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Abstract

The aim of this doctoral thesis was to study the implications of having a concurrent-by-default pro-
gramming language. This includes language design, runtime system, performance and software engineering
considerations.

We conduct our study through the design of the concurrent-by-default AEminium programming language.
ÆMINIUM leverages the permission flow of object and group permissions through the program to validate
the program’s correctness and to automatically infer a possible parallelization strategy via a dataflow graph.
ÆMINIUM supports regular parallelism (such as fork-join parallelism) as well as irregular parallelism (e.g.,
as dataflow).

In this thesis we present a formal system, called µÆMINIUM, modeling the core concepts of ÆMINIUM.
µÆMINIUM static type system is based on “Featherweight Java” with ÆMINIUM specific extensions. Besides
checking for correctness ÆMINIUM ’s type system it also uses the permission flow to compute a potential
parallel execution strategy for the program. µÆMINIUM ’s dynamic semantics use a concurrent-by-default
evaluation approach. Along with the formal system we present its soundness proof.

We provide a full description of the implementation along with the description of various optimization
techniques we used. We implemented AEminium as an extension of the Plaid programming language, which
has first-class support for permissions built-in. The ÆMINIUM implementation and all case studies are
publicly available under the General Public License.

We use various case studies to evaluate ÆMINIUM’s applicability and to demonstrate that ÆMINIUM

parallelized code has some performance improvements compared to its sequential counterpart. We chose to
use case studies of common domains or problems that are known to benefit from parallelization, to show
that ÆMINIUM is powerful enough to encode them. We demonstrate through a webserver application, which
evaluates ÆMINIUM ’s impact on latency-bound applications, that AEminium can achieve a 70% performance
improvement over the sequential counter part. In another case study we chose to implement a dictionary
function to evaluate ÆMINIUM ’s capabilities to express essential data structures. Our evaluation demonstrates
that ÆMINIUM can be use to express parallelism in such data-structures and that the performance benefits
scale with the amount of annotation effort which is put in to the implementation. We chose an integral
computation example to evaluate pure functional programming and computational intensive use cases. Our
experiments show that ÆMINIUM is capable of extracting parallelism from functional code and achieving



performance improvements up to the limits of Plaid inherent performance bounds. We elaborate about our
experience in developing and using ÆMINIUM and discuss potential shortcomings and potential areas of
interest for future work.

Overall, we hope that the work helps to advance concurrent programming in modern programming
environments.



Resumo

O objetivo desta dissertação consistiu no estudo das implicações de construir uma linguagem de programação
”concorrente por omissão”. Tal inclui aspetos de desenho e arquitetura da linguagem, ambiente de execução,
performance, usabilidade, assim como considerações de engenharia de software.

A pedra basilar do trabalho consiste na proposta e desenho de uma linguagem de programação cujas
primitivas são concorrentes por omissão chamada ÆMINIUM. A linguagem ÆMINIUM utiliza o permissões
sobre objetos e grupos de objetos para validar a correção de um programa assim como para inferir possı́veis
estratégias de paralisação através de um grafo de fluxo de dados. A linguagem ÆMINIUM suporta paralelismo
regular (e.g., do tipo fork-join) e paralelismo irregular (e.g., do tipo dataflow).

Neste trabalho é apresentado um sistema formal para a linguagem, chamado µÆMINIUM, incluindo a sua
semântica estática e dinâmica, assim como uma prova formal da correção do seu sistema de tipos. O sistema
de tipos da µÆMINIUM é baseado em “Featherweight Java” com extensões especı́ficas para Aeminium. Para
além de verificar a correção do sistema de tipos, o sistema é também usado para calcular uma potencial
estratégia de paralelização. A semântica dinâmica do µÆMINIUM utiliza sempre uma abordagem de avaliação
concorrente.

É apresentada uma descrição completa da implementação da linguagem e do seu sistema de execução,
assim como das várias optimizações que foram usadas. A linguagem ÆMINIUM foi implementada como
uma extensão da linguagem Plaid que possui suporte explı́cito para permissões. Tanto a implementação da
linguagem ÆMINIUM como de todos os casos de estudo encontram-se publicamente disponı́veis.

