Backtracking Support in Code Editing

YoungSeok Yoon
May 2015

CMUISR15-103

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA15213

Thesis Committee:
Brad A. Myers Chair, CMU HC)I
Jonathan Aldrich(CMU ISR)
Christian Kastner (CMU ISR)
Emerson Murphy-Hill (North Carolina State University

Submitted in partial fulfillment of the requirements
for the Degree of Doctor oPhilosophy
in Software Engineering

Copyright© 2015 YoungSeok YoonAll rights reserved.

Funding for this research comes in part from the Korea Foundation for Advanced Studies (KFAS)
in part from NSFgrants CCF0811610, 11IS1116724, and 11S1314356. Any opinions, findings and cor
clusions or recommendations expressed in this material are those of the author and do not necess:
reflect those of KFAS othe National Science Foundation

Keywords: selective undo, backtracking, finggrained edit history, logging,timeline visuali-
zation, history search, edit collapsing, Eclipse IDE, Jaexploratory programming

ABSTRACT

Programmersoften need tobacktrackwhile coding. Here (acktrackingdrefers to when pro-
grammers go back at least partially to an earlier statef code either by removing inserted
code or by restoring removed code. For example, when some newly added feature does not
work as imagined, theprogrammer might have to backtrack and trysomething else. When
learning an unfamiliar APl,programmers often need to try some sequence of object instanti-
ation and method calls, run the program, and backtrack ihe result is not as expected. con-
ducted a series of three empirical studiesn order to better understand the backtracking be-
havior of programmers. The results indicated that backtracking is prevalent in programming,
and programmers often face challenges when backtrackingoFexample they had difficulties
when trying to find all the relevant parts of codeo be backtrackedor when trying to restore
some codethey had deletedthat later turned out to be needed.

(T xAOAOh DPOT COAITAOO TT1U EAOA OAOU 1 Eih& OAA
linear undo command can only undo the most recent changes, and loses the undone changes
as soon aghe programmer makesa singlenew change after invoking the undo command.
Version control systems such as Subversion and Git can also be used for backtracking, but
only when the desired code is already committed in theepository . Furthermore, the results

from the empirical studiesshowed that 38% of all the backtrackings are done manually with-

out any tool supportand 9.5% are selective, which means that they couttt have been per-
formed using the conventional undo command.

To help programmers backtrack more easily and accuratelyl deviseda novel selective undo
mechanism for code editors and implementedit in an IDE plugin called AzURITE The core
idea is to combine the following mechanisminto a coherent programming tool a selective
undomechanismfor code editors, novel visualizationsf the coding history, and a code change
history search AzuriTEretains the full fine-grained code changehistory, and the selective
undo mechanismallows users to select andindo one or moreisolated edit operations,while
appropriately detecting and handling conflicting operations The visualizations and history
search are the user interfaces that help usets select the desired edit operations to béack-
tracked andexpress what they remember about the code changes that they want to revdri.
a controlled lab experiment, programmers usingAzURITEperformed twice as fast compared
to the control group when completing typical backtracking tasks My hope is thatthis selec-
tive undo tool will help programmers achieve their daily programming tasks more effectively.

ACKNOWLEDGEMENTS

Foremost, | would like to express my sincere gratitude to my advisor, Brad Myer§hrough-
out my entire career as aPhD student, he has constantly provided guidance andsupport to
help me conduct better researchwrite better research papers, angbrepare my presentations.
| cannot express enough how fortunate have beerto have Brad Myers as my advisot.would
also like to thank all my thesis committee memberslonathan Aldrich, Christian Kstner, and
Emerson Murphy-Hill. Their detailed, constructive feedbackgreatly helped in making this
dissertation better.

It has beena pleasure to work with all my co-authors, Joel Brandt,Andrew Faulring, Sebon
Koo, Ashley LaiThomas LaTozaTam Minh Leand Cyrus Omarl would not have been able
to publish all the research paperswithout the hard work and insight of these individuals.My
academic siblingsKerry Chang Michael Coblenzand Stephen Oneyalsodeserve my thanks
for all the interesting research discussionsve had | would alsolike to thank the faculty and
friends in the Software Engineering PhD progranTheir thoughtful feedbackat the SSSG sem-
inars was invaluable resource for improving my research angresentation skills.

I would like to thank the Korea Bundation for Advanced Studies foall the financial support
for the last five years, andhe National Science Foundation foproviding research funding.In
addition, | was fortunate to be part of theExploratory Programming Group, which isan NSF
funded joint research project.

Getting through the PhD program was more than just doing researchl would like to give
specialthanks to my wife, Min Jeong Kimwho has always beenwith me and helped me get
through all the difficult times. | thank my parents, JangHo Yoon and Sang Hee Leand my
younger brother, Youngkwon Yoonfor being alwayson my sideand praying for my soul.

vi

Vii

TABLE OEONTENTS

Abstract il
Acknowledgements \
Table of Contents Vil
Figures Xi
Tables XVii

1. Introduction
1.1. Problem: Limited Support for Backtracking...............ceeeiiiimmmmmmmeeeeeieeeeeeeeseeeeees
1.2. Motivating Example.... .
1.3. An Approach: Selectlve Undo in Code Edltors
1.4. AzURITE A Selective Undo Tool for Programers ..
0 TR I =] PP UP PO OPPP
I G T O o 1 11] 11] 1P
R A 1 1SR

PN ND WD R

(o]

2. Related Work
2.1. Undo Models... ettt ——————————arb e PP PPN © |
2.2. Version Control and Variation Management Systems 14.
2.3. Collecting and Utilizing FineGrained Interaction Data......................cccceeeeen . 18,
2.4. Edit History Visualizations & Search TOOIS............ccccevvviieccc i 21
2.5. Empirical Studies of SourceCode Editing..............ooiiiiiimmmmmeemeee e cmmeeeeeesn 22
2.6, CONCIUSION......eiiiiiiiieeei s eccmmeeeeecee e e e e e e e e e emmmmmmmms ettt e e s s s e Dol

3. Capturing Fine -Grained Coding Events from the Code Editor 23
3.1. Related Work... PP UUPPTED 2% |
3.2. FLUORITE FlneGralned Codlng Event Logger for Ecllpse . |
3.3. FLUORITEIMPIEMENTALION ...oeeviiiiiiiiiiiicemeeemmme ettt smmmmmmmms e e 2D
3.4, FLUORITEANAIYZET ...coiiiiiiiiiiiiiii i ceeeememme ettt smmmmmmmms ettt e e e e e e s smmmmmmmms e e s 2
S T I = o U £ [PO PPPPRRRC 2
G 3 T @0 T 11 L3) o PP 7.

4. Empirical Studies of Backtracking 35
4.1. Preliminary Lab Study of Backtrackingc.oooooeoe oo eeeeeeeee . 30,
4.2. ONliNe SUIVeY..........uuvviiiiiieii i 43,
43. , 11 CEOOAET Al 3C>C>AU I &£ .0.0l. QOAL . Aooo46 "AAEOOAA
S @0 o o] [1= [o PP PPPP o ¥ |

vii

5. A Selective Undo Mechanism for Code Editors 63
5.1. Internal Edit History Representation for Selective Unda.................................64
5.2. Selective UNdo AlQONtNML ...ttt e e vmmmmmneen e L L
5.3, DISCUSSION.....cciiiiiiii i eee s eemmmmmme e et e e e e e e s ewmmmmmms e e sttanseeeees mmmmmmmmesssssnnssesesmnmmmmnni L}
5.4, CONCIUSION.....ccoviiiiiiiiiiiiiimmmmmmmme e e e e e e e e e e e et emmemeeeer s e smmmmmmmms e s e e e e e s e e e e s s smmmnnnnnd oD

6. Timeline Visualization of Code Edits 77
6.1. File Rows and Edit Operation Rectangles..............cooo it ceeeevvvvvvnn i vmmmmeeee . 1.8
6.2. Coding Events Displayed Along the Timeline..........ccccceeviiimmmmmemeeee e e 80
6.3. LAYOUL MOUES.......eeiiiiiiiiiiie i immmmmmmme ettt emmmmmmmm s e s emee D L
6.4. Selecting ReCtaNgIEs.........cccuiiiiiie e e D2
6.5. Selecting TiIMes Or TiME RANQGES.............cvvviviimmmmmmmmieeeeeeeeeeeeessmmmmmmreeeeeessennnne 84....
6.6. IDE-Independent Implementation of the Timeline.................oo i cceeee e 85...
B.7. DISCUSSION......cciiiiiieieieeeteemmmmmmesssaseeeeeeeessmmmmr e eeeesteeesssmmmmmmmms s e s e e e e e e e e e e s emmmmeee A
6.8, CONCIUSION.....ceviiiiiiieeiiii i icmmmeeeereeee e et e e e e e s emmmmmmmms bttt e e e s s s s e DD

7. Real-time Edit Collapsing and Semantic Zooming 91
7.1. The Four Collapse LEVEIS..........uuiiiiiiiiiccme et e £ DD
7.2. Collapsing Algorithm... PP
7.3. Integration with the Tlmellne Vlsuallzatlon PP UUSUPP A O
7.4. Log Analysis... PP PPPPPPPPPPPY 10 /2
7.5. Limitations and Future Work PP PPPPPPRS I § o1
7.6. Conclu5|on_107

8. User Interfaces for Selective Undo 109
8.1. Code History Diff VIEW..........cooiiiiiiiiiiieeeeecemicceeeeee s e e e eeeeeeveesv s mmmmmmmms 0oL 10
8.2. Regional UNdO SNOMCUL.........ccciiiiiiiiiimmmmmemeiiieieeeeeeeeeemmmmmmmm e ssmmmmmmmme . L 12
8.3. HiStory Search.........cccueviiiiiii e e LD
8.4. Interactive Selective UNdO........cccoeiiiiiiii it emmmmmmms e e e e e e e e e s emmmenel 13
8.5. Reading the History of Past SeSSIONS.......cccooeveei it emmmmmeme L 15
8.6. Limitations and Future WOork..............couuiiiiiiccceeeme e eeeeviie s emmcmmmme e eeeeevnnnn e eea LB
8.7. CONCIUSION......ccuvuiii ettt e e e e et vmmmmmcmre e e e e eee bt s smmmmmmmmrssnnseesseessssmmmnncl 1 O

9. Evaluation of AZURITE 117
9.1. Field Trial with the Initial User Interface Design............ccuvvviriieccccccee e 117.
9.2, Evaluation StUAY..........oooiiiiiiiiiiieememmmmeeeee e e e e e e eeeeeeee e mmmmmmmm e L1 8,
9.3. Performance Feasibility.............ooooiiiiiiooeoe e eeececem e e 123
9.4. Example Use Cases... PO U PP PP P PP PPPPPPPPRN 0% o
9.5. My Own Experience of USIn@\ZURITE fette s et e e e eeeeenees ememmmnms s 0 s 12D
9.6. CONCIUSION......eeviiiiiiieiiii i immmmmmmns ettt e e e e e emmmmmmmm e s smmmmmmmms s smmmeenli3 O

10. Selective Undo Support for Painting Applications 133
10.1.Motivation . PP U PP PPPPPPPPPPPRRRR B
10.2.Initial Semi- Structured INEEIVIEWS......ceeeeiiieeiiiiiitemmmmmmme e e e s s 13D
10.3.DeSIgN TradeOfB........cccieiiiiiiiicmmmmmmmmr ettt e e e e smmmmmmmms e e e e e s emmmmmmmms e OO,
10.4.Implemented SYSIEML.....cccoiiiiiii i vmmmmmmmms e e e e e e e e e e e e s smmmmmmene e e o0 LD
10.5.Usability EValuation..................oovviieeemmemmiiiisies s e e s s smmmmmmmmeeeeeeeeesees s wmmeemmme oo A8
10.6.CONCIUSION......iiiiieeie e e e e e e e e e e e e s emmmmmmmr e s nnen s smmmmn el DO

11. Limitations and Future Work 151
11.1.EXteNnSiONS tOFLUORITEuuuuuuuunnnnsssimmmmmmmmeeeeeeeeeeeeeesmmmmmmemsssnnnnnnnssessmmmmmmmme e e e lD 1
11.2.Extensions toOAZURITE... PP PPPUPPPPRRTPURN Lo 724
11.3.Extensions to Aquamarlne PP PPN Ko 1+
11.4.Applying Selective Undo to Other Tools and Domains.........cccccceevvvveeeeeeemen... 156

12. Conclusion 159

Appendix A: Materials from the Preliminary Lab Study 163
A.Ll. Task instructioNnSfor Group L.......cceeeeiiiiiii e emmmmmmm e ee LO 3,
A.2. Task instructions fOr GroUP 2........cccceeiiiiiieie i emmmmmmm e ee L QL
N T O 10 1= 1T o = U OO RRR 7 4 o B

Appendix B: Questionnaire Used for the Online Survey 181

Appendix C: Materials from the AzURITE Evaluation Lab Study 197
C.1. Task Sheets Givetp the Participants...............ccoooiiiicceeeeemvvvinece e smmmmmmeme .. 197

Bibliography 203

Xi

HGURES

Figure 1-1. A sketch of the desired Ul............coiiiiiimmeeee e smmmeeesd

Figure 1-2. The code changes for the motivating example. Tlgeeenhighlight shows newly
inserted lines, and thegrey highlight shows updates to the existing code..... 4

Figure 1-3. An example screenshot oAzURITErunning in the Eclipse IDE At the bottom, a
timeline visualization of recent code changes is provided. The user is currently
OOET ¢ OKEROE)A ORI AAOGEOA 51 AT 6 AEAIT C ET 1
code and restore theGridBagLayout code without losing the desired code.

Figure 2-1. Error messagegenerated by Git showing there is a conflict that should be
(2570 V7= o PP PRSPPI Lo

Figure 2-2. The content of the file that has the conflict. The user need to manuatigsolve
this conflict and then make another commit to finish the revert operation..15

Figure 2-3. An example variational program annotated with choice calculus (apnd one of
the variants obtained by selecting the first alternative from Name dimension,
and the second alternative from the Traffic dimension (b)......................... 17..

Figure 3-1. Example log generated byFLUORITE The developer (1) moved the cursor by
clicking the mouse button, (2) selected one line byghift+DownArrow , (3)
deleted selected code using th®elete key, and (4) saved the file. Each event
has its own parameters, andthe whole deleted text is listed in the

DocumentChange EVENT............uuuviiiiiiiiimmms st eeen 2D
Figure 3-2. Annotation toolbar button and its dialog bBOX.............eeeeiiiiiee e 21....
Figure 3-3. The event list interface ofFLUORITEANAIYZET.............ovvvvvviivrimmmmmmmme e ee e 29....

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form
I £ Ol OECET AZOAA IO OOMad®e Cc OT Ax1 U OUPAA
indicates the ID ofthe event where the patterns starts so the investigator can
jump to the events list and see what was happening around that time......30

Figure Error! No text of spedfied style in document-1. Example active code length graph
drawn from one of the logs by theFLUORITEanalyzer. Some interesting points
are marked using red circles and the corresponding code editing strategies are
described. ¥axis value can be one ohe metrics described inError! Reference
source not found. . Only line graphs of the files that have been changed during

il

Figure 3-6.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 4-9.

Figure 4-10.

the session are drawn. The graph can be zoomed with the mouse wheel, and
the user can double click on a point to jump to the everdsst view.............. 30.

Example keystroke / command distribution reports generated byFLUORITE
analyzer showing the distributions for one participant. The reports are also
provided in commaseparated values (CSV) format, which can easily be
imported into spreadsheets for more analyses..............cccoov i icccceeeevvvvnnnns 32...

A screenshot of the Paint program used during the lab study.................... 36....

The responses for the question "For eacbf the following, please specify how
often you need to experiment, iterate, and/or explorevhile you are developing
The lighter color represents more flexibility...............coovviiiimmeree 44....

