he passed away before I started my Ph.D., I am sure he would
be proud of my accomplishment. I am grateful to NaiNai, who started caring
for me even before I was born. She had not gone to school for a single day, yet
she learned to read on her own. I must have inherited her wisdom and diligence.
I am also very grateful to my parents, for they have spent a tremendous amount
of time, money, and energy on my education. LaoYe and LaoLao passed away
during COVID. I will forever regret that I could not go back to attend their
funeral. I also thank GuGu, ShuShu, YiMa, BiaoGe, and BiaoJie for their love
and company. Xu Yue helped me with housing and I am looking forward to
spending two years with her in Chicago.

This work would not have been happened without my thesis committee.
I am incredibly fortunate that my advisor Bogdan Vasilescu admitted me to
Societal Computing, the perfect Ph.D. program for me. When I was a young
and inexperienced Ph.D. student, he taught me how to conduct good research
with patience. Laura Dabbish taught me how to do research and become a
more organized researcher. Jim Herbsleb’s comments are always full of wisdom.
As my internship mentor, Emerson Murphy-Hill taught me how to be more
organized and productive.

I am grateful for being a student of the School of Computer Science. Its
outstanding faculty offered fantastic courses on various topics that expanded
my knowledge tremendously.

Many thanks to my lab mates for their help and feedback on my work. I
learned much from my collaborators, Professor Alex Serebrenik (Grandpa),
Professor Alex Nolte, Professor Anita Sarma, and Yang Wen. I am fortunate to
work with brilliant undergraduate students: Lily Li, Hana Frluckaj, Zihe Zhao,
Megan Carneal, Justin Wang, Alexander Ma, Anna Lieb, Jennifer Chou, and
Bianca Caproni. Without them, I would not be able to finish such a massive
amount of work.

I was indebted to my mentors before I came to CMU. My undergraduate
honor thesis advisor Professor Lingzhen Wang supported my decision to pursue
a research path relevant to societal issues. Professor Maurice Hurley is the first

vi

person who suggested that I should consider getting a Ph.D. Professor David
August, Dr. Walter Willinger, and Professor Kai Li gave me my first taste of
doing research, and I enjoyed it.

After the outbreak of COVID, I was trapped in the U.S. because flight
tickets to China were costly, and flights could be canceled anytime. I was very
depressed and suffered from insomnia. I definitely would not have survived
without the help of my doctor and therapist.

I have always thought I am lucky because I have the best group of friends
in the world. Even occasional casual chats can recharge me instantly. Sufian
Jiang, Saihong Xie, Shihui Yu, and Yazhou Huo provided me with myriads of
moral support. Tina Ye, my best friend since elementary school, was my source
of joy. Rock Zou also brought me lots of joy. Although he lived in China, he
managed to send me lots of food. Each time I visited him in Shanghai, I did
not need to pay for any food. Li Die and Water Ge acted like my elder brothers
and encouraged me whenever I felt tired and wanted to give up. Wei Zhang
hosted me when I visited the U.K. Ray Xiao provided much feedback on my
work. Zoe Zou was my soulmate. Zijie Chen taught me how to be more relaxed
and enjoy life. Also thanks to Will Yang and Li Dai who helped me when I
was depressed. Qi Feng, Zheng Zhong, and Baichu Yu are my old schoolmates
who were also pursuing a Ph.D. at the same time. Dun He shared with me his
stories in Africa. Chatting with them made me feel less lonely on my path to a
doctoral degree.

After the COVID outbreak, I made many new friends via social media apps,
such as Douyin. Many of them I could never have met in my real life. Zixuan
Xuezhang, LuoSheng, and HouYiJiangJiangJiang are Douyin streamers with
tender voices. Qing Su, Jiawei Cui, Jixin Hu, Zeming Gai are chat rooms hosts.
They come from a world that I knew nothing of before. Thanks to them, I
published two papers on Douyin streamers. Thanks to Daniel Klug and Cindy
Sun for their help on these two pieces of work.

When I finally came home this Summer, I developed a new hobby, escape
rooms, and I would like to thank all those who played escape rooms with me.
They made my thesis writing journey less stressful and more enjoyable. Lei
Zhang spent many nights with me after her long work days. Lin Luo, (), and
Howard Tang all came a long way to play with me. Kate Cat, Bin Wu, Shuailin
Wu, and Candice Wong are also my outstanding teammates.

Before COVID, I often visited Broadway Theaters in New York. The
brilliant performance refilled my fuel so that I could be more energetic at
work. Thanks, in particular, to Anthony Boyle and Daniel Radcliffe for their
masterful acting skills. After the COVID outbreak, I acquired the hobby of
watching TV series shows during my fifth year of Ph.D. They rescued me from

vii

endless code debugging and paper writing routines. Thanks to actors Yang Zi,
Deng Lun, Li Xian, Liu Yifei, and Wang Hedi.

I am fortunate to have Zhe Gao, Shihui Li, Sam Yong, Helen Gu, Yuan
Wang, Weiyu Ran, Jining Qin, Jianan Li, Zechun Liu, Hongbo Fang, and Katy
Yu as my friends in Pittsburgh. Although CMU students have been extremely
busy, they spare time to hang out with me. Zihe Zhao and Katy Yu are good
research partners and friends. Without them, I would probably suffer from
more severe depression.

Last but not least, I would also like to thank the two mosquitoes I killed
when writing this acknowledgment. They made me feel at home. Earning a
Ph.D. has been a long journey. Every bit of help is ever appreciated.

Contents

Contents ix

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Literature review on OSS contributors . 2
1.2 Literature review on OSS gender distribution 5
1.3 Thesis . 8

2 Help Contributors Choose Projects 13
2.1 Introduction . 13
2.2 Related Work . 15
2.3 Qualitative Analysis Methods . 20
2.4 Interview Results - Recognizing the Signals 23
2.5 Quantitative Analysis Methods . 29
2.6 Regression Modeling Results - Triangulating the Signals 32
2.7 Implications . 38
2.8 Conclusions . 40

3 Sustained Participation 43
3.1 Introduction . 43
3.2 Development of Hypotheses . 45
3.3 Related work . 46
3.4 Methods . 47
3.5 Results . 56
3.6 Discussion . 60
3.7 Conclusions . 61

4 Detecting Interpersonal Conflicts 63
4.1 Introduction . 63
4.2 Related Work . 65
4.3 Research Questions . 66
4.4 Datasets . 67
4.5 Exploratory Analysis . 71

ix

4.6 Methods for Classification . 73
4.7 Results . 76
4.8 Discussion . 80
4.9 Threats to validity . 82
4.10 Conclusion . 83
4.11 Appendix . 84

5 Intervention: A Dashboard for Maintainers 91
5.1 Introduction . 91
5.2 Related Work . 93
5.3 Phase 1: Collecting signals . 95
5.4 Phase 2: Design and Think-aloud Studies . 98
5.5 Discussion . 116
5.6 Limitations . 118
5.7 Conclusion . 118
5.8 Interview Protocol - Climate Coach . 118
5.9 Diary Study Protocol . 122

6 Conclusion 129
6.1 Contributions . 129
6.2 Future work . 131

Bibliography 134

List of Tables

1.1 Women ratios reported from survey data. 6
1.2 Women ratios reported from mining data. 6
1.3 Women ratios in different ecosystems or open-source projects. 7

2.1 GitHub metrics for the five open-source projects presented to the interviewees . 21
2.2 Participants’ demographic information . 22
2.3 Overview of the different variables we computed and modeled. 31
2.4 Summary of logistic regression results showing which signals associate with new

contributors. 32
2.5 Summary statistics for the variables in Table 2.3. 41
2.6 VIF multicollinearity test values for the variables in Table 2.3. 41

3.1 Accuracy of the different gender inference methods (bolded are the highest accuracy
for that language). 49

x

3.2 Regression model for the user survey data (N = 88). 58
3.3 Regression models for early-stage disengagement (N = 29, 235 users; 140, 441 data

rows) and later-stage disengagement (N = 26, 299 users; 143, 984 data rows). . . 59

4.1 The relationship between our four datasets and their corresponding RQs. 67
4.2 N-grams that are over-represented in either class in D2 Toxic OSS Code Review

Comments. N-grams with second-person pronouns are in bold. N-grams with
software engineering terms are underlined. 72

4.3 Over and underrepresented words in D1 Toxicity in Open-Source Issues Com-
ments. N-grams with second-person pronouns are in bold. N-grams with software
engineering terms are underlined. 84

4.4 Over and underrepresented words in D3 Pushback in Corporate Code Review.
N-grams with second-person pronouns and gratitude are in bold. N-grams with
software engineering terms are underlined. 85

4.5 Over and underrepresented words in D4 Pushback in Open-Source Code Review.
N-grams with second-person pronouns, gratitude, and “code of conduct” are in
bold. N-grams with software engineering terms are underlined. 86

5.1 Survey responses . 97
5.2 Dashboard signals and their references. 99
5.3 Information of the Participants from the 1st Round of Interviews 103
5.4 Tips we provided in our dashboard . 108
5.5 Information of the Participants from the 2nd Round of Interviews 109
5.6 Information of the Participants from the Diary Study and Their Basic Stats during

the Two Weeks . 114

List of Figures

1.1 An open-source contributor’s different phases. Phases bounded by the red rectangle
are studied in this dissertation. 3

2.1 Overview of our study design. 14
2.2 A snapshot of a GitHub project page (anonymized). 16
2.3 Breakdown of responses (N = 3127) to the question “When thinking about

whether to contribute to an open source project, how important are the following
things?” from GitHub’s 2017 Open Source Survey [1]. 19

2.4 Visualization of the interaction effects Has website (left) / Has contrib (right) ×
Num recent commits. 34

xi

LIST OF FIGURES xii

3.1 Kaplan-Meier estimators: women disengage significantly earlier. (chi-sq= 645,
p< 2e−16 per a log-rank test) . 443.2 Overview of our methodology. 48

3.3 Illustration of data points we collect. 50
4.1 Text-based classifier P-R curves . 74
4.2 P-R curves on pushback classification . 76
4.3 P-R curves on toxicity classification . 78
4.4 Text-based classifier feature importance scores. 87
4.5 Logs-based classifiers’ feature importance . 87
4.6 Combined classifiers’ feature importance . 88
4.7 Reasons for pushback in OSS . 89

5.1 Study process . 93
5.2 First iteration of design: Basic statistics. 101
5.3 First iteration of design: comparison to other projects. 102
5.4 Version 2: Overview . 106
5.5 Version 2: Basic Stats . 106
5.6 Version 2: Trends . 106
5.7 Version 2: Conversation Tone Analysis . 107
5.8 Version 2: Labels Used by Issues and PRs . 107
5.9 Version 2: Comparison . 107
5.10 Version 2: Methods and References . 108
5.11 Diary Study Logistics . 113
5.12 Years of Experience in Open-Source Contribution 114

6.1 An open-source contributor’s different phases 129

Chapter 1

Introduction

Open-source software (OSS) today is ubiquitous and indispensable. As Eghbal’s well-known
“roads and bridges” analogy [2] suggests, OSS forms our digital infrastructure; just like their
physical counterparts, roads, and bridges, OSS is supporting applications in virtually every
domain. For example, more than 40% of websites use Apache HTTP Server1 and its economic
value was estimated to be more than 7 billion dollars in the US alone [3]. Therefore, sustaining
this digital infrastructure is of utmost societal importance.

One of the biggest challenges in OSS sustainability is its low gender diversity. It is a
well-known fact that the open-source software community is heavily skewed towards men [4]
(see Section 1.2 for an overview). This low gender diversity environment is found to be
non-inclusive to non-male people. As Nafus [5] pointed out that sexist behaviors in OSS are
“as constant as it is extreme.” Women are one of the under-represented groups, taking up
at most 10% of the tech population [6]. Several studies have demonstrated that women are
facing more discrimination. Women who are outsiders to a project have a lower pull request
acceptance rate when their gender can be inferred from their profile [7]. In addition, Bosu et
al. [6] found that, in some ecosystems, such as Android, Chromium OS and LibreOffice, women
face a lower code acceptance rate and delayed code review feedback. Some female mentors in
OSS reported that their skills and abilities are underestimated; for example, some newcomers
do not take their advice/feedback as seriously as those from male mentors [8]. Some female
contributors reported that they face “a harsh onboarding experience or OSS environment” [8],
including acrimonious talk [5]. Some stated that they have to “prove themselves by working
extra hard” [8]. The low diversity and non-inclusive culture can lead to three major challenges:
limits pool, harms project success, and negatively affects representation and equity.

First, a non-inclusive environment limits the available contributor pool. A constant supply
of effort is essential to OSS projects’ sustainability because OSS projects need contributors
for fixing bugs, adding new features, and adapting to evolving technical and non-technical
environments and requirements. When projects lack appropriate levels of contributor effort,
they are at risk of being undermaintained [2, 9, 10], which can cause serious problems. For
example, both OpenSSL and Bash are widely used OSS but were maintained by a single
developer for a long time. These two libraries had security bugs, e.g., the “Heartbleed” bug2

1https://w3techs.com/technologies/history_overview/web_server
2https://www.digitaltrends.com/computing/heres-a-list-of-websites-allegedly-affected-by-the-

heartbleed-bug/

1

CHAPTER 1. INTRODUCTION 2

in OpenSSL could allow hackers to capture secure information being passed to vulnerable
web servers, and the “Shellshock” bug in Bash could allow unauthorized access to a computer
system that went unnoticed or unfixed for many years.

Second, low gender diversity can harm project success. High gender diversity is found to
be associated with better performance. A software team consisting of mostly white male
programmers is generally not a good representation of their intended users because software
is rarely designed for a single demographic subgroup. However, this is often neglected because
OSS developers often have less concern over who their users are [5]. In software engineering,
a recent study [11] confirmed that mixed-gender software engineering teams are associated
with better performance because men and women tend to display different personalities, and
more successful teams can leverage positive personality traits that are associated with better
team performance [12].

Third, it negatively affects representation and equity. Prior studies have shown that a
male-dominated environment is associated with discrimination against minority groups [5].
Discrimination towards women in male-dominated fields can cause the “imposter syndrome”
effect: women tend to consider themselves disqualified or frauds despite being knowledgeable.
Such effects can lead to anxiety, depression, lowered self-esteem, and self-handicapping
behaviors [13].

Furthermore, a non-inclusive culture hinders marginalized groups’ personal development.
More than half of the respondents to a GitHub survey noted that their OSS experience helped
them get their current job and build their professional reputation [14]. A non-inclusive culture
that discourages marginalized groups obstructs them from gaining these opportunities.

However, this dissertation does not limit the scope to solving problems specific to only
marginalized groups. The “curb-cutting” effect [15, 16] describes a phenomenon that designs
that benefit marginalized groups, such as curb-cuts for people with disabilities, also allow
people to push baby carriages, shopping carts, luggage on wheels, bicycles, etc.. This disser-
tation uses the problem of low gender diversity as a starting point to find methods to include
overall diversity and inclusion in OSS. With higher diversity and inclusion, it will be easier
for OSS projects to attract a wide variety of contributors and retain them, thus improving
projects’ sustainability.

While there has been a long string of scholarship on OSS participation, relatively little is
known about why there is a lack of diversity and inclusion, what attributes to marginalized
groups’ long-term engagement or premature disengagement, and, most importantly, what can
be some effective interventions. In this dissertation, I divide an open-source contributor’s career
trajectory into roughly three phases (illustrated in Figure 1.1): newcomer, contributor and
long-term contributor, and disengaged. These phases roughly follow the onion model [17, 18],
which describes OSS teams as a core-peripheral structure.

In the next two sections, I present prior studies on different phases of open-source
contributors and statistics of gender distributions in OSS.

1.1 Literature review on OSS contributors
There is a rich body of literature on OSS participation. In this section, I group related studies
into different phases of a typical OSS contributor’s career trajectory.

CHAPTER 1. INTRODUCTION 3

DeveloperNewcomer

Onboarding Retention/Prevention

Long-term developer DisengageOutsider

Motivation

Figure 1.1: An open-source contributor’s different phases. Phases bounded by the red rectangle
are studied in this dissertation.

Many prior studies use the onion model [19, 17, 20] to describe an OSS project’s structure
- core contributors who contribute most of the code and manage the projects and peripheral
contributors who make a smaller portion of contributions. In this dissertation, I do not
distinguish between core and peripheral contributors. My primary concerns are attracting
and retaining contributors. It is very likely, however, that a long-term contributor becomes a
core contributor to one of the OSS projects.

1.1.1 From an outsider to a newcomer
Studies revealed that there are intrinsic, e.g., having fun, and extrinsic motivations, e.g.,
better jobs, and career advancement, to join OSS [21, 22, 23]. A recent study showed that
more contributors are driven by intrinsic motivations and newcomers use their OSS experience
as their portfolio in job hunting [24]. The literature found that women’s motivations to use
technology relate to accomplishments while men’s motivations are more related to their
enjoyment of technology [25]. Balali et al. [8] argued that the difference in motivations might
explain why some women’s disengagement.

1.1.2 From a newcomer to a contributor
There are studies on what makes an OSS project attractive to contributors. On social coding
platform, e.g.,GitHub, users can make inferences of a project’s characteristics based on
signals, i.e., visible features, and cues on the user interface [26]. For example, Trockman et
al. [27] showed that certain signals on social coding platforms could allow users to infer the
quality of a project. Santos et al. [28] found that license restrictiveness and their available
resources influence a project’s attractiveness. Knowing that different genders have different
problem-solving styles [29], one important yet unanswered question is how contributors of
different genders value different aspects of a project.

There is a large body of work on identifying the barriers contributors face when making
their initial contributions. For example, Steinmacher et al. [30, 31] identified 58 barriers that
may hinder OSS newcomer’s onboarding experience. Some of the barriers are finding a task
to start with, lack of domain expertise, not receiving an answer, code comments not being
clear.

Some of the barriers are related to differences between genders. Using the GenderMag
kit, Padala et al. [32] found that the tool for OSS is gender-biased, and women in general
face more barriers than men. Moreover, in Balali et al.’s work [8], they listed out additional
challenges that female newcomers need to face, including their low self-efficacy.

CHAPTER 1. INTRODUCTION 4

A natural follow-up study is to explore what type of projects is more friendly to marginal-
ized groups. Foundjem et al. [33] found a significant correlation between high gender diversity
(65% for both females and non-binary contributors) and increased patch acceptance rates
(13.5%).

However, before a newcomer onboards an OSS project, one needs to identify a project
to make a contribution to. Relatively little is known about how newcomers can find a
friendly project. There exist many websites that try to help first-time OSS contributors find
a suitable project. Some of these websites curate a list of tutorials for newcomers, 3 4 some
have a checklist to evaluate a project’s fitness, 5 and some collect projects that want help.6
Nevertheless, with such resources available, Tan et al. [34] found that many contributors
still fail to make a contribution. Our work contributes to this gap of knowledge and explores
signals that can help newcomers find a suitable OSS project.

1.1.3 From a contributor to a long-term contributor
Some studies found evidence against some bias allegations. Although women are believed to
be stuck with non-code tasks, a 2013 study on FOSS survey showed that 76% of the female
contributors contribute code [35]. El Asri et al. [36] found that female contributors, in fact,
are as productive as their male counterparts. Their career trajectory follows relatively the
same pattern as male contributors and remains more involved in projects.

Nevertheless, subtle bias and discrimination are still present. For example, Terrell et al. [7]
found pull requests (PRs) from women who are not part of the project are less likely to be
accepted than their male counterparts, but when gender is not visible, women have a higher
PR acceptance rate. Wang et al. [37] pointed out that a bigger confidence-competence gap,
i.e., low self-efficacy despite technical brilliancy, is an additional threat women are facing
in their OSS journey. Vedres et al. [38] found that it is not the female gender category, but
rather the female behavioral pattern, e.g., having more women contributors as collaborators,
that put women in disadvantages; men following a similar pattern also face disadvantages.

A 2019 survey for FLOSS contributors [39] found that people’s attitude towards female
contributors has improved, but there are people who have strong opinions against the study
of gender in OSS. More importantly, this survey [39] reported that more than one-third of
the female survey participants faced sexism, such as offensive comments or insinuations on
women’s incompetence, and one-fifth of them felt that their code is harder to get accepted.
However, Imtiaz et al. [40] conducted a quantitative study on GitHub using Williams and
Dempsey’s gender bias framework but found that most of the gender bias effects, such as
tight-rope and prove-it-again, are invisible.

While these studies identified the presence of bias and discrimination, still more work
has to be done to study how to improve marginalized groups’ sustained participation. The
studies mentioned above focused on individual behaviors. This dissertation analyzes sustained
participation from the perspective of contributors’ social connections on GitHub.

3https://www.firsttimersonly.com/
4https://github.com/freeCodeCamp/how-to-contribute-to-open-source
5https://opensource.guide/how-to-contribute/
6https://up-for-grabs.net/

https://github.com/freeCodeCamp/how-to-contribute-to-open-source

CHAPTER 1. INTRODUCTION 5

1.1.4 Disengage from OSS
A recent study by Iaffaldano et al. [41] provides an overview of why OSS contributors take
a break or eventually withdraw from the community. Some of the personal reasons include
other professional or life event priorities, which are also found by Miller et al. [42] and loss
of interest in the project. Project related reasons include changes in projects or the lack of
communication. In addition, some contributors mentioned that the social behavior of the
community can also drive people away. Being reactive may help newcomers feel welcomed
whereas ignoring contributions may drive contributors away.

Literature also found that stress and burnout can be a reason for disengagement from
OSS, as evident in many blog posts, talks, or podcasts [43, 44, 45] In addition to a high
volume of requests [44], unfriendly or even aggressive tones are also a source of burnout [46],
making projects hard to attract and retain contributors.

Negative interaction, such as pushback in code review [47] and toxic language [46, 5]
can demotivate and burn out developers. Egelman et al. [47] found that, in a corporate
setting, reviewers blocking code changes during code reviews can be a source of negative
experience. Prior works have explored how to automatically detect negative experiences, such
as pushback behaviors with logs-based metrics [47] and toxicity with linguistic features [46].
This dissertation further investigates how to automatically detect negative interactions among
OSS contributors.

More specifically, plenty of studies focus on reasons behind disengagement of marginalized
groups, such as women or newcomers. Research shows that women developers are generally
more likely to leave the project than men [48]. Women face more barriers in OSS [8, 49], such
as unwelcoming language [50], unsolicited sexual advances [50], gender bias in tool design [32],
distrust in their competence as a mentor [8], lower code acceptance rate [7, 6], or the lack of
inclusion for a female leader [6]. Scholars also pointed out that solutions to support women’s
sustained participation may be different from that of men [51, 52].

1.2 Literature review on OSS gender distribution
As the problem of low gender diversity is gaining more attention, many studies have tried
to estimate the gender composition in the OSS community. Although all reports on a low
percentage of women contributors, these numbers range from 1% to 12%. Many reasons
can cause dissimilarity among the data, such as the data collection methods, time, sampled
populations, and sample size. In this section, we group prior works that reported gender
distribution in data collection methods: survey vs. data mining. Each method has its merits
and shortcomings. For each method, we order the studies by the time they collected the
data. Note that since these data were collected in different sub-populations and with varying
sample sizes, the chronological ordering does not imply any longitudinal trend. Finally, we
list studies that reported gender ratios in specific projects or ecosystems.

1.2.1 Surveys
Table 1.1 lists the studies that rely on survey data to calculate gender distribution. Surveys
can capture people’s self-identified gender and arguably increase the precision of gender

CHAPTER 1. INTRODUCTION 6

Table 1.1: Women ratios reported from survey data.

Year Source Sample
size

% Citation

2001 Online survey 5,478 0% Robles et al. [53]
2002 Online survey 2,784 1.1% Ghosh [54]
2001∼2002 Email 684 2.5% Lakhani et al. [22]
2002 Email 79 5% Hars and Ou [55]
2003 Online Survey 1,588 1.6% David et al. [56]
2013 Online survey 2,183 10.35% Robles et al. [57]
2015 Online survey 816 24% Vasilescu et al. [58]
2017 Online survey 6,000 5% GitHub [50]
2017 Online survey 64,000 7.6% StackOverflow [59]
2019 Online survey 119 10.9% Lee et al. [39]
2021 Online survey 242 7.6% Gerosa et al. [24]

Table 1.2: Women ratios reported from mining data.

Year Source Sample size % Citation

2012 Email subs + US Census 1,931 8.27% Kuechler et al. [62]
2012 StackOverflow 2,588 11.24% Vasilescu et al. [63]
2015 GitHub + genderComputer 1,049,345 8.71% Kofink [64]
2015 GitHub + genderComputer 873,392 9% Vasilescu et al. [65]
2017 GitHub + self-report on social media 328,988 6.36% Terrell et al. [7]
2017 OpenStack + genderize.io - 10.4% Izquierdo et al. [4]
2019 GitHub + Namsor 300,000 9.7% Qiu et al. [48]
2019 Gerrit + genderComputer based on social media

profile
4,543 8.8% Bosu and Sultana [6]

2020 GitHub + genderComputer+Namsor 1,954 core 5.35% Canedo [66]
2021 GitHub + genderComputer+Simple Gender[67] 1,634,373 5.49% Vasarhelyi et al. [68]
2021 GitHub + genderize.io 65,132 10% Prana et al. [69]
2022 Software Heritage + Gender Guesser 21.4M 10% Rossi et al. [70]

identification [60]. Surveys targeting a specific population can provide in-depth and more
accurate insights. However, survey data, albeit highly reliable and accurate, are prone to
selection bias. People who responded to the survey may be qualitatively different from
those who did not respond because of differences in survey accessibility and individual
motivation [61]. Moreover, survey datasets are usually small, making it hard to obtain
generalizable results.

1.2.2 Mining trace data
Table 1.2 shows the studies that rely on mining data to report gender distribution. Gender
inference based on mined user information provides a more representative, large-scaled sample,

CHAPTER 1. INTRODUCTION 7

Table 1.3: Women ratios in different ecosystems or open-source projects.

Year Source Ecosystem(s) Sample size % Citation

2014 Mailing list Drupal 3,342 9.81% Vasilescu et al. [73]
2014 Mailing list Wordpress 3,611 7.81% Vasilescu et al. [73]
2016 Online survey Apache 765 5.2% Sharan [74]
2005-2016 GitHub Linux 14,905 8% Cortázar [75]
2016 Online survey Debian 1,479 2% Raissi et al. [76]
2019 GitHub + Namsor Angular.js 1,601 3.4% Asri and Kerzazi [77]
2019 GitHub + Namsor Moby 1,824 3.5% Asri and Kerzazi [77]
2019 GitHub + Namsor Rails 3,723 4.2% Asri and Kerzazi [77]
2019 GitHub + Namsor Django 1,672 5.3% Asri and Kerzazi [77]
2019 GitHub + Namsor Elasticsearch 1,127 4.2% Asri and Kerzazi [77]
2019 GitHub + Namsor TensorFlow 1,735 5.8% Asri and Kerzazi [77]
2019 Gerrit + genderComputer Android 258 core 3.87% Bosu and Sultana [6]
2019 Gerrit + genderComputer Chromium OS 151 core 3.97% Bosu and Sultana [6]
2019 Gerrit + genderComputer Couchbase 24 core 4.17% Bosu and Sultana [6]
2019 Gerrit + genderComputer Go 90 core 7.77% Bosu and Sultana [6]
2019 Gerrit + genderComputer LibreOffice 68 core 1.47% Bosu and Sultana [6]
2019 Gerrit + genderComputer OmapZoom 60 core 10% Bosu and Sultana [6]
2019 Gerrit + genderComputer oVirt 34 core 2.94% Bosu and Sultana [6]
2019 Gerrit + genderComputer Qt 159 core 3.12% Bosu and Sultana [6]
2019 Gerrit + genderComputer Typo3 73 core 4.1% Bosu and Sultana [6]
2019 Gerrit + genderComputer Whamcloud 19 core 0% Bosu and Sultana [6]
2021 Online survey Linux 2,350 14% Carter et al. [78]

and it also avoids the burden of the survey respondents and the efforts taken to collect survey
results.

However, researchers often need to infer gender because not all platforms collect users’
gender, and not all users disclose their genders online. From the studies, we summarize
two primary information sources for gender inference: names and information from other
social media platforms. Commonly used name-based gender inference tools include Nam-
sor [71], genderComputer [63], GENDER GUESSER,7 and genderize.io.8 See Sebo [72]
on a comprehensive comparison among these tools. The most significant shortcomings of
these computational tools are non-perfect accuracy and the assumption of binary gender.
Some studies cross-link a user’s account to other social media platforms, such as LinkedIn,
Facebook, Google search, and the now deprecated Google plus. This method can capture
users’ self-reported gender.

1.2.3 Ecosystems
Table 1.3 lists studies that report gender ratios in specific software ecosystems. Many of
these studies focus on specific projects rather than the entire ecosystem. In addition to these

7https://pypi.org/project/gender-guesser/
8http://www.genderize.io

CHAPTER 1. INTRODUCTION 8

quantitative figures, some studies also provide comparisons across ecosystems. For example,
women are more represented in COBOL legacy systems than in new systems using Java
or C++ [79]. Women are also more likely to be found in Ruby but not in pure backend or
PHP-focused frontend communities [68]. However, to the best of our knowledge, there is not
a study that covers all major ecosystems.

1.3 Thesis
In this dissertation, I conduct a series of empirical studies using a mixed-methods approach
to gain a better understanding of factors that influence diversity and inclusion in OSS.
Because software development is a collaborative, human-centric activity, I use social science
theories to inform study design, derive hypotheses, and explain and contextualize results.
The abundant trace data from online coding platforms, e.g.,GitHub, allows us to perform
large-scale data analyses to answer research questions empirically. I employ quantitative
and qualitative methods in my research because they complement each other and allow me
to get different perspectives on the research question. I use quantitative methods, such as
sophisticated statistical analyses and advanced machine learning models, to discover patterns
from large-scale, longitudinal data. I use qualitative methods, such as surveys and interviews,
to validate our computational operationalizations and gain insight from real contributors.

While there are studies showing the presence of discrimination, relatively little is known
about why this happens and what might be a useful/effective intervention. This dissertation
includes a series of mixed-methods empirical studies that aim to explain the low representation
of women among other minority groups. Because OSS development is a socio-technical activity,
I use theories from social sciences and humanities, including social capital theory, signaling
theory, and linguistics politeness theory, to derive hypotheses and explain and contextualize
results. Using the results from these studies as a foundation, this dissertation also takes one
step further to designing and prototyping/testing/piloting interventions.

1.3.1 Thesis statement
Here is my thesis statement:

Social science theories driving computational methods on big data explain the mechanisms
behind open-source contributors’ sustained participation as well as help us design interventions
to improve open source community health.

Note: In this dissertation, I use “we” when describing works that I collaborated with other
researchers.

1.3.2 GitHub as the research context
This dissertation uses GitHub, one of the most widely used social coding platforms, as the
research context. I chose GitHub for several reasons. First, GitHub is the most widely used
online social coding platform, with more than 56M users as of September 2020.9 Second,
GitHub has a rich set of features, i.e., visible cues, to reflect contributors’ social dynamics. For

9https://octoverse.github.com/

CHAPTER 1. INTRODUCTION 9

example, there is the number of daily commits [80] as a signal of a contributor’s commitment
and competence, or the number of stars [81] for a repository to reflect its popularity. Users
can put up signals, such as badges in the README [27] or a CODE OF CONDUCT [82], to
demonstrate their project’s level of maintenance. These features can serve as signals that can
help contributors make informed decisions [26].

The abundance of signals leads to many interesting research questions. For example, the
presence of a daily activity streak may affect how contributors behave [80]. Social signals,
such as users’ names or profile pictures, may influence how their PRs are treated [7, 83].

Finally, all actions on GitHub leave traces and are available for everyone. Therefore, we
are able to use this information to conduct analyses on their social networks, contribution
patterns, code quality, etc. The trace data and signals are available and easy to manipulate
with MySQL and MongoDB [84]. This makes many empirical analyses possible.

1.3.3 A note on the use of binary gender
Although gender, a socially constructed concept, is non-binary, it is sometimes not impractical
to include non-binary gender in a computational model. Throughout this dissertation, I use
GitHub trace data, which does not record participants’ gender. Therefore, we often need to
infer gender based on information we can observe, usually names, photos, and information
from other social media platforms, e.g., Google+ and LinkedIn.

However, all these methods have their limitations. Commonly used gender inference tools
using names or photos often assume binary gender, and the accuracy is not perfect [72]. Even
though we can sometimes find users’ self-reported gender from their profiles on other websites,
the number of users with whom we can link their accounts is relatively small. As a result, to
obtain a large dataset of contributors with their gender, the best method we can rely on is
the name-based inference tools.

Despite these limitations, I argue that conducting gender analysis with imperfect gender
inference is necessary and imperative. While the severe underrepresentation of women and
other marginalized groups is widely recognized in OSS, much more work is needed to
understand the reasons behind the low diversity. Moreover, we have little empirical evidence
on how the situation has changed over time and in different sub-communities and ecosystems.

Though imperfect, a large dataset of OSS contributors with inferred gender allows us to
observe the approximate gender distribution at different times and in different ecosystems [70].
These observations can provide us feedback on the effectiveness of our efforts to improve
gender diversity in OSS. They can also point us to the most and the least diverse communities
to conduct future studies. With access to large datasets with inferred gender, we can also
build statistical models to test hypotheses developed from social sciences theories on gender
differences (Chapter 3). Moreover, since women contributors are rare in open-source, using
inferred gender, we can preselect a small group of people whose likely to be women and then
manually verify their genders.

Therefore, because obtaining a large dataset of accurate self-reported gender, including
non-binary options, is impractical and almost infeasible, in some places, I use binary gender
as a simplification to make the analyses tractable. When possible, however, such as when
inviting participants for interviews or surveys, I only use computationally inferred gender as
a rough approximation to help me find non-men contributors. I use their self-reported gender

CHAPTER 1. INTRODUCTION 10

in the analyses and reports. Overall, I only use automatic name-based gender inference to
capture gender distribution and perform analyses at the population level. As a result, my
studies’ results should be considered approximations of the actual gender distributions in the
OSS community.

1.3.4 Dissertation outline
This dissertation presents a series of empirical studies that focus on different phases of an
OSS contributor.

Chapter 2: Help Contributors Choose Projects

While prior works have extensively studied contributors’ onboarding experience, this chapter
focuses on the earlier and relatively less studied stage in the onboarding process: how
newcomers choose which projects to contribute to. This work is based on signaling theory, a
framework borrowed from economics [85, 86] and biology [87]. The signaling theory states how
one may use visible cues to infer a person or an item’s hidden properties. This is relevant to
OSS social coding platforms as Dabbish et al. [26] showed that contributors make inferences
on projects based on signals. To better guide new contributors to find a suitable project,
we interviewed contributors with various degrees of experience for their insight on how to
use signals on GitHub to infer how inclusive and newcomer-friendly a project is. From the
interviews, we identified helpful signals and built a model to test if they are significantly
associated with bringing in newcomers. This chapter consists of the following conference
paper:
[88] H. S. Qiu, Y. L. Li, S. Padala, A. Sarma, and B. Vasilescu, “The signals that potential
contributors look for when choosing open-source projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–29, 2019.

Chapter 3: Sustained Participation

This chapter concerns contributors and long-term contributors. Although contributors’ sus-
tained participation has attracted much attention, little is known about the gender difference.
Applying survival analysis, we found that women contributors leave GitHub earlier than
their male counterparts. In other words, women contributors have shorter career spans on
GitHub. Software development is collaborative; therefore, this chapter studies contributors’
sustained participation using social network theories. Social capital theory, a theory explaining
resources one can gain from their network connections, provides insight into how contributors’
network connections can affect their sustained participation and why there is a difference
between genders. We used the social capital theory to identify network structures associated
with contributors’ prolonged participation. We used a survival analysis model and surveys
to triangulate our results. The results reveal possible signals on social coding platforms to
support women in developing social capital. This chapter consists of the following conference
paper:

CHAPTER 1. INTRODUCTION 11

[48] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu, “Going farther together:
The impact of social capital on sustained participation in open source,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 2019, pp. 688–699.

Chapter 4: Detecting Interpersonal Conflicts

This chapter presents our study on disengagement prevention: we study how to detect
interpersonal conflicts in issue discussions and code reviews automatically. Our work builds
on two prior studies. Egelman et al. [47] introduced the concept of pushback to refer to the
perception of unnecessary interpersonal conflict in code review and presented a classifier
using meta-information in Google’s code review, e.g., number of comments, reviewing time.
Around the same time, Raman et al. [46] proposed to use linguistic features to detect toxicity,
i.e., rude, disrespectful comments in GitHub issue conversations. The two concepts, i.e.,
pushback and toxicity, are distinct yet similar. We conducted a systematic evaluation of the
two complementary methods, i.e., meta-information and linguistic features, on detecting the
two concepts, in both corporate (Google) and open-source (GitHub) settings and both types
of conversations (issue and code review). The evaluation also allowed us to identify signals
that can flag potential interpersonal conflicts in open-source development. This chapter
consists of the following conference paper:
[89] H. S. Qiu, B. Vasilescu, C. Kästner, C. Egelman, C. Jaspan, and E. Murphy-Hill,
“Detecting interpersonal conflict in issues and code review: Cross pollinating open-and
closed-source approaches,” in 2022 IEEE/ACM 44th International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 2022, pp. 41–55.

Chapter 5: Intervention: A Dashboard for Maintainers

This chapter presents an intervention we built: a dashboard for open-source maintainers to
monitor health indicators that are found to impact diversity and inclusion by prior research.
We identified health indicators from the literature, studies presented in previous chapters,
and interviews with maintainers. Our dashboard focuses on the indicators that are important
but not currently readily visible on social coding platforms such as GitHub. Among others,
our dashboard included indicators of pushback in code review, tone of issues and pull request
discussions, and social capital measures. In addition to summaries of these indicators, we
provided coaching on what possible management actions maintainers can take to improve
the health of their project. We also included a gamification function that compares the focal
project with similar projects to give maintainers a reference on how well they are doing.

We iterated and refined our design through two rounds of think-aloud studies with open-
source maintainers. We then tested the usability and effectiveness of this intervention via a
two-week dairy study with open-source maintainers. Through our user studies, we found that
maintainers were generally excited about the information that our dashboard provides and
agreed that our health indicators are informative and helpful.

Chapter 6: Conclusion

I conclude this dissertation with a reflection on its contribution and discussions. I also list
some potential future work that I plan to explore after graduation.

Chapter 2

Help Contributors Choose Projects

While prior work has extensively studied the motivations of open-source contributors in
general, relatively little is known about how people choose which project to contribute to,
beyond personal interest. This question is especially relevant in transparent, social coding
environments like GitHub, where visible cues on personal profile and repository pages, known
as signals, are known to impact impression formation and decision making. In this chapter, we
report on a mixed-methods empirical study of the signals that influence contributors’ decision
of joining in a GitHub project. We first interviewed 15 GitHub contributors about their
project evaluation process and identified important signals they used, including the structure
of README and the amount of recent activities. Then, we proceeded quantitatively to test
out the impact of each signal based on the data of 9,977 GitHub projects. We reveal that
many important pieces of information lack easily observable signals, and that some signals
may be both attractive and unattractive. Our findings have direct implications for open-source
maintainers and the design of social coding environments, e.g., features to be added to facilitate
better project searching experience.

2.1 Introduction
Open-source software infrastructure is ubiquitous, powering applications in virtually every
domain [2]. Yet, despite their importance, many open-source projects lack appropriate levels
of contributor effort and are thus at risk of being undermaintained [2, 9, 10]. In projects with
only one or two core contributors, of which there are many [90], lack of time or interest of the
main contributors poses serious sustainability risks [9, 91, 41]. Recruiting new contributors
can, therefore, help ensure the sustainability of open-source projects.

Many researchers have studied why skilled workers contribute to open-source. Prior work
found that starting to contribute to, and remaining engaged with open-source is influenced by
a mixture of intrinsic and extrinsic factors [92], among which identifying with the community,
feeling obligated to contribute back, learning opportunities, personal needs, and signaling
one’s skills to potential employers are all important [93, 22, 94, 95].

What is less known, however, is how people decide to contribute to particular projects
based on partial information about the projects. This is especially relevant to contributors who
are working on an open-source project for fun or to gain experience. Since these people may

13

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 14

Interviews with
15 developers

~10,000

npm packages

Logistic regression
modeling

Qualitative
analysis

Project attractiveness
factors (hypotheses)

Operationalization

Triangulated
factors

Figure 2.1: Overview of our study design.

choose from many open-source projects, it is helpful to compile a set of generally applicable
rules to guide contributors in selecting a better project.

We are able to answer this question because, compared to their predecessors, social
coding platforms like GitHub, Bitbucket, and GitLab offer a high level of transparency,
achieved by displaying a multitude of visible cues (or signals [96]) on individual and project
public profile pages [26, 97]. For example, on GitHub—the most popular open-source hosting
platform—there are signals of individual popularity, such as a user’s number of followers, and
signals of project activity, e.g., the number of contributors and issues, among many others.
As prior studies show, this high level of transparency enables people to make rich inferences
about each other’s technical expertise and level of commitment [26, 97]. Similarly, to inform
their decision whether to join a project, in many cases potential contributors must rely on
partial information derived from signals available online. It is therefore important to study
how people infer the characteristics and qualities of an open-source project based on the cues
they can observe, and how these signals influence their decision to contribute to the project.

In this paper, we build on the literature on transparency in social coding environments to
empirically explore a new question:
RQ1. How do people use signals, if at all, when choosing an open-source GitHub project
to contribute to?

Our study uses a mixed-methods design (Figure 2.1). We start qualitatively by interviewing
15 GitHub users, sampled to represent a diversity of experience contributing to open-source,
gender, and geographic, cultural, and technical background. From these interviews, we identify
which signals are perceived as most influential when evaluating open-source GitHub projects
for potential contribution. Then, we proceed quantitatively by mining trace data from 9,977
open-source GitHub projects (stratified by number of stars) and testing hypotheses, using
multiple regression modeling, about the impact of the different signals on attracting new
project contributors.

Our results reveal several key signals used to inform the decision whether or not to
contribute to a GitHub project: i) a README file with thorough contents and clear structure,
describing what the project does, how to get started using it, what a new contributor could
work on, and what guidelines they should follow; ii) the availability of scaffolding, such as issue

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 15

and pull request templates, or issue labels; iii) how actively maintained the project is, along
multiple dimensions, such as the number of contributors and the recency of commits; iv) the
friendliness of the maintainers in issue and pull request discussions; and v) project popularity.
Moreover, we find that some signals can be considered both attractive and unattractive by
different users. For example, from the interviews, we found that, while typically positive, the
presence of detailed contributing guidelines is also seen by some contributors as “off-putting”,
as it can set a higher bar to participation and impose too much process overhead. Also,
some signals are important in the decision process but may be unclear to first-time GitHub
contributors. For example, our model shows that politeness is an important signal for arbitrary
new contributors but not for first-time GitHub contributors.

Our results have direct implications for multiple stakeholders. First, we provide open-
source project maintainers with actionable insights that can help make their projects more
attractive to external contributors. Second, we uncover several cues that potential contributors
look for in a project, such as the responsiveness of the project maintainers and the friendliness
of the community discussions, that are currently not readily observable in the GitHub UI;
our participants browsed through multiple pull request and issue threads to make qualitative
inferences about these properties. These insights can help tool builders and designers of
collaboration platforms like GitHub develop new signals, e.g., in the form of badges [27], to
make these properties more salient.

In the next sections, we frame our discussion in the context of signaling theory, consider
related research, describe our methodology, present the results of our interviews and data
modeling, and finally discuss implications of our findings.

2.2 Related Work
The process of attracting and onboarding contributors to open-source projects has a long
history of scholarship; for an overview see, e.g., Crowston et al. [98]. The process consists of
multiple stages. Starting from an intention to contribute to open-source, one should 1 discover
a relevant project, 2 find an opportunity to contribute, then 3 make a first contribution
(e.g., submit an issue report or a pull request). Then, by continuing to make contributions
and 4 demonstrate commitment to the project over time, one can 5 be recognized as a core
contributor or maintainer. As turnover is natural in open-source, eventually some contributors
will 6 disengage.

2.2.1 Knowledge gap: How people choose which projects to
contribute to

There is a rich body of literature (e.g., [99, 100, 101, 102, 103]) on what happens to open-
source contributors after they identify a project they intend to contribute to (stages 2 — 6),
in terms of their onboarding into the project core team and their long-term participation
and turnover. In particular, Steinmacher et al. [31, 104, 105] reported, in a series of studies,
on how the onboarding process can be long and demotivating for newcomers, who face
various social and technical challenges when trying to find a first task they can complete and
adapt to the project’s contribution standards, culture, and norms. The authors identified

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 16

Project owner/Project name

Project description Project website

Figure 2.2: A snapshot of a GitHub project page (anonymized).

19 reasons that a new contributor’s pull request was rejected, both social and technical,
including receiving impolite answers from maintainers, the pull requests being duplicated, not
needed, or mismatched with the maintainers’ vision, lack of tests, not following guidelines,
and not receiving an answer at all; these latter barriers have also been reported in other
online collaboration contexts outside open-source, especially Wikipedia [106].

In contrast, we focus on the earlier and relatively less studied stage in the onboarding
process: how people choose which projects to contribute to (stage 1). Two forces can influence
this decision [107]: individual motivation and project attractiveness. Individual motivations
are generally well understood, and can be both intrinsic, e.g., personal need for that software
or feeling obligated to contribute back, and extrinsic, e.g., career advancement [22]. However,
what project actions and characteristics influence project attractiveness to outsiders is still
an open question [108].

Studying what makes projects attractive is especially important because, as opposed
to individual motivation which is typically inherent to the potential contributors, project
attractiveness can be to a larger extent controlled by the project maintainers, as we will
argue in the remainder of this paper. Therefore, increasing project attractiveness has the
potential not only to reduce some onboarding barriers, but also to improve the sustainability
of open-source projects.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 17

2.2.2 Signaling and transparency in online coding environments
On transparent, social coding environments like GitHub, the question of how people choose
projects is especially relevant, as a wealth of signals (visible cues indicating otherwise less
readily observable qualities [109]) about an open-source project’s history of activity and
contributors is available on the project’s homepage, e.g., the number of commits, contributors,
forks, issues, pull requests, star gazers, and watchers. In addition, GitHub renders a project’s
README.md file as part of the project’s homepage. This file gives maintainers a chance to
further customize their project’s signals, either through free text, e.g., contributing guidelines
and documentation on how to install the software, or through badges [27] embedded into a
project’s README; badges such as and are customizable images
that typically reflect the status of different online services the project is using, e.g., continuous
integration testing, or expressions of intent, e.g., soliciting pull request contributions. An
example of a typical GitHub project page is shown in Figure 2.2. Finally, the transparency
provided by individual “profile pages” on GitHub, which aggregates personal information
and information about one’s history of contributions to open-source projects on GitHub,
enables inferences about the contributors’ expertise and level of commitment [97, 110], and
even makes salient their demographics [111, 58].

Signaling theory, going back almost half a century in economics [85, 86] and biology [87]
(see Kirmani & Rao [112] for an overview), provides a framework for reasoning about how
these visible cues might impact project attractiveness in open-source. Signaling theory has also
been widely applied to social computing systems, to understand how people make inferences
using online profile data in contexts as diverse as social networking sites [96, 113, 114],
fashion [115], peer-to-peer lending markets [116] and rentals [117], and peer production [97].

In general, signaling theory is applied in scenarios where selections are made under
information asymmetry. These are decision making situations typically involving two parties,
a signaler, with access to all the information, and a receiver, who is less informed, in which the
former would be selected by the latter based on the information carried by the signal. Across
all such selection scenarios, an important attribute of signals is their visibility: receivers tend
to prefer signals that are easier to observe and to interpret over those that are costlier to
assess, even when the former are less reliable [118]. Another important attribute of signals
is their production cost: signals that are costlier to produce, therefore harder to fake, are
considered more reliable [119]. For example, in biology, the peacock’s heavy tail feathers
are both visible and costly to maintain, as they are a highly observable ornament which
makes the animal more vulnerable to predators. Therefore, the peacock’s tail feathers signal
the bird’s quality [87]: having survived despite this handicap, the peacock is perceived by
potential mates as more attractive and more fit [120]. In economics, a similar signal is holding
a degree from a reputable institution: the job seeker’s ability, which is otherwise less visible,
is being communicated to potential employers by the high-status degree, which required
substantial effort to obtain [85].

Many similar selection scenarios occur in open-source development: for example, choosing
which repositories to watch [121], which pull requests to accept [97], which developers to
follow and receive updates from [122, 123], and which ones to recruit [110, 124]. In all these
scenarios, the signals available on social coding platforms like GitHub have been shown to
play a role. Our work contributes to the literature on signaling and transparency in online

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 18

collaboration environments by studying another important selection scenario: how do people
use signals in transparent environments like GitHub when deciding which open-source project
to contribute to. Such signals could be found, for example, on a project’s README file:
READMEs already contain many highly visible cues, since GitHub renders the file by default
on a project’s profile page (Figure 2.2). Some of these cues could be reliable signals. For
example, comparing to a short or uninformative README, a well-structured and detailed
README on the usage and contributing process could show that the project owners are
aware of their audience and have spent time on maintaining the project. As a result, one
could expect that the owners are more willing to provide support.

2.2.3 Prior empirical evidence on how people choose projects
While prior research on this particular question is scarce, there is some empirical evidence
suggesting how the different signals visible on GitHub might influence people’s decision to
contribute to a project. We note four studies in particular.

Dabbish et al. [26] reported on an interview study with 24 GitHub users of the types of
inferences that people made based on the visible signals on GitHub. While the authors did not
systematically pursue the question of project attractiveness to potential contributors, their
findings are relevant to our research question, as some of the signals and corresponding project
qualities their study uncovered could impact people’s decisions to contribute to a project.
Specifically, Dabbish et al. found that: (i) the recency of activity in a project signals project
liveness and maintenance; (ii) the amount of attention a project receives, as indicated by the
number of stars and watchers, signals artifact importance, project quality, and community
support; (iii) a high number of open pull requests signals low conscientiousness in dealing
with external contributors; and (iv) the number of forks and watchers of a project signals
audience size and potential impact of contributing—this inference was the only one explicitly
cited as a motivation to contribute.

More recently, and concurrently with our work, Fronchetti et al. [125] reported on an
archival analysis of data from 450 open-source GitHub projects, studying which project
characteristics are related to the growth pattern in the number of new committers per project,
computed over a period of 72 weeks. The authors sampled, in decreasing order of popularity
as indicated by the number of stars, 30 projects each across the 15 most popular programming
languages on GitHub. Then, using a Random Forest classifier to model the growth pattern
in new committers, they found that the number of stars has the highest explanatory power
among all predictors considered, followed by the time to merge pull requests, project age, and
the number of programming languages used in the project. On the other end of the spectrum,
the presence of CONTRIBUTING, LICENSE, and CODE OF CONDUCT files, as well as the
presence of issue and pull request templates, all of which are often recommended as community
best practices, were among the worst ranked factors in their model. While these results offer
valuable insights into which signals might be used by potential open-source contributors
when choosing projects, given the choice of Random Forest classifier the directionality of
the reported associations remains unknown. Moreover, it remains unknown how the results
would generalize beyond the relatively small sample of most popular projects per language
(the median number of stars in their dataset is 10,470); for example, the lack of explanatory
power for the different community best practices such as CONTRIBUTING files or issue

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 19

1%

2%

1%

1%

3%

9%

4%

24%

95%

88%

86%

84%

82%

56%

44%

36%

OPEN.SOURCE.LICENSE

CODE.OF.CONDUCT

CONTRIBUTING.GUIDE

CONTRIB.LIC.AGREEMENT

ACTIVE.DEVELOPMENT

RESPONSIVE.MAINTAINERS

WELCOMING.COMMUNITY

WIDESPREAD.USE

100 50 0 50 100

Percentage

Response
Don't know what this is

Very important not to have

Somewhat important not to have

Not important either way

Somewhat important to have

Very important to have

Figure 2.3: Breakdown of responses (N = 3127) to the question “When thinking about
whether to contribute to an open source project, how important are the following things?”
from GitHub’s 2017 Open Source Survey [1].

and pull request templates could simply be due to the sampling strategy, as the absolute
most popular projects are likely to all already implement these best practices. Finally, it is
unclear how the different factors extracted from repositories have been selected. In contrast,
we use a mixed-methods design to first qualitatively uncover which signals our interviewees
use and how they make inferences using these signals, then quantitatively model, using
multivariate regression, how the project attributes made visible by these signals associate
with the likelihood of attracting new project contributors in a large sample of 9,977 projects.

We also note a study by Borges and Valente [81], who surveyed 791 developers on the
meaning of GitHub stars, finding that three out of four respondents consider the number
of stars before using or contributing to a GitHub project. However, in their study design
the authors do not distinguish usage and contribution to GitHub repositories, so it remains
unclear which signals affect which.

Finally, as part of GitHub’s 2017 Open Source Survey [1], the authors asked respondents
to rank several factors based on importance when thinking about whether to contribute
to an open-source project: an open source license, a code of conduct, a contributing guide,
a contributor’s license agreement (CLA), active development, responsive maintainers, a
welcoming community, and widespread use. Figure 2.3 summarizes the survey results, which
are publicly available [1]: all factors are considered somewhat important or very important to
have by at least 36% of respondents; maintainer responsiveness ranks as topmost important
(95% of respondents).

2.2.4 Summary
In summary, potential contributors have access to a wealth of information about open-source
projects on GitHub, which could act as signals for qualities that are important when deciding
which project to contribute to. Some of this information is highly visible on the platform by
default through built-in visible cues (e.g., a project’s number of stars). Project maintainers
can choose to make visible other pieces of information through a project’s README file (e.g.,

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 20

a code quality badge). Finally, since for open-source projects the entire history of activity
is accessible publicly (e.g., all commits, issue discussions, and pull requests, together with
all the actors involved), users on the platform are free to use many additional, less readily
observable pieces of information when making decisions and forming impressions.

2.3 Qualitative Analysis Methods
To explore what signals people use when deciding which open-source projects to contribute to
on GitHub and how the signals impacted their decisions, we first conducted semi-structured
interviews with 15 GitHub users, then, based on the interview results, we mined and analyzed
GitHub trace data to test the significance of each signal. Our mixed-methods strategy is
sequential exploratory [126], as we use the quantitative results generated in a second step
to assist in the interpretation of the qualitative interview findings. Here we describe the
qualitative methods.

2.3.1 Interview Protocol
We developed a semi-structured interview protocol that could enable participants to evaluate
a project’s “attractiveness” for external contributors based on the information available on
GitHub. In short, participants were asked to evaluate five given open-source projects and talk
aloud about what information they were using and how that influenced their evaluations.

The main challenge in developing the interview protocol was separating the two forces that
can influence the decision to contribute to an open-source project [107]: individual motivation
and project attractiveness. We describe the iterative process through which we addressed
this challenge.
Iterative design of the interview protocol. We started with two main design options
and ran a series of pilot interviews to finalize the interview protocol: 1) asking participants
about their actual past experience contributing to different projects, or about their intentions
to contribute to new projects in the near future; 2) asking participants to evaluate the
open-source projects for their own intended contribution, or for someone else.

In a first pilot round, we interviewed three colleagues and friends who are active on GitHub,
asking participants to recollect their past experience of finding a new project to contribute to
and describe their choice. The interviews confirmed the two expected shortcomings of this
design: people’s memory of the selection process was too vague and incomplete to be reliable;
and people commonly reported choosing projects because they were using them and wanted
to fix bugs or develop new features, i.e., personal motivation. Since our goal was to identify
a general set of advice that everyone can follow, in the next interview protocol design, we
direct participants’ attention to project characteristics rather than their personal interests.

To help delineate individual motivation from the effects of different GitHub signals on
project attractiveness, in a second pilot round with six other friends and colleagues active
on GitHub we introduced two changes. First, we employed a think-aloud technique [127],
asking participants to look for a new project to contribute to while talking aloud about what
signals they were considering. This allowed us to follow the participants’ moment-by-moment
cognitive process more precisely. Second, we changed the focus from recommendations for

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 21

Table 2.1: GitHub metrics for the five open-source projects presented to the interviewees

Project Issues Pull requests Releases ContributorsWatchers Stars Forks Branches Badges

1 2 37 216 18 18 7 3 290 7
2 334 104 46 1003 7305 124,012 59,243 29 11
3 38 0 7 6 17 214 11 2 0
4 9 0 8 1 1 1 0 2 1
5 33 4 399 7 10 8 2 9 1

oneself (“would you contribute to this project?”) to recommendations for a third party (“would
you recommend Jane to contribute to this project?”). In addition, each participant was given
a pre-determined set of the same five JavaScript front-end projects, chosen purposefully
(Section 2.3.2). Specifically, we constructed a scenario where participants were asked to
make recommendations for a recent graduate with a bachelor’s degree in computer science,
Jane, now working for a startup as a junior front-end engineer. No information about Jane’s
interests, beyond JavaScript front-end, was given. Through piloting, we found that the use of
the Jane persona helped alleviate the effect of participants’ personal preference when choosing
projects, allowing them to focus on the GitHub signals.
Final version of the interview protocol. Our final protocol maintained the semi-
structured think-aloud format with the scenario of recommending projects for Jane. In
addition, we also asked the participants to summarize their criteria when selecting projects
and to offer suggestions for project maintainers to improve the attractiveness of their respec-
tive projects. Finally, at the end of the interview we collected basic demographics (gender,
occupation, and open-source experience).
Limitations. We note that because of the scenario used in our interview protocol (making
recommendations for a relatively novice developer interested in JavaScript front-end), our
results may not generalize to other developers, e.g., experts. We also acknowledge that
(1) recommendations made for someone else can differ from choices one would make for
themselves, and (2) the profile of the person onto which our interviewees made projections
may itself be a source of potential bias (e.g., the gendered profile of the recommendee in our
protocol, Jane, may trigger biases among male interviewees). As discussed above, this study
design element—recommending projects for another developer—was necessary to delineate
decisions influenced by individual motivations from those influenced by project attractiveness
signals. A comprehensive set of interviews, where all variables relevant to the recommendee’s
profile (e.g., gender, level of experience, interests) are crossed, goes beyond the scope of this
study, but could be a worthwhile direction for future research.

2.3.2 Project Selection
We selected five projects that collectively reflect a variety of signals possible on a GitHub
page. At the time of our interviews, the values of the different project metrics were the ones
shown in Table 2.1 (as of April 28, 2018). Our project selection was based on the following
specific criteria:

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 22

Table 2.2: Participants’ demographic information

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Experience 6m 12y 1m 9y >8y 2y 4y <2y 1y 5y 1y 1.5y 8y 3y 10y
GenderM F F M M M M F M M M F M F F

Full-time dev. Yes No Yes Yes No Yes Yes Yes Yes Yes Yes No Yes No No

Domain. Since our persona Jane was designed as a front-end engineer, we only chose front-
end-related JavaScript projects so that the participants’ decisions would not be confounded
by Jane’s personal interest. To control for potential differences in practices and culture in
different open-source ecosystems, we further required that all selected projects be part of
npm,1 the most popular package manager for the JavaScript programming language.
GitHub metrics. Activity and popularity metrics, such as the number of contributors,
stars, forks, and watchers, are among the most visible cues on a GitHub repository page
(high visibility signals cf. Section 2.2), since they are part of the standard UI. We chose
projects to ensure high variance in these numerical metrics across our set of five: one project
has a very large number of contributors (over 1,000), stars, forks, and watchers; one is a
one-person project with only one watcher, one star, and no fork, and the three other projects
are in between. In addition, during pilot interviews we observed that participants also paid
attention to a project’s pull requests, issues, and releases. In our final selection, we stratified
to ensure variance along all of these as well.

Finally, we sampled such that we could include one project that had last been updated
more than one month before, and thus might be considered inactive, since during pilot
interviews project dormancy status seemed important. The other four projects were still
active at the time.
Quality of README. During pilot interviews participants paid close attention to a
project’s README. To ensure variance in the README “quality” across our projects, we
stratified our sample by the amount of information in (length of) the READMEs. Moreover,
since prior work has shown that badges have high signaling value [27], we also sampled for
variance across repository badges; our five projects range from no badge to over 10 different
badges.
Limitations. Note that we tried to stratify across more dimensions than there are projects
in our final sample (five total), meaning that some dimensions are confounded. This design
decision was necessary to keep the interviews short.

2.3.3 Interview Participants
We sampled candidate participants from among GitHub users who had recently made pull
requests to collaborative open-source JavaScript projects on GitHub, which we define as those
projects involving at least three contributors, as per the public GitHub data mined from
Google’s BigQuery;2 this helps exclude many “toy” projects [128] and increases the likelihood
that that our interviewees are experienced open-source practitioners. Information about

1https://www.npmjs.com
2https://cloud.google.com/bigquery/public-data/github

https://www.npmjs.com
https://cloud.google.com/bigquery/public-data/github

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 23

the programming language (JavaScript) was extracted from the label that GitHub assigns
automatically to each repository. As an additional data cleaning and filtering step [128], we
also excluded projects we could manually label as “educational” based on keywords present
in their description, e.g., course number (COS496).

Then, we sent out several rounds of email invitations (123 emails total) and carried out
15 interviews via Google Hangouts or Skype, at which point we considered that we had
reached theoretical saturation [129] after an informal analysis. The interviews were conducted
individually and each of them took between 20 to 45 minutes. The participants were not
compensated.

Among the 15 participants, the length of open-source experience ranged from one month
to more than 10 years. Nine participants were full time software engineers. The occupations
of the other six participants ranged from technical writer to researcher. Five were located on
the US West Coast, three on the East Coast, three in Asia, one in Africa, two in Europe,
and one in Oceania. Table 2.2 summarizes the participants’ demographic information.

2.3.4 Data Analysis
The interviews were audio-recorded, transcribed verbatim, and coded independently by
two authors. Then the coded transcripts were analyzed based on the grounded theory
methodology [129]. We first identified signals mentioned by participants and how they were
using these signals to make decisions. We then grouped these signals and participants’
comments into categories and extracted relationships between the categories. We repeatedly
discussed the categories and refined them iteratively as more interviews were conducted; this
is also when we resolved a few disagreements, through discussion, between the two coders. We
continued this process until new interviews did not reveal new signals that were not captured
by our codes (theoretical saturation).

2.4 Interview Results - Recognizing the Signals
Our qualitative analysis identified a rich set of signals that the participants rely on when
evaluating whether a GitHub project is worth contributing to by the Jane persona.

2.4.1 Website
The website link in the project description is usually the first thing the participants saw.
Six participants (P1, P2, P7, P8, P10, P13) mentioned that “the first thing I typically do
is see if they have a website at all” (P2). A website is even more important for UI libraries,
to “show a demo of what the components look like. It would be helpful to make people more
interested in the project I think.” (P10). Maintaining a good website is also recommended by
many open-source practitioners.3

3https://opensource.guide/finding-users/

https://opensource.guide/finding-users/

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 24

2.4.2 README
The README.md file is one signal that every participant commented on, e.g., “the README
is a project’s welcome mat” (P14). Several aspects of the README seem important:
Structure. Prior work [130, 131] found that projects with good READMEs tend to be more
sustainable and more popular. Our participants confirmed that a well structured README
can give a nice first impression. P12, a technical writer, summarized that an ideal README
should have a table of contents, contributing guidelines, and information on how to get
in touch with the community, “which is very very important for a newcomer” (P12). P7
mentioned that there is an “unofficially agreed template of a project,” and maintainers should
“follow what everyone else is doing” (P7).
Project description. Participants were looking for clear descriptions of the project in the
README. Not being able to understand the project’s goals induced negative impressions,
even rejections, among some participants (P2, P7, P8, P12). For example, P7 noted that a
good README “allows [one] to understand what this project is about, how to install it, and
how to use it. It also gives examples of code snippets for its API and their effects.” (P7)
Contact information. Being able to communicate with project maintainers was seen as
important to contributors, especially newcomers. P2, P11, and P12 mentioned that mentioning
the project’s Slack channel in the README is a welcoming signal. P14 mentioned that it
is nice to be able to follow the maintainer on Twitter. Having a Twitter handle is in fact
suggested by some open-source practitioners. Such practices may alleviate the barrier of
communication difficulties, which was identified by Steinmacher et al. [105], to some degree.
Code quality badges. Five participants (P3, P7, P10, P11, P14) mentioned badges but
had diverging opinions about them. Some noted that the presence of badges, especially
code coverage, suggests that the maintainers care about code quality (P7, P11) and that
contributing to this type of project can improve one’s skills (P11). In contrast, others explained
that they ignore badges because “a lot of projects have build passing badges but actually the
project is broken or really out of date” (P10).
Logo. Four participants (P5, P8, P10, P14) mentioned the Logo in the README, e.g.,
“They’ve even got a logo. That’s quite promising. Because that means someone cares enough
about the project.” (P10).

2.4.3 Contributing Guidelines
Contributing guidelines, either in the README or the CONTRIBUTING.md file, were
important in all participants’ decision processes. Some noted that the contributing document
is a decisive signal in the sense that lacking one would induce an immediate negative impression
(P3, P15). In contrast, the existence of contributing files “suggests they have some experience
with handling new contributors” (P4). Participants expect that contributing guidelines have
several characteristics:
Prominent. The first thing participants mentioned about contributing guidelines is how
easily they can be found (P3, P4, P5, P12, P14, P15). As per signaling theory, since potential
contributors tend to prefer signals that are easier to observe and to interpret over those that
are costlier to assess, it is desired to have a link to the CONTRIBUTING.md or a contributing

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 25

section in the README, e.g., “the README is most important. It should describe without
having to navigate away from that page the key information people need” (P14).
Thorough. Many participants (P1, P2, P3, P10, P12, P14, P15) remarked on the contents
of contributing guidelines, expecting code style guidelines and project conventions, as well as
how to submit a pull request. In particular, maintainers should set the expectation by listing
out things that need help and things that are allowed or disallowed. P14 also pointed out
that it is nice that “It says ‘please ask first’ because otherwise people might feel that the pull
requests always have to be merged in” (P14). Thorough contributing guidelines may lower the
barrier of lacking knowledge about procedures and conventions, identified by Balali et al. [8].
Contributing guidelines should also explain the GitHub jargon, e.g., “a lot of new people
who don’t know GitHub don’t necessarily know what the issue tracker was” (P14). Moreover,
some terms are project-specific. During the interviews, some people were confused by some
terms they had not seen before, e.g., “pre-commit” (P14).

However, having too detailed contributing guidelines may be perceived as too much process,
especially by newcomers, who may find the instructions difficult to follow (P2, P4, P5, P10,
P15). P15 summarized that “if you are a new developer and you are just learning, you might
not get this sort of hands-on response if you didn’t properly submit an issue or pull request;
your issue / pull request might just sit there and get closed without much explanation” (P15).
In addition, potential contributors may interpret language such as “talk to [the maintainers]
before any significant pull request” (P2) as unwelcoming. Pull requests that do not follow
project guidelines or that are considered not needed or interesting by maintainers are common
barriers faced by newcomers [105].
Open to non-code contributions. Six contributors (P2, P5, P10, P11, P12, P14) stressed
the importance of explicitly mentioning other acceptable types of contributions besides
code, such as writing documentation. At the same time, invitations to submit issue reports
without also soliciting code contributions can be seen as uninviting for someone interested in
contributing more. As P12 put it: “They only ask for filing an issue if something breaks. So
I think they are more looking for people to test all these components for them, rather than
asking for code contributions.” (P12).

2.4.4 Scaffolding
Most participants commented on the guidelines for submitting issues and visited the issue
trackers during the interviews. There are several signals they look for there:
Labels. Two types of labels, which we classify as technical and social, emerged as important
signals. The social labels, pointing people to issues that are suitable for beginners,4 are
especially useful for newcomers. As P1 summarized, “good open source projects would have
labels like ‘help wanted’, ‘good first issue’” (P1). These can help contributors find their way
around a new project.

In contrast, other labels can give contributors some technical information about the issue,
e.g., the programming language, or whether it’s a bug or a feature request. Having issues
clearly labeled with technical attributes can help contributors find the issues they aren’t just

4E.g., “Good First Issue” proposed by Kent Dodds in 2015 https://blog.kentcdodds.com/
first-timers-only-78281ea47455

https://blog.kentcdodds.com/first-timers-only-78281ea47455
https://blog.kentcdodds.com/first-timers-only-78281ea47455

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 26

able to resolve, but are also interested in working on. As one of the participants said: “you
want to work on X, and you come in and see the things that need to be done on X” (P14),
such as front-end.
Templates for issues and pull requests. Seven contributors (P1, P2, P3, P10, P12, P14,
P15) noticed the templates for submitting issues or pull requests. Having a template can
prevent newcomers to submit issues or pull requests that are “stupid” or lack information,
because the “template will take them through a bunch of different pieces of information that
they need to submit” (P14). It is a sign that shows “there’s a good structure for contributing
to [this project]” (P10).

2.4.5 Activity
Participants also look for a multitude of signals indicating the project is being actively
maintained.
Number of contributors. While this was a prominent signal during our interviews, partic-
ipants disagreed on what is a good team size, referring especially to newcomers. Recall that
our sample comprises one large project (over 1,000 contributors), one single-person project,
and the rest are small-medium sized (6, 7, and 18 contributors). A priori, we could have
expected that larger projects are more likely to attract developers [132]. Indeed, among 11
participants who talked about team size, five mentioned reasons why a big project may be
a better choice for newcomers. One reason is that with more contributors in the team, the
project can be more sustainable. If there are only 1 or 2 people in the team, once these
members leave, either the contributors’ efforts are wasted or they need to take on the onerous
maintenance job themselves (P6, P10, P15).

Another reason is about the mentorship opportunities one can access in big projects.
Maintainers tend to be busy and they might be slow to respond to newcomers. If there is a
large community, there is a higher chance that someone will be available to assist newcomers
(P1, P2, P6). P2 also suggested that newcomers should avoid single-person projects because
it is possible that these projects are unfriendly to external contributors (otherwise they would
have more).

On the other hand, P4 and P15 listed out reasons against choosing big projects, referring
mostly to the process overhead in submitting a pull request, which may intimidate newcomers.
Pull request “bureaucracy” is a known barrier for newcomers [105]. However, P2 acknowledged
that “[while] the barrier to entry may be higher because the standard is higher, there are more
people to help you” (P2).

Six participants (P2, P3, P4, P5, P10, P15) suggested they prefer to start with smaller
projects. One advantage of a small project is that the maintainers may be more responsive.
Unlike big projects, which are “so widely used and huge that it might take a while for
maintainers to respond” (P3), “there’s a chance that the author would be willing to reply to
any pull requests you make” (P10).

Another advantage of a small project is that contributors can get more feedback from the
maintainers, which can help them improve their pull requests. Otherwise, P10 noted that
“if you have too many people, the developers don’t have time to look at your individual pull

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 27

requests. I bet that if I put a pull request, it will build fail or something and no one would
care, they would just ignore it.”

Furthermore, four participants (P2, P3, P4, P15) pointed out that smaller projects are
preferable for newcomers to learn the GitHub workflow because in bigger projects “it would
be hard to figure out where to start even though things are relatively well labeled” (P15).
Recent commits and contributors. Many participants (P1, P2, P5, P6, P7, P8, P10,
P12, P13, P14, P15) suggest looking at the number of recent commits and contributors,
rather than the total number. Otherwise, people will assume that the project is “not under
active development, because nothing has happened [for some time]” (P14). Recency of activity
signals that “the project is not dead” (P5).
Contributions are evenly distributed. Some participants (P2, P6, P10, P14, P15) suggest
that contributors should also pay attention to whether the contributions are evenly distributed
among existing team members. P6 has summarized the rationale: “For projects of middle or
small size, if contributions are evenly distributed among contributors, it is acceptable. But if
only one or two people are the core contributors, then it would be dangerous; [the project may
be left unmaintained]” (P6).

This practice is also recommended by Karl Fogel. In his book Producing Open Source
Software, he recommends to “measure commit diversity, not commit rate.”5

Average time for responses to issues or pull requests. Another important signal
is how long it takes maintainers to respond to issues or pull requests (P1, P3, P10, P11,
P12, P14, P15). To make this inference, participants browsed through multiple issues or pull
requests.
Numbers of open issues or unmerged pull requests and their reasons. When
looking at the list of issues / pull requests, participants noted that it was important to look
at the number of open issues / unmerged pull requests and why they are not resolved (P10,
P11, P13, P14, P15). The reason is well summarized by P11: “I want to know why these PRs
are not merged. If I send a PR, I don’t know whether or not this project is being maintained.
I wouldn’t want to waste the effort put in to understand their code base or write code. I don’t
want to write something and be treated like that” (P11).

While the number of these unresolved issues or pull requests can be easily observed, the
reasons are difficult to infer. P15 pointed out that an active project should make sure that
“either pull requests are getting merged, [or] having some kind of labeling system, so people
understand why so [and it] doesn’t just feel like it’s lack of progress” (P15).
Percentage of issues or pull requests by external contributors. Two participants
(P10 and P14) have looked at how many issues or pull requests had been made by outsiders.
Looking at only the number of open or merged pull requests can be deceiving in some cases.
As P10 discovered, “[This project has] a lot of closed PRs, which is interesting. But all
are from the same person. I would say they are just using PRs as branching. They are just
branches being merged.” P14 described this type of projects as “technically open without
actually being meaningfully open” (P14).
Responsiveness in issues and pull requests. Many participants (P1, P3, P4, P5, P10,
P11, P12, P13, P14, P15) examined how fast do maintainers respond to issues and pull

5https://producingoss.com/en/evaluating-oss-projects.html

https://producingoss.com/en/evaluating-oss-projects.html

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 28

requests. Their expectations are summarized by P14: “[An] active project [should have] some
conversation happening, and generally it has been positive and ideally with reasonably quick
responses. It doesn’t have to be lightning quick. But more than three days between responses is
not a great place to start” (P14).

Another signal that active discussions give is the mentorship and learning opportunity
offered by code review. As one participant puts it, code review is “pretty good because you
will need to follow their appropriate code style. That’s an important code style. Being able to
integrate [code] into their own system is a useful skill to have” (P10).

2.4.6 Code quality
Eight participants (P4, P7, P9, P10, P11, P12, P13, P14) examined the code quality during
their evaluation. One signal they look for is the presence of tests. As P7 put it, “I wouldn’t
use component libraries without unit tests” (P7). Another signal they paid attention to is the
use of continuous integration (CI), especially in big projects. As P14 noted, “If the developers
can’t reply immediately, it’s helpful to have a CI that tells you if your code works, and if the
code style is ok or not” (P14). Two participants (P10, P13) also looked at the structure of the
code itself, commenting on the importance of modularity, which makes it easier for people to
understand. P9 mentioned the size of the code, which may affect whether people would use
the library.

2.4.7 Popularity
The number of stars and the number of downloads of a project reflect the project’s popularity.
Although nine participants (P1, P3, P4, P5, P7, P8, P10, P11, P13) commented on the
number of stars, only three (P1, P5, P10) mentioned that the popularity may influence their
decisions. Both P1 and P10 mentioned the potential impact of contributing as an important
motivation, e.g.,: “Everyone uses [project X]. If you contribute to it your change is gonna
have a huge impact.” (P1) Moreover, P5 mentioned that “if this [project] has tons and tons of
stars, and there weren’t that many contributors, I would think they weren’t super friendly to
new people”. However, P7 acknowledged that the number of stars can be faked, therefore it is
not an entirely reliable signal. P3 also explained that she would not worry about popularity,
because a less popular project “gives you more self-efficacy that forces you really to look at
things, google things, try everything out, and then ask for help” (P3).

2.4.8 Community Openness
Five participants (P1, P2, P3, P5, P15) remarked on the openness of the community, as it
transpires through the language used, e.g., in the project documentation and issue discussions.
Language in contributing docs. Three participants noted the gender exclusiveness of the
language in documentation, referring to one project which talks about “nice guys” that will
review and merge pull requests when describing how to contribute. Two participants voiced
concerns about the gender inclusiveness of this phrase. As one of the participants suggested,
projects should “avoid language that uses ‘guys’ or assumes that people are [all] one gender
or one demographic” (P15).

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 29

Participants also mentioned the language exclusiveness towards newcomers. Although no
one identified any instance of aggressive expressions towards newcomers, some did mention
that they would “look at the language throughout to feel whether it’s inclusive or it feels
maybe a bit of a boy’s club or sort of aggressive, or intimidating for beginners; these would
make me stay away” (P15).

Two participants also noted that “don’t” may sound intimidating. Phrasings like “‘please
do this’, ‘you are welcome to do that’, by turning the language around” are recommended
instead (P15).
Conversations in issues or pull requests. The openness of the community can also be
inferred from these conversations. According to P3, a good conversation should be “commenting
back and forth, [...] pretty thorough. I think it’s helpful. No one is mean necessarily” (P3).
Sometimes, not following the process can “get people mad at you” (P5).
Code of conduct. The presence of a code of conduct signals a welcoming community. One
participant told us that “This project has a code of conduct, and they’ve adopted the standard
contributor covenant.6 So my belief is that this would be a welcoming community because
people are conscious of having a code of conduct” (P2). Being kind to contributors has been
encouraged by many people and organizations. For example, Scott Henselman posted a blog in
2015 that pledged people to treat newcomers nicely, including writing a contributing guideline,
tagging issues that are good for newcomers, and having a code of conduct.7 Prior research by
Tourani et al. [133] has also discussed the importance of having a code of conduct; however,
only relatively few projects have them, though they are becoming increasingly common [133].
Gender representation. Two female participants pointed out that the gender balance
among the existing contributors, as inferred from their GitHub profile information, might
be a potential barrier to female newcomers. More specifically, they both pointed out that a
medium size group (in our case, the project has 5 contributors) of male contributors may
form a clique that a female contributor could have difficultly breaking into. However, if the
project’s only contributor is a man, then it is “not as difficult a community to break into as a
group of men.” (P14). In addition, for large projects with hundreds of contributors, “because
there are so many people contributing, it doesn’t matter so much whether it’s all male” (P14).
As the other participant summarized: “If I saw a project where it seems like a mix of genders,
I would definitely feel more excited about the project” (P15).

2.5 Quantitative Analysis Methods
To triangulate our interview findings, we set out to quantitatively test the overall hypothesis
that the signals we identified from the interviews are indeed associated with attracting more
new contributors. We collected a large dataset of open-source GitHub projects, operationalized
the signals uncovered during our interviews, and used multiple regression analysis to model
the association between the different signals and the likelihood of attracting new project
contributors (binomial logistic regression), as a way to validate the perceived importance of
each signal.

6https://www.contributor-covenant.org/
7“Bring kindness back to open source” https://www.hanselman.com/blog/

BringKindnessBackToOpenSource.aspx

https://www.contributor-covenant.org/
https://www.hanselman.com/blog/BringKindnessBackToOpenSource.aspx
https://www.hanselman.com/blog/BringKindnessBackToOpenSource.aspx

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 30

The multivariate regression analysis seeks to uncover whether any (and which) project
characteristics and signals, observed over a fixed period of time (details below) help explain the
average differences between projects in likelihood of attracting new contributors, as observed
over a subsequent fixed period of time. The multivariate nature of the regression modeling
enables us to quantify the strength of the association between each explanatory variable and
the binomial outcome while adjusting for other covariates, i.e., removing confounding effects.
Specific hypotheses. Based on the interview results, we hypothesize that other variables
held fixed, open-source projects are more likely to attract new contributors when: they list a
project website (H1); are more popular (H2); are active (H3); have a comprehensive README
(H4); list the owners’ contact information or support channels, e.g., Twitter, Slack (H5);
include badges reflecting code quality (H6); include CONTRIBUTING instructions (H7);
label their issues to help steer contributors (H8); provide issue or pull request templates (H9);
have fast response times to pull requests (H10); and are welcoming towards newcomers (H11).
Data. We collected a sample of 9,977 open-source JavaScript libraries published on the npm
package registry9 and available publicly on GitHub as follows. We started from a pre-existing
list of the 50,000 npm packages with the most GitHub stars (min 6, median 69, max 70,266)
and further randomly sampled another 2,000 npm packages with at most 6 stars as of June 1st
2018 (when the other data ended), to better stratify the data. Next, we used GHTorrent [84]
to identify which of these projects: (1) were not forks of another repository; (2) had at least
one commit between January 1st 2018 and June 1st 2018, to filter out completely inactive
projects; (3) had non-empty README files; and (4) had at least one issue / pull request on
GitHub, with at least one comment, to ensure that our measures of maintainer responsiveness
and politeness (see discussion in Sections 2.4.5 and 2.4.8, respectively) are not undefined.
Measures. For each project, we used the GitHub API and GHTorrent to measure the set
of variables in Table 2.3 (summary statistics in Table 2.5). The response variable in the
regression models is a boolean flag has new contributors; see table for definition. The table
also describes the main explanatory variables used, corresponding to the specific hypotheses
above. In addition, we tested the presence of three interaction effects between project size /
level of activity and having contributing guidelines, badges, and a link to a project website,
respectively; see table for rationale.
Modeling considerations. We built two multivariate binomial logistic regression models
corresponding to the two versions of our binary response variable has new contributors: one
for any new pull request submitters and one for new pull request submitters that are also
new to GitHub, not just the given project.

In each case, we log-transformed variables, as needed, to reduce heteroscedasticity [135]
(Table 2.4 lists which variables were log-transformed). We also tested for multicollinearity
using the variance inflation factor (VIF), comparing to the recommended maximum of
5 [136] (Table 2.6); no variable exceeded the threshold. We assess the goodness of fit of the
regression models using McFadden’s pseudo R2 measure [137] (Table 2.4). Finally, we report
the regression coefficients together with their p-values and estimates of their effect sizes (units
of variance explained) from ANOVA analyses (Table 2.4); odds ratios for the different factors
can be obtained by taking the exponential of the regression coefficients.

8The first page of closed issues on a project’s GitHub profile shows 30 entries.
9https://www.npmjs.com

https://www.npmjs.com

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 31

Table 2.3: Overview of the different variables we computed and modeled.

Variable Signal Definition / Rationale

Response variable
Has new contributors §2.4.5 Boolean flag measuring presence of new pull request submitters between June

1st 2018 and September 1st 2018. To test the sensitivity of our analysis to this
operationalization, we distinguish between new contributors with (model “Any
new contributors” and hypotheses H1...11) and without (model “GH first-timers
only” and hypotheses H ′1...11) GitHub experience in other projects prior to the
current one.

Control variables
Has external committers §2.4.5 Boolean flag indicating if there were commits made by non-core contributors; core

is defined as people each authoring at least 5% of the commits from January 1st
2018 to June 1st 2018. Controls for general openness of the project to newcomers.

Project age The age of the project on June 1st 2018, in days. Controls for software evolution:
a project in a developing stage may have more issues for new contributors to work
on than a mature one.

Num issues §2.4.5 Total number of issues (not including pull requests) on June 1st 2018. This number
is a highly visible signal at the top of a GitHub project’s main page. Projects with
more issues are likely to have more work available for contributors, as well as larger
potential contributor pools.

Main explanatory variables
Has website (H1, H ′1) §2.4.1 Boolean flag indicating if the project contains a homepage URL.
Num stars (H2, H ′2) §2.4.7 The number of stars on June 1st 2018 as per GHTorrent, as a proxy. for project

popularity.
Num recent commits
(H3, H ′3)

§2.4.5 Total number of commits from January 1st 2018 to June 1st 2018, as a proxy for
project activeness.

Num headers (H4, H ′4) §2.4.2 The number of markdown headers (H1–H3) in the README, as a proxy for
comprehensiveness.

Has contact info (H5,
H ′5)

§2.4.2 Boolean flag indicating if the README contained references to a Twitter handle
or Slack channel.

Has badges (H6, H ′6) §2.4.6 Boolean flag indicating if the README contained code coverage or continuous
integration badges.

Has contrib (H7, H ′7) §2.4.3 Boolean flag indicating if the repository contained a CONTRIBUTING.md file or
if the README contained a section on how to contribute.

Has labels (H8, H ′8) §2.4.4 Boolean flag indicating if the project has labels applied on issues or pull requests.
Has template (H9, H ′9) §2.4.4 Boolean flag indicating if templates were used for submitting issues or pull re-

quests.
Is fast (H10, H ′10) §2.4.5 Boolean flag indicating if the median response time to the the 308 most recently

opened issues which were closed as of June 1st 2018 is below the first quartile
of projects. Responses count if a non-obviously-bot user nor the issue author
comments or performs an action on the issue.

Is impolite (H11, H ′11) §2.4.8 Boolean flag indicating if the project’s median impoliteness score ranks in the
top quartile across our sample. We collected impoliteness scores for the comments
in the first page of closed issues as seen on June 1st 2018 using the Stanford
Politeness API [134], after removing markdown formatting and replacing each
code block with the token “CODE.”.

Interactions
Has contrib ×
Num recent commits (H7,
H ′7)

Contributing guidelines may impact larger, more active projects differently, as
there could be more need for help navigating project norms and processes.

Has badges ×
Num recent commits (H6,
H ′6)

Badges displaying negative project qualities, e.g., broken build, may create more
negative impressions the less active the project is, making it appear abandoned.

Has website ×
Num recent commits (H1,
H ′1)

A potentially broken link, more likely to occur in a less actively maintained project,
may increase the appearance of abandonment.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 32

Table 2.4: Summary of logistic regression results showing which signals associate with new
contributors.

Any new contributors GitHub first-timers only
Response: has new contributors Response: has new contributors

Pseudo R2 = 20% Pseudo R2 = 21%

Coeffs (Err.) Deviance Coeffs (Err.) Deviance

(Intercept) 0.79 (0.47) −1.93 (0.75)∗∗

has external committers 0.60 (0.06)∗∗∗ 88.54∗∗∗ 0.36 (0.10)∗∗∗ 11.95∗∗∗

project age (log) −0.60 (0.07)∗∗∗ 80.25∗∗∗ −0.50 (0.11)∗∗∗ 22.18∗∗∗

num issues (log) 0.43 (0.03)∗∗∗ 236.81∗∗∗ 0.56 (0.05)∗∗∗ 140.38∗∗∗

has website −0.43 (0.10)∗∗∗ 19.80∗∗∗ −0.17 (0.17) 0.92
num headers (log) 0.10 (0.03)∗∗ 9.59∗∗ 0.08 (0.05) 2.06
has contact info −0.12 (0.07) 2.86 −0.03 (0.10) 0.10
has contrib −0.31 (0.11)∗∗ 0.76 −0.46 (0.20)∗ 10.14∗∗

has badges 0.14 (0.09) 1.51 −0.49 (0.16)∗∗ 6.79∗∗

has labels −0.13 (0.05)∗ 6.19∗ −0.08 (0.09) 0.84
has template 0.48 (0.16)∗∗ 9.11∗∗ 0.25 (0.16) 2.52
num recent commits (log) 0.12 (0.03)∗∗∗ 62.53∗∗∗ 0.07 (0.05) 38.66∗∗∗

is fast −0.04 (0.06) 0.52 −0.10 (0.09) 1.04
num stars (log) 0.21 (0.02)∗∗∗ 97.53∗∗∗ 0.14 (0.03)∗∗∗ 17.02∗∗∗

is impolite −0.32 (0.07)∗∗∗ 20.99∗∗∗ −0.08 (0.12) 0.43
has contrib : num recent commits (log) 0.11 (0.04)∗∗ 7.18∗∗ 0.05 (0.05) 0.87
has badges : num recent commits (log) −0.04 (0.04) 1.11 0.10 (0.05)∗ 4.05∗

has website : num recent commits (log) 0.09 (0.04)∗ 6.24∗ 0.09 (0.05) 3.01

AIC 10442.37 4694.43
Num. obs. 9977 9977
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

2.5.1 Replication Package
Our data collection and data analysis scripts, and the input data for the regression models in
Table 2.4, are part of a replication package available online.10

2.6 Regression Modeling Results - Triangulating the
Signals

In this section we discuss the quantitative analysis results for our main model (“Any new
contributors” in Table 2.4). We further test the robustness of our results to the operational-
ization of new contributors by modeling “GitHub first-timers only” as the dependent variable
(Table 2.4). Both models have acceptable goodness of fit (20%–21%). We will contrast the
qualitative and quantitative results and discuss implications of our results later, in Section 2.7.

10 https://doi.org/10.5281/zenodo.3371186

https://doi.org/10.5281/zenodo.3371186

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 33

2.6.1 Attracting any new contributors
From Table 2.4 (model “Any new contributors”), we first observe that the control variables
expectedly account for around 60% of the variance explained by the model (sum of the cell
values corresponding to the control variables in the Deviance column in the table, divided by
the total amount of Deviance explained by the model, i.e., sum over all rows), with predictable
effects: projects with more open issues (signaling contribution opportunities [26]) or that are
younger or historically more open to newcomers are more likely to attract additional new
contributors, on average.

Moving on to the main explanatory variables, we observe that projects with more GitHub
stars (supporting H2 3), more recent commits (signaling the project’s activity level [26];
H3 3), more comprehensive README files (more headers; H4 3), and having issue
or pull request templates (H9 3) are statistically significantly more likely to attract
new contributors, supporting our hypotheses and the qualitative data collected during the
interviews. Taken together, the four variables account for approximately 27% of the total
variance explained by the model.

Among these variables, the number of GitHub stars, a signal of project popularity, explains
the largest amount (' 15%) of the total variance explained by the model. We illustrate
the interpretation of the regression coefficient: for every factor e increase in the number
of stars (note the log-transform), and after controling for the amount of project activity
and other covariates, the odds of attracting new contributors for the average project in our
sample increase exp(0.21) ' 1.23 times. Fronchetti et al. [125] found, similarly, that project
popularity is the most important factor that explains newcomers’ growth pattern.

The first model also shows that the number of recent commits explained a large amount
(' 10%) of total variance explained by the model. As some of the participants pointed
out and also discussed by Dabbish et al. in [26], the number of recent commits signals the
projects’ activity level and contributors’ commitment to a project. More recent commits in
a project signals that there are active contributors who could provide help or feedback if
needed. Therefore, programmers may be more willing to join the project.

Arguably, all four of these signals (stars, recent commits, comprehensive READMEs, and
templates) have relatively high production costs, as they require deliberate and in some cases
sustained efforts (e.g., sustained commit activity over time) from project core developers to
maintain. Given this production cost, signaling theory predicts that the signals are reliable.
Our quantitative results are consistent with this prediction.

Table 2.4 also shows that posting a website URL (H1 7), having contributing guide-
lines (H7 7), using issue labels (H8 7), and being impolite (H11 3) have, on average,
statistically significant negative effects on attracting new contributors. The effect sizes are,
however, relatively small: taken together, the four variables explain ' 9% of the total variance
explained by the model.

It is not surprising that being impolite correlates with lower likelihood of attracting
new contributors: Balali et al. [8] found that a “harsh project atmosphere” is one of the
main barriers that a newcomer faces. However, it is surprising that having a website URL,
contributing guidelines, and issue labels correlates with lower likelihood of attracting new
contributors.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 34

−0.5

0.0

0.5

0.0 2.5 5.0 7.5

Num recent commits (log)

E
st

im
at

ed
 c

oe
ffi

ci
en

t f
or

H
as

 w
eb

si
te

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5

Num recent commits (log)

E
st

im
at

ed
 c

oe
ffi

ci
en

t f
or

H
as

 c
on

tr
ib

Figure 2.4: Visualization of the interaction effects Has website (left) / Has contrib (right) ×
Num recent commits.

The interaction effects (Figure 2.4) with the number of recent commits for two of the
variables, has website and has contributing guidelines, suggest a more nuanced interpretation.
For the has contributing guidelines dummy (Figure 2.4 right), the estimated coefficient is
negative for low values of num recent commits but positive for high values. That is, for
the less active projects, having contributing guidelines correlates with lower likelihood of
attracting new contributors, holding the other variables fixed; but for the more active projects
the relationship flips, and having contributing guidelines correlates with higher likelihood of
attracting new contributors, as hypothesized.

For the has website dummy (Figure 2.4 left), the estimated coefficient is only negative for
low values of project activity (num recent commits), and is otherwise indistinguishable from
zero. That is, only for the less active projects having a website URL correlates with lower
likelihood of attracting new contributors, holding the other variables fixed, whereas for more
active projects having a website URL has no effect. One explanation could be that the websites
of smaller, less active projects may be more often out of date or unmaintained, accentuating
potential negative first impressions. Another explanation could be that unobserved third
variables are confounding the association. More research is needed to better understand this
relationship.

For the has labels dummy, we did not theoretically expect an interaction effect, therefore
we did not test for one. Still, the negative effect of having labels might be explained by a
limitation of our operationalization: due to lack of uniformity in how “good first issue” labels
are named across projects, we only recorded a binary flag of whether a project has any labels
at all, as a proxy, while it could be that only labels similar to “good first issue” have the
hypothesized positive effect on attracting new contributors. Future work could refine our
operationalization.

Finally, we note from Table 2.4 that having contact information (H5 7), code quality
badges (H6 7), and fast reponses (H10 7) to issues or pull requests do not have statistically
significant effects, contrary to our hypotheses.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 35

2.6.2 Attracting first-time GitHub contributors
The “GitHub first-timers only” model in Table 2.4 uses as dependent variable the presence
of first-time contributors, who have never made any GitHub contribution before. This
alternative operationalization enables us to assess the robustness of our results and study
whether contributors without any public traces of open-source GitHub experience might look
for different signals when evaluating projects. Such differences could be the signals that are
more reflective but unknown to first-time contributors either due to the contributors’ own lack
of experience or the signals’ low visibility. They could also be signals that are only relevant or
important to first-time contributors. Since the Jane persona we provided to participants was
designed to be a first-time contributor and participants were projecting their own experience
onto her, comparisons between the two models can also help to differentiate participants’
projection and first-time contributors’ own decision.

A comparison between the two models shows that the number of stars remains a strong
positive predictor of attracting newcomers (H2 3): the more popular a project, the more
likely it is on average to attract newcomers. In addition, having contributing guidelines
has significantly negative effect when attracting first-time GitHub contributors (H7 7).
However, most of the effects of the main explanatory variables have changed. Having badges
has a statistically significant but negative effect (H6 7). The interaction effect with recent
project activity is also statistically significant and behaves similarly to the has website (left)
interaction in Figure 2.4: the negative correlation between having code quality badges and
likelihood of attracting new contributors is only visible in less active projects. We speculate
that using CI and showing code quality badges may increase the process overhead and barrier
to entry, and could be discouraging to first-time contributors, who may not have sufficient CI
experience.

Other signals have statistically insignificant effects in the second model: the number
of recent commits (H3 7), having a website URL (H1 7), contact information (H5
7), the number of headers in the README (H4 7), labels (H8 7), templates (H9
7), fast responses (H10 7), and politeness (H11 7). Signaling theory offers one possible
explanation: these signals are not visible enough, therefore receivers, in this case, first-time
GitHub contributors, might prefer signals that are easier to observe and to interpret. The
number of recent commits is not a directly visible signal, rather it requires combining the
number of commits and the last commit date. Similarly, labels and templates do not typically
appear on the main page. For example, templates usually show up only when users begin
to compose an issue or a pull request. Finally, evaluating the politeness and responsiveness
of a project also requires contributors to look into documentation and conversations. It is
also possible that new contributors lack a benchmark of politeness as a reference and may
consider potentially impolite interactions as the norm; however, as they meet more people,
they gradually become aware of the culture of a project and try to avoid impolite teams.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 36

2.6.3 Commonalities and discrepancies between interviews and
models

The project’s popularity, signaled by the number of GitHub stars, and having a contributing
guideline are the only explanatory variables that had consistent effects between our two
models, which aligned with the interview results.

In the other cases, we found interesting discrepancies between the interviews and regres-
sions. Particularly notable is the responsiveness which was expected to be important signal
both according to interview participants as well as GitHub’s 2017 Open Source Survey [1]
results (Figure 2.3), but shows no results in the regression.

The negative correlation between having contributing guidelines and likelihood to attract
new contributors in less active projects (recall the interaction effect above) warrants further
investigation. One possible explanation is a limitation of our experimental design: contributing
guidelines may have had stronger, positive effects closer in time to when they were introduced
in each project, but our fixed window of observation (June 1st to September 1st 2018) hides
this. Further investigations go beyond the scope of this paper, but could be a worthwhile
direction for future research.

Beyond threats to construct validity (our operationalization of responsiveness of the core
team could be imperfect), signaling theory offers one possible explanation for the lack of
noticeable effect for the responsiveness variable. Even if potentially reliable and hard to
fake (i.e., an assessment signal), the signal is not plainly visible on a project’s main page.
While in our interviews some participants did click through individual issues or pull requests
pages to estimate the response time, in a less artificial setting people may not spend as much
time on evaluating projects and may rely on more visible signals instead. More research is
needed to understand whether the lack of hypothesized effects is due to limitations in our
operationalizations or other causes.

2.6.4 Limitations
We now note some important limitations of our quantitative study. We discussed limitations
of our qualitative analysis previously, in Section 2.3.

First, we computed a set of proxies (Table 2.3) to operationalize the different theoretical
constructs emerging from the qualitative analysis. While our variables are arguably reasonable
measures for the theoretical constructs they are meant to capture, and even though we
manually inspected and iteratively corrected data collection errors, as needed, until we were
confident that our data is correct, it is important to note that other operationalizations
for the same concepts are possible. For example, for the response variable one could also
consider other contributions besides pull requests. Different operationalizations may lead
to different statistical modeling results and therefore different conclusions. We described
clearly our assumptions and operationalizations and we provide a replication package10

to facilitate future extensions to our work. Exhaustively computing and testing multiple
operationalizations for each construct goes beyond the scope of this paper.

Second, the GitHub data we mined and analyzed are observational in nature, hence
the different signals we considered are not true experimental treatments. This could create
endogeneity problems [138, 139], which could lead to biased estimates of the treatment effects

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 37

in our regressions.11 Endogeneity could manifest in several ways. For example, even though
prior work and our qualitative analysis both suggest that higher number of stars may drive
higher numbers of contributors to a project, it is also possible that an unobserved variable may
jointly determine both high number of stars and high number of contributors, or that both
might be true. The association between the number of stars and the likelihood of attracting
new contributors, surfaced by our models, may not allow readers to conclude this correlation
is causal, because observational data is not randomly assigned. Moreover, endogeneity can
be caused not only by omitted variables, but also by some of the regression variables used.
In our study, the number of stars a project has is endogenous when examining the quality
of projects or the intent to contribute to it. When a project has a higher number of stars it
may attract more contributors, but it is also likely that a project which has a high number of
contributors, may attract more stars.

Endogeneity has received much attention in the econometrics literature and many statisti-
cal approaches have been proposed to assess or control its impact. Perhaps the most popular
approach we considered is to instrument for the possibly endogenous predictor variable [140],
in our case number of stars. Given such instrumental variables, one then typically pursues
an estimation method such as two-stage least squares (2SLS) [141]. The basic idea is to
extract variation in the possibly endogenous predictor that is independent of the unmeasured
confounders and use this variation to estimate the treatment effect and “control” for the
unmeasured confounders. Many extensions to non-linear models such as logistic regression,
which we use in our study, have been proposed [142, 143, 144, 145, 146]. However, we decided
against two-stage methods for several reasons: i) these methods are only as good as the
exogenous instrumental variables selected [147, 148, 149] and we could not identify appropri-
ate, theoretically motivated instruments for number of stars; and ii) with large sample sizes,
as in our case, the estimated coefficient for the residuals is more likely to reach statistical
significance, i.e., it becomes more likely to falsely detect endogeneity [150, 151].

Instead, we limit ourselves to checking for correlation between the possibly endogenous
number of stars variable and the logistic regression residuals. Neither model had statistically
significant Pearson’s product-moment correlation: p = 0.86 for GitHub first-timers only
and p = 0.94 for any new contributors. Although our models explain only around 20% of
the variance in the data, suggesting there may be omitted variables, we did include in the
regressions variables corresponding to all of the theoretical constructs emerging from the
interviews, in addition to controls for the obvious covariates. Therefore, based on the lack
of correlation between the possibly endogenous number of stars variable and the logistic
regression residuals we believe that the relatively low explanatory power of our models is
more likely due to natural noise in the data, common at this scale and in this domain [128],
rather than omitted important variables that could cause endogeneity.

Alternative analysis techniques such as propensity score matching, which can help reduce
the risk of endogeneity [152], or recent heuristics [153] for evaluating the robustness of results
to omitted variable bias, based on coefficient movements after inclusion of controls and
movements in R-squared values, go beyond the scope of this paper but could be worthwhile
future directions.

11We kindly thank one of the reviewers for pointing this out and suggesting mitigation strategies. This
paragraph incorporates the reviewer’s comment almost verbatim.

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 38

2.7 Implications
Our study has implications for open-source maintainers, platform designers, and researchers.

2.7.1 New Signals
Among the information our participants needed to inform their evaluation of contribution
worthiness for each open-source project in our sample, only some is readily observable from
prominent signals displayed on a project’s landing page or README file on GitHub. For
example, the number of stars, a proxy for project popularity, and the number of contributors,
measuring team size, are already part of the GitHub UI. However, other pieces of needed
information can be much less salient. Some, like the number of downloads, which indicates
not only popularity but also the size of the user base, have direct signals, but these are
not typically visible on GitHub directly. For example, in the case of projects with releases
published on npm, the number of downloads is displayed on a package’s npm page, but not on
its GitHub repository page by default. We learned from the interviews and our models that
popular projects tend to attract more new contributors. Badges such as
could be used to augment a project’s existing GitHub popularity signals (the number of
stars), making project popularity information more salient.12 Trockman et al. [27] found that
badges can impact perceptions of open-source projects.

Some other pieces of information used by our interview participants and having statistically
significant effects in our models currently have no direct signals at all and, instead, need
to be inferred from indirect cues. The tone of the community, for example, is an important
factor in our interviews: “it’s most important that the people seem nice” (P5). From the first
regression model, we can see that (im)politeness also has a statistically significant effect. In
our interviews some participants had to browse through multiple issues and pull requests,
reading the discussions therein. If these conversations were positive (P14) and people were not
mean (P3), participants concluded that the community is probably friendly and welcoming.
As discussed in Section 2.2.2, signaling theory explains that assessment signals, which are
costly to produce / fake, tend to be reliable. A signal of the tone of a community would
arguably be an assessment signal and therefore be reliable, as maintaining a welcoming tone
would require sustained effort from project maintainers over time. However, signaling theory
also explains that receivers (the potential contributors evaluating projects) tend to prefer
signals that are easy to observe and to interpret over those that are costlier to assess [118].
This suggests that automated techniques could be used to develop new signals of the tone
of a community, e.g., in the form of badges, to further increase transparency and make
these important underlying qualities salient. Recent advances in detection of emotions [154],
politeness [155], and sentiment [156, 157, 158] suggest that this approach is feasible.

Similarly, we envision assessment signals of the responsiveness of the project maintainers,
e.g., displaying the average response times to issues and pull requests submitted by external
contributors. Even though our models did not validate the importance of this signal, maintainer
responsiveness showed up prominently in our interviews and is also well-supported as a
desirable project quality by prior work (see Section 2.2.3).

12GitHub’s recent “Used by” button https://twitter.com/github/status/1131468413983961088 is
similar.

https://twitter.com/github/status/1131468413983961088

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 39

We also uncovered a range of best practices and associated signals that our interview
participants noted help create good first impressions when evaluating a project for potential
contribution: listing an external project website, having a detailed README file, including
information on how to contribute, listing contact information for the maintainers, and using
labels and issue / pull request templates to help newcomers learn the project processes and
norms. Two of these signals, denoting the comprehensiveness of the README file and the
presence of templates, we were also able to validate quantitatively. In terms of production
cost, a well thought-out README file is arguably the most expensive, as it requires a high
initial investment to develop and subsequent sustained maintenance to keep it up-to-date.
Signaling theory predicts that this investment is worthwhile though: our study finds using
mixed methods that projects with more detailed READMEs are more likely to attract new
contributors.

Finally, we identified some conventional signals that project owners could consider adopting,
as they are perceived to attract new contributors. Our interviews suggest that potential
contributors are receptive to explicit requests for help, yet typically there is no associated
highly visible signal at the project level. One of the recommendations for maintainers that our
participants repeatedly mentioned is explicitly expressing that they want help and welcome
contributions. There are multiple ways in which this intent can be expressed more visibly,
including explicit language in the README such as “Accepting PRs” or the equivalent badges

and . While such conventional signals are expectedly less reliable as
per signaling theory since they are less costly to fake, they are still cheap to produce and
may contribute to creating the impression of a welcoming community.

However, it is also possible for there to be too many signals on a GitHub project’s page.
Prior work by Trockman et al. [27] found a non-linear association between the number of
repository badges displayed and the number of downloads, after controling for covariates,
i.e., projects with “too many” badges tend to be less popular. More research is needed to
understand the situations with too many signals beyond badges, and whether some existing
signals could be removed.

2.7.2 Personalized Design
During our interviews, we anecdotally observed that different contributors may interpret the
same signals differently. For example, P15 explained: “a lot of [project selections] depend on
your confidence. So when it’s a bigger project, are you are someone that feels comfortable
jumping into the middle of things or you need a little bit more hand-holding or welcoming
into the project, then it feels like this is probably the one that is easy to wander around but
doesn’t have the capacity to personally welcome you and help you figure out where to start”
(P15). In contrast, P3 noted that “I don’t worry about the popularity of the project because I
feel like if you find things less saturated, you actually benefit more from it. There’s less hand
holding and you get to really dive in; it gives you more self-efficacy that forces you really to
look at things, google things, try everything out, and then ask for help” (P3).

The GenderMag literature [29] shows that groups of people that tend to differ along four
problem-solving facets also tend to experience different barriers to technology and tend to
use software differently [159, 8]. The facets are motivation (intrinsic vs extrinsic), computer
self-efficacy (high vs low), information processing style & tinkering (reading documentation

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 40

upfront vs tinkering), and attitude towards risk (high vs low risk aversion). It is possible
that GitHub contributors who tend to differ along the four problem-solving facets (often
gender is an attribute that people who differ along these dimensions cluster on) would also
interpret the different signals differently. For example, the two quotes above suggest potential
differences in interpretation of signals depending on one’s self-efficacy level. This suggests
that future work could take individual differences in problem-solving style into account when
developing new signals, to better account for how contributors might interpret the same
signals differently, e.g., using the GenderMag [29] process.

2.8 Conclusions
In this chapter we used mixed methods to explore how open-source contributors decide
whether or not to recommend submitting pull requests to different open-source projects based
on the signals available on the project’s GitHub webpage. Qualitatively, we interviewed 15
GitHub contributors about their project selection process and the signals used to inform this
decision. Quantitatively, we estimated two logistic regression models using trace data from
9,977 GitHub projects, to validate each identified signal from the interviews.

Among our main findings, we highlight that contributors make inferences based on a
multitude of signals, including how actively maintained and popular the project currently is,
the friendliness and responsiveness of the maintainers in issue and pull request discussions,
the availability of issue and pull request templates and issue labels, and a well-structured and
thorough README which includes contributing guidelines. However, not all these signals
are currently easily observable, e.g., inferring the welcomeness and responsiveness of project
maintainers involves multiple steps.

This work has direct implications for open-source maintainers and the design of social
coding environments: both sets of stakeholders could focus on developing reliable new signals
for the less readily observable project qualities we identified as important. Ultimately, these
signals could help direct contributor effort to open-source projects where this effort is most
needed, contributing to the sustainability of open-source ecosystems as a whole.

A notable limitation of our study as a whole is that controlling for topic (all projects used
in the interviews are front-end-related JavaScript projects) makes it impossible to determine
how important topic was compared to the identified signals. Future work should explore
alternative research designs. Future work should also consider refining our operationalizations
and replicating these findings on other projects that are not part of npm.

Appendix

CHAPTER 2. HELP CONTRIBUTORS CHOOSE PROJECTS 41

Table 2.5: Summary statistics for the variables in Table 2.3.

Statistic Mean St. Dev. Min Median Max

Has any new contributors 0.36 0.48 0 0 1
Has first-time-GH contributors 0.09 0.28 0 0 1
Has external committers 0.28 0.45 0 0 1
Project age 1, 334.66 538.95 571 1, 214 3, 830
Num issues 105.45 404.52 0 22 13, 198
Has website 0.35 0.48 0 0 1
Num headers 11.09 10.78 1 8 262
Has contact info 0.14 0.35 0 0 1
Has contrib 0.22 0.41 0 0 1
Has badges 0.57 0.50 0 1 1
Has labels 0.53 0.50 0 1 1
Has template 0.03 0.17 0 0 1
Num recent commits 32.86 173.44 1 6 10, 087
Is fast 0.25 0.43 0 0 1
Num stars 593.95 2, 464.59 0 72 70, 266
Is impolite 0.16 0.37 0 0 1

Table 2.6: VIF multicollinearity test values for the variables in Table 2.3.

Any new contribu-
tors

GH first-timers only

Has external
committers

1.48 1.67

Project age (log) 1.22 1.28
Num issues (log) 2.50 3.33
Has website 1.14 1.18
Num headers (log) 1.06 1.06
Has contact info 1.06 1.09
Has contrib 1.13 1.22
Has badges 1.05 1.07
Has labels 1.13 1.25
Has template 1.04 1.09
Num recent commits
(log)

1.48 1.77

Is fast 1.01 1.01
Num stars (log) 2.08 2.45
Is impolite 1.03 1.03

Chapter 3

Sustained Participation

Sustained participation by contributors in open-source software is critical to the survival
of open-source projects and can provide career advancement benefits to individual contribu-
tors. However, not all contributors reap the benefits of open-source participation fully, with
prior work showing that women are particularly underrepresented and at higher risk of
disengagement. While many barriers to participation in open-source have been documented
in the literature, relatively little is known about how the social networks that open-source
contributors form impact their chances of long-term engagement. In this paper we report
on a mixed-methods empirical study of the role of social capital (i.e., the resources people
can gain from their social connections) for sustained participation by women and men in
open-source GitHub projects. After combining survival analysis on a large, longitudinal data
set with insights derived from a user survey, we confirm that while social capital is beneficial
for prolonged engagement for both genders, women are at disadvantage in teams lacking
diversity in expertise.

3.1 Introduction
Sustained participation by contributors in open source software (OSS) is critical to the survival
of OSS projects [160, 9], and it can provide many benefits to individual contributors [110].
For example, a recent survey [14] found that OSS work helped more than half of the
respondents obtain their current positions, and that OSS work in general helps people build
their professional reputation. Given the advantage that open source experience can bring to
an individual and the benefit that sustained participation can provide to OSS projects, it is
essential to study what retains or repels contributors.

Not surprisingly, sustained participation in OSS has attracted considerable attention
among researchers, with prior work focusing on developers’ motivation [160, 161, 94], the
kind of tasks they perform [162, 163] , and rejection experiences [164, 165, 166, 167, 168].

However, the benefits that contributors can gain from their OSS social relations and
structures have not been studied. Such benefits are known in the social sciences as social
capital [169, 170]. Social capital can be built through individuals’ social networks and has
been shown to affect various kinds of human endeavors, from knowledge sharing [171] to
labor force participation [172] and from philanthropy [173] to financial development [174].

43

CHAPTER 3. SUSTAINED PARTICIPATION 44

+
+ + + + + + + + + + + + + + + + + + +

+
+

+ + + + + + + + + + + + + + + + + +

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60

Time in months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Gender

+
+

Male

Female

Figure 3.1: Kaplan-Meier estimators: women disengage significantly earlier. (chi-sq= 645,
p< 2e−16 per a log-rank test)

In OSS, studies have shown that prior social ties can influence forming or joining a new
team [175, 176]. However, they did not explore whether and how social ties can prolong
contributors’ participation.

While social capital can be built and leveraged by everyone, it can impact women differently
in male-dominated environments. For example, prior work in the film industry [177] found
that while men benefit from strongly connected networks, women do not; moreover, women
benefit from diversity in teams and tasks. In OSS, women are severely underrepresented and,
as we show, likely to disengage from GitHub participation earlier than men (Figure 3.1).

To better understand contributors’ disengagement, we perform a longitudinal, quantitative
analysis of the structure of OSS contributors’ social networks on GitHub and the impact of
this structure on prolonged engagement, through the lens of social capital theory. Moreover
we report on a user survey to better understand what constitutes social capital for GitHub
open source contributors and how it is associated with their participation sustainability. Our
findings highlight that:

• Contributing to projects where team members are more familiar with each other (from
prior collaborations) is in general associated with decreased risk of disengagement;

• Women are at higher risk of disengagement than men.
• Higher team diversity along dimensions of programming language expertise is associated

with a decreased risk of both short and long term disengagement. Moreover, gender
and language diversity interact: when team members have more diverse programming
language backgrounds, women are less likely than men to disengage early.

Our results have implications for project choosing, team formation, and project manage-
ment in OSS. Based on our results, we especially recommend that women take project social
capital and expertise diversity into consideration when choosing a project to join, and that
project managers consider these aspects when allocating developers to tasks, in more centrally
managed contexts. We also argue that social coding platforms like GitHub could benefit

CHAPTER 3. SUSTAINED PARTICIPATION 45

from recommendation engines for newcomers looking for projects to join; these should take
social capital into account when making a recommendation (cf. [178]); furthermore, GitHub
could facilitate project maintainers tracking trends in factors negatively associated with the
development of social capital, particularly among women.

3.2 Development of Hypotheses
We build on social capital theory, a popular social sciences theory used to explain individual
and group success and performance (for an overview see Adler and Kwon [179]). Social capital
is the set of benefits individuals can gain from their social connections and social structures,
such as access to information and emotional support [179]; it is a complement to human
capital, which refers to an individual’s ability [170].

OSS is a social environment that can be modeled as collaborative social networks [180],
where social capital can form: projects are community-based in nature; contributors have
ample opportunities to connect with each other by interacting and collaborating over time;
they agree on common norms; and they share collective goals—the development and main-
tenance of OSS. Once present, social capital can “make individuals’ experiences of working
on open source projects both satisfying and rewarding” [181]. In this paper we argue that
social capital also impacts the overall open source tenure of contributors, and that female and
male contributors benefit from social capital differently, on average.

There are two main network structures conducive of social capital: strong, dense, and
cohesive ties generate bonding social capital [182], while weakly connected ties, acting as
brokers between subgroups, generate bridging social capital [170].

The first, bonding social capital, emerges from network closure, i.e., strongly connected
ties [182]. Tie strength increases with the amount of interaction between individuals, emotional
density, intimacy, or reciprocal service [183]. In a closed network, information is passed more
accurately through direct communication [184], and trust develops more easily since it is
more expensive for people to break norms when actions are more easily noticed [182]. At
the same time, network closure increases group cohesiveness and solidarity among group
members, who become more likely to remain engaged.

In OSS, contributors are motivated by both intrinsic and extrinsic factors, among which
aspects related to bonding social capital, such as identifying with the community and feeling
obligated to contribute back, are highly important [94]. Prior work showed how identification,
obligation, emotional attachment, trust relationships, and shared goals and norms (all of which
are more likely to develop in cohesive teams [185]) positively impact individual and team
outcomes. It follows that bonding social capital should positively impact the contributors’
willingness to sustain their OSS activity. In OSS participants are often free to disengage at any
time, therefore the extent to which they have a sense of social identity, or perceive themselves
to be part of the community, may substantially increase their intention to continue [186, 187].

In contrast to bonding social capital, bridging social capital focuses on how network
individuals who maintain weak ties can benefit from a brokerage position [170]. In closed
networks people who are strongly connected may have the same information or the same
source of information. Bridging otherwise disconnected groups, what Burt calls structural
holes [170], can enable access to broader sources of information and improve the information’s

CHAPTER 3. SUSTAINED PARTICIPATION 46

quality, relevance, and timeliness [179]. While bridging social capital is especially beneficial in
competitive scenarios, when timely and non-redundant information about job opportunities
can be an advantage, it can also be an asset in OSS. Weak ties can expose contributors to,
e.g., new technologies and new projects, providing opportunities to continue their engagement.
Already, evidence suggests that past collaborative ties impact contributors’ choice of OSS
projects to participate in [176]. Network brokers can also decrease the centralization of OSS
communities and increase communication between experts and peripheral users [188].

To summarize, network closure and structural holes, representing both types of social
capital, seem important for sustained participation in open source. We expect that:
H1. During their open source tenure, the more often people participate in projects with high
potential for building social capital, the higher their chance of prolonged engagement.

However, network closure may not always be beneficial. As Lutter [177] notes “cohesive
networks might foster discrimination and exclusion, as network closure is likely to divide
[individuals] into insiders and outsiders”. Outsiders, i.e., those who are not part of the “core”
group, can have a harder time accessing information, leading them to miss out on some
chances [189, 190, 169]. Furthermore, people within a social group tend to develop their own
habitus, often unconsciously. Such habitus embodies membership but also restricts outsiders
from accessing and identifying with the group [191, 192, 193].

In OSS in general and GitHub in particular, socio-demographic diversity is lower than any-
where else in tech [194]. Women are particularly underrepresented, with recent surveys placing
them at less than 5% [195]; women are also more likely than men to encounter stereotyping or
unwelcoming language [5, 58, 7]. However, as prior results from the film industry, a similarly
male-dominated field, show, women can overcome the negative effects of network closure:
being more often attached to open teams with regard to diversity of ties, information flow,
and genre background increases chances of career survival [177]. That is, since women tend to
be outsiders to the strongly connected groups of (mostly male) decision-makers, diversifying
their ties makes them less dependent on the in-group for acceptance [196]. Therefore, given
women’s minority (and likely outsider) status in OSS in aggregate, we expect:
H2. During their open source tenure, the more often women participate in open teams wrt
diversity of ties and information, the higher their chance of prolonged engagement.

3.3 Related work
Discrimination exists in online software engineering communities and women are known to
face greater barriers than men [197]. Terrell et al. show that women whose gender identities
are revealed have lower pull request acceptance rate [7]. Mendez et al. have observed biases
against women in GitHub tools and infrastructure [178], while Ford et al. identified barriers
for female participation on Stack Overflow [198]. Social network analysis has also been applied
to OSS [175, 176, 180, 199, 200, 201, 202, 203], although these studies did not consider gender.

Sustained participation, turnover and disengagement have attracted significant attention
as well, e.g., using qualitative methods, Fang et al. reveal that situated learning and identity
construction are associated with sustained participation [160], while Lin et al. show that
contributors who join the project earlier, write code instead of documents, or are responsible

CHAPTER 3. SUSTAINED PARTICIPATION 47

for modifying code have higher chances of remaining in the team [162]. The relation between
turnover and project quality has been studied by Foucault et al. [101]. A complementary
perspective has been taken by Zhou and Mockus that identified metrics such as number
of comments and the size of the peers’ groups as characteristics of new contributors that
will become long-term contributors [204]. These conclusions, however, focused on individual
behaviors and project qualities. In this paper, we analyze sustained participation from the
perspective of contributors’ social connections on GitHub.

3.4 Methods
We designed a mixed-methods study characterized by a concurrent triangulation strategy [126]
to help triangulate our findings. Quantitatively, we collected a multivariate longitudinal data
of 58,091 GitHub contributors, and performed survival analysis to model the effects of social
capital on disengagement. Qualitatively, we surveyed a sample of 88 contributors to gain
additional insights into the role of social capital on GitHub.

3.4.1 Data
Our main data source is the February 2017 version of GHTorrent [205], a publicly available
historical database of GitHub public activity traces, containing data for approximately 16M
users. Gender is not recorded in GitHub profiles and, consequently, is also not available in
GHTorrent. Therefore, we inferred it from people’s names, as described in Section 3.4.2, and
augmented the GHTorrent data. However, since social network analysis on a data set of
GitHub’s size would be computationally unfeasible, we first compiled a smaller sample of
58,091 users, as follows.
Preprocessing and Filtering Starting from the ∼ 16M users in GHTorrent, we filtered out
organizational users (i.e., metausers, not usually corresponding to a single person), users with
deleted accounts, users who never authored any commits and users with names not containing
any space (gender inference techniques rely on a person’s first and last names; e.g., Alice
would be excluded, but Alice Smith and Alice Marie Smith would not). We acknowledge that
some cultures do not split names into parts, or some people are known mononymously. We
chose this conservative heuristic, which excludes some valid names, since we noticed during
manual exploration of the data that many single-part names are English words or nicknames
from which we cannot extract gender information. Approximately 1.8M GitHub users in our
data had non-organizational, non-deleted accounts, authored at least one commit, and had
names consisting of at least two parts.
Identity Merging Since git version control settings are set locally by each client, there
are some cases where git commits are not attributed to the correct GitHub account, which
introduces noise in the data. Moreover, the same contributor may have used different git
“aliases” (i.e., names and emails) in different projects or over time [206]. To have a more
accurate representation of one’s activity and contributions, we performed identity merging on
the different (name, email) tuples in our data using a series of heuristics (cf. [206, 207, 208]).
Sampling After initial filtering and identity merging, we randomly sampled 300,000 users
and applied our gender inference technique (Section 3.4.2) to label each account as Female

CHAPTER 3. SUSTAINED PARTICIPATION 48

Filter:
1+ commits
Full name

Cox
regression

SurveySmall sample
1,000 users

Balanced sample

Logistic
regression

Sample
300,000

users

Gender
classifier

Training

Public name lists
Celebrity names

Namsor genderComputer

 28,995 F
 29,096 M

Figure 3.2: Overview of our methodology.

(9.7%), Male (84.85%), or Unknown (5.45%). Some of our social network analysis measures
(Section 3.4.3) require, for every person, to collect all the repositories they contributed to,
and for every repository, to collect all other contributors and all their repositories. To reduce
computational effort and to address the Female–Male imbalance in our sample, we randomly
down-sampled the group of male contributors to the same size as the female group. After
removing users who have only contributed to educational projects, our final dataset contains
28,995 users labeled Female and 29,096 users labeled Male. Figure 3.2 gives an overview of
our data collection process.

3.4.2 Gender Inference
Various approaches and tools for name-based gender inference have been proposed [209, 210].
All operate with the simplifying assumption that gender is binary; we also assume binary
gender here to simplify data collection and analysis. We tried many of these tools and found
that each has strengths and blind spots. In particular, most tools are based on databases of
English names and as such fail, e.g., on Asian names.

We have considered approaches that use social network data, specifically Google+ [7], but
the gender API has been deprecated; tools that can infer gender from photos, e.g., Face++,
but discarded these since GitHub profile photos are scarcely available; and tools that can
infer gender from text [211], but discarded these since we have a very limited amount of
text for each user – mostly commit messages, which are usually too short to provide enough
information.

Instead, we identified two main contenders among tools that rely on broader datasets of
names in different languages, and integrate them in a classifier (i.e., a voting system). Our first
contender is genderComputer1 [212]. As opposed to other tools it uses location information to
disambiguate; e.g., it is able to distinguish between Italian Andrea (predominantly male) and

1https://github.com/tue-mdse/genderComputer

https://github.com/tue-mdse/genderComputer

CHAPTER 3. SUSTAINED PARTICIPATION 49

Table 3.1: Accuracy of the different gender inference methods (bolded are the highest accuracy
for that language).

Language genderComputer (%) NamSor (%) Our classifier (%)

Chinese 17.58 6.70 60.00
Japanese 76.76 26.88 79.71
Korean 18.82 13.51 68.07
All 79.41 74.07 83.62

German Andrea (predominantly female). Our second contender is NamSor2 which classifies
personal names by gender, country of origin, and ethnicity, with good coverage of different
languages, countries, and regions. We trained and tested a Naive Bayes classifier that takes
as input the gender predictions output by genderComputer and NamSor for a given name as
well as features of the name itself, and produces a gender label as output, i.e., one of Female,
Male, or Unknown.

As training (80%) and test (20%) data, we compiled a list of 11,706 names from two
sources. First, we randomly sampled 8,706 names from genderComputer ’s open source dataset,
which covers 28 countries. Second, since both input gender tools often have difficulty with
East Asian names, we further collected a total of 3,000 romanized Chinese, Japanese, and
Korean names from celebrity name lists on Wikipedia, websites for baby names, or name
lists found in online public datasets, e.g., lists of recent school graduates or of enrolment.

For each name, we obtained the gender inferences from NamSor and genderComputer.
We also extracted features from the name itself, including the last character (e.g., in Spanish,
names ending in ‘a’ tend to be female), the last two characters (e.g., in Japan, names ending
in ‘ko’ tend to be female), and tri-grams and 4-grams to capture romanized Chinese, Japanese,
and Korean names. We also included NamSor ’s inference on the contributors’ countries
of origin from their last names as a feature. Using the country of national origin inferred
from last names, instead of the country of residence declared on the GitHub profile, is an
improvement on prior work, because it can increase the gender inference accuracy for people
residing outside their (or their ancestors’) country of origin, e.g., Italian Andrea’s living in
the US. We note, however, that this approach can still fail in some cases, e.g., for a person
with a Chinese last name and a non-Chinese first name such as Andrea Zhang.

Table 3.1 reports the accuracy of the gender inference tools and our classifier overall as
well as on names in East Asian languages, which are typically the hardest to make inferences
on [210]. Overall, our combination classifier has higher accuracy on all categories of names
than either genderComputer or NamSor. Our classifier fails mostly on gender neutral names,
such as Robin and a Chinese name Yan that can be both male and female, depending on
what Chinese character it is associated with. We also do not have enough training samples to
make accurate inference from languages such as Burmese.

3.4.3 Operationalizations of Concepts
To model the effects of different dimensions of social capital on sustained participation
on GitHub, our statistical modeling technique (survival analysis, Section 3.4.4) involves

2http://www.namsor.com

http://www.namsor.com

CHAPTER 3. SUSTAINED PARTICIPATION 50

Project

A

B

C

2008 2009 2016201520142013201220112010 2017

User U1, Window Jan-Mar 2010: <Project B Features>
User U2, Window Jan-Mar 2010: <Project B Features>
User U2, Window Sep-Dec 2013: <Project B Features>X
User U3, Window Apr 2015 – Jun 2016: <avg(Project A, Project C) Features>
User U3, Window Jul 2015 – Sep 2016: <avg(Project A, Project C) Features>

X

X
X

X

Figure 3.3: Illustration of data points we collect.

operationalizations of the different theoretical concepts discussed in Section 3.2. We introduce
the following operationalizations.
Panel Data An implicit assumption for social capital effects to manifest is that project
members had a chance to interact with each other. Since GitHub projects can be long-
lived and since open-source projects in general face high turnover [162, 101], we assemble a
longitudinal panel data set with measures computed over shorter time intervals; specifically,
we aggregate all data from 2008 to 2016 into consecutive three-month windows, i.e., we
compute quarterly values for all measures.

Note that this involves two levels of aggregation. First, for every person and every project
they contributed to, we compute quarterly values for different project-level measures (details
below). Second, whenever someone contributed to more than one project in the same three-
month window, thus having different sets of values for different projects in that window,
we average out their project-level measures across their different projects that window; our
results are qualitatively similar (significance and directionality of regression coefficients) if
we compute the maximum instead of the average across projects. Figure 3.3 illustrates the
structure of our data.
GitHub Disengagement—Outcome Variable The dependent variable in our model is the
occurrence of the disengagement event: i.e., if every commit a person authors is an indication
of repeated engagement, we consider a person’s last recorded commit as an indication of
disengagement if “long enough” time has elapsed for potential subsequent commits to be
observable. Naturally, programmers may take a break from GitHub and return later for
more contributions. Moreover, one’s last recorded commit may be very close to the end of
the observation period, so it is not clear whether they will return to contribute more; this
common phenomenon in longitudinal data is known as right censorship (the disengagement
event did not happen during the course of study) [213].

We considered 12 months of inactivity as “long enough” to confidently detect disengage-
ment, and used this operationalization in our survival models. Specifically, we consider that

CHAPTER 3. SUSTAINED PARTICIPATION 51

a GitHub contributor has disengaged at time t if they have not committed anything to
any open-source project for 12 months after t; i.e., the has_disengaged value is 1 in the
three-month window containing t, and 0 in all previous windows. Consequently, we also
consider that people whose last recorded commit is less than 12 months prior to the end of
our data are still active. Our models are robust to this operationalization and the results are
qualitatively similar (significance and directionality of regression coefficients) with 6 months
instead of 12. Note that we excluded 9,269 people with 12 months or more of inactivity that
returned to make new contributions. Among them, 4,932 were male, 4,337 female.
Team Cohesion Measures H1 assumes that during their open-source tenure, the more
often GitHub contributors participate in projects with high potential for building social
capital, the higher their chance of prolonged engagement, i.e., strongly connected networks
and presence of ties between subgroups increase the likelihood of sustained participation in
open-source. While subgroup or community detection has been extensively studied in the
social network analysis literature [203], as argued by de Vaan et al. [214] these techniques
are not suited for the operationalization of social capital constructs. Indeed, community
detection techniques interpret ties as a static construct, while interpersonal relations, trust,
and the implied social capital develop in time. Hence, to argue presence of a tie between two
developers, the relationship between them should be durable, and this durability should be
reflected in the operationalization. Therefore, as operationalizations for ties in team structures,
we follow Lutter [177] and de Vaan et al. [214] and compute two distinct but related measures
of social capital: interpersonal team familiarity and team recurring cohesion.

Team Familiarity We adapt Newman’s [215] measure of average interpersonal familiarity
within a team, which captures the intensity of prior collaborations between each pair of
current team members; the measure of strength of a developer’s social connection to a project
by Casalnuovo et al. [176] is conceptually similar. Team familiarity is aggregated over pairs
of contributors (dyads), and as such it is capable of capturing both ties within subgroups
and between subgroups, corresponding to bonding and bridging social capital.

To calculate dyadic interpersonal familiarity for project p in time window t, we iterate
over all time windows prior to t. Let i and j be two contributors to project p and let and ris

and rjs be the sets of projects they worked on in time window s, respectively. The familiarity
between i and j at time t is defined as the number of projects they worked on together in
past windows s < t, adjusted by the team size of each project at that time, assuming that
people who work in a smaller team are more familiar with each other. Only collaborative
projects (|rs| > 1) are considered. Then, the values of each window s are summed to result in
the interpersonal familiarity measure wijt defined as

t−1∑
s=1

∑
rs∈(ris∩rjs),|rs|>1

1
|rs| − 1

.
To measure team familiarity for project p in time window t, we define Team familiaritypt

as the sum of wijt for all pairs of contributors i and j normalized by the number of pairs of
contributors to p in time window t: The values range from 0 to 299.0.

Recurring Cohesion To capture tendencies for possible network closure from team cohesion,
we again follow Lutter [177] and de Vaan et al [214] in calculating a measure of recurring

CHAPTER 3. SUSTAINED PARTICIPATION 52

cohesion, which captures cliques of at least three people who have previously worked together.
If three programmers have worked on some project before, and they later worked together
again, the network containing this three-person clique can be considered more cohesive than
that where any three people only share dyadic ties. A clique is defined as a group of people
who at some time prior to current window t worked on a common project within a three-month
window; to reduce the complexity of enumerating and checking all possible cliques of large
teams, we only consider cliques of up to five members.

After identifying all qp cliques for a project p at time t, we construct a qp × qp matrix Mp,
where each entry (v, w) contains the number of people shared by cliques v and w. Then we
use all the off-diagonal, lower triangular values of Mp

v,w to calculate the recurring cohesion as:

Recurring cohesionpt = 1
2(qpt − 1)

∑
v<w∧v,w∈pt

|v|+ |v ∩ w|
|pt|

If there are no cliques, this measure is assigned 0; if there is exactly one clique, say v, the
measure is calculated as |v||pt| . The values range between 0 and 1547.5.
Team Diversity Measures H2 tests whether attachment of women to open teams with
regard to diversity of ties and information increases their chance of prolonged engagement
relative to men’s. To operationalize diversity of information we compute the share of newcomers
and heterogeneity of programming language expertise. Indeed, the more newcomers are in a
team, and the more diverse expertise team members have, the more diverse is information
exchanged in the team.

Share of Newcomers Following Lutter [177] and Perretti and Negro [216], we calculated
each team’s share of newcomers, i.e., the fraction of newcomers in a project in time window t
relative to the size of the project team at time t. The more newcomers there are in a team,
the more new ideas can be brought in, and the more new combinations of relationships can
be formed. We operationalize newcomers at project level, i.e., people who never contributed
to a given project prior to time t.

Heterogeneity of Programming Language Expertise Prior work has shown that diverse
knowledge is important to innovation and sustainable competitive advantage in many do-
mains [217]. A similar effect may be visible in OSS teams, where assembling a diverse team
with expertise in different programming languages or technologies may provide a competitive
advantage, and may help create social connections between members that bridge communities
and create opportunities.

Following Lutter’s measure of genre diversity in the film industry, based on the distance
measure of de Vaan et al. [214], we calculate a measure of programming language background
heterogeneity at project team level, that considers each team member’s prior experience
with different programming languages from prior open-source GitHub projects. We begin
with a list of the most popular 33 languages on GitHub [218]; all other languages in our
data are labeled ‘Other’, generating a set of K = 34 languages. On GitHub each project is
labeled with the predominant programming language used therein. Given a project p labeled
with the predominant language k, we consider that all developers who contributed to p have
experience with k: while individuals may vary in their experience with k, given the size of
the dataset we expect a reduction to the mean in terms of individual knowledge; i.e., we

CHAPTER 3. SUSTAINED PARTICIPATION 53

expect that, on average, project contributors would have had experience in the predominant
language.

For each contributor i in project p in the current time window t, we calculate the vector
fi = (fi1, ..., fiK) for each language k, where fik is 1 if i has worked in projects labeled
with the predominant language k. Then, the programming language background distance
dijt between two contributors i and j in the time window t is defined as the cosine of their
respective experience vectors. Possible values for this measure range from 1, indicating
complete similarity in the language histories of i and j, to 0, indicating complete dissimilarity.
Future refinements to this measure, beyond the scope of the current paper, could also consider
how similar different programming languages are with each other [219]. We then aggregate
these similarity measures at project level, over all pairs of contributors i and j, i > j, adjusted
for team size, and subtract the result from 1 to obtain a degree of dissimilarity:

Language heterogeneitypt = 1− 1(
|pt|
2

) ∑
i>j∧i,j∈pt

dijt,

Control Variables As control variables we consider:
Is Project Owner and Is Project Major Contributor both control for the contributor’s

position in the project. We define major contributors as those authored at least 5% of the
project commits during a given window [220]. Being a repository owner or major contributor
indicates higher levels of commitment, hence, we expect differences in disengagement rates.

Number of Followers and Number of Repository Stars both control for visibility of the
contributors and projects, respectively [121]. Popular developers, or developers contributing
to popular projects, tend to have a different experience on GitHub and may be less likely to
disengage [26, 97].

Niche width, i.e., the number of programming languages of the developer’s past GitHub
commits are spread across. We expect individuals knowing multiple languages to be more
versatile and less likely to disengage.

3.4.4 Survival Analysis (Quantitative)
To test our hypotheses quantitatively, we use survival analysis, a statistical modeling technique
that specializes in time to event data [213]. Survival analysis is particularly suitable for
modeling right-censored data like ours.
Estimation We model jointly the effects of the different social capital factors in Section 3.4.3
on the time to the GitHub disengagement event, while controling for covariates. For each
GitHub developer in our sample, we have a survival time T on record (number of quarters
until has_disengaged becomes 1). The probability of reaching a given survival time t is given
by the survival function S(t) = P (T > t), and the probability of leaving the state at time t is
given by the hazard rate h(t) = P (T <t+∆t|T≥t)

∆t
. The Cox model is a non-parametric regression

which can estimate, using partial likelihood, the effect of some independent variables X on
the hazard rate, h(t,X) = θ(t)f(X); i.e., it can estimate the coefficients β of the regression
h(t,X) = θ(t) exp(β′X), where β′ denotes the vector transpose of β [213]. The coefficients β
can be directly interpreted, e.g., if βi = 2, then a unit increase in Xi decreases the probability
of survival by exp(2) = 7.4 times.

CHAPTER 3. SUSTAINED PARTICIPATION 54

Many developers disengage early, in their first quarter. In open-source, occasional con-
tributions [221] are common. To model how the different factors contribute to explaining
the variability in disengagement rates differently early compared to later on, we split the
data set into two parts: developers who disengage in the first quarter and the rest. Since the
former only contribute one observation each (one quarter), we model this group using logistic
regression (glm in R). For the remaining developers, the data set contains repeated quarterly
observations. To model these, we estimate a Cox proportional-hazards model.
Diagnostics Whenever variables had highly skewed distributions, we removed the top 1%
of values as potential high-leverage outliers, to increase model robustness [222]; we also
log-transformed variables, as needed, to reduce heteroscedasticity [135]. We then tested for
multicollinearity (and removed predictors, as needed) using the variance inflation factor
(VIF), comparing to the recommended maximum of 5 [136]. Next we inspected the Schoenfeld
residual plots [223] (graphical diagnostics) to test the assumption of constant hazard ratios
over time. Finally, we report p-values for model coefficients as well as estimates of their effect
sizes (fraction of variance explained) from ANOVA analyses.

3.4.5 Developer Survey (Qualitative)
To better understand how social capital might impact women and men on GitHub differently,
we conducted a user survey.
Survey design The aim of the survey was to gain additional context information about
how open source contributors perceive their respective projects and the way they collaborate
in those project. The survey instrument thus focuses on contributors to collaborative open
source GitHub projects (with at least three contributors, to exclude “toy” projects [128]).
Respondents were instructed to choose such a project and base their answers on their
experience therein.

We asked open ended questions focusing on their perceived responsibilities and (if appli-
cable) reasons for them to stop contributing. Furthermore, we asked Likert scale questions
covering individual satisfaction of contributors being part of this particular project [224],
perceived work engagement [225], perceived social capital [226] (the principal construct of
our study) and the frequency of communication using different means of communication. We
opt to measure individual satisfaction since it has been repeatedly related to loyalty [227],
and therefore more satisfied developers can be expected to be less likely to disengage; while
work engagement has been shown to be related to turnover intentions [228]. We also aim to
assess communication as additional context information about how open source contributors
collaborate. For the first three scales we rely on existing instruments that we adapted for our
context. In order to assess the frequency of communication we developed a scale that covers
different potential means of communication such as reading each other’s code, text messaging,
email and others. This scale is divided into four levels ranging from “never or hardly ever”
to “every day or almost every day”. The provided means of communication cover typical
technologies, e.g., text, audio/video messaging, and typical means of communication in OSS
projects, e.g., reading each other’s code, commenting on existing code. We also included in
person communication for co-located teams.

CHAPTER 3. SUSTAINED PARTICIPATION 55

We also included multiple questions that focus on individual programming skills. The
purpose of these questions is not only to assess the potential bandwidth of different skill
levels. It can also be expected that differences related to skill level can have an impact on the
social structure within a project. Similarly to the niche width in the repository data analysis,
we asked participants to identify programming languages that they feel comfortable using.
The list we used was based on the most commonly used programming languages in GitHub.
We also asked contributors for how many years they have been active in OSS projects in
general and how they rate their skills in comparison to their fellow project contributors. This
question has been found to be mostly related to actual programming experience by Siegmund
et al. [229]. The latter question is related to the tenure diversity shown to be a predictor
for turnover in GitHub teams [58]. Finally we included typical demographic questions: the
age and gender of the participants and their education level. Wang and Fesenmaier have
shown that when keeping age and educational level constant, men have been members of an
online community for a longer period of time [230]. The educational level was based on the
Educational Attainment scale by the United States Census Bureau.
Procedure The population of interest for our study includes female and male contributors
to open source GitHub projects with at least 3 members. We piloted the survey internally
with 3 individuals and externally by contacting a total of 800 individuals (400 identified as
female and 400 as male by the gender prediction algorithm). Based on the 43 responses we
received (5.38% response rate), we revised the survey instrument. For the final survey, we
sent 500 invitations to contributors identified by the gender prediction algorithm as women
and 500 invitations to those identified as men. The delivery of 6 invitations failed. The survey
was available for 2 weeks. We received 107 responses, for a response rate of 10.7%. Responses
were anonymous and participation was voluntary. Out of the 107 survey responses received,
93 were complete. Out of the complete responses, 32 respondents identified as female, 56 as
male, and 5 did not disclose their gender, which leaves 88 usable responses for the following
analysis.

The average reported GitHub tenure of our survey respondents was 2.50 years, slightly
less than what other studies found (e.g., [197] found an average of 3.07 years). This difference
could be explained by the larger share of female participants in our survey (36% as opposed
to 25% in the survey by Vasilescu et al. [197]) and the fact that female participants in general
report shorter tenures than male participants. The tenure of our survey participants is thus
generally comparable to that of others in a similar setting. For open ended questions, we
conducted an open coding procedure (one author, expert qualitative researcher). For perceived
responsibilities we referred to the contributor types that can be found in the GitHub open
source survey [195]. For potential reasons to discontinue contributing to an OSS project we
reversed the motivations to contribute to open source [22]. The categories were iteratively
refined.
Accuracy of gender prediction We found a strong correlation between the computed and
reported gender. Out of the 107 responses we received, a total of 53 were responses to the
survey that we sent to contributors that were identified by the algorithm as female and 54
were responses that were identified by the algorithm as male. Out of the 54 participants our
algorithm identified as male, 52 identified themselves as male in the survey and 2 elected
not to disclose their gender. Out of the 53 participants our algorithm identified as female,

CHAPTER 3. SUSTAINED PARTICIPATION 56

37 identified themselves as female, 13 identified as male and 3 elected not to disclose their
gender.

The algorithm was thus nearly perfect in terms of predicting whether or not a contributor
indeed is of male gender (96.30%), as expected given that males are the majority group. The
accuracy for predicting whether or not a contributor is of female gender was lower (69.81%)
but still above chance. Our algorithm also did not classify female as male contributors: indeed,
all participants that were classified as male either reported to be male or did not disclose their
gender. This also suggests that the probability of the algorithm missing the contributions of
women should be low, since it is capable of detecting male contributors with high accuracy
(cf. [209] for discussion of the importance of not misclassifying women).

3.4.6 Replication Package
Our data collection and data analysis scripts, the survey instrument, and the input data for
the regression models in Table 3.3, are part of a replication package.3

3.5 Results

3.5.1 Survey results

What responsibilities do survey respondents have? We asked participants about what
they perceive to be their overall responsibilities in the project they selected. To analyze
the answers we conducted an open coding procedure based on on the different contributor
types in the GitHub open source survey.4 While applying the contributor types to the survey
responses we discovered additional codes ending up with nine distinct but not mutually
exclusive responsibility categories.

While participants reported anything between no responsibilities at all and five different
responsibilities, most participants reported either one or two. For both genders contributing
code is by far the most common perceived responsibility (76.14%), with project management
(30.68%) and project lead (22.73%) following at a distance. Male contributors mainly per-
ceive themselves as leaders or managers (37.50% of males report those as their perceived
responsibilities) while females appear to take over more non-code related activities such
as documentation and proposing ideas (62.50% of females report those as their perceived
responsibilities). While this observation concurs with the higher participation of males in the
mailing lists related to designing technology [212], the difference is not statistically significant
(p = .869 for non-code related activities).

How do survey respondents communicate? We analyzed whether and how respondents
interact with each other based on different means of communication. We found that 10 out
of 88 respondents never communicated with their fellow project members; Eight of those
identified as male (9.09%) and two as female (2.27%). Most of our survey participants thus
communicated via any of the provided means of communication.

3https://doi.org/10.5281/zenodo.2550931
4https://github.com/github/opensource-survey/blob/master/survey-instrument.md

https://doi.org/10.5281/zenodo.2550931
https://github.com/github/open source-survey/blob/master/survey-instrument.md

CHAPTER 3. SUSTAINED PARTICIPATION 57

Participants most commonly communicated via text messages, comments on code and
reading each others code in general (almost half of respondents communicate in this way
at least once or twice a week). Mail and in person communication are less popular (35.23%
and 28.41%, respectively) followed by social networks (11.36%), video messaging (15.91%)
and audio messaging (20.45%). Although there are no statistically significant differences
between female and male contributors in terms of their communication behavior (p = .979),
a closer look into the respective frequencies reveals that female contributors are slightly more
active communicating with their fellow project members. This observation concurs with the
results of Razavian and Lago: their study has shown that communication is seen by software
architects as feminine expertise [231]. In particular, women use text and audio messages as
well as social networks more frequently. Males on the other hand appear to use comments on
code more frequently than females.

How experienced are the survey respondents? We also asked survey participants about
their age, educational background and experience related to both programming in general
and contributing to open source projects in particular.

The respondents were mostly between 18 and 34 years old (56.8%) and have a bachelor’s
or master’s degree (67.0%). They reported feeling comfortable using between two and six
of the proposed programming languages (77.3%; niche width). Comparing female and male
contributors we found that male contributors reported a significantly higher number of
programming languages they feel comfortable using (F = 6.646, p < .05, η2 = 0.072). We
also found males to report a significantly higher level of expertise (F = 5.643, p < .05, η2

= 0.062). Both are medium effects as demonstrated by η2 values [232]. There were however
no significant differences between female and male contributors in terms of reported age,
level of education and years of experience in open source projects. One explanation could
be that female contributors are less confident about their programming expertise than male
contributors, while neither their education level nor their experience in contributing to open
source suggest a valid reason for this perceived difference. This would concur with Wang et
al.’s finding on women’s confidence-competence gap [233].

Why do people stop contributing to GitHub projects?Most of our survey participants
are still active in open source (73.9%). Out of the 32 respondents who identified as female, 6
reported that they stopped contributing to open source, while 26 reported that they are still
active. Among males, out of the 56 respondents, 17 reported that they stopped contributing
while 39 reported that they are still active.

We then conducted a logistic regression analysis on the survey data, using data from
the different scales, to model the factors that explain and predict disengagement (binary
variable). The multi-item scales we used (individual satisfaction, perceived work engagement,
and perceived social capital) are all reliable (Cronbach’s α between 0.84 and 0.92). We built
an explanatory model, including data from the three scales above, as well as programming
experience and reported gender as independent variables. Results from this regression analysis
(Table 3.2) showed that perceived bridging social capital and years of programming
experience are significant predictors of individual disengagement. Both bridging social capital
and years of experience are comparably strong predictors for individual disengagement (cf.
deviance explained in Table 3.2). Gender had no significant direct influence on disengagement.

CHAPTER 3. SUSTAINED PARTICIPATION 58

Table 3.2: Regression model for the user survey data (N = 88).

GitHub disengagement
response: has_disengaged = 1

exp(Coeffs) (Err.) LR Chisq

(Intercept) 14.41 (2.55)
Individual satisfaction
(Avg)

2.23 (0.52) 2.95

Work engagement (Avg) 2.00 (0.38) 3.97∗

Bridging social capital
(Avg)

0.22 (0.60)∗ 8.37∗∗

Bonding social capital
(Avg)

0.61 (0.34) 2.18

Experience relative to
team

0.74 (0.31) 0.91

Years of experience 0.72 (0.14)∗ 6.87∗∗

Education 0.77 (0.24) 1.27
Self-reported gender 2.83 (0.69) 2.44
Niche width 0.96 (0.17) 0.06
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

When looking into self-reported reasons for discontinuing to participate in a GitHub
open source project, we found two main reasons: (1) not having enough time to contribute
anymore; and (2) no immediate personal need for the respective project. Lack of time was
reported to be caused by work related ("changes in job", "work became over bearing") as well
as personal reasons ("diversifying hobbies", "personal life"). Lack of time was also identified
by Lee et al. as the most common barrier to participation faced by one-time-contributors
to FLOSS projects [234]. Other reported reasons were "the end of funding of our project",
frustration ("failure of our team of backend and front-end") or the perception that "the project
[...] is finished". When comparing reasons to disengage we found female contributors to report
personal reasons significantly more often (F = 4.87, p < .05, η2 = 0.188). This is a large
effect, concurring with the higher likelihood of women leaving and reentering the labor force
for personal reasons [235].

3.5.2 Survival analysis results

Who are the GitHub data developers? Out of 58,091 programmers, 39,643 have taken
a break longer than half a year, and 25,196 programmers have taken a break longer than 1
year.

The average age of an account (number of months since the first commit) is 15.01 months;
women are statistically younger than men (p < 2.2−16, Cliff’s δ = 0.23) these results concur
with our survey and earlier observations [236, 197]. On average, a programmer contributes
to 9.55 projects (median = 4); statistically, women contribute to fewer projects than men
(p < 2.2−16, Cliff’s δ = 0.16). The effect size is in both cases are small (< 0.33) [237].

How does social capital associate with disengagement? Figure 3.1 plots the Kaplan-
Meier estimates revealing that contributors are most likely to drop out in the first two years,

CHAPTER 3. SUSTAINED PARTICIPATION 59

Table 3.3: Regression models for early-stage disengagement (N = 29, 235 users; 140, 441 data
rows) and later-stage disengagement (N = 26, 299 users; 143, 984 data rows).

Early-stage (GLM) Later-stage (Cox)
response: Disengaged = 1 response: Disengaged = 1

Coeffs (Err.) LR Chisq Coeffs (Err.) LR Chisq

(Intercept) 1.61 (0.07)∗∗∗

Followers 0.61 (0.02)∗∗∗ 990.53∗∗∗ 0.70 (0.02)∗∗∗ 394.39∗∗∗

Stars 0.89 (0.02)∗∗∗ 45.18∗∗∗ 0.86 (0.02)∗∗∗ 103.26∗∗∗

Commits to date 0.63 (0.01)∗∗∗ 1635.38∗∗∗ 0.64 (0.02)∗∗∗ 718.15∗∗∗

Is major contrib. 0.77 (0.05)∗∗∗ 29.05∗∗∗ 0.63 (0.06)∗∗∗ 62.96∗∗∗

Is repo owner 0.56 (0.03)∗∗∗ 363.80∗∗∗ 0.51 (0.04)∗∗∗ 310.35∗∗∗

Niche width 0.47 (0.05)∗∗∗ 244.20∗∗∗ 0.54 (0.05)∗∗∗ 132.70∗∗∗

Is female 1.27 (0.03)∗∗∗ 68.79∗∗∗ 1.32 (0.04)∗∗∗ 59.96∗∗∗

Team familiarity 0.84 (0.08)∗ 4.83∗ 0.79 (0.09)∗∗ 13.22∗∗∗

Rec. cohesion 0.85 (0.04)∗∗∗ 30.77∗∗∗ 0.86 (0.04)∗∗∗ 28.46∗∗∗

Share newcomers 1.07 (0.04) 3.37 0.78 (0.04)∗∗∗ 35.70∗∗∗

Lang. heterogen. 0.70 (0.11)∗∗ 44.44∗∗∗ 0.63 (0.14)∗∗∗ 44.43∗∗∗

Lang. heter.:Female 0.73 (0.15)∗ 4.36∗ 0.69 (0.18)∗ 4.30∗

Female:Team fam. 1.09 (0.11) 1.05 (0.17)
Female:Cohesion 1.02 (0.05) 1.01 (0.04)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

and women are more likely to drop out than men in general. Table 3.3 presents summaries
of our regression models: a logistic regression for contributors who disengage within their
first three months of activity (left), and a Cox regression for contributors who disengage later
(right).

In both models the control variables behave as expected. More popular (i.e., followers),
active (i.e., commits to date) and versatile (i.e., niche width) developers are less likely to
disengage. Similarly, project owners, major contributors and contributors to highly starred
projects are less likely to disengage. Moreover, as expected, female contributors are at higher
risk of disengagement than males: in the short term, being female increases the odds of
disengagement from GitHub by 27%; in the long term, by 32%.

The two variables related to team cohesion have statistically significant effects, and these
effects are consistent between the two models. Contributing to projects where team members
are more familiar pairwise with each other from prior collaborations (Team familiarity),
or projects where cliques of three or more developers recur from prior projects (Recurring
cohesion), is associated with decreased risk of disengagement.

The variables related to team diversity also have statistically significant effects. Hetero-
geneity in the programming language backgrounds of project team members is associated with
decreased risk of disengagement both short and long term. Moreover, language heterogeneity
has a statistically significant interaction with gender: women are more likely to disengage
when language heterogeneity is low. Contributing to projects with high turnover (Share of
newcomers) is associated with higher risk of disengagement after the first three months.

CHAPTER 3. SUSTAINED PARTICIPATION 60

3.6 Discussion

3.6.1 Hypotheses
H1 linked social capital to the duration of engagement of OSS developers. Both aspects
related to bonding social capital, such as the need to reciprocate, and those related to bridging
social capital, such as exposure to new technologies and ideas can be related to developers’
motivation. Therefore, H1 stated that the more often people participate in projects with
high potential for building social capital, the higher their chance of prolonged engagement.
Our study strongly supports this hypothesis. Both regression models (Tables 3.2 and 3.3)
indicate that social capital, measured by an established survey measurement instrument [226]
and by team familiarity and recurring cohesion metrics respectively, is a statistically significant
predictor for disengagement. The regression coefficients are lower than one, meaning that the
increase in social capital decreases the chance of disengagement, other variables held fixed.

H2 stated that attachment of women to open teams with regard to diversity of ties and
information increases their chance of prolonged engagement relative to men’s. Table 3.3 shows
that H2 is partially supported. On the one hand, we found evidence that attachment
of women to open teams with regard to diversity of information (language heterogeneity)
increases their chance of prolonged engagement: language heterogeneity interacts with gender.
On the other hand, no such interaction could be found for diversity of ties (recurring cohesion
and team familiarity), therefore we conclude the support is only partial.

3.6.2 Implications
Our results provide empirical evidence that social capital impacts the prolonged engagement
of contributors to open-source. Hence, researchers can consider social capital as a lens to
investigate social phenomena in OSS.

Given the importance of and concerns about the sustainability of OSS [238, 10], our
results suggest that social coding environments like GitHub should be redesigned to support
women in developing social capital, on the one hand, and project maintainers in tracking
and being able to react to factors that negatively impact the formation of social capital, on
the other hand. We envision: 1) better search functionality and recommendation engines
for newcomers looking for projects to join, that take the target project team cohesion and
expertise diversity explicitly into account when making a recommendation, to facilitate the
formation of social capital, in particular for women (cf. [178]); 2) stemming from the previous
point, better mentorship support for newcomers in general and women in particular, whereby
mentors can be automatically recommended to potential mentees to facilitate the formation
of social capital (cf. [8]); and 3) UI elements besides the ones currently available on GitHub
repository pages, such as badges [239], that allow project maintainers to track worrisome
trends in factors negatively associated with the development of social capital (e.g., team
expertise diversity and turnover).

CHAPTER 3. SUSTAINED PARTICIPATION 61

3.6.3 Threats to Validity
Like any empirical study, our work is subject to threats to validity. First, our results depend
on the data collected by GHTorrent, which may not be a full replica of GitHub data [128].
We carefully cleaned and filtered our data to avoid the GitHub mining “perils” [128]. The
project-level metrics are calculated based both on the contributors’ own forks and their base
repositories (the repository to which they make pull requests). We also focus on commits
instead of pull requests because only a fraction of projects use pull requests [128]. We
repeatedly manually checked data outliers e.g., large repositories that are not software
projects, but tutorials. We excluded projects with large number of zero-commit forks and
repositories with huge numbers of forks and commits (top 1%).

A second threat to validity may come from our gender classifier. The accuracy of the
classifier is limited by the information users display on GitHub. Many users do not use their
real names so we cannot extract their gender information reliably [195]. Some users display
names in a language for which our gender classifier does not have data. Moreover, there are
many top female developers from East Asia [233]. It is difficult to verify their gender identity
because their names are gender neutral and their profile pictures are not necessarily their
own photos. Furthermore, our gender classifier, as any automatic classifier we are aware of, is
based on the assumption of binary gender, and as such our work cannot explicitly take into
account contributions by non-binary software developers.

Third, we used a single coder for the open ended survey questions which might result in a
subjective interpretation of the responses. We attempted to mitigate this threat by building
on established categories.

Finally, statistical modeling required many operational decisions (e.g., time windows,
length of inactivity): ours follow best practices and prior work. Again following best practices,
we tested sensitivity of our operational decisions. Given space restrictions, we prioritized
replicability and validity, reporting all decisions made, but in cases of insensitive parameters
did not always discuss the rationale for a specific value.

3.7 Conclusions
In this paper we have studied the impact of social capital on sustained participation of
open source contributors and, in particular, on gender differences in this impact. We have
performed a mixed-methods empirical study combining survival analysis on a longitudinal
data set of 58,091 open source contributors and their GitHub contributions, with a survey
of 98 developers. Our studies show that in general social capital positively affects sustained
participation in open source on GitHub. For women, diversity of the project members’
expertise becomes crucial to sustain their participation: we found that higher team diversity
along dimensions of programming language expertise is associated with decreased risk of
disengagement both short and long term.

Our secondary contribution is the very first gender inference tool explicitly targeting
Chinese, Japanese, and Korean names, achieving 83.62% accuracy overall, and at least
60.00% on (South) East Asian names. This opens multiple directions of further research from

CHAPTER 3. SUSTAINED PARTICIPATION 62

replication of earlier gender studies [62, 212, 58, 7] for East Asian contributors to exploration
of new datasets such as Stack Overflow in Japanese.5

In the same way as we have studied the impact of language heterogeneity on the disengage-
ment of women, future work should also consider the impact of gender diversity and gender
homophily, i.e., preference of people to interact more with people of the same gender, of the
teams on the disengagement of women [58, 67]. Furthermore, our study can be replicated to
investigate the relation between social capital and sustained participation on other platforms,
e.g., Stack Overflow, and the impact of different demographic aspects.Finally, understanding
the relation between social capital and sustained participation on GitHub is the key to
designing appropriate interventions aiming at ensuring engagement of women in open source
software projects more broadly.

5https://ja.stackoverflow.com/

https://ja.stackoverflow.com/

Chapter 4

Detecting Interpersonal Conflicts

Interpersonal conflict in code review, such as toxic language or an unnecessary pushback, is
associated with negative outcomes such as contributors’ disengagement from OSS. Automatic
detection is one approach to prevent and mitigate interpersonal conflict. Two recent automatic
detection approaches were developed in different settings: a toxicity detector using text analytics
for open source issue discussions and a pushback detector using logs-based metrics for corporate
code reviews. This chapter tests how the toxicity detector and the pushback detector can be
generalized beyond their respective contexts and discussion types, and how the combination
of the two can help improve interpersonal conflict detection. The results reveal connections
between the two concepts and signals that can reflect potential interpersonal conflict.

4.1 Introduction
In online communities and offline workplaces alike, interpersonal conflicts, understood broadly
as including hostility, hate, aggression, toxic language, bullying, etc, has been a major concern
and topic of research [240, 241, 242]. The consensus is not only that such forms of interaction
are antisocial, but also that they are all associated with negative outcomes in the communities
or groups where they take place, including decreased well-being, job satisfaction, stress, and
turnover [44, 243, 46]. In addition, these outcomes tend to disproportionately affect members
of underrepresented groups [244, 245, 246].

In software engineering, the problem of interpersonal conflicts is also well recognized. For
example, in software development, some communities and maintainers have a reputation for
being toxic [247, 248, 249]. Although relatively milder, impolite language is seen as a barrier
to newcomers [31, 88]. There are repeated anecdotes of sexist behavior, harassment, or con-
tributors concealing their identity to avoid abuse [5, 12, 195, 133, 51]. More broadly, evidence
is also starting to emerge about anger [154], negative emotions [250], impoliteness [251, 252],
pushback [47], or directly toxicity in issue discussions [253, 46, 254, 255], code reviews [256],
and Gitter developer communication [257]. The programming-related Q&A platform Stack
Overflow is also notorious for being ‘toxic’ [258].

However, despite comparable agreement about the importance of the problem, there
is relatively less progress in software engineering compared to other domains in terms of
automatic detection for prevention or mitigation [259, 260]. Several factors contribute to this

63

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 64

lag, including inherent difficulty of the problem, but also domain specificity of some toxic
interactions and scarcity of labeled data.

Prior research on automatic detection of toxicity and related constructs in software
engineering has room for improvement. In particular, we note that approaches published
previously in the software engineering literature have generally all been based on textual
analytics [46, 261]. For example, Ramen et al. [46] experimented with different sets of features,
all text-based, to train a classifier to detect open-source software (OSS) toxic issue discussions,
which is defined as “rude, disrespectful, or unreasonable comment[s] that [are] likely to make
someone leave a discussion” – a definition of toxicity used also in other public discussion forums
such as Wikipedia or the New York Times, originating from Google’s project Jigsaw [262].
However, follow-up work by Sarker et al. [257] showed that Raman et al. ’s approach has
limited generalizability.

Meanwhile, researchers have long been arguing that meta-infor-mation can be very useful
to refine inconclusive classification [263]. For example, people with a history of hate speech
are more likely to engage in such behavior again than people without any history [264]. In
software engineering, Egelman et al. [47] showed that using only meta-information can detect
pushback, defined as “the perception of unnecessary interpersonal conflict in code review
while a reviewer is blocking a change request.”

Notably, the two concepts – ‘toxicity’ as operationalized by Ramen et al. [46] and ‘pushback’
as operationalized by Egelman et al. [47] – are similar, but distinct. For instance, while some
types of Egelman et al.’s pushback could be considered toxic (e.g., personal attacks), others
would not (e.g., persistent nitpicking). Moreover, the types of software discussions analyzed
and the study settings in the two studies are arguably very different — Egelman et al.’s
classifier was applied only on code reviews internally at Google and Raman et al.’s classifier
was applied only on public GitHub issues (not code reviews). Despite these difference, it
seems possible that these two approaches could inform one another as a way to improve
detection of interpersonal conflict.

In this paper, we contribute: (1) a comparison of how toxicity and pushback manifest
in open source and in a company, and (2) a systematic evaluation of our ability to predict
toxicity and pushback in different settings and using different approaches. To this end, we use
existing and new labeled datasets that capture both concepts in open-source and corporate
code reviews. We use 10-fold cross-validation to evaluate and compare the two previous
classifiers and also develop a new combined classifier using features from both. Our results
provide insights on how these classifiers work in different contexts. The comparisons and
discussion also shed light on the relationship between the two concepts, toxicity and pushback,
and the two settings, open source and corporate.

By improving the accuracy of automated approaches to detect toxicity, pushback, and
possibly other forms of interpersonal conflict in software discussions, this research paves the
way for designing tools to prevent, mitigate, and further study these phenomena, including
designing interventions to offer just-in-time guidance to developers in such situations. A
detector can also be a powerful tool for researchers studying the effectiveness of tool design and
other interventions. More generally, this research offers an opportunity to apply a technique to
both open and closed source software, possibly benefiting from synergies, a rarity in software
engineering research, in our experience.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 65

4.2 Related Work
This paper builds directly on two recent approaches to detecting interpersonal conflict in
software engineering artifacts, by Egelman et al. [47] and Raman et al. [46]. In Egelman et
al.’s study at Google, the authors conducted interviews to develop the concept of pushback and
designed logs-based metrics to detect pushback in code reviews. These metrics were rounds of
a review, active reviewing time, and active shepherding time. Their logistic regression model
obtained high recall (93%–100%) and low precision (6%–11%).

The other approach that this paper builds directly on is that of Ramen et al. [46]. The
authors manually annotated toxic issue threads from projects on the GitHub platform, and
experimented with outputs from different sets of generic text-based classifiers to train a new
classifier to detect toxic issue discussions specific for open source. They reported the highest
10-fold cross-validation accuracy when combining Stanford’s Politeness Detector [155] with
Google’s Perspective API.1 The present paper expands on Raman et al. ’s text-based features,
compares them with Egelman et al.’s classifier [47], and experiments with combining the two
classifiers.

In addition to the pretrained general-purpose linguistic tools used by Raman et al., we
also explore other linguistic techniques to detect interpersonal conflict. Vocabulary-based
approaches have been used for text classification. Open-vocabulary analysis extracts features
from the text being analyzed using statistical methods [265]. For example, Sood et al. [266]
showed that an SVM classifier using binary presence and frequency of n-grams as features can
be used to predict personal insults on social news sites. Monroe et al. [267] showed that the log
odds-ratio of an n-gram (the frequency of being in one group of text divided by 1 minus the
frequency) in two different groups can be used to identify n-grams that are over-represented in
one group relative to the other. We build on Monroe et al.’s work in Section 4.5 by attempting
to find out if there is a set of vocabulary that can distinguish between the positive labels
(toxic or pushback) and the negative labels (non-toxic or non-pushback).

Closed-vocabulary analysis relies on predefined lists of words as features. Building on the
classic linguistic theory of politeness by Brown and Levinson [268], Danescu-Niculescu-Mizil
et al. [155] developed a computational parser for politeness strategies. Politeness theory
divides politeness strategies into positive politeness and negative politeness. Positive politeness
strategies encourage social connection and rapport, such as gratitude, optimistic sentiment,
solidarity, etc. Negative politeness strategies try to minimize the imposition on the hearer,
for example, by being indirect or apologizing for the imposition [269, 270, 268]. On the other
hand, impolite behaviors can be direct questions (e.g., “why?”) or sentences that start with
second-person pronouns, which may sound forceful. Prior studies showed that the politeness
strategy parser [271] is able to predict if a conversation may turn awry [272] and can generalize
well to various contexts. We build on this work by using politeness strategy features in our
classifiers.

Finally, in the software engineering community, sentiment analysis [273] is a popular
technique for analyzing issue discussions [154], pull request comments [274], and forum
discussions [275]. Prior work has shown that sentiment analysis classifiers need to be trained
using software engineering data because many traditionally negative phrases may have

1https://perspectiveapi.com/

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 66

neutral sentiment in the context of software engineering [157], for example, “execute” (for a
survey see Zhang et al. [276]). Popular software engineering sentiment analysis tools include
Senti4SD [275] and SentiCR [277]. Senti4SD, developed by Calefato et al. [275], is trained on
4,000 posts extracted from Stack Overflow. This dataset is part of the Collab Emotion Mining
Toolkit [278]. SentiCR [277] is trained on 1,600 manually labeled code review comments. In
our study, we build on this work by using sentiment analysis developed for code reviews as a
feature in our classifiers.

More generally, our work can be seen as related to the community smells literature, i.e.,
sub-optimal developer community structures that may lead to lower productivity [279, 280],
as interpersonal conflict partially overlaps with some types of community smells. Some of the
most common community smells are Lone Wolf, Organization Silo, and Bottleneck. There
are some attempts to detect community smells automatically. Magnoni [281] extended the
classifier CodeFace that was built for code smell detection and applied it on open-source
contributors’ networks. CodeFace4Smells tries to detect community smell by detecting
certain types of sub-communities. Building on CodeFace4Smells, Huang et al. [280] built
a machine learning model that can detect the three most common community smells. Huang
et al. incorporated sentiment features such as mean anger and mean joy. Their model can also
predict if a developer leaves a community after being affected by community smell. Palomba
et al. [282] performed information gain analysis on several machine learning models and found
that lines of code, churns, and period commits are among the features that contribute the
most to detecting community smells.

4.3 Research Questions
Our overarching goal is to bridge the gap between the existing literature on toxicity [46] and
pushback [47] in software development. Besides the two concepts themselves, there are three
fundamental differences between the prior work studies in this area, which we systematically
explore in this paper: (1) the context (open- vs. closed-source), (2) the type of discussion
(issues vs. code review), and (3) the approach to classify (text-based vs. logs-based). Overall,
we answer the following research questions and sub-questions:

First, we explore how well the two classifiers generalize beyond the respective settings in
which they have been developed, while maintaining their specific target concepts (toxicity
and pushback) and fundamental approaches to classification (text- and logs-based):
RQ2. How well do existing classifiers generalize across context and type of discussion?

To answer this question, for each classifier we explore one additional setting beyond
the one in which they have been developed. For the toxicity classifier [46], we experiment
with open source code reviews in addition to the original issue discussions. Similarly, for
the pushback classifier [47], we experiment with comments on open-source pull requests, the
approximate equivalent of the original Google code reviews:
RQ1.1. How well does a text-based toxicity classifier designed for open-source issues perform
when classifying toxicity in open-source pull requests?

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 67

Table 4.1: The relationship between our four datasets and their corresponding RQs.

Classifiers Number of
Data PointsText-based Logs-based Combined

D1 Toxic Open-Source
Issue Comments

Raman et
al. [46]

RQ2.2 RQ3.1 80 toxic,
160 non-toxic

D2 Toxic Open-Source
Code Review Comments

RQ1.1 RQ2.2 RQ3.1 102 toxic,
204 non-toxic

D3 Pushback in
Corporate Code Review

RQ2.1 Egelman et
al. [47]

RQ3.2 493 pushback,
809 non-pushback

D4 Pushback in
Open-Source Code Review

RQ2.1 RQ1.2 RQ3.2 201 pushback,
323 non-pushback

RQ1.2. How well does a logs-based pushback classifier designed for corporate code reviews
perform when detecting pushback in open-source code reviews?

Second, given the theoretical overlap between the concepts of pushback and toxicity, we
explore how well the two fundamental approaches to classification, text-based (toxicity) and
logs-based (pushback) generalize to detecting the other concept if appropriately trained on
relevant data for that other concept:
RQ3. How well do existing classifiers generalize for both toxicity and pushback?

RQ2.1. How well does a text-based (toxicity) classifier perform when classifying pushback,
in both open and closed-source code reviews?

RQ2.2. How well does a logs-based (pushback) classifier perform when classifying toxicity in
open-source code reviews and issue discussions?

Finally, we explore to what extent using design insights from one classification approach
can be used to improve on the other:
RQ4. To what degree can combining existing approaches improve detection of toxicity and
pushback?

RQ3.1. How well can a combined text- and logs-based classifier classify toxicity?

RQ3.2. How well can a combined text- and logs-based classifier classify pushback?

For completeness, in addition to answering these questions, we also replicate the original
experiments on toxicity in open source issues [46] and pushback in Google code reviews [47].

4.4 Datasets
To answer our research questions, we used a mix of existing (whenever possible) and new
datasets on toxicity and pushback. First, we used the two existing data sets from prior work

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 68

on issue toxicity in open source [46] and code review pushback at Google [47]. Additionally,
we created two new datasets on code review toxicity in open source and code review pushback
in open source. Table 4.1 displays each of these four datasets as a row, labeled D1-D4,
summarizes how each of our research questions and the prior work relates to each data set,
and describes the size of the datasets.

4.4.1 Design Decisions and Tradeoffs
Before describing each dataset in detail, we note several important high-level design decisions,
assumptions, and tradeoffs we had to make when creating the two new datasets, and in order
to meaningfully compare results across all four datasets.
Unit of labeling In the original toxic issue comments dataset by Raman et al. [46], ground
truth labels are available for individual comments and the issue thread-level toxicity labels
are an aggregation of comment-level labels, i.e., if there is at least one comment labeled as
toxic, the entire discussion is labeled as toxic. In contrast, the pushback code review dataset
by Egelman et al. [47] contains only thread-level labels. Since we are reusing these datasets
without relabeling, we maintain the same unit of labeling also in the two newly created
datasets of the same concept.
Unit of classification Our experiments focus on classifying toxic or pushback entities at the
thread level, because the logs-based metrics, such as the rounds of review, used by Egelman et
al. are not applicable for individual comments. However, because the text-based classifier
works at the comment level, for pushback datasets where we only have thread-level labels,
we had to assign each comment the same label as the thread-level label. We will discuss the
limitation when we present the results.
The notion of code review Our two new code review toxicity and pushback datasets
are extracted from open-source projects on the GitHub platform whereas Egelman et al. ’s
dataset [47] was extracted from internal Google code reviews. In addition to the differences
between the corporate and open-source contexts in terms of culture, process, and their
observed consequences, the mechanics of code reviewing also differ. Google uses a proprietary
dedicated code review management system [283] where all review comments are associated
with specific code changes. On GitHub, projects typically manage code reviews as part of
pull request threads. However, even though canonically code review comments on GitHub
are expected to be attached to specific lines of code and can therefore be distinguished from
more general discussion comments part of the same pull request thread, practices vary widely
across projects [284]. For reasons of uniformity across projects when sampling candidates
for manual labeling, and since we expect that indicators of pushback may occur across pull
requests as a whole, not just review comments attached to specific changed lines, we consider
the conceptual equivalent of a Google code review to be an entire GitHub pull request thread,
including all its general and line-specific comments, i.e., an “open-source code review thread”
hereafter.
Representativeness When sampling toxicity and pushback pull request candidates for
manual labeling, we use several heuristics to narrow down the search space (details below)
instead of random sampling. While this compromises the statistical representativeness of our
datasets, it is necessary to do this since the two phenomena we study are relatively rare;

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 69

random sampling is unlikely to discover many, if any, instances of these phenomena. We note
that this is not only a limitation of the two prior work studies we build on, but also of all
similar work on hate speech detection etc. [285]. Alternative approaches to building labeled
datasets for hate speech detection are, as of 2021, still actively being researched [285].
Open source vs corporate metrics While we try to replicate Egelman et al. ’s pushback
detection method, some measures are unfortunately not observable on GitHub. For example,
we cannot replicate “shepherding time,” which in Egelman et al. ’s study is the total amount
of time an author spent actively viewing, responding to reviewer comments, or working on the
selected code change, including looking up APIs or documentation. The public GitHub trace
data about pull request threads captures only wall clock times, which is an overapproximation
of the active shepherding time. We are particularly interested in evaluating how well such
approximation metrics, that are less precise but more widely available outside of a corporate
setting, can capture the same phenomena.

4.4.2 Toxic OSS Issues (D1; pre-existing)
This dataset, originally created by Raman et al. [46], consists of 80 GitHub issue discussions
labeled as toxic by the authors. Starting from the GHTorrent database [84], Raman et al. [46]
identified potentially toxic issue comments using the keyword “attitude” (the authors of
the toxic comments are often criticized in the same thread by others, typically the project
maintainers, about their attitude), and from issue threads “locked as too heated”—one of the
mitigation strategies afforded by the GitHub platform. Raman et al. then manually reviewed
a sample of candidate issue threads from this initial list and assigned ground truth toxicity
labels.

We decided to replace the control group in Raman et al.’s dataset [46] because we noticed
that those non-toxic comments’ total number of characters is significantly shorter than for
the toxic comments. Since a priori we have no reason to expect that toxic issues are generally
longer than non-toxic issues, and we want to capture other aspects of toxic comments, we
compiled a new set of non-toxic issues. Inspired by Egelman et al. [47], we constructed
stratified samples by propensity score matching on the length of all comments within an issue
thread (which is not used in any of our prediction models), after excluding code segments
and comments from obvious bots [252], e.g., a continuous integration tool. Our new set of
non-toxic issues contains two non-toxic issues for every toxic issue.

4.4.3 Toxic OSS Code Review (D2; novel)
We compiled a dataset of 102 toxic open-source code review threads (i.e., pull request threads
with all their associated comments) and a separate corresponding control group of non-toxic
open-source code review threads, using a similar approach to the one originally taken by
Raman et al. [46] for issues. Specifically, we use three heuristics to narrow down the search
space for candidates in the GHTorrent [84] database, followed by manual review and labeling.
Egelman et al. [47] showed in their study of pushback that inter-rater agreement is very high
when using multiple annotators, implying that a single annotator is sufficient. One author of
the paper carried out the labeling independently, assigning “toxic” and “non-toxic” labels to

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 70

the threads as a whole if at least one of the comments was considered to be toxic; when in
doubt, we discussed the respective examples as a group and assigned labels collectively.

The three heuristics were:
• Locked as “too heated”—this built-in GitHub mitigation mechanism is available for

both issues and pull requests; or
• Containing the keyword “attitude”; or
• Containing “code of conduct”, a novel addition relative to Raman et al. ’s heuristics [46].

We anecdotally observed that a project’s code of conduct, when present, is invoked by
maintainers when responding to a toxic comment.

Then, as in dataset D1, we performed propensity score matching on the total length of
comments to assemble a control group containing two non-toxic open source code reviews for
every toxic one.

4.4.4 Pushback in Corporate Code Review (D3; pre-existing)
We used the collection of code reviews gathered by Egelman et al. [47] from Google’s internal
corporate repository. The authors collected these using two methods:

First, Egelman et al. [47] pulled a stratified random sample of code reviews, then surveyed
authors, reviewers, and other engineers about whether they perceived each code review as
having elements of “pushback.” The authors then labeled a code review as containing pushback
if at least one respondent noted that the review contained at least one element of pushback.
Code reviews are labeled as not containing pushback if (a) at least one person responded
to a survey about it, and (b) all survey responses about that code review indicated that no
elements of pushback were present.

Second, those same respondents could report a code review that they thought contained
pushback. They labeled these reported code reviews as “containing pushback”, except that
we discarded those that participants indicated were problematic only because of excessive
review delays, which are not part of Egelman et al. ’ definition of pushback [47].

4.4.5 Pushback in OSS Code Review (D4; novel)
To construct an open source counterpart to the corporate code review pushback dataset,
we replicated the survey instrument used by Egelman et al. [47], with only surface-level
modifications to adapt to pull requests and their specifics on the GitHub platform instead of
Google-specific terminology.

We then compiled a sample of GitHub code reviews that each:
• had at least 10 comments, to ensure that at least some amount of interpersonal

interaction was present, and
• had no more than 50 comments, to limit the reading effort expected from survey

respondents.
Additionally, to ensure some diversity in code review outcomes, half of the sampled code

reviews were merged pull requests and half were closed without being merged. We emailed
survey invitations to the authors and reviewers who display their emails publicly.

As with Egelman et al. ’s survey [47], we also asked participants to report other code
reviews that they thought contained pushback; 63 were reported this way. The reasons that

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 71

these code reviews were reported as pushback are shown in Figure 4.7 in Appendix. We then
labeled these discussions using the survey data in the same way as in Dataset D3. As a result,
this dataset contains only conversation-level labels.

Since one can maximize the recall of a classifier by predicting all data points as positive,
the minimum precision score is the percentage of positive data points. Therefore, to make
D3 and D4 more fairly comparable, we downsampled D4’s negative data points to match
the positive-negative ration in D3. In the end, D4 contains 201 pushback threads and 323
non-pushback threads.

4.5 Exploratory Analysis
As a first step, before applying machine learning, we explored how well a more basic word-
frequency approach could distinguish discussions with one label compared to the other (e.g.,
toxic vs. non-toxic) in each of the four datasets. To this end, we used an open-vocabulary
analysis [267] to automatically identify words and phrases that are used distinctly more
often in one label than the other, and then manually reviewed these looking for themes.
This analysis serves two purposes. First, it helps to triangulate that the manually assigned
labels are meaningful, if “obvious” differences between the two classes are detectable using
this independent approach. Second, it informs the design of more sophisticated automated
classification, by identifying promising features.

Concretely, for the automated part we used log odds-ratio with Dirichlet prior [267] to
identify n-grams that are significantly overrepresented in positive labels, i.e., those labeled
as toxic or pushback, compared to the negative labels, i.e., those labeled as non-toxic or
non-pushback. Since our data sets do not have an equal volume of text, we measured frequency
using the log of an n-gram’s odds-ratio. Because some n-grams may appear only in one label
and not the other, we added a smoothing Dirichlet to the vocabulary. We pre-processed
the text by removing URLs and numbers. We did not remove stopwords before performing
the analysis because removing them can interrupt sentences and potentially eliminate some
meaningful n-grams. We then ranked n-grams by z-scores and kept those with absolute
z-scores above 2.326, which corresponds to the statistical significance cutoff of p < 0.01.
Finally, we kept the 10 unigrams, bigrams, and n-grams with the highest positive z-scores
(from positive labels) and 10 with the lowest negative z-scores (from negative labels).

We then manually examined the usage of these n-grams in our data sets by sampling
comments containing them. We looked for patterns in these comments that could help us
distinguish toxic or pushback comments from non-toxic or non-pushback ones, respectively.
That is, we applied this process to all four of our datasets

To illustrate the results of this exploratory analysis, consider the results for dataset D2
Toxic Open-Source Code Review Comments in Table 4.2. In the table, empty cells indicate
that no more n-grams were above or below the z-score cutoff. Due to space constraints, the
tables (Tables 4.3, 4.4, and 4.5) for the remaining three data sets are shown in Appendix.
Below, we describe several patterns that we observed from this analysis.
Second Person Pronouns One clear pattern we can observe from the word frequencies is
the use of the second person pronoun “you” in toxic text, including phrases like “you are”,

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 72

Table 4.2: N-grams that are over-represented in either class in D2 Toxic OSS Code Re-
view Comments. N-grams with second-person pronouns are in bold. N-grams with software
engineering terms are underlined.

unigram z-score bigram z-score ngram z-score

you 12.172 it is 5.555 if you want 3.397
people 7.292 you want 4.81 it is not 2.712
even 7.097 that is 4.272 do you think 2.576
do 6.71 going to 4.256 you need to 2.397
what 6.644 you are 4.187
is 6.373 trying to 4.053
want 6.078 if you 3.682
your 5.796 to do 3.668
because 5.657 do not 3.556

Toxic

why 5.547 you think 3.539
tests -4.773 could you -2.815
unit -4.858 the pull -2.889
vs -4.982 as the -3.137
file -5.15 and the -3.143
files -5.165 of files -3.296
for -5.574 we can -3.48
test -5.76 pull request -3.668
from -5.872 code to -3.856
at -6.732 to the -4.031

Non-toxic

line -6.782 instead of -5.004 the pull request -2.276

“if you want”. “You” is the unigram with the highest z-score in both D1 (Table 4.3) and D2.
In Table 4.2, n-grams with second-person pronouns are in bold.

To investigate further, from D1 and D2 we randomly sample 10 toxic comments and 10
non-toxic comments that include “you.” Some of these comments involve direct attacks on
the second person recipient, such as “[y]ou don’t care to be a part of the project,” “[y]ou are
expected to comply,” “[y]ou decided to insult [...].” This echoes what Danescu-Niculescu-Mizil
et al. [155] found: the use of second-person pronouns at the beginning of a sentence is more
likely to be impolite. The same pattern is observed In D3 (Table 4.4).

In non-toxic comments in D2, the only n-gram that contains “you” is “could you”, which
is a negative politeness strategy that tries to minimize the imposition on the hearer by being
indirect. The counterfactual form “could” is more polite than the future-oriented variant
“can” [155]. This is also true in D3, where we again see some hedge words and other politeness
strategies, such as “could you”, “should be”, and “seems” among non-pushback code reviews.
Gratitude Gratitude is another common theme in non-pushback text, both in open and
closed source code reviews (D3 and D4 (Table 4.5)). These n-grams included “thanks” and
“thanks for” that appear among non-pushback code review comments.
Technical Discussion In D1 and D2, we see many software engi-neering-related n-grams, e.g.,
“tests” and “the pull”, among non-toxic comments but almost none among toxic comments.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 73

In D3 and D4, we likewise see more technical terms among non-pushback comments. In
Table 4.2, n-grams with software engineering terms are underlined.
Code of Conduct We occasionally see “code of” and “the code of” appear in the top-10
lists. Typically, these two n-grams appear when referring to “the code of conduct”, often as a
reminder that someone violated the code of conduct. For example, one contributor wants the
maintainer “to enforce the code of conduct [...].” Interestingly, we observe this pattern in D4
(pushback in open source code reviews), which was sampled without using this as a search
term.
No Pattern and Overfitting Finally, among all four datasets, we see some n-grams with
no discernible rationale for why they might be indicators or contraindicators of toxicity or
pushback. For instance, in Table 4.2, the bigrams consisting of only stop words, e.g., “as the”,
“and the”, and “to the”, appear to just be noise, rather than true indicators of non-toxic
open-source code review. As an example of overfitting, the top unigram in D3 (“<tech1>”)
indicates a widely-used, Google-specific piece of technology.

Overall, this exploration confirms that discussions in the positive labels, tend to shift
focus away from the technical aspects themselves and onto interpersonal issues. The ground
truth labels on all four datasets appear meaningful, since there are noticeable differences in
the relative frequency of words and phrases between discussions with presence and absence
of toxicity and pushback. Moreover, the analysis implies that there is substantial overlap
between the two concepts of pushback and toxicity, suggesting that incorporating text-based
features into classifiers for both concepts is worthwhile. However, the absence of a clear pattern
for many n-grams suggests that a purely frequency-based approach would be insufficiently
discriminatory for an accurate classifier. In what follows, we introduce more sophisticated
classification approaches.

4.6 Methods for Classification

4.6.1 Building classifiers for toxic comments and pushback in
code reviews

Text-based features In this paper, we reuse and improve the classifier developed by Raman
et al. [46], which takes outputs from several text-based pretrained classifiers as features. We
first preprocessed the text by removing URLs, quotes, numbers, etc. Then we feed the text
into the following three pre-trained NLP classifiers, and use the outputs as features.

Following Raman et al. [46], we collect (1) the toxicity score and identity attack score from
the Perspective API ([0, 1] range, with 1 being the most toxic/aggressive) and (2) count the
occurrences of different politeness strategies using the politeness parser [155, 271] (normalized
to [0, 1]). In addition, we used (3) a sentiment analysis tool developed for software engineering
code review comments, SentiCR [277], with reportedly better performance on GitHub data
than other sentiment analysis tools [276]. The output from SentiCR is either positive sentiment
(1) or negative sentiment (-1).
Logs-based features Because we are interested in answering whether the pushback classifier
by Egelman et al. [47], which uses logs-based features, can be applied to open-source code

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 74

review comments (RQ1), we calculated logs-based metrics for D2 and D4, the two novel
datasets. Egelman et al.’s work on code review in the company used rounds of review, active
reviewing time, and active shepherding time to build a classifier for pushback. They defined:

• Rounds of review as the number of batches of contiguously authored comments, as
it “captures the extent to which there was back-and-forth between the author and
reviewer.”

• Active reviewing time is “the time invested by the reviewer in providing feedback,”
which includes actively viewing, commenting, or working on code review.

• Active shepherding time is the time “the author spent actively viewing, responding to
reviewer comments, or working on the selected CR, between requesting the code review
and merging the change into the code base.”

The above “active” times may include time outside of code review, e.g., editing files, but does
not account for in-person conversations.

As discussed in Section 4.4, for GitHub data we could not exactly replicate all three
logs-based metrics used by Google, because of differences between Google’s code review tool
and the GitHub pull request workflow. Therefore, by necessity we operationalized these
metrics for open-source code review comments (D2 and D4) differently:

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

D1 OSS Toxic Issue Comments
D2 OSS Toxic Code Review Comments

(a) Text-based classifier P-R curves on D1
and D2.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

D3 Corporate Pushback Code Review Comments
D4 OSS Pushback Code Review Comments

(b) Logs-based classifier P-R curves on D3
and D4.

Figure 4.1: Text-based classifier P-R curves

• We approximated Rounds of review as the number of comments on a pull request, since
GitHub code review comments are not always grouped into batches the way Google’s
are.

• We approximated Active shepherding time as the time difference between the initial
PR post and the last comment. Note that the difference between our shepherding time
and the one by the company is that the company uses the actual amount of time an
author spent on a code change, whereas ours is the wall-clock time of the entire review
process, which may result in longer shepherding time overall.

• We did not attempt to approximate Active reviewing time, because we could not
distinguish how much of the time between the submission of code and the last comment
was taken by reviewers or by the author.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 75

Training We trained a random forest [286] classifier for each classification task because of
its accuracy and robustness against overfitting [287, 288].

Following Raman et al. [46], we performed 10-fold nested cross validation to find the best
model and reduce bias from random data splits. We first randomly split our labeled data
into a training set (67%) and a test set (33%). We used stratified sampling to preserve the
ratio between labels and ensure that each set contains both positive and negative labels.

We then fit and cross validate a random forest model using the training set for 10 trials.
In each trial, the training set is further split into 10 folds randomly. Each fold is used once
as a cross validation set, while the remaining 9 folds are used for training. The random
forest model learns the best combination of hyperparameters, such as n_estimators and
max_depth, optimizing for F1 score, the harmonic mean of precision and recall.

After each trial, we tested the random forest model with the combination of hyperparam-
eters that produced the highest F1 score during training (67% of the entire labeled dataset)
on the held-out test data (33% of the entire labeled dataset).

For the text-based classifier, the classification is performed at comment level. Then we
aggregate the classifications to form thread-based labels. For pushback datasets (D3 and
D4) where we only have thread-level labels, we assign all comments the same label as the
thread-level label. For the logs-based classifier, the classification is performed at thread-level.

4.6.2 Classifier Performance Analysis
To evaluate the performance of our classifiers, we computed and compared the Areas Under
the Precision-Recall (P-R) Curves, i.e., the P-R AUC scores. Precision tells us how many
comments labeled by our classifier as toxic/pushback are in fact toxic/pushback, and recall
tells how many toxic/pushback comments in our test dataset are classified as toxic/pushback.
P-R curves explore the classic precision/recall tradeoff in applications where the data is
imbalanced [289], as is ours — toxicity and pushback are both relatively rare. P-R curves are
also commonly used to evaluate classifiers when researchers care more about positive (toxic or
pushback) than negative labels. This is also the case in our work — for downstream prevention,
mitigation, and future research on toxicity and pushback, we believe that it is more important
to identify true instances of toxicity and pushback than it is to identify that some comment
or conversation is not toxic or pushback. A P-R AUC score summarizes the performance of a
classifier into one value and can be interpreted as the average of precision scores calculated
for different recall thresholds, with higher values (closer to 1) being preferable.

To compute the P-R curves, we uniformly vary the classifier’s probability threshold for
predicting the positive class, which corresponds to exploring the precision-recall tradeoff. To
compare classifiers, we performed pairwise t-tests on their P-R AUC scores computed after
the 10 cross-validation trials. At each trial, we applied the random forest classifier with the
best hyperparameter combination on the held-out test data and computed an AUC score.
As a result, from our 10-fold nested cross validation training process, we obtained 10 AUC
scores (one per trial). For each t-test, we also report Cliff’s delta measure of effect size.

In addition, we estimate the importance of each feature [288] in our random forest
classifiers during the training phase, using a standard approach based on the mean overall
improvement in a tree’s impurity. The impurity, in classification tasks, is measured by the

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 76

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Combined
Text-based
Logs-based

(a) P-R curves of all three
classifiers on D3

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Combined
Text-based
Logs-based

(b) P-R curves of all three
classifiers on D4

Figure 4.2: P-R curves on pushback classification

Gini index, interpreted as the probability of an item being incorrectly classified if it was
randomly labeled according to the distribution of a specific feature [287].2

4.7 Results
RQ 2: How well do existing classifiers generalize across context and type of
discussion?

To answer this question, we plot the P-R curves by the classifiers using the same features
on different datasets and compare the average AUC scores. Figure 4.1 shows one of the curves
from the 10 trials.

We start by comparing the P-R AUC scores for the text-based toxicity classifier on D2
(open-source code reviews) relative to the benchmark D1 (open-source toxic issues), answering
RQ1.1. The P-R curves are shown in Figure 4.1a. We find that at the thread level, the
text-based classifier performs better on D1 than on D2 (t = 5.640, p-value = 0.0001; Cliff’s
δ = 1 / large effect; the AUCs are 0.907 and 0.844 respectively).

We manually checked some randomly sampled toxic comments from D1 and D2 that our
text-based classifier failed to identify. We found that some of them are responding to toxic
behavior. For example, phrases like "you spent a long time insulting people" are responses
to someone else’s insult and are clearly a signal of the presence of toxicity. Some other ones
contain covert toxicity, such as sarcasm, entitlement, or the use of “?!” or emojis. Covert
toxicity is difficult for language models to detect in general [290]. These comments also have
a low predicted toxicity score by our classifier; some even use the word “please” as in “Please
consider that this thread [...] is so problematic. [...] get this PR closed ASAP.”

The impurity-based feature importance analysis (Figure 4.4a in Appendix) provides some
explanations on what features are important in both datasets. The x-axis is the importance
score of the features. The sum of importance scores of all features is 1. The two most important

2Our code is available at https://doi.org/10.5281/zenodo.6051070

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 77

features during the training phase are from the Perspective API. They are followed by three
politeness features: second person pronouns, the presence of negative words, (e.g., “begging
for complete code review” and “many bugs documented and unresolved”), and the use of
first person pronouns. The use of second person pronouns echoes our findings of the word
frequency analysis, where we see the use of “you” overrepresented in toxic text.

Reflecting on differences between the issue conversations and code review conversations
that could cause the performance degradation when detecting toxicity in the latter case,
we speculate two reasons based on exploring the two labeled datasets. One is that many
code-specific comments are much shorter than discussion comments, yielding less linguistic
information. The other possibility is that the code review conversations in our dataset more
often include code chunks and removing inline codes may reduce information for the text-based
classifier.

Next we compare the P-R AUC scores for the logs-based classifier on D3 (pushback in
corporate code review) and D4 (pushback in open-source code review), answering RQ1.2. The
P-R curves are shown in Figure 4.1b. Our results show that the logs-based classifier has a lower
performance when transferred to the open-source context, despite being retrained (t = 40.008,
p-value < 2.2e− 16; Cliff’s δ = 1; the average AUC scores are 0.693 and 0.445 for D3 and D4).

We speculate that there are two main reasons for the lower performance. First, limited by
the information publicly available on GitHub, we could only compute measures for two of the
three logs-based features used originally inside Google. Therefore, we have less information.
Indeed, in D3, reviewing time, the feature missing in D4, ranks as the most important
(Figure 4.5 in Appendix). Second, our measure of shepherding time computed for open-source
code reviews is only an approximation, using wall-clock time rather than the amount of time
spent actively working on code in review. Therefore, the logs-based features we computed for
open-source data are not as accurate as those on corporate data.

Summary: Both the text-based classifier and the logs-based classifier have performance
degradation when generalizing to other contexts.

RQ2: How well do existing classifiers generalize for both toxicity and push-
back?

To answer this research question, we compare the performance of the classification
approach originally designed for one construct (toxicity or pushback) to the classification
approach originally designed for the other construct.

We start by evaluating the performance of the text-based classifier on datasets D3 and D4,
compared to the performance of the logs-based classifier as a benchmark, answering RQ2.1.
Figure 4.2 shows one of the P-R curves from the 10 trails.

On D3 Pushback in Corporate Code Review, the text-based classifier outperforms the
logs-based classifier on average (t = 9.766, p-value = 1.304e − 08; Cliff’s δ = 1 / large
effect; the mean AUC scores are 0.757 and 0.693 for the text-based and logs-based classifiers
respectively); note, this logs-based classifier is the one using all three measures of pushback,
available inside the company Google. This suggests that pushback as a construct shares many
linguistic similarities with toxicity. In addition, the better performance of the text-based
classifier suggests that, in a corporate setting, interpersonal conflicts can be more subtle than
delay of reviews or excessive comments.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 78

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Combined
Text-based
Logs-based

(a) P-R curves of all three
classifiers on D1

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Combined
Text-based
Logs-based

(b) P-R curves of all three
classifiers on D2

Figure 4.3: P-R curves on toxicity classification

For D4 Pushback in Open-Source Code Review, comparing the P-R AUC scores shows
that, unlike previously on D3, the text-based classifier and the logs-based have a similar
performance (t = 0.246, p-value = 0.810; the average P-R AUC scores are 0.447 for the
text-based classifier and 0.445 for the logs-based one); note, the logs-based classifier in this
case contains only the measures available publicly on the GitHub platform.

One possible explanation is that in contrast to the previous corporate dataset, there are
relatively fewer examples of open-source pushback code reviews in our sample that could
be traced back to reasons with linguistic markers. Therefore, there is less for the text-based
classifier to discern. To test this hypothesis, we compiled a subset of D4, D4-1, containing
as positive examples all the reported pushback open-source code review threads that are
linked to linguistic markers (Figure 4.7 in Appendix), such as “harsh comments” (39 out of 63
self-reported pull requests), and as negative examples the remaining self-reported pushback
open-source code review threads with only likely non-linguistic markers, such as “excessive
review delays.” Comparing the performance of the logs-based and text-based classifiers on
D4-1 does not support our hypothesis: the text-based classifier underperforms the logs-based
one (t = −5.072, p-value = 0.0002; Cliff’s δ = −0.86 / large effect; the average AUCs are
0.566 and 0.679 respectively). The reason could be that pushback threads labeled with
linguistic-related reasons are often labeled with non-linguistic ones too, e.g., “requesting a
change without justification.”

Another possible explanation is that since pushback classification is done at the thread
level, within a thread the actual comments indicative of pushback are too rare for the whole
text of the threads to be significantly different on average between the pushback and non-
pushback classes. To test this, we created dataset D4-2, in which we assigned pushback labels
at the comment level. Specifically, we used the responses to our survey asking participants
to copy-paste the text fragments indicating pushback, in addition to offering pushback pull
requests as a whole, to identify which comments in the thread contained those exact fragments.
We then labeled those comments as pushback and all other comments in the same threads as
non-pushback. Then we performed the classification and thread-level aggregation as usual.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 79

Comparing the performance of thread-level text- vs logs-based classification on D4-2, we
observe that the text-based classifier now outperforms the logs-based one (t = 2.591, p-value
= 0.026; Cliff’s δ = 0.54 / large effect; the average AUCs are 0.534 and 0.471 respectively),
supporting our hypothesis.

The feature importance analysis (Figure 4.4b in Appendix) for the text-based classifier
on both pushback datasets D3 and D4 present some insights into what linguistic features are
associated with pushback comments. On both datasets, the toxicity score and identity attack
score from the Perspective API have the highest importance. They are followed by several
politeness strategies. The third most important feature in D3 is the presence of positive
lexicons whereas in D3 is the number of hedge words, such as “likely”, “maybe”, “seems”.
Having second person pronouns is also an important feature to classifying D3 Pushback in
Corporate Code Review but less so to D4 Pushback in Open-Source Code Review.

Summary: When detecting pushback, the text-based classifier performs better than the
logs-based classifier for corporate code review comments, but they have similar performance
for open-source code review comments.

Next we compare the performance of the logs-based classifier against the performance of
the text-based classifier on detecting toxicity, answering RQ2.2. We plotted the P-R curves
for the text-based and the logs-based classifiers on D1 and D2, shown in Figure 4.3. We find
that the text-based classifier performs better than the logs-based one on both D1 (t = 45.515,
p-value < 2.2e − 16; Cliff’s δ = 1; P-R AUC scores are 0.907 and 0.516 respectively) and
D2 (t = 13.591, p-value = 2.22e − 10; Cliff’s δ = 1; P-R AUC scores are 0.844 and 0.665,
respectively). The good performance of the text-based classifier implies that toxicity is more
of a linguistic phenomenon. Meta-data, such as the logs-based features we computed, could
not capture enough information to distinguish toxic language.

Summary: The logs-based classifier does not perform as well as the text-based one when
detecting toxic open-source issues and code review comments.

RQ3: To what degree can combining existing approaches improve detection
of toxicity and pushback?

We start by comparing P-R AUC scores of the text-based and the logs-based classifiers
against that of the combined classifier when detecting toxicity, on both D1 and D2, which
answers RQ3.1. The P-R curves are shown in Figure 4.3. Overall, we find that the combined
classifier has better performance than the logs-based classifiers but is similar to the text-based
classifier. On D1, the combined classifier outperforms the logs-based one (a t-test between
the logs-based classifier and the combined classifier: t = −51.975, p-value < 2.2e− 16; Cliff’s
δ = −1; the AUC scores are 0.516 and 0.895 respectively) but is indistinguishable from the
text-based classifier (a t-test between the text-based classifier and the combined classifier:
t = 0.376, p-value = 0.712, the text-based classifier’s AUC is 0.907).

Similarly, on D2, the combined classifier outperforms the logs-based classifier (a t-test
between the logs-based classifier and the combined classifier: t = −24.226, p-value = 9.001e−
12; Cliff’s δ : −1; AUCs are 0.665 and 0.871 respectively). However, the combined classifier
outperforms the text-based classifier (a t-test between the text-based classifier and the

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 80

combined classifier: t = −2.3884, p-value = 0.0363; Cliff’s δ : −0.58 / large effect; the AUC
of the text-based classifier is 0.844).

The feature importance analysis (Figure 4.6a in Appendix) shows that text-based features
are more important in detecting toxicity than logs-based features. This suggests that, again,
toxicity is more about the language than the logs-based metrics. The toxicity score and
identity attack by the Perspective API have the highest importance. They are followed by
the two logs-based features, which are followed by several politeness strategies. The use of
second-person pronouns is also among the top 5 most important features, which echoes our
findings in the word frequency analysis.

Summary: For toxicity, the combined classifier has a similar performance to the text-based
one on toxic issue comments but a better performance on toxic code review comments. The
combined classifier performs better than the logs-based one in detecting toxicity.

Finally, we compare the AUC scores between the text-based and the combined classifier
and between the logs-based and the combined classifier when detecting pushback (D3 and
D4), which answers RQ3.2. The P-R curves are shown in Figure 4.2.

On D3 Corporate Pushback Code Review Comments, the combined classifier performs
better than the logs-based (a t-test between the logs-based and the combined classifier:
t = −12.511, p-value = 2.108e− 08; Cliff’s δ = −1 / large effect; AUC are 0.693 and 0.755)
but about the same as the text-based one (a t-test between the text-based and the combined
classifier: t = 0.363, p-value = 0.723; the text-based classifier’s AUC is 0.757).

On the contrary, on D4 Open-Source Pushback Code Review Comments, the performance of
the logs-based classifier is similar to the the combined classifier (t = −2.1171, p-value = 0.052;
the average AUC scores are 0.445 and 0.455 respectively). Similarly, the combined classifier’s
performance is indistinguishable from that of the text-based classifier (a t-test between the
text-based and the combined classifier: t = −0.929, p-value = 0.373, the text-based classifier’s
AUC is 0.447).

From the feature importance analysis on the combined classifier on our two pushback
datasets D3 and D4 (Figure 4.6b in Appendix) shows that the logs-based features have higher
importance than the text-based ones. Among the text-based ones, toxicity score and identity
attack have the highest importance, followed by several politeness strategies.

Summary: For classifying pushback in code reviews, the combined classifier performs
better than the logs-based classifier but about equivalently to the text-based classifier in
a corporate setting; and performs about equivalently to the text-based classifier and the
logs-based classifier in an open-source setting.

4.8 Discussion

Classifiers’ cross-domain application For RQ1, we found that prior classifiers’ perfor-
mance [46, 47] degrades when applied to new datasets. For open-source code review comments,
one reason may be that, compared to issues, discussions in PRs are generally more technical,
and hence, less personal. One reason the logs-based classifier performed relatively poorly in

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 81

open-source code review may be that we were not able to accurately reproduce one of the
corporate pushback features, active shepherding time.
Relationship between toxicity and pushback By answering RQ2, how well can the
classifiers generalize across domains and datasets, we can conclude some relationship exists
between the two concepts. Pushback is initially centered around delays in code review,
which is associated with lower productivity [47], whereas toxicity is centered more around
the negative interactions among contributors during code review [46]. However, Egelman
et al. [47] reported that, in addition to lengthy reviews, pushback is also characterized by
interpersonal conflict. This is supported by our finding that the text-based classifier has a
better performance than the logs-based one on pushback detection in a corporate setting,
suggesting that pushback in a corporate setting is more subtle than lengthy discussions or
delayed reviews. Similarly, in open-source, toxic language is also a significant part of pushback.
Among the pushback code review comments users reported, more than half of them have
reasons related to communication (Figure 4.7 in Appendix). However, we found that the
logs-based features did not improve toxicity detection. This suggests that toxicity is mostly
about language, and meta-data cannot capture the nuance.
Corporate vs. open-source settings When answering RQ2, we were also able to compare
the two contexts, corporate and open source. We found that the text-based classifier works
better than the logs-based one when classifying corporate pushback. However, it was surprising
that the logs-based classifier and the text-based one have similar performance when classifying
open-source pushback. This differs from the impression we had from the survey responses.
From the survey responses, we observed many complaints about maintainers delaying the
review process. When looking at some of the PRs, we saw that many of the maintainers
mentioned having a holiday or being busy with day jobs as reasons for the delay. One comment
from the open-source pushback survey reflected that “It’s not PR and not about code review,
but it’s about open source world.”

Moreover, both the text-based and the logs-based classifiers have better performance
on corporate pushback code review comments than on open-source ones. This suggests
some differences between the two datasets. Perhaps these differences arise from uniformity
in Google’s code review practices [283] compared to the multitude of practices used on
GitHub [284].

This also raises the issue of transferring our results to other settings. When answering
RQ1, we found that using the same set of features on data from a different context resulted
in lower performance. However, the multiple levels of comparisons we conducted in this study
can act as a guideline while developing a system for toxicity and pushback detection in other
contexts.
Prediction vs. classification In this paper, we performed classification on conversations
after they had concluded, largely because logs-based features are not applicable to individual
comments. As a result, our current models cannot yet be applied to all scenarios where
automated detection of toxicity or pushback are of interest, e.g., comment-level classifica-
tion for just-in-time intervention. Instead, we target primarily scenarios where thread-level
classification is needed, e.g., to reflect on when discussions have gone awry (of interest to
practitioners) or to detect and study when, how, and why toxicity and pushback occur (of
interest to researchers).

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 82

Future work can explore how to use text-based features to do real-time detection and
offer editing suggestions. Cherjyan et al. [261] proposed a Conflict Reduction System that
can rephrase offensive sentences. However, their datasets are heavily focused on swearing and
profanity. Our findings can greatly enrich the set of text features that can be used to detect
and prevent potential toxic comments.
Text analytics improvements Our text classifier combined three different NLP techniques,
but other NLP techniques on larger datasets is a future research direction. Some paths that
can be explored include using text embedding [291] or conversational structure [272]. One
could also use Snorkel [292], a weak supervision model, to help augment our labeled dataset.

Prior studies have shown that general NLP models may not be directly applicable to
software engineering corpora [293, 157]. For example, “error” and “test” are mostly neutral
in the software engineering context but have negative connotations in general English. Han et
al. [294] report that Perspective API can misclassify toxic inputs due to a domain mismatch
or novel lexicon of toxicity. Therefore, some fine-tuning is needed on top of the Perspective
API to attain better performance. Raman et al. [46] suggested fine-tuning a classifier using
a domain-specific lexicon. However, this is a difficult task that needs careful design and
evaluation. Thresholds and datasets are all variables that can be explored. Moreover, when
evaluating the effectiveness of the domain-specific lexicon tuning, how do we decide what
words should be in the list and what should not? These questions are worth exploring in the
future.

4.9 Threats to validity

Internal validity The data we used for training and testing our classifiers is small in two
respects. The first is from a machine learning perspective, where more data often yields
more reliable conclusions. The second is from an ecosystem perspective; the data we studied
represents a small subset of all the discussions going on within GitHub and Google, likely
limiting the generalizablity of our results.

Another limitation is that our data, both existing and newly collected, rely on human
raters to judge interpersonal conflict. While Egelman and colleagues’ showed some degree of
reliability across different raters, nonetheless perceptions of interpersonal conflict invariably
differ from person to person. Such differences threaten the true accuracy of our ground truth
data.
External validity A major threat to generalizability is the context in which we collected
our data. For corporate code reviews, we used data from Google; classifying code reviews in
other companies would likely yield different results. Likewise, our other datasets are from
GitHub; data obtained from other platforms may also yield different results.
Construct validity The lack of comment-level labels in pushback datasets D3 and D4 likely
confused the classifiers using text-based features. Because all comments within a pushback
conversation share the same label, some neutral or positive comments are also labeled as
pushback. Since our text-based classifier works on the comment level, it can get confused
when seeing comments associated with polite strategies (e.g., indirect start) and impolite
strategies (direct questions) that are both labeled as pushback.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 83

In our analysis, we bridged concepts and contexts in prior work [46, 47], between open
and closed source; and issues and code reviews. However, we did not exhaustively explore
this space. For instance, we did not collect data for toxic corporate code reviews or issues.
Given the results that the text-based classifier works well on Google’s pull requests, using it
to detect or understand toxic comments may be worthwhile future work.

4.10 Conclusion
In this paper, we cross-pollinated with two techniques designed to detect interpersonal conflict.
In applying these text- and logs-based techniques to broader contexts than those for which
they were originally designed, we uncovered several novel insights. For instance, we found
that prior work that detected code review pushback using logs data [47] can be improved
substantially by analyzing the text contained in those code reviews. While the opposite was
not true – logs data did not improve issue toxicity detection – we nonetheless found that
logs can be a useful feature in toxicity classifiers. Building on these techniques, we envision a
future where tools can help software developers learn from or avoid interpersonal conflict,
enabling projects to be more inclusive of a wider variety of contributors.

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 84

4.11 Appendix

Table 4.3: Over and underrepresented words in D1 Toxicity in Open-Source Issues Comments.
N-grams with second-person pronouns are in bold. N-grams with software engineering terms
are underlined.

unigram z-score bigram z-score ngram z-score

you 30.77 this is 12.756 this is not 6.013
it 23.724 in the 11.822 you want to 5.217
that 22.437 you are 11.651 you need to 4.869
of 22.051 it is 10.608 there is no 4.303
and 21.318 you have 9.389 if you want 4.272
is 18.917 to be 9.371 you have to 4.036
this 18.524 that you 9.145 to do with 4.036
your 18.121 if you 8.727 if you want to 3.971
have 16.647 to do 7.535 part of the 3.94

Toxic

what 15.62 have to 7.514 the problem is 3.799

via -3.526 team and -2.825
unit -3.82 plenty of -2.838
team -3.871 of experience -2.954
assigned -3.979 with our -2.972
returns -4.32 and provide -2.972
function -4.452 to remove -3.037
item -5.104 with an -3.042
ticket -5.121 issue was -3.263
duplicate -5.528 assigned to -3.44

Non-toxic

click -5.62 looking for -3.573

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 85

Table 4.4: Over and underrepresented words in D3 Pushback in Corporate Code Review.
N-grams with second-person pronouns and gratitude are in bold. N-grams with software
engineering terms are underlined.

label unigram z-score bigram z-score ngram z-score

<tech1> 5.352 you want 3.04 you want to 2.792
tests 4.452 want to 2.849 on nov at pm 2.637
<tech2> 3.683 of these 2.849 nov at pm 2.577
our 3.599 of our 2.626
build 3.564 is to 2.575
libraries 3.362 if we 2.525
break 3.245 depend on 2.464
thing 3.197 we use 2.464
see 3.177 the cl 2.441

Pushback

rollback 3.152 this case 2.311

submit -5.338 to represent -3.831 make sure the -2.566
groups -5.485 to me -3.834 to do the -2.64
feature -5.514 how about -3.882 not sure if -2.69
<tech3> -5.64 to submit -3.96 seems to be -2.805
map -5.664 this function -4.106 in this cl -2.813
rate -6.042 the new -4.286 which is not -2.919
thanks -6.303 could you -4.363 do you have -3.189
section -6.336 for the -4.432 how do we -3.604
the -6.492 change the -4.439 to change the -4.009

Non-pushback

for -6.9 thanks for -5.291 thanks for the -4.891

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 86

Table 4.5: Over and underrepresented words in D4 Pushback in Open-Source Code Review.
N-grams with second-person pronouns, gratitude, and “code of conduct” are in bold. N-grams
with software engineering terms are underlined.

label unigram z-score bigram z-score ngram z-score

runtime 17.511 is of 6.622 the code of 3.957
suggestion 9.676 the project 6.452 the new format 3.721
argument 9.32 code of 6.171 for the new 3.457
us 8.762 of type 6.006 the commit message3.185
people 8.35 the linter 4.638 to the project 3.096
timer 8.218 read the 4.583 as long as 3.003
non 7.254 it is 4.313 the number of 3.003
high 7.068 social media 4.186 to read the 2.957
requirements 6.29 the old 4.13 just wanted to 2.874

Pushback

de 6.276 commit message4.026 we dont want 2.874

access -5.923 the following -3.402
struct -5.992 an error -3.412
config -6.197 it seems -3.536 is going to -2.311
tests -6.282 the same -3.715 it would be -2.5
server -6.351 thank you -3.786 all of the -2.5
line -6.431 the server -4.021 this should be -2.802
field -6.632 did not -4.047 it seems that -2.872
build -7.262 the tests -4.12 thank you for -2.972
info -7.309 file line -4.287 let me know -3.111

Non-pushback

error -7.319 line in -5.301 file line in -4.287

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 87

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BTW
Deference

Greeting
Please start

Indicative
Apologizing
Subjunctive

Gratitude
Please

Direct question
2nd person start

Factuality
Hedges

Direct start
1st person pl.

1st person start
SentiCR

Has hedge
1st person
Has positive

Has negative
2nd person

identity attack
toxicity

D1

D2

(a) D1 vs D2

0 0.05 0.1 0.15 0.2 0.25 0.3

BTW
Subjunctive

Greeting
Deference

Apologizing
Please start

2nd person start
Please

Indicative
Direct question

Gratitude
Direct start

Factuality
SentiCR
Hedges

1st person start
1st person pl.

2nd person
Has negative

1st person
Has positive

Has hedge
toxicity

identity attack

D3

D4

(b) D3 vs D4

Figure 4.4: Text-based classifier feature importance scores.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

reviewing time

shepherding time

rounds
D1

D2

D3

D4

Figure 4.5: Logs-based classifiers’ feature importance

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 88

0 0.05 0.1 0.15 0.2 0.25 0.3

BTW
Deference

Subjunctive
Please start

Indicative
Greeting

Apologizing
2nd person start

Gratitude
1st person start

Please
Hedges

Direct question
Factuality

1st person pl.
SentiCR

Direct start
Has hedge

Has positive
1st person

Has negative
Rounds

2nd person
Shepherding time

identity attack
toxicity

D1

D2

(a) Toxicity (D1 and D2)

0.00 0.10 0.20 0.30 0.40 0.50

BTW
Greeting

Deference
Apologizing
Subjunctive

Indicative
2nd person start

Please start
Please

Factuality
Direct question

Gratitude
Direct start

Hedges
1st person start

sentiCR
2nd person
1st person

1st person pl.
Has negative

Has hedge
Has positive

identity attack
toxicity
rounds

shepherding time
reviewing time

D3

D4

(b) Pushback (D3 and D4)

Figure 4.6: Combined classifiers’ feature importance

CHAPTER 4. DETECTING INTERPERSONAL CONFLICTS 89

0 5 10 15 20 25

Dismissive attitude

Multiple rounds of change requests

Pushing for a sub-optimal solution

Test flakiness and lots of rebasing

Merged despite the PR being incomplete

Against spirit of open source software

Closed without a reason

Lots of automated warnings in comments

Lack of understanding

Teasing

Inappropriate jokes

Humiliation

Intimation of disciplinary procedures

Intimation of negative perf repercussions

Unjustified monitoring of your work

Attempts to demoralize

Belittling

Withholding of necessary information

Freezing out, ignoring, or excluding

Request for out-of-scope change

Requesting a change without justification

Attempts to undermine personal integrity

Shifting of goal posts

Unnecessary pressure to make changes

Curtness

Unjustified criticism

Aggression

Harsh feedback

Long wait for review to start

Attempts to undermine work

Excessive nitpicking

Attempts to undermine effort

Excessive review delays

Confrontational comments

Figure 4.7: Reasons for pushback in OSS

Chapter 5

Intervention: A Dashboard for
Maintainers

This chapter presents Climate Coach, a dashboard that helps open-source project maintainers
monitor the health of their community in terms of productivity and inclusion. Through a
literature review and an exploratory survey (N=18), we identified important signals that
can reflect a project’s health, and display them on a dashboard. We evaluated and refined
our dashboard through two rounds of think-aloud studies (N=19). We then conducted a two-
week longitudinal diary study (N=10) to test the usefulness of our dashboard. We found
that displaying signals that are related to a project’s inclusion help improve maintainers’
management strategies.

5.1 Introduction
Open-source software (OSS) infrastructure is ubiquitous and vital to our daily life, powering
applications in virtually every domain [2]. Economists refer to OSS as the “digital dark
matter” to reflect its invisibility and importance and report its valuation in the billions of
dollars per year [295]. To maintain this digital infrastructure, a constant supply of effort is
necessary. Therefore, attracting and retaining contributors are of utmost importance.

However, many studies have found many challenges in making contributions to OSS
projects and retaining contributors. On the one hand, there is a rich body of scholarly
works on the barriers new contributors face. Surveying 20 studies on newcomers’ barriers,
Steinmacher et al. [296] compiled a list of 15 barriers that can be categorized into five groups:
social interaction, newcomers’ previous knowledge, finding a way to start, documentation,
and technical hurdles. Some examples of barriers are not receiving an answer, lack of technical
experience, and lack of documentation.

On the other hand, there are studies and grey literature reflecting the difficulties experi-
enced by maintainers [43, 44, 45]. High volume of requests [44], unfriendly or even aggressive
tones are also a source of burnout [46], making projects hard to attract and retain contributors.

This study presents a dashboard that intends to help maintainers monitor their community
health in terms of diversity and inclusion. We define a healthy community as a community

91

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 92

that is friendly and inclusive. Our dashboard consists of metrics calculated based on trace
data recorded by GitHub.

The theory underlying our dashboard is signaling theory, which has a history of more than
half a century in other fields of studies, such as economics [85] and biology [87]. It explains a
scenario where a receiver, the party that is less informed of the situation, makes decisions
based on the signals provided by the signaler, who has access to all the information. Signals
can be any observable cues that indicate an unobservable quality of the signaler [109].

Online social coding platforms, such as GitHub, record and display various user activities.
Such transparency offers users the opportunity to observe other users or projects. Dabbish
et al. [26] reported that people make various types of inferences based on visible signals on
GitHub. Qiu et al. [88] compiled a list of signals that can help new contributors select a
more suitable and friendly project to contribute to. Trockman et al. [27] showed that badges
displayed on projects’ README have high signaling value in reflecting a project’s quality.
The value of signals are also demonstrated in many other studies, such as which repositories
to watch [121], which pull requests (PRs) to accept [97], which developers to follow [122, 123],
and which developers to recruit [110, 124].

While there are many studies reporting useful signals, not all of them are easily visible.
Among the signals compiled by Qiu et al. [88], some important signals are less visible. For
example, many studies point out the that impolite language is among the biggest barriers
faced by newcomers [297, 31] and one of the causes of contributors’ negative feelings [88, 89].
However, it is unfeasible for maintainers to monitor all conversations to detect unfriendly
messages. With the help of natural language processing (NLP) tools, such as Perspective
API,1 our dashboard can flag comments that are potentially problematic and may need
further investigation from the maintainers.

Moreover, there are signals that maintainers can get a rough idea based on observation
but require data mining to obtain a more accurate count. For example, Egelman et al. [47]
presented the idea of pushback, which refers to maintainers’ behavior of blocking a code
review. Egelman et al. [47] and Qiu et al. [89] found that pushback can be detected by the
number of comments and the amount of time on reviewing and shepherding in both corporate
and open-source settings. While one can count the number of comments in code review
conversations, the amount of review time and shepherding time is less directly observable.
In addition, it can be difficult for maintainers of big projects to spot conversations with the
most comments or have taken longer than usual to review.

In addition to reflecting a project’s status, our dashboard also provides “coaching” to
maintainers by presenting validated effective maintenance strategies from prior studies.
Although there exists plenty of scholar papers on contributors’ barriers and validated methods
of improving project management, they need a channel to reach practitioners. Our dashboard
provides tips and validated results from prior studies to help maintainers improve their
management strategies.

In summary, our study presents Climate Coach, a dashboard that aims to help maintainers
improve their OSS projects’ diversity and inclusion. As illustrated in Fig 5.1, our study
is comprised of three major phases. Phase 1 (Section 5.3): Email interviews with OSS
maintainers to find out their strategies to handle new contributors. Literature review to find

1https://perspectiveapi.com/

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 93

PHASE 1:
EMAIL INTERVIEW +
LITERATURE REVIEW

PHASE 2:
DESIGN +

THINK-ALOUD

PHASE 3:
DIARY STUDY

Collect features Test usability Test effectiveness

Figure 5.1: Study process

out metrics that can reflect a project’s culture and inclusion. Phase 2 (Section 5.4): Informed
by the findings from Phase I, we designed a dashboard and iterated the design through two
rounds of think-aloud interviews. Phase 3 (Section 5.4.3): Two-week diary study with OSS
maintainers to test the usefulness and effectiveness of our dashboard. Our results show that
our dashboard can improve maintainers’ confidence in supporting community health.

5.2 Related Work
In this section, we review literature on OSS project health and dashboards for teamwork. In
order to design our dashboard to help maintainers assess project climate, during Phase 1, we
performed a literature review to collect potential features and conducted email interviews
with maintainers to finalize our feature selection. Our climate coach dashboard concerns
mainly on healthy interactions among open-source contributors. Therefore, our literature
review focuses on prior studies related to open-source collaboration, communication, and
management. We discuss the list of features we identified from literature in Seciton 5.3.1.
The rest of this section presents literature review on

5.2.1 OSS project health
While there are many prior studies on OSS project health, many have focused on the technical
aspects, such as code size and release. For example, Goggins et al. [298] define open source
project health as “a project’s ability to continue to produce quality software.” Goggins et
al. [298] summarized that an OSS project’s health can be measured via factors such as
community growth, financial resources, software management, and a project’s resilience to
risks.

Some studies use project growth as a measure of health, e.g., team growth, commit growth,
comment growth [299], and turnover ratio [12].

There are also studies that define project health based on a project’s success [300]. Metrics
such as documentation, code quality (in terms of metrics such as structureness and efficiency),
downloads, and user rating, are proposed to measure a project’s health [300, 301]. Similarly,
productivity, such as commit count, is also used as an indicator of project health [12].

Distribution of contributions among the community is also used as an indicator of project’s
health. For example, Aman et al. [302] use the Pareto principle to measure a project’s health,
i.e., roughly 80% of the code being contributed by 20% of the contributors. Bus factor, i.e.,

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 94

the risk associated with losing the key contributors and the knowledge that they possess, is
also used as a health indicator [303, 304]. The assumption is that healthier projects have
more evenly distributed contribution, where work is not centralized among a small set of
individuals but spread across many individuals.

Our dashboard cares more about contributors’ community health, with a focus on the
community’s culture, such as friendliness, responsiveness, and share of newcomers. We use
signals that contributors use when assessing projects to join [88]. Since prior work showed
that diversity can improve a project’s productivity [12], by fostering diversity and inclusion,
our dashboard can in turn have positive effects on the project’s output.

5.2.2 Dashboard for team management
We took inspiration from other dashboards for team management, such as for more inclusive
online meetings and improving teamwork skills.

Samrose et al. [305] created MeetingCoach, a wireframe dashboard, to facilitate more
inclusive online meetings. They first conducted an initial survey, from which they collected
feedback on what features can help create a more inclusive meeting, such as speaking turns.
Then they created a wireframe and iterated on the design with interviews and think-aloud
studies with in-situ meetings. Their dashboard improved meeting attendees’ awareness of
meeting dynamics that have implications for inclusion.

Ahuja et al. [306] built a dashboard to help college students build teamwork skills. This
dashboard collected interactions from students using online platforms to perform team tasks,
analyzed these data, and presented information about team and team member behaviors
in real time, such as frequency of information exchange, number of words exchanged, and
psychologically analysis on their conversation contents. They tested the dashboard with a
freshman college class. They showed that displaying data collected from students’ interaction
can help instructors understand and support teams in their class.

Perrie et al. [307] proposed an interactive visualization tool, City on the River (CotR), for
visualizing collaborations over time. This tool displayed contributions and products of a team
on a timeline and enabled various analyses of team performance and collaboration patterns.
They assessed CotR in GitHub projects by comparing outcomes between a team that used
CotR and a team that did not use CotR and found that CotR may be more applicable for
qualitative assessments than numerical analysis.

Biehl et al. [308] built FASTDash, an interactive visualization that try to improve team
activity awareness through user-centered design, including surveys, team interviews, and in-
situ observation. FASTDash focused more on team activities with shared workspace elements
rather than interactions among team members. It used a spatial representation of the shared
code base to highlight team members’ current activities, such as which files were being viewed
or which team members had source files checked out.

There are studies that are more relevant to the context of OSS projects. CHAOSS (Com-
munity Health Analytics Open Source Software) devised a list of metrics that can measure
an OSS project’s health and sustainability focusing more on a project’s activity, productivity,
and competitivity [298]. Guizani et al. [309] designed a dashboard with suggestions to help
maintainers grow their projects, e.g., adding “newcomer-friendly” labels, and retain contrib-
utors, e.g., adding “rising contributor” badge. However, they focus less on communication

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 95

and interaction among individual contributors. Our dashboard places a higher emphasis on
signals that can reflect healthy communications in an open-source team with a goal to build
a more inclusive culture.

5.3 Phase 1: Collecting signals
This section describes the first phase of our study (see Figure 5.1 for an overview).

During Phase 1 of our work, we conducted a literature review as well as a brief email
interview with maintainers to learn about what signals would help maintainers improve their
projects’ diversity and inclusion. Our goal was to determine what signals could be included in
our dashboard to assist maintainers in monitoring their project’s health. We were interested
in what strategies maintainers employed to manage newcomers since this is a significant
burden on maintainers but also an important source of community growth and influence on
how inclusive and welcoming a project seems to outsiders. The list of signals we identified
from the literature review and survey is in Table 5.2. Since the literature is massive, we
conducted an email interview to help us select more useful signals to include in our dashboard.
In the rest of the chapter, we use conversations to refer to issues and/or pull requests (PRs).

5.3.1 Literature review
We reviewed published papers on topics related to OSS diversity and inclusion, newcomers,
and communities. We compiled a list of signals that could be operationalized from prior study
results in Table 5.2.

Responsiveness

Based on our literature review, for signals reflecting responsiveness, we included the amount
of time to close a conversation and the number of comments. Delay in code review
and excessive rounds of reviews are found to be associated with contributors’ negative
feelings [47]. Steinmacher et al. [310] found that not receiving enough help is one of the
barriers new contributors often face.

We also included the number of conversations closed without any comments be-
cause prior studies found that conversations closed without comments is among the reasons
why contributors leave an OSS project [310, 105]. Jamieson et al. [311] pointed out that it is
because contributors felt their needs were not addressed properly, especially in value-related
discussions [311].

Conversation tone

Plenty of studies have presented the harmful effect that unfriendly, impolite, or even toxic
language can bring to an OSS community [297, 46, 312, 313, 89]. Our dashboard uses the
Perspective API2 to rate every comment in all conversations and flag the ones with high
toxicity score or identity attack score.

2perspectiveapi.com

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 96

Moreover, Citron et al. [314] identified three ways to respond to toxic language or
hate speech: removing the content, rebutting the content, and educating and empowering
community users. Although our dashboard cannot perform the first two responses, we can
point maintainers to potentially problematic conversations so that they can take actions.

Gamification

Simply displaying the focal project’s signals does not provide maintainers a sense of how well
they are doing, unless we provide them with standards or use other projects’ performance
as a reference. Goggins et al. [298] pointed out that comparisons with other projects can
provide maintainers a sense of “how things are going.” Therefore, our dashboard compares
the focal project with four other similar ones on multiple signals. This can not only provide
them a reference of how they are doing, but also encourage them to improve their projects’
signals. We first decided to choose the four comparison projects for the maintainers based on
the project’s topics and its level of popularity. When we later conducted the diary study, we
asked participants to choose the projects they wanted to be compared with.

Diversity

Signals that can reflect the diversity of the community would be helpful for maintainers. Based
on Terrell et al. [7]’s finding that women might face lower PR acceptance rate, Goggins et
al. [298] listed “Gender Bias - Ratio of female to male contributions accepted” as an indicator
of health of project culture. However, we did not include gender diversity as a dashboard
signal because GitHub does not record contributors’ gender and we cannot accurately identify
them either. Name-based gender inference technique, the most commonly used technique,
supports only binary gender and does not have a perfect accuracy [315, 72]. We did not want
to assign potentially inaccurate gender to individual contributors.

5.3.2 Email interview
We sent a short one-question email to maintainers asking about what they think about new
contributors. We used GitHub API to identify 100 projects that had commits in the past week
and owners that displayed their emails on their profile pages. Projects with fewer than three
people were excluded because small projects are more likely to be personal or private projects
rather than open sourced and less likely to have dealt with newcomers or contributions from
nonmembers. We sent out 100 emails and got 18 replies. When selecting projects, we also try
to recruit projects with different sizes and whether the project has women in their team, if
the team is small, or among their top 100 contributors, if the team is large.

We sent maintainers in our sample an email asking what their project thinks about new
contributors. Instead of directly asking what have they done to attract new contributors, we
decided to ask this broad question so as not to lead on the project owners. The break down
of responding projects in terms of size and diversity are shown in Table 5.1.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 97

Table 5.1: Survey responses

Participants Number of Contributors Owner of a gender diverse project?
R0P1 298 N
R0P2 7 N
R0P3 21 Y
R0P4 21 Y
R0P5 200+ Y
R0P6 50 N
R0P7 34 N
R0P8 6 N
R0P9 4 Y
R0P10 8 N
R0P11 5,000+ Y
R0P12 47 N
R0P13 1,000+ Y
R0P14 3 Y
R0P15 1,000+ N
R0P16 200+ Y
R0P17 27 N
R0P18 96 N

5.3.3 Data analysis
We conducted thematic analysis on the responses we received from maintainers [316]. As a
validation on our literature review, we focus on the themes that emerged from our literature
review while paying attention to new themes. We first identified instances of different themes
in the first ten responses. For each response analyzed, we identified owners’ attitudes towards
new contributors and actions they described taking to handle new contributors. Based on the
themes we identified from our first round of open coding, we developed a set of initial codes
and then continued open coding the rest of the responses, comparing each response with
previously examined ones, adding new codes when a new theme emerged, and grouping codes
to form higher level categories. When possible, we assign codes to categories we identified
from the literature. We repeatedly discussed the codes and categories in a highly collaborative
and iterative process.

5.3.4 Results
Overall, the projects in our sample welcomed new contributors while at the same time
admitting that new contributors imposed a cost in terms of the effort required to manage
contributions and socialize them. As one owner concluded, “I welcome newcomers, but fear

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 98

them.” We grouped themes we identified from the emails into the same categories we found
in the literature: responsiveness, conversation tone.

Responsiveness. Our email interviews confirmed the importance of Some maintainers
pointed out that fast reply is an important signal because ignoring contributions (even
bad ones) may create ill will (R0P1) and contributors may “feel spurned” (R0P2). Some
owners told us they tried to signal their accessibility, for example, by providing a Slack
channel or Twitter handle in the README, or changing their profile status to be “Merging
your PR” (R0P2).

Conversation tone. Some maintainers mentioned that they try to show friendliness to
newcomers, to encourage contributions (R0P15), and to signal inclusiveness (R0P4). They
hope that the users of their libraries would feel welcome to contribute to it (R0P10). Some
maintainers noted that they “respect new contributors’ bandwidth and often help them to
refine contributions collaboratively” (R0P4) by commenting back and forth on a design
in a GitHub issue (R0P1). Some maintainers keep a Code of Conduct so that “potential
contributors have the feeling of a safety net” (R0P10).

Valuing and recognizing newcomers. Some maintainers publicly recognize newcomers’
efforts. Some maintainers put newcomers’ names to a contributor list in the README
(R0P1). Some invite contributors to become maintainers of the project and recognize their
contributions (R0P5).

Onboarding material. Another way that maintainers try to welcome newcomers is to
provide beginner’s guide or relevant documentations. Some of the actions they took
to welcome newcomers include providing onboarding materials “to show them the entire
journey” (R0P6). Some mentioned the use of a contributing guideline and issue tags
(R0P1). Nevertheless, they also mentioned that the use of “newcomer-friendly” tag was
not very practical, because many of the issues were not newcomer friendly (R0P1). Some
maintainers recognized the importance of documentations but also admitted that their testing
process was not well documented, which may scare away potential newcomers (R0P10).
However, we did not include these in our dashboard because GitHub’s Insight page consists of
a checklist of all these recommended documentations.

Contribution process management. Maintainers varied in their internal coordination
processes or methods to manage teams, and these activities influenced how they in turn tried
to help newcomers. Some tried to use continuous integration (CI) tools to automate the
process and save maintainers’ time (R0P1 and R0P11). They tried to speed the process by
having bots to check if the submission has passed CI before notifying owners to review.
However, at the same time, they also admitted that using an “CI can introduce too many
rules and conventions newcomers need to learn, which can be discouraging” (R0P11).

5.4 Phase 2: Design and Think-aloud Studies
Based on the signals we identified from Phase 1, in Phase 2, we developed initial prototypes of
our dashboard and used them to conduct two rounds of usability interviews with maintainers.
In Round 1, we built our dashboard as a GitHub issue with the signals listed in Table 5.2,
and conducted interviews with 9 maintainers. Then, in Round 2, based on the feedback,

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 99

Table 5.2: Dashboard signals and their references.

Category Strategy Reference Dashboard signal
Team
management

Team
growth Email Number of new contributors

Number of active contributors

Responsiveness

Fast response [47], Email Average Close Times

Provide help [310, 105, 311],
Email

Average Num Comments for Closed
Conversations
Number of issues or PRs closed
Number of issues or PRs still open
Num Conversations Closed with 0
Comments

Conversation
tone

Toxic
conversation

[297, 46, 312, 313,
89], Email

Perspective API
Problematic conversations

Gamification Compare with
peers

[298] Comparison to Similar Repositories

Added in the second version

Social capital
Bonding
social capital [103] Recurring Contributors

Avg months experience
Bridging
social capital

[103] Number of new contributors

Negative
feelings

Excessive
rounds of
reviews

[47, 89] Open conversations with the most
comments

Long shep-
herding time

[47, 89] Conversations that have been
opened for the longest time

Team
management

Team growth Email List of new authors
List of active authors

Contribution
management

Label R1P1 and R1P4 Labels used in conversations

we reformatted the dashboard from a GitHub issue to a web page along with some other
adjustments, and conducted additional interviews.

5.4.1 Round 1: Initial Prototype as a GitHub Issue
We initially designed the climate coach dashboard as a GitHub issue (see Figure 5.2 and
5.3). Our dashboard contains four types of signals: 1 summarized: showed the average
of measurements in the past month; 2 temporal: presented the trends of some signals in
the past half a year; 3 indicative: linked to potentially problematic conversations, and 4
comparative: showed how the focal project compared to similar projects.

Summarized signals: Repository’s basic statistics in the past month The section, Basic
Stats, displays signals from the Community and Responsiveness categories shown in Table 5.2.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 100

It includes the number of new contributors and the number of active contributors
in the past month. For responsiveness, the dashboard reports the number of issues and
PRs closed in the past month and the average close time of issues and PRs, as well
as the number of open issues and PRs and the average time they have been open.

Temporal signals: Trends in the past half a year This dashboard provides plots of the
trends of signals shown in the basic statistics section as a context of how their projects have
developed

Indicative signals: Conversation tone analysis Inspired by a study by Raman et al. [46]
and Qiu et al. [89], we added a signal for conversation tone. We use the Perspective API to
get a toxicity score of issues, PRs, and their comments posted in the past month. We report
the number and the rate of posts with a toxicity score > 0.5 as “potentially inappropriate.”

Comparative signals: Comparison with other projects We compare the project with other
similar projects on the signals shown in the Basic Stats section. We identify comparable
projects by the range of stars and topics set by projects.
Think-aloud Studies with Maintainers

We designed a detailed semi-structured interview and think-aloud protocol to test the
usability of our dashboard and guide later stages of development. We also used this opportunity
to better understand how maintainers assess their community health and approach issues
related to diversity and inclusion. Section 5.8 presents our interview protocol. We used real
data from their repositories in the interviews. Each dashboard presents basic stats and links
to conversations of the past month and trends of the past half a year.

Recruitment To recruit participants, we searched on GitHub for a stratified range of stars,
which serves as an approximation of a project’s popularity. Our participants’ projects have
stars ranging from 11 to 20.6K. We also filtered projects based on the number of contributors
(> 20) since our dashboard can only be useful when there are activities.

We contacted the project maintainers, i.e., owner of the project or the top two contributors
if they provided emails or Twitter handles on their GitHub page and the project has recent
activities. Although we strived to recruit women maintainers, we did not succeed due to the low
representation of women among maintainers. In the end, we interviewed 10 men maintainers
for our first round. We refer to each of them as R1Px from now on. The information of each
maintainer and their projects is in Table 5.3.

Protocol After collecting participants’ verbal consent for recording audio and video,
we started the interview by asking about the maintainers’ backgrounds and roles in the
projects. Our interview protocol consists of two major parts. During the first part, we asked
participants questions regarding their project community, their perception of the health of
their communities, and their methods of managing their communities.

The second part adopted the think-aloud approach to understanding how participants
use the dashboard. Before the interview, we generated an individualized dashboard for each
participant with their repository. We asked the participants to browse through our first design
of the dashboard (Figure 5.2 and 5.3) and speak out any thoughts that crossed their minds. If
they had any questions during the think-aloud, we answered them after they finished browsing
the dashboard. After participants finished browsing the dashboard, we asked participants
several follow-up questions, such as signals that they considered important, signals that
should have been there, and signals that were less important or unnecessary.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 101

7/13/22, 10:51 AM

https://github.com/CMUSTRUDEL/climate_coach_reu/issues/18 1/2

CMUSTRUDEL / climate_coach_reu Private

June 2021 project climate report for outline/outline 📊🐻⛄🐛 #18
 Closed megancarneal opened this issue on Aug 2, 2021 · 0 comments

No one—assign yourself

None yet

None yet

No milestone

Create a branch

for this issue or link a pull request.

2 participants

Pin issue

Code Issues 1 Pull requests Actions Projects Wiki Security Insights Settings

Edit New issue

megancarneal commented on Aug 2, 2021 •

📊 Your project stats

Contributors

Number of new contributors this month: 5 (28.57% ⬇ from May)

Number of unique commenters/contributors this month: 27 (12.9% ⬇ from May)

Conversation

Rate of posts found to be potentially inappropriate: 0.81% (80.0% ⬆ from May)

Number of "potentially inappropriate" posts: 3 (200.0% ⬆ from May)

Responsiveness

This month, you had 28 issues with an average close time of 4 day(s) 10 hr(s) 21 min(s) and 47 second(s)

Your project has 13 open issue(s), which have been open for 12 day(s) 9 hr(s) 3 min(s) and 8 second(s) on average

This month, you had 62 pull request(s) with an average close time of 2 day(s) 10 hr(s) 40 min(s) and 53 second(s)

Your project has 16 open pull requests, which on average have been open for 9 day(s) 20 hr(s) 45 min(s) and 0

second(s)

"Potentially inappropriate" posts are those that score higher than a threshold of 0.5 for the TOXICITY attribute, as determined by Google's
Perspective API. For these measures, we look at issues, pull requests, and comments in your repository.

🔥 Problem convos

Here are some conversations you should probably check in on

Pull Request 2307

Pull Request 2303

Pull Request 2298

�� How you compare to other projects

Compared to 4 other projects (listed below) written in JavaScript with 10000-12500 stars, you have...

edited Assignees

Labels

Projects

Milestone

Development

Figure 5.2: First iteration of design: Basic statistics.

Data analysis There are two goals of our coding: one is to understand maintainers’
understanding of community health; the other is to identify feedback to our dashboard. We
first performed open coding on interview transcripts. Two of the authors first coded two
interviews independently. Then they met to discuss their codes through a constant comparison
method: they consolidated codes into a shared set of codes by combining overlapping codes or
developing new codes. The two authors coded another four interview transcripts independently
with the preliminary code book before convening again to discuss the generated codes. We
continued conducting interviews while coding the transcripts and concluded the first round
of interviews when we reached theoretical saturation, i.e., no new themes emerged from new
interviews. After the two authors coded the rest of the interviews, they met again to discuss
all the codes and coded paragraphs. Then the two authors conducted axial coding on the full

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 102

7/13/22, 10:52 AM June 2021 project climate report for outline/outline 📊🐻⛄🐛 · Issue #18 · CMUSTRUDEL/climate_coach_reu

https://github.com/CMUSTRUDEL/climate_coach_reu/issues/18 2/2

Pull Request 2303

Pull Request 2298

�� How you compare to other projects

Compared to 4 other projects (listed below) written in JavaScript with 10000-12500 stars, you have...

A lower rate of potentially inappropriate comments than 1 project(s)

And a higher rate of potentially inappropriate comments than 3 project(s)

(min = 0.08%, max = 0.85%, median = 0.76%)

The projects your repository was compared to:

Automattic/wp-calypso

OpenZeppelin/openzeppelin-contracts

arangodb/arangodb

trufflesuite/truffle

sophieball closed this as completed on May 20Figure 5.3: First iteration of design: comparison to other projects.

set of codes: we considered the relationship among the codes and merged them to develop a
set of higher-level categories.
Results

Before we conducted the think-aloud activity, as a confirmation/alignment of thoughts, we
asked participants about their understanding/definition of project health and their attitudes
towards diversity.

Perceptions of Community Health When asked about criteria of community health, similar
to our findings in prior studies [300, 301], many maintainers thought of technical aspects. For
example, R1P3 mentioned continuous integration (ci) as an indicator of community health,
including “how often is it being overwritten” and “build times” (R1P3).

Usage is also mentioned as a health indicator by several maintainers (R1P2, R1P6, R1P9,
and R1P10). R1P2 told us they cared about their customers and the types of projects that
depend on them. R1P9 also told us that they cared about their project’s application. R1P6
and R1P10 both said that they considered the number of downloads as a health indicator.

Some participants considered maintainers’ responsiveness as a health indicator (R1P1,
R1P4, R1P5, and R1P6). When looking at the summary of the number of comments, R1P4
pointed out that having good commentary indicates good health. These points of view echoed
the findings by Steinmacher et al. [296] that barriers newcomers face include the lack of
responses from maintainers. While admitting that maintainers can be busy with other things,
R1P5 said they “try to find maybe an hour to a day to help people with troubles” or “try

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 103

Table 5.3: Information of the Participants from the 1st Round of Interviews

Participant ID Number of stars Project size
R1P1 11 13
R1P2 67 28
R1P3 5.7K 42
R1P4 20.6K 147
R1P5 468 27
R1P6 1.5K 39
R1P7 468 27
R1P8 176 37
R1P9 65 24
R1P10 810 17

to answer some questions, on the slack.” P1 even set a strict timeline of getting a response
within one or two days,

“I can go into GitHub, open an issue for something that’s not working or add a
feature request for something I need inside of that particular project, and typically
within like 24-48 hours, I’d get a response, that’s something I’d call a healthy
project with a nice reactive maintenance team, as well as a community there,
ideally” (R1P1).

Several participants mentioned contributors’ sustained participation as an indicator of
community health (R1P2, R1P3, R1P4, R1P5, R1P6, and R1P9). Concerning contributors’
sustained participation, P4 pointed out that the number of new contributors indicates
that their community is growing, which is a good sign. R1P2 also mentioned that the way they
build their community is “by engaging with groups of students who are going to implement
new standalone tools that might be published as separate packages.” P9 commented on the
same point, “one big thing in terms of the developer community is like, [...] how do we figure
out things that make people want to contribute and want to keep working on the project?”

Another type of health indicator is the help maintainers can provide to the community. Help
includes maintainers’ response to issues or pull requests (R1P2 and R1P9), documentation
(R1P1, R1P4, and R1P9), and office hours (R1P1, R1P5, and R1P9). P2 acknowledged that “
a really bad way to ruin a community is by ignoring pull requests.” He further commented
that the number of pull requests that are still open “should probably be zero unless
there is a culture in a particular project which means that they’re gonna have a bunch of
long-standing pull requests.” P1 commented that one thing he “hate[d] on other projects is
not having a good documentation,” although he also acknowledged that “unfortunate in that
regard and we just don’t have the resources to go back and document everything.” R1P1’s
comment reflects a dilemma shared by some maintainers that they are aware of the best
practices, but they are unable to fulfill them.

