
Search-based Plan Reuse

in Self-* Systems

Cody Kinneer

CMU-ISR-21-104

May 2021

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Claire Le Goues, Co-chair
David Garlan, Co-chair

Fei Fang
Betty Cheng (Michigan State University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2021 Cody Kinneer

This research supported in part by the National Science Foundation (CCF-1618220). This material
is based upon work supported by the NSA under Award No. H9823018D0008. This research
supported in part by a grant from the CyLab Security and Privacy Institute at Carnegie Mellon
University. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

Keywords: self-*, planning, uncertainty, reuse, evolutionary computation

Abstract

Increasingly software systems operate in environments of change and
uncertainty, where the system’s ability to satisfy its quality objectives
depends on its ability to adapt. Self-adaptation allows these systems
to manage this challenge by autonomously adapting to changes in their
environments. While self-* systems are designed precisely to manage un-
certainty, unexpected changes may violate design assumptions, resulting
in the system failing to satisfy its quality attribute requirements. When
this occurs, the planner must generate a new plan, an expensive operation
for large systems. As autonomous systems increase in size, interconnect-
edness, and complexity, this cost can quickly become prohibitive.

This thesis addresses this problem by leveraging information con-
tained in prior plans to reduce the replanning necessary to respond to
an unexpected change. Even in the face of an unexpected change, some
of the insights contained in existing plans are likely to remain applicable.
For example, an autonomous aerial vehicle encountering an unexpected
obstacle will need to replan to avoid the obstacle, but the drone may be
able to return to its prior plan after this maneuver. A larger change will
reduce the amount of reuse that is possible, for example changing the
drone’s mission to fly to a new location, but still, the takeoff and landing
procedures may be reused. This thesis reuses existing adaptation plans
by seeding a genetic algorithm with these plans. This enables a scal-
able self-* planner that can replan in complex systems with large search
spaces.

While the idea of plan reuse is intuitive, in practice plan reuse is
difficult and may even be worse than replanning from scratch if not per-
formed carefully. This dissertation provides reuse enhancing approaches
to reduce the evaluation time of candidate plans, an approach for building
reusable repertoires of plans and identifying generalizable plan fragments,
and a co-evolutionary extension to enable plan reuse for security. The
thesis is evaluated on three simulated case study systems, including a
cloud-based web service provider, a team of autonomous aerial vehicles,
and an enterprise business system under a cyber attack. Ultimately, plan
reuse will enable large self-* systems to replan even after unexpected
changes.

iv

Acknowledgments

First I would like to thank my friends and colleagues that I met on my
PhD journey. Their support and advice were crucial for the completion
of this thesis. Next I would like to thank the faculty of ISR for creating
a unique environment for research success, which promotes excellence by
focusing on the quality of the work while avoiding the traps of becoming
overly fixated on arbitrary metrics.

I would like to thank my committee members, Fei Fang and Betty
Cheng. Fei’s help enabled the work on security to be possible, and I
thank her for teaching me what I know about game theory, pushing me
on the formalisms and assumptions, and for her contributions to the
Observable Eviction Game. I am also grateful for my conversations with
Betty, who I can always count on to ask the tricky big picture questions.
Her insights on the applicability of the approaches have made the thesis
stronger.

I owe a great deal of thanks to my advisors, Claire Le Goues and
David Garlan. Despite being very different from one another in most
dimensions of my internal model of advisors, I benefited from their ability
to reach a consensus on the key points of the research, and from their
skill of knowing when to press me and when to let me go off on my
own. I am grateful for David’s insights on the big picture, our sometimes
philosophical discussions on adaptive systems, and for his uncanny skill
of sometimes crafting the perfect sentence to convey an idea after a few
moments of reflection, ideas over which I have wrestled with longer than
I would like to admit.

I thank Claire for our discussions on the more nuanced aspects of
evolutionary computation and program analyses, and her guidance on
balancing the high level story with the lower level implementation details.
I am also grateful for the times we’ve spent editing papers together and
her superhuman power over latex documents. To the extent that I have
been successful in the PhD, this success can be primarily attributed to
good advising.

Lastly, I thank my family for supporting me through this journey. I
am especially grateful to my other half Liz, for supporting me through
the ups and downs of this adventure.

vi

Contents

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Claims . 3
1.3 Contributions . 4
1.4 Outline . 6

2 Review of Literature and Background 7
2.1 Self-* Systems . 7
2.2 Genetic Algorithms . 9
2.3 Clone detection . 10
2.4 Security and Advanced Persistent Threats 11

3 Approach Overview: Responding to unexpected changes with plan
reuse and stochastic search 15
3.1 Cloud Web Server . 17
3.2 Representation . 19
3.3 Mutation and Crossover . 20
3.4 Fitness . 21
3.5 Reducing plan evaluation time with reuse enabling approaches 25

4 Building reusable repertoires by identifying generalizable plan frag-
ments 27
4.1 Generating Unexpected Changes . 29
4.2 Extracting Reusable Components . 30

4.2.1 Clone detection . 30
4.2.2 Rule-based Plan Transformation 32

5 Plan reuse in an adversarial setting 35
5.1 Foundations: The Observable Eviction Game 35

vii

5.1.1 Actions . 36
5.1.2 Utilities . 39
5.1.3 Computing Equilibria . 42

5.2 Co-evolutionary Extension . 42
5.2.1 Individual Representation . 43
5.2.2 Fitness Calculation . 44
5.2.3 Reuse and Repertoire Generation 44

6 Validation 47
6.1 Claims . 48

6.1.1 Plan reuse will lower the number of generations until conver-
gence to a good plan. 49

6.1.2 Plan reuse will decrease the wall-clock time needed to generate
a good plan compared to planning from scratch. 50

6.1.3 Plan reuse is applicable to a range of unexpected change sce-
narios, including adversarial settings. 50

6.2 Case Study Systems . 51
6.2.1 DART . 52
6.2.2 Bullseye . 54
6.2.3 Summary . 58

6.3 Evaluation . 59
6.3.1 Core Approach and Reuse Enablers 59
6.3.2 Reusable Repertoires . 77
6.3.3 Clone Detection . 78
6.3.4 Rule-based Syntactic Transforms 80
6.3.5 Adversarial Settings . 81

6.4 Summary . 85

7 Discussion and Conclusion 87
7.1 When is reuse applicable? . 87

7.1.1 When the change is small . 87
7.1.2 When planning time is more constrained 89
7.1.3 When (re)obtaining the initial strategies is more expensive . . 89

7.2 Limitations . 92
7.2.1 The model update problem 93
7.2.2 Threats to external validity 93
7.2.3 When to stop planning . 94

7.3 Future Work . 94

viii

7.3.1 Reuse with Neuro-controllers 94
7.3.2 Reusing explanations . 95
7.3.3 Integration with self-* infrastructure 97
7.3.4 A more rigorous treatment of the unknown 97

7.4 Conclusion . 98
7.4.1 Contributions . 98
7.4.2 Summary . 100

Bibliography 101

ix

x

List of Figures

2.1 MAPE-K Loop for self-* systems. 8

3.1 Cloud web server architecture. 17
3.2 Grammar for specifying plans for the Omnet running example. Servers

(srv) can be of types A, B, C, or D; For loops can iterate up to 10 times. 20
3.3 Top: An example plan. Bottom: This plan’s system state tree.

Dashed red arrows denote tactic failure, while solid green denotes
success. 21

3.4 Utility versus planning time for GP parameter configurations. Many
configurations produce similar utility results to PRISM, significantly
faster. 23

4.1 A high level view of the approach. 28
4.2 An example of a clone within a plan. 30

5.1 Markov process for TTP observability. 36
5.2 Grammar for specifying plans with the co-evolutionary extension. . . 42

6.1 An example trace of the DART team moving through an environment. 52
6.2 An overview of the Bullseye case study system, showing the assets

under the system’s control, and the attacker’s available paths to move
through the system. 56

6.3 Left: Utility versus planning time for GP parameter configurations.
Many configurations produce similar utility results to PRISM, signif-
icantly faster. Right: Pareto fronts for utility (higher is better) and
latency (lower is better) from both planners. 62

6.4 An example plan generated for the cloud web server case study. . . . 62
6.5 Utility versus generation for all six scenarios. 65
6.6 Utility versus cumulative runtime for all six scenarios. 66
6.7 Diversity versus generation for all six scenarios. 68

xi

6.8 An example plan generated for the DART case study. 70
6.9 Utility versus planning time for GP configurations. 71
6.10 Utility versus generation by timestep. 74
6.11 Utility versus runtime by timestep. 74
6.12 Left: Utility versus generation. Right: Utility versus planning time . 76
6.13 Left: Aggregate utility versus planning scenario. Right: Aggregate

decision time versus planning scenario. 76
6.14 Results comparing planning from scratch, the repertoire, replanning

from a single plan only, and replanning using Deckard. Deckard re-
sulted in better utility for the first 13 seconds of planning, and is then
overtaken by the repertoire. 77

6.15 Utility versus planning time for the four beneficial syntactic trans-
forms. Some transforms obtained results as quick as Deckard but
with better utility. try-take-first is the overall best after around 2
minutes of planning. 80

6.16 The average exploitability of each generation’s guru individuals for
each of the three studied reuse approaches for the Bullseye case study,
broken down by the number of mutations used to generate the change
scenarios. The reusable repertoire results in the best outcome for the
defender, with a particular advantage during the first few generations
of planning. 82

6.17 The average exploitability of guru individuals presented against plan-
ning time instead of generation, for each of the reuse approaches bro-
ken down by number of mutations. The reusable repertoire remains
the best for the early phase of planning, but the approaches converge
after around fifty seconds. 83

7.1 Initial ANN for neuro-evolutionary search to evolve. 95
7.2 The utility of neuro-reuse and planning from scratch plotted during

training with a new randomized trace at every generation. Average is
taken over 30 trials. 96

xii

List of Tables

3.1 A summary of the reuse enabling approaches. 24

4.1 Scenario attribute type and selection probability during mutation. . 30
4.2 Syntax transformation rules for pruning plans. Hole syntax, like :[1],

binds an identifier 1 to an expression. Each rule either replaces a
nonterminal expression with a subexpression, or reduces the number
of times a subexpression is evaluated. †The for-decr rule decrements
the loop iterator matched by :[1] within the fixed integer range 3–10.
For brevity, we elide the rewrite rule that decrements these values. . . 32

6.1 Table of approaches and representation in the case studies. 48
6.2 A comparison of the case study systems. 51
6.3 Description of attacker tactics. 57
6.4 Description of defender tactics. 58
6.5 The parameter settings in the parameter sweep. 61
6.6 Improvement obtained by reuse enabling techniques. 65
6.7 Percent change reusing plans instead of planning from scratch. Sta-

tistically significant results (P < 0.05) are shown in bold font. 66
6.8 The parameter settings in the parameter sweep. 71
6.9 Improvement in maximum utility obtained by syntactic transforms

over using the repertoire without transforms. try-take-first per-
formed the best with a consistent 3.5% improvement. 79

xiii

xiv

Chapter 1

Introduction

Increasingly software systems operate in environments of change and uncertainty,
where the system’s ability to satisfy its quality objectives depends on its ability
to adapt. Approaches for imbuing such systems with autonomic adaptation, often
called self-healing, self-protecting, self-adaptive, or self-* systems, have been suc-
cessful in allowing these systems to automatically respond to the changes in their
environments [15, 41, 76].

Such adaptation is often enabled by a planner, which decides on a course of action
in response to an environmental change, producing an adaptation strategy or plan.
Planning in self-* systems may be done in either an online or offline setting, where
online planners generate plans during run time [57], and offline planners [11] prepare a
collection or repertoire of adaptation strategies beforehand, which are then selected
from at run time. Despite progress in automated planning, many self-* systems
in practice use manually constructed human written plans that seek to anticipate
possible changes that the system may encounter and prescribe responses to them. In
either case, the planner helps the system manage uncertainty by making decisions
that take into account the capabilities of the system and the environment, including
making trade offs between competing quality objectives like performance and cost.

Self-* planners must respond to a number of sources of uncertainty during their
operation, such as noise in the system’s sensors, stochastic behavior in the environ-
ment, failures in the system, etc. These uncertainties are often categorized as being
foreseen, unforeseen, or unforeseeable. While self-* systems are designed precisely
to manage uncertainty, unexpected, unforeseeable unknown unknowns may violate
the assumptions for which the system was designed, resulting in the system fail-
ing to satisfy its quality attribute requirements. These unknowns unknowns include
changes such as the addition or removal of available adaptation tactics, changes in

1

the effects of tactics, or changes to the system’s quality objectives. For example, a
cloud web server self-* system might be designed to start additional servers when
demand increases; however this strategy will not be effective if the reserve servers
are unavailable.

When an adaptive system confronts an unexpected change, the system, along
with the planner, must evolve to continue performing well in the new situation.
Evolution requires that the system’s models are updated to reflect the new state of
affairs following the unexpected change, and the planner must generate new plans.
For human written plans, this necessitates an expensive replanning process. Even
automated planning approaches must often generate new plans from scratch.

As adaptive systems grow larger, more connected, and more complex, the size of
the search space for plan generation continues to increase. This makes generating
new plans from scratch increasingly expensive. Plan reuse with stochastic search
is a promising potential strategy for enabling future generation self-* systems to
effectively evolve. Plans contain information about how the system should adapt
in a particular context, and although an unexpected change may result in some
of this information becoming incorrect, the previous plans may still encode usable
knowledge that applies, and can be reused, after such a change occurs.

Stochastic search is useful when the search space is large and not well understood,
and has shown promise in related domains such as reusing source code to automati-
cally repair programs [18]. This is the case for planning in response to an unexpected
change, since by its nature the search space cannot be known a priori. Prior work [13]
proposed using genetic algorithms to facilitate plan reuse. Genetic algorithms are a
natural choice for the problem since they operate by incrementally evolving existing
members of a population, in effect, reusing information from previous generations to
find better solutions in the next generations.

While genetic algorithms have been applied to planning in autonomous sys-
tems [10, 62, 63], applying these approaches to effectively reuse existing planning
knowledge in self-* systems is nontrivial. Reusing plans can in fact be worse than
replanning from scratch [54], and while genetic algorithms have been employed to
reuse information for certain limited problem cases [17, 44], the self-* domain poses
unique challenges that remain to be addressed, such as the many sources of uncer-
tainty in these systems. An ideal planning approach should be able to replan quickly,
be applicable to a broad range of unexpected changes, and be able to reason about
adversarial interactions such as promoting security.

2

1.1 Thesis Statement

This thesis explores using stochastic search and knowledge reuse to address these
challenges and improve the ability of self-* systems to effectively evolve, as expressed
in the following thesis statement:

We can enable self-* systems with large state spaces to evolve in response to un-
expected changes by reusing existing plans with stochastic search in the following
three ways: (a) reusing existing plans using genetic programming and reuse en-
hancing approaches to reduce evaluation time, (b) building reusable repertoires by
identifying generalizable plan fragments to build resilience against a wide range
of unexpected scenarios, and (c) reusing strategies in adversarial settings.

Plans are reused by seeding the genetic algorithm with existing plans or plan frag-
ments, and evolved to improve their fitness after an unexpected change occurs. The
first research thrust (a) addresses the problem that reusing plans requires candidate
plans to be evaluated, which for self-* systems with complex models often requires
a significant amount of time. This thrust investigates heuristic approaches for re-
ducing the total amount of evaluation time needed for replanning, including reusing
a percentage of individuals and initializing the remainder randomly, trimming long
plans to obtain smaller plan fragments, and prematurely terminating the evaluation
of the longest evaluating plans. The second thrust (b) focuses on the challenge that
self-* systems must be robust to many kinds of unexpected changes, and investigates
how plan reuse can be applied to build reusable repertoires of plans that improve the
system’s ability to adapt to a range of unexpected scenarios. This thrust uses ideas
from program analysis, specifically clone detection, to identity commonly occurring
plan fragments that are useful in a range of change scenarios, to assemble a reper-
toire of generalizable plans. The third thrust (c) investigates the unique challenges
of plan reuse in adversarial domains, where one or more adversaries can also take
actions that affect the system’s utility, often negatively. This thrust explores how
co-evolution can be applied to reuse plans in this environment.

1.2 Claims

The thesis is evaluated by the improvement in evolution ability compared to a base-
line of planning from scratch in three case study systems, a cloud-based web server,
a team of autonomous areal vehicles, and a security scenario inspired by a well doc-
umented data breach at the Target chain of stores [75, 38]. Evolution ability is
measured by the number of generations until convergence to a good plan, the im-

3

provement in wall-clock time needed for replanning, and the range of unexpected
change scenarios that the approach can address.

1.3 Contributions

The contributions of the thesis are the following:

1. An approach for plan reuse with stochastic search for more effective replanning
following unexpected changes.

(a) A planner using genetic programming and initial population seeding to
support reusing existing adaptation strategies.

(b) A collection of reuse enabling approaches to reduce the evaluation time of
existing strategies to facilitate effective plan reuse.

Publications:

• Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le
Goues. Managing uncertainty in self-adaptive systems with plan reuse and
stochastic search. In Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems, pages 40–
50. ACM, 2018

• Cody Kinneer, David Garlan, and Claire Le Goues. Information reuse and
stochastic search: Managing uncertainty in self-* systems. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), 15(1):1–36, 2021

• Gabriel A Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan.
Dartsim: An exemplar for evaluation and comparison of self-adaptation
approaches for smart cyber-physical systems. In Proceedings of the 14th
International Conference on Software Engineering for Adaptive and Self-
Managing Systems, pages 137–143. ACM/IEEE, 2019

Artifacts:

The source code for the GP planner is publicly available for extension and repli-
cation at the following GitHub repository: https://github.com/squaresLab/
sass. The DARTSim exemplar is available at https://github.com/cps-

sei/dartsim. Data and analysis code for this thrust is available at: https:
//github.com/squaresLab/seams2018-data, and also at https://github.

com/squaresLab/taas-2018-data.

2. Techniques for generating reusable repertoires of adaptation strategies to broaden
the types of unexpected changes that self-* systems can replan for effectively.

4

https://github.com/squaresLab/sass
https://github.com/squaresLab/sass
https://github.com/cps-sei/dartsim
https://github.com/cps-sei/dartsim
https://github.com/squaresLab/seams2018-data
https://github.com/squaresLab/seams2018-data
https://github.com/squaresLab/taas-2018-data
https://github.com/squaresLab/taas-2018-data

(a) An approach inspired by chaos engineering for obtaining planning knowl-
edge for a range of change scenarios.

(b) Analysis approaches for extracting reusable planning components includ-
ing clone detection and syntactic transformations.

Publications:

• Cody Kinneer, Rijnard Van Tonder, David Garlan, and Claire Le Goues.
Building reusable repertoires for stochastic self-* planners. In 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pages 222–231. IEEE, 2020

Artifacts:

The source code for the approaches described in this research thrust are avail-
able with the GP planner at https://github.com/squaresLab/sass. Data
and analysis code is available at: https://github.com/squaresLab/acsos2020-
data.

3. An adversarial extension to support plan reuse to promote the security quality
attribute.

(a) The Observable Eviction Game (OEG), a game theoretic model of system
defense laying the foundation for self-* systems that can autonomously
adapt in response to unexpected changes in the security landscape.

(b) A co-evolutionary extension to support reusing adaptation strategies when
planning for adversarial situations, enabling self-* systems to replan in the
face of unexpected security threats.

Publications:

• Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Gar-
lan. Modeling observability in adaptive systems to defend against ad-
vanced persistent threats. In Proceedings of the 17th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design.
ACM-IEEE, 2019

Artifacts:

The source code for the co-evolutionary extension including the Bullseye exem-
plar is included with the GP planner code at https://github.com/squaresLab/
sass. Source code for solving the Bullseye exemplar system with Gambit
is available at https://github.com/squaresLab/bullseye-gambit. Source
code for the Observable Eviction Game is available at https://github.com/

squaresLab/oeg-code. Data and analysis code is available at https://github.

5

https://github.com/squaresLab/sass
https://github.com/squaresLab/acsos2020-data
https://github.com/squaresLab/acsos2020-data
https://github.com/squaresLab/sass
https://github.com/squaresLab/sass
https://github.com/squaresLab/bullseye-gambit
https://github.com/squaresLab/oeg-code
https://github.com/squaresLab/oeg-code
https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data

com/squaresLab/sass-coev-data.

1.4 Outline

The remainder of the thesis is organized as follows: Chapter 2 provides relevant
background, including self-* systems, genetic algorithms, and game theory. Chap-
ter 3 describes the core solution approach for reusing plans using stochastic search,
including reuse enabling approaches for reducing the cost of plan reuse. Chapter 4
expands on the core approach, adding support for reusing repertoires of adaptation
strategies including approaches for identifying generalizable plan fragments to build
reusable plan repertoires. Chapter 5 discusses a co-evolutionary extension for ap-
plying plan reuse in domains with adversarial interactions. Chapter 6 describes the
validation, including a description of the case study systems and claims. Chapter 7
provides a discussion of when our approach to plan reuse is beneficial, addresses the
limitations of the thesis, and outlines some promising avenues for future work before
concluding the thesis.

6

https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data

Chapter 2

Review of Literature and
Background

This section provides the relevant background for the thesis. Section 2.1 provides
an overview of the problem domain, including self-* systems and uncertainty. Sec-
tion 2.2 describes details on the search-based approaches used in the thesis, including
genetic algorithms and genetic programming, and also discusses prior work in search-
based planning approaches. Lastly, Section 2.4 provides background for the unique
challenges posed by the security domain including game theory concepts.

2.1 Self-* Systems

Self-adaptive, self-managing, self-protecting, or generally self-* systems are software
systems that autonomously adapt to continue fulfilling their quality objectives in
response to change. These systems are often composed of two subsystems, the man-
aged system itself, and a managing system, which enables adaptation. Self-* systems
frequently follow the five-component MAPE-K architecture [26], depicted in Fig-
ure 2.1. In this paradigm, the managing system gains information about the state
of the managed system and its environment through sensors, and affects adaptation
using actuators. A monitoring component gains information from the sensors, an
analysis component examines this information and determines when adaptation is
necessary, a planning component determines how the system should adapt by pro-
ducing an adaptation strategy or plan, and an execute component carries out the
plan using the actuators. Additionally, a fifth knowledge component provides shared
information to each of the other four components to facilitate adaptation.

This thesis focuses on the planning component, which generates an adaptation

7

Figure 2.1: MAPE-K Loop for self-* systems.

strategy. These strategies frequently consist of several adaptation tactics, which are
the atomic operations that the system can perform in order to adapt. In a cloud-
based web services provider, an adaptation tactic might be “start a new server at data
center C”, while for an autonomous aircraft, a tactic could be “descend 1000 feet”.
Adaption strategies can consist of several tactics utilized together with control flow,
for example: “start a new server at data center C, if successful reduce brownout,
otherwise retry”. Planners are broadly divided into online and offline planners
based on when the planner generates a plan. Online planners generate a plan during
run time, often trading off optimally in return for planning speed [57], while offline
planners [11] precompute strategies for common or anticipated situations, which are
then selected from at run time. These planners provide good solutions for cases
that were considered during planning, but can struggle when confronted with novel
situations.

Broadly, the purpose of self-adaptation is to enable systems to cope with un-
certainty. Uncertainty can be defined as “. . . a state of incomplete or inconsistent
knowledge such that it is not possible for a (dynamically adaptive system) to know
which of two or more alternative environmental or system configurations hold at
a specific point” [64]. Understanding uncertainty has been a focus of research in
self-* systems, including modeling and taxonomizing uncertainty [3, 64, 43, 60], or
managing it [47, 9, 48]. Often, uncertainty is categorized by its “anticipation” [3],
“prospect” [43], or “level” [60], indicating the epistemic degree of uncertainty. One
common demarcation of uncertainty is according to foreseen, foreseeable, and unfore-
seen types of changes [3, 64, 43], where foreseen changes are those aspects that were
considered at design time and explicitly addressed, foreseeable are types of changes
that are acknowledged but not currently addressed, and unforeseen are changes that
by their nature cannot be anticipated. Another proposed categorization is accord-

8

ing to orders of ignorance [4, 60], with the 0th order of ignorance being knowledge,
the 1st a lack of knowledge (but knowing the lack of knowledge exists), the 2nd is
lacking knowledge as well as not realizing the lack of knowledge, the 3rd is lacking a
process that facilitates the discovery that a lack of knowledge exists, the 4th order
is lacking knowledge about the orders of ignorance. Existing approaches for self-
adaptation focus on managing uncertainty that can be identified at design time, the
so called known unknowns. In the planning component, unexpected changes from
other sources of uncertainty necessitate replanning. This thesis explores approaches
for more effective replanning in the face of this higher order of uncertainty.