The backtracking situations shown to the survey respondents, and their
o L 1YY £ P Lo

An example of a node evolution history, which contains three backtracking

ET OOAT AAO8 4EA T1 AA EEOLSNngYD D HAGAG Qi1 OF
changed a few times (v2 through v5)and finally ended up back at the original

code (v6). The different contents are symbolized as capital letters A, B, and C.

There are three backtracking instances in this node history, indicated as black

DACKWAIT AIrTOWS.coeiiiiiiii i eeeeeeeme et vmmmmeneer e ee e e e e e e s smmmmmmmms e DO

An example output of the analyzer, showing the history of a statement node.

AAE O x 1 ApO O AAAE OAOOEIT jOph Oc¢h 8t
backtracking instance, which® Op8Ouv8 .1 OA OEAO -®EA OAOOEI
are not part of the output, and added here for the purpose of explanation.50

Distribution of all the detected backtracking Sizes..........ccccccvvvvviimmmmmmeennnn.. h4.

A backtracking instance illustrated. The analyzer determines the farthest

version within each instance, and considersall the changes following the
farthest version as backward changes...............cccooviimmeeeemiiieieeie e smeeeeen. 25

The identified backtracking tactiCs................c.vvviimeeccccc e .. DD,

Cumulative percentage of all backtracking instances with different editing

session distances. 96.7% of all backtrackings were performed within the same
editing session. 99.0% of all instancebave less than or equal to a 3 session
(0113 7= 1 o = PO P A PEEEPPPPPRR R > 4

Two possible backtracking scenarios, whose backtracking instances anet
selective. The sourcéile has three different statement nodes being affected (s1
s3). Each backtracking scenario has three backtracking instances in each node.

xiii

Except for the backtracking instance in s3 in scenario #1, all the backtracking
instances have some changes to othgrarts of the same file within their
timespan. Nevertheless, these are not selective because the undo commean
handle DOth CASES........ovviiiiiii e oo e D8

Figure 4-11. Repeat counts of all backtracking instances, along with the percentage fraction
of revisiting the same state in the future.................oovviceeeeeemeccee e 09

Figure 5-1. Types of regional conflicts illustrated...................ovveeeeeeemrcccceeee e e e e s eommmeeae .66

Figure 5-2. Ambiguity in the case of Insertd Insert conflicts. In both examples, thdighter
shade indicates the code inserted first (conflictee), and thedarker shade
indicates the code inserted later (CONflICtOr)...........oovvviiiiiiiieeeee 67....

Figure 5-3. Ambiguity in the case of Deletéy, Delete conflicts. In both examples, thighter
shade indicates the code deleted first (conflictee), and thedarker shade
indicates the code deleed later (Conflictor).uvviiiiiiimmme e 683...

Figure 5-4. lllustration of dynamic segment management. For simplicity, each dynamic
segment is denoted as &ffset length>. OP1 insertsprintin() , OP2 inserts
fi He | |wdthin the parentheses, and then OP3 deletds from the method
name printin , in temporal order. Below the code is illustrated how the
existing dynamic segments are updated or split as new edit operations are
added to the NiSOIY.......uuiiii i mmmmmmmms e e e e e e e e e s s s DD

Figure 5-5. Pseudo code illustrating the dynamic segment updating algorithm............ 70.

Figure 5-6. lllustration of the selective undo mechanism. First, the algorithm determines
the code chunks affected by the selected operations (a), and then performs
selective undo on each chunk separately. When there ane conflicts outside
of the chunk, selective undo can be performed without user intervention, and
OEA O1T AT T PAOAGEIT EO AAAAA AO OES6 j AQs
conflicts, it provides the three alternatives of possible resulting code to the user
AT A ELZ OEA OOGAO OAI AAOOG A AEALCAR3.OEA 1T PAC

Figure 5-7. The highlevel architecture of the selective undo System...............oooeiceeus 4

Figure 6-1. Different versions of the timeline visualization shown from the most recent
version (a) to the oldest version (c). The design has been improved itdively
based on the user feedback and the changes are discussed in this chapt&®9

Figure 6-2. An example tooltip. The timestamp is shown at the top. The insed code is
shown in the light-green box. For a delete operation, the deleted code will
appear in a pink box instead. In case of a replacement operation, both boxes
appear to indicate the deleted / inserted code................coo i i icceeemeervvvvvvinnnnn 8qQ...

Xiv

Figure 6-3. Context menu for the selected rectangles. Users can invoke various commands,
OOAE AO O3A1 AAOEOA 51 AT 68 4EA OEEOA Al i1 A1
if a single rectangle is selected..................uiiieeeeeccc e 8200

Figure 6-4. The code corresponding to the selected rectangles (with yellow outlines) in the
timeline are indicated by (a) the boxes in the code editor, (b) thewsall icons on
the left ruler, and (c) the markers on the scrotbar on the right side. The colors
of the boxes match the rectangle colors in the timeline.....................ccc.....83

Figure 6-5. The time selection marker, which is the orange vertical bar with a triangle
shaped handle attached to the top. Rigkdlicking the marker brings up a
context menu with various COMmMAaNdS...............evvverrmmmmmmmmmeeeeeeeeeeeeees s B4

Figure 6-6. An example screenshot of a time range selection. The start time is indicated as
white, dotted vertical line, and the end time is indicated with the same time
marker used fOr tiMe SEIECHON........cvue et ecemmeeme et e e s smmmmmmmms e e e e e DD

Figure 6-7. Embedded browser control used in the Graphite project [Omar 2012]. The
color palette and the regular expression pattern builder were implemented
using standard web echnologies and then embedded into the Eclipse Code
editor using the Browser control in SWT............ccoviviiiivceeeeemmeccee e 86,

Figure 6-9. Timeline visualization of AzURITElIoaded in Microsoft Visual Studio 2012...87
Figure 6-8. High-level architecture of the HTMLbased user interface in an IDE pluin..87

Figure 6-10. Firebug Lite loaded within the Eclipse IDE. The developer console is fully
functional, and the DOM elements can be navigated within this Ul............ 88.

Figure 7-1. The code changes for the factorial example..............ccuvvvimmmeeccc e 93...

Figure 7-2. The state of the timeline visualzation after completing all the four steps in the
factorial example, shown at the raw level. The blue vertical separation lines
were added on the screenshot for the purpose of the explanation, and are not
shown in the actual timeline. The numbers in the agare brackets indicate how
many rectangles are in each section..................c..eceeeeeeme e svceeeeeennn .93

Figure 7-3. The example code edit script for the factorial program shown at different
collapse levels but the same zoom level.............coo oo iieieeee 94

Figure 7-4. lllustration of the overall collapse mechanism for the parse level. When there
is an incoming edit operation, the parse level collapser runs the collapse test to
see if the new edit should be added to the pendiplist or if the existing pending
edits should finally be marked as collapsed. The newly collapsed edit-@) is

XV

taken to the next level collapser as the incoming edit, and the same process is

FOHOWEM. ...t emmneen D

Figure 7-5. lllustration of the change detail extraction process..............ooevevveeeeeeemeeee. 99,

Figure 7-6. The horizontal zoom sliderandtheA T 1 1 ADOA 1 AOGAT AT 1 00111 A0 j
the popup menu above it), located at the bottonrteft of the timeline.......... 101

Figure 7-7. An example composite rectanglevhich is partially selected. If the user clicks on
this rectangle, it becomes fully selected.................ooevveeeeeeemeiciiieieniene00eee 103

Figure 7-8. An example tooltip shown for a composite rectangle ithe timeline. The one
line summary also shows the method naméactorial in which the edits
were PerformMed...........oovviiiiiviiimmmmmmmme e e e e e e eeeeeesseememresssenennnnn s smmmmmmmm e e WO

Figure 8-1. The code history diff view ofAZURITE The most recent version of the selected
region of code is always shown in the left panel, and the version of the code
from the selected time is shown in the right panel. The currently selected time
is indicated by the orange time marker in the timeline a05:17:13pm........ 110

Figure 8-2. The history search dialog ofAzURITE Users can search through the history to
find out the time range in which a certain text existedn the code.............. 113

Figure 8-3. The interactive selective undo dialog oAzURITE Users can mark some code in
OEA 1T AZEO PAT AT h AT A AOE wldh cad behdbeated EEO Al A
until the preview in the right matches what is desired..................ccvveeeee 114

Figure 8-4. The interactive selective undo dialog when there is a chunk with reghal
conflicts. The user can choose one of the provided options to resolve the

conflicts. Here, the second optionKontSize) is chosen by the user, which is
indicated by the blue outline..............ccoo i imeeeeemee e vmmmmmeeeeiieeeen . 115,

Figure 9-1. The average backtracking completion time for each task. The error bars
indicate the standard deviations.*differences are statistically significant (p <

Figure 10-1.! NOAiI AOET A0 EEOOI OU PAT AT xEOE 1T PAOAOGEIT I
selectively UNONE.............ooiiiiiiiiceemmmmmse e e e e e s s e e eeeee et e s eemmmmnns s L3 D)

Figure 10-2. Multiple steps to create a drawing................eeeeeiirccccccceeeeeeeeeeeeeeeeeeeeeeeeee... 138

Figure 10-3. In a painting program, (1) paint a shirt, (2) flood fill it with a new color, (3)then
do a variety of other actions.............cccccceeiiiimmmmmme e ceeeeeeenr e LAQL

Figure 10-4. Highlighting operation 3 in orange since it conflicts with the selected operation
G 0 77 T T T][1) S 2 922

XVi

Figure 10-5. An alternative form of history panel where selective undo/redo operations are
included in the history panel...........cccccciiimmme e e LA

Figure 10-6. Pixelitor modified with our history panel.............ccccooiiiimmmmmmmmieeeeeeeeee e 147

XVii

TABLES

Table 2-1. Feature table of the existing singlaiser undo models.............ccccevvviiiceeeeeen . 13
Table 3-1. List of the different types of events captured YFLUORITEccceerriiiinicean 26.
Table 3-2. List of the cOmmON Parameters............coooviiiiicmmmmmemeeeeeeeee e smmmmmmmmssneeeeee i e

Table 3-3. List of the code size metrics logged for the document change evenits....... 28
Table 4-1. Participant groups and the tasks of the preliminary lab study.................... 37....

Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for
each category. Shaded entries are related to code navigation, and the inverted

entries are related to backtracking............cccuvvviviiiccccccce e 39,
Table 4-3. Demographics of the online survey respondents.............ccc.evvveecccccceeeen 4310
Table 4-4. Participant groups of the longitudinal backtracking study...................o.cee 48

Table 4-5. Summary of the analysis results of the longitudinal backtracking study....53
Table 6-1. List of significant coding events displayed in the timeline view.................. 81...
Table 7-1. Different kinds of code edits determined by the collapsing algorithm.......100
Table 7-2. Collapse test matrix used for thenethod levekollapse test....................... 100..
Table 7-3. Collapse test matrix used for theype levelcollapse test..............oevvviiiiiemaes 101

Table 7-4. Number of edt operations at each collapse level, obtained from the log data set
used in the longitudinal study of backtracking. The number of edit operations
is significantly reduced at each collapse level...............c..ovveememmmmeeeeeeennn 105.

Table 7-5. Distribution of the different kinds of code changes at each collapse level106
Table 9-1. Summary of the evaluatio Study tasks...............ccccvvvvimmemmeec e eeeee 119
Table 9-2. Running time of the collapse logic at each collapse level (in milliseconds)25
Table 9-3. Summary of the measured response time (in milliseconds)..................... 126.
Table 9-4. Frequency of all theAzurRITEcommands that | used during 2014.............. 129

Table 10-1. Participants in our semistructured iNterviews.coeveeeevviiceccccameeaenennn. 136

xviii

Table 10-2. Participants in our usability evaluation...............cccccoviimmmmmmeeeeeeeeeeeeeevieeeee il 49

1.

INTRODUCTION

Sinceprogrammers are human,it is unrealistic to expect them to completea whole task on

the first attempt without making any mistakes.Besides programmers may intentionally
maketemporary changes to thecode, either as an experiment or to help with debugging\s

a consequenceprogrammers need tobacktrack while coding. Throughout this dissertation,

OEA OAOI OAAAE O OdGBgiamindgsyoiry Backiatlo®st padidlly td\ad earlier
state of code either by removing inserted code or by restoring removed codéand does not
refer to the algorithm for solving constraint satisfaction problems in the artificial intelligence
areaor similar (cf. [Cormen 2009). For example,programmers fix typos and correct minor

mistakes, and they try out differentvalues for parameters to methodsWhen programmers

try to learn an unfamiliar API, theymight try writing some code and running it to see if the
code works as expected, ant it does not, theybacktrack and try something else

In some situations,programmers will program in an exploratory manner. They quickly build
prototypes that meet the known requirements of the system. If the prototypes fail in some
way or uncover any fundamental flaws of the requirements, they backtrack and refine the
requirements [Sandberg 1988 Sametinger 1993. Often,problems are ill-defined, and there
is no single correct solution for these problemsRather there are several alternative solutions
with their own strengths and weaknessegReitman 1965[Simon 1973[Terry 2004]. In or-
der to evaluate each solution, thggrogrammer might implement one, backtrack, and imple-
ment another.

Also, backtrackingplays animportant role in situations where alternative solutions need to
be managed for a given taskiVhen programmers are unsure about which algorithm, library,
or Ul component to use in a given situation, then they might want to try out one of the alter-
natives to see how it works. If it does not work, then the first attempmight be reverted,
which is an example of backtracking, and another attemphight be made. Moeover, when
making another attempt after backtracking, it might turn out that the previous attempt was
better, which leads to another backtracking situationSeveral variation management tools
have been developedHartmann 2008][Terry 2004], butthese are limited in thatusers can-
not easily backtrack and add a new alternative from thergf they did not plan aheadwhere
they would need new alternatives.

Other researchers haveshown that programmers do backtrack a significant amount while
coding, much more than people do during the text editing of regular documentfard
19804][Card 1980H[MacKenzie 2002. One way to measure the frequency of backtracking is

to count the text editing commands related to backtracking, such as delete, undo, and the
toggle-comment commands executed in the code editor. The Eclipse Usage Data Collector
(UDC) kept track of the usage of commands executed by all the Eclipse users who have con-
sented to provide their usage dataAccording to the UDC data collected from Jan. 2009
through Jan. 201Q(which is the latest data published) the delete command is the wst fre-
guently executed command among all the commands executed in the code editor (at 15.32%
of all commands). The undo command wash{4.26%). Murphy et al. also reported that delete
was the most frequently executed command in their studiMurphy 2006]. Note that undo is

not the same as backtracking because undo command can only revéine most recent
changes but backtracking includes wheprogrammers revert some changes that were made

a while ago.

As part of this dissertation work,| conducteda series of empirical studies of backtracking
since little was known about tke backtracking behaviors of programmers (Chapted). My
results confirm that backtracking happens frequently. Firstit was shown thatthe backspace
keystrokes were12.41% of all the keystrokes made in the code editpwhichis a higher per-
centage for backspace compared to normal document editing (e.g., 7.10%[MacKenzie
2002]). An exploratory lab study anda follow-up online survey confirmed that backtracking
is quite common in programming, and programmers often reported having problems when
they want to backtrack. In addition, dongitudinal study was conducted with1,460 hours of
actual code editorusagedata from 21 programmers. The programmers in this study back-
tracked 10.3 times per hour on average, and 34% of all the detected backtracking instances
were performed manually without using the undo command or any other tool support.

1.1. PROBLEMUMITEDSUPPORT FOBACKTRACKING

Despitethe frequency of backtracking in development contexts, modern IDEs do not provide
much support. For example, there are no sophisticated undo mechanismsed in IDEsother
than the restricted linear undo mode[Berlage 1994. However, this restricted linear undo
model, which is widely used in most text and code editors, is not suitable for all situations.

The most significant problem is that the users can only undo the most recently ffermed
edits. This can be very inconvenient when userealize thatthey made a mistake after making
some other changes thathey want to retain. In addition, programmers may intentionally
make changes to the code that they want to remove later on. Hastance, a developer might
insert many print statements in different places in the process of debugging, then fix the bug,
and finally want to remove all those print statements. Since there would be some other
changes (for actually fixing the bug) that tke developer wants to retain after the insertions of
the print statements, the conventional undo command cannot be used for removing the print
statements.Also, when theprogrammer undoes several steps backwards and makes a new
change from that point, all he previously undone commands are discarded and cannot be
redone, because the undo model does not keep themplete command history tree but only
keeps a linear listMoreover, the undo implemented in code editors only works on one file at
a time, whereasmany edits to be backtracked span multiple files in the project.

Chapterl: Introduction 3

Another popular way of backtracking is using a version control system (VCS) such as Subver-
sionor Git. A VCS allows users to revert some code to a previous version. This is not the same
as baktracking either, because backtracking catand is actually quitelikely to) happen be-
tween two version control snapshots.In fact, version control relies onthe assumption that

the desired code is already committed to the repository. This may not alwayse the case,
especially in a backtracking situation, because it is likely that therogrammer is experiment-

ing and the code is unstable or there are many temporary code fragments that should not be
committed to the repository.

1.2. MOTIVATINGEXAMPLE

Imagine a scenario where grogrammer is working on a graphical

user interface (GUI) in Java Swingnd wants to implement a simple

panel with three vertically arrangedbuttons,as shown inFigure 1-1. Button1
There should bea fixed amount of padding inside the entire panel

and between the buttons. First, she starts out withhaving a stub

method that returns an empty panel. She then makes the following

changes in order.

Button2

Button3
1. She creates three button objects and adds them to the panel

(Figure 1-2a).

2. Running the application shows horizontally laid out buttons, so Figure1-1. A sketch of
she looks for some layout manager to use. Stiiest tries out € desired Ul
GridBagLayout (Figure 1-2b).

3. The intermediate code seems too complicated for just a simple vertical layout. She looks
for a simpler layout manager, and discoverBoxLayout . She uses undo command multi-
ple times to getrid of all the GridBagLayout code (packtrackingto Figure 1-2a).

4. She writes some code witlBoxLayout , resulting in much simpler code and verticallyaid
out buttons (Figure 1-2c).

5. She changes some properties of the buttons, such as the background color and button text
(Figure 1-24).

She now wants to finish up the layout and add some spacing between the buttons before
moving further. However, she realizes thaBoxLayout does not directly support spacing
while GridBagLayout does. Therefore, she wants to restore théridBaglLayout code she
wrote in step 2, while keeping the changefom step 5.

private JPanel createButtons() { private JPanel createButtons() {
JPanel p = new JPanel(); JPanel p = new JPanel();
p.setLayout(new GridBagLayout());
JButton buttonl = new JButton("Button 1"); GridBagConstraints ¢ = new GridBagConstraints();
JButton button2 = new JButton("Button 2"); ... (omitted) multiple lines of code
JButton button3 = new JButton("Button 3"); ... (omitted) for configuring c.
p.add(buttonl); JButton buttonl = new JButton("Button1");
p.add(button2); JButton button2 = new JButton("Button2");
p.add(button3); JButton button3 = new JButton("Button 3");
p.add(buttonl ,c);
return p; p.add(button2);
} p.add(button3);
return p;
(a) } (b)
private JPanel createButtons() { private JPanel createButtons() {
JPanel p = new JPanel(); JPanel p = new JPanel();
p.setLayout(new BoxLayout(p, p.setLayout(new BoxLayout(p, BoxLayout. Y_AXIS));
BoxLayout. Y_AXIS));
JButton button Orange = new JButton("Orange");
JButton buttonl = new JButton("Button1"); buttonOrange.setBackground(Color. orange);
JButton button2 = new JButton("Button 2"); JButton button2 = new JButton("Button 2");
JButton button3 = new JButton("Button 3"); JButton button3 = new JButton("Button 3");
p.add(buttonl); p.add(button ~ Orange);
p.add(button2); p.add(button2);
p.add(button3); p.add(button3);
return p; return p;
} (c) } (d)

Figure 1-2. The code changes for the motivating example. Thggeen highlight shows newly inserted lines, anc
the grey highlight shows updates to the existing code.

This example illustrates the problems of existing backtracking mechanisms discussed above
in Sectionl.1. At this point, theregular undo command cannot be used because she had pre-
viously used the undo command to remove th&ridBagLayout code and thenshe made
somenewchanges from theresothe needed operationshave beereliminated from the undo
stack. Even if she had not used the undcommand in step 3, the undo command would still
be inappropriate for this situation, because it will necessarily revert the changes made in step
5, which isalso not desired. Moreover, it would be very unlikely that theGridBagLayout
code had been commted to a version control system, because the code was still ancom-
plete state. The only option she now has it reproduce the GridBagLayout code from
scratch, which is inefficient. It would be much more convenient for her if there was at least a
semi-automatic way of restoring the desired code fronfigure 1-2b while keeping the subse-
guent desired edits fromFigure 1-2d.

1.3. ANAPPROACHELECTIMENDO INCODEEDITORS

These problems can beolved by having aselective unddeature in code editors. Users could
selectspecificedit operations performed in the past, for example the insertions of the print
statements for debugging, and invoke the selective undo command to revert only the code
affected by thethose operations. The results from my longitudinal backtracking study
showed that 9.5% of all the backtrackgs performed by the participants were selective,
meaning thatthey could not have been handled by the conventional undo commai8ection

Chapterl: Introduction 5

4.3). Selective undo has been well researched in the area of graphical editdBerlage
1994][Myers 1996][Myers 1998].

1.3.1. HALLENGES GROVIDINGELECTIMENDO INGCODEEDITORS

However, selective undohas not been used with text or code editors due tthe many text
specific challengesFirst, as Berlage pointed out, existing selective undo mechanisms are de-
signed to work best when the system has identifiable objects that are affected by operations,
but text does not have the notion of objects but rathehas a stream of characterdBerlage
1994]. Second, there can be mar@@egional conflictsbamongedit operations.A regional con-
flict can occur when the region of #ater edit overlaps the region ofthe earlier edit which the
user wants to selectively undo When there is a regional conflict among the edit operations,
the result of a selective undo may not be well defined. To illustrate this point, consider the
following example. An edit operationQ changes the code fromQGnyFontSize = 12 ; 6to
@nyRectangle Size = 12; dand sometime later, another operationQ changes it toGdnyRe-
gionArea =12; @ This is an example of regional conflict because the affected ranges of the
two operations are overlapping and the(Rectangle 6 text inserted by'Q is only partially
available in the current code. In this case, it is hot clear what the result of selectively undoing
operation Q alone should be. The system should be able to detect such cases jarvide an
appropriate approach to resolving them

A final challenge of providing selective unddor code is that it is difficult to provide intuitive
user interfaces forthe user tofind what to selective undo. Many existing selective undo user
interfaces for graphics present dist of edit operations performed in the past along with hu-
man-readable descriptions of individual operations [Berlage 1994[Myers 1996][Myers
1998]. However, text editing operations aremuch morefine-grained than graphical editing,
so it is had for the users to interpret the high level edit intent just by looking at the individual
text edits. In addition, graphical applications can use a thumbnail to represent a snapshot of
the graphicsat a certain point of time, which makes it easier to presnt the edit history to the
user[Kurlander 1988][Klemmer 2002][Terry 2004][Kurlander 1990][Chii 199§]. In contrast,

a thumbnail of apiece of aarge text file does not give much information to the users

1.4. AZURITEA SELECTIMENDOTOOL FOIRROGRAMMERS

To solve the problem of limited support for backtracking while addressing the challenges
mentioned above in Sectiorl.3and complement the existing toolsl deviseda novel selective
undo mechanismfor code editors, which isthe main topic of this dissertation. The selective
undo mechanism is implemented into a prototype tool calleddzURITE as a plugin for the
Eclipse IDE Figure 1-3). AzurITE allows programmers to selectively undo finegrained
changes in the code editor. To provide this functionality hie systemtakesthe stream offine-
grained code edits as inpuaind maintains the mapping between the different segments of the
current source file and the edit operations that introduced those segment$he system also
keeps track of regional conflict relationships among edit operations3ection5.1.2). The sys-
tem makes use othis information to provide selective undo in code editors $ection5.2).

] @ Azurite - Interactive Selective Undo

i ~ 5+ O Qur @il B

_ Interactive Selective Undo
5 J| MainFrame.java £3 The preview will be updated as you select/deselect rectangles from the timeline. B
2 1 frame.setDefaultCloseOperation(EXIT. -

frame.create();
frame.pack();
frame.setVisible(true); |J] MainFrame.java

Changes to be performed

}

private void create() {
this.add(createButtons());

} MainFrame.java > L3 A
private JPanel createButtons() { Current Source Preview of Selective Undo Result
JPanel p = new JPanel(); 1 }

p.setLayout(new BoxLayout(p, BoxLayt

private JPanel createButtons() { private JPanel createButtons(]
JButton buttonOrange = new JButton(' JPanel p = new JPanel(); JPanel p = new JPanel();
buttonOrange.setBackground(Color.or | -1 p.setLayout(new BoxLayout(p, p.setLayout(new GridBagla;
JButton buttonZ2 = new JButton("Butt GridBagConstraints c = ne
JButton button3 = new JButton("Buttt JButton buttonOrange = new JB c.fill = GridBagConstrain
buttonOranae. setRackaround(Co 4 c.gridx = @;
p.add(buttonOrange); : Keep this code unchanged & c.gridy = @;
p.add(button2); € JOULLUN DULLUID = new JoutCoNn o
p.add(button3); JButton buttonl = new JBu-]
3 p.add(buttonOrange); JButton button2 = new JBui
return p; p.add(button2); JButton button3 = new JBuj
1 ¢ p.add(button3):

Cancel | (LS

|* | Problems @ Javadoc (2, Declaration ¥ Timeline View o]

05:16:23 PM

[e | S N 5 s

Figure 1-3. An example screenshot ofzurITErunning in the Eclipse IDE At the bottom, a timeline visualizatior
I £ OAAAT O AT AR AEAT CAO EO POi OEAAA8 4EA OOAO EO
selectively undo the code and restore th&ridBagLayout code without losing the desired code.

In the motivating example above, the programmer can restore the deletedGrid BagLayout
code without losing the changes related tbutton Orange using AzURITE with the following
steps:

1. Find the point in time in the past where the text@ridBagLayout 6 existed in the
createButtons method usingAzURITES history search.

2. Select all the edit operations within thecreateButtons method performed since the
point found in step 1.

3. Launch the interactive selective undo dialogKigure 1-3). Then, from the left panel, indi-
cate the parts of the current code that should be kept unchanged.

4. After checking the preview of the selective undo result shown in the right pangdress the
OK button to actually perform the selective undo.

AzURITEprovides a rich set of user interfaces designed to help users complete various back-
tracking tasks. The list of steps described above jgst one example, and there are several
different ways to achieve the sameesult using AZURITE Users can usézURITEIN the way that
they feel the most comfortable.

Chapterl: Introduction 7

To evaluate the effectiveness ofzurRITEOn completing backtracking tasks, an A vs. B evalua-
tion study was conducted with 12 programmers. Thestudy results showed that the group
using AzURITEwas twice as fast compared to the control group, when completing the provided
backtracking tasks.

1.5.

THESIS

This dissertation work seeks to evaluate the following thesis statement:

1.6.

Programmers will be able to perform backtracking tasks more easily and
accurately by having a selective undo mechanisnfor code editors,

visualizationsof code changéistory designed for selective undpandhistory

searchoptions to expresswhat they remember about the previous edits that
they want to backtrack.

CONTRIBUTIONS

This dissertation makes the following major contributions:

T

Arecording tool for capturing low-level events and finegrained edits in the code ed-
itor, which is used for performing the empirical studies of this thesis work, and by
several other research institutions The recording tool is also used foproviding se-
lective undo feature in the code editor(Chapter 3)

Findings from three empirical studies to understand programmergbacktracking be-
haviors (Chapter4)

A novel selective undo mechanism for code editors that is capable of dealing with re-
gional conflicts among edit operations (Chapteb)

A novel interactive timeline visualizationof fine-grained code edit history (Chapte6)

A novd mechanism for summarizing finegrained code edits in real timeto provide
OOAI AT OE A(Chaptdri) ET C&

Novel user interaction techniques for providing usable interfaces for selective undo
(Chapter8)

Evidencefrom a user studythat the prototype selective undo toolis usable and ena-
bles programmers to perform certain backtracking tasks about twice as fast com-
pared to when not using the tool (ChapteB)

An exploration of applying the selective undo idea in a painting application using a
script-model selective undo mechanism, which discovered many interesting design
issues from the user studiegChapter10)

1.7. OUTLINE

The rest of this dissertation is organized as followSChapter2 starts with discussing the re-
lated work, including the various undo mebanisms, variation management systemsnd his-
tory visualization systems. Chapter3 presents our tool calledFLUORITE which is a logging
plug-in for Eclipse that captures all the finegrained code edits and IDE interaction$=LUORITE
was used for the empirical studies andhe evaluation studies conducted in this dissertation
work. FLUORITEIS also used as the input source afur selective undotool: it forwards all the
captured coding events to the selective undo comomponent Chapter4 presents the results
from a series of empirical studies of backtracking, which show that programmers frequently
need to backtrack and the existing tool support is quite limited. Chaptér describes the core
selective undo mechanisms, including the internal data structure maintained to support se-
lective undo and the selective undo algorithm. Chaptérintroduces the timeline visualization

of code edits, the most basic user interface for selective undo, which displays all the fine
grained code edits and allowausers to select one or more past edit operations and invoke
selective undo command. Chapte¥ describes a realtime algorithm for collapsing related
fine-grained edits and displaying higherlevel edits in the timeline. Chaptel describes a set
of additional user interfaces specifically designed for selective undo and thegtesign ra-
tionale. The described user interfaces include code history diff view, history search dialog,
and the interactive selective undo dialog presented above. Chaptdiscusses the evaluation
of our prototype tool AzURITEwWhich implements the aforementioned selective undo mecha-
nisms and user interfaces, in terms of its usability, usefulness, and performance. Chagtér
summarizes our effort on applyingthe selective undo approach in painting applications, and
presents interesting design issues not pertaining to selective undo in code editors. Chapter
11 discusses the limitations of this work and potential future work directions, and Chapter
12 concludes.

2.

RELATENVORK

This research is inspired by and was built upon previous work done in various areas, including
undo models, version control and variation management systemspllecting and utilizing fine-
grained interaction history, software visualizations, and empirical studies of code editinghis
chapter summarizes related work in each of these areas.

2.1. UNDOMODELS

One way to support backtracking is with undo commands. The ost widely adopted model
of undo is called therestricted linear undo modelBerlage 1994. The system keeps a list of all
the executed commands and users can only undo the most retly performed commands. In
this model, a redo command is also supported, and it is always performed in the opposite
order of the undo, in order to make sure that the commands are executed the same state
where they were originally executed. Although thé model is very popular and well under-
stood by the users, it has several major limitations as described in Sectidri.

There are othermore sophisticated undo models providingadditional commands beyondundo
and redo, which essentially enableselective undo in an indirect way The US&R mode[Vitter
1984] allows users toskip redoing an operation, using dree-based data stricture. Users can
selectively undo an isolated operation, by undoing multiple steps until the target operation gets
undone, skipping the redo command once, and then redoing the rest of the operatiombe tri-
adic model[Yang 198§ uses a simpler structure composed of a linear history list, and a circular
redo list which can berotated by users. Undoing an operation puts the operation at the begin-
ning of the redo list, and rotating the redo list takes one operation at the beginning tife list
and puts it at the end. Since the rotate command can be used to skip a redo command, users can
selectively undo a certain operation in a similar waytHHowever, both models require deep un-
derstanding of the underlying history structure to correctlyperform selective undo. In addition,
selective undo cannot be done in one step, which can be cumbersome for users.