Finalmente, são discutidos vários exemplos usados para validar a aplicabilidade da linguagem ÆMINIUM

assim como para mostrar que os programas paralisados automaticamente pelo sistema possuem uma perfor-
mance superior às suas versões sequenciais. Os casos de estudo foram escolhidos de domı́nios comuns e de
domı́nios conhecidos como podendo beneficiar de paralelização. No caso de estudo da implementação de um
servidor web a abordagem ÆMINIUM obtém melhorias de performance superiores a 70% quando comparado
com o caso sequencial. Noutro caso de estudo é implementado uma estrutura de dados dicionário para avaliar
a expressividade da linguagem. Os resultados mostram que os benefı́cios de performance obtidos ao usar
a linguagem ÆMINIUM são proporcionais ao esforço despendido em anotar o programa original. É usado
um caso de estudo de cálculo numérico de um integral para avaliar um modelo de programação puramente
funcional e, simultaneamente, intensivo em termos de computação. As experiências mostram que o sistema



ÆMINIUM permite obter paralelismo de código funcional assim como obter ganhos de desempenho, sendo
estes atualmente limitados apenas pelo ambiente de execução subjacente (Plaid). Finalmente, é discutida toda
a abordagem, globalmente, assim como as grandes conclusões do desenvolvimento do sistema ÆMINIUM, as
suas fraquezas e seu potencial. São ainda apresentadas áreas de possı́vel trabalho futuro.

Com este trabalho esperamos ter contribuı́do para o avanço da área da programação concorrente em
ambientes de desenvolvimento de software modernos.



Für meine Familie.
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INTRODUCTION
1

O
ne of the most fundamental technology shifts in the last few decades is best characterized by
“The free lunch is over” [86]. Because it is becoming harder and harder to improve single-CPU
performance, hardware vendors started to integrate multiple cores into single chip. This means
that programmers need to develop concurrent applications if they want to achieve performance

improvements on new hardware. Writing concurrent applications is notoriously complicated and error-prone,
because concurrent tasks must be coordinated to avoid problems like race conditions or deadlocks.

Pure functional programming is by nature an excellent fit for concurrent programming. In functional
programming there are no side effects and programs can execute concurrently to the extent permitted by
data dependencies. Although functional programming can solve every problem, having explicit state, as
provided by imperative languages, allows the developer to express certain problems in a more intuitive and
efficient way. In an ideal world we would like to combine the concurrent execution benefits of functional
programming with the expressiveness of an imperative object-oriented language.

Sharing state between concurrent tasks immediately raises questions like: ‘In which order should those
accesses occur?’ and ‘How can one coordinate those accesses to maintain a program invariants?’ The reason
why those questions are hard to answer is because there are implicit dependencies between code and state.
Methods can arbitrarily change any accessible state without revealing this information to the caller. This
means that two methods can be dependent on the same state, without the caller knowing about it. Because of
this lack of information, current programming languages use the order in which code is written as a proxy to
express those implicit dependencies. Therefore the compiler mostly has to follow the given order and cannot
exploit potential concurrency automatically. When developer add concurrency manually, it is easy for her to
miss important dependencies, introducing race conditions and other defects.

To overcome this situation, we propose to transform implicit dependencies into explicit dependencies and
then infer the ordering constraints automatically. In our proposed system, by default, everything is concurrent
unless explicit dependencies imply a specific ordering. By using a concurrent by default approach, we
eliminate explicit, notoriously complicated and error prone, reasoning about sequential and parallel ordering.
Instead of specifying when and where which operations should be executed, in our approach the programmer
specifies which stateful effects1 each operation performs. The system uses that dependency information
to perform the operations in an non-interfering manner. The system will not only use the dependency
information to perform concurrent execution but also validate that the dependency information is consistent.

1E.g. reading a certain memory region, updating a specific memory region, etc.
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1.1 Approach

We propose to use access permissions [21] to specify explicit dependencies between stateful operations.
Access permissions are abstract capabilities that grant or prohibit certain kinds of accesses to specific state.
Our approach requires each method to specify a permission to all directly accessed state. Transitively accessed
state is handled automatically through embedded permission information. Looked at from a slightly different
perspective, our system ensures that every method only accesses state for which it has explicit permissions.
The way we use access permissions to specify state dependencies resembles the way Haskell [58] uses its I/O
monad2 to specify access to global state. But unlike the I/O monad, which provides just one permission to all
the state in the system, access permissions allow greater flexibility by supporting fine-grained specifications,
describing the exact state and permitted operations on it.

To enhance support for shared data we propose to use the combination of data groups [62] and data group
permissions to enable user-defined granularity control and the avoidance of unnecessary synchronization.
Data groups represent an abstract collection of objects which form a disjoint partitioning of the heap. Data
group permissions represent aliasing and protection information about data groups.

The goal of this dissertation is to show that the concurrent-by-default paradigm is an feasible and useful
approach. Therefore we are going to design an new programming language, called ÆMINIUