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Abstract
Robotics and cyberphysical systems are increasingly being deployed to settings

where they are in frequent interaction with the public. Therefore, failures in these
systems can be catastrophic by putting human lives in danger and causing extreme
financial loss. Large-scale assessment of the quality of these systems before deploy-
ment can prevent these costly damages.

Because of the complexity and other special features of these systems, testing,
and more specifically automated testing, faces challenges. In this dissertation, I
study the unique challenges of testing robotics and cyberphysical systems, and pro-
pose an end-to-end automated testing pipeline to provide tools and methods that can
help roboticists in large-scale, automated testing of their systems. My key insight
is that we can use (low-fidelity) simulation to automatically test robotic and cyber-
physical systems, and identify many potentially catastrophic failures in advance at
low cost.

My core thesis is: Robotic and cyberphysical systems have unique features such
as interacting with the physical world and integrating hardware and software com-
ponents, which creates challenges for automated, large-scale testing approaches. An
automated testing framework using software-in-the-loop (low-fidelity) simulation
can facilitate automated testing for these systems. This framework can be offered
using a clustering approach as an automated oracle, and an evolutionary-based auto-
mated test input generation with scenario coverage fitness functions.

To support this thesis, I conduct a number of qualitative, quantitative, and mixed
method studies that 1) identify main challenges of testing robotic and cyberphysical
systems, 2) show that low-fidelity simulation can be an effective approach in detect-
ing bugs and errors with low cost, and 3) identify challenges of using simulators in
automated testing.

Additionally, I propose automated techniques for creating oracles and generat-
ing test inputs to facilitate automated testing of robotic and cyberphysical systems. I
present an approach to automatically generate oracles for cyberphysical systems us-
ing clustering, which can observe and identify common patterns of system behavior.
These patterns can be used to distinguish erroneous behavior of the system and act
as an oracle.

I evaluate the quality of test inputs for robotic systems with respect to their re-
liability, and effectiveness in revealing faults in the system. I observe a high rate
of non-determinism among test executions that complicates test input generation
and evaluation, and show that coverage-based metrics are generally poor indicators
of test input quality. Finally, I present an evolutionary-based automated test gen-
eration approach with a fitness function that is based on scenario coverage. The
automated oracle and automated test input generation approaches contribute to a
fully-automated testing framework that can perform large-scale, automated testing
on robotic and cyberphysical systems in simulation.
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Chapter 1

Introduction

Robotic systems are systems that sense, process, and physically react to information from the
real world [138]. In the past decade, robotic systems have become increasingly important in our
everyday lives. In the past, the use of these systems were mostly limited to industrial settings,
in isolation and under specific safe conditions, which prevented potential extreme damages to
people. However, robotic systems are now frequently used in a variety of (unsafe) settings such
as avionics, transportation and medical operations. In response to the COVID-19 crisis, for
example, robots have been used to deliver food to quarantined patients, disinfect public places,
and cope with increased supply chain demands [42, 46, 256, 263]. It is now more important than
ever to ensure the safety and quality of these systems before deploying them as failures in these
systems can be catastrophic. In October 2018 and March 2019, two separate Boeing 737 MAX
airplanes crashed after an uncommanded aggressive dive caused by erroneous angle of attack
sensor data, killing all 346 people aboard [2].

Automated quality assurance, or more specifically automated testing, is widely used in soft-
ware development [47]. However, robotic systems have specific properties that make deployment
of automated testing challenging in practice: 1) robots are comprised of hardware, software, and
physical components, which can be unreliable and non-deterministic [89, 133, 176], 2) they inter-
act with the physical world via inherently noisy sensors and actuators, and are sensitive to timing
differences [176], 3) they operate within the practically boundless state space of reality, making
emergent behaviors (i.e., corner cases) difficult to predict [89], and 4) the notion of correctness
for these systems is often non-exact and difficult to specify [192]. As a result, in many cases the
integration and system-as-a-whole testing is performed manually, mostly in the field [20]. Field
testing is an important part of robotics development, but it can result in expensive and dangerous
failures. In addition, field testing is highly limited by the scale of the scenarios and environ-
ments to which it can be applied. For example, testing an autonomous drone under highly windy
conditions requires either an expensive setup to artificially recreate high speed wind, or for the
condition to happen naturally. None of these options are practical, which leaves features untested
or under-tested in practice.

The ultimate goal of this work is to make robotics and cyberphysical systems safe, and im-
prove the quality assurance of these systems. For this purpose, we first need to identify the most
common challenges faced by robotics developers when testing robotic systems. Even though
many studies have investigated the state of testing (especially automated testing) of software
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Automated test
input generator Test inputs

Software-in-the-loop simulation

Execution
traces Automated oracle Labeled

traces

Figure 1.1: Automated testing pipeline for a cyberphysical system using simulation. An automated test
input generation technique (Chapter 5) creates test inputs that will be executed on the CPS in simulation,
which results in execution traces. These traces are provided to an automated oracle (Chapter 4) to be
labeled as either correct or erroneous.

systems in practice [59, 86, 106, 212, 240], little attention has been paid towards automated test-
ing of robotics and cyberphysical systems. As part of this thesis, I conducted a qualitative study
with robotics practitioners, to better understand the robotics testing practices currently being
used, and identify challenges and bottlenecks preventing roboticists from automated testing [20].
I identified three themes of challenges in testing robotic systems: 1) real-world complexities, 2)
community and standards, and 3) component integration. I present this study in greater detail in
Section 3.1.

Even though hardware testing is an essential part of quality assurance for robotic systems [15,
261], it is (almost) orthogonal to the quality of operating software; if the behavior of the hardware
and the environment can be simulated perfectly, we no longer need the actual hardware and a real
environment to test the software of the system. However, simulation by definition provides an
abstraction of the real environment, and most simulators provide low fidelity simulation and are
very limited [71, 73, 293].

We find that robotics practitioners generally distrust low-fidelity simulation, and believe the
fidelity of simulation is not sufficiently high for testing and that running tests on the actual robot
is the only way to test the system [20, 291]. However, this common belief is not necessarily
correct or supported by evidence. In 2016, the ExoMars lander crashed on Mars, which cost ap-
proximately $350 million [13]. Interestingly, this extremely expensive failure was later recreated
in simulation, which shows the potential role that simulation-based testing could play in prevent-
ing failures in the field [267]. In a similar case, a report issued by the National Transportation
Safety Board (NTSB) on Boeing 737 MAX crashes illustrates that the specific failure modes that
could lead to uncommanded plane dive (e.g., erroneous sensor data) were not properly simulated
as part of functional hazard assessment validation tests, and as a result, were missed by NTSB’s
safety assessment [3]. Although low-fidelity software-in-the-loop (SITL) simulators are not per-
fect, they can still be very effective tools in detecting and preventing failures by allowing cheap,
large-scale, automated testing. To illustrate the extent to which low-fidelity simulation-based
testing may be used to detect failures in robotics systems, we conducted an empirical case study
on a robotic system [265]. In this study, presented in Section 3.2, we showed that more than half
of the software bugs found in the system over time can manifest in low-fidelity SITL simulation.
Specifically, we found that of all bugs, only 10% require particular environmental conditions (not
available in low-fidelity simulation) to manifest, and 4% only manifest on physical hardware.

As a result, in the absence of high-fidelity simulators, low-fidelity SITL simulation can be
used for systematic, large-scale automated testing of CPSs, as its low fidelity only prevents dis-
covering of a small number of bugs in the system. However, prior work on the challenges of
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testing in robotics [20, 183] and CPSs in general [292] broadly identifies simulation as a key ele-
ment of testing that requires improvement. As part of this thesis, I set out to understand the extent
to which simulation is used for testing and automated testing in practice, and identify the barriers
that prevent wider use. For this purpose, we conducted a survey of 82 robotics developers to un-
derstand how they perceive simulation-based testing and what challenges they face when using
simulators. We found that simulation is used extensively for manual testing, especially during
early stages of design and development, but that simulation is rarely used for automated testing.
Overall, we identified 10 challenges that make it difficult for developers to use simulation. I
present this study in Section 3.3.

Given the considerable potential of simulation-based testing, we can imagine a fully auto-
mated testing pipeline that automatically performs large scale, whole-system tests on robotic
and CPS software in simulation. Figure 1.1 presents a high-level depiction of such a pipeline.
Overall, identifying failures and unexpected behaviors in the system requires 1) triggering the
conditions and scenarios that result in the failure manifesting, and 2) a means of detecting the
erroneous or unexpected system behaviors. In this thesis, I present techniques to achieve this
pipeline by creating an automated oracle that focuses on detecting misbehaviors of the system
(Chapter 4), and an automated test input generation technique that targets triggering faults in the
system (Chapter 5), without requiring pre-defined specifications or models of the system.

SITL simulation-based testing, as any other testing method, requires an oracle that can dif-
ferentiate between correct and incorrect system behavior [41]. This oracle can take many forms,
from formal specifications to manual inspection (human judgment) [19, 149, 182, 188, 225, 296].
For large-scale, automated testing, we require an oracle that can automatically label executions
of the system and detect failures. However, manually defining such oracle for a robotics system
requires extensive knowledge about the (usually very complex) system and considering all possi-
ble scenarios that the robot may face in advance [199]. For example, the oracle for a self-driving
car may simply specify that the vehicle should not collide with any objects. Even though this
oracle can detect failures in conditions where the vehicle hits a pedestrian or an object, it does not
take into account cases where colliding with an object, such as a plastic bag in the air, does not
impose any danger and should be allowed. In other words, robotic systems’ correct behavior may
vary based on the conditions that are affected by the unpredictable environment, system’s con-
figurations, timing and randomness. An accurate oracle needs to consider all possible conditions
and specify the correct behavior of the system in those conditions [162].

An automated approach of generating the oracle can take us one step closer to a pipeline for
systematic, large-scale automated testing presented in Figure 1.1. Existing approaches in au-
tomated specification mining and invariant inference, formal verification and statistical models
have tackled this problem in the past [29, 48, 50, 74, 77, 78, 88, 91, 112, 135, 172, 173, 213,
214, 216, 285, 296]. In Chapter 2, I present these techniques in greater detail, and discuss their
advantages and limitations. Broadly, robotic and autonomous systems have features that limit the
application of existing approaches. One such feature is that many of these systems involve third-
party components without access to the source code. This heavily limits the application of many
existing tools as they require complete access to the source code to extract system’s specifica-
tions. Another feature of robotics systems, as already mentioned, involves the context-dependent
behavior of the system, which eventually requires a method that is able to learn disjunctive mod-
els [213], depending on context. Finally, the amount of noise and randomness in the environment
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in which these systems operate requires special attention.
My key insight is that by observing many executions of the system as a blackbox, we can find

patterns of correct or normal behavior of the system, and mark executions that do not comply
with these patterns as abnormal or erroneous behavior. I present my approach in generating these
blackbox models from a set of previously observed executions of the system, and use them as an
oracle that can differentiate between correct and erroneous behavior of the system. I evaluated
the accuracy of these models by their ability to correctly label a set of traces. The details to this
work is presented in Chapter 4.

In addition to being able to detect failures in the system, we need to effectively trigger the
faulty behavior. Studies have shown that the quality of test inputs have a high impact on the abil-
ity to expose the system’s faulty behaviors [141, 146, 222]. In Chapter 5, I study the navigation
planner of a robotic system to develop an understanding of how we can evaluate the quality of
test inputs, and to propose an approach to automatically generate effective test cases.

To get one step closer to the automated testing pipeline of Figure 1.1, I propose an automated
method of generating effective test inputs that increases the ability of the testing framework to
reveal faults in the system [156]. Prior studies have proposed a number of automated test input
generation approaches to address this problem [110, 122, 197, 205, 268, 269, 277]. However,
many of these approaches require pre-defined artifacts and models of the system (e.g., Simulink
and MATLAB models) [122, 197, 205, 277], which are difficult and error-prone to be speci-
fied [110], and may not be available for many non-safety-critical robotic and CPSs [122]. Other
approaches specifically focus on autonomous driving applications with a set of assumptions and
requirements (e.g., the definition of safe driving that includes traffic laws) that may not be easily
extendable to other systems [110, 268, 269]. In this thesis, I study and evaluate different charac-
teristics of the test inputs that impact their quality, and propose an automated, search-based test
generation approach to generate high-quality test inputs without requiring pre-defined models or
artifacts of the system.

To generate effective test inputs, we require the following pieces: 1) A way to automatically
specify and generate test input scenarios for simulation, which includes the specification of the
simulation environment, and the test mission to be performed, 2) a metric that can measure the
effectiveness of test inputs in revealing faults, and 3) an approach to automatically generate test
inputs with higher effectiveness.

I addressed the first requirement by developing a tool to automatically translate test scenarios
provided in a domain-specific language [97] to valid simulation scenes and missions. Second,
to develop an understanding of how we can evaluate the effectiveness of test inputs, I did the
following: 1) investigated the reliability of test outcomes with respect to deterministic test ex-
ecutions for different test inputs, as it affects the quality of tests [53, 93, 127, 170, 184], and
how we evaluate them, and 2) using the mutation score [76] as the ground-truth measure for
the effectiveness of test inputs [141, 222], I evaluated different coverage-based test input quality
metrics. I observed high levels of non-determinism among test executions, which indicates the
necessity to execute test inputs multiple times and look at the outcome of the test executions
collectively. To address the third requirement, I showed that, in general, most coverage metrics
are poor indicators of fault finding effectiveness, which matches with findings of prior studies
on conventional software [57, 96, 107, 125, 137]. However, I found that the union coverage,
the collection of all lines or branches executed over multiple runs of the same test, has a higher
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correlation with the mutation score, and is a better indicator of test effectiveness.
Informed by the previous findings, I propose an evolutionary-based test generation approach

with a fitness function that is based on scenario coverage, where the test generation or selection
approaches focus on maximizing the diversity and effectiveness of the scenarios presented to the
system under test [102, 150, 202, 233, 281]. I showed that scenario coverage metrics inspired by
very limited knowledge of the system, together with an evolutionary algorithm, can be effective
in generating high-quality test inputs with low cost.

Overall, by identifying the challenges in testing robotic and cyberphysical systems, and
proposing approaches that address a subset of those challenges, this dissertation takes us one
step closer towards large-scale, automated testing of these systems, which eventually results in
higher quality systems.

1.1 Thesis Statement

Robotic and cyberphysical systems have unique features such as interacting with the physical
world and integrating hardware and software components, which creates challenges for auto-
mated, large-scale testing approaches. An automated testing framework using software-in-the-
loop (low-fidelity) simulation can facilitate automated testing for these systems. This framework
can be offered using a clustering approach as an automated oracle, and an evolutionary-based
automated test input generation with scenario coverage fitness functions.

1.2 Contributions

This thesis contains a set of qualitative and quantitative studies, where I conducted interviews
and surveys to empirically study the challenges of testing and automated testing robotic and cy-
berphysical systems, and used grounded theory [61] to analyze the data. In addition, I conducted
a case study on bugs in popular open-source ARDUPILOT system.

In this thesis, I propose approaches in automatically generating oracles, and effective test
inputs for these systems. I use multiple popular open-source robotic systems to evaluate perfor-
mance of the proposed techniques both in terms of automatically creating more accurate oracles,
and generating more fault revealing test inputs.

This thesis contributes in the following ways:
1. It identifies the challenges of automated testing for robotics systems and discovers the

practices currently being used in the field of robotics.

2. It shows that simulation-based testing can be an effective approach in identifying faults in
these systems.

3. It identifies the challenges of using simulators for the purpose of (automated) testing, and
the most prominent issues with currently available simulators.

4. It presents a black-box approach to automatically infer oracles for these systems based on
observed executions of the robot in the simulated environment.
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5. It investigates the severity of non-determinism among test executions in simulation, and
offers insight on the performance of coverage-based quality metrics as indicator of test
inputs fault-revealing effectiveness.

6. It presents an evolutionary-based automated test generation approach using scenario cov-
erage as fitness function.

Additionally, this thesis contributes by publicly providing the following set of tools and
datasets:

1. A dataset of bugs in the ARDUPILOT system, Dockerfiles used to construct the images for
each bug, and a full description of each bug’s characteristics: https://github.com/
squaresLab/ArduBugs.

2. The codebook, questionnaire, and other material of a large-scale survey with robotics prac-
titioners on the challenges of using robotic simulators for testing: https://doi.org/
10.5281/zenodo.4444256.

3. An implementation of Mithra, my proposed automated oracle learning approach, and an
implementation of a state-of-the-art competing technique: https://bit.ly/2S9m7cd.

4. A dataset of execution traces collected over executing missions on two sample robotic
systems in simulation, a set of bugs for each system, and execution traces reflecting those
bugs: https://bit.ly/2S9m7cd.

5. An implementation of GzScenic,my tool to automatically translate test scenarios provided
in Scenic [97] domain-specific language to valid simulation scenes and missions in the
popular, general-purpose Gazebo simulator: https://github.com/squaresLab/
GzScenic.

Overall, this thesis identifies the challenges in testing robotic and cyberphysical systems,
and proposes approaches that address a subset of those challenges, such as automated oracle
inference, and automated test input generation. Together, these approaches can takes us one step
closer towards large-scale, automated testing of these systems, which eventually results in higher
quality systems.

Parts of this thesis have been published in peer reviewed venues, and parts are currently under
review:
• Crashing Simulated Planes is Cheap: Can Simulation Detect Robotics Bugs Early?,

Christopher S. Timperley, Afsoon Afzal, Deborah Katz, Jam Marcos Hernandez, and Claire
Le Goues, in International Conference on Software Testing, Validation and Verification
(ICST), 2018 [265].

• A Study on Challenges of Testing Robotic Systems, Afsoon Afzal, Claire Le Goues,
Michael Hilton, and Christopher S. Timperley, in International Conference on Software
Testing, Validation and Verification (ICST), 2020 [20].

• Simulation for Robotics Test Automation: Developer Perspectives, Afsoon Afzal, Deb-
orah S. Katz, Claire Le Goues, and Christopher S. Timperley, in International Conference
on Software Testing, Validation and Verification (ICST), 2021 [21].

• Mithra: Anomaly Detection as an Oracle for Cyberphysical Systems, Afsoon Afzal,
Claire Le Goues, Christopher S. Timperley, Under Journal Review.
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• GzScenic: Automatic Scene Generation for Gazebo Simulator, Afsoon Afzal, Claire
Le Goues, Christopher S. Timperley, Under Review [22].

1.3 Outline
I first provide an overview of literature on the topics related to this thesis, and background on
the related topics (Chapter 2). Chapter 3 presents the empirical studies on challenges of testing
robotic and cyberphysical systems. Chapter 4 presents an automated oracle inference approach
using clustering. In Chapter 5, I discuss automated test input generation, and different character-
istics of robotic systems that complicate it. Finally in Chapter 6, I conclude this thesis.
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Chapter 2

Review of Literature and Background

The following sections give an overview of related work and background that inform this thesis.

2.1 Related work
Robotic systems Robots are systems that sense, process, and physically react to information
from the real world [138]. Robotic systems are a subcategory of cyberphysical systems [155],
which include non-robotics systems such as networking systems or power grids. However,
robotic systems are subject to system constraints that do not apply to CPSs broadly (such as
a need for autonomy, route planning, and mobility).

Robotic systems differ in several important dimensions [83, 89, 133, 176, 192, 248] as com-
pared to conventional software: (1) Robots are comprised of hardware, software, and physical
components, which can be unreliable and non-determinstic [89, 133, 176]. (2) Robots interact
with the physical world via inherently noisy sensors and actuators, and are sensitive to timing
differences [176]. (3) Robots operate within the practically boundless state space of reality, mak-
ing emergent behaviors (i.e., corner cases) difficult to predict [89]. (4) For robotic systems, the
notion of correctness is often non-exact and difficult to specify [192]. These characteristics intro-
duce unique challenges for testing, such as the need to either abstract aspects of physical reality
or conduct extensive testing in the real world.

Challenges of testing robotics and CPSs A number of studies have investigated software
testing practices broadly, and the challenges facing these practices [59, 86, 106, 212, 240].
Runeson [240] conducted a large-scale survey on unit testing with 19 software companies, and
identified unit test definitions, strengths, and problems. Causevic et al. [59] qualitatively and
quantitatively study practices and preferences on contemporary aspects of software testing.

In a technical report, Zheng et al. [291] report on a study of verification and validation in
cyberphysical systems. The paper finds that there are significant research gaps in addressing
verification and validation of CPS, and that these gaps potentially stand in the way of the con-
struction of robust, reliable and resilient mission-critical CPS. The paper also finds that devel-
opers have a lack of trust in simulators, and one of the main research challenges they identify is
integrated simulation. Seshia et al. [248] introduce a combination of characteristics that define
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the challenges unique to the design automation of CPSs. Marijan et al. [192] speculate over a
range of challenges involving testing of machine learning based systems. Garcia et al. [104] con-
duct a large-scale empirical study to assess the state of the art and practice of robotics software
engineering in the service robotics domain.

Duan et al. [83] extract 27 challenges for verification of CPSs by performing a large-scale
search on papers published from 2006 to 2018. Alami et al. [26] study the quality assurance
practices of the Robot Operating System (ROS)1 community by using qualitative methods such as
interviews with ten participants, virtual ethnography, and community reach-outs. They learn that
implementation and execution of QA practices in the ROS community are influenced by social
and cultural factors and are constrained by sustainability and complexity. However, their results
only apply to a specific robotics framework and cannot be generalized to non-ROS systems.

Luckcuck et al. [183] systematically surveyed the state of the art in formal specification
and verification for autonomous robotics, and identified the challenges of formally specifying
and verifying (autonomous) robotic systems. Their study focuses on formal specification as a
method of quality assurance and does not provide information regarding other testing practices
within the wider field of robotics.

Wienke et al. [275] conducted a large-scale survey to find out which types of failures cur-
rently exist in robotics and intelligent systems, what their origins are, and how these systems are
monitored and debugged. Sotiropoulos et al. [254] performed a study of 33 bugs in academic
code for outdoor robot navigation. The study found that for many navigation bugs, only a low-
fidelity simulation of the environment is necessary to reproduce the bug. Garcia et al. [103] study
499 bugs in autonomous vehicles and classify those bugs into 13 root causes, 20 bug symptoms,
and 18 categories of software components those bugs often affect. Koopman and Wagner [162]
highlight the challenges of creating an end-to-end process that integrates the safety concerns of a
myriad of technical specialties into a unified approach. Beschastnikh et al. [49] looked at several
key features and debugging challenges that differentiate distributed systems from other kinds of
software.

Anomaly detection There are a number of studies on anomaly detection in cyberphysical sys-
tems [66, 108, 120, 130, 210, 224, 272, 282, 296]. He et al. [124] proposes an approach for creat-
ing autoregressive system identification (AR-SI) oracles for CPSs. Based on the assumption that
many CPSs are designed to run smoothly when noises are under control, AR-SI automatically
determines whether a trace is erroneous or correct by checking the smoothness of the system’s
behavior. Theisslet et al. [262] propose an approach that reports anomalies in the multivariate
time series, which point the expert to potential faults. Stocco et al. [258] propose an anomaly
detection approach for Deep Neural Networks (DNNs) of autonomous driving systems that uses
autoencoder- and time series-based anomaly detection to reconstruct the driving scenarios seen
by the car, and to determine the confidence boundary between normal and unsupported condi-
tions.

Chen et al. [65] build models by combining mutation testing and machine learning: they
generate faulty versions (mutants) of the tested system and then learn SVM-based models us-
ing supervised learning over the resultant data traces corresponding to system execution. They

1https://ros.org
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evaluate on a model of a physical water sanitation plant. Ghafouri et al. [109] show that com-
mon supervised approaches in this context are vulnerable to stealthy attacks. An unsupervised
technique [136] evaluated on the same treatment plant model trains a Deep Neural Net (DNN) to
identify outliers. Ye et al. [288] use a multivariate quality control technique to detect intrusions
by building a long-term profile of normal activities in information systems and using the norm
profile to detect anomalies.

Other approaches target the detection of particular attack classes specifically. Choi et al. [67]
present a technique that infers control invariants to identify external physical attacks against
robotic vehicles. Alippi et al. [30] learn Hidden Markov Models of highly correlated sensor data
that are then used to find sensor faults. Abbaspour et al. [14] train adaptive neural networks
over faults injected into sensor data to detect fault data injection attacks in an unmanned aerial
vehicle.

The oracle problem Fully automated testing for CPSs requires oracles that can determine
whether a given CPS behaves correctly for a given set of inputs [41]. In typical research and
practice, domain experts manually provide CPS oracles in the form of a set of partial specifica-
tions, or assertions [19, 149, 182, 188, 225, 296]. However, manually writing such specifications
is tedious, complex, and error-prone [110, 199].

A number of techniques proposed approaches for inferring invariants or finite state models
describing correct software behavior perform what is known as dynamic specification mining.
Existing dynamic specification mining techniques can be classified into four categories based
on the kind of models that they produce: data properties (a.k.a. invariants) [74, 88, 112, 213,
214], temporal event properties [48, 50, 173, 285], timing properties [216, 246], and hybrid
models [29, 172, 216] that combine multiple types of model. These techniques are generally
poorly-suited to the CPS context. Most require source code access or instrumentation, and none
are suitable for time series data. Techniques like Daikon [88] and its numerous successors (e.g.,
DySy [74], SymInfer [214], Nguyen et al. [213], or Dinv [112], among others) learn source- or
method-level data invariants rather than models of correct execution behavior. Techniques like
Texada [173] and Perracotta [285] do learn temporal properties between events but do not model
or learn temporal data properties, a key primitive in CPS execution (Artinali [29] comes closest
to this goal, learning event ordering and data properties within an event).

As another way of approaching the oracle problem for CPSs, studies have used metamor-
phic testing to observe the relations between the inputs and outputs of multiple executions of a
CPS [179, 264, 294]. Lindvall at al. [179] exploit tests with same expected output according
to a given model to test autonomous systems. Zhou and Sun [294] use metamorphic testing
to specifically detect software errors from the LiDAR sensor of autonomous vehicles. Tian et
al. [264] introduce DeepTest, a testing tool for automatically detecting erroneous behaviors of
DNN-driven vehicles. As an oracle, they use metamorphic testing by checking that properties
like steering angle of an autonomous vehicle remain unchanged in different conditions such as
different weather or lighting. Menghi et al. [201] propose an automated approach to translate
CPS requirements specified in a logic-based language into test oracles specified in Simulink’s
simulation language for CPSs.
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Automated Test generation Software test automation significantly improves the quality, and
automated test suite generation significantly affects the software test automation, and is a very
integral part of the automation process [156]. Automated test suite generation for CPSs includes
numerous model-based approaches [16, 58, 197, 205, 277]. These approaches require a model
of the system in a particular format (e.g., Simulink or MATLAB models) to generate a set of test
cases that reach the highest coverage of the model. In the absence of such models, search-based
techniques have shown promise in automated test suite generation of CPSs [110, 122, 268, 269].

Search-Based Software Testing (SBST) is a method for automated test generation based on
optimization using meta-heuristics [27, 198]. The SBST approaches require a fitness function
that has crucial impact on their performance [27, 31, 243]. In a study on Java programs, Salahirad
et al. [243] showed that fitness functions that thoroughly explore system structure should be
used as primary generation objectives, supported by secondary fitness functions that explore
orthogonal, supporting scenarios. Fraser et al. [95] propose a novel paradigm in which whole
test suites are evolved with the aim of covering all coverage goals at the same time while keeping
the total size as small as possible.

Arrieta et al. [35] propose a search-based approach that aims to cost-effectively optimize
the test process of CPS product lines by prioritizing the test cases that are executed in specific
products at different test levels. By applying SBST to automated driving controls, Gladisch et
al. [110] show that SBST is capable of finding relevant errors and provide valuable feedback to
the developers, but requires tool support for writing specifications. Bagschik et al. [38] propose
a generation of traffic scenes in natural language as a basis for a scenario creation for automated
vehicles. Similarly, Gambi et al. [100] recreate real car crashes as physically accurate simulations
in an environment that can be used for testing self-driving car software. Haq et al. [119] show
that simulator-generated datasets or test inputs for testing DNNs in automated driving systems
have similar performance as to those obtained by testing DNNs with real-life datasets.

To take uncertainty that is unavoidable in the behaviors of CPSs into consideration at various
testing phases, including test generation, Ali et al. [28] propose uncertainty-wise testing, arguing
that uncertainty (i.e., lack of knowledge) in the behavior of a CPS, its operating environment,
and in their interactions must be explicitly considered during the testing phase. Hutchison et
al. [133] outline a framework for automated robustness testing of autonomy systems that builds
on traditional robustness testing, drawing from a dictionary of exceptional values to construct
test inputs to systems and components.

Test Input Quality Metrics Mutation testing is a fault-based testing technique which provides
a testing criterion called the mutation score [76]. The mutation score is calculated by executing
a test suite on a set of mutated programs (i.e., programs that are injected with faults), and mea-
suring the number of these executions that result in different outputs than running the same test
suite on the original, unmutated program. The program can be mutated using different mutation
operators that differ in their impact on the program [139, 215]. The mutation score can be used
to measure the effectiveness of a test set in terms of its ability to detect faults [141]. Achiev-
ing higher mutation scores improves the fault detection significantly [222]. On safety-critical
systems mutation testing could be effective where traditional structural coverage analysis and
manual peer review have failed [39].
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Besides mutation score, studies have used different coverage-based metrics (e.g., function
coverage, statement coverage, branch coverage) as an indicator of testing effectiveness and com-
pleteness for the purpose of test case selection and evaluation [131, 185, 230, 259]. Automated
test generation tools and approaches for conventional software commonly use coverage metrics
as a mean of evaluating their test suites, and attempt to generate test suites that maximize the
coverage metrics [95, 177, 223, 287]. Prior studies have investigated the effectiveness of cov-
erage metrics, and have shown that these metrics are generally poor indicators of fault finding
effectiveness [57, 96, 107, 125, 137].

In addition to code coverage metrics, neuron coverage [121] and model coverage [284] met-
rics have been specifically proposed for deep neural networks that are commonly used in robotic
and CPSs software. In testing robotic and CPSs, we desire to expose the SUT to different, pos-
sibly all scenarios and situations that the system can be faced to ensure that the system performs
as expected, in a safe manner. In the field of autonomous vehicles (AV), this metric is known as
scenario coverage or situation coverage where the test suites have higher quality if they cover
a diverse set of scenarios and situations [34, 102, 123, 150, 202, 208, 233, 270, 281]. Xia et
al. [281] create an influence factor and importance degree model for different elements of a
driving scenario such as the environment (e.g., weather), positioning of the roads, and the road
traffic, which they use to generate testing scenarios that are more effective in challenging the
driving control system, and are diverse. Similarly, Arcaini et al. [34] introduce the notion of pat-
terns of driving characteristics in an autonomous driving system, to characterize their interaction
and measure their duration.

Flaky Tests and Non-determinism Many software systems (e.g., distributed systems, CPSs,
embedded systems) exhibit a level of non-determinism in their behavior, meaning that running
the exact same inputs under the exact same conditions may result in different outputs and behav-
iors [53, 93, 127, 170, 184]. Overall, non-determinism in the system has serious ramifications for
testing including flaky tests where a single execution of the test inputs is not sufficient to mark the
test as passing or failing [43]. Prior studies have investigated flaky tests in conventional software
systems extensively, and have introduced approaches to automatically identify flaky tests in a test
suite [43, 94, 115, 118, 165, 166, 167].

2.2 Background
ArduPilot The open-source ARDUPILOT project2, written in C++, uses a common framework
and collection of libraries to implement a set of general-purpose autopilot systems for use with
a variety of vehicles, including, but not limited to, submarines, helicopters, multirotors, and
airplanes (Figure 2.1). ARDUPILOT is extremely popular with hobbyists and professionals alike.
It is installed in over one million vehicles worldwide and used by organizations including NASA,
Intel, and Boeing, as well as many higher-education institutes around the world.3

I use ARDUPILOT as one of my case studies due to being highly popular and open-source,
and its rich version-control history, containing over 30,000 commits since May 2010, and for its

2http://ardupilot.org
3http://ardupilot.org/about
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Figure 2.1: A variety of cyberphysical systems, including airplanes, helicopters, and submarines, that
use ArduPilot as an autopilot software. (Source: https://ardupilot.org)

consistent bug-fix commit description conventions. ARDUPILOT has been widely used in studies
on CPSs as it represents a fairly complex open-source CPS [18, 124, 179, 274, 296], and contains
300,000 lines of code (measured using SLOC).

To facilitate rapid prototyping and reduce the costs of whole-system testing, ARDUPILOT

offers a number of simulators for most of its vehicles (excluding submarines). In general, those
platforms simulate the dynamics of the vehicle under test, feed artificial sensor values to the
controller, and relay the state of its actuators to the physics simulation. Hardware-in-the-loop
(HIL) simulators are used to perform testing on a given flight controller hardware device by
directly reading from and writing to it. In contrast, software-in-the-loop (SITL) simulators test a
software implementation of the flight controller by running it on a general-purpose computer.

Robot Operating System (ROS) The Robot Operating System (ROS) [229] is a flexible frame-
work for writing robot software provided by Open Robotics. 4 It is a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms. ROS follows a publisher-subscriber architecture,
where nodes are processes that perform computation, and they communicate with each other by
passing messages. A node sends a message by publishing it to a given topic, which is simply
a string such as “odometry” or “map”. A node that is interested in a certain kind of data will
subscribe to the appropriate topic. There may be multiple concurrent publishers and subscribers
for a single topic, and a single node may publish and/or subscribe to multiple topics. In general,
publishers and subscribers are not aware of each others’ existence.

ROS is a relatively young framework (first released in 2009), and is currently used by thou-
sands of people around the world; ROS has more than 34,000 registered users on ROSAnswers,
the main Q&A platform for ROS users.5 There are two main versions of ROS (i.e., ROS 1 and
ROS 2), and they follow an annual release model that is both similar to and linked to Ubuntu,
and to this day, there have been 13 official, released ROS 1 distributions (e.g., Neotic, Melodic,
Lunar, and Kinetic), and 6 ROS 2 distributions.

ROS is designed with the purpose of encouraging collaborative robotics software develop-
ment by allowing robotics developers to build upon each other’s work [218]. In fact, a number

4https://ros.org
5http://download.ros.org/downloads/metrics/metrics-report-2019-07.pdf
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of ROS packages provided by Open Robotics and other working groups that offer fundamental
building blocks required to construct most robots (e.g., navigation, perception, drivers) are highly
popular and are almost unanimously used by all ROS-based systems [160].

In this thesis, I use two ROS-based robotic systems to demonstrate the effectiveness my
approaches on these systems. I use the F1/10 system [217], which is an open-source, autonomous
racing cyberphysical platform, one tenth of the size of a real Formula 1 racing car, that is built on
top of ROS, and designed to be used as a testbed for research and education. Additionally, I use
TURTLEBOT3 [10], a programmable, ROS-based mobile robot for use in education, research,
hobby, and product prototyping [25, 32, 227]. TURTLEBOT3 can be customized into various
ways depending on how you reconstruct the mechanical parts and use optional parts such as the
computer and sensor.

Robotic Simulators Robotic simulators model the physical aspects of the robot (e.g., kine-
matics), its operating environment (e.g., terrain, obstacles, lighting, weather), and the interaction
between them. The simulator provides synthetic sensor readings to the robot controller at a fixed
interval and listens to actuation signals from the robot controller (e.g., electronic speed control
signals). The simulator performs a stepwise simulation of the virtual world that models certain
physical interactions and phenomena at discrete time steps.

The two most popular forms of simulation-based testing are hardware-in-the-loop testing
(HIL) and software-in-the-loop testing (SITL). During HIL, the robot controller software runs
on the robot’s embedded hardware that is connected to a simulator that typically runs on a sep-
arate machine with greater resources (e.g., dedicated GPU). SITL, on the other hand, runs the
robot controller software on the same machine as the simulator. HIL is typically slower and
more expensive than SITL but can be used to test the integration between the robot controller’s
software and embedded hardware. In this thesis, I exclusively focus on SITL simulation.

Numerous robotics simulators are available, each with different characteristics. General
purpose simulators, such as Gazebo [159], CoppeliaSim (formerly known as V-REP) [237],
Unity [144], and MuJoCo [266], can be used to model a wide range of systems. Others, such
as CARLA [82], LGSVL [175], AirSim [249] and AADS [178], are specifically designed for
a certain robotics domain. These simulators differ vastly in their capabilities, features, and
performance [75, 87, 228, 255]. Gazebo in particular is a popular, general-purpose robotics
simulator[134, 159], maintained by Open Robotics, that has been used in a wide variety of do-
mains and is the de facto simulation platform used by ROS.
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Chapter 3

Challenges of Testing Robotic Systems

As described in Chapter 2, robotics and cyberphysical systems have features such as non-deterministic
behavior and noisy sensors that make them different from conventional software systems. These
features can specifically create challenges for automated testing approaches. Many studies have
focused on understanding the challenges of testing in conventional software systems, but limited
attention has been paid to robotics.

To better understand the state of (automated) testing in robotics, my collaborators and I con-
ducted a series of qualitative and quantitative studies. We first identified challenges of (auto-
mated) testing in the field of robotics, and testing practices currently being used in this field by
conducting a series of qualitative studies with robotics practitioners. In this study, we identified
9 challenges that robotics practitioners face while testing their robotic systems [20].

Secondly, we investigated the potential impact of using low-fidelity software-based simula-
tion on exposing failures in robotics systems by conducting a case study. In this study, we showed
that low-fidelity simulation can be an effective approach in detecting bugs and errors with low
cost in robotic systems [265].

Finally, as features of SITL simulators highly impact the automated testing of these systems,
we conducted a large-scale survey with robotics practitioners to identify features in robotics
simulators that are the most important for automated testing, and the challenges of using these
simulators. In this study, we identified 10 challenges that make it difficult for developers to
use simulation in general (i.e., for any purpose), for testing, and specifically for automated test-
ing [21].

3.1 Testing in Robotics: Practices and Challenges

As described in Chapter 2, unique features of robotics and cyberphysical systems such as interac-
tion with the real world through noisy sensors and actuators, introduce challenges to automated
testing and validation of these systems. However, no prior studies have identified testing practices
and challenges for robotic systems. Our goal in this study is to gain an in-depth understanding
of existing testing practices and challenges within the robotics industry.

We conduct a series of qualitative interviews with 12 robotics practitioners from 11 robotics
companies and institutions. Specifically, we investigate the testing practices that are being used
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in the field of robotics, and the challenges faced by roboticists when testing their systems. We
answer the following research questions:
• RQ1: What testing practices are currently being used by roboticists?
• RQ2: What are the costs and barriers to designing and writing tests for robotic systems?
• RQ3: What are the costs and barriers to running and automating tests in robotic systems?

Having a better understanding of the current state of testing in robotics, as well as the prob-
lems and concerns of the robotics community regarding testing of robotic systems, will guide
researchers and practitioners to provide and apply solutions that can ultimately result in higher-
quality robotic systems. The result of this study is published in the International Conference on
Software Testing, Verification and Validation (ICST 2020) [20].

3.1.1 Methodology
Interviews are useful instruments for getting the story behind a participant’s experiences, acquir-
ing in-depth information on a topic, and soliciting unexpected types of information [200, 251].
We developed our interview script by performing a series of iterative pilots.

We recruited our participants through a variety of means. Our goal was to select participants
from a broad range of positions and to sample across a diversity of industries, company size, and
experience. We recruited our first three participants using convenience sampling. We recruited
the rest of our participants using snowball sampling and targeted messages to developers that we
found on LinkedIn and Twitter who had the phrase “robotics engineer” in their profile.

Overall, we interviewed 12 robotics practitioners with a variety of backgrounds and experi-
ences. These practitioners represent 11 robotics companies and institutions ranging from small
startups to large multi-national companies. A summary of the relevant details of the participants
of our study is presented in Table 3.1. After performing the interviews, we determined that while
P5 and P7 work at a company that is heavily involved in robotics, both of the participants are fo-
cused on non-robotics-related software development, and so we removed them from our sample
moving forward.

Interviews and coding We conducted semi-structured interviews that lasted between 30 to 60
minutes over phone, video chat, or in person. We prepared an interview script with detailed
questions providing insight into our research questions. A subset of questions on the interview
script are presented in Table 3.2. However, we only used the script to guide the interviews. We
adjusted interview questions based on the experience of the participant to gain a deeper under-
standing of their testing practices and challenges. We took notes from interviewee responses
and recorded the interviews with their consent to validate our notes. We then used a grounded,
iterative approach to code our notes. We first labeled responses based on their relevance to our
research questions. Then, we iteratively coded the notes based on common themes, discussed
the codes and redefined them.

Validation To validate the results of our study and conclusions, we sent a full draft of the
results to our participants. We asked participants to inform us of their level of agreement with
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Table 3.1: Interview participants, their experience with robotics, their role in the company or institution,
type and sector of their company or institution, and whether their testing process includes a dedicated
quality assurance team.

PARTICIPANT COMPANY/INSTITUTE
ID Background Experience Role Type Sector QA team?

(years)
P1 Software En-

gineering
6 Developer Startup Mobile

Services
8

P2 Electrical En-
gineering

> 10 Principal Engineer Academia Research &
Development

8

P3 Embedded
Software
Engineering

2 Developer Multinational
Company

Autonomous
Vehicle

4

P4 Mechanical
& Robotics
Engineering

5 Developer Research Lab Agriculture 8

P5 Software En-
gineering

> 10 Test Engineer Multinational
Company

Industrial
Automation

4

P6 Math &
Physics

> 10 Project Manager Startup Education 8

P7 Experimental
Physics

7 Test Engineer Multinational
Company

Industrial
Automation

4

P8 Mechanical
Engineering
& Math

5 Manager/Engineer Startup Cleaning 8

P9 Computer
Science

4 Engineer Robotics con-
tractor

Research &
Development

4

P10 Computer
Science

> 10 Research Engineer Academia Industrial
Automation

8

P11 Computer
Science &
Math

< 1 Software Engineer Multinational
Company

Industrial
Automation

4

P12 Robotics En-
gineering

> 10 CTO Startup Mobile
Services

8

our conclusions and to provide their thoughts on our results. In total, six of the participants
responded to our request. Four responded in total agreement with the results. The other two
participants that responded provided specific feedback on our interpretation of their responses,
and we incorporated their feedback into the final version of this paper.

3.1.2 Results

In this section, I discuss the results in response to our research questions. Overall, we identified
12 testing practices in use by roboticists, and 9 challenges for robotics testing.
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Table 3.2: Sample questions on the interview script.

Pr
ac

tic
e •What are all the different types of testing you do?

• Can you describe your test running/writing process?
• How much of your testing is done for certification?
•Which types of tests find the most problems?

Te
st

in
g

C
ha

lle
ng

es •What is difficult about writing tests?
• Have these difficulties ever made you giving up on writing the tests at all?
• Is there any part of writing tests that is not difficult?
•What types of tests do you have the most difficulty running?
• In your experience, is there anything that helps with making it easier to run tests?
• For your tests that are not fully automated, why are they not?
•What tools/frameworks/techniques do you use to simplify running tests?
• Do you use simulation?

G
en

er
al •What do you think is the most important bottleneck in the way of testing in robotics?

• How do you think the difficulties of testing in robotics differ from your other
experiences in other software development domains?

RQ1: Testing practices in robotics To determine the testing practices that are used in the
robotics industry, we asked our participants to describe their own testing practices. In total,
our participants reported 12 different testing practices, summarized in Table 3.3. Given the
explorative nature of our study, we do not make any claim about the popularity of the reported
practices; rather, we aim to identify the variety of testing methods that are used in robotics.
Below, I discuss a selection of identified practices, bolded in Table 3.3, in more detail.

(T1) Field testing A full system test that happens in an environment that is similar or iden-
tical to the intended deployment environment can reveal many problems, as a robot is exposed
to real-world scenarios and input. According to our participants, field testing is a common prac-
tice in robotics. Several of our participants mentioned that they conduct field testing frequently
during both development and testing of a robot. For example, P9 and P12 both mentioned one
or two-week long field testing events that take place after each development cycle. P2 stated that
they conduct field testing once or twice a week.

(T2) Logging and playback Logs that are collected during the operation of a system con-
tain important information about system execution for testing, debugging, and development of
algorithms. Five of our participants reported that they collect detailed logs during the operation
of their systems. Some use recorded logs for debugging and monitoring. For example, P9 pro-
vided an example where their robot logs whenever it resets, and they automatically process the
logs to ensure that no unexpected, silent reset took place during the operation of the robot.

Logs can also be used to playback events and sensor data (a.k.a. record-and-replay) by feed-
ing input collected from previous operations (either in the field or in simulation) to a robot. For
example, ROSBAG is a widely-used command-line tool that records and replays messages for
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Table 3.3: A summary of the testing practices that were reported by participants. Practices in bold are
discussed in more detail in the text.

ID Title Description
T1 Field testing Full-system testing in a real-world environment that shares

similarities with the deployment environment.

T2 Logging and
playback The use of logged data, collected in the field, for the purposes of

testing, debugging, and development (a.k.a. record and replay).

T3 Simulation
testing Tests that are executed in a simulated environment that can be used

for both testing and development.

T4 Plan-based
testing The practice of planning an adequate sequence of field tests for

validating that the system meets its requirements given a fixed
testing budget (e.g., time, hardware, cost).

T5
Compliance
testing

Testing for the purposes of determining whether a system complies
with certain standards.

T6 Unit testing Small, automated tests for validating individual code-level software
components (i.e., functions).

T7
Performance
testing

Subjecting a system to various workloads to ensure that it meets its
functional (e.g., localization accuracy) and non-functional
requirements (e.g., timeliness, memory).

T8
Hardware
testing

Testing for the purposes of assessing the quality and integrity of
hardware components prior to software integration (e.g., testing
sensors and cameras).

T9
Robustness
testing

Testing the system under extreme boundary conditions (e.g., a
malfunctioning sensor) that are usually artificially injected to
determine the safe operating limits of the system.

T10
Regression
testing

Ensuring that changes to the system (e.g., the addition of a new
feature) do not negatively affect existing functionality in an
unintended way.

T11
Continuous
integration

The practice of continually and automatically rebuilding the system
and executing some portion of its tests (e.g., unit tests) as changes
are made.

T12
Test
maintenance

The practice of refactoring and maintaining tests to eliminate false
positives, flakiness and redundancy, and to reflect changes to the
requirements of the system.

21



robots built using ROS.1 P10 and P12, for example, use record-and-replay to collect test inputs
and debug their robots. P2 mentioned using record-and-replay to develop algorithms for their
robots:

We often do not know why robots are making the choices that they make. By playing back
the data in testing we can see why the robot made the choice it did, and then tweak the
algorithm to see how it changes the robots behavior.

(T3) Simulation testing Using simulated environments (rather than real-world, physical
environments) can beneficially reduce the cost of testing and increase the opportunities for test
automation [254, 265]. However, few participants reported that they used simulation as part
of their testing process, even though all participants were aware of the theoretical benefits of
simulation. For instance, P12 specifically said:

Our best way to test [algorithmic modules that are very dependent on input data] is through
simulation, but we don’t. We test in the real-world.
Participants report that simulation is sometimes used as a tool during development, especially

for high-level algorithms such as planning. P2 mentioned that they use simulation to create arti-
ficial scenarios while developing an algorithm. P9 said that their software team uses simulation
to facilitate software development before the hardware platform is available.

Although simulation testing provides additional opportunities for test automation, our par-
ticipants rarely used simulation for this purpose. Only P3 mentioned using simulation to some
extent for automated testing:

We have some simulation cluster, so we could setup a script to run a simulation test auto-
matically.

(T4) Plan-based testing An outline and objectives for testing can be specified in advance
in order to manage and guide testing. Test plans can be created based on different criteria such
as formally specified system requirements, and recently added/modified features. P2, P8, and P9
all create a system requirements list, which is used to ensure all components of the system are
covered by the tests. For example, P9 said:

We have a requirements list we edit with our sponsor. We measure quality of tests against
requirements coverage, not code coverage.
However, in P3’s company, developers provide a test plan and failure criteria to test engineers

for newly added or modified features.

RQ2: Challenges of designing and writing tests We asked our participants to describe the
challenges they face when designing and writing tests for their products. We identified four
common themes of challenges from their responses, summarized in Table 3.4.

(C1) Unpredictable corner cases Robots are typically expected to operate in many dif-
ferent environments and conditions. In most cases, the robotic state space is infinite, since it
interacts with the real world; predicting the exact behavior of the physical environment is not

1http://wiki.ros.org/rosbag
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Table 3.4: A summary of the challenges of designing, running, and automating tests for robotics that we
identified based on participant responses.

ID Title Description

C1 Unpredictable
corner cases The challenge of attempting to anticipate and cover for all possible

edge cases within a large (and possibly unbounded) state space
when designing tests.

C2 Engineering
complexity A disproportionate level of engineering effort is required to build

and maintain end-to-end test harnesses for robotic systems with
respect to the benefit of those tests.

C3 Culture of
testing The challenge of operating within a culture that places little value on

testing and provides developers with few incentives to write tests.

C4

Coordination,
collaboration,
and
documentation

A lack of proper channels for coordination and collaboration among
multiple teams (especially software and hardware teams), and a lack
of documentation.

C5 Cost and
resources The cost of running and automating the tests in terms of human

hours, resources and setup, and running time.

C6 Environmental
complexity The inherent difficulties of attempting to account for the

complexities of the real world when simulating, testing, and
reproducing full-system behavior.

C7 Lack of oracle The challenge of specifying an oracle that can automatically
distinguish between correct and incorrect behavior.

C8
Software and
hardware
integration

Difficulties that arise when different software and hardware
components of the system are integrated and tested.

C9 Distrust of
simulation A lack of confidence in the accuracy and validity of results obtained

by testing in simulation and synthetic environments, and a sole
reliance on field testing.

viable [28, 232]. Attempting to account for all possible conditions and scenarios when design-
ing tests is extremely difficult, if not impossible. For example, a plastic bag flying in front of a
self-driving car’s sensor is a case that may not immediately come to mind when designing tests.
However, these unexpected corner cases are often the cause of failures [40].

Even though this challenge of a vast input space with unpredictable corner cases is not spe-
cific to robotic systems, it can be more manageable in non-robotics, software systems. In soft-
ware systems (e.g., a web application), well-defined interfaces control and limit the range of
inputs that can be received from external sources (e.g., users). P12 elaborated:

Software systems need to communicate only within themselves and you can strongly define
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the range of inputs that will come in. When a user is involved, the range of inputs grows,
but it is limited by the range of inputs that can be produced by the user. When you have a
physical system that needs to interact with the real world, you need to handle the vast state
space and noise in the real world.
They later shared an example of this problem where the hardware for their robot was affected

by very low temperatures in the field. At −30◦C, some of the hardware started misbehaving
and produced unexpected sensor data, which could lead to poor algorithmic decisions and unex-
pected behaviors. This event was something that had not been anticipated before it was actually
witnessed in the field.

(C2) Engineering complexity The engineering effort required to prepare all pieces needed
for testing a robot can be extremely high, as these systems can be very complex. All of our par-
ticipants unanimously described their systems as extremely complex. P12 believes that robotics
field is far away from deploying complex systems. They said:

As an industry, we haven’t managed to deploy anything more complex than a Roomba,
which basically operates using a one-dimensional input.
One aspect of engineering complexity involves the amount of scaffolding that is required to

put the system into a testable state [133]. For example, P2 and P6 both consider it a challenge to
write tests for incomplete components such as cases where the hardware of the system has not
yet been fully designed or manufactured. P10 said:

Whenever working with network protocols, I see whether anyone has already written a
protocol. If not, I’ll start by creating a Wireshark plugin to debug the protocol before I
start working on it.
Another engineering complexity affecting test design is the specification of test inputs. To

design realistic inputs, roboticists sometimes need to collect data from the real world, which may
be a challenge (e.g., a space rover). For instance, P4 mentioned the need to collect gigabytes of
LIDAR data to reasonably test a small snippet of code.

Finally, the complexity of the system itself creates a challenge for roboticists to design and
write tests that, as P9 puts it, “effectively validate all requirements for the system”. P11 finds it
difficult to understand what needs to be tested, and design tests that clearly signal failures and
help the developers to identify the source of failures. They later mentioned that, based on their
experience, writing tests can consume more time than the actual implementation. P12 believes
that writing tests sometimes requires knowledge about many fields such as computer science,
mathematics, and engineering.

(C3) Culture of testing Our participants referred to a culture of not believing in the value
of testing in their company or institute among not only the roboticists, but also their sponsors and
customers. For example, P4 mentioned that many developers do not see much practical value in
unit tests, even though they theoretically understand the value of having them. The prevalence
of such culture within a community may result in developers getting discouraged from writing
effective tests. Both P4 and P9 mentioned being under pressure by their sponsors and clients to
deliver the product as quickly as possible, and being discouraged from spending time on writing
tests.
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One of the characteristics of the robotics community is that it brings together people from
many different disciplines (e.g., electrical and mechanical engineering). While the diversity of
the community is a driving factor for many great advances in robotics, it can also introduce
challenges. As P11 said:

The world of robotics unites folks from different back- grounds. Folks from a software
background might observe testing differently from those who aren’t.
Another cultural aspect of the robotics community that impacts testing practices pertains to

the age of the industry and its associated startup culture that often values rapid prototyping and
development over testing and quality assurance. P10 said:

The robotics community are more focused on making cool things than software quality and
making things better.
The desire to be first to the market and having the robot with greatest number of features is

often valued more than the quality and robustness of the robot.
Finally, we observed from the responses of our participants that there is often a high degree

of reliance upon intuition during testing and development. P2, P4, P6, and P12 all specifically
mentioned their intuition as an important tool for testing and debugging. For example, P2 said:

Personally, I have an intuition. I think I know what when something goes wrong.

(C4) Coordination, collaboration, and documentation In many robotics companies, sig-
nificant coordination and collaboration is required to design meaningful tests for the system
(especially for full system tests). This coordination can take place between separate develop-
ment and testing teams, or between software and hardware teams. For example, both P2 and
P3 found it challenging to integrate components developed by different teams and to coordinate
final full-system testing after integration of software and hardware. A lack of documentation for
third-party components adds further complexity to writing tests. Many robotic systems consist
of third-party components for which full access to the source code is not granted. Furthermore,
developers are often less familiar with such components since they did not develop those compo-
nents themselves, and as such, they need to refer to documentation when designing tests involv-
ing third-party components. P10 faced this challenge when writing tests involving a third-party
component without any form of documentation.

An additional challenge is that there are very few standards and guidelines for practitioners
to guide their testing. P8 said:

A standard for robotic system testing would be neat. A process to follow. Like “here’s how
you assess a robotic system”.
The more popular and advanced subfields of robotics (e.g., self-driving vehicles) are already

beginning to provide standards and certification [84]. As P10 describes, “some areas of robotics
have very crystalized safety regulations”.

RQ3: Challenges of running and automating tests We asked our participants to describe the
challenges they face when running tests on their systems, and the challenges of automating their
tests. Below, I describe the five challenges, summarized in Table 3.4, that we extracted from
participant responses.
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(C5) Cost and resources There are several costs involved in running tests for robotics
systems. First, conducting manual field testing can be dangerous and expensive. P10 described
an accident where the robotic arm behaved unexpectedly, and crashed into the tester on their
knee. They further said:

Once you experience a few accidents [during field testing], you realize that testing is really
dangerous. If a typical software system like Excel crashes, no-one dies. For robotics, that
certainly isn’t the case.
Second, developers and test teams need to spend many hours running test scenarios on the

robot. The test team of P3’s company receives tens to hundreds of test requests every day, but
their time and resources (e.g., physical robots) are limited. Given limited time and resources,
developers and testers are forced to select, prioritize, and minimize tests in order to test as many
changes to the software or requirements as is possible. Third, it may take a long time to run the
tests. P1, P6, P8, and P9 all find the long running time of tests as one of the challenges of testing.

Finally, the cost of the equipment and setup required for running tests may be prohibitively
expensive for smaller companies. P10 said that their robots are so expensive that they need to
be extremely careful when interacting with them. To be able to design large-scale automated
tests for their robot, P8 needs to build a framework that can automatically capture the state of
the robot. P8 believed that it is less expensive for their company to pay an intern to manually
test the robot, rather than designing a computer vision platform that will allow them to write
automated tests. P1 uses simulation for running tests, but finds simulation a bottleneck of their
testing practices because of its low speed and the amount of resources required for running it.

Similarly, automating tests requires significant efforts and investment that may be consid-
ered too expensive in terms of developer hours and resources. P1 describes automating tests of
specific hardware and network interactions as “too much work” as they need to use mocks and
patches to imitate other components. P2 and P11 both claim that establishing an infrastructure
for automated testing (via simulation) is very difficult and expensive. P8 and P9 believe that it
is always possible to hit deeper levels of test automation as long as the cost is justifiable. For
example, P8 said:

There’s a trade-off between cost of automating tests and number of times that we have to
run them. We don’t need to run some tests very often, so we don’t really need to automate
them.

(C6) Environmental complexity The intended operating environment for a robot can be
very complex: robots are embodied within the unpredictable and practically boundless state of
space of reality, and their behavior may be dependent upon certain physical features (e.g., terrain)
and phenomena (e.g., lighting, weather). Finding a suitable environment for testing the robot
under expected operating conditions (e.g., on Mars or in the deep ocean) can be challenging: P8
mentioned that a challenge they face is finding as many qualitatively different physical locations
as they can to test their robot, since every environment may have characteristics that reveals
problems in their system. However, these environments sometimes constrain the number and
quality of tests that can be run.

The complexity of attempting to model physical reality also complicates the development
of high-fidelity simulators, which are extremely important for both running and automating
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tests [248, 291]. P12 believes that “no simulators currently exist where the information is even
close to the reality, they are nowhere close to the noise and variability of real-world data”. P2 and
P10 also believe that simulation cannot provide sufficient fidelity for testing robots in realistic
scenarios.

Finally, complexities of the real world can hinder the reproduction of bugs and certain tests.
P6, P11, and P12 have all faced the challenge of reproducing bugs they discovered in the field.
P12 used the term Heisenbugs [113] to describe these bugs that will only manifest when you are
not looking for them. P11 believes that, even though record and replay has many benefits, it is
not the ultimate solution to reproducibility since you need to make sure that the replayed state is
true to the world (e.g., with respect to timestamps and orderings).

Record and replay was reported as a popular approach for dealing with the challenges of
testing systems with complex environments (discussed earlier). Sensor data is recorded in the
field and then replayed for testing purposes. This approach has advantages, in that it uses real data
and it is often easier to collect data than to synthetically create large volumes of data. However,
there are also significant limitations to this approach. Without enough varied data, developers can
run the risk of overfitting their approach to the recorded data, which might not represent the true
variety of environments the robot will operate in. Additionally, because of the non-interactive
nature of record and replay, it cannot be used for testing scenarios where there must be a feedback
loop between the robot and the environment. P11 said:

Simulators are expensive, especially if you have to write your own. The more you are trying
to test interactions with the physical world, the more value you will see in simulation. If
there is less interaction, then record and replay is preferable.

(C7) Lack of oracle The well-known oracle problem concerns how to distinguish whether
a given system behavior is correct or incorrect [41]. Fully automated tests require an oracle that
can automatically determine the correctness of system behavior. Because of the noisy and non-
deterministic nature of robotic systems, it is difficult to discretely specify the exact behavior that
is intended [124]. For example, consider that a robot is instructed to move to a given position, but
that the robot stops 5 centimeters away from the exact coordinates of its destination. Should such
an outcome be deemed faulty or acceptable? In any case, due to inherently noisy sensing and
actuation, the robot is highly unlikely to reach the exact intended position or to determine whether
that position has been reached. Both P4 and P6 find specifying automated oracles challenging.

Furthermore, as explained by P4, in some cases, collecting data for the ground truth is either
impossible or extremely expensive. P4 provided an example where a camera responsible for
measuring the relative motion between two vehicles was under test. To validate the correctness
of data provided by this camera, they needed a second method of measuring relative motion
between the vehicles to act as the ground truth. The equipment and setup required to reach this
ground truth turned out to be extremely expensive.

Following challenges described in C1, the vast space of inputs and corner cases makes it diffi-
cult to cleanly discriminate between correct-but-unusual and incorrect behaviors. P12 described
this difficulty of defining suitable oracles for automated testing as “difficult to differentiate be-
tween bad behavior and correct, but strange behavior that is produced by unexpected inputs”.
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(C8) Software and hardware integration Robotic systems consist of software and hard-
ware components [89, 176]. When asked about the most important feature of robotic systems
that complicates testing, P1 responded with “robotic hardware”. P2 said:

Robotics as a field is all about integration. Robotics is where hardware, software, and the
world come together.
To better understand the differences of a system with and without hardware components, let

us present a quote from P9:
At the full hardware level, we see hardware that is flaky, like not assembling the cooling
properly. In parts of robotics, you are writing multiple pieces of software, and you are
running on specialized hardware, which might be optimized for performance, so there are
extra concerns beyond traditional testing practices.
The integration of components into a system can create unique testing challenges. P8 shared

that even when software and hardware parts work properly in isolation, they frequently break
once the software runs on physical hardware. In P9’s opinion, developing a robotic system re-
sembles developing many software and hardware systems all together (e.g., sensing, planning,
and manipulation), and the simplest robot is at least three subsystems. Even though these subsys-
tems work in isolation, unexpected failure modes are observed when they are combined. P3, P6,
and P10 all faced confusion and challenges while running tests after integration of software and
hardware components. P12 provided an interesting example of being limited by the battery on
the robot after integrating software and hardware but not needing to worry about such problems
when solely testing the software.

(C9) Distrust of simulation Simulation-based testing appears to be a promising approach
to the challenge of test automation within the field of robotics [248, 291]. In the absence of
simulation, full-system tests need to be executed on the real-world hardware in a real, physical
environment, which significantly constrains the possibilities for test automation (e.g., regulations
applied to testing autonomous vehicles on public roads).

Despite being aware of the theoretical value in using simulation to automate parts of the
system testing process, many of our participants reported that they distrust the accuracy and
validity of simulated operations. P2, P4, P8, P10, and P12 all believe the fidelity of simulation is
not sufficiently high for testing and that running tests on the actual robot is the only way to test
the system. For example, P2 said:

We mostly do field testing. That’s what really affects what happens. The robot gets lots of
impact from the environment. Simulation just doesn’t reflect the real world.
The lack of trust in synthetic results discourages developers from using software-based sim-

ulation as part of their test automation. In part, this could stem from the perceptions that our
participants shared with us that many simulation tools are difficult to use and are more hassle
than they are worth. For example, P10 mentioned that they could extend the simulator to be
more faithful to the real world, but it is not worth the amount of time and effort to do that when
they can just test on the real robot. P8 said:

I have more bodies that can test the hardware. I don’t have time to build a Gazebo [plugin].
Getting the cameras to work properly in simulation is difficult.
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Table 3.5: For each theme, we indicate the challenges that support that theme.

Real-world Community & Component
ID Title complexities standards integration
C1 Unpredictable corner cases •
C2 Engineering complexity • •
C3 Culture of testing •
C4 Coordination, collaboration, and documentation •
C5 Cost and resources • • •
C6 Environmental complexity •
C7 Lack of oracle • •
C8 Software and hardware integration •
C9 Distrust of simulation •

However, in some areas of robotics, notably self-driving cars, significant investments have
been made in improving simulation [4, 8, 12]. P2 shared their opinion on this matter:

Robotics operates in such a variety of domains that developing high fidelity simulators is
very difficult and for the most part do not exist today. However, if they did exist (and people
trusted their fidelity) I think people would use them.

3.1.3 Interpretation and Discussion
In Section 3.1.2, we identified 12 testing practices used by robotics companies, and 9 challenges
that roboticists face when designing, running, and automating tests. In this section, we identify 3
major themes among the identified challenges. We support these themes by showing quotes from
our participants, and later speculate on the implications of each theme and provide suggestions
for tackling their associated challenges. Table 3.5 describes the association between each of the
three themes and the challenges of testing robotic systems that participants reported.

Real-world complexities By definition, robotic systems interact with the real world. This fea-
ture results in one of the major differences between robotic systems and traditional software
systems. Interaction with complex, real-world environments is one of the most prominent chal-
lenges of testing robots that we observed in our interviews, and as P8 said:

Very little of the work on testing takes into account the physical aspects of the problem.
The complexities of the real world contribute to C1 and C2 as the large input space results

in unpredictable corner cases and engineering complexity of specifying test inputs, and adds
more complications to defining oracles discussed in C7. C6 and C9 are both impacted by real-
world complexities as it is too difficult to make an abstraction of the environment, and testing in
physical environments requires more resources (C5).

One way to attempt to simplify the complexities of the real world for the purposes of testing
is simulation. However, developers still encounter many barriers when they attempt to use sim-
ulation [87]. As pointed out by our participants, simulators sometimes abstract away too many
nuances of the real-world, and so developers do not feel comfortable relying on them. In other
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cases, our participants responded that they feel that simulators are excessively complex to deploy,
and since simulators often do not provide tools to manage that complexity, developers choose not
to use them.

Other techniques that may be brought to bear on the challenges that arise from the inter-
action between robotic systems and the real world include record and replay, model check-
ing, and formal specification [81, 100, 101, 111, 133, 162, 290]. As mentioned in C6, record
and replay is a popular approach for dealing with the challenges of testing systems with com-
plex environments. However, it is only a partial solution, because of its non-interactive na-
ture. Model checking and formal specification are other solutions proposed to decrease re-
liance on simulators for automated testing by abstracting away the complexities of the real-
world [77, 78, 91, 135, 183, 264, 296]. However, these systems are limited to specific types of
systems, and, based on our study, have not yet been generally adopted in practice.

Furthermore, devising suitable oracles for full-system testing can quickly become an over-
whelming task, as described in C7. To test their system, a developer may need to provide an
oracle for several interrelated subsystems, all of which provide complex data. This can quickly
become an overwhelming challenge. We believe that addressing this challenge of defining ora-
cles for robotic systems requires the development of novel methods and techniques by the soft-
ware engineering and robotics communities. In recent years, a number of studies have taken
important steps towards tackling this problem [65, 124, 136, 288].

As a way of approaching the oracle problem for CPSs, studies have used metamorphic testing
to observe the relations between the inputs and outputs of multiple executions of a CPS [179, 264,
294]. Even though metamorphic testing is a promising approach towards the oracle problem for
cyberphysical and robotic systems, it requires identifying and proving metamorphic relations in
the system [63].

We believe that the design and development of higher-fidelity simulators with better user
interfaces and APIs may lead to a wider adoption of automated simulation testing. However, in
absence of such simulators, the research community should develop novel tools and techniques
for achieving test automation.

Community and standards Not all barriers to testing robotic systems are a result of technical
issues. Another important theme of challenges we encountered are challenges that stem from
community and standards. From our study, we learned that the robotics community is diverse and
that people from different backgrounds may value testing and validation differently (C3). Many
robotics practitioners are not familiar with methods of software testing (e.g., robustness testing
and performance testing), and need guidelines to assist them in deploying testing practices (C4).
With notable exceptions (e.g., industrial automation), the robotics industry is relatively young
and immature, and the value of being the first to the market often outvalues the safety and quality
of the system (C5).

Standards create an advantage for robotics companies by approving the product quality to
the customers, and increasing the business value of testing. In our study, we found that robotics
companies sometimes have standards from other industries that they can apply to certain domain-
specific parts of their system, such as IEC standards from the vacuum industry for how many
particles a vacuum should pick up [6]. However, for the robotics part of the system, there are
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often no standards or guidelines. A number of standards have already been introduced for sub-
domains of robotics such as self-driving cars [84, 135], taking steps towards the right direction.
However, we believe that more general-purpose guidelines and standards should be implemented
to guide robotics developers, similar to those provided to other industries by UL or ISO [7, 11].

Component integration The third factor that complicates testing in robotic systems is the
challenge of testing integrated hardware and software systems. In addition to C8, which is di-
rectly associated with this theme, integration of components contributes to C2, C5, and C7 as it
increases the complexity of the system, the cost associated with testing, and introduces compli-
cations when defining oracles.

Some of the hardware and software challenges are similar to those found in embedded sys-
tems: timing, power consumption, memory allocation, and architecture [169]. However, in com-
parison to embedded systems, robotics hardware is often much more expensive and complex.

In many cases, the considerable expense of manufacturing robotic systems can limit the avail-
ability of hardware for testing. While embedded systems are often small, low-power devices with
a fixed form and function, robots are often more of an extendible platform upon which physi-
cal components (i.e., sensors and actuators) can be added and removed over time. We believe
that the development of tools and practices for testing robots in a more controlled fashion (e.g.,
hardware-in-the-loop testing [92]) may reduce the costs and risks associated with field testing on
expensive hardware.

We believe that these three themes best describe the major challenges of robotics testing.
Although partial solutions exist for some of these challenges[65, 124, 207, 221, 250, 289], in
theory, the applicability and effectiveness of those solutions in practice remains unstudied and
unclear. We observed that testing practices that are not represented by these themes, such as unit
testing, continuous integration, and plan-based testing, were adopted by most of our participants.
We also observe that the level of associated tooling and support for a given practice influences
the uptake of that practice among robotics developers. For example, continuous integration is
a practice that is well supported by tools and has been adopted by many of our participants.
Logging and playback is also extremely popular among our participants. One reason behind this
popularity could be the well-established tools and support around them, even though logging
and playback still face challenges such as C1. In contrast, simulation testing and robustness
testing are rarely adopted by our participants, as supporting tools and infrastructure have not
been properly established yet.

3.1.4 Threats to Validity
Replicability Can others replicate our results? In general, qualitative studies can be difficult
to replicate. We address this threat by making our interview script available on our companion
site.2 We cannot publish the interview transcripts because we promised our subjects that we
would preserve their anonymity.

2https://doi.org/10.5281/zenodo.3625199
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Construct Are we asking the right question? We used semi-structured interviews [251] to
explore themes while also letting participants bring up new ideas throughout the interview. By
allowing participants the freedom to bring up topics, we avoid biasing the interviews with our
preconceived understanding of testing in robotics.

Internal Did we skew the accuracy of our results with how we collected and analyzed the
information? Interviews can be affected by intentional or unintentional bias. To mitigate this
concern, we followed established guidelines from literature [247], both designing and performing
our interviews. Additionally, we ran a series of iterative pilots with robotics engineers, which we
did not consider as data for the purposes of this work, but helped us shape a productive interview.

External Do our results generalize? Because there is a lot that is not known about testing
in robotics, in this work we decided to prioritize depth over breadth. While our interviews did
generate very rich data for us to analyze, we cannot make broad claims about how prevalent these
practices are across the industry. To mitigate this threat, we constructed a sample with a specific
eye for breadth, interviewing participants across a wide range of companies, sizes, and sectors.

3.2 Potential of Software-based Simulation for Testing
As described in Section 3.1, robotics practitioners generally distrust low fidelity simulation, and
find it ineffective in exposing robotics bugs. Simulation, by necessity, represents a simplified
abstraction of the environment and the system, and the robotics practitioners seem to believe
simulation is not sufficiently expressive to trigger and support detection of bugs that manifest in
reality.

To evaluate the validity of this common belief, it is necessary to first understand the factors,
if any, that make reproducing and detecting bugs in simulation difficult. In a case study on
ARDUPILOT system, my collaborators and I systematically produced a dataset of historical bugs,
specifically seeking insight into the difficulties that underlie robotics testing in both simulation
and deployment. We then characterized those defects to produce insights into the challenges and
opportunities afforded by system-level test generation for such systems in simulation. An in-
depth and nuanced knowledge of existing robotics bugs can lead to the development of techniques
capable of catching future bugs with similar characteristics. Moreover, if a tool can detect bugs
that humans have previously identified in these systems, such a tool may also be able to detect
other latent bugs in the system, especially if the latent bugs have similar characteristics to earlier-
identified bugs.

Although datasets of robotics bugs do exist [72, 114, 254, 257, 276], none allows faults
to be reproduced and inspected in simulation, nor do their accompanying analyses investigate
the difficulties of triggering and detecting bugs. Ensuring that bugs can be reliably reproduced
allows datasets to be used for a rich diversity of studies, including testing, fault localisation,
and automated program repair, as similar datasets for non-robotic systems [80, 126, 145, 168,
242, 260] have demonstrated in broader contexts. These studies inspire our work to recreate and
detect robotics and autonomous systems bugs in simulation, with a view towards detecting new
bugs, which is a direction the previous work does not take. Indeed, well-defined benchmarks and
datasets can be instrumental for clarifying and advancing a coherent definition of a discipline’s
dominant research paradigms [252].
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This study is published in the International Conference on Software Testing, Verification and
Validation (ICST 2018) [265].

3.2.1 Methodology
In this section, I first discuss our process for identifying bug-fixing commits within the version-
control history of the ARDUPILOT project. I then discuss how we transform each bug-fixing
commit into an executable Docker image, capable of reproducing the bug in simulation. Finally,
I describe how we analyzed each bug.

Bug Collection To identify which of the > 29, 000 commits within the version-control history
of the ARDUPILOT represent bug fixes, we used GITPYTHON3 to mine potential bug-fixing
commits from the project’s GITHUB repository4. To do so, we implemented a script that uses a
multi-stage process to identify commits.

1. To ensure reproducibility, we restricted our attention to all 29, 081 commits within the
repository that occurred before October 1st, 2017.

2. Next, we removed all commits that do not modify at least one .cpp, .hpp, or .pde file.
We ended up with 24, 897 commits after this step.

3. We then filtered the set of commits to those whose descriptions contain either of the fol-
lowing terms: “bug” or “fix”. There were 2, 213 commits with these keywords in their
description. From manually trawling the commit history, we found that the majority of
bug-fixing commits use at least one of these terms.

4. We then focused our attention on commits related to the ARDUPILOT’s vehicle controller
modules, with the exception of the ARDUSUB modules, since at the time, there existed
no simulator. To identify commits related to these modules, we exploited ARDUPILOT’s
conventions for writing commit descriptions5 to determine the module that was modified
by the commit. After this stage, 414 commits remained.

5. Finally, we performed another round of keyword filtering, to drop all commits containing a
taboo term, suggesting that the bug is not relevant to our dataset. In this stage, we remove
commits we believed to be related to the build system, compilation, documentation, or
cosmetic changes. A complete set of keywords, can be found in the script (included as part
of our dataset). At the end, we found 333 commits that satisfied all the filters.

After automatically identifying the likely bug-fixing commits using our script, we manually
inspected each commit, and discarded those that we deemed to be irrelevant to our dataset. We
deemed refactorings, compilation bugs, cosmetic tweaks, and documentation changes to be ir-
relevant. We also excluded commits that we deemed to be improvements; this included both
non-functional improvements (e.g., use of a more memory-efficient algorithm, 6da68c53), and

3https://github.com/gitpython-developers/GitPython
4https://github.com/ArduPilot/ardupilot
5Since April, 2013, almost all commits to the ARDUPILOT repository observe the following form: “submodule:

description”, where submodule describes that submodule that is modified by the commit, and description provides
a description of the changes.
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functional improvements (e.g., “nose of copter now points at next guided point when it is more
than 10m away”, 0460147a).

To reduce the likelihood of falsely including or excluding a bug from our dataset, two persons
of our group, both of whom are familiar with the implementation of the ARDUPILOT platform,
independently marked each commit as relevant or irrelevant; in the case that the reviewer deter-
mined the commit to be irrelevant, a reason was provided. Following this process, the reviewers
unanimously agreed to remove 63 commits, and disagreed over the relevancy of 57 commits.

To settle the disputed commits, an independent party served as an arbiter, and was given
the responsibility of determining the relevancy of the commit. The arbiter deemed 42 of the 57
disputed commits to be irrelevant. In total, we identified 228 commits as bug fixes. Our approach
to independent bug classification is similar to that used in previous work [193].

Packaging After identifying the set of suitable bug-fixing commits in the version control his-
tory of the ARDUPILOT project, we set about packaging them into minimal Docker containers6,
capable of consistently reproducing the bug within the confines of simulation. To reproduce the
bug, we followed an approach similar to that used by MANYBUGS [168], a widely used of his-
torical bugs in large-scale C programs, by using the version (i.e., commit) of the source code
immediately before the bug-fixing commit.

We excluded ten of the commits from the dataset, but included them in our analysis, since
they only manifest when executed on specific physical hardware (e.g., “fix LED notify during
auto esc calibration”; a3450a95).

We have freely released the Dockerfiles used to construct the images for each bug, together
with the results of our analysis, and scripts for reproducing our bug collection process.7 Pre-
built container images may also be downloaded from DockerHub, as described in the released
artifacts.

Characterization After reaching a consensus on the list of bug-fixing commits, we manually
inspected each commit to determine whether the bug can be reproduced in simulation, and if
so, what are the requirements for triggering and detecting it. To obtain this information, we
answered the following questions:

1. Does triggering or observing the bug rely on physical hardware? We ask this question
to determine whether software-in-the-loop simulation approaches are sufficiently capable
of detecting most bugs, or whether the majority of bugs require physical hardware.

2. Is the bug only triggered when handling concurrent events? Parallelism and concurrent
events are inherent features of most robotics systems due to their physical nature. Bugs
of this nature cannot be triggered by subjecting the system to a sequential stream of com-
mands. Automatic detection of such bugs may prove especially challenging; specification
languages, such as process calculi [36] and timed automata [44], are required to describe
how the system should behave under such circumstances.

6https://www.docker.com/
7https://github.com/squaresLab/ArduBugs
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We ask this question to determine how many bugs can be triggered and detecting using sim-
pler modeling approaches, restricted to describing the behavior of the system in response
to a sequential stream of commands.

3. Which kinds of input are required to trigger the bug? In most cases, inputs are essential
for triggering the bug. ARDUPILOT allows inputs to be provided to the system in a number
of different ways. Discrete inputs, such as preprogrammed missions and ground control
commands, are more amenable to automated testing than continuous inputs, such as radio-
control inputs. Bugs that require more than one kind of input place an even greater strain
on testing techniques. We ask this question to determine how many bugs can be triggered
using only a single discrete input type.

4. At which stage in the execution does the bug manifest? Bugs can occur at different
points during execution; they may manifest during initialization or normal operation, or
they may occur during failure recovery and system reboot. Handling failure recovery and
system reboots places additional requirements on testing approaches, and requires that
failure conditions can be triggered. We ask this question to determine how many bugs can
be triggered without the need to induce failure or a system reboot.

5. Is the bug only triggered under certain configurations?
Bugs that depend on the static configuration of the system only manifest when the system
is compiled with certain options. Similarly, bugs may only trigger under certain dynamic
configurations of the system (i.e., parameters supplied to the system at run-time). We ask
this question to determine how many bugs are only triggered under certain static and/or
dynamic configurations.

6. Is the bug only triggered in the presence of certain environmental factors? Environ-
mental factors include the presence of obstacles and geographical features (e.g., hills and
valleys), wind and weather conditions, unreliable sensor behavior, and the need for hu-
man interaction. Testing bugs that require such triggers places an additional burden on
the simulation environment, and vastly increases the search space. We ask this question
to determine how many bugs can be triggered without requiring specific environmental
conditions.

7. How does the bug affect the behavior of the system? Bugs can manifest in a diversity
of ways, and have varying consequences on the reliable operation of the system. Charac-
terizing the exact effects of each bug is difficult, error prone, and hard to interpret. To that
end, we broadly classified the effects of each bug as either logging-related, behavioral, or
(program) crashing.
As their name suggests, crashing bugs are known to cause the program to crash. Logging-
related bugs corrupt the log files or cause incorrect status messages to be produced, but do
not otherwise affect the run-time behavior of the robot. Behavioral bugs manifest in ob-
servable changes to the behavior of the robot; for these bugs, we also provided a qualitative
description of how the behavior of the robot is affected.

The inspection process consisted of reading the commit description, understanding the effects
of the changes made by the fix, and in some cases, executing the buggy version. To reduce the
likelihood of a false label, two of the authors independently went through the list of bugs and
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assigned labels. The authors disagreed on more than 150 out of approximately 1,600 labels; in
those cases, an independent arbiter made the final decision.

3.2.2 Results
In this section, I present the results of our analysis on the set of bugs found in ARDUPILOT

code repository. In total, we collected 228 bugs in three ARDUPILOT subsystems: 157 for
ARDUCOPTER, 50 for ARDUPLANE, and 21 for ARDUROVER.

Fix Characteristics The median number of files changed by the identified bug-fixing commits
is one, and the median number of line insertions and deletions, according to git diff, is five.
183 of the bugs were fixed by modifying a single file; this finding is encouraging for the prospects
of performing fault localization and program repair in robotics systems. The true number of line
insertions and deletions related to the bug fix is likely to be lower than the observed median; a
number of the commits perform extensive refactoring, unrelated to the bug.

Bug Characteristics Studying the characteristics of bugs can provide us with the insight of the
nature of bugs in the system and help us to improve bug detection and test-generation techniques.
Below, we discuss the findings of our analysis in terms of the questions proposed in Section 3.2.1.

1. Does triggering or observing the bug rely on physical hardware?
In total, only 10 of 228 bugs relied on the presence of physical hardware for their detec-
tion or observation. 5 of the 10 bugs concerned platform-specific code for the robot, and
thus cannot be tested using software-in-the-loop simulation. 4 of the 10 bugs affected the
robot’s lights and sounds; in theory, these bugs may be detected by using a higher-fidelity
simulator. The remaining bug (52c4715c) only manifested on hardware with low mem-
ory capacity.
This finding suggests that software-in-the-loop simulation approaches are capable of de-
tecting the majority of bugs within robotics systems. By alleviating the need for specific
physical hardware, the time and cost of testing robotics systems can be reduced by using
cloud-computing resources.

2. Is the bug only triggered when handling concurrent events?
To our surprise, we determined that only 13 out of 228 bugs (5%) require concurrent events
in order to be triggered. This particularly interesting result demonstrates that automated
testing techniques with simple oracles, capable only of capturing the expected behavior of
sequential streams of events, may be sufficient to detect the majority of bugs in robotics
systems. We believe that the lack of a need to describe parallel behaviors of the system
reduces the specification burden on designers, and thus increases the likelihood of the
acceptance of automated testing techniques.

3. Which kinds of inputs are required to trigger the bug?
We found that 9 bugs can only be triggered by the system’s command-line interface, which
is used to interact with the robot when it is docked and tethered. The other 219 bugs are
triggered by ground control system (GCS) commands, preprogrammed missions, and/or
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Figure 3.1: The number of bugs that could be triggered by exclusively using each input type. The
intersection of input types shows the number of bugs that can be triggered by any of them. Less than a
quarter of the bugs rely on continuous radio-controller inputs, which are normally provided by a human-
operator.

RC inputs. Only 7 of those 219 bugs relied on more than input type in order to be triggered
(e.g., GCS commands and RC inputs). Figure 3.1 illustrates how many of the remaining
212 bugs could be triggered by each non-CLI input type.
Mimicking continuous radio-controller (RC) inputs, usually provided by a human-operator,
is significantly more challenging than supplying the system with discrete, well-formed in-
puts (i.e., GCS commands, and preprogrammed missions). Encouragingly, our findings
show that 165 of the 212 bugs do not rely on continuous input. Just under half of the
bugs (106) can be triggered by exclusively using GCS commands, which place the least
requirements on the oracle.

4. At which stage in the execution does the bug manifest?
We discovered that 20 bugs occur when the system is in its preflight phase (i.e., initial-
ization), 10 manifest during its failsafe and recovery behaviors, 3 happen following a soft
reboot, and 11 are encountered during the tuning phase. The remaining 184 bugs are trig-
gered during the normal operation of the robot. Some of these execution stages are more
difficult to simulate, model, and encounter. For example, testing the failsafe behavior of
the robot requires that failures can be induced during the simulation.
Importantly, the observation that almost 80% of bugs occur during the normal operation
of the robot shows that automated testing techniques do not necessarily need to cover all
modes of operations in order to detect the majority of bugs.

5. Is the bug only triggered under certain configurations?
We determined that 81 of 228 bugs depend on either a particular static (53) or dynamic
(20) configuration, or a combination of both (8). Knowing that more than one-third of
bugs depend on a particular configuration to be triggered demonstrates the importance of
testing the system under a wide range of configurations. It may be fruitful for automated
testing techniques to explore the configuration space.

6. Is the bug only triggered in the presence of certain environmental factors?
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To our surprise, once again, we discovered that only 22 of 228 bugs depend on environ-
mental factors. For example, 36634265 is only encountered in windy conditions. Other
bugs, 1e2e24ee and 436062ef, require a human to be physically present in order to
throw the plane. These bugs can be especially challenging to detect due to the demands
they place on the fidelity of the simulation, and the need to test the system against a large
and variegated range of environments.
Crucially, this finding shows that simpler (and implicitly more efficient) automated testing
techniques that do not attempt to account for environmental factors are capable of trigger-
ing the majority of bugs.

7. How does the bug affect the behavior of the system?
We found that 17 bugs only cause corruption of the log files, or report incorrect status mes-
sages to the user. From inspecting the commit message, the modifications to the source
code, and associated bug report, where one was provided, we determined that 6 bugs were
reported to or are likely to crash. The remaining 205 bugs resulted in observable, behav-
ioral changes to the program. Descriptions of the effects of these bugs are provided as part
of our dataset.
These findings suggest that techniques such as fuzz testing are unlikely to detect many
bugs. The vast majority of bugs can be detected by solely observing the run-time behav-
ior of the robot. Although log-checking-based techniques exclusively detect a relatively
small number of bugs, incorporating log information into the oracle could allow certain
behavioral bugs to be detected more easily.

3.2.3 Threats to Validity
There is a risk that our results may not generalize beyond the single system that we used as
our case study. Our study goals motivated us to focus on a single system in depth, rather than
performing a (necessarily) less-detailed study of multiple systems. This risk is mitigated by
the rising popularity of ROS-based and Ardu* systems in the consumer market, increasing the
potential utility of our results even if they do not fully generalize. While we do not have exact
numbers for the number of Ardu* systems’ users, we note its active GitHub development with
350 contributors and over 40,000 commits. It is also possible that the predominance of simple
bugs in our dataset was because it was easier for users to report those bugs and for developers
to fix them. However, the fact that the software enjoys continued use and popularity suggests
that the developers have fixed the the bugs that most interfered with use. Our findings are also
corroborated by similar studies [72, 114], which found, for example, that relatively simple bugs
predominate even in complex software. The bugs we studied were drawn from all commits; it
was unclear for many whether they were discovered in the field or in simulation. Additionally,
the system we studied operates on a relatively simple control loop design; systems with more
complex architectures may have bugs that are less amenable to being replicated in simulation.
Addressing this risk motivates future work characterizing defects in more complex systems.

Our approach to identifying bugs is neither sound nor complete – a known risk in developing
datasets from source control histories [51]. Some bug-fixing commits do not satisfy our search
criteria, and so they are excluded from the dataset. Additionally, it may be the case that certain
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kinds of bugs are more likely to satisfy our criteria, leading to an unrepresentative dataset. This
risk is likely more applicable to non-cyberphysical systems, where critical live bugs can be more
easily found and fixed over the course of normal development.

Similarly, there is a risk that commits were incorrectly labeled as bug fixes and non-bug fixes
during the manual phase of the bug identification process. To mitigate this, we used a voting
system to perform identification. Indeed, although we made our best efforts to usefully label the
dataset, we may have mislabeled portions of the dataset or not chosen the most useful labels. Our
approach to using consensus to classify commits as bug fixes is similar to that used by Martinez
and Monperrus [193] in their work on learning the shapes of bug-fixing patches. However, note
that the previous work had all three examiners inspect each commit; we only require that a third
examiner inspect a commit if the other two examiners disagree or are unsure. We were unable
to characterize 10 commits, which we subsequently dropped from the dataset. We mitigate this
threat by performing three passes through the dataset and having several evaluators adjudicate
disagreements, and by releasing our dataset and analysis results publicly for replication and
review by other researchers.8

Conclusion The findings of our study strongly support the idea of applying cheap, simulated-
based testing approaches to the problem of detecting bugs in robotics systems. However, we also
found that continuous events, in the form of radio-controller inputs, and specific configurations
are required to trigger a large number of bugs. We believe that both of these challenges, whilst
difficult, can be overcome by developing specialized testing methods and leveraging and building
upon existing knowledge in, e.g., testing of highly configurable systems [151].

3.3 Challenges of Using Simulators for Test Automation

Our case study on ARDUPILOT system described in Section 3.2 showed that low-fidelity SITL
simulation can be used for systematic, large-scale automated testing of CPSs to discover a large
number of bugs in the system, and can take us one step closer to the automated testing pipeline
in Figure 1.1.

However, in the qualitative study presented in Section 3.1, our participants referred to a
number of challenges of using software-based simulators, and discussed them in depth. These
challenges included the low-fidelity of simulators, their hard to use interface, and the cost and
effort required to set them up for a particular system.

Given the considerable potential of simulation-based testing, my collaborators and I set out
to understand the extent to which simulation is used for testing in practice, and identify the
barriers that prevent wider use. Prior studies have examined technical features of particular
robotics simulators [75, 228, 255] but paid little attention to their role in quality assurance or the
challenges developers face when using them. Instead, prior work on the challenges of testing in
robotics [20, 183] and CPSs in general [292] broadly identifies simulation as a key element of
testing that requires improvement.

8https://github.com/squaresLab/ArduBugs
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We conducted a study of robotics developers to understand how they perceive simulation-
based testing and what challenges they face when using simulators. Through a survey of 82
robotics developers, we found that simulation is used extensively for manual testing, especially
during early stages of design and development, but that simulation is rarely used for automated
testing. By analyzing participant responses using grounded theory and other qualitative and
quantitative methods, we identified 10 challenges that make it difficult for developers to use
simulation in general (i.e., for any purpose), for testing, and specifically for automated testing.
The challenges include a lack of realism, a lack of reproducibility, and the absence of automation
features.

The results of this study can inform the construction of a new generation of software-based
simulators, designed to better accommodate developers’ needs for robotics testing. In particular,
we show how several key barriers that impede or prevent simulation-based testing are incidental
software engineering challenges, such as the need for languages and tools to construct test sce-
narios and environments. The software engineering and testing communities are well positioned
to study and address these challenges of testability. This study is published in the International
Conference on Software Testing, Verification and Validation (ICST 2021) [21].

3.3.1 Methodology
We aimed to better understand the ways in which robotics developers use simulation as part of
testing processes, and the challenges they face in doing so. Here I describe our methodology by
presenting our research questions, survey design, participant recruitment, and analysis methods.
Finally, I discuss some of the threats to the validity of our study and their mitigation.

Research Questions To assess the ways in which robotics developers use simulation for test-
ing, we first ask the following research question:
• RQ1: To what extent do developers use simulation for testing and test automation?

Following the first research question, we focused on identifying the challenges robotics develop-
ers face when using simulation for testing. These challenges consist of both general limitations
that impact all use-cases of simulation and challenges that specifically affect testing and test au-
tomation. Making the distinction between general limitations of simulators and testing-related
challenges allows us to better understand and illustrate the issues that if resolved, can result in
higher adoption of simulation for testing. As a result, we categorized the challenges of using
simulation in three groups – general, testing-specific, and test-automation-specific challenges –
in the following research questions:

• RQ2: What challenges do developers face when using simulation in general?
• RQ3: What challenges do developers face when using simulation for testing?
• RQ4: What challenges do developers face when using simulation for test automation?

Survey Design To answer our research questions, we conducted an online survey of robotics
developers in November 2019. We followed best practices in survey design by explicitly breaking
down the research questions into targeted survey questions, creating and pre-testing a pilot survey
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Table 3.6: Examples of survey questions separated by their corresponding research question (RQ). The
full list of questions can be found at https://doi.org/10.5281/zenodo.4444256.

R
Q

1 • Have you ever used a software-based simulator?
• For what purposes have you used software-based simulation?

R
Q

2
• Please tell us about how you used software-based simulation
in [your latest] project?
• Have you ever decided not to use software-based simulation
for a project?

R
Q

3 •Which of these features are most useful when you
use software-based simulation, specifically for testing?

R
Q

4

• How did you use software-based simulation as part of your
test automation?
• For what reasons, if any, have you not chosen to attempt to
use software-based simulation for (partially) automated testing?

on a representative population of sample respondents, and making adjustments based on feedback
until reaching saturation [68, 157, 235]. Examples of the survey questions are presented in
Table 3.6.

To ensure a meaningful interpretation of results, we provided our participants with a defini-
tion for the term “testing” as “any approach to finding errors in any part of a system (e.g., the
software or hardware) by executing code used in the system in whole or in part, which can take
place at any stage of system development and may be either automated or manual.” Note that this
definition is intentionally broader than that used in our previous study on the challenges of test-
ing robotic systems (Section 3.1), generally, which did not consider the manual use of simulation
during the early stages of development to be a form of testing [20]. The full list of our survey
questions, together with terminology and examples, are provided as part of the supplementary
materials at https://doi.org/10.5281/zenodo.4444256.

Recruitment To reach our intended audience (i.e., robotics developers), we distributed our sur-
vey via social media outlets, email, and several popular forums within the robotics community:
the ROS and Robotics subreddits on Reddit,9 the ROS Discourse,10 and the RoboCup forums.11

We decided to advertise our survey to the ROS community as ROS is a popular and widely used
robotics software framework [229, 279]. We also advertised our survey on Facebook and Twitter
and posted a recruitment email to mailing lists for a university robotics department and a robotics
research institution.

In total, 151 participants took the survey, out of which 82 completed it. For the purpose of
analysis, we only consider the 82 completed responses. All 82 participants who completed the
survey reported that they had used a robotics simulator. Table 3.7 presents the demographics
of these 82 participants. In terms of experience, more than two thirds of participants (71.95%)

9https://reddit.com
10https://discourse.ros.org
11http://lists.robocup.org/cgi-bin/mailman/listinfo
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Table 3.7: Demographics for the 82 survey participants that completed the survey in terms of their expe-
rience, the types of organization at which they had worked, and the size of the most recent organization to
which they belonged.

Experience Organization Size of organization
Years of experi-
ence

# % Type # % Number of people # %

Less than one year 10 12.20% Academia 65 79.27% 1–10 people 22 26.83%
Between one and
three years

13 15.85% Industry 54 65.85% 11–50 people 23 28.05%

Between three and
ten years

40 48.78% Individual 35 42.68% 51–100 people 9 10.98%

More than ten
years

19 23.17% Government 12 14.63% >100 people 28 34.15%

Other 9 10.98%

reported having worked with robotics software for more than three years. Most participants
(79.27%) reported that they had worked with robotics in academia at some point during their
life, and almost two thirds (65.85%) reported working with robotics in industry at some point.
Participants reported that they currently work at organizations of varying sizes. Overall, our
study sample is composed of a diverse array of candidates with differing levels of experience
who have worked in a variety of organizations, thus ensuring that the results of the study are not
limited to any one population.

Analysis Our survey includes both quantitative (closed-ended) and qualitative (open-ended)
questions. To analyze the open-ended responses, we used descriptive coding [244] to assign one
or more short labels, known as codes, to each data segment (i.e., a participant’s response to a
given question), identifying the topic(s) of that segment. After developing an initial set of codes,
we adjudicated to reach consistency and agreement, then used code mapping to organize the
codes into larger categories [60, 186, 244]. Using the explicit mapping from survey questions to
research questions, devised during survey design, we aggregated the set of relevant categories for
each research question. Finally, we used axial coding to examine relationships among categories
and identify a small number of overarching themes for each research question.

Threats to Validity To mitigate the threat of asking the wrong questions and introducing bias
in the wording of questions, we followed survey design best practices [68, 157, 235], such as the
use of iterative pilots, and included a number of open-ended questions to allow participants to
freely discuss topics of concern to them.

Our analysis of open-ended survey responses is a potential threat to internal validity. To
mitigate this concern, we followed established guidelines on qualitative and quantitative stud-
ies [60, 186, 244]. As a post-study validation, we shared the results and conclusions on several
public platforms, including those used for recruitment, and received positive feedback on our
findings from the robotics community.

42



84.15%

42.68%
48.78%

32.93%

63.41%

13.41%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Testing Designing
robots

Training AI
systems

Bench-
marking

Debugging Other

Figure 3.2: An overview of the high-level reasons that participants gave for using simulation (82 re-
sponses).

Although we received many responses from robotics developers, we cannot make broad
claims on the generalizability of our findings. To mitigate this threat, we distributed the survey
among robotics developers from different backgrounds and organizations by targeting popular
robotics platforms.

To promote further research, we share our recruitment materials, questionnaire, codebook,
and additional results at the following URL: https://doi.org/10.5281/zenodo.4444256.

3.3.2 Results

In this section, I present the results of our study of robotics developers on their use of simulation
for testing, and the challenges they face along the way. The full list of identified challenges are
presented in Table 3.8.

RQ1: To what extent do developers use simulation for testing and test automation? Our
survey asked participants about their use of simulation: both broadly and specifically for testing
robotics systems. We find that our participants are unanimously familiar with simulation, and
they use it on a regular basis. 59 out of 82 (71.95%) participants reported that they used simu-
lation within the last month at the time of completing the survey. When asked about their most
recent project that involved simulation, 51 of 82 (62.20%) participants reported that they used
a simulator daily, and 25 of 82 (30.49%) participants reported that they used a simulator on a
weekly basis.

Figure 3.2 presents the variety and popularity of purposes for which our participants use sim-
ulation. Almost 84% of participants have used simulation for testing, and testing is the most
popular use case for simulation. This suggests that developers generally see value in using sim-
ulation for testing.

Participants reported using simulation for various forms of testing, including: testing the
underlying algorithms; variability testing (e.g., testing the robot with different components);
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Table 3.8: Summary of challenges participants encountered when using simulation in general (�), specif-
ically for testing (N), and for test automation (F).

Challenge Description

� Reality gap The simulator does not sufficiently replicate the real-world behavior of the
robot to a degree that is useful.

� Complexity The time and resources required to setup a sufficiently accurate, useful
simulator could be better spent on other activities.

� Lacking capabilities Simulators may not possess all of the capabilities that users desire, or those
simulators that do may be prohibitively expensive.

N Reproducibility Simulations are non-deterministic, making it difficult to repeat simula-
tions, recreate issues encountered in simulation or on real hardware, and
track down problems.

N Scenario and
environment con-
struction

It is difficult to create the scenarios and environments required for testing
the system in simulation.

N Resource costs The computational overhead of simulation requires special hardware and
computing resources which adds to the financial cost of testing.

F Automation features The simulator is not designed to be used for automated testing and does
not allow headless, scripted or parallel execution.

F Continuous integra-
tion

It is difficult to deploy the simulator in suitable environments for continu-
ous integration (e.g., cloud computing servers).

F Simulator reliability The simulation is not reliable enough to be used in test automation in terms
of the stability of the simulator software, and the timing and synchroniza-
tion issues introduced by the simulator.

F Interface stability The simulator’s interface is not stable enough or sufficiently well-
documented to work with existing code or testing pipelines.

sanity checking (e.g., checking software in simulation before deploying it to the hardware); and
multi-robot testing (e.g., simulating how robots will interact with each other).

Participants also reported a variety of reasons for using simulation for testing. These include
when it is unsuitable or impractical to test on real hardware or in a real environment. They
also reported using simulation to better understand the design and behavior of existing robotic
systems and their associated software, and to incorporate simulation into automated robotics
testing, including continuous integration (CI).

Of the 84% of participants who have used simulation for testing, we found that 61% of them
have also tried to use simulation as part of their test automation. These findings demonstrate that
developers find simulation to be a valuable tool for testing, and there is a desire to incorporate
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Table 3.9: An overview of the reasons that participants gave for not using simulation for a particular
project, based on 28 responses.

Reason for not using simulation # %

Lack of time or resources 15 53.57%
Not realistic/accurate enough 15 53.57%
Lack of expertise or knowledge on how to use software-based simulation 6 21.43%
There was no simulator for the robot 4 14.29%
Not applicable 4 14.29%
Too much time or compute resources 2 7.14%
Nobody suggested it 0 0.00%
Other 2 7.14%

simulation-based testing into their test automation processes.
These results motivated the rest of our study, which looks at the challenges robotics develop-

ers face using simulation. Given the ubiquity of simulation and its importance to robotics testing
and development, there is great potential benefit from lowering the barriers to using simulation,
especially for testing. We highlighted these barriers to direct attention to areas in which improve-
ments to simulators may have the most impact, thereby allowing developers to advance the state
of software engineering and quality assurance in robotics.

Our key insight is that simulation is an essential tool for developers that is used extensively
for building and testing robot software. Given its importance, it is vital that we better understand
the challenges that prevent developers from realizing its full potential.

RQ2: What challenges do developers face when using simulation in general? Although we
found that simulation is popular among developers, 28 of 82 (34.15%) participants reported that
there was a project for which they decided to not use simulation. Their reported reasons are given
in Table 3.9. By analyzing these reasons along with the difficulties that participants experienced
when they did use simulation, we identified three high-level challenges of using simulation in
general, discussed below.

Reality gap Simulation, by definition, creates an abstraction of the real world and the
robotics hardware in it. As a result, it can never be 100% accurate in representing all aspects
of the real environment. The sometimes inadequate representation of physical reality in simula-
tion is known colloquially as the reality gap. Many participants cited the reality gap both as a
challenge when trying to use simulation and a reason not to use it in the first place. P33 notes that
simulation can produce unrealistic behaviors that would not occur in the real world. P16 high-
lighted that accounting for all relevant physical phenomena can also be challenging: “my simple
simulation model did not include a tire model, so simulations at higher speeds did not account
for realistic behaviors for cornering or higher accelerations or deceleration.” In particular, real-
istically modeling stochastic processes, such as signal noise, and integrating those models into
the simulation as a whole is a challenge: P15 shared, “A classic problem is integrating wireless
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network simulation with physical terrain simulation. This also applies to GPS signal simulation,
as well.”

For some, such as P29, the reality gap can be too large to make simulation valuable: “too big
discrepancy between simulation results and reality (physical interaction).” For others, simulation
can still serve as a valuable tool despite the existence of the reality gap. As P36 puts it, “Software
behavior in simulation is different compared to [the] real [world], so not everything can be tested,
but a lot can be.” In talking about the reality gap, respondents faulted both the limitations of the
modeling formats and the limitations of the simulators.

Complexity Accurate simulation of the physical world is inherently challenging and in-
volves composing various models. Alongside the essential complexity of simulation are sources
of accidental complexity [55] that do not relate to the fundamental challenges of simulation itself,
but rather the engineering difficulties faced when trying to use simulation. For example, a lack
of user-friendly features is a source of accidental complexity. Sources of accidental complexity
may ultimately lead users to abandon or not use simulation at all.

Inaccurate, inadequate, or missing documentation can make it difficult to learn and use a
simulator. P22 highlights that a “lack of documents for different platform types and sometimes
wrong documentation makes us lose a lot of time working on [stuff] that will never work, for
example, the Gazebo simulator does not work well in Windows.” A language barrier may cause
documentation to be inaccessible, as reported by P74: “The language was Japanese, but we don’t
speak that language so we couldn’t use well the simulator.”

Difficult-to-use API make it difficult to extend the simulator with new plugins. P4 points
out that “Gazebo is the de-facto [simulator] right now and is poorly documented and difficult
to customize to any degree.” A lack of integration with popular computer aided design (CAD)
software (e.g., AutoCAD, SolidWorks) and support for industry-standard 3D modeling formats
(e.g., IFC), makes it difficult to import existing, high-quality models.

Together, these sources of complexity increase simulators’ learning curve and may lead de-
velopers to abandon or never start to use them. P20 shared that there is a “steep learning curve
in understanding the test environment software setup and libraries. Without a good software
engineering skills the simulated environment will not replicate the real environment.”

Lacking capabilities Finding a simulator that provides all of the characteristics a user de-
sires can be challenging. P77 highlighted that, while it is possible to find a simulator that is good
in one particular aspect, it is hard to find a simulator that is good in all desired aspects. As P4
pointed out, simulators that do possess all of the desired qualities tend to be expensive: “Adding
plugins is usually very challenging, and the only good frameworks that do any of this stuff well
are very expensive (V-Rep and Mujoco for example).”12

We asked which simulation features participants wanted most but are unable to use in their
current setups. Among the most important features mentioned were the ability to simulate at
faster-than-real-time speeds (i.e., where the simulation clock runs faster than the wall clock),

12Coppelia Robotics informed the authors that V-REP has been re-branded as CoppeliaSim and is free for educa-
tional and non-commercial applications.
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native support for headless (i.e., without the GUI) execution, and an easier means of constructing
environments and scenarios.

Numerous participants wanted the ability to run simulation at faster-than-real-time speeds
but were unable to do so in their current simulation setups. For example, P52 said, “We needed
to speed up simulation time, but that was difficult to achieve without breaking the stability of the
physics engine.” This feature is useful not only for reducing the wall-clock time taken to perform
testing, but for other purposes, as P62 highlighted: “Faster than real time is really important to
produce training data for deep learning.”

Several participants also desired features that would increase simulation fidelity (i.e., how
closely the simulation mimics reality). P46 wanted support for “advanced materials in envi-
ronments (custom fluids, deformable containers, etc.).” Interestingly, P69 desired the ability to
tune the fidelity of the simulation: “Ability for controllable physics fidelity. First order to prove
concepts then higher fidelity for validation. Gazebo doesn’t have that.” Recent studies have
shown that low-fidelity simulation can effectively and inexpensively discover many bugs in a
resource-limited environment [234, 254, 265].

Participants also specified other capabilities such as native support for multi-robot simulation
and large environments, and support for efficiently distributing simulation computations across
multiple machines.

Ultimately, the complexities of setting up and using simulation, the reality gap, and the time
and resources necessary to make the simulation useful led some participants to use physical
hardware instead. As P4 said, “It was easier and more accurate to setup and test on a physical
system than simulate.”

Our key insight is that developers find considerable value in simulation, but difficulties of
learning and using simulators, combined with a lack of realism and specific capabilities, constrain
the way that developers use simulation. By alleviating these challenges, simulation can be used
for a wider set of domains and applications.

RQ3: What challenges do developers face when using simulation for testing? Participants
reported a variety of challenges in attempts to use simulation for testing, summarized in Table 3.8.
We identified the following challenges that mainly affect the use of simulation for testing:

Reproducibility From inevitable sensor and actuator inaccuracies to stochastic algorithms
(e.g., vision and navigation), robotics systems have numerous, inherent sources of nondetermin-
ism. Temporal effects (e.g., message timing and ordering) can also lead to different outcomes. A
deterministic simulator should be able to simulate nondeterministic factors but also allow repro-
ducibility, in which it repeats a given simulation with all of these factors behaving in the same
manner. For example, a deterministic simulator should be able to execute two simulations of the
same scenario, producing the exact same messages in the exact same order. Such a simulator
would allow for consistent testing and fault diagnosis.

The lack of reproducibility and presence of non-determinism in simulators lead to difficulties
when testing, as reported by participants. P42 highlighted that a “Lack of deterministic execution
of simulators leads to unrepeatable results.” This points to a need to accurately reproduce system
failures that are discovered in testing, in order to diagnose and debug those failures. If a tester
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cannot consistently reproduce the failures detected in simulation, it will be difficult to know
whether changes made to the code have fixed the problems. P7 pointed to the particular difficulty
with achieving reproducibility in Gazebo: “Resetting gazebo simulations was not repeatable
enough to get good data.” P48 and P81 also mentioned a desire for reproducibility.

Consistent and systematic testing often relies on deterministic test outcomes, particularly
when incorporating test automation and continuous integration tests, which rely on automati-
cally detecting when a test has failed.Flaky [203] and non-deterministic tests may lead to a false
conclusion that a problematic software change does not have a problem (a false negative) or that
a good change has problems (a false positive).

Scenario and environment construction Testing in simulation requires a simulated en-
vironment and a test scenario, which can be understood as a set of instructions for the robot
under test. Participants reported difficulty in constructing both environments and test scenar-
ios. P38 said: “Setting up a simulation environment is too much work, so I don’t do it often,”
and P3 contributed, “Scripting scenarios was not easy. Adding different robot dynamics was
also not easy.” They wanted to be able to construct these more easily or automatically. Partici-
pants pointed out that the scenarios or environments they require sometimes must be created “by
hand,” which requires a heavy time investment and is subject to inaccuracies. In recent years,
high-level languages have been proposed to aid the construction of rich driving scenes in simu-
lation [97, 158, 187]. P4 said, “Making URDF13 files is a tremendous pain as the only good way
to do it right now is by hand which is faulty and error prone,” while P67 wanted, “Automated
generation of simulation environments under some [custom] defined standards,” because “The
automated simulation environment generation is not easy. Plenty of handy work must be done
by human operators.”

Resource costs Simulation is computationally intensive. It often benefits from specialized
hardware, such as GPUs. Participants report that hardware requirements contribute strongly to
the expense of simulation. These costs are compounded when tests are run many times, such as
in test automation. For example, P42 reported that difficulties including simulation in test au-
tomation include: “High hardware requirements (especially GPU-accelerated simulators) driving
high cloud server costs.” Participants reported problems with running simulations in parallel or
using distributed computing across several machines. Participants also reported challenges in
simulating large environments and simulations of long duration, as they became too resource-
demanding to be practical. P67 requested, “High computational performance when the environ-
ment size grows large (Gazebo performance drops down rapidly when the number of models
raises).” Participants also had issues with the cost of licenses for appropriate simulators. P66
reported that cost drove the choice not to use a given simulator: “Back then, Webots was not
free,” and P1 complained: “Not to mention the licensing price for small companies.”

Our key insight is that 84% of participants used simulation for testing, but a lack of repro-
ducibility, the complexities of scenario and environment construction, and considerable resource
costs limit the extent of such testing.

13Unified Robot Description Format (URDF) is an XML file format used in robotics platforms to describe all
elements of a robot.
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RQ4: What challenges do developers face when using simulation for test automation? Re-
search has shown that test automation can provide many benefits, including cost savings and
higher software quality [105]. Despite the benefits of test automation, 27 of 69 (39.13%) par-
ticipants who have used simulation for testing, reported never attempting to use simulation for
automated testing. Responses indicated that the challenges with using simulation, both in gen-
eral and for testing, prevented participants from attempting to incorporate it into test automation.
Their reasons fell into three general categories:

1. Lack of value, where they did not find test automation valuable or necessary. As P24 men-
tioned “There were no obvious test harnesses available for the simulation environments I
use and it did not seem obviously valuable enough to implement myself.”

2. Distrust of simulation, in which the limitations of simulation itself drove the decision to
not use it in automated testing. Reality gap and lacking capabilities, discussed earlier,
contribute to this belief. P33 mentioned, “[Simulation is] not realistic enough for accu-
rately modeling task; preferred running on real robot,” and P20 believed that “Without
a good software engineering skills the simulated environment will not replicate the real
environment.”

3. Time and resource limitations, where the complexity of the simulator and resource costs
prevented them from attempting test automation. P18 explained “[We did not attempt to
use software-based simulation for automated testing] due to the amount of time needed to
setup the automated testing. Even if I think on the long term it cuts down development
time, my company does not allocate time for that.” and P17 simply reported that “[it]
seemed very hard to do.”

Among 42 people who attempted to use simulation as part of their test automation, 33
(78.57%) reported difficulties. Based on their descriptions of these difficulties, we identified
the following four challenges specifically affecting test automation:

Automation features Although a GUI is an important component of a simulator, partici-
pants reported a preference towards running the simulator headless (i.e., without the GUI) when
used for test automation. Disabling the GUI should reduce the computational overhead of the
simulator by avoiding the need to render computation-heavy graphical models. Not being able
to run a simulator headless is one of the major difficulties our participants faced in automation.

“Making the simulator run without GUI on our Jenkins server turned out to be more diffi-
cult than expected. We ended up having to connect a physical display to the server machine
in order to run the simulation properly.” – P37
Furthermore, the ability to set up, monitor, and interact with a simulation via scripting, with-

out the need for manual intervention, is vital for automation. Our participants reported devis-
ing creative solutions in the absence of scripting support. P8 shared, “Ursim14 needs click-
automation to run without human interaction.” In other words, they needed to use a tool that
simulated mouse clicks to run the simulator automatically.

14Universal Robots Simulator https://www.universal-robots.com
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Continuous integration (CI) CI is emerging as one of the most successful techniques in
automated software maintenance. CI systems can automate the building, testing, and deployment
of software. Research has shown that CI practices have a positive effect on software quality and
productivity [129].

CI, by definition, is an automated method, and in many cases involves the use of cloud ser-
vices such as TravisCI. Our participants faced difficulties engineering the simulation to be used
in CI and run on cloud servers. For example, P66 shared “I wasn’t able to setup a CI pipeline
which runs in GPU machines, for use with rendering sensors.”

Many of these difficulties arise from missing automation features (e.g., headless execution)
and high resource costs (e.g., requiring expensive, GPU-heavy hardware), discussed earlier. P77
reported “It is expensive to spin up cloud GPU VMs to run the simulator.”

Simulator reliability One of the challenges of using a simulator in a test automation
pipeline is the reliability of the simulator itself. In other words, participants reported facing
unexpected crashes, and timing and synchronization issues while using the simulator in automa-
tion. Robotics systems, as timing-sensitive CPSs, can have their behavior distorted when timing
is distorted, such as when messages arrive out-of-order or are dropped or deadlines are missed.
P29, P54, P73, and P80 all reported software stability and timing issues as difficulties they faced
for automation. P29 further elaborated difficulty in ensuring a clean termination of the simu-
lator. That is, when the simulator crashes, it should properly store the logs and results before
termination of the simulation, and properly kill all processes to prevent resource leaks. Clean
termination is particularly relevant to test automation. Resource leaks can compound when sim-
ulations are repeated, as they are in automated testing. Compounded resource leaks can reach
the point where they interfere with the ability to run additional simulations and require manual
intervention.

Interface stability The stability of the simulator interface can significantly impact the
automation process because inconsistent simulator API can lead to failures in client applica-
tions [280]. Participants reported unstable and fragile interfaces as a challenge for automation.
For example, P39 mentioned “APIs are pretty fragile and a lot of engineering need to be done to
get it working.”

Five participants reported difficulties in integrating existing code or infrastructure with sim-
ulation API. P80 mentioned changing the entire physics engine source code for an application.
Participants specifically desired better integration with the ROS. For example, P74 shared “I
would like that [the simulator] can be used with ROS.”

Our key insight is that developers want to include simulation as part of their test automation,
but most developers who attempt to do so face numerous difficulties. These difficulties include
an absence of automation features and a lack of reliability and API stability. Ultimately, these
challenges discourage developers from using simulation for test automation, limit the extent to
which it is used, and prevent developers from leveraging the benefits of CI.
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3.3.3 Discussion
As robots and their associated codebases become larger and more complex, the need for, and
cost of, continuous verification and validation will increase considerably. While field testing is
popular it will be unable to handle the increased needs by itself because it is limited in practice by
expense, hardware, human resources, and safety [20]. Simulation-based testing may serve as a
cheaper, safer, and more reliable alternative by offering a means of scalable test automation [105].
Indeed, 61% of our survey participants reported that they had attempted to use simulation as part
of test automation, indicating that practitioners have a strong interest in simulation-based testing.

Despite widespread interest, a multitude of challenges prevent developers from readily enjoy-
ing the benefits of simulation-based testing. A number of these challenges, such as the need for
sufficient physical fidelity (i.e., the reality gap), are inherent challenges of building a simulator.
Such challenges are well studied and widely recognized by the robotics and simulation com-
munity, and therefore outside the purview of our recommendations. While the reality gap can
never fully be solved, the robotics and simulation community can study the trade offs inherent in
usefully modeling the aspects that are important to simulating relevant systems.

However, there are incidental challenges of testability, which are understudied but just as
important as the inherent challenges and also impede effective simulation-based testing. These
challenges include, but are not limited to, the ability to reliably run simulations without the
expensive and unnecessary overhead of visualization (i.e., headless execution); the need for a
powerful, expressive language for constructing realistic environments and scenarios; the ability
to set up, monitor, and interact with the simulation via scripting; and stability in the simulator’s
client interface. Interestingly, when participants were asked to choose the simulator features
that they found most useful for testing, features related to testability (e.g., “custom plugins”,
“exposed APIs”, and “recording and logging”) appeared as more popular than features related to
the underlying simulation (e.g., “advanced graphics” and “high-performance physics engines”).15

Addressing these incidental challenges can enable robotics developers to better take advantage
of automated simulation-based testing.

Addressing the incidental challenges requires varying levels of effort and expertise. Certain
challenges can be largely fixed with engineering effort and application of best practices from the
software engineering community. For example, automation features (e.g., headless operation),
continuous integration support, and simulator reliability are all mainly engineering challenges.
Scenario construction can be addressed through the development and application of domain-
specific languages.

In other cases, the challenges can be addressed but are subject to certain limitations. For ex-
ample, while it may not be realistic to expect indefinite interface stability from software that must
change to fit evolving needs, some problems may be ameliorated by following good API design
and documentation best practices [52] and engineering for backwards compatibility. Challenges
in this category also include lacking capabilities, reproducibility, resource costs, and complexity.
For lacking capabilities, it is unlikely that one simulator would provide all capabilities needed
for every possible use case, but it is more realistic to engineer simulators that are extensible or
tailored for the capabilities needed for individual use cases. While it would be possible to control

15The full list of these features and their ranking according to the participants can be found as part of our supple-
mentary material.
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some factors to create reproducibility, there is always a trade off against realistically modeling
relevant nondeterministic phenomena. For resource costs, there is a trade off between the desired
property of high fidelity and the corresponding resource cost. Because of the inherent complexity
of the tasks needed in simulation, there will always be a degree of complexity in learning the sim-
ulator. The complexity and learning curve can be lessened with good design and documentation
but will never disappear entirely.

From participant responses and our own experience, we observe that most popular simu-
lation platforms (e.g., Gazebo) are predominantly designed to support manual testing during
the earlier stages of robot development; test automation, on the other hand, does not appear to
have been considered as an explicit use case by popular simulation platforms. To support scal-
able automation of simulation-based testing as part of continuous process of verification and
validation, simulators should address the incidental challenges discussed earlier. We believe
that the software engineering and testing communities are well-equipped to address these in-
cidental challenges as they have studied similar problems in other domains such as distributed
systems [53, 79, 170, 180]. We call upon these communities to work alongside robotics and
simulator developers to study and address these incidental testability challenges.