2.2 Genetic Algorithms

Genetic algorithms (GAs) are stochastic search-based procedures for optimizing an
objective function inspired by the principles of biological evolution [21]. At a high
level, genetic algorithms iteratively improve a population of candidate solutions over
a series of generations. A genetic algorithm consists of an individual solution rep-
resentation, a fitness function to evaluate the quality of a candidate solution, and
reproduction rules that specify how the next generation of solutions should be gen-
erated. At every generation, higher-quality solutions are more likely to be selected
for reproduction, allowing the search to exploit promising solutions. To promote
exploration of the search space, mutation operators populate the next generation
of solutions by randomly modifying the selected individuals. After successive gen-
erations, the algorithm is expected to converge to high-quality solutions. Genetic
algorithms are heuristic search algorithms, and while they often perform well in ex-
ploring large search spaces, finding the optimal or even a high-quality solution is not
guaranteed.

Genetic programming (GP) is an evolutionary approach where individuals are
represented as trees [37, 61]. This allows GPs to evolve abstract syntax trees for
synthesizing code like artifacts such as adaption strategies. Coevolution is an evolu-
tionary approach where multiple populations of individuals are evolved and influence
one another’s fitness. This can be done to evolve individuals representing the behav-
ior of multiple agents, and has been used to find strategies in games [36]. GP and
how it is used in my thesis approach is explained in more detail in Chapter 3.

There are many approaches for planning, including those that apply evolutionary
approaches. Plato and Hermes [63] use genetic algorithms to reconfigure software
systems (in the domain of remote data mirroring) to respond to unexpected fail-
ures or optimize for particular quality objectives. The search problems (representa-
tion, operators, and fitness function) differ, commensurate with the different domain.

9

However, the key distinction in the work of this thesis is the focus on information
reuse to handle uncertainty. That is, although Hermes is initialized with existing
adaptation strategies, I focus explicitly on the effectiveness of reusing alternative
starting strategies in the face of unanticipated scenarios.

EvoChecker [16] is an approach using evolutionary algorithms for generating prob-
abilistic models under multiple quality of service objectives. This approach extends
the modeling language used by PRISM to support specifying a range of possible
models for an evolutionary search. Like our approach, EvoChecker can be used to
reconfigure self-* systems at runtime, and supports speeding up the search by reusing
information through maintaining an archive of effective prior solutions. This work
differs by focusing on the planning component of self-* systems and specifically in-
vestigates evolving planning languages represented as ASTs rather than the PRISM
modeling language. Moreover, this thesis also addresses identifying reusable planning
components and adversarial environments.

Case-based plan adaption [52] explicitly reuses past plans in new contexts, in
which context GAs have been explored directly [17, 44], e.g., by injecting solutions
to previous problems into a GA population to speed the solution of new problems.
Although the mechanism is similar, the presented approach is importantly novel
in that it addresses a broader class of uncertainty, namely, where the source of
uncertainty may be in the available tactics, the environment, or in the system’s
objective function.

Exhaustive planners are an alternative to heuristic planners. These planners
evaluate every possible plan, which allows them to always find the optimal plan.
Models checkers such as PRISM [42] can be used to exhaustively compute an optimal
sequence of tactics to maximize one or more system objective (e.g., profit) for systems
formalized as MDPs. While these planners will always find the best plan, they often
suffer from poor scalability when the number of possible plans is large. In practice,
exhaustive planners are often unable to cope with the complexity of large systems. In
these cases, it is necessary to accept sub-optimal solutions to cope with the scalability
challenge—for example, as is done by using stochastic model exploration.

2.3 Clone detection

Section 4.2.1 presents clone detection as an approach for building reusable repertoires
of adaptation strategies. Clone detection is an approach for analyzing software for
duplicate source code [65, 35, 25], which may be used to aid developers in refactoring
code to promote maintainability or eliminate technical debt. Common approaches
for performing clone detection include operating on abstract syntax trees [7], or

10

program dependence graphs [39]. Deckard [24] is a clone detection tool using a
tree-based approach for performing clone detection that operates at the AST level.
Deckard encodes program AST subtrees as vectors, and then computes the distance
between these vectors to identify similar code regions. A clustering step results in
Deckard outputting a list of clone clusters, groups of similar code-clones. Deckard
is configurable and allows the user to specify the minimum number of code clones
in a cluster, the minimum similarity for detecting clones, and the size of the stride,
which influences the size of the detected clones. Section 4.2.1 describes work using
clone detection as a means of extracting reusable planning components.

2.4 Security and Advanced Persistent Threats

Self-* systems frequently adapt in response to environment changes to maintain
quality attributes; however, the security quality attribute poses unique challenges
to self-* systems. A key challenge in self-securing systems is the presence of an
adversary who can also take actions to affect the system, and can themselves adapt
to the environment, including the system and its self-securing actions. This requires
an approach to adaptation that can also consider the adversary’s best response to the
actions of the system, in effect planning for both agents at the same time. Chapter 5
presents a research thrust towards applying plan reuse to adversarial settings.

The most sophisticated adversaries are known as advanced persistent threats
(APTs). The US National Institute of Standards and Technology (NIST) defines an
APT as “An adversary that possesses sophisticated levels of expertise and significant
resources. . . . The advanced persistent threat: (i) pursues its objectives repeatedly
over an extended period of time; (ii) adapts to defenders’ efforts to resist it; and (iii) is
determined to maintain the level of interaction needed to execute its objectives” [33].

Each APT has a set of tactics, techniques, and procedures (TTPs) that is used to
carry out an attack. These TTPs include the tooling and methods used by a group of
individuals dedicated to a particular purpose, such as gathering intelligence, stealing
merchantable artifacts, or causing disruption. In some cases, a threat actor may have
multiple APT groups defined by their distinct TTPs [1]. Because TTPs represent
the accumulated knowledge, skills, and abilities of attackers, they can be difficult to
change. However, a nation-state with multiple APT groups under its control could
reassign responsibility for attacking a target from one APT group to another, or a
single APT group could swap out one set of tooling and command and control infras-
tructure for another if need be. In the most sensitive operations, APT groups will
use multiple sets of TTPs, including multiple types of malware, to ensure persistent
presence even in the case of detection.

11

For the defender, knowledge of an attacker’s TTPs is often crucial to successful
attack mitigation because that knowledge can be used to look for likely places where
the system might have been compromised and to predict future courses of action.
Such knowledge can be gained in several ways, such as simply waiting to see what
the attacker will do next, or putting in place active detection mechanisms, or active
measures (e.g., honeynets or camouflage) [23, 67].

Game Theory. Unlike other quality attributes that a self-* system may optimize
like quality of service, security presents a unique challenge in the form of an attacker.
Like the self-* system itself, the attacker can take actions that affect the system, and
can themselves gather information and adapt to the behavior of the system to further
their own interests. Game theory provides a framework for reasoning mathematically
about interactions between multiple agents, or players [55]. A normal-form game is
defined by a tuple (N ,A, u). N = {1...n} is the set of players. A = Πn

i=1Ai is the
set of joint actions, where Ai is the set of actions for player i. u = (u1, ...un) and
ui : A → R is the payoff or utility function for player i that maps the players’ joint
action profiles to an outcome value. Each player is seeking to maximize their own in-
dividual utility. A player’s strategy can be pure (i.e., take a deterministic action) or
mixed (i.e., randomly choose an action according to some probability distribution).
The Nash equilibrium (NE) of a game is the strategy profile σ = (σ1, ...σn) for all
players such that no player can gain from unilaterally changing their strategy. That
is, that each player is playing the best response to each other player.

More complicated games with sequences of actions are often modeled by extensive-
form games (EFG), which can be represented by a game tree where each node corre-
sponds to a unique history of actions taken by all players and chance from the root
of the game, and each edge corresponds to possible actions available to the player
(could be a chance player) who will choose an action at the node. Players get payoffs
at the leaf nodes of the game tree and then the game terminates. In addition, each
players’ choice nodes can be partitioned into information sets to model the imperfect
information in the game. A player cannot distinguish between nodes in the same
information set. A pure strategy for player i in an EFG assigns one action for each
information set of player i. Stochastic behavior can be modeled by introducing a
nature, or chance player, who moves according to a fixed probability distribution.
By enumerating pure strategies for all players, we can get an induced normal form
game of an EFG and the NEs are preserved.

In complete information games, all players know the identity and payoff functions
of all other players. Bayesian games relax this assumption by allowing multiple
types of players and that at least one player is unsure of the type of another player.
Formally, a Bayesian game extends the aforementioned normal-form game model by

12

introducing Θ = Πn
i=1Θi where Θi is the set of possible types for player i and a

common prior of joint probability distribution of players’ types P : Θ→ [0, 1]. The
utility function of a player is dependent on the players’ joint type profile and joint
action profile, i.e., ui : A × Θ → R. The Harsanyi transformation [19] converts a
Bayesian game to a normal-form game.

Stackelberg games assume two kinds of players: a leader, and one or more fol-
lowers. Rather than each player choosing a strategy simultaneously, in Stackelberg
games, the leader acts first and commits to a strategy. The followers then observe the
strategy of the leader and best respond. This game type is useful in a security con-
text to capture the fact that a sophisticated attacker can often observe the defender’s
strategy before acting. Several approaches exist for efficiently solving Strong Stack-
elberg Equilibria (SSE), in both Bayesian and extensive form settings [58, 40, 73].

13

14

Chapter 3

Approach Overview: Responding
to unexpected changes with plan
reuse and stochastic search

While self-* systems can enable systems to autonomously respond to situations that
they were designed for, they struggle when confronted with unexpected changes.
This thesis presents an approach for reusing existing plans with stochastic search
to allow self-* systems to more effectively replan when faced with these changes.
This section describes the first contribution of the thesis, a planner, based on genetic
programming, that reuses existing adaption strategies after an unexpected change
occurs. This planner will serve as the foundation for further extensions facilitating
plan reuse. The planner is described in terms of a case study system, a cloud-based
web server (Omnet), that will serve as a running example.

The planner reuses previously-known information using GP to efficiently generate
plans in a large, uncertain search space in response to unforeseen adaptation scenar-
ios. The approach reuses past knowledge by seeding the starting population with
prior plans. These plans satisfied the system’s objectives in the past, but are cur-
rently sub-optimal due to “unknown unknowns”, unexpected changes to the system
or its environment that the past plans did not address.

Stochastic search requires a fitness function for estimating the utility or fitness
of candidate solutions. In this work, we assume this is provided via a model of the
system that can simulate executing candidate plans and output the expected result-
ing utility. After an unexpected change occurs, the system model must be updated
to reflect the new behavior after the unexpected change, and this update triggers
the planner to replan. The mechanism for synchronizing the system model with the

15

actual world is outside the scope of the thesis; this may be done manually (likely with
less effort than replanning), or automatically [74, 27] (this assumption is discussed
in more detail in Section 7.2.1). The approach is agnostic to the representation of
the system model and relevant changes, as long as the provided model can be used
to evaluate the utility of candidate adaptation strategies.

The planner reuses past knowledge by seeding the starting population with prior
plans. After the system model is updated to reflect the unexpected change, a start-
ing population of adaptation strategies is created. These strategies are iteratively
improved by random changes via mutation and crossover, with the most effective
plans being more likely to pass into the next generation, resulting in utility increas-
ing over time (although this is not guaranteed). Seeding previously useful plans into
the population allows for useful pieces of planning knowledge to spread to other plans
during crossover. Sections 3.2–3.4 provide the necessary technical details on the GP
implementation. The approach is explained in terms of the cloud-based web server
case study explained in detail in Section 3.1.

Algorithm 1 shows how the GP planner works at a high level. First, on line 1, a
population of candidate solutions (adaptation strategies) called individuals are ini-
tialized. The pop size parameter determines how many individuals will be in the
population. The while loop on line 2 iteratively performs reproduction on the popula-
tion, resulting in a new population. This is repeated based on the num generations

parameter. Finally, after the designated number of generations, the individual in
the population with the highest fitness or utility is returned. The scratch ratio,
trimmer, and kill ratio parameters improve the efficiency of plan reuse, and are
explained in Section 3.5.

Algorithm 1 Genetic programming planner and reuse enabling approaches param-
eters.

1: p = initialize(pop size, scratch ratio, trimmer)
2: while i < num generations do
3: p = reproduction(p, kill ratio)
4: end while
5:

6: return best ind(p)

A new GP application is defined by how individuals are represented (Section 3.2);
how they are manipulated during reproduction through mutation and crossover (Sec-
tion 3.3); and how the fitness of candidate solutions is calculated (Section 3.4).

16

Figure 3.1: Cloud web server architecture.

3.1 Cloud Web Server

The thesis is evaluated on three case study systems. The first case study system
will serve as a running example for the remainder of the thesis; the remaining case
studies are described in Section 6.2. The first case study system is a cloud-based web
server with an N-tiered architecture, depicted in Figure 3.11. The system distributes
requests from users between several data centers using a load balancer. Each data
center contains servers of a different type, with each type having different perfor-
mance characteristics. Generally, the more requests that a server can handle per
unit time the higher its cost. The system generates revenue by delivering ads along
with requests.

Utility. The system has several quality attributes that may be optimised, includ-
ing (1) Profit, the revenue generated by serving ads minus the operating costs, (2)
User latency, the delay that users experience when the number of incoming requests
exceeds the capabilities of the running servers, and (3) User-perceived quality, the
percentage of users viewing high-fidelity content, as opposed to a lower quality ver-
sion that may be delivered by a “brownout” mechanism (requests serviced with the

1This case study system has been used to evaluate self-* planners in related work [57, 12], work
published as a contribution of the thesis [29], and as a standalone exemplar [50]

17

lower-quality version are said to be “throttled”).
The profit P of the case study system at a particular state is given by the following

equation:

P = RO · xO +RM · xM −
n∑
i=1

(Ci · Si)

Where RO and RM is the revenue generated from requests that are unthrottled and
throttled respectively, and xO and xM denote the number of requests that the system
handles, unthrottled and throttled respectively. The summation provides the cost
of operation, which is subtracted from the revenue to yield profit. The summations
add the costs at each data center i, which is given by the operating costs of the
server type at the data center Ci, multiplied by the number of servers that have been
started at that data center, denoted by Si.

When evaluating latency, we report the number of users who experience delays
due to the system being overloaded, which is given by the difference between the
number of requests the system can support in its configuration versus the total
number of incoming requests, denoted xT .

L = xT − xO − xM

Users are allocated between data centers proportionally according to a traffic
value parameter ti ∈ [1, 5] that is set by an adaption tactic. The number of un-
throttled and throttled requests is determined by the total number of requests, the
capacity of each server type for full requests Oi, throttled requests Mi, the number
of running servers, and the dimmer value di ∈ [1, 5], which is set by an adaptation
tactic.
Adaptation Tactics. Multiple tactics can adjust the system in pursuit of its qual-
ity objectives. These tactics can turn on and off different types of servers, up to a
maximum of five per type. Each server type has an associated operating cost per
second and a number of users it can support per second, unthrottled and throttled.
The system’s load balancer distributes requests among data centers according to a
traffic value; there are five traffic levels per data center, and traffic is distributed
proportionally. The system can modify dimmer settings on each server type, which
controls the percentage of users who receive ads (using a brownout mechanism [34]
on a per-data center basis). This tactic allows the system to reduce demand by
decreasing the amount of content that needs to be served, at the cost of reducing
the system’s advertising revenue. The dimmer level can be changed by 25% incre-
ments. At run time, each of these adaptation tactics may fail. Starting and shutting
down servers fails 10% of the time, modifying the dimmer level and increasing the

18

traffic level fails 5% of the time, and decreasing the traffic level fails 1% of the time.
These values were selected for illustrative purposes and in practice would need to be
empirically determined or estimated.
Change Scenarios. Although synthetic, this case study illustrates a number of
ways that a self-* adaptation problem can change post-design. Quality priorities
may change: e.g., the system owner might sell it to a charitable organization that
cares more about user satisfaction than profit. The effects of existing tactics may
change: e.g., the cost of adding a new server may increase or decrease based on a
cloud service provider’s fee schedule. New tactics may become available, via new
data centers, server types, or even hardware. The use case or environment may also
unexpectedly change: e.g., users might switch from using one feature on a platform
to another, or might use the system at a different time.

To explore a representative variety of different change scenarios, the considered
scenarios are:

• Increased Costs. All server operating costs increase uniformly by a factor of
100, a system-wide change.

• Failing Data Center. The probability of StartServer C failing increases to
100%, a change in the effect of an existing tactic.

• Request Spike. The system experiences a major spike in traffic, an environ-
mental change.

• New Data Center. The system gains access to a new server location. This
location (D), contains servers that are strictly less efficient than those at loca-
tion A (i.e., they have the same operating cost, but lower capacity), but would
be useful if there were more requests than could be served by location A. This
change is an addition of a new tactic.

• Request Spike + New Data Center. This adaptation scenario is a com-
bination of the Request Spike and New Data Center scenarios. This corre-
sponds primarily to an environmental change, along with the addition of a new
tactic.

• Network Unreliability The failure probability for all tactics increases to
67%, a change in the effect of an existing tactic.

3.2 Representation

Individuals in the population are plans represented as trees. Trees are a natural
choice since they used to represent computer programs, which we observe are similar
to adaptation strategies. Figure 3.2 gives a Backus-Naur grammar for the plans.
Each plan consists of either (a) one of six available tactics (described in Section 3.1),

19

〈plan〉 ::= ‘(’ 〈operator〉 ‘)’ | ‘(’ 〈tactic〉 ‘)’

〈operator〉 ::= ‘F’ 〈int〉 〈plan〉 (For loop)
| ‘T’ 〈plan〉 〈plan〉 〈plan〉 (Try-catch)
| ‘;’ 〈plan〉 〈plan〉 (Sequence)

〈tactic〉 ::= ‘StartServer’ 〈srv〉 | ‘ShutdownServer’ 〈srv〉
| ‘IncreaseTraffic’ 〈srv〉 | ‘DecreaseTraffic’ 〈srv〉
| ‘IncreaseDimmer’ 〈srv〉 | ‘DecreaseDimmer’ 〈srv〉

Figure 3.2: Grammar for specifying plans for the Omnet running example. Servers
(srv) can be of types A, B, C, or D; For loops can iterate up to 10 times.

or (b) one of three operators containing subplans. The for operator repeats the
given subplan for 2–10 iterations; the sequence operator consecutively performs 2
subplans. The try-catch operator tries the first subplan. If the last tactic in that
subplan fails, it executes the second subplan; otherwise, it executes the third sub-
plan. The example plan at the top of Figure 3.3 uses a try-catch operator, first
attempting to start a new server at data center A. If successful, it attempts to start
a server at data center B; if not, it retries the StartServer A tactic.

This planning language is a simplified variant of other languages such as Stitch [11].
Intuitively they resemble decision trees in which the next action taken is determined
by the success or failure of prior actions. Unlike Stitch, this language does not con-
sider plan applicability (guards that test state to determine when a plan can be used).
Instead, applicability will be determined by choosing the plan with the highest ex-
pected utility, making explicit guards in the planning language unnecessary. Note
that any plan expressible in the planning language could be expressed with only the
try-catch operator, and that the language can represent any PRISM MDP [42] plan
(or policy) as a tree of try-catch operators with depth 2h, where h is the planning
horizon.

3.3 Mutation and Crossover

Mutation may either replace a randomly selected subtree with another randomly-
generated subtree, or copy an individual unmodified to the next generation. The
distribution between these choices is a tunable parameter. Mutation imposes both
size and type limitations on generated subtrees, which can range from a single tactic
to a tree of depth ten (this limit was selected to help prevent excessively large plans

20

(T (StartServer A) (StartServer A) (StartServer B))

StartServer A

StartServer A

0.10

StartServer B

0.90

987.8

0.10

1137.3

0.90

1137.3

0.10

1526.6

0.90

Figure 3.3: Top: An example plan. Bottom: This plan’s system state tree. Dashed
red arrows denote tactic failure, while solid green denotes success.

that take too much time to evaluate). The crossover operator [72] selects a subtree
in each of two parent plans (selected via tournament selection [37]) and swaps them
to create two new plans. Syntax rules are enforced on both operators (e.g., requiring
swapped or generated nodes to have the correct number of children of the correct
type). However, it is still possible for the planner to generate plans that lead the
system to an invalid state, e.g., a plan that tries to add more servers than are available
is syntactically correct, but invalid. Such plans are penalized rather than prevented,
to allow the search to break out of local optima.

3.4 Fitness

Candidate fitness is evaluated by simulating the plan to measure the expected utility
of the resulting system. Since utility may differ between applications, the fitness
function is application specific. Because tactics might fail, evaluation must com-
bine multiple eventualities. Thus, conceptually, fitness is computed via a depth-first
search of all possible states that a system might reach given a plan, captured in
a system state tree. Tree nodes represent possible system states; connecting edges

21

represent tactic application attempts, labeled by their probability (the tactic suc-
cess/failure probability). Every path from the root (the initial system state) to a
leaf represents a possible plan outcome. Overall plan fitness is the weighted average
of all possible paths through the state tree representing the expected fitness of the
plan. Path fitness is the quality of the leaf node system state, measured as one or
more of profit, latency, and user perceived quality (Section 3.1). Each final system
state contributes to overall plan fitness, weighted by the probability that that state
is reached, which is the product of the edge probabilities from the root to the final
system state.

To illustrate, Figure 3.3 shows a plan and its corresponding state tree. Leaf nodes
are labeled with their state fitness (profit, in this example); edges with their prob-
ability. Left transitions correspond to tactic failure; right-transitions, tactic success.
Following the right-hand transitions shows that, if all tactics succeed, profit will be
1526.6, with an 81% probability. Following the left transitions shows the expected
system state if all tactics fail (1% probability). The weighted sum over all paths
(overall fitness) is 1451.14.

The simulator takes into account planning time and tactic latency [49]. Each
leaf in the state tree represents a timeline of events (parent tactics succeeding or
failing). This timeline is simulated to obtain the utility accrued while the plan was
executing, as well as the utility state of the system after the plan terminates. To
support reasoning about the opportunity cost of planning time, the fitness function
takes as input a window size parameter that specifies how long the system is expected
to continue accruing the utility resulting from the provided plan. If the system will
remain in a state for a long period of time, it may be worthwhile to spend more time
planning since the system has more time to realize gains from the planning effort.
On the other hand, if the system is expected to need to replan quickly, spending
time optimising for the current state may be wasted, since this effort will need to be
repeated before gains are realized. The utility then is equal to:

s ∗ p+ d+ a ∗ (w − (t+ p))

Where s is the system’s initial utility, p is the planning time, d is the utility
accrued during plan execution, a is the utility value after the plan is executed, w is
the window size, t is the time plan’s execution time.

As with many optimization techniques, a GP typically includes many tunable
parameters that require adjustment to achieve good results. We thus performed a
parameter sweep to heuristically tune the reproductive strategy (which determines
how individuals in the next generation are produced, a ratio of crossover, muta-
tion, and reproduction/copying) and number of generations, population size, and all

22

2750

2800

2850

2900

2950

3000

0 50 100 150 200
Runtime (seconds)

U
til

ity

Planner
PRISM
GP

Figure 3.4: Utility versus planning time for GP parameter configurations. Many
configurations produce similar utility results to PRISM, significantly faster.

23

Table 3.1: A summary of the reuse enabling approaches.

Approach Technique Rationale

scratch ratio Generate some percentage
of plans from scratch rather
than all reused.

Short plans generated from
scratch are much faster to
evaluate, reducing the over-
all evaluation time.

kill ratio Prematurely terminate
some percentage of the
longest evaluating individu-
als.

A few very large plans can
take significantly longer to
evaluate than the rest of the
population.

trimmer Reuse randomly chosen
plan trimmings rather than
entire plans.

Plan trimmings contain the
information from the initial
plan, but shorter plans are
much faster to evaluate.

penalty thresholds. Figure 3.4 shows results from this parameter sweep performed on
the cloud-based web server case study. The dark point at the top of Figure 3.4 shows
the optimal system profit (fitness) and planning time (200 seconds) of the PRISM
planner, which performs an exhaustive search of all possible plans. Each gray point
corresponds to a different parameter configuration of the GP planner. Many param-
eter configurations allowed the GP planner to find plans that were within 0.05% of
optimal, but in a fraction of the time (under 1 second in some cases).

While the planner described in this section is a first step towards self-* systems
that can reuse information to replan effectively in response to unexpected changes,
several key challenges remain, including the long evaluation time required to compute
the expected fitness of prior plans, deciding how to seed the initial population to
maximize the number of situations that can be replanned for efficiently, and the
difficulty in planning for the security quality attribute when an adversary is also
adapting in response to the system. Section 3.5, Chapter 4, and Chapter 5 present
extensions to this planner to address these key challenges.

24

3.5 Reducing plan evaluation time with reuse en-

abling approaches

Preliminary results show that initializing the search by näıvely copying existing plans
does not result in efficient planning, and in most cases is inferior to replanning from
scratch with a randomly generated starting population [29]. This is due to the high
cost of calculating the fitness values of long starting plans. Specifically, because
fitness evaluation must consider the possibility that every tactic in the plan may
succeed or fail, the evaluation time is exponential with respect to the plan size. To
realize the benefits of reuse, this section presents several strategies for lowering this
cost, including seeding the initial population with a fraction of randomly generated
plans in addition to previous plans, prematurely terminating the evaluations of long
running plans, and reducing the size of starting plans by randomly splitting these
plans into smaller plan trimmings. Table 3.1 shows a summary of these approaches.

To reduce the number of long starting plans that the planner needs to evalu-
ate, a scratch ratio percent of the starting are initialized with short (a maximum
depth of ten) randomly generated plans, and only the remaining 1−scratch ratio

individuals are seeded with reused plans. This reduces the amount of time spent
evaluating the fitness of the starting plan in the new situation while still allowing for
the reusable parts of the existing plan to bootstrap the search.

Since the evaluation time is exponential with respect to the plan size, a few of the
longest plans can take significantly longer to evaluate than the rest of the population.
To prevent wasting search resources on excessively long plans, a kill ratio param-
eter is used, which terminates the evaluation of overly long plans and assigns them
a fitness of zero. When kill ratio percent of individuals have been evaluated,
evaluation stops and all outstanding plans receive a fitness of zero. This approach
leverages the parallelizability of GP to avoid hard-coding hardware and planning
problem-dependent maximum evaluation times, but requires planning on hardware
with multiple cores.

Lastly, to further reduce the cost of reuse, rather than completely copying large
starting plans, the search is initialized with small plan “trimmings” from the initial
plan. The planner generates trimmings by randomly choosing a node in the starting
plan using Koza’s node selector [37] (an approach that randomly selects from every
node in a tree, based on whether the node is a terminal, nonterminal, or root) that can
serve as the root of a new tree. This subtree is then added to the starting population.
The process is repeated until the desired number of reused individuals is obtained.

The reuse enabling approaches are evaluated specifically in Section 6.3.1. The re-
sults show statistically significant improvements for two out of the three approaches

25

(kill ratio and trimmer), with the scratch ratio showing a small improvement but
not statistically significant. These reuse enables are also used throughout the evalu-
ation where appropriate, and contribute to the effectiveness of plan reuse.

26

Chapter 4

Building reusable repertoires by
identifying generalizable plan
fragments

Section 3.5 discussed improving planning utility by randomly trimming existing plans
into smaller sub-plans, balancing reused plans with short randomly generated plans
in the starting population, and prematurely terminating the evaluation of a propor-
tion of long running plans. While results show that these techniques resulted in an
improvement (see Section 6.3.1 for results on this part of the approach in detail),
they focus on reusing a single adaptation strategy only, and they ignore the insight
that some plan features are more reusable and amenable to evolution than others.
For example, many plans generated for the cloud web server case study frequently
start instances of server type C. Since this server type happens to have the best
computation ability per operating cost, starting more of them is often useful for a
range of unexpected occurrences. As long as type C is the most economical type,
the system should make sure that these servers are being utilized. This insight can
be extracted from the adaption strategies generated for the case study by observing
the repetition of this tactic, even without the domain knowledge needed to explain
why the tactic is generally useful (because of the performance and cost associated
with the servers that it starts).

To obtain the maximum benefit from existing plans, this chapter explores building
and reusing repertoires of adaptation strategies, including analyzing plans to identity
commonly occurring tactics encoded in sub-plans, which we hypothesize will be more
likely to be used in subsequent planning iterations, and thus result in improved
planning utility compared to selecting sub-plans randomly. Analysis techniques to

27

Figure 4.1: A high level view of the approach.

determine common code patterns, or code clones have been applied to source code,
such as Deckard [24] or program dependence graphs [39]. Since Deckard is a well-
known clone detection technique with a publicly available implementation, it provides
a good starting point for detecting commonly occurring elements in a collection of
plans. Self-* plans can be translated to representative Java code for analysis by
Deckard. Deckard can be given a collection of existing self-* plans generated for an
existing adaptation scenario, and will output which plan elements are most commonly
occurring. These plan elements will be converted to plans and taken as the initial
population of the search when replanning for an unexpected change scenario. We will
then compare the fitness utility of using common subplans to seed the search with
planning from scratch and planning with the techniques presented in prior work [29].

Figure 4.1 overviews the approach, which divides the planning process into an
offline and runtime step. During the offline initialization phase, we construct a
reusable repertoire of adaptation strategies for the planner to incrementally evolve
at runtime. This phase is further subdivided into a two step process: firstly, ex-
ploring the space of randomly generated change scenarios and producing adaptation
strategies to address them, and then analysing the generated adaptation strategies to
extract generalizable and cost effective components for the repertoire. In the online
phase, we extend our prior genetic programming planner [29] by seeding it with the
adaptation strategies in the repertoire.

A key idea behind repertoire construction is that certain “pieces” of plans are par-

28

ticularly informative for reuse. For example, repeated planning components, such as
starting more instances of the most cost effective server type, are likely to generalize.
Thus, effective repertoire construction requires:

1. a diverse set of previously-produced plans, constructed in response to a wide
variety of potential system changes, and

2. a way to consolidate and identify the most plan components that hold the most
promise for future reusability

For (1), we build on the idea of chaos engineering to explore the space of pos-
sible changes by randomly generating change scenarios to generate a diverse base
of planning knowledge; we explain in more detail in Section 4.1. For (2), we make
the observation that plans are, effectively, small programs, and our goal in analyzing
them is to identify semantically-meaningful programs or program pieces that may be
informative for future use. We thus present two techniques for this analysis phase,
one that adapts clone detection to this domain (Section 4.2.1), and another that
proposes a set of rule-based plan transforms to identify cost-effective plan pieces
(Section 4.2.2).

4.1 Generating Unexpected Changes

Our technique requires a diverse set of starting strategies that may generalize to
future situations. To obtain these strategies, we explore the space of unexpected
changes by generating change scenarios using a mutation-based approach inspired
by chaos engineering. Chaos engineering is an approach to promote software quality
attributes such as availability and robustness in large complex systems [6]. It involves
subjecting the target system to chaos experiments, which should be conditions that
may result in system entering an undesirable state, with the goal of verifying that
the system appropriately responds to the experiment. If the system does not respond
in an acceptable way, then it can be improved to be more robust to similar situa-
tions that might be encountered in production. An example of chaos engineering is
Netflix’s Simian Army [22].

We therefore propose an approach for building a reusable repertoire by perform-
ing chaos experiments offline to obtain a diverse set of adaptation strategies for later
reuse. At a high level, this approach randomly selects a scenario attribute, and then
randomly mutates it. Because the vast majority of attributes (150 out of 159) are
the availability zone specific parameters, random attribute selection is biased to favor
the other attributes, to promote scenario diversity. Table 4.1 shows this distribution.
Attributes within the same type are chosen uniformly at random. Since different at-

29

Attribute Type Selection Rate

Utility Coefficients 13.33%
Tactic Failure Rates 23.33%
Number of Users 15.75%
Instance Cost 15.75%
Instance Power 15.75%
Instance Brownout 15.75%

Table 4.1: Scenario attribute type and selection probability during mutation.

Figure 4.2: An example of a clone within a plan.

tributes have different sensitivity to change, the particular mutation applied depends
on the attribute selected. This mutation procedure is repeated m times, where m is
the number of desired mutations.

4.2 Extracting Reusable Components

4.2.1 Clone detection

Our first intuition for how to improve a repertoire constructed from a diverse set of
plans is that some planning motifs are more likely to generalize to unexpected situa-
tions. For example, more servers of the most efficient type (the best performance per
cost) is useful in a variety of situations, e.g., if the number of users increases or if the

30

processing resources per request increases. Of course, there are other changes where
this tactic is not helpful (such as when the quality requirements change dramati-
cally), but overall this applies to many change scenarios. This motif may therefore
appear in many of the diverse plans generated in the first phase.

Thus, our first approach leverages clone detection to identify reusable plan com-
ponents that appear in many plans in the scenario set. Clone detection analyzes soft-
ware for duplicate source code (see refs. [65, 69] for surveys), which aids developers
in refactoring code to promote maintainability or eliminate technical debt. Although
this technique is more commonly applied with the aim of reducing redundancy, we
observe that the idea can identify planning components that are more likely to be
generalizable. Figure 4.2 shows an example of a clone within an adaptation plan. In
this plan, a subplan is repeated. Because this clone is duplicated, it possibly contains
important planning knowledge; this key knowledge may be more likely to generalize.
By extracting just the clone rather than repeating the full plan(s) in the repertoire,
the planner can reuse this prior knowledge more cost-effectively. We therefore ap-
ply clone detection to the generated adaptation strategies to find those adaptation
strategy components that occurred multiple times throughout the considered change
scenarios.

Implementation. Our implementation builds on the Deckard [24] clone detection
tool. Deckard performs clone detection by encoding abstract syntax tree (AST)
subtrees as vectors, and computing the distance between these vectors to identify
similar code regions using clustering.

Note that our approach can generalize to any clone detection mechanism. We
use Deckard because it operates on generic tree structures (and can thus be straight-
forwardly adapted to our plan representation), it considers semantics, is scalable to
large AST sizes, and has a publicly-available implementation.

We must make changes to the vector generation step to effectively adapt Deckard’s
approach to our planning context. Converting an AST into numerical vectors pro-
duces a representation amenable to clustering; Deckard generates vectors for AST
subtrees based on the number and type of child nodes. By default, Deckard does
not consider variable identifier names during vector generation. This is sensible for
analyzing large programs written in a general purpose language like Java, where iden-
tifiers often vary between clones and where the large number of identifiers quickly
explodes vector size. However, our planning language is simple by comparison. More
importantly, tactic names (like StartServer encode considerable semantically mean-
ingful information. We therefore developed our own vector generator step for the
planning language that tracks the occurrence of tactic names.

31

seq-take-first (; (:[1]) (:[2])) ⇒ (:[1])

seq-take-second (; (:[1]) (:[2])) ⇒ (:[2])

try-take-first (T (:[1]) (:[2]) (:[3])) ⇒ (:[1])

try-take-second (T (:[1]) (:[2]) (:[3])) ⇒ (:[2])

try-take-third (T (:[1]) (:[2]) (:[3])) ⇒ (:[3])

try-unnest (T (:[1]) (T (:[1]) (:[2]) (:[3])) (:[3])) ⇒ (T (:[1]) (:[2]) (:[3]))

for-prune (F i:[1] (:[2])) ⇒ (:[2])

for-decr
†

(F i:[1] (:[2])) ⇒ (F i:[1] (:[2]))

Table 4.2: Syntax transformation rules for pruning plans. Hole syntax, like :[1],
binds an identifier 1 to an expression. Each rule either replaces a nonterminal ex-
pression with a subexpression, or reduces the number of times a subexpression is
evaluated. †The for-decr rule decrements the loop iterator matched by :[1] within
the fixed integer range 3–10. For brevity, we elide the rewrite rule that decrements
these values.

4.2.2 Rule-based Plan Transformation

The clone detection approach can automatically identify reusable repeated planning
components. However, human domain expertise, particularly in the peculiarities of
the planning language and domain, provides an important avenue for further im-
provement to repertoire construction. Naive human replanning is time-intensive and
expensive, and so any mechanism for incorporating expert knowledge into planning
must be sensitive to this cost.

We therefore propose a second approach to repertoire improvement based on
human-provided, rule-based source-level transformation templates. Such templates
are useful for improving general software quality [28], suggesting that transforma-
tion templates for our program-like adaptation strategies could usefully improve their
quality, in terms of their generalizability and reusability. For example, we can ex-
ploit a priori knowledge of our plan grammar and operator semantics to apply plan
transformations that avoid generation of redundant or known-expensive subplans.

We use Comby for declaratively specifying templates [2]. Comby performs trans-
formations on trees using declarative templates that are syntactically close to the
underlying programming language; this is our planning language, in this context.
Such templates are therefore lightweight and relatively easy-to-write, easing the bur-
den of manually specifying transformation templates. Comby generically supports
language syntax with little or no configuration, and is thus a suitable tool for gen-
eralizing our template-driven approach to other planning languages like Stitch [11]

32

or PRISM [42].

Transformation rules for plan reuse. Table 4.2 summarizes the eight transfor-
mation rules we produced for plans in our exemplar system. Each rule reduces the
size of the plan by removing subexpressions, corresponding to subplans. To illus-
trate, consider the first rule provided in Table 4.2. The seq-take-first rule matches
a sequence expression (denoted by ;) and binds named identifiers 1 and 2 to its two
respective subexpressions. The :[] syntax denotes a structural hole that binds to
expressions. The transformation, denoted by ⇒ reduces the sequence expression to
only the first subexpression, corresponding to identifier 1.

All syntax besides hole syntax refers to concrete syntax in the underlying lan-
guage, including operator keywords like T or F and parentheses. Comby rules always
match balanced parentheses, which ensures that both matched and transformed
subexpressions and plans are syntactically well-formed. Comby is thus well-suited
to transforming expressions corresponding to subtrees (like balanced parentheses),
corresponding to subplans. These transformations are generally not expressible using
regular expressions and would be otherwise difficult to implement programmatically.1

Our rules are informed by the grammar in Figure 3.2: for each nonterminal
operator (i.e., Sequence, Try-catch, and For loop) we wrote a rule that extracts a
respective subexpression (seq-take-*, try-take-* rules), or reduces the number of it-
erations that subexpressions are evaluated (try-unnest, for-* rules). In particular,
the seq-take-first and seq-take-second rules pick the first (resp., second) expression
from a sequence expression. The try-take-* rules pick one of three Try subexpres-
sions. The try-unnest rule prunes Try expressions that share identical child nodes in
the first and third arguments.2 The intuition is that structurally similar subtrees can
yield similar benefits, and nested repetitions imply duplicative evaluation unlikely to
improve performance. Similarly, for-prune and for-decr reduce the number of times
a For loop executes.

Our experience is that writing programs (e.g., in Java) for transformation rules in-
side the genetic planner is possible but disadvantageous. Transformations expressed
in code are less readable, and can contribute to a planner becoming a black-box, mo-
tivating our use of transformation rules. Declarative rules easily express lightweight
transformations, and decouples the rule-based system from probabilistic plan discov-
ery, offering greater flexibility.

1Applying a rule to expressions in a plan requires a simple command-line invocation: comby '(T
(:[1]) (:[2]) (:[3]))' '(:[1])' plan.ast

2When the same hole identifiers are used in a rule, the expressions must be syntactically equal
for the rule to match.

33

Rule application. We apply the eight rules to the initial repertoire, selectively
removing expressions, which results in smaller plans overall. The general intuition is
that smaller plans lead to quicker evaluation times, while retaining particularly valu-
able subplans for reuse, and thus contribute to greater overall utility. The genetic
programming planner explores coarse-grained changes (both adding or deleting sub-
plans), with the overall effect of performing additive changes that create ever-larger
plans. Thus, it may miss the opportunity to prune less useful subplans (especially
those containing large subexpressions), akin to getting stuck in local optima.

The approaches for generating reusable repertoires of adaptation strategies de-
scribed in this chapter are evaluated in Section 6.3.2. The clone detection component
of the approach shows the strongest results, with an 11% improvement over reusing
a single plan only. The clone detection approach resulted in a smaller improvement,
but could result in useable strategies ten seconds faster due to reducing the eval-
uation overhead. The best performing syntactic transformation rule resulted in an
additional 3.5% improvement over reusing the repertoire without additional analysis.

34

Chapter 5

Plan reuse in an adversarial setting

This chapter describes a co-evolutionary extension to the GP planning approach to
enable plan reuse with stochastic search in self-* systems with adversarial properties
such as promoting the security quality attribute. Adaptation to promote security
raises unique challenges compared to other quality attributes. Promoting security
involves ensuring a system is protected from the malicious activity of other actors,
or attackers. Like the system, the attacker can also adapt in response to change,
including changes that the system makes to adapt to the attacker. In the context of
stochastic search, this complication requires non-trivial extensions to the approach
described for other quality attributes. In this chapter we first describe the Observable
Eviction Game, a model for reasoning about APT defense in self-* systems, which will
serve as the foundation for our security extension. This chapter then describes the
extension to the GP planner using co-evolution to support adaptation and strategy
reuse in the presence of an adversary.

5.1 Foundations: The Observable Eviction Game

Self-protecting systems dealing with APT scenarios need to automatically decide be-
tween attempting to evict an attacker versus attempting to gather more information
about them, as explained in Section 2.4. To support designing these systems, a useful
model of decision making should include the following elements:

(C-1) Multiple types of attackers, each with different goals and available TTPs

(C-2) A defender who must choose between attempting to evict the attacker or
gathering more information, with or without active measures

(C-3) A defender who must balance thwarting the attacker with minimizing disrup-

35

TTP
Unknown

0.90

TTP
Known

0.10

1.00

Figure 5.1: Markov process for TTP observability.

tion to the system

(C-4) Eviction success should be predicated on the defender’s knowledge about the
attacker’s identity

(C-5) An attacker who changes their behavior and becomes more difficult to evict
after an unsuccessful eviction

We present a novel game model called the Observable Eviction Game (OEG)
that satisfies all of the above criteria. OEG is a Bayesian game with two players,
i.e., N={1,2}. Player 2 is an attacker who seeks to compromise the system, and
player 1 is a defender who wants to minimize the attacker’s success and disruptions
to the system’s operations. There is one defender type, but the attacker’s type is
drawn from a set supporting modeling different APT threat groups (C-1), denoted
as Θ = {θ1, ..., θM}. OEG depicts sequential actions of players and therefore can be
described as an EFG.

In the remainder of the section, Section 5.1.1 explains how the game proceeds
and the actions available to each player, Section 5.1.2 explains the utility functions,
and Section 5.1.3 describes solving the game for equilibria.

5.1.1 Actions

OEG models observability as a first-class concern and we leave out details that
are less relevant to observability. As an overview of the game, OEG models the
defender-attacker interaction in discrete time. The attacker chooses their attack plan,
i.e., TTP, at the beginning of the game, which is initially unobserved or unknown
to the defender. The game lasts τ time steps. Each time step the defender can
perform an eviction attempt or perform some other observational tactic (such as
waiting or taking active measures) to gain more information about the attacker (C-
2). In addition, in each time step, nature, or the chance player, randomly determines
whether the attacker’s attack plan will become observable to the defender.

Rather than considering every possible path an attacker might take through an

36

attack tree [68] to attack the system, we consider attacker strategies at a higher level
of abstraction. The attacker’s attack plan is described by a TTP, and the attacker
may choose among several TTPs. This is consistent with the behavior of real APT
groups (Section 2.4) since these groups often gain expertise in a particular set of
techniques and operate in a particular way. In the remainder of the paper, we will
use the terms TTP and attacker plan interchangeably. More concretely, in time step
0, the attacker chooses an action γj ∈ Γ = {γ1, ...γZ} that indicates their attack
plan or TTP. They will not change it unless they observe that the defender makes
an eviction attempt or takes an active measure.

In time step t ∈ {1, ...τ}, the defender can choose an action from the set of
eviction attempts Ω = {ω1, ω2, . . . , ωL}. The success of an eviction attempt depends
on the suitability of the eviction action to the TTP chosen by the attacker. We
denote by χjl ∈ [0, 1] the effectiveness of the defender’s eviction action ωl ∈ Ω to
evict the attackers TTP γj, which describes the probability that the attacker can
be successfully evicted, with 1 indicating always successful and 0 indicating always
unsuccessful. We assume that for each TTP γj, there exists some eviction attempt ωl
such that χjl = 1 and can successfully evict the attacker. If the defender performs a
successful eviction attempt, the attacker is immediately evicted, ending the game. If
the defender performs an unsuccessful eviction attempt, the attacker remains in the
system and is alerted to the defender’s knowledge of them, making it more difficult
for the defender to evict them in a subsequent attempt (C-5). Instead of modeling
the attacker’s change of behavior and the defender’s subsequent attempts in detail,
we simply assume the attacker will stay in the system until the end of the τ +F time
step without being interrupted by the defender. Equivalently in the game tree, the
failed eviction leads to a leaf node as no more actions will be taken. This modeling
approach is motivated by the high cost of a failed eviction attempt in practice,
which can result in an attacker digging in and becoming more difficult to evict in the
future (see Section 2.4). Since the game ends on a eviction action in either case, the
defender can only take at most one eviction action throughout the game, and the
defender can choose to not take an eviction action within τ time steps. This model
reflects the fact that a defender’s ability to evict an APT attacker depends on the
defender’s knowledge about the attacker (C-4). If the defender knows the attacker’s
TTP, the defender can choose the most suitable eviction action with χjl = 1. On the
other hand, if the defender uses an eviction action without knowing the TTP of the
attacker, the defender may choose an ineffective action, resulting in a failed eviction
attempt.

In addition to choosing an eviction attempt, the defender can also choose an
action from the set of observational tactics Φ = {φL+1, φL+2, . . . , φL+Q} where φL+1

37

is the default tactic of “wait” and φl,∀l ∈ L+ 2, ..., L+Q are active measures that
can be applied. Whether or not the attacker’s TTP is known to the defender is
determined by nature and the observation tactics chosen by the defender. Intuitively,
without any active measures taken by the defender, the longer the attacker stays in
the system, the more observable the attacker’s TTP, i.e., the more likely the defender
learns the attacker’s TTP. We model the observability of the attacker’s TTP over
time as a two-state Markov process. Figure 5.1 shows an example TTP observability
model. Initially the defender does not know the attacker’s choice of TTP, i.e., the
attacker is in the “TTP Unknown” state. After each time step, the defender has
some chance of learning the attacker’s chosen TTP and the attacker may move to
the “TTP Known” state. We use qj ∈ [0, 1] to denote the transition probability
P (TTP Known|TTP Unknown) if the attacker chooses TTP j. A lower qj means
TTP j is stealthier and harder to observe. The attacker remains in the “TTP
Unknown” state with probability 1 − qj. Therefore, in each time step t ≥ 1, the
chance player determines whether the attacker’s TTP becomes known according to
probability distribution 〈qj, 1 − qj〉 if the defender always choose to wait. If the
defender learns the attacker’s TTP, we assume that the defender will choose to
evict the attacker immediately, ending the game. If the defender does not learn the
attacker’s TTP, the game continues.

If the defender uses an active measure, qj will increase and the defender may learn
the attacker’s TTP earlier. However, the defender takes the risk of being noticed by
the attacker, resulting in a change in the attacker’s behavior. An observational tac-
tic φl is associated with a scalar representing the effectiveness of the tactic, denoted
as xl, and scalars representing how observable the tactic is to each attacker TTP,
denoted as yjl. The first element, xl ∈ [0, 1] describes the decrease in the attacker’s
probability of remaining hidden if the tactic is not noticed by the attacker. Let qtj
to denote the transition probability at time t. If the defender applies φl at time t
without being noticed by the attacker, then qtj = 1 − xl(1 − qt−1j). In the second
element, yjl represents the probability that the attacker notices the defender’s action
φl, dependent on the TTP γj they are using. This allows the model to capture the
fact that different TTPs may be more or less likely to observe the defender’s coun-
termeasures. In the game tree, the stochasticity of attacker noticing the defender’s
action can be represented by having the chance player determine the observability
of action φl right after the defender taking action φl. If the attacker noticed the
defender’s action, the attacker changes their behavior and becomes more difficult
to evict, resulting in the same outcome as a failed eviction attempt, and the game
ending. The defender may take multiple active measures throughout the game. For
the default tactic “wait”, xL+1 = 1 and yj(L+1) = 0,∀j.

