

Backtracking Support in Code Editing

YoungSeok Yoon

May 2015

CMU-ISR-15-103

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Brad A. Myers (Chair, CMU HCII)

Jonathan Aldrich (CMU ISR)

Christian Kästner (CMU ISR)

Emerson Murphy-Hill (North Carolina State University)

Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

in Software Engineering

Copyright © 2015 YoungSeok Yoon. All rights reserved.

 Funding for this research comes in part from the Korea Foundation for Advanced Studies (KFAS) and

in part from NSF grants CCF-0811610, IIS-1116724, and IIS-1314356. Any opinions, findings and con-

clusions or recommendations expressed in this material are those of the author and do not necessarily

reflect those of KFAS or the National Science Foundation.

ii

Keywords: selective undo, backtracking, fine-grained edit history, logging, timeline visuali-

zation, history search, edit collapsing, Eclipse IDE, Java, exploratory programming

 iii

ABSTRACT

Programmers often need to backtrack while coding. Here, Ȱbacktrackingȱ refers to when pro-

grammers go back at least partially to an earlier state of code, either by removing inserted

code or by restoring removed code. For example, when some newly added feature does not

work as imagined, the programmer might have to backtrack and try something else. When

learning an unfamiliar API, programmers often need to try some sequence of object instanti-

ation and method calls, run the program, and backtrack if the result is not as expected. I con-

ducted a series of three empirical studies in order to better understand the backtracking be-

havior of programmers. The results indicated that backtracking is prevalent in programming,

and programmers often face challenges when backtracking. For example, they had difficulties

when trying to find all the relevant parts of code to be backtracked or when trying to restore

some code they had deleted that later turned out to be needed.

(Ï×ÅÖÅÒȟ ÐÒÏÇÒÁÍÍÅÒÓ ÏÎÌÙ ÈÁÖÅ ÖÅÒÙ ÌÉÍÉÔÅÄ ÓÕÐÐÏÒÔ ÆÏÒ ÂÁÃËÔÒÁÃËÉÎÇ ÉÎ ÔÏÄÁÙȭÓ ÔÏÏÌÓȢ 4he

linear undo command can only undo the most recent changes, and loses the undone changes

as soon as the programmer makes a single new change after invoking the undo command.

Version control systems such as Subversion and Git can also be used for backtracking, but

only when the desired code is already committed in the repository. Furthermore, the results

from the empirical studies showed that 38% of all the backtrackings are done manually with-

out any tool support and 9.5% are selective, which means that they could not have been per-

formed using the conventional undo command.

To help programmers backtrack more easily and accurately, I devised a novel selective undo

mechanism for code editors, and implemented it in an IDE plug-in called AZURITE. The core

idea is to combine the following mechanisms into a coherent programming tool: a selective

undo mechanism for code editors, novel visualizations of the coding history, and a code change

history search. AZURITE retains the full fine-grained code change history, and the selective

undo mechanism allows users to select and undo one or more isolated edit operations, while

appropriately detecting and handling conflicting operations. The visualizations and history

search are the user interfaces that help users to select the desired edit operations to be back-

tracked and express what they remember about the code changes that they want to revert. In

a controlled lab experiment, programmers using AZURITE performed twice as fast compared

to the control group when completing typical backtracking tasks. My hope is that this selec-

tive undo tool will help programmers achieve their daily programming tasks more effectively.

iv

 v

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Brad Myers. Through-

out my entire career as a PhD student, he has constantly provided guidance and support to

help me conduct better research, write better research papers, and prepare my presentations.

I cannot express enough how fortunate I have been to have Brad Myers as my advisor. I would

also like to thank all my thesis committee members, Jonathan Aldrich, Christian Kästner, and

Emerson Murphy-Hill. Their detailed, constructive feedback greatly helped in making this

dissertation better.

It has been a pleasure to work with all my co-authors, Joel Brandt, Andrew Faulring, Sebon

Koo, Ashley Lai, Thomas LaToza, Tam Minh Le, and Cyrus Omar. I would not have been able

to publish all the research papers without the hard work and insight of these individuals. My

academic siblings, Kerry Chang, Michael Coblenz, and Stephen Oney, also deserve my thanks

for all the interesting research discussions we had. I would also like to thank the faculty and

friends in the Software Engineering PhD program. Their thoughtful feedback at the SSSG sem-

inars was invaluable resource for improving my research and presentation skills.

I would like to thank the Korea Foundation for Advanced Studies for all the financial support

for the last five years, and the National Science Foundation for providing research funding. In

addition, I was fortunate to be part of the Exploratory Programming Group, which is an NSF-

funded joint research project.

Getting through the PhD program was more than just doing research. I would like to give

special thanks to my wife, Min Jeong Kim, who has always been with me and helped me get

through all the difficult times. I thank my parents, Jang Ho Yoon and Sang Hee Lee, and my

younger brother, Youngkwon Yoon, for being always on my side and praying for my soul.

vi

 vii

TABLE OF CONTENTS

Abstract iii

Acknowledgements v

Table of Contents vii

Figures xi

Tables xvii

1. Introduction 1

1.1. Problem: Limited Support for Backtracking ... 2

1.2. Motivating Example ... 3

1.3. An Approach: Selective Undo in Code Editors .. 4

1.4. AZURITE: A Selective Undo Tool for Programmers .. 5

1.5. Thesis ... 7

1.6. Contributions ... 7

1.7. Outline ... 8

2. Related Work 9

2.1. Undo Models ... 9

2.2. Version Control and Variation Management Systems .. 14

2.3. Collecting and Utilizing Fine-Grained Interaction Data ... 18

2.4. Edit History Visualizations & Search Tools .. 21

2.5. Empirical Studies of Source-Code Editing ... 22

2.6. Conclusion .. 22

3. Capturing Fine -Grained Coding Events from the Code Editor 23

3.1. Related Work ... 23

3.2. FLUORITE: Fine-Grained Coding Event Logger for Eclipse ... 24

3.3. FLUORITE Implementation .. 25

3.4. FLUORITE Analyzer ... 28

3.5. Discussion ... 32

3.6. Conclusion .. 34

4. Empirical Studies of Backtracking 35

4.1. Preliminary Lab Study of Backtracking .. 35

4.2. Online Survey .. 43

4.3. ,ÏÎÇÉÔÕÄÉÎÁÌ 3ÔÕÄÙ ÏÆ 0ÒÏÇÒÁÍÍÅÒÓȭ "ÁÃËÔÒÁÃËÉÎÇ .. 46

4.4. Conclusion .. 61

viii

5. A Selective Undo Mechanism for Code Editors 63

5.1. Internal Edit History Representation for Selective Undo ... 64

5.2. Selective Undo Algorithm ... 71

5.3. Discussion ... 74

5.4. Conclusion .. 75

6. Timeline Visualization of Code Edits 77

6.1. File Rows and Edit Operation Rectangles ... 78

6.2. Coding Events Displayed Along the Timeline .. 80

6.3. Layout Modes .. 81

6.4. Selecting Rectangles ... 82

6.5. Selecting Times or Time Ranges.. 84

6.6. IDE-Independent Implementation of the Timeline ... 85

6.7. Discussion ... 88

6.8. Conclusion .. 89

7. Real-time Edit Collapsing and Semantic Zooming 91

7.1. The Four Collapse Levels .. 95

7.2. Collapsing Algorithm .. 97

7.3. Integration with the Timeline Visualization ... 101

7.4. Log Analysis .. 104

7.5. Limitations and Future Work .. 106

7.6. Conclusion ... 107

8. User Interfaces for Selective Undo 109

8.1. Code History Diff View ... 110

8.2. Regional Undo Shortcut ... 112

8.3. History Search .. 112

8.4. Interactive Selective Undo .. 113

8.5. Reading the History of Past Sessions ... 115

8.6. Limitations and Future Work .. 116

8.7. Conclusion ... 116

9. Evaluation of AZURITE 117

9.1. Field Trial with the Initial User Interface Design .. 117

9.2. Evaluation Study ... 118

9.3. Performance Feasibility ... 123

9.4. Example Use Cases ... 126

9.5. My Own Experience of Using AZURITE .. 129

9.6. Conclusion ... 130

 ix

10. Selective Undo Support for Painting Applications 133

10.1. Motivation ... 133

10.2. Initial Semi-Structured Interviews .. 135

10.3. Design Tradeoffs ... 139

10.4. Implemented System .. 146

10.5. Usability Evaluation... 148

10.6. Conclusion ... 150

11. Limitations and Future Work 151

11.1. Extensions to FLUORITE ... 151

11.2. Extensions to AZURITE ... 152

11.3. Extensions to Aquamarine .. 155

11.4. Applying Selective Undo to Other Tools and Domains ... 156

12. Conclusion 159

Appendix A: Materials from the Preliminary Lab Study 163

A.1. Task instructions for Group 1 ... 163

A.2. Task instructions for Group 2 ... 170

A.3. Questionnaire ... 176

Appendix B: Questionnaire Used for the Online Survey 181

Appendix C: Materials from the AZURITE Evaluation Lab Study 197

C.1. Task Sheets Given to the Participants .. 197

Bibliography 203

x

 xi

FIGURES

Figure 1-1. A sketch of the desired UI .. 3

Figure 1-2. The code changes for the motivating example. The green highlight shows newly

inserted lines, and the grey highlight shows updates to the existing code. 4

Figure 1-3. An example screenshot of AZURITE running in the Eclipse IDE. At the bottom, a

timeline visualization of recent code changes is provided. The user is currently

ÕÓÉÎÇ ÔÈÅ Ȱ)ÎÔÅÒÁÃÔÉÖÅ 3ÅÌÅÃÔÉÖÅ 5ÎÄÏȱ ÄÉÁÌÏÇ ÉÎ ÏÒÄÅÒ ÔÏ ÓÅÌÅÃÔÉÖÅÌÙ ÕÎÄÏ ÔÈÅ

code and restore the GridBagLayout code without losing the desired code.

 ... 6

Figure 2-1. Error message generated by Git showing there is a conflict that should be

resolved. .. 15

Figure 2-2. The content of the file that has the conflict. The user need to manually resolve

this conflict and then make another commit to finish the revert operation. ... 15

Figure 2-3. An example variational program annotated with choice calculus (a), and one of

the variants obtained by selecting the first alternative from Name dimension,

and the second alternative from the Traffic dimension (b). 17

Figure 3-1. Example log generated by FLUORITE. The developer (1) moved the cursor by

clicking the mouse button, (2) selected one line by Shift+DownArrow , (3)

deleted selected code using the Delete key, and (4) saved the file. Each event

has its own parameters, and the whole deleted text is listed in the

DocumentChange event. .. 26

Figure 3-2. Annotation toolbar button and its dialog box. .. 27

Figure 3-3. The event list interface of FLUORITE analyzer. ... 29

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form

ÏÆ ȰÏÒÉÇÉÎÁÌÌÙ ÔÙÐÅÄ ÔÅØÔȱ ɀ ȰÄÅÌÅÔÅÄ ÔÅØÔȱ Ϲ ȰÎÅ×ÌÙ ÔÙÐÅÄ ÔÅØÔȱȢ 4ÈÅ)$ ÃÏÌÕÍÎ

indicates the ID of the event where the patterns starts so the investigator can

jump to the events list and see what was happening around that time. 30

Figure Error! No text of specified style in document.-1. Example active code length graph

drawn from one of the logs by the FLUORITE analyzer. Some interesting points

are marked using red circles and the corresponding code editing strategies are

described. Y-axis value can be one of the metrics described in Error! Reference

source not found. . Only line graphs of the files that have been changed during

xii

the session are drawn. The graph can be zoomed with the mouse wheel, and

the user can double click on a point to jump to the events-list view. 30

Figure 3-6. Example keystroke / command distribution reports generated by FLUORITE

analyzer showing the distributions for one participant. The reports are also

provided in comma-separated values (CSV) format, which can easily be

imported into spreadsheets for more analyses. ... 32

Figure 4-1. A screenshot of the Paint program used during the lab study. 36

Figure 4-2. The responses for the question "For each of the following, please specify how

often you need to experiment, iterate, and/or explore while you are developing."

The lighter color represents more flexibility. .. 44

Figure 4-3. The backtracking situations shown to the survey respondents, and their

answers. .. 45

Figure 4-4. An example of a node evolution history, which contains three backtracking

ÉÎÓÔÁÎÃÅÓȢ 4ÈÅ ÎÏÄÅ ÆÉÒÓÔ ÁÐÐÅÁÒÅÄ ÉÎ ÔÈÅ ÃÏÄÅ ÁÓ ȰtoString(); ȱ ɉÖρɊȟ

changed a few times (v2 through v5), and finally ended up back at the original

code (v6). The different contents are symbolized as capital letters A, B, and C.

There are three backtracking instances in this node history, indicated as black

backward arrows. ... 50

Figure 4-5. An example output of the analyzer, showing the history of a statement node.

