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Abstract
Most of today’s software systems are configurable. The flexibility to customize

these systems, however, comes with the cost of increased complexity. Understanding
how configuration options and their interactions affect performance, in terms of exe-
cution time, and often directly correlated energy consumption and operational costs,
is challenging, due to the large configuration spaces of these systems. For this rea-
son, developers often struggle to debug and maintain their systems when surprising
performance behaviors occur.

While there are numerous performance and program debugging techniques that
developers could use to debug their systems, there is limited empirical evidence of
how useful the techniques are to help developers debug the performance of config-
urable software systems; the techniques typically solve a specific technical challenge
that is usually evaluated in terms of accuracy, not usability. Hence, we could only,
at best, speculate which techniques might support developers’ needs to debug unex-
pected performance behaviors in configurable software systems.

In this dissertation, we take a human-centered approach to identify solutions
to support developers’ actual needs in the process of debugging the performance
of configurable software systems. Specifically, we identify white-box analyses and
techniques that can be tailored to provide relevant performance-behavior information
for developers to understand how configuration options and their interactions cause
performance issues.

In our human-centered research design, we first conduct an exploratory user
study to identify the information needs that developers have when debugging the
performance of configurable software systems. Afterwards, we identify the program
analyses and techniques that can be tailored to support those needs. In this process,
we note the limitations of existing performance-influence modeling techniques, and
present and evaluate a white-box approach that overcomes those limitations. After-
wards, we describe how we design and implement information providers, tailoring
the white-box analyses that we identified, to support developers’ needs; namely,
global and local performance-influence models, CPU profiling, and program slicing.
Finally, we conduct two users studies to validate and confirm that our designed in-
formation providers support the needs that developers have and speed up the process
of debugging the performance of complex configurable software systems.

The contributions in this dissertation help reduce the energy consumption and
operational costs of running configurable software systems by providing developers
with tool support to help them debug and maintain their systems.
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Chapter 1

Introduction

Most of today’s software systems, such as databases, Web servers, libraries, frameworks, and
compilers, provide numerous configuration options to customize the behavior of a system, in
terms of functionality and quality attributes, to satisfy a large variety of requirements [Apel
et al., 2013].

The flexibility of configurable software systems, however, comes at a cost. The large num-
ber of configuration options makes tracking how configuration options and their interactions
influence the functionality and quality attributes of systems a difficult task. For this reason,
developers struggle to develop, test, and maintain software systems with large configurations
spaces [Behrang et al., 2015, Halin et al., 2018, Jin et al., 2014, Melo et al., 2016, 2017]. Simi-
larly, users are often overwhelmed with the large number of configuration options, and configure
systems in a trial-and-error fashion without understanding the resulting effects [Apel et al., 2013,
Hubaux et al., 2012, Xu et al., 2013, 2015].

Performance, in terms of execution time, and often directly correlated energy consumption
and operational costs, is one of the most important quality attributes for developers, as well
as users, of configurable software systems [Gelenbe and Caseau, 2015, Manotas et al., 2016,
Pinto and Castor, 2017]. Developers want to design, implement, release, and maintain efficient
configurable software systems that provide flexibility and high-quality user experience to attract
new and retain existing users [Chowdhury and Hindle, 2016, Gui et al., 2016, Hasan et al.,
2016, Li et al., 2016, Malik et al., 2015, Pereira et al., 2016]. Similarly, users want to run
systems efficiently to reduce energy consumption and operational costs, but at the same time,
with the functionality that satisfies their specific needs. Hence, users may need to make tradeoff
decisions between functionality and operational costs [Jabbarvand et al., 2015, Kern et al., 2011,
Munoz, 2017, Wilke et al., 2013, Zhang et al., 2014]. For developers, as well as for users,
however, understanding how configuration options and their interactions affect the performance
of software systems is challenging due to the large configuration spaces of these systems.

In this dissertation, we aim to help developers understand the impact that configuration op-
tions and their interactions have on the performance of configurable software systems. Our
goal is to provide developers with relevant configuration-related performance information to help
them debug performance issues in their systems.

Understanding how configuration options and their interactions affect the performance of
software systems can also help users make conscious configuration decisions to run systems

1
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Figure 1.1: Ranked performance behavior, from fastest to slowest execution time, of 2000 randomly
selected configurations in Berkeley DB when populating a database with 500K entries. Note the
influence on the execution time of the interaction between the configuration option TEMPORARY
and LARGER_CACHE. Selecting (i.e., setting to true) both configuration options decreases the
execution time compared to the default configuration, while only selecting TEMPORARY increases
the execution time.

efficiently.

1.1 Performance in Configurable Software Systems
To illustrate the challenge that developers, as well as users, have to understand how configuration
options and their interactions affect performance in large configuration spaces, we use a real
scenario.

1.1.1 Example Scenario
Berkeley DB is an open-source embeddable database with hundreds of configuration options that
affect the functionality of the database, its components, and the quality attributes of the system,
including performance.1 Figure 1.1 shows the ranked performance, from fastest to slowest ex-
ecution time, of 2000 randomly selected configurations when populating a database with 500K
entries. In this system, the configuration options not only drastically change the execution time
from the fastest to the slowest configurations for the same scenario and workload (from about 5

1https://www.oracle.com/database/technologies/related/berkeleydb.html
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seconds to about 27 seconds), but the configuration options also interact and produce complex
performance behaviors (i.e., numerous steps in the figure), which prevents developers, as well
as users, from easily understanding how configuration options and their interactions affect the
performance of the system.

When a surprising non-crashing performance behavior occurs in configurable software sys-
tems, such as Berkeley DB, developers often spend a substantial amount of time diagnosing the
system to either localize and fix a performance bug, determine that the system was misconfig-
ured, or conclude that system is behaving as expected, but the user had a different expectation
about what the performance of the system should be under a specific configuration [Breu et al.,
2010, Chaparro et al., 2017, Han and Yu, 2016, Jin et al., 2012, Jovic et al., 2011, Krishna et al.,
2020, Nistor et al., 2013a, Park et al., 2012, Parnin and Orso, 2011, Zeller, 2009]. For example,
the slowest configuration in Figure 1.1 might appear to be performing unexpectedly; the config-
uration option TEMPORARY is selected (i.e., set to true), which should decrease the execution
time as indicated in the documentation. To debug this potential performance issue, developers
might compare changes in the slowest configuration with the default configuration. However,
Berkeley DB has hundreds of configuration options, and the changes differ in several of them
(in addition to TEMPORARY), requiring developers to identify how the changed configuration
options interact with each other, and with the unchanged configuration options, to produce the
surprising performance behavior. Additionally, if developers narrow down the configuration op-
tions and interactions that are potentially producing the performance issue, they most likely need
to debug the implementation to understand where and how the configuration options are being
used and interact to produce the unexpected behavior. In this example, a developer would need to
identify in the implementation that a temporary database can page to disk if the cache is not large
enough to hold the database’s contents (i.e., LARGE_CACHE should also be enabled to reduce
the execution time).

This possible debugging process of identifying potentially problematic configuration options
and analyzing where and how they are used in the implementation to produce a surprising perfor-
mance behavior is challenging; particularly, in large configuration spaces with complex perfor-
mance behaviors (e.g., if we consider 50 configuration options for Berkely DB, the system would
have 250 configurations if we only consider two values for each configuration option. This value
is similar to 56× the average number of red blood cells in the human body!). Ideally, developers
would understand how performance issues are related to configuration options and their inter-
actions, to debug the issues and maintain efficient software. With this information, developers
can determine whether the system was misconfigured and is behaving as expected (such as in the
example presented above), or there is a performance bug that they need to fix to reduce energy
consumption and operational costs.

Users also struggle to understand how configuration options and their interactions affect the
performance of software systems with large configuration spaces [Apel et al., 2013, Hubaux
et al., 2012, Siegmund et al., 2015, Xu et al., 2013, 2015]. For instance, users typically want to
run configurable software systems, such as Berkeley DB, efficiently for their specific needs. To
this end, users need to make informed tradeoff and configuration decisions between performance,
functionality, and other quality attributes. However, users are often unaware of how configuration
options affect the functionality and performance of a system. For this reason, users often resort to
using the default configuration, resulting in executing their systems inefficiently, and increasing

3



energy consumption and operational costs.
While users concerned with minimizing performance, energy consumption, and operational

costs could use a search strategy to optimize the performance of the system [Nair et al., 2017,
Oh et al., 2017], such strategies only aim to find the fastest configurations, and do not take into
account the functionality that users need.

1.1.2 Problem Statement
When configuration-related performance issues occur, developers need to debug their systems
to maintain efficient software, and to reduce the energy consumption and operation costs of run-
ning their systems. Debugging the performance of configurable software systems requires under-
standing how configuration options and their interactions cause performance issues. However,
understanding this information becomes intractable as the configuration spaces of the systems
increase and their performance behavior becomes more complex.

1.1.3 Dissertation Scope
The goal of this dissertation is to help developers debug the performance of configurable soft-
ware systems. We use a human-centered approach [Farooqui et al., 2019, Myers et al., 2016]
to identify and evaluate solutions for providing relevant performance-behavior information for
developers to understand how configuration options cause performance issues.

Understanding how configuration options and their interactions affect the performance of
software systems is also a concern of many areas of research. In what follows, we scope the
concerns that we address and evaluate in this dissertation.

One area of research seeks to help users make informed configuration decisions [Grebhahn
et al., 2019, Kaltenecker et al., 2020, Kolesnikov et al., 2018, Siegmund et al., 2015, Wang et al.,
2018, Xu et al., 2013]. While some of our solutions contribute to this research area, an empirical
evaluation of the usefulness of our solutions for users is beyond the scope of this dissertation.

Another area of research concerns with accurately predicting the performance of individual
configurations. For example, in scenarios when dynamically deciding during a robot’s mission
which configuration options to change to react to low-battery levels [Jamshidi et al., 2017, 2018,
Wang et al., 2018, Zhu et al., 2017]. In this dissertation, we contribute to this research area by
developing and evaluating solutions to predict the performance of configurable software systems.

Techniques to understand how configuration options affect performance have also been used
to optimize the performance of configurable software systems [Guo et al., 2013, Nair et al.,
2017, Oh et al., 2017, Zhu et al., 2017]. While some of our solutions could be used for this task,
there are more targeted techniques for optimizing performance [Hutter et al., 2011, Jamshidi and
Casale, 2016, Oh et al., 2017, Olaechea et al., 2014, Zhu et al., 2017]. Hence, we do not evaluate
our solutions in terms of this optimization goal.

Table 1.1 summarizes the concerns that users and developers have in terms of performance
in configurable software systems, as well as whether we make major or minor contributions that
address those concerns in this dissertation.

Now that we have scoped this dissertation to help developers debug the performance of con-
figurable software systems, we discuss this concern in more detail.

4



Table 1.1: Scope of the contributions in this dissertation for the concerns that users and developers
have in terms of performance in configurable software systems.

Developers Users

Debugging • —
Prediction • •
Making informed configuration decisions — ◦
Optimization — ◦

•: Major contribution evaluated empirically.
◦: Minor contribution without an empirical evaluation.
—: Stakeholder does not typically have this concern.

1.2 Debugging Performance in Configurable Software Systems
Developers often spend a substantial amount of time diagnosing a configurable software system
to localize and fix a performance bug, or to determine that the system was misconfigured [Breu
et al., 2010, Chaparro et al., 2017, Han and Yu, 2016, Jin et al., 2012, Jovic et al., 2011, Krishna
et al., 2020, Nistor et al., 2013a, Park et al., 2012, Parnin and Orso, 2011, Zeller, 2009]. This
struggle is quite common when maintaining configurable software systems. Some empirical
studies find that 59% of performance issues are related to configuration errors, 88% of these
issues require fixing the code [Han and Yu, 2016, Han et al., 2018], of which 61% take an average
of 5 weeks to fix [Krishna et al., 2020], and that 50% of patches in open-source cloud systems
and 30% of questions in forums are related to configurations [Wang et al., 2018]. Regardless of
how developers find the root cause of the issue or misconfiguration, performance issues impair
user experience, which often result in long execution times and increased energy consumption
and operational costs [Han and Yu, 2016, He et al., 2020, Jin et al., 2012, Krishna et al., 2020, Li
et al., 2016, Song and Lu, 2017, Wilke et al., 2013].

When performance issues occur, developers typically use profilers to identify the locations
of performance bottlenecks [Castro et al., 2015, Cito et al., 2018, Curtsinger and Berger, 2016,
Gregg, 2016, Yu and Pradel, 2018]. Unfortunately, locations where a system spends the most
time executing are not necessarily the sign of a performance issue. Additionally, traditional
profilers only indicate the locations of the effect of performance issues (i.e., where a system
spends the most time executing) for one configuration at a time. Developers are left to inspect
the code to analyze the root cause of the performance issues and to determine how the issues
relate to configurations.

With an example scenario in Figure 1.2, we illustrate the kind of performance challenge
that developers may face in configurable software systems and that we seek to support: A user
executes a configuration in this system with 50 configuration options, which results in an unex-
pected 20× slowdown. The only visible effect is the excessive execution time. While, in some
situations, developers might be able to change some configuration options to work around the
problem, users might not know which configuration options cause the problem, and may want
to select certain configuration options to satisfy specific needs (e.g., enable encryption, use a
specific transformation algorithm, or set a specific cache size). In these situations, developers
need to determine whether the system has a potential bug, is misconfigured, or works correctly,
but the user has a different expectation about what the performance of the system should be
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class Main 
  boolean commit; boolean sync; 
  def main() 
    trans = getOpt("TRANSACTIONS");  
    dups = getOpt("DUPLICATES"); 
    Database db = new Database(trans, dups); 
    init(db); 
    new Cursor().put(this.commit, this.sync);  
  def init(Database db) { 
    .... 
    this.commit = db.trans ? true : false; 
    this.sync = db.dups ? true : false; 
    .... 

class Database  
  boolean trans; boolean dups; 
  def Database(boolean trans, boolean dups) 
    this.trans = trans; 
    this.dups = dups; 

class Cursor { 
  def put(boolean commit, boolean sync) 
    if(commit) 
      if(sync) 
        synchronized(...) 
          ....

What is the issue? (Effect)
Executing one configuration 
results in a 20x slowdown in this 
system with 50 configuration 
options

Why this issue occurs? (Cause)
Setting the configuration options 
Transactions and Duplicates 
to true, drastically increases the 
execution time of the method 
Cursor.put. 
Transactions sets the value of 
commit and Duplicates sets 
the value of sync. When the 
variables are true, the system 
synchronizes, which is not 
required when inserting duplicate 
data using transactions. The 
variables are initialized in 
Main.init, using the 
configuration options. The 
configuration options are passed 
through the Database object 
created in Main.main.

Figure 1.2: Artificial example contrasting effects and causes when debugging the performance of
configurable software systems.

under the configuration that they execute. To determine the cause of the potential problematic
performance behavior, developers would need to debug the system and, most likely, the imple-
mentation to identify which configuration options or interactions in this configuration are the
root cause of the unexpected performance behavior (e.g., the system works as expected, setting a
specific CACHE_SIZE results in a misconfiguration, or setting the options TRANSACTIONS and
DUPLICATES to true results in a bug.).

When performance issues as in our example occur, there are numerous techniques that de-
velopers could use to determine whether there is a performance bug or the system was miscon-
figured. In addition to off-the-shelf profilers [JPR, 2019, VVM, 2020, Nethercote and Seward,
2007], developers could use more targeted profiling techniques [Alam et al., 2017, Castro et al.,
2015, Curtsinger and Berger, 2016, Yu and Pradel, 2016, 2018], visualize performance behav-
ior [Adamoli and Hauswirth, 2010, Bezemer et al., 2015, Cito et al., 2018, Gregg, 2016, San-
doval Alcocer et al., 2019, Trümper et al., 2013], search for inefficient coding patterns [Born-
holt and Torlak, 2018, Liu et al., 2014, Nistor et al., 2013b, 2015, Song and Lu, 2017], use
information-flow analyses [Li et al., 2020, Lillack et al., 2018, Meinicke et al., 2016, Toman and
Grossman, 2016, Wong et al., 2018, Xu et al., 2016, Zhang and Ernst, 2014], or model the perfor-
mance of the systems in terms of its configuration options and interactions [Ha and Zhang, 2019,
Kolesnikov et al., 2018, Siegmund et al., 2015, Weber et al., 2021]. Likewise, developers could
use established program debugging techniques, such as delta debugging [Zeller, 1999], program
slicing [Agrawal and Horgan, 1990, Korel and Laski, 1988, Weiser, 1981], and statistical debug-
ging [Andrzejewski et al., 2007, Song and Lu, 2014] for some part of the debugging process.
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One reason why we cannot reliably suggest developers to use any of the above techniques is that
there is limited empirical evidence of how useful the techniques are to help developers debug the
performance of configurable software systems; the techniques typically solve a specific technical
challenge that is usually evaluated in terms of accuracy, not usability [Parnin and Orso, 2011].
Hence, we could only, at best, speculate which techniques might support developers’ needs to
debug unexpected performance behaviors in configurable software systems.

1.3 Thesis
The main goal of this dissertation is to reduce the energy consumption and operational costs of
running configurable software systems. The work in this dissertation contributes towards this
goal by taking a human-centered approach [Farooqui et al., 2019, Myers et al., 2016] to identify,
design, implement, and evaluate white-box solutions to support the needs that developers have
in the process of debugging the performance of configurable software systems; particularly, in
situations such as our example in Figure 1.2. Based on an exploratory user study, we identify
that developers struggle to find relevant information to understand how configuration options and
their interactions are used in the implementation to affect the performance of configurable soft-
ware systems. Consequently, we identify, tailor, and evaluate white-box analyses to efficiently
and accurately track this information; specifically, by modeling the performance of configurable
software systems and tracing how configuration options affect the performance of software sys-
tems in the implementation.

Thesis Statement: Tailoring specific white-box analyses to track how configuration options
influence the performance of code-level structures in configurable software systems helps
developers to (1) efficiently build accurate and interpretable global and local performance-
influence models and (2) more easily inspect, trace, understand, and debug configuration-
related performance issues.

Our human-centered research design consists of three steps, summarized in Figure 1.3: We
first conduct an exploratory user study to identify the information needs that developers have
when debugging the performance of configurable software systems. Afterwards, we design and
implement information providers, adapting and tailoring ingredients (i.e., techniques and infor-
mation sources), to support developers’ needs. In the process of identifying relevant ingredients,
we note the limitations of existing performance-influence modeling techniques that we need to
overcome to provide relevant information to developers. Consequently, we present and evaluate a
white-box performance-influence modeling approach that overcomes the limitations. Finally, we
conduct two user studies to validate and confirm that the designed information providers are use-
ful to developers when debugging the performance of complex configurable software systems,
in terms of supporting their information needs and speeding up the debugging process.

To support the thesis statement, we make the following contributions in this dissertation:

• We identify the information needs that developers have when debugging the performance
of configurable software systems. Developers struggle to find relevant information to
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Identify Information Needs† Exploratory study 
(19 developers, medium system)

Design Information Providers†* Tailor ingredients to support 
information needs

Validation study 
(8 developers, medium system)

Confirmatory study 
(12 developers, complex system)

† for debugging the performance of configurable software systems

Evaluate usefulness of  
Information Providers†

* Need to overcome limitations of existing performance-influence modeling techniques

Figure 1.3: Overview of our human-centered approach to support the needs that developers have
when debugging the performance of configurable software systems.

(a) identify influencing options: the configuration options or interactions causing an unex-
pected performance behavior, (b) locate option hotspots: the methods where configuration
options affect the performance of the system, and (c) trace the cause-effect chain: the se-
quence of statements detailing how influencing options are used in the implementation to
directly and indirectly affect the performance of option hotspots (Chapter 2).

• We identify the ingredients (i.e., techniques and information sources) that can be tailored
to support above needs. Interpretable global and local performance-influence models can
help developers identify influencing options and locate option hotspots, and CPU profiling
and program slicing can help developer trace the cause-effect chain (Chapter 2).

• We note the limitations of existing performance-influence modeling approaches to effi-
ciently build accurate and interpretable models (Chapter 2).

• We introduce the insights of compositionality and compression of our white-box approach
to accurately and efficiently model the local and global performance of configurable soft-
ware systems (Chapter 3).

• Our white-box approach tailors a taint analysis to identify how configuration options and
their interactions influence the performance of independent code regions (Chapter 3).

• We discuss different design decisions to operationalize our insights and tailored taint anal-
ysis, in terms of the type of analysis to use and the granularity of code regions. We
implement two prototypes, ConfigCrusher and Comprex, considering different design
decisions (Chapter 3).

• Our empirical evaluation on 13 widely-used open-source configurable software systems,
comparing ConfigCrusher and Comprex to numerous state-of-the-art approaches, demon-
strate that our prototypes can efficiently and accurately model the performance of config-
urable software systems, often more efficiently than black-box approaches that generate
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models with comparable accuracy. Additionally, our prototypes build local and global
models that are interpretable and can be mapped to specific code regions (Chapter 3).

• We describe how we design and implement information providers to support developers’
needs. Specifically, we describe how we tailor Global and Local performance-Influence
Models, CPU Profiling, and program Slicing, and integrate them in a cohesive tool called
GLIMPS (Chapter 4).

• We empirically validate and confirm that our designed information providers support the
needs that developers have and speed up the process of debugging the performance of
complex configurable software systems (Chapter 4).

1.4 Outline
The remainder of this dissertation is structured as follows:

• Chapter 2 presents a user study, in which we identified the information needs that devel-
opers have when debugging the performance of configurable software systems. Based on
the findings, we identify the ingredients that can be tailored to support those needs. We
also note the limitations of the ingredients to build global and local performance-influence
models.

• Chapter 3 introduces the key insights and how we tailor a taint analysis for efficient, accu-
rate, and interpretable performance-influence modeling of configurable software systems.
We discuss the design decisions to implement two prototypes, and evaluate the prototypes.

• Chapter 4 details how we design and implement information providers, tailoring the ingre-
dients that we identified, to help developers debug. Two user studies provide evidence that
our designed information providers support the needs that developers have when debug-
ging the performance of configurable software systems.

• Chapter 5 concludes the dissertation, summarizes potential impact, and briefly outlines
future work.
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Chapter 2

Debugging Performance in Configurable
Software Systems: Information Needs

In Section 1.2, we discussed the struggle that developers experience when debugging the perfor-
mance of configurable software systems, and the limited empirical evidence of the usefulness of
existing performance and program debugging techniques to help developers in this process.

In this dissertation, we take a human-centered approach [Farooqui et al., 2019, Myers et al.,
2016] to identify solutions to support developers’ actual needs in the process of debugging the
performance of configurable software systems. In this chapter, we first conduct an exploratory
user study to identify the information needs that developers have when debugging the perfor-
mance of configurable software systems. Our exploratory study reveals that developers struggle
to find relevant information to (a) identify influencing options: the configuration options or in-
teractions causing an unexpected performance behavior, (b) locate option hotspots: the methods
where configuration options affect the performance of the system, and (c) trace the cause-ef-
fect chain: the sequence of statements detailing how influencing options are used in the im-
plementation to directly and indirectly affect the performance of option hotspots. Afterwards,
we discuss and identify ingredients (i.e., techniques and information sources) that can be tai-
lored to support the above needs. Specifically, we discuss how interpretable global and local
performance-influence modeling can be tailored to help developers identify influencing options
and locate option hotspots, and how CPU profiling and program slicing can be tailored to help
developers trace the cause-effect chain. While the latter two techniques can be tailored to sup-
port developers’ needs without major modifications, there are some limitations with existing
performance-influence modeling techniques that we need to overcome to provide relevant infor-
mation to developers.

In summary, we make the following contributions:
• The information needs – influencing options, option hotspots, and cause-effect chain– that

developers have when debugging the performance of configurable software systems.
• The ingredients (i.e., techniques and information sources) – interpretable global and local

performance-influence modeling, CPU profiling, and program slicing – that can be tailored
to support above needs.

The rest of this chapter is organized as follows: We first explore existing performance and
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program debugging techniques, and note the limited empirical evidence of how useful the tech-
niques are to support developers’ needs when debugging the performance of configurable soft-
ware systems (Section 2.1). Consequently, we conduct an exploratory user study to identify the
information needs that developers have during this process (Section 2.2). Finally, we identify
the ingredients (i.e., techniques and information sources) that can be tailored to support devel-
opers’ needs, while also discussing the limitations of certain techniques and that we need to
overcome (Section 2.3).

This chapter shares material with a conference submission under review at the time of writ-
ing: “On Debugging the Performance of Configurable Software Systems: Developer Needs and
Tailored Tool Support” [Velez et al., 2021a].

2.1 Background
There is substantial literature on debugging the performance of software systems [e.g., Curtsinger
and Berger, 2016, Han et al., 2012, He et al., 2020, LaToza and Myers, 2011, Liu et al., 2014,
Meinicke et al., 2018, Nistor et al., 2013b, Song and Lu, 2014]. The goal in this dissertation
is to support developers in the process of debugging the performance of configurable software
systems; in particular, when developers do not even know which configuration options or inter-
actions in their current configuration cause an unexpected performance behavior.

Debugging performance in software systems. When performance issues occur in software
systems, developers need to identify relevant information to debug the unexpected performance
behavior [Breu et al., 2010, Chaparro et al., 2017, Han et al., 2018, Nistor et al., 2013a]. For
this task, in addition to using traditional off-the-shelf profilers, such as JPRofiler [JPR, 2019],
Valgrind [Nethercote and Seward, 2007], and VisualVM [VVM, 2020], some researchers sug-
gest using more targeted profiling techniques [Castro et al., 2015, Cito et al., 2018, Curtsinger
and Berger, 2016, Gregg, 2016, Yu and Pradel, 2018] and different visualizations [Adamoli and
Hauswirth, 2010, Bezemer et al., 2015, Cito et al., 2018, Gregg, 2016, Sandoval Alcocer et al.,
2019, Trümper et al., 2013] to identify and analyze the locations of performance bottlenecks.
For instance, Coz [Curtsinger and Berger, 2016] introduced causal profiling to help developers
identify which components in their concurrent system they should optimize to improve perfor-
mance. Likewise, flame graphs [Gregg, 2016] are compact visualizations of call stacks that allow
developers understand the execution of a system. Alternatively, some researchers suggest using
techniques to search for inefficient coding patterns [Bornholt and Torlak, 2018, Curtsinger and
Berger, 2016, Liu et al., 2014, Nistor et al., 2013b, 2015, Song and Lu, 2017] For instance,
Toddler [Nistor et al., 2013b] detects performance bugs by identifying repetitive memory read
sequences across loop iterations. While these techniques are quite useful, there is limited ev-
idence of their usefulness when debugging the performance of configurable software systems;
particularly, to determine how performance issues are related to configuration options and their
interactions.

In addition to performance debugging techniques, there are several established program de-
bugging techniques that can help developers narrow down and isolate relevant parts of a system to
focus their debugging efforts [Agrawal and Horgan, 1990, Andrzejewski et al., 2007, King, 1976,
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Korel and Laski, 1988, Weiser, 1981, Zeller, 1999]. For instance, delta debugging [Zeller, 1999]
has helped developers debug unexpected behaviors by automatically and systematically narrow-
ing down the inputs that are relevant for causing a fault. Likewise, program slicing [Agrawal
and Horgan, 1990, Korel and Laski, 1988, Weiser, 1981] provides developers with a slice of the
relevant fragments of a system based on a criterion. For these reasons, the techniques have been
implemented in the backend of tools to help developers debug [Burg et al., 2013, Ko and Myers,
2004, Pothier et al., 2007]. For instance, Whyline [Ko and Myers, 2004] combines static and dy-
namic program slicing to allow developers to ask “why did” and “why did not” questions about
a system’s output. While these tools have been evaluated in terms of their technical accuracy and
usability with numerous user studies, there is limited evidence of which and how these program
debugging techniques can be used or adapted for debugging the performance of configurable
software systems.

Performance issues in configurable software systems. Performance issues are often caused
by misconfigurations or software bugs, both of which impair user experience. Misconfigura-
tions are errors in which the system and the input are correct, but the system does not behave
as desired, because the selected configuration is inconsistent or does not match the intended be-
havior [Xu et al., 2013, Zhang et al., 2014, Zhang and Ernst, 2015]. By contrast, a software bug
is a programming error that degrades a system’s behavior or functionality [Andrzejewski et al.,
2007, Zeller, 1999, 2009]. Research has repeatedly found that configuration-related performance
issues are common and complex to fix in software systems [Han and Yu, 2016, Han et al., 2018,
He et al., 2020, Krishna et al., 2020, Wang et al., 2018]. Regardless of the root cause of the un-
expected behavior (misconfigurations or software bugs), systems often misbehave with similar
symptoms, such as crashes, incorrect results [Andrzejewski et al., 2007, Meinicke et al., 2018,
Zeller, 1999, 2009], and, in terms of performance, long execution times or increased energy con-
sumption [Han and Yu, 2016, He et al., 2020, Jin et al., 2012, Krishna et al., 2020, Li et al., 2016,
Song and Lu, 2017, Wilke et al., 2013].

Debugging performance in configurable software systems. Similar to debugging perfor-
mance in general, identifying relevant information is key when debugging unexpected perfor-
mance behaviors in configurable software systems. Ideally, developers would have relevant in-
formation to debug how performance issues are related to specific configuration options and their
interactions. Unfortunately, there are situations in which developers only know the effect of an
unexpected performance behavior (e.g., an unexpected slowdown when a user executes a con-
figuration in Figure 1.2). In these situations, developers need to debug the system to determine
whether the system has a potential bug, is misconfigured, or works correctly, but the user has a
different expectation about the performance behavior of the system. For these reasons, the goal
in this dissertation is to support developers in finding relevant information to debug unexpected
performance behaviors in configurable software systems.

There are some research areas that use information-flow analyses to help developers under-
stand how configuration options and their interactions affect the behavior of configurable soft-
ware systems [Dong et al., 2016, Hoffmann et al., 2011, Li et al., 2020, Lillack et al., 2018,
Meinicke et al., 2016, Nguyen et al., 2016, Rabkin and Katz, 2011, Reisner et al., 2010, Toman

13



and Grossman, 2016, 2018, Wang et al., 2013, Wong et al., 2018, Xu et al., 2016, Zhang and
Ernst, 2014]. Thüm et al. [2014] presented a comprehensive survey of analyses for software
product lines also applicable to configurable software systems.

Some researchers have used taint analyses to track how configuration options are used and
propagated in configurable software systems [Hoffmann et al., 2011, Lillack et al., 2018, Toman
and Grossman, 2016, 2018]. A taint analysis is a static [Arzt et al., 2014] or dynamic [Austin
and Flanagan, 2009, Bell and Kaiser, 2014] information-flow analysis typically used in security
research to detect, for example, information leaks and code injection attacks [Newsome and
Song, 2005, Schwartz et al., 2010]. In taint analysis, a value is initially marked as tainted,
and all values derived (directly or indirectly) from the initial value are also tainted, which is
then used to identify if the values are used in locations where they should not (e.g., sent over
the network). In the context of configurable software systems, Lotrack [Lillack et al., 2018]
used a static taint analysis to identify under which configurations particular code fragments are
executed. Likewise, Staccato [Toman and Grossman, 2016] used a dynamic taint analysis to
identify the use of stale configuration data. While these techniques can solve specific technical
challenges, there is limited empirical evidence of the usefulness of these techniques, particularly,
for debugging the performance of configurable software systems.

Other researchers have used symbolic execution and variational execution to analyze the be-
havior of configuration option and interactions [Meinicke et al., 2016, 2018, Nguyen et al., 2016,
Reisner et al., 2010, Wong et al., 2018]. Symbolic execution is an approach to execute a system
abstractly to cover the execution of multiple inputs [King, 1976, Schwartz et al., 2010]. Dur-
ing the execution of a system, symbolic values, in terms of inputs and variables in the system,
are propagated to analyze the behavior of the system, such as which inputs cause each part of
the system to execute. By contrast, variational execution is an approach to dynamically analyze
the effects of multiple inputs by tracking concrete values [Meinicke et al., 2016, Wong et al.,
2018]. In other communities (e.g., security), this technique is called faceted execution [Austin
and Flanagan, 2012]. In the context of configurable software systems, Reisner et al. [2010] and
Meinicke et al. [2016] used symbolic execution and variational execution, respectively, to iden-
tify how configuration options interact in software systems. While these techniques are accurate
at solving specific technical challenges, there is limited evidence of how these techniques can be
used or adapted for debugging the performance of configurable software systems.

In terms of understanding performance, some researchers suggest that performance-influence
models can help developers debug unexpected performance behaviors [Ha and Zhang, 2019,
Kolesnikov et al., 2018, Siegmund et al., 2015, Weber et al., 2021], as the models describe the
performance of a system in terms of its configuration options and their interactions. For example,
the model m = 2 + 8 · A · B + 5 · C explains the influence of the configuration options A, B,
and C, and their interactions on the performance of a system; for instance, selecting (i.e., setting
to true) C increases the execution time of the system by 5 seconds, and selecting A and B, to-
gether, further increase the execution time by 8 seconds. Some approaches also model the perfor-
mance of individual methods [Han et al., 2021, Weber et al., 2021], which can be useful to locate
where configuration options affect the performance of a system. However, while performance-
influence models have been evaluated in terms of accuracy [Kaltenecker et al., 2019, Siegmund
et al., 2012a,b, 2015] and optimizing performance [Guo et al., 2013, Nair et al., 2017, Oh et al.,
2017, Zhu et al., 2017], the models have not been evaluated in terms of usability; in particular, to
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support developers’ needs when debugging the performance of configurable software systems.

Discussion. Despite the numerous performance and program debugging techniques available
to developers, there is limited evidence of how useful the techniques are to help developers de-
bug the performance of configurable software systems. Hence, we could only, at best, speculate
which techniques might support developers in this process. Consequently, we take a human-
centered approach [Farooqui et al., 2019, Myers et al., 2016] to identify the information needs
that developers have when debugging the performance of configurable software systems. After-
wards, we identify the ingredients (i.e., techniques and information sources) that can be tailored
to support those needs.

2.2 Exploring Information Needs
We investigate the information needs that developers have and the process that they follow to
debug the performance of configurable software systems. Specifically, we answer the following
research questions:

RQ1: What information do developers look for when debugging the performance of config-
urable software systems?

RQ2: What is the process that developers follow and the activities that they perform to obtain
this information?

RQ3: What barriers do developers face during this process?

2.2.1 Method
We conducted an exploratory user study to identify the information needs that developers have
when debugging the performance of configurable software systems. Using Zeller’s terminol-
ogy [Zeller, 2009], we want to understand how developers find possible infection origins: where
configuration options affect performance, and analyze the infection chain: what are the causes of
an unexpected performance behavior, when debugging the performance of configurable software
systems.

Study design. We conducted the exploratory study, combining a think-aloud protocol [Jääskeläi-
nen, 2010] and a Wizard of Oz approach [Dahlbäck et al., 1993], to observe how participants
debug a performance issue for 50 minutes: We encourage participants to verbalize what they
are doing (or trying to do), while the experimenter plays the role of some tool that can provide
performance behavior information (e.g., performance profiles and execution time of specific con-
figurations) on demand, thus avoiding overhead from finding or learning specific tools.

We decided to provide additional information to participants halfway through the study, after
we found, in a pilot study with 4 graduate students from our personal network, that participants
spend an extremely long time (about 60 minutes in a relatively small system) just identifying rel-
evant configuration options and methods. To additionally explore how participants search for the
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cause of performance issues once they have identified this information, we told participants, after
25 minutes, which configuration options cause the performance issue and the methods where the
configuration options influence performance. In this way, we can both observe how participants
start addressing the problem and analyze how configuration options affect the performance in the
implementation.

After the task, we conducted a brief semi-structured interview to discuss the participants’
experience in debugging the system, as well as the information that they found useful and would
like to have when debugging the performance of configurable software systems.

Due to the COVID-19 pandemic, we conducted the study remotely over Zoom. We asked
participants to download and import the source code of the subject system to their favorite IDE,
to avoid struggles with using an unfamiliar environment. We also asked participants to share
their screen. With the participants’ permission, we recorded audio and video of the sessions for
subsequent analysis.

Task and subject system. Based on past studies [Meinicke et al., 2018, Melo et al., 2016,
2017, Parnin and Orso, 2011] that have shown how time-consuming debugging even small con-
figurable software systems is, we prepared one performance debugging task for one configurable
software system of moderate size and complexity. We selected Density Converter (Complete)1

as the subject system, which transforms images to different dimensions and formats. We selected
this Java system because it is medium-sized, yet non-trivial (over 49K SLOC and 22 binary and
non-binary configuration options), and has many configuration options that influence its perfor-
mance behavior (execution time on the same workload ranged from a few seconds to a couple
of minutes, depending on the configuration). The task involved a user-defined configuration that
spends an excessive amount of time executing. We introduced a bug caused by the incorrect im-
plementation of one configuration option, representative of bugs reported in past research [Abal
et al., 2018, Han and Yu, 2016, Jin et al., 2012] (the system was spending a long time to trans-
form and output a JPEG image). Participants were asked to identify and explain which and how
configuration options caused the unexpected performance behavior.

Participants. We recruited 14 graduate students and 5 professional software engineers with
extensive experience analyzing the performance of configurable Java systems. We stopped re-
cruiting when we observed similar information needs and patterns in the debugging process. We
used our professional network and LinkedIn for recruiting. The graduate students had a median
of 6.5 years of programming experience, a median of 5 years in Java, a median of 3 years an-
alyzing performance, and a median of 4.5 years working with configurable software systems.
The software engineers had a median of 13 years of programming experience, a median of 13
years in Java, a median of 5 years analyzing performance, and a median of 5 years working with
configurable software systems.

1We refer to this version of the system as “Complete” since we included all of its Java dependencies to increase
the size and complexity of the system. Otherwise, the system has about 1K SLOC and acts as an interface to call
several image processing libraries.
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Table 2.1: Information needs that developers have and the activities that they perform to debug the
performance of configurable software systems.

Information Need Description Frequency Activities Frequency

Influencing Options Which configuration
options influence the
performance of the
system?

19/19 Read configuration options’ docu-
mentation

19/19

Measure performance of numer-
ous configurations

19/19

User Hotspots What are the hotspots
under the problematic
configuration?

9/19 Profile the system under the prob-
lematic configuration

9/19

Option Hotspots Where do
configuration options
influence the
performance of the
system?

10/19 Manually trace configuration op-
tions in the implementation

4/10

Analyze the user hotspots’ source
code

6/10

Inspect the user hotspots’ call
stacks

6/10

Cause-Effect Chain How are influencing
options used in the
implementation to
directly and indirectly
influence the
performance of option
hotspots?

19/19 Analyze the option hotspots’s
source code

19/19

Inspect the option hotspots’s call
stacks

12/19

Use a debugger to analyze how the
influencing options affect the val-
ues of the variables used in the op-
tion hotspots

10/19

Manually trace how influencing
options are used in the implemen-
tation to directly and indirectly
affect the performance of option
hotspots

19/19

Analysis. We analyzed transcripts of the audio and video recordings of the debugging task
and interviews using standard qualitative research methods [Saldaña, 2015]. The author of this
dissertation, who conducted the study, coded the sessions using open and descriptive coding,
summarizing observations and discussions. All researchers involved in this study met weekly
to discuss the codes and observations. When codes were updated, previously analyzed sessions
were reanalyzed to update the sessions’ coding.

Threats to Validity and Credibility. We observe how developers debug the performance of
a system that they had not used before. Developers who are familiar with a system might have
different needs or follow different processes. While readers should be careful when generalizing
our findings, the needs help us identify the information that, at the very least, developers want to
find when debugging the performance of unfamiliar configurable software systems.

Conducting a study with one system in which one configuration option causes a performance
issue has the potential to overfit the findings to this scenario, even though the scenario mirrors
common problems in practice [Han and Yu, 2016]. While we intentionally vary some aspects of
the design in a subsequent study (Chapter 4) to observe whether our solutions generalize to other
tasks, generalizations about our results should be done with care.
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2.2.2 Results

We observed that participants struggle for a long time looking for relevant information to debug
the performance of the configurable subject system. In fact, no participant was able to finish
debugging the system within 50 minutes! In what follows, we present the information needs
that participants had, the process that they followed, and the barriers that they faced during the
debugging process.

RQ1: Information Needs. Table 2.1 lists the four information needs that we identified and
the number of participants that had each need. We refer to the information needs as influencing
options, option hotspots, cause-effect chain, and user hotspots. The participants referred to these
needs using varying terms.

When participants faced a non-trivial configuration space, they all tried to identify the in-
fluencing options – the configuration option or interaction causing the unexpected performance
behavior. More specifically, the participants tried to identify which configuration options in the
problematic configuration caused the unexpected performance behavior.

Some participants tried locating option hotspots – the methods where configuration options
affect the performance of the system. More specifically, the participants tried to locate where
the effect of the problematic configuration could be observed; the methods whose execution time
increased under the problematic configuration.

When we told participants which configuration options cause the unexpected performance
behavior (i.e., the influencing options) and the methods where these configuration options influ-
ence performance (i.e., the option hotspots), all participants tried tracing the cause-effect chain
– the sequence of statements detailing how influencing options are used in the implementation
to directly and indirectly affect the performance of option hotspots. More specifically, as the
participants knew which configuration options were causing an unexpected performance behav-
ior and had observed the effect of those configuration options on the system’s performance, the
participants tried to find the root cause of the unexpected performance behavior.

Some participants also looked for user hotspots – the methods that spend a long time execut-
ing under the user-defined problematic configuration. However, as we will discuss in RQ2, these
participants looked for this information trying to locate option hotspots.

Summary RQ1: Developers look for information to (1) identify influencing options, (2) locate
option hotspots, and (3) trace the cause-effect chain of how configuration options influence
performance in the implementation.

RQ2: Process and Activities. Table 2.1 lists the activities that participants performed when
looking for relevant information and the number of participants that performed each activity.
Overall, all participants compared the problematic configuration to the default configuration, to
understand the causes of the unexpected performance behavior. In particular, the participants
compared the values selected for each configuration option and analyzed how the changes were
affecting the performance of the system in the implementation.
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When looking for the influencing options, the participants mainly read the documentation and
executed the system under multiple configurations, primarily comparing execution times. With
these approaches, the participants tried to identify which configuration options in the problematic
configuration were causing the unexpected behavior.

When looking for option hotspots, the participants mainly profiled the system under the prob-
lematic configuration, and analyzed the call stacks and source code of hotspots, trying to locate
the methods where configuration options might be affecting the performance of hotspots.

When looking for the cause-effect chain, some participants analyzed the option hotspots’
source code, whereas others used a debugger; trying to understand how the influencing options
are used in the implementation to affect the performance of option hotspots. Several participants
also compared the hotspots’ call stacks under the problematic and default configurations, trying
to understand how the influencing options affected how the option hotspots were called. Ulti-
mately, all participants tried to manually trace how the influencing options were being used in
the implementation to directly and indirectly affect the performance of the option hotspots.

While identifying the influencing options and locating the option hotspots is needed to trace
the cause-effect chain, the order in which the first two pieces of information was acquired did not
affect the debugging process. For instance, 9 participants started looking for influencing options,
but gave up trying after a while. Then, the participants looked for and were able to identify user
hotspots. Six of these participants subsequently started looking for option hotspots.

Summary RQ2: Overall, developers compare the problematic configuration to a (baseline)
non-problematic configuration to understand the causes of an unexpected performance behav-
ior. Initially, developers compare execution times to identify influencing options, and analyze
call stacks and source code to locate option hotspots. These two pieces of information are
necessary to trace the cause-effect chain of how influencing options are used in the implemen-
tation to directly and indirectly influence the performance of option hotspots.

RQ3: Barriers. Our participants struggled for a long time trying to find relevant information to
debug how configuration options influence the performance of the system in the implementation.
Most participants discussed the “tedious and manual” process of executing multiple configu-
rations when looking for influencing options. For instance, only 10 out of the 19 participants
identified the influencing options. While we told participants the system’s execution time under
any configuration that they wanted, several participants mentioned that finding the problematic
configuration option would have “taken me hours.”

Most participants also mentioned the struggle to locate option hotspots. In fact, no partic-
ipant found any option hotspot! Several participants mentioned that locating these methods is
challenging since configuration options are not typically directly used in expensive methods.

The participants struggled the most when trying to trace the cause-effect chain. In fact,
no participant could establish the cause-effect chain, even when our task consisted of tracing
a single influencing option and we explicitly told participants the influencing option and the
option hotspots they needed to analyze. Most participants mentioned that manually tracing even
one configuration option through a relatively small system is “error-prone.” Additionally, some
participants discussed that identifying differences in the option hotspots’ call stacks was difficult
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for determining whether the influencing options were affecting how the option hotspots were
called. As mentioned by several participants: variables used in option hotspots are often a “result
of several computations” involving influencing options. Since the influencing options are used
in various parts of the system, “tracing which paths to follow is very challenging.”

Summary RQ3: Developers struggle for a substantial amount of time looking for relevant
information to identify influencing options, locate option hotspots, and trace the cause-effect
chain.

Contribution - Information needs: Developers want to (1) identify influencing options,
(2) locate option hotspots, and (3) trace the cause-effect chain when debugging the perfor-
mance of configurable software systems.

Thesis contribution: We identified empirically the information needs – influencing options,
option hotspots, and cause-effect chain – that developers have when debugging the perfor-
mance of configurable software systems. With these findings, we can determine the tech-
niques that can be tailored to support these needs to help developers maintain their systems to
reduce energy consumption and operational costs.

2.3 Ingredients for Supporting Information Needs

We aim to support developers in identifying influencing options, locating option hotspots, and
tracing the cause-effect chain. To this end, we discuss, in more detail, which and how the per-
formance and program debugging techniques presented in Section 2.1 can be used and adapted
to support the above needs. In Chapter 4, we describe how we tailor and integrate the techniques
into a cohesive tool, and evaluate the extent that the information that we provide support the
needs that developers have.

2.3.1 Identifying Influencing Options: Performance-Influence Modeling

Developers want to identify the influencing options – the configuration option or interaction
causing an unexpected performance behavior.

To understand how configuration options and their interactions affect the performance of a
system, we suggest using global performance-influence models [Ha and Zhang, 2019, Kolesnikov
et al., 2018, Siegmund et al., 2015, Weber et al., 2021], as the models describe the performance
of a system in terms of its configuration options and their interactions. For example, the model
m = 2 + 8 · A · B + 5 · C explains the influence of the configuration options A, B, and C, and
their interactions on the performance of a system. With these models, developers can determine
which configuration options and interactions are causing an unexpected performance behavior.
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Goals of performance-influence modeling

Global performance-influence models have been used for different tasks in different scenarios,
which benefit from different characteristics of the type of model that is used. In the context of
helping developers debug the performance of configurable software systems, we suggest using a
specific type of model: Interpretable models. In what follows, we describe the different scenarios
and model characteristics in more detail.

– Optimization. In the simplest case, a user wants to optimize the performance of a sys-
tem by selecting the fastest configuration for a specific workload and running the system
in a specific environment. Global performance-influence models have been used for op-
timization [Guo et al., 2013, Nair et al., 2017, Oh et al., 2017, Zhu et al., 2017], though
metaheuristic search (e.g., hill climbing) is often more effective at pure optimization prob-
lems [Hutter et al., 2011, Jamshidi and Casale, 2016, Oh et al., 2017, Olaechea et al., 2014,
Zhu et al., 2017], as they do not need to understand the entire configuration space.

– Prediction. In other scenarios, users want to predict the performance of individual config-
urations. Scenarios include automatic reconfiguration and runtime adaptation, where there
is no human-in-the-loop and online search is impractical. For example, when dynamically
deciding during a robot’s mission which configuration options to change to react to low-
battery levels [Jamshidi et al., 2017, 2018, Wang et al., 2018, Zhu et al., 2017]. In these
scenarios, the model’s prediction accuracy over the entire configuration space is important,
but understanding the structure of the model is irrelevant. In this context, deep regression
trees [Guo et al., 2013, 2017, Sarkar et al., 2015], Fourier Learning [Ha and Zhang, 2019],
and neural networks [Ha and Zhang, 2019] are commonly used, which build accurate mod-
els, with a large enough number of sampled configurations, but are not easy to interpret by
humans [Grebhahn et al., 2019, Kaltenecker et al., 2020, Kolesnikov et al., 2018, Molnar,
2019, Siegmund et al., 2015].

– Configuring software systems. When users want to make deliberate configuration deci-
sions [Grebhahn et al., 2019, Kaltenecker et al., 2020, Kolesnikov et al., 2018, Siegmund
et al., 2015, Wang et al., 2018, Xu et al., 2013] (e.g., whether to accept the performance
overhead of encryption), interpretability regarding how configuration options and interac-
tions influence performance becomes paramount. In these situations, researchers usually
suggest sparse linear models, such as m = 2 + 8 · A · B + 5 · C, typically learned with
stepwise linear regression or similar variations [Kaltenecker et al., 2019, Siegmund et al.,
2012a,b, 2015]. Such models are generally accepted as inherently interpretable [Molnar,
2019], as the information of how configuration options and their interactions influence the
performance of a system is easy to inspect and interpret by users [Kaltenecker et al., 2020,
Kolesnikov et al., 2018, Molnar, 2019]. By contrast, opaque machine-learned models (e.g.,
random forests and neural networks) are not considered inherently interpretable [Molnar,
2019]. While there are many approaches to provide post-hoc explanations [Lundberg and
Lee, 2017, Molnar, 2019, Ribeiro et al., 2016, Štrumbelj and Kononenko, 2014], such
approaches are not necessarily faithful and may provide misleading and limited explana-
tions [Rudin, 2019].

– Debugging. In addition to users who configure a system, developers who maintain the sys-
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tem can also benefit from performance-influence models to understand and debug the per-
formance behavior of their systems. For example, when presenting performance-influence
models to developers in high-performance computing, Kolesnikov et al. [2018] reported
that a developer “was surprised to see that [a configuration option] had only a small influ-
ence on system performance”, indicating a potential bug. In such situations, understand-
ing how individual configuration options and interactions influence performance is again
paramount, favoring interpretable models.

Summary: We suggest using interpretable global performance-influence models, such as those
generated with linear regressions, as humans can inspect the models, reason about factors,
and make and understand predictions.

Building global performance-influence models

Global performance-influence models are typically built by measuring the execution time of a
system with a specific workload in a specific environment under different configurations [Sieg-
mund et al., 2015]. Almost all existing approaches are black-box in nature: They do not take the
system’s implementation into account and measure the end-to-end execution time of the system.
In what follows, we describe the different approaches to builds performance-influence models in
more detail.

– Brute-force. The simplest approach is to observe the execution of all configurations in a
brute-force approach. The approach obviously does not scale, but for the smallest config-
uration spaces, as the number of configurations grows exponentially with the number of
configuration options.

– Sampling and Learning. In practice, most current approaches measure executions only
for a sampled subset of all configurations and extrapolate performance behavior for the
rest of the configuration space using machine learning [Grebhahn et al., 2019, Ha and
Zhang, 2019, Ha and Zhang, 2019, Kaltenecker et al., 2020, Sarkar et al., 2015, Siegmund
et al., 2015, Weber et al., 2021], which we collectively refer to as sampling and learning
approaches. Specific approaches differ in how they sample, learn, and represent models:
Common sampling techniques include uniform random, feature-wise, and pair-wise sam-
pling [Medeiros et al., 2016], design of experiments [Montgomery, 2006], and combinato-
rial sampling [Al-Hajjaji et al., 2016, Halin et al., 2018, Hervieu et al., 2011, 2016, Nie and
Leung, 2011]. Common learning techniques include linear regression [Kaltenecker et al.,
2019, Siegmund et al., 2012a,b, 2015], regression trees [Grebhahn et al., 2019, Guo et al.,
2013, 2017, Sarkar et al., 2015, Weber et al., 2021], Fourier Learning [Ha and Zhang,
2019], Gaussian Processes [Jamshidi et al., 2017], and neural networks [Ha and Zhang,
2019].
Different sampling and learning techniques yield different tradeoffs between measurement
effort, prediction accuracy, and interpretability of the learned models [Grebhahn et al.,
2019, Kaltenecker et al., 2020, Kolesnikov et al., 2018]. For example, larger samples are
more expensive, but usually lead to more accurate models; random forests, with large
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enough samples, tend to learn more accurate models than those built with linear regres-
sions, but the models are harder to interpret when users want to understand performance
or developers want to debug their systems [Grebhahn et al., 2019, Kaltenecker et al., 2020,
Molnar, 2019]. Although some sampling strategies rely on a coverage criteria to sample
specific interaction degrees, such as t-wise sampling [Medeiros et al., 2016, Nie and Le-
ung, 2011], the strategies might miss important interactions, leading to inaccurate models,
or measure interactions that are not relevant for performance.

– Family-Based Performance Measurement. In contrast to black-box approaches, Family-
Based Performance Measurement [Siegmund et al., 2013] is a white-box approach to build
performance-influence models. The approach uses a static mapping between configuration
options to code regions and instruments the system to measure the execution time spent in
the regions. Subsequently, the approach executes the system once with all configuration
options selected, tracking how much each configuration option contributes to the execution
time. The approach works well when all configuration options are directly used in control-
flow statements and only contribute extra behavior. That is, a configuration option would
not switch between two implementations, but only activate additional code. Current im-
plementations, however, derive the static map from compile-time variability mechanisms
(e.g., preprocessor directives) and do not handle systems with load-time variability (i.e.,
loading and processing configuration options in variables at runtime). Furthermore, the
static map only covers direct control-flow interactions from nested preprocessor directives,
and can lead to inaccurate models when indirect data-flow interactions occur.

Summary: Most current performance-influence modeling approaches are black box, which
rely on sampling strategies to potentially capture performance-relevant interactions to learn
the performance behavior of a system from incomplete samples. The sampling strategies affect
the cost to build the models and the accuracy of the models. The approaches are also extremely
sensitive to the learning technique that is used, in terms of the accuracy of the models and the
interpretability of the models. The only existing white-box approach imposes strict constraints
on the structure of the configurable software systems that it can analyze.

Discussion

We suggest using interpretable global performance-influence models to identify influencing op-
tions, as the models are represented to indicate how configuration options and their interactions
affect the performance of a system. However, we do not suggest simply showing linear models to
developers. Rather, based on our findings that developers compare a problematic configuration to
a non-problematic configuration when debugging the performance of configurable software sys-
tems (Section 2.2.2), we adapt and tailor these models to show developers relevant and targeted
information. In Chapter 4, we describe how we tailor these models in more detail.

We present a new performance-influence modeling technique to overcome the limitations of
existing modeling techniques, in terms of tradeoffs among the cost to build models, and the accu-
racy and interpretability of the models. Our technique analyzes the performance of configurable
software systems using a white-box approach to avoid relying on machine learning to extrapolate
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from incomplete samples. We describe our white-box performance-influence modeling approach
in more detail in Chapter 3.

Contribution - Ingredient to support developers’ needs: We suggest using and tailoring
interpretable global performance-influence models to help developers identify influencing op-
tions. However, we develop a white-box performance-influence modeling technique to over-
come the limitations of existing modeling techniques.

2.3.2 Locating Option Hotspots: Performance-Influence Modeling

Developers want to locate option hotspots – the methods where configuration options affect the
performance of the system.

To locate where configuration options and their interactions affect the performance of a sys-
tem, we suggest using local performance-influence models [Weber et al., 2021]. Analogous to
how global performance-influence models describe the influence of options and interactions on
the performance of a system (Section 2.3.1), local models describe the influence of configura-
tion options and interactions of individual methods. Hence, local models indicate where options
affect the performance in the implementation [Weber et al., 2021]. For instance the local model
mFOO = 2 + 8 · A · B explains the influence of A and B on the performance of the method FOO.

Building local performance-influence models

Existing performance-influence modeling techniques have mostly modeled the global perfor-
mance of configurable software systems. The same black-box techniques could be used to model
the performance of methods: A sampling strategy could be used to measure the performance of
methods, and then a learning algorithm could be used to build a model for each method. This
strategy, however, has seldom been discussed in the performance-influence modeling literature.

Recently, Weber et al. [2021] presented an approach to build performance-influence models
for methods and the entire system. The approach, however, suffers from most of the limitations
described in Section 2.3.1 about black-box approaches: The approach uses a sampling strategy to
profile the performance of methods under different configurations, and generates performance-
influence models using machine learning. Afterwards, the approach identifies inaccurate local
models, and repeats the same sampling and learning process again, using a more accurate, but
expensive, profiling technique. While the local and global performance-influence models are
accurate, the approach makes tradeoffs by using sampling and learning techniques, and, most
importantly, does not generate interpretable models, which developers need for debugging.

Summary: The only performance-influence modeling technique that builds local models makes
tradeoffs in terms of the cost to build models, and the accuracy and interpretability of the
models. Most importantly, the technique does not build interpretable models, which we need
to help developers debug.
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Discussion

We suggest using interpretable local performance-influence models for locating option hotspots,
as the models are represented to indicate how configuration options and their interactions affect
the performance of specific methods of a system. Similar to our suggestion of using global
performance-influence models, we do not suggest simply showing linear models to developers.
Rather, we adapt and tailor these models to show developers relevant and targeted information.
In Chapter 4, we describe how we tailor these models in more detail.

We design our white-box performance-influence modeling approach, which overcomes the
limitations of existing techniques, to model the local and global performance of configurable
software systems. In Chapter 3, we describe our white-box performance-influence modeling
approach in more detail.

Contribution - Ingredient to support developers’ needs: We suggest using and tailoring
interpretable local performance-influence models to help developers locate option hotspots.
However, we develop a white-box performance-influence modeling technique to model local
performance of configurable software systems.

2.3.3 Tracing the Cause-Effect Chain: CPU Profiling and Program Slicing
Developers want to trace the cause-effect chain – how influencing options are used in the imple-
mentation to directly and indirectly affect the performance of option hotspots.

To help developers understand how configuration options and their interactions are used in
the implementation to directly and indirectly affect the performance of a system, we suggest
using CPU profiling and program slicing.

CPU Profiling

We suggest using traditional off-the-shelf CPU profiling to help developers trace the cause-effect
chain; specifically, to analyze whether influencing options affect how option hotspots are called.
However, simply profiling the performance of a system under different configuration is not suf-
ficient to debug the performance of configurable software systems (see results in Section 2.2.2).
Instead, we show developers a comparison of the hotspot view between a problematic configura-
tion and a non-problematic configuration to help developers understand whether the influencing
options influence how option hotspots are called. The hotspot view is the inverse of a call tree:
A list of all methods sorted by their total execution time, cumulated from all different call stack,
and with back traces that show how the methods are called.

Since we suggest using off-the-shelf profiling, we do not envision the need to develop new
profiling techniques. In Chapter 4, we describe how we tailor CPU profiling in more detail.

Program Slicing

We suggest using program slicing to help developers trace the cause-effect chain. Several de-
bugging tools have been implemented on top of program slicers [Fu et al., 2020, Ko and Myers,
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2004, Xu et al., 2005] to help developers narrow down and isolate relevant inputs and parts of a
system where developers should focus their debugging efforts. We suggest using program slic-
ing to track how influencing options are used in the implementation to directly and indirectly
influence the performance of option hotspots. More specifically, we suggest slicing the system
from the point when influencing options are first loaded in to the system (e.g., the main method
in Java system) to option hotspots.

We plan to use standard program slicing techniques – our suggestion is on how to slice the
system. Hence, we do not envision the need to improve existing techniques. In Chapter 4, we
describe how we tailor program slicing in more detail.

Contribution - Ingredients to support developers’ needs: We suggest using and tailoring
CPU profiling and program slicing to help developers trace the cause-effect chain.

Thesis contribution: We identified the ingredients (i.e., techniques and information sources)
– interpretable global and local performance-influence modeling, CPU profiling, and program
slicing – that can be tailored to support developers’ needs when debugging the performance
of configurable software systems. Providing relevant information from these ingredients can
help developers maintain their systems to reduce energy consumption and operational costs.

2.4 Summary
In this chapter, we took a human-centered approach to identify solutions to support developers
actual needs in the process of debugging the performance of configurable software systems. We
conducted an exploratory user study, with 19 developers, in which we identified that developers
struggle to find relevant information to identify influencing options: the configuration options
or interactions causing an unexpected performance behavior, locate option hotspots: the meth-
ods where configuration options affect the performance of the system, and trace the cause-effect
chain: the sequence of statements detailing how influencing options are used in the implementa-
tion to directly and indirectly affect the performance of option hotspots. Based on these findings,
we suggested that interpretable global and local performance-influence modeling can be used to
help developers identify influencing options and locate option hotspots, and that CPU profiling
and program slicing can be used to help developers trace the cause-effect chain.

Identifying the information needs and ingredients that can support those needs contribute
to the thesis goal of reducing the energy consumption and operational costs of running config-
urable software systems, since we can design tailored tool support to help developers debug and
maintain their systems.

In Chapter 4, we describe how we tailor and integrate the ingredients into a cohesive tool, and
evaluate the extent that the information that we provide support the needs that developers have.
However, before discussing how we tailor the ingredients in more detail, we need to overcome
the limitations of existing performance-influence modeling techniques. Hence, we first present
and evalute our white-box approach in Chapter 3.
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Chapter 3

White-box Performance-Influence
Modeling

In Chapter 2, we suggested using interpretable global and local performance-influence models to
help developers identify influencing options and locate option hotspots. However, most existing
performance-influence modeling approaches have limitations, in terms of tradeoffs among the
cost to build models, and the accuracy and interpretability of the models. Hence, we present
a new modeling technique that overcomes these limitations by analyzing the performance of
configurable software systems using a white-box approach to avoid relying on machine learning.

Our white-box approach to model the performance of configurable software systems analyzes
and instruments the source code to accurately capture configuration-specific performance behav-
ior, without using machine learning to extrapolate incomplete samples. We reduce measurement
cost by simultaneously analyzing and measuring multiple regions of the system, building a local
linear performance-influence model per region with a few configurations (an insight that we call
compression). Subsequently, we compose the local models into a global linear model for the en-
tire system. We tailor a taint analysis to identify where and how load-time configuration options
influence control-flow statements in the system, through control- and data-flow dependencies.

Our empirical evaluation on several widely-used open-source configurable software sys-
tems demonstrates that our white-box approach efficiently builds accurate performance-influence
models. Additionally, the models are interpretable, which not only predict performance of con-
figurations, but also quantify the influence on performance of individual configuration options
and interactions. Furthermore, our white-box approach generates local models that map the
influence of configuration options and interactions to specific code regions.

In Chapter 4, we show how we tailor interpretable global and local models to support devel-
opers’ needs to debug the performance of configurable software systems.

In summary, we make the following contributions:
• The insights of compositionality and compression to accurately infer the influence of con-

figuration options and their interactions on the performance of numerous independent re-
gions of a system with a few configurations.

• The tailoring of a taint analysis to identify how configuration options and their interactions
influence the performance of independent code regions.
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• A comparison of the design decisions to operationalize our white-box approach, and the
implementation of two prototypes: ConfigCrusher and Comprex.

• An empirical evaluation on 13 open-source configurable software systems, comparing the
two prototypes to numerous state-of-the-art approaches, demonstrating that our white-box
approach efficiently builds interpretable and accurate performance-influence models.

The rest of this chapter is organized as follows: We first present our insights of composition-
ality and compression for efficiently and accurately modeling the performance of configurable
software systems (Section 3.1). Afterwards, we describe the three technical components of our
white-box approach to operationalize the insights, including how we tailor a taint analysis to
identify how configuration options influence performance (Section 3.2). Next, we discuss design
decisions to implement our approach (Section 3.3) and describe two prototypes, ConfigCrusher
and Comprex (Section 3.4 and Section 3.5). Finally, we evaluate the two prototypes against
numerous state-of-the-art approaches to model the performance of 13 configurable software sys-
tems (Section 3.6), and discuss the impact of the design decisions made in each prototype (Sec-
tion 3.7).

This chapter shares materials with our ASE Journal’20 article “ConfigCrusher: Towards
White-box Performance Analysis for Configurable Systems” [Velez et al., 2020] and ICSE’21
paper “White-box Analysis over Machine Learning: Modeling Performance of Configurable
Systems” [Velez et al., 2021b].

3.1 Insights for Efficient and Accurate Performance-Influence
Modeling

We present the insights for a white-box approach to efficiently and accurately analyze and model
the global and local performance of configurable software systems, without the use of machine
learning to avoid inaccuracies of extrapolating from incomplete measurements. The approach
not only provides relevant information for developers, but the approach also contributes to the
thesis goal of reducing the energy consumption and operational costs of running configurable
software systems, as the models that we generate can help users make informed configuration
decisions. In Chapter 4, we show how we tailor global and local models to help developers debug
the performance of their configurable software systems.

Similar to existing approaches, we build performance-influence models by observing the ex-
ecution of a system under different configurations, but we guide the exploration with a white-box
analysis of the internals of the system. For a given set of inputs, a configurable software system
with a set of binary configuration options O can exhibit up to 2|O| distinct execution paths, one
per configuration.1 If we measure the execution time of each distinct path, we can map per-

1For simplicity, we describe our approach in terms of binary configuration options, but other finite configuration
option types can be encoded or discretized as binary configuration options. The distinction between inputs and
configuration options is subjective and domain specific. We consider configuration options as a special type of
inputs with a small finite domain (e.g., Boolean configuration options), that a developer or user might explore to
change functionality or quality attributes. We consider fixed values for other inputs. Note that a developer or user
might fix some configuration options as inputs and consider alternative values for inputs as configuration options
(e.g., use a configuration option for different workloads). We analyze the influence on performance of configuration
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Figure 3.1: Building performance-influence models is compositional: Instead of building a single
model for the entire system (dotted black arrow), we can simultaneously build a local model per
region and compose those models (dashed blue arrows).

formance differences to configuration options and their interactions, without any approximation
through machine learning.

Our approach to efficiently and accurately analyze the performance of configurable software
systems relies on two insights inspired by prior work [Meinicke et al., 2016, Nguyen et al.,
2016, Reisner et al., 2010, Wong et al., 2018], that we identified by analyzing how configuration
options influence the performance of software systems: (1) Performance-influence models can
be built compositionally, composing models built independently for smaller regions of the code
than the entire system (cf. Figure 3.1). (2) Multiple performance-influence models for smaller
regions can be built simultaneously by measuring the execution of a system often with only a few
configurations, which we refer to as compression.

3.1.1 Compositionality

Building performance-influence models is compositional: We can measure the time that smaller
regions in a system spend executing in the CPU and build a performance-influence model per
region (e.g., considering each method as a region), which describes the performance behavior
of each region in terms of configuration options.2 Subsequently, we can compose the local
models to describe the performance of the entire system, computed as the sum of the individual
influences in each model (e.g., composing m1 = 5 + 4 · A and m2 = 1 − 1 · A + 2 · B into
m = 6 + 3 · A + 2 · B).

Compositionality helps reduce the cost to model the performance of configurable software
systems, as many smaller regions of a system are often influenced only by a subset of all con-
figuration options, a common case confirmed by prior empirical research [Meinicke et al., 2016,
Nguyen et al., 2016, Reisner et al., 2010, Wong et al., 2018]. Hence, the number of distinct paths
in a region is usually much smaller than the number of distinct paths in the entire system. If

options with finite domains, assuming all other inputs are fixed at specific values, thus resulting in a finite, but
typically large configuration space.

2Note that we measure performance as the time that regions spend executing in the CPU, similar to the measure-
ment conducted by performance profilers, which measure the execution time of methods, or the time util, which
tracks the execution time of threads. This time is commonly referred to as “user-time”; the time the CPU spends in
“user-mode”. By contrast, wall-clock time is the actual time taken from the start of execution to the end.
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if(a) // variable depends on configuration option A 
    ... // execution: 1s 
if(b) // variable depends on configuration option B 
    ... // execution: 2s 
if(c) // variable depends on configuration option C 
    ... // execution: 3s

Figure 3.2: Three independent regions influenced by different configuration options.

we have an analysis to find the subset of configuration options that directly and indirectly influ-
ence smaller regions (see Section 3.2.1), we can build a local performance-influence model by
observing all distinct paths in a region often with only a few configurations.

Contribution - Our insight for white-box performance-influence modeling: Performance-
influence models can be built by composing models built independently for smaller regions of
the code.

3.1.2 Compression
Compression makes our approach scale without relying on machine learning approximations:
When executing a single configuration, we can simultaneously measure the execution time of
multiple regions. If the regions are influenced by different configuration options, a common
case confirmed by prior empirical research [Meinicke et al., 2016, Nguyen et al., 2016, Reisner
et al., 2010, Wong et al., 2018], we can measure the performance of all regions with a few
configurations, instead of exploring all combinations of all configuration options. For example,
the three independent regions in Figure 3.2 influenced by configuration options A, B, and C,
respectively, each have two distinct paths. Instead of exploring all 8 combinations of the three
configuration options, we can explore all distinct paths in each region with only 2 configurations,
as long as each configuration option is selected (i.e., set to true) in one configuration and not
selected (i.e., set to false) in the other configuration.

Contribution - Our insight for white-box performance-influence modeling: Compression
allows us to simultaneously explore paths in multiple independent regions with a few configu-
rations.

3.1.3 Combining Compositionality and Compression
Our white-box approach combines compositionality and compression to efficiently build ac-
curate performance-influence models, without traditional sampling or machine-learning tech-
niques. To help developers, as well as users, understand the influence of configuration options
on the performance of software systems, the resulting models can be presented in an interpretable
format (e.g., sparse linear models) and even be mapped to individual code regions. Key to our
approach is the property that not all configuration options interact in the same region, instead
influencing different parts of the system independently, a pattern observed empirically in config-
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System 1. Analyze Options’ Influence on Regions

Regions Configurations

2. Measure Regions’ Performance 3. Build Model

Partitions per 
Region

Performance per Region 
and Configuration 

m=6+16•A+10•C+…

Figure 3.3: Overview of components to efficiently building accurate and interpretable performance-
influence models.

urable software systems [Meinicke et al., 2016, Nguyen et al., 2016, Reisner et al., 2010, Wong
et al., 2018].

To operationalize compositionality and compression for efficiently building accurate and in-
terpretable performance-influence models, we need three technical components, shown in Fig-
ure 3.3: First, we identify which regions are influenced by which configuration options, to select
configurations for exploring all paths per region and mapping execution time to configuration
options and their interactions (Section 3.2.1). Second, we execute the system to measure the per-
formance of all paths of all regions (Section 3.2.2). Third, we build local performance-influence
models per region and compose them into one global model for the system (Section 3.2.3).

3.2 Components for Modeling Performance
We describe the three technical components of our white-box approach to operationalize our
insights of compositionality and compression for efficiently building accurate and interpretable
performance-influence models.

3.2.1 Analyze Configuration Options’ Influence on Regions
As a first step, we identify which configuration options directly and indirectly influence control-
flow statements in which regions, which we use to select configurations to explore all paths per
region and map measured performance differences to configuration options and their interactions
(Section 3.2.2).3 To this end, we track information flow from configuration options (sources)
to control-flow statements (sinks) in each region. If a configuration option flows directly and
indirectly (including implicit flows) into a control-flow statement in a region, this flow implies
that selecting or deselecting the configuration option may lead to different execution paths within

3We focus on different execution paths caused by configuration changes, fixing all other inputs. We focus
on configuration changes in control-flow statements, as a system’s execution time changes in those statements,
depending on which branch is executed and how many times it is executed, confirmed by empirical research [Han
and Yu, 2016, Jin et al., 2012, Nistor et al., 2013a, 2015, Siegmund et al., 2013]. Execution differences caused by
nondeterminism are orthogonal and must be handled in conventional ways (e.g., averaging multiple observations or
controlling the environment).
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 1 def main(List workload) 
 2     a = getOpt("A");  
 3     b = getOpt("B"); 
 4     c = getOpt("C"); 
 5     d = getOpt("D"); 
 6     ... // execution: 1s 
 7     int i = 0; 
 8     if(a) // variable depends on configuration option A 
 9         ... // execution: 1s 
10         foo(b); // variable depends on configuration option B 
11         i = 20;     // Region depends on configuration option A 
12     else 
13         ... // execution: 2s 
14         i = 5; 
15     while(i > 0) 
16         bar(c); // variable depends on configuration option C 
17         i--; 
18     ... 
19 def foo(boolean x)  // Region depends on configuration options A and B 
20     if(x) ... // execution: 4s 
21     else ... // execution: 1s 
22 def bar(boolean x)  // Region depends on configuration options A and C 
23     if(x) ... // execution: 3s 
24     else ... // execution: 1s

Figure 3.4: Running example of a software system with 4 configuration options and 3 highlighted
regions as methods, in which the configuration options influence the performance of the system.

the region. Thus, we should observe at least one execution with a configuration in which the
configuration options is selected and another execution in which the configuration option is not
selected.

More specifically, we conservatively partition the configuration space per region into sub-
spaces, such that every configuration in each subspace takes the same path through the control-
flow statements within a region, and that all distinct paths are explored when taking one configu-
ration from each subspace. A partition of the configuration space is a grouping of configurations
into nonempty subsets, which we call subspaces, such that each configuration is part of exactly
one subspace. For notational convenience, we describe subspaces using propositional formulas
over configuration options. For example, JA ∧ ¬BK describes the subspace of all configurations
in which configuration option A is selected and configuration option B is not selected.

To track information flow between configuration options and control-flow statements in re-
gions, we tailor a taint analysis. During the analysis, we track how API calls load configuration
options (sources) and propagate them along data-flow and control-flow dependencies, including
implicit flows, to the decisions of control-flow statements (sinks). By tracking how configu-
ration options flow through the system, we can identify, for each control-flow statement, the
configuration options that reach the statement, potentially leading to different execution paths
in a region. Subsequently, we conservatively partition the configuration space of a region into
subspaces based on the configuration options that reach the statement.