38

5.1.2 Utilities

When the game terminates, each player gets a utility or payoff. We model the
attacker’s utility as the amount of time they remain in the system multiplied by the
appropriateness αij ∈ [0, 1] of their chosen TTP γj to their type θi. This modeling
approach captures the fact that having more time in the system gives the attacker
more opportunity to accomplish their goals. However, some TTPs may be more
aligned with their goals than others. In addition, APT groups are often trained in a
particular set of techniques amenable to their goals, and other TTPs are not available
to them. Modeling the appropriateness of the attacker’s TTP captures these facts,
as a higher αij indicates more alignment between the TTP and their goal and αij = 0
indicates that TTP γj is not available to the attacker of type i.

Similarly, we model the defender’s utility as the negation of the amount of time
the attacker remains in the system multiplied by δi ∈ [1, 10], a coefficient describing
how disruptive the attacker type i is. Coefficients δi model the fact that different
attackers may also be more or less disruptive to the defender. An adversary observing
the number of orders being processed for intelligence purposes for example, is less
disruptive to the defender than one that attempts to cause physical damage to the
defender’s resources. In addition, if the defender chooses an eviction attempt ωl or
an observational tactic φl, the defender pays a cost κl ∈ [0, 1]. This modeling choice
allows the OEG to model an important practical reality of defense, that certain
defensive measures that might be more effective, e.g., shutting down an infected
server, might come at a high cost to the defender’s operation (C-3).

Therefore, at a leaf node of the game tree, if the attacker stays in the system
for T time steps, the attacker gets a utility of T · αij and the defender gets a utility
of −T · δi − ν where ν is the total cost of the defender actions. Note that if the
game terminates with a successful eviction attempt, T is the number of time steps
that the attacker has been in the system so far, and if the game terminates due to
a failed eviction attempt or an observed active measure, T = τ + F . In this utility
model, the utility for the defender depends on the type of the attacker (through
the coefficient δi), modeling that different attacker types may have goals resulting in
varying degrees of damage to the defender.

Let Πi be the set of pure strategies for player i in the game. Given the game
model, the attacker’s pure strategy set is the same as the set of TTPs, i.e., Π1 = Γ.
A pure strategy for the defender assigns an action for each information set at which
the defender needs to take an action from Ω ∪ Φ. Since the defender may choose
to take an active measure at each time step without being noticed by the attacker,
the set of pure strategies for the defender is exponential in size with respect to
the number of active measures. When the attacker of type θi is following a pure

39

strategy γj and the defender is following a pure strategy πk (the kth pure strategy
in Π2) the utilities for the players are nondeterministic due to the existence of the
chance node. We use u1jk and u2ijk to represent the expected utility for the defender
and the attacker respectively. To find the game equilibria, we derive the reduced
normal form game [55] where actions at irrelevant information sets are omitted, and
the computation of u1jk and u2ijk becomes necessary. Here we explain how these
quantities can be computed.

A defender’s pure strategy consists of a sequence of observational actions from
Φ, followed by an eviction action from Ω. The set of pure strategies Π2 can be
enumerated by a recursive function e(s, t, τ), which, for each timestep t ≤ τ adds the
pure strategies where the defender uses an eviction action at timestep t to the set
s. For expository purposes, we use atk to denote the action that the defender plays
in time step t when following πk. Let εijk represent the total expected time that the
attacker will stay in the system. To compute εijk, we introduce a helper quantity
γtijk ∈ R, which returns the probability that the game reaches timestep t, that is, the
probability that the attacker is still in the system and has not noticed the defender’s
activity by timestep t. Since the defender takes at most one eviction action, let T
denote the timestep the eviction action is taken (T = τ + 1 if no eviction action is
taken) where T ≤ τ . Then the probability γtijk can be obtained by the following
equation:

γtijk =

γt−1ijk · (1− q

t−1
j) · (1− yt−1j) if 0 < t ≤ T

1 if t = 0

0 if t > T

Here we use yt−1j to denote the probability that the observational tactic used in

timestep t − 1 is observed by the attacker, i.e., yjl where at−1k = ωl. The equation
can be interpreted as follows: Conditioned on that the game reached timestep t-1,
the game can reach timestep t if (1) the defender has not taken an eviction action in
previous timesteps (i.e., t ≤ T); (2) nature does not reveal the attacker’s true TTP
to the defender (the second term); (3) the attacker does not notice the defender’s
observational tactic (the third term). Note that the second term depends on the
defender’s chosen strategy πk, since an active measure might modify q.

The attacker’s total expected time in the system is then given by summing the
product of the probability of each possible outcome with the time the attacker would

40

remain in the system if that outcome were to occur. This is given by:

εijk =
T−1∑
t=1

(
γtijk ·

(
ytj · (F + τ) +

(
1− ytj

)
· qtj · t

))
+ γTijk ·

(
χjl · T +

(
1− χjl

)
· (F + τ)

)

This expression sums the product of the probability of occurrence and the number
of timesteps that the attacker remains in the system over each timestep. The inside of
the summation handles all but the final timestep, which is treated differently since
the defender’s last action is always an eviction tactic, while the defender’s other
actions are always observational tactics. Inside the summation, the first term is the
probability that the game has not already ended in previous timesteps. The game
can end in the current timestep in two ways. The first is by the attacker noticing
the defender’s active measure, which results in the failed eviction penalty number of
timesteps, handled by the term ytj · (F + τ). The second way the game can end is by
the defender learning the attackers TTP and evicting them on the current timestep,
which is captured by the term (1− ytj) · qtj · t. Note that the this can only occur if the
attacker has not noticed the observational tactic, hence the need to multiply by one
minus the chance that the attacker observes the defender, and the term qtj depends
on the defender’s strategy since it may have been modified by an active measure in
an earlier timestep. The term outside the summation handles the eviction action
at the end of the defender’s chosen strategy. This is the probability that the game
does not end before this timestep, multiplied by both possible outcomes, either the
eviction succeeds and the attacker is evicted on timestep T , given by χjl · T , or the
eviction fails resulting in the failed eviction penalty, (1− χjl) · (F + τ).

The defender’s utility u1ijk is given by the expected time the attacker remains in
the system, modified by how disruptive the attacker type i is, i.e., δi. The defender
also pays a cost dependent on which defensive action is performed based on how
disruptive it is κl.

Since a defender strategy that involves non-evicting actions may result in using
different eviction actions depending on whether the attacker is observed by the de-
fender, the expected cost can be found in a similar way to the expected time that
the attacker remains in the system, summing the product of the probability of each
outcome by the cost of that outcome, given by νijk ∈ R. Due to the similarity of this
equation to εijk, we omit the details of this function. The defender’s utility is then
given by u1ijk = −εijk · δi − νijk.

41

〈plan〉 ::= ‘(’ 〈operator〉 ‘)’ | ‘(’ 〈tactic〉 ‘)’

〈operator〉 ::= ‘R’ 〈double〉 〈plan〉 〈plan〉 (Randomize)
| ‘;’ 〈plan〉 〈plan〉 (Sequence)
| ‘I’ 〈conditional〉 〈plan〉 〈plan〉 (If)

Figure 5.2: Grammar for specifying plans with the co-evolutionary extension.

5.1.3 Computing Equilibria

In this thesis, we are interested in the Nash equilibrium, although we also investi-
gated solving for the Strong Stackelberg equilibrium in other work [30] since it is
often hard to know how much the attacker knows about the defender’s strategy. To
solve the game when neither side knows the strategy profile of the other, we use
the Gambit software tools for game theory [46] to obtain the Nash Equilibrium.
The AI community has made significant progress towards solving Stackelberg games
efficiently [58, 73, 40], and we leave the investigation of more efficient solution ap-
proaches for the OEG to future work.

5.2 Co-evolutionary Extension

Competitive co-evolution is a genetic search approach that evolves multiple popu-
lations of individuals at a time. Unlike in traditional evolution where the fitness
of an individual depends soley on that individual’s characteristics, fitness depends
on an interaction between individuals from different populations. This allows the
individuals in each population to adapt in response to each other. While the Omnet
cloud-based web server case study has served as a running example throughout the
thesis thus far, the case study system does not consider any adversarial interactions.
To evaluate the applicability of plan reuse with stochastic search in adversarial set-
tings, we introduce a new case study system called Bullseye, a business enterprise
network under attack from an advanced persistent threat inspired by the Target data
breach [38]. A detailed description of this case study is provided in Section 6.2.2.
While in principle co-evolution can be applied to an arbitrary number of populations,
we make a simplifying assumption that there is one attacker and one defender, and
evolve a population of candidate strategies for each side.

42

5.2.1 Individual Representation

We represent the planning problem as a two population co-evolutionary search, one
population to evolve a strategy for the defender, and one population to evolve a
strategy for the attacker. Since the available actions for each agent is different, a dif-
ferent representation for each population is required, and the specific representation
is domain specific. However, there are some general principles that are generalizable
between domains. Figure 5.2 shows the generalizable Backus-Naur form grammar
for specifying the individual representations. The specific conditionals and tactics
must be specified for each domain.

Agents have access to a new randomization operator, which allows the agents to
non-deterministically choose between courses of action based on a specific set proba-
bility. Randomization is an important concept in game theory [55] and allows agents
to reduce their predictability by randomly changing their behavior. Additionally,
there is a theoretical result that at least one Nash equilibrium always exists using
randomized strategies [53]. The randomization operator executes the first subplan
with a probability equal to the specified value, and the second subplan otherwise.
An if operator is provided to allow agents to change their behavior based on infor-
mation they have about the current game state. This operator checks the state of
the system with a condition, and executes the first subplan if the condition is true,
and the second subplan otherwise.

Algorithm 2 How fitness is assigned to each individual in the co-evolutionary search.

1: for subpop in subpops do
2: for individual in subpop do
3: individual.results = []
4: for competitionSelector in competitionSelectors do
5: for i++ < competitionSelector.number do
6: competitor = competitionSelector.getCompetitor()
7: individual.results.append(fitnessFunction(individual, competitor))
8: end for
9: end for

10: individual.fitness = aggregate(individual.results)
11: end for
12: end for

43

5.2.2 Fitness Calculation

The fitness of individuals in both populations is evaluated by performing a series of
competitions with individuals from the competing population, and aggregating the
results. Algorithm 2 shows how fitness is assigned to each individual. On line four,
a collection of competition selectors is used to to choose competitors in a number
of ways. We use four selectors, which include: (1) six individuals randomly selected
from the current generation, (2) five individuals selected by tournament selection
from the previous generation, (3) five guru individuals from the previous generation,
and (5) ten individuals randomly selected from a hall of fame. The five guru in-
dividuals are the individuals with the highest fitness from the previous generation,
while the hall of fame consists of the best individuals from every previous generation.
The hall of fame concept [56] is one proposed means of mitigating a common fail-
ure mode of co-evolutionary searches where populations become trapped in a cycle
of local optima rather than continually make global progress in the solution space.
The hall of fame accomplishes this by calculating fitness not only against the cur-
rent generation, but also against the best individuals from historical generations,
thus promoting progress against all historical solutions rather than only the previous
generation’s solutions, although this approach is not guaranteed to enforce global
progress. These selection strategies were selected to balance obtaining individuals
in a variety of ways with evaluation time based on some preliminary experiments.
The instantaneous fitness on line seven is calculated by performing a Monte Carlo
simulation of 500 trials.

On line ten in Algorithm 2, the results of the many competitions are aggregated
to obtain a single fitness value. The aggregation function is the minimum when
calculating the defender’s fitness and the average when calculating the attacker’s
fitness. Preliminary experiments showed that this arraignment resulted in the best
global progress for the defender’s strategy, while using the average for both popu-
lations resulted in the search becoming trapped in cycles of local optima, and even
when existing strategies are reused they can quickly “de-volve” to this degenerate
state.

5.2.3 Reuse and Repertoire Generation

Strategies are reused by seeding both populations of individuals with previously
existing strategies. This is done for each subpopulation using a ratio of reused
individuals to individuals randomly generated from scratch. Reusable repertoires
can be constructed for this case study using the same high-level chaos engineering
idea as described in Section 4.1, with a few implementation changes.

44

The co-evolutionary extension is evaluated in Section 6.3.5. The results show that
plan reuse using a repertoire resulted in a large improvement, particularly during
early generations of planning where the improvement was as large as 92%. Reusing
a single strategy only also resulted in an improvement over planning from scratch,
although less pronounced.

45

46

Chapter 6

Validation

This chapter validates the claims of the thesis expressed in the thesis statement given
in Section 1.1 and restated below.

We can enable self-* systems with large state spaces to evolve in response to un-
expected changes by reusing existing plans with stochastic search in the following
three ways: (a) reusing existing plans using genetic programming and reuse en-
hancing approaches to reduce evaluation time, (b) building reusable repertoires
by identifying generalizable plan fragments to build resilience against unexpected
changes, and (c) reusing strategies in adversarial settings.

Chapter 3 presented an overview of the approach for reusing plans with stochas-
tic search, while Section 3.5 described our approaches for reducing evaluation time
discussed in (a). Chapters 4 and 5 presented extensions for building and reusing
repertoires of adaptation strategies, and for performing reuse in adversarial settings
as described in (b) and (c) respectively.

The contributions of the thesis will be evaluated based on the following three
claims, which are further described in Section 6.1:

1. Plan reuse will lower the number of generations until convergence to a good
plan.

2. Plan reuse will decrease the wall-clock time needed to generate a good plan
compared to planning from scratch.

3. Plan reuse is applicable to a range of unexpected change scenarios, including
adversarial settings.

These claims are evaluated on three case study systems, described in detail in
Section 6.2:

1. A cloud based web server.

47

Table 6.1: Table of approaches and representation in the case studies.

Omnet DART Bullseye

Core Approach Yes Yes Yes
Reuse Enablers Yes Where appropriate Where appropriate
Reusable Repertoires Yes No Yes
Co-evolutionary Extension No No Yes

2. The DART team of autonomous aerial vehicles.

3. An enterprise system under attack by advanced persistent threats.

To validate claims 1 and 2, we present results on planning effectiveness and
timeliness for each of the contributions described in Chapters 3, 4, and 5. To validate
claim 3, we evaluate the thesis on three unique case study systems, each facing
a diverse range of unexpected changes, including a system under attack from an
advanced persistent threat.

Table 6.1 shows the main approaches presented in the thesis and which case
studies each approach is evaluated on. The core approach to plan reuse of seeding
adaptation strategies represented as tree structures to the population of a GP is
evaluated on all case studies. The reuse enabling approaches presented in Section 3.5
are evaluated in depth on the Omnet case study, where the presence of tactic failure
resulted in large complex tree structures for which the reuse enables were designed to
handle. Where applicable, reuse enablers are also utilized in the other case studies.
Techniques from Chapter 4 on building reusable repertoires are utilized in both the
Omnet and Bullseye case studies. These approaches were not studied on the DART
case study due to the unique property of DART’s search space, which allowed for
order of magnitude improvements when reusing a single adaptation strategy (see
Section 7.1.3 for an in depth discussion of this issue). The co-evolutionary extension
is only applicable for systems where security is a concern, which is only present in
the Bullseye case study.

6.1 Claims

The goal of the thesis is to improve the ability of self-* systems to respond to un-
expected changes with plan reuse. Ideally, a planner should generate the plan that
obtains the highest possible utility for the system, and generate this plan instantly
after a change occurs. In practice however, the complexity of self-* systems results

48

in large search spaces that are often infeasible to exhaustively explore, and require
planners to make tradeoffs between solution quality and timeliness. Thus, to show
that plan reuse results in more effective planning, the evaluation will show how reuse
impact the timeliness and quality of planning in response to unexpected changes.
Whether the goal of improving planning quality is achieved will be evaluated by the
following three claims:

1. Plan reuse will lower the number of generations until convergence to a good
plan.

2. Plan reuse will decrease the wall-clock time needed to generate a good plan
compared to planning from scratch.

3. Plan reuse is applicable to a range of unexpected change scenarios, including
adversarial settings.

In the remainder of this Section, I will elaborate on each of these claims and
specify how they will used to evaluate the thesis along with the three case study
systems.

6.1.1 Plan reuse will lower the number of generations until
convergence to a good plan.

This claim evaluates the basis on which plan reuse in stochastic search can be ex-
pected to result in an improvement on planning from scratch. The idea is that by
seeding the search with individuals that have previously been effective, the search
will develop more effective plans more quickly, and will converge to a good solution
in a fewer number of generations compared to planning from scratch. Evaluating
this claim requires specifying exactly what is meant by a “good” solution. While
stochastic solutions like the one presented in this thesis have scalability advantages
compared to exhaustive approaches, they are not guaranteed to find the optimal so-
lution. In practice however, an optimal solution is not often necessary, and obtaining
a satisfactory answer in a reasonable amount of time is preferable.

In this work, we are interested in obtaining plans that suffice. Whether a plan
is satisfactory or not is a complex issue that is domain and context dependent, and
depends not only on the quality of the plan that is produced, but the amount of
time taken to develop the plan. In some situations, for example, if a drone is about
to collide with an obstacle, a plan that avoids the obstacle in a time and energy
inefficient manner, but is generated quickly, is much better than a higher quality
plan that cannot be generated in time to avoid the obstacle [57].

Anytime planning approaches (such as GAs) provide flexibility in determining

49

how much time to spend planing, since they can always be stopped and the best
available solution taken; however, the issue of deciding when to stop planning is
outside of the scope of the thesis. This issue is discussed in more detail in Sec-
tion 7.2. There are several ways of establishing criteria that specify when a good
plan is obtained. These include a plan being within some threshold percent difference
compared to a benchmark such as the optimal value discovered from exhaustive plan-
ning or the highest value obtained during a high-budget heuristic search. Another
criteria is the percent change in utility from before and after a plan is executed being
higher than a threshold. Another possible approach that attempts to take planning
time into the equation is examining the area under the utility curve over time. Since
the notion of a good plan is domain dependent, good plans will be assessed on a
case-study basis.

6.1.2 Plan reuse will decrease the wall-clock time needed
to generate a good plan compared to planning from
scratch.

If plan reuse reduces the number of generations needed to find a good plan, then it
should be possible to obtain a better plan more quickly. This is especially important
if the approach is to be used online rather than offline. However, the number of
generations of planning is an imperfect indicator of planning time. There are several
reasons that could cause the actual time spend planning to vary independently of
the number of generations. To complete a generation of planning, the planner must
evaluate the fitness of the individuals in the population, and this time may vary from
generation to generation. For plan reuse to improve the effectiveness of planning,
the amount of wall-clock time needed to arrive at a good plan must be lower than
planning from scratch. Unfortunately, the time needed to evaluate the fitness of
large precomputed plans may be longer than the time needed to evaluate short plans
generated from scratch. An important aspect of the approaches described in the
thesis is developing mitigations for this problem, including strategies for speeding up
the evaluation time and by identifying the most promising plan fragments to reuse.

6.1.3 Plan reuse is applicable to a range of unexpected change
scenarios, including adversarial settings.

In addition to showing an ability to improve the effectiveness of planning, the ap-
proach should also generalize to a range of unexpected change scenarios, including
adversarial settings. While it may not be possible to always obtain a significant

50

Table 6.2: A comparison of the case study systems.

Omnet DART Bullseye

Tactics can fail Yes No No
Planner executions Once Every timestep Once
Plan execution Entire plan First tactic only Entire plan
Changing environment Before planning Every timestep Before planning
Adversarial No No Yes

improvement, the thesis will characterize the types of situations when improvement
can be expected. This claim will be validated by demonstrating that the approaches
presented in the thesis can be applied successfully to three unique case study systems,
including a system under an attack from an advanced persistent threat. While not
all techniques are utilized in all case studies, the successful application of reuse to
all three diverse case studies and in response to a wide range of unexpected change
scenarios provides validation for this claim. A discussion of the lessons learned from
this diverse validation including when reuse is likely to result in an improvement is
presented in Chapter 7.

6.2 Case Study Systems

The thesis is evaluated on three case study systems. The case studies were selected to
be representative of several types of self-* systems from different domains, and with
different planning assumptions, quality attributes, and types of changes. Table 6.2
compares the three case study systems from a planning perspective. The first case
study system is the cloud web server described in detail in Section 3.1, and includes
an environment where tactics may fail, and planning is performed only once. The
second case study system is DART, a team of autonomous aerial vehicles that need to
navigate a hostile environment to detect targets. Apart from the different domain,
tactics are assumed to be reliable, and planning is repeated over a series of time
steps. The final case study system is a business enterprise system attempting to
defend itself from advanced persistent threats. This case study provides a self-*
system where security is a primary quality attributes, and allows us to investigate
plan reuse in an adversarial setting with an attacker who can also affect the system.
The first cloud web server system is described in Section 3.1, this chapter describes
the remaining case studies in detail.

51

0

5

10

15

20

0 10 20 30 40
Timestep

A
lti

tu
de

Environment
both

target

threat

Formation
loose

tight

Figure 6.1: An example trace of the DART team moving through an environment.

6.2.1 DART

The second case study system, DART [51] is inspired by a scenario from the DART
systems project [20], using the same modeling approach and parameters as related
work [49]. In this case study, the system is a team of autonomous aerial vehicles or
drones. The team flies together in formation, and a central leader drone commands
the rest of the team autonomously. The team’s mission is to fly over a predetermined
path in hostile territory, detecting targets while avoiding threats. The team’s path is
divided into discrete locations, and the team moves at a constant speed, traversing
one location per timestep. The team is equipped with noisy sensors that allow the
drones to estimate the probability that a threat or target lies in each location in
their look-ahead horizon, with the accuracy of these estimates improving with each
timestep that the location is sensed. The team’s configuration influences whether
the team detects a target or is destroyed by a threat when encountered. This con-
figuration includes the altitude of the team, with higher altitudes offering greater
protection against threats, but also reducing the ability of the team to detect tar-
gets. The team can also change the tightness of its formation, with a tight formation
offering reduced exposure to threats, but also less sensor coverage to detect targets.
Lastly, the team can enable electric counter measures (ECM), which attempts to
confuse threats by overwhelming their sensors, decreasing the chance that a threat
destroys the team, but at the cost of reducing the effectiveness of target detection.
In this work, the team starts at a high altitude of 20, and must descend 16 levels
before utility gain can occur. This situation could arise if the team was retasked from
another mission, or must arrive at the mission area due to air traffic restrictions or
to avoid other threats. More generally, this aspect of the case study is indicative

52

of self-* systems that require a specific initialization before utility can be affected
by adaptation. Figure 6.1 shows an example simulation of the DART team moving
through an environment. Each dot indicates the position and formation of the DART
team at a particular timestep. Black shapes at the bottom of the figure indicate the
positions of threats and targets in the environment.

Utility

The drone team’s goal is to detect targets while avoiding threats, without knowing
the number of location of targets or threats beforehand. When the team occupies
the same location as a target, the team detects the target with some probability,
which is based on the team’s altitude and configuration. Likewise, when the team
occupies the same location as a threat, the team is destroyed with some probability
based on the team’s state.

The team’s utility U is the expected number of targets detected over the course
of the mission, plus the team’s probability of survival. This can be found according
to the following equation:

U =
T∑
t=1

((
Πt
i=1(1− di)

)
· gt
)

+ Πt
i=1(1− di)

This expression sums, over each timestep t, the product of the probability that the
team survives until each timestep with the probability that the team observes a
target. Here, di denotes the probability that the team is destroyed at timestep i.
Since the team’s chance to survive until the current timestep depends on the team
surviving the previous timesteps, the first inner term of the summation provides the
multiplicative probability that the team survives until timestep t. The second term
gt denotes the probability that the team observes a target at timestep t. The team’s
probability of surviving the mission is added to the sum to discourage the team from
sacrificing itself at the end of the route (which the team might do in order to get a
better chance of observing the final target if survivability is not a concern).

Both values d and g depend on the team’s configuration (and therefore the chosen
plan) and the positioning of threats and targets in the environment. A complete
treatment of how d and g are computed is provided in prior work [51].