R1P1, R1P5, and R1P9 all mentioned that a healthy community should have “scheduled
office hours that happen on a regular basis” (R1P1) so that contributors “can get help” (R1P9).

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 104

R1P5 summarized it as contributors can “get any information and get any kind of help in
this community.”

Attitudes towards Diversity and Inclusion When asked about diversity, some commented
that it is hard for them to know the level of diversity in their community (R1P6 and R1P10)
because “generally the only thing I see is their GitHub username” (R1P6).

Although some maintainers admitted that they cared about diversity and even desired
more diversity (R1P1, R1P2, R1P4, R1P5, and R1P6), they are limited by their environment.
For example, P1 told us that “in <country> there’s not a lot of diversity [in terms of race
and ethnicity],” especially since they mostly hire locals “in a small town that’s 70,000 people.”
Hence, most of their members are white males. This idea is shared by R1P10, who listed
several countries he interacted with and felt the ratio of women was lower than in some other
countries. On the contrary, being in a university, R1P2 experienced several occasions “where
all the students who were working on the project in [their] group were all women.” When there
is a lack of demographic diversity, maintainers consider diversity as a diversity of thoughts
(R1P1).

Maintainers have generally taken action to improve the diversity of their community
(R1P3, R1P4, R1P6, and R1P8). For example, with about 20,000 followers on Twitter, P6
tried to advocate diversity on social media. Some try to “sourcing people from different paths
to provide programs to help educate people into the space better” (R1P4). Several participants
told us they try to improve diversity by being welcoming (R1P3, R1P4, R1P6, and R1P8).

Feedback on the Dashboard We report feedback to our dashboard and our adjustment in
the next section.

5.4.2 Round 2: Dashboard as a web page
Based on the findings from the interviews, we created a revised version of the dashboard.

Changes on the format

Web version Instead of a GitHub issue, the new dashboard is a webpage created using
JavaScript and its Chart.js library. This change can avoid “off-putting” maintainers (R1P9)
and address participants’ requests for high resolution and interactive graphs (R1P2). In the
default setting, we use line charts to display trends of new issue authors, new PR authors,
avg close time for issues, avg close time for PRs, avg comments to issues, and
avg comments to PRs. We added drop-down buttons on the sides to allow users to select
other charts to display.

Highlight basic signals There was some confusion surrounding the wording of the text
above the graphs in the initial report (R1P1, R1P4, and R1P6). As a result, the new version
of the dashboard includes a simplified version of the signals above the graphs, including new
issue authors, new pr authors, avg month experience, recurring contributors, avg
comments to issues, avg comments to prs, avg days to close issues, and avg days
to close prs (Figure 5.5). We also rounded the responsiveness signals to days, as suggested
by participants (R1P3 and R1P6).

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 105

Alternative statistics Some participants from the prior round pointed out that, in addition
to an average of the signals, which can be sensitive to outliers, they would also like to see
the median of the signals (R1P3). Therefore, we added a drop-down button (Avg/Median) in
each graph tab so that maintainers can choose between different measures. In addition, the
drop-down menu also included alternative signals, such as the number of new contributors vs.
the number of active contributors.

Links to authors In addition to reporting the number of new contributors, we also list out
their logins under the tabs New Issue Authors and New PR Authors.

New signals

Interpersonal conflicts Egelman et al. [47] and Qiu et al. [89] reported that pushback, the
perception that a reviewer is blocking a change request, can be detected by the long review
time and excessive rounds of reviews. Inspired by the pushback study, we created a section
called Conversations that Need Your Attention that includes links to open issues or PRs
that have been opened for a long time or with many comments because these conversations
might create negative feelings among contributors.

Social capital Inspired by Qiu et al. [103]’s work on how social capital influences contribu-
tors’ engagement, we added signals related to bonding and bridging social capital. For bonding
social capital, we computed the average tenure (in terms of months) of the active contributors
in the past week (avg month experience). For bridging social capital, we computed the
number of new contributors in the past week (recurring contributors).

Usage of labels We added a summary of how the project uses labels per requests by the
round 1 participants. Several participants from the first round mentioned that they would like
a more detailed report on issues and PRs (R1P1, R1P4, and R1P9). More specifically, they
would like to see a “classification of the issues” (R1P1) because “not all issues are created
equal” (R1P9), and they would like to find out “how many bugs are being open [...] versus
enhancement requests” (R1P4). Therefore, we added a section (Figure 5.8) showing each
label’s number of issues and PRs created in the past month.

Reinforce inclusion goals After the first round of interviews, the dashboard only contained
the open-source project’s signals. However, Goggins et al. [298] described the importance of
transparency and context with analytical signals. Therefore, we added tips throughout our
dashboard to help maintainers improve their management strategies. These tips are displaying
results from prior studies on OSS management strategies, such as avoiding pushback [47, 89]
in code review and adding a Code of Conduct [82]. The full list of tips is shown in Table ??.

Moreover, we added sections Methods and References (Figure 5.10) for transparency, so
our users could see our sources and the way we created the dashboard. We also added Prior
Research Results section (Figure 5.10) which included Features Affecting Project
Attractiveness to provide maintainers actionable suggestions in addition to presenting
numerical signals.

Think-aloud Studies with Maintainers

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 106

Climate Report for Your Project
< project slug >

A dashboard for open-source maintainers to monitor project team dynamics and improve community health.

Basic stats of team activities in the past week:

Trends in the past 4 weeks:

How big is your community of developers?

How was the response?

How friendly are the conversations?

Labels used in the past month:

Overview

Health in Open Source Software Communities

By taking steps to reduce barriers to new contributors [Steinmacher et al., 2015],

maintainers can create a welcoming culture that attracts more newcomers [Guizani

et al 2022] and increases project diversity.

Increasing diversity and inclusion can bene�t the health of open-source projects

because prior studies show that projects with more gender and tenure diversity are

associated with higher productivity [Vasilescu et al., 2015; Catolino et al., 2019].

This dashboard was built with open source community health as a top priority to

serve the following goals:

Help open source project maintainers monitor project team dynamics and take

steps to improve community health.

Encourage behaviors that foster inclusivity & diversity in open-source project

communities.

Increase awareness of existing research on open source communities.

Present metrics that expand on GitHub's built-in insights page and implement

existing standards for measuring open-source health.

NEW ISSUE AUTHORS

15 Team is growing!
AVG MONTHS EXPERIENCE

4 An experienced team
AVG COMMENTS TO ISSUES

4.9 Vivid discussion
AVG DAYS TO CLOSE ISSUES

3.4

NEW PR AUTHORS

1 Team is growing!
RECURRING CONTRIBUTORS

5 Friends around :-D
AVG COMMENTS TO PRS

3.7 Vivid discussion
AVG DAYS TO CLOSE PRS

3.1

Conversations that Need Your Attention

Tip: Researchers have found that excessive review delays, nitpicking, and long wait for review are predictors of negative experiences in the code review process. Blocking

a change request can cause unnecessary interpersonal con�ict and negative feelings among contributors [Egelman et al., 2020].

Issues/PRs

Issues that have been opened for the longest time:

Aerial seems to break basic navigation and folding?

[Docs]: API section on documentation

getting proper lsp when loading modules from Astronvim user con�gs

Neo-tree close if last window ignoring Aerial.nvim

omnisharp and ionide

Open issues with the most comments:

[Docs]: API section on documentation

How can I see the full signature when autocompleting?

getting proper lsp when loading modules from Astronvim user con�gs

Unable to use paredit

omnisharp and ionide

Issue Author Stats New/Active Pull Request Author Stats New/Active New Issue Authors

CaitlinDavitt

nvsd

A-Lamia

bramvbilsen

b93rn

azinsharaf

neo-clon

tarunchhabriya06

HummingBird24

DylanSimowitz

RockyGitHub

New PR Authors

phturb

Tip: New contributors may need some additional support from the project community. In order for an open source project to be sustainable, it’s important to not only attract new

contributors, but also retain them.

Issue Response Avg/Median PR Response Avg/Median Issue Comments Avg/Median/Zero PR Comments Avg/Median/Zero

Tip: If a pull request is coming from an external contributor, try to comment on the PR before closing it. This can be helpful for the author and acknowledges their contribution.

Conversation Tone Analysis

Issue conversations

The highest toxicity score* of comments: 0.351

The highest identity attack score* of comments: 0.333

No comment has a toxicity score above the threshold.

Pull request conversations

The highest toxicity score* of comments: 0.069

The highest identity attack score* of comments: 0.097

No comment has a toxicity score above the threshold.

Note: This analysis �ags potentially problematic conversations, but it isn’t perfect! These conversations may need further review from maintainers to ensure that they have a

friendly tone and follow the code of conduct.

Tip: If you do not already have one, consider creating a code of conduct for your community to promote respectful, productive discussions! Here is a template to get you

started: https://www.contributor-covenant.org

* The toxicity score and identity attack score (both with range [0,1]) are calculated by Google's Perspective API.

These attributes can help detect interpersonal con�ict ([Egelman et al., 2020], [Raman et al., 2020], and [Qiu et al., 2022]).

Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

week -3 week -2 week -1

week -3 week -2 week -1

C r ti b L b l

this week

this week

Figure 5.4: Version 2: Overview

Climate Report for Your Project
< project slug >

A dashboard for open-source maintainers to monitor project team dynamics and improve community health.

Basic stats of team activities in the past week:

Trends in the past 4 weeks:

How big is your community of developers?

How was the response?

How friendly are the conversations?

Labels used in the past month:

Overview

Health in Open Source Software Communities

By taking steps to reduce barriers to new contributors [Steinmacher et al., 2015],

maintainers can create a welcoming culture that attracts more newcomers [Guizani

et al 2022] and increases project diversity.

Increasing diversity and inclusion can bene�t the health of open-source projects

because prior studies show that projects with more gender and tenure diversity are

associated with higher productivity [Vasilescu et al., 2015; Catolino et al., 2019].

This dashboard was built with open source community health as a top priority to

serve the following goals:

Help open source project maintainers monitor project team dynamics and take

steps to improve community health.

Encourage behaviors that foster inclusivity & diversity in open-source project

communities.

Increase awareness of existing research on open source communities.

Present metrics that expand on GitHub's built-in insights page and implement

existing standards for measuring open-source health.

NEW ISSUE AUTHORS

15 Team is growing!
AVG MONTHS EXPERIENCE

4 An experienced team
AVG COMMENTS TO ISSUES

4.9 Vivid discussion
AVG DAYS TO CLOSE ISSUES

3.4

NEW PR AUTHORS

1 Team is growing!
RECURRING CONTRIBUTORS

5 Friends around :-D
AVG COMMENTS TO PRS

3.7 Vivid discussion
AVG DAYS TO CLOSE PRS

3.1

Conversations that Need Your Attention

Tip: Researchers have found that excessive review delays, nitpicking, and long wait for review are predictors of negative experiences in the code review process. Blocking

a change request can cause unnecessary interpersonal con�ict and negative feelings among contributors [Egelman et al., 2020].

Issues/PRs

Issues that have been opened for the longest time:

Aerial seems to break basic navigation and folding?

[Docs]: API section on documentation

getting proper lsp when loading modules from Astronvim user con�gs

Neo-tree close if last window ignoring Aerial.nvim

omnisharp and ionide

Open issues with the most comments:

[Docs]: API section on documentation

How can I see the full signature when autocompleting?

getting proper lsp when loading modules from Astronvim user con�gs

Unable to use paredit

omnisharp and ionide

Issue Author Stats New/Active Pull Request Author Stats New/Active New Issue Authors

CaitlinDavitt

nvsd

A-Lamia

bramvbilsen

b93rn

azinsharaf

neo-clon

tarunchhabriya06

HummingBird24

DylanSimowitz

RockyGitHub

New PR Authors

phturb

Tip: New contributors may need some additional support from the project community. In order for an open source project to be sustainable, it’s important to not only attract new

contributors, but also retain them.

Issue Response Avg/Median PR Response Avg/Median Issue Comments Avg/Median/Zero PR Comments Avg/Median/Zero

Tip: If a pull request is coming from an external contributor, try to comment on the PR before closing it. This can be helpful for the author and acknowledges their contribution.

Conversation Tone Analysis

Issue conversations

The highest toxicity score* of comments: 0.351

The highest identity attack score* of comments: 0.333

No comment has a toxicity score above the threshold.

Pull request conversations

The highest toxicity score* of comments: 0.069

The highest identity attack score* of comments: 0.097

No comment has a toxicity score above the threshold.

Note: This analysis �ags potentially problematic conversations, but it isn’t perfect! These conversations may need further review from maintainers to ensure that they have a

friendly tone and follow the code of conduct.

Tip: If you do not already have one, consider creating a code of conduct for your community to promote respectful, productive discussions! Here is a template to get you

started: https://www.contributor-covenant.org

* The toxicity score and identity attack score (both with range [0,1]) are calculated by Google's Perspective API.

These attributes can help detect interpersonal con�ict ([Egelman et al., 2020], [Raman et al., 2020], and [Qiu et al., 2022]).

Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

week -3 week -2 week -1

week -3 week -2 week -1

C r ti b L b l

this week

this week

Figure 5.5: Version 2: Basic Stats

Climate Report for Your Project
< project slug >

A dashboard for open-source maintainers to monitor project team dynamics and improve community health.

Basic stats of team activities in the past week:

Trends in the past 4 weeks:

How big is your community of developers?

How was the response?

How friendly are the conversations?

Labels used in the past month:

Overview

Health in Open Source Software Communities

By taking steps to reduce barriers to new contributors [Steinmacher et al., 2015],

maintainers can create a welcoming culture that attracts more newcomers [Guizani

et al 2022] and increases project diversity.

Increasing diversity and inclusion can bene�t the health of open-source projects

because prior studies show that projects with more gender and tenure diversity are

associated with higher productivity [Vasilescu et al., 2015; Catolino et al., 2019].

This dashboard was built with open source community health as a top priority to

serve the following goals:

Help open source project maintainers monitor project team dynamics and take

steps to improve community health.

Encourage behaviors that foster inclusivity & diversity in open-source project

communities.

Increase awareness of existing research on open source communities.

Present metrics that expand on GitHub's built-in insights page and implement

existing standards for measuring open-source health.

NEW ISSUE AUTHORS

15 Team is growing!
AVG MONTHS EXPERIENCE

4 An experienced team
AVG COMMENTS TO ISSUES

4.9 Vivid discussion
AVG DAYS TO CLOSE ISSUES

3.4

NEW PR AUTHORS

1 Team is growing!
RECURRING CONTRIBUTORS

5 Friends around :-D
AVG COMMENTS TO PRS

3.7 Vivid discussion
AVG DAYS TO CLOSE PRS

3.1

Conversations that Need Your Attention

Tip: Researchers have found that excessive review delays, nitpicking, and long wait for review are predictors of negative experiences in the code review process. Blocking

a change request can cause unnecessary interpersonal con�ict and negative feelings among contributors [Egelman et al., 2020].

Issues/PRs

Issues that have been opened for the longest time:

Aerial seems to break basic navigation and folding?

[Docs]: API section on documentation

getting proper lsp when loading modules from Astronvim user con�gs

Neo-tree close if last window ignoring Aerial.nvim

omnisharp and ionide

Open issues with the most comments:

[Docs]: API section on documentation

How can I see the full signature when autocompleting?

getting proper lsp when loading modules from Astronvim user con�gs

Unable to use paredit

omnisharp and ionide

Issue Author Stats New/Active Pull Request Author Stats New/Active New Issue Authors

< login >

< login >

< login >

< login >

< login >

< login >

< login >

< login >

< login >

< login >

< login >

New PR Authors

< login >

Tip: New contributors may need some additional support from the project community. In order for an open source project to be sustainable, it’s important to not only attract new

contributors, but also retain them.

Issue Response Avg/Median PR Response Avg/Median Issue Comments Avg/Median/Zero PR Comments Avg/Median/Zero

Tip: If a pull request is coming from an external contributor, try to comment on the PR before closing it. This can be helpful for the author and acknowledges their contribution.

Conversation Tone Analysis

Issue conversations

The highest toxicity score* of comments: 0.351

The highest identity attack score* of comments: 0.333

No comment has a toxicity score above the threshold.

Pull request conversations

The highest toxicity score* of comments: 0.069

The highest identity attack score* of comments: 0.097

No comment has a toxicity score above the threshold.

Note: This analysis �ags potentially problematic conversations, but it isn’t perfect! These conversations may need further review from maintainers to ensure that they have a

friendly tone and follow the code of conduct.

Tip: If you do not already have one, consider creating a code of conduct for your community to promote respectful, productive discussions! Here is a template to get you

started: https://www.contributor-covenant.org

* The toxicity score and identity attack score (both with range [0,1]) are calculated by Google's Perspective API.

These attributes can help detect interpersonal con�ict ([Egelman et al., 2020], [Raman et al., 2020], and [Qiu et al., 2022]).

Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

week -3 week -2 week -1

week -3 week -2 week -1

C r ti b L b l

this week

this week

Figure 5.6: Version 2: Trends

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 107

Climate Report for Your Project
< project slug >

A dashboard for open-source maintainers to monitor project team dynamics and improve community health.

Basic stats of team activities in the past week:

Trends in the past 4 weeks:

How big is your community of developers?

How was the response?

How friendly are the conversations?

Labels used in the past month:

Overview

Health in Open Source Software Communities

By taking steps to reduce barriers to new contributors [Steinmacher et al., 2015],

maintainers can create a welcoming culture that attracts more newcomers [Guizani

et al 2022] and increases project diversity.

Increasing diversity and inclusion can bene�t the health of open-source projects

because prior studies show that projects with more gender and tenure diversity are

associated with higher productivity [Vasilescu et al., 2015; Catolino et al., 2019].

This dashboard was built with open source community health as a top priority to

serve the following goals:

Help open source project maintainers monitor project team dynamics and take

steps to improve community health.

Encourage behaviors that foster inclusivity & diversity in open-source project

communities.

Increase awareness of existing research on open source communities.

Present metrics that expand on GitHub's built-in insights page and implement

existing standards for measuring open-source health.

NEW ISSUE AUTHORS

11 Team is growing!
AVG MONTHS EXPERIENCE

59 An experienced team
AVG COMMENTS TO ISSUES

3.7 Vivid discussion
AVG DAYS TO CLOSE ISSUES

14.8

NEW PR AUTHORS

2 Team is growing!
RECURRING CONTRIBUTORS

26 Friends around :-D
AVG COMMENTS TO PRS

1.3
AVG DAYS TO CLOSE PRS

0.7

Conversations that Need Your Attention

Tip: Researchers have found that excessive review delays, nitpicking, and long wait for review are predictors of negative experiences in the code review process. Blocking

a change request can cause unnecessary interpersonal con�ict and negative feelings among contributors [Egelman et al., 2020].

Issues/PRs

Issues that have been opened for the longest time:

Get rid of boilerplate/trivial BUILD �les

Use immutable_inputs for `PEX`s

Add duration and cache source to fmt/lint/check output.

Open issues with the most comments:

`isort` may require transitive sources

v1 JVM dependency checker reports false positives

Pex binary errors when depending on a distribution

Issue Author Stats New/Active Pull Request Author Stats New/Active New Issue Authors

hooksie1

martin-css

satwell

davidreuss

cogni�oyd

dimitar-petrov

ZackKanter

qaishk

THuppke

ptrhck

New PR Authors

lilatomic

wfscheper

naveensrinivasan

Tip: New contributors may need some additional support from the project community. In order for an open source project to be sustainable, it’s important to not only attract new

contributors, but also retain them.

Issue Response Avg/Median PR Response Avg/Median Issue Comments Avg/Median/Zero PR Comments Avg/Median/Zero

Tip: If a pull request is coming from an external contributor, try to comment on the PR before closing it. This can be helpful for the author and acknowledges their contribution.

Conversation Tone Analysis

Issue conversations

The highest toxicity score* of comments: 0.422

The highest identity attack score* of comments: 0.744

Links to highest potentially problematic comments (threshold: 0.7):

1. `overrides` �eld does not work properly with tag exclusion

Pull request conversations

The highest toxicity score* of comments: 0.391

The highest identity attack score* of comments: 0.734

Links to highest potentially problematic comments (threshold: 0.7):

1. :speak_no_evil: black and mypy need to shush

Note: This analysis �ags potentially problematic conversations, but it isn’t perfect! These conversations may need further review from maintainers to ensure that they have a

friendly tone and follow the code of conduct.

Tip: If you do not already have one, consider creating a code of conduct for your community to promote respectful, productive discussions! Here is a template to get you

started: https://www.contributor-covenant.org

* The toxicity score and identity attack score (both with range [0,1]) are calculated by Google's Perspective API.

These attributes can help detect interpersonal con�ict ([Egelman et al., 2020], [Raman et al., 2020], and [Qiu et al., 2022]).

Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

week -3 week -2 week -1

week -3 week -1 this week

Conversations by Label

this week

week -2

Figure 5.7: Version 2: Conversation Tone Analysis

Labels used in the past month:

Comparison to Similar Repositories in the past month:

Prior Research Results:

Toxicity: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.

Identity Attack: Negative or hateful comments targeting someone because of their identity.

Conversations by Label

Tip: Consider adding issue labels that explicitly highlight starter tasks for new contributors. Labels like “newcomer friendly”, “good �rst issue”, and "help wanted" can help

attract and retain new contributors [Guizani et al., 2022]. These labels will appear in GitHub repository search results.

Comparison metrics More metrics Projects

proj1: proj1

proj2: proj2

proj3: proj3

proj4: proj4

proj5: proj5

Notes

Comparison between similar projects can put your

project activity in context by helping you understand

your project's metrics relative to your peers.

Situating a project within its particular ecosystem can

help open-source maintainers understand project

health and sustainability [Goggins et al., 2021].

Features that Affect Project Attractiveness

Project attractiveness affects which open-source projects developers choose to contribute to. Some features that

developers consider may include [Qiu et al., 2019]:

Features Explanation

Activity level Recent commits signal that the project is still active

Scaffolding Project infrastructure such as labels and templates for issues and pull requests can help

contributors navigate the project.

README �le A comprehensive README should be organized into clear sections and include a project

description, goals, contributing guidelines, and community contact information.

Inclusive Language Language used in the docs, code of conduct, and conversations for issues and pull

requests can impact contributors’ impressions of the project.

Methods

This dashboard was created by members of the

STRUDEL and CoEx labs at the Carnegie Mellon

University School of Computer Science. It uses

publicly accessible data retrieved from the GitHub

REST API, including data on activity, contributions,

and authors relevant to the project.

We use Google’s Perspective API to identify

potentially abusive or “toxic” comments with

machine learning models, along with SentiCR, a

sentiment analysis tool for code review comments.

References

[1] Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan, C., & Lin, J. (2020, October). Predicting developers' negative feelings about code review. In

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (pp. 174-185). IEEE. [Link]

[2] Goggins, S., Lumbard, K., & Germonprez, M. (2021, May). Open source community health: Analytical metrics and their corresponding narratives. In 2021 IEEE/ACM 4th

International Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal) (pp. 25-33). IEEE. [Link]

[3] Guizani, M., Zimmermann, T., Sarma, A., & Ford, D. (2022). Attracting and Retaining OSS Contributors with a Maintainer Dashboard. arXiv preprint arXiv:2202.07740.

[Link]

[4] Miller, C., Cohen, S., Klug, D., Vasilescu, B., & Kästner, C. (2022). “Did You Miss My Comment or What?” Understanding Toxicity in Open Source Discussions. 44th

International Conference on Software Engineering (ICSE'22). [Link]

[5] Qiu, H. S., Li, Y. L., Padala, S., Sarma, A., & Vasilescu, B. (2019). The signals that potential contributors look for when choosing open-source projects. Proceedings of the

ACM on Human-Computer Interaction, 3(CSCW), 1-29. [Link]

[6] Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., & Vasilescu, B. (2019b). Going Farther Together: The Impact of Social Capital on Sustained Participation in Open Source.

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019, pp. 688-699, doi: 10.1109/ICSE.2019.00078. [Link]

[7] Qiu, H. S., Vasilescu, B., Kästner, C., Egelman, C., Jaspan, C., & Murphy-Hill, E. (2022). Detecting Interpersonal Con�ict in Issues and Code Review: Cross Pollinating Open-

and Closed-Source Approaches. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 41-55). IEEE.

[Link]

[8] Raman, N., Cao, M., Tsvetkov, Y., Kästner, C., & Vasilescu, B. (2020). Stress and burnout in open source: Toward �nding, understanding, and mitigating unhealthy

interactions. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (pp. 57-60). [Link]

[9] Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015). Social barriers faced by newcomers placing their �rst contribution in open source software projects.

Proceedings of the 18th ACM conference on Computer supported cooperative work & social computing (pp. 1379-1392). [Link]

Figure 5.8: Version 2: Labels Used by Issues and PRs

Labels used in the past month:

Comparison to Similar Repositories in the past month:

Prior Research Results:

Conversations by Label

Tip: Consider adding issue labels that explicitly highlight starter tasks for new contributors. Labels like “newcomer friendly”, “good �rst issue”, and "help wanted" can help

attract and retain new contributors [Guizani et al., 2022]. These labels will appear in GitHub repository search results.

Comparison metrics More metrics Projects

proj1: proj1

proj2: proj2

proj3: proj3

proj4: proj4

proj5: proj5

Notes

Comparison between similar projects can put your

project activity in context by helping you understand

your project's metrics relative to your peers.

Situating a project within its particular ecosystem can

help open-source maintainers understand project

health and sustainability [Goggins et al., 2021].

Features that Affect Project Attractiveness

Project attractiveness affects which open-source projects developers choose to contribute to. Some features that

developers consider may include [Qiu et al., 2019]:

Features Explanation

Activity level Recent commits signal that the project is still active

Scaffolding Project infrastructure such as labels and templates for issues and pull requests can help

contributors navigate the project.

README �le A comprehensive README should be organized into clear sections and include a project

description, goals, contributing guidelines, and community contact information.

Inclusive Language Language used in the docs, code of conduct, and conversations for issues and pull

requests can impact contributors’ impressions of the project.

Methods

This dashboard was created by members of the

STRUDEL and CoEx labs at the Carnegie Mellon

University School of Computer Science. It uses

publicly accessible data retrieved from the GitHub

REST API, including data on activity, contributions,

and authors relevant to the project.

We use Google’s Perspective API to identify

potentially abusive or “toxic” comments with

machine learning models, along with SentiCR, a

sentiment analysis tool for code review comments.

References

[1] Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan, C., & Lin, J. (2020, October). Predicting developers' negative feelings about code review. In

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (pp. 174-185). IEEE. [Link]

[2] Goggins, S., Lumbard, K., & Germonprez, M. (2021, May). Open source community health: Analytical metrics and their corresponding narratives. In 2021 IEEE/ACM 4th

International Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal) (pp. 25-33). IEEE. [Link]

[3] Guizani, M., Zimmermann, T., Sarma, A., & Ford, D. (2022). Attracting and Retaining OSS Contributors with a Maintainer Dashboard. arXiv preprint arXiv:2202.07740.

[Link]

[4] Miller, C., Cohen, S., Klug, D., Vasilescu, B., & Kästner, C. (2022). “Did You Miss My Comment or What?” Understanding Toxicity in Open Source Discussions. 44th

International Conference on Software Engineering (ICSE'22). [Link]

[5] Qiu, H. S., Li, Y. L., Padala, S., Sarma, A., & Vasilescu, B. (2019). The signals that potential contributors look for when choosing open-source projects. Proceedings of the

ACM on Human-Computer Interaction, 3(CSCW), 1-29. [Link]

[6] Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., & Vasilescu, B. (2019b). Going Farther Together: The Impact of Social Capital on Sustained Participation in Open Source.

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019, pp. 688-699, doi: 10.1109/ICSE.2019.00078. [Link]

[7] Qiu, H. S., Vasilescu, B., Kästner, C., Egelman, C., Jaspan, C., & Murphy-Hill, E. (2022). Detecting Interpersonal Con�ict in Issues and Code Review: Cross Pollinating Open-

and Closed-Source Approaches. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 41-55). IEEE.

[Link]

[8] Raman, N., Cao, M., Tsvetkov, Y., Kästner, C., & Vasilescu, B. (2020). Stress and burnout in open source: Toward �nding, understanding, and mitigating unhealthy

interactions. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (pp. 57-60). [Link]

[9] Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015). Social barriers faced by newcomers placing their �rst contribution in open source software projects.

Proceedings of the 18th ACM conference on Computer supported cooperative work & social computing (pp. 1379-1392). [Link]

Figure 5.9: Version 2: Comparison

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 108

Labels used in the past month:

Comparison to Similar Repositories in the past month:

Prior Research Results:

Conversations by Label

Tip: Consider adding issue labels that explicitly highlight starter tasks for new contributors. Labels like “newcomer friendly”, “good �rst issue”, and "help wanted" can help

attract and retain new contributors [Guizani et al., 2022]. These labels will appear in GitHub repository search results.

Comparison metrics More metrics Projects

proj1: proj1

proj2: proj2

proj3: proj3

proj4: proj4

proj5: proj5

Notes

Comparison between similar projects can put your

project activity in context by helping you understand

your project's metrics relative to your peers.

Situating a project within its particular ecosystem can

help open-source maintainers understand project

health and sustainability [Goggins et al., 2021].

Features that Affect Project Attractiveness

Project attractiveness affects which open-source projects developers choose to contribute to. Some features that

developers consider may include [Qiu et al., 2019]:

Features Explanation

Activity level Recent commits signal that the project is still active

Scaffolding Project infrastructure such as labels and templates for issues and pull requests can help

contributors navigate the project.

README �le A comprehensive README should be organized into clear sections and include a project

description, goals, contributing guidelines, and community contact information.

Inclusive Language Language used in the docs, code of conduct, and conversations for issues and pull

requests can impact contributors’ impressions of the project.

Methods

This dashboard was created by members of the

STRUDEL and CoEx labs at the Carnegie Mellon

University School of Computer Science. It uses

publicly accessible data retrieved from the GitHub

REST API, including data on activity, contributions,

and authors relevant to the project.

We use Google’s Perspective API to identify

potentially abusive or “toxic” comments with

machine learning models, along with SentiCR, a

sentiment analysis tool for code review comments.

References

[1] Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan, C., & Lin, J. (2020, October). Predicting developers' negative feelings about code review. In

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (pp. 174-185). IEEE. [Link]

[2] Goggins, S., Lumbard, K., & Germonprez, M. (2021, May). Open source community health: Analytical metrics and their corresponding narratives. In 2021 IEEE/ACM 4th

International Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal) (pp. 25-33). IEEE. [Link]

[3] Guizani, M., Zimmermann, T., Sarma, A., & Ford, D. (2022). Attracting and Retaining OSS Contributors with a Maintainer Dashboard. arXiv preprint arXiv:2202.07740.

[Link]

[4] Miller, C., Cohen, S., Klug, D., Vasilescu, B., & Kästner, C. (2022). “Did You Miss My Comment or What?” Understanding Toxicity in Open Source Discussions. 44th

International Conference on Software Engineering (ICSE'22). [Link]

[5] Qiu, H. S., Li, Y. L., Padala, S., Sarma, A., & Vasilescu, B. (2019). The signals that potential contributors look for when choosing open-source projects. Proceedings of the

ACM on Human-Computer Interaction, 3(CSCW), 1-29. [Link]

[6] Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., & Vasilescu, B. (2019b). Going Farther Together: The Impact of Social Capital on Sustained Participation in Open Source.

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019, pp. 688-699, doi: 10.1109/ICSE.2019.00078. [Link]

[7] Qiu, H. S., Vasilescu, B., Kästner, C., Egelman, C., Jaspan, C., & Murphy-Hill, E. (2022). Detecting Interpersonal Con�ict in Issues and Code Review: Cross Pollinating Open-

and Closed-Source Approaches. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 41-55). IEEE.

[Link]

[8] Raman, N., Cao, M., Tsvetkov, Y., Kästner, C., & Vasilescu, B. (2020). Stress and burnout in open source: Toward �nding, understanding, and mitigating unhealthy

interactions. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (pp. 57-60). [Link]

[9] Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015). Social barriers faced by newcomers placing their �rst contribution in open source software projects.

Proceedings of the 18th ACM conference on Computer supported cooperative work & social computing (pp. 1379-1392). [Link]

Figure 5.10: Version 2: Methods and References

Dashboard signal Tip
Conversations
that Need Your
Attention

Researchers have found that excessive review delays, nitpicking,
and long wait for review are predictors of negative experiences
in the code review process. Blocking a change request can cause
unnecessary interpersonal conflict and negative feelings among
contributors [47].

New authors New contributors may need some additional support from the
project community. In order for an open source project to be
sustainable, it’s important to not only attract new contributors,
but also retain them.

PR comments If a pull request is coming from an external contributor, try to
comment on the PR before closing it. This can be helpful for the
author and acknowledges their contribution.

Conversation
tone analysis

If you do not already have one, consider creating a code
of conduct for your community to promote respectful,
productive discussions! Here is a template to get you started:
https://www.contributor-covenant.org

Conversations by
labels

Consider adding issue labels that explicitly highlight starter tasks
for new contributors. Labels like “newcomer friendly”, “good
first issue”, and “help wanted” can help attract and retain new
contributors [309]. These labels will appear in GitHub repository
search results.

Table 5.4: Tips we provided in our dashboard

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 109

Table 5.5: Information of the Participants from the 2nd Round of Interviews

Participant ID Number of Stars Number of con-
tributors

R2P1 544 18
R2P2 73.9K 100+
R2P3 708 100+
R2P4 131 27
R2P5 158 8
R2P6 2.1K 100+
R2P7 126 28
R2P8 8.3K 98
R2P9 2.1K 100+

Procedure
We conducted a second round of interviews to test the usability of our new design. We

made slight modification to the protocol from the first round of interviews. Same as the
previous round, we recruited maintainers of open-source projects on GitHub. We interviewed
a total of 9 maintainers for the second round of interviews, who worked on projects within
the range of about 100 to 80,000 stars and at least 20 contributors listed on GitHub. The
summary of the participants’ projects is shown in Table 5.5. We refer to each of them as
R2Px in the rest of the paper.

Two of the authors coded the interviews in the same way as the first round, paying more
attention to the feedback this time. As we conducted interviews, we coded the transcripts
and made adjustment to our dashboard if multiple participants provided the same feedback.
We concluded the second round of interviews when our dashboard features became stabilized.

Results

Below we summarize the feedback we received from the second round of interviews. Overall,
most maintainers had a positive impression of our new design. Many of them pointed out
several features that are useful for monitoring the community activity. At the same time,
many of them pointed out improvements that could be made to our dashboard.
Feature Usefulness

Conversation analysis Three maintainers considered the conversation analysis to be the
most important and useful feature of our dashboard (R2P5, R2P6, and R2P9). They found
the tone analysis to be the “the big selling point” (R2P6) that could “be highlighted much
earlier in your reporting” (R2P5). As R2P6 summarized, links to potentially problematic
conversations were actionable items,

“[...] with these actionable things you know, you can go actually take some sort
of action to address concerns and anything that has a negative sentiment. Try to
squash right away and make it more straightforward” (R2P6).

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 110

Potential pushback conversations Links to conversations with long open time or many
comments were considered to be useful by many maintainers (R2P4, R2P5, R2P6, R2P7,
R2P8, and R2P9). Although some maintainers told us that some conversations were left open
on purpose (R2P8), others told us that those conversations were the “things [they] can look
at and take action on” (R2P6) and would even like to “go and actually address these right
now” (R2P7). R2P5 echoed the findings of pushback in code reviews, Egelman et al. [47] and
Qiu et al. [89] pointed out that these conversations “can almost directly correlate potentially
to anything that’s, you know, negative” (R2P5). During our interview, the links even helped
R2P8 identify a thread that waits for his reply while he thought he “was waiting for her reply
there” (R2P8). As R2P6 nicely summarized, the links are

“sort of a daily dashboard where I can say, Oh, you know here’s my in-tray for
the week. You know here’s stuff that needs attention, here’s stuff that may have
fallen through the cracks, is something I need to pay attention to” (R2P6).

This feature is especially helpful for big communities. As R2P9, the maintainer of a project
with 100+ contributors, told us that our links help them identify conversations that need
immediate attention because “there are probably 50 parallel semi-active conversations going
at any time, and [they] certainly can’t track that” (R2P9).

The number of closed issues and PRs R2P4 told us that the number of closed issues and
PRs is very useful because they are a research institute and they can put the data in their
grant report:

“Knowing the pull request stats are very valuable too. Like the new authors. That
one probably would be the most useful for us as far as reporting to our granting
agencies, and yearly reports where you just say like, Oh, this last year we closed
like 300 tickets, and we opened like 6,000 or something” (R2P4).

Labels R2P6 and R2P7 mentioned that the numbers of issues or PRs under different labels
are useful. R2P6 told us that they used “labels to categorize pull requests for the change log”
so “these labels actually matter to us” (R2P6).

Average response time R2P7 told us that the average response time is a useful feature,
especially he is overseeing many GitHub repositories. He said it could make him aware that
“sometimes, [in] some repos, [...] people see [there is] an issue and no one even responds to it”
(R2P7).
Dashboard Design Feedback and Changes

Goals There was some uncertainty about the title of our dashboard (R2P5) and the
dashboard’s purpose. Several interviewees mentioned they felt that this could be created by
GitHub (R2P1, R2P6, and R2P7).

This feedback pointed out that our dashboard did not clearly convey its objective to
maintainers. Due to this, we decided to add in an Overview (Figure 5.4) section that contained
background and goals for the dashboard.

Formatting and Design Decisions We received several feedback on the formatting and
certain design decisions, such as the use of colors and some features are missed by participants.
We made adjustment when two or more participants pointed out the same problem.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 111

Feature Suggestions Participants had a couple suggestions of interesting features they
would like to have in a dashboard.

On a front-end functionality perspective, a few participants mentioned that they wanted a
more interactive dashboard. One participant wanted to be able to drag the different dashboard
sections around to customize it to their preference (R2P9). We could not address this feedback
at the moment, but we did take note of which sections most maintainers felt were more
important and should have been highlighted at the top of the dashboard, as noted in the
Format Issues section above. Additionally, participants wanted to be able to change the date
ranges for the data (R2P1 and R2P4) to have a better idea of how their project developed
over time. Unfortunately, we were not able to add this feature at the moment.

5.4.3 Phase 3: Diary Study
After incorporating changes to the dashboard based on feedback from the second round of
interviews, we further tested the dashboard in a two-week diary study [317]. We include the
diary study protocol in Section 5.9

Procedure

After incorporating feedback from the second round of interviews into the dashboard, we
designed the protocol for a longer-term user study for open source maintainers. This study
lasted two weeks and followed the structure described in the graphic below, which includes
an initial survey, onboarding session, weekly survey, and exit survey. Participants were
compensated $50. Below we describe each of the study components in more detail.
Initial Survey + Onboarding Session (30 minutes)

Initial survey (20 minutes) We provided a Google form for participants to fill out. We
also provided participants with the consent form and information about the study structure.
In the survey, we asked for background information about the maintainer’s identity, habits,
and project dynamics.

The survey asked questions about maintainers’ workflow, their perception of their com-
munity’s health, and projects they want to be compared with.

When asking about maintainers’ workflow, we asked about whether they are seeking for
new contributors, the importance of increasing demographic or technical diversity, and how
confident are they in managing their community. We also asked them to rate the priorities of
several management actions, including “fast response time to issues,” “fast response time to
PR,” “creating a welcoming environment,” “attracting new contributors,” and “attracting a
diverse group of contributors.” We then asked them how often do they respond to issues and
PRs each week. We also asked them about their goals for your project community.

Then, we asked participants their understanding of community health. We asked three
open-ended questions: How would you describe your project’s community health? How would
you define diversity in open-source software? How would you define inclusion in open-source
software?

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 112

To make our comparison signals more useful, we asked participants enter projects they
want to compare with. At the end of the survey, we asked them to sign up for a time slot for
a Zoom call for the onboarding session.

Onboarding session - Zoom call (10 minutes) During the Zoom call, we explained the
logistics of the study and weekly survey. Then we showed them the dashboard and ensured
they understood the basic setup. We also answered any questions the participant has. Lastly,
we established a social connection with the participant
Weekly usage (30 minutes each week × 2 = 1 hour total)

Participants could freely use the Climate Coach dashboard as little or as much as they
want during the study. Each Friday, we sent an email asking participants to complete brief
weekly surveys about how they used the dashboard that week. The survey itself took about
15 minutes; they also were expected to spend time looking at the dashboard. Participants
were asked to complete the survey within 48 hours of receiving it.

The weekly survey consisted of two parts, maintainers activity and dashboard engagement.
The questions in the maintainers activity portion included the types of contributions they
receive, the amount of time they spent on maintaining, and the tone of conversations in their
community. In the dashboard engagement portion, we asked participants questions regarding
the usefulness of the dashboard, such as how often they checked the dashboard, which parts
were most useful, which tips were more helpful, and how reliable were the signals.
Exit Survey (30 minutes)

After two weeks, we sent participants a survey with questions to get feedback on the
dashboard and compare responses from the initial survey. We repeated questions from
maintainers’ workflow and perception of their community’s health in the initial survey, and
added questions regarding the usefulness of our dashboard. We asked them to rate their level
of agreement with a list of statements regarding whether the dashboard is useful for them and
other maintainers. To test if our dashboard has any effect on their management strategies,
we asked if they made any changes after viewing our dashboard. Lastly, we asked them how
likely were they going to continue to use this dashboard after the study ends. The survey
concluded with an open-ended question for their feedback on the dashboard.

We provided 5-point Likert scales for participants to measure their level of agreement
with statements regarding their perception of their community’s health and the usefulness
of our dashboard, with 5 being “strongly agree” and 1 being “strongly disagree”. To test if
they were paying attention to the statement rather than click “strongly agree” or “agree”
for all statements, we reverse-coded some of the statements as an attention check. When
analyzing responses to these statements, we first reversed the responses, i.e., “strongly agree”
as “strongly disagree”.

Recruitment

For the diary study, we explicitly recruited maintainers from big and active projects. From
the two prior interviews, we learned that big projects could benefit more from our dashboard
(R2P1) because there is a number of things to keep track of that can exceed maintainers’
capability. Moreover, since our diary study’s survey frequency was weekly, less active projects
would not have generated sufficient activities to appear on the dashboard. Therefore, for the

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 113Diary Study Logistics

Week 1 Week 2

Initial survey
completed
independently

10 minute meeting
to explain
dashboard basics
and answer your
questions

Initial Survey +
Onboarding Session

30 minute survey
with questions
about your
dashboard
experience

Exit Survey

● Use dashboard throughout the week
● 15 minute survey on dashboard usage sent by email

each Friday
● Please complete the survey within 48 hours

Figure 5.11: Diary Study Logistics

diary study, we searched on GitHub for projects with at least 1K stars, followers, or 100 to
200 forks.3 From the search results, we picked the projects with activities (issues or PRs)
within the last week and with at least 10 contributors. Similar to previous interviews, we
contacted only the maintainers who left their emails or Twitter handles on their profile pages.

In the end, we recruited 10 participants for our diary study. Two of them reached out to
us on Twitter. The rest of them accepted our email invitation. We sent out 128 emails, and 8
of them were accepted (respond rate 6.25%). The summary of all the participants’ projects is
shown in Table 5.6. We refer to each of the participants as R3Px below.

Data Analysis

We analyzed the responses to the 2 weekly surveys and the exit survey, using participants as
the unit of analysis. One of the researchers performed open-coding on open-ended questions
in the surveys. We affinity diagrammed codes generated from the open-ended responses to
identify themes in participants uses of and reactions to the dashboard.

Results

Participant information
We recruited a diverse group of participants. Four out of ten participants were women.

The years of experience ranged from less than a years to 10+ years (see Figure 5.12). Most
of them were involved in more than one OSS project (M = 5.9, SD = 5.22). The projects
also varied in terms popularity and team size (see Table 5.6). Three of the participants were
the sole maintainer of their project, the rest were either one of the maintainers or a lead
maintainer with other specialized sub maintainers.

Maintainer Workflow After viewing our dashboard, maintainers reported various goals
that can be categorized into three groups: expanding the community (R3P2 and R3P7),
accelerating response (R3P1, R3P3, and R3P7), and improving communication (R3P5 and
R3P7).

In both the initial and exit survey, we asked maintainers to rate the importance of five
goals, including fast response and recruiting new contributors. Participants were asked to

3https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 114

Figure 5.12: Years of Experience in Open-Source Contribution

Table 5.6: Information of the Participants from the Diary Study and Their Basic Stats during
the Two Weeks

Participant
ID

Number of Stars Total Number
of Contributors

Avg Issues Closed Avg PRs Closed

R3P1 2.5K 31 4 8
R3P2 4.5K 47 32 14
R3P3 146 27 2.5 8
R3P4 8.1K 100+ 26 118.5
R3P5 1.3K 19 0 2.5
R3P7 6.3K 26 2.5 0
R3P9 2.1K 93 0 19
R3P11 8.1K 100+ 25 103
R3P12 18.7K 100+ 5.5 15
R3P14 23 7 0 0

give a rating between 1 (lowest priority) and 5 (highest priority) for each of the five goals.
We ranked the average ranking of all participants and found that the priority order of the
five factors did not change between the initial and exit surveys. We suspect that the diary
study duration was too short for maintainers’ priority to change.

In both the initial and exit survey, most of the participants placed attracting new
contributors as lower priority (initial: M = 3, SD = 1.22; exit: M = 3, SD = 1.26). Attracting
a diverse group of contributors has an even lower priority (initial: M = 2.44, SD = 1.42; exit:
M = 2.17, SD = 1.47). Tasks with the highest priority are fast response time to issues (initial:
M = 3.78, SD = 1.20; exit: M = 4.33, SD = 0.52) and to PRs (initial: M = 4; SD = 1; exit:
M = 4, SD = 1.10). They are followed by “creating a welcoming environment” (initial: M =
3.78, SD = 1.09; exit: M = 3.5, SD = 1.22).

Participants had extreme diversity on their frequency of responding to issues and PRs
each week. Almost half of them indicated that they responded to issues and PRs 1-3 times
per week whereas some other participants indicated that they responded 10+ times per week.
We did not discover a clear difference between the initial and exit survey in terms of the
frequency of responding to issues and PRs.
Dashboard feedback

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 115

Overall, most participants agreed that the dashboard was useful to them (M = 3.75, SD
= 1.16). Except for 2 participants, the rest expressed that they would continue to use this
dashboard after the study. Most of them agreed that the dashboard would be useful to most
maintainers (M = 4.33, SD = 1.21).

Comparing participants’ responses to the initial and the exit surveys, we found that after
using the dashboard, participants became more confident in supporting the community and
encouraging a healthy community. Overall, participants showed higher agreement with the
statement I feel confident in supporting the community of contributors in my project (initial:
M = 4.44, SD = 0.53; exit: M = 4.63, SD = 0.52). Three participants provided higher rating
in the exit survey than in the initial one. The other participants provided the same rating in
both surveys.

The exit survey also showed an improvement in the agreement with the statement I am
sure about how to encourage a healthy project community (initial: M = 3.33, SD = 1; exit: M
= 3.88, SD = 0.64).

While most participants acknowledged the usefulness of the dashboard, R3P7, the main-
tainer of a relatively small project commented that, because his project is not very active, the
dashboard would be more useful if the signals were aggregated by month rather than week,

“My repository is quite small and not very active. Because of this, many metrics
are empty or not precise enough. For example, Conversation Tone Analysis works
by week. It would be more useful for me to see such statistics by month or by 6
months, since in a given week I can get only 1-2 comments anywhere, or none at
all.”

Useful signals In each weekly survey, we asked participants to list out dashboard signals
that they viewed more often than others. We found that participants paid more attention
to various signals. R3P1 and R3P9 paid more attention to Basic Stats at the top of the
dashboard as they provide an overview of the projects’ status. R3P2 cared more about
the time to respond to issues and PRs as he considered “fast response” to issues and
PRs much more important than the other three goals. R3P4 and R3P7 mentioned that the
trends are useful. The signal that is mentioned the most is Conversations that Need Your
Attention (R3P4, R3P5, and R3P7) because it is providing maintainers actionable items.

Although in the previous two rounds of interviews, we found that comparison was less
useful to participants R1s and R2s, it was considered useful by some diary study participants
(R3P2, R3P3, and R3P5). The comparison signals became more useful probably because
they were being compared with projects they chose to be peers or competitors (by reporting
them in the initial survey). However, R3P11 pointed out that comparison was difficult among
projects because some projects have full-time contributors whereas some others do not.