3.4 Summary and Future Work
The focus of this thesis is on improving the state of testing and quality assurance that is per-
formed on robotic and CPSs. As these systems have special features, we need to first develop
an understanding of the challenges of testing them, and second, identify the possible avenues for
performing more scalable, automated testing on them.

To summarize, in this chapter, I presented three empirical studies that investigate the state
of testing and automated testing for robotic and CPSs. In Section 3.1, I performed a set of
semi-structured interviews with robotic practitioners to better understand the state of (automated)
testing in robotics, and I identified 9 main challenges that are barriers to testing these systems.
One of the important takeaways of this work is that 1) field testing is the predominant means of
quality assurance for these systems, and 2) robotics practitioners generally distrust simulation
even though they are aware of the theoretical benefits of using simulation for automated testing.

In Section 3.2, I investigate the validity of concerns about simulation, and the potential im-
pact of using low-fidelity software-based simulation on exposing failures in robotics systems by
conducting a case study. In this study, I showed that low-fidelity simulation can be an effective
approach in detecting bugs and errors with low cost in robotic systems.

Given the findings of these two studies, the question remains: why simulation-based testing is
not widely adopted as a mean of automated testing of robotic systems? In Section 3.3, I presented
a large-scale survey with robotics practitioners to identify features in robotics simulators that are
the most important for automated testing, and the challenges of using these simulators. In total, I
presented 10 challenges that limit the extent to which simulators are used for different purposes
including automated testing. The main takeaway of this study is that robotic simulators are
generally not well-equipped to be used in test automation.

Even though these studies explore the state of testing and automated, simulation-based test-
ing of robotic and CPSs to some extent, there is room for more studies to be conducted in this
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area in the future, to pinpoint the barriers of automated testing in this field, and propose solutions
to address these challenges. For instance, future studies can explore the state of (automated)
hardware-in-the-loop (HITL) simulation-based testing, and identify its advantages and disadvan-
tages over using SITL simulation-based testing.

In addition, future studies can focus on providing a set of guidelines and starting points on
deploying automated testing or continuous integration on robotic systems for robotic practition-
ers, who do not necessarily have the experience and background in this area. Alami et al. [26]
have started developing such guidelines for ROS systems, and a set of best practices has been
introduced on ROS Wiki page. 16 However, these guidelines are not widely used and can be im-
proved in the future. We can even imagine tools that use automated or semi-automated static and
dynamic analysis techniques to provide assistance to robotics developers, who fancy to deploy
automated testing on their systems.

Finally, in this chapter I discussed many challenges that involve testing of robotic and CPSs.
Future studies can focus on addressing these challenges, and as mentioned earlier, software en-
gineering community is well-equipped to resolve or make improvements to many of these chal-
lenges. For example, improving robotic simulators by adding automation features and adjustable
controls over noise and non-determinism in simulations.

16http://wiki.ros.org/BestPractices
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Chapter 4

Automated Oracle Inference

As presented in Figure 1.1, an oracle that can automatically distinguish between correct and
incorrect behaviors of the system is essential to achieve an automated testing pipeline. However,
generating an oracle is a well-known problem in software engineering [41], and as presented in
Section 3.1, is one of the challenges of testing robotics systems. Although many approaches
have been proposed to address the oracle problem for pure software (cyber) systems [19, 149,
182, 188, 225, 296], they are not appropriate for robotics and cyberphysical systems (CPSs) for
the following reasons:

1. CPSs often contain proprietary third-party components (such as cameras or other sensors)
for which source code is unavailable, and so techniques should minimize or avoid relying
on source code access.

2. CPSs are inherently non-deterministic due to noise in both their physical (e.g., sensors,
actuators, feedback loops) and cyber components (e.g., timing, thread interleaving, random
algorithms) and may react to a given command in a potentially infinite number of subtly
different ways that are considered to be acceptable. That is, for a given input and operating
environment, there is no single, discrete response that is correct, but rather an envelope of
responses that are deemed correct. And so techniques should be robust to small, inherent
deviations in behavior.

3. The CPS may respond differently to a given instruction based on its environment, config-
uration, and other factors (i.e., its operating context). For example, a flying copter may
refuse to fly to the specified point if its battery is depleted. And so, techniques must be
capable of capturing contextual behaviors for a given command.

To tackle the above mentioned challenges, I propose Mithra: a novel oracle learning approach,
which identifies patterns of normal (common) behaviors of the system by applying a multi-
step clustering approach to the telemetry logs collected over many executions of the system in
simulation. Mithra uses the identified clusters as the core of its oracle and determines correctness
of system’s executions based on their similarity to identified clusters. It tackles all three above
mentioned challenges as it does not require source code access, avoids over generalization and
is robust to small deviations from expected behavior, and identifies contextual behaviors.
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Figure 4.1: A simplified depiction of the motivating example (ARDUPILOT’s Issue #9657). The left
figure illustrates the intended path of the vehicle from A to C via B. The vehicle is instructed to travel
along a spline between A and B, before continuing along a straight line between B and C. The right
figure illustrates the actual, erroneous path of the vehicle. The issue causes the vehicle to skip the spline
waypoint B, and travel directly from A to C along a straight line.

4.1 Case Study
As a running example, I use ARDUPILOT system described is Section 2.2.

4.1.1 Motivating Scenario

As described in Section 2.2, ARDUPILOT is a mature autopilot software for CPSs that is used
in a wide variety of vehicles and environments that are either in, or approaching, deployment.
Although ARDUPILOT is functionally stable and used by over one million vehicles [1], it contin-
ues to evolve, and new issues and erroneous behaviors are continually discovered and reported
over time. In 2019 alone, 722 new issues were filed on ARDUPILOT’s issue tracker, of which
130 were labeled as bugs. Many of these bugs, such as the one described in Issue #9657, occur
only under specific conditions and may result in behavioral changes that may have not been con-
sidered by ArduPilot’s testing team.1 In the case of Issue #9657, the vehicle misbehaves when
instructed to navigate a series of waypoints that includes a spline path. By default, the vehicle
will travel along a straight line between waypoints. However, operators may also instruct the ve-
hicle to traverse a smooth path between waypoints along a spline. In the relatively rare event that
a series of waypoints includes a spline path, the vehicle will erroneously skip the first waypoint
along a spline path (Figure 4.1).

Identifying such bugs requires both a means of triggering the bug (i.e., subjecting the system
to a particular scenario and environment), and detecting that a failure has occurred (i.e., the
system behaves in an unintended manner). Numerous studies on automated test input generation
have focused on addressing the triggering problem [110, 122, 197, 205, 268, 269, 277]. Using
artifacts and models of the system, or a search-based approach, these studies propose ideas on
generating test inputs, scenarios, and environments that trigger and expose different behaviors of
the system. In this work, we assume a means of triggering bugs and focus our attention on the
problem of automatically detecting failures.

The example of ARDUPILOT and Issue #9657 motivates our approach in creating oracles

1Issue: https://github.com/ArduPilot/ardupilot/issues/9657 fixed by pull request https:
//github.com/ArduPilot/ardupilot/pull/10338 [Date Accessed: September 2, 2020]
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Figure 4.2: A simplified view of the ArduCopter communications architecture. Input is provided by the
user to the cyber component in the form of discrete commands and missions, or as a continuous radio
control signal. The cyber component sends signals to actuate the physical component of the system, and
reads sensor values. The state of the system, reported by the sensors, is periodically written to a telemetry
log.
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Figure 4.3: An example of two execution traces for the ARDUCOPTER’s TAKEOFF command with
respect to its ALTITUDE and LATITUDE state variables. In the bottom trace (blue), TAKEOFF(ALT:4.0),
the copter elevates 4 meters above the ground. In the top trace (orange), TAKEOFF(ALT:14.7), the
copter elevates 14.7 meters above the ground. In both cases, the LATITUDE remains roughly fixed.

for mature systems. As mentioned, a mature software (e.g., ARDUPILOT) performs common
scenarios as expected. For example, when a vehicle is instructed to navigate to a target location,
it performs as expected under most conditions. Note that if such common behavior becomes
faulty in a mature system, the maintainers and testers would be alerted quickly, as it affects many
users and scenarios. However, in circumstances involving behaviors that are less commonly
used, such as scenarios that involve spline waypoints, the vehicle may misbehave and perform
not exactly as expected.

In this work, we use a novel clustering approach to automatically identify the common be-
haviors of the system, which we use to form an oracle that can distinguish between expected and
unexpected executions.

4.1.2 ARDUCOPTER’s Architecture

For our running example, we use ARDUPILOT (version COPTER-3.6.9) as the controller for a
simulated quadcopter. Figure 4.2 provides a simplified view of the cyber and physical compo-
nents of ARDUCOPTER. The user provides input to ARDUCOPTER’s cyber component in one
of three forms: (1) as a discrete command from a ground control station, such as TAKEOFF,
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along with a set of parameters (e.g., desired altitude); (2) as a precomputed sequence of such
commands, known as a mission; or (3) in the form of a continuous sequence of radio control sig-
nals. The cyber component of ARDUCOPTER interacts with the physical component by polling
its sensors at a fixed interval (e.g., once every 10ms) to determine its extrinsic state and sending
signals to its actuators based on its extrinsic state and the user-provided input. The extrinsic state
st of the system at time t describes the values of its state variables, each representing the value
of a particular sensor, and is composed of both continuous (e.g., VELOCITY) and categorical
values (e.g., STATUS). The cyber component of the system periodically logs its extrinsic state
to a telemetry log at a fixed rate (e.g. 10 Hz). From the telemetry log, we extract an execution
trace S for each command execution that records the sequence of extrinsic states logged during
execution. We use the execution trace as input to our technique.

Figure 4.3 provides a simplified example of two execution traces for the TAKEOFF com-
mand. Each execution trace can be represented as a heterogeneous multivariate time series: time
series data consisting of multiple dimensions that include both continuous and nominal data.
Since the time taken to complete an execution may vary, traces are variable in length and may
consist of thousands of recorded states. For example, a 30-second execution of a single command
results in a trace with 300 state observations if telemetry is recorded at 10 Hz. On another execu-
tion, the same command may take 50 seconds to complete and result in 500 state observations.

In this work, we restrict our attention to command-based user inputs and leave an application
of our approach on continuous inputs to future work. We consider 10 out of 25 commands
supported by the ARDUCOPTER mission planner,2 and 18 associated state variables describing
properties like orientation, position, and velocity. The 15 excluded commands are specific to
particular hardware (e.g., DO-DIGICAM-CONTROL triggers the camera shutter if the copter is
mounted with a camera).

4.2 Clustering Multivariate Time Series
Statistical machine learning approaches deal with the problem of finding a predictive function
based on data. These approaches are applied on a collection of instances of the data, which acts
as the input to the learning process (i.e., training data). What the algorithm can learn from the
training data varies in different approaches [295].

Supervised learning methods take a collection of training data with given labels (e.g., “male”
and “female”), and learn a predictive model y = f(x), which can predict the label (y) of a given
input (x). Depending on the domain of label y, supervised learning problems are further divided
into classification and regression. Classification is the supervised learning problem with discrete
classes of labels, while regression is applied on continuous labels. Support vector machines
(SVM), decision trees, linear and logistic regressions, and neural networks are all examples of
supervised learning algorithms [163].

Unsupervised learning techniques work on an unlabeled training data. Common unsuper-
vised learning tasks include: (1) clustering, where the goal is to separate the n instances into
groups, (2) novelty detection, which identifies the few instances that are very different from the

2http://ardupilot.org/copter/docs/mission-command-list.html
[Date Accessed: September 2, 2020]
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majority, and (3) dimensionality reduction, which aims to represent each instance with a lower
dimensional feature vector while maintaining key characteristics of the training sample. Clus-
tering approaches such as k-means [181], k-medoids [152] and hierarchical clustering [143], in
general split the training data into k clusters, such that instances in the same cluster are sim-
ilar, according to a similarity measure, and instances in different clusters are dissimilar. The
number of clusters k may be specified by the user, or may be inferred from the training sample
itself [283].

Our oracle learning approach builds oracles by clustering telemetry logs represented by mul-
tivariate time series (MTS). In this section, we provide the necessary background in MTS clus-
tering to understand the techniques underlying our approach. Time series clustering has widely
been used to find common patterns in streams of data in a variety of domains including bioinfor-
matics and biology, genetics, finance, air quality control, and meterology [37, 64, 69, 253]; this
work presents a novel formulation that effectively models correct CPS behavior.

k-Medoids The k-medoids algorithm [152] is a clustering technique that uses a given distance
metric to partition a given dataset into k clusters such that the distance between the points within
a cluster and the center of that cluster (i.e., the centroid) is minimized. Unlike the well-known
k-means, in which the center of a cluster is the average between its points, k-medoids uses an
existing representative point within the cluster as its center. k-medoids is attractive for clustering
MTS datasets because it does not introduce additional, expensive distance calculations (e.g.,
measuring the distance between a given point and the mean of a cluster, as in k-means). k-
medoids only compares existing points to one another, and so a distance matrix can be efficiently
precomputed.

Distance Metrics Any clustering approach requires a suitable distance metric. A common
distance metric is Euclidean distance (i.e., L2 norm), which is inexpensive to compute. However,
Euclidean distance can only be used for same-length MTS (i.e., time series of an equal duration
and number of observations). In our case, where this assumption does not hold, we require an
alternative distance metric. We discuss two alternaive metrics that can compare variable-length
MTS: Dynamic Time Warping [45] and Eros [286].

Dynamic Time Warping (DTW) [45, 116, 147, 148] is a similarity measure3 that compares
temporal sequences (i.e., traces) in terms of their “shape”. DTW accounts for variations in
duration, length, speed, and amplitude between two traces by mapping points from one trace to
another trace via a non-linear process of “warping”, illustrated in Figure 4.4. DTW computes
the optimal mapping between A and B such that every point in A is mapped to at least one point
in B and vice versa in such a way that the order of points is retained, and the sum of distances
between mapped points is minimized.

Although DTW provides a powerful means of comparing variable-length k-dimensional
time series, it comes at the cost of a considerably O(kmn) higher runtime complexity com-
pared to O(kn) complexity of the L2 norm, where m and n are the lengths of two time series.

3Note that although DTW measures a distance-like quantity, it is not a true distance metric since it violates the
triangle inequality: d(x, z) ≤ d(x,y) + d(y, z).
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Figure 4.4: Dynamic time warping measures the distance between two time series of unequal length by
mapping the points in each time series onto the other via warping. The solid lines represent individual
time series and the dashed lines represent the warping that maps one onto the other. By warping, DTW
allows similarity between time series to be computed based on their shape.

This can be reduced using a DTW approximation or lower bound such as FastDTW [245] or
LB_Keogh [153].

The Extended Frobenius norm [286], or Eros, is a cheaper alternative to DTW that uses Prin-
cipal Component Analysis (PCA) [17, 132, 226] to measure the distance between two variable-
length MTS. Instead of measuring similarity between them by aggregating similarities between
their individual variables, Eros treats each MTS as a matrix and uses the principal components
to measure similarity.

Given an MTS dataset, Eros first determines the eigenvectors and eigenvalues of the covari-
ance matrices of each MTS within the dataset. Eros then aggregates the eigenvalues to obtain
weights for the dataset. Finally, Eros uses those weights to measure the similarity between two
MTS in terms of their associated eigenvectors.

Eros is considerably cheaper to compute than DTW with an amortized runtime complexity
that is linear in the number of variables in the MTS, and unlike Euclidean distance, can be applied
to variable-length MTS. Eros can account for differences in shape and is capable of handling
shifts in time, but unlike DTW, it does not account for scaling over time.

4.3 Approach
In this section, I describe Mithra, our proposed unsupervised oracle learning approach, based on
anomaly detection for mature cyberphysical systems. Mithra learns oracles for CPSs that accept a
vocabulary of discrete commands, and produce telemetry logs (e.g., ARDUCOPTER). It does this
by using a training set of telemetry logs to identify clusters representing the qualitatively different
behaviors for each command. For example, based on traces such as those in Figure 4.3, Mithra
detects one such common behavior, TAKEOFF(ALT:<palt>), in which ALTITUDE gradually
increases until reaching a specified altitude palt while LATITUDE remains constant.

Approaches for clustering and classifying time series that are based on comparing differ-
ences in shape are often superior in terms of performance than those that compare differences in
time [24, 231]. Unfortunately, clustering strictly with a DTW distance measure does not scale to
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Figure 4.5: An overview of Mithra’s three-step clustering approach of preclustering, subclustering, and
merging. Solid lines represent individual traces, and dashed lines represent cluster centroids.

large datasets. As a result, Mithra clusters execution traces based on overall shape using a three-
step approach inspired by Aghabozorgi et al.’s method for clustering large time-series data [23].
Figure 4.5 provides a high-level overview:

1. Preclustering: A low-resolution version of the training data is clustered into preclusters to
reduce the search space.

2. Purifying: As the low-resolution preclusters are insufficiently accurate, Mithra next creates
a set of subclusters for each precluster using high-resolution data.

3. Merging: Similar subclusters are merged to obtain a set of behavioral clusters, producing
a simpler model that is cheap to query.

Using its learned behavioral clusters, Mithra constructs an oracle for each command based
on anomaly detection, that marks execution traces as either CORRECT or ERRONEOUS based
upon their similarity to the contextual behaviors represented by those clusters.

Note that although the structure of our technique draws inspiration from the prior work,
Aghabozorgi et al.’s approach [23] can only be applied to datasets of time series with fixed
length, and thus is not suitable off-the-shelf for our problem domain. We therefore propose key
novelties at each clustering step to enable scalable clustering of variable-length data.
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4.3.1 Training Data

In the training phase, Mithra takes, as input, a set of telemetry logs. Ideally, the set should
contain logs that exercise all functionality of the system, covering a diversity of possible scenar-
ios, though this is not a strict requirement. Mithra constructs an individual training set for each
command within the vocabulary of the CPS by extracting the relevant execution traces for that
command from the provided set of telemetry logs.

Note that, like most other techniques [14, 30, 124, 136, 210], Mithra is unsupervised. Thus,
these training logs are not labeled in terms of whether they correspond to correct or erroneous
behaviors. Furthermore, Mithra is robust to erroneous traces within the training set provided that
they are rare. This is also consistent with the prior techniques, which make the same assumption;
fortunately, most programs behave correctly most of the time, and erroneous behavior is indeed
typically rare [85].

Mithra preprocesses training data in three ways:
1. Converting Categorical Data. Categorical variables (e.g., ARDUCOPTER’s MODE, which

takes values such as STABILIZE, AUTO, and GUIDED), complicate distance measures,
as the distance between two categorical datapoints can only be measured by whether they
take the same value. Mithra converts categorical data to numerical data using one-hot
encoding [70], where each category is turned into a dimension with binary value.

2. Normalization. Since it may not be meaningful to compare different state variables (e.g.,
VELOCITY and LATITUDE) due to differing ranges and units, we standardize [117] the
data to ensure that differences in each state variable are treated with equal importance.
Each dimension (i.e., state variable) within a time series is scaled to resemble a normal
distribution with µ = 0 and σ = 1.

3. Feature Selection. Clustering techniques can suffer from the curse of dimensionality
on datasets with many dimensions [62]. Therefore, Mithra accepts an option to select
NFEATURES dimensions in the training data with the highest entropy as a preprocessing step.
High entropy in a dimension indicates that it can be informative in distinguishing different
behaviors. We leave investigation of other feature selection approaches to future work.

4.3.2 Oracle Learning

Given a training set of traces for a command, Mithra attempts to identify the set of contextual
(i.e., disjunctive) behaviors for that command. Mithra uses a three-step time series clustering
approach that allows clustering to scale to a large number of detailed traces:

Step 1: Preclustering Mithra first downsamples the training execution traces to produce a set
of low-resolution traces to be clustered. By reducing the resolution of the data, Mithra can more
efficiently compute DTW distance on an approximation of its input traces. The goal of this step
is to reduce the search space for the subsequent, more computationally intensive steps.

To lower trace resolution, Mithra uniformly drops data points from each time series. For ex-
ample, trace t = [S0, S1, ..., S100] with 101 data points can be downsampled to a lower-resolution
trace t′ = [S0, S5, S10, ..., S95, S100] with 21 data points. Even though t′ does not represent the
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exact behavior of trace t, it approximates t’s shape and can be used to create an initial set of
preclusters.

To obtain the set of preclusters, Mithra applies k-medoids clustering to the low-resolution
data using FastDTW [245] as its distance metric. The number of clusters k is obtained dynami-
cally by finding the 1 < k < kmax that maximizes the silhouette score [239].

Step 2: Purifying Since low-resolution data is used to obtain the set of preclusters, those
preclusters may represent spurious patterns that do not hold on the original, high-resolution data.
Therefore, in the second step, Mithra divides the contents of each precluster into multiple sub-
clusters based on their Eros similarity. Although Eros is a less effective means of measuring
similarity between traces than DTW (i.e., scale information is lost), it is inexpensive to compute
and provides useful partial information about similarities in shape. To calculate the subclusters,
we apply k-medoids clustering within each precluster, and find the medoid that is most represen-
tative of all traces within a subcluster.

Step 3: Merging Finally, Mithra uses FastDTW to merge subclusters that share a similar shape
based on the original, high-resolution data. This step prevents representation of the same con-
textual behavior by multiple subclusters, which leads to a simpler model that is cheaper to query.
To do so, Mithra first computes the DTW distance among the medoids of subclusters using the
original, high-resolution traces for those medoids. Although the time series are more detailed
than those used during preclustering, the total number of time series, and, by extension, distance
calculations, is far smaller, ensuring this step is scalable.

Mithra then uses the computed medoid distances to reduce the set of subclusters into a set
of behavioral clusters by merging subclusters that share highly similar medoids. Mithra uses
hierarchical clustering [143] to find the sets of similar subclusters. For every set of similar
subclusters, Mithra constructs a new behavioral cluster that includes all their traces, and applies
DTW averaging with uniform scaling [98] to the medoids of those subclusters to produce a
centroid that best represents all traces in the new behavioral cluster.

Finally, Mithra uses FastDTW to compute µβ and σβ for each behavioral cluster β based on
the distance from the traces within β to the centroid of that cluster cβ , which Mithra uses to
construct the decision boundary for β.

4.3.3 Oracle Querying

The behavioral clusters for each command represent qualitatively different modes of behavior
observed for that command. These may include both behaviors that are frequently observed and
assumed to be correct (e.g., clusters with more than one hundred traces), as well as behaviors
that are rarely observed and suspected to be erroneous (e.g., clusters with fewer than five traces).

Mithra uses the behavioral clusters to predict whether a new trace is CORRECT or ERRO-
NEOUS by comparing it to the centroid of its best-fit cluster. More formally, given a previously
unseen execution trace τ for a command, Mithra first finds the behavioral cluster β∗τ ∈ BC that
most closely resembles τ based on the DTW distance between τ and the centroid of each cluster:
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β∗τ = argmin
β∈BC

DTW (τ, cβ)

Mithra then uses β∗τ to predict the label `τ for that trace as:

`τ =


ERRONEOUS if |β∗τ | < ρ

ERRONEOUS if DTW (τ, cβ∗
τ
) > µβ∗

τ
+ θσβ∗

τ

CORRECT otherwise

where |β| is the number of traces within β, ρ ∈ Z+ is the rarity threshold, and θ ∈ R+ is the
acceptance rate. If β∗τ contains fewer than ρ traces, it is assumed to represent a rare, and thus,
erroneous behavior, and so, τ is marked as ERRONEOUS. The rarity threshold allows Mithra
to be more robust towards erroneous traces in the training data. In the more likely case where
β∗τ contains at least ρ traces, then β∗τ itself is assumed to represent a common, and thus, correct
behavior. In that case, Mithra uses the precomputed DTW distance to determine whether τ lies
within the decision boundary of β∗τ , and if so, labels it as CORRECT. The acceptance rate θ is used
to alter the extent of the decision boundary and provides the user with a means of controlling the
precision-recall tradeoff of the classifier to their preferences. I investigate and discuss the effects
of θ in Section 4.4.3.

4.3.4 Implementation
Our implementation of Mithra, which we released as part of our replication package,4 allows
tuning, such as via the level of resolution decrease for Preclustering step, or the NFEATURES (Sec-
tion 4.3.1).

One additional optional argument that can improve Mithra’s performance is parameter han-
dling. The behavior of a CPS with respect to a certain command often depends upon the param-
eters provided to that command. In the example of Figure 4.3, if the copter flies to altitude of
10 meters instead of 4 when instructed to TAKEOFF(ALT:4.0), the trace should be marked as
ERRONEOUS. However, by default, Mithra cannot connect two relevant dimensions in the traces
(in this case, the ALTITUDE of the copter and the parameter passed to the command palt).

To account for parameter values, we can add new dimensions to input traces that are dynami-
cally computed using the values of parameters and state variables. For example, for the command
TAKEOFF(ALT:<palt>), we dynamically compute a variable DIST_ALT as (palt − ALTITUDE).
With this new dimension, Mithra’s learned clusters represent that, for example, in CORRECT

TAKEOFF(<palt>) traces, the value of DIST_ALT always converges to zero; we can mark ER-
RONEOUS cases where it does not (e.g., flying to 2 meters altitude when 5 is given as the param-
eter). Note that this added dimension does not specify the correct or expected behavior; it merely
expresses a meaningful connection between parameters and state variables.

The definitions for dynamically computed dimensions are presently user-provided. As the
number of command parameters is usually very limited and many commands share the same
set of parameters, specifying these definitions is fairly simple. For our case study of ArduPilot,

4https://bit.ly/2S9m7cd

64

https://bit.ly/2S9m7cd


we specify definitions for 4 dynamically computed dimensions that are shared among 7 of 10
commands. The definitions for these added dimensions are provided as part of our replication
package. Note that Mithra can operate without these additional dimensions, but it will be less
accurate. We anticipate that such dimensions are likely automatically discoverable, a prospect
that we leave to future work.

4.4 Evaluation
To determine whether our technique is an effective oracle learning method for mature cyber-
physical systems, we conducted experiments, outlined in Section 4.4.2, on the case study system
(i.e. ARDUCOPTER). We compare Mithra to the state-of-the-art [124] (AR-SI, described in
Section 4.4.1). We answered the following research questions:
RQ1 (Accuracy) How accurately does our clustering method distinguish between correct and

erroneous traces?

RQ2 (Comparison) How does the labeling accuracy of Mithra compare to AR-SI [124], a state-
of-the-art oracle learning approach for cyberphysical systems?

RQ3 (Conceptual Validation) How do Mithra’s individual steps influence its overall labeling
accuracy?

RQ4 (Time) How long does it take to train and query Mithra, and how does it compare to AR-
SI?

Finally, we evaluated Mithra on an autonomous racing CPS in Section 4.4.7 to show its
applicability to systems beyond ARDUPILOT.

4.4.1 Baseline
To compare our approach with the state-of-the-art, we reimplemented He et al.’s approach for cre-
ating autoregressive system identification (AR-SI) oracles for CPSs [124].5 Like our approach,
AR-SI does not assume source code access and does not require training on a bug-free, ground-
truth version of the CPS. Based on the assumption that many CPSs are designed to run smoothly
when noise is under control, AR-SI determines whether a trace is erroneous or correct by check-
ing the smoothness of the system’s behavior. Let Yi ∈ Rm represent the state of the system
at time i with m state variables, and U ∈ Rq represent user input (i.e., command parameters).
AR-SI models the relationship between U and Yi as follows:

Yi = (

p∑
j=1

AjYi−j) +BU + ξi (4.1)

and optimizes model parameters A1, A2, ..., Ap ∈ Rm×m and B ∈ Rm×q so that the runtime
accumulated SI error energy ξi is minimized. Then, AR-SI uses the optimal model parameters
(A∗1, A

∗
2, ..., A

∗
p and B∗) to predict the next state of the system Yi+1:

5The source code of AR-SI is not publicly available, and we were unable to gain access via private email corre-
spondence.
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Ŷi+1 = (

p∑
j=1

A∗jYi+1−j) +B∗U (4.2)

and collects the prediction error as ei+1 = Ŷi+1 − Yi+1.
In other words, AR-SI uses the past p observed states of the system to predict its next state

with the assumption that state changes tend to be smooth and the prediction error should be low.
When the prediction error for all states in the trace is computed, AR-SI checks whether they
contain an outlier prediction error. If so, the trace is marked as ERRONEOUS, otherwise it is
marked as CORRECT. Any prediction error outside of µ± 6σ is considered an outlier.

AR-SI was originally evaluated on our case study CPS; I discuss methodology next.

4.4.2 Experimental Methodology
We constructed a benchmark for our case study, ARDUPILOT, which we used to evaluate our
research questions. This benchmark consists of a training dataset and an evaluation dataset.
The training dataset consists of unlabeled traces for 2500 randomly generated missions; it is
used to train Mithra. The evaluation dataset provides a labeled, balanced set of 233 erroneous
and 233 correct traces. We used it as ground truth when measuring the accuracy of Mithra and
AR-SI (i.e., the ability to discriminate between erroneous and correct traces). Note that the labels
of the evaluation dataset are not provided to either approach.

To ensure reproducibility and avoid physical harm, we used software-in-the-loop (SITL) sim-
ulation to obtain traces in lieu of traces from real-world field testing. We sampled state according
to the simulation clock rather than the wall clock, retaining the same information as a corre-
sponding field trace. The practice of using simulation to obtain traces for this type of evaluation
is common [29, 65, 124]. Below, I provide key details about benchmark construction.

Training Dataset As a source of training data for our technique, we recorded traces for 2500
randomly generated missions in simulation; To accelerate data collection, we spread the process
across 30 cores and use 40X simulation speedup. In total, we took roughly 15 hours to collect
training traces.