Adaptation Tactics

The team has eight adaptation tactics available. The team can ascend or descend
in altitude. Since it takes time to change altitude, a timestep is necessary before

53

the effects of these tactics are felt. Airspace is divided into twenty levels, and an
IncAlt or DecAlt tactic results in the team moving up or down one level in the
next timestep. An additional two tactics, IncAlt2 and DecAlt2, allow the team to
traverse two altitude levels instead of one. The team can be in either a loose or tight
formation, toggled using the GoLoose and GoTight adaptation tactics. Lastly, the
team’s ECM state can be toggled by the EcmOn and EcmOff tactics. Changes to the
team’s formation and ECM state occur the same timestep as the tactic is used.

Change Scenarios

We examine three types of change scenarios for this case study: changes to the posi-
tions of the threats and targets present in the environment, changes in the available
adaption tactics, and changing the desired utility tradeoff between the survivability
of the team and the expected number of targets detected.

6.2.2 Bullseye

To study reusing repertoires of adaptation strategies with stochastic search in an
adversarial setting, we introduce a new case study system called Bullseye. Bullseye
models an APT attacker infiltrating a business enterprise system, inspired by the
Target data breach [75, 38], and the Observable Eviction Game [30] (Section 5.1).

Architecture

Figure 6.2 shows the Bullseye case study system at a high level. The system, con-
trolled by the defender, consists of a web server, a payment server, and a collection
of point of sale (POS) devices. An APT attacker begins outside of the system, and
seeks to gain presence in the system’s assets to exfiltrate valuable information. Due
to providing web services, the web server is more vulnerable to exploitation than
the more protected payment server. Separate credentials are required for authorized
users to access either server, with more users including outside vendors having access
to the web server while a more limited set of users has access to the payment server.
The POS devices cannot be accessed directly, but periodically download firmware up-
dates from the payment server, which allows the attacker to exploit the POS devices
if they have control of the payment server.

The architecture of the case study is inspired by the Target data breach [75, 38],
where an APT attacker succeeded in exfiltrating data for millions of customers’
credit card accounts by compromising POS devices. In the Target data breach, the
attackers were able to obtain access to a web server after phishing the credentials

54

from a vendor. The attackers then moved laterally to a payment server that POS
devices downloaded updates from, allowing them to compromise many POS devices.

Bullseye also draws inspiration from the Observable Eviction Game (OEG) [30],
a game proposed to model the interaction between an APT attacker and defender
when the defender cannot directly observe the attacker and must decide between
gathering more information about the attacker or attempting to evict them from the
system. Bullseye extends the OEG by considering specific attacks and paths that the
attacker can take through the system. In Bullseye we assume there is only one type
of attacker, while the OEG can support reasoning about multiple types of unknown
attacker. Bullseye makes the following assumptions: the defender and attacker both
know the available actions and utility function of the other, neither side can directly
observe the actions of the other, and the attacker knows what exploits and passwords
they have obtained (including losses of the same caused by actions of the defender).
We model Bullseye as a turn based game that takes place over two timesteps.

In this work, our goal is to study the reusabilty of repertoires of prior strategies,
and we designed the case study to balance realism with keeping the game size small
enough to analyze using the Gambit [46] solver. We note that an advantage of
stochastic approaches is scalablity, however objectively measuring global progress in
the search is non-trivial, and we use the solver to provide an objective comparison
between the approaches in the evaluation.

Utility

The attacker’s goal is to exfiltrate valuable information from the system. The at-
tacker exfiltrates information by maintaining presence in the system’s assets. For
each of the three zones shown in Figure 6.2, the attacker earns a reward for having
presence in that zone for each timestep. The reward the attacker earns depends
on the value of the information in that zone to the attacker, and the rate that the
attacker can exfiltrate the information (which can be influenced by the defender).
Given that the attacker is in the system for T timesteps, an equation for the attacker’s
utility Ua is given below:

Ua =
T∑
i=1

hi ·
Z∑
j=1

pij · vj

The first summation in the equation sums the reward that the attacker generates
over the T timesteps that they remain in the system. The hi term is a value between
0 and 1 inclusive that represents the slowdown to the attacker’s exfiltration speed
caused by the defender at timestep i. The second summation sums the reward the

55

Legend
Attacker

Server

Phishing
Target

Point of Sale
Device Many

Attacker
Movement

Access
Zone

System
Boundry

Web Zone Pay Zone POS Zone

1

2 3
4

5

Figure 6.2: An overview of the Bullseye case study system, showing the assets under
the system’s control, and the attacker’s available paths to move through the system.

attacker gets from each of the Z zones. The reward for each zone j depends on
whether the attacker has presence in that zone for that timestep, represented by pij

which is either 1 or 0, multiplied by the value of the information in that zone to the
attacker, given by vj, a real number at least 0. The value of information in each zone
to the attacker vj is set at the beginning of the interaction and does not change. The
attacker’s presence at each time in each zone pij changes based on the attacker’s and
defender’s chosen actions.

The attacker’s observability to the defender is modeled in line with the Observable
Eviction Game [30], where after each timestep i the defender with some probabil-
ity qi observes the attacker and can then immediately evict them from the system.
In this case study, qi depends only on the attacker’s chosen action at timestep i,
with each action having its own observability value, a percentage that denotes the
probability that the defender observes the attacker performing the action. A lower
observability means that an action is stealthier. Thus, the observability of the at-
tacker’s selected actions influences how long the attacker remains in the system T in
the above equation.

For simplicity and faster experimentation time, we model Bullseye as a zero-sum
game, which means that the defender’s utility Ud is the inverse of the attacker’s

56

Table 6.3: Description of attacker tactics.

Number Name Attacker gains Prereqs Observability

1 Exploit Web Server web exploit None 5%
2 Phish Web Vendor web password None 10%
3 Phish Employee pay password None 20%
4 Exploit Pay Server pay exploit web presence 5%
5 Exploit POS POS exploit pay presence 10%

utility Ud = −Ua. Intuitively this means that the defender’s objective is to limit the
attacker’s utility. In real systems the defender also cares about limiting disruption to
their operations. For example, the defender can always stop the attacker by turning
off the system, but this is almost always unacceptable in practice. The Observable
Eviction Game [30] explores this complication in greater detail.

Adaptation Tactics

The red lines in Figure 6.2 correspond to the actions available to the attacker to gain
presence in the system’s assets. These actions consist of exploits, where the attacker
can take advantage of a vulnerability in the system to gain presence in a vulnerable
asset given the preconditions are met, and phishing attacks, where the attacker can
manipulate privileged users to give up their credentials. Table 6.3 lists each of the five
actions available to the attacker. The attacker starts with no presence in the system,
and can take any of the first three actions. The attacker can gain presence on the web
server by using an exploit on the web server (action 1), or by gaining a password to
the web server by phishing an outside vendor (action 2). Alternatively, the attacker
can gain presence on the pay server by phishing a password from an employee (action
3); however, since employees are closer to the company and better trained to report
phishing attacks, this action is much more noticeable to the defender. If the attacker
has presence on the web server (either by exploiting it or obtaining a password),
the attacker gains the ability to exploit the payment server, (action 4), a stealthier
alternative to the phishing approach. If the attacker has presence on the payment
server, the attacker can exploit the POS device firmware to gain presence in the POS
devices (action 5).

Table 6.4 shows the three actions available to the defender. The defender can re-
vert the system to a previous safe state (action 1), which results in the attacker losing
any exploits, but keeping passwords. The defender can also change the passwords

57

Table 6.4: Description of defender tactics.

Number Name Description

1 Flash Servers Attacker loses all exploits
2 Change Passwords Attacker loses all passwords
3 Throttle Attacker utility reduced

(action 2), which causes the attacker to lose any passwords obtained from phishing,
but any exploits are still installed. Lastly the defender has the ability to toggle on
a throttle, which reduces the system’s data transmission rate (action 3). When the
throttle is on, the attacker’s exfiltration rate is halved hi = 0.5 and is 1 otherwise.
The attacker has presence in a zone pij = 1 if the attacker has either an exploit or
a password in that zone. Passwords and exploits persist across timesteps until they
are removed by a defender action. At each timestep, attacker presence is determined
by applying the attacker action first, and then the defender action. For example, if
on the first timestep the attacker phished the vendor and the defender changed the
passwords, the attacker would have no presence for utility calculation.

Change Scenarios

Bullseye supports eight attributes that can be modified to produce new scenarios.
The first five values specify the observability of each of the attacker’s actions to the
defender. The final three attributes are the value of the information in each of the
three access zones to the attacker. The starting values for the observability attributes
are provided in Table 6.3. The value attributes are initialized to 2.

6.2.3 Summary

To evaluate the presented approach for plan reuse with stochastic search, three case
study systems are used. These systems are a cloud based web service provider in-
spired by Amazon AWS, DART, a team of autonomous aerial vehicles, and Bullseye,
a business enterprise network inspired by the Target data breach. These case studies
were selected to evaluate the approach on a number of diverse systems with different
goals and planning assumptions.

58

6.3 Evaluation

This section presents the empirical evaluation of the presented approaches. Sec-
tion 6.3.1 focuses on the core approach and reuse enabling methods presented in
Chapter 3. Sections 6.3.2, 6.3.3, and 6.3.4 evaluate the approaches for reusing reper-
toires of adaptation strategies from Chapter 4. Lastly, Section 6.3.5 evaluates the
co-evolutionary extension presented in Chapter 5.

6.3.1 Core Approach and Reuse Enablers

Chapter 3 described an approach for replanning after unexpected changes occur in
self-* systems using plan reuse and stochastic search. While intuitive, preliminary
results showed that näıve reuse can actually result in worse results than replanning
entirely from scratch. In this section we evaluate the core approach, including three
reuse enabling approaches described in Chapter 3 to mitigate this issue. In this eval-
uation, we compare plan reuse with and without our reuse enabling approaches with
an exhaustive planning approach, as well as replanning entirely from scratch. We
built the genetic programming planner described in Chapter 3 on ECJ, a framework
for evolutionary computation in Java1.

We evaluate the core approach for plan reuse using two case study systems: Om-
net, a cloud-based web server described in Section 3.1, and, DART, is a team of
autonomous drones that must detect targets in a hostile environment while avoiding
threats, described in Section 6.2.1. These case studies highlight reuse in different
domains and with different planning assumptions. Section 6.3.1 describes the exper-
imental setup and reports results for the Omnet case-study. Section 6.3.1 does the
same for the DART system.

Omnet Evaluation

For the Omnet evaluation, we evaluate various change scenarios based on the system
shown in Figure 3.1 and described in Section 3.1. First, as a sanity check to ensure
that the planner is producing reasonable results, and as a way of tuning the many
parameters of the approach, we present a comparative study between the GP planner
and an exhaustive approach. We then move on to evaluating the key claims for
this section, that plan reuse with the reuse enabling approaches results in fewer
generations until convergence to a good plan, as well as less wall clock time.

1ECJ is available at https://cs.gmu.edu/~eclab/projects/ecj/.

59

https://cs.gmu.edu/~eclab/projects/ecj/

The evaluation is performed on a simulator implemented in Java based on the de-
scription of the case study system in Section 3.1, and implements the fitness function
described in Section 3.4. The system begins each scenario with one server of each
type, a default traffic setting of 4, and all dimmers set to 0. The experimental server
ran 64-bit Ubuntu 14.04.5 LTS with a 16 core 2.30 GHz CPU and 32 GB of RAM, but
was set to limit the planners to 10 GB of RAM. The GP used 8 of the available CPU
cores. PRISM experiments use version 4.3.1 and the sparse engine. We set the plan-
ning horizon to 20 for PRISM, and the maximum plan tree depth to 20 for the GP
planner. Since the GP planner incorporates randomness and we measure planning
time, planner executions are repeated ten times and the median values are reported.
Where statistical tests are used to assess significance, we use the Wilcoxon rank-sum
test, a non-parametric test that does not require the samples to follow a normal distri-
bution, and is appropriate for small sample sizes. When P < 0.05, we reject the null
hypothesis that the samples arise from the same population. In the multi-objective
context, we compute a SPEA2-defined Pareto optimal front optimizing for two or
more of the given utility objectives. Selecting a particular plan from the Pareto front
might be done by a human in the case of offline planning, or automatically during on-
line planning. The selection strategy is out of scope for this work, but could be accom-
plished easily by random selection since each solution is non-dominated with respect
to each other. We set the SPEA2 algorithm elite set to 50. In experiments that we
compare to PRISM, we disable reasoning about tactic latency since this is not easily
achieved in PRISM. Where tactic latency is considered, we set the window size to be
10,000 seconds. Where we compare to searches from “scratch”, we use Koza’s ramped
half-and-half [37] algorithm for constructing random trees to initialize the population.

Comparative Study: Efficiency. As a sanity check to establish that our stochastic
planner achieves reasonable results, we first tuned and compared it to an exhaustive
planner from previous work [57], an MDP planner written in PRISM.2 We configured
the planner with the same settings as in the previous work, adding path probability
to the system specification and planning for a single environment state. For this
experiment, we disabled reasoning about tactic latency in the GP planner since this
is not supported by the PRISM model.

As with many optimization techniques, a GP typically includes many tunable pa-
rameters that require adjustment. We thus performed a parameter sweep to heuris-
tically tune the reproductive strategy (which determines how individuals in the next
generation are produced, a ratio of crossover, mutation, and reproduction/copying)

2Because the Pandey et al. approach [57] was not named, and we assess the limitations of
PRISM rather than the hybrid element, we refer to this as the PRISM planner for the remainder
of the paper.

60

Table 6.5: The parameter settings in the parameter sweep.

Parameter Name Tested Values

Generations 10, 30, 100
Population Size 10, 100, 1000
Crossover 0.9, 0.8, 0.7, 0.6, 0
Mutation 1, 0.4, 0.3, 0.2, 0.1
Reproduction 1, 0.4, 0.3, 0.2, 0.1
Parsimony Pressure Kill Ratio 0.2, 0.1, 0
Verboseness Penalty 10, 1, 0, 0.1, 0.01, 0.001
Invalid Action Penalty 10, 1, 0, 0.1, 0.01
Branch Pruning Threshold 10, 1, 0, 0.1, 0.01, 0.001

and number of generations, population size, and all penalty thresholds (Section 3.4).
We generated plans for the system’s initial configuration (Section 3.1), and started
each search from a hand constructed minimal plan of four tactics that does not affect
utility. This starting plan consists of four tactics that attempt to change the sys-
tems traffic and dimmer values outside of the allowed range, and are thus discarded.
Table 6.5 shows the parameter values covered in the sweep.

The dark point at the top of Figure 6.3 shows the optimal system profit (fitness)
and planning time (200 seconds) of the PRISM planner. Each gray point corresponds
to a different parameter configuration of the GP planner. Many parameter configura-
tions allowed the GP planner to find plans that were within 0.05% of optimal, but in
a fraction of the time (under 1 second in some cases). An example plan that achieved
close to the optimal utility is shown in Figure 6.4. The best configuration that pro-
duced plans in 0.50 seconds resulted in only 0.29% error, which demonstrates that
the planner has the potential to be used as an online planner that reacts to change
in real time. This top configuration used 30 generations each containing 1,000 indi-
viduals; the next generation is produced 60% by crossover, 20% by mutation, and
20% reproduction; applied 0 parsimony pressure and 0.01 verboseness penalty (i.e.,
a small penalty for large plans); and an invalid action penalty of 0. We use these
values in subsequent experiments unless otherwise indicated.
Comparative Study: Search space. Next, we evaluate and compare the planners’
search space limitations. We varied the search space size by adjusting the number
of available server types (t) in our scenario, which caused the model states to grow
exponentially following the equation (6servers per type ·5possible dimmer values ·
5possible traffic values)t.

61

2750

2800

2850

2900

2950

3000

0 50 100 150 200
Runtime (seconds)

U
til

ity

Planner
PRISM
GP

0

1000

2000

3000

4000

0 2500 5000 7500
Latency

U
til

ity

Planner

PRISM

GA planner

Figure 6.3: Left: Utility versus planning time for GP parameter configurations.
Many configurations produce similar utility results to PRISM, significantly faster.
Right: Pareto fronts for utility (higher is better) and latency (lower is better) from
both planners.

;

; ShutdownServer

F ;

3 StartServer

C

T ;

; F F

StartServer ;

C StartServer ;

C ShutdownServer ;

A ShutdownServer StartServer

A B

3 StartServer

B

3 StartServer

C

T ShutdownServer

; F F

StartServer ;

C StartServer ;

C ShutdownServer StartServer

A B

3 StartServer

B

3 StartServer

C

A

A

Figure 6.4: An example plan generated for the cloud web server case study.

62

We found that PRISM can plan to maximize profit for 3 server types, with a
maximum plan size of 20 tactics. However, PRISM runs out of memory and produces
no plans when given four server types to consider, even when searching for only a
single tactic. Using the explicit engine, which requires less memory but more run-
time, PRISM could produce a plan for four server types for a plan length of up to
seven. By contrast, our GP planner succeeded on the four server type case, increasing
profit from 988 in the initial state to 2993. Finally, we increased the number of data
centers from 4 to 16, a state space on the order of 1037, and successfully generated
a plan after about 9 minutes. These tests demonstrate that the GP planner can
handle a very large search space, outperforming an exhaustive planner, and provides
evidence that the planner works correctly to build confidence in our core experiments
investigating plan reuse.

Comparative Study: Multi-objective search. The GP planner can create a
Pareto frontier of plans to trade-off between multiple quality attributes, allowing
system maintainers to evaluate the best possible combinations. PRISM can also
generate a Pareto frontier for two objectives. The right of Figure 3.4 shows the Pareto
fronts as lines for the profit (higher is better) and latency (lower is better) objectives
produced by PRISM and the GP for the Request Spike scenario. For this experiment,
we set the planning horizon for both planners to 10. PRISM found 30 points along
the curve; the GP planner produced 89, after removing duplicates. PRISM took 1177
seconds; the GP planner took 751 seconds. The front produced by the genetic planner
roughly approximates the front produced by PRISM, with 9.4% average error.

We also generated three-dimensional Pareto fronts for all three quality objectives
with the GP planner. PRISM cannot produce fronts in this case, and the graphs
are difficult to display, but we observe that the starting plan influenced the shape of
the resulting front. If we begin with plans previously optimized for profit, we find
Pareto fronts with more high-profit individuals. Starting from a lower-quality plan,
or planning from scratch, produced a broader front of lower latency individuals. In
effect, these starting plans led the search to explore more of the trade-offs between
latency and quality. We explore the trade-offs of plan reuse more directly in the next
set of experiments.

Reuse-Enabling Techniques

While the previous results inspire confidence that the planner can be competitive
with an optimal planner, our primary goal is to use the GP planner to realize in-
creased planning ability in response to unexpected changes through reusing prior
plans. Since preliminary results showed näıvely reusing entire plans in the starting

63

population resulted in poor planning performance, recall we explore several tech-
niques for lowering the cost of reuse (Section 3.5), the kill ratio, scratch ratio, and
plan trimmer.

To demonstrate the usefulness of these features, we performed planning for the
Request Spike + New Data Center scenario with a planning window of 10000, in-
crementally enabling the reuse enabling techniques to show the improvement ob-
tained from each feature. For comparison we also plan from scratch both with and
without using kill ratio. When used, the values chosen were kill ratio = 0.75 and
scratch ratio = 0.5. These values were selected based on a parameter sweep.

Table 6.6 shows the results, normalized to the utility of planning from scratch
without the kill ratio, such that this utility is 1 (i.e., 1 would be the same as planning
from scratch, 2 would be twice the utility, 0.5 would be half the utility, etc.). Using
the kill ratio without reuse improved utility to 1.044. This makes sense because
even though the plans start out shorter, eventually the plans become large and
the largest plans require a disproportionate amount of time to evaluate due to the
exponential relationship between plan size and evaluation time. However, we expect
scratch ratio to be more useful when replanning with reuse since the reused plans
are often large from the start of the search. Plan reuse without any reuse-enabling
techniques resulted in a utility of 0.962, underperforming compared to planning from
scratch. Enabling the kill ratio feature improved the utility obtained by reusing
plans to a level slightly better than planning from scratch while using the kill ratio.
Adding the scratch ratio resulted in a slight improvement of 0.005, and trimming
the reused plans resulted in a further improvement of 0.035. The scratch ratio did
not show a statistically significant improvement for this scenario, but did for the
Increased Costs scenario at the 0.05 level. Trimming plans and the kill ratio both
showed statistically significant improvements.

These results demonstrate that while the costs of evaluating the fitness of prior
plans make improving planning utility through reuse nontrivial, the presented en-
hancements to GP planning can reduce this cost and achieve higher utility than
planning from scratch.

Unforeseen Adaptation Scenarios

We now investigate the GP planner’s ability to address unforeseen adaptation needs
with plan reuse. We do this by constructing unexpected change scenarios that cover
different types of adaptation needs based on different sources of uncertainty, and
assessing the planner’s ability to respond when planning with reuse compared to
planning from scratch. The considered scenarios are described in Section 3.1, and

64

Table 6.6: Improvement obtained by reuse enabling techniques.

Planning Technique % Reused Utility P Value

Scratch 0 1.000
Scratch & kill ratio 0 1.044 < 0.01
Reuse 100 0.962 0.06
Reuse & kill ratio 100 1.072 < 0.01
Reuse & kill ratio & scratch ratio 10 1.077 0.63
Reuse & kill ratio & scratch ratio & trimmer 10 1.112 < 0.01

Request Spike Request Spike & New Data Center

Network Unreliability New Data Center

Failing Data Center Increased Costs

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
1.4e+07

1.6e+07

1.8e+07

2.0e+07

2.2e+07

2.0e+07

2.5e+07

2.5e+07

3.0e+07

3.5e+07

4.0e+07

4.5e+07

5.0e+07

2.00e+07

2.25e+07

2.50e+07

2.75e+07

3.00e+07

1.75e+07

2.00e+07

2.25e+07

2.50e+07

2.75e+07

3.00e+07

2.5e+07

3.0e+07

3.5e+07

4.0e+07

4.5e+07

Generation

U
ti

li
ty

Starting
Plan

reuse

scratch

Figure 6.5: Utility versus generation for all six scenarios.

65

New Data Center Request Spike Request Spike & New Data Center

Failing Data Center Increased Costs Network Unreliability

0 50 100 150 200 0 50 100 150 0 50 100 150 200

0 25 50 75 100 0 20 40 60 0 25 50 75 100
2.90e+07

2.91e+07

2.92e+07

2.93e+07

2.94e+07

2.95e+07

4.6e+07

4.7e+07

4.8e+07

4.9e+07

5.0e+07

2.10e+07

2.15e+07

2.20e+07

4.5e+07

4.6e+07

4.7e+07

4.8e+07

2.93e+07

2.94e+07

2.95e+07

2.6e+07

2.7e+07

2.8e+07

2.9e+07

Cumulative Evaluation Time (seconds)

U
ti

li
ty

Starting
Plan

reuse

scratch

Figure 6.6: Utility versus cumulative runtime for all six scenarios.

Table 6.7: Percent change reusing plans instead of planning from scratch. Statisti-
cally significant results (P < 0.05) are shown in bold font.

Scenario 1K 10k

Increased Costs 0.02 0.81
Network Unreliability 0.01 0.10
Failing Data Center -0.02 0.14
Request Spike -0.14 -0.01
New Data Center -0.63 0.28
Request Spike + New Data Center -0.47 1.54

include: Increased Costs, Failing Data Center, Request Spike, New Data
Center, Request Spike + New Data Center, and Network Unreliability.

For each change scenario, we modified the simulator to behave according to the
change relative to the initial scenario (Section 3.1). We maximize profit in all experi-
ments; box and whisker plots show the best individual in the population each genera-
tion over ten planner executions. We show convergence in terms of the quality (profit)
of the produced plans over GP iterations, a machine- and problem-independent proxy
for evaluation time. When performing reuse, all three reuse-enabling techniques are
used.

Table 6.7 shows the percent change between planning from scratch and plan reuse
for each scenario and for two window sizes. Positive values indicate the reuse resulted
in an improvement, negative values indicate a decrease in utility compared to plan-

66

ning from scratch. Most values showed a small difference that was not statistically
significant. For the smaller window size, no values were statistically significant, in-
dicating that there is no statistical difference between plan reuse and planning from
scratch. For the larger window size, half of the scenarios showed statistically signifi-
cant improvements from planning from scratch, with the complex Request Spike +

New Data Center scenario showing the largest improvement. Since a larger window
size means that the system has more time to realize the benefits of a higher quality
plan, this result is intuitive. Additionally, since a more complex change scenario is
more difficult to plan for, it follows that plan reuse results in a greater improvement
for these scenarios. While in most cases the differences are small, these results show
that our approach using plan reuse can result in utility improvements.