%ÁÃÈ ÒÏ× ÍÁÐÓ ÔÏ ÅÁÃÈ ÖÅÒÓÉÏÎ ɉÖρȟ Öςȟ ȣȟ ÖυɊȢ 4ÈÉÓ ÎÏÄÅ ÃÏÎÔÁÉÎÓ Á ÓÉÎÇÌÅ

backtracking instance, which iÓ ÖρȣÖυȢ .ÏÔÅ ÔÈÁÔ ÔÈÅ ÖÅÒÓÉÏÎ ÎÕÍÂÅÒÓ ɉÖρ-v5)

are not part of the output, and added here for the purpose of explanation. 50

Figure 4-6. Distribution of all the detected backtracking sizes. .. 54

Figure 4-7. A backtracking instance illustrated. The analyzer determines the farthest

version within each instance, and considers all the changes following the

farthest version as backward changes. .. 55

Figure 4-8. The identified backtracking tactics .. 55

Figure 4-9. Cumulative percentage of all backtracking instances with different editing

session distances. 96.7% of all backtrackings were performed within the same

editing session. 99.0% of all instances have less than or equal to a 3 session

distance. .. 57

Figure 4-10. Two possible backtracking scenarios, whose backtracking instances are not

selective. The source file has three different statement nodes being affected (s1-

s3). Each backtracking scenario has three backtracking instances in each node.

 xiii

Except for the backtracking instance in s3 in scenario #1, all the backtracking

instances have some changes to other parts of the same file within their

timespan. Nevertheless, these are not selective because the undo command can

handle both cases. ... 58

Figure 4-11. Repeat counts of all backtracking instances, along with the percentage fraction

of revisiting the same state in the future. .. 59

Figure 5-1. Types of regional conflicts illustrated. ... 66

Figure 5-2. Ambiguity in the case of Insert Ą Insert conflicts. In both examples, the lighter

shade indicates the code inserted first (conflictee), and the darker shade

indicates the code inserted later (conflictor). ... 67

Figure 5-3. Ambiguity in the case of Delete Ą Delete conflicts. In both examples, the lighter

shade indicates the code deleted first (conflictee), and the darker shade

indicates the code deleted later (conflictor). ... 68

Figure 5-4. Illustration of dynamic segment management. For simplicity, each dynamic

segment is denoted as <offset, length>. OP1 inserts println() , OP2 inserts

ñHelloò within the parentheses, and then OP3 deletes ln from the method

name println , in temporal order. Below the code is illustrated how the

existing dynamic segments are updated or split as new edit operations are

added to the history. .. 69

Figure 5-5. Pseudo code illustrating the dynamic segment updating algorithm. 70

Figure 5-6. Illustration of the selective undo mechanism. First, the algorithm determines

the code chunks affected by the selected operations (a), and then performs

selective undo on each chunk separately. When there are no conflicts outside

of the chunk, selective undo can be performed without user intervention, and

ÔÈÅ ÕÎÄÏ ÏÐÅÒÁÔÉÏÎ ÉÓ ÁÄÄÅÄ ÁÓ ȰÊȱ ɉÂɊȢ 7ÈÅÎ ÔÈÅÒÅ ÁÒÅ ÓÏÍÅ ÉÒÒÅÓÏÌÖÁÂÌÅ

conflicts, it provides the three alternatives of possible resulting code to the user

ÁÎÄ ÉÆ ÔÈÅ ÕÓÅÒ ÓÅÌÅÃÔÓ Á ÃÈÁÎÇÅȟ ÔÈÅ ÏÐÅÒÁÔÉÏÎ ÉÓ ÁÄÄÅÄ ÁÓ ȰËȱ ɉÃɊȢ 73

Figure 5-7. The high-level architecture of the selective undo system. 74

Figure 6-1. Different versions of the timeline visualization shown from the most recent

version (a) to the oldest version (c). The design has been improved iteratively

based on the user feedback and the changes are discussed in this chapter. 79

Figure 6-2. An example tooltip. The timestamp is shown at the top. The inserted code is

shown in the light-green box. For a delete operation, the deleted code will

appear in a pink box instead. In case of a replacement operation, both boxes

appear to indicate the deleted / inserted code. .. 80

xiv

Figure 6-3. Context menu for the selected rectangles. Users can invoke various commands,

ÓÕÃÈ ÁÓ Ȱ3ÅÌÅÃÔÉÖÅ 5ÎÄÏȱȢ 4ÈÅ ÔÈÉÒÄ ÃÏÍÍÁÎÄȟ Ȱ*ÕÍÐ ÔÏ ÔÈÅ #ÏÄÅȱ ÁÐÐÅÁÒÓ ÏÎÌÙ

if a single rectangle is selected... 82

Figure 6-4. The code corresponding to the selected rectangles (with yellow outlines) in the

timeline are indicated by (a) the boxes in the code editor, (b) the small icons on

the left ruler, and (c) the markers on the scroll-bar on the right side. The colors

of the boxes match the rectangle colors in the timeline. .. 83

Figure 6-5. The time selection marker, which is the orange vertical bar with a triangle-

shaped handle attached to the top. Right-clicking the marker brings up a

context menu with various commands. ... 84

Figure 6-6. An example screenshot of a time range selection. The start time is indicated as

white, dotted vertical line, and the end time is indicated with the same time

marker used for time selection.. 85

Figure 6-7. Embedded browser control used in the Graphite project [Omar 2012]. The

color palette and the regular expression pattern builder were implemented

using standard web technologies and then embedded into the Eclipse Code

editor using the Browser control in SWT. .. 86

Figure 6-9. Timeline visualization of AZURITE loaded in Microsoft Visual Studio 2012. 87

Figure 6-8. High-level architecture of the HTML-based user interface in an IDE plug-in. . 87

Figure 6-10. Firebug Lite loaded within the Eclipse IDE. The developer console is fully

functional, and the DOM elements can be navigated within this UI. 88

Figure 7-1. The code changes for the factorial example. .. 93

Figure 7-2. The state of the timeline visualization after completing all the four steps in the

factorial example, shown at the raw level. The blue vertical separation lines

were added on the screenshot for the purpose of the explanation, and are not

shown in the actual timeline. The numbers in the square brackets indicate how

many rectangles are in each section.. 93

Figure 7-3. The example code edit script for the factorial program shown at different

collapse levels but the same zoom level. ... 94

Figure 7-4. Illustration of the overall collapse mechanism for the parse level. When there

is an incoming edit operation, the parse level collapser runs the collapse test to

see if the new edit should be added to the pending list or if the existing pending

edits should finally be marked as collapsed. The newly collapsed edit (A-D) is

 xv

taken to the next level collapser as the incoming edit, and the same process is

followed. .. 97

Figure 7-5. Illustration of the change detail extraction process. .. 99

Figure 7-6. The horizontal zoom slider and the ÃÏÌÌÁÐÓÅ ÌÅÖÅÌ ÃÏÎÔÒÏÌÌÅÒ ɉÔÈÅ ÌÅÔÔÅÒ Ȱ0ȱ ÁÎÄ

the popup menu above it), located at the bottom-left of the timeline. 101

Figure 7-7. An example composite rectangle which is partially selected. If the user clicks on

this rectangle, it becomes fully selected. .. 103

Figure 7-8. An example tooltip shown for a composite rectangle in the timeline. The one

line summary also shows the method name factorial in which the edits

were performed. ... 104

Figure 8-1. The code history diff view of AZURITE. The most recent version of the selected

region of code is always shown in the left panel, and the version of the code

from the selected time is shown in the right panel. The currently selected time

is indicated by the orange time marker in the timeline at 05:17:13pm. 110

Figure 8-2. The history search dialog of AZURITE. Users can search through the history to

find out the time range in which a certain text existed in the code. 113

Figure 8-3. The interactive selective undo dialog of AZURITE. Users can mark some code in

ÔÈÅ ÌÅÆÔ ÐÁÎÅÌȟ ÁÎÄ ÁÓË ÔÏ Ȱ+ÅÅÐ ÔÈÉÓ ÃÏÄÅ ÕÎÃÈÁÎÇÅÄȱȟ which can be repeated

until the preview in the right matches what is desired. ... 114

Figure 8-4. The interactive selective undo dialog when there is a chunk with regional

conflicts. The user can choose one of the provided options to resolve the

conflicts. Here, the second option (FontSize) is chosen by the user, which is

indicated by the blue outline. .. 115

Figure 9-1. The average backtracking completion time for each task. The error bars

indicate the standard deviations.*differences are statistically significant (p <

0.05). .. 122

Figure 10 -1. !ÑÕÁÍÁÒÉÎÅȭÓ ÈÉÓÔÏÒÙ ÐÁÎÅÌ ×ÉÔÈ ÏÐÅÒÁÔÉÏÎ Πρπ ɉÂÒÕÓÈ ÓÔÒÏËÅ ÆÏÒ ÔÈÅ ÎÏÓÅɊ

selectively undone. .. 135

Figure 10 -2. Multiple steps to create a drawing. ... 138

Figure 10 -3. In a painting program, (1) paint a shirt, (2) flood fill it with a new color, (3) then

do a variety of other actions. ... 140

Figure 10 -4. Highlighting operation 3 in orange since it conflicts with the selected operation

1 (shown in blue). .. 142

xvi

Figure 10 -5. An alternative form of history panel where selective undo/redo operations are

included in the history panel. .. 144

Figure 10 -6. Pixelitor modified with our history panel. ... 147

 xvii

TABLES

Table 2-1. Feature table of the existing single-user undo models. ... 13

Table 3-1. List of the different types of events captured by FLUORITE. 26

Table 3-2. List of the common parameters. ... 27

Table 3-3. List of the code size metrics logged for the document change events. 28

Table 4-1. Participant groups and the tasks of the preliminary lab study 37

Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for

each category. Shaded entries are related to code navigation, and the inverted

entries are related to backtracking. ... 39

Table 4-3. Demographics of the online survey respondents. ... 43

Table 4-4. Participant groups of the longitudinal backtracking study 48

Table 4-5. Summary of the analysis results of the longitudinal backtracking study 53

Table 6-1. List of significant coding events displayed in the timeline view 81

Table 7-1. Different kinds of code edits determined by the collapsing algorithm. 100

Table 7-2. Collapse test matrix used for the method level collapse test. 100

Table 7-3. Collapse test matrix used for the type level collapse test. 101

Table 7-4. Number of edit operations at each collapse level, obtained from the log data set

used in the longitudinal study of backtracking. The number of edit operations

is significantly reduced at each collapse level. ... 105

Table 7-5. Distribution of the different kinds of code changes at each collapse level. ... 106

Table 9-1. Summary of the evaluation study tasks. ... 119

Table 9-2. Running time of the collapse logic at each collapse level (in milliseconds). . 125

Table 9-3. Summary of the measured response time (in milliseconds). 126

Table 9-4. Frequency of all the AZURITE commands that I used during 2014. 129

Table 10-1. Participants in our semi-structured interviews. ... 136

xviii

Table 10-2. Participants in our usability evaluation. ... 149

 1

1.
INTRODUCTION

Since programmers are human, it is unrealistic to expect them to complete a whole task on

the first attempt without making any mistakes. Besides, programmers may intentionally

make temporary changes to the code, either as an experiment or to help with debugging. As

a consequence, programmers need to backtrack while coding. Throughout this dissertation,

ÔÈÅ ÔÅÒÍ ȰÂÁÃËÔÒÁÃËÉÎÇȱ ÉÓ ÄÅÆÉÎÅÄ ÁÓ Ȱprogrammers going back at least partially to an earlier

state of code, either by removing inserted code or by restoring removed code,ȱ and does not

refer to the algorithm for solving constraint satisfaction problems in the artificial intelligence

area or similar (cf. [Cormen 2009]). For example, programmers fix typos and correct minor

mistakes, and they try out different values for parameters to methods. When programmers

try to learn an unfamiliar API, they might try writing some code and running it to see if the

code works as expected, and if it does not, they backtrack and try something else.

In some situations, programmers will program in an exploratory manner. They quickly build

prototypes that meet the known requirements of the system. If the prototypes fail in some

way or uncover any fundamental flaws of the requirements, they backtrack and refine the

requirements [Sandberg 1988][Sametinger 1992]. Often, problems are ill-defined, and there

is no single correct solution for these problems. Rather, there are several alternative solutions

with their own strengths and weaknesses [Reitman 1965][Simon 1973][Terry 2004]. In or-

der to evaluate each solution, the programmer might implement one, backtrack, and imple-

ment another.

Also, backtracking plays an important role in situations where alternative solutions need to

be managed for a given task. When programmers are unsure about which algorithm, library,

or UI component to use in a given situation, then they might want to try out one of the alter-

natives to see how it works. If it does not work, then the first attempt might be reverted,

which is an example of backtracking, and another attempt might be made. Moreover, when

making another attempt after backtracking, it might turn out that the previous attempt was

better, which leads to another backtracking situation. Several variation management tools

have been developed [Hartmann 2008][Terry 2004], but these are limited in that users can-

not easily backtrack and add a new alternative from there, if they did not plan ahead where

they would need new alternatives.

Other researchers have shown that programmers do backtrack a significant amount while

coding, much more than people do during the text editing of regular documents [Card

1980a][Card 1980b][MacKenzie 2002]. One way to measure the frequency of backtracking is

2

to count the text editing commands related to backtracking, such as delete, undo, and the

toggle-comment commands executed in the code editor. The Eclipse Usage Data Collector

(UDC) kept track of the usage of commands executed by all the Eclipse users who have con-

sented to provide their usage data. According to the UDC data collected from Jan. 2009

through Jan. 2010 (which is the latest data published), the delete command is the most fre-

quently executed command among all the commands executed in the code editor (at 15.32%

of all commands). The undo command was 7th (4.26%). Murphy et al. also reported that delete

was the most frequently executed command in their study [Murphy 2006]. Note that undo is

not the same as backtracking because undo command can only revert the most recent

changes but backtracking includes when programmers revert some changes that were made

a while ago.

As part of this dissertation work, I conducted a series of empirical studies of backtracking,

since little was known about the backtracking behaviors of programmers (Chapter 4). My

results confirm that backtracking happens frequently. First, it was shown that the backspace

keystrokes were 12.41% of all the keystrokes made in the code editor, which is a higher per-

centage for backspace compared to normal document editing (e.g., 7.10% in [MacKenzie

2002]). An exploratory lab study and a follow-up online survey confirmed that backtracking

is quite common in programming, and programmers often reported having problems when

they want to backtrack. In addition, a longitudinal study was conducted with 1,460 hours of

actual code editor usage data from 21 programmers. The programmers in this study back-

tracked 10.3 times per hour on average, and 34% of all the detected backtracking instances

were performed manually without using the undo command or any other tool support.

1.1. PROBLEM: LIMITED SUPPORT FOR BACKTRACKING

Despite the frequency of backtracking in development contexts, modern IDEs do not provide

much support. For example, there are no sophisticated undo mechanisms used in IDEs other

than the restricted linear undo model [Berlage 1994]. However, this restricted linear undo

model, which is widely used in most text and code editors, is not suitable for all situations.

The most significant problem is that the users can only undo the most recently performed

edits. This can be very inconvenient when users realize that they made a mistake after making

some other changes that they want to retain. In addition, programmers may intentionally

make changes to the code that they want to remove later on. For instance, a developer might

insert many print statements in different places in the process of debugging, then fix the bug,

and finally want to remove all those print statements. Since there would be some other

changes (for actually fixing the bug) that the developer wants to retain after the insertions of

the print statements, the conventional undo command cannot be used for removing the print

statements. Also, when the programmer undoes several steps backwards and makes a new

change from that point, all the previously undone commands are discarded and cannot be

redone, because the undo model does not keep the complete command history tree but only

keeps a linear list. Moreover, the undo implemented in code editors only works on one file at

a time, whereas many edits to be backtracked span multiple files in the project.

Chapter 1: Introduction 3

Another popular way of backtracking is using a version control system (VCS) such as Subver-

sion or Git. A VCS allows users to revert some code to a previous version. This is not the same

as backtracking either, because backtracking can (and is actually quite likely to) happen be-

tween two version control snapshots. In fact, version control relies on the assumption that

the desired code is already committed to the repository. This may not always be the case,

especially in a backtracking situation, because it is likely that the programmer is experiment-

ing and the code is unstable or there are many temporary code fragments that should not be

committed to the repository.

1.2. MOTIVATING EXAMPLE

Imagine a scenario where a programmer is working on a graphical

user interface (GUI) in Java Swing and wants to implement a simple

panel with three vertically arranged buttons, as shown in Figure 1-1.

There should be a fixed amount of padding inside the entire panel

and between the buttons. First, she starts out with having a stub

method that returns an empty panel. She then makes the following

changes in order.

1. She creates three button objects and adds them to the panel

(Figure 1-2a).

2. Running the application shows horizontally laid out buttons, so

she looks for some layout manager to use. She first tries out

GridBagLayout (Figure 1-2b).

3. The intermediate code seems too complicated for just a simple vertical layout. She looks

for a simpler layout manager, and discovers BoxLayout . She uses undo command multi-

ple times to get rid of all the GridBagLayout code (backtracking to Figure 1-2a).

4. She writes some code with BoxLayout , resulting in much simpler code and vertically laid

out buttons (Figure 1-2c).

5. She changes some properties of the buttons, such as the background color and button text

(Figure 1-2d).

She now wants to finish up the layout and add some spacing between the buttons before

moving further. However, she realizes that BoxLayout does not directly support spacing

while GridBagLayout does. Therefore, she wants to restore the GridBagLayout code she

wrote in step 2, while keeping the changes from step 5.

Figur e 1-1. A sketch of

the desired UI

4

This example illustrates the problems of existing backtracking mechanisms discussed above

in Section 1.1. At this point, the regular undo command cannot be used because she had pre-

viously used the undo command to remove the GridBagLayout code and then she made

some new changes from there, so the needed operations have been eliminated from the undo

stack. Even if she had not used the undo command in step 3, the undo command would still

be inappropriate for this situation, because it will necessarily revert the changes made in step

5, which is also not desired. Moreover, it would be very unlikely that the GridBagLayout

code had been committed to a version control system, because the code was still an incom-

plete state. The only option she now has is to reproduce the GridBagLayout code from

scratch, which is inefficient. It would be much more convenient for her if there was at least a

semi-automatic way of restoring the desired code from Figure 1-2b while keeping the subse-

quent desired edits from Figure 1-2d.

1.3. AN APPROACH: SELECTIVE UNDO IN CODE EDITORS

These problems can be solved by having a selective undo feature in code editors. Users could

select specific edit operations performed in the past, for example the insertions of the print

statements for debugging, and invoke the selective undo command to revert only the code

affected by the those operations. The results from my longitudinal backtracking study

showed that 9.5% of all the backtrackings performed by the participants were selective,

meaning that they could not have been handled by the conventional undo command (Section

private JPanel createButtons() {

 JPanel p = new JPanel();

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1);

 p.add(button2);

 p.add(button3);

 re turn p;

}

 (a)

private JPanel createButtons() {

 JPanel p = new JPanel();

 p.setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 ... (omitted) multiple lines of code

 ... (omitted) for configuring c.

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1 , c);

 p.add(button2);

 p.add(button3);

 return p;

} (b)

private JPanel createButtons() {

 JPanel p = new JPanel();

p.setLayout(new BoxLayout(p,

 BoxLayout. Y_AXIS));

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1);

 p.add(button2);

 p.add(button3);

 return p;

} (c)

private JPanel createButtons() {

 JPanel p = new JPanel();

 p.setLayout(new BoxLayout(p, BoxLayout. Y_AXIS));

 JButton button Orange = new JButton(" Orange ");

 buttonOrange.setBackground(Color. orange);

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button Orange);

 p.add(button2);

 p.add(button3);

 return p;

} (d)

Figure 1-2. The code changes for the motivating example. The green highlight shows newly inserted lines, and

the grey highlight shows updates to the existing code.

Chapter 1: Introduction 5

4.3). Selective undo has been well researched in the area of graphical editors [Berlage

1994][Myers 1996][Myers 1998].

1.3.1. CHALLENGES OF PROVIDING SELECTIVE UNDO IN CODE EDITORS

However, selective undo has not been used with text or code editors due to the many text-

specific challenges. First, as Berlage pointed out, existing selective undo mechanisms are de-

signed to work best when the system has identifiable objects that are affected by operations,

but text does not have the notion of objects but rather has a stream of characters [Berlage

1994]. Second, there can be many Ȱregional conflictsȱ among edit operations. A regional con-

flict can occur when the region of a later edit overlaps the region of the earlier edit which the

user wants to selectively undo. When there is a regional conflict among the edit operations,

the result of a selective undo may not be well defined. To illustrate this point, consider the

following example. An edit operation Ὡ changes the code from ȰmyFontSize = 12 ;ȱ to

ȰmyRectangle Size = 12; ȱ and sometime later, another operation Ὡ changes it to ȰmyRe-

gionArea = 12; ȱ. This is an example of regional conflict because the affected ranges of the

two operations are overlapping and the ȰRectangle ȱ text inserted by Ὡ is only partially

available in the current code. In this case, it is not clear what the result of selectively undoing

operation Ὡ alone should be. The system should be able to detect such cases and provide an

appropriate approach to resolving them.

A final challenge of providing selective undo for code is that it is difficult to provide intuitive

user interfaces for the user to find what to selective undo. Many existing selective undo user

interfaces for graphics present a list of edit operations performed in the past along with hu-

man-readable descriptions of individual operations [Berlage 1994][Myers 1996][Myers

1998]. However, text editing operations are much more fine-grained than graphical editing,

so it is hard for the users to interpret the high level edit intent just by looking at the individual

text edits. In addition, graphical applications can use a thumbnail to represent a snapshot of

the graphics at a certain point of time, which makes it easier to present the edit history to the

user [Kurlander 1988][Klemmer 2002][Terry 2004][Kurlander 1990][Chii 1998]. In contrast,

a thumbnail of a piece of a large text file does not give much information to the users.

1.4. AZURITE: A SELECTIVE UNDO TOOL FOR PROGRAMMERS

To solve the problem of limited support for backtracking while addressing the challenges

mentioned above in Section 1.3 and complement the existing tools, I devised a novel selective

undo mechanism for code editors, which is the main topic of this dissertation. The selective

undo mechanism is implemented into a prototype tool called AZURITE, as a plug-in for the

Eclipse IDE (Figure 1-3). AZURITE allows programmers to selectively undo fine-grained

changes in the code editor. To provide this functionality, the system takes the stream of fine-

grained code edits as input and maintains the mapping between the different segments of the

current source file and the edit operations that introduced those segments. The system also

keeps track of regional conflict relationships among edit operations (Section 5.1.2). The sys-

tem makes use of this information to provide selective undo in code editors (Section 5.2).

6

In the motivating example above, the programmer can restore the deleted Grid BagLayout

code without losing the changes related to button Orange using AZURITE, with the following

steps:

1. Find the point in time in the past where the text ȰGridBagLayout ȱ existed in the

createButtons method using AZURITEȭs history search.

2. Select all the edit operations within the createButtons method performed since the

point found in step 1.

3. Launch the interactive selective undo dialog (Figure 1-3). Then, from the left panel, indi-

cate the parts of the current code that should be kept unchanged.

4. After checking the preview of the selective undo result shown in the right panel, press the

OK button to actually perform the selective undo.

AZURITE provides a rich set of user interfaces designed to help users complete various back-

tracking tasks. The list of steps described above is just one example, and there are several

different ways to achieve the same result using AZURITE. Users can use AZURITE in the way that

they feel the most comfortable.

Figure 1-3. An example screenshot of AZURITE running in the Eclipse IDE. At the bottom, a timeline visualization

ÏÆ ÒÅÃÅÎÔ ÃÏÄÅ ÃÈÁÎÇÅÓ ÉÓ ÐÒÏÖÉÄÅÄȢ 4ÈÅ ÕÓÅÒ ÉÓ ÃÕÒÒÅÎÔÌÙ ÕÓÉÎÇ ÔÈÅ Ȱ)ÎÔÅÒÁÃÔÉÖÅ 3ÅÌÅÃÔÉÖÅ 5ÎÄÏȱ ÄÉÁÌÏÇ ÉÎ ÏÒÄÅÒ ÔÏ

selectively undo the code and restore the GridBagLayout code without losing the desired code.

Chapter 1: Introduction 7

To evaluate the effectiveness of AZURITE on completing backtracking tasks, an A vs. B evalua-

tion study was conducted with 12 programmers. The study results showed that the group

using AZURITE was twice as fast compared to the control group, when completing the provided

backtracking tasks.

1.5. THESIS

This dissertation work seeks to evaluate the following thesis statement:

Programmers will be able to perform backtracking tasks more easily and

accurately by having a selective undo mechanism for code editors,

visualizations of code change history designed for selective undo, and history

search options to express what they remember about the previous edits that

they want to backtrack.

1.6. CONTRIBUTIONS

This dissertation makes the following major contributions:

¶ A recording tool for capturing low-level events and fine-grained edits in the code ed-

itor, which is used for performing the empirical studies of this thesis work, and by

several other research institutions. The recording tool is also used for providing se-

lective undo feature in the code editor. (Chapter 3)

¶ Findings from three empirical studies to understand programmersȭ backtracking be-

haviors (Chapter 4)

¶ A novel selective undo mechanism for code editors that is capable of dealing with re-

gional conflicts among edit operations (Chapter 5)

¶ A novel interactive timeline visualization of fine-grained code edit history (Chapter 6)

¶ A novel mechanism for summarizing fine-grained code edits in real time to provide

ȰÓÅÍÁÎÔÉÃ ÚÏÏÍÉÎÇȱ (Chapter 7)

¶ Novel user interaction techniques for providing usable interfaces for selective undo

(Chapter 8)

¶ Evidence from a user study that the prototype selective undo tool is usable and ena-

bles programmers to perform certain backtracking tasks about twice as fast com-

pared to when not using the tool (Chapter 9)

¶ An exploration of applying the selective undo idea in a painting application using a

script-model selective undo mechanism, which discovered many interesting design

issues from the user studies (Chapter 10)

8

1.7. OUTLINE

The rest of this dissertation is organized as follows. Chapter 2 starts with discussing the re-

lated work, including the various undo mechanisms, variation management systems, and his-

tory visualization systems. Chapter 3 presents our tool called FLUORITE, which is a logging

plug-in for Eclipse that captures all the fine-grained code edits and IDE interactions. FLUORITE

was used for the empirical studies and the evaluation studies conducted in this dissertation

work. FLUORITE is also used as the input source of our selective undo tool: it forwards all the

captured coding events to the selective undo core component. Chapter 4 presents the results

from a series of empirical studies of backtracking, which show that programmers frequently

need to backtrack and the existing tool support is quite limited. Chapter 5 describes the core

selective undo mechanisms, including the internal data structure maintained to support se-

lective undo and the selective undo algorithm. Chapter 6 introduces the timeline visualization

of code edits, the most basic user interface for selective undo, which displays all the fine-

grained code edits and allows users to select one or more past edit operations and invoke

selective undo command. Chapter 7 describes a real-time algorithm for collapsing related

fine-grained edits and displaying higher-level edits in the timeline. Chapter 8 describes a set

of additional user interfaces specifically designed for selective undo and their design ra-

tionale. The described user interfaces include code history diff view, history search dialog,

and the interactive selective undo dialog presented above. Chapter 9 discusses the evaluation

of our prototype tool AZURITE which implements the aforementioned selective undo mecha-

nisms and user interfaces, in terms of its usability, usefulness, and performance. Chapter 10

summarizes our effort on applying the selective undo approach in painting applications, and

presents interesting design issues not pertaining to selective undo in code editors. Chapter

11 discusses the limitations of this work and potential future work directions, and Chapter

12 concludes.

 9

2.
RELATED WORK

This research is inspired by and was built upon previous work done in various areas, including

undo models, version control and variation management systems, collecting and utilizing fine-

grained interaction history, software visualizations, and empirical studies of code editing. This

chapter summarizes related work in each of these areas.

2.1. UNDO MODELS

One way to support backtracking is with undo commands. The most widely adopted model

of undo is called the restricted linear undo model [Berlage 1994]. The system keeps a list of all

the executed commands and users can only undo the most recently performed commands. In

this model, a redo command is also supported, and it is always performed in the opposite

order of the undo, in order to make sure that the commands are re-executed the same state

where they were originally executed. Although this model is very popular and well under-

stood by the users, it has several major limitations as described in Section 1.1.

There are other more sophisticated undo models providing additional commands beyond undo

and redo, which essentially enable selective undo in an indirect way. The US&R model [Vitter

1984] allows users to skip redoing an operation, using a tree-based data structure. Users can

selectively undo an isolated operation, by undoing multiple steps until the target operation gets

undone, skipping the redo command once, and then redoing the rest of the operations. The tri-

adic model [Yang 1988] uses a simpler structure composed of a linear history list, and a circular

redo list which can be rotated by users. Undoing an operation puts the operation at the begin-

ning of the redo list, and rotating the redo list takes one operation at the beginning of the list

and puts it at the end. Since the rotate command can be used to skip a redo command, users can

selectively undo a certain operation in a similar way. However, both models require deep un-

derstanding of the underlying history structure to correctly perform selective undo. In addition,

selective undo cannot be done in one step, which can be cumbersome for users.

2.1.1. SELECTIVE UNDO MODELS

Selective undo has been extensively studied for object-based graphical, interactive editors.

With selective undo, users can select an operation (called the target operation, hereafter) from

the command history and undo that operation, isolated from the rest of the operations in the

history. There are three types of selective undo models in general: script model, inverse model,

and cascading selective undo.

10

In the script model, the system tries to guarantee that the final result to be as if the target oper-

ation had never been performed [Archer 1984]. That is, the system rolls back all the operations

in the command history to the point immediately before the target operation was performed,

skips the target operation, and reruns all the following operations that were not previously un-

done. This model has not been widely used, but we adopted this model for a pixel-based paint-

ing application (as opposed to a drawing application having identifiable objects), which will be

discussed in Chapter 10.

In the inverse model (or direct selective undo), as introduced in GINA system by Berlage, the

system adds the inverse of the target operation to the current context [Berlage 1994]. Thus, the

selective undo command itself is added to the end of the command history. The Amulet [Myers

1996] and Topaz [Myers 1998] systems had a similar selective undo feature, and these also

allowed repeating a selected command on a new object. To support this undo model, the editor

commands should be represented by command objects, each with its own undo function

[Myers 1996][Gamma 1994]. The inverse model is simpler compared to the script model in that

the rest of the command history is not affected by the selective undo command. The selective

undo for code editors described in this dissertation (Chapters 5 through 9) uses the inverse

model.