Example: The configuration options in our running example in Figure 3.4 are the fields A –
D (Lines 2–5). Lines 6–7 and Line 18 are not influenced by any configuration options. Lines
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8–14 and Lines 15–17 are influenced by the configuration option A, which leads to the partition
JAK, J¬AK. Lines 20–21 are influenced by the configuration options A and B, which leads to
the partition J¬A ∧ ¬BK, J¬A ∧ BK, JA ∧ ¬BK, JA ∧ BK. Lines 23–24 are influenced by the
configuration options A and C, which leads to the partition J¬A ∧ ¬CK, J¬A ∧ CK, JA ∧ ¬CK,
JA ∧ CK.

Discussion. Note how using a taint analysis helps identify the configuration options and inter-
actions that do not influence regions in the system. For instance, we now know that we do not
need to explore the interaction between B and C, and consider configurations specifically for D.

Contribution - Tailor information-flow analysis for performance-influence modeling: We
tailor a taint analysis to identify how configuration options and their interactions influence the
performance of code regions.

3.2.2 Measure Performance of Regions
We measure the time the system spends in each region when executing a configuration, resulting
in performance measurements for each pair of configuration and region. We measure self-time
per region to track the time spent in the region itself, which excludes the time of calls to execute
code from other regions.

Ideally, we want to find a minimal set of configurations, such that we explore at least one
configuration per subspace for each region’s partition. Since finding the optimal solution is NP-
complete4, and existing heuristics from combinatorial interaction testing [Al-Hajjaji et al., 2016,
Hervieu et al., 2011, 2016, Kuhn et al., 2013] are expensive, we developed our own simple greedy
algorithm: Incrementally intersecting subspaces that overlap in at least one configuration, until
no further such intersections are possible. Then, we simply pick one configuration from each
subspace.

Example: In our running example in Figure 3.4, the subspaces that we need to cover are
JAK, J¬AK, J¬A ∧ ¬BK, J¬A ∧ BK, JA ∧ ¬BK, JA ∧ BK, J¬A ∧ ¬CK, J¬A ∧ CK, JA ∧ ¬CK, and
JA ∧ CK. Four configurations cover all subspaces, for instance,

{
{}, {A}, {B, C}, {A, B, C}

}
,

where each set represent the configuration options that are selected in the configuration. For
instance, we picked the configuration {A, B, C} by intersecting the subspaces JAK, JA ∧ BK and
JA ∧ CK. Table 3.1 shows the performance measured per region and executed configuration.

3.2.3 Building the Performance-Influence Model
In the final step, we build performance-influence models for each region based on (1) the parti-
tions identified per region and (2) the performance measured per region and configuration. We
then compose the local models into a performance-influence model for the entire system.

4The problem can be reduced to the set cover problem, in which the union of a collection of subsets (all sub-
spaces) equals a set of elements called “the universe” (the union of all subspaces). The goal is to identify the smallest
sub-collection whose union equals the universe.
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Table 3.1: Measured performance per region and configuration for our running example in Fig-
ure 3.4.

Configurations Regions

A B C D main ≡ A foo ≡ A, B bar ≡ A, C

false false false false 3s 0s 5s
false true true false 3s 0s 15s
true false false false 2s 1s 20s
true true true false 2s 4s 60s

We show the configuration options that influence each region.

Since we collect at least one measurement per distinct path through a region, building models
is straightforward, without the need of using machine learning to extrapolate from incomplete
samples. For a region with a partition and a set of configurations with corresponding performance
measurements, we associate each measurement with the subpsace of the partition to which the
configuration belongs. If multiple measured configurations belong to the same subspace, we ex-
pect the same performance behavior for that region (modulo measurement noise) and average the
measured results. As a result, we can map each subspace of a region’s partition to a performance
measurement. For instance, for the region in method foo in our running example in Figure 3.4,
all configurations in which A is not selected take 0 seconds, all configurations in which A is se-
lected and B is not selected take 1 second, and all configurations in which A and B are selected
take 4 seconds.

For interpretability, to highlight the influence of configuration options and their interactions,
and to avoid negated terms, we write linear models in terms of configuration options and inter-
actions, for example mfoo = 1 · A + 3 · A · B.

The global performance-influence model is obtained simply by aggregating all local models;
we add the individual influences of configuration options and their interactions in each model.
In Chapter 4, we show how we tailor the global and local linear models to support developers’
needs to debug the performance of configurable software systems.

Example: With the measured performance per region and configuration in Table 3.1 for our
running example in Figure 3.4, we build the local models mmain = 3−1·A, mfoo = 1·A+3·A·B,
and mbar = 5+15 ·A+10 ·C+30 ·A ·C, which can be composed into the global performance-
influence model m = 8 + 15 · A + 10 · C + 3 · A · B + 30 · A · C.

3.3 Design Decisions and Tradeoffs

We discuss the tradeoffs of our white-box approach to analyze and measure the influence of
configuration options on regions, and how different decisions impact our approach for modeling
the performance of configurable software systems.
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3.3.1 Analysis of Configuration Option’s Influence on Regions

In the first step of our approach, we tailor a taint analysis to inspect the direct and indirect
influence of configuration options on the decisions of control-flow statements (Section 3.2.1).
The analysis can be performance statically or dynamically with different tradeoffs.

The main benefit of using a static taint analysis is covering all execution paths in a single
analysis of the configurable software system [Arzt et al., 2014]. However, the analysis might
cover parts of the system that are never executed, which can increase the time of the analysis and
threaten its scalability in large-scale configurable software systems. Additionally, the analysis
only indicates the configuration options or interactions that might affect the decisions in control-
flow statements (i.e., there might be false positives), which might unnecessarily increase the
number of configurations that we need to measure.

The main benefit of using a dynamic taint analysis is tracking how configuration options
actually influence the decisions in control-flow statements (i.e., no false positives) [Bell and
Kaiser, 2014]. However, dynamic analyses are, by definition, unsound; we cannot know how
configuration options influence the decisions in control-flow statements in the parts of the system
that are not executed. Accordingly, we would need to execute the analysis multiple times with
different configurations, which might threaten its scalability in systems with large configuration
spaces.

The above considerations can affect the accuracy of the models that we generate and the scale
of the systems that our white-box approach can analyze.

3.3.2 Granularity of Regions, Compression, and Measuring Performance

We can consider regions at different granularities, which impact how much compression we
obtain and the effort to measure the performance of the regions (Section 3.2.2).

On one extreme, we could consider the entire system as a single region (as black-box ap-
proaches do), but would not benefit from compression. At the other extreme, we could con-
sider each control-flow statement as the start of its own region, ending with its immediate post-
dominator, which results in maximum compression, but in excessive measurement cost; this fine-
grained granularity is analogous to using an instrumentation profiler, but instead of focusing on a
few locations of interest, as usually recommended [Lange, 2011], we would add instrumentation
throughout the entire system at control-flow statements.

We can also consider methods as regions. In this case, we may lose some compression
potential compared to more fine-grained regions, if multiple control-flow statements within a
method are influenced by distinct configuration options. On the other hand, we can use off-
the-shelf sampling profilers that accurately measure performance with low overhead, and simply
map the performance of methods to the closest regions on the calling stack.

The above considerations can affect the cost to generate our models, in terms of the number
of configurations to measure and the effort to measure regions.
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3.3.3 Implementing Designed Decisions in Two Prototypes
To empirically evaluate the tradeoffs of the taint analyses and granularity of regions discussed
above, we implemented two prototypes for modeling the performance of configurable software
system. We implemented an “idealistic” approach, ConfigCrusher [Velez et al., 2020], which
uses a static taint analysis (i.e., one execution of the taint analysis) considering control-flow state-
ments as regions (i.e., maximum compression), and a “conservative” approach, Comprex [Velez
et al., 2021b], which uses a dynamic taint analysis (i.e., multiple executions of the taint analysis)
considering methods as regions (i.e., conservative compression). In the following sections, we
describe the implementation of each prototype.

3.4 ConfigCrusher
We describe the implementation of our approach to model the performance of configurable soft-
ware systems using a static taint analysis and considering control-flow statements as regions.
Using a static taint analysis allows us to execute the analysis once (Section 3.3.1), and consider-
ing control-flow statements as regions results in maxium compression (Section 3.3.2).

3.4.1 Analyze Configuration Options’ Influence on Regions
We used the state-of-the-art object-, field-, context-, and flow-sensitive static taint analysis en-
gine FlowDroid for Java systems [Arzt et al., 2014]. We tracked control-flow and data-flow
dependencies (including implicit flows) as described in Section 3.2.1 considering control-flow
statements as regions.

Static Taint Analysis Limitation

We observed that the static taint analysis did not scale to our larger subject systems. For all
systems with over 100K SLOC, the analysis did not finish executing within 24 hours! This
issue is caused by the size of the call graph, which restricts the size of the systems that we can
analyze [Arzt et al., 2014, Avdiienko et al., 2015, Bodden, 2018, Do et al., 2017, Lerch et al.,
2015, Pauck et al., 2018, Qiu et al., 2018, Wang et al., 2016]; the largest subject system for
which the static taint analysis terminated was Kanzi, which has about 20K SLOC. Accordingly,
we could not generate performance-influence models for 4 of our 13 subject systems.

3.4.2 Measure Performance of Regions
To measure the performance of control-flow statements as regions, we need to instrument the
regions.

Instrumenting Regions

We identify a region by a set of control-flow edges that start the region and another set of edges
that end the region. Algorithm 1 describes how we identify the regions and their start (Line 3)
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Algorithm 1: Instrument control-flow statements as regions
Input: control-flow graph CFG, partition for each region partitions : R→ P(P(C))
Output: instrumented control-flow statements as regions R→ P(E)× P(E)

1 Function instrument_control_flow_statements(CFG, partitions)
2 for each stmt ∈ statements(CFG)
3 idom := idom(stmt, CFG) // Get immediate dominator
4 partitionstmt := subspaces(stmt, partitions)
5 if partitionstmt 6= ∅ ∧ partitionstmt 6= subspaces(idom, partitions) then
6 r := new Region()

// Omit incoming edges from loops
7 for each edge ∈ in(stmt, CFG)
8 start(r, edge) // Map r → edge
9 end

10 pdom := ipdom(stmt, CFG) // Get immediate post-dominator
11 while partitionstmt = subspaces(pdom, partitions) do
12 pdom := ipdom(pdom,CFG)
13 end
14 for each edge ∈ in(pdom)
15 end(r, edge) // Map r → edge
16 end
17 end
18 end
19 end

and end edges (Lines 4–17) in a method. One task of the algorithm is to find the end of a region
where all the paths originating from a control-flow statement meet again (i.e., the immediate
post-dominator) (Lines 10–13). After identifying all regions, we instrument the start and end
edges of these regions with statements to measure the execution time. We also instrument the
entry point of the system (e.g., the main method in a Java program) to measure the performance
of code not influenced by any configuration options. The result of executing an instrumented
system is the total time spent in each region.

Example: Figure 3.5a shows the four instrumented control-flow statements of our running
example in Figure 3.4.

Instrumentation Overhead

When we executed our instrumented systems, we observed excessive execution overhead even
in small systems. We found that the overhead arose from redundant, nested regions (i.e., regions
with the same influencing configuration options), and regions executed repeatedly in loops. Con-
sequently, we identified optimizations to reduce measurement overhead through instrumenting
regions differently without altering the performance-influence models that we produce. Specifi-
cally, we perform optimizations that preserve the following two invariants:

Invariant 1 (Expanding regions): Statements not influenced by configuration options can be
added to a region without altering the performance-influence model that is generated and without
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Figure 3.5: Unoptimized and optimized instrumented control-flow statements of our running exam-
ple in Figure 3.4. For simplicity, we show the basic blocks related to control-flow statements and
the configuration options that influence the control-flow statements. However, recall that we parti-
tion the configuration space per region into subspaces. For instance, we partition the control-flow
statements influenced by A as JAK, J¬AK.

increasing measurement effort. Statements not influenced by configuration options contribute
the same execution time to all configurations. Therefore, including these statements in a region
increases the execution time of the region equally for all configurations, which does not affect
the performance difference among configurations for building performance-influence models.

Example: Consider the statement in Line 6 in our running example in Figure 3.4, which takes
1 second to execute under all configurations. Consider also the region at the control-flow state-
ment in Line 8, which takes 1 second to execute when A is selected and 2 seconds when A is not
selected. Based on this information, we can generate the partial performance-influence model
mtemp = 3− 1 · A. Since the statement in Line 6 is not influenced by any configuration options,
we can include it in the region at the control-flow statement in Line 8. In this new region, we
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now observe 2- or 3-second executions, depending on whether A is selected, preserving the same
1 second difference, and resulting in the same model.

Invariant 2 (Merging regions): GP : P(P(P(C ))) is the set of all partitions in the system.
Two consecutive regions or an outer and an inner region with partitions p1 ∈ GP and p2 ∈
GP can be merged if p1 × p2 ∈ GP without altering the performance-influence model that is
generated and without increasing measurement effort. Merging two consecutive regions or an
outer and an inner region forms an interaction between the configuration options that influence
both regions. Therefore, we have to combine, with the cross-product operation (×), the partitions
of each region to execute all combinations of the interaction to obtain their influence on the
new region. The cross product reflects that, to explore all paths among multiple control-flow
statements in a region, we need to explore all combinations of the individual paths in the region.
If the new partition is already present in the system, we already execute all these configurations
anyway. Therefore, we can merge these regions into one that is influenced by the interaction
of the two regions. As stated in invariant 1, merging does not affect the absolute performance
difference for building the performance-influence model. By merging regions, especially nested
regions within loops, we significantly reduce the number of regions that are executed, which
significantly reduces the overhead of measuring the instrumented system.

Example: Consider the regions at the control-flow statements in Line 8 and Line 20 in our
running example in Figure 3.4. The first region is influenced by A, which leads to the partition
JAK, J¬AK. We need to measure 2 configurations to determine that the first region takes 2 seconds
to execute when A is not selected and 1 second when A is selected. Based on this information,
we can generate the partial performance-influence model mL8 = 2− 1 · A. The second region is
influenced by A and B, which leads to the partition J¬A ∧¬BK, J¬A ∧ BK, JA ∧¬BK, JA ∧ BK.
We need to measure 4 configurations to determine that the second region takes 0 seconds to
execute when A is not selected, 1 second when A is selected and B is not selected, and 4 seconds
when A and B are selected. Based on this information, we can generate the partial performance-
influence model mL20 = 1 · A + 3 · A · B. Based on this information, we can generate the partial
performance-influence model mtemp = 2 + 3 · A · B. Since we already have to measure all
configurations for the interaction of A and B in the second region, and the cross product of the
partitions of the two regions equals the partition of the second region, pL8 × pL20 = pL20, a new
interaction is not created. Therefore, we can merge both regions into one that is influenced by
interaction of A and B without having to sample more configurations. In this case, the merged
region would take 5 seconds to execute when A and B are selected and 2 seconds under all other
configurations, resulting in the same performance-influence model when we calculate the actual
influence of selecting A (i.e., +0 seconds) and both A and B (i.e., +3 seconds). With the same
reasoning, we can also merge the regions at the control-flow statements in Line 16 and Line 23
in our running example.

Propagating partitions. Algorithm 2 describes how we propagate partitions up and down a
control-flow graph (i.e., intraprocedually), as well as across graphs (i.e., interprocedually), to
expand, merge, and pull out regions. We merge consecutive regions and expand where regions
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Algorithm 2: Propagate partitions
Input: statement stmt, sontrol-flow graph CFG, partition for each region partitions : R→ P(P(C))
Output: optimized partition for each region R→ P(P(C))′

1 Function propagate_partitions_down(stmt, CFG, partitions)
2 idom := ipdom(stmt, CFG) // Get immediate post-dominator
3 partitionidom := subspaces(idom, partitions)
4 partitionstmt := subspaces(stmt, partitions)
5 if partitionidom × partitionstmt = partitionstmt then
6 update_partition(partitions, idom, stmt)
7 end
8 end

Input: statement stmt, control-flow graph CFG, partition for each region partitions : R→ P(P(C)),
Set of all partitions in the system GP : P(P(P(C)))

Output: optimized partition for each region R→ P(P(C))′

9 Function propagate_partitions_up(stmt, CFG, partitions, GP)
10 partitionstmt := subspaces(stmt, partitions)
11 for each pred ∈ preds(stmt, CFG)
12 partitionpred := subspaces(pred, partitions)
13 partitionnew := partitionpred × partitionstmt

14 if partitionnew ∈ GP ∧ partitionnew 6= partitionpred then
15 update_partition(partitions, pred, stmt)
16 end
17 end
18 end

end, as well as pull out nested regions and expand where regions start. Obeying our invariants,
we never create new interactions, partitions, or alter the performance-influence models that we
generate, but significantly reduce the overhead of measuring the instrumented system. After
propagation, we identify and instrument the regions as before (Algorithm 1).

The propagation algorithm is non-deterministic (i.e., different results can be obtained de-
pending on the order in which regions are merged). In fact, different orderings can be used
to optimize for different goals. Assuming that most of the overhead occurs in nested regions,
especially those inside loops, we prioritize pulling regions out of loops.

Example: Figure 3.5b presents an optimized instrumentation, in which we prioritized pulling
out regions in the callees. For instance, we followed invariant 2 to first merge, at the caller, the
regions in the control-flow statement in method foo, label µ, and the control-flow statement in
method main, label β. Then, we followed invariant 1 to expand where the new region starts by
adding the statement at label α.

Executing the Instrumented System

After instrumentation, we execute the system and track execution times for each region. At the
start and end of every region, we record the current time and log the difference as the execution
time of the region. Since regions might be nested during execution, we also keep a stack of
regions at runtime and subtract the time of nested regions from the time of outer regions. This
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additional step can become a source of overhead for deeply nested regions, which is what we
observed in the unoptimized instrumented systems. We tried building a trace of regions and
processing the execution times after the system finished executing. However, due to the large
number of regions that were executed, the systems ran out of memory. Our evaluation shows that
the dynamic processing incurs low overhead.

3.5 Comprex
We describe the implementation of our approach to model the performance of configurable
software systems using a dynamic taint analysis and considering methods as regions. Using
a dynamic taint analysis allows us to track the actual influence of configuration options (Sec-
tion 3.3.1), and considering methods as regions allows us to use off-the-self sampling profilers
to accurately measure performance with low overhead (Section 3.3.2).

3.5.1 Analyze Configuration Options’ Influence on Regions
We used Phosphor, the state-of-the-art tool for dynamic taint analysis in Java [Bell and Kaiser,
2014]. We tracked control-flow and and data-flow dependencies (including implicit flows) as de-
scribed in Section 3.2.1 considering methods as regions. However, to partition the configuration
space per region, we iteratively execute the dynamic taint analysis with different configurations
until we have explored all distinct paths in each region.

Incrementally partitioning the configuration space. Algorithm 3 describes how we parti-
tion the configuration space per region, based on incremental updates from our dynamic taint
analysis. Intuitively, we execute the system in a configuration and observe when data-flow and
control-flow taints from configuration options reach each control-flow decision in each region,
and subsequently update each region’s partition: Whenever we reach a control-flow statement
during execution, we identify, based on taints that reach the condition of the statement, the sets
of configurations that would possibly make different decisions, thus updating the partition that
represents different paths for this region (Line 7). Since a dynamic taint analysis can only track
information flow in the current execution, but not for alternative executions (i.e., for paths not
taken), we repeat the process with new configurations, selected from the partitions identified in
prior executions, updating partitions until we have explored one configuration from each sub-
space of each partition (main loop, Line 3); that is, until we have observed each distinct path in
each region at least once. Note that some subspaces in the region might make the same control-
flow decision as other subspaces, but we do not know which subspace will make which decision
until we actually execute those configurations.

Updating partitions works as follows: When we reach a control-flow statement in a region
with data-flow taints td, this information indicates that the configuration options in td affect the
control-flow decision, but other configuration options do not. Thus, we know that all configu-
rations that share the same selection for all configuration options in td will result in the same
control-flow decision, while configurations with different selections of these configuration op-
tions may result in different decisions. Since the taint analysis tells us only that the configuration
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Algorithm 3: Iterative Dynamic Taint Analysis
Input: configurable software system p
Output: partition for each region R→ P(P(C))

1 Function partion_all_regions(p)
2 partitions := R→ {C}; executed_configs := ∅
3 until explored_all_subspaces(executed_configs, partitions) do
4 cc := get_next_config(executed_configs, partitions)
5 executed_configs := executed_configs ∪ cc
6 during execute_taint_analysis(p, cc) when reaching a control-flow decision with

taints td and tc in region r:
7 partitions[r] := partitions[r]× get_partition(td, tc, cc)
8 end
9 end

10 return partitions
11 end

Input: executed configurations ec : P(C), partitions : R→ P(P(C))
Output: true or false

12 Function explored_all_subspaces(ec, partitions)
13 all_subspaces :=

⋃
image(partitions)

14 return ∀s ∈ all_subspaces. ∃c ∈ ec. c ∈ s

15 end

Input: data-flow taints td, control-flow taints tc, current configuration cc
Output: partition p : P(P(C)) for the current decision

16 Function get_partition(td, tc, cc)
17 sreach := {c ∈ C | ∀o ∈ tc. o ∈ c⇔ o ∈ cc}
18 p :=

{
C \ sreach

}
// subspace of configurations that might not reach decision

// add one subspace for every combination of configuration options in data-flow taints
19 for a ∈ P(td) do
20 s :=

{
c ∈ C | ∀o ∈ td. o ∈ c⇔ o ∈ a

}
21 p := p ∪ {s ∩ sreach}
22 end
23 return p \ ∅
24 end

options in td may somehow (directly or indirectly) affect the decision’s condition, but not how,
we will need to explore at least one configuration for every possible assignment to these config-
uration options, even though multiple or even all may end up taking the same branch. Therefore,
we partition the configuration space at this decision corresponding to all combinations of the
configuration options in td (Lines 19–20). For example, for a decision influenced by A and B,
we partition the configuration space into four subspaces: all configurations in which A and B are
selected together, all configurations in which A is selected but not B, all configurations in which
B is selected but not A, and all configurations in which neither A and B are selected. Finally, we
update the region’s partition with the partition derived for the decision by computing their cross
product (×, Line 7). This operation reflects that, to explore all paths among multiple control-flow
decisions in a region, including multiple executions of the same control-flow statement, we need
to explore all combinations of the individual paths in the region.
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Distinguishing data-flow taints from control-flow taints allows us to optimize the exploration
of nested decisions (e.g., if(a){ if(b) ... }). Control-flow taints specify which con-
figuration options (directly or indirectly) influenced outer control-flow decisions, which indicates
that different assignments to configuration options in the control-flow taints may lead to paths
where the current decision is not reached in the first place. Hence, we do not necessarily need to
explore all interactions of configuration options affecting outer and inner decisions. Instead of
exploring combinations for all configuration options of data-flow and control-flow taints, we first
split the configuration space into (1) those configurations for which we know that they will reach
the current decision, as they share the assignments of configuration options in control-flow taints
(sreach, Line 17), and (2) the remaining configurations which may not reach the current decision
(C \ sreach, Line 18). Then, we only create subspaces for interactions of configuration options in
data-flow taints within sreach (Lines 19–21) and consider the entire set of configurations outside
sreach as a single subspace (Line 18). The iterative nature of our analysis ensures that at least one
of the configurations outside sreach will be explored, and, if the configuration also reaches the
same decision, the region’s partition will be further divided.

The iterative analysis executes the system in different configurations until one configuration
from each subspace of each partition in each region has been explored. That is, we start by
executing any configuration (e.g., the default configuration), which reveals the subspaces per
regions that could make different decisions. The algorithm then selects the next configuration
to explore unseen subspaces in the regions (Line 4), which may further update the regions’
partitions. To select the next configuration, we use a greedy algorithm to pick a configuration
that explores the most unseen subspaces across all regions.5

Example: Figure 3.6 presents an example of executing the iterative analysis on our running
example in Figure 3.4. If we execute the configuration {A, D}, in which the configuration op-
tions A and D are selected and the other configuration options are not selected, the taint analysis
will indicate that the value of the variable a is tainted by option A (from Line 2) when reaching
the if statement in Line 8 (region main). Thus, all configurations in which A is selected result
in the same control-flow decision and all configurations in which A is not selected result, poten-
tially, in the same or a different decision. Hence, we derive the initial partition JAK, J¬AK for
this method.

Continuing the execution, we next reach the if statement in Line 20 (region foo), where
the value of the variable x is tainted with control-flow taint A (from Line 8) and data-flow taint
B (from variable b). Thus, all configurations in which A and B are selected result in the same
control-flow decision, all configurations in which A is selected and B is not selected may result in
a different control-flow decision, and all configurations in which A is not selected may not reach
this decision. Hence, we derive the partition JA ∧ ¬BK, J¬AK, JA ∧ BK for this region. Note
how we explore this nested if statement with 3 instead of 4 subspaces by separately tracking
data-flow and control-flow taints.

5To avoid enumerating an exponential number of configurations, we use a greedy algorithm that picks a ran-
dom subspace and incrementally intersects it with other non-disjoint subspaces, which seems sufficiently effective
in practice. The problem can also be encoded as a MAXSAT problem, representing subspaces as propositional
formulas, to find the configuration that satisfies the formula with the most subspaces.
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{A,D} {A,B,C} {} {C}

⟦A⟧ 
⟦¬A⟧

⟦A⟧ 
⟦¬A⟧

⟦A⟧ 
⟦¬A⟧

⟦A⟧ 
⟦¬A⟧

⟦A∧B⟧ 
⟦A∧¬B⟧ 
⟦¬A⟧

⟦A∧B⟧ 
⟦A∧¬B⟧ 
⟦¬A⟧

⟦A∧B⟧ 
⟦A∧¬B⟧ 
⟦¬A⟧

⟦A∧C⟧ 
⟦A∧¬C⟧ 
⟦¬A⟧

⟦A∧C⟧ 
⟦A∧¬C⟧ 
⟦¬A⟧

⟦A∧C⟧ 
⟦A∧¬C⟧ 
⟦¬A∧C⟧ 
⟦¬A∧¬C⟧

⟦A∧C⟧ 
⟦A∧¬C⟧ 
⟦¬A∧C⟧ 
⟦¬A∧¬C⟧

⟦A∧B⟧ 
⟦A∧¬B⟧ 
⟦¬A⟧

 1 def main(List workload) 
 2     a = getOpt("A");  
 3     b = getOpt("B"); 
 4     c = getOpt("C"); 
 5     d = getOpt("D"); 
 6     ... 
 7     int i = 0; 
 8     if(a) 
 9         ... 
10         foo(b); 
11         i = 20; 
12     else 
13         ... 
14         i = 5; 
15     while(i > 0) 
16         bar(c); 
17         i--; 
18     ... 

19 def foo(boolean x) 
20     if(x) ... 
21     else ... 

22 def bar(boolean x) 
23     if(x) ... 
24     else ...

Figure 3.6: Example of iteratively executing the taint analysis on our running example in Figure 3.4.
Four configurations explore all subspaces for the three regions (methods) in the system, where each
set represents the configuration options selected in the configuration. For each configuration, we
show the subspaces generated for each region. Subspaces in red still need to be explored, whereas
subspaces in blue have been explored in previous configurations. Note how we explore the nested
if statement in method foo with 3 instead of 4 subspaces by separately tracking data-flow and
control-flow taints. Also note how we update the J¬AK subspace in method bar after the third
configuration to explore the region with both values of C when A is not selected.

Further in the execution, the decision in the while statement (Line 15) depends on the
tainted value of the variable i (implicit flow), in each loop iteration, resulting in JAK, J¬AK,
which is consistent with main’s existing partition. Hence, the cross product does not change the
partition. Similarly, the decision in Line 23 (region bar) repeatedly depends on data-flow taint
C and control-flow taint A, resulting in the partition JA ∧ ¬CK, J¬AK, JA ∧ CK.

After this first execution, we identified six distinct subspaces among the partitions of the
three regions JAK, J¬AK, JA ∧ BK, JA ∧¬BK, JA ∧ CK, and JA ∧¬CK, of which JAK, JA ∧¬BK,
and JA ∧ ¬CK were explored with the initial configuration. In the next iteration, we select a
new configuration, for example {A,B,C}, to explore unseen subspaces in the regions and up-
date partitions. In this case, however, no new partitions are found. We continue executing new
configurations to explore unseen subspaces, possibly updating the regions’ partitions, until we
have explored all subspaces in the regions. After executing only 4 out of 16 configurations, for
example {A,D}, {A,B,C}, {}, and {C}, we have explored at least one configuration from each
subspace of each partition in each region, and the iterative analysis terminates. The subspaces de-

44



rived for the three regions’s partitions are JAK, J¬AK, JA∧¬BK, JA∧BK, J¬A∧¬CK, J¬A∧CK,
JA ∧ ¬CK, JA ∧ CK.

Discussion. Note how the iterative analysis explores regions independently and does not ex-
plore paths for configuration options that do not influence a region (e.g., we do not explore the
interaction between B and C and never explore configurations specifically for D). Also, note how
the taint analysis tracks both direct and indirect dependencies interprocedurally.

The iterative analysis is guaranteed to terminate, as it explores new configurations during
each iteration. In the worst case, all configurations in the system (finite set) will be executed, but
in practice often much fewer executions are needed.

Our algorithm will produce the same partitions independent of the order in which configura-
tions are executed. All subspaces that are derived during any execution of the taint analysis will
be derived at some point, because (1) we eventually explore all paths in each region and (2) we
update the partition of each region with the commutative cross-product operation.

Dynamic Taint Analysis Overhead

We observed that tracking control-flow dependencies imposes significant overhead in the sys-
tem’s execution. For instance, one execution of our subject system Berkeley DB takes about 1
hour with the dynamic taint analysis, whereas around 300 configurations can be executed in the
same time! In general, we observe 26× to 300× overhead from taint tracking, which varies
widely between systems. In fact, the iterative analysis did no finish executing after 24 hours in
all subject systems, except for Apache Lucene, which executed in 11 hours. To reduce cost, we
execute the iterative analysis with a drastically reduced workload size.

This optimization is feasible when the workload is repetitive, and repetitions of operations
are affected similarly by configuration options, which we conjecture to be common in prac-
tice. Many performance benchmarks execute many operations, which are similarly affected by
configuration options. For instance, Berkeley DB’s MeasureDiskOrderedScan benchmark
populates a database, where options determine, for example, whether duplicates are allowed and
the durability characteristics of a transaction. The benchmark can be scaled by a parameter that
controls the number of entries to insert, but does not affect which operations are performed. In
our evaluation, we show that we can generate accurate performance-influence models using a
significantly smaller workload in the iterative analysis.

3.5.2 Measure Performance of Regions
Since we consider methods as regions, we use JProfiler [JPR, 2019], an off-the-shelf sampling
profiler, to accurately measure the performance of methods with low overhead.

3.6 Evaluation
To evaluate the efficiency and effectiveness of our white-box approach, as well as the design
decisions made in ConfigCrusher and Comprex, we compare the two prototypes to each other
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Table 3.2: Subject systems evaluated with ConfigCrusher and Comprex.

System Domain #SLOC #Opt. #Conf.

Pngtastic Counter Image processor 1250 5 32
Pngtastic Optimizer Image optimizer 2553 5 32
Elevator SPL benchmark 575 6 20
Grep Utility 2152 7 128
Kanzi Compressor 20K 7 128
Email SPL benchmark 696 9 40
Prevayler Database 1328 9 512
Sort Utility 2163 12 4096
H2 Database 142K 16 65K
Berkeley DB Database 164K 16 65K
Apache Lucene Index/Search 396K 17 131K
Density Converter1 (Interface) Image processor 1359 22 4.9M
Density Converter1 (Complete)2 Image processor 49K 22 4.9M

Opt: configuration options; Conf: Configurations.
1 The system is an interface to several libraries for processing images.
2 We included and analyzed all Java dependencies in this version of the system.

and to numerous state-of-the-art performance-influence modeling approaches for configurable
software systems. We evaluate the different approaches in terms of the cost to generate the
models and the accuracy of the models, and discuss their interpretability. Specifically, we address
the following research question:

RQ1: How does ConfigCrusher and Comprex compare to each other and to state-of-the-art
performance-influence modeling approaches in terms of cost, accuracy, and interpretability?

3.6.1 Experimental Setup

Subject systems. We selected 13 configurable widely-used open-source Java systems that sat-
isfy the following criteria: (a) systems from a variety of domains, (b) systems with binary and
non-binary configuration options, and (c) systems with fairly stable execution time (we observed
execution times within usual measurement noise for repeated execution of the same configura-
tion). Table 3.2 provides an overview of all subject systems.

We focus on a large subset of all configuration options that are potentially relevant for per-
formance. We considered configuration options for which the systems’ documentation indicated
that they would affect performance, but excluded configuration options that might not influence
performance, (e.g., --help). This selection is representative of common use cases where de-
velopers and users are interested in the performance behavior of many, but not all configuration
options. Following the evaluation of state of the art approaches [Guo et al., 2017, Halin et al.,
2018, He et al., 2020, Kaltenecker et al., 2019, Lillack et al., 2018, Medeiros et al., 2016, Sarkar
et al., 2015, Siegmund et al., 2012a,b, 2013, 2015, Weber et al., 2021], we selected, for non-
binary options, two different values and encoded the values as a binary option.

We executed a long-running benchmark either shipped with each system or a representative
scenario of a developer or user analyzing the system’s performance under different configura-
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tions. Appendix A describes each system in more detail, including the configuration options,
scenario, and workload considered for the measuring performance.

Dynamic Taint Analysis. We changed the workload to run the the iterative dynamic taint anal-
ysis in Comprex with a smaller workload by factors ranging from 20 to 5000, depending on the
system. Appendix A describes how we reduced the workload for each system in more detail.

Hardware. The performance measurements, and the static and dynamic taint analyses were
executed on an Ubuntu 18.04 LTS desktop, with a 3.4 GHz 8-core Intel Core i7 processor, 16 GB
of RAM, and Java HotSpotTM 64-bit Server VM (v1.8.0_202).

Performance Measurement. To quantify accuracy, we measured the entire configuration space
of all subject systems except for Sort, H2, Berkeley DB, and Density Converter, due to their in-
tractably large configuration spaces. For these systems, we measured the performance of 2000
randomly selected configurations. When measuring performance, we executed each configura-
tion five times and used the median to reduce the effects of measurement noise. We initiated one
VM invocation per configuration, thus all measures include startup time [Georges et al., 2007].
For Comprex, we profiled each system with JProfiler’s default sampling rate of 5ms.

State-of-the-art approaches. We compare ConfigCrusher and Comprex to numerous state-
of-the-art performance-influence modeling approaches for configurable software systems. More
specifically, we compared our prototypes to the Family-Based approach [Siegmund et al., 2013]
and to combinations of 5 sampling and 10 learning approaches. For learners, we evaluate vari-
ations of linear regressions [Siegmund et al., 2012a,b, 2015], decision trees and random for-
est [Grebhahn et al., 2019, Guo et al., 2013, 2017, Sarkar et al., 2015], and a neural network. For
sampling, we evaluate uniform random sampling with 10, 50, and 200 configurations, feature-
wise sampling (i.e., enable one configuration option at a time), and pair-wise sampling (i.e., cover
all combinations of all pairs of configuration options) [Medeiros et al., 2016]. We selected 10
random configurations to use random sampling in the systems with small configuration spaces.
We selected 50 and 200 random configurations to use more configurations than other sampling
strategies and use sampling sets comparable to ones used in related research. The following list
describes the Family-Based approach and the learners that we used, including the hyperparame-
ters that we changed from the default values:

• Family-Based Performance Measurement: This approach is the only other white-box tech-
nique for analyzing the performance of configurable software systems. The approach uses
a static mapping between configuration options to code regions, and instruments the system
to measure the execution time spent in the regions. Subsequently, the approach executes
the system once with all options selected, tracking how much each option contributes to
the execution time.

• Simple linear regression: We used Scikit learn’s linear_model.LinearRegression
function. The function implements an ordinary least squares linear regression.

47



• Pair-wise simple linear regression: We used the same simple linear regression function
above, but set interaction_only=True and degree=2.

• Lasso linear regression: We used Scikit learn’s linear_model.Lasso function. The
function implements a linear model trained with L1 prior as the regularizer, also known as
the Lasso.

• Pair-wise Lasso linear regression: We used the same Lasso linear regression function
above, but set interaction_only=True and degree=2.

• Stepwise linear regression: We used Matlab’s stepwiselm function. The function im-
plements a stepwise regression. We set modelspec=’linear’.

• Elastic net linear regression: We used Scikit learn’s linear_model.ElasticNet
function. The function implements a linear regression with combined L1 and L2 priors
as regularizers.

• Decision tree: We used Scikit learn’s tree.DecisionTreeRegressor function. The
function implements a decision tree regressor.

• Shallow decision tree: We used the same decission tree regressor function above, but set
max_depth=6 to have a maximum of 63 decisions.

• Random forest: We used Scikit learn’s ensemble.RandomForestRegressor func-
tion. The function implements a random forest regressor.

• Multi-layer perceptron: We used Scikit learn’s neural_network.MLPRegressor
function. The function implements a multi-layer Perceptron regressor.

Note that we do not compare against approaches for selecting the fastest configuration [Kalte-
necker et al., 2019, Oh et al., 2017, Zhu et al., 2017], as those approaches solve a pure optimiza-
tion problem where modeling the entire configuration space is not necessary.

Cost Metric. We report the number of configurations executed to generate a model and time
to measure configurations. For the learning approaches, we report the learning time. For Con-
figCrusher and Comprex, we report the time to execute the taint analyses.

Accuracy Metric. We report the Mean Absolute Percentage Error (MAPE), which measures
the mean difference between the values predicted by a model and the values actually observed
(i.e., the baseline). Lower is better.

Interpretability. We intend the models generated with our approach to be used in performance
understanding and debugging tasks. Hence, developers, as well as users, would benefit if the
models are easy to interpret. Unfortunately, measuring interpretability of models is nontrivial
and controversial. In the machine learning community, interpretability is an open research prob-
lem with an active community, but without a generally agreed measure or even definition for
interpretability [Doshi-Velez and Kim, 2017, Lipton, 2018, Molnar, 2019].

Generally, interpretability captures the ability of humans to make predictions, understand
predictions, or understand the decisions of a model [Molnar, 2019]. When the model is complex
(e.g., the model includes numerous decisions), humans have more difficulty understanding the
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model directly. Some simpler forms of models are usually considered inherently interpretable,
because humans can inspect and understand the models directly. For example, scientists have
decades of experience using and interpreting linear models (e.g., much of empirical software
engineering research relies on interpreting linear model coefficients). Models with more com-
plex structures and very large numbers of decisions (e.g., deep neural networks with millions of
weights or random forests with hundreds of trees), exceed human capacity for directly under-
standing the model. With these more complex models, the trend is to develop post-hoc expla-
nations, where tools provide explanations for specific aspects of the model (e.g., the reason for
a given prediction) without having to understand the model’s internals [Lipton, 2018, Lundberg
and Lee, 2017, Molnar, 2019, Ribeiro et al., 2016, Štrumbelj and Kononenko, 2014]. The use
of post-hoc explanations is, however, controversial, as the explanations usually are only approx-
imations that may be unreliable or even misleading [Rudin, 2019].

We do not attempt to quantify interpretability. Instead, we generally consider sparse linear
models, with dozens of individual and interacting terms, as inherently interpretable [Molnar,
2019]. Humans can inspect them, reason about factors, and make and understand predictions.
For instance, machine learning researchers recommend these models in high-stakes decisions,
when auditing the model is paramount [Rudin, 2019]. Likewise, interviews have shown that
developers understand linear performance models with a few dozen terms [Kolesnikov et al.,
2018]. Hence, we argue that the kind of models that we build are interpretable.

Decision trees are also often considered as inherently interpretable [Rudin, 2019] when un-
derstanding the decisions behind a single prediction, as following a specific path and all involved
decisions in a model is easy. However, identifying influences of factors globally is more chal-
lenging, as a factor may occur in many places in a tree and one has to reason about many or all
paths (e.g., how much interacting configuration options slow down the systems). When decision
trees get deep, the models becomes more tedious to understand.

In contrast to decision trees, random forests are not considered inherently interpretable, as
they are an ensemble of numerous (e.g. 100) decision trees. Understanding random forests would
require understanding the average effect of configuration options around all fairly deep trees.

Similar to random forests, neural networks are also not considered inherently interpretable.
In our evaluation, we do not analyze the reliability or usefulness of post-hoc explanations.

To assure that the linear models that we produce are sparse and, hence, likely interpretable
by humans, we report the number of terms they contain. As our algorithm to build these models
does not include any machine learning and regularization, the algorithm detects and reports even
minuscule amounts of measurement noise. Hence, we exclude all trivial terms that do not make
meaningful contributions to the systems’ performance. We report the number of terms (configu-
ration options and interactions) that contribute, at least, 0.3 seconds, which is approximately 1%
of the execution time of the default configurations of our subject systems.

Threats of Validity. Measurement noise cannot be excluded and may affect all results. We
reduced this threat by repeating measurements on a dedicated machine and using the median.

The primary threat to external validity is the selection of subject systems. While we selected
widely-used open-source Java configurable systems from different domains and sizes, in terms
of SLOC and configuration space size, readers should be careful when generalizing results. For
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instance, most subject systems are multi-threaded, but all systems have mostly deterministic per-
formance behavior. Additionally, we analyzed a single configurable software system, whereas
systems composed of numerous configurable software systems, deployed in distributed environ-
ments, and implemented in different languages are beyond the scope of this dissertation.

The selected subset of configuration options might not affect performance at all, making
modeling a trivial task. We selected options for which the systems’ documentation or the con-
figuration options’ functionality indicated that they would affect performance, and we observed
a wide range of execution times for the configurations that we measured.
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Table 3.3: Cost of sampling configurations.
(a) Number sampled configurations.

SA PC PO EL1 GR KA EM PR SO H2 BD AL DL DC

BF 32 32 20 128 128 40 512 212 216 216 217 222 222

FW 5 5 6 7 7 9 9 12 16 16 17 22 22
PW 16 16 9 29 29 11 46 79 137 137 154 254 254
R10 10 10 10 10 10 10 10 10 10 10 10 10 10
R502 — — — 50 50 — 50 50 50 50 50 50 50
R2003 — — — — — — 200 200 200 200 200 200 200
FB4 — — 1 — — 1 — — — — — — —
CC5 4 10 64 64 64 8 32 256 — — — 256 —
CP 4 8 64 36 20 8 26 70 64 144 26 88 88

(b) Time to sample configurations.

SA PC PO EL GR KA EM PR SO H2 BD AL DL DC

BF ~3m ~42m ~11m ~11m ~1h ~17m ~4h ~1d ~16d ~8d ~48d ~3y ~3y
FW ~27s ~2m ~50s ~22s ~2m ~24s ~3m ~13m ~2m ~5m ~9m ~8m ~8m
PW ~2m ~10m ~3m ~2m ~9m ~2m ~16m ~1h ~21m ~39m ~1h ~2h ~2h
R10 ~1m ~5m ~3m ~1m ~5m ~2m ~4m ~11m ~2m ~2m ~8m ~2m ~2m
R502 — — — ~4m ~29m — ~18m ~53m ~16m ~9m ~27m ~10m ~10m
R2003 — — — — — — ~2h ~4h ~1h ~36m ~2h ~41m ~41m
FB4 — — ~50s — — ~1m — — — — — — —
CC5 ~22s ~11m —6 ~5m ~35m ~2m ~14m ~4h — — — ~1h —
CP ~22s ~9m —6 ~3m ~11m ~2m ~11m ~1h ~22m ~30m ~15m ~16m ~16m

The time to measure configurations for BF is extrapolated from 200 randomly selected configurations.

SA: Sampling; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep; KA: Kanzi; EM: Email; PR: Prevayler;
SO: Sort; BD: Berkeley DB; AL: Apache Lucene; DL: Density Converter (Interface); DC: Density Converter (Complete); BF: Brute
Force; FW: Feature wise; PW: Pair wise; R10: 10 random configurations; R50: 50 random configurations; R200: 200 random
configurations; FB: Family-Based; CC: ConfigCrusher; CP: Comprex; s: seconds; m: minutes; h: hours; d: days; y: years;
1 System has a feature model [Apel et al., 2013] that describes the valid configurations.
2 Not applicable to systems with configuration spaces with fewer than 50 configurations.
3 Not applicable to systems with configuration spaces with fewer than 200 configurations.
4 Not applicable to systems without a static map derived from compile-time variability.
5 The static taint analysis did finish executing after 24 hours.
6 The taint analysis found that all configuration options interact in the system.
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Table 3.4: Cost of learning models or analyzing subject systems.
AP PC PO EL GR KA EM PR SO H2 BD AL DL DC

* & SL ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & PSL ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & LL ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & PLL ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
FW & SLR <1.0s <1.0s <1.0s <1.0s ~1s <1.0s ~1s ~2s ~4s ~8s ~9s ~20s ~20s
PW & SLR ~1s ~1s <1.0s ~2s ~2s ~2s ~4s ~6s ~45s ~4m ~2m ~6m ~6m
R10 & SLR <1.0s <1.0s <1.0s <1.0s ~1s <1.0s ~1s ~2s ~3s ~5s ~7s ~13s ~13s
R50 & SLR — — — ~5s ~6s — ~6s ~7s ~7s ~6s ~9s ~15s ~15s
R200 & SLR — — — — — — ~2m ~3m ~5m ~5m ~7m ~2m ~2m
* & ENL ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & DT ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & SDT ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & RF ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
* & NN ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s ≤0.3s
CC1 ~8s ~30s ~12s ~10s ~12s ~13s ~12s ~21s — — — ~42s —
CP ~32s ~2m ~11m ~5m ~9m ~2m ~3m ~17m ~9m ~11m ~29m ~6m ~8m

AP: Approach; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep; KA: Kanzi; EM: Email; PR: Prevayler; SO: Sort;
BD: Berkeley DB; AL: Apache Lucene; DL: Density Converter (Interface); DC: Density Converter (Complete); FW: Feature wise; PW: Pair wise;
R10: 10 random configurations; R50: 50 random configurations; R200: 200 random configurations; SL: Simple linear regression; PSL: Pair-wise
simple linear regression; LL: Lasso linear regression; PLL: Pair-wise Lasso linear regression; SLR: Stepwise linear regression; ENL: Elastic
net linear regression; DT: Decision tree; SDT: Shallow decision tree; RF: Random Forest; NN: Multi-layer perceptron; CC: ConfigCrusher;
CP: Comprex; s: seconds; m: minutes.
∗ Any sampling approach.
1 The static taint analysis did finish executing after 24 hours.

Table 3.5: MAPE comparison among Family-Based, ConfigCrusher, and Comprex (lower is better).
AP PC PO EL GR KA EM PR SO H2 BD AL DL DC

FB1 — — 2.7 — — 2.3 — — — — — — —
CC2 1.1 1.1 —3 3.6 2.7 23.0 9.2 1.6 — — — 4.3 —
CP 1.2 1.6 —3 7.9 2.8 39.2 9.8 6.8 2.9 5.0 3.2 8.9 9.4

AP: Approach; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep;
KA: Kanzi; EM: Email; PR: Prevayler; SO: Sort; BD: Berkeley DB; AL: Apache Lucene; DL: Den-
sity Converter (Interface); DC: Density Converter (Complete); FW: Feature wise; PW: Pair wise;
R10: 10 random configurations; R50: 50 random configurations; R200: 200 random configurations;
FB: Family-Based; CC: ConfigCrusher; CP: Comprex. Cells indicate similarly low errors.
1 Not applicable to systems without a static map derived from compile-time variability.
2 The static taint analysis did finish executing after 24 hours.
3 The taint analysis found that all configuration options interact in the system.
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Table 3.6: MAPE comparison among linear regressors, ConfigCrusher, and Comprex (lower is
better).