Generations of Planning. Figure 6.5 shows the utility over generation produced
by the GP for each of the considered scenarios for the first 20 generations of plan-
ning. A common pattern is that for the early generations of planning, plan reuse
outperforms planning from scratch, with the two eventually converging to the same
fitness after generation 20, although some scenarios converged more quickly. Intu-
itively this makes sense, since having access to useful planning knowledge through
reuse gives the search a head start in the early generations of planning, and given
enough planning time eventually both approaches converge near an optimal solution.
Plan reuse performed the best for the Request Spike + New Data Center scenario,
in which the system replans for a large increase in the number of system requests
handled by previous plans (e.g., the Slashdot effect [71]). We also provide the sys-
tem with a new data center, D, to possibly use to address this issue. Plan reuse also
performed well in the New Data Center and Request Spike scenarios individually,
but less prominently than in the hybrid scenario.

Wall-clock time. Because fitness evaluation time varies by plan size, the amount of
time needed to evaluate the fitness of each generation is variable, making the number
of generations an imperfect proxy for run time. Thus, Figure 6.6 shows results in
terms of wall-clock time for each scenario. Note that utility can decrease over time
since time spent planning means that the system remains in a lower utility state
for longer. The Network Unreliability, Increased Costs and Failing Data Center

scenarios showed similar behavior, with only a very small benefit from reusing plans.
The New Data Center and Request Spike + New Data Center scenarios showed
greater differences, in particular the Request Spike + New Data Center scenario
showed a clear advantage to reusing existing plans.

67

New Data Center Request Spike Request Spike & New Data Center

Failing Data Center Increased Costs Network Unreliability

0 10 20 0 10 20 0 10 20

0.2

0.4

0.6

0.2

0.4

0.6

Generation

N
or

m
al

iz
ed

 D
iv

er
si

ty
(a

ve
ra

ge
 p

ai
rw

is
e

tr
ee

 e
di

t d
is

ta
nc

e)

Starting
Plan

mutator

scratch

trimmer

New Data Center Request Spike Request Spike & New Data Center

Failing Data Center Increased Costs Network Unreliability

0 10 20 0 10 20 0 10 20

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

Generation

N
or

m
al

iz
ed

 S
tr

uc
tu

ra
l D

iv
er

si
ty

(a
ve

ra
ge

 p
ai

rw
is

e
tr

ee
 e

di
t d

is
ta

nc
e)

Starting
Plan

mutator

scratch

trimmer

Figure 6.7: Diversity versus generation for all six scenarios.

68

Diversity

Genetic programming balances search space exploration, to avoid local optima, and
exploitation of promising partial solutions. Solution diversity is necessary to sup-
port exploration of good partial solutions; however, it typically decreases as the
search converges [45], assuming that the population is sufficiently diverse. To gain
additional insight into plan evolvability given different scenarios, we measured the
syntactic population diversity over a search by computing the average pairwise tree
edit distance of the individuals, using the APTED algorithm [59] (a state of the art
approach that uses dynamic programming to obtain polynomial runtime).

Figure 6.7 shows population diversity across the scenarios. Diversity values from
planning from scratch, as well as reusing plans both with and without trimming (the
mutator starting plan) are shown. The lower plot shows diversity computed by struc-
ture only, that is, the labels of nodes in the tree are assumed to be identical, allowing
computation of the difference in the structure of trees only. Either way diversity is
measured, planning from scratch produces a highly diverse starting population that
gradually becomes less diverse as it converges towards a high quality solution.

As shown in Figure 6.7, reusing existing plans without first trimming them results
in a less diverse population initially. Rather than a gradual decrease in diversity as
would be expected, in some situations (such as generations 2–8 for the New Data

Center) the diversity actually increases as the population explores new plans before
continuing to converge on a good solution. However, when using the trimmer, the
diversity values start high and smoothly decrease. This observation helps to ex-
plain why trimming existing plans resulted in a more significant improvement than
the scratch ratio alone, since the presence of smaller plan trimmings facilitates a
smoother exploration and exploitation trade-off as the population evolves.

DART Evaluation

The first case study system, Omnet, provided an example self-* system modeled on
a cloud-based web server. To investigate the usefulness of plan reuse in a different
domain, we apply our approach to a simulated team of autonomous aircraft called
DART, implemented by modifying the DARTSim exemplar [51] to accommodate the
unexpected change scenarios introduced in our study and to integrate with the GP
planner. While the challenge of planning for tactic failure is relaxed in this system,
the planner must replan after every timestep. Additionally, only the first tactic in
the plan is executed at each timestep. Lastly, as the team moves, the system must
respond to changes in its environment.

In this evaluation, we address the following research questions for the DART

69

;

; ;

; ;

GoTight IncAlt2 DecAlt ;

; ;

DecAlt ;

GoLoose IncAlt2

DecAlt ;

; GoTight

IncAlt GoLoose

DecAlt DecAlt2

Figure 6.8: An example plan generated for the DART case study.

system:

1. As a sanity check, how does the GP planner’s efficiency and effectiveness com-
pare to an exhaustive planner?

2. Can plan reuse improve planning effectiveness in response to unforeseen adap-
tation scenarios?

Since tactics cannot fail in this case study, effective plans tend to be shorter as
contingencies for tactic failure do not need to be built in. This makes the kill ratio

and trimmer less applicable to this case study, and, as a result, research questions
involving the reuse enabling approaches are not evaluated.

Section 6.2.1 describes the DART system, including how we adapt our approach
from Chapter 3 to handle the new case. Section 6.3.1 describes the results of the
experiments involving DART.

Integration with GA Planner. The approach for using the GA planner is largely
the same as described in Chapter 3, but with a few modifications to accommodate
the new case study and its assumptions. Unlike the cloud-based server case study
where tactics may fail, in this scenario, tactics are guaranteed to succeed as long
as the team has not been destroyed. On the other hand, the DART case-study

70

Table 6.8: The parameter settings in the parameter sweep.

Parameter Name Tested Values

Generations 1, 10, 25, 75, 100
Population Size 1, 10, 100, 1000, 10000

0

1

2

3

4

0 10 20 30
Time (Minutes)

U
til

ity

Planner
GP

PRISM

Figure 6.9: Utility versus planning time for GP configurations.

involves the system moving through a changing environment, replanning after each
timestep, while the server case-study was restricted to generating a single strategy
that is committed to after a single execution of the planner. We simplify the planning
language to include only the sequence operator and a terminal for each adaptation
tactic. To evaluate fitness, we compute the expected utility of the team, which is the
sum of the expected number of targets detected and chance of survival. Due to these
differences, the kill ratio and trimmer reuse enabling approaches are less applicable,
and are not used. The scratch ratio reuse enabling approach is used with a value of
0.9. Figure 6.8 shows an example plan generated for the DART case study.

Parameter Sweep

To choose parameters for the GP planner for this case study, as well as to provide a
sanity comparison to an exhaustive planner, we performed a parameter sweep of the
population size and number of generations of evolution. The remaining parameters
were kept from the Omnet case study. To compare to an exhaustive planner, we
compare to the probabilistic model checking approach (PMC) presented in related
work [47]. This approach models the problem as an MDP and uses the PRISM
probabilistic model checker to generate an optimal plan at each timestep. To reduce
the computing resources required by the sweep, we record results from planning for

71

a single timestep only in this experiment. Table 6.8 shows the parameter values used
in the sweep. Figure 6.9 shows the results of the parameter sweep. Each grey dot
represents the utility and planning time for a single combination of parameters. The
black dot and horizontal line shows the utility and total planning time obtained by
model checking using PRISM. Since PRISM finds the optimal plan, we expect it to
result in the highest utility. We chose parameter values near the knuckle point of this
figure to strike a balance between plan utility and speed, settling on a population
size of 1000 individuals evolved for 30 generations.

However, since our sweep focused on a single timestep only rather than a complete
simulation, we found that these parameter values could not be used to generate
plans from scratch. This is because the search space in the first few timesteps of the
simulation is very coarse, with almost all plans resulting in a utility of zero. This
occurs because the team always starts at the highest altitude level, but cannot detect
targets until the team is close to the lowest level. Thus, the team receives an expected
utility of zero unless a very specific sequence of tactics (many consecutive commands
to descend and few commands to ascend), which is unlikely to be generated at random
with only a population size of 1k. We discovered in preliminary experiments that
a population size of 10k provides enough sampling to allow the planner to converge
to a good solution. Therefore, when planning from scratch, either for purposes of
comparison or finding starting plans to reuse, we use a population size of 10k. When
we reuse existing plans however, we use a population size of 1k, since reuse allows the
search to immediately start converging to a good solution. A comparison between
both planning approaches set to 1k would result in planning from scratch failing to
produce a useful plan, instead, changing the parameter to 10k allows us to compare
how long it takes to generate a useful plan with reuse versus from scratch.

Plan Reuse

To evaluate the benefit of plan reuse in DART, we investigate three unexpected
change scenarios.

• Environment Only. The location of threats and targets in the teams path is
changed, an environmental change.

• Environment + No Survivability. Utility is determined solely by the ex-
pected number of targets detected without adding the survivability likelihood,
a change in the system objectives in addition to an environmental change.

• Environment + Slow Descend. The system encounters different configura-
tion of threats and targets, as well as not having access to the DecAlt2 tactic.
An environmental change and a change in available tactics.

72

For each change scenario, the team begins in a different state and after the change
scenario arrives at a common state, allowing direct comparison of utility values be-
tween change scenarios. We performed ten simulations for each change scenario and
measured the utility and planning time. Each simulation uses a different random
seed, resulting in a different randomly generated environment. We use the same ten
random seeds for each scenario, permitting easy comparison. Each simulation has a
path length of 40 and thus runs for 40 timesteps. At each timestep, the planner is
executed for the current system and environment state, using the initial population
dictated by the scenario. The planner generates a plan with a length equal to the
lookahead horizon, which is 20 for this case study. The system then executes the
first tactic in the plan returned by the planner, and the simulation continues to the
next timestep, until the team is destroyed or until the team reaches the end of the
path. Although only one tactic is executed at a time, generating a plan for the en-
tire lookahead horizon allows the planner to take into account how the action in the
present timestep affects the system’s utility in the future (for example, descending
now if there are threats ahead may result in the team having a higher chance of
destruction).

For the Environment Only and Environment + No Survivability Requirement

scenarios, initial plans are collected by running a simulation with the scenario con-
ditions, and saving the best plan from all 40 timesteps. When reusing these plans,
the starting population is created by generating a new plan from scratch 90% of the
time, and using a randomly chosen plan from the repertoire otherwise. The initial
population for the Environment and Slow Descend scenario could not be gener-
ated in this way, because the lack of the DecAlt2 tactic means that it is much more
difficult for the planner to discover a plan to descend enough to be in range of the
targets, resulting in planning from scratch to fail to produce a plan with better than
zero utility, even when we increase the population size to 100k. Instead, we manually
created a plan to guide the system towards the ground, consisting of 16 consecutive
DecAlt tactics. When generating an initial population for this scenario, a plan is
generated from scratch 90% of the time, and the manually created starting plan is
mutated and added to the initial population for the other 10%.

Utility by Timestep Figures 6.10 and 6.11 show the average utility of the best
available plan in the population during the execution of the planner, for each timestep,
and for each change scenario. Note that the utility values for the last timestep are
transformed by shifting them down by 4.5 to avoid increasing the vertical axis for
this timestep (necessary due to an implementation quirk where the simulator will
estimate utility as if the team will continue along a new route at the final timestep).

73

35 36 37 38 39

28 29 30 31 32 33 34

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

0 1 2 3 4 5 6

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

Generation

U
til

ity

Starting Plan
Environment Only
No Survivability
Slow Descend
Scratch

Figure 6.10: Utility versus generation by timestep.

35 36 37 38 39

28 29 30 31 32 33 34

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

0 1 2 3 4 5 6

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

Planning Time (Minutes)

U
til

ity

Starting Plan
Environment Only
No Survivability
Slow Descend
Scratch

Figure 6.11: Utility versus runtime by timestep.

74

Figure 6.10 shows how the utility changes between each generation of evolution.
For the first few timesteps, planning from scratch significantly underperforms in all
three change scenarios for the first five generations of planning. This is not true for
the remaining timesteps however, and the most notable pattern for the remaining
timesteps is that reusing plans from the Environment and Slow Descend change
scenario tends to underperform compared to the other starting plans.

Figure 6.11 shows utility versus wall clock time. Again, there is a wide gap
between planning from scratch and all three change scenarios for the first three
timesteps. Overall, the Environment Only and Environment + No Survivability

Requirement scenarios perform better than planning from scratch for the first 30
seconds of planning. The Environment + Slow Descend scenario sometimes out-
performed planning from scratch in the first 30 seconds of planning, but usually
underperformed compared to the other reuse approaches.

These results show that plan reuse is most beneficial in the first few timesteps
of planning. This is due to the coarse shape of the search space at the start of the
scenario. Since the team always starts at the highest level of altitude at the start
of the simulation, and targets can only be detected when the team is close to the
bottom, the planner must discover a very specific sequence of tactics to maneuver
the team down (many descend tactics with few ascend tactics), before any plan will
have a non-zero utility. Once the planner has a plan reaching such an altitude, any
further mutation to the plan results in a small utility delta, enabling the planner to
improve the utility of successive generations.

Expected Utility Figure 6.12 shows the average utility during planning over all
time steps, giving an overall picture of how various change scenarios compare to plan-
ning from scratch. When considering the number of generations the Environment

+ Slow Descend performs the worst, with the other three approaches being fairly
close to one another. From the wall clock time perspective however, all three
reuse approaches outperform planning from scratch for as long as they are run-
ning. The Environment + No Survivability Requirement scenario performed
about the same as the Environment Only scenario. The Environment + Slow

Descend was the least effective change scenario, but still outperformed planning
from scratch during its execution.

Actual Utility Figure 6.13 shows the distribution of final results of the simula-
tions for each planning approach (as opposed to the expected utility), as well as a
planner using PRISM. This utility may differ from the expected utility because of the
stochastic properties of the case study, such as imperfect sensors, and internal mod-

75

3.0

3.4

3.8

4.2

0 10 20 30
Generation

U
til

ity
Starting
Plan

Environment Only

No Survivability

Slow Descend

Scratch 3.0

3.4

3.8

4.2

0 1 2 3 4
Planning Time (Minutes)

U
til

ity

Starting
Plan

Environment Only

No Survivability

Slow Descend

Scratch

Figure 6.12: Left: Utility versus generation. Right: Utility versus planning time

2.5

5.0

7.5

10.0

12.5

Environment
Only

No
Survivability

Slow
Descend

Scratch PRISM

Starting Plan

U
til

ity

0

10

20

Environment
Only

No
Survivability

Slow
Descend

Scratch PRISM

Starting Plan

A
vg

 D
ec

is
io

n
T

im
e

(M
in

ut
es

)

Figure 6.13: Left: Aggregate utility versus planning scenario. Right: Aggregate
decision time versus planning scenario.

ifiers to the fitness function (such as verboseness penalty) and represents the actual
utility of running the simulation rather than the system’s internal fitness function.
The first boxplot shows achieved utility. While the reuse approaches and planning
using the GP from scratch all resulted in mostly similar distributions, we see that
using an exhaustive planner results in about 2.5 more targets detected on average
compared to the other approaches. The right plot shows the average decision time
the planner took on each timestep to produce a plan. PRISM took around 25 minutes
per timestep. Planning from scratch using the GP required about five minutes. The
fastest approaches were the three approaches using plan reuse, which terminate in
under one minute. In systems where near real-time adaptation is required, planning
for five or 25 minutes is likely unacceptable, while plan reuse produced high quality
plans in the first 30 seconds.

76

0 1 2 3 4 5 6 7 8 9

1
0

0 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 600 20 40 60

0e+00

1e+07

2e+07

3e+07

4e+07

Cumulative Evaluation Time (seconds)

U
ti

li
ty

Initial Population

scratch

repertoire

deckard

single

Figure 6.14: Results comparing planning from scratch, the repertoire, replanning
from a single plan only, and replanning using Deckard. Deckard resulted in better
utility for the first 13 seconds of planning, and is then overtaken by the repertoire.

6.3.2 Reusable Repertoires

The previous section evaluated the core approach and reuse enablers, demonstrating
that the approach could result in fewer generations of planning, as well as an im-
provement in wall clock time for both the Omnet and DART case studies. This was
achieved by reusing a single adaptation strategy only. In this section, we evaluate
the first of the extensions to the core approach presented in Chapter 4, and show
that a basic repertoire of adaptation strategies generated using a chaos engineering
approach results in further improved planning in response to an unexpected change.
Because Chapter 4 presents techniques with large complex plans in mind, this content
will be evaluated on the Omnet case study where the plans have this property.

Experimental Setup We performed replanning on the simulated Omnet system
for 30 randomly generated unexpected change scenarios. We report the utility ob-
tained for replanning based on using (1) the generated repertoire of adaptation tactics
using the chaos engineering approach described in Section 4.1, (2) a single plan (as
in prior work [29]), and (3) from scratch (no reuse). We generated the unexpected
change scenarios by creating 10 scenarios for each of 3 different different settings for
the m number of mutations parameter, 1, 5, and 10. This permits exploring how the
size of the change influences replanning effectiveness for the approaches.

The repertoire comprises 200 adaptation strategies that we generated for 200
change scenarios. We generated the change scenarios by applying 1–5 random mu-
tations to the baseline scenario (with the number of mutations selected uniformly
at random). When replanning using a single adaptation strategy only, we selected
the starting adaptation strategy for reuse randomly from the set of 200 adaptation

77

strategies. When replanning from scratch, the population is initialized completely
randomly. To generate the starting population from the repertoire, 10% of the pop-
ulation is selected randomly from the repertoire, and the remaining 90% is generated
from scratch; these values were taken from the prior work [29].

For all approaches, the genetic program was configured to plan for 30 generations
using a population size of 1000. Planning was automatically terminated at 2000
seconds.

Results Figure 6.14 shows the results for the first 60 seconds of planning. For space
constraints, only trials with 10 mutations (the highest and most challenging setting)
are shown; the results for 1 and 5 were similar. The vertical axis is the utility
obtained by the planner, and the horizontal axis is the planning time in seconds.
The graph therefore shows the utility that the system would obtain by executing the
best available plan produced by that planning approach at that time. Results from
replanning using a single plan are labeled single.

For almost all randomly generated scenarios, the repertoire approach results in
the highest planning utility. Sometimes the improvement compared to the next
best planner was small, especially for single-mutation cases. For other scenarios the
improvement was quite large (such as trial 9 in Figure 6.14. On aggregate, using
the repertoire resulted in an average improvement of 11% to utility compared to
reusing a single plan only. Planning using a single plan tends to only outperform
planning from scratch, often slightly, reinforcing previous results [29]. One drawback
to the repertoire approach is that it takes more time to produce the first plan (often
taking around 15 seconds), although the plan that is obtained is often high quality.
This is intuitive since effective plans are often large and expensive to evaluate, and
the repertoire approach must evaluate many of these large and expensive plans. If
planning in a domain where waiting 15 seconds is unacceptable, then reusing a single
plan is better. Otherwise, the repertoire results in the highest expected utility.

6.3.3 Clone Detection

Next, we evaluate the clone detection approach for extracting reusable planning com-
ponents from a repertoire presented in Section 4.2.1 We performed replanning on the
same randomly generated unexpected change scenarios as in Section 6.3.2 using a
clone detection approach to initialize the population. This approach is described in
detail in Section 4.2.1. To do this, we ran Deckard on the repertoire of 200 adaptation
strategies generated in the previous subsection to obtain a list of clones. Clones were
selected from this list using tournament selection, selecting seven clusters randomly

78

Rule
Trials
Improved
(%)

Overall
%
Change

1 Muta-
tion
%
Change

5 Muta-
tion
%
Change

10 Muta-
tion
%
Change

seq-take-first 40.0 -0.36 0.57 -0.93 -0.53
seq-take-second 26.7 -2.13 -2.36 -0.89 -3.01
try-take-first 96.7 3.51 3.79 3.27 3.53
try-take-second 36.7 -0.75 -2.36 -0.89 -1.56
try-take-third 63.3 0.46 0.89 -0.06 0.59
for-decr 40.0 -0.43 0.93 -0.26 -1.52
for-prune 63.3 0.56 0.58 0.71 0.42
try-unnest 60.0 0.26 0.51 -0.13 0.40

Table 6.9: Improvement in maximum utility obtained by syntactic transforms over
using the repertoire without transforms. try-take-first performed the best with a
consistent 3.5% improvement.

from the list and returning a random clone from the largest cluster. The initial
population was initialized with these clones. The result of this strategy is shown in
Figure 6.14, labeled as deckard.

Overall, the clone detection approach results in an improvement compared to
planning from scratch and replanning with a single plan only, but the maximum
utility was obtained by reusing the repertoire rather than the extracted clones. Nev-
ertheless, the clone detection approach yields plans more quickly. Given enough
planning time, the repertoire approach eventually finds a better plan than the clone
detection approach, but when a small amount of time is available, the clone detection
approach is better. The breakeven point, where both clone detection and the reper-
toire are best for an equal number of the trials, occurs after 13 seconds of planning.
For the first 10 seconds of planning, the clone detection approach yields the highest
utility for 24 out of the 30 trials, with reusing a single plan being the best for 4 trials
and planning from scratch the best for the remaining 2 trials. When planning for
longer than 13 seconds the repertoire approach is expected to result in the highest
utility.

79

0 1 2 3 4 5 6 7 8 9

1
0

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

0e+00

1e+07

2e+07

3e+07

4e+07

Cumulative Evaluation Time (seconds)

U
ti

li
ty

Initial Population

repertoire

deckard

prune-for

prune-try-take-first

prune-try-take-third

prune-try-when-similarly-nested

Figure 6.15: Utility versus planning time for the four beneficial syntactic trans-
forms. Some transforms obtained results as quick as Deckard but with better utility.
try-take-first is the overall best after around 2 minutes of planning.

6.3.4 Rule-based Syntactic Transforms

The third research approach for generating effective repertoires from Chapter 4 tai-
lors reusable plan fragments with syntactic transformations. For this experiment
we generated adaptation strategies for the same 30 unexpected change scenarios
as before, while applying eight syntactic transformations (as described in in Sec-
tion 4.2.2). For each syntactic transformation, we applied the transformation to the
starting repertoire of 200 adaptation strategies from prior experiments, and then
used the transformed repertoire to seed the initial population for replanning. The
large number of trials makes the results of this experiment difficult to show visually,
so results are shown in Table 6.9.

Of the eight transforms evaluated, four result in an improvement over the baseline
(the repertoire with no transforms) more than half of the time. The try-take-first

performed the best, improving on the baseline for 29/30 trials, and with an average
improvement to expected utility of 3.51%. This improvement is consistent across
each of the three numbers of mutations in the experiment. The for-prune transfor-
mation also results in an improvement for all three numbers of mutations, but with
a lower percentage of trials improved (63.3%) and a lower overall improvement to
utility (0.56%). The other two transforms that showed an overall improvement were
try-take-third and try-unnest. These transforms both improved about 60% of
trials for 0.46% and 0.26% average improvement respectively. The other transforms
resulted in an overall decrease to expected utility.

The biggest takeaway from these results is the performance of the try-take-first

transform, which improves utility for all but one trial for 3.51% on average. Com-
pared to replanning with a single plan only, this transform resulted in an overall

80

average improvement of 15%, with the best overall improvement being 20% for trial
9. It is interesting that try-take-first performed much better than other try-*

templates, since all these transforms similarly prune subtrees of Try-catch operators.
The difference is that the try-take-first picks the first subtree of the Try-body
and removes other subtrees, while remaining templates remove other parts of the
Try-catch subtrees. This result makes sense intuitively since the transform captures
what is likely the most important information contained in the Try-catch operator
(the subplan that is attempted first) while reducing evaluation time on evaluating
the contingencies. We’ve previously noted a common planning motif where an im-
portant subplan is tried multiple times to ensure that it is carried out, should it fail
a few times. Crucially, when this occurs, capturing the important subplan with a
tailored rule allows the planner to reuse the information learned during subsequent
replanning while reducing the evaluation time.