The result of selective undo may be different between these two models in the presence of con-

flicts (or dependencies), which refer to the situations where there are some later performed

operations in the history which are dependent on the target operation that the user is trying to

undo. The following example, taken from [Berlage 1994], illustrates this point. Suppose that a

graphical object is recolored with operation A, and then later that object is duplicated with a

copy operation B. What would be the result of selectively undoing A? In the script model, both

objects will return to the original color, because it works exactly as if the operation A had never

happened. In the inverse model, however, only the original object will return to its original color

without affecting the copied object, because the undo operation is applied to the current con-

text.

There is another class of selective undo model called cascading selective undo which takes care

of the conflicts [Cass 2005]. In this model, all the subsequent operations dependent on the tar-

get operation are all undone together, which eliminates the ambiguity described above. Their

user studies showed that people could predict and understand what the system will do [Cass

2006][Cass 2007].

There are other applications providing selective undo features. Selective undo was applied in

spreadsheets [Kawasaki 2004] by allowing users to select a region in the spreadsheet and per-

form regional undo. Dwell-and-spring [Appert 2012] is a selective undo mechanism for direct

manipulation. It provides an interface for undoing any press-drag-release interaction.

Chapter 2: Related Work 11

However, unlike in these graphical applications, it is difficult to provide a meaningful thumbnail

view of source code so users can determine where to go back to. Also, the code editing com-

mands are too numerous and complex to be easily displayed in a command history list box

where the user can choose one of the commands on the list.

Finally, all of these approaches assume that there is an object on which the operations can be

performed: primitive graphical objects such as shapes in graphical editors, and individual cells

in spreadsheets. In contrast, there is no clear notion of objects in text and code editors,1 since

edit operations typically affect ranges of text, and the text itself moves around and is changed.

The same problem occurs in painting programs, since edit operations typically affect areas of

pixels.

The issue of conflicts among operations is not limited to the object-based graphical editors. In

fact, text and code editors face the exact same issue when the region of a later performed edit

operation overlaps with the region of another earlier performed edit, which is referred to as a

regional conflict (see Section 5.1.2). In AZURITE, when the user tries to selective undo some edit

with one or more conflicts, AZURITE provides the user with several alternative results to choose

from.

2.1.2. REGIONAL UNDO IN TEXT EDITORS

Some text editors such as Emacs2 and DistEdit [Prakash 1994] support regional undo, where

the user undoes the most recent operation that affected a specific selected region of text, which

can be seen as a special case of selective undo. Regional undo is useful and also relatively easy

to implement compared to the generic selective undo, because it always undoes the most recent

operation performed in the selected region, which guarantees that there are no regional con-

flicts with the target operation. Regional undo is directly supported in AZURITE using a keyboard

shortcut, by searching for all edits for the region of code and invoking selective undo on the last

one, or by using code history diff view and using the revert button. In regional undo, however,

there can be an ambiguity if the user selects a region which partially overlaps with an opera-

tionȭs effective region. Li and Li refer to this problem as region overlapping, and introduce the

idea of partial undo as a solution, which undoes only overlapped part of the operation when an

operation partly falls in the given undo region [Li 2003]. In this situation, AZURITE would do the

same thing when using the code history diff view or the regional undo shortcut to revert a cer-

tain region of code to one of the previous versions.

1 In fact, projectional editors (or structured editors) such as JetBrains MPS (https://www.jetbrains.com/mps/), in

which users can directly edit the underlying document structure (e.g., abstract syntax tree), do have objects.
However, they do not usually provide selective undo features, but in theory, it would be possible to apply the
existing selective undo approaches to implement per-object selective undo.

2 http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html

https://www.jetbrains.com/mps/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html

12

2.1.3. TREE-BASED UNDO MODELS

As seen in the US&R model [Vitter 1984], one way to extend the conventional linear undo is to

keep the edit history as a tree instead of as a linear list. When the user undoes multiple steps

and makes a new edit from there, it creates a new branch in the history tree and puts the new

operation in it, while keeping the previously undone operations in the previous branch. One of

the problems of this approach is that it becomes difficult to provide useful and usable interfaces

for users. Moreover, selective undo cannot be clearly presented in a history tree, because a se-

lective undo command would create a new node which has never been visited before, thus mak-

ing it not distinguishable from any other normal operations in the history.

Several text editors and plug-ins provide tree-structured visualizations which allow users to

move around among the different nodes and make new changes from any of the existing nodes

[Losh 2012][Cubitt 2010]. However, as the edit history gets bigger, it becomes more difficult to

understand the history because the nodes do not provide sufficient useful information for the

user to navigate the tree.

2.1.4. OPERATIONAL TRANSFORMATION IN COLLABORATIVE EDITING

Another use of selective undo is in collaborative editing, where multiple people can edit a doc-

ument concurrently, which has been studied by various systems (e.g., [Ellis 1989][Berlage

1993][Choudhary 1995][Prakash 1994][Sun 2002]). For a real-time collaborative editing

tool, maintaining consistency of a document across different sites is a major challenge, in the

presence of multiple local copies of the shared document and network latency. To address this

problem, a line of technology called operational transformation (OT) has evolved by the Com-

puter-Supported Cooperative Work (CSCW) community [Sun 1998]. OT provides formal foun-

dations for maintaining consistency properties.

Sun gives a good summary of how OT can be used to perform a selective undo operation cor-

rectly in a collaborative editing environment [Sun 2002]. The high-level idea is that when a

selective undo of operation ὕ is invoked, the system processes the undo command as if it was

an inverse operation ὕ generated immediately after ὕ, that is concurrent with all the other op-

erations afterwards. Then, the system can process the undo operation using the well-defined

rules of OT.

This approach has a number of major differences from the selective undo approach described

in this dissertation. First, because the main purpose of OT is to maintain document consistency,

this approach is excessively complicated for the purpose of providing a single-user selective

undo.3 Second, the OT-based undo approach modifies the history buffer. After successfully un-

doing operation ὕ, the inverse operation ὕ would be added to the history buffer immediately

after ὕ, and all the rest of the operations in the history buffer would be transformed against ὕ.

Essentially, this makes the ὕ ὕʐ pair a no-op, and works similar to the script-based selective

3 Joseph Gentle, author of ShareJS (http://sharejs.org/ Ɋȟ Á ×ÅÂ ÌÉÂÒÁÒÙ ÆÏÒ /4ȟ ÓÁÙÓ Ȱ) ÁÍ ÁÎ ÅØ 'ÏÏÇÌÅ 7ÁÖÅ ÅÎÇÉÎÅÅÒȢ
7ÁÖÅ ÔÏÏË ς ÙÅÁÒÓ ÔÏ ×ÒÉÔÅ ÁÎÄ ÉÆ ×Å ÒÅ×ÒÏÔÅ ÉÔ ÔÏÄÁÙȟ ÉÔ ×ÏÕÌÄ ÔÁËÅ ÁÌÍÏÓÔ ÁÓ ÌÏÎÇ ÔÏ ×ÒÉÔÅ Á ÓÅÃÏÎÄ ÔÉÍÅȢȱ

http://sharejs.org/

Chapter 2: Related Work 13

undo model. In contrast, AZURITE uses the inverse model and always adds the undo operations

at the end of the history.

Finally, and most importantly, the issue of regional conflict is still not very well defined in OT-

based undo approach. Due to the inherent complexity of the consistency issue, OT literature

almost always considers only two primitive edit operations: single character insertion and sin-

gle character deletion. When the edits are limited to single character, the regional conflict does

not even occur, because the edits do not have the notion of edit regions. However, this may not

be very practical, because users would not want to undo only individual character level edits.

For example, most of the available text and code editors automatically group a series of charac-

ter edits and make it possible to undo at a higher-level. Similarly, pasting text over a selected

region causes a range of text to be replaced.

2.1.5. OTHER UNDO MODELS

Similar to operational transformation approach, Hayashi et al. proposed the idea of edit history

refactoring, which is a restructuring of an edit history without affecting the final result of the

code, and implemented it in their system called Historef [Hayashi 2012][Hayashi 2015]. His-

toref also provides a selective undo feature using history refactoring. The selected operations

are first moved to the end of the history using swap refactoring, the changes are merged into a

Undo Model Structure

Return to Any

Previous State? Selective Undo Support

Selecting Target

Operation(s) Reference

Restricted

Linear Undo
Linear list Not Supported N/A [Berlage 1994]

History-Tree

Visualizations
Tree Yes Not Supported N/A

[Losh

2012][Cubitt

2010]

Photoshop

Non-linear Undo
Non-linear list Yes Not Supported N/A

Revision Control

for Images

Directed acyclic

graph
Yes Not Supported N/A [Chen 2011]

US&R Tree
Undo, skip, then redo

(manual)
Indirect [Vitter 1984]

Triadic Model
Undo list + Redo

list (rotatable)

Undo, rotate, then redo

(manual)
Indirect [Yang 1988]

Script-Model

Selective Undo
Linear list

Pretend that the target

operation never happened
Direct

[Archer 1984]

Aquamarine

(Chapter 10)

Inverse-Model

Selective Undo
Linear list Yes

Add the inverse operation

at the end
Direct

[Berlage 1994]

[Myers 1996]

AZURITE

(Chapters 5-9)

Cascading

Selective Undo
Linear list

Undo all the conflicting

operations together
Direct [Cass 2005]

Regional Undo Linear list
Filter the operations in the

region, and undo them
By region

[Li 2003]

[Kawasaki 2004]

History

Refactoring
Linear list Yes

Move the target

operations to the end
Direct [Hayashi 2012]

Table 2-1. Feature table of the existing single-user undo models.

14

single operation, and then the inverse operation of it is executed. This approach, however, can-

not address situations where the operations conflict, which our selective undo can handle. His-

toref also does not provide any visualizations or history search mechanisms that would help

users to find and select the operations to be undone.

!ÄÏÂÅ 0ÈÏÔÏÓÈÏÐ ÐÒÏÖÉÄÅÓ Á ÈÉÓÔÏÒÙ ×ÉÎÄÏ× ×ÉÔÈ Á ÍÏÄÅ ÆÏÒ ȰÎÏÎ-ÌÉÎÅÁÒ ÕÎÄÏȱȟ ÂÕÔ ÔÈÉÓ ÉÓ ÄÉÆȤ

ferent from selective undoɂwhen the user undoes operations and then does new ones, Pho-

ÔÏÓÈÏÐȭÓ ÎÏÎ-linear undo retains the undone operations on the undo stack rather than remove

them. However, future undos still start at the last operation and continue backwards through

all previous operations in order.

Chen et al. presented another system that provides a revision control system for images based

on a directed acyclic graph (DAG), which enables users to make forks and joins and then move

around in the history and see various versions of images [Chen 2011]. However, it does not

support selective undo or the script model.

As a summary, a feature table of the existing undo models for single-user environments de-

scribed above is provided in Table 2-1.

2.2. VERSION CONTROL AND VARIATION MANAGEMENT SYSTEMS

A version control system (VCS) can be seen as a variation management system [Conradi 1998].

Traditional centralized version control systems such as Subversion help programmers to revert

a file or a set of files to an older version whenever something goes wrong with an experiment.

However, there are many cases where a VCS cannot directly help with backtracking. As men-

tioned in Section 1.1 above, the user must think to commit the desired version, which may not

happen if the programmer only later realizes that backtracking is needed. It may not be even

possible to use a VCS to commit a certain variation when that version contains unstable code,

which is likely to be the case during an exploration.

2.2.1. FEATURES OF GIT RELATED TO SELECTIVE UNDO

In recent years, a distributed version control system (DVCS) called Git4 became one of the most

popular version control systems in the software development community. The 2014 version of

the Eclipse community survey5 reports that Git is the first most used VCS (33.3%), surpassing

Subversion (30.7%), which used to be the dominant tool. In a DVCS environment like Git, a pro-

grammer normally works with a local clone of the public repository, and pushes the local

changes to the shared repository only when the local version seems to be stable. This style of

workflow can mitigate the problem of committing an unstable piece of code because the local

clone does not affect the repository of other colleagues, although committing is still a fairly

heavyweight process.

4 http://git -scm.com/
5 https://ianskerrett.wordpress.com/2014/06/23/eclipse -community -survey-2014-results/

http://git-scm.com/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

Chapter 2: Related Work 15

Git provides a large set of powerful features, some of which are closely related to selective undo.

When the changes to the code that the programmer wants to undo (called target changes, here-

after) are already grouped as a single commit in the history, there are multiple ways to revert

that particular commit in the current context, which is essentially selectively undoing the

changes at a coarse-ÇÒÁÉÎÅÄ ÌÅÖÅÌȢ 4ÈÅ Ȱgit revert ȱ ÃÏÍÍÁÎÄ can be used to create an inverse

commit of the target commit and it adds the new commit at the end of the commit history. Git

ÁÌÓÏ ÐÒÏÖÉÄÅÓ ÔÈÅ Ȱgit cherry - pick ȱ ÃÏÍÍÁÎÄ, which is essentially a selective redo com-

mand. Using the cherry-pick command, users can apply some of the changes from one branch

to another. This command can be used to mimic selective undo between branches, because us-

ers can cherry-pick all the commits except for the commit containing the target changes.

One limitation of this approach is that the target changes must have already be isolated as a

single commit, separated from the other changes. In other words, if the target changes are in-

termixed with other changes in a single commit, it can be very tedious to selectively undo only

the target changes. Another limitation is that the revert and the cherry-pick commands can

cause regional conflicts, in which case the user has to manually fix all the conflicts and then

commit again. Although regional conflicts can also occur in AZURITE, there are a few important

differences. First, because Git keeps track of the line-level changes, the regional conflict may

occur even if the changes are not overlapping, when the changes are made in the same line. For

ÅØÁÍÐÌÅȟ ÉÍÁÇÉÎÅ ÔÈÅÒÅ ÉÓ Á ÖÁÒÉÁÂÌÅ ÄÅÃÌÁÒÁÔÉÏÎ ÓÔÁÔÅÍÅÎÔ ×ÉÔÈ ÁÎ ÉÎÉÔÉÁÌ ÖÁÌÕÅȟ ÓÕÃÈ ÁÓ Ȱint

foo = 1; ȱ ɉÖρɊȢ 4ÈÅ ÕÓÅÒ ÃÈÁÎÇÅÓ ÔÈÉÓ ÃÏÄÅ ÔÏ Ȱint bar = 1; ȱ ɉÖςɊȟ ÁÎÄ ÔÈÅÎ ÔÏ Ȱint bar =

2;ȱ ɉÖσɊȢ !ÓÓÕÍÉÎÇ ÔÈÅÓÅ ÔÈÒÅÅ ÖÅÒÓÉÏÎÓ ÁÒÅ ÓÅÐÁÒÁÔÅÌÙ ÃÏÍÍÉÔÔÅÄ ÔÏ 'ÉÔȟ ÔÈÅ ÕÓÅÒ ÓÈÏÕÌÄ ÂÅ

able to use the git revert command to undo the variable name change. However, because

these two changes were made in the same line, Git will produce an error message indicating

that there is a conflict that needs to be resolved by the user (Figure 2-1), and when the user

opens the file, the conflicting part is marked as shown in Figure 2-2, and the user needs to man-

ually fix the code to the desired state and then invoke the git commit command to finish the

revert operation.

error: could not revert 6a7f7ad... Foo to Bar

hint: after resolving the conflicts, mark the corrected paths

hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Figure 2-1. Error message generated by Git showing there is a conflict that should be resolved.

<<<<<<< HEAD

int bar = 2;

=======

int foo = 1;

>>>>>>> parent of 6a7f7ad... Foo to Bar

Figure 2-2. The content of the file that has the conflict. The user need to manually resolve this conflict and then

make another commit to finish the revert operation.

16

In contrast, selectively undoing the variable name change using AZURITE would not result in a

conflict, because AZURITE keeps the accurate regions of the individual edits, even within a single

line. Even when there is a conflict, the conflict resolution could be done by simply clicking one

of the options provided by AZURITE, which is much easier compared to the manual conflict res-

olution process of Git. Granted, there are numerous third-party visual merge tools that can be

used in conjunction with Git which helps resolving conflicts (e.g., DiffMerge,6 Araxis Merge7),

but they still require some manual work from the user.

There is another situation where Git can help achieve selective undo. Suppose that there are

local code changes which are not yet committed and some of those changes should be selec-

tively undone. In other words, only some of the local changes should be selectively committed.

4ÈÉÓ ÃÁÎ ÂÅ ÁÃÈÉÅÖÅÄ ÕÓÉÎÇ ÔÈÅ Ȱgit add -- patch " command, which presents an interactive

command line interface where the user can review each hunk (Git terminology referring to a

contiguous lines of changes) in the local changes and decide whether to include the hunk in the

commit or not. The closest feature provided in AZURITE is the interactive selective undo dialog

(Figure 1-3, Section 8.4), which allows users to review the selective undo result and dynami-

cally add or remove edit operations. 4ÈÅ Ȱgit add -- patch " command, however, cannot be

used to restore code that is neither in the committed code nor in the local changes (i.e., some

code that was produced after the last commit but removed in the current local version),

whereas AZURITE can be used to restore such code.

2.2.2. LOCAL HISTORY FEATURES OF INTEGRATED DEVELOPMENT ENVIRONMENTS

Most of the popular IDEs support local history keeping features, where the snapshots of each

source file is automatically kept in a history upon file save (e.g., Eclipse, Visual Studio8) or as

the code changes (e.g., NetBeans). Xcode 4 has a feature called Version Editor, where the history

of a file is displayed in a code compare view with two panels, and users can move through the

history using the vertical timeline located between those two panels. However, these features

are limited compared to AZURITE in that (1) the history is shown in a linear list without any

human-readable descriptions or cues, (2) changes can only be seen at the file level, (3) history

search is not supported, and (4) selective undo is not directly supported, so users must com-

pare the local and the desired older versions and merge the wanted changes manually. Similar

to these IDEs, cloud-based text editors such as Google Docs support linear revision history, but

with the same limitations.

2.2.3. OTHER VARIATION MANAGEMENT SYSTEMS

Backtracking becomes important when trying out multiple alternative solutions. There exist

several tools that help with variation management. Juxtapose [Hartmann 2008] enables devel-

opers to add an alternative at any time, and allows them to move among alternative source

6 http://www.sourcegear.com/diffmerge/
7 http://www.araxis.com/merge/index.en
8 http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto -history-extension-in-visual-studio-2013.aspx

http://www.sourcegear.com/diffmerge/
http://www.araxis.com/merge/index.en
http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto-history-extension-in-visual-studio-2013.aspx

Chapter 2: Related Work 17

files. When testing the application, multiple alternatives can be juxtaposed and the developer

can compare the results directly. Also, Juxtapose automatically generates widgets for tunable

application parameters so that the developer may change the values at run time and see the

results without recompiling the whole application. Terry et al. proposed the Parallel Paths

model [Terry 2004], which allows users to create a new variation at any time around a single

command invocation, see the variations simultaneously in a single workspace, and edit them

individually or as a whole. However, users must know in advance when they want to add var-

iations in Juxtapose, and Parallel Pies works only in the graphical editing context. Barista [Ko

2006] had an alternative expressions tool which allows selecting an alternative by clicking on

one of the listed choices, but it was restricted to the expression level.

2.2.4. FORMAL REPRESENTATIONS OF VARIATIONS

Other work has studied ways to formally represent and manipulate source code variations.

Choice calculus provides a generalized representation for software variations at the code level

and provides theoretical foundations of variation management [Erwig 2011][Walkingshaw

2013]. Choice calculus provides a syntax to represent variations within a variational program,

semantics for the representation, and semantic preserving transformation laws which can be

used by tools implementing choice calculus.

Consider the following example9 variational program using choice calculus (Figure 2-3a).

In this variational program, there are two dimensions: Name and Traffic . Each of these dimen-

sions has two alternatives. For example, the Name dimension has two alternatives: time and

dur . The named tuple of alternatives (i.e., dimension + alternatives) such as Name<time,dur>

is called a choice. A program variant can be obtained from a variational program by selecting

the index of alternatives for each dimension. Figure 2-3b is an example variant obtained by

selecting the first alternative of the Name dimension, and the second alternative of the Traffic

dimension. Note that the Traffic dimension appears in multiple locations in the variational

program. In this case, all the choices with the same name (dimension) should have the exact

same number of alternatives, and only the alternatives at the same index can be selected to-

gether. For example, the alternatives 4 and 8 cannot be selected together in the example.

Although the original motivation for choice calculus is to support developing, maintaining, and

analyzing variations in software, for example in software product lines, it is also closely related

9 This example was originally created by Martin Erwig.

function Name<time,dur> (n) {

 return Traffic<4,7>*n + Traffic<10,8>

}

{ Name1 , Traffic2 }

function time (n) {

 return 7*n + 8

}

(a) (b)

Figure 2-3. An example variational program annotated with choice calculus (a), and one of the variants obtained

by selecting the first alternative from Name dimension, and the second alternative from the Traffic dimension (b).

18

to selective undo. In theory, each code edit can be translated into a new choice, which is called

the choice edit model. In this model, an Insert of foo can be can be represented as a choice

X< ,afoo> , a Delete of foo as Y<foo, >a, and a Replacement of foo to bar as Z<foo,bar> .

Given a variational program annotated with this choice edit model, selective undo can be per-

formed by selecting a different alternative for a particular dimension, while leaving the rest of

the selections unchanged.

Using this choice edit model for selective undo is interesting in several aspects. First, regional

conflict can be modeled as nested choices. Users could either undo a certain edit along with all

the other edits depending on the target edit (i.e. conflictees as defined in Section 5.1.2) or leave

the code unchanged. To compare this model with the conflict resolution interface of AZURITE,

this model would only provide the options A2 and A3 without providing A1 (Section 5.2.2.2).

Another interesting aspect is that semantic dependencies (e.g., renaming method in the defini-

tion and all its call-sites) can be represented as a same-named dimension appearing in multiple

locations of the variational program. Note, however, the notation does not provide anything

about how to determine these semantic relationships among code edits.

A fundamental limitation of this model of selective undo is that it is difficult to translate all the

fine-grained code edits into the choice edit model in practice. Since the amount of fine-grained

edits generated in the code editor is fairly large, the variational program using the choice edit

model would get more and more complicated very quickly with lots of dimensions and nested

choices, which is likely to be unmanageable for the users.

2.3. COLLECTING AND UTILIZING FINE-GRAINED INTERACTION DATA

As part of this dissertation work, a longitudinal study of backtracking was conducted by ana-

lyzing fine-grained code edit logs captured by our FLUORITE tool (Section 4.3). This study can

be seen as a software evolution study performed at a fine-grained level. While mining software

repositories [Kagdi 2007], a popular software evolution research methodology, works at the

commit level, our analysis was performed at the individual code edit level. For the backtracking

study, it was necessary to use the fine-grained history, because programmers would often

backtrack while experimenting, and the intermediate versions are very unlikely to be captured

in version control system histories, which motivated the development of FLUORITE (Chapter 3).

2.3.1. FINE-GRAINED INTERACTION DATA COLLECTION TOOLS

There exist other tools that capture fine-grained code edits and/or user interactions with the

IDEs. Mylyn keeps track of the user interaction history internally in order to derive the task

context [Kersten 2006][Murphy 2006]. Using the Mylyn Monitor API,10 investigators can re-

trieve the user interaction data for their own analyses. FLUORITE differs from the Mylyn Monitor

in that FLUORITE focuses more on the details of the user interaction in the code editor, whereas

10 http://wiki.eclipse.org/Mylyn/Integrator_Reference

http://wiki.eclipse.org/Mylyn/Integrator_Reference

Chapter 2: Related Work 19

the Mylyn Monitor collects more abstract user interaction data on the entire IDE. For example,

when the programmer selects a class from the package explorer, Mylyn Monitor logs that there

was a selection event from the package explorer with the name of the selected class, whereas

FLUORITE logs exactly which file was opened, and the offset and length of the highlighted text

(i.e., the name of the class) in the file.

The Eclipse Usage Data Collector (UDC)11 was another useful source of programmersȭ Eclipse

usage data.12 The UDC collected usage information from all the Eclipse users all over the world

who consented to upload their usage data to the UDC. The UDC publicized several usage reports

including the commands report. These reports have been used by many researchers (e.g.,

[Parnin 2009][Murphy-Hill 2009]). However, the command usage report from UDC was not

suitable for my backtracking study because it did not capture some important commands exe-

cuted in the code editor. It ignored many of the most frequent keyboard commands such as

navigating source code with arrow keys and deleting the previous character with the backspace

key because they are not explicitly bound as Eclipse commands or keyboard shortcuts. In con-

trast, FLUORITE collects all commands regardless of how they are invoked.

There exist other research tools that capture fine-grained code changes as FLUORITE does.

OperationRecorder [Omori 2008] and CODINGTRACKER [Vakilian 2012][Negara 2012][Negara

2014] both take the raw text changes as inputs and turns them into AST-level change opera-

tions, whereas FLUORITE logs all the textual changes as-is. IDE++ [Zhongxian 2012] is a system

that captures all types of IDE interactions, which are not limited to code edits. The data can be

used in various ways, and there are other researchers who have analyzed their own fine-

grained code change data to extract different information. Vakilian et al. collected detailed us-

age data of Eclipse refactoring tools using their CODINGSPECTATOR tool, and analyzed the data to

discover usability problems of the refactoring tools [Vakilian 2014]. In their analysis, they de-

tected the situations where the users used the refactoring tools in a way that is not ideal, indi-

cated, for example, by cancellations or undoing of the refactoring commands. As another

example, CODINGTRACKER logs were analyzed by adapting existing data mining techniques

[Negara 2014], which is different from our per-node history keeping approach. They identified

10 previously unknown program transformation patterns. This shows that analyzing fine-

grained code change history can be useful in many different ways. This line of empirical

research is being continued by a team of researchers (in the COPE project: Change-Oriented

Programming Environment13Ɋȟ ÁÎÄ ÔÈÅÙ ÁÒÅ ÓÔÕÄÙÉÎÇ ÄÅÖÅÌÏÐÅÒÓȭ ÔÅÓÔ-driven development

practices using the fine-grained logs they are collecting. Although CODINGTRACKER and IDE++

are similar to FLUORITE in that they also capture the fine-grained code edits from the code

editors, I could not use them, unfortunately, because they were independently developed by

different research groups in parallel with FLUORITE and could not be integrated with AZURITE.

11 https://eclipse.org/epp/usagedata/
12 Unfortunately, the Eclipse Usage Data Collector (UDC) project has been discontinued since 2010.
13 http://cope.eecs.oregonstate.edu/

https://eclipse.org/epp/usagedata/
http://cope.eecs.oregonstate.edu/

20

2.3.2. REPLAYING FINE-GRAINED INTERACTION DATA

Syde is a tool for Eclipse that can record fine-grained change history of Java-based systems in

multi -programmer settings [Hattori 2010a][Hattori 2010b]. This tool is intended to increase

team awareness and help programmers understand the code evolution, but it could be used to

track the editor usage as well. Syde differs from FLUORITE in that it records changes at the ab-

stract syntax tree (AST) level, not the textual level. Also, it only records the operations which

modify the AST, and so, for example, the SelectText command will not be recorded by Syde.

As a follow-up tool, they developed Replay, a tool that can be used to replay the changes rec-

orded with the Syde tool [Hattori 2011]. Their empirical study showed that programmers can

answer the software evolution related comprehension questions in a significantly shorter time,

when compared to using a traditional version control system.

Fine-grained code edit scripts can be used for creating coding tutorials with examples. JTutor

[Kojouharov 2004] is a coding tutorial creator / replayer tool suite for Eclipse for students who

are learning Java programming. Similar to FLUORITE, JTutor uses an XML-based data structure,

with the initial snapshot and all the subsequent changes represented as individual steps. Simi-

larly, SmartTutor [Zhang 2009] is a tutorial recorder / replayer tool that works in Eclipse, but

it focuses on teaching how to use the IDE features, while JTutor focuses more on teaching how

to program. Ginosar et al. created a coding tutorial editor tool for the Processing language, but

the main focus was to make it easier for the tutorial creators to edit the existing tutorial scripts

with tool support [Ginosar 2013].

2.3.3. USE OF FINE-GRAINED CODE EDITS IN REFACTORING

BeneFactor [Ge 2012] is a refactoring tool that detects ongoing, incomplete manual refactoring

while the programmer is editing the code and offers a command to finish the rest of the refac-

toring activities automatically. The refactoring detection process involves monitoring the fine-

grained code edits and checking if a series of code edits match one of the pre-defined refactor-

ing patterns, which are defined as state machines. Once the programmer asks BeneFactor to

finish the manual refactoring, BeneFactor rolls back the manual refactoring (to revert the code

context to the state where the automatic refactoring command can be correctly executed), and

then invokes the automatic refactoring command to finish the desired refactoring. If the pro-

grammer made some interleaving edits with the manual refactoring that are independent from

the refactoring, BeneFactor preserves those independent edits while rolling back. Interestingly,

the paper refers to this process as selective undo, because only the edits that are part of the

refactoring are being undone selectively. The selective undo here is an internal algorithm used

to achieve the refactoring, not an explicit command that can be invoked by the users. The actual

selective undo algorithm used in BeneFactor is similar to the script-based selective undo model:

all the edits are undone first, and then only the non-refactoring edits are re-executed, skipping

all the refactoring related edits.