AP PC PO EL GR KA EM PR SO H2 BD AL DL DC

FW & SL 0.4 14.9 41.1 32.8 3.0 105.9 111.2 94.4 107.5 104.3 7.7 1417.6 1466.7
PW & SL 1.3 7.2 1.4 107.1 2.7 43.0 30.5 663.2 129.5 48.9 7.0 1478.5 1430.0
R10 & SL 1.7 7.4 1.4 30.3 2.6 44.2 108.6 87.0 193.2 47.2 7.2 1347.2 1298.3
R50 & SL1 — — — 22.0 3.2 — 95.0 85.7 180.1 45.6 5.2 578.7 623.1
R200 & SL2 — — — — — — 87.4 84.0 186.6 32.7 4.3 487.2 424.8
FW & PSL 2.6 19.1 56.5 34.9 2.7 104.0 110.1 91.3 107.5 550.7 7.7 1427.6 1466.7
PW & PSL 2.0 5.2 1.8 90.0 3.4 50.1 29.5 654.6 109.3 135.0 11.7 1318.6 1354.2
R10 & PSL 1.9 8.5 1.7 32.8 4.6 53.4 110.7 86.2 134.3 329.4 7.1 437.2 449.3
R50 & PSL1 — — — 22.2 2.9 — 93.6 84.7 133.4 39.7 6.3 615.7 567.1
R200 & PSL2 — — — — — — 90.3 84.1 131.9 18.3 4.5 1137.2 1030.3
FW & LL 1.5 15.7 44.2 25.4 2.9 104.6 105.6 97.5 106.5 117.6 9.1 1578.2 1651.5
PW & LL 2.0 8.4 2.9 94.8 3.8 52.6 34.5 660.7 109.0 111.2 9.2 1587.2 1451.6
R10 & LL 0.9 8.7 8.5 25.1 3.1 58.6 106.5 88.1 103.4 43.8 6.5 534.9 587.4
R50 & LL1 — — — 25.7 5.0 — 99.4 87.0 106.5 39.0 6.3 498.3 451.8
R200 & LL2 — — — — — — 94.3 84.5 80.6 46.3 7.1 284.2 243.5
FW & PLL 0.4 19.7 58.0 34.0 3.2 104.6 108.0 93.3 106.5 117.6 9.1 1581.9 1651.5
PW & PLL 2.5 5.0 3.0 100.1 2.3 45.5 31.8 625.0 109.0 111.2 9.2 1451.6 1424.3
R10 & PLL 1.9 7.4 7.4 31.8 4.6 49.3 107.5 88.5 103.3 49.3 8.3 541.3 548.0
R50 & PLL1 — — — 26.2 3.3 — 93.3 87.2 106.5 44.7 6.3 483.1 451.8
R200 & PLL2 — — — — — — 92.0 83.2 80.5 46.3 7.1 273.4 243.5
FW & SLR 0.8 19.7 51.1 32.1 1.9 100.0 111.2 90.0 129.3 768.7 7.9 1648.2 1596.0
PW & SLR 2.0 0.9 1.5 114.7 1.3 44.2 29.2 653.0 113.3 34.2 4.7 1524.8 1596.0
R10 & SLR 2.7 0.8 1.5 31.8 2.6 48.3 113.6 84.7 124.3 28.3 5.9 1248.3 1289.2
R50 & SLR1 — — — 26.3 1.4 — 95.2 84.5 124.1 19.7 4.5 1087.3 1037.2
R200 & SLR2 — — — — — — 93.1 80.3 93.9 14.9 2.9 397.5 434.5
FW & ENL 0.8 16.9 55.3 30.8 4.9 109.2 117.9 97.3 106.5 118.1 9.1 617.3 599.1
PW & ENL 0.5 4.3 2.9 92.7 3.4 53.2 31.8 646.6 109.0 108.5 9.2 615.7 660.8
R10 & ENL 0.4 4.4 4.3 29.7 3.1 54.1 117.4 88.7 158.3 52.1 6.8 489.3 478.2
R50 & ENL1 — — — 23.8 4.8 — 99.3 84.5 145.3 47.4 6.5 457.4 411.3
R200 & ENL2 — — — — — — 86.0 81.3 176.0 48.2 6.9 314.2 293.7
CC3 1.1 1.1 —4 3.6 2.7 23.0 9.2 1.6 — — — 4.3 —
CP 1.2 1.6 —4 7.9 2.8 39.2 9.8 6.8 2.9 5.0 3.2 8.9 9.4

AP: Approach; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep; KA: Kanzi; EM: Email; PR: Prevayler;
SO: Sort; BD: Berkeley DB; AL: Apache Lucene; DL: Density Converter (Interface); DC: Density Converter (Complete); FW: Feature
wise; PW: Pair wise; R10: 10 random configurations; R50: 50 random configurations; R200: 200 random configurations; SL: Simple
linear regression; PSL: Pair-wise simple linear regression; LL: Lasso linear regression; PLL: Pair-wise Lasso linear regression;
SLR: Stepwise linear regression; ENL: Elastic net linear regression; CC: ConfigCrusher; CP: Comprex. Cells indicate similarly
low errors.
1 Not applicable to systems with configuration spaces with fewer than 50 configurations.
2 Not applicable to systems with configuration spaces with fewer than 200 configurations.
3 The static taint analysis did finish executing after 24 hours.
4 The taint analysis found that all configuration options interact in the system.
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Table 3.7: MAPE comparison among tree regressors, ConfigCrusher, and Comprex (lower is bet-
ter).

AP PC PO EL GR KA EM PR SO H2 BD AL DL DC

FW & DT 0.4 18.7 50.5 28.3 4.3 94.3 98.3 68.7 125.1 143.1 11.5 1724.3 1768.7
PW & DT 2.0 8.3 2.8 105.1 2.9 35.5 28.9 103.8 127.7 36.9 1.0 101.4 109.2
R10 & DT 2.1 4.4 2.8 27.9 4.6 35.8 100.1 42.1 12.7 28.7 9.8 872.6 848.6
R50 & DT1 — — — 25.8 2.3 — 64.3 46.7 3.0 6.8 2.4 56.3 57.7
R200 & DT1 — — — — — — 38.1 26.5 1.0 16.0 0.5 19.6 18.2
FW & SDT 2.9 19.7 57.0 30.8 4.8 96.2 101.3 75.2 103.5 123.1 8.7 415.7 406.3
PW & SDT 2.9 6.1 2.4 108.4 3.8 37.4 29.8 136. 6 123.8 43.9 11.5 1821.8 1779.1
R10 & SDT 1.9 5.8 2.4 28.9 5.0 39.2 102.8 48.9 16.3 37.3 3.2 242.4 237.3
R50 & SDT1 — — — 27.6 3.1 — 76.2 53.4 2.8 21.8 1.6 148.7 151.5
R200 & SDT2 — — — — — — 33.7 29.5 1.1 16.1 0.6 21.6 18.8
FW & RF 2.1 9.0 40.9 29.4 4.8 92.6 95.7 55.3 119.0 106.1 8.7 1239.7 1185.9
PW & RF 1.1 4.2 2.9 99.7 4.3 32.3 27.3 98.3 124.6 46.9 4.0 28.4 27.3
R10 & RF 1.7 7.6 2.8 29.0 4.6 33.1 97.3 28.1 329.3 24.8 5.3 72.4 81.3
R50 & RF1 — — — 21.8 4.1 — 41.2 23.9 1.1 16.4 0.4 62.1 59.9
R200 & RF2 — — — — — — 8.3 4.8 0.7 1.1 0.3 5.8 5.5
FW & NN 0.5 18.5 61.2 34.5 4.6 107.8 117.7 109.3 440.9 433.2 56.3 1218.7 1265.4
CC3 1.1 1.1 —4 3.6 2.7 23.0 9.2 1.6 — — — 4.3 —
CP 1.2 1.6 —4 7.9 2.8 39.2 9.8 6.8 2.9 5.0 3.2 8.9 9.4

AP: Approach; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep; KA: Kanzi; EM: Email; PR: Prevayler;
SO: Sort; BD: Berkeley DB; AL: Apache Lucene; DL: Density Converter (Interface); DC: Density Converter (Complete); FW: Feature
wise; PW: Pair wise; R10: 10 random configurations; R50: 50 random configurations; R200: 200 random configurations; DT: Deci-
sion tree; SDT: Shallow decision tree; RF: Random Forest; CC: ConfigCrusher; CP: Comprex. Cells indicate similarly low errors.
1 Not applicable to systems with configuration spaces with fewer than 50 configurations.
2 Not applicable to systems with configuration spaces with fewer than 200 configurations.
3 The static taint analysis did finish executing after 24 hours.
4 The taint analysis found that all configuration options interact in the system.

Table 3.8: MAPE comparison among a neural network, ConfigCrusher, and Comprex (lower is
better).

AP PC PO EL GR KA EM PR SO H2 BD AL DL DC

FW & NN 0.5 18.5 61.2 34.5 4.6 107.8 117.7 109.3 440.9 433.2 56.3 1218.7 1265.4
PW & NN 2.4 7.6 3.0 119.9 3.8 58.2 33.6 689.1 406.1 464.2 65.8 1727.3 1848.1
R10 & NN 2.8 8.7 3.0 32.4 5.1 62.3 115.1 91.7 237.2 85.7 46.3 489.1 487.3
R50 & NN1 — — — 29.8 3.2 — 98.7 87.3 152.5 72.4 31.2 396.7 415.7
R200 & NN2 — — — — — — 73.3 84.9 212.0 80.5 31.3 304.2 289.0
CC3 1.1 1.1 —4 3.6 2.7 23.0 9.2 1.6 — — — 4.3 —
CP 1.2 1.6 —4 7.9 2.8 39.2 9.8 6.8 2.9 5.0 3.2 8.9 9.4

AP: Approach; PC: Pngtastic Counter; PO: Pngtastic Optimizer; EL: Elevator; GR: Grep; KA: Kanzi; EM: Email; PR: Prevayler;
SO: Sort; BD: Berkeley DB; AL: Apache Lucene; DL: Density Converter (Interface); DC: Density Converter (Complete); FW: Fea-
ture wise; PW: Pair wise; R10: 10 random configurations; R50: 50 random configurations; R200: 200 random configurations;
NN: Multi-layer perceptron; CC: ConfigCrusher; CP: Comprex. Cells indicate similarly low errors.
1 Not applicable to systems with configuration spaces with fewer than 50 configurations.
2 Not applicable to systems with configuration spaces with fewer than 200 configurations.
3 The static taint analysis did finish executing after 24 hours.
4 The taint analysis found that all configuration options interact in the system.
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Figure 3.7: Overview of the results of our white-box performance-influence modeling approaches.
ConfigCrusher and Comprex build models with similar accuracy (low error), but Comprex is typ-
ically more efficient (low cost), in terms of the number of configurations that need to be measured,
despite running an iterative dynamic taint analysis instead of a single execution of a static taint
analysis. The models generated with our approaches are similarly accurate to the most accurate
and expensive sampling and learning approaches (with large enough samples), but our models are
interpretable and can often be built more efficiently with Comprex. Additionally, our approaches
generate models that are typically more accurate that other sampling and learning approaches that
build interpretable linear models.

3.6.2 Results
We report the results in Table 3.3 (sampling cost), Table 3.4 (learning/analysis cost), and Ta-
ble 3.5, Table 3.6, Table 3.7, and Table 3.8 (accuracy), and present an overview of the results
in Figure 3.7. Overall, ConfigCrusher and Comprex build models with similar accuracy, but
Comprex is typically more efficient in terms of the number of configurations that need to be
measured, despite running an iterative dynamic taint analysis compared to a single execution of
a static taint analysis. The models generated with our approaches are similarly accurate to the
most accurate and expensive sampling and learning approaches (with large enough samples), but
our models are interpretable and can often be build more efficiently with Comprex, despite the
cost of the taint analysis. Additionally, both ConfigCrusher and Comprex usually outperform
other approaches that build linear models.

Although, ConfigCrusher and Comprex generated models with similar accuracy, Con-
figCrusher was not able to model the performance of 4 subject systems. These systems have
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over 100K SLOC, and FlowDroid’s static taint analysis could not analyze the massive call graphs
within 24 hours. By contrast, we were able to run Comprex’s dynamic taint analysis on all sub-
ject systems efficiently, and accurately model their performance.

In the subject systems that our approaches were able to analyze, Comprex was typically
more efficient than ConfigCrusher, in terms of the number of configurations to measure. The
efficiency originates from Comprex’s dynamic taint analysis and separately tracking control-
and data-flow taints, which helped us explore nested decisions more efficiently when some in-
teractions only occur in certain paths. By contrast, ConfigCrusher’s static taint analysis only
indicated the configuration options and interactions that might affect the decision in control-flow
statements. Hence, we needed to explore all combinations of configurations options that reached
control-flow statements.

While random forest with 200 samples often generated more accurate models than Con-
figCrusher and Comprex, our approaches generate local and interpretable models, and Com-
prex was usually more efficient than the black-box approach; in some cases, building models in
half the time. The efficiency originates from our white-box analysis, in which we identify a small
number of relevant configurations to capture the performance-relevant interactions. By contrast,
black-box approaches perform worse on small samples (e.g., compare the results of using 10, 50,
200 samples).

The linear models produced with ConfigCrusher and Comprex are moderate in size, with 10
to 72 performance-relevant terms (configuration options or interactions) depending on the subject
system. Our models are similar in size to models learned with variations of linear regression
approaches using random samples (e.g., 6 to 30 terms using stepwise linear regression with 200
samples). At this size, we argue that manual inspection of the models is still plausible. More
importantly, the performance influences can be mapped to a small number of specific regions
(e.g., 1 to 24 regions depending on the system), which we later use to help developer debug the
performance of configurable software systems (see Chapter 4).

For Pngtastic Counter, Pngtastic Optimizer, Kanzi, and Apache Lucene, most black-box ap-
proaches produced accurate models with low cost. Upon inspection of the results, we discovered
that the execution time of these systems were clustered in a few groups. For example, the per-
formance of Kanzi under all configurations was either about 4 or about 61 seconds. Hence, a
few samples were needed to learn the clustered execution times. By contrast, the black-box ap-
proaches needed to measure more configurations to build accurate models in the other subject
systems, which had more complex performance behaviors.

We did not model the performance of Elevator with our approaches, as the taint analyses
indicated that all options interact in the system (i.e., our approach equals a brute-force approach).
However, the system was purposely built to have all options interact [Kim et al., 2013, Meinicke
et al., 2016, Souto et al., 2017], and was used to showcase the benefits of the Family-Based
approach.

Regarding ConfigCrusher’s and Comprex’s prediction error of Email, the system has a
feature model [Apel et al., 2013] that describes its valid configurations. Since the invalid con-
figurations were not executed, our approaches did not have all the information for each region to
generate an accurate model. Despite missing information, our approaches were able to produce
more accurate results than the other approaches, except for the Family-Based approach.

Only for Elevator and Email, the Family-Based approach remains the most efficient and
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accurate approach, but, at the same time, the most limited one in terms of which systems can be
analyzed.

Summary RQ1: ConfigCrusher and Comprex generate performance-influence models with
similar accuracy, but Comprex is typically more efficient, and can also model the performance
of medium- to large-scale systems. Additionally, the models produced with our approaches
have comparable accuracy to those models generated with the most accurate and expensive
black-box approaches, but Comprex is often more efficient. Furthermore, our approaches
usually outperform other black-box approaches that produce linear models. Our approaches
also generate models that are interpretable and can be mapped to specific regions.

Contribution - White-box performance-influence modeling: We developed a white-box
approach and two prototypes that combine the insights of compositionality and compression
to efficiently build accurate and interpretable performance-influence models.

Thesis contribution: A white-box performance-influence modeling approach that efficiently
and accurately models the performance of configurable software systems. The approach gen-
erates interpretable models, which can help users make informed configuration decisions to
run configurable software systems more efficiently, thus reducing energy consumption and
operational costs.

3.7 Discussion

Based on the results our empirical evaluation, we now discuss the impact of the design decisions
made in ConfigCrusher and Comprex on the types of configurable software systems that can
be analyzed and the cost to build models.

3.7.1 Static vs. Dynamic Taint Analysis

The type of taint analysis used resulted in different tradeoffs when modeling the performance
of configurable software systems. On one hand, we executed the static taint analysis once in a
few seconds, which reduced the cost to determine the configurations that we need to measure
for building models. However, the static taint analysis was limited to relatively small systems
and could not efficiently explore nested decisions. On the other hand, we executed multiple
configurations to run the dynamic taint analysis, but we were able to analyze all subject systems
of different sizes by executing the analysis with a reduced workload size. While both analyses
allowed us to generate accurate models, our results indicate that a dynamic taint analysis can also
be used to model the performance of large configurable software systems, in terms of SLOC.
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Dynamic Taint Analysis Overhead

Reducing the size of the workload to reduce the cost of running the iterative dynamic taint anal-
ysis may produce inaccurate models if we miss some interactions. However, this decision will
likely have a low impact in highly repetitive workloads. More importantly, our empirical eval-
uation suggest that inaccuracies on the regions’ partitions resulted in, at most, minor accuracy
degradation in our performance-influence models, given the consistently high accuracy achieved
across all subject systems.

Furthermore, we used a debugging strategy to identify potential effects of inaccurate par-
titions. As discussed in Section 3.2.3, multiple executions of configurations within the same
subspace of a region’s partition must have the same performance behavior. Significant perfor-
mance differences, beyond normal measurement noise, indicate that the region’s partition might
be inaccurate and not capturing all relevant configuration options and interactions.

Specifically, we analyzed the performance measurements of all regions, searching for regions
with a significant performance influence (> 0.1ms in any observed configuration) and with a high
variance among the execution times of the same subspace in a region (coefficient of variation of
the execution times > 1.0). Among the 94 instrumented regions analyzed with ConfigCrusher
and the 2771 method-level regions analyzed with Comprex, we found only 10 of such regions,
2 in Prevayler and 8 in Apache Lucene.

We executed the iterative dynamic taint analysis with the regular workload on all subject
systems to determine whether we identify different partitions in the regions. In Prevayler, the
regular workload resulted in the same partitions for the 2 regions with high performance vari-
ance, whereas in Apache Lucene, additional subspaces were partitioned in 7 out of 8 regions
with high performance variance, due to slightly different taints in the shorter workload. We con-
jecture that, since Prevayler writes data to disk, there might be some interactions in system calls,
which we do not analyze. While the missing subspaces in Apache Lucene slightly decreased the
MAPE from 3.2 to 3.0 (as a result of slight changes in the coefficients in the model, not from
new configuration options or interactions becoming performance relevant), the time to run the
dynamic taint analysis with the regular workload is extremely expensive; 11 hours instead of 29
minutes to run the same 26 configurations. In fact, the dynamic taint analysis ran for over 6 hours
in all but H2, Berkeley DB, and both versions of Density Converter, in which the analysis did not
finish executing after 24 hours!

We argue that the extremely high cost and inability to use the regular workload does not
outweigh a potential slight accuracy increase of the already highly accurate models that we gen-
erated. These results support our conjecture that inaccuracies on the regions’ partition caused by
using a small workload are only a minor issue in practice.

Summary: A static taint analysis can be executed only once, but is limited to relatively small
systems and cannot efficiently explore nested decisions. A dynamic taint analysis requires
multiple executions, but can analyze systems of various sizes, in terms of SLOC, when using a
reduced workload, which does not affect the accuracy of the models that we generate.
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Table 3.9: Number of regions and configurations to measure with compression at different region
granularities.

Control-flow Method System

System #Reg. #Conf. #Reg. #Conf. #Reg. #Conf.

Pngtastic Counter 36 4 22 4 1 16
Pngtastic Optimizer 397 8 124 8 1 32
Elevator1 42 64 28 64 1 64
Grep 46 36 31 36 1 64
Kanzi 128 20 59 20 1 64
Email 60 8 35 8 1 8
Prevayler 147 26 78 26 1 32
Sort 166 70 89 70 1 256
H2 2483 64 932 64 1 256
Berkeley DB 2152 144 718 144 1 2048
Apache Lucene 1654 26 551 26 1 16384
Density Converter (Interface) 124 88 42 88 1 4608
Density Converter (Complete) 190 88 62 88 1 4608

#Reg: Number of regions; #Conf: Number of configurations. Cells indicate the fewest
number of configurations to cover all partitions’ subspaces.
1 The taint analysis found that all configuration options interact in the system.

3.7.2 Granularity of Regions, Compression, and Measuring Performance

Considering different granularities of regions yielded different tradeoffs between compression
potential and effort to measure the performance of regions. One one hand, considering control-
flow statements as regions in ConfigCrusher resulted in maximum compression, but caused
excessive measurement overhead, as we instrument numerous locations in the system. We over-
came this issue by optimizing how we instrumented regions. On the other hand, we considered
methods as regions in Comprex, which allowed us to use an off-the-shelf sampling profiler to
accurately measure the performance of methods with low overhead, but potentially lost some
compression opportunities.

We explored the impact of choosing regions at different granularities on the number of con-
figurations to measure and the overhead to perform these measurements.

Number of configurations. To explore the number of configurations to measure at different
granularities, we executed Comprex’s iterative analysis considering each method as a region.
We additionally tracked partitions for control-flow statements and derived partitions for the entire
system by combining the partitions of all methods.

Table 3.9 reports the size of the minimum set of configurations needed to cover each subspace
of each region’s partition for each granularity. When considering the entire system as a region,
significantly more configurations need to be explored, as we do not benefit from compression.
Interestingly though, while there are, as expected, fewer regions at the method level than at the
control-flow statement level, the number of configurations needed is the same. These results
show that compression at finer-grained levels than the method level does not yield additional
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benefits in our subject systems.
We found that the control-flow statement regions combined within a method are usually par-

titioned in the same way. Only in 8 out of 2771 method-level regions, the method’s partition had
more subspaces than the corresponding control-flow statement regions (e.g., two if statements
depending on different configuration options). However, in all cases, the additional subspaces
were already explored in other parts of the system. Hence, no additional configurations needed
to be explored.

We conclude that fined-grained compression is highly effective, but that control-flow granu-
larity does not appear to offer significant compression benefits over method granularity.

Measurement overhead. Measuring performance at different granularities requires different
strategies, each with vastly different amounts of measurement overhead. Measuring at the system
level is cheap, as a single end-to-end measurement is sufficient to measure the entire system (e.g.,
Unix time). At finer granularities, multiple measurements of different parts of the system are re-
quired. Instrumenting the system at control-flow statements and corresponding post-dominators
leads to significant measurement overhead, as the measurement instructions are executed fre-
quently (similar to an instrumentation profiler). To overcome this issue, we optimized how we
instrument regions, but the calculation requires several minutes to run, and we need to process
the execution time for each region.

By contrast, measuring the performance of numerous methods is inexpensive with a sampling
profiler, for which we observed a mostly linear overhead of about 8% in our subject systems.

Summary: Compression at method and control-flow granularities is highly efficient to reduce
measurement effort. Compression at method granularity provides a good compromise between
compression potential and measurement overhead.

3.7.3 Limitations of our White-box Approach
While our white-box approach can generate similarly accurate models to some black-box ap-
proaches, there are several limitations with our approach, and several situations in which other
approaches might be more applicable or preferable to use.

There is a lot of engineering effort to use our white-box approach. First, our approach needs
access to the source code, which might be difficult, impossible, or not necessary to have in some
situations or use cases. Additionally, a taint analysis needs to be setup and executed, which re-
quires defining sources and sinks. In our prototypes, we manually defined sources and automati-
cally instrumented control-flow statements to define sinks. If the static taint analysis is used, then
large-scale systems cannot be analyzed. If the dynamic taint analysis is used, the workload of the
system needs to be reduced. Considering control-flow statements as regions requires instrument-
ing the system to measure the performance of regions, which can cause measurement overhead.
Regardless of whether performance is measured with instrumentation or an off-the-shelf profiler,
there is a lot of infrastructure that we implemented to map performance measurements to individ-
ual regions, and to build local and global performance-influence models. By contrast, black-box
approaches can simply measure the end-to-end performance of a compiled executable, using
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established sampling approaches, and use established machine learning algorithms to generate
performance-influence models.

Due to the complicated setup of our white-box approach, we envision (and show in Chapter 4)
that developers would be the primary consumers of our approach. Most end users would not want
to go through a complicated setup to analyze the performance of a system. By contrast, end users
could simply collect the end-to-end performance of a system and use machine learning packages,
such as in Matlab or Scikit learn, to generate models to analyze the performance of a system.

While in Chapter 4 we show that interpretable local and global models help developers de-
bug the performance of configurable software systems, there are some scenarios (discussed in
Section 2.3.1) in which such type of models are probably not necessary.

In the simplest case, a user wants to optimize the performance of a system by selecting the
fastest configuration. While global performance-influence models have been used for optimiza-
tion [Guo et al., 2013, Nair et al., 2017, Oh et al., 2017, Zhu et al., 2017], other approaches more
effective at pure optimization problems [Hutter et al., 2011, Jamshidi and Casale, 2016, Oh et al.,
2017, Olaechea et al., 2014, Zhu et al., 2017], as understanding the entire configuration space is
not necessary.

In other scenarios, only accurate predictions of individual configurations are needed. Scenar-
ios include automatic reconfiguration and runtime adaptation, where there is no human-in-the-
loop and online search is impractical. In these scenarios, the model’s prediction accuracy over
the entire configuration space is important, but understanding the structure of the model is irrel-
evant. In this context, deep regression trees [Guo et al., 2013, 2017, Sarkar et al., 2015], Fourier
Learning [Ha and Zhang, 2019], and neural networks [Ha and Zhang, 2019] are preferable, as
they build accurate models, with a large enough number of sampled configurations.

While running our white-box approach requires a complicated process, and there are other
approaches that are preferable in some situations, the evaluation in this chapter (Section 3.6), as
well as two user studies in Chapter 4 demonstrate that our white-box approach provides accurate
and relevant information for the scenario that we address in this dissertation: Helping developers
debug the performance of configurable software system.