Evaluation Dataset We constructed our evaluation dataset by first identifying 11 historical
bugs via manual investigation of issues and bug-fixing commits on the ArduPilot repository.6

We transformed each historical bug into a controlled bug scenario by manually grafting the bug
onto the ground-truth version of ARDUPILOT, COPTER-3.6.9. By individually grafting the bugs
onto the ground-truth version, rather than using those historical versions directly, we ensure that
the only differences in behavior are due to a particular bug and not from an unrelated change to
the program. We generated an additional 13 bugs by applying the same historical faults to other
parts of the code, raising the total number of bug scenarios to 24.

For each bug scenario, we used a hand-written mission template, tailored to that scenario, to
randomly generate 10 missions that trigger and manifest the bug. After running each mission, we

6https://github.com/ArduPilot/ArduPilot
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collected line coverage of the execution to ensure that the executed mission does in fact execute
the lines of interest (i.e., faulty lines).

Finally, we used the generated missions to construct an evaluation set of correct and erro-
neous traces. We obtain 240 erroneous traces by executing each bug scenario against its associ-
ated bug-triggering missions. However, we excluded traces resulting in software crashes (e.g.,
segmentation faults) from our dataset since those traces can simply be labeled as ERRONEOUS

and no oracle is required. We excluded 7 out of 240 traces due to system malfunction. We then
obtained 233 correct traces by executing all 233 bug-triggering missions against the ground-truth
version of the program, and created a balanced set of evaluation traces.

Comparison to AR-SI’s Methodology AR-SI was originally evaluated on a dataset of 8 his-
torical ArduPilot bugs and 17 artificial bugs created by fault injection [124]. Similar to our
approach, He et al. collect a set of traces, which are considered ERRONEOUS if they execute
the faulty lines, and CORRECT otherwise. However, the AR-SI dataset of bugs and traces is not
available publicly, and we have been unable to gain access via private correspondence. There-
fore, we created a dataset of 24 real-life bugs and 466 traces, and release it as a benchmark to be
used by studies in the future.

To evaluate the effectiveness of AR-SI, He et al. compared AR-SI against a “human oracle”
devised by CPS experts. The human oracle consists of three rules that check that the velocity
and angular velocity of the copter are within certain bounds (e.g., “velocity shall never exceed
±20m/s”). He et al. found that AR-SI produced fewer false positives and false negatives than
the human oracle. Approximately 70% of traces that were identified as erroneous by the human
oracle were, in fact, correct. We choose not to evaluate against a human oracle since its perfor-
mance is dependent upon the knowledge and skills of the experts, and therefore any comparison
to such an oracle would not yield meaningful insights on the performance of Mithra or AR-SI.

Setup To account for nondeterminism, we ran each experiment on 20 different seeds. For all
experiments, we ran Mithra with feature selection NFEATURES = 10, rarity threshold ρ = 5, and
maximum number of clusters kmax = 15.

We conducted our experiments on a single machine, running Ubuntu 18.04, with the fol-
lowing specifications: TR 2990WX (32 cores), 64GB RAM, GTX 1080 Ti, and a 1 TB NVMe
SSD.

Replication We provide our source code, raw results, scripts to analyze those results, and
benchmark traces as part of our replication package: https://bit.ly/2S9m7cd.

Evaluation Metrics To evaluate a candidate model (i.e., the output of our technique), we iter-
ated over each trace in the evaluation set and checked whether the label predicted by the model
(i.e., CORRECT or ERRONEOUS) matched the expected label. We then computed the number of
true positives TP (erroneous traces marked as ERRONEOUS), false positives FP (correct traces
marked as ERRONEOUS), true negatives TN (correct traces marked as CORRECT), and false neg-
atives FN (erroneous traces marked as CORRECT). From those values, we obtained a summary
of model performance:
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Figure 4.6: Relationship between Mithra’s median precision (blue triangles), recall (red diamonds) and
accuracy (yellow circles) and acceptance rate used to classify outliers.

Figure 4.7: Two behavioral clusters for LOITER_TIME that were learned by Mithra, plotted with
respect to normalized LATITUDE (y-axis) over time (x-axis). Each blue line represents a single trace in
the cluster, and the red lines represent the centroid of the cluster. The left cluster captures the behavior of
the copter moving to a specified location before loitering, whereas the right cluster shows the behavior of
remaining at its current location and loitering.

Precision: fraction of traces reported as erroneous that are truly erroneous ( TP
TP+FP

).

Recall: fraction of erroneous traces reported as such ( TP
TP+FN

).

Accuracy: fraction of correctly labeled traces ( TP+TN
TP+FP+TN+FP

).

Note that we used accuracy rather than F1-score, defined as the harmonic mean of recall
and precision, as an overall measure of performance as the F1-score places little weight on false
positives and is best suited to imbalanced datasets.

4.4.3 RQ1: Accuracy

Figure 4.6 illustrates the median performance of Mithra with different acceptance rates θ. As
the acceptance rate increases, recall decreases and precision increases, resulting in a more con-
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Figure 4.8: A performance comparison between AR-SI and Mithra. Using a one-sided Mann-Whitney
U test, we show that Mithra outperforms AR-SI significantly (α = 0.05) in terms of precision, recall, and
accuracy.

servative model that detects fewer erroneous traces overall, but ensures that traces marked as
erroneous are more likely to be truly erroneous. Overall accuracy remains fairly steady as the ac-
ceptance rate is increased, demonstrating the tradeoff between false negatives and false positives.
By modifying the acceptance rate, users can customize Mithra to their preferences [142, 241].

Overall, Mithra achieves a median accuracy of 66.5% across all seeds, and reaches its highest
accuracy of 69.3% when its acceptance rate θ = 1.5 (marking 74.7% of truly correct traces,
correct). We therefore used acceptance rate θ = 1.5 for the rest of our experiments.

As an example of a correctly detected behavior for ARDUCOPTER, we took a look at the
behavioral clusters for the LOITER_TIME(TIME, LAT, LON, ALT) command. According to
the ARDUCOPTER documentation,7 the behavior of LOITER_TIME is described as “The ve-
hicle will fly to and then wait at the specified location for the specified number of seconds.”
However, as stated in the documentation, if the given latitude and longitude are both set to zero,
the copter should hold at its current location. Figure 4.7 illustrates the behavioral clusters that
were identified by Mithra for LOITER_TIME. Cluster 1 captures traces where the latitude of
the copter changes drastically, whereas in Cluster 2, the latitude of the copter remains constant.
In this example, we can see that Mithra automatically identifies the two correct behaviors of
LOITER_TIME as stated in the documentation.

The motivating example described in Section 4.1.1 illustrates the case where the copter mis-
behaves on SPLINE_WAYPOINT command that is followed by another navigation command.
On 20 evaluation traces (10 correct and 10 erroneous) generated for this issue, Mithra reaches
median accuracy, recall and precision of 70% , 90%, and 66.6%, respectively (θ = 0.5). In-
tuitively, this demonstrates that when Mithra is provided traces that trigger this issue, it can
correctly mark those traces as ERRONEOUS 90% of the time.

4.4.4 RQ2: State-of-the-art Comparison
Figure 4.8 presents a comparison of the performance of Mithra against AR-SI. The median pre-
cision, recall, and accuracy of AR-SI are 62.2%, 39.0%, and 57.8% respectively, compared to
Mithra’s 74.7%, 56.0%, and 69.3%. Using a Mann-Whitney U test (α = 0.05) we demonstrate
that Mithra achieves significantly higher precision, recall, and accuracy compared to AR-SI. That

7http://ardupilot.org/copter/docs/mission-command-list.html#loiter-time
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Table 4.1: A comparison of Mithra’s performance when the output clusters of one of its steps is used to
construct the classifier in terms of precision, recall, and accuracy, reported by their median and interquar-
tile range across 20 seeds. Using a one-sided Mann-Whitney U test [189], we show that both Behavioral
Clusters and Subclusters have significantly higher precision and accuracy, and lower recall than Preclusters
(α = 0.01). We are unable to find a significant difference between Subclusters and Behavioral Clusters.

Preclusters Subclusters Behavioral Clusters
Median IQR Median IQR Median IQR

Precision 0.52 0.01 0.72 0.06 0.75 0.06
Recall 0.96 0.03 0.59 0.04 0.56 0.04
Accuracy 0.54 0.02 0.68 0.02 0.69 0.02

is, Mithra detects a greater number of erroneous traces and does so with higher confidence.
We additionally use the intra-class correlation coefficient ICC(3, 1) [161] to measure the

reliability of Mithra and AR-SI across 20 seeds. This metric measures the consistency of a model
in assigning the same label to a given trace across different seeds, and takes a value between zero
and one; one being perfect reliability, and zero the complete absence of reliability. We find that
Mithra demonstrates a “good” reliability of 0.840, whereas AR-SI exhibits a “poor” reliability of
0.349. Intuitively, this result shows that Mithra is more likely to assign the same label to a given
trace regardless of the seed used during training.

4.4.5 RQ3: Conceptual Validation
Each of the three steps of Mithra’s clustering approach is designed to improve the accuracy
of its detected clusters while supporting scalability. To evaluate the individual impact of those
steps, we used the output produced by each step (i.e., preclusters, subclusters, and behavioral
clusters) as input to oracle querying, which we then used to measure the performance of each
step (Table 4.1).

Using the outputs of either the second or third step of our approach (i.e., subclusters and
behavioral clusters) to produce a classifier results in significantly higher precision and accuracy
(α = 0.05) than a classifier constructed using the output of only the first step (i.e., preclusters).
This finding demonstrates that solely using Dynamic Time Warping on low-resolution data is
insufficient on its own for precisely detecting behavioral patterns.

We were unable to show a significant difference in performance between using subclusters
and behavioral clusters. Recall, however, that the intention behind Mithra’s third step is not to
improve functional performance, but rather to effectively reduce the number of reported clus-
ters by combining clusters that represent the same behavior. On average, Mithra identifies 21
subclusters for each command, which it reduces to an average of 5.5 behavioral clusters after
its merging step. By merging non-unique clusters, we reduce the cost of oracle querying by
decreasing the number of expensive DTW distance calculations. Furthermore, reporting fewer
clusters may ultimately aid user comprehension of the discovered behaviors and thus provide
higher confidence in the output of the technique. However, non-unique clusters do not impact
Mithra’s performance since oracle querying is independent of cluster uniqueness. Our results
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provide empirical evidence that the process of merging clusters is indeed effective at reducing
the number of clusters, and does not have any significant impact on overall performance, thereby
indicating that information is preserved.

To investigate the importance of preclustering, we applied step 2 of Mithra’s approach in iso-
lation to the original training traces. The resulting classifier obtained a median precision, recall,
and accuracy of 53.2%, 90.9% and 55.4%, respectively, providing evidence that preclustering
of low-resolution traces with DTW before subclustering results in significantly higher precision
and accuracy (α = 0.01).

4.4.6 RQ4: Time
Our approach for automatically generating CPS oracles requires an up-front training stage, whereas
AR-SI can simply be applied to evaluation traces without training. Although Mithra’s training
can take several hours to complete, depending on the size of the training data, that cost only
needs to be paid once and can be amortized. For our experiments, Mithra’s training took 4
hours and 45 minutes to complete and was spread across 30 threads. However, by storing and
reusing computed distance matrices, Mithra’s training time for subsequent seeds was reduced
to an average of 29.59 minutes. AR-SI’s cost of labeling a single query trace is relatively ex-
pensive, since it repeatedly optimizes a number of parameters for every datapoint in the trace.
In our experiments, on average, it took 27.65 minutes for AR-SI to label all evaluation traces
using 30 threads (i.e., each trace took approximately 107 thread-seconds). For Mithra, it took
an average of 2.79 minutes to label all evaluation traces using 30 threads (i.e., each trace took
approximately 11 thread-seconds). Using an independent samples t-test, we show that querying
Mithra is significantly (p < 0.001) faster than AR-SI.

Overall, Mithra does require an upfront training cost that AR-SI does not; given a trained
model, oracle querying for Mithra is approximately 10X faster than AR-SI.

4.4.7 Wider Applicability
To show that Mithra is not limited to a single system (i.e., ARDUPILOT), we demonstrated Mithra
on the F1/10 platform [217], shown in Figure 4.9. F1/10 is an open-source, autonomous racing
cyber-physical platform, one tenth of the size of a real Formula 1 racing car, that is designed
to be used as a testbed for research and education. We chose F1/10 as an additional case study
to demonstrate the applicability of Mithra to a system built on top of the Robot Operating Sys-
tem [229], the most popular robotics development platform, sometimes referred to as the “Linux
of Robotics” [279].

In this experiment, we used Mithra to learn an oracle for the wall-following command of
F1/10,8 in which the vehicle uses its sensors to complete laps around the race track without
crashing. The wall-following command takes a single parameter that specifies whether the vehi-
cle should follow the inside or outside walls of the track. The vehicle will indefinitely complete
laps around the track in a counter-clockwise direction, remaining close to desired wall, until
instructed to stop by the user. Since “missions” for this system consist of a single command

8https://github.com/linklab-uva/f1tenth_gtc_tutorial
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(a) (b)

Figure 4.9: (a) The F1/10 vehicle; one tenth of the size of a real Formula 1 race car. (b) A simulated race
track with four obstacle cones (orange), the F1/10 vehicle (red), and the range covered by the vehicle’s
sensors (blue). The vehicle follows the inside or outside walls to navigate through the track counter-
clockwise, and avoids obstacles.

of indefinite duration, we imposed a wall-clock time limit when collecting traces. These traces
consist of seven state variables, describing the vehicle’s position and orientation at each point of
observation.

We assessed Mithra on F1/10 using a similar approach to our evaluation on ARDUPILOT,
outlined in Section 4.4.2, by constructing a benchmark. We used simulation to construct a train-
ing dataset of 75 unlabeled traces, covering both inside and outside wall-following behaviors.
Note that we collect substantially fewer training traces for F1/10 compared to ARDUPILOT since
the latter has a greater set of commands and parameters. To construct an evaluation dataset, we
first automatically injected 234 faults into the F1/10 source code using four mutation operators:
Wrong Arithmetic Operation, Wrong Value Assigned to a Variable, Missing Parentheses, and
Wrong Logic Clause. We used artificial faults for evaluation since F1/10 does not have a rich
enough development history to extract historical faults. After running the command with both
parameters on the syntactically valid, non-crashing bugs and collecting the traces, we manually
identified the mutants that led to failure (i.e., crashing into obstacles). We identified 153 mu-
tants and produce 261 faulty traces. To ensure a balanced evaluation dataset, we collected an
additional 261 traces using the unmodified F1/10 system.

We ran Mithra with rarity threshold ρ = 5, maximum number of clusters kmax = 15, and
without feature selection, and repeat the experiment with 20 seeds. Mithra reached its highest
median accuracy (81.0%) when θ = 1, with median precision and recall of 84.6% and 74.9%, re-
spectively. By comparison, AR-SI achieved its highest median accuracy (51.3%), with a median
precision and recall of 51.7% and 37.1%, respectively, when p = 10.

The high performance of Mithra on F1/10 may be explained by how erroneous behaviors in
this system manifest. In most cases, the vehicle misbehaves smoothly, and does not necessarily
show sudden, unexpected changes; rather, it slowly navigates along the wrong path. Mithra
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detects that the behavior does not match previously identified behavioral clusters. In contrast,
AR-SI only detects erroneous behaviors that involve abrupt changes, which may explain why
AR-SI performs poorly on F1/10.

Overall, these results demonstrate the wider applicability of Mithra by showing that Mithra
can be successfully applied to another system (i.e., F1/10).

4.5 Limitations and Threats

Limitations Our approach, like others, treats anomalous behavior as erroneous, and common
erroneous behavior as correct [29, 65, 88, 136, 173, 216, 288]. However, anomalous behavior
also includes corner cases and rare behaviors that are not observed during training, which are
not necessarily erroneous, and erroneous behavior can be observed in the training data. Even
though reporting the anomalous-yet-correct behaviors as erroneous is not ideal, it can inform
the developers of under-tested functionality. In addition, most systems typically perform as
expected [85], as it is easier for developers to detect and debug an erroneous behavior that is
observed frequently.

Overall, the performance of our approach depends on its training data, a limitation it shares
with other dynamic model learning techniques [29, 88, 173, 216]. If the provided traces do not
provide sufficient coverage of the unique behaviors of the robot, our approach will fail to identify
those behaviors. However, generating a diverse set of training data is an orthogonal problem we
leave to future work.

Our approach assumes sequential execution of commands and cannot handle asynchronous
or concurrent executions. We leave including such traces in our approach to future work.

Threats to Validity In theory, our approach is applicable to any CPS that logs its telemetry
data. However, we only evaluated on two instances of such systems. We picked ARDUPILOT as
a fairly complex and highly popular system that is widely used as a representative of real CPSs in
prior work [18, 124, 179, 274, 296], and we pickedf F1/10 as system built on top of the popular
Robot Operating System [229].

In many CPSs, executing faulty lines and triggering a bug does not guarantee that the bug
will manifest. However, many of our bugs are associated with a bug report on ARDUPILOT’s
issue tracker and describe missions that manifest the bug. We created mission templates based
on the bug reports and our own understanding of the bugs, and generated random missions from
those templates. The mission templates are a source of internal validity.

As the source code of AR-SI was not available to us, we implemented our own version of
AR-SI based on the description provided in the paper [124]. Our implementation of AR-SI
represents a potential threat to internal validity. We release our implementation of AR-SI as part
of our replication package.

Although Mithra is agnostic to the source of its traces and can be applied to field traces, we
do not evaluate Mithra on field traces and leave that for future work.
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4.6 Summary and Future Work
To summarize, in this chapter, I introduced Mithra, an automated tool that demonstrates a three-
step multivariate time series clustering approach as an effective means of generating oracles for
cyberphysical systems. As part of our evaluation on widely used robotics platform of ARDUPI-
LOT, we showed that Mithra identifies a higher number of faulty executions than AR-SI, a state-
of-the-art oracle generation technique for CPSs, and does so with a higher level of confidence.
We showed that Mithra is generally more reliable and may be used to provide an oracle for auto-
mated, simulation-based testing as part of a continuous integration and deployment workflow.

There are a number of improvements that can be added to Mithra to make it more accurate and
usable for robotic and CPSs. In the current form, the clusters found by Mithra cannot be evolved
to incorporate newly collected data. For example, if a new feature is added to the system, the
oracle (i.e., behavioral clusters) need to be recomputed from scratch to take the modified behavior
of the system into account. This limitation can result in high cost of using Mithra in practice
on frequently evolving systems. Future studies can propose techniques to reuse the previously
identified clusters, and evolve them based on newly collected data.

Another avenue for future work can be directed towards involving the users in some sort of
verification of the behavioral clusters to improve the accuracy of the oracles. For instance, a
few representative traces from each identified clusters can be presented to the user. The user
can guide Mithra on whether a behavioral cluster conforms to their expectation, or modifications
such as breaking the cluster into smaller clusters should be performed. Additionally, the users
can provide insight on whether a cluster is presenting CORRECT or ERRONEOUS behavior, which
can address the limitation regarding frequently-observed erroneous and rarely-observed correct
behaviors.

Mithra in its current form completely treats the system as a black-box, and assumes no infor-
mation about the SUT, except for the optional definition of dynamically computed dimensions
presented in Section 4.3.4. In order to automatically identify relationships between different
dimensions, Mithra needs to know the units for each dimension. For example, Mithra can auto-
matically compare dimension A and B, if it is aware that both of these dimensions are measuring
speed. However, it will not compare A and B to each other if one is measuring speed while the
other is measuring angle. As a result, one solution to replace definitions for dynamically com-
puted dimensions is to expect minimal annotations from the user that specify the units for each
dimension, and use them to automatically infer relationships across dimensions. Additionally,
we can take advantage of automated, white-box analysis techniques to learn these units without
requiring the users to manually specify them [219, 220].

Finally, in this chapter, I limited the scope of the work to different behaviors of the system
under a single configuration setting, and in a fixed environment. In future, we can propose
ideas on how to effectively encode the configuration settings, and the simulated environment for
each trace, so that our clusters will be reflective of different behaviors the SUT can have under
different setups. For example, distance to the closest object can be a variable of the traces that in
some way encodes the environment.
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Chapter 5

Test Input Evaluation and Generation

Test inputs are essential to perform any sorts of software testing. In fact, the quality of software
testing, how well the testing process can find all the flaws in the system, is significantly affected
by the quality of the test inputs provided to it [156]. Therefore, it is important to create test inputs
that can expose the SUT to different scenarios, and shed light on its flaws.

Generating high quality test inputs for robotic and CPSs is extremely challenging as the input
space in these systems are massive (e.g., system’s configuration, environment, commands and
parameters), making it infeasible to be exhaustively covered [232]. Even though the challenge of
a vast input space is not specific to robotic and CPSs, it can be more manageable in non-robotics,
software systems. In software systems (e.g., a web application), well-defined interfaces control
and limit the range of inputs that can be received from external sources (e.g., users). However,
a robot or CPS receives its inputs from the real, physical world, and any situation or scenario
that can arise in the real world is part of the system’s input space, which in many cases cannot
be controlled or limited. Therefore, searching in the input space for automatically constructing
meaningful test cases is one of the most important needs in the CPS testing domain [110]. In
fact, handling unpredictable corner cases is one of the main challenges of testing these systems
as described by robotics practitioners in our qualitative study of Section 3.1 [20].

As a result, an automated testing pipeline for robotic and CPSs such as the one presented in
Figure 1.1 should include an automated means of generating test inputs that efficiently and effec-
tively samples the vast input space to increase the testing framework’s ability in revealing faults
in the system [156]. Prior studies have proposed a number of automated test input generation
approaches to address this problem [110, 122, 197, 205, 268, 269, 277]. However, many of these
approaches require pre-defined artifacts and models of the system (e.g., Simulink and MATLAB
models) [122, 197, 205, 277], which are difficult and error-prone to be specified [110], and may
not be available for many non-safety-critical robotic and CPSs [122]. Other approaches specifi-
cally focus on autonomous driving applications with a set of assumptions and requirements (e.g.,
e.g., the definition of safe driving that includes traffic laws) that may not be easily extendable to
other systems [110, 268, 269]. In this chapter, I study and evaluate different characteristics of
the test inputs that impact their quality, and propose an automated, search-based test generation
approach to generate high-quality test inputs without requiring pre-defined models or artifacts of
the system. I conduct these studies on a case study mobile robot, presented in Section 5.1, to
test ROS’s navigation planner subsystem, used by thousands of users. Similar to Chapter 3 and
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(a) (b)

Figure 5.1: (a) The TURTLEBOT3 mobile robot. (b) A simulated environment with six obstacle pillars
(white), and the TURTLEBOT3 robot (black) in Gazebo.

4 my focus in this chapter is on fully-automated whole-system tests, which are performed using
software-in-the-loop simulation.

Overall, to automatically generate test inputs for a robotic system that can be executed in
simulation, we require the following items:

1. A way to specify test input scenarios, which include the specification of the simulation
environment and the test mission to be performed, and a way to automatically generate the
necessary files and models to construct the specified scenario in simulation.

2. A metric that can measure the quality of test inputs with respect to their effectiveness in
revealing faults.

3. An approach to automatically generate test inputs with higher quality.
In Section 5.2, I present GzScenic, a tool I created to automatically translate test scenarios

provided in the Scenic domain-specific language [97] to valid simulation scenes and missions,
which satisfies the first requirement. I address the second requirement from the list above, by
1) investigating the reliability of test outcome with respect to determinism in the test executions
for different test inputs, as it affects the quality of tests [53, 93, 127, 170, 184] and how we
evaluate them, and 2) using the mutation score [76] as the ground-truth measure for the effec-
tiveness of test inputs [141, 222] to evaluate different coverage-based test input quality metrics
(Section 5.3). Finally, in Section 5.4, to automatically generate high-quality test inputs, I propose
an evolutionary-based test generation approach with a fitness function that is based on scenario
coverage, where the test generation or selection approach focuses on maximizing the diversity
and effectiveness of the scenarios presented to the system under test [102, 150, 202, 233, 281].

5.1 Case Study
In this work, I set out to examine the test input characteristics of mobile robots specifically with
regards to the path finding and planner subsystems [211]. Mobile robots include a wide variety
of systems that are used for a wide range of purposes. To name a few TURTLEBOT3 [10],
FETCH [278], HUSKY [5], and PR2 [9] are all well-known mobile robots built on top of ROS,
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and are used for a variety of purposes.
navfn and base_local_planner are packages in the ROS navigation stack1 that are

commonly used by mobile robots that are developed on top of ROS. The navfn package pro-
vides a fast interpolated navigation function that can be used to create plans for a mobile base,
and uses Dijkstra’s algorithm. The base_local_planner package provides implementa-
tions of the Trajectory Rollout and Dynamic Window approaches to local robot navigation on a
plane. Given a plan to follow and a costmap, the controller produces velocity commands to send
to a mobile base. In other words, these two packages can be used in a mobile robot to determine
a path between the source and the destination, and compute the appropriate velocity commands
to be used by the actuators.

Since these packages provide essential functionality for the mobile robots, and are highly
popular [160], it is extremely important to test them under different scenarios, and investigate
their robustness. In this work, I use TURTLEBOT3 robot as an example system that uses the
aforementioned packages for navigation.

TURTLEBOT3 [10], shown in Figure 5.1a, is a programmable, ROS-based mobile robot for
use in education, research, hobby, and product prototyping [25, 32, 227]. TURTLEBOT3 can be
customized into various ways depending on how you reconstruct the mechanical parts and use
optional parts such as the computer and sensor. TURTLEBOT3 uses simultaneous localization
and mapping (SLAM) [174] algorithms to build a map, which it uses alongside ROS navigation
stack to drive around a room. It can be simulated using the popular Gazebo simulator [159]
(Figure 5.1b).

5.2 Simulation Scenario Construction

ego = Car

spot = OrientedPoint on
visible curb

badAngle = Uniform(1.0, -1.0)

* Range(10, 20) deg
parkedCar = Car left of (spot

offset by -0.5 @ 0), facing
badAngle relative to

roadDirection

(a) (b)

Figure 5.2: (a) An exemplary scenario description, written in the Scenic language, detailing a scene that
contains a badly parked car, and (b) A scene that was generated by Scenic according to the scenario above
using the GTA V engine [97].

In order to test a single TURTLEBOT3 in simulation, we need to define test inputs (i.e.,

1https://github.com/ros-planning/navigation
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scenarios) that specify several key elements:
1. The environment where the simulation takes place (a.k.a., scene). A scene describes all

the elements in a simulation, including its objects, sensors, light sources, etc.

2. The initial position and orientation of the robot.

3. The set of waypoints (i.e., goals) that should be visited by the robot to perform the naviga-
tion mission.

In addition to the aforementioned items, we need to specify the set of configuration options
selected to configure the robot under test. Even though exploring configuration space is a chal-
lenging and important part of testing robotic systems [151], it is beyond the scope of my work.
Therefore, I only focus on generating test inputs for the default configuration of the system, and
leave efficient exploration of the configuration space to future work.

As mentioned in Section 3.3, manually generating the scenes and missions for testing in
simulation can be time consuming and difficult [21]. In recent years, researchers have proposed
tools and domain-specific languages (DSLs) to facilitate the construction of testing scenarios [97,
158, 187]. One of the most prominent such DSLs is Scenic [97], a language designed for creating
simulation scenarios for autonomous vehicles. Using Scenic, users can describe a scenario of
interest for the SUT, which is automatically parsed by the Scenic tool to generate a plausible
scene and mission that satisfy the user-specified constraints of that scenario. The generated scene
and mission are then executed in the supported simulators to execute the test. Figure 5.2 shows
an example scenario that is realized in the GTA V [236] simulator. Scenic requires a pre-defined
set of models that define everything specific to a particular simulator and SUT. For example, for
an autonomous driving system Scenic models need to describe entities such as Car, Road, and
Pedestrian, and how they should be rendered in a specific simulator (e.g., CARLA).

Although Scenic provides a powerful language and tool that simplifies the process of creat-
ing and running simulated test scenarios, it only supports domain-specific simulators in the au-
tonomous vehicle sector, and is not compatible with Gazebo; the most popular, general-purpose
robotic simulator [159]. Since Gazebo is a general-purpose simulator that is used in a wide range
of domains, it is nearly impossible to pre-define Scenic models that describe the entities required
for simulation of all systems in different sectors. For example, an agricultural robot requires
modeling of entities such as plants and tractors, whereas a warehouse robot requires modeling
of the shelves, boxes, and rooms. In comparison, defining these models for a domain-specific
simulator such as GTA V and CARLA requires a one-time investment since most of the entities
that can be simulated and included in the scenarios are shared among all systems that use these
simulators. For example, if models are produced for CARLA in order to test a given system,
those same models may be reused in another system with minimal effort.

To be able to automatically generate simulation scenes in Gazebo from a scenario provided
in Scenic’s DSL, for TURTLEBOT3 or any other ROS systems, I created the GzScenic tool. Us-
ing GzScenic, developers can specify their desired testing scenarios in Scenic’s DSL without
the need to manually pre-define their models in Scenic, and automatically generate complex
scenes that satisfy the constraints of their scenario. GzScenic automatically transfers the gen-
erated scenes to Gazebo without the need for manual translation. Furthermore, to support test
automation for mission-based robots, GzScenic can synthesize mission items (e.g., waypoints,
action locations, the initial position of a robot) as part of a test scenario.
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ego = Turtlebot3
create_room(5,10)

for _ in range(2):
CafeTable

for _ in range(4):
ConstructionCone

for _ in range(3):
FireHydrant

for _ in range(2):
Ball

GreyWall

wp_region = Region(0 @ 0,
0, 4.5, 9.5)

Waypoint in wp_region
Waypoint in wp_region

(a) (b) (c)

Figure 5.3: (a) An example scenario written in Scenic language for TURTLEBOT3 randomly placing 12
objects and 2 waypoints in the scene, (b) the 2D plot of the generated scene, and (c) the simulation of the
generated scene in Gazebo.