Chapter 2: Related Work 21

2.3.4. ANALYZING FINE-GRAINED INTERACTION DATA TO DISCOVER USABILITY PROBLEMS

Detailed tool usage data can also be used to identify usability problems of specific tools. Akers

et al. devised a study method called backtracking analysis, which is designed to capture usability

problems of graphical creation-oriented programs such as Google SketchUp [Akers 2012]. To

capture richer contextual information, their system automatically captured both the screens of

participants and the backtracking events such as undo or erase. In their backtracking analysis,

backtracking events are assumed to be indicators of usability problems of the creation-oriented

programs. In contrast, our work aims to support programmers to backtrack more easily and

effectively, with the premise that backtracking events in code editing are natural in exploratory

programming activities.

2.4. EDIT HISTORY VISUALIZATIONS & SEARCH TOOLS

One of the most important user interfaces provided in AZURITE is the timeline visualization of

code edits (Chapter 6). There are other edit history visualizations using timelines. Chronos

[Servant 2012] shows the results of history searches in a zoomable timeline. Since Chronos is

designed to work with coarse-grained version control history, however, it is not adequate for

visualizing a large amount of small edits. CodeTimeline [Kuhn 2012] is a visualization for pre-

senting the social history of a software project, similar to Facebookȭs Timeline. Programmers

can manually add sticky notes or photos to recall the social events associated with the project.

It also visualizes some level of edit history information such as the lifecycle of all files and the

code ownership. Automark14 is a plug-in for Visual Studio, which generates a HTML or Mark-

down formatted coding history including the actual code edits, visited Stack Overflow questions

ÏÒ ÄÏÃÕÍÅÎÔÁÔÉÏÎ ÐÁÇÅÓȟ ×ÈÉÃÈ ÉÓ ÄÅÓÉÇÎÅÄ ÔÏ ÈÅÌÐ ÒÅÃÏÖÅÒ ÐÒÏÇÒÁÍÍÅÒÓȭ ÅÐÉÓÏÄÉÃ ÍÅÍÏÒÙ

after an interruption [Parnin 2012] or facilitate sharing a coding history with other people. The

software evolution Storyline [Ogawa 2010] is another timeline visualization which focuses on

who contributed to the project over time. These history visualization tools are primarily de-

signed for helping people recall and share memories, not for providing editor commands as

provided by AZURITE.

Aquamarine, our prototype painting application providing selective undo features (Chapter 10),

displays the past interactions in a graphical History pane (Figure 10-1). There has been signif-

icant research on such displays. Chimera provided graphical histories as thumbnail snapshots

which could be edited and re-used, and past actions could be modified [Kurlander 1988], but

ÃÏÎÆÌÉÃÔÓ ÁÍÏÎÇ ÏÐÅÒÁÔÉÏÎÓ ×ÅÒÅ ÎÏÔ ÓÐÅÃÉÆÉÃÁÌÌÙ ÉÄÅÎÔÉÆÉÅÄȢ 4ÈÅ $ÅÓÉÇÎÅÒȭÓ /ÕÔÐÏÓÔ ÓÈÏ×Ó

snapshots of the history of states of a web editing session with multiple users and keeps track

of forks among versions [Klemmer 2002]. Systems have also used graphical histories to foster

learning [Chi 2012][Grossman 2010] and creating macros for later reuse [Kurlander

1988][Lieberman 1992].

14 https://visualstudiogallery.msdn.microsoft.com/078d00b7 -dfbd-4cfa-97f9-8be08bb510ee

https://visualstudiogallery.msdn.microsoft.com/078d00b7-dfbd-4cfa-97f9-8be08bb510ee

22

There are systems that provide history search, which has also been called Ȱhistory slicing.ȱ Op-

erationSliceReplayer [Maruyama 2012] uses the AST data kept by OperationRecorder [Omori

2008] to filter t he changes that affected a certain class member. Chronos [Servant 2012] uses

the version control snapshots to trace back to find which commits affected a certain area of

code. The search scope of Chronos can be as small as a single line. These history search features

are limited to region-based search, whereas the history search of AZURITE can find the target

text in the history, even when the text does not even exist in the current code.

2.5. EMPIRICAL STUDIES OF SOURCE-CODE EDITING

There have been general studies about programmersȭ code editing strategies, but not for back-

tracking specifically. Kim et al. studied copying and pasting in the programming context [Kim

2004]. Ko et al. analyzed programmersȭ character level code-editing strategies [Ko 2005b]. In

that study, comment edits were 3% of all edits, and 60% of the comment edits were for tempo-

rarily commenting out code. Empirical studies on software evolution (e.g. refactoring [Murphy-

Hill 2009][Kim 2011]) also focus on how programmers make changes to code over time, but

they are often limited to revision-level changes.

2.6. CONCLUSION

While researchers have been studying various human aspects of software development, the

knowledge about ÐÒÏÇÒÁÍÍÅÒÓȭ ÂÁÃËÔÒÁÃËÉÎÇ ÂÅÈÁÖÉÏÒ ×ÁÓ ÖÅÒÙ ÌÉÍÉÔÅÄȢ 4ÈÉÓ ÍÏÔÉÖÁÔÅÄ my

empirical studies of backtracking, which are discussed in Chapter 4. Many undo models have

been proposed to help users backtrack and facilitate exploration, but none are directly applica-

ÂÌÅ ÔÏ ÔÏÄÁÙȭÓ ÓÏÕÒÃÅ ÃÏÄÅ ÅÄÉÔÉÎÇ ÅÎÖÉÒÏÎÍÅÎÔÓ due to their limitations. The existing undo

models do not describe how to handle the edit operation conflicts in a code (or text) editing

context. Version control systems can help programmers backtrack their code changes, but only

if those target changes have already been committed and are well separated from the other

irrelevant changes. In Chapters 3 & 5, I explain how AZURITE can make use of the fine-grained

code edits to provide and handle edit operation conflicts.

Moreover, there is little evidence that the existing undo models are actually usable and useful

for the users. In Chapters 6-8, I describe a set of novel user interfaces designed for selective

undo, and then evaluate those designs in Chapter 9.

 23

3.
CAPTURING FINE-GRAINED CODING EVENTS

FROM THE CODE EDITOR15

Little was known about the backtracking behaviors of programmers when this research started.

I first looked for existing research methods or data that I could analyze to gain more insights

about backtracking, but none of them were suitable for the purpose of understanding back-

tracking behaviors. Therefore, I created my own fine-grained coding event data collection tool,

which is the main topic of this chapter. First, the existing research methods and data sets are

reviewed, and why they were not suitable for the backtracking research is explained.

3.1. RELATED WORK

There are many different sources of programmersȭ usage data, each with its own strengths and

weaknesses. One way is to directly ask the programmers who regularly use the target program-

ming language or tool through interviews or surveys. Although these methods are effective and

the investigators can get useful insights about the target feature, the responses from the sub-

jects may not be reliable. For instance, many operations are performed quite automatically by

the programmers (e.g., the undo command), so it is possible that they could report that they

use a feature a lot but could not remember the specific occasions.

Another way of gathering usage data is performing contextual inquiries [Beyer 1997] or exper-

iments in lab settings. Often, the participants are required to think aloud while performing their

tasks, and their screen and voice are recorded for further analyses. However, the experimenter

must then manually inspect the videotape (as was done in [Ko 2004][Ko 2005a][Coman

2008][Ko 2003]) in order to analyze the results, which can be time-consuming and error-prone.

Usage data can also be obtained by mining software repositories and their revision histories.

For example, many researchers have used this method to gain insights about code clones [Kim

2005a][Aversano 2007][Bettenburg 2009] and how the programmers refactor [Murphy-Hill

2009][Xing 2006][Kim 2011]. There is plenty of available data in the open source software re-

positories and from industry, and the data can be analyzed automatically. One problem with

this method is that we still cannot know what events happened between two consecutive revi-

sions. Instead, we can only infer what types of commands the programmers might have used to

15 Portions of this chapter appeared in [Yoon 2011].

24

change the code from one revision to the next. Also, some of the popular version control sys-

tems such as Git provide the ability to edit the existing commit history (e.g., rebase, squash) and

thus there is a high chance that the public repository does not show the software evolution

history as it actually happened [Bird 2009].

When studying the backtracking behavior of programmers, mining software repositories is

inadequate and having access to the low-level code editing and/or tool usage data becomes

even more important, because it is likely that much backtracking is done as part of some ex-

perimentation locally, without being committed to public source code repositories. Although

there were several existing methods for gathering tool usage data, there was none that was

suitable for analyzing fine-grained code editing history without requir ing laborious manual

inspection.

3.2. FLUORITE: FINE-GRAINED CODING EVENT LOGGER FOR ECLIPSE

In order to address these limitation s, I built a publicly available event logging plug-in for

Eclipse called FLUORITE16 as part of my research. FLUORITE keeps track of all of the events that

occur in the code editor and saves the log files in XML format.

The granularity of events that FLUORITE logs is very fine since it logs character typing, moving

the text cursor, changing the selected text, and all other Eclipse commands executed in the

code editor. FLUORITE not only logs the common metadata such as command IDs and the

timestamps indicating when the command was executed, but also additional parameters spe-

cific to the type of command. For example, a Find command has additional searchText and

replaceText parameters. In the case of text editing events, the inserted and/or deleted text

is also recorded.

What makes FLUORITE unique is that FLUORITEȭS time-stamped and detailed event logs enable

us to analyze the programmersȭ complex code editing strategies which are often composed

of sequences of commands. For example, it was seen in the collected logs (see Section 4.1) that

backspace was 12.41% of all the keystrokes in code editing, and it was often used in se-

quences of more than four backspaces in a row (4.35 on average) generally used to fix typos

or rename variables. This type of analysis cannot be done using the types of usage data avail-

able from the change-log histories, or other high-level logging tools.

Although the Eclipse Usage Data Collector (UDC) data provides the detailed timestamp of the

editor commands executed, which enables the event sequence analysis, the data does not

contain the actual source code or the fine-grained textual changes. In contrast, with FLUORITE

logs, using the snapshots of the initial source files and the deleted / inserted text from all the

commands, it is possible to completely reproduce any file snapshot at any given time. This

enables us to know in what situation a command was executed.

16 FLUORITE is a mineral, and here it stands for: Full of Low-level User Operations Recorded In The Editor .

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 25

Since the FLUORITE log files contain the actual source code in them, the tool should not be used

in a situation where the source code is confidential. This is what makes it difficult to collect

data from the software industry, where most of the code is proprietary. It may also be inap-

propriate to share the collected data, and we could not publicize the logs collected during our

empirical studies for the same reason (Chapter 4).

To mitigate this problem, FLUORITE does not upload log files automatically, so in a field study,

the investigator would have to ask the study participants to send the log files whenever the

code being edited is not confidential.

FLUORITE is useful for many different purposes. First, it can be used in lab studies or field

studies for evaluating existing tools. FLUORITE logs can be used to detect and measure the time

for various usage patterns or events of interest, without needing the experimenter to manu-

ally annotate a videotape. FLUORITE can also be useful for motivating new tools. Ko et al. labo-

riously hand-analyzed videotapes of code editing in their study of Eclipse editing [Ko 2005a],

and showed that people spend significant time scrolling, which motivated interesting new

tools. FLUORITE will provide an easier way to get such data, and thus might help motivate other

ideas for new tools that would help programmers in the future. In addition, as described later

in Chapters 5 & 6, FLUORITEȭÓ ÌÏÇÇÉÎÇ ÁÎÄ ÁÎÁÌÙÓÉÓ can be used in real-time to support novel

code editing operations that depend on the history.

3.3. FLUORITE IMPLEMENTATION

FLUORITE is implemented as an Eclipse plug-in because Eclipse is one of the most widely used

integrated development environments (IDEs). The FLUORITE code was based off of an open

source Eclipse plug-in called Practically Macro,17 but it was not complete enough because

some important commands and parameters were missing (e.g. the FileOpen command), and

it was not stable enough to record long sessions. Therefore, I augmented it to record all the

commands and their parameters, increased its stability, and I also added the capability of

capturing inserted and deleted text.

Once FLUORITE is installed on Eclipse, it begins to capture all the low-level events occurring in

the code editor, and saves the transcript as an XML file when Eclipse is closing. An example

transcript is shown in Figure 3-1.

3.3.1. TYPES OF LOGGED EVENTS

There are three types of events that FLUORITE logs: commands, document changes, and anno-

tations. The full list of different types of events is shown in Table 3-1.

17 http://sourceforge.net/projects/practicalmacro/

http://sourceforge.net/projects/practicalmacro/

26

A command is an event directly invoked by a userȭs action. This includes typing new text,

moving the cursor position or selecting text by keyboard or mouse, along with all editor com-

mands such as copying, pasting, and undoing.

A document change event is logged whenever the active file is changed by any executed com-

mand. Each document change event contains the actual deleted or inserted text. This is

needed because it is not always possible to correctly reproduce the snapshots of the files by

capturing only the commands. For example, when the programmer copies a code fragment

from a web browser and pastes it into the code editor, there is no way to find out what the

pasted code was if we have only the command history. In addition, this simplifies the way of

<Command __id="2" _type=" MoveCaretCommand " caretOffset="142" docOffset="142"
timestamp="3977"/>
<Command __id="3" _type=" EclipseCommand " commandID="eventLogger.styledTextCommand. SE-
LECT_LINE_DOWN" timestamp="5598"/>
<DocumentChange __id="4" _type=" Delete " docASTNodeCount="22" docActiveCodeLength="125"
docExpressionCount="10" docLength="151" endLine="9" length="39" offset="142"
startLine="8" timestamp="7186">
 <text>
 <![CDATA[System.out.println("Hello World!");

]]>
 </text>
</ DocumentChange >
<Command __id="5" _type=" EclipseCommand " commandID="org.eclipse.ui.edit. delete "
timestamp="7202"/>
<Command __id="6" _type=" EclipseCommand " commandID="org.eclipse.ui.file. save "
timestamp ="8099"/>

Figure 3-1. Example log generated by FLUORITE. The developer (1) moved the cursor by clicking the mouse but-

ton, (2) selected one line by Shift+DownArrow , (3) deleted selected code using the Delete key, and (4) saved

the file. Each event has its own parameters, and the whole deleted text is listed in the DocumentChange event.