3.8 Summary
In this chapter, we presented compositionality and compression, the key insights for efficiently
and accurately modeling the global and local performance of configurable software systems. Ad-
ditionally, we presented how we tailor a taint analysis to identify how configuration options and
their interactions influence the performance of code regions. Based on different alternatives to
implement our white-box approach, in terms of the type of taint analysis to use and the granular-
ity of regions, we presented two prototypes: ConfigCrusher and Comprex. An empirical evalu-
ation of our two prototypes demonstrated that a white-box analysis can efficiently build accurate
and interpretable performance-influence models. However, using a dynamic taint analysis and
measuring the performance of methods as regions, which is how Comprex was implemented,
can also scale the modeling to medium- and large-scale configurable software systems.

Our white-box approach contributes to the thesis goal of reducing the energy consumption
and operational costs of running configurable software systems by providing users accurate and
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interpretable models, which can be used to make informed configuration decisions to run systems
more efficiently.

In Chapter 2, we suggested using interpretable global and local performance-influence mod-
els to help developers debug, but noted limitations of existing approaches. Our white-box ap-
proach overcame these limitations. In Chapter 4, we describe how we tailor the interpretable
global and local models that we generate, as well as CPU profiling and program slicing, to help
developers debug the performance of configurable software systems.
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Chapter 4

Tailoring Ingredients for Debugging
Performance: Information Providers

In Chapter 2, we conducted an exploratory study, in which we identified that developers struggle
to find relevant information to identify influencing options: the configuration options or interac-
tions causing an unexpected performance behavior, locate option hotspots: the methods where
configuration options affect the performance of the system, and trace the cause-effect chain: the
sequence of statements detailing how influencing options are used in the implementation to di-
rectly and indirectly affect the performance of option hotspots. Based on these findings, we
suggested ingredients (i.e., techniques and information sources) that can be tailored to support
the above needs: Interpretable global and local performance-influence models can help devel-
opers identify influencing options and locate option hotspots, and CPU profiling and program
slicing can help developers trace the cause-effect chain.

While we discussed that CPU profiling and program slicing can be tailored without major
modifications, we noted the limitations of existing performance-influence modeling approaches,
in terms of tradeoffs among the cost to build models, and the accuracy and interpretability of
the models. Consequently, in Chapter 3, we presented and evaluated a white-box approach that
overcame those limitations, as the approach efficiently builds accurate and interpretable local and
global performance-influence models.

We now continue our human-centered approach, which started with our exploratory user
study in Chapter 2, to identify solutions to support developers’ actual needs in the process of de-
bugging the performance of configurable software systems; specifically, presenting how we tailor
the ingredients and evaluate that the information that we provide support developers’ needs. In
this chapter, we first describe how we design and implement information providers to support de-
velopers’ needs, tailoring interpretable Global and Local performance-Influence Models, CPU
Profiling, and program Slicing, in a tool called GLIMPS. Afterwards, we conduct two user stud-
ies to validate and confirm that the designed information providers are useful to developers when
debugging the performance of complex configurable software systems, in terms of supporting
their needs and speeding up the debugging process.

In summary, we make the following contributions:
• The design of information providers, tailoring interpretable Global and Local performance-

Influence Models, CPU Profiling, and program Slicing, to support the information needs
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Table 4.1: Ingredients that support developers’ information needs when debugging the performance
of configurable software systems.

Information Need Description Tailored Ingredients

Influencing Options Which configuration options influence the per-
formance of the system?

Interpretable global performance-
influence models

Option Hotspots Where do configuration options influence the
performance of the system?

Interpretable local performance-
influence models

Cause-Effect Chain How are influencing options used in the imple-
mentation to directly and indirectly influence
the performance of option hotspots?

CPU Profiling and Program Slicing

that developers have when debugging the performance of configurable software systems.
• Two empirical evaluations that demonstrate the usefulness of the designed information

providers.
• A prototype tool, GLIMPS, that implements the designed information providers to help

developers debug.

The rest of this chapter is organized as follows: We first describe how we design and imple-
ment information providers to support the information needs that developers have when debug-
ging the performance of configurable software systems, tailoring the ingredients that we identi-
fied in Chapter 2 (Section 4.1). Then, we conduct a validation user study and a confirmatory user
study to evaluate that the designed information providers actually support developers’ informa-
tion needs and speed up the process of debugging the performance of complex software systems
(Section 4.2).

This chapter shares material with a conference submission under review at the time of writ-
ing: “On Debugging the Performance of Configurable Software Systems: Developer Needs and
Tailored Tool Support” [Velez et al., 2021a].

4.1 Supporting Information Needs

We aim to support developers in identifying influencing options, locating option hotspots, and
tracing the cause-effect chain. To this end, we design information providers, adapting inter-
pretable global and local performance-influence modeling, CPU profiling, and program slicing
to provide relevant information for supporting the above information needs. We implement the
designed information providers in a cohesive prototype called GLIMPS, which can assist devel-
opers debug the performance of configurable software systems; primarily, by comparing the per-
formance behavior of a system between a problematic configuration and a non-problematic con-
figuration (see the results of our exploratory study in Section 2.2). Table 4.1 shows which infor-
mation needs are supported by the ingredients that we tailor for designing information providers.
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Figure 4.1: Our tool highlights differences in the values of configuration options selected between
two configurations, and shows the influencing options of the changes from one configuration to (I)
another configuration.

4.1.1 Identifying Influencing Options

As discussed in Section 2.3, to help developers identify the influencing options that cause an
unexpected performance behavior, we use interpretable global performance-influence models,
which we generate with our white-box approach described in Chapter 3. For instance, the model
m = 4.6+54.7 ·DUPLICATES · TRANSACTIONS +8.9 · EVICT +3.5 · TEMPORARY explains the
influence of the configuration options and their interactions on the performance of a system

We adapt this ingredient to design an information provider that shows developers influenc-
ing options; specifically, which and how differences between configurations (e.g., a problematic
configuration and a non-problematic configuration) influence the performance of a system. In
our implementation, this information provider highlights the differences in the values of config-
uration options selected between two configurations, and shows the influencing options between
the configurations. If changes between the configurations are not shown, then the changes do not
influence the performance of the system.1

Example. Figure 4.1 shows a screenshot of our tool highlighting the differences in the values
of the configuration options selected between two configurations (e.g., a problematic configura-
tions and a non-problematic configuration). Our tool also shows the influencing options between
these two configurations. For instance, changing both DUPLICATES and TRANSACTIONS from
false to true results in an interaction that increased the execution time by 54.7 seconds.
Based on this information, most developers would consider DUPLICATES and TRANSACTIONS

as influencing options that are causing an unexpected performance behavior.

1Any performance-influence model is shown relative to one configuration (e.g., the default configuration), which
explains the impact of changes to that configuration. In our tool, developers can select that one configuration.
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Figure 4.2: Our tool shows option hotspots affected by influencing options, and the influence on
performance in each method.

Note that individual changes to DUPLICATES and TRANSACTIONS did not influence the
performance of the system; only the interaction increased the execution time. Additionally, any
other changes between the configurations – REPLICATED – do not influence the performance of
the system. Likewise, the influence of TEMPORARY is not shown, as both configurations selected
the same value.

Contribution - Design of information providers: We tailor interpretable global performance-
influence models, generated with our white-box approach, to show developers the influencing
options between a problematic configuration and a non-problematic configuration.

4.1.2 Locating Option Hotspots
After helping developers identify the influencing options, we help developers locate the op-
tion hotspots where these configuration options cause an unexpected performance behavior. As
discussed in Section 2.3, we use interpretable local performance-influence models, which we
generate with our white-box approach described in Chapter 3. For instance, the local model
mput = 0.9 + 42.9 · DUPLICATES · TRANSACTIONS explains the influence of the configuration
options and their interactions on the performance of the method put.

We adapt this ingredient to design an information provider that shows developers option
hotspots; specifically, where and by how much configuration options and their interactions in-
fluence the performance of a system. In our implementation, this information provider shows
(a) the methods whose performance is influenced by changes made between configurations (e.g.,
a problematic configuration and a non-problematic configuration) and (b) the influence of the
changes on each method’s performance.2

Example. Figure 4.2 shows as screenshot of our tool indicating the option hotspots where the
influencing options DUPLICATES and TRANSACTIONS affect the performance of the system.
Note that the influence on all methods equals the influence in the entire system (see Figure 4.1).
Based on this information, most developers would consider Cursor.put as an option hotspot;
the location where the effect of the influencing options is observed.

2Our tool allows developers to select a single configuration to analyze individual local performance-influence
models.
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Figure 4.3: Our tool helps developers trace the cause-effect chain by highlighting the differences
in the option hotspots’ execution time and call stacks affected by influencing options. While the
call stacks of Cursor.put are the same under both configurations, FileManager.read is only
called under the second configuration.

Contribution - Design of information providers: We tailor interpretable local performance-
influence models, generated with our white-box approach, to show developers option hotspots
affected by influencing options, and the influence on performance in each method.

4.1.3 Tracing the Cause-Effect Chain
After helping developers identify the influencing options and locate the option hotspots, we help
developers trace the cause-effect chain. As described in Section 2.3, we use CPU profiling and
program slicing.

CPU Profiling

We use CPU profiling to collect the hotspot view of the problematic configuration and a non-
problematic configuration. The hotspot view is the inverse of a call tree: A list of all methods
sorted by their total execution time, cumulated from all different call stacks, and with back traces
that show how the methods were called.

We adapt this ingredient to design an information provider that helps developers trace the
cause-effect chain; specifically, compare the hotspot view of two configurations (e.g., a problem-
atic configuration and a non-problematic configuration) to help developers determine whether
the influencing options affect how option hotspots are called. In our implementation, this infor-
mation provider highlights differences in the option hotspots’ execution time and call stacks.3

CPU profiles are collected with most off-the-shelf profilers. Since our white-box approach to
build global and local performance-influence models collect these profiles (Chapter 3), we use
these profiles in our implementation.

Example. Figure 4.3 shows a screenshot of our tool, which helps developers trace the cause-
effect chain by highlighting differences in the option hotspots’ execution time and call stacks
based on the influencing options DUPLICATES and TRANSACTIONS. For instance, the changes

3In our tool, developers can also analyze the CPU profile of one configuration.
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Main.main(…)

Cursor.put(…)

Main.init(…)

Database.init(…)

def init(Database db) 
  Database.checkForNullParam(db.name, "dbName"); 
  Log.msg(Level.INFO, "db " + db.name + " open"); 
  ... 
  if(db.replicated) 
    configReplicated(...); 
  ... 
  this.cacheMode = db.cacheMode; 
  this.commit = db.trans ? true : false; 
  this.sync = db.dups ? true : false; 
  if(db.evict) 
    Evictor.init(db.evictorThreads); 
  ...

Figure 4.4: Our tool helps developers trace the cause-effect chain by displaying a method-level
dependence graph from the method where the influencing options are first loaded into the system
(green box) to an option hotspot (red box). Other relevant methods are shown in brown boxes.
When clicking on a box, our tool opens the file with the method and highlights the statements of the
slice. The position of the nodes in the graph (left to right and top to bottom) does not represent the
order of execution of methods.

increased Cursor.put’s execution time, but did not affect how the method was called. By
contrast, FileManager.read is only executed under the problematic configuration. This
information can help developers understand how the influencing options are used in the imple-
mentation to affect the option hotspots’s performance.

Contribution - Design of information providers: We tailor CPU profiles, collected with
our white-box performance-influence modeling approach, to help developers trace the cause-
effect chain by comparing the hotspot view between a problematic configuration and a non-
problematic configuration. This information can help developers determine whether the influ-
encing options affect how option hotspots are called.

Program Slicing

We use program slicing to compute the relevant fragments for tracing the cause-effect chain.
Specifically, we adapt this ingredient to design an information provider that helps developers
track how influencing options are used in the implementation to directly and indirectly influence
the performance of option hotspots. In our implementation, this information provider slices
(chops) a system from the point where influencing options are first loaded into the system to the
option hotspots, and shows (a) a method-level dependence graph and (b) highlighted statements
of the slice in the source code.
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Ideally, we would slice the program dynamically, as we are analyzing a system’s dynamic
behavior and to avoid approximations in the results. However, after exploring various dy-
namic and static slicing research tools, we settled on the state-of-the-art static slicer provided
by JOANA [Graf et al., 2012], as it is the most mature option.

Example. Figure 4.4 shows a screenshot of our tool, which helps developers trace the cause-
effect chain by showing a method-level dependence graph from the main method, in which the
influencing options DUPLICATES and TRANSACTIONS are loaded into the system, to the option
hotspot Cursor.put. The graph can help developers track dependences across methods in
the system. When clicking on a method on the graph, our tool opens the file with the method,
and highlights the statements in the slice, such as in Figure 4.4. The highlighted statements can
help developers trace the cause-effect chain by tracking how influencing options are used in the
implementation to directly and indirectly cause a performance issue in option hotspots.

Contribution - Design of information providers: We tailor program slicing to help develop-
ers trace the cause-effect chain by showing a method-level dependence graph and highlighting
relevant statements. The information is derived by slicing (chopping) the system from the
point where influencing options are first loaded into the system to the option hotspots. This
information can help developers track how influencing options are used in the implementation
to directly and indirectly influence the performance of option hotspots.

4.1.4 Implementation
We implemented the information providers in a Visual Studio Code extension prototype called
GLIMPS. Our prototype tailors interpretable Global and Local performance-Influence Models,
CPU Profiles, and a program Slicer. The first three items are collected prior to debugging, using
an infrastructure where developers configure and run the system. Subsequently, developers use
GLIMPS to identify influencing options, locate option hotspots, and trace the cause-effect chain.

GLIMPS is agnostic to the ingredients used to tailor and implement information providers.
In fact, GLIMPS is entirely built on our existing infrastructure of white-box performance-
influence modeling (Chapter 3) and the program slicer provided by JOANA, without major modi-
fications. The novelty of GLIMPS is in the design and integration of information providers, from
multiple ingredients, into a cohesive infrastructure and user interface, which can help developers
debug the performance of configurable software systems.

The implementation that we evaluate uses Comprex, which we presented in Chapter 3, to
build the interpretable global and local performance-influence models, using JProfiler [JPR,
2019] to collect the CPU profiles. We use JOANA to slice the system from influencing options
to option hotspots using a fixed-point chopper algorithm, which first computes a backward slice
from the option hotspots, and then computes a forward slice, on the backward slice, from the
influencing options [Giffhorn, 2011]. For scalability and to reduce approximations, we modified
JOANA to consider code coverage under the problematic configuration and a non-problematic
configuration.
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Contribution - GLIMPS: We integrated our designed information providers into a cohesive
infrastructure and user interface that developers can use to debug the performance of config-
urable software systems.

4.2 Evaluating Usefulness of Information Providers
We evaluate the usefulness of our designed information providers to help developers debug the
performance of configurable software systems. Specifically, we answer the following research
question:

RQ1: To what extent do the designed information providers help developers debug the perfor-
mance of configurable software systems?

We answer this research question with two user studies using different designs. We first
evaluate the extent that our information providers support the information needs that we identi-
fied in our exploratory study presented in Chapter 2. To this end, we conduct a validation user
study, in which we ask the same participants of our exploratory study to debug a comparable
unexpected performance behavior using GLIMPS on the same subject system (Section 4.2.1).
Afterwards, we replicate the study, intentionally varying some aspects of the design (theoretical
replication [Juristo and Gómez, 2011, Schmidt]), to evaluate to which extent our information
providers generalize for a more complex task with an interaction in a larger software system.
Specifically, we conduct a confirmatory user study, in which we ask a new set of participants to
debug a more complex task on a more complex subject system (Sec 4.2.2). The validation and
confirmatory studies, together, provide evidence that our information providers help develop-
ers debug the performance of complex configurable software systems, because the information
providers support the information needs that developers have in this process.

4.2.1 Validating Usefulness of Information Providers
We first conducted a validation user study to evaluate the extent that the designed information
providers support the information needs that we identified in our exploratory study (Chapter 2).

Method

Study design. We invited the participants from our exploratory study, after 5 months, to solve
another problem in the same subject system, Density Converter (Complete), which includes all
Java dependencies, but now with the help of our information providers. This design can be
considered as a within-subject study, where subjects perform tasks both in the control and in the
treatment condition: Specifically, we consider our exploratory study as the control condition,
in which participants debugged a system without GLIMPS, and consider the new study as the
treatment condition, in which participants debug a comparable performance issue for 50 minutes
in the same subject system with GLIMPS. Similar to the exploratory study, we use a think-aloud
protocol [Jääskeläinen, 2010] to identify whether our information providers actually support the
information needs that developers have when debugging the performance of the subject system.
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Prior to the task, participants worked on a warm-up task for 20 minutes using GLIMPS. We
tested the time for the warm-up task, as well as GLIMPS’s design and implementation in a pilot
study with 4 graduate students from our personal network.

After the task, we conducted a brief semi-structured interview to discuss the participants’
experience in debugging the system, as well as the usefulness of the information providers, and
to contrast their experience to debugging without the information providers.

Due to the COVID-19 pandemic, we conducted the study remotely over Zoom. Participants
used Visual Studio Code through their preferred Web browser. The IDE was running on a remote
server and was configured with GLIMPS. We asked participants to share their screen. With the
participants’ permission, we recorded audio and video of the sessions for subsequent analysis.

Task and subject system. We prepared a comparable, but different, debugging task to the task
in our exploratory study. Similar to the exploratory study, the task involved a user-defined con-
figuration in Density Converter (Complete) that spends an excessive amount of time executing.
We introduced a bug caused by the incorrect implementation of one configuration option (the
system was using a larger scale of the input image instead of using a fraction). Participants were
required to identify and explain which and how configurations options caused the unexpected
performance behavior. In contrast to the exploratory study, the user-defined configuration, bug,
and problematic configuration option, were different.

Participants. We invited the participants from our exploratory study to work on our task. After
conducting the study with 8 participants, we observed a massive effect size between debugging
with and without our information providers (correctly debugging within 19 minutes compared to
failing after 50 minutes). Hence, we did not invite the remaining participants.

Analysis. We analyzed and compared transcripts of the audio and video recordings of the ex-
ploratory and validation studies to measure the time participants spend working on the task and
their success rates. Based on our exploratory study, participants needed to identify influencing
options, locate option hotspots, and trace the cause-effect chain to correctly debug the system.
We also analyzed the interviews using standard qualitative research methods [Saldaña, 2015].
The author of this dissertation, who conducted the study, analyzed the sessions independently,
summarizing observations and discussions during the task and interviews. All researchers in-
volved in this study met weekly to discuss the observations.

Threats to Validity and Credibility. We invited the same participants and used the same sub-
ject system as in our exploratory study. Such a design might only validate the information needs
when debugging performance in the selected subject system. Additionally, the exploratory and
validation studies were conducted 5 months apart, which might result in learning effects that help
participants in the latter study. Furthermore, there is the threat that the task in the validation study
is simpler. While our later study varies these aspects to observe whether our solutions generalize
to other tasks, generalizations about our results should be done with care.
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30’ 35’ 45’05’ 10’ 20’ 25’15’ 40’ 50’

Influencing Options Option Hotspots Cause-Effect Chain

       Timeout        Found information        Did not find information

Treatment - Used GLIMPS

Control - Did not use GLIMPS

System: Density Converter

Figure 4.5: Time participants spent looking for each piece of information when debugging the per-
formance of Density Converter (Complete) with and without GLIMPS. The first 8 participants who
did not use GLIMPS are the same participants who used our tool. The data for the other partici-
pants who did not use GLIMPS is included for reference.

Results

Figure 4.5 shows the time that each participant spent looking for each piece of information
when debugging the performance of Density Converter (Complete) with (treatment) and with-
out (control) GLIMPS. Overall, all participants who used our information providers identified
the influencing options, located option hotspots, and traced the cause-effect chain, and correctly
explained the root cause of the performance issue in less than 19 minutes. By contrast, the 8
participants could not debug the unexpected behavior without our information providers in 50
minutes, when they struggled to find relevant information.4

All 8 participants who used our information providers identified the influencing options and
located the option hotspots in a few minutes. Afterwards, all participants traced the cause-effect
chain and explained how the influencing options caused the unexpected performance behavior in
the option hotspots.

4We did not conduct a statistical significance test, since comparing completion rates is obvious: All participants
correctly debugged with our tool, but no participants correctly debugged without our tool; comparing completion
times cannot be done since nobody completed the task without our tool.
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When these 8 participants did not use our information providers, no participant found a single
piece of information in the same timeframe as they did when using our information providers. In
fact, during a 25-minute window, only 3 participants found the influencing options, and no partic-
ipant found any option hotspots. Furthermore, as described in our exploratory study, even when
we explicitly told participants (a) the one influencing option that was causing the unexpected
performance behavior and (b) the option hotspots whose execution times drastically increased as
a result of the problematic configuration option, no participant could trace the cause-effect chain
and find the root cause of the unexpected behavior within 25 minutes.

After completing the task, the participants discussed how the information providers helped
them debug the performance of the system, and contrasted their experience to debugging without
our tool. All participants mentioned that the information providers helped them obtain relevant
information for debugging. The consensus was that the information providers “helped me focus
on the relevant parts of the system” to debug the unexpected performance behavior. The par-
ticipants contrasted this experience to the struggles that they faced when debugging without our
tool. In particular, some participants remembered “being lost” on what methods to follow or not
knowing “which parts of the program are relevant.”

Summary RQ1: The validation study provides evidence that the designed information providers
support the information needs that we identified in our exploratory study.

Contribution - Validation study: Our validation study demonstrates the usefulness of our
designed information providers to support the needs that developers have to (a) identify influ-
encing options, (b) locate option hotspots, and (c) trace the cause-effect chain when debugging
the performance of configurable software systems.

Thesis contribution: We conducted an empirical evaluation that validates that our designed
information providers support the needs that developers have when debugging the perfor-
mance of configurable software systems. Supporting developers’ needs helps them maintain
configurable software systems to reduce the energy consumption and operational costs of run-
ning this type systems.

4.2.2 Confirming Usefulness of Information Providers
After validating that our information providers support the information needs that we identified,
we conducted a confirmatory user study to evaluate the extent that the information providers can
potentially generalize to support the information needs of debugging the performance of complex
configurable software systems.

Method

Study design. We replicated the validation study, intentionally varying some aspects of the
design: We used a between-subject design where we ask a new set of participants to debug a
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more complex task on a more complex subject system, all working on the same task, but using
different tool support. With these variations, we evaluate that the results and massive effect size
in our previous study are not due to, for example, a simpler task or learning effects, but rather,
that the information providers help developers debug the performance of complex configurable
software systems, because the information providers support the needs that developers have in
this process.

As in our validation study, we conducted the confirmatory study using a think-aloud proto-
col [Jääskeläinen, 2010], to compare how two new sets of participants debug the performance of
a complex configurable software system using different tool support in 60 minutes. The treatment
group used GLIMPS, while the control group used a simple plugin, which profiles and provides
the execution time of the system under any configuration. This information is the same that we
gave participants in our exploratory study using a Wizard of Oz approach (see Section 2.2). For
this confirmatory study, however, we did not use a Wizard of Oz approach, as we wanted both
groups to access information for debugging using a tool and the same IDE.

Prior to the task, participants worked on a warm-up task for 20 minutes using either GLIMPS
or the simple plugin to learn how to use the information providers or the components that pro-
vided performance behavior information, respectively. We tested the simple plugin’s design and
implementation in a pilot study with 4 graduate students from our personal network.

After the task, we conducted a brief semi-structured interview to discuss the participants’
experience in debugging the system. In particular, we asked participants in the treatment group
about the usefulness of the information providers and whether there was additional information
that they would like to have in the debugging process. Similarly, we asked participants in the
control group for the information that they would like to have when debugging the performance
of configurable software systems.

Due to the COVID-19 pandemic, we conducted the study remotely over Zoom. Participants
used Visual Studio Code through their preferred Web browser, which was running on a remote
server, and was configured with GLIMPS and the simple plugin. We asked participants to share
their screen. With the participants’ permission, we recorded audio and video of the sessions for
subsequent analysis.

Task and subject system. We prepared a more complex performance debugging task for a
more complex configurable software system than the task and subject system in our exploratory
and validation studies. Similar to the prior studies, the task involved a user-defined configuration
that spends an excessive amount of time executing. Participants were required to identify and
explain which and how configuration options caused the unexpected performance behavior. In
contrast to the previous studies, we introduced a bug caused by the incorrect implementation of
an interaction of two configuration options (The system spent a long time inserting duplicate
data using transactions). We selected Berkeley DB as the subject system due to the following
reasons: (1) the system is implemented in Java, is open source, and is more complex than Density
Converter (Complete) (over 150K SLOC and 30 binary and non-binary configuration options)
and (2) the system has a complex performance behavior (execution time ranges from a couple of
seconds to a few minutes, depending on the configuration).
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Participants. We recruited 12 graduate students, independent of our exploratory and validation
studies, with extensive experience analyzing the performance of configurable Java systems.