Overall, GzScenic allows the users to simply specify a list of models they intend to use in the
simulation, and it automatically turns these models into models that are interpretable by Scenic.
Using these models, Scenic generates a scene from the scenario, which later on is automatically
converted to Gazebo models by GzScenic [22]. Figure 5.3 illustrates an example of a Gazebo
scenario for TURTLEBOT3 that is automatically generated from the presented (simplified) Scenic
scenario. I use GzScenic in the following sections to execute automatically or manually gener-
ated test scenarios for TURTLEBOT3 in simulation.

5.3 Test Input Quality Metrics

In the previous section, I presented a tool that allows for automated and easy construction of
simulation scenarios, which as discussed earlier, is one of the pieces required to develop an
automated test generation approach. Besides the ability to automatically construct simulation
scenarios, we need to develop an understanding of what makes a test input or a test suite more
effective (i.e., high quality), and what characteristics in the test inputs make them more reliable.
This understanding allows us to be able to evaluate different test inputs, and propose an effective
automated test input generation approach for robotic and CPSs.

In this work, I define the quality or effectiveness of a test suite as its ability to reveal faults in
the system [156]. One such metric is the mutation score [76], which is calculated by executing a
test suite on a set of mutated programs (i.e., programs that are injected with faults), and measuring
the number of these executions that result in different outputs than running the same test suite
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on the original, unmutated program. As described in Section 2.2, mutation score can be used
to measure the effectiveness of a test set in terms of its ability to detect faults [141], and higher
mutation score is proven to improve the fault detection significantly [222].

However, computing the mutation score is extremely expensive and in many cases infeasible
as it requires the execution of test suites on many variations of the program (i.e., mutants), which
requires a lot of time and resources depending on the SUT. For example, let us assume that
each test for our case study system, TURTLEBOT3, takes 5 minutes on average, and we would
like to evaluate a test suites with 10 test cases. For a set of 200 mutants, it is going to take
10 × 200 × 5 = 10000 mins = 166.66 hours to calculate the mutation score. The severity of
this problem becomes even more considerable when multiple test suites are being evaluated and
compared against each other, possibly in the process of automated test generation.

Instead of using mutation score to assess the quality of test suites, different coverage-based
metrics (e.g., function coverage, statement coverage, branch coverage) have been proposed as
an indicator of testing effectiveness and completeness for the purpose of test case selection and
evaluation [131, 185, 230, 259]. Automated test generation tools and approaches for conventional
software commonly use coverage metrics as a mean of evaluating their test suites, and attempt
generating test suites that maximize the coverage metrics [95, 177, 223, 287].

Despite the popularity of coverage metrics for test suite evaluation, these metrics are shown
to be poor indicators of fault finding effectiveness [57, 96, 107, 125, 137]. Marick explains that
coverage metrics are only able to tell us how the code that exists has been exercised, but they
cannot tell us how code that ought to exist would have been exercised (faults of commission vs.
faults of omission) [190, 191], and missing logic is one of the main reasons behind coverage
metrics’ poor performance [125].

I hypothesize that the problems of coverage metrics are even more severe in robotic and CPSs.
First of all, many potential faults in these systems can arise when the system has no components
to handle certain situations [123]. For example, if the navigation planner of TURTLEBOT3 has
no logic for handling situations where the robot is stuck in a corner, then the coverage metric will
not provide any information regarding the failures that arise in that specific situation. Second,
the robotic systems include a control loop that periodically (with high frequency) executes the
control logic of the program. Therefore, most of the statements of the program are executed
during the overall execution of the test. Finally, as mentioned in Section 3.2, triggering the faults
in these systems do not always result in them being manifested. In other words, scenarios that
execute the faulty code may not result in a faulty behavior unless a specific condition arises. This
phenomena is called coincidental correctness [56], and reduces the effectiveness of testing [33,
128, 194, 195, 273]. Therefore, generating tests with high code coverage may not necessarily
lead to the manifestation of more failures in the system.

In addition to the these challenges, the non-deterministic nature of robotic and CPSs can
have serious ramifications for testing and test input generation [93, 184]. With non-deterministic
systems and software, we can run the exact same test case (i.e., with the exact same test inputs
under the exact same test preconditions) multiple times and get different results (i.e., different
test outputs and test postconditions). First of all, testing non-deterministic systems require a more
complex oracle as mentioned in Chapter 4, since a single behavior is not truly representative of
all possible (or accepted) outcomes of a test. Second, a single execution of the test inputs is not
sufficient to mark the test as passing or failing. This concept is known as flaky tests that can non-
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deterministically pass or fail when run on the same version of the program [43]. Prior studies
have investigated flaky tests in conventional software systems extensively, and have introduced
approaches to automatically identify flaky tests in a test suite [43, 94, 115, 118, 165, 166, 167].

Even though there are strong indications of the existence of non-determinism in robotic and
CPSs [93, 184], to the best of my knowledge no empirical data is available on how severe the
non-determinism is in these systems, and how it varies among different test inputs. Identifying
the severity of this issue can 1) provide insight on how reliable the test executions on these
systems are, and how the test inputs should be evaluated, 2) inform our automated test generation
approach on generating test inputs with higher reliability, and 3) lay the ground work for future
studies on resolving or controlling the non-determinism in the system.

As a result I set out to answer the following research questions:
• RQ1: How severe is non-determinism in robotic software?
• RQ2: How effective are coverage metrics in evaluation of test suites for robotic software?

As mentioned earlier, I investigate the ROS navigation function and local planner subsystems
using TURTLEBOT3 robot as a subsystem that is commonly used by systems developed on top
of ROS.

5.3.1 Methodology and Data Collection

To answer the aforementioned research questions, I use the methodology similar to the technique
taken by prior work [57, 137] using mutation score as ground-truth. After creating a set of
test inputs and executing them on the original, unmutated program multiple times (because of
possible non-determinism in the executions), I create a set of mutants from the original program,
and run the test cases on each mutant multiple times. I compute the mutation score for each test
input by determining whether the output or performance of the robot on the mutant is statistically
different from the behavior of the system with the original program. Note that because of non-
deterministic executions, I need to use statistical methods to compare the two sets of executions;
one on the original program, and another on the mutant. I later use the data collected over these
executions to study the severity of non-determinism (RQ1), and the correlation between mutation
score and multiple coverage metrics (RQ2).

Test inputs I first need to create a diverse set of test inputs that expose the system to dif-
ferent navigation scenarios. For this purpose, I manually created 9 scenarios written in Scenic
language [97], which I used to create 16 test inputs (i.e., simulation scene, the robot’s initial po-
sition, and the navigation mission) using GzScenic (Section 5.2). Note that multiple scenes can
be generated from a single scenario when the scenario includes random positioning of objects (7
out of 9 scenario include randomness). I manually created these scenarios to ensure they include
high levels of diversity. For instance, I included both scenarios where the system navigates on a
mostly empty plane, and the scenario where the robot has to navigate through a crowded space.
I also included 3 purely random scenarios that slightly differ from each other in the number and
type of objects they include to mitigate the threat of introducing bias to the data.
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Original runs To observe possible non-determinism in the system, I ran each test input 20
times in simulation with a timeout of 5 minutes, and collected the following data:
• The status of test completion: Whether the test execution ended normally (i.e., OK), or

resulted in a TIMEOUT, ERROR, or system CRASH.
• Whether the robot hit obstacles.
• The maximum localization error: the localization error (LE) refers to the difference be-

tween the location where the robot thinks it is (determined by the localization subsystem
that is SLAM in TUTLEBOT3), and where it actually is according to the ground truth pro-
vided by the simulator. I take the maximum error as it presents the worst localization that
the robot received during the mission, which directly impacts the navigation function.

• The robot’s closest distance to the specified waypoints of the mission.
Since there are no well-established, accurate oracles for robotic systems, I focus on the data
points that are important in determining whether a navigation mission has been successfully
completed [140].

Table 5.1: The mutation operators used to generate a set of mutants.

Type Description
aar Array reference fr array reference replacement
aor Arithmetic operator replacement
crp Constant replacement
ror Relational operator replacement
svr Scalar variable replacement
uoi Unary operator insertion

Mutants To generate mutants of the original program that affect navigation function and the
local planner, I use six mutation operators [215] presented in Table 5.1 on the two .cpp files
in the navfn and local_base_planner packages that control parts of the main navigation
logic (total of 1,371 LOC). I used Comby [271], a tool for searching and changing code structure,
to apply the mutations to the code. Overall, applying all possible mutations on the two .cpp
files resulted in 1632 mutants. However, not all of these mutants are syntactically valid and
compilable. Therefore, after removing all not compilable mutants I ended up with 1146 valid
mutants. In order to control the scale of these experiments, I randomly selected 200 mutants
from the set of 1146 valid mutants.

Mutant runs Because of possible non-determinism in the system, I execute each test input 8
times on every mutant. The reason behind a lower number of executions on the mutants compared
to the original program is the high cost associated with this step of data collection. This is by far
the most expensive part of the data collection and takes a significant time. In fact, each round of
running all 16 test inputs on all 200 mutants takes more than 16 hours with 10 executions running
in parallel. On every execution, I collect the same data as the one described for original runs.
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In order to mark a mutant as detected or killed by a test case, we need to determine whether
the output of running the test on the mutant is different than the output of running the same test
on the original, not mutated program. However, as mentioned earlier, in these systems we need
to deal with non-deterministic outcomes, and therefore, we have to compare two distributions
against each other. For this purpose, I use the Kolmogorov–Smirnov (K-S) test, which is a
nonparametric test of the equality of continuous one-dimensional probability distributions that
can be used to compare two samples (two-sample K–S test) [196]. A p-value smaller than 0.05
shows that the two samples do not come from the same distribution. Another statistical test that
can be used in this context is the Mann-Whitney test [189]. However, the K-S test is sensitive to
any differences in the two distributions. Substantial differences in shape, spread or median will
result in a small p-value. In contrast, the Mann-Whitney test is mostly sensitive to changes in the
median, and as a result I use the K-S test in this study.

In order to mark a mutant as killed by a test case, at least one of the following conditions
should be satisfied:
• At least one of the executions of the test on the mutant did not terminate normally.
• At least one of the executions of the test on the mutant resulted in hitting obstacles while

none of the original executions showed such behavior.
• The p-value of K-S test on the maximum localization error of all test executions on the

original program and the mutant be smaller than 0.05.
• The p-value of K-S test on the maximum closest distance to the waypoints of all test

executions on the original program and the mutant be smaller than 0.05.

5.3.2 (RQ1) Non-determinism in Robotic Software
Many software systems (e.g., distributed systems, CPSs, embedded systems) exhibit a level of
non-determinism in their behavior, meaning that running the exact same inputs under the exact
same conditions may result in different outputs and behaviors [53, 93, 127, 170, 184]. Non-
determinism can either occur when there is no theoretical way of predetermining the system’s
exact behavior (i.e., actual non-determinism), such as behavior that is determined by quantum
physics, or it can occur when there is no practical way for the tester (or test oracle) to predeter-
mine the system’s exact behavior (i.e., apparent non-determinism) [93]. Non-determinism in the
system can arise from many different sources [93] such as:
• Physical non-determinism: due to the nature of physical reality.
• Emergent non-determinism: due to integration of subsystems into systems.
• Concurrent non-determinism: due to system-internal and -external concurrency.
• Exceptional non-determinism: due to fault and failure behavior.

Since robotic and CPSs interact with the physical world, integrate many subsystems, and operate
with high concurrency, they are highly susceptible to non-determinism.

As mentioned earlier, non-determinism in the system has serious ramifications for testing
both in terms of complexity of the oracle (a single behavior cannot be truly representative of all
possible (or accepted) outcomes of a test), and reliability of the test execution outcome (a single
execution of the test inputs is not sufficient to mark the test as passing or failing). This concept
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Table 5.2: The summary of 16 test scenarios executed 20 times each by the number of executions that ter-
minated normally (i.e., ran OK) and resulted in hitting the obstacles, and the entropy, mean, and standard
deviation of maximum localization error and maximum closest distance to the waypoints over 20 runs.

Ran Obst. Max Localization Error Max Closest Distance to WPs
Test OK Hits Entropy Mean Std Entropy Mean Std

0 20 0 0.857 0.157 0.038 0.000 0.032 0.006
1 20 0 1.941 1.783 0.354 0.206 0.107 0.313
2 20 0 0.693 0.162 0.027 0.199 0.058 0.030
3 20 6 0.647 0.181 0.050 1.259 0.586 1.100
4 20 5 0.898 0.200 0.059 0.639 0.601 1.168
5 20 0 0.199 0.125 0.017 0.000 0.035 0.007
6 20 0 0.000 0.108 0.023 0.000 0.035 0.006
7 20 0 0.746 0.230 0.048 0.000 0.036 0.009
8 20 0 0.898 0.161 0.052 0.000 0.042 0.005
9 20 0 0.731 0.426 0.054 0.000 0.034 0.006
10 20 0 0.938 0.425 0.078 0.000 0.030 0.008
11 20 0 0.000 0.068 0.012 0.000 0.038 0.006
12 20 0 0.647 0.153 0.031 0.708 0.350 0.633
13 20 0 0.688 0.159 0.016 0.000 0.033 0.005
14 20 0 1.344 3.871 0.094 0.000 0.039 0.006
15 20 0 1.739 2.247 0.214 0.000 0.022 0.012

that is also known as flaky tests have been investigated extensively in conventional software sys-
tems [43, 94, 115, 118, 165, 166, 167]. However, to the best of my knowledge no empirical data
is available on how severe the non-determinism is in robotic systems, and how it varies among
different test inputs. Identifying the severity of this issue can 1) provide insight on how reliable
the test executions on these systems are, 2) inform our automated test generation approach on
generating test inputs with higher reliability, and 3) lay the ground work for future studies on
resolving or controlling the non-determinism in the system. In this section, I investigate the non-
determinism that is manifested through testing in robotic software by using the data of Original
runs presented in Section 5.3.1, where I execute 16 test inputs, 20 times on the TURTLEBOT3
robot, and measure the variability of output behavior.

Results Figure 5.4 presents the density plot of the maximum localization error, and maximum
closest distance to waypoints achieved among 20 runs for the first 5 test inputs. As shown in the
figure, there is a high difference between variability of different test inputs. For example, tests #0
and #2 show a very low variability in both their localization error, and reaching the waypoints.
However, test #1 shows a very high variability in the maximum localization error as the values
range between 1.2 to 2.9 meters, and test #3 and #4 show high variability in the maximum closest
distance to the waypoints.

Table 5.2 presents the data collected on all test inputs: 1) We can see that all test runs termi-
nated normally in a timely manner. 2) There are 6 and 5 executions of tests #3 and #4 respectively
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Figure 5.4: The density plots of the robot’s maximum localization error (left diagram), and maximum
closest distance to waypoints (right diagram) over 20 runs for the first 5 test inputs.
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that result in hitting obstacles during the mission, which by itself shows a high degree of non-
determinism on these tests. 3) The entropy and standard deviation of maximum localization
error, and the maximum closest distance to waypoints highly vary among different tests. The
higher entropy and std show higher variability and non-determinism. Even though there is a
strong and significant correlation between entropy and std (Pearson correlation of 0.82 and 0.92
for maximum LE and maximum closest distance respectively with p-value<0.005), I consider std
as a better measurement of variability in this context as it is more sensitive towards the absolute
difference between observed values.

Overall, out of the 16 test cases, 9 have at least one non-zero entropy, and 4 have out of
those 9 have the sum std of higher than 0.5 meter, which shows high rate of non-determinism in
the test runs. This finding indicates that the test generation and evaluation techniques for these
systems need to take non-determinism into account, and cannot rely on a single test execution to
determine the outcome of the tests.

Additionally, by observing different levels of non-determinism among different scenarios,
this empirical evidence suggests that there are characteristics of test scenarios that can result in
higher or lower level of non-determinism among executions. In Section 5.4, I further analyze
these characteristics, and present a metric that strongly correlates with the std measures of the
test executions.

Sources of Non-determinism Our study shows high levels of non-determinism that exist among
test executions in our case-study system. The non-determinism among executions can arise from
many different sources such as noise in the sensor data, concurrency in the system, and timing of
communication among subsystems. By identifying these sources, and investigating their impact
on the non-determinism among test executions, we can provide methods and techniques to con-
trol and adjust them in simulation for a more reliable automated testing. In Section 5.6, I further
discuss opportunities for future work in this area.

Based on our knowledge and understanding of the SUT, the simulator, and overall archi-
tecture of robotic systems, we can speculate over possible sources of non-determinism in these
systems such as the ones stated earlier. While a number of these sources can easily be con-
trolled in simulation (e.g., sensor noise), others require more advanced approaches to be adjusted
and controlled (e.g., timing and synchronization among subsystems). As a preliminary study,
I investigate three possible sources of non-determinism in our case-study system that can be
manipulated in simulation, using the 16 test scenarios of Table 5.2:

1. Sensor noise: The level of noise in the sensor data can have a significant impact on the
level of non-determinism among executions since it can result in different inputs being
provided to the system in each run. In simulation, the noise in the sensor data is added and
controlled by the simulator, and most simulators allow configuring the level of noise. For
example, in Gazebo [159], which is used by our case-study system, the level of noise for
each sensor can be specified as a distribution (e.g., Gaussian) with specified properties.
To investigate the impact of sensor noise on non-determinism, I executed the test scenar-
ios in simulation that is configured to add zero noise to the sensor data, and compared it
against a set of executions using a simulator with high levels of sensor noise (Gaussian
distribution with mean 0.0, and standard deviation of 0.2 and 1.0 for the imu and laser
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sensors respectively). The executions with high sensor noise result in significantly higher
standard deviation in maximum localization error compared to executions without sensor
noise (mean of 1.14 vs. 0.07). They also result in higher standard deviation in the max-
imum closest distance to the waypoints, but the difference is not statistically significant
(mean of 0.46 vs. 0.16). This data suggests that sensor noise can have a significant impact
on the level of non-determinism among executions, and eliminating the sensor noise can
result in more reliable test executions in simulation. However, removing the sensor noise
all together does not guarantee deterministic executions, as there are other sources of non-
determinism, and it can result in less realistic simulations, since in reality the sensor noise
cannot be eliminated.

2. Simulation speed: The speed of simulation refers to the frequency at which the simulation
time steps are advanced, and it can impact the behavior of the system as it determines the
amount of time the system can take to react to the inputs. For example, if the robot has
infinite time, it can finish all the computations required to make decisions and react to a set
of sensor readings in time. However, in a sped-up simulation, the system may not be able
to react to the inputs in time, which can result in non-deterministic behavior.
To investigate the impact of simulation speed on non-determinism, I executed the test
scenarios in slowed-down simulations (0.5 the speed of real-time), and compared it against
sped-up simulations (1.5 the speed of real-time). I observed no significant difference in
the level of non-determinism among these two sets of executions, and they both resulted in
similar standard deviation measures in the maximum localization error (mean of 0.08 vs.
0.07 for slowed-down and sped-up simulations respectively) and in the maximum closest
distance to the waypoints (mean of 0.17 for both sets). This data suggests that slowing
down the simulation may not necessarily result in more deterministic, reliable executions.

3. Random seed: The simulator and the SUT both use random numbers for different oper-
ations such as generating noise for simulation, and many random optimization algorithms
used by different subsystems. These random numbers can be a source of difference among
executions of a test scenario. We can attempt to control consistency of the generated ran-
dom numbers by specifying a constant random seed. However, we cannot fully control the
consistency since the generated random numbers also depend on the timing and synchro-
nization of executions.
To investigate the impact of adding random seed on non-determinism, I executed the test
scenarios on a modified version of the SUT, where a constant random seed is provided to
both the simulator and the the localization and mapping subsystem (SLAM) that uses ran-
dom numbers for optimization. I compare these executions with a set of executions where
no random seed is provided, and time is used as the default seed that changes among
executions. Surprisingly, no significant difference among these two sets of executions was
observed, and they both resulted in similar standard deviation measures in the maximum
localization error (mean of 0.10 vs. 0.07 for executions with random seed and no random
seed respectively) and in the maximum closest distance to the waypoints (mean of 0.19
and 0.20 respectively).

These results present a preliminary investigation on three possible sources of non-determinism
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among test executions in simulation for TURTLEBO3. However, more data on a larger sample
of systems is required to truly investigate this matter. For example, future studies can further
explore the relationship between sensor noise and non-determinism in test executions, and dive
deeper on how the non-determinism grows as the sensor data becomes more noisy. As another
example, future studies can investigate the impact of simulation speed on non-determinism in
more complex and computationally intensive systems.

Additionally, a number of possible sources of non-determinism such as concurrency in the
system, and the synchronization among subsystems require more advanced approaches and en-
gineering to be manipulated. For example, by using mocks and recorded data, future studies may
be able to create a controlled environment to test a particular subsystem in a more reliable and
consistent fashion. Identifying these sources of non-determinism, and tools and methods to con-
trol them for testing robotic systems can result in higher adoption of simulation-based testing,
as reproducibility is one of the main challenges that robotics developers face while testing their
systems in simulation [21].

5.3.3 (RQ2) Coverage Metrics and Mutation Score

To evaluate the effectiveness of coverage metrics (e.g., line coverage and branch coverage) in
evaluating test inputs with respect to their ability in revealing faults, I compare these metrics with
mutation score [76], which is shown to be a good indicator of test quality [141, 222]. Similar
methodology is used by prior work to evaluate study coverage metrics on other systems [57, 137].
To answer this research question, I use the data described in Section 5.3.1, which consists of 16
test inputs, each executed 20 times on the original program, and 8 times on the 200 automatically-
generated mutants.

Results Table 5.3 presents the number of killed mutants by each test according to the afore-
mentioned criteria. In addition to the number of killed mutants, Table 5.3 presents the number of
killed and saved mutants categorized by whether the mutant executions were likely deterministic.
In other words, whether the 8 test runs on the mutant resulted in similar behavior (i.e., low std),
or they differed from each other and were non-deterministic.

Table 5.4 presents the line and branch coverage measurements for each test. Note that since
we have 20 runs for each test, there are different ways to measure line and branch coverage. In
Table 5.4, I present four different measurements: 1) the mean line or branch coverage among all
executions, 2) the number of lines or branches mutually executed by all test runs, 3) the number
of lines or branches executed by at least one run, and 4) the number of lines or branches executed
by the majority of runs (i.e., more than 10 runs).

Table 5.4 also presents the Pearson product-moment correlation between each coverage mea-
surement, and the number of killed mutants presented in Table 5.3. As shown, most of the
coverage measurements have a low and insignificant correlation with the number of killed mu-
tants. However, if we consider the union coverage, we find a high and significant (p-value<0.05)
correlation for both the line coverage and the branch coverage. In other words, the line and
branch coverage are not suitable metrics to indicate testing effectiveness unless we consider all
lines and branches that are covered by at least one execution of the test.
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Table 5.3: The summary of the total number of mutants killed out of 200 by each test case, and the
number of mutants killed and saved by the test cases categorized by whether the test executions on the
mutant were likely deterministic or non-deterministic.

Test Total killed Det. killed Det. saved Non-det. killed Non-det saved
0 53 31 146 22 1
1 80 22 93 58 27
2 56 22 137 34 7
3 48 18 25 30 127
4 54 25 39 29 107
5 49 25 150 24 1
6 36 16 163 20 1
7 48 21 144 27 8
8 49 28 151 21 0
9 66 44 134 22 0

10 47 21 153 26 0
11 49 30 151 19 0
12 68 27 29 41 103
13 51 26 141 25 8
14 44 20 154 24 2
15 47 19 152 28 1

As expected, the sum std of tests have a high and significant correlation with the total number
of non-deterministic mutant executions (coef=0.94 and p-value<0.05), which confirms that the
more non-deterministic the tests are the lower confidence we can have in the outcome of the
tests. If we only consider tests with low variability in mutant outcomes, where the total number of
deterministically labeled mutants is higher than 150 (three-fourth of the total number of mutants),
we observe a higher but insignificant correlation between the number of killed mutants and the
mean line and branch coverage (coef=0.49 and 0.57, p-value>0.05).

Besides measuring the quality of individual test cases through mutation score, it is important
to measure the mutation score on a test suite since two lower quality test cases that target different
behaviors of the system, or different scenarios can result in higher total mutation score than two
high quality tests that target the same behavior [95, 171]. For this purpose, I create 10 test
suites, each consist of five randomly selected tests from our original 16 tests, and measure the
collective mutation score (i.e., the number of mutants killed by at least one test in the test suite),
and collective line and branch coverage measured with the union format presented in Table 5.5.

In summary, my findings are consistent with the prior studies on effectiveness of coverage
metrics [57, 96, 107, 125, 137], as I show that these metrics are generally poor indicators of
the test inputs’ ability in revealing system faults. However, I find that considering all lines and
branches that are covered by at least one execution of the test input over multiple executions as
our coverage metric results in high correlation with mutation score, and therefore can be consid-
ered a good indicator of test input and test suite quality. Finally, I show that standard deviation
measurements are suitable indicators of how non-deterministic and unreliable the executions of
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Table 5.4: Line and branch coverage data on all tests. Mean presents the mean coverage of all executions
of the test, Mutual, Union, and Majority refer to the number of lines or branches executed by all, at
least one, and the majority of test executions respectively. The last row presents the Pearson product-
moment correlation of each column with the number of killed mutants in Table 5.3. ? presents statistical
significance.

Line Coverage Branch Coverage
Test Mean Mutual Union Majority Mean Mutual Union Majority

0 1481.60 1468 1507 1496 638.35 613 655 643
1 1471.50 1444 1532 1481 623.65 587 705 620
2 1490.15 1476 1530 1491 653.65 618 708 640
3 1485.65 1358 1537 1512 660.65 554 724 671
4 1441.70 1347 1517 1451 606.55 535 670 601
5 1480.75 1463 1503 1491 631.50 611 650 630
6 1465.50 1453 1491 1476 617.10 600 631 617
7 1444.20 1384 1501 1480 610.00 558 656 620
8 1481.30 1460 1507 1495 630.95 604 653 633
9 1476.20 1465 1513 1489 635.60 616 660 636
10 1451.60 1441 1484 1455 604.30 585 626 603
11 1469.95 1456 1491 1481 619.15 597 633 621
12 1496.40 1459 1539 1513 668.10 599 720 684
13 1485.20 1472 1514 1490 648.60 628 673 643
14 1464.15 1452 1501 1475 612.75 599 641 612
15 1469.75 1448 1508 1479 624.80 595 670 623

Corr. 0.29 0.12 0.66? 0.24 0.33 0.07 0.59? 0.30

the test inputs are. I use these findings later in Section 5.4 to inform my automated test generation
approach.

5.4 Automated Test Input Generation

As mentioned earlier in this chapter, the massive input space of robotic and CPSs make gen-
erating high quality test inputs extremely challenging [232]. Therefore, searching in the input
space for automatically constructing meaningful test cases is one of the most important needs in
the CPS testing domain [110], and as we found in our qualitative study of Section 3.1, testing
unpredictable corner cases is one of the main challenges of testing these systems [20].

The automated test input generation approaches broadly can be divided into two categories:
1) Model-based testing, which provides techniques for automatic test case generation using mod-
els extracted from software artifacts, and 2) Search-Based Software Testing (SBST), which is a
method for automated test generation based on optimization using meta-heuristics [198]. As
mentioned in Section 2.1, many model-based approaches have been proposed for automated test
generation of CPSs [197, 205, 277]. However, these approaches require a model of the system
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Table 5.5: The collective mutation score, union line coverage, and branch coverage of 10 randomly
selected test suites. The last line presents the Pearson correlation between the mutation score and the line
and branch coverage. ? shows significance.

Test Suite Mutation Score Union Line Coverage Union Branch Coverage
TS 0 87 1536 711
TS 1 87 1539 714
TS 2 61 1517 676
TS 3 77 1540 723
TS 4 91 1543 732
TS 5 92 1540 722
TS 6 85 1543 731
TS 7 87 1539 714
TS 8 113 1542 732
TS 9 77 1541 730
Corr. 0.68? 0.66?

(e.g., Simulink models or finite state machines), which are difficult and error-prone to be speci-
fied [110], and may not be available for many non-safety-critical robotic and CPSs [122]. SBST
approaches on the other hand, do not require models of the system, and have been shown to be
effective in finding errors in CPSs (e.g., automated driving control applications [110]).

One of the families of search-based algorithms suitable for automated test generation is evo-
lutionary algorithms (e.g., genetic algorithm) [27]. These algorithms are efficient heuristic search
methods based on Darwinian evolution with powerful characteristics of robustness and flexibility
to capture global solutions of complex optimization problems, and are appropriate for problems
with stochastic characteristics, uncertainties or fitness with noise [99, 204]. Figure 5.5 presents
an overview of a typical genetic algorithm that can be used for test case generation. First, an
initial population of test inputs is provided to the algorithm. Next, this population is iteratively
evolved towards higher fitness, that is measured by a fitness function. In each iteration, a new
generation of test inputs are created by 1) selecting the parents, 2) combining the parents through
crossover to create offsprings, and 3) mutating a number of the offsprings. This new generation
is then evaluated by the fitness function, and the evolution continues until stopping criteria are
met.

In this section, I present an automated test generation approach using genetic algorithm. I
first describe the generation of initial population in Section 5.4.1. Next, in Section 5.4.2, I discuss
the fitness functions I use for test generation. In Section 5.4.3, I present the evolution strategy
and operators (i.e., crossover and mutation) used in the algorithm, and in Section 5.4.4, I evaluate
the quality of generated test inputs with respect to different metrics.