Event Type Detailed Type Description

Command MoveCaret Move cursor using the mouse

SelectText Select (highlight) text

Find Find / Find & Replace

InsertString Type new text

Run Run/Debug the application

FileOpen Open or activate a new file

Assist Quick fix/Content assist

Junit Run/Debug Junit tests

MouseWheel Scroll the code editor with the mouse

Eclipse All other Eclipse commands

Document Change Insert Text insertion

Delete Text deletion

Replace Deletion & insertion in one step

Annotation Annotate Manual annotation by the user

Table 3-1. List of the different types of events captured by FLUORITE.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 27

getting the actual change results for each command: just reading the preceding18 document

change event for each command. There can be multiple document change events triggered by

a single command (e.g., find and replace), and even no document changes if a command does

not change any of the code content.

An annotation is logged when the programmer wants to add an annotation at a given time to

provide information to the investigator about the current activity. FLUORITE adds a toolbar

button to Eclipse for adding annotations as shown in Figure 3-2, and a simple dialog box for

inserting annotation pops up when the button is clicked. The buttons at the bottom of the

window provide a quick way for users to identify certain events of interest.

3.3.2. PARAMETERS

Each event is logged as an XML element, and the parameters for each event are logged as

either attributes or sub-elements. There are a few parameters common to every event (Table

3-2) and there are also event-specific parameters. For example, the MoveCaret command has

the resulting cursor position as an offset from the beginning of the document, and the Find

command has searchText and replaceText parameters. Also, every document change

event has a few code size metrics (Table 3-3), in order to keep track of the code size changes.

18 A document change event precedes the causing command rather than following it, due to the event handling

order of the Eclipse code editor.

Figure 3-2. Annotation toolbar button and its dialog box.

Parameter Description

id Unique ID (sequentially incremented)

type Detailed event type (cf. Table 3-1)

timestamp Timestamp relative to the session start time

timestamp2 (optional) Timestamp of the last merged event

repeat (optional) Number of events merged together

Table 3-2. List of the common parameters.

28

3.3.3. MERGING CONSECUTIVE EVENTS

In order to prevent the log files from being unnecessarily large, FLUORITE merges multiple

events of the same type in a row whenever possible. For instance, when the programmer

moves the cursor to ten lines by holding down the up arrow key, the ten events are merged

together as one XML element and its repeat parameter is set to 10. In some cases, some of

the parameters must be merged as well. For example, when merging multiple InsertString

commands which represent typing new text, the data parameter must be merged so as not

to lose important information. Two consecutive events are merged only if their time differ-

ence is no greater than the specified threshold, which is set to 2 seconds by default, and is

configurable. This is similar to the way character typing sequences are merged for the undo

command in other text and code editors.

3.4. FLUORITE ANALYZER

Along with the FLUORITE logger for Eclipse, a FLUORITE log analyzer is also provided on our

website (Chapter 12), which makes it much easier to manually inspect the logs and produces

several types of basic analysis reports and visualizations. In this section, the basic analysis

features of FLUORITE analyzer are demonstrated.

3.4.1. EVENT LIST

FLUORITE analyzer provides an event list interface, where all the coding events in the log file

are displayed (Figure 3-3). The main event list area is in the center of the screen (b). The

events are displayed in chronological order in this list. The events can be filtered by their

types in the leftmost panel (a). For instance, checking only the document change events and

unchecking the rest will make the event list display only the code changes. When an event is

selected in the list (the row highlighted in blue), the detailed parameters are displayed in the

bottom panel (c), and the right panel shows the source file which was active when the se-

lected event was generated (d). The source code panel also indicates the last code change

made in that file. In the example, one line of code was deleted by the selected document

change event. The search panel (e) allows searching for events having any parameter values

containing the search text.

Metric Description

Code Length Code length in # of characters

Active Code Length [Code length] - [Comment length]

AST Node Count # of all the AST nodes

Expression Node Count # of all the expression nodes in AST

Table 3-3. List of the code size metrics logged for the document change events.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 29

3.4.2. CODE EDITING PATTERN DETECTION

It is possible to detect various code editing patterns which are composed of sequences of

commands. As an example, our analyzer can detect fixing typo patterns from the logs. Some

fixing typo patterns can be detected by looking at three consecutive document change events

as follows: 1) Any Insert event, 2) a Delete event whose deletion range is somewhere in-

side the previous Insert event, 3) an Insert event whose starting position is the same as

that of the previous Delete event. Figure 3-4 shows a few sample fixing-typo patterns de-

tected by this algorithm. Some of the detected patterns are not merely typo corrections. For

example, for the pattern starting from ID 1061 in Figure 3-4, we can see that the programmer

decided to declare an array instead of declaring multiple variables. Double-clicking one of the

detected patterns shows the corresponding event in the event list (Section 3.4.1), in order to

make it easier to investigate the code editing pattern with the surrounding context.

It is important to note that this kind of fine-grained editing pattern detection cannot be easily

done with the data that comes from other types of tools. More sophisticated code editing pat-

tern detection could also be implemented. For example, an abstract syntax tree (AST) based

automatic pattern analyzer was implemented to detect backtracking instances within col-

lected FLUORITE logs (Section 4.3).

Figure 3-3. The event list interface of FLUORITE analyzer.

30

3.4.3. CODE LENGTH GRAPH

Since several code size metrics are logged whenever a document change event occurs, it is

possible to plot the code size over time either for each file or as a whole. Currently supported

metrics are listed in Table 3-3. From the collected logs, it was noticeable that the code length

graph and the active code length graphs differ significantly, which indicates that program-

mers often comment out or uncomment code. The graphs also show some interesting editing

trends. In Error! Reference source not found. , the steadily increasing part indicates that

the programmer was typing new code, small fluctuations mean the programmer was doing a

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form of Ȱoriginally typed

textȱ ɀ Ȱdeleted textȱ + Ȱnewly typed textȱ. The ID column indicates the ID of the event where the patterns starts

so the investigator can jump to the events list and see what was happening around that time.

Figure 3-5. Example active code length graph drawn from one of the logs by the FLUORITE analyzer. Some inter-

esting points are marked using red circles and the corresponding code editing strategies are described. Y-axis

value can be one of the metrics described in Table 3-3. Only line graphs of the files that have been changed during

the session are drawn. The graph can be zoomed with the mouse wheel, and the user can double click on a point

to jump to the events-list view.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 31

small experiment or fixing minor mistakes, and a big, sudden change means commenting /

uncommenting a block of code or cutting and pasting.

If there is an interesting place on the graph and more thorough investigation is needed to see

what was happening, the point can be double-clicked to jump to the event list. The event

whose timestamp is closest to the selected point on the graph is highlighted to facilitate man-

ual investigation.

3.4.4. KEYSTROKE & COMMAND DISTRIBUTION REPORT

The keystroke distribution report gathers all the keystroke data from the logs and draws a

pie chart showing the frequency of various types of keystrokes. The command distribution

report is similar, but differs from the keystrokes in that it focuses on Eclipse commands ra-

ther than just keystrokes. It is similar to the commands report of the Eclipse Usage Data Col-

lector (UDC), but FLUORITE also includes the commands missing from UDC.

Here, these two features are demonstrated using a particular set of FLUORITE log data col-

lected during an exploratory lab study (see Section 4.1). In the lab study, 12 student partici-

pants performed some small editing tasks for about 2 hours each. These tasks used the Paint

program from [Ko 2005a][Fogarty 2005], and had users add some new features. Figure 3-6

shows example screenshots of a keystroke distribution and a command distribution report

generated from a single participantȭÓ ÌÏÇ ÆÉÌÅ from the study.

In the collected data from all the 12 participants, there were a total of 45,872 keystrokes, and

the five most frequent keystrokes were down arrow (12.64%), backspace (12.41%), up ar-

row (9.80%), right arrow (7.82%), and left arrow (6.00%), respectively. Although this data

may be exaggerated because FLUORITE logs multiple instances of the same event when the

programmer holds down a key and it auto-repeats, it is still interesting to see that program-

mers navigate a lot within a file using arrow keys. This result is consistent with Ko et al.ȭs

observation [Ko 2005a] that developers spend about 16% of their time navigating depend-

encies.

Another interesting observation is that programmers heavily use the backspace key in the

code editor. This seems to be a lot higher than the percent of backspacing in regular typing,

for example, MacKenzie and 3ÏÕËÏÒÅÆÆȭs report that 7.10% of keystrokes were backspaces

[MacKenzie 2002]. This provides further evidence, as mentioned in [Ko 2005b], that editing

code is different than editing documents.

Consistent with the keystroke report, the five most frequent commands used by the 12 par-

ticipants were InsertString (31.48%), down arrow (10.67%), backspace (10.48%),

MoveCaret (using the mouse) (8.63%), and up arrow (8.27%), respectively. The proportion

of backspaces is very large here as well, but backspace is not included in the UDC command

report at all since backspace commands are ignored in the UDC logs. More detailed results

and their implications regarding backtracking will be discussed in Section 4.1.4.

32

3.5. DISCUSSION

3.5.1. DETECTING CODE CHANGES MADE OUTSIDE OF THE IDE

Since the system is dealing with individual incremental changes instead of full snapshots, a

single missing item in the edit history can confuse the entire history. However, source code

can be changed even outside of the IDE for many reasons. For example, the code can be mod-

ified by the external version control system while the IDE is not running, to revert to an ear-

lier version, or updated to reflect the changes made by another team member. Sometimes,

users might edit the code with a plaintext editor instead of using the IDE. In addition, if a file

Figure 3-6. Example keystroke / command distribution reports generated by FLUORITE analyzer showing the

distributions for one participant . The reports are also provided in comma-separated values (CSV) format, which

can easily be imported into spreadsheets for more analyses.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 33

is closed without saving, then the last known snapshot of the file kept in FLUORITE would be

out of sync when the file is reopened later.

To avoid this problem, FLUORITE detects such situations by keeping the initial snapshot and

the last known snapshot of each file that was open in the current session. When a file is re-

opened, FLUORITE compares the new snapshot with the last known snapshot, and, if they are

different , extracts diffs between those two snapshots to fill in the missing changes. This pro-

cess is done using the Google-diff -match-patch open-source library [Fraser 2012][Myers

1986].

3.5.2. CODING EVENTS NOT CAPTURED BY FLUORITE

There are several issues with FLUORITE which were only discovered after conducting several

studies with it. FLUORITE only captures the document changes generated from the currently

active source file (i.e., the file currently open in the active editor). Whenever a new source file

is open, a FileOpen command is logged with the initial snapshot, and all the following doc-

ument change events belong to the last open source file. This approach works well for most

of the coding situations, but this approach has a few problems. First, when the programmer

makes some code changes across multiple files with a single command (e.g., refactoring com-

mands), only the changes made in the active file are logged, missing the changes made in the

other files. These missed changes may be captured by FLUORITE later, only when the corre-

sponding source file is open in the editor and becomes the active file, in which case the

timestamp of the document change would be incorrectly logged as being when the file was

opened. Moreover, when there are files that are changed by some command but never are

opened, the document changes in that file would not be captured at all.

Another related limitation is that FLUORITE only captures the files that were open at least once

during the editing session. While the rationale behind this decision was to keep the logging

tool non-intrusive and the log files as small as possible, this makes it difficult to understand

the bigger picture of the entire project when analyzing the log files in isolation. Coding events

can also happen outside the IDE, which are not captured by FLUORITE. A common example

situation is when programmers are invoking version control system commands through com-

mand-line or third -party clients, instead of using the IDE plug-ins.

3.5.3. WRITING LOG ENTRIES AS THE EVENTS ARE CAPTURED

The old versions of FLUORITE used to keep the coding events in memory during the editing

session and write the log file when the IDE is being closed. However, this behavior has been

changed to writing the log entries as the events are captured for two reasons. First, by flush-

ing the events from the memory to the disk frequently, FLUORITEȭÓ ÍÅÍÏÒÙ ÕÓÁÇÅ ÉÓ ÎÏ ÌÏÎÇÅÒ

increased proportionally to the number of events captured so far. Second, even when the IDE

crashes in the middle of the editing session, the log file is still kept on the disk without any

loss of data. This change did not result in any noticeable extra time or delay in using Eclipse

with FLUORITE running.

34

3.5.4. EVALUATION

FLUORITE and the analyzer tool have been publicly released (see Chapter 12 for the URL) since

Fall 2011. Since then, FLUORITE has been used by many researchers from CMU and other in-

stitutions for different purposes. For example, it has been used for enhancing code search

mechanisms [Martie 2013], ÍÏÎÉÔÏÒÉÎÇ ÁÎÄ ÁÎÁÌÙÚÉÎÇ ÔÈÅ ÓÔÕÄÅÎÔÓȭ ÃÏÄÉÎÇ ÂÅÈÁÖÉÏÒÓ [Fuchs

2014], and visualizing participantsȭ actions performed during some user studies [Kwan 2013].

Some people used FLUORITE in addition to their primary data collection method during their

studies, in order to make sure that they do not miss any important coding events. For example,

Dörner et al. used FLUORITE for the evaluation study of Euklas [Dörner 2014], and three other

researchers contacted me and told that they were using FLUORITE for their own studies.19

Since the FLUORITE log files are written in XML format, other researchers have been able to

implement their own analyzers with ease. In addition, a group of researchers at Oregon State

University20 developed a FLUORITE log replayer, which they used for converting FLUORITE logs

into another data format that they could analyze more easily, by replaying the FLUORITE logs

while the other capturing tool is running.

Personally, I have been running FLUORITE in my Eclipse environment for developing FLUORITE

and AZURITE, as a ȰÄÏÇÆÏÏÄÉÎÇȱ ÐÒÁÃÔÉÃÅ [Harrison 2006] for about 4 years, as of the writing

of this dissertation. It has been running without any noticeable problems and has not inter-

fered with my own work. My own FLUORITE log data collected in this way were analyzed to-

gether with the logs collected from the study participants in a longitudinal study (Section 4.3).

Details about the average size of the FLUORITE logs can be found in Section 9.3.1.

3.6. CONCLUSION

The FLUORITE logger for Eclipse and the analyzer were developed in the hopes that they will

be useful to the community for when detailed analyses of programmersȭ edits are required.

During our empirical studies of backtracking, FLUORITE reduced significant amount of manual

analysis, and helped uncover interesting results (Chapter 4). Later, FLUORITE was also used as

the input source of our selective undo tool AZURITE, discussed later.