When determining the number of participants for the control group, we made some ethical
considerations, while also ensuring that we obtain reliable results. In our exploratory study, we
observed 19 experienced researchers and professional software engineers who could not debug
the performance of a medium-sized system with a performance bug caused by a single config-
uration option within 50 minutes (see Figure 4.5). With Berkeley DB, we want to observe how
participants debug the performance of a more complex system; a significantly larger system, in
terms of SLOC and configuration space size, in which the unexpected behavior is caused by an
interaction of two configuration options. Based on (a) the fact that we have strong empirical
evidence that debugging the performance of configurable software systems without relevant in-
formation is frustrating and is highly likely to not be completed under 60 minutes and (b) the
massive effect size in our validation study between debugging with and without our information
providers, we decided to minimize the number of participants that we expect to struggle and fail
to complete the task, while still having a reasonable number participants in the control group.

Ultimately, we randomly assigned 4 out of the 12 participants to the control group, making
sure to balance the groups in terms of the participants’ debugging experience: The median pro-
gramming experience for both groups is 6 years, a median of 3.5 years in Java, a median of 2.2
years of performance analysis experience, and a median of 2.7 years working with configurable
software systems.

Analysis. We analyzed transcripts of the audio and video recordings to measure the time partic-
ipants spend working on the task and their success rates. Based on our exploratory and validation
studies, participants needed to identify influencing options, locate option hotspots, and trace the
cause-effect chain to successfully debug the system. Additionally, we analyzed the interviews
using standard qualitative research methods [Saldaña, 2015]. The author of this dissertation, who
conducted the study, analyzed the sessions independently, summarizing observations and discus-
sions during the debugging task and the interviews. All researchers involved in this study met
weekly to discuss the observations.

Threats to Validity and Credibility. While we aimed to increase the complexity of the perfor-
mance debugging task, readers should be careful when generalizing our results to other complex
configurable software systems.

Our control group consisted of 4 participants. As argued previously, we did not recruit more
participants due to the struggles that we observed in our exploratory study on a simpler system
and the massive effect size in our validation study between debugging with and without our
information providers. Nevertheless, readers should be careful when generalizing our results.

While the control group had access to the IDE’s debugger and used a simple plugin, we might
obtain different results if the participants had used other debugging tools and techniques.

Results

Figure 4.6 shows the time each participant spent looking for each piece of information while
debugging the performance of Berkeley DB with GLIMPS (treatment) and the simple plugin

75



Influencing Options Option Hotspots Cause-Effect Chain

       Timeout        Found information        Did not find information

30’ 35’ 45’05’ 10’ 20’ 25’15’ 40’ 50’ 55’ 60’

Treatment - Used GLIMPS

Control - Used simple plugin

System: Berkeley DB

Figure 4.6: Time participants spent looking for each piece of information when debugging the per-
formance of Berkeley DB with different tool support.

(control). Similar to our validation study, all participants who used our information providers
identified the influencing options, located the option hotspots, and traced the cause-effect chain
in less than 25 minutes. By contrast, the participants who did not use our information providers
struggled for 60 minutes and could not debug the system.5

While working on the task, we observed the participants in the treatment group looking for
the same information as in Table 4.1, and using our information providers similarly to the par-
ticipants in the validation study to find information to debug the subject system. Likewise, the
participants in the control group struggled while performing the same activities as those listed in
Table 2.1 when trying to identify the influencing options and locate the option hotspots.

After working on the task, all participants discussed their experience in debugging the per-
formance of the system using tool support. Similar to the discussion in our validation study,
all participants in the treatment group commented how the information providers helped them
identify influencing options, locate option hotspots, and trace the cause-effect chain. Likewise,
the participants who used the simple plugin described similar struggles and barriers as those
mentioned in our exploratory study (Section 2.2). All participants in this group mentioned that
identifying the influencing options that cause the expected behavior is “difficult” and locating
the option hotspots is “challenging.” However, none of the participants in this group commented
on tracing the cause-effect chain, as they never got to that point in the debugging process.

Summary RQ1: The confirmatory study provides evidence that our information providers help
developers debug the performance of complex configurable software systems.

5We did not conduct a statistical significance test, since comparing completion rates is obvious: All partici-
pants in the treatment group correctly debugged the system, but no participant in the control group did; comparing
completion times cannot be done since nobody in the control group completed the task.
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Contribution - Confirmatory study: Our confirmatory study demonstrates the usefulness of
our designed information, because they support the needs that developers have when debug-
ging the performance of complex configurable software systems.

Thesis contribution: We conducted an empirical evaluation that confirms that our designed
information providers support the needs that developers have and speed up the process of
debugging the performance of complex configurable software systems. Supporting develop-
ers’ needs helps them maintain complex configurable software systems to reduce the energy
consumption and operational costs of running this type systems.

4.3 Summary
In this chapter, we continued our human-centered approach, which started with our exploratory
user study in Chapter 2, to identify solutions to support developers’ actual needs in the process
of debugging the performance of configurable software systems. We described how we designed
and implemented information providers, tailoring our work on interpretable Global and Local
performance-Influence Modeling, and use of CPU Profiling described in Chapter 3, as well as
tailoring program Slicing. We integrated the information providers in a cohesive prototype called
GLIMPS, which can help developers debug the performance of configurable software systems.
Two user studies, with a total of 20 developers, validate and confirm that our designed informa-
tion providers support the needs that developers have and speed up the process of debugging the
performance of complex configurable software systems.

The information providers implemented in GLIMPS contribute to the thesis goal of reduc-
ing the energy consumption and operational costs of running configurable software systems by
providing developers with tool support to help them debug and maintain their systems.
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Chapter 5

Conclusions

Most of today’s software systems are configurable. The flexibility to customize these systems,
however, comes with the cost of increased complexity. Understanding how configuration options
and their interactions affect performance, in terms of execution time, and often directly correlated
energy consumption and operational costs, is challenging, due to the large configuration spaces
of these systems. For this reason, developers often struggle to debug and maintain their systems
when surprising performance behaviors occur.

In this dissertation, we took a human-centered approach to identify solutions to support de-
velopers’ needs in the process of debugging the performance of configurable software systems.
We tailored white-box analyses and techniques to provide relevant performance-behavior in-
formation for developers to understand how configuration options and their interactions cause
performance issues.

In Chapter 2, we conducted an exploratory user study, in which we identified that developers
struggle to find relevant information to identify influnecing options: the configuration options
or interactions causing an unexpected performance behavior, locate option hotspots: the meth-
ods where configuration options affect the performance of the system, and trace the cause-effect
chain: the sequence of statements detailing how influencing options are used in the implementa-
tion to directly and indirectly affect the performance of option hotspots. Based on these findings,
we suggested that interpretable global and local performance-influence modeling can help devel-
opers identify influencing options and locate option hotspots, and that CPU profiling and program
slicing can help developers trace the cause-effect chain.

While the latter two techniques can be tailored to support developers’ needs without major
modifications, we noted some limitations with existing performance-influence modeling tech-
niques that we needed to overcome to provide relevant information for debugging. Consequently,
in Chapter 3, we presented a white-box approach to model the performance of configurable soft-
ware systems. Our approach analyzes and instruments the source code to accurately capture
configuration-specific performance behavior, without using machine learning to extrapolate in-
complete samples. Our approach tailors a taint analysis to identify how configuration options and
their interactions influence the performance of code regions. An empirical evaluation demon-
strated that our white-box approach can efficiently build accurate and interpretable performance-
influence models.

In Chapter 4, we continued our human-centered approach to identify solutions to help devel-
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opers debug. We described how we designed and implemented information providers, tailoring
interpretable global and local performance-influence models, CPU profiling, and program slic-
ing, in a cohesive prototype called GLIMPS. Two user studies validated and confirmed that our
designed information providers support the needs that developers have and speed up the process
of debugging the performance of configurable software systems.

Thesis statement. We conclude that this dissertation provides substantial evidence that vali-
dates the thesis statement.

Thesis Statement: Tailoring specific white-box analyses to track how configuration options
influence the performance of code-level structures in configurable software systems helps
developers to (1) efficiently build accurate and interpretable global and local performance-
influence models and (2) more easily inspect, trace, understand, and debug configuration-
related performance issues.

To validate this hypothesis, we took a human-centered approach to identify how to ana-
lyze and obtain relevant information to help developers debug the performance of configurable
software systems. We conducted an exploratory user study to identify the information that de-
velopers need when debugging the performance of configurable software systems. Afterwards,
we identified the program analyses and techniques that can be tailored to support those needs.
However, we noted that existing performance-influence modeling techniques have some limita-
tions, that we needed to overcome to provide relevant information for debugging (Chapter 2).
Consequently, we presented and evaluated a white-box performance-influence modeling tech-
nique, which tailored a taint analysis and overcame those limitations (Chapter 3). Afterwards,
we described how we designed and implemented information providers, tailoring the white-box
analyses that we identified, to support developers’ needs; namely, interpretable global and local
performance-influence modeling, CPU profiling, and program slicing. Finally, we conducted
two users studies to validate and confirm that our designed information providers support the
needs that developers have and speed up the process of debugging the performance of complex
configurable software systems (Chapter 4).

In addition to validating the thesis statement, we conclude that this dissertation contributes to
our larger goal of reducing the energy consumption and operational costs of running configurable
software systems, by providing developers with targeted tool support to help them debug and
maintain their systems.

5.1 Future Work

The goal of this dissertation is to identify and evaluate solutions to help developers debug the
performance of complex configurable software systems. Reflecting upon our experiences and
findings, we highlight some future directions.
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Usability and Interpretability of Performance-Influence Models

We demonstrated that interpretable global and local performance-influence models provide rel-
evant information to help developers debug the performance of configurable software systems.
One possible future direction could further evaluate the usability and interpretability of these
types of models.

As described in Section 2.1, one research area is devoted to improving the accuracy and
reducing the cost of building performance-influence models [Ha and Zhang, 2019, Kolesnikov
et al., 2018, Siegmund et al., 2015, Weber et al., 2021]. While one of the motivations in this
area is to help users make informed configuration decisions, the models are often evaluated in
terms of accuracy, and not usability or interpretability. Although the evaluation in Chapter 3 of
our white-box approach also measured the cost to generate our models and their accuracy, we
argued about the interpretability of our linear models. Furthermore, in Chapter 4, we conducted
two user studies that demonstrated the usefulness of the tailored information provided by our
linear models. Similar to this dissertation, future work could evaluate the extent that different
representations of these models can help users make informed tradeoff decisions.

In recent work, Kolesnikov et al. [2018] briefly discussed the usability and interpretability
of performance-influence models. When the authors presented linear models to 4 developers in
high-performance computing, a developer mentioned “[being] surprised to see that [a configura-
tion option] had only a small influence on system performance.” This finding provides evidence
that linear performance-influence models, such as the ones that we generate with our white-box
approach, are preferable in situations where understanding how configuration options and inter-
actions affect performance is important, such as debugging. A possible future direction could,
more methodically, compare the usability and interpretability of different model representations.

While we argue that the performance-influence models that we generate with our white-
box approach are interpretable, interpretability is an open research problem without a generally
agreed measure for interpretability [Doshi-Velez and Kim, 2017, Lipton, 2018, Molnar, 2019].
Although the two users that we conducted in Chapter 4 provide evidence that linear models are
helpful for developers to debug performance in configurable software systems, a future research
direction could further empirically explore the topic of interprability in performance-influence
models.

Tool Support Deployment in the Field

We conducted two user studies that validated and confirmed that the information providers that
we implemented in GLIMPS support the needs that developers have and speed up the process
of debugging the performance of complex configurable software systems. One possible future
direction could evaluate the usefulness of the information providers and tool support to help
developers debug real bug reports in their own configurable software systems.

One possible study design could involve developers independently using our tool to debug
performance issues in their own systems. In this design, the tool would need to be instrumented
to collect information of how developers use the tool for measuring usefulness. The study could
be complimented with surveys or interviews, to further understand how developers used the
tool during the debugging process. To conduct such a study, however, a significant amount of
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engineering effort would be required for developers to independently use the tool. Nevertheless,
such a study would provide strong empirical evidence of the usefulness of the tool to debug
performance issues “in the wild”.

Alternatively, another possible study design could involve working with a few developers
to help them debug bug reports in their own configurable software systems. In this design,
developers would be guided on how to set up and use our tool, while an experimenter observes
how developers debug their own systems. The study could also be complimented with interviews
to get the developers’ perspectives on the usefulness of the tool. This study design, however,
most likely would be biased, as the experimenter would be interacting with the developers using
the tool. Nevertheless, the design would provide evidence of the usefulness of the tool to help
developers debug performance issues in real bug reports.

Another possible option would be to conduct case studies, in which researchers use our tool
to debug performance issues in open-source configurable software systems. In this design, re-
searchers would select bug reports from mailing lists or issue trackers, and debug the systems
using our tool. Afterwards, the researchers would respond to the bug reports indicating any find-
ings, misconfigurations, or bug fixes. While this study design does not involve interacting with
developers, the design would provide some evidence that developers who are unfamiliar with a
system can use our tool to debug the performance of configurable software systems.

Regardless of the study design the is used, such a study would help to further demonstrate
the usefulness of the work in this dissertation. Furthermore, interacting with developers who are
actively debugging performance issues in their own configurable software systems might uncover
additional information needs. Consequently, researchers could identify additional techniques and
approaches that can provide relevant information to further help developers debug.

Scalability of Taint Analyses

We observed some scalability issues with the static and dynamic taint analyses that we tailored in
our white-box performance-modeling approach (Chapter 3). One possible future direction could
explore how to overcome these limitations.

Scalability in static taint analysis is an open area of research, in which several different tech-
niques have been developed and evaluated to analyze larger systems [Andreasen et al., 2017,
Avdiienko et al., 2015, Barros et al., 2015, Bodden, 2018, Christakis and Bird, 2016, Do et al.,
2017, Garbervetsky et al., 2017, Lerch et al., 2015, Späth et al., 2017, Zhang and Su, 2017].
Strategies include reducing the precision of the results [Avdiienko et al., 2015, Do et al., 2017],
novel strategies to conduct the taint analysis itself [Andreasen et al., 2017, Bodden, 2018, Gar-
bervetsky et al., 2017, Lerch et al., 2015, Zhang and Su, 2017], or only precisely tracking taints
through specific constructs [Barros et al., 2015, Späth et al., 2017]. We hope that this community
will continue advancing the state of the art, and these strategies are integrated in FlowDroid and
other engines, to scale the analysis to larger systems.

In addition to the above strategies, the community could explore techniques from other re-
search areas. For instance, a barrier is a concept in program slicing, which filters that parts of
the system that should not be considered when computing a slice [Krinke, 2003]. We basically
used barriers when we considered code coverage information when slicing our subject systems
with JOANA (Chapter 4). One future direction could explore this and similar strategies to scale
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taint analyses to larger systems.
We also observed scalability issues when using the regular workload to run the dynamic

taint analysis in our subject systems. While we overcame the issue by drastically reducing the
workload size, a possible future direction could explore new or similar techniques, such as those
in static taint analysis, to reduce the overhead in Phosphor of running a precise taint analysis.

Analyzing Highly-Configurable Software Systems

Similar to existing work, we analyzed the performance of a subset of the configuration options
of our subject systems; ranging from 5 to 22 configurations. One possible future direction could
explore the effort and practicality of analyzing systems with much larger configuration spaces.

While our larger subject systems have intractably large configuration spaces (e.g., more that
222 configuration), there are several software systems that have hundreds or thousands of con-
figuration options [Han and Yu, 2016, Mukelabai et al., 2018], which might require more effort
to accurately analyze the functionality and behavior of those systems. For instance, at most, we
measured the performance of 2K configurations of some subject systems to evaluate our white-
box modeling approach (Chapter 3). However, there are scenarios and use cases in which a much
larger number of configuration might need to be analyzed. For instance, Acher et al. [2019] an-
alyzed about 95K configurations of the Linux kernel for measuring and predicting the kernel
size. Likewise, Halin et al. [2018] reported the computational effort to exhaustively test over
26K configurations of JHipster. We hope that this community will continue considering larger
configurations spaces in their empirical evaluations.

In addition to considering more options for a single system, there are some distributed sys-
tems that are composed of multiple configurable software systems. In these types of systems,
configuration options might affect the functionality and quality attributes, including performance,
of other components in addition to those in which the configuration options are defined [Krishna
et al., 2020]. One future direction could explore how additional white-box analyses could be
used and adapted to analyze and debug the performance of those systems.
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Appendix A

Experimental Setup:
Performance-Influence Modeling

A.1 Subject Systems
The following list describes each system in more detail, including the configuration options,
scenario, and workload considered for the measuring performance:

• Pngtastic Counter is a component of Pngtastic1; an API for manipulating PNG images.
This component counts the number of colors in an image. The system does not come with
any tests or benchmarks, and only provides small sample images that are processed in a
couple of seconds. Hence, we processed a publicly available 9118 × 5699 pixel 34.5MB
PNG image. The configuration options that we considered are:

DIST_THRESHOLD

FREQ_THRESHOLD

LOG_LEVEL

MIN_ALPHA

TIMEOUT

• Pngtastic Optimizer is also a component of Pngtastic. This component optimizes PNG
images to reduce file size. We processed the same PNG image as in Pngtastic Counter.
The configuration options that we considered are:

COMPRESSION_LEVEL

COMPRESSOR

ITERATIONS

LOG_LEVEL

REMOVE_GAMMA

• Elevator2 is a simulator of a configurable elevator system, purposely built to have all con-
figuration options interact. The system comes with several specifications and scenarios
of how the elevator should behave. We selected the default Specification3. The

1https://github.com/depsypher/pngtastic
2https://www.se.cs.uni-saarland.de/projects/family/Elevator.rar
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configuration options that we considered are:

BASE

EMPTY

EXECUTIVE_FLOOR

OVERLOADED

TWO_THIRDS_FULL

WEIGHT

• Grep is the Java implementation of the Unix command line utility available in Unix4j3 for
searching plain-text data. The system does not come with any tests or benchmarks. Hence,
we ran the command on a set of 45 text files of popular books totaling about 1 million
lines. The configuration options that we considered are:

COUNT

FIXED_STRINGS

IGNORE_CASE

INVERT_MATCH

LINE_NUMBER

MATCHING_FILES

WHOLE_LINE

• Kanzi4 is a modular, expandable, and efficient lossless data compressor. We executed
the BlockCompressor scenario to compresses and archive all files in a Java 67.7MB
rt.jar file. The configuration options that we considered are:

BLOCK_SIZE

CHECKSUM

ENTROPY

FORCE

LEVEL

TRANSFORM

VERBOSE

• Email5 is a simulator of a configurable email client. The system comes with several sce-
narios that specify how the client should behave. We executed 9 scenarios sequentially.
The configuration options that we considered are:

ADDRESS_BOOK

AUTO_RESPONDER

BASE

DECRYPT

ENCRYPT

FORWARD

KEYS

SING

3https://github.com/tools4j/unix4j
4https://github.com/flanglet/kanzi
5https://www.se.cs.uni-saarland.de/projects/family/Email.rar

86



VERIFY

• Prevayler6 is an object-persistence database, in which business objects are kept live in
memory, and transactions are journaled for system recovery. We executed a demo included
with the system, PrimeCalculator, which calculates and stores the first 500K prime
numbers. The configuration options that we considered are:

CLOCK

DEEP_COPY

DISK_SYNC

FILE_AGE_THRESHOLD

FILE_SIZE_THRESHOLD

JOURNAL_SERIALIZER

MONITOR

SNAPSHOT_SERIALIZER

TRANSIENT_MODE

• Sort is also the Java implementation of the Unix command line utility available in Unix4j
for sorting or merging records of text and binary files. We ran the command on the same
set of 45 text files as in Grep. The configuration options that we considered are:

CHECK

DICTIONARYORDER

GENERALNUMBERICSORT

HUMANNUMBERICSORT

IGNORECASE

IGNORELEADINGBLANKS

MERGE

MONTHSORT

NUMERICSORT

REVERSE

UNIQUE

VERSIONSORT

• H27 is a fast relational database system that can operate both in an embedded and a client-
server setting. We executed the RunBenchC benchmark, included with the system, which
is similar to the TPC-C benchmark. The benchmark includes multiple transaction types
on a complex database with several tables and with a specific execution structure. The
configuration options that we considered are:

ACCESS_MODE_DATA

ANALYZE_AUTO

ANALYZE_SAMPLE

AUTO_COMMIT

CACHE_SIZE

CACHE_TYPE

6https://prevayler.org/
7https://h2database.com/html/main.html
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CIPHER

COMPRESS

DEFRAG_ALWAYS

FILE_LOCK

FORBID_CREATION

IF_EXISTS

IGNORE_UNKNWON_SETTING

MV_STORE

OPTIMAL_DISTINCT

PAGE_SIZE

• Berkeley DB8 is a high-performance embeddable database providing key-value storage. We
executed the MeasureDiskOrderedScan performance benchmark, included with the
system, which populates a database with 500K key/value pairs. The configuration options
that we considered are:

ADLER32_CHUNK_SIZE

CACHE_MODE

CHECKPOINTER_BYTES_INTERVAL

DUPLICATES

ENV_BACKGROUND_READ_LIMIT

ENV_IS_LOCKING

ENV_SHARED_CACHE

JE_DURABLE

JE_FILE_LEVEL

LOCK_DEADLOCK_DETECT_DELAY

LOCK_DEADLOCK_DETECT

MAX_MEMORY

REPLICATED

SEQUENTIAL

TEMPORARY

TXN_SERIALIZABE_ISOLATE

• Apache Lucene9 is a library providing indexing and search features, as well as advanced
analysis and tokenization capabilities. We executed the IndexFiles demo included
with the system. Similarly to its nightly benchmarks that index large Wikipedia exports,
we indexed a large publicly available 512.5MB Wikimedia dump with about 8 million
lines. The configuration options that we considered are:

CHECK_PENDING_FLUSH_UPDATE

CODEC

COMMIT_ON_CLOSE

INDEX_COMMIT

INDEX_DELETION_POLICY

8https://www.oracle.com/database/berkeley-db/java-edition.html
9https://lucene.apache.org/
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MAX_BUFFERED_DOCS

MAX_CFS_SEGMENT_SIZE_MB

MAX_TOKEN_LENGTH

MERGE_POLICY

MERGE_SCHEDULER

MERGED_SEGMENT_WARMER

NO_CFS_RATIO

RAM_BUFF_SIZE_MB

RAM_PER_THREAD_LIMIT

READER_POOLING

SIMILARITY

USE_COMPOUND_FILE

• Density Converter10 is a popular image density converting tool, processing single or batches
of images to Android, iOS, Windows, or CSS specific formats and density versions. The
system does not come with any tests or benchmarks, and only provides small sample im-
ages that are processed in a couple of seconds. Hence, we processed a publicly available
5616× 3744 pixel 3.3MB JPEG photo. The configuration options that we considered are:

ANDROID_INCLUDE_LDPI_TVI

ANDROID_MIP_MAP_INSTEAD_OF_DRAWABLE

ANTI_ALIASING

CLEAN

COMPRESSION_QUALITY

DOWNSCALING_ALGO

DRY_RUN

HALT_ON_ERROR

IOS_CREATE_IMAGESET_FOLDERS

KEEP_ORIGINAL_POST_PROCSSED_FILES

OUT_COMPRESSION

PLATFORM

POST_PROCESSOR_MOZ_JPEG

POST_PROCESSOR_PNG_CRUSH

POST_PROCESSOR_WEBP

ROUNDING_MODE

SCALE_IS_HEIGHT_DP

SCALE

SKIP_EXISTING

SKIP_UPSCALING

UPSCALING_ALGO

VERBOSE

We considered two versions of this system: (1) the Interface version, in which we analyzed
the original 1359 SLOC system that calls several libraries to process images, and (2) the

10https://github.com/patrickfav/density-converter
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Complete version, in which we included and analyzed all Java dependencies.

A.2 Workloads for Dynamic Taint Analysis
We changed the workload to run the the iterative dynamic taint analysis in Comprex with a
smaller workload by factors ranging from 20 to 5000, depending on the system:

• For Pngtastic Counter and Pngtastic Optimizer, we reduced the size of the image to pro-
cess by 90%.

• For Elevator, we changed the number of times the elevator moved from 100 to 5.
• For Grep, we searched on one 1MB text file with 4440 lines.
• For Kanzi, we compressed the 5 smallest class files in rt.jar.
• For Email, we executed scenarios 1, 3, and 5.
• For Prevayler, we calculated and stored the first 10 prime numbers.
• For Sort, we sorted on three 1MB text files with 15 thousand lines.
• For H2, we changed the size parameter from 100 to 5.
• For Berkeley DB, we changed the n_records parameter from 500 thousand to 10.
• For Lucene, we trimmed the file to index from 8 million to 300 thousand lines.
• For Density Converter, we reduced the size of the photo to process by 90%.
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