2.1.1. SFLECTIMENDOMODELS

Selective undo has beemxtensively studied for object-based graphical, interactive editors.
With selective undo, users can select an operation (called tkerget operation, hereafter) from
the command history and undo that operation, isolated from the rest of the operations in the
history. There are three types of selective undo models in gendracript mode| inverse model
and cascadingselective undo

10

In the script mode| the system tries to guarantee that the final result to be as if the target oper-
ation had never been performedArcher 1984]. That is, the system rolls back all the operations
in the command history to the point immediately before the target operation was performed,
skips the target operation, and reruns all the folwing operations that were not previously un-
done. This model has not been widely used, but we adopted this model for a pikelsedpaint-
ing application (as opposed to a drawing application having identifiable objects), which will be
discussed in Chapted.O.

In the inverse mode(or direct selective undo), as introduced in GINA system §erlage,the
systemadds theinverseof the target operationto the current context[Berlage 1994. Thus, the
selective undo command itself is added to the end of the command histofthe Amulet[Myers
1996] and Topaz[Myers 1998 systemshad a similar selective undo featureand these also
allowed repeating aselectedcommand on a new objectTo support this undo model, the editor
commands should be represented by command objects, each with its owndo function
[Myers 1996] Gamma 1994. The inverse model is simpler compared to the script model in that
the rest of the command history is not affected by the selective undo command. The selective
undo for code editors described in this dissertation (Chapters through 9) uses the inverse
model.

The result of selective undo may be different between these two models in the presence of con-
flicts (or dependencies), which refer to the situations where there are some later performed
operations in the history which are dependent on the target operatiothat the user is trying to
undo. The following example, taken froniBerlage 1994, illustrates this point. Suppose that a
graphical object is recolored with operation A, and then latr that object is duplicated with a
copy operation B. What would be the result of selectively undoing A? In the script model, both
objects will return to the original color, because it works exactly as if the operation A had never
happened. In the inversenodel, however, only the original object will return to its original color
without affecting the copied object, because the undo operation is applied to the current con-
text.

There is another class of selective undo model calledscading selective undehich takes care
of the conflicts[Cass 200%. In this model, all the subsequent operations dependent on the tar-
get operation are all undone together, which eliminates the ambiguity described above. Their
user studies showed hat people could predict and understand what the system will dpCass
2006][Cass 200T.

There are other applications providing selective undo featuresSelective undo was applied in
spreadsheetqd Kawasaki 2004 by allowing users to select a region in the spreadsheet and per-
form regional unda Dwell-and-spring [Appert 2012] is a selective undo mehanism for direct
manipulation. It provides an interface for undoing anypress-drag-release interaction.

Chapter2: Related Work 11

However,unlike in these graphical applicationsit is difficult to provide a meaningful thumbnail
view of source codeso users cardetermine where to go back to. Alsghe code editing com-
mands aretoo numerous and complexto be easily displayed in a command history list box
where the user can choose onef the commands on the list.

Finally, dl of these approaches assume that there is an object on which the operations can be
performed: primitive graphical objects such as shapes in graphical editors, and individual cells
in spreadsheets. In contrast, thex is no clear notion of objects in texand codeeditors,! since
edit operations typically affect ranges of text, and the text itself moves around and is changed.
The same problem occursn painting programs, since edit operations tpically affect areas of
pixels.

The issue of conflicts among operations is not limited to the objettased graphical editors. In
fact, text and code editors face the exact same issue when the region of a later performed edit
operation overlaps with the region of another earlierperformed edit, which is referred to as a
regional conflict(see Sectiorb.1.2). In AZURITE when the user tries to selective undo some edit
with one or more conflicts,AzURITEprovides the user with several alternative results to choose
from.

2.1.2. REGIONAUNDO INTEXTEDITORS

Some text editors such as Ematand DistEdit[Prakash 1994 support regional undo, where
the user undoes the most recenbperation that affected a specific selected region of texivhich
can be seen as a special case of selective uridegional undo is useful and also relatively easy
to implement compared to the generic selective undo, because it always undoes the most réce
operation performed in the selectedregion, which guarantees that there are no regionaion-
flicts with the target operation. Regional undds directly supportedin AzurRITEUSingakeyboard
shortcut, by searching for all edits for the region of code and invoking selective unam the last
one, or by using code history diff view and using the revert buttarin regional undo, however,
there can bean ambiguity if the user selects a region which partially eerlaps with an opera-
tion® effective region. Li and Li refer to this problem as region overlapping, and introduce the
idea ofpartial undo as a solution, which undoes only overlapped part of the operation when an
operation partly falls in the given undo egion[Li 2003]. In this situation, AzZURITEwould do the
samething when using the code history diff viewor the regional undo shortcutto revert a cer-
tain region of code to one of the previous versions

1 In fact, projectional editors (or structured editors) such as JetBrains MP &t{ps://www.jetbrains.com/mps/), in
which users can directly edit the underlying document structure (e.g., abstract syntax tree), do have objects.
However,they do not usually provide selective undo features, but in theory, it would be possible to apply the
existing selective undo appoaches to implement perobject selective undo.

2 http://www.gnu.org/software/emacs/manual/htm|_node/emacs/Undo.html

https://www.jetbrains.com/mps/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html

12

2.1.3. TREEBASEDUNDOMODELS

As seen in the US&R mod§gVitter 1984], one way toextendthe conventional linear undo is to
keep the edit historyasa tree instead ofasa linear list. When the user undoes multiple steps
and makes a new edit from there, it arates a new branch in the history tree anguts the new
operation in it, while keeping the previously undone operations in the previous branctone of
the problems of this approachis that it becomes difficult to provide useful and usable interfaces
for users. Moreover, selective undacannot be clearly presented in a history tree, because a se-
lective undo command would create a new node which has never been visited before, thus mak-
ing it not distinguishable from any other normal operations in the history

Several text editors and plugins provide tree-structured visualizations which allow users to
move aroundamong thedifferent nodes and make new changes from any of the existing nodes
[Losh 2017[Cubitt 2010]. However, as the edit history gets bigger, it becomes more difficult to
understand the history because the nodes do not provide sufficient useful information for the
user to navigate the tree.

2.1.4. OPERATIONAIRANSFORMATION (XOLLBORATIVEDITING

Another use of selective undo is in collaborative editing, where multiple people can edit a doc-
ument concurrently, which has been studied by various systems (e.gEllis 1989][Berlage
1993][Choudhary 1999[Prakash 1994[Sun 2003). For a reattime collaborative editing
tool, maintaining consistency of a document across different sites is a major challengethe
presence of multiple local copies of the shared document and network latency. To address this
problem, a line of technology calleaperational transformation (OT) has evolved by the Com-
puter-Supported Cooperative Work (CSCW) communiffsun 1999. OT provides formal foun-
dations for maintaining consistency properties.

Sun gives a good summary of how OT can be used to perform a selective undo operation cor-
rectly in a collaborative editing environment[Sun 2003. The highlevel idea is that when a
selective undo of operation0 is invoked, the system processes the undo command as if it was
an inverse operation0 generated immediately after0, that is concurrent with all the other op-
erations afterwards. Then, the system can process the undo operation usitigg well-defined
rules of OT.

This approach has a number of major differencefsom the selective undo approach described
in this dissertation. First, because the main purpose of OT is to maintain document consistency,
this approach is excessivelyomplicated for the purpose of providing a singleuser selective
undo.3 Second, the Obased undo approach modifies the history buffer. After successfully un-
doing operation U, the inverse operationd would be added to the history buffer immediately
after 0, and all the rest of the operations in the history buffer would be transformed against
Essentially, this makes the) 2 U pair a no-op, and works similar to the scriptbased selective

3 Joseph Gentle, author of ShareI®f://sharejsorg/ Qh A xAA 1 EAOAOU &£ O /4h OAUO 0O) Ai
7AOA OITE ¢ UAAOO OI xOEOA AT A EE xA OAxOi OA EO Oi AAUh EO

http://sharejs.org/

Chapter2: Related Work 13

undo model. In contrast AzURITEuUsesS the inverse model and alwgs adds the undo operations
at the end of the history.

Finally, and most importantly, the issue of regional conflict is still not very well defined in QT
based undo approach. Due to the inherent complexity of the consistency issue, OT literature
almost always considers only two primitive edit operations: single character insertion and sin-
gle character deletion. When the edits are limited to single character, the regional conflict does
not even occur, because the edits do not have the notioneafit regions However, this may not

be very practical, because users would not want to undo only individual character level edits.
For example, most of the available text and code editors automatically group a series of charac-
ter edits and make it possible to undo at &igher-level. Similarly, pasting text over a selected
region causes a range of text to be replaced.

2.1.5. OTHERUNDOMODELS

Similar to operational transformation approachHayashi et al. proposed the idea of edit history
refactoring, which is a restructuring of an edit history without affecting the final result of the
code, and implemented it in theirsystem called Historef{Hayashi 2019[Hayashi 2015. His-
toref also provides a selective undo feature using history refactoring. The selected operations
are first moved to the end of the history usingwaprefactoring, the changes arenergedinto a

Return to Any Selecting Target

Undo Model Structure Previous State? Selective Undo Support Operation(s) Reference
Restricted

. Linear list Not Supported N/A Berlage 199
Linear Undo PP [9 b

. [Losh
History-Tree .

) y . Tree Yes Not Supported N/A 2012[Cubitt
Visualizations

2014
Photoshop) .
Noninear Undo Nontlinear list Yes Not Supported N/A
RevisiorControl ~ Directed acyclic
y Yes Not Supported N/A [Chen 2011
for Images graph
Undo, skip, th d . .
US&R Tree ndo, Skip, then redo Indirect [Vitter 1984
(manua)

- Undo list + Redo Undo, rotate, then redo .

Triadic Model . I Indirect [Yang 198B
list (rotatable) (manua)

. Archer 198
ScriptModel . . Pretend that the target . [. 3
Selective Undo Linear fist operation never happened Direct Aguamarine

P PP (Chapter10)
[Berlage 1991
| M | Add the i i M 1
nversg ode Linear list Yes dd the inverse operation Direct [Myers 1996
Selective Undo at the end AZURITE
(Chapters-9)
C di Undo all th flicti
asca. ng Linear list " o? © contlicting Direct [Cass 2005
Selective Undo operations together

. . . Filter theoperations in the . [Li 2003
Regional Undo Linear list . By region .

9 region, and undo them yreg [Kawasaki 2004
Histor: . . Move the target . .

y . Linear list Yes . 9 Direct [Hayashi 201p
Refactoring operations to the end
Table 2-1. Feature table of the existingsingle-user undo models.

14

single operation, and then the inverse operation of it is executed. This approach, however, can-
not addresssituations where the operations conflict, which our selective undo can handléis-
toref also does notprovide any visualizations or history search mechanisms that would help
users tofind and selectthe operations to be undone.

I ATAA OET O1 OEI P POI OEAAO A EBEEGEOIAGAW >ORTAATH ABDDE
ferent from selective unde when the user undoes operations and then does new ones, Pho-

O1 OET Bliear uhdb fletains the undone operations on the undo stack rather than remove

them. However, future undos still start at the last operation and continue backwards through

all previous operationsin order.

Chen et al. presentednother systemthat provides arevision control system for images based
on a directed acyclic graph (DAG)which enables users to make forks and joins and then move
around in the history and see various versions amages[Chen 201]. However, it does not
support selective undo or the scripimodel.

As a summary, a feature table of the existing undo models for singlser environments de-
scribed above is provided inTable 2-1.

2.2. VERSIONDONTRQANDVARIATIONMANAGEMEN®YSTEMS

A version control system (VCS) can be seen agagiation management systeniConradi 199§.
Traditional centralized version control systems such as Subversidrelp programmers to revert
a file or a set of files to an older version whenevetosnething goes wrong with an experiment.
However, there are many cases whera VCSannot directly helpwith backtracking. As men-
tioned in Sectionl.1above, theuser must think to committhe desired version which may not
happen if the programmer only later realizes that backtracking is needed It may not be even
possible touse a VCS toommit a certain variation when that version contains unstable code,
which is likely to be the case during an exploration.

2.2.1. FEATURES (BT RELATED T&LECTIMENDO

In recent years, a distributed version control system (DVCS) called &@iecame one of the most
popular version control systems in the software development commuity. The 2014 version of
the Eclipse community survey reports that Git is the first most used VCS (33.3%), surpassing
Subversion (30.7%), which used to be the dominant tool. In a DVCS environment like Git, a pro-
grammer normally works with a local clone ofthe public repository, and pushesthe local
changes to the shared repository only when the local version seems to be stable. This style of
workflow can mitigate the problem of committing an unstable piece of code because the local
clone does not affect tke repository of other colleagues, although committing is still a fairly
heavyweight process.

4 http://git _-scm.com/

S https://ianskerrett.wordpress.com/2014/06/23/eclipse -community -survey-2014-results/

http://git-scm.com/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

Chapter2: Related Work 15

Git provides a large set of powerful features, some of which are closely related to selective undo.
When the changes to the code that the programmer wants to undecalled target changeshere-
after) are already grouped as a single commit in the history, there are multiple ways to revert
that particular commit in the current context, which is essentially selectively undoing the
changesatacoars€ OAET AA ithe@h 1 & 4AE A &4 Be Ased to create an inverse
commit of the target commit and it adds the new commit at the end of the commit history. Git
Al 01 DPOI gricledyO -Gk H @ 1 1 iwhithAs essentially aselective redacom-
mand. Using the cherrypick command, users can apply some tiie changes from one branch

to another. This command can be used to mimic selective undo between branches, because us-
ers can cherrypick all the commits except for the commit containing thedrget changes.

One limitation of this approach is that the target changesiust have already be isolated as a

single commit, separatedfrom the other changesin other words, if the target changes arén-

termixed with other changes in asingle commit, itcan bevery tedious to selectively undo only

the target changesAnother limitation is that the revert and the cherry-pick commands can

cause regional conflicts, in which case the user has to manually &ll the conflicts and then

commit again. Although regional conflicts can also occur #zZURITE there are a few important

differences. First, because Git keeps track of the libevel changes the regional conflict may

occur even if the changes are not overlapping, when the changes are made in the same line. For

AoAi p1 Ah EIi ACETA OEAOA EO A OAOEAAIT A AAAI AOAOET I
foo=1;, 6 j OpQ8 4EA OOAOGNARAECAO | Ok (GO MiindkA OGIAT O

2,6 j O0GoQqs ! OO0Ii ET ¢ OEAOA OEOAA OAOOETIT O AOA OAPA
able to use thegit revert command to undo the variable name change. However, because

these two changes were made in the same line, Git will produe@ error message indicating

that there is a conflict that needs to be resolved by the useFigure 2-1), and when the user

opens the file, the conflicting part is marked as shown iRigure 2-2, and the user needs to man-

ually fix the code to the desired state and then invoke thgit commit command to finish the

revert operation.

error: could not revert 6a7f7ad... Foo to Bar

hint: after resolving the conflicts, mark the corrected paths
hint: with 'git add <paths>' or 'git rm <paths>"'

hint: and commit the result with 'git commit'

Figure 2-1. Error message generated by Git showing there is a conflict that should be resolved.

<<<<<<< HEAD
int bar = 2;

int foo = 1,
>>>>>>> parent of 6a7f7ad... Foo to Bar

Figure 2-2. The content of the file that has the conflict. The user need to manually resolve this conflict and tt
make another commit to finish the revert operation.

16

In contrast, selectively undoing the variable name change usifgURITEwWould not result in a
conflict, becauseAzURITEKeeps the accurate regions of the individual edits, even within a single
line. Even when there is a conflict, the conflict resolution could be done by simply clicking one
of the options provided byAzURITE which is much easier compared to the manual coidt res-
olution process of Git. Granted, there are numerous thirgarty visual merge tools that can be
used in conjunction with Git which helps resolving conflicts (e.g., DiffMergéAraxis Merge),
but they still require some manual work from the user.

There is another situation where Git can help achieve selective undo. Suppose that there are
local code changes which are not yet committed and some of those changes should be selec-
tively undone. In other words, only some of the local changes should be seieely committed.
4AEEO AAT AA A AEaHA O-A patchd'@dirimgnd @tiichA pre8ents an interactive
command line interface where the user can review eadmnk (Git terminology referring to a
contiguous lines of changes) in the local changes andaide whether to include the hunk in the
commit or not. The closest feature provided ilzURITEIs the interactive selective undo dialog
(Figure 1-3, Section8.4), which allows users to review the selective undo result and dynami-
cally add or remowe edit operations.4 E Ait a -- patch " command, however, cannot be
used to restore code that is neither in the committed code nor in the local changes (i.e., some
code that was produced after the last commit but removed in the current local version),
whereas AZURITECan be used to restore such code.

2.2.2. LOCAIHISTOR¥EATURES ORTEGRATEDEVELOPMENGNVIRONMENTS

Most of the popular IDEs support local history keeping featuresyhere the snapshots of each
source file is automatically kept in a history upon fe save (e.g., Eclipse, Visual Studjer as
the code changes (e.g., NetBeanXyode 4 has a feature called Version Editor, where the history
of a file is displayed in a code compare view with two panels, and users can move through the
history using the vertical timeline located between those two panelsHowever, these features
are limited compared to AzURITEIn that (1) the history is shown in a linear list without any
human-readable descriptions or cues(2) changes can only be seen at the file levéB) history
search is not supported, and4) selective undo is not directly supported, so users must com-
pare the local and the desired older versionand merge the wanted changes manually. Similar
to theselDEs, cloudbased text editors such as Google Dasspport linear revision history, but
with the same limitations.

2.2.3. OTHER/ARIATIONMANAGEMEN$YSTEMS

Backtracking becomes important when trying out multiple alternative solutions. There exist
several tools that help with variation managementiuxtaposq Hartmann 2008] enables devel-
opers to add an alternative at any time, and allows them to move@mongalternative source

6 http:/Mww.sourcegear.com/diffmerge/

7 http:/Aww.araxis.com/merge/index.en

8 http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto -history -extension-in-visual-studio-2013.aspx

http://www.sourcegear.com/diffmerge/
http://www.araxis.com/merge/index.en
http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto-history-extension-in-visual-studio-2013.aspx

Chapter2: Related Work 17

files. When testing the application, multiple alternatives can be juxtaposed and the developer
can compare the results directly. AlspJuxtapose automatically generates widgets for tunable
application parameters so that the developer may change the valuasrun time and see the
results without recompiling the whole application. Terry et al. proposedhe Parallel Paths
model [Terry 2004], which allows users to create a new variation at any time aroundsingle
command invocation, see the variations simultaneously in a single workspacand edit them
individually or as a whole.However, users must know in advance when they want to add var-
iations in Juxtapose, and Parallel Pies wks only in the graphical editing contextBarista [Ko
2006] had an alternative expressions tool which allows selecting an alternative by clicking on
one of the listed choices, but it was restricted to the expression level.

2.2.4. FORMALREPRESENTATIONSVARIATIONS

Other work has studied ways toformally represent and manipulate source code variations.
Choice calculus provides a generalized representation for software variations at the code level
and provides theoretical foundations of variation managemenfErwig 2011][Walkingshaw
2013]. Choice calculus provides a syntax to represent variations within a variational program,
semantics for the representation, and semdit preserving transformation laws which can be
used by tools implementing choice calculus.

Consider the following examplé variational program using choice calculusKigure 2-3a).

function Name<time,dur> (n) { function time (n) {
return Traffic<4,7>*n+ Traffic<10,8> return 7*n + 8
} {Name, , Traffic, } }

@) (b)
Figure 2-3. An example variational program annotated with choice calculus (a), and one of the variants obtair
by selecting the first alternative from Name dimension, and the second alternative from the Traffic dimension (

v

In this variational program, there are twodimensionsNameand Traffic . Each of these dimen-
sions has twoalternatives. For example, thdNamedimension has two alternatives:time and

dur . The named tuple of alternatives (i.e., dimension + alternatives) duasName<time,dur>

is called achoice A programvariant can be obtained from a variational program byselecting
the index of alternatives for each dimensionFigure 2-3b is an example variant obtained by
selecting the first alternative of theNamedimension, and the second alternative of th&raffic
dimension. Note that theTraffic ~ dimension appears in multiple locations in the variational
program. Inthis case, all the choices with the same name (dimension) should have the exact
same number of alternatives, and only the alternatives at the same index can be selected to-
gether. For example, the alternativeg and 8 cannot be selected together in the exaple.

Although the original motivation for choice calculus is to support developing, maintaining, and
analyzing variations in software, for example in software product lines, it is also closely related

9 This example was originally created by Martin Erwig.

18

to selective undo. In theory, each code edit can beatrslated into a new choice, which is called
the choice edit modelln this model, an Insert ofoo can be can be represented as a choice
X<a,foo> , a Delete ofoo asY<foo, a>, and a Replacement dbo to bar asZz<foo,bar>
Given a variational programannotated with this choice edit model, selective undo can be per-
formed by selecting a different alternative for a particular dimension, while leaving the rest of
the selections unchanged.

Using this choice edit model for selective undo is interesting in seral aspects. First, regional
conflict can be modeled as nested choices. Users could either undo a certain edit along with all
the other edits depending on the target edit (i.econflicteesas defined in Sectiorb.1.2) or leave

the code unchanged. To compare this model with the conflict resolution interface AZURITE
this model would only provide the options A2 and A3 without providing Al (Sectios.2.2.2.

Another interesting aspect is that semantic dependencies (e.g., renaming method in the defini-
tion and all its callsites) can be represented as a samm@amed dimension appearing in multiple
locations of the variational program. Note, however, the notation@es not provide anything
abouthowto determine these semantic relationships among code edits.

A fundamental limitation of this model of selective undo is that it is difficult to translate all the
fine-grained code edits into the choice edit model in praite. Since the amount of fingrained
edits generated in the code editor is fairly large, the variational program using the choice edit
model would get more and more complicated very quickly with lots of dimensions and nested
choices, which is likely to bainmanageable for the users.

2.3. GOLLECTING ANIDTILIZINGANEGRAINEONTERACTIONATA

As part of this dissertation work, a longitudinal study of backtracking was conducted by ana-
lyzing fine-grained code edit logs captured by ouFLUORITEtOOI (Section4.3). This study can
be seen as a software evolution study performed at a firgrained level. While mining software
repositories [Kagdi 2007], a popular software evolution research methdology, works at the
commit level, our analysisvas performed at the individual code edit level. Fothe backtracking
study, it was necessary to use théine-grained history, because prgrammers would often
backtrack while experimenting, and the intermediate versions are very unlikely to be captured
in version control system histories which motivated the development ofFLUORITE(Chapter 3).

2.3.1. AHNEGRAINEONTERACTIONATACOLLECTIOROOLS

There exist other tools that capture finegrained code edits and/or user interactions with the
IDEs.Mylyn keeps track of the usr interaction history internally in order to derive the task
context [Kersten 200G[Murphy 2006]. Using the Mylyn Monitor AP} investigators can re-
trieve the user interaction data fortheir own analyses FLUORITEdiffers from the Mylyn Monitor
in that FLUORITEfocuses more on the details of the user interaction in theode editor, whereas

10 http://wiki.eclipse.org/Mylyn/Integrator Reference

http://wiki.eclipse.org/Mylyn/Integrator_Reference

Chapter2: Related Work 19

the Mylyn Monitor collects moreabstractuser interaction data on theentire IDE. For example,
when the programmer selects a class from the package explorer, Mylyn Monitor logs that there
was a selection event from the package explorer with the name of the selected class, whereas
FLUORITElIogs exactly which file was opened, and the offset and length of the highlightekt
(i.e., the name of the class) in the file.

The Eclipse Usage Data Collector (UDO)as another useful source ofprogrammers6Eclipse
usage datea? The UDCcollectedusage information from all the Eclipse userall over the world
who consented to upl@d their usage data tahe UDCThe UDCpublicized several usage reports
including the commands report. These reports have been used by many researchéesy.,
[Parnin 2009][Murphy-Hill 2009]). However, the commandiusagereport from UDCwas not
suitable for my backtracking studybecause it did notcapture some important commands exe-
cuted in the code editor. It ignorel many of the most frequent keyboard commands such as
navigating source code with arrow keys and deletinthe previous charader with the backspace
key because they are not explicitly bound a&clipse commands or keyboardghortcuts. In con-
trast, FLUORITECOllects all commands regardless dfow they are invoked.

There exist other research tools that capture finegrained code changes afLUORITEdoesS.
OperationRecorder[Omori 2008] and CODINGTRACKER] Vakilian 2012][Negara 2013[Negara
2014] both take the raw text changes as inputs and turns them into ASdvel change opera
tions, whereasFLUORITElogs all the textual changesas-is. IDE++[Zhongxian 2017 is a system
that captures all types of IDE interactions, which are not limited to code editShe data can be
used in various ways, and there are other researens who have analyzed their own fine
grained code change data to extract different informatiorivakilian et al. collected detailed us-
age data of Eclipse refactoring tools using theftoDINGSPECTATOR0OI, and analyzed the data to
discover usability problems of the refactoring tools[Vakilian 2014]. In their analysis, they de-
tected the situations where the users used the refactoring tools in a way that is not ideal, indi-
cated, for example, by cancellations or undoing of the refactoring command&s another
example CODINGIRACKERIogs were analyzed g adapting existing data mining techniques
[Negara 2014, which is different from our pernode history keeping approachThey identified
10 previously unknown program transformation patterns. This shows that analyzig fine-
grained code change history can be useful in many different way$his line of empirical
research is being continued by a team of researcheri(the COPEproject: ChangeOriented
Programming Environmentsdh AT A OEAU AOA O &ébvariidevelgpmend OAT T DA O«
practices using the finegrained logs they are collectingAlthough CoDINGTRACKERand IDE++
are similar to FLUORITEIN that they also capture the finegrained codeedits from the code
editors, | could not use them, unfortunately, becausthey were independently developed by
different research groups in parallel withFLUORITEand could not be integrated with AURITE

11 https://eclipse.org/epp/usagedata/
12 ynfortunately, the Eclipse Usage Data Collect¢uDC) project has been discontinued since 2010.
13 http://cope.eecs.oregonstate.edu/

https://eclipse.org/epp/usagedata/
http://cope.eecs.oregonstate.edu/

20

2.3.2. REPLAYINGINEGRAINEONTERACTIONATA

Sydeis atool for Eclipse that can record finegrained change history of Javlasedsystems in
multi -programmer settings [Hattori 2010a][Hattori 2010b]. This tool is intended to increase
team awareness andhelp programmers understand thecodeevolution, butit could be used to
track the editor usage as well. Syde differs frorRLUORITEIN that it records changesat the ab-
stract syntax tree (AST) level, not the textal level. Also, it only records the operations which
modify the AST and sofor example, theSelectText command will not be recorded by Syde.
As a followup tool, they developed Replay, a tool that can be used to replay the changes rec-
orded with the Syde t®l [Hattori 2011]. Their empirical study showed that programmers an
answer the software evolution related comprehension questions in a significantly shorter time,
when compared to using a traditional version control system.

Fine-grained code edit scripts can be used for creating coding tutorials with examples. JTutor
[Kojouharov 2004 is a coding tutorial creator / replayer tool suite for Eclipse foistudents who

are learning Java programming. Similar t6LUORITE JTutor uses an XMbased data structure,
with the initial snapshot and all the subsequent changes represented as individual steps. Simi-
larly, SmartTutor [Zhang 2009 is a tutorial recorder / replayer tool that works in Eclipse, but

it focuses on teaching how to use the IDE features, while JTutor focuses more on teaching how
to program. Ginosar et al. created a coding tutorial editor todbr the Processing language, but
the main focus was to make it easier for the tutorial creators to edit the existing tutorial scripts
with tool support [Ginosar 2013.

2.3.3. USE OIFNEGRAINEDCODEEDITS INREFACTORING

BeneFactorfGe 2017 is a refactoring tool that detects ongoing, incomplete manual refactoring
while the programmer is editing the code and offers a command to finish the rest thfe refac-
toring activities automatically. The refactoring detection process involves monitoring the fine
grained code edits and checking if a series of code edits match one of the-gedined refactor-
ing patterns, which are defined as state machines. Ontte programmer asks BeneFactor to
finish the manual refactoring, BeneFactor rolls back the manual refactoring (to revert the code
context to the state where the automatic refactoring command can be correctly executed), and
then invokes the automatic refacbring command to finish the desired refactoring. If the pro-
grammer made some interleaving edits with the manual refactoring that are independent from
the refactoring, BeneFactor preserves those independent edits while rolling back. Interestingly,
the paper refers to this process asselective undpbecause only the edits that are part of the
refactoring are being undone selectively. The selective undo here is an internal algorithm used
to achieve the refactoring, not an explicit command that can be invokeg the users. The actual
selective undo algorithm used in BeneFactor is similar to the scrigiased selective undo model:
all the edits are undone first, and then only the nomefactoring edits are reexecuted, skipping
all the refactoring related edits.

Chapter2: Related Work 21

2.3.4. ANALYZINGINEGRAINEONTERACTIORATA TADISCOVERISABILITPROBLEMS

Detailed tool usage data camlsobe used to identify usability problems of specific tools. Akers
et al. devised a study method calledbacktracking analysiswhich is designed to capture usability
problems of graphical creationroriented programs such as Google SketchUpkers 2012). To
capture richer contextual information, their system automatically captured both the screens of
participants and the backtracking events such as undo or erase. In their backtracking analysis,
backtracking events are assumed to be indicators of usability problems of the creati@niented
programs. In contrast, our work aims to support programmers to backtrack more easily and
effectively, with the premise thatbacktracking events in code editing are natural in exploratory
programming activities.

2.4. EDITHISTORWISUALIZATION® SEARCHOOLS

One of the most important user interfaces provided izURITEIs the timeline visualization of
code edits (Chapter6). There are other edit history visualizations using timelines. Chronos
[Servant 2017 shows the results of history searches in a zoomable timeline. Since Chronos is
designed to work with coarsegrained version control history, however, it is not adequate for
visualizing a large amount of small eds. CodeTimeline[Kuhn 2012] is a visualization for pre-
senting the social historyof a software project, similar to Facebook Timeline.Programmers
can manually add sticky notes or photos to recall the social events associated with the project.
It also visualizes some level of edit history information such athe lifecycle of all files andthe
code ownership Automark4is a plugin for Visual Studio, which generates a HTML or Mark-
down formatted coding history including the actual code edits, visited Stack Overflow questions
IO AT AOi AT OAGETT PDPACAOh xEEAE EO AAOGECT AA
after an interruption [Parnin 2012] or facilitate sharing a coding historywith other people. The
software evolution Storyline [Ogawa 201Q is another timeline visualization which focuses on
who contributed to the project over time.These history visualization tools areprimarily de-
signed for helping people recall and share memories, not for providing editor commands as
provided by AZURITE

Aquamarine, our prototype painting application providing selective undo features (Chaptet0),
displays the past interactions in a graphical History pand{gure 10-1). There has been signif-
icant research on such displays. Chimera provided graphical histories as thumbnail snapshots
which could be edited ad re-used, and past actions could be modifiegKurlander 1988], but

EA

AT 1 £ EAOO AilTiTc¢c T PAOAOETT O xAOA 1710 OPAAEAEAAI I

shapghots of the history of states of a web editing session with multiple users and keeps track
of forks among versiongKlemmer 2002]. Systems have also used graphical histories to foster
learning [Chi 2017[Grossman 201() and creating macros for later reuse[Kurlander
1988][Lieberman 1997.