5.4.1 Initial Population and Setup

in order to apply genetic algorithm to test generation as illustrated by Figure 5.5, we need to
define the encoding of the population (a.k.a., the chromosomes), the total number of genera-
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Figure 5.5: An overview of automated test input generation using genetic algorithm that includes three
main components of initial population (yellow), fitness function (green), and evolution (blue).

tions (G) that the algorithm should evolve before stopping, and the number of solutions in each
population (S). Additionally, we need to specify a strategy to create an initial population.

As described in Section 5.2 our test inputs are in the form of test scenarios that include both
a simulation scene, and a mission to be performed by the robot. Therefore, a population in our
genetic algorithm is defined as a set of S test scenarios.

As initial population for our algorithm, I randomly create test scenarios that include a single
robot placed in an empty 5× 10(meters) room, with two randomly placed mission waypoints. I
limit the simulation scene to a 50m2 room to make sure the missions can be finished in a timely
manner.

5.4.2 Fitness Function

The fitness function of an evolutionary-based algorithm guides the search, and can highly affect
the SBST process and its effectiveness [27]. Many prior work for example have used statement
or branch coverage as fitness functions for their automated test generation algorithm [95, 177,
223, 287]. However, as I presented in Section 5.3.3, generally coverage metrics are not suitable
metrics for measuring test quality in robotic systems, except the union coverage, the coverage
collected over multiple runs of the test on the system, which can be a stronger metric for mea-
suring the effectiveness of the tests. Additionally, I showed that std is a suitable measurement
to determine non-determinism in test cases. However, computing both std and union coverage
of a test case is expensive as they require multiple runs of the same test. Let us assume that the
genetic algorithm will run for 50 generations, each consisting of 10 scenes. To compute the std
and coverage metrics, we need to run each one of these generated scenes multiple (e.g. 20) times.
With these numbers, our genetic algorithm needs to execute 50 × 10 × 20 = 10000 executions.
My prior experiments show that with 10 tests running in parallel, we can collect about 160 exe-
cutions per hour, which means this algorithm needs to run for more than 62 hours. Therefore, we
need to use alternative fitness functions in our genetic algorithm, and use the std and coverage
metrics for evaluation.

Another fitness function that has been specifically used in the field of autonomous driving

92



applications is scenario coverage,2 where the test generation or selection approaches focus on
maximizing the diversity and effectiveness of the scenarios presented to the SUT [34, 102, 150,
202, 208, 233, 281]. For example, Xia et al. [281] create an influence factor and importance
degree model for different elements of a driving scenario such as the environment (e.g., weather),
positioning of the roads, and the road traffic, which they use to generate testing scenarios that
are more effective in challenging the driving control system, and are diverse. In testing robotic
and CPSs, we desire to expose the SUT to different, possibly all scenarios and situations that
the system can be faced to ensure that the system performs as expected, in a safe manner. An
important advantage of using scenario coverage metrics as fitness function for search-based test
generation approaches is their low computation cost, since the fitness of a scenario is determined
by its own characteristics, not the data collected over a single, or multiple test executions.

The source of scenarios is referred to the information sources that specify what factors dis-
tinguish the scenarios from each other with regards to their effectiveness. This information can
be in the form of abstract knowledge from experts, standards and guidelines (i.e., knowledge-
based), or can be determined from data from real world (i.e., data-based), which needs to be as
comprehensive as possible [233].

I hypothesize that using the information about the testing scenario itself (e.g., the area in-
volving the robot’s path that include obstacles, and the distance between source and destination),
inspired by even limited knowledge-based scenario sources, we can create scenario coverage-
based fitness functions that if used with evolutionary approaches result in higher effectiveness in
revealing failures in the system.

For this purpose, we need to identify characteristics of test scenarios that influence the per-
formance of the robot (i.e., influence factors), and their level of impact on the scenarios (i.e.,
importance degrees) [281]. Using this information, we can propose fitness functions to guide our
search algorithm towards different, possibly multiple objectives.

Scenario’s Influence Factors The influence factors of a scenario are its characteristics that
influence the robot’s functionalities and performance [281]. By taking a closer look at the test
scenarios used in Section 5.3’s, experiments, I anecdotally made the following observations:
• The robot has a harder time localizing (i.e., determining the coordinates of its own location)

when the scene includes fewer items. In other words, when the environment surround-
ing the robot is emptier, the localization error in the system increases. This observation
matches with the fact that localization techniques rely on surrounding objects and signs to
more accurately estimate the robot’s location [154].

• If the localization module is challenged by the emptiness of the environment, the further
away the mission waypoints are from the source, the higher the localization error gets.

• The local base planner and navigation function of the system get challenged when the
destination of a path (i.e., mission’s waypoints) is close to obstacles. For example, if the
destination point is between two walls close to each other, the robot has a harder time
determining the right path and local velocity commands to navigate safely without hitting
obstacles.

2Sometimes referred to as situation coverage when the scenario involves dynamic agents [123, 270].
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(a) (b) (c)

Figure 5.6: (a) The 2D plot of an exemplary test scenario where red rectangles present objects in the
scene, the Blue, circled rectangle is the initial position of the robot, and the two green rectangles are the
mission waypoints. (b) The path regions identified for the two navigation missions presented by polygons
in solid lines. (c) The vision regions surrounding the path regions presented by dashed lines.

• The path finding of navigation function has a harder time determining a valid path between
the source and the destination when the region between the two points is crowded (i.e.,
includes many obstacles), and the robot has to navigate through narrow corridors.

Note that I do not claim that these observations are 100% true in all scenarios as I do not consider
myself an expert on the SUT. I have simply made these observations on a sample of scenarios
with different features.

In order to verify these observations, and possibly use them in scenario coverage metrics,
we need to measure and quantify certain aspects of the test scenario such as the emptiness of
the environment surrounding the robot, or complexity of the probable path between the source
and the destination. As a result, we first need to identify the region that has a high chance to
include the optimal path. Note that we do not want to reimplement the path finding algorithm of
the system as that defeats the purpose. Here, having an approximation of the overall region that
involves the path would be sufficient.

To identify such regions, let me first refer back to the scenes generated by GzScenic described
in Section 5.2. Every scene stores information related to the spatial relationship of the objects,
their width and length,3 the initial position of the robot, and the mission waypoints. Figure 5.6a
presents the plot of a random scene generated by GzScenic. As we can observe in this exemplary
scene, there are a number of objects in the scene that are unlikely to ever be involved in the
mission such as the ones on the top of the plot. As a result, we need to automatically identify the

3All objects in Scenic are represented by 2D rectangles, therefore GzScenic creates a bounding box for each
object in the scene.
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objects that are more likely to be on the robot’s path to the waypoints.

1: procedure IDENTIFYPATHREGION(source, destination, scene)
2: pathRegionObjs← ∅
3: pathRegion← LINE(source, destination)
4: objects← INTERSECTINGOBJS(pathRegion, scene)
5: while objects 6= ∅ do
6: pathRegionObjs← pathRegionObjs ∪ Objects
7: pathRegion← CONVEXHULL(pathRegionObjs)
8: objects← INTERSECTINGOBJS(pathRegion, scene) − pathRegionObjs
9: end while

10: return pathRegion, pathRegionObjs
11: end procedure

Figure 5.7: The procedure to identify the path region, which is a region that is likely to include
the robot’s path from source to destination, and the objects in it.

For this purpose, I use the algorithm described in Figure 5.7, where a region that is likely to
include the robot’s path and the objects in it are identified for a pair of source and destination in
our scenario. I first connect the source and destination points with a straight line. If this straight
line does not intersect with any objects, then it is probable that the robot will take this straight
path. However, if this line intersects with objects, the robot certainly needs to go around those
objects in order to find a valid path. Therefore, my approach automatically creates a convex
polygon that includes all intersecting objects, the source, and the destination. I consider the
convex polygon as it provides an approximation of the path region, the region that has a high
probability to include the path, and is cheap to compute. My approach repeats this step again
by checking whether the newly created polygon intersects with any objects that are not already
included in it, and if so creates another convex polygon that includes the intersecting objects as
well. This is continuously done until no objects can be added to the region polygon. Figure 5.6b
presents the identified path regions for the exemplary scene.

In addition to the possible path region, I am interested in identifying the area that will possibly
be covered by the vision sensors of the robot. The robot’s sensor are able to scan its surroundings
up to some distance, which depends on the type of the sensor, and the system’s configurations.
TURTLEBOT3 uses Laser scanner sensor to observe its surroundings, and can scan everything in
its 3.5 meters radius with some noise. Therefore, I define a larger vision region that surrounds
the path region by two meters and the robot can more reliably scan, and consider any objects that
falls in this region as in-vision objects. Figure 5.6c presents the vision regions with dashed line.

In addition to these interesting regions, it is important to identify the narrow corridors that
the robot may be needing to pass since that can be a factor in creating more effective and diverse
scenarios. For this purpose, my approach first attaches all objects in the path region that are closer
to each other then the robot’s width. In other words, if two objects are too close to each other,
the robot cannot pass between them and therefore they can be considered as a single attached
object, which I will refer to as sections. Figure 5.9 illustrates the procedure for identifying these
sections. Figure 5.8 shows the two identified sections of a path region in the exemplary scene
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Figure 5.8: A path region (solid line polygon) in an exemplary test scenario, the two identified sections
(dashed line polygons) with their objects colored pink and light blue. The two objects colored purple are
close to the pink section and create narrow corridors the robot may need to pass.

presented by grey dashed line. The sections that are splitters, meaning that they divide the path
region in two or more separate parts, give us more confidence that the robot has to move out
of the path region to reach destination. In Figure 5.8 the section in pink is a splitter while the
section in blue is not. Additionally, my approach automatically identifies the objects in the vision
region that are close to the sections, which can indicate existence of narrow corridors between
sections and other objects. In the example figure, the purple objects are in close vicinity of the
pink section, and hint that corridors exist between pink section and the in-vision objects.

Table 5.6 presents the influence factors or characteristics of a scene that my approach auto-
matically computes. Note that these factors are not necessarily independent of each other, and are
separately computed for every pair of source and destination in the mission, since the difficulty
of navigating from point A to B is mostly independent of navigating from B to C. Figure 5.10
presents the high-level algorithm of measuring these influence factors for a provided scenario.
Next, I discuss how these factors can be used in scenario coverage.

Importance Degrees In order to use the influence factors described in Table 5.6 for scenario
coverage and ultimately in the fitness function of evolutionary-based automated test generation,
we need to identify the importance of different factors with regards to different objectives [281].
For example, the emptiness of the environment, which can be represented by a combination of
TAP, TOP, TAV, and TOV factors, can be important in representing scenarios with higher localiza-
tion error. However, another factor such as TAS may not be as important for localization of the
robot. The importance degree of factors can be determined from experts knowledge, from data,
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1: procedure IDENTIFYSECTIONS(pathRegion, pathRegionObjs, ROBOTWIDTH)
2: sections← ∅
3: for all obj ∈ pathRegionObjs not already in sections do
4: newSectionObjs← {obj}
5: repeat
6: newSectionRegion← CONVEXHULL(newSectionObjs)
7: newSectionRegion← ADDBOUNDS(newSectionRegion, ROBOTWIDTH)
8: intObjects← INTERSECTINGOBJS(newSectionRegion, pathRegionObjs)
9: objects← intObjects − newSectionObjs

10: newSectionObjs← intObjects
11: until objects = ∅
12: splitter← ISSPLITTER(pathRegion, newSectionRegion)
13: add SECTION(newSectionRegion, newSectionObjs, splitter) to sections
14: end for
15: return sections
16: end procedure

Figure 5.9: The procedure to identify the sections of objects in a path region that cannot be
passed by the robot.

or a combination of both.
First, I define two main objectives for the importance degree evaluation:

1. Non-determinism: for this objective I identify the importance degree of factors in a manner
that they best represent a test’s maximum localization error std, and maximum closest
distance to waypoints std.

2. Effectiveness: this objective targets higher mutation score (i.e., effectiveness in revealing
faults)

The non-determinism objective can allow us to identify a number of sources of non-determinism
in the system, and to evaluate the reliability of test scenarios to control the level of non-determinism
in our tests. The effectiveness objective aims to identify importance degrees that reflect the mu-
tation score or effectiveness of the test scenarios.

For each objective, I use my basic and limited knowledge of the system as well as the data I
collected on the sample tests to learn the weights (i.e., importance degree) of different factors in
the following equation:

Metric(x) =
∑
f∈F

Wf × f(x)

where F is the set of factors informed by the user’s knowledge, Wf is the importance degree of
factor f , and x is the scenario under evaluation. Note that I use a linear formula as this metric.
However, the relationship between different influence factors may not necessarily be explained
using a linear function. I leave investigation of other types of equations to future work.

We can either assign values to the importance factors according to experts knowledge [281],
or we can use data where we attempt to maximize the correlation between Metric(x) and an
independent measurement related to the objective using optimization techniques. For example,
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Table 5.6: The scenario influence factors that can automatically be measured for each pairs of source and
destination in the mission, and for every sections identified in the path regions.

Type Description

Pe
r

so
ur

ce
&

de
st TAP The total area of the path region.

TOP The occupied area of the path region.
TAV The total area of the vision region.
TOV The occupied area of the vision region.
SEC The number of sections in the path region.
DIST The distance between the source and destination.
MDS The minimum distance between the destination point and the objects surrounding it.

Pe
r

se
ct

io
n TAS The total area of the section.

SPL Whether the section is a splitter.
SOB The surrounding objects to the section and their distance.
LEN The length of the section.

we can set values toWfs such thatMetric(x) highly correlates with maximum localization error
standard deviation. The limitation with this approach is the possibility of introducing bias, and
overfitting to the data samples, which can be reduced by larger and more diverse set of data
samples.

I use multivariate linear regression [206] to analytically find a set of importance factors (i.e.,
Wis) for every measurement we envision to use in our objective functions such that the cor-
relation between Metric(x) and the measurement is maximized. For instance, the maximum
localization error std and maximum closest distance to the waypoints std measurements can be
used for the non-determinism objective, and the mutation score and mean closest distance to the
waypoints measurements can inform the effectiveness objective.

Using the influence factors, and importance degrees described earlier, I define five fitness func-
tions for our genetic algorithm to create five different test suites that focus on either generating
more non-deterministic tests, or tests with higher mutation score. I select these fitness functions
to evaluate the selection of influence factors and importance degrees (whether higher Metric(x)
for an objective O truly result in higher levels of O among test executions), provide a means
to control reliability of test inputs, and measure effectiveness of test inputs with respect to their
ability in revealing faults. These five fitness functions are as follows:

1. Nondet. LE: Metric(x) with weights focusing on standard deviation of maximum local-
ization error.

2. Nondet. Dist: Metric(x) with weights focusing on standard deviation of maximum clos-
est distance to the waypoints.

3. Nondet.: a multi-objective [209] fitness function that considers both of the two previous
metrics.

4. Mut. Sc.: a Metric(x) with weights focusing on the mutation score.

5. Det. Mut. Sc.: a multi-objective fitness function that considers Nodet. LE. and Nondet.
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1: procedure MEASUREINFLUENCEFACTORS(scenario, ROBOTWIDTH)
2: allMeasures← empty list
3: scene← all objects in scenario
4: for all source S and destination D ∈ scenario do
5: pathRegion, pathRegionObjs← IDENTIFYPATHREGION(S, D, scene)
6: visionRegion← ADDBOUNDS(pathRegion, 2) . adding 2 meters bound
7: visionRegionObjs← INTERSECTINGOBJS(visionRegion, scene)
8: sections← IDENTIFYSECTIONS(pathRegion, pathRegionObjs, ROBOTWIDTH)
9: add MEASURES(*) to allMeasures . * represents all previously defined variables

10: end for
11: return allMeasures
12: end procedure

Figure 5.10: The procedure to measure the influence factors for a scenario. MEASURES(*)
computes the measurements for the factors of Table 5.6 based on the identified regions and
sections.

Dist negatively (aiming for higher determinism), and Mut. Sc. positively (aiming for
higher mutation score).

In Section 5.4.4, I evaluate these fitness functions using a number of different metrics.

5.4.3 Evolution
As mentioned earlier in Section 5.4 and presented by Figure 5.5, search-based, evolutionary
approaches of generating test suites require the selection strategy for selecting parents for the
next generation, and the various evolution operators, such as crossover and mutation operators.

First, we initialize a new population of test scenarios with a number of the best individuals
of the last generation (E), known as elitism. Next, we use rank selection [164] to select the
parents that will create offsprings for the new generation. To be able to combine two selected
parents and create offsprings, we need ways to make crossovers between scenes (i.e., mix up
two scenes to generate new generation), and a way to apply mutations to the scenes. As a
crossover between two test scenes presented in Figure 5.11, we randomly select a separating
line parallel to the x axis, and create two child scenes each inheriting all objects in the scene
higher than the separating line from one parent, and lower objects from the other parent. This
approach of making crossovers reduces the chance of intersecting objects in the children scenes.
The mutations that can be applied to a scene include adding new objects to the scene, moving
existing objects by some random vector, moving robot’s initial position or the mission waypoints,
and removing objects from the scene. Figure 5.12 illustrates an example mutation applied to a
scene.

5.4.4 Results
In this section, I evaluate the test inputs generated by implementing a genetic algorithm with
the initial population described in Section 5.4.1, the fitness functions described in Section 5.4.2,

99



Figure 5.11: An example crossover between two scenes (left side) with respect to separating line y = 2.2
presented in solid blue. The resulting children (right side) inherit the objects above the separating line from
one parent, and below the separating line from the other.

and evolution strategy and operators described in Section 5.4.3. For each one of the five fitness
functions of Section 5.4.2, I generated a test suite of 30 tests by running the evolution for G =
30 generations, each population consisting of S = 60 solutions, and initializing a population
with E = 30 elites from previous generation. I leave the evaluation of the impact of selecting
different settings for the algorithm to future work. For each generated test suite of 30 test inputs,
I ran each test 20 times, and collected the test’s standard deviation on maximum localization
error and maximum closest distance to the waypoints, and the union line and branch coverage.
Additionally, I randomly created 30 test scenes, and computed the same measurements. Since
both the genetic algorithm and random test generation involve randomness, I repeat these steps
for 5 different random seeds. In total, for every fitness function and the random test suite, total
number of 30×5 = 150 test inputs are generated, and the data is collected over 150×20 = 3000
test executions.

Table 5.7 presents the mean of different measurements for each test suite. As shown, the
test inputs generated using Nondet. LE and Nondet. Dist fitness functions have resulted in sig-
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Figure 5.12: An example mutation applied to a scene (left side), resulting in the mutated scene (right
side). The object in yellow has been removed from the scene, and the object in purple has been added.
The initial position of the robot and one of the mission waypoints have been moved.

Table 5.7: The mean of different measurements on six test suites (1 randomly generated and 5 generated
using genetic algorithm with different fitness functions) each containing 150 test cases generated with 5
different random seeds, and executed 20 times on the case study system.

Mean of
Test Suite Max LE Std Max Dist Std Sum Std Line Cov. Branch Cov.

Random 0.07 0.29 0.35 1503.31 660.16

Nondet. LE 0.14 0.34 0.49 1506.18 674.17
Nondet. Dist. 0.05 0.78 0.83 1514.61 684.95
Nondet. 0.08 0.34 0.41 1509.62 677.82

Mut. Sc. 0.14 0.37 0.51 1513.79 681.68
Det. Mut. Sc. 0.10 0.48 0.57 1505.20 668.98

nificantly higher standard deviation in their maximum localization error and maximum closest
distance to the waypoints respectively, compared to the randomly-generated test inputs. These
results suggest that the influence factors and importance degrees calculated for each one of these
objective can truly represent the objective. By examining the test scenarios generated for these
two fitness functions, and the importance degrees computed for different influence factors of
the scenario, I made the observation that the non-determinism with respect to localization error
increases as the scene is emptier. On contrary, the non-determinism in performing the mission
(i.e., maximum closest distance to waypoints) is increased as the scene includes higher number
of obstacles. As these two objectives are in contrast with each other, using a multi-objective ap-
proach to maximize both objectives is ineffective as presented by the Nondet. test suite. Overall,
these results suggest that the non-determinism in test executions can be increased or decreased,
once we identify their sources, and have a way of manipulating these sources. I further discuss
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this idea and its possible impact on the quality of robotic and CPSs in future work.
Table 5.7 also presents the performance of test suites generated using fitness functions that

aim to maximize the mutation score (i.e., Mut. Sc. and Det. Mut. Sc.). Since using mutation
score for the evaluation of the generated tests is extremely expensive, even infeasible, I use
union coverage as a proxy to measure fault revealing effectiveness of tests as I showed earlier
that it has a high and strong correlation with the mutation score. Table 5.7 shows that the sole
metric of maximizing mutation score significantly improves the union line coverage and union
branch coverage compared to the random tests, but it also results in very high standard deviation
of maximum localization error. A multi-objective approach to generate deterministic and high
coverage tests is effective with respect to higher union branch coverage, and it does not introduce
high levels of non-determinism with respect to localization error. However, it still introduces a
high level of non-determinism in the maximum closes distance to the waypoints, which can arise
from the fact that the robot struggles to reach the mission waypoints in the more challenging
scenarios.

Overall, these results suggest that low cost, scenario coverage-based metrics, inspired by
limited knowledge about the SUT, can be effective in generating test scenarios for different ob-
jectives, and encourage further studies in this area to propose more advanced methods of de-
termining the influence factors, the importance degrees, and eventually the fitness functions. In
Section 5.6, I discuss a number of ideas that can possibly improve the approach presented in this
chapter.

5.5 Limitations and Threats
Limitations The automated test generation approach presented in Section 5.4 can only be ap-
plied to systems where the simulation scenarios can be abstracted and encoded by different in-
fluence factors that require knowledge about the SUT.

To control the scope of the work presented in this chapter I limited the experiments to sce-
narios with a single robot agent, in a static environment, under the default configuration setting.
I leave efficient exploration of the configuration space for testing to future work.

Threats to Validity Throughout this chapter, I performed studies on a case study robotic sys-
tem, TURTLEBOT3, to test ROS’s navigation planner packages. Even though these packages are
used by thousands of users and systems, I cannot make any claims about generalizability of the
results in this work. Therefore, the selected case study system not being a suitable representative
of robotic systems is a threat to the external validity of my studies.

The size of our data, and the methodology of collecting data in Section 5.3 and 5.4 can
be a source of threats to internal validity. For example, in Section 5.3, I used 16 manually and
randomly specified test scenarios, which may not be true representative of diverse set of scenarios
for the system, and bias the findings of the study. Additionally, random operations can introduce
a threat to validity of the results, which I attempt to mitigate by using multiple random seeds for
different experiments.

The influence factors used in Section 5.3 are defined based on my limited knowledge of the
SUT. Since I do not consider myself as an expert on the SUT, this knowledge is a threat to the
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internal validity.
In the experiment of Section 5.4, we used union coverage as a proxy for mutation score.

Since union coverage is not 100% correlated with mutation score, we cannot be certain that test
inputs with higher union coverage are better at revealing faults, which can be a threat to external
validity of the results.

5.6 Summary and Future Work
To summarize, in this chapter, I focused on automatically generating high quality test inputs
that can be executed in simulation for a case study robotic system. I first presented GzScenic,
a tool I created that allows for easy and automated scenario construction. Second, I studied
the quality of different test inputs with respect to their reliability and ability to reveal faults. I
showed non-deterministic executions can challenge evaluation of test inputs, and that coverage-
based quality metrics are generally poor indicators of the test’s effectiveness, unless we consider
union coverage of multiple executions of the same test.

Finally, to automatically generate high-quality test inputs, I proposed an evolutionary-based
test generation approach with a fitness function that is based on scenario coverage, where the
test generation or selection approach focuses on maximizing the diversity and effectiveness of
the scenarios presented to the system under test. I showed that this approach is effective in
generating high-quality tests.

Even though the experiments in this chapter have only been conducted on a single system,
the methodology and approach used in this work can be applied to other, more complex systems
in the future. Additionally, we can propose more advanced and accurate models for identifying
the influence factors and the importance degrees discussed in Section 5.4.2. For example, instead
of using a linear function too describe relationship between different influence factors and their
corresponding importance degrees, we can use neural networks that are capable of detecting
more complex equations.

In Section 5.3.2, I briefly discussed non-determinism in test executions, its possible sources,
and how it impacts testing. The results of this study motivates further investigation of this matter
in robotic systems in the future. For instance, future studies can investigate different sources
of non-determinism impacting the robot’s performance in simulation, and propose techniques
to control or adjust non-determinism in simulation. On top of that, automated tools can mon-
itor the SUT’s executions in simulation and perform an analysis to identify the components or
subsystems with highest rate of non-determinism and uncertainty. This information can help de-
velopers to make their system more deterministic, or use artificial data or mocking to replace the
non-deterministic components for the purpose of achieving repeatable, reproducible tests.

In this work, I presented a set of influence factors that provide and abstraction of the scenario
characteristics that impact test executions. Future work can build on top of the ideas presented in
this chapter, and present more accurate and representative influence factors. For example, taking
ideas from prior work on measuring shape complexity [54, 238], we can provide more accurate
measures of how complex the simulation scene is regarding a navigation mission. Additionally,
we can take into account the complexity of different obstacle objects, as they may be differently
challenging fr the robot to get around.
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Finally, in future we can use the test generation approach proposed in this chapter, and the
oracles of Chapter 4 on a system to achieve and evaluate a large-scale, automated testing pipeline.
We can further expand the approaches presented in this thesis to move towards better automated
quality assurance of robotic and cyberphysical systems, by taking advantage of automated fault
localization and automated program repair. However, more studies need to be performed to
investigate effectiveness of these automated techniques on robotic and CPSs.
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Chapter 6

Conclusions and Final Remarks

In summary, this thesis covers a number of empirical and non-empirical studies with the pur-
pose of improving automated testing of robotic and cyberphysical systems. The empirical stud-
ies identify the state and challenges of testing CPSs, while non-empirical studies propose an
automated testing pipeline that improves the quality assurance of these systems in simulated
environments.

My work encourages more research and studies to be conducted in the field of automated
quality assurance of robotic and cyberphysical systems by identifying the specific challenges of
testing these systems in simulation and illustrating the advantages of automated simulation-based
testing. In addition, the approaches I introduce in this thesis, which includes automated oracle
inference and automated test generation, improve current state of automated testing, and enable
future studies on improving different pieces of the proposed techniques.

The advancements in the field of robotics are taking place at an unimaginable pace. In 2019,
more than 80 companies in the United States alone were reported to be developing autonomous
driving vehicles, and testing over 1,400 of their vehicles on the roads [90], and possibly more
companies are working on autonomous driving technology but have not yet reached the point of
testing their systems on public roads. Even though most of these products are not yet mature
enough to be fully-deployed in the field, and being used by the users, they are not far from it, and
may actually reach that maturity in the next few years. As a result, now is the time to develop
and establish methods that ensure the quality of these systems to prevent catastrophic incidents.

I believe fully-automated, large-scale testing is the best solution to the problem of quality
assurance of robotic and CPSs, especially with respect to the software. Without a fully-automated
approach, our testing will be limited by its scalability, which is extremely important for systems
that interact with the physical world. However, we have a long way to achieve fully-automated
testing (possibly in the format of continuous integration) of robotic and CPSs in practice, which
is mainly caused by the special features of these systems such as interacting with the physical
world, the non-determinism, and integration of many subsystems. The software engineering
community, along with the robotics researchers and practitioners, need to focus on addressing
the challenges of deploying fully-automated, large-scale testing for these systems.

Some challenges that are discussed in this dissertation require more advanced engineering
that is capable of handling highly complex systems, with features like non-determinism. For
example, better tooling and guidelines can reduce the cost of building and maintaining an end-to-
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end test harnesses for robotic systems. Other challenges require novel techniques and approaches
that can address specific requirements of these systems. For example, both the oracle problem
and effective test input generation are challenges that cannot simply be addressed by more engi-
neering effort. Even though addressing the engineering challenges may not be considered novel
and important by the research community, in my opinion, they are equally, if not more important
than the research challenges in achieving higher rate of automated testing being deployed on
these systems. Therefore, future studies should focus on both of these groups of challenges, and
propose more advanced techniques and tools.

In addition to the quality assurance of the software (cyber) component of these systems,
we need to consider the hardware (physical) component of these systems as well. Automated,
hardware-in-the-loop testing (briefly mentioned in Chapter 3) is a promising approach that al-
lows us to apply quality assurance to the integration of software and hardware components [92],
which is an extremely important factor for these systems. However, we have very limited knowl-
edge about the effectiveness and popularity of HITL testing, and the challenges that prevent
higher deployment of such techniques in practice. In fact, our qualitative studies with robotics
practitioners showed little evidence of HITL testing being used in practice. Future studies on the
quality assurance of robotic and CPSs that involve the hardware can significantly contribute to
the overall quality of these systems.

This thesis contributes to the automated testing and quality assurance of robotic and cyber-
physical systems in the following ways (restated from Section 1.2):

1. It identifies the challenges of automated testing for robotics systems and discovers the
practices currently being used in the field of robotics.

2. It shows that simulation-based testing can be an effective approach in identifying faults in
these systems.

3. It identifies the challenges of using simulators for the purpose of (automated) testing, and
the most prominent issues with currently available simulators.

4. It presents a black-box approach to automatically infer oracles for these systems based on
observed executions of the robot in the simulated environment.

5. It investigates the severity of non-determinism among test executions in simulation, and
offers insight on the performance of coverage-based quality metrics as indicator of test
inputs fault-revealing effectiveness.

6. It presents an evolutionary-based automated test generation approach using scenario cov-
erage as fitness function.

Overall, by identifying the challenges in testing robotic and cyberphysical systems, and
proposing approaches that address a subset of those challenges, this thesis takes us one step
closer towards large-scale, automated testing of these systems, which eventually results in higher
quality systems.
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