Confusing signals While participants agreed that most of the signals are “self explanatory”
(R3P2), some of them pointed out that the Conversation Tone Analysis part was confusing
(R3P1, R3P2 and R3P5). R3P1 reported to us that he “wanted to learn more about what the
numeric score was. First, it would make more sense if it were just a percent (0%-100%), [but]
it’s currently a unitless number.” On top of the confusion on the measurement, we suspect
the lack of toxic conversations made the Conversation Tone Analysis empty and useless.
None of our diary study participants had any conversations flagged by the Perspective API.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 116

However, we report the highest toxicity and identity attack scores regardless of the presence
of any potentially toxic conversations, i.e., toxicity or identity attack scores > 0.7. Future
researchers can explore other ways of reporting toxicity or other tools for detection.

Helpful tips The majority of the participants considered the tips in Conversations that
Need Your Attention to be useful (R3P2, R3P3, R3P4, R3P5, R3P7, R3P9, and R3P11).
Some participants also pointed out some tips that helped them improve specific parts of their
projects. R3P7 told us that after viewing our tips on adding a Code of Conduct, he planed to
add one soon. Several other participants mentioned tips of Features that Affect Project
Attractiveness to be useful (R3P1, R3P2, R3P4, R3P5, and R3P11). R3P4 and R3P12
thought the tip in the section Conversations by Label was useful. Unfortunately, despite
that maintainers considered some of the tips as useful, except for R3P7, who would add a
code of conduct, none of them made adjustments yet. It is likely that our diary study was
too short for maintainers to take big actions.

In summary, many of our diary study participants found this dashboard useful for
themselves or for most maintainers and their level of confidence in supporting community
health increased. However, our dashboard has not had any effect on maintainers’ actual
workflow yet.

5.5 Discussion
Our study takes the first step towards visualizing signals that are related to diversity and
inclusion of open source software projects but are hard to observe on current social coding
platforms. From the user studies, we received positive feedback on our dashboard’s usefulness.
In this section, we discuss some implications of our study and ideas for future research.

5.5.1 Implications for Design
Provide actionable feedback

Future work can explore the balance between simply displaying information that reflects
the project’s status and providing specific tips or instructions for maintainers to follow or
implement. During our interviews, some participants appreciated that, in the GitHub issue
version, we only provided maintainers with information and did not ask them to perform
specific actions. However, some other maintainers reported that many of the tips in the web
page version were useful. We argue that displaying only information limits the effectiveness of
our dashboard if we do not also provide possible interventions backed by rigorous empirical
studies. The amount of tips we should provide can be very nuanced and needs further
investigation.

Interactive dashboard

Different participants placed their attention on different signals. For example, some of
them considered Conversation Tone Analysis to be the best selling point, whereas some
others considered Conversations that Need Your Attention to be the most useful and
actionable items. Since in most cases, participants’ projects had few to no toxic conversations

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 117

during the study period, our current design placed Conversation Tone Analysis in a lower
position. Such layout might not suit all maintainers’ preferences. We also learned from the
diary study that people may also care more about other signals, such as time to respond
to issues and PRs. In the future, designers can make the dashboard more interactive and
allow users to freely organize tabs and sections.

Signals to reflect community interactions

Finally, we suggest social coding platforms incorporate some of our signals into their design.
When designing the dashboard, we made sure that our features were not redundant with the
ones GitHub are providing. For example, GitHub already checks (on each project’s Insights
-> Community Standards) if a project has a README, among other forms of documentation,
such as a contributing guidelines and a codes of conduct — all of which have been found to
associate with higher project attractiveness to new contributors [88].

Therefore, we argue that our signals are good compliments to the ones displayed on
GitHub’s Insight page by focusing more on the quality of interactions among contributors
and maintainers (coincidentally, GitHub already added statistics on the number of issue
and PRs closed each week or month while we were conducting interviews). Our dashboard
provides more insights into issue and PR activities, including signals that are found to be
associated with contributors’ negative feelings, e.g., the number of comments and the time to
close a conversation [47, 89].

All our signals can be easily computed using trace data provided by GitHub. Many of
the signals we include in our dashboard are requested by maintainers, through our email and
think-aloud interviews. Our think-aloud and diary studies validate that these signals can
provide extra help for maintainers to better monitor their community.

5.5.2 Implications for Researchers
Although our dashboard was considered useful by many participants, the actual effect on
maintainers’ management is still limited. Researchers can conduct field studies of longer
terms to test out how the dashboard can affect maintainers’ strategies and how it will impact
an open-source project’s inclusion.

The Conversation Tone Analysis part needs further exploration. Most of our interview
participants and all diary study participants did not have any conversations with toxicity score
or identity attack score above our threshold (0.7) during the study period. As a result, the
Conversation Tone Analysis section was not as useful as it could be and it even confused
some participants. Future researchers can explore alternative ways of measuring conversation
tone and new mechanisms of flagging potentially inappropriate comments.

Future studies can also explore ways to incorporate more signals. For example, from our
interviews, we also collected many signals that maintainers consider important but were hard
for us to measure, such as the status of custom continuous integration (CI) builds. There
are, however, many standard badges to reflect CI status [27], and these could be further
integrated into a dashboard like ours, although we expect that integrating signals such as
ours into the platform UI (where CI badges are already available) would be more fruitful, to
reduce context switching.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 118

Given the prevalence of bots [318, 319], interactions between human and bots are also
important to consider in a maintainer dashboard. Our dashboard did not make specific
allowances for the presence of bots within a project or display their activity in a different
way from other contributors. A dashboard like climate coach could help maintainers assess
where and how to utilize bots to support contributors. It could be useful for project owners
to understand how the use of various bots is associated with other participation signals, e.g.,
contributors could be deterred by interaction with certain bots.

5.6 Limitations
One limitation is the low gender diversity in our participant pool. Although we managed
to recruit 4 women maintainers for our diary study, we only had 1 woman maintainer in
our Phase 2 interviews, which were essential to our dashboard design, and no non-binary
participants.

The biggest limitation was the short duration of our diary study. Ideally we would have
like to conduct a longer term diary study to examine whether and how maintainers could
integrate our dashboard into their process. In addition a longer study would allow us to
examine the impact of dashboard use on project outcomes. Although our results show that
many maintainers considered our dashboard to be useful, without a true longitudinal study,
we are not able to measure the effect that our dashboard has on the community.

5.7 Conclusion
This paper presents Climate Coach, a dashboard we designed to improve the health of
open-source communities. We first identified signals that reflect team inclusion by conducting
a literature review and email interviews with maintainers. Based on the signals we identified,
we designed a dashboard prototype. We performed two rounds of interviews and think-aloud
studies with maintainers to improve our design. We tested the effectiveness of our dashboard
with a two-week diary study with maintainers. Our results show that displaying signals that
reflect various dimensions of team inclusion can increase maintainers’ awareness of their
community health and help them improve their confidence of supporting community health.

5.8 Interview Protocol - Climate Coach
Hello, thank you for taking the time to talk with me today!

We are doing a research study on how to design a support tool for helping maintainers
monitor the climate of their project.

I and my colleagues are working on this study for <institute name>. If you have any
questions about the study afterwards, desire additional information, or wish to withdraw
your participation please contact me by email at <researcher email>. If you have questions
pertaining to your rights as a research participant; or to report concerns to this study, please
contact the Office of Research Integrity and Compliance at <institute name>. Their email is
... and their phone is ...

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 119

During the interview session, we are going to ask you some questions about your project
maintenance experiences and behaviors and show you some designs to get your feedback. We
will ask you to verbalize your thoughts while viewing the designs. The interview should take
around 45 minutes - 1 hour.

In order to participate, you must be 18 years of age or older. Your participation is
completely voluntary. All responses will be de-identified, and we will keep your answers
confidential. There is no compensation for participating.

With your permission, we will also collect public data from your project and data that
are brought up during the interview.

Please refrain from discussing sensitive information about yourself or third parties that
would put them at risk for civil or criminal liability or damage to their financial standing,
employability, or reputation.

Please do not use the real names of other individuals in order to avoid the collection of
identifiable and potentially private information about a third party.

Everything will be anonymous and confidential. No one will be identified by name or any
other specific characteristics.

There are no “right” or “wrong” answers, and we really appreciate your participation.
We’d like to record the audio of this interview for internal notetaking and analysis purposes.

The recordings may be sent to a third-party transcription service to create a written transcript
of our conversation for analysis. Only the members of our research team and the transcribers
will have access to these recordings and their transcripts. Is that OK with you?

[...Get confirmation...]
We’d also like to record the video of this interview, also for internal notetaking and

analysis purposes, meaning only the members of our research team will have access to these
recordings. Is that OK with you?

[...Get confirmation...]
You can let us know to stop the recording during the interview if you say anything you

would like removed from the record.
We may review publicly available data from GitHub or other online sites regarding your

contributions. Is this OK with you?
[...Get confirmation...]

And finally can I verbally confirm that you are 18 years or older, have understood the
consent information presented, and wish to continue with the study?

[...Get confirmation...]

5.8.1 Background about the participant
Tell me a bit about who you are and what you do.

5.8.2 Background about the project and their role
What is your role on Project X?

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 120

5.8.3 Project community
(if maintainer/owner) Are you the sole maintainer or are there others involved?

Tell us about the community for Project X

Who is a part of the community?
How do you interact with them?
How do people interact with each other?
Can you give an example?
Can you show us a typical example of how you interact with the community? It can be an
issue or a PR.

Tell us about the health of the community

How well is the community doing?
How do you know that?
Are there any practices or activities you engage in to encourage community building?
What are they?
How did you decide to do this?
What challenges, if any, is the community facing?
Have you observed any conflict on your project?
Can you give me an example? How often do things like this happen?
How did you resolve that conflict?
Why did you resolve it like that?
Has there been any behavior you would consider toxic (inappropriate) on your project?
What was it? How did you handle it? (Why)
What about other projects?
How did you observe others handling it?

Project management / learning

Do you engage in any activities to manage the community?
What are they?
How / where did you learn those? Give an example
How well are they working?

5.8.4 Think-aloud
<transition - explain think-aloud> Now we’re going to show you some designs that include
reports about your project and we want to get a sense of how you understand them. There’s

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 121

no right or wrong answers but we want to observe your thought process as you interact with
the (design / report).

We’d like you to think aloud while looking through the designs. What we mean by that is
we’d like you to tell us everything you’re thinking or wondering while looking at the reports.
We won’t answer questions during, but you can say them aloud if they cross your mind. The
most important part is that you keep talking, so if you are silent for any long period of time,
we will ask you to talk. Like if I were going to think aloud while searching for the raise hand
feature on Zoom I would say... (talk through example).

[Show example report, ask them to walk us through their thoughts]
[Example report]

5.8.5 Post think-aloud questions
What metrics do you consider important/do you want to know about/are there any we left
out?
Community members’ wellbeing?
Project’s progress/wellbeing?
Are there any projects you think have a healthy community behind them?
What are they?
Why do you think they are healthy? (probe for examples / detail)
Are there any projects where you think the maintainers are doing a particularly good job?
What are they?
How do they relate to yours if at all?

Are there any projects you consider to be peers?
What are they?
Why do you consider them a peer?
Are there any projects you consider similar to yours?
What are they?
Why do you consider them similar?
Do you look at what they are doing? What aspects?
Are there projects you consider competitors?
What are they?
Why do you consider them competitors?
Do you look at what they are doing?
What aspects?

As a maintainer, what format would you want to receive this report in? Email, public issue,
etc.

5.8.6 Diversity
Towards the end: how diverse is your project in terms of gender/ethnicity/etc.?
Do you engage in any practices or activities to encourage diversity?
What practices do you think would be helpful in improving diversity?

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 122

5.9 Diary Study Protocol

5.9.1 Procedure Description
Total time expectation from participants: 3 hours Total cost per participant: $50 Goal number
of participants: 8-10 Duration of procedure: 2 weeks

Initial Survey + Onboarding Session (30 minutes) Initial survey - 20 minutes Google form
filled out independently by participant Consent information + info about the study structure
Background information about the maintainer’s identity, habits, and project dynamics At
the end of survey, have them sign up for onboarding session time slot Onboarding session -
10 minutes Brief video call (Zoom) Explain logistics of study and weekly survey Show them
the dashboard, make sure they understand basic setup Answer any questions the participant
has Establish social connection with participant

Weekly usage (30 minutes each week x 2 = 1 hour total) Participants can freely use the
Climate Coach dashboard as little or as much as they want during the study. Ask participants
via email (sent out each Friday) to complete brief weekly surveys about how they used the
dashboard that week. Survey itself should only take 15 minutes; the other 15 minutes account
for potential time spent looking at the dashboard Participants should complete the survey
within 48 hours of receiving it.

Exit Survey (30 minutes) Survey with questions to get feedback on dashboard and compare
responses from initial survey

5.9.2 Initial Survey

(Section 1) Introduction
Hello, thank you for taking the time to participate in our study! We are doing a research

study on a support tool designed to help maintainers monitor the climate of their project. This
initial survey contains questions about your background information and your involvement in
open-source development. It will also explain the logistics of the study.

My colleagues and I are conducting this study as part of the <lab name> and <lab
name> research labs in the School of Computer Science at Carnegie Mellon University. If
you have any questions about the study afterwards, desire additional information, or wish to
withdraw your participation, please contact me by email at [email].

If you have questions pertaining to your rights as a research participant; or to report
concerns about this study, please contact the Office of Research Integrity and Compliance at
Carnegie Mellon University. Their email is irb-review@andrew.cmu.edu and their phone is
412-268-1901 or 412-268-5460.
(Section 2) Study Logistics Information

This study consists of 3 main parts:
Initial Survey In this survey, we will first ask some brief questions about your background.

Then, we will ask you questions about your project maintenance experiences and behaviors.
Lastly, we will invite you to sign up for a 10 minute time slot for an Onboarding Session over
Zoom where we will explain the dashboard and setup for this study.

Weekly Usage Survey We will email you a survey to fill out once a week for the next 2
weeks. The survey should take about 15 minutes to complete. It will consist of questions

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 123

pertaining to the dashboard and your project maintenance behavior. You may visit the
dashboard as little or as much as you would like throughout the week. Please fill out this
survey no later than 48 hours after it is received.

Exit Survey At the end of the 2 weeks, we will send an email with the Exit Survey. This
survey will ask about your experience with the dashboard and for any final feedback about
the dashboard. We will also ask if you have any other questions or comments about the study.
Compensation: Participants will be compensated $50 (USD). If you wish, you may give this
compensation to an open source project or foundation of your choice. We will notify you that
the compensation has been processed at the end of the study.

5.9.3 Onboarding Interview (Script)

Introduction
Hello, thank you for taking the time to talk with us today! We received your response to

the initial survey, and we greatly appreciate your participation in this study.
The purpose of this Zoom meeting is to further explain the study and show you the

dashboard that we have generated for your open source project community. This is an
opportunity for us to meet you and answer any questions you may have about the dashboard
or the logistics of this study.

As a reminder, we are doing a research study on a support tool for helping maintainers
monitor the community health of their project.

My colleagues and I are conducting this study for the School of Computer Science at
<institute name>. We would also like to remind you of additional resources available to you,
which were also presented in the Consent Information section of the initial survey.

If you have any questions about the study afterwards, desire additional information,
or wish to withdraw your participation, please contact me by email. If you have questions
pertaining to your rights as a research participant; or to report concerns about this study,
please contact the Office of Research Integrity and Compliance at Carnegie Mellon University.
Interviewer email: Office of Research Integrity and Compliance at <institute name>: (email)
(phone)

[share screen to show logistics slides]
Now, we will go over the logistics of the study. This study consists of 3 main parts: This

Onboarding Session will take about 10 minutes. We’re going to explain the logistics of the
study, show you the dashboard and make sure you understand the basic setup, and answer
any questions you may have. After this session, you will have two weeks to use the dashboard
in your open source project workflow. We will send you a weekly usage survey at the end of
each week, which should take around 15 minutes to complete, in addition to any time you
spend viewing the dashboard. You may visit the dashboard on your own time as little or as
much as you would like throughout the week. Each Friday morning, we will email you a survey
to fill out for that week. The survey will consist of questions pertaining to your experience
using the dashboard, as well as questions about your project maintenance behavior. Please
fill out this survey no later than 48 hours after it is received. Last is the exit survey which
should take around 30 minutes. At the end of the 2 weeks, we will send an email with the
Exit Survey. This survey will ask you about your experience with the dashboard and for any
final feedback about the dashboard.

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 124

Do you have any questions so far about the logistics of the study?
[... Answer any questions interviewee might have ...]

Additionally, you will be compensated $50 for your participation. If you wish, you may
give this compensation to an open source project or foundation of your choice.

In the initial survey, you confirmed are 18 years or older, and consent to our use of publicly
available data from GitHub for use in the dashboard. Can I verbally confirm that you have
understood the consent information presented, and wish to continue with the study?

[... Get confirmation ...]
Dashboard Introduction & Questions

I will send a link to the dashboard in the chat now. Please take 5 minutes to view the
dashboard and the metrics on it. If any questions occur to you during this time, please feel
free to ask me out loud or in the chat.

[After 5 mins has passed]
In those 5 minutes, hopefully you had some time to look over the dashboard and its

metrics. Now I am going to ask a few questions to review some sections of the dashboard. I’ll
put these questions in the Zoom chat for your reference.

1. According to the dashboard, how many new contributors have submitted issues in the
past week? [0]

2. According to the dashboard, in the last week, what was the average number of comments
on an issue before it was closed? [2]

3. According to the dashboard, what is the most common issue label in your project?
[new term requested]
Further questions

Thank you for taking the time to join this call and complete the onboarding session! After
this session, I will email you with the information that we covered here, including the study
logistics and the link to your dashboard. Do you have any more questions about this study
or the dashboard? [pause. . .] You may also ask questions at any time via email.

5.9.4 Weekly Survey Questions

Introduction
This is the survey for Week (1-2) of the 2-week study conducted by the <lab name> and

<lab name> labs at the School of Computer Science at Carnegie Mellon University.
At the beginning of this study, we shared with you the link to a dashboard report for

your open source project. As a reminder, you may freely visit this dashboard site as much or
as little as you would like for the duration of this study.

The purpose of this survey is to learn more about your activities as an open source project
maintainer in the past week. Additionally, we will ask questions about your engagement with
the climate report dashboard.

Please complete this survey within 48 hours of receiving it (i.e., by the following Monday).
Thank you for your participation!
Section 1: Maintainer Activity

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 125

In the following questions, “your project” refers to the open source project analyzed
in your dashboard report that we provided at the beginning of this study. Please answer
questions with respect to this project only.

WQ1. What types of contributions has your project received in the last week? (select all
that apply)

• Bug fixes
• Requests for bug fixes
• New features
• Suggestions for new features
• Documentation updates
• Other
WQ2. Which of the following best describes your level of project maintenance activity in

the past week?
• Spent more time than usual on project maintenance tasks
• Spent about the usual amount of time on project maintenance tasks
• Spent less time than usual on project maintenance tasks
• Did not spend any time on project maintenance tasks
WQ3. Approximately how many hours did you spend on maintainer duties for your project

in the past week?
WQ4. Approximately how many times this week have you responded to issue comments?
• None
• 1-3 times
• 4-8 times
• 10+ times
WQ5. Approximately how many times this week have you responded to pull request

comments?
• None
• 1-3 times
• 4-8 times
• 10+ times
WQ6. How would you describe the tone in discussions related to work on your open-source

project?
• Multiple discussions with negative tone
• Some discussions with negative tone
• Mostly neutral tone in discussions
• Some discussions with positive tone
• Multiple discussions with positive tone
WQ7. Select any words that describe the tone in discussions related to work on your

open-source project:
• Friendly
• Tense
• Professional
• Informal
• Productive
• Honest

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 126

• Hostile
• Complaining
• Supportive
• Polite
• Rude
• Welcoming

Section 2: Dashboard Engagement
WQ8. How often did you check the dashboard this past week?
• Once
• 2-3 times
• 4-5 times
• 6+ times
• I did not check the dashboard
WQ9. Are there specific parts of the dashboard that you viewed more often than others?

If so, which sections?
WQ10. Did you click on any of the links to articles or external resources? (do not include

links to your own GitHub page)
• Yes, I read a linked article
• Yes, I read resources about the metrics / API documentation
• Yes, I read both an article and resources about the metrics
• No, I did not click links
WQ10-2. If Yes - Why did you decide to click the link and read further?
WQ11. Which informational tips were most useful to you?
• Conversations that Need Your Attention tip
• Conversations by Label tip
• Features that Affect Project Attractiveness - Activity Level
• Features that Affect Project Attractiveness - Scaffolding
• Features that Affect Project Attractiveness - README file
• Features that Affect Project Attractiveness - Inclusive Language
WQ12. Are there any metrics that are confusing in your opinion?
WQ13. How reliable/unreliable did the metrics seem based on your experiences on GitHub

this week (1 - 5; 1 - very unreliable - 5- very reliable)?
• Basic Stats
• Issue Author Stats
• Pull Request Author Stats
• New Authors
• Issue Response Time
• Pull Request Response Time
• Long-Standing Open Threads
• Issue Activity
• Pull Request Activity
• Lengthy Open Threads
• Conversation Tone Analysis
• Conversations by Label

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 127

• Comparison to Similar Repositories
WQ14. Are there any questions that you have about a specific section of the dashboard

or the dashboard overall?
WQ15. Are there any other feedback or comments you have about this dashboard?

5.9.5 Exit Survey Questions

(Page 1)
This is the final survey for the 2-week study conducted by the <lab name> and <lab

name> labs at the School of Computer Science at Carnegie Mellon University.
The purpose of this survey is to learn about your habits as an open source project

maintainer and your engagement with the climate report dashboard.
The compensation for participation in this study takes the form of a $50 (USD). If you

wish, you may give this compensation to an open source project or foundation of your choice.
We will process the payment to you shortly after your completion of this survey. Thank you
for your participation!
(Page 2) Maintainer Workflow

EQ1. To what extent are you looking for new contributors on your project? (1 - Not
interested in gaining new contributors -> 5 -Very interested in gaining new contributors)

(1-strongly disagree to 5-strongly agree):
• EQ2. I feel confident in supporting the community of contributors in my project.
• EQ3. I am unsure about how to encourage a healthy project community.
• EQ4. Increasing the level of demographic diversity among contributors in my project

community is important to me.
• EQ5. Increasing the level of diversity in technical expertise among contributors in my

project community is important to me.
EQ6. As a maintainer, to what extent do you prioritize the following factors? (On a scale

1-5 low to high priority)
• EQ6-1. Fast response time to issues
• EQ6-2. Fast response time to PRs
• EQ6-3. Creating a welcoming environment
• EQ6-4. Attracting new contributors
• EQ6-5. Attracting a diverse group of contributors
EQ7. How often do you respond to issue comments per week?
• None
• 1-3 times
• 4-9 times
• 10+ times
EQ8. How often do you respond to PR comments per week?
• None
• 1-3 times
• 4-9 times
• 10+ times

CHAPTER 5. INTERVENTION: A DASHBOARD FOR MAINTAINERS 128

EQ9. After viewing the dashboard this week, what goal(s) do you have for your project
community? Please list at least one.
(Page 3) Contributor Community Health

EQ10. How would you describe your project’s community health?
EQ11. How would you define diversity in open-source software?
EQ12. How would you define inclusion in open-source software?

(Page 4) Usefulness of the Dashboard
EQ13. Please select how much you agree with each of the following statements (1-strongly

disagree to 5-strongly agree):
• EQ13-1. This dashboard made me more aware of the diversity and inclusion within my

project.
• EQ13-2. This dashboard caused me to be more aware of my own behavior in regards to

inclusivity in the community.
• EQ13-3. This dashboard did not have an effect on my actions as a maintainer.
• EQ13-4. This dashboard was useful to me.
• EQ13-5. This dashboard was not useful to me, but might be useful to other maintainers.
• EQ13-6. This dashboard would not be useful to most maintainers.
• EQ13-7. I looked at the dashboard mainly so I could answer the questions for the weekly

surveys.
EQ14. Did you add/modify any features to your project based on the content in the

dashboard (example: README)?
• Yes
• No
• Other
If yes, which features were added/modified?
EQ15. How likely are you to continue to use this dashboard after the study?
• Unlikely
• Somewhat unlikely
• Neither likely nor unlikely
• Somewhat likely
• Likely
EQ16. As a maintainer, how would you prefer to receive this website report?
• Social media (i.e., Twitter, Reddit, etc.)
• Podcast or blog for developers
• Email
• Other
EQ17. Any other feedback regarding the dashboard?

Chapter 6

Conclusion

This chapter concludes this dissertation by summarizing our contributions and revisiting
thesis statement:

Social science theories driving computational methods on big data explain the
mechanisms behind open-source contributors’ sustained participation as well as
help us design interventions to improve open source community health.

Then I will discuss some directions for future research.

6.1 Contributions
In this dissertation, I used the problem of low gender diversity as a starting point and
conducted a series of empirical studies to get a better understanding of how to improve
diversity and inclusion in each phase of an open-source contributor’s career path (Figure 6.1).
In the end, I built a dashboard based on the findings from my studies to help maintainers
better attract and retain contributors. In this section, I will reiterate my findings on how to
attract and retain open-source contributors in each phase of their career trajectory.

From a newcomer to a contributor

In this chapter, we used a mixed-methods approach to study how to help new OSS contributors
find a suitable project based on signals available on GitHub. The theory we adopted for
this study is the signaling theory. We identified a list of signals that GitHub contributors
recommend using when assessing projects and estimated logistic regression models to validate
each signal’s effectiveness in attracting new contributors.

DeveloperNewcomer

Onboarding Retention/Prevention

Long-term developer DisengageOutsider

Motivation

Figure 6.1: An open-source contributor’s different phases

129

CHAPTER 6. CONCLUSION 130

The signals we identified can be roughly classified into three categories: popularity, e.g., the
number of stars and recent commits; community, e.g., impolite language and responsiveness;
and quality, e.g., a well-structured and thorough README and a contributing guideline.
However, not all signals are currently easily observable on GitHub. For example, one can
quickly evaluate the quality of a README, but cannot easily infer how friendly the community
is or how responsive the maintainers are.

This study’s results have significant implications for open-source maintainers and the
design of social coding environments and intervention tools. We use many of the signals
discovered in this study in our climate coach dashboard design.

From a contributor to a long-term contributor

This chapter studied the impact of social capital on sustained participation of open source
contributors and, in particular, on gender differences in this impact. We performed a mixed-
methods empirical study: we applied survival analysis on a large dataset of OSS contributors
and their GitHub collaborators; we also surveyed a subset of these contributors about their
perception of social capital to triangulate our findings.

Our results show that being able to obtain more social capital is associated with a higher
likelihood of prolonged participation. Bonding social capital, obtained through strong social
ties, can provide a sense of belonging and willingness to continue contributing. Bridging
social capital, obtained through structure holes, can provide diverse information and more
opportunities to continue contributing.

For women, diversity of the project members’ expertise becomes more critical to sustain
their participation: higher team diversity in terms of prior programming language expertise
is associated with decreased risk of disengagement both short- and long-term.

This study reveals valuable signals that are important for improving diversity and inclusion
but are currently hard to observe on GitHub, such as recurrent collaboration among teammates
and diversity of teammates’ technical backgrounds.

Disengagement prevention

This chapter explored how to prevent disengagement by developing automatic tools to detect
interpersonal conflict in software development. We cross-pollinated two techniques initially
designed for different types of interpersonal conflicts, i.e., pushback and toxicity. Moreover,
these two techniques were developed under different contexts, i.e., corporate and OSS, and for
different types of discussions, i.e., code review and issues. These two techniques also employed
different methods: text-based, i.e., linguistic features, and logs-based, i.e., meta-information.
Some of the linguistic features we chose were guided by linguistic theories, such as the
politeness theory.

We constructed new datasets and systematically evaluated the two techniques across
contexts and types of discussions. We also tested the combination of the two methods in
detecting pushback and toxicity. Our evaluation uncovered insights that can be useful for
developing detectors for new contexts or types of conversations. More importantly, this study
provides strong signals that can help flag potentially problematic interactions for maintainers
to review.

CHAPTER 6. CONCLUSION 131

Climate Coach

Incorporating findings from all previous chapters, this final chapter presents Climate Coach, a
dashboard we designed to improve the health of open-source communities. We first identified
signals that reflect team inclusion by conducting a literature review and email interviews
with maintainers. Based on the signals we identified, we designed a dashboard prototype. We
performed two rounds of interviews and think-aloud studies with maintainers to improve
our design. We tested the effectiveness of our dashboard with a two-week diary study with
maintainers.

Our results show that displaying signals that reflect various dimensions of team inclusion
increased maintainers’ awareness of their community health and helped them improve their
confidence of supporting community health, which has implications for improving project’s
diversity and inclusion. However, due to the limited duration of our diary study, we did not
observe actual changes in maintainers’ management strategies.

6.2 Future work

6.2.1 More forms of diversity
Although this dissertation focuses on gender diversity, and in some quantitative analyses,
binary gender diversity, future works can explore other types of diversity. For example, from
the demographic perspective, future work can also look into racial, ethnic, and cultural origin
diversity. Of course, we will still face challenges in obtaining demographic information from a
group of contributors that is large enough for us to perform meaningful analysis.

Other than demographics, future work can also explore diversity in terms of geolocation
and tenure. There exist some prior work on geolocation diversity [70], but it is mainly a
summary of the number of contributors from different geolocations. Future work can dig
deeper into the differences among geolocations, such as culture, education, and attitude
towards open-source.

Tenure diversity concerns not only new contributors or experienced, long-term contributors
but also how they corporate. Vasilescu et al. [58] found that a tenure-diverse team is more
productive. More work can be done on how contributors of different levels of expertise can
collaborate.

6.2.2 Triangulation
This dissertation employed a mixed-methods approach to discover interventions and measure
their effectiveness using the rich signals from social coding platforms (Chapter 2). Some
of the findings can be deemed intuitive, such as the number of stars being an indicator of
whether a project can attract new contributors. In contrast, some others were unclear until
we ran the statistical model, e.g., having a contributing guideline can guide contributors but
also create overhead.

Future work should further exploit the mixed-methods approach to triangulate the
usefulness of intervention or management strategies. Many qualitative studies reported
various problems and proposed several solutions. However, little is yet known about whether

CHAPTER 6. CONCLUSION 132

the proposed methods can solve the problem and, if so, how effective. Knowledge of the
effect size of different interventions can not only help practitioners improve their management
strategies but also inform tool design and future study directions.

6.2.3 Intervention deployment
Due to the limited duration of the diary study we conducted in Chapter 5, I was unable to
observe significant changes in maintainers’ management strategies. As a result, I could not
observe the effectiveness of our intervention on a project’s level of diversity and inclusion.
Since many participants acknowledged the usefulness of many of the signals we included in
the climate coach dashboard, I hope social coding platforms can consider incorporating some
of them in their UI. In this way, we can test the effectiveness with a larger audience with a
longer duration.

6.2.4 Tool design
This dissertation presented two tools for improving diversity and inclusion: an interpersonal
conflict detector (Chapter 4) and a dashboard for project climate (Chapter 5). Although the
interpersonal conflict detector was not deployed for public usage, its features, such as the
number of reviews and tone of the comments, are included in the climate coach dashboard.

Studies have identified plenty of problems, such as barriers that newcomers face. What
is lacking is interventions. We must put more effort into developing effective management
strategies into practical tools to aid OSS maintainers. We could produce more effective tools
with more studies on measuring and validating the effectiveness of management strategies
and interventions.

Future studies can further explore how to incorporate more gamification features in tools.
Although we added the comparison feature in our climate coach dashboard, it did not turn
out to be very effective and served only as a reference for maintainers. Since past studies
demonstrated that gamification features have effectiveness in encouraging contribution [320],
future studies can explore how to make a better gamification design.

6.2.5 Tools cater to different genders
When conducting the research on signals that contributors should use (Chapter 2), we made
use of the GenderMag framework [29], which describes that people of different genders tend
to have different ways of interacting with technology. Unfortunately, this dissertation did not
discover significant differences in how men and women contributors choose projects and did
not explore the gender difference in interpersonal conflicts during code review. Future studies
can attempt these problems and devise design guidelines for gender-inclusive tools.

6.2.6 Social network analysis
This dissertation only slightly touched on social network analysis when employing the social
capital theory to understand contributors’ sustained participation. However, social network
theory is a large treasure trunk for research on human aspects in software engineering. For

CHAPTER 6. CONCLUSION 133

example, prior study [38] found evidence of gender homophily being a disadvantage of women
contributors, yet little is known about the mechanism of gender homophily in OSS. Moreover,
future studies can explore more on social network positions and evolution, such as network
embeddedness [321] and how OSS social networks have changed over time.

Bibliography

[1] F. Zlotnick, “Github open source survey 2017,” http://opensourcesurvey.org/2017/,
Jun. 2017. xi, 19, 36

[2] N. Eghbal, Roads and Bridges: The Unseen Labor Behind Our Digital Infrastructure.
Ford Foundation, 2016. 1, 13, 91

[3] S. Greenstein and F. Nagle, “Digital dark matter and the economic contribution of
apache,” Research Policy, vol. 43, no. 4, pp. 623–631, 2014. 1

[4] D. Izquierdo, N. Huesman, A. Serebrenik, and G. Robles, “Openstack gender diversity
report,” IEEE Software, vol. 36, no. 1, pp. 28–33, 2018. 1, 6

[5] D. Nafus, “‘patches don’t have gender’: What is not open in open source software,”
New Media & Society, vol. 14, no. 4, pp. 669–683, 2012. 1, 2, 5, 46, 63

[6] A. Bosu and K. Z. Sultana, “Diversity and inclusion in open source software (oss)
projects: Where do we stand?” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–11. 1,
5, 6, 7

[7] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill, C. Parnin, and
J. Stallings, “Gender differences and bias in open source: Pull request acceptance
of women versus men,” PeerJ Comp Sci, vol. 3, p. e111, 2017. 1, 4, 5, 6, 9, 46, 48, 62,
96

[8] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa, “Newcomers’
barriers... is that all? an analysis of mentors’ and newcomers’ barriers in oss projects,”
Computer Supported Cooperative Work (CSCW), vol. 27, no. 3, pp. 679–714, 2018. 1, 3,
5, 25, 33, 39, 60

[9] J. Coelho and M. T. Valente, “Why modern open source projects fail,” in Proceedings
of the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
2017, pp. 186–196. 1, 13, 43

[10] M. Valiev, B. Vasilescu, and J. Herbsleb, “Ecosystem-level determinants of sustained
activity in open-source projects: A case study of the pypi ecosystem,” in Proceedings of
the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 2018,
pp. 644–655. 1, 13, 60

134

http://opensourcesurvey.org/2017/

BIBLIOGRAPHY 135

[11] D. Russo and K.-J. Stol, “Gender differences in personality traits of software engineers,”
IEEE Transactions on Software Engineering, 2020. 2

[12] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu, and
V. Filkov, “Gender and tenure diversity in github teams,” in Proceedings of the 33rd
annual ACM conference on human factors in computing systems, 2015, pp. 3789–3798.
2, 63, 93, 94

[13] J. T. Crawford, “Imposter syndrome for women in male dominated careers,” Hastings
Women’s Law Journal, vol. 32, no. 2, p. 26, 2021. 2

[14] GitHub, “Open source survey,” http://opensourcesurvey.org/2017/. 2, 43

[15] G. C. Vanderheiden, “Curbcuts and computers: Providing access to computers and
information systems for disabled individuals.” 1983. 2

[16] A. F. Newell and P. Gregor, “Human computer interfaces for people with disabilities,”
in Handbook of human-computer interaction. Elsevier, 1997, pp. 813–824. 2

[17] K. Crowston and J. Howison, “The social structure of free and open source software
development,” First Monday, vol. 10, no. 2, 2005. 2, 3

[18] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery in free/libre and
open source software team communications,” in Proceedings of the 39th Annual Hawaii
International Conference on System Sciences (HICSS’06), vol. 6. IEEE, 2006, pp.
118a–118a. 2

[19] A. Cox, “Cathedrals, bazaars and the town council,” Slashdot. org, 1998. 3

[20] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source software
development: the apache server,” in Proceedings of the 22nd international conference
on Software engineering, 2000, pp. 263–272. 3

[21] A. Hars and S. Ou, “Working for free motivations of participating in open source
software projects,” HICSS’04, pp. 25–31, 2004. 3

[22] K. R. Lakhani and R. G. Wolf, “Why hackers do what they do: Understanding motivation
and effort in free/open source software projects,” MIT, Tech. Rep. 4425-03, 2003. 3, 6,
13, 16, 55

[23] S. K. Shah, “Motivation, governance, and the viability of hybrid forms in open source
software development,” Management science, vol. 52, no. 7, pp. 1000–1014, 2006. 3

[24] M. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles, C. Treude, I. Steinmacher,
and A. Sarma, “The shifting sands of motivation: Revisiting what drives contributors
in open source,” in International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1046–1058. 3, 6

http://opensourcesurvey.org/2017/

BIBLIOGRAPHY 136

[25] M. M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao, T. H. Park, V. Grig-
oreanu, and K. Rector, “Gender pluralism in problem-solving software,” Interacting
with computers, vol. 23, no. 5, pp. 450–460, 2011. 3

[26] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in GitHub: transparency
and collaboration in an open software repository,” in Proceedings of the ACM Conference
on Computer Supported Cooperative Work, ser. CSCW. ACM, 2012, pp. 1277–1286. 3,
9, 10, 14, 18, 33, 53, 92

[27] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle to social coding:
An empirical study of repository badges in the npm ecosystem,” in Proceedings of
the International Conference on Software Engineering, ser. ICSE. ACM, 2018, pp.
511–522. 3, 9, 15, 17, 22, 38, 39, 92, 117

[28] C. Santos, G. Kuk, F. Kon, and J. Pearson, “The attraction of contributors in free and
open source software projects,” The Journal of Strategic Information Systems, vol. 22,
no. 1, pp. 26–45, 2013. 3

[29] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan, A. Peters, and
W. Jernigan, “GenderMag: A method for evaluating software’s gender inclusiveness,”
Interacting with Computers, vol. 28, no. 6, pp. 760–787, 2016. 3, 39, 40, 132

[30] I. Steinmacher, A. P. Chaves, T. U. Conte, and M. A. Gerosa, “Preliminary empirical
identification of barriers faced by newcomers to open source software projects,” in 2014
Brazilian Symposium on Software Engineering. IEEE, 2014, pp. 51–60. 3

[31] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social barriers faced
by newcomers placing their first contribution in open source software projects,” in
Proceedings of the 18th ACM conference on Computer supported cooperative work &
social computing, 2015, pp. 1379–1392. 3, 15, 63, 92

[32] S. H. Padala, C. J. Mendez, L. F. Dias, I. Steinmacher, Z. S. Hanson, C. Hilderbrand,
A. Horvath, C. Hill, L. D. Simpson, M. Burnett et al., “How gender-biased tools shape
newcomer experiences in oss projects,” IEEE Transactions on Software Engineering,
2020. 3, 5

[33] A. Foundjem, E. E. Eghan, and B. Adams, “Onboarding vs. diversity, productivity,
and quality-empirical study of the openstack ecosystem,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1033–1045.
4

[34] X. Tan, M. Zhou, and Z. Sun, “A first look at good first issues on github,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 398–409. 4

[35] A. Mani and R. Mukherjee, “A study of foss 2013 survey data using clustering tech-
niques,” in 2016 IEEE International WIE Conference on Electrical and Computer
Engineering (WIECON-ECE). IEEE, 2016, pp. 118–121. 4

BIBLIOGRAPHY 137

[36] I. El Asri and N. Kerzazi, “Where are females in oss projects? socio technical interac-
tions,” in Working Conference on Virtual Enterprises. Springer, 2019, pp. 308–319.
4

[37] Z. Wang, Y. Wang, and D. Redmiles, “Competence-confidence gap: A threat to female
developers’ contribution on github,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 2018,
pp. 81–90. 4

[38] B. Vedres and O. Vasarhelyi, “Gendered behavior as a disadvantage in open source
software development,” EPJ Data Science, vol. 8, no. 1, p. 25, 2019. 4, 133

[39] A. Lee and J. C. Carver, “Floss participants’ perceptions about gender and inclusiveness:
a survey,” in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 677–687. 4, 6

[40] N. Imtiaz, J. Middleton, J. Chakraborty, N. Robson, G. Bai, and E. Murphy-Hill, “In-
vestigating the effects of gender bias on github,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 700–711. 4

[41] G. Iaffaldano, I. Steinmacher, F. Calefato, M. Gerosa, and F. Lanubile, “Why do
developers take breaks from contributing to OSS projects? a preliminary analysis,” in
Proceedings of the International Workshop on Software Health, ser. SoHeal, 2019. 5, 13

[42] C. Miller, D. G. Widder, C. Kästner, and B. Vasilescu, “Why do people give up flossing?
a study of contributor disengagement in open source,” in IFIP International Conference
on Open Source Systems. Springer, 2019, pp. 116–129. 5

[43] T. Wood, “moment().endof(’term’),” https://medium.com/timrwood/
moment-endof-term-522d8965689, 7 2016. 5, 91

[44] N. Lawson, “What it feels like to be an open-source maintainer,” Read the Tea
Leaves. https://nolanlawson. com/2017/03/05/what-it-feels-like-to-be-an-open-source-
maintainer, 2017. 5, 63, 91

[45] B. Cannon, A. Stacoviak, and J. Santo, “The changelog, episode 318: A call for kindness
in open source,” Podcast, 10 2018. 5, 91

[46] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu, “Stress and burnout in
open source: Toward finding, understanding, and mitigating unhealthy interactions,” in
International Conference on Software Engineering, New Ideas and Emerging Results,
ser. ICSE. ACM, 2020, pp. 57–60. 5, 11, 63, 64, 65, 66, 67, 68, 69, 70, 73, 75, 80, 81,
82, 83, 91, 95, 99, 100

[47] C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green, C. Jaspan, and
J. Lin, “Predicting developers’ negative feelings about code review,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 2020, pp.
174–185. 5, 11, 63, 64, 65, 66, 67, 68, 69, 70, 73, 80, 81, 83, 92, 95, 99, 105, 108, 110, 117

https://medium.com/timrwood/moment-endof-term-522d8965689
https://medium.com/timrwood/moment-endof-term-522d8965689

BIBLIOGRAPHY 138

[48] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu, “Going farther together:
The impact of social capital on sustained participation in open source,” in 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 688–699. 5, 6, 11

[49] E. Dias Canedo, H. Acco Tives, M. Bogo Marioti, F. Fagundes, and J. A. Siqueira de
Cerqueira, “Barriers faced by women in software development projects,” Information,
vol. 10, no. 10, p. 309, 2019. 5

[50] GitHub, “Open source survey,” https://opensourcesurvey.org/2017/, 2017, accessed:
2022-03-10. 5, 6

[51] V. Singh and W. Brandon, “Open source software community inclusion initiatives
to support women participation,” in IFIP International Conference on Open Source
Systems. Springer, 2019, pp. 68–79. 5, 63

[52] V. Singh, “Women participation in open source software communities,” in Proceedings
of the 13th European Conference on Software Architecture-Volume 2, 2019, pp. 94–99. 5

[53] G. Robles, H. Scheider, I. Tretkowski, and N. Weber, “Who is doing it,” A research on
Libre Software developers, 2001. 6

[54] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open source software:
Survey and study,” 2002. 6

[55] S. O. Alexander Hars, “Working for free? motivations for participating in open-source
projects,” International journal of electronic commerce, vol. 6, no. 3, pp. 25–39, 2002. 6

[56] P. A. David, A. Waterman, and S. Arora, “Floss-us the free/libre/open source software
survey for 2003,” Stanford Institute for Economic Policy Research, Stanford University,
Stanford, CA (http://www. stanford. edu/group/floss-us/report/FLOSS-US-Report. pdf),
2003. 6

[57] G. Robles, L. A. Reina, J. M. González-Barahona, and S. D. Domínguez, “Women
in free/libre/open source software: The situation in the 2010s,” in IFIP International
Conference on Open Source Systems. Springer, 2016, pp. 163–173. 6

[58] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov, “Gender and tenure diversity in GitHub teams,” in CHI, 2015, pp.
3789–3798. 6, 17, 46, 55, 62, 131

[59] StackOverflow, “Developer survey results,” https://insights.stackoverflow.com/survey/
2017, 2017, accessed: 2022-05-01. 6

[60] M. Medeiros, B. Forest, and P. Öhberg, “The case for non-binary gender questions in
surveys,” PS: Political Science & Politics, vol. 53, no. 1, pp. 128–135, 2020. 6

[61] J. Bethlehem, “Selection bias in web surveys,” International statistical review, vol. 78,
no. 2, pp. 161–188, 2010. 6

https://opensourcesurvey.org/2017/
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017

BIBLIOGRAPHY 139

[62] V. Kuechler, C. Gilbertson, and C. Jensen, “Gender differences in early free and open
source software joining process,” in IFIP International Conference on Open Source
Systems. Springer, 2012, pp. 78–93. 6, 62

[63] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation and online
participation: A quantitative study of stackoverflow,” in 2012 International Conference
on Social Informatics. IEEE, 2012, pp. 332–338. 6, 7

[64] A. Kofink, “Contributions of the under-appreciated: Gender bias in an open-source
ecology,” in Companion Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Systems, Programming, Languages and Applications: Software for Humanity,
2015, pp. 83–84. 6

[65] B. Vasilescu, A. Serebrenik, and V. Filkov, “A data set for social diversity studies
of github teams,” in 2015 IEEE/ACM 12th working conference on mining software
repositories. IEEE, 2015, pp. 514–517. 6

[66] E. D. Canedo, R. Bonifácio, M. V. Okimoto, A. Serebrenik, G. Pinto, and E. Monteiro,
“Work practices and perceptions from women core developers in oss communities,” in
Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–11. 6

[67] D. Ford, A. Harkins, and C. Parnin, “Someone like me: How does peer parity influence
participation of women on stack overflow?” in 2017 IEEE symposium on visual languages
and human-centric computing (VL/HCC). IEEE, 2017, pp. 239–243. 6, 62

[68] O. Vasarhelyi and B. Vedres, “Gender typicality of behavior predicts success on creative
platforms,” arXiv preprint arXiv:2103.01093, 2021. 6, 8

[69] G. A. A. Prana, D. Ford, A. Rastogi, D. Lo, R. Purandare, and N. Nagappan, “Including
everyone, everywhere: Understanding opportunities and challenges of geographic gender-
inclusion in oss,” IEEE Transactions on Software Engineering, 2021. 6

[70] D. Rossi and S. Zacchiroli, “Worldwide gender differences in public code contributions:
and how they have been affected by the covid-19 pandemic,” Proceedings of the 44th
International Conference on Software Engineering (ICSE 2022) - Software Engineering
in Society (SEIS) Track, 2022. 6, 9, 131

[71] E. Carsenat, “Inferring gender from names in any region, language, or alphabet,”
Unpublished, vol. 10, 2019. 7

[72] P. Sebo, “Performance of gender detection tools: a comparative study of name-to-gender
inference services,” Journal of the Medical Library Association: JMLA, vol. 109, no. 3,
p. 414, 2021. 7, 9, 96

[73] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation and online
participation: A quantitative study,” Interacting with Computers, vol. 26, no. 5, pp.
488–511, 2014. 7

BIBLIOGRAPHY 140

[74] S. Foga, “Asf committer diversity survey. 2016,” https://cwiki.apache.org/confluence/
display/COMDEV/ASF+Committer+Diversity+Survey+-+2016, 2016, accessed: 2022-
01-20. 7

[75] D. I. Cortázar, “Gender-diversity analysis of the linux ker-
nel technical contributions,” https://speakerdeck.com/bitergia/
gender-diversity-analysis-of-the-linux-kernel-technical-contributions?slide=48,
2016, accessed: 2022-01-20. 7

[76] M. Raissi, M. de Blanc, and S. Zacchiroli, “Preliminary report on the influence of
capital in an ethical-modular project: Quantitative data from the 2016 debian survey,”
Journal of Peer Production, no. 10, pp. 1–25, 2017. 7

[77] I. E. Asri and N. Kerzazi, “Where are females in oss projects? socio technical interac-
tions,” in Working Conference on Virtual Enterprises. Springer, 2019, pp. 308–319.
7

[78] H. Carter and J. Groopman, “The linux foundation report on diversity, eq-
uity, and inclusion in open source,” https://www.linuxfoundation.org/tools/
the-2021-linux-foundation-report-on-diversity-equity-and-inclusion-in-open-source/,
2021, accessed: 2022-03-10. 7

[79] R. Dattero and S. D. Galup, “Programming languages and gender,” Communications
of the ACM, vol. 47, no. 1, pp. 99–102, 2004. 8

[80] L. Moldon, M. Strohmaier, and J. Wachs, “How gamification affects software developers:
Cautionary evidence from a natural experiment on github,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021, pp. 549–561.
9