14 https:/ivisualstudiogallery.msdn.microsoft.com/078d00b7 _ -dfbd-4cfa-97f9-8be08bb510ee

https://visualstudiogallery.msdn.microsoft.com/078d00b7-dfbd-4cfa-97f9-8be08bb510ee

22

There are systems that providehistory search, whichhasalsobeen calledistory slicing.60p-
erationSliceReplayefMaruyama 2017 uses the AST data kept by OperationRecordgdmori
2008] to filter the changes that affected a certain class membé&hronos[Servant 2017 uses
the version control snapshots to trace backo find which commits affected a certain area of
code. The search scope @hronoscan be as small as a single lin€hese history search features
are limited to region-based search, whereas the history search 8ZuRrRITEcan find the target
text in the history, even when the text does not even exist in the current code.

2.5. BVIPIRICAISTUDIE®FSOURCEIODEEDITING

There have been general studies about programmeiisode editing strategies but not for back-
tracking specifically. Kim et al. studed copying and pasting in the programming contex{Kim
2004]. Ko et al. analyzed programmei&haracter level codeediting strategies[Ko 2005k]. In
that study, comment edits wee 3% of all edits and 60% of the comment edits werdor tempo-
rarily commenting out code. Empirical studies on software evolution (e.g. refactoringMurphy-
Hill 2009][Kim 2011]) also focus on howprogrammers make changes to code over time, but
they are often limited to revision-level changes.

2.6. CONCLUSION

While researchers have been stuging various human aspects of softwaredevelopment, the

knowledge aboutD OT COAT | AOOS6 AAAEOOAAEET ¢ AAEAGHI O xAO O
empirical studies of backtracking, whichare discussed in Chapted. Many undo modelshave

beenproposed to help userdacktrackand facilitate exploration,but none are directly applica-

AT A 01 O1T AAUBGO O1 OOA Adudtb thélr linktdtien®. Ehie @xisthog @80T T 1 AT OO
models do notdescribe how to handle the edit operation conflicts ira code (or text) editing

context. Version control systens canhelp programmers backtrack thér code changes, but only

if those target changeshave already been committed and are well separated from the other

irrelevant changes In Chapters3 & 5, | explain howAzuRITEcanmake use of the finegrained

code edits to provide and handle edit peration conflicts.

Moreover, there is little evidence thathe existingundo models are actually usable and useful
for the users.In Chapters6-8, | describe a set of nosl user interfaces designed for selective
undo, and then evaluate tbsedesignsin Chapter9.

23

3.

CAPTURINGNEGRAINEDCODINGEVENB
FROM THEODEEDITORS

Little was known about thebacktracking behaviors of programmersvhen this research started.

| first looked for existing research methods or data that | could analyze to gain more insights
about backtracking, but noneof them were suitable for the purpose of understanding back-
tracking behaviors. Therefore, | created my own fingyrained coding event data collection togl
which is the main topic of thischapter. First, the existing research methods and data sets are
reviewed, and why theywere not suitable for the backtracking researchs explained.

3.1. RELATEMWORK

There are many different sources ofrogrammerséusage dataeach with its own strengths and
weaknesses. One way is to directly ask tipgogrammers who regularly use the target program-
ming language or tool through interviews orsurveys. Although these methods are effective and
the investigators can get useful insights about the target feature, the responses from the sub-
jects may not bereliable. For instance, many operations arperformed quite automatically by
the programmers (e.g., the undo command)so it ispossible that they could report that they
useafeature a lot but ®uld not remember the specificoccasions

Another way of gathering usage data is performing contextual inquiriggeyer 1997] or exper-
iments in lab settings. Often, the participants are required to think aloud while performing their
tasks, and their screen and voice are recorded for further analyses. However, the experimenter
must then manually inspect the videotape(as was donein [Ko 2004][Ko 20054[Coman
2008][Ko 2003)]) in order to analyze the results, which can be timeonsuming and errorprone.

Usage data can also be obtained by mining softwarepositories and their revision histories.
For example, nany researchers have used this method tgain insights about code clone$Kim
2005a][Aversano 2007[Bettenburg 2009] and how the programmers refactor [Murphy-Hill
2009][Xing 2004[Kim 2011]. There is plenty of available data in the open source software re-
positories and from industry, and the data can be analyzed automatically. One problewth
this method is that we still cannot knowwhat events happered between two consecutive revi-
sions. Instead, we can only infer what types of commands tpeogrammers might haveused to

15 Portions of this chapter appeaed in [Yoon 2011].

24

change the code from one revision tthe next Also, some of the popular version control sys-

tems such as Git provide the ability to etlthe existing commit history (e.g., rebase, squash) and
thus there is a high chance that the public repository does not show the software evolution
history as it actually happenedBird 2009].

When studying the backtracking behavior of programmersmining software repositories is
inadequate andhaving access to the lowevel code editing and/or tool usage data becomes
even more important, because it is likely thamuch backtracking is done as part of some ex-
perimentation locally, without being committed to public source code repositoriesilthough
there were several existing methods for gatheringtool usage datathere was nonethat was
suitable for analyzing finegrained code editing historywithout requiring laborious manual
inspection.

3.2. H.UORITEHNEGRAINEDCODINGEVENTLOGGER FAECLIPSE

In order to addressthese limitation s, | built a publicly available event logging plugn for
Eclipse calledFLUORITES as part ofmy research FLUORITEkeeps track of all of the events that
occur in the code editor and saves the log files in XML forina

The granularity of events thatFLUORITHoOQs is very fine since it logs character typing, moving
the text cursor, changing the selected text, and all other Eclipse commands executed in the
code editor. FLUORITENot only logs thecommon metadata such agommand IDsand the
timestamps indicating when the command was executetut alsoadditional parametersspe-
cific to the type of command For examplea Find commandhas additionalsearchText and
replaceText parameters. In the case of text editing events, the insertethd/ or deleted text

is also recorded.

What makesFLUORITEUnique is that FLUORITES time-stamped and detailed event logs enable
us to analyzethe programmersécomplex code editing strategies whih are often composed

of sequencesf commands. For examplét was seenin the collectedlogs(see Sectiord.1) that
backspace was 12.41% of all the keystrokes ioode editing, and itwas often used in se-
guences of more than four backspaces in a row (4.3 averagg generally used to fix typos

or rename variables. This type of analysis cannot be done using the types of usage data avail-
able from thechangelog histories, or other high-level logging tools

Although the Eclipse Usage Data Collect@dDC) data provides the detailed timestamp of the
editor commands executedwhich enables the event sequence analysis, the data does not
contain the actual source code or the fingrained textual changesln contrast, with FLUORITE
logs,using the snapshots of the initial source files and the deleted / inserted text from all the
commands, it is possible to completely reproduce any filenapshot at any given time. This
enables us to know inwhat situation a command was executed.

16 FLuoriTEIs a mineral, and here it stands forEull of Low-level User Operations Recorded In The Editor .

Chapter3: Capturing FineGrained Coding Events from the Code Editor 25

Since theFLUORITHOg files contain the actual source code in therthe tool should not be used
in a situation where the source code is confidentiallhis is what makes it difficult to collect
data from the software industry, where most of the code is proprietary. It may also be inap-
propriate to share the collected data, and we could not publicize the logs collected during our
empirical studies for thesame reason (Chapte#).

To mitigate this problem,FLUORITEdOes not upload log files automatically, so in a field studly
the investigator would have toask thestudy participants to send the log files whenever the
code being edited is not confidential.

FLUORITEis useful for many different purposes First, it can be used in lab studies or field
studies for evaluating existing toolsFLUORITHogs can be used toetect and measure the time
for various usage patterns or events of interest, without needing the experimenter tmanu-
ally annotate a videotape.FLUORITECanalsobe useful for motivating new tools. Keet al.labo-
riously hand-analyzed videotapeof codeediting in their study of Eclipse editing[Ko 20054,
and showed that people spend significant time scrolling, which motivated interesting new
tools. FLUORITEWIll provide an easier way to get such dataand thusmight help motivate other
ideas for new tools that would help programmersn the future. In addition, asdescribedlater
in Chapters5 & 6, FLUORITE® O | T CCET Ccarbe dsedAn réwltinlib@oEsdpport novel
code editing operations that depend on the history.

3.3. HUORITHVPLEMENTATION

FLUORITES implemented as an Eclipse plugn because Eclipse is one of the most widely used
integrated development environmens (IDEs). The FLUORITEcode was based off oan open
source Eclipse pug-in called Practically Macrgt” but it was not complete enough because
some important commands and parameters were missing (e.the FileOpen command), and

it was not stable enough to record long sessiongherefore, | augmentedit to record all the
commands andtheir parameters, increased its stability, and also added the capability of
capturing inserted and deleted text.

OnceFLUORITHS installed on Eclipse, it begins to capture all the losevel events occurring in
the code editor, and saves the transcript aan XML file when Eclipse is closing. An example
transcript is shown in Figure 3-1.

3.3.1. TYPES OBOGGEIEVENTS

There are three types of events thaFLUORITElogs: commandsdocument changesandanno-
tations. The full list of different types of events is shown iTable 3-1.

17 http://sourceforge.net/projects/practicalmacro/

http://sourceforge.net/projects/practicalmacro/

26

<Command __id="2" _type=" MoveCaretCommand " caretOffset="142" docOffset="142"

timestamp="3977"/>

<Command __id="3" _type=" EclipseCommand " commandID="eventLogger.styledTextCommand. SE-
LECT_LINE_DOWNRNtimestamp="5598"/>

<DocumentChange _ id="4" _type=" Delete " docASTNodeCount="22" docActiveCodelLength="125"

docExpressionCount="10" docLength="151" endLine="9" length="39" offset="142"
startLine="8" timestamp="7186">
<text>

<I[CDATA[System.out.printin("Hello World!");
1>
</text>
</ DocumentChange >
<Command __id="5" _type=" EclipseCommand " commandID="org.eclipse.ui.edit. delete "
timestamp="7202"/>
<Command __id="6" _type=" EclipseCommand " commandID="org.eclipse.ui.file. save "

timestamp ="8099'/>

Figure 3-1. Example log generated byLuorITE The developer (1) moved the cursor by clicking the mouse bt
ton, (2) selected one line byshift+DownArrow , (3) deleted selected code using thBelete key, and (4) savec
the file. Each event has its own parameters, and the whole deleted text is listed in hecumentChange event.

A commandis an event directly invoked bya user® action. This includes typing new text,
moving the cursor position or seleting text by keyboard or mouse, along with all editor com-
mands such as copying, pastingnd undoing.

Adocument changevent is logged whenever the active file is changed by any executed com-
mand. Each document change event contains the actual deleted or inserted text. This is
needed becausét is not always possible tocorrectly reproduce the snapshots of the files by
capturing only the commands. For example, when thgrogrammer copies a code fragment
from aweb browser and paste it into the code editor, there is no way to find out what the
pasted code was if we have only the command history. In additiothis simplifies the way of

Event Type Detailed Type Description
Command MoveCaret Move cursor using the mouse
SelectText Select (highlight) text
Find Find/ Find &Replace
InsertString Type new text
Run Run/Debug the application
FileOpen Open or activate a new file
Assist Quick fix/Content assist
Junit Run/Debug unit tests
MouseWheel Scroll the code editor with the mouse
Eclipse All other Eclipseommands
Document Change Insert Text insertion
Delete Text deletion
Replace Deletion & insertion in one step
Annotation Annotate Manual annotation by the user

Table 3-1. List of the different types of events captured byLUORITE

Chapter3: Capturing FineGrained Coding Events from the Code Editor 27

getting the actual change results for each command: just ream the preceding8 document
change event for each command. There can be multiple document change eventgered by

a single command (e.qg., find and replace), and even no document changes if a command does
not change any of the code content.

An annotationis logged when theprogrammer wants to add an annotation at a given time to
provide information to the investigator about the current activity. FLUORITEadds a toolbar
button to Eclipse for adding annotations as shown ifrigure 3-2, and a simple dialog box for
inserting annotation pops up when the button is clicked. The buttons at the bottom of the
window provide a quick way for users to identify certain events of integest.

File Edit Source Refactor Navigate Search

-’\J"‘@S‘:.....E__I I"p’»liﬁ*
r zg o L v = E
Add Annotation to the Log File
Please describe the intention of your recent backtracking.
If one of the buttons below describes your situation, you can simply click the button.
Otherwise, please write a brief description in the textbox and click "Other".
Tuning parameters Learning an API Trying another Ul design
Correcting logic Trying another algorithm Debugging

Gancal [Other |

Figure 3-2. Annotation toolbar button and its dialog box.

3.3.2. PARAMETERS

Each event is logged as an XML element, and the parameters for each event are logged as
either attributes or sub-elements.There are a few parameters common to every event éble

3-2) and there are also evenspecific parameters. For exampldéhe MoveCaret command has

the resulting cursor position as an offset from the beginning of the document, arttle Find
command hassearchText and replaceText parameters. Also, every document change
event has a few code size metricS @ble 3-3), in order to keep track of the code size changes.

Parameter Description

id Unigue ID (sequentially incremented)

type Detailed event type (cfTable3-1)

timestamp Timestamp relative to the session start time
timestamp?2 (optional) Timestamp of the last merged event
repeat (optional) Numberof events merged together

Table 3-2. List of the common parameters.

18 A document change evenprecedeshe causing command rather than folloving it, due to the event handling
order of the Eclipse code editor.

28

Metric Description

Code Length Code length in # of characters
Active Code Length [Code length} [Comment length]
AST Node Count # ofall the AST nodes

Expression Node Count # of all the expression nodes in AST

Table 3-3. List of the code size metrics logged for the document change events.

3.3.3. MERGINGONSECUTIMB/ENTS

In order to prevent the log files from being unnecessarily largeiLUORITEmerges multiple
events of the same type in a row whenever possible. For instance, when thegrammer
moves the cursor to ten lines by holding down the up arrow key, the ten evenése merged
together as one XML element anils repeat parameter is set to 10. In some cases, some of
the parameters must be merged as well. For example, when merging multiphasertString
commands which represent typing new text, thelata parameter must bemerged so as not
to lose important information. Two consecutive events are merged only if their time differ-
ence is no greater than the specified thresholdwhich is set to 2 seconds by default, arid
configurable. This is similar to the way character tymg sequences are merged for the undo
command in other text and code editors.

3.4. H.UORITRANALYZER

Along with the FLUORITElogger for Eclipse, @&LUORITElog analyzeris also providedon our
website (Chapter12), which makes it much easier to manually inspect the logs amtoduces
severaltypes of basic analysis reports andvisualizations. In this section, the basic analysis
features of FLUORITEanalyzer are demonstrated

3.4.1. BVENTUST

FLUORITEanalyzer provides an event list interface, where all the coding events in the log file
are displayed Figure 3-3). The main event list area is in the center of the screen (b). The
events are displayed in chronological order in this list. The events can be filtered by their
types in theleftmost panel (a). For instance, checking only the document change events and
unchecking the rest will make the event list display only the code changes. When an event is
selected in the list(the row highlighted in blue), the detailed parameters are disfayed in the
bottom panel (c), and the right panel shows the source file which was active when the se-
lected event was generated (d). The source code panel also indicates the last code change
made in that file. In the examplepne line of code was deleted Y the selected document
change event. The search panel (e) allows searching for events having any parameter values
containing the search text.