Figure 6.15 shows the results of the syntactic transforms versus clone detection
(deckard), and using the repertoire without modifications (repertoire). For presenta-
tion, we show only the four transforms that result in a positive average improvement.
Compared to planning from scratch or reusing a single plan (shown as single), re-
planning using only the repertoire results in the highest utility, but typically requires
more time to begin returning results (cf. Section 6.3.2). Overall, Table 6.9 shows
that the try-take-first improves on the repertoire by 3.5%. Figure 6.15 shows that
syntactic transforms generate plans as quickly as the Deckard-based planner, but
with consistently higher utility. Interestingly, the try-unnest and for-prune trans-
forms take about as long to start returning plans as the repertoire alone, around
15 seconds, but result in higher utility than try-take-first for the first minute or
two of planning. If a plan is needed within a short time window, such as 10 sec-
onds, try-take-first is the best approach. For an intermediate window between
around 15 seconds to 60 seconds, try-when-similarly-nested or for-prune perform
the best. When planning longer than 60 seconds is permissible, try-take-first is
again most effective.

6.3.5 Adversarial Settings

The third claim in Section 6.1 is that: “Plan reuse is applicable to a range of unex-
pected change scenarios, including adversarial settings.” In this section, we evaluate
whether plan reuse can be effectively applied to adversarial settings using the co-
evolutionary approach described in Section 5.

81

5
10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

−3

−2

−1

0

−3

−2

−1

0

−3

−2

−1

0

Generation of Evolution

A
ve

ra
ge

 G
ur

u
E

xp
lo

ita
bi

lit
y

Initial Population

repertoire
scratch
single strat

Figure 6.16: The average exploitability of each generation’s guru individuals for each
of the three studied reuse approaches for the Bullseye case study, broken down by the
number of mutations used to generate the change scenarios. The reusable repertoire
results in the best outcome for the defender, with a particular advantage during the
first few generations of planning.

82

5
10

15

0 50 100 150

−1.6
−1.2
−0.8
−0.4

0.0

−1.6
−1.2
−0.8
−0.4

0.0

−1.6
−1.2
−0.8
−0.4

0.0

Cumulative Evaluation Time (seconds)

A
ve

ra
ge

 G
ur

u
E

xp
lo

ita
bi

lit
y

Initial
Population

repertoire
scratch
single strat

Figure 6.17: The average exploitability of guru individuals presented against planning
time instead of generation, for each of the reuse approaches broken down by number of
mutations. The reusable repertoire remains the best for the early phase of planning,
but the approaches converge after around fifty seconds.

Experimental Setup This experiment uses the Bullseye exemplar system defined
in Section 6.2.2, and the co-evolutionary extension to the GP planner explained in
Chapter 5. Experiments for this research question were run on an Ubuntu 18.04.5
LTS server with OpenJDK version 11.0.9.1, Python 2.7.17, an Intel Xeon Gold 6240
CPU with 72 cores running at 2.60GHz, and 263 GB of RAM. Due to an imple-
mentation particularity with the ECJ library, each planning job was evaluated using
a single thread at a time. Memory was restricted to 5 GB. There are a few key
differences in available operators compared to the cloud service provider exemplar.
For loops and try-catch operators have been removed. The try-catch operator is not
needed since tactics are assumed to succeed as long as the preconditions are met. For
loops are unnecessary since Bullseye takes place over a small number of timesteps
for evaluation reasons. Instead, new randomization and conditional operators are
provided. Conditionals are provided for the attacker to branch their actions based
on the assets that they have compromised. Alternatively, since the defender does
not have the ability to know what the attacker has compromised, the defender has
no need for these conditionals. When mutating scenarios for Bullseye, an attribute
is selected uniformly at random and modified with up to plus or minus 0.1 Gaussian
noise, and then rounded to the nearest legal value if the allowed bounds are exceeded

83

(i.e., probabilities over 1 or under 0).

To evaluate this research question, we compare replanning entirely from scratch
with no reuse, reusing a single strategy for the attacker and defender, and reusing a
repertoire for both attacker and defender. We performed the experiment for a total
of 30 different change scenarios, 10 each of three different numbers of mutations
from a starting scenario. The number of mutations was 5, 10, and 15. Planning
for each scenario was repeated 10 times and aggregate results are reported. For
this experiment planning was performed for 20 generations with a population size
of 250 for both the attacker and defender. The reusable repertoire was generated
by saving the highest fitness individual from each generation of planning for 100
randomly generated scenarios, generated by applying five mutations to the starting
scenario. During planing time, the starting populations are initialized by randomly
selecting strategies from these repertoires. When replanning using a single strategy
only, strategies generated by the Gambit solver for the starting scenario were reused.

While we evaluate the effectiveness of planning by comparing fitness elsewhere,
the unique properties of security and co-evolution make direct fitness comparison
between approaches less useful. This is because fitness depends not only on the
quality of the best defender strategy found during the search, but also on the strategy
used by the attacker. This means that during the course of evolution, the defender’s
fitness could decrease as the search discovers improved strategies for the attacker,
even though the search could be making global progress by obtaining a defensive
strategy that is robust to all of the attacker’s best options that have been discovered.
Likewise, rising local fitness does not necessarily mean that the quality of the system’s
plan is improving globally, since it is possible that the search is becoming trapped in
a local optima of over-optimizing the defender’s response to a sub-optimal attacker
strategy, leaving the defender with a strategy that will result in poor fitness against a
better attacker strategy that has not yet been discovered. Ideally for comparison we
would have a means of measuring the true global utility of the defender’s strategy.
Thus in the results we report the exploitability of the defender’s strategy rather than
the fitness.

The exploitability is the difference between the defender’s fitness obtained if the
attacker plays the best response to the defender’s chosen strategy minus the fitness
the defender obtains playing a Nash equilibrium. The exploitability is a global way
of objectively measuring the progress of search. The best possible exploitability is
zero, which means that the search converged to a Nash equilibrium. A lower value
indicates the utility that the defender loses if the attacker plays the best response
compared to the defender’s utility if they had played a Nash equilibrium strategy.
To compute the exploitability, we use the Gambit [46] solver to find the attacker’s

84

best response and the fitness obtained at Nash equilibrium. Note that this analysis
relies on the property that Bullseye is a two-player zero-sum game, where all Nash
equilibria are guaranteed to have the same utility [55]. We limit Bullseye to two
timesteps because this is the highest number of timesteps that Gambit can reliably
solve in the time budget of 1 minute.

Results Figure 6.16 shows a box and whisker plot of the average exploitability of
the 5 guru (fittest) defender individuals for each generation of evolution, separated
by the number of mutations used to generate the change scenarios. The results are
similar to the cloud web server exemplar, with using the chaos generated repertoire
resulting in the best exploitability for all three mutation sizes, especially during the
first five generations. Reusing a single adaptation strategy performed better than
planning from scratch, but worse than the repertoire. Over all scenarios, reusing
the repertoire resulted in a 92% improvement in exploitability compared to planning
from scratch after the first generation of planning, while reusing a single strategy for
each agent resulted in a 61% improvement. After twenty generations of planning,
the spread between the exploitablilites for all approaches tighten, but the reper-
toire remains the best with a 29% improvement from scratch compared to a 25%
improvement when reusing single plans only.

Figure 6.17 shows the average guru exploitability by planning time rather than
generations of evolution. These results also show that early in planning reusing
the repertoire results in a big improvement compared to planning from scratch, and
reusing a single adaptation strategy results in a smaller improvement. With longer
planning however, the results are less consistent as the three approaches converge to
similar values.

6.4 Summary

This chapter presented the evaluation of the thesis, supplying evidence for the three
claims given in Section 6.1. Section 6.3.1 evaluated the core approach, finding that
plan reuse resulted in fewer generations of planning before reaching a high quality
plan for both the Omnet and DART case study systems (claim 1). Additionally,
improvements in wall-clock time were found in both case studies (claim 2), including
a case where an order of magnitude improvement was obtained in the DART case.
Sections 6.3.2, 6.3.3, and 6.3.4 evaluated the results of the extensions described in
Chapter 4 for reusing a repertoire of adaptation strategies, resulting in improved per-
formance with respect to the metrics set out in claims 1 and 2. Finally, Section 6.3.5

85

evaluated the co-evolutionary extension described in Chapter 5, finding that the pre-
sented approach to reuse is also applicable in adversarial situations, in addition to
the wide range of other change scenarios studied throughout the evaluation (claim
3).

86

Chapter 7

Discussion and Conclusion

This chapter provides a discussion of the lessons learned about plan reuse with
stochastic search through the course of the thesis. First, a discussion of when our
approach to reuse is likely to result in a large improvement (as opposed to a minimal
improvement or even a slight reduction in effectiveness) is presented. Next, the key
limitations of the thesis are addressed. Lastly, a discussion of promising avenues for
future research is presented.

7.1 When is reuse applicable?

The results of the evaluation in Chapter 6.3 showed that plan reuse can often result in
an improvement in planning effectiveness, both in terms of number of generations un-
til convergence to a good plan, as well as wall-clock time. However, an improvement
was not always observed, and the degree to which reuse resulted in improvements
varied over the change scenarios and case studies in the evaluation. This section will
discuss lessons learned about when an improvement can be expected.

7.1.1 When the change is small

Intuitively, the effectiveness of reuse after an unexpected change is linked to the size of
the change. On one extreme, if the change is maximally trivial and has no impact on
the system, simply reusing a pre-existing strategy will result in a good outcome. On
the other extreme, if the change is so great that it renders all of the prior knowledge
encoded in the existing plans inapplicable, then any time spent attempting to reuse
them will be wasted compared to simply replanning entirely from scratch. Several

87

experiments in the evaluation of the thesis investigated altering the degree of the
unexpected change.

At a high level, there are three types of unexpected changes that the approach
can address with respect to a given repertoire of initial strategies generated from a
given scenario generator. The first, and easiest, are those change scenarios that the
scenario generator explicitly generated during the offline initialization phase. This
would imply that there already exists a strategy in the repertoire that was generated
precisely to handle the change. When this occurs, the planner simply needs to
identify the correct strategy, which is done by evaluating the fitness of all plans in
the starting population. Planning quality in this case depends solely on the amount
of evaluation overhead that it takes to complete this process. If this overhead is
less than the expected convergence time to a good strategy from scratch, then an
improvement over planning from scratch is trivially obtained. The user also has a
great deal of control over of the planning overhead, which is a function of the number
of individuals in the population, and the time that it takes to evaluate them. The
number of individuals is a parameter that can be adjusted, and this thesis presents
several approaches for reducing the evaluation time of each individual. Convergence
time from scratch may also be measured empirically for a given space of unexpected
changes by simply running the planner on a scenario generator that can sample from
the desired change space. The evaluation overhead of a given starting population
can also be measured similarly.

A more complex type of change is when the specific unexpected change scenario
was not explicitly generated during the offline initialization, but when the unexpected
change comes from the same space of changes from which the scenario generator
sampled. This implies that although the exact scenario was not anticipated, that
possibility that such a scenario could occur was build into the scenario generator.
In the evaluation of the thesis, this type of change corresponds to when replanning
was evaluated for the same number of mutation operators that were used during the
initialization phase. In all case studies where we studied repertoire construction, we
were able to show at least a small improvement in planning from scratch for these
types of changes. Predicting improvement in practice can be done by replanning
using the same scenario generator as used during the initialization phase.

The third, and most interesting level of change, are those changes that the sce-
nario generator could not have generated during the offline initialization phase. When
improvement is possible in this case depends both the on evaluation overhead, as well
as the degree of distance between the change scenario, and those scenarios consid-
ered during the offline phase. Given a novel scenario generator, it is possible to
experimentally determine the degree to which improvement can be expected by per-

88

forming replanning using the scenario generator and observing the resulting average
plan utility versus planning time curve and comparing this to the curve obtained by
planning from scratch for the same generated scenarios. Precisely quantifying the
space of changes for which a given repertoire will result in an improvement is a chal-
lenging problem that is not addressed in this thesis and left to future work, however
in the course of the evaluation we observed strong results in planning effectiveness
even when the number of mutations occurring at runtime were two times as large as
those that were generated during the offline phase, providing some indication that
this space is quite large.

7.1.2 When planning time is more constrained

One common pattern across the validation was that plan reuse resulted in greater
improvement compared to planning from scratch early in the planning process. This
suggests that plan reuse is more useful when planning time is more limited. Intu-
itively this makes sense, since plan reuse allows the planner to start planning with
some existing knowledge. Given sufficient planning time, (assuming that the planner
does not become trapped in a local optima) eventually the planner will arrive at the
optimal plan regardless of the starting knowledge. On the other extreme, if there is
no time for replanning, reusing an existing plan will likely be preferable to having no
plan or using a randomly generated plan. Plan reuse then, is more likely to result in
an improvement when planning time is more limited.

The threshold for when reuse is likely to be useful can be estimated in practice
relatively easily by generating adaptation strategies from scratch and determining the
expected convergence time to reach a good plan. If the planning overhead for reuse
is greater than this time, then it would be better to simply plan from scratch. If the
overhead is lower than the expected convergence time, then improvement is possible.
Reuse should especially be considered when waiting for the expected convergence
time is unacceptable, but care should be taken to ensure that the evaluation overhead
is within acceptable levels (which can be estimated).

7.1.3 When (re)obtaining the initial strategies is more ex-
pensive

Another key insight regarding when reuse is useful was observed in the DART case
study evaluation of the core approach. The results in Section 6.3.1 revealed a case
where plan reuse resulted in a order of magnitude improvement compared to re-
planning from scratch. Intuitively, this improvement is due to a coarse region of

89

the search space: that is, a region where mutation does not result in a measurable
change in fitness.

Ideally for stochastic search, the search space should be smooth. A small change
in a candidate solution should result in a small change in the fitness. This allows
the search to find small improvements which incrementally improve the quality of
the candidate solutions until convergence to an acceptable solution. In a coarse
search space however, a small change to the candidate solution might not result
in a measurable change in fitness. This means that the search has no means of
determining which changes are making progress in the search, since the changes are
indistinguishable.

In the DART case study, a large portion of the search space exhibits this coarse
property, resulting in a situation where obtaining an adaptation strategy to escape
this coarse region of the search space is very costly, and a starting plan that contains
this knowledge results in a large improvement (see Section 6.3.1).

Here, we attempt to quantify the improvement that should be expected from
plan reuse versus planning from scratch in this case. In order for the GP to make
progress, the search must find a mutation that results in a fitness improvement. If
the probability of finding such an improvement is too low, the search will fail to make
progress and will not find a high quality solution.

In the DART case study, a team of drones starts at an altitude of 20, but can
only interact with the environment at an altitude of 4 or lower. This means that, any
plans that do not result in the team descending 16 levels will have identical fitness.
Since the team has the same number of tactics to increase and decrease altitude,
and these tactics have mirrored effects (ascending or descending one or two levels), a
randomly chosen strategy is expected to have a net altitude change of zero. If these
identically ineffectual plans make up a large percentage of the search space, then
the planner may become trapped in this area of the search space. This will occur
if all of the plans in the existing population are in the coarse region of the space.
If the initial population is generated uniformly at random, such as when planning
from scratch, then we can determine the probability that this occurs based on the
percentage of coarse individuals in the search space.

A plan consists of a sequence of length 20 of 8 possible tactics. Since there
are 8 choices for each tactic, the number of possible plans is 820 = 1.15× 1018. To
determine the number of plans outside of the coarse region, we can count the number

90

of plans that have a net altitude decrease of 16 or more.1

Before showing how these plans may be counted, we will first analyze a simpler
case where the team does not have access to the DecAlt2 and IncAlt2 tactics. We
enumerate the plans that descend 16 levels, we count the number of ways that each
combination of tactics that result in altitude change can occur.

Nh
δ =

h∑
c=δ

max(h−c,δ−c)∑
d=0

(
h

c

)(
h− c
d

)
4h−c−d

In this quantity, h is the number of tactics in the plan and δ is the number of net
levels the team must descend in order to reach the smooth region of the search space.
The first sum enumerates every possible number of DecAlt tactics that can appear
in a promising plan. There must be at least δ if δ levels are descended. The second
sum enumerates all possibilities for the number of IncAlt tactics, the upper bound
ensures that the team keeps a net descent of δ levels. For each possible number of
altitude change tactics, the DecAlt tactics can be arranged within the h length plan
in
(
h
c

)
ways, and for each of these arrangements the IncAlt tactics can be placed

in
(
h−c
d

)
ways. Then there are h − c − d tactics left, which can be any of the four

remaining tactics, so there are 4h−c−d possible choices for this.
When all tactics are available, the following expression counts the number of

promising plans:

Nh
δ =

h∑
a=0

h−a∑
b=max(δ−2a,0)

X∑
c=0

Y∑
d=0

(
h

a

)(
h− a
b

)(
h− a− b

c

)(
h− a− b− c

d

)
4h−a−b−c−d

Where X and Y are:

X = min(b2a+ b− 16

2
c, h− a− b)

Y = min(2a+ b− 2c− δ, h− a− b− c)

Note that since ascending and descending actions have latency, it takes a turn before
their effects are felt. Thus, although the planner considers a horizon of 20, an action
that changes the altitude on the last timestep would not change the altitude until
timestep 21, so only the first 19 tactics can affect the altitude during the planning

1Note that this is an under approximation, since there are plans that reach an altitude of 4 and
then increase their altitude. However, the majority of the promising region is captured since there
are more ways for the team to maintain altitude or descend further than there are for the team to
ascend back up.

91

horizon of 20. The number of plans in the smooth region would then be 8N19
16

(multiplying by 8 is necessary, since there are 8 ways to choose the 20th tactic). To
compute the probability that a promising tactic is selected, we must still take into
account that the starting population is generated using Koza’s grow builder, which
generates individuals with randomly selected sizes rather than always generating
individuals of the maximum size. The size is chosen randomly between 1 − 20, so
then the probability that a randomly selected individual is in the smooth region is

p(σ) =
(
∑19
i=1N

i
16)+8N20

16

20·820 = 0.0036%. The probability that the initial population does
not get stuck p(e) is when at least one of the P individuals is in the smooth region,
given by p(e) = 1 − (1 − p(σ))P , which for the DART case study system is 3.58%
when p = 1000 and 30.53% when p = 10000.

If we desire the probability of escape to be higher than τ%, then we can find the
number individuals necessary p(e) > τ% when P > log1−p(s) τ . Fixing the number
of individuals, we can also quantify how sparse the search space can be while still
being tractable by finding the minimum value of p(σ) where the search is unlikely to

stall, p(e) > τ when p(s) > 1− 10
log τ
P .

This analysis demonstrates a property of the search space which makes re-obtaining
the starting adaptation strategy (descending 16 levels) very expensive. When this is
the case, having the starting knowledge results in a large improvement.

While we observed this type of search space in the DART case study, we can
quantify the coarse region of the space analytically, and we can expect a similar
degree of improvement in other systems that also have a search space with similar
properties. This could be the case for systems that need to perform a very complex,
specific sequence of steps to change states, such as spacecraft transitioning into or
out of safe mode for example, or aircraft performing takeoff or landing maneuvers.

7.2 Limitations

While the work presented in the thesis strives to enable self-* systems to more ef-
fectively adapt following unexpected changes, there remain limitations. First, this
section will address a major assumption made in the thesis: that at an up-to-date
model of the system and its environment is available to the system after an unex-
pected change occurs. Next, threats to the generalizability of the results will be
discussed. Finally, we will discuss the question of deciding when to stop planning.

92

7.2.1 The model update problem

A simplifying assumption made in the thesis is that an up-to-date model of the
system and the environment is provided to the system after an unexpected change
occurs. This is necessary to for the GP planner to predict the utility the system
would obtain by executing candidate plans. For example, if a new adaptation tactic
is made available to the system, and the planner is called upon to generate a new
adaptation strategy without having its model of the system updated, it would be
impossible for the planner to take advantage of the new tactic, since the planner
would not know how using it would affect its utility (or even that such a tactic
exists). The issues of how the self-* system detects that replanning is necessary and
how it obtains an up to date model is considered out of scope, and not addressed in
this thesis.

A self-* system using the proposed approaches in a production setting would
need a model update mechanism. One approach is that a human operator could
supply the model update. This is in line with current practice in self-* systems
where human operators are required to update the adaptation strategies after an
unexpected change occurs. Updating the models for an automated planning approach
could likely be easier than updating an entire adaptation strategy, although in many
cases the benefits provided by reuse may be small compared to the overhead of the
time spent updating the models. An alternative approach is that the models could
be updated automatically, a problem that is the subject of ongoing research [74, 27].
While further from implementation in practice, these approaches are more promising
for the increasingly large and complex self-adaptive systems of the future.

While we envision systems that can learn and adapt in response to arbitrary
changes, a more realistic path for more adaptable self-* systems could be model up-
date approaches that can handle certain classes of unexpected change, rather than
attempting to manage the entire change space. Addressing changes to known param-
eters that can be automatically measured for example, is easier and more plausible
than autonomously detecting the existence of new adaptation tactics. Additional
discussion of future research directions is provided in Section 7.3.

7.2.2 Threats to external validity

Another limitation of the thesis is threats to the validity of the empirical evaluation.
We attempted to mitigate these threats by performing the validation on a collection
of three case study systems from different domains, and with different planning
assumptions. However, the case study systems are all simulated exemplars, and a
threat remains that the results of the validation may not generalize beyond these

93

exemplars to other self-* systems. However, the consistency of some results across
the case studies (such as the improvements obtained by reuse early in the planning
process) provide some indication that the principles discovered in the thesis may
generalize. Additionally, although only observed in one case study, the order of
magnitude improvement in the DART case study can be explained analytically (see
Section 7.1.3) and can be expected to be similarly effective in other self-* systems
whose search spaces have similar properties.

7.2.3 When to stop planning

Another important question for self-* systems utilizing anytime planning approaches
such as stochastic search is deciding when to stop planning and using the best plan
available. This question is also outside of the scope of this thesis, although we did
observe (see Section 3.4) that modifying the parameters of the search enables the
user to make rich tradeoffs in planning time and optimality. Hybrid planning [57]
has been proposed as a means for integrating slow and precise planners with fast and
approximate planners, and similar principles apply to deciding when to stop planning
with stochastic search. In particular, machine learning approaches were investigated
in the hybrid planning work for predicting when a given planning approach should be
used. A similar idea could be applied to stochastic search where a machine learning
component could predict the optimal amount of time to invest in planning.

7.3 Future Work

There are many promising research directions involving plan reuse and stochastic
search to improve the ability of self-* systems to respond to unexpected changes.

7.3.1 Reuse with Neuro-controllers

While this thesis explored approaches for reusing previous strategies using stochastic
search, autonomous planners are increasingly using other planning paradigms such
as neural network based controllers to decide on adaptation [66, 5]. Artificial Neural
Networks (ANNs) are well-suited for this task since they can allow self-* systems
to learn highly complex behaviors efficiently, and have been shown to outperform
humans in difficult tasks like chess [70] and poker [8].

While these approaches are powerful, they are typically treated as black boxes,
and can stop working in the face of unexpected situations that they were not trained

94

Start Server

Shut down Server

Increase Traffic

Decrease Traffic

Increase Dimmer

Decrease Dimmer

Requests

Traffic Level

Servers

Dimmer

Figure 7.1: Initial ANN for neuro-evolutionary search to evolve.

to handle. Exploring reuse in the context of these neuro-controllers could allow self-
* systems to benefit from the power of ANNs while mitigating their weakness of
fragility to change.

Some preliminary work explored reusing neuro-controllers during a neuro-evolutionary
search. Figure 7.1 shows a basic neuro-controller for the Omnet case study, and Fig-
ure 7.2 shows some preliminary results comparing synthesizing a new neuro-controller
from scratch versus reusing an existing neuro-controller. The presented results are
in line with the other experiments in the thesis, finding that reuse outperforms plan-
ning from scratch early in the search, and shows that exploring plan reuse in other
planning paradigms such as neuro-controlled systems shows promise.