19 When FLUORITE was used as an extra data collection mechanism, it was not always cited.
20 Irwin Kwan, David Piorkowski

 35

4.
EMPIRICAL STUDIES OF BACKTRACKING21

As a first step towards supporting more robust backtracking in modern IDEs, I wanted to first

know more about when and how programmers backtrack when they write source code. How-

ever, there has been no thorough study about backtracking in the software development con-

text. This chapter describes three empirical studies of programmersȭ backtracking conducted

in order to understand backtracking better. First, an exploratory lab study was conducted to

gather baseline knowledge about backtracking (Section 4.1), and then a follow-up online sur-

vey was performed to get a better idea of the backtracking frequency and tactics (Section 4.2).

Realizing that these two studies have some limitations, I also conducted an extensive, longi-

tudinal study to complement the previous two studies and see if these backtracking situations

arise when programmers are working on their own programming projects (Section 4.3), not

just the artificial programming tasks given in a lab. These three studies showed that back-

tracking happens quite frequently and often there are difficulties when programmers are

backtracking, suggesting that programmers would benefit from better backtracking tools.

4.1. PRELIMINARY LAB STUDY OF BACKTRACKING

First, an exploratory lab study was conducted to study when and how programmers back-

track using todayȭs tools, and to identify barriers that they face while backtracking. The focus

of this study was to answer the following research questions.

RQ1-1. How do programmers backtrack?

RQ1-2. How do programmers know where to backtrack to?

RQ1-3. What are the barriers to successful backtracking that a new tool might alleviate?

4.1.1. STUDY DESIGN

This study was a 2 hours long exploratory lab study where participants were asked to finish

two pairs of feature-adding tasks and think aloud during the study. The editing screens and

their voice were recorded for further analyses. In addition, FLUORITE (Chapter 3) was used to

capture all the low-level editing events. Participants used the Eclipse IDE version 3.6.2 (He-

21 Portions of this chapter appeared in [Yoon 2012] and [Yoon 2014]

36

lios) on a laptop PC running Windows 7. They were told that they could use any Internet re-

sources they wanted, and all the subjects made heavy use of Google and Java API Documen-

tation.

After completing the tasks, the participants were asked to fill out a post-survey questionnaire

about their demographics and some the backtracking situations and tactics. We used the re-

sponses when designing our online survey questions. The participants were paid $30 for their

effort .

For this study, 12 graduate students were recruited from the School of Computer Science at

Carnegie Mellon University. The participants were required to (1) have professional devel-

opment experience or at least two internships as a software programmer, and (2) be com-

fortable programming in Java. Of the 12 participants, 11 were male and 1 was female. Their

average age was 24.8 years, and they had been programming for 5.5 years on average.

4.1.2. THE PAINT PROGRAM

As the code base of the study, a Paint program (Figure 4-1) was used which has been previ-

ously used by other researchers [Fogarty 2005][Ko 2005a]. This is a simple Java Swing based

painting application composed of 10 Java files and a total of 452 lines of code.

Using the Paint program as the code base had several advantages. First, graphical user inter-

face (GUI) development tends to be exploratory (i.e. involves extensive experiments with

code), which means that the programmers would often need to backtrack during the 2 hour

period. Second, it had been shown by the previous studies that the code size is small enough

to be understood and modified in a fairly short amount of time.

Figure 4-1. A screenshot of the Paint program used during the lab study.

Chapter 4: Empirical Studies of Backtracking 37

4.1.3. TASKS

The participants were asked to add new features to the Paint program. In order to get as much

backtracking data as possible in 2-hour lab study, the tasks were designed so that they would

lead the programmers to backtrack regardless of any occurrences of their own exploration.

To achieve this goal, an imaginary scenario was set up where a whimsical boss first asks the

participants to implement a feature, changes her mind after testing the feature and asks them

to implement the same functionality using a different user interface element. Because it did

not make much sense to provide two different user interfaces for the same functionality, the

participants were required to backtrack out of the first implementation to some extent. Start-

ing over from scratch was not a good option however, because the first and second versions

shared some code that the participants had to write, and only differed in the user interface

part.

There were two sets of features to implement: thickness control (F1) and x, y coordinates in-

dicator (F2). Each feature had two different user interfaces. The thickness control had to be

implemented using a slider widget (F1-1) and then using a menu of buttons which preview

the desired thicknesses (F1-2). The x, y coordinates indicator had to be located on a status

bar at the bottom of the application window (F2-1) or in a modeless tool window which can

be moved by the user (F2-2).

Another issue investigate was whether the programmers would behave differently if they

knew they might need to backtrack later. Therefore, the participants were first asked to im-

plement one of the features FA-1, without knowing that they might have to backtrack later.

Then, they were asked to implement FA-2 instead. Next, they were asked to go back to FA-1

implementation, in order to see how they would restore the previous version. Finally, they

were given both FB-1 and FB-2 simultaneously and asked to implement one at a time, using

any tactic they wanted, to see if they behave differently when they knew in advance that they

would need to backtrack. Whether participants used Feature 1 as FA and Feature 2 as FB

(Group 1) or vice versa (Group 2) was randomized. The study procedure and group settings

are shown in Table 4-1. All the task sheets provided to the participants can be found in Ap-

pendix A.

As mentioned above, all the code edits performed by the participants were logged using

FLUORITE (Chapter 3). Using this data, several code editing patterns composed of sequences

Step Group 1 (7 subjects) Group 2 (5 subjects)

Begin Introduction

Task1 F1-1 F2-1

Task2 F1-2 F2-2

Task3 Backtrack to F1-1 Backtrack to F2-1

Task4&5 F2-1 & F2-2 F1-1 & F1-2

End Post-study questionnaire

Table 4-1. Participant groups and the tasks of the preliminary lab study

38

of commands could be detected, which are closely related to backtracking. Having this data

has many advantages. Not only does it reduce the time to inspect the videotapes significantly

[Kim 2004], it also enables various automatic analyses.

4.1.4. RESULTS

The study took 96.6 minutes on average. The task accomplishment varied a great deal across

the participants. Of the 12 participants, only 3 participants completed all five tasks. 3 people

could only complete one task and had to give up on all the others. Overall, the participants

completed only 58.3% of the tasks.

The 4 different features were meant to have the similar difficulties, but it turned out that F1-

1 (thickness control using slider widget) was the easiest. 11 participants succeeded on F1-1,

while each other feature was successfully completed by about 5 of the participants.22 The rea-

son for F1-1 being the easiest might be because there was a working example of the slider

widget right in the code base, the color slider.

Even though some participants were not very successful in completing the tasks, their data

were not excluded because the participants still backtracked to some extent while trying to

figure out how to get the tasks completed. The following sections summarize the key obser-

vations related to each research question.

4.1.5. RQ1-1: HOW DO PROGRAMMERS BACKTRACK?

4.1.5.1. COMMAND STATISTICS & KEYSTROKE DISTRIBUTION

In order to investigate how frequently programmers used backtracking related editor com-

mands, I first analyzed the FLUORITE log data to obtain the frequency of each IDE command

execution and each keyboard key press. Table 4-2 shows the top twenty commands executed,

and separately, the top 20 keystrokes typed across all the participants. Except for typing and

code navigation commands, the most frequent commands are the backtracking related com-

mands such as delete and undo, indicated as inverted. Considering that the navigation com-

mands would be expected to be large since FLUORITE logs multiple instances of the same event

when the user holds down a key and it auto-repeats, it is shown that backtracking related

commands are very frequently executed. The command statistics are somewhat different

from those observed by Murphy et al. [Murphy 2006] because the two logging tools differ in

what types of commands are logged. However, the rank orderings of commands are con-

sistent if only the main editor commands such as Delete, Save, Copy, Paste, and Assist are

compared.

22 F1-2, F2-1, and F2-2 were successfully completed by 5, 6, and 4 out of 12 participants, respectively.

Chapter 4: Empirical Studies of Backtracking 39

Table 4-2 lists two different Assist commands. The first one counts all the content assist exe-

cuted automatically (e.g., when the user types a dot following a variable name), and the sec-

ond one only counts the manually executed content assist and quick fixes.

4.1.5.2. DELETING VS. COMMENTING OUT

There were also some interesting backtracking related behaviors observed during the study.

7 of the 12 participants habitually commented out their code rather than deleting it , whether

or not they thought the code was going to be reused later. However, even the participants

who explicitly said that they usually comment out code also deleted code during the study,

because they said they did not like messing up the code with lots of comments. In some cases,

those deleted code fragments turned out to be needed later on.

Some programming languages provide specific ways of activating and deactivating code. For

example, C/C++ has preprocessor directives such as #ifdef , and the .NET Framework pro-

vides the Conditional attribute which allows programmers to conditionally activate a cer-

tain method according to the current build configuration. Although, Java also supports con-

ditional compilation, participants were not aware of this feature and they could only use con-

ventional comments.

Commands Keystrokes

Type char. 17092 (31.8%) Down arrow 5797 (12.64%)

Line down 5795 (10.8%) Backspace 5693 (12.41%)

Delete prev. 5692 (10.6%) Up arrow 4495 (9.80%)

Move caret 4686 (8.7%) Right arrow 3586 (7.82%)

Line up 4491 (8.4%) Left arrow 2751 (6.00%)

Col. next 3544 (6.6%) S 1873 (4.08%)

Col. prev. 2715 (5.1%) Ctrl 1854 (4.04%)

Select text 1975 (3.7%) Shift 1652 (3.60%)

Sel. col. next 1035 (1.9%) Enter 1387 (3.02%)

File open 907 (1.7%) T 1289 (2.81%)

Sel. col. prev. 857 (1.6%) E 1250 (2.72%)

Save 852 (1.6%) N 1003 (2.19%)

Delete 576 (1.1%) I 882 (1.92%)

Paste 459 (0.9%) C 871 (1.90%)

Assist(auto) 456 (0.8%) Space 859 (1.87%)

Run 391 (0.7%) A 800 (1.74%)

Copy 314 (0.6%) O 750 (1.63%)

Undo 294 (0.5%) V 619 (1.35%)

Assist(manual) 213 (0.4%) L 610 (1.33%)

Sel. line down 212 (0.4%) Delete 576 (1.26%)

Others 1113 (2.1%) Others 7275 (15.86%)

Total 53669 Total 45872

Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for each category. Shaded

entries are related to code navigation, and the inverted entries are related to backtracking.

40

4.1.5.3. COMMON REASONS FOR COMMENTING OUT

During the lab study, participants articulated three main reasons why they commented out

the code instead of deleting it . First, the participants commented out code because they knew

that the code being commented out might be used again. This includes the situation where

the code was one of the variations and the programmer wanted to be able to switch to another

variation. Also, when the programmer had implemented two different features simultane-

ously and wanted to test one at a time, they left the code for the feature under test and com-

mented out the other. This was the most common reason given.

The second common reason for commenting out is to keep the code snippet as a good example.

This situation differs from the previous one in that the code is not expected to be used at the

moment, but the programmer wants to keep the code anyway. This could happen when the

programmer thinks that the code could be used as a structural template for other similar code.

For example, in our study, the participants had to add different types of listeners to the graph-

ical widgets. When programmers tried out one type of listener but it did not work, they often

commented it out because the listener creating and adding structure is pretty much the same

regardless of the type of the listener they would use. Also, when it turned out that an example

code snippet they found from the Internet did not quite fit to the given situation, they often

commented out the code rather than deleting it because they did not want to have to search

for the example again in case it would be needed later on.

Finally, programmers occasionally commented out code in order to remind themselves that

the code was not good. They kept the code there because they wanted to avoid making the

same mistakes later.

4.1.5.4. WHEN THEY KNOW THEY NEED TO BACKTRACK LATER

Not surprisingly, even the participants who usually just deleted the code did comment out

the code when they believed that the code was likely to be reused soon. For example, when

they were doing task 3 (getting back to FA-1 after completing FA-2), pretty much all of the

participants commented out the code for FA-2 because they thought they might be asked to

go back to FA-2 again.

Only 5 out of the 9 participants who started task 423 behaved differently when they were do-

ing task 4 (implementing FB-1 & FB-2 simultaneously). One participant used a flag variable so

that he could select either of the two user interface variations dynamically. Four other par-

ticipants marked each code fragment using comments, and only one of the variations would

be activated (uncommented) at a time. When the participants were asked to switch to a dif-

ferent variation, they manually searched for all the currently-activated variation code frag-

ments using the labels and commented them out, and then searched for all the code fragments

to be activated and uncommented them. This worked, but it was a tedious process. Also,

23 The remaining three participants gave up before getting to task 4.

Chapter 4: Empirical Studies of Backtracking 41

when only one of the variations gets accepted and the others are rejected, one would need to

manually search for all of the rejected variations and delete them.

4.1.6. RQ1-2: HOW DO PROGRAMMERS KNOW WHERE TO BACKTRACK TO?

The participants often remembered one or more aspects of the deleted code, especially when

they wanted to restore a specific code fragment that was recently deleted. What they remem-

bered included the original location from where the code was deleted, how the surrounding

code looked, the names of one or more code elements in the deleted code, or what the desired

code looked like. This suggests that in general, even when they could not easily reproduce the

code from scratch, they probably could recognize the code if it was able to be displayed some-

how.

4.1.7. RQ1-3: WHAT ARE THE BARRIERS TO SUCCESSFUL BACKTRACKING?

The study participants faced various problems when they were trying to backtrack. First, the

participants had problems finding the right code fragment to be reverted in the source file.

For instance, when implementing F1-1 (thickness control feature using the slider widget),

most participants copied and pasted the code for the color sliders and modified the pasted

code. Because the original code and the pasted code looked very similar, participants were

often confused and looked at or even edited the wrong code.

When they were trying to backtrack all the code fragments related to a certain source code

level element such as a variable, method, or class, it took some effort to find all the relevant

code fragments. Although participants rarely made mistakes at this, occasionally they did

miss a few statements that should have been reverted. Often, this happened because two or

more elements were involved in a single feature. For example, when restoring the com-

mented-out slider widget, they often forgot to restore the associated change-listener code.

One participant made this mistake even though he manually labeled the related code frag-

ments using comments. It would be even more difficult for the programmers to find all the

relevant code fragments when they are distributed across multiple files, but this did not hap-

pen in our lab study because mostly the participants implemented all the features in a single

file.

The participants often added and removed debug outputs. Especially when they were imple-

menting F2 (x, y coordinates indicator), pretty much all of the participants added debug out-

puts using either a console output method (System.out.println) or a simple message box

(JOptionPane . showMessageDialog) in order to check if the mouse listeners they had just

added was called when the mouse cursor was moved, and if the x,y values were correct. How-

ever, after they had finished implementing the feature, they sometimes forgot to remove the

debug outputs. All the participants who used the message dialog did remove it since the mes-

sage box was continuously interfering, while many of the participants who used console out-

put did not.