Chapter3: Capturing FineGrained Coding Eves from the Code Editor 29

~1 DA\Programming\EclipseWorkspace-4.4\ metadata\.plugins\edu.cmu.scs.fluorite\Logs\Log 08-14-18-00-01-123.xml - [Event List] - =
al File Tools Window -2 x
& | & = Search:| ‘
~ll o Times,., Categary Type Parameter ~ | | feviewviewParn java | ReviewViewer java | LaunchReviewHandler java
319 18298357 Document., Replace @{,,id:"i\g' public static ReviewViewPart getInstance() { A~
320 18298375 Documnent., Replace {_-id="3200 @ return me;
321 182968389 Document.. Replace {_id=" H
[7|Replace 322 18298404 Document.. Replace {id="322 .
] Lﬂr’gma.”tdc J 3 168298420 Document.. Replace fi @override)
Ssisi-amman 324 18298435 Document.. Replace {__id public void cr?atEPartCUntrul(Cumpuslta parent) {
AUTOGEN: org,e o me = this;
CopyCommand 325 18298458 Document,,, Replace {”. =325
CutCammand 326 18300445 Cornrnand MoveCaret,,, {__id="326

mvViewer = new ReviewViewer(parent, SWT.NONE);
mViewer.setParameters(this, mConfiguration);
mvViewer.create();

eventLogger. style 327 183M260 Command EclipseCo,.. {__id="327
eventLoager. style 329 18301703 Caommand EclipseCa,,, {__id="329
evanilogger,style 330 18301742 Document,, Delete 1

eventlogger.stle || 3318302028 Command CutComma..,

evertloggerstyle |l 335 jaapass Command EclipseCo meonfigurstion —createtonfigurat
eventLogger, style }

aventLogger, style 335 18303062 Document,, Insert

FilaOpenComman 396 18303221 Command PasteCom... (@override

FindCornrand 337 18303706 Cornrmand EclipseCo,.. | public woid setFocus() {

InsertStringComm 338 183068511 Command RunComm,,, {__id="338" mViewer.setFocus();
MoveCaretComm: || 339 13469531 Command RunComm,. {__id="33%' H

UfQ-BC:EDSB-SEEUQ 340 18470579 Command RunComm,,. {-.id="340 .

oo dabuy || 3411807537 Command RunComm... {_id="MT @Ozifrldeld N

org eclipse jdtuie || 2 20050853 Command MoveCaret.. {_ld="32 public void nﬁf?ﬁ() {

org,eclipse,jdt ui ¢ 343 20051848 Cornrnand EclipseCa,,, {[d="343

org.eclipse jdtui« @ foototn o i . .

org,eclipse, jdt ui¢ - super.dispose();

org,eclipse, jdt Ui« # of ltems in the Lis 4/4 }

org, eclipse,jdt,uie Parameters @

org, eclipse, jdtui e [_id] = 330 . private [ﬂmpare[nnf1guraF1nn cr'e.ate[nn.ﬁguratlnn() {
org.eclipse. jdt.ui.c [type] = Delete . CompareConfiguration configuration = new
org,eclipse, ui,edit [docAsTNodeCount] = 230 CompareConfiguration();

configuration.setDefaultlabelProvider{new
\AzuriteComparelabelProvider());
return configuration;

org, eclipse, ui,edit
org, eclipse, ui, edit
org, eclipse, ui, edit

[docActiveCodelength] = 1431
[docExpressionCount] = 157
org.eclipse. ul edit [docLength] = 1431 }
org.eclipse. ui. edit [endLine] = 32

org,eclipse, ui, edit [length] = 43

org. eclipee ui fle [offset] = 833 public void addReviewViewer() {

int historysize =

[ddd << <<« [<[<[<[<][<][<][<]<]<]<][<][<[<]<]<][<][<] <] <] <]<]<]<]<][<][<

org.eclipse. ui file, [startLine] = 31 R . . .
arg.eclipse.ul nav v | | [timestamp] = 13301742 Rur‘1t1mEH1stor‘yn'ﬂanager‘getInstance(j.gEtEntlr‘eH1stor‘y().s1‘E
text] =
< i [rext] v mViewer.selectVersion(historySize - 1,
Gota 1D Show/Hide Code histerySize); v

Figure 3-3. The event list interface ofFLUORITEanalyzer.

3.4.2. CODEEDITINGPATTERNDETECTION

It is possible to detect various code editing patterns which are composed of sequences of
commands. As an example, our analyzer can detdiing typo patternsfrom the logs. Some
fixing typo patterns can be detected by lookig at three consecutive document change events
as follows: 1) Anyinsert event, 2) aDelete event whose deletion range is somewhere in-
side the previousinsert event, 3) aninsert event whose starting position is the same as
that of the previousDelete evernt. Figure 3-4 shows a few sample fixingtypo patterns de-
tected by this algorithm. Some of the detected patterns are not merely typo corrections. For
example,for the pattern starting from ID 1061 inFigure 3-4, we can see that therogrammer
decided to declare an array instead of declaring multiple variableBouble-clicking one of the
detected patterns shows the corresponding event in the eventsli (Section3.4.1), in order to
make it easier to investigate the code editing pattern with the surrounding context.

It is important to note that this kind of fine-grained editing pattern detection cannot be easily
done with the data that comes from other types of tooldvore sophisticated code editing pat-
tern detection could also be implemented. For example, an abstract syntax tree (AST) based
automatic pattern andyzer was implemented to detect backtracking instances within col-
lected FLUORITHoOQs (Sectiord.3).

30

| Commands | vigsualization | Events | Patterns | KeyStrokes |

D Le,,, Additional Information

i3 3 dhink” = "nk + 7k

53 3 "=k + "ckness”

127 3 "hank” - "ank” + "ickness”

ZE8 3 T =T + thickness”

3183 " sethi” - " sethi” + " set”

B43 3 colorPanelad” - " colorPanelad”+ " colorPanel, ad”
86T 3 “colosr” - "sr” + "rPanel, add”

1061 3 “Button t1Button, t2Button, 137 - "1Button, t2Button, 137 + "Button[51."
1202 3 “changeEvent,” - "eEvent,” + "Event”

1267 3 " L T -+ tButtson”

127 3 “tButtson” - "son” + "ons”

13113 " = new JButtan)” - 1" + "([1"

1371 3 fore™ - fore” + “foreach()”

1468 3 “tButtons [i] = tButtons,le” - 1Buttons,le” + 'new JA”

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form @riginally typed
text6z Gleleted tex+ Mewly typed textd The ID column indicates the ID of the event where the patterns sta
so the investigator can jump to the eents list and see what was happening around that time.

Commands | Visualization |Evenis | Patterns | KeyStmkes|

Y Value Change Count Other Options
Dacurnent Length @ Active Code Length @ Per File &dd two points for Replace event
Expression Mode Count AST Mode Count Altogether
12000 —— PaintCanvas.java
PaintObject java
—— PaintObjectConstructor.java
Commented out a large — PaintObjectConstructorListener jas
10000 block of code Actions Java
o A_m'_l‘l [T — EraserPaint java
2 e PencilPaint.java
[&} !
—— Paintwindow.java
% 3000 41—['4’_‘_“} — Paintjava
< IJ—F—'_ ; —— LinePaint java
= Used Copy & Palste several times
T 6000 1
H Typed new code
[}
-]
5 4000
2
E —
H
2000
0
0 2000 4000 6000
Time (sec)

Figure 3-5. Example active code length graph drawfrom one ofthe logsby the FLuorITEanalyzer. Someinter-
esting points are marked using red circles and the corresponding code editing strategies are described-akis
value can be one of the metrics described ifable 3-3. Only line graphs of the files that have been changed duri
the session are drawn. The graph can be zoomed with the mouse wheel, and the user can double click on a
to jump to the evens-list view.

3.4.3. CODELENGTHGRAPH

Since several code size metrics are logged whenever a document change event occurs, it is
possible to plot the code size over time either for each file or as a whole. Currently supported
metrics are listed inTable 3-3. From thecollectedlogs,it was noticeablethat the code length
graph and theactive code lengthgraphs differ significantly, which indicates thatprogram-
mers often comment out or uncomment codelhe graphs also show some interestingditing
trends. In Error! Reference source not found. , the steadily increasing part indcates that

the programmer was typing new code, small fluctuations mean thprogrammer was doing a

Chapter3: Capturing FineGrained Coding Events from the Code Editor 31

small experiment or fixing minor mistakes, and a big, sudden change mearommenting /
uncommenting a block of code or cutting and pasting.

If there is an irteresting place on the graph ananore thorough investigation is neededo see
what was happening,the point can be doubleclicked to jump to the event list. The event
whose timestamp is closest to the selected point on the graph is highlightéalfacilitate man-
ual investigation.

3.4.4. KEYSTROKE GCOMMANDDISTRIBUTIOREPORT

The keystroke distribution report gathers all the keystroke data from the logs and draws a
pie chart showing the frequency of various types of keystroke§.he command distribution
report is similar, but differs from the keystrokes in that it focuses on Eclipse commands ra-
ther than just keystrokes. It issimilar to the commands report of the Eclipse Usage Data Col-
lector (UDC), butFLUORITEalso includes the commandsnissing from UDC

Here, these two features are demonstratedising a particular set of FLUORITEIog data col-
lected during an exploratory lab study(see Sectiord.1). In the lab study, 12 student partici-
pants performedsome smallediting tasks for about 2 hours eachThese tasks used the Paint
program from [Ko 20054[Fogarty 2005, and had users addome new features.Figure 3-6
shows example screenshots of a keystroke distribution ané command distribution report
generatedfrom a singleparticipantd O 1 frof theE&udyA

Inthe collected datafrom all the 12 participants, there were a total of 45,872 keystrokes, and
the five most frequent keystrokes were down arrow (12.64%), backspace (12.41%), up ar-
row (9.80%), right arrow (7.82%), and left arrow (6.00%), respectively. Although this data
may be exaggerated becauseLUORTE logs multiple instances of the same event when the
programmer holds down a keyand it auto-repeats, it is still interesting to see thatprogram-
mers navigate a lot within a file using arrow keys. This result is consistent with Ket al.G
observation [Ko 20054 that developersspend about 16% of their time navigating depend-
encies.

Another interesting observation is thatprogrammers heavily use thebackspace key in the
code editor. This seems to be a lot higher than the percent of backspacing in regular typing
for example, MacKenzie an@ 1 O E Ts @epofE Bat 7.10% of keystrokes were backspaces
[MacKenzie 2002. This provides further evidence, as mentioned ifiKo 2005b], that editing
code is different than editing documents

Consistent with the keystroke report, the five most frequent commandsised by the 12 par-
ticipants were InsertString (31.48%), down arrow (10.67%), backspace (10.48%),
MoveCaret (using the mouse}8.63%), and up arrow (8.27%), respectively. The iportion

of backspacsis very large here as well, but backspace is not included in the UDC command
report at all since backspace commands are ignored in théDC logsMore detailed results
and their implications regarding backtracking will be discussed in Sectiof.1.4.

32

Key Strokes Distribution

= (12512551, 4.57

C(75/2651,2.83 %) |
O (7612651, 2.87 %) —__

E(87/2651,328%) ——
Shift (93 2651,

Enter (118/2651.. /|
— {127/ 2651,/
Delete (129 2651,

1 (159/2651,600%) /

—(246/2651,928 %)

1 (2552651, 962 %)

Used Commands

- IljsarLSlrir-; Command (34.77

eventlogger. styledTextCommand. DELETE_FREVIOUS

ommand {11.19 %)
evenlLogger St}'lEdTE . r.styledTextCommand. LINE_DOWN
B r.styledTextCommand. COLUMN_NEXT
MoveCaretComm...

r.styledTextCommand. LINE_UP
=_'xl_,31111=r (3.85%)
evenﬂ_oggers and. COLUMN_PREVIOUS

i SELECT_COLUMN_NEXT

InsertStringCommand.. —

I W FacizCommand

Figure 3-6. Example keystroke / command distribution reports generated byFLuoRITEanalyzer showing the
distributions for one participant. The reports are also provided in comma&eparated values (CSV) format, whic
can easily be imported into spreadsheets for more analyses.

3.5. DISCUSSION

3.5.1. DETECTINGODECHANGESADEQOUTSIDE OF THRE

Sincethe system isdealing with individual incremental changes instead of full snapshots, a
single missingitem in the edit history canconfusethe entire history. However, source code
can be change@venoutside of the IDE for many reasons. For example, the code can be mod-
ified by the external version control system while the IDE igot running, to revert to an ear-

lier version, or updated to reflect the changes made bgnother team member.Sometimes,
usersmight edit the code with a plaintext editor instead of using the IDHEn addition, if a file

Chapter3: Capturing FineGrained Coding Events from the Code Editor 33

is closed without saving, then the last known shapshot of the file kept IFLUORITEwould be
out of sync when the file is reopened later.

To avoid this problem,FLUORITEdetects such situations by keeping the initial snapshot and
the last known snapshotof each file that was open in the current session. When a file is-re
opened,FLUORITECOMpares the new snapshot with the last known snapshot, anid they are
different, extracts diffs between those two snapshots to fill in the missing changes. This pro-
cess is done usingthe Googlediff-match-patch open-source library [Fraser 201[Myers
1986].

3.5.2. CODINGEVENTS NOTAPTUREBY FLUORITE

There are several issues witlFLUORITEWhich were only discovered after conducting several
studies with it. FLUORITEONly captures the document changes generated from the currently
active source file (i.e., the filewrently open in the active editor). Whenever a new source file

is open, aFileOpen command is logged with the initial snapshot, and all the following doc-
ument change events belong to the last open source filehis approach works well for most

of the coding situations, but this approach has a few problems. First, when the programmer
makes some code changes across multiple files with a single command (e.qg., refactoring com-
mands), only the changes made in the active file are logged, missing the changes niadee
other files. These missed changes may be captured ByuoRITElater, only when the corre-
sponding source file is open in the editor and becomes the active file, in which case the
timestamp of the document change would be incorrectly logged as beinghen the file was
opened. Moreover, when there are files that are changed by some command but never are
opened, the document changes in that file would not be captured at all.

Another related limitation is that FLUORITEONly captures the files that were opa at least once
during the editing session. While the rationale behind this decision was to keep the logging
tool non-intrusive and the log files as small as possible, this makes it difficult to understand
the bigger picture of the entire project when anajzing the log files in isolation. Coding events
can also happen outside the IDE, which are not captured BYUORITE A common example
situation is when programmers are invoking version control system commands through com-
mand-line or third -party clients, instead of using the IDE plugns.

3.5.3. WRITINALOGENTRIES AS THHFZENTS ARBAPTURED

The old versions ofFLUORITEUSed to keep the coding events in memory during the editing
session and write the log file when the IDE is being closed. However, this behavior has been
changed to writing the log entries as the events are captured for two reasons. First, by flush-
ing the events from the memory to the disk frequentlyFLUuorT® O | AT T OU OOACA
increased proportionally to the number of events captured so far. Second, even when the IDE
crashes in the middle of the editing session, the log file is still kept on thés without any

loss of data.This change did not result in any noticeable extrime or delay in using Eclipse
with FLUORITErunning.

EO

34

3.5.4. BEVALUATION

FLUORITEand the analyzer tool have been publicly releasgdee Chapterl2 for the URL) since

Fall 2011. Since thenkFLUORITEhas been used by many resgchers from CMUand other in-

stitutions for different purposes. For example, it has been used for enhancing code search
mechanisms[Martie 2013],i 1 T EQT OET ¢ AT A AT Al UUET C [Fuehd OOOAAT (
2014], andvisualizing participants@actions performed duringsomeuser studies[Kwan 2013].

Somepeople used FLUORITEIN addition to their primary data collection method during their

studies, in order to make sure thathey do not missany important coding events For example,

Ddrner et al. usedFLUORITEfor the evaluation study of EuklagDdérner 2014], and three other

researchers contacted meand told that they were using FLUORITEfor their own studies1®

Sincethe FLUORITElog files are written in XML format,other researchershave been able to
implement their own analyzerswith ease In addition, a group of researchers at Oregon State
University2° developed aFLUORITElOg replayer, which they used for convertindg-LUORITElogs
into another data format that they could analyze more easily, by replaying tHe.UORITEIOgs
while the other capturing tool is running.