7.3.2 Reusing explanations

Another area increasingly explored by the self-* community is the human in the loop
systems. Self-* systems often work in collaboration with humans, and as a result
achieve better outcomes when the system communicates more effectively with the
human, especially if the system’s decisions are difficult for the human to understand
and trust. In the domain of plan reuse, systems with humans in the loop could
benefit from explanations that communicate why the previously successful plan was

95

0

10000000

20000000

30000000

40000000

50000000

0 500 1000 1500 2000
Generation

P
la

n
U

til
ity

Planning Method
From Scratch
Reuse

Figure 7.2: The utility of neuro-reuse and planning from scratch plotted during
training with a new randomized trace at every generation. Average is taken over 30
trials.

96

changed in the way that it was. Another possible avenue of work at the intersec-
tion of explainability and reuse is reusing existing explanations and applying them
to new plans. This could be approached by tracking generational changes in adap-
tation strategies and providing pointers to existing explanation artefacts in evolved
strategies.

7.3.3 Integration with self-* infrastructure

An implementation of plan reuse with stochastic search in the Rainbow [15] self-
adaptation infrastructure is another direction for future work. While the thesis is
evaluated on three case study systems selected to represent a diverse set of self-*
systems and planning assumptions, these case studies are simulations that abstract
away some implementation details of the surrounding self-* infrastructure. An imple-
mentation in Rainbow could facilitate broader investigation in plan reuse by others
and might reveal insights on applying plan reuse in a more realistic context.

There are several ways that an integration with the Rainbow infrastructure could
be accomplished. One approach to integration with Rainbow is to generate new
adaptation strategies using existing adaptation strategies in a Rainbow deployment.
This type of integration would require developing an individual representation for a
genetic programming planner for the Stitch planning language utilized by Rainbow.
Crucially, this would include the applicability guards used by Rainbow to determine
when the system is outside of desired conditions and adaptation is necessary. The
GP planner would need a specification of the available effectors and probes, and
models of the system and its environment to provide a means of estimating the
fitness of candidate Stitch adaptation strategies. Apart from having an up-to-date
model, this approach to integration also presupposes a means for the system to detect
that the current adaptation strategies are no longer sufficient and that replanning
is necessary. This could be done for example by a machine learning analysis (i.e.,
anomaly detection), or by noticing a discrepancy in expected versus obtained utility
values.

7.3.4 A more rigorous treatment of the unknown

A key concept underlying the thesis is that we seek to enable systems to adapt more
effectively in response to unexpected changes. However, what is meant exactly by
“unexpected” has been only loosely defined as “that which was not anticipated at
design time”. While the term has been used broadly in the thesis, and in spite
of efforts to evaluate the thesis on a wide range of change scenarios, the kinds of

97

unexpected changes that have been evaluated have been limited and not precisely
quantified. However, we did include unexpected changes from a number of locations
in the MAPE-K architecture where changes could occur, including changes to the
available adaptation tactics, the effects of tactics, the environment, and the sys-
tem’s utility function. Self-* systems face an infinite number of possible unexpected
changes, and yet some kinds of unexpected changes seem more unexpected than
others. We should not fault our self-* systems for failing to plan for what would
happen if the speed of light should change, even though such a change is conceivable
(however unlikely given our current understating of physics). While a number of
taxonomies of uncertainty have been proposed [3, 64, 43, 60], these taxonomies are
of limited help in understanding the space of possible changes in a way that enables
self-* systems to increase their resilience in the most effective way. A possible future
avenue of work is developing a framework for understanding the space of unexpected
changes and facilitating decision making in determining the space of changes that a
system should build robustness towards [14].

7.4 Conclusion

Research in self-* systems has enabled these systems to successfully adapt in response
to changes that they were designed to handle at design time, however these systems
often struggle when confronted with unexpected changes that were not considered
at design time. This thesis presented a collection of approaches using stochastic
search to reuse existing adaptation knowledge to enable self-* systems to adapt more
effectively in response to unexpected changes.

7.4.1 Contributions

The contributions of the thesis, first presented in Section 1.3, are restated here.

1. An approach for plan reuse with stochastic search for more effective replanning
following unexpected changes.

(a) A planner using genetic programming and initial population seeding to
support reusing existing adaptation strategies.

(b) A collection of reuse enabling approaches to reduce the evaluation time of
existing strategies to facilitate effective plan reuse.

Publications:

• Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le

98

Goues. Managing uncertainty in self-adaptive systems with plan reuse and
stochastic search. In Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems, pages 40–
50. ACM, 2018

• Cody Kinneer, David Garlan, and Claire Le Goues. Information reuse and
stochastic search: Managing uncertainty in self-* systems. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), 15(1):1–36, 2021

• Gabriel A Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan.
Dartsim: An exemplar for evaluation and comparison of self-adaptation
approaches for smart cyber-physical systems. In Proceedings of the 14th
International Conference on Software Engineering for Adaptive and Self-
Managing Systems, pages 137–143. ACM/IEEE, 2019

Artifacts:

The source code for the GP planner is publicly available for extension and repli-
cation at the following GitHub repository: https://github.com/squaresLab/
sass. The DARTSim exemplar is available at https://github.com/cps-

sei/dartsim. Data and analysis code for this thrust is available at: https:
//github.com/squaresLab/seams2018-data, and also at https://github.

com/squaresLab/taas-2018-data.

2. Techniques for generating reusable repertoires of adaptation strategies to broaden
the types of unexpected changes that self-* systems can replan for effectively.

(a) An approach inspired by chaos engineering for obtaining planning knowl-
edge for a range of change scenarios.

(b) Analysis approaches for extracting reusable planning components includ-
ing clone detection and syntactic transformations.

Publications:

• Cody Kinneer, Rijnard Van Tonder, David Garlan, and Claire Le Goues.
Building reusable repertoires for stochastic self-* planners. In 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), pages 222–231. IEEE, 2020

Artifacts:

The source code for the approaches described in this research thrust are avail-
able with the GP planner at https://github.com/squaresLab/sass. Data
and analysis code is available at: https://github.com/squaresLab/acsos2020-
data.

99

https://github.com/squaresLab/sass
https://github.com/squaresLab/sass
https://github.com/cps-sei/dartsim
https://github.com/cps-sei/dartsim
https://github.com/squaresLab/seams2018-data
https://github.com/squaresLab/seams2018-data
https://github.com/squaresLab/taas-2018-data
https://github.com/squaresLab/taas-2018-data
https://github.com/squaresLab/sass
https://github.com/squaresLab/acsos2020-data
https://github.com/squaresLab/acsos2020-data

3. An adversarial extension to support plan reuse to promote the security quality
attribute.

(a) The Observable Eviction Game (OEG), a game theoretic model of system
defense laying the foundation for self-* systems that can autonomously
adapt in response to unexpected changes in the security landscape.

(b) A co-evolutionary extension to support reusing adaptation strategies when
planning for adversarial situations, enabling self-* systems to replan in the
face of unexpected security threats.

Publications:

• Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Gar-
lan. Modeling observability in adaptive systems to defend against ad-
vanced persistent threats. In Proceedings of the 17th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design.
ACM-IEEE, 2019

Artifacts:

The source code for the co-evolutionary extension including the Bullseye exem-
plar is included with the GP planner code at https://github.com/squaresLab/
sass. Source code for solving the Bullseye exemplar system with Gambit
is available at https://github.com/squaresLab/bullseye-gambit. Source
code for the Observable Eviction Game is available at https://github.com/

squaresLab/oeg-code. Data and analysis code is available at https://github.
com/squaresLab/sass-coev-data.

7.4.2 Summary

As systems become larger and more complex, the difficulty of planning for the un-
expected will only increase. This thesis presented knowledge reuse with stochastic
search as an approach for addressing unexpected changes, through three research
thrusts: plan reuse with stochastic search and reuse enablers, approaches for con-
structing reusable repertoires of adaptation strategies for addressing a larger space
of unexpected changes, and a co-evolutionary extension for replanning in adversarial
environments. The thesis was evaluated on three case study systems from different
domains and planning assumptions, with the results finding that in many cases plan
reuse resulted in improved planning effectiveness following unexpected changes. In
conclusion, plan reuse in self-* systems has the potential to enable the next genera-
tion of autonomous systems to quickly respond to unexpected changes.

100

https://github.com/squaresLab/sass
https://github.com/squaresLab/sass
https://github.com/squaresLab/bullseye-gambit
https://github.com/squaresLab/oeg-code
https://github.com/squaresLab/oeg-code
https://github.com/squaresLab/sass-coev-data
https://github.com/squaresLab/sass-coev-data

Bibliography

[1] Advanced persistent threat groups. https://www.fireeye.com/current-

threats/apt-groups.html. Accessed: 2018-04.

[2] Comby. https://comby.dev, Online. Accessed 13 May 2020.

[3] Jesper Andersson, Rogerio De Lemos, Sam Malek, and Danny Weyns. Modeling
dimensions of self-adaptive software systems. In Software engineering for self-
adaptive systems, pages 27–47. Springer, 2009.

[4] Phillip G. Armour. The five orders of ignorance. Commun. ACM, 43(10):
17–20, October 2000. ISSN 0001-0782. doi: 10.1145/352183.352194. URL
http://doi.acm.org/10.1145/352183.352194.

[5] Chloe Barnes, Aniko Ekart, Kai Olav Ellefsen, Kyrre Glette, Peter Lewis, and
Jim Torresen. Coevolutionary learning of neuromodulated controllers for multi-
stage and gamified tasks. 08 2020.

[6] Ali Basiri, Niosha Behnam, Ruud De Rooij, Lorin Hochstein, Luke Kosewski,
Justin Reynolds, and Casey Rosenthal. Chaos engineering. IEEE Software, 33
(3):35–41, 2016.

[7] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. Clone detection using abstract syntax trees. In Software Mainte-
nance, 1998. Proceedings., International Conference on, pages 368–377. IEEE,
1998.

[8] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science, 359(6374):418–424, 2018.

[9] Javier Cámara, Gabriel A Moreno, and David Garlan. Stochastic game anal-
ysis and latency awareness for proactive self-adaptation. In Proceedings of the
9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 155–164. ACM, 2014.

[10] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. Femosaa: Feature-guided and

101

https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/current-threats/apt-groups.html
https://comby.dev
http://doi.acm.org/10.1145/352183.352194

knee-driven multi-objective optimization for self-adaptive software. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 27(2):5, 2018.

[11] Shang-Wen Cheng and David Garlan. Stitch: A language for architecture-based
self-adaptation. J. Syst. Softw., 85(12):2860–2875, 2012. ISSN 0164-1212.

[12] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Evaluating the ef-
fectiveness of the rainbow self-adaptive system. In 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pages 132–141,
2009. doi: 10.1109/SEAMS.2009.5069082.

[13] Zack Coker, David Garlan, and Claire Le Goues. Sass: Self-adaptation us-
ing stochastic search. In Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pages 168–174.
IEEE Press, 2015.

[14] David Garlan. The unknown unknowns are not totally unknown. In Proceedings
of the 16th Symposium on Software Engineering for Adaptive and Self-Managing
Systems, 2021. To Appear.

[15] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. Com-
puter, 37(10):46–54, 2004.

[16] Simos Gerasimou, Radu Calinescu, and Giordano Tamburrelli. Synthesis of
probabilistic models for quality-of-service software engineering. Automated Soft-
ware Engineering, 25(4):785–831, 2018.

[17] Alicia Grech and Julie Main. Case-Base Injection Schemes to Case Adaptation
Using Genetic Algorithms, pages 198–210. ECCBR. Berlin, Heidelberg, 2004.
ISBN 978-3-540-28631-8.

[18] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati
Moghadam, Shin Yoo, and Fan Wu. Genetic improvement for adaptive soft-
ware engineering (keynote). In Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2014, pages 1–4, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2864-7.
doi: 10.1145/2593929.2600116. URL http://doi.acm.org/10.1145/2593929.

2600116.

[19] John C Harsanyi and Reinhard Selten. A generalized Nash solution for two-
person bargaining games with incomplete information. Management Science,
18(5-part-2), 1972.

[20] Scott A. Hissam, Sagar Chaki, and Gabriel A. Moreno. High assurance for dis-

102

http://doi.acm.org/10.1145/2593929.2600116
http://doi.acm.org/10.1145/2593929.2600116

tributed cyber physical systems. In Proceedings of the 2015 European Conference
on Software Architecture Workshops, ECSAW ’15, pages 6:1–6:4, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3393-1. doi: 10.1145/2797433.2797439.
URL http://doi.acm.org/10.1145/2797433.2797439.

[21] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[22] Yury Izrailevsky and Ariel Tseitlin. The netflix simian army. https://

netflixtechblog.com/the-netflix-simian-army-16e57fbab116. Accessed:
2020-3-23.

[23] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang.
Moving target defense: creating asymmetric uncertainty for cyber threats, vol-
ume 54. Springer Science & Business Media, 2011.

[24] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-based detection of code clones. In Pro-
ceedings of the 29th international conference on Software Engineering, pages
96–105. IEEE Computer Society, 2007.

[25] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. Clonedetective-
a workbench for clone detection research. In Proceedings of the 31st International
Conference on Software Engineering, pages 603–606. IEEE Computer Society,
2009.

[26] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003. ISSN 0018-9162.

[27] Narges Khakpour, Saeed Jalili, Carolyn Talcott, Marjan Sirjani, and Moham-
madreza Mousavi. Formal modeling of evolving self-adaptive systems. Science
of Computer Programming, 78(1):3–26, 2012.

[28] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
Patch Generation Learned from Human-written Patches. In International Con-
ference on Software Engineering, ICSE ’13, pages 802–811, 2013.

[29] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues.
Managing uncertainty in self-adaptive systems with plan reuse and stochastic
search. In Proceedings of the 13th International Conference on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 40–50. ACM, 2018.

[30] Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan.
Modeling observability in adaptive systems to defend against advanced persis-
tent threats. In Proceedings of the 17th ACM-IEEE International Conference
on Formal Methods and Models for System Design. ACM-IEEE, 2019.

103

http://doi.acm.org/10.1145/2797433.2797439
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

[31] Cody Kinneer, Rijnard Van Tonder, David Garlan, and Claire Le Goues. Build-
ing reusable repertoires for stochastic self-* planners. In 2020 IEEE Interna-
tional Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS), pages 222–231. IEEE, 2020.

[32] Cody Kinneer, David Garlan, and Claire Le Goues. Information reuse and
stochastic search: Managing uncertainty in self-* systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 15(1):1–36, 2021.

[33] Richard Kissel. Glossary of key information security terms. Diane Publishing,
2011.

[34] Cristian Klein, Martina Maggio, Karl-Erik AArzén, and Francisco Hernández-
Rodriguez. Brownout: Building more robust cloud applications. In Int. Conf.
on Soft. Eng., ICSE ’14, pages 700–711, 2014. ISBN 978-1-4503-2756-5.

[35] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, and
Morris Bernstein. Pattern matching for clone and concept detection. Automated
Software Engineering, 3(1):77–108, 1996.

[36] John R Koza. Genetic evolution and co-evolution of game strategies. In Inter-
national Conference on Game Theory and Its Applications. Citeseer, 1992.

[37] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN
0-262-11170-5.

[38] Brian Krebs. Email attack on vendor set up breach at target.
https://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-

up-breach-at-target/comment-page-2/, 2014. Accessed: 2019-11-06.

[39] Jens Krinke. Identifying similar code with program dependence graphs. In
Reverse Engineering, 2001. Proceedings. Eighth Working Conference on, pages
301–309. IEEE, 2001.

[40] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Robust stackelberg
equilibria in extensive-form games and extension to limited lookahead, 2017.

[41] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor
Schiele, and Christian Becker. A survey on engineering approaches for self-
adaptive systems. Pervasive and Mobile Computing, 17:184–206, 2015.

[42] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In International conference on computer aided
verification, pages 585–591. Springer, 2011.

[43] Jean-Claude Laprie. From dependability to resilience. In 38th IEEE/IFIP Int.

104

https://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-up-breach-at-target/comment-page-2/
https://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-up-breach-at-target/comment-page-2/

Conf. On dependable systems and networks, pages G8–G9, 2008.

[44] Sushil J Louis and John McDonnell. Learning with case-injected genetic algo-
rithms. IEEE Transactions on Evolutionary Computation, 8(4):316–328, 2004.

[45] Sushil J. Louis and Gregory J. E. Rawlins. Syntactic analysis of convergence in
genetic algorithms. In Found. of Genetic Algorithms 2, pages 141–151. Morgan
Kaufmann, 1992.

[46] Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit:
Software tools for game theory, version 16.0.1. http://www.gambit-project.

org. Accessed: 2018-02.

[47] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proac-
tive self-adaptation under uncertainty: a probabilistic model checking approach.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering, pages 1–12. ACM, 2015.

[48] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Effi-
cient decision-making under uncertainty for proactive self-adaptation. In 2016
IEEE International Conference on Autonomic Computing (ICAC), pages 147–
156. IEEE, 2016.

[49] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Flex-
ible and efficient decision-making for proactive latency-aware self-adaptation.
ACM Trans. Auton. Adapt. Syst., 13(1):3:1–3:36, April 2018. ISSN 1556-4665.
doi: 10.1145/3149180. URL http://doi.acm.org/10.1145/3149180.

[50] Gabriel A Moreno, Bradley Schmerl, and David Garlan. Swim: an exemplar for
evaluation and comparison of self-adaptation approaches for web applications.
In Proceedings of the 13th International Conference on Software Engineering for
Adaptive and Self-Managing Systems, pages 137–143. ACM, 2018.

[51] Gabriel A Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. Dart-
sim: An exemplar for evaluation and comparison of self-adaptation approaches
for smart cyber-physical systems. In Proceedings of the 14th International Con-
ference on Software Engineering for Adaptive and Self-Managing Systems, pages
137–143. ACM/IEEE, 2019.

[52] Héctor Munoz-Avila and Michael T Cox. Case-based plan adaptation: An anal-
ysis and review. IEEE Intelligent Systems, 23(4):75–81, 2008.

[53] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295,
1951.

[54] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theo-

105

http://www.gambit-project.org
http://www.gambit-project.org
http://doi.acm.org/10.1145/3149180

retical and empirical analysis. Artificial Intelligence, 76(1-2):427–454, 1995.

[55] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic
game theory. Cambridge university press, 2007.

[56] Stefano Nolfi and Dario Floreano. Coevolving predator and prey robots: Do
“arms races” arise in artificial evolution? Artificial life, 4(4):311–335, 1998.

[57] Ashutosh Pandey, Gabriel A Moreno, Javier Cámara, and David Garlan. Hybrid
planning for decision making in self-adaptive systems. In 2016 IEEE 10th In-
ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO),
pages 130–139. IEEE, 2016.

[58] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fer-
nando Ordonez, and Sarit Kraus. Playing games for security: An efficient exact
algorithm for solving bayesian stackelberg games. In Proceedings of the 7th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’08, Richland, SC, 2008. International Foundation for Au-
tonomous Agents and Multiagent Systems. ISBN 978-0-9817381-1-6.

[59] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit
distance. ACM Trans. Database Syst., 40(1):3:1–3:40, 2015. ISSN 0362-5915.
doi: 10.1145/2699485.

[60] Diego Perez-Palacin and Raffaela Mirandola. Uncertainties in the modeling of
self-adaptive systems: a taxonomy and an example of availability evaluation.
In Proceedings of the 5th ACM/SPEC international conference on Performance
engineering, pages 3–14. ACM, 2014.

[61] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A
field guide to genetic programming. Lulu.com, 2008.

[62] Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, and Philip K.
McKinley. Applying genetic algorithms to decision making in autonomic com-
puting systems. In Proceedings of the 6th International Conference on Au-
tonomic Computing, ICAC ’09, pages 97–106, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-564-2. doi: 10.1145/1555228.1555258. URL http:

//doi.acm.org/10.1145/1555228.1555258.

[63] Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, and Benjamin E.
Beckmann. Automatically generating adaptive logic to balance non-functional
tradeoffs during reconfiguration. In Proceedings of the 7th International Con-
ference on Autonomic Computing, ICAC ’10, pages 225–234, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0074-2. doi: 10.1145/1809049.1809080.
URL http://doi.acm.org/10.1145/1809049.1809080.

106

http://doi.acm.org/10.1145/1555228.1555258
http://doi.acm.org/10.1145/1555228.1555258
http://doi.acm.org/10.1145/1809049.1809080

[64] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A taxonomy of uncer-
tainty for dynamically adaptive systems. In Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 99–108. IEEE Press, 2012.

[65] Chanchal Kumar Roy and James R. Cordy. A survey on software clone detection
research. School of Computing TR 2007-541, Queen’s University, 115, 2007.

[66] Shouvik Roy, Usama Mehmood, Radu Grosu, Scott A. Smolka, Scott D. Stoller,
and Ashish Tiwari. Learning distributed controllers for v-formation, 2020.

[67] Bradley Schmerl, Javier Cámara, Gabriel A. Moreno, David Garlan, and An-
drew Mellinger. Architecture-based self-adaptation for moving target defense.
Technical Report CMU-ISR-14-109, Institute for Software Research, Carnegie
Mellon University, 2014.

[68] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12), 1999.

[69] Abdullah Sheneamer and Jugal Kalita. A survey of software clone detection
techniques. International Journal of Computer Applications, 137(10):1–21, 2016.

[70] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[71] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer caching schemes
to address flash crowds. In Int. Workshop on Peer-to-Peer Systems, IPTPS ’02,
pages 203–213, 2002. ISBN 3-540-44179-4.

[72] Leonardo Trujillo. Genetic programming with one-point crossover and subtree
mutation for effective problem solving and bloat control. Soft. Computing, 15
(8):1551–1567, 2011. ISSN 1433-7479.

[73] Jakub Černý, Branislav Boýanský, and Christopher Kiekintveld. Incremental
strategy generation for stackelberg equilibria in extensive-form games. In Pro-
ceedings of the 2018 ACM Conference on Economics and Computation, EC ’18,
pages 151–168, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5829-3.
doi: 10.1145/3219166.3219219. URL http://doi.acm.org/10.1145/3219166.

3219219.

[74] Thomas Vogel and Holger Giese. Adaptation and abstract runtime models. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’10, pages 39–48, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-971-8. doi: 10.1145/1808984.1808989. URL

107

http://doi.acm.org/10.1145/3219166.3219219
http://doi.acm.org/10.1145/3219166.3219219

http://doi.acm.org/10.1145/1808984.1808989.

[75] Ryan Wagner, Matthew Fredrikson, and David Garlan. An advanced persistent
threat exemplar. Technical report, Technical Report CMU-ISR-17-100, Institute
of Software Research, Carnegie Mellon University, 2017.

[76] Ji Zhang and Betty HC Cheng. Model-based development of dynamically adap-
tive software. In Proceedings of the 28th international conference on Software
engineering, pages 371–380. ACM, 2006.

108

http://doi.acm.org/10.1145/1808984.1808989

	Introduction
	Thesis Statement
	Claims
	Contributions
	Outline

	Review of Literature and Background
	Self-* Systems
	Genetic Algorithms
	Clone detection
	Security and Advanced Persistent Threats

	Approach Overview: Responding to unexpected changes with plan reuse and stochastic search
	Cloud Web Server
	Representation
	Mutation and Crossover
	Fitness
	Reducing plan evaluation time with reuse enabling approaches

	Building reusable repertoires by identifying generalizable plan fragments
	Generating Unexpected Changes
	Extracting Reusable Components
	Clone detection
	Rule-based Plan Transformation

	Plan reuse in an adversarial setting
	Foundations: The Observable Eviction Game
	Actions
	Utilities
	Computing Equilibria

	Co-evolutionary Extension
	Individual Representation
	Fitness Calculation
	Reuse and Repertoire Generation

	Validation
	Claims
	Plan reuse will lower the number of generations until convergence to a good plan.
	Plan reuse will decrease the wall-clock time needed to generate a good plan compared to planning from scratch.
	Plan reuse is applicable to a range of unexpected change scenarios, including adversarial settings.

	Case Study Systems
	DART
	Bullseye
	Summary

	Evaluation
	Core Approach and Reuse Enablers
	Reusable Repertoires
	Clone Detection
	Rule-based Syntactic Transforms
	Adversarial Settings

	Summary

	Discussion and Conclusion
	When is reuse applicable?
	When the change is small
	When planning time is more constrained
	When (re)obtaining the initial strategies is more expensive

	Limitations
	The model update problem
	Threats to external validity
	When to stop planning

	Future Work
	Reuse with Neuro-controllers
	Reusing explanations
	Integration with self-* infrastructure
	A more rigorous treatment of the unknown

	Conclusion
	Contributions
	Summary

	Bibliography