[81] H. Borges and M. T. Valente, “What’s in a github star? understanding repository
starring practices in a social coding platform,” Journal of Systems and Software, vol.
146, pp. 112–129, 2018. 9, 19

[82] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of conduct conversations
in open source software projects on github,” in Proceedings of the ACM on Human-
Computer Interaction, vol. 5. ACM, 2021, pp. 1–31. 9, 105

[83] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the code itself: how
programmers really look at pull requests,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS).
IEEE, 2019, pp. 51–60. 9

[84] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,” in 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR). IEEE, 2012, pp.
12–21. 9, 30, 69

[85] M. Spence, “Job market signaling,” The Quarterly Journal of Economics, vol. 87, no. 3,
pp. 355–374, 1973. 10, 17, 92

https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://speakerdeck.com/bitergia/gender-diversity-analysis-of-the-linux-kernel-technical-contributions?slide=48
https://speakerdeck.com/bitergia/gender-diversity-analysis-of-the-linux-kernel-technical-contributions?slide=48
https://www.linuxfoundation.org/tools/the-2021-linux-foundation-report-on-diversity-equity-and-inclusion-in-open-source/
https://www.linuxfoundation.org/tools/the-2021-linux-foundation-report-on-diversity-equity-and-inclusion-in-open-source/

BIBLIOGRAPHY 141

[86] G. A. Akerlof, “The market for “lemons”: Quality uncertainty and the market mecha-
nism,” in Uncertainty in Economics. Elsevier, 1978, pp. 235–251. 10, 17

[87] A. Zahavi, “Mate selection - a selection for a handicap,” Journal of theoretical Biology,
vol. 53, no. 1, pp. 205–214, 1975. 10, 17, 92

[88] H. S. Qiu, Y. L. Li, S. Padala, A. Sarma, and B. Vasilescu, “The signals that potential
contributors look for when choosing open-source projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–29, 2019. 10, 63, 92, 94, 117

[89] H. S. Qiu, B. Vasilescu, C. Kästner, C. Egelman, C. Jaspan, and E. Murphy-Hill,
“Detecting interpersonal conflict in issues and code review: Cross pollinating open-
and closed-source approaches,” in 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 2022, pp.
41–55. 11, 92, 95, 99, 100, 105, 110, 117

[90] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for estimating
truck factors,” in 2016 IEEE 24th International Conference on Program Comprehension
(ICPC). IEEE, 2016, pp. 1–10. 13

[91] C. Miller, D. Widder, C. Kästner, and B. Vasilescu, “Why do people give up FLOSSing?
a study of contributor disengagement in open source,” in Proceedings of the International
Conference on Open Source Systems, ser. OSS. Springer, 2019, pp. 116–129. 13

[92] S. Krishnamurthy, “On the intrinsic and extrinsic motivation of free/libre/open source
(floss) developers,” Knowledge, Technology & Policy, vol. 18, no. 4, pp. 17–39, 2006. 13

[93] A. Hars and S. Ou, “Working for free? motivations for participating in open-source
projects,” International Journal of Electronic Commerce, vol. 6, no. 3, pp. 25–39, 2002.
13

[94] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software developers in open
source projects: an internet-based survey of contributors to the Linux kernel,” Research
Policy, vol. 32, no. 7, pp. 1159–1177, 2003. 13, 43, 45

[95] J. Lerner and J. Tirole, “Some simple economics of open source,” The Journal of
Industrial Economics, vol. 50, no. 2, pp. 197–234, 2002. 13

[96] J. Donath, “Signals in social supernets,” Journal of Computer-Mediated Communication,
vol. 13, no. 1, pp. 231–251, 2007. 14, 17

[97] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online peer production:
activity traces and personal profiles in GitHub,” in Proceedings of the ACM Conference
on Computer Supported Cooperative Work (CSCW). ACM, 2013, pp. 117–128. 14, 17,
53, 92

[98] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open-source software
development: What we know and what we do not know,” ACM Computing Surveys
(CSUR), vol. 44, no. 2, p. 7, 2012. 15

BIBLIOGRAPHY 142

[99] G. Robles and J. M. Gonzalez-Barahona, “Contributor turnover in libre software
projects,” in Proceedings of the International Conference on Open Source Systems
(OSS). Springer, 2006, pp. 273–286. 15

[100] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration in open source
ecosystems,” in FSE, 2011, pp. 70–80. 15

[101] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri, “Impact of developer
turnover on quality in open-source software,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 829–841. 15, 47, 50

[102] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, industrial open
source projects: Insights from applying survival analysis,” in 2017 IEEE 12th Interna-
tional Conference on Global Software Engineering (ICGSE). IEEE, 2017, pp. 66–75.
15

[103] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu, “Going farther together:
The impact of social capital on sustained participation in open source,” in Proceedings
of the International Conference on Software Engineering, ser. ICSE. IEEE, 2019, pp.
688–699. 15, 99, 105

[104] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming open source
project entry barriers with a portal for newcomers,” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2016, pp. 273–284. 15

[105] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there: A study on
quasi-contributors in open source software projects,” in ICSE, 2018, pp. 256–266. 15,
24, 25, 26, 95, 99

[106] H. Zhu, A. Zhang, J. He, R. E. Kraut, and A. Kittur, “Effects of peer feedback on
contribution: a field experiment in Wikipedia,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI). ACM, 2013, pp. 2253–2262. 16

[107] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding, and retaining
newcomer developers in open source software projects,” in Workshop on Global Software
Development in a CSCW Perspective, 2014. 16, 20

[108] G. J. Link and D. Jeske, “Understanding organization and open source community
relations through the attraction-selection-attrition model,” in Proceedings of the Inter-
national Symposium on Open Collaboration (OpenSym). ACM, 2017, p. 17. 16

[109] M. Spence, “Signaling in retrospect and the informational structure of markets,” Amer-
ican Economic Review, vol. 92, no. 3, pp. 434–459, 2002. 17, 92

[110] J. Marlow and L. Dabbish, “Activity traces and signals in software developer recruitment
and hiring,” in Proceedings of the ACM Conference on Computer Supported Cooperative
Work (CSCW). ACM, 2013, pp. 145–156. 17, 43, 92

BIBLIOGRAPHY 143

[111] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of diversity on GitHub: A
user survey,” in Proceedings of the International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). IEEE, 2015, pp. 50–56. 17

[112] A. Kirmani and A. R. Rao, “No pain, no gain: A critical review of the literature on
signaling unobservable product quality,” Journal of Marketing, vol. 64, no. 2, pp. 66–79,
2000. 17

[113] C. A. Lampe, N. Ellison, and C. Steinfield, “A familiar Face(book): profile elements
as signals in an online social network,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI). ACM, 2007, pp. 435–444. 17

[114] S. Bakhshi, P. Kanuparthy, and D. A. Shamma, “Understanding online reviews: Funny,
cool or useful?” in Proceedings of the ACM Conference on Computer Supported Cooper-
ative Work & Social Computing, ser. CSCW. ACM, 2015, pp. 1270–1276. 17

[115] C. M. Liu and J. S. Donath, “Urbanhermes: social signaling with electronic fashion,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI). ACM, 2006, pp. 885–888. 17

[116] B. C. Collier and R. Hampshire, “Sending mixed signals: Multilevel reputation effects
in peer-to-peer lending markets,” in Proceedings of the ACM Conference on Computer
Supported Cooperative Work & Social Computing, ser. CSCW. ACM, 2010, pp. 197–206.
17

[117] X. Ma, J. T. Hancock, K. Lim Mingjie, and M. Naaman, “Self-disclosure and perceived
trustworthiness of Airbnb host profiles,” in Proceedings of the ACM Conference on
Computer Supported Cooperative Work & Social Computing, ser. CSCW. ACM, 2017,
pp. 2397–2409. 17

[118] T. Guilford and M. S. Dawkins, “Receiver psychology and the evolution of animal
signals,” Animal Behaviour, vol. 42, no. 1, pp. 1–14, 1991. 17, 38

[119] N. S. Shami, K. Ehrlich, G. Gay, and J. T. Hancock, “Making sense of strangers’
expertise from signals in digital artifacts,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI). ACM, 2009, pp. 69–78. 17

[120] A. Zahavi and A. Zahavi, The handicap principle: a missing piece of Darwin’s puzzle.
Oxford University Press, 1999. 17

[121] J. Sheoran, K. Blincoe, E. Kalliamvakou, D. Damian, and J. Ell, “Understanding
watchers on GitHub,” in Proceedings of the International Conference on Mining Software
Repositories (MSR). ACM, 2014, pp. 336–339. 17, 53, 92

[122] M. J. Lee, B. Ferwerda, J. Choi, J. Hahn, J. Y. Moon, and J. Kim, “GitHub developers
use rockstars to overcome overflow of news,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI). ACM, 2013, pp. 133–138. 17, 92

BIBLIOGRAPHY 144

[123] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian, “Understanding the
popular users: Following, affiliation influence and leadership on GitHub,” Information
and Software Technology, vol. 70, pp. 30–39, 2016. 17, 92

[124] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical candidates on the
social web,” IEEE Software, vol. 30, no. 1, pp. 45–51, 2013. 17, 92

[125] F. Fronchetti, I. Wiese, G. Pinto, and I. Steinmacher, “What attract newcomers to
onboard on OSS projects? TL;DR: Popularity,” in Proceedings of the International
Conference on Open Source Systems (OSS). Springer, 2019, pp. 91–103. 18, 33

[126] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods
for software engineering research,” Guide to Advanced Empirical Software Engineering,
pp. 285–311, 2008. 20, 47

[127] K. A. Ericsson and H. A. Simon, “Verbal reports as data.” Psychological Review, vol. 87,
no. 3, p. 215, 1980. 20

[128] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,
“The promises and perils of mining GitHub,” in MSR, 2014, pp. 92–101. 22, 23, 37, 54,
61

[129] A. Strauss and J. M. Corbin, Basics of qualitative research: Grounded theory procedures
and techniques. Sage Publications, Inc, 1990. 23

[130] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software development:
Perspectives from GitHub, MSDN, Stack Exchange, and Topcoder,” IEEE Software,
no. 1, pp. 52–66, 2013. 24

[131] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Characteristics of sustainable
OSS projects: A theoretical and empirical study,” in Proceedings of the International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE,
2015, pp. 15–21. 24

[132] K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi, “Magnet or
sticky? measuring project characteristics from the perspective of developer attraction
and retention,” Journal of Information Processing, vol. 24, no. 2, pp. 339–348, 2016. 26

[133] P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open source projects,”
in 2017 IEEE 24th international conference on software analysis, evolution and reengi-
neering (SANER). IEEE, 2017, pp. 24–33. 29, 63

[134] C. Danescu-Niculescu-Mizil, M. Sudhof, D. Jurafsky, J. Leskovec, and C. Potts, “A
computational approach to politeness with application to social factors,” meeting of
the association for computational linguistics, vol. 1, pp. 250–259, 2013. 31

[135] A. Gelman and J. Hill, Data analysis using regression and multilevel/hierarchical models.
Cambridge University Press, 2006. 30, 54

BIBLIOGRAPHY 145

[136] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied multiple regression/correlation
analysis for the behavioral sciences. Routledge, 2013. 30, 54

[137] M. R. Veall and K. F. Zimmermann, “Pseudo-R2 measures for some common limited
dependent variable models,” Journal of Economic Surveys, vol. 10, no. 3, pp. 241–259,
1996. 30

[138] R. Blundell and J. L. Powell, “Endogeneity in nonparametric and semiparametric
regression models,” Econometric Society Monographs, vol. 36, pp. 312–357, 2003. 36

[139] W. Abdallah, M. Goergen, and N. O’Sullivan, “Endogeneity: How failure to correct
for it can cause wrong inferences and some remedies,” British Journal of Management,
vol. 26, no. 4, pp. 791–804, 2015. 36

[140] J. A. Hausman, “Specification tests in econometrics,” Econometrica: Journal of the
Econometric Society, pp. 1251–1271, 1978. 37

[141] L. R. James and B. K. Singh, “An introduction to the logic, assumptions, and basic
analytic procedures of two-stage least squares.” Psychological Bulletin, vol. 85, no. 5, p.
1104, 1978. 37

[142] E. M. Foster, “Instrumental variables for logistic regression: an illustration,” Social
Science Research, vol. 26, no. 4, pp. 487–504, 1997. 37

[143] R. W. Blundell and J. L. Powell, “Endogeneity in semiparametric binary response
models,” The Review of Economic Studies, vol. 71, no. 3, pp. 655–679, 2004. 37

[144] J. V. Terza, A. Basu, and P. J. Rathouz, “Two-stage residual inclusion estimation:
addressing endogeneity in health econometric modeling,” Journal of Health Economics,
vol. 27, no. 3, pp. 531–543, 2008. 37

[145] J. Abrevaya, J. A. Hausman, and S. Khan, “Testing for causal effects in a generalized
regression model with endogenous regressors,” Econometrica, vol. 78, no. 6, pp. 2043–
2061, 2010. 37

[146] Z. Guo and D. S. Small, “Control function instrumental variable estimation of nonlinear
causal effect models,” The Journal of Machine Learning Research, vol. 17, no. 1, pp.
3448–3482, 2016. 37

[147] W. H. Greene, Econometric analysis. Pearson Education India, 2003. 37

[148] M. L. Johnson, W. Crown, B. C. Martin, C. R. Dormuth, and U. Siebert, “Good
research practices for comparative effectiveness research: Analytic methods to improve
causal inference from nonrandomized studies of treatment effects using secondary data
sources: The ISPOR Good Research Practices for Retrospective Database Analysis
Task Force Report—Part III,” Value in Health, vol. 12, no. 8, pp. 1062–1073, 2009. 37

[149] J. A. Espinosa, J. N. Cummings, and C. Pickering, “Time separation, coordination,
and performance in technical teams,” IEEE Transactions on Engineering Management,
vol. 59, no. 1, pp. 91–103, 2011. 37

BIBLIOGRAPHY 146

[150] M. Ketokivi and C. N. McIntosh, “Addressing the endogeneity dilemma in operations
management research: Theoretical, empirical, and pragmatic considerations,” Journal
of Operations Management, vol. 52, pp. 1–14, 2017. 37

[151] C. Gibbs, D. Guttentag, U. Gretzel, J. Morton, and A. Goodwill, “Pricing in the sharing
economy: a hedonic pricing model applied to Airbnb listings,” Journal of Travel &
Tourism Marketing, vol. 35, no. 1, pp. 46–56, 2018. 37

[152] H. Zhu, R. Kraut, and A. Kittur, “Effectiveness of shared leadership in online com-
munities,” in Proceedings of the ACM Conference on Computer Supported Cooperative
Work & Social Computing (CSCW). ACM, 2012, pp. 407–416. 37

[153] E. Oster, “Unobservable selection and coefficient stability: Theory and evidence,”
Journal of Business & Economic Statistics, vol. 37, no. 2, pp. 187–204, 2019. 37

[154] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger and its direction in
collaborative software development,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-
NIER). IEEE, 2017, pp. 11–14. 38, 63, 65

[155] C. Danescu-Niculescu-Mizil, M. Sudhof, D. Jurafsky, J. Leskovec, and C. Potts, “A
computational approach to politeness with application to social factors,” arXiv preprint
arXiv:1306.6078, 2013. 38, 65, 72, 73

[156] N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment detection in the
social programmer ecosystem,” in Proceedings of the International Workshop on Social
Software Engineering (SSE). ACM, 2015, pp. 33–40. 38

[157] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results when
using sentiment analysis tools for software engineering research,” Empirical Software
Engineering, vol. 22, no. 5, pp. 2543–2584, 2017. 38, 66, 82

[158] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment
analysis for software engineering: How far can we go?” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2018, pp. 94–104. 38

[159] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath, C. Hill,
L. Simpson, N. Patil, A. Sarma, and M. Burnett, “Open source barriers to entry,
revisited: A sociotechnical perspective,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2018, pp. 1004–1015. 39

[160] Y. Fang and D. Neufeld, “Understanding sustained participation in open source software
projects,” J Manage Inform Syst, vol. 25, no. 4, pp. 9–50, 2009. 43, 46

[161] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the motivations,
participation, and performance of open source software developers: A longitudinal study
of the apache projects,” Management science, vol. 52, no. 7, pp. 984–999, 2006. 43

BIBLIOGRAPHY 147

[162] B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, industrial open
source projects: Insights from applying survival analysis,” in ICGSE, 2017, pp. 66–75.
43, 47, 50

[163] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? an evaluation of actual
person-job and person-team fit to predict developer retention in floss projects,” in 2012
45th Hawaii International Conference on System Sciences. IEEE, 2012, pp. 3446–3455.
43

[164] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and how fast?: Case
study on the Linux kernel,” in MSR, 2013, pp. 101–110. 43

[165] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they like this?: Evaluating
code contributions with language models,” in MSR, 2015, pp. 157–167. 43

[166] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community contribution to
open-source projects on GitHub,” in MSR, 2014, pp. 332–335. 43

[167] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical study of open
source project patches,” in ICSME, 2014, pp. 271–280. 43

[168] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based
software development model,” in ICSE, 2014, pp. 345–355. 43

[169] R. S. Burt, “The gender of social capital,” Rationality and Society, vol. 10, no. 1, pp.
5–46, 1998. 43, 46

[170] ——, “Structural holes versus network closure as social capital,” in Social Capital:
Theory and Research. De Gruyter, 2001, pp. 31–56. 43, 45

[171] C.-M. Chiu, M.-H. Hsu, and E. T. Wang, “Understanding knowledge sharing in virtual
communities: An integration of social capital and social cognitive theories,” Decision
Support Systems, vol. 42, no. 3, pp. 1872–1888, 2006. 43

[172] M. B. Aguilera, “The impact of social capital on labor force participation: Evidence
from the 2000 social capital benchmark survey,” Social Science Quarterly, vol. 83, no. 3,
pp. 853–874, 2002. 43

[173] E. Brown and J. M. Ferris, “Social capital and philanthropy: An analysis of the impact
of social capital on individual giving and volunteering,” Nonprof Volunt Sec Q, vol. 36,
no. 1, pp. 85–99, 2007. 43

[174] L. Guiso, P. Sapienza, and L. Zingales, “The role of social capital in financial develop-
ment,” American Economic Review, vol. 94, no. 3, pp. 526–556, June 2004. 43

[175] J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of new project teams from open source
software developer networks: Impact of prior collaboration ties,” Information Systems
Research, vol. 19, no. 3, pp. 369–391, 2008. 44, 46

BIBLIOGRAPHY 148

[176] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer onboarding in
GitHub: The role of prior social links and language experience,” in ESEC/FSE, 2015,
pp. 817–828. 44, 46, 51

[177] M. Lutter, “Do women suffer from network closure? the moderating effect of social
capital on gender inequality in a project-based labor market, 1929 to 2010,” American
Sociological Review, vol. 80, no. 2, pp. 329–358, 2015. 44, 46, 51, 52

[178] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath, C. Hill,
L. Simpson, N. Patil, A. Sarma, and M. Burnett, “Open source barriers to entry,
revisited: A sociotechnical perspective,” in ICSE, 2018, pp. 1004–1015. 45, 46, 60

[179] P. S. Adler and S.-W. Kwon, “Social capital: Prospects for a new concept,” Acad
Manage Rev, vol. 27, no. 1, pp. 17–40, 2002. 45, 46

[180] G. Madey, V. Freeh, and R. Tynan, “The open source software development phenomenon:
An analysis based on social network theory,” in AMCIS, 2002, pp. 1806–1813. 45, 46

[181] J. Wang, “The role of social capital in open source software communities,” AMCIS, p.
427, 2005. 45

[182] J. S. Coleman, Foundations of social theory. Belknap, 1990. 45

[183] M. S. Granovetter, “The strength of weak ties,” Am J Sociol, vol. 78, no. 6, pp.
1360–1380, 1973. 45

[184] W. E. Baker and A. V. Iyer, “Information networks and market behavior,” Journal of
Mathematical Sociology, vol. 16, no. 4, pp. 305–332, 1992. 45

[185] B. Xu and D. R. Jones, “Volunteers’ participation in open source software development:
a study from the social-relational perspective,” ACM SIGMIS Database, vol. 41, no. 3,
pp. 69–84, 2010. 45

[186] W. Oh and S. Jeon, “Membership herding and network stability in the open source
community: The Ising perspective,” Management Science, vol. 53, no. 7, pp. 1086–1101,
2007. 45

[187] P. Song and C. W. Phang, “Promoting continuance through shaping members’ social
identity in knowledge-based versus support/advocacy virtual communities,” IEEE T
Eng Manage, vol. 63, no. 1, pp. 16–26, 2016. 45

[188] S. Toral, M. Martínez-Torres, and F. Barrero, “Analysis of virtual communities sup-
porting OSS projects using social network analysis,” Inform Software Tech, vol. 52,
no. 3, pp. 296–303, 2010. 46

[189] S. Christopherson, “Working in the creative economy: Risk, adaptation and the persis-
tence of exclusionary networks,” Creative labour: Working in the creative industries, pp.
72–90, 2009. 46

BIBLIOGRAPHY 149

[190] I. Grugulis and D. Stoyanova, “Social capital and networks in film and tv: Jobs for the
boys?” Organization Studies, vol. 33, no. 10, pp. 1311–1331, 2012. 46

[191] H. Blair, “Active networking: action, social structure and the process of networking,”
Creative Labour: Working in the Creative Industries, pp. 116–134, 2009. 46

[192] A. Portes, “Social capital: Its origins and applications in modern sociology,” Annual
Review of Sociology, vol. 24, no. 1, pp. 1–24, 1998. 46

[193] B. Groysberg, Chasing Stars: The Myth of Talent and the Portability of Performance.
Princeton University Press, 2010. 46

[194] K. Finley, “Diversity in open source is even worse than in tech overall,” https://www.
wired.com/2017/06/diversity-open-source-even-worse-tech-overall/. 46

[195] R. S. Geiger, “Summary analysis of the 2017 github open source survey,” arXiv preprint
arXiv:1706.02777, 2017. 46, 55, 61, 63

[196] N. Lin, Social Capital: A Theory of Social Structure and Action. Cambridge University
Press, 2001. 46

[197] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of diversity on GitHub: A user
survey,” in CHASE, 2015, pp. 50–56. 46, 55, 58

[198] D. Ford, J. Smith, P. J. Guo, and C. Parnin, “Paradise unplugged: identifying barriers
for female participation on Stack Overflow,” in FSE, 2016, pp. 846–857. 46

[199] L. López-Fernández, G. Robles, and J. González-Barahona, “Applying social network
analysis to the information in CVS repositories,” in MSR, 2004, pp. 101–105. 46

[200] H.-L. Yang and J.-H. Tang, “Team structure and team performance in is development:
A social network perspective,” Inform Manage, vol. 41, no. 3, pp. 335–349, 2004. 46

[201] K. Ehrlich and K. Chang, “Leveraging expertise in global software teams: Going outside
boundaries,” in ICGSE, 2006, pp. 149–158. 46

[202] S. Toral, M. Martínez-Torres, and F. Barrero, “Analysis of virtual communities support-
ing oss projects using social network analysis,” Inf Sw Tech, vol. 52, no. 3, pp. 296–303,
2010. 46

[203] D. A. Tamburri, P. Lago, and H. van Vliet, “Uncovering latent social communities in
software development,” IEEE Software, vol. 30, no. 1, pp. 29–36, Jan 2013. 46, 51

[204] M. Zhou and A. Mockus, “What make long term contributors: Willingness and opportu-
nity in oss community,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 518–528. 47

[205] G. Gousios, “The GHTorrent dataset and tool suite,” in MSR, 2013, pp. 233–236. 47

https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/
https://www.wired.com/2017/06/diversity-open-source-even-worse-tech-overall/

BIBLIOGRAPHY 150

[206] I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa, “Who is
who in the mailing list? comparing six disambiguation heuristics to identify multiple
addresses of a participant,” in ICSME, 2016, pp. 345–355. 47

[207] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social
networks,” in MSR, 2006, pp. 137–143. 47

[208] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation and
specialisation of workload—a case study of the gnome ecosystem community,” Empirical
Software Engineering, vol. 19, no. 4, pp. 955–1008, 2014. 47

[209] B. Lin and A. Serebrenik, “Recognizing gender of Stack Overflow users,” in MSR, 2016,
pp. 425–429. 48, 56

[210] F. Karimi, C. Wagner, F. Lemmerich, M. Jadidi, and M. Strohmaier, “Inferring gender
from names on the web: A comparative evaluation of gender detection methods,” in
WWW Companion, 2016, pp. 53–54. 48, 49

[211] F. Rangel, P. Rosso, M. Potthast, and B. Stein, “Overview of the 5th author profiling
task at pan 2017: Gender and language variety identification in twitter,” Working Notes
Papers of the CLEF, 2017. 48

[212] B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation and online
participation: A quantitative study,” Interact Comput, vol. 26, no. 5, pp. 488–511, 2013.
48, 56, 62

[213] R. G. Miller Jr, Survival analysis. Wiley, 2011, vol. 66. 50, 53

[214] M. De Vaan, B. Vedres, and D. Stark, “Disruptive diversity and recurring cohesion:
Assembling creative teams in the video game industry, 1979–2009,” Institute for Social
and Economic Research and Policy, Tech. Rep. 3, 2011. 51, 52

[215] M. E. J. Newman, “Scientific collaboration networks II. Shortest paths, weighted
networks, and centrality,” Physical Review E, vol. 64, no. 1, pp. 016 132:1–7, 2001. 51

[216] F. Perretti and G. Negro, “Mixing genres and matching people: a study in innovation
and team composition in Hollywood,” J Organ Behav, vol. 28, no. 5, pp. 563–586, 2007.
52

[217] S. Rodan and C. Galunic, “More than network structure: How knowledge heterogeneity
influences managerial performance and innovativeness,” Strategic management journal,
vol. 25, no. 6, pp. 541–562, 2004. 52

[218] C. Zapponi, “Programming languages and github,” http://githut.info/, 2017, visited 29
June 2017. 52

[219] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “The Babel of software
development: Linguistic diversity in open source,” in SocInfo, 2013, pp. 391–404. 53

http://githut.info/

BIBLIOGRAPHY 151

[220] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my code!:
examining the effects of ownership on software quality,” in FSE, 2011, pp. 4–14. 53

[221] G. Pinto, I. Steinmacher, and M. A. Gerosa, “More common than you think: An
in-depth study of casual contributors,” in SANER, 2016, pp. 112–123. 54

[222] J. K. Patel, C. Kapadia, and D. B. Owen, Handbook of statistical distributions. M.
Dekker, 1976. 54

[223] P. M. Grambsch and T. M. Therneau, “Proportional hazards tests and diagnostics
based on weighted residuals,” Biometrika, vol. 81, no. 3, pp. 515–526, 1994. 54

[224] A. Filippova, E. Trainer, and J. D. Herbsleb, “From diversity by numbers to diversity
as process: supporting inclusiveness in software development teams with brainstorming,”
in ICSE, 2017, pp. 152–163. 54

[225] W. B. Schaufeli, A. B. Bakker, and M. Salanova, “The measurement of work engagement
with a short questionnaire: A cross-national study,” Educ Psychol Meas, vol. 66, no. 4,
pp. 701–716, 2006. 54

[226] N. B. Ellison, C. Steinfield, and C. Lampe, “The benefits of facebook “friends:” social
capital and college students’ use of online social network sites,” J Comput-Mediat
Comm, vol. 12, no. 4, pp. 1143–1168, 2007. 54, 60

[227] J. Drengner, S. Jahn, and H. Gaus, “Events and loyalty formation: The role of sat-
isfaction, felt community, emotional experience, and frequency of use,” in Stand und
Perspektiven der Eventforschung. Wiesbaden: Gabler, 2010, pp. 151–165. 54

[228] W. B. Schaufeli and A. B. Bakker, “Job demands, job resources, and their relationship
with burnout and engagement: a multi-sample study,” J Organ Behav, vol. 25, no. 3,
pp. 293–315, 2004. 54

[229] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring and modeling
programming experience,” Empir Softw Eng, vol. 19, no. 5, pp. 1299–1334, 2014. 55

[230] Y. Wang and D. R. Fesenmaier, “Modeling participation in an online travel community,”
J Travel Res, vol. 42, no. 3, pp. 261–270, 2004. 55

[231] M. Razavian and P. Lago, “Feminine expertise in architecting teams,” IEEE Software,
vol. 33, no. 4, pp. 64–71, 2016. 57

[232] J. Cohen, “Statistical power analysis for the behavioral sciences,” 1988. 57

[233] Z. Wang, Y. Wang, and D. Redmiles, “Competence-confidence gap: A threat to female
developers’ contribution on GitHub,” in ICSE, 2018, pp. 81–90. 57, 61

[234] A. Lee, J. C. Carver, and A. Bosu, “One-time contributors to FLOSS: surveys and data
analysis,” in ICSE, 2017, pp. 187–197. 58

BIBLIOGRAPHY 152

[235] S. Elder and L. J. Johnson, “Sex-specific labour market indicators: What they show,”
Int’l Labour Review, vol. 138, no. 4, pp. 447–464, 2008. 58

[236] G. Robles, L. A. Reina, J. M. González-Barahona, and S. D. Domínguez, “Women in
free/libre/open source software: The situation in the 2010s,” in Open Source Systems:
Integrating Communities, 2016, pp. 163–173. 58

[237] J. Romano, J. D. Kromrey, J. Skowronek, and L. Devine, “Exploring methods for
evaluating group differences on the NSSE and other surveys: Are the t-test and Cohen’s
d indices the most appropriate choices?” in Ann. meeting, South Assoc Institutional
Research, 2006, pp. 1–51. 58

[238] N. Eghbal, Roads and bridges: The unseen labor behind our digital infrastructure. Ford
Foundation, 2016. 60

[239] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle to social coding:
An empirical study of repository badges in the npm ecosystem,” in ICSE, 2018. 60

[240] A. Obadimu, E. Mead, M. N. Hussain, and N. Agarwal, “Identifying toxicity within
youtube video comment,” in International Conference on Social Computing, Behavioral-
Cultural Modeling and Prediction and Behavior Representation in Modeling and Simu-
lation. Springer, 2019, pp. 214–223. 63

[241] L. Aroyo, L. Dixon, N. Thain, O. Redfield, and R. Rosen, “Crowdsourcing subjective
tasks: the case study of understanding toxicity in online discussions,” in Companion
proceedings of the 2019 world wide web conference, 2019, pp. 1100–1105. 63

[242] J. Pavlopoulos, J. Sorensen, L. Dixon, N. Thain, and I. Androutsopoulos, “Toxicity
detection: Does context really matter?” arXiv preprint arXiv:2006.00998, 2020. 63

[243] J. Lehnardt, “Sustainable open source: The maintainers perspective or: How i
learned to stop caring and love open source,” https://writing.jan.io/2017/03/06/
sustainable-open-source-the-maintainers-perspective-or-how-i-learned-to-stop-caring-and-love-open-source.
html, 2017, [Online; accessed 19-July-2021]. 63

[244] M. Consalvo, “Confronting toxic gamer culture: A challenge for feminist game studies
scholars,” 2012. 63

[245] S. Wachs, M. F. Wright, and A. T. Vazsonyi, “Understanding the overlap between
cyberbullying and cyberhate perpetration: Moderating effects of toxic online disin-
hibition,” Criminal Behaviour and Mental Health, vol. 29, no. 3, pp. 179–188, 2019.
63

[246] N. A. Beres, J. Frommel, E. Reid, R. L. Mandryk, and M. Klarkowski, “Don’t you
know that you’re toxic: Normalization of toxicity in online gaming,” in Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems, 2021, pp. 1–15. 63

[247] M. Squire and R. Gazda, “Floss as a source for profanity and insults: Collecting the
data,” in 2015 48th Hawaii International Conference on System Sciences. IEEE, 2015,
pp. 5290–5298. 63

https://writing.jan.io/2017/03/06/sustainable-open-source-the-maintainers-perspective-or-how-i-learned-to-stop-caring-and-love-open-source.html
https://writing.jan.io/2017/03/06/sustainable-open-source-the-maintainers-perspective-or-how-i-learned-to-stop-caring-and-love-open-source.html
https://writing.jan.io/2017/03/06/sustainable-open-source-the-maintainers-perspective-or-how-i-learned-to-stop-caring-and-love-open-source.html

BIBLIOGRAPHY 153

[248] D. Schneider, S. Spurlock, and M. Squire, “Differentiating communication styles of
leaders on the linux kernel mailing list,” in Proceedings of the 12th International
Symposium on Open Collaboration, 2016, pp. 1–10. 63

[249] I. Ferreira, K. Stewart, D. German, and B. Adams, “A longitudinal study on the
maintainers’ sentiment of a large scale open source ecosystem,” in 2019 IEEE/ACM 4th
International Workshop on Emotion Awareness in Software Engineering (SEmotion).
IEEE, 2019, pp. 17–22. 63

[250] I. El Asri, N. Kerzazi, G. Uddin, F. Khomh, and M. J. Idrissi, “An empirical study of
sentiments in code reviews,” Information and Software Technology, vol. 114, pp. 37–54,
2019. 63

[251] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli, “Are
bullies more productive? empirical study of affectiveness vs. issue fixing time,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE, 2015,
pp. 303–313. 63

[252] R. Paul, A. Bosu, and K. Z. Sultana, “Expressions of sentiments during code reviews:
Male vs. female,” in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2019, pp. 26–37. 63, 69

[253] A. Alami, M. L. Cohn, and A. Wąsowski, “Why does code review work for open source
software communities?” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1073–1083. 63

[254] S. Cohen, “Contextualizing toxicity in open source: a qualitative study,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021, pp. 1669–1671. 63

[255] C. Miller, S. Cohen, D. Klug, B. Vasilescu, and C. Kästner, ““did you miss my
comment or what?” understanding toxicity in open source discussions,” in International
Conference on Software Engineering (ICSE). ACM, 2022. 63

[256] M. Chouchen, A. Ouni, R. G. Kula, D. Wang, P. Thongtanunam, M. W. Mkaouer, and
K. Matsumoto, “Anti-patterns in modern code review: Symptoms and prevalence,” in
2021 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2021, pp. 531–535. 63

[257] J. Sarker, A. K. Turzo, and A. Bosu, “A benchmark study of the contemporary toxicity
detectors on software engineering interactions,” in 2020 27th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2020, pp. 218–227. 63, 64

[258] J. Cheriyan, B. T. R. Savarimuthu, and S. Cranefield, “Norm violation in online
communities–a study of stack overflow comments,” in Coordination, Organizations,
Institutions, Norms, and Ethics for Governance of Multi-Agent Systems XIII. Springer,
2017, pp. 20–34. 63

BIBLIOGRAPHY 154

[259] D. Jurgens, E. Chandrasekharan, and L. Hemphill, “A just and comprehensive strategy
for using nlp to address online abuse,” in 57th Annual Meeting of the Association for
Computational Linguistics, ACL 2019. Association for Computational Linguistics
(ACL), 2020, pp. 3658–3666. 63

[260] S. Kiritchenko, I. Nejadgholi, and K. C. Fraser, “Confronting abusive language online: A
survey from the ethical and human rights perspective,” Journal of Artificial Intelligence
Research, vol. 71, pp. 431–478, 2021. 63

[261] J. Cheriyan, B. T. R. Savarimuthu, and S. Cranefield, “Towards offensive language
detection and reduction in four software engineering communities,” in Evaluation and
Assessment in Software Engineering, 2021, pp. 254–259. 64, 82

[262] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks seen at scale,” in
Proceedings of the 26th international conference on world wide web, 2017, pp. 1391–1399.
64

[263] A. Schmidt and M. Wiegand, “A survey on hate speech detection using natural language
processing,” in Proceedings of the fifth international workshop on natural language
processing for social media, 2017, pp. 1–10. 64

[264] M. Dadvar, D. Trieschnigg, R. Ordelman, and F. de Jong, “Improving cyberbullying de-
tection with user context,” in European Conference on Information Retrieval. Springer,
2013, pp. 693–696. 64

[265] G. Park, H. A. Schwartz, J. C. Eichstaedt, M. L. Kern, M. Kosinski, D. J. Stillwell,
L. H. Ungar, and M. E. Seligman, “Automatic personality assessment through social
media language.” Journal of personality and social psychology, vol. 108, no. 6, p. 934,
2015. 65

[266] S. O. Sood, E. F. Churchill, and J. Antin, “Automatic identification of personal insults
on social news sites,” Journal of the American Society for Information Science and
Technology, vol. 63, no. 2, pp. 270–285, 2012. 65

[267] B. L. Monroe, M. P. Colaresi, and K. M. Quinn, “Fightin’words: Lexical feature selection
and evaluation for identifying the content of political conflict,” Political Analysis, vol. 16,
no. 4, pp. 372–403, 2008. 65, 71

[268] P. Brown and S. C. Levinson, Politeness: Some universals in language usage. Cambridge
university press, 1987, vol. 4. 65

[269] R. Lakoff, “The logic of politeness: Or, minding your p’s and q’s,” in Proceedings from
the Annual Meeting of the Chicago Linguistic Society, vol. 9, no. 1. Chicago Linguistic
Society, 1973, pp. 292–305. 65

[270] ——, “What you can do with words: Politeness, pragmatics and performatives,” in
Proceedings of the Texas conference on performatives, presuppositions and implicatures.
ERIC, 1977, pp. 79–106. 65

BIBLIOGRAPHY 155

[271] J. P. Chang, C. Chiam, L. Fu, A. Wang, J. Zhang, and C. Danescu-Niculescu-Mizil,
“Convokit: A toolkit for the analysis of conversations,” in Proceedings of Special Interest
Group on Discourse and Dialogue, 2020. 65, 73

[272] J. Zhang, J. P. Chang, C. Danescu-Niculescu-Mizil, L. Dixon, Y. Hua, N. Thain, and
D. Taraborelli, “Conversations gone awry: Detecting early signs of conversational failure,”
arXiv preprint arXiv:1805.05345, 2018. 65, 82

[273] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Comput. Linguist,
vol. 35, no. 2, pp. 311–312, 2009. 65

[274] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in github:
an empirical study,” in Proceedings of the 11th working conference on mining software
repositories, 2014, pp. 352–355. 65

[275] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” Empirical Software Engineering, vol. 23, no. 3, pp. 1352–1382,
2018. 65, 66

[276] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang, “Sentiment analysis for
software engineering: How far can pre-trained transformer models go?” in 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 70–80. 66, 73

[277] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “SentiCR: A customized sentiment
analysis tool for code review interactions,” in International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 106–111. 66, 73

[278] N. Novielli, F. Calefato, and F. Lanubile, “A gold standard for emotions annotation in
stack overflow,” in Proc. of 15th Int’l Conf. on Mining Software Repositories, ser. MSR
2018, 2018, pp. 14–17. 66

[279] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in community
shepherding,” IEEE Software, vol. 33, no. 6, pp. 70–79, 2016. 66

[280] Z.-J. Huang, Z.-Q. Shao, G.-S. Fan, H.-Q. Yu, X.-G. Yang, and K. Yang, “Community
smell occurrence prediction on multi-granularity by developer-oriented features and
process metrics,” Journal of Computer Science and Technology, vol. 37, no. 1, pp.
182–206, 2022. 66

[281] S. Magnoni, “An approach to measure community smells in software development
communities,” 2016. 66

[282] F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman, and A. Serebrenik,
“Beyond technical aspects: How do community smells influence the intensity of code
smells?” IEEE transactions on software engineering, vol. 47, no. 1, pp. 108–129, 2018.
66

BIBLIOGRAPHY 156

[283] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern code
review: a case study at google,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, 2018, pp. 181–190. 68, 81

[284] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-based
software development model,” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 345–355. 68, 81

[285] M. M. Rahman, D. Balakrishnan, D. Murthy, M. Kutlu, and M. Lease, “An information
retrieval approach to building datasets for hate speech detection,” arXiv preprint
arXiv:2106.09775, 2021. 69

[286] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001. 75

[287] H. Ishwaran, “Variable importance in binary regression trees and forests,” Electronic
Journal of Statistics, vol. 1, pp. 519–537, 2007. 75, 76

[288] S. J. Kazemitabar, A. A. Amini, A. Bloniarz, and A. Talwalkar, “Variable importance
using decision trees,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 425–434. 75

[289] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,”
in Proceedings of the 23rd international conference on Machine learning, 2006, pp.
233–240. 75

[290] A. Lees, D. Borkan, I. Kivlichan, J. Nario, and T. Goyal, “Capturing covertly toxic
speech via crowdsourcing,” in Proceedings of the First Workshop on Bridging Human–
Computer Interaction and Natural Language Processing, 2021, pp. 14–20. 76

[291] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018. 82

[292] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid
training data creation with weak supervision,” in Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases, vol. 11, no. 3. NIH Public Access,
2017, p. 269. 82

[293] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Automatically mining
software-based, semantically-similar words from comment-code mappings,” in 2013 10th
working conference on mining software repositories (MSR). IEEE, 2013, pp. 377–386.
82

[294] X. Han and Y. Tsvetkov, “Fortifying toxic speech detectors against veiled toxicity,”
arXiv preprint arXiv:2010.03154, 2020. 82

[295] S. Greenstein and F. Nagle, “Digital dark matter and the economic contribution
of apache,” Research Policy, vol. 43, no. 4, pp. 623–631, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0048733314000055 91

https://www.sciencedirect.com/science/article/pii/S0048733314000055

BIBLIOGRAPHY 157

[296] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A systematic
literature review on the barriers faced by newcomers to open source software projects,”
Information and Software Technology, vol. 59, pp. 67–85, 2015. 91, 102

[297] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles, “The hard life
of open source software project newcomers,” in CHASE. ACM, 2014, pp. 72–78. 92,
95, 99

[298] S. Goggins, K. Lumbard, and M. Germonprez, “Open source community health: Analyt-
ical metrics and their corresponding narratives,” in 2021 IEEE/ACM 4th International
Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal).
IEEE, 2021. 93, 94, 96, 99, 105

[299] J. Aué, M. Haisma, K. F. Tómasdóttir, and A. Bacchelli, “Social diversity and
growth levels of open source software projects on github,” in Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’16. New York, NY, USA: Association for Computing
Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2961111.2962633 93

[300] K. Crowston, H. Annabi, and J. Howison, “Defining open source software project
success,” Proceedings of the International Conference on Information Systems, 06 2003.
93, 102

[301] K. Crowston, J. Howison, and H. Annabi, “Information systems success in free
and open source software development: theory and measures,” Software Process:
Improvement and Practice, vol. 11, no. 2, pp. 123–148, 2006. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spip.259 93, 102

[302] H. Aman, A. E. Burhandenny, S. Amasaki, T. Yokogawa, and M. Kawahara, “A health
index of open source projects focusing on pareto distribution of developer’s contribution,”
in 2017 8th International Workshop on Empirical Software Engineering in Practice
(IWESEP), 2017, pp. 29–34. 93

[303] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Assessing the bus factor of git
repositories,” in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2015, pp. 499–503. 94

[304] M. Torchiano, F. Ricca, and A. Marchetto, “Is my project’s truck factor low? theoretical
and empirical considerations about the truck factor threshold,” in Proceedings of the
2nd International Workshop on Emerging Trends in Software Metrics, ser. WETSoM
’11. New York, NY, USA: Association for Computing Machinery, 2011, p. 12–18.
[Online]. Available: https://doi.org/10.1145/1985374.1985379 94

[305] S. Samrose, D. McDuff, R. Sim, J. Suh, K. Rowan, J. Hernandez, S. Rintel, K. Moynihan,
and M. Czerwinski, “Meetingcoach: An intelligent dashboard for supporting effective &
inclusive meetings,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–13. 94

https://doi.org/10.1145/2961111.2962633
https://onlinelibrary.wiley.com/doi/abs/10.1002/spip.259
https://doi.org/10.1145/1985374.1985379

BIBLIOGRAPHY 158

[306] R. Ahuja, D. Khan, D. Symonette, M. desJardins, S. Stacey, and D. Engel, “A digital
dashboard for supporting online student teamwork,” in Conference Companion Publi-
cation of the 2019 on Computer Supported Cooperative Work and Social Computing,
2019, pp. 132–136. 94

[307] J. Perrie, J. Xie, M. Nayebi, M. Fokaefs, K. Lyons, and E. Stroulia, “City on the river:
visualizing temporal collaboration,” in Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering, 2019, pp. 82–91. 94

[308] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson, “Fastdash: a visual
dashboard for fostering awareness in software teams,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2007, pp. 1313–1322. 94

[309] M. Guizani, T. Zimmermann, A. Sarma, and D. Ford Robinson, “Attracting and
retaining oss contributors with a maintainer dashboard,” in ICSE 2022, May
2022. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
attracting-and-retaining-oss-contributors-with-a-maintainer-dashboard/ 94, 108

[310] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why do newcomers abandon
open source software projects?” in 2013 6th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). IEEE, 2013, pp. 25–32. 95, 99

[311] J. Jamieson, E. Foong, and N. Yamashita, “Maintaining values: Navigating diverse
perspectives in value-charged discussions in open source development,” in Proceedings
of the ACM on Human-Computer Interaction, ser. CSCW, 2022. 95, 99

[312] I. Ferreira, J. Cheng, and B. Adams, “The "shut the f**k up" phenomenon:
Characterizing incivility in open source code review discussions,” Proc. ACM
Hum.-Comput. Interact., vol. 5, no. CSCW2, oct 2021. [Online]. Available:
https://doi.org/10.1145/3479497 95, 99

[313] C. Miller, S. Cohen, D. Klug, B. Vasilescu, and C. Kästner, ““did you miss my
comment or what?” understanding toxicity in open source discussions,” in International
Conference on Software Engineering, ser. ICSE. ACM, 2022. 95, 99

[314] D. K. Citron and H. Norton, “Intermediaries and hate speech: Fostering digital citizen-
ship for our information age,” BUL Rev., vol. 91, p. 1435, 2011. 96

[315] L. Santamaría and H. Mihaljević, “Comparison and benchmark of name-to-gender
inference services,” PeerJ Computer Science, vol. 4, p. e156, 2018. 96

[316] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative research
in psychology, vol. 3, no. 2, pp. 77–101, 2006. 97

[317] S. Ohly, S. Sonnentag, C. Niessen, and D. Zapf, “Diary studies in organizational
research: An introduction and some practical recommendations,” First publ. in: Journal
of Personnel Psychology 9 (2010), 2, pp. 79-93, vol. 9, 01 2010. 111

https://www.microsoft.com/en-us/research/publication/attracting-and-retaining-oss-contributors-with-a-maintainer-dashboard/
https://www.microsoft.com/en-us/research/publication/attracting-and-retaining-oss-contributors-with-a-maintainer-dashboard/
https://doi.org/10.1145/3479497

BIBLIOGRAPHY 159

[318] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P. Chaves, and
M. A. Gerosa, “The power of bots: Characterizing and understanding bots in oss
projects,” Proceedings of the ACM on Human-Computer Interaction, vol. 2, no. CSCW,
pp. 1–19, 2018. 118

[319] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova, and A. Mockus,
Detecting and Characterizing Bots That Commit Code. New York, NY, USA: ACM,
2020, p. 209–219. [Online]. Available: https://doi.org/10.1145/3379597.3387478 118

[320] B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov, “How social Q&A sites
are changing knowledge sharing in open source software communities,” in 17th ACM
Conference on Computer Supported Cooperative Work and Social Computing, ser. CSCW.
ACM, 2014, pp. 342–354. 132

[321] M. T. Rivera, S. B. Soderstrom, and B. Uzzi, “Dynamics of dyads in social networks:
Assortative, relational, and proximity mechanisms,” Annual Review of Sociology, vol. 36,
no. 1, pp. 91–115, 2010. 133

https://doi.org/10.1145/3379597.3387478

	Contents
	List of Tables
	List of Figures
	Introduction
	Literature review on OSS contributors
	Literature review on OSS gender distribution
	Thesis

	Help Contributors Choose Projects
	Introduction
	Related Work
	Qualitative Analysis Methods
	Interview Results - Recognizing the Signals
	Quantitative Analysis Methods
	Regression Modeling Results - Triangulating the Signals
	Implications
	Conclusions

	Sustained Participation
	Introduction
	Development of Hypotheses
	Related work
	Methods
	Results
	Discussion
	Conclusions

	Detecting Interpersonal Conflicts
	Introduction
	Related Work
	Research Questions
	Datasets
	Exploratory Analysis
	Methods for Classification
	Results
	Discussion
	Threats to validity
	Conclusion
	Appendix

	Intervention: A Dashboard for Maintainers
	Introduction
	Related Work
	Phase 1: Collecting signals
	Phase 2: Design and Think-aloud Studies
	Discussion
	Limitations
	Conclusion
	Interview Protocol - Climate Coach
	Diary Study Protocol

	Conclusion
	Contributions
	Future work

	Bibliography