Personally, Ihave been runningFLUORITEIN my Eclipse envionment for developing FLUORITE
of this dissertation. It has been runningwithout any noticeable problems and ha not inter-

fered with my own work. My own FLUORITElog data collectedin this way were analyzedto-

getherwith the logs collectedfrom the study participants in a longitudinal study (Sectiord.3).

Details about the average size of thELUORITEOgs can be found in Sectiof.3.1

3.6. GONCLUSION

The FLUORITEIogger for Eclipse and the analyzer were developed the hopes thatthey will
be useful to the community for when detailed analyses of programme@edits are required.
During our empirical studies of backtrackingFLUORITEreduced significantamount of manual
analysis, and helped uncoveinteresting results (Chapter4). Later,FLUORITEwas also used as
the input source of our selective undo tooAzURITE discussedlater.

19 When FLUORITEWaS used as an extra dateollection mechanism it wasnot always cited.
20 |rwin Kwan, David Piorkowski

35

4.

EMPIRICAISTUDIES OBACKTRACKINRG

As a first step towards supporting more robust backtracking in modern IDEswanted to first
know more about when and howprogrammers backtrack when theywrite source code. How-
ever, there has been no thorough study about backtracking in the software development con-
text. This chapter describes three empirical studies of programmeacktracking conducted
in order to understand backtracking better. First, arexploratory lab study was conducted to
gather baseline knowledge about backtracking (Sectiof 1), and then a followup online sur-
vey was performed to get a betteidea of the backtracking frequency andactics (Section4.2).
Realizing that these two studies have some limitation$,also conductedan extensive, longi-
tudinal study to complement the previous two studies andee if these backtraking situations
arise when programmers are working on their own programming projects (Sectiod.3), not
just the artificial programming tasks given in a lab. Thesthree studies showed that back-
tracking happens quitefrequently and often there are difficulties when programmers are
backtracking, suggesting that programmers would benefit from better backtracking tools.

4.1. PRELIMINARKABSTUDY OBACKTRACKING

First, an exploratory lab study was conducted to study when and how programmers back-
track using today® tools, and to identify barriers that they facavhile backtracking. The focus
of this study was to answer the following research questions.

RQZL1. How do programmers backrack?
RQZX2. How do programmers know where to backtrack to?
RQZL3. What are the barriers to successful backtracking that a new tool might alleviate?

4.1.1. STUDYDESIGN

This study was a 2 hours longxploratory lab study where participants wereasked tofinish
two pairs of feature-adding tasksand think aloud during the study. The editing screens and
their voice were recorded for further analyses. In additionfFFLUORITE(Chapter 3) wasused to
capture all the low-level editing events.Participants used the Eclipse IDE version 3.6.2 (He-

21 portions of this chapter appeaed in [Yoon 2012 and[Yoon 2014

36

lios) on a laptopPCrunning Windows 7. They were told that they could use any Internet re-
sources they wanted, andll the subjects made heavy use of Google addva APl Documen-
tation.

After completing the tasks, the participants were asked to fibut a post-survey questionnare
about their demographics and some the backtracking situations an@ctics. We used the re-
sponses when designing our online survey question¥he participants were paid$30 for their
effort.

For this study, 12 graduate students were recruited from thé&chool of Computer Science at
Carnegie Mellon University.The participants were required to(1) have professional devel-
opment experience or at least two internshig as a softwareprogrammer, and(2) be com-
fortable programming in Java. Of the 1participants, 11 were male and 1 was female. Their
average age was 24.8 years, and they had been programming for 5.5 years on average.

4.1.2. THEPAINTPROGRAM

As the code base of the studw Paint program (Figure 4-1) was usedwhich has beenprevi-
ously used by other researchergFogarty 2005][Ko 20054 . Thisis a simple Java Swing based
painting application composed of 10 Java files araitotal of 452 lines of code.

Using thePaint program asthe code base hd severaladvantages First,graphical user inter-
face GU) development tends to be exploratory (i.e. involves extensive experiments with
code), which means that thgprogrammers would often need to backtrackduring the 2 hour
period. Second, it hd been shownby the previous studies that the code size is small engh
to be understood and modified in a fairly short amount of time.

|£| Paint = [(B |

[»

i) Pencil
) Eraser
@ Line

™
1k

Red

1
Green .. 1 —

Y
1t

Blue 1
Clear the canvas

Undo my last stroke | il
<] Il [[+

Figure 4-1. A screenshot of the Paint program used during the lab study.

Chapter4: Empirical Studies of Backtracking 37

4.1.3.TASKS

The participants were asked to add new featuret® the Paint program. In order to get as much
backtracking data as possible in-2our lab study, the taskavere designedsothat they would
lead the programmers to backtrack regardless ofany occurrences of their ownexploration.
To achieve this goal, an imagingrscenariowas set upwhere a whimsical boss first askshe
participants to implement a feature, changebler mind after testing the feature and asks them
to implement the same functionality using a different user interfacelement. Because itid
not makemuch sense to provide two different user interfaces for the same functionality, the
participants were required to backtrackout of the first implementation to some extent. Start-
ing over from scratchwas not a good optiorhowever, because the first and segul versions
shared some codeéhat the participants had to write, and only differed in the user interface
part.

There were two sets offeatures to implement:thickness contro(F1) andx, y coordinates in-
dicator (F2). Each feature had two different user interfaces. The thickness control had to be
implemented using a slider widget (F11) and thenusing amenu of buttons which preview
the desired thicknesses (F12). The X, y coordinates indicator had to be locatednoa status
bar at the bottom of the application window (F21) or in a modeless tool window which can
be moved by the user (F2).

Another issue investigate waswvhether the programmers would behave differently if they
knew they might need to backtrack laterTherefore, the participants were first asked to im-
plement one of the featuresFa-1, without knowing that they might have to backtrack later.
Then, they were asked to implement k2 instead. Nextthey were asked to go backo Fa-1
implementation, in order to see how theywould restore the previous version. Finally they
were givenboth Fe-1 and k-2 simultaneously and asked to implement one at a timeausing
anytactic they wanted, to see if they behave differently when they kew in advance that they
would need to backtrack Whether participants used Feature 1 a$a and Feature 2 ags
(Group 1) or vice versa(Group 2) was randomized The study procedure and group settings
are shown inTable 4-1. All the task sheets provided to the participants can be found in Ap-
pendix A.

Step Group 1 (7 subjects) Group 2 (5 subjects)

Begin Introduction

Taskl F11 F21

Task2 F12 F22

Task3 Backrackto F11 Backrackto F21
Task4&5 F21 & F22 F11&F12

End Poststudy questionnaire

Table 4-1. Participant groups and the tasks of the preliminary lab study

As mentioned above, all the code edits performed by the participants were logged using
FLUORITE(Chapter 3). Using this data, several code editing patterns composed of sequences

38

of commandscould be detectedwhich are closely related to backtrackingHaving this data
hasmany advantages. Not onlgoesit reduce the time to inspect the videotapes significantly
[Kim 2004], it also enables various automatic analyses.

4.1.4.RESULTS

The study took 96.6 minutes on average. The task accomplishment varie@reat dealacross

the participants. Of the 12 participants, only Participants completed all five tasks. 3 people
could only complete one task and had to give ugn all the others. Overall, the participants
completed only 58.3% of the tasks.

The 4 different features were meant to have the similar difficultiedut it turned out that F1-

1 (thickness control using slider widget) was the easiest. 11 participants succeeded on-E1
while each other feature wassuccessfuly completedby about 5of the participants.22 The rea-
son for F1-1 being the easiestmight be because there was a workinggexample of the slider
widget right in the code basethe color slider.

Even though some participants were not very successful in completing the taskiseir data
were not excluded because theparticipants still backtracked to some extentwhile trying to
figure out how to get the taskscompleted. The following sections summarize the key obser-
vations related to each research question.

4.1.5.RQ11: HOw DO PROGRAMMERSCBARACK

4.1.5.1. COMMANDSTATISTIC& KEYSTROHKBISTRIBUTION

In order to investigate how frequently programmers used backtracking related editor com-
mands, | first analyzed theFLUORITElog data to obtain the frequency ofeach IDE command
executionand each keyboard keyress. Table4-2 shows thetop twenty commands executed,
and separately, the to20 keystrokestyped across all the participantsExceptfor typing and
code navigation commandsthe most frequent commands arghe backtrackingrelated com-
mands such as delete and undoindicated as inverted Considering that the navigation com-
mandswould be expected to be largsince FLUORITHogs multiple instances of the same event
when the user tolds down a keyand it auto-repeats, it is shown that backtracking related
commands are very frequently executed. The command statistics asemewhat different
from those observed byMurphy et al.[Murphy 2006] because the two logging tools differ in
what types of commands are loggedHowever, the rank orderings of commands are con-
sistent if only the main editor commands such aPelete, Save Copy, Paste and Assistare
compared

22 F1-2, F21, and F22 were successfully completed by 5, 6, and 4 out of 12 participants, respectively.

Chapter4: Empirical Studies of Backtracking

39

Commands

Keystrokes

Type char.
Line down
Delete prev.
Move caret
Line up

Col. next
Col. prev.
Select text
Sel. col. next
File open
Sel. col. prev.
Save

Delete 576 (1.1%)

Paste
Assist(auto)
Run

Copy

Assist(manual)

Sel. line down

17092 (31.8%)
5795 (10.8%)
5692 (10.6%)
4686 (8.7%)
4491 (8.4%)
3544 (6.6%)
2715 (5.1%)
1975 (3.7%)
1035 (1.9%)
907 (1.7%)
857 (1.6%)
852 (1.6%)

459 (0.9%)
456(0.8%)
391 (0.7%)
314 (0.6%)
294 (0.5%)
213 (0.4%)
212 (0.4%)

Down arrow
Backspace
Up arrow
Right arrow
Left arrow

Delete

5797 (12.6%%)
5693 (2.41%)
4495 0.80%)
3586 {7.82%)
2751 (600%)
1873 (4.08%)
1854 (4.04%)
1652(3.60%)
1387(3.02%)
1289 @.81%)
1250 @.72%)
1003 .19%)
882 (1.92%)
871 (1.90%)
859 (1.87%)
800 (1.74%)
750 (1.63%)
619 (1.35%)
610 (1.33%)
576 (1.26%)

Others 1113 (2.1%) Others 7275(15.88%)
Total 53669 Total 45872
Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for each category. Shat

entries are related to code navigation, and the inverted entries are related twacktracking.

Table 4-2 lists two different Assistcommands. The first one counts all the content assist exe-
cuted automatically (e.g., when the user types a dot following a variable name), and the sec-
ond one only caints the manually executed content assist and quick fixes.

4.1.5.2. DELETING VEOMMENTINGOUT

There werealso someinteresting backtracking related behaviors observed during the study.
7 of the 12 participants habitually commented out their code rather thamleleting it, whether

or not they thought the codewas going to be reused later. However, even the participants
who explicitly said that they usually comment out code also deleted codkiring the study,
because theysaid theydid not like messing up the code with lots of comments. In some cases,
those deleted code fragmentsurned out to be needed later on.

Some programming languages provide specific ways of activating and deactivating code. For
example, C/C++ has preprocessor directives such #gdef
attribute which allows programmers to conditionally activate a cer-
tain method according to the current build configuration.Although, Javaalso supports con-
ditional compilation, participants were not aware of this feature and theyxould only use con-

vides the Conditional

ventional comments.

, and the.NET Frameworkpro-

40

4.1.5.3. COMMONREASONS FGBOMMENTINGOUT

During the lab study,participants articulated three main reasonswhy they commentd out
the code instead of deletingt. First, theparticipants commented out code because they kawv
that the code being commented ouinight be used again. This includes the situation where
the codewasone of the variations and thggrogrammer wantedto be able toswitch to another
variation. Also, when theprogrammer had implemented two different features simultane-
ously and wankedto test oneat a time, they left the code for the feature under test and com-
mented out the other. Thiswas the most common reasorgiven.

The second common reason for commenting out is keep the code snippet as goodexample.
This situation differs from the previous onein that the code is notexpectedto be used at the
moment, but the programmer wants to keep the code anyway. This could happen when the
programmer thinks that the code could be used as a structural template for other similar code.
For example, in ourstudy, the participants had to add different typesof listenersto the graph-
ical widgets. Whenprogrammers tried out one type of listener but it dd not work, they often
commented it out because the listener creating and adding structure is pretty much tteame
regardless of the type of the listener theywould use. Also, when it turred out that an example
code snippetthey found from the Internet did not quite fit to the given situation, they often
commented out the code rather than deletingt because theydid not want to have tosearch
for the example againn caseit would be needed later on.

Finally, programmers occasionally commented out code in order to remind themselves that
the code wasnot good They kept the code there because they wanted to avoid making the
same mistakedater.

4.1.5.4. WHENTHEYKNOW THEYNEED TBACKTRACKATER

Not surprisingly, even the participants who usually just deleted the code did comment out
the code when they believd that the codewas likely to be reused soon. For example, when
they were doing task 3 (getting back to k1 after completing R-2), pretty much all of the
participants commented out the code for k-2 because they thoughthey might be asked to
go back to k-2 again.

Only 5 out ofthe 9 participants who started task 43 behaved differently when they were do-
ing task 4 (implementing k-1 & Fe-2 simultaneously). One participant used a flag variable so
that he could select either of the two user interface variationgdynamically. Four other par-
ticipants marked each code fragment using commentand only one of the variations would

be activated (uncommented) at a time. Whethe participants were asked to switch to a dif-
ferent variation, they manually searched for all tle currently-activated variation code frag-
ments using the labels and commented them out, and then searched for all the code fragments
to be activated and uncommented them. This woed, but it was a tedious process. Also,

23 The remaining three participants gave up before getting to task 4.

Chapter4: Empirical Studies of Backtracking 41

when only one of the variations get accepted and the others are rejected, oneould need to
manually search for allof the rejected variations and delete them.

4.1.6.RQ12: HOw DO PROGRAMMERSKMWHERE TO BACKTRAC?

The participants often rememberedone or more aspects of the deleted code, especially when
they wanted to restore a specific codéragment that was recently deleted What they remem-
bered included the original location from where the code was deleteghow the surrounding
codelooked, the names of one or more code elements in the deleted codewhat the desired
code lookedlike. This suggests thatn general, even when they could not easikeproduce the
code from scratchthey probably could recognize the codéf it was able to be displayed some-
how.

4.1.7.RQ13: WHAT ARE THE BARRIERSSUCCESSFUL BAGEKRNG

The study participants faced various problems when they were trying to backtrackirst, the
participants had problems finding the right code fragment to be reverted in the source file.
For instance, when implementing Fil (thickness control feature using the slider widget),
most participants copied and pasted the code fahe color sliders and modfied the pastal
code Because the original code and the pasted code looked very similar, participants were
often confused and looked abr even editedthe wrong code.

When they were trying to backtrack all the code fragments related to a certasource code
level elemert such asa variable, method,or class,it took some effort to find all the relevant

code fragments. Although participantsrarely made mistakesat this, occasionally they did
miss a few statements that shouldhave been reverted. Often, this happened becaastwo or

more element were involved in a single feature. For example, when restorinthe com-

mented-out slider widget, they often forgot to restore the associated changéstener code

One participant made this mistake even though hmanually labeled the related code frag-
ments using commentslt would be even more difficult for the programmers to find all the

relevant code fragments when they are distributed across multiple filesbut this did not hap-

pen in our lab studybecause mostly the participants imptmented all the features in a single
file.

The participants often added and removed debug outputs. Especially when they were imple-
menting F2 (X, y coordinates indicator)pretty much all of the participants added debug out-
puts using either a console outpumethod (System.out.printin) or a simple message box
(JOptionPane . showMessageDialog) in order to check if the mouse listeners they had just
added was called when the mouse cursavas moved, and if the x,y valuesere correct. How-
ever, after they had finished implementing the feature, thegometimesforgot to remove the
debug outputs. All the participants who used the message dialog did remoitaince the mes-
sage box was continuously interfering, while many of the pécipants who used console out-
put did not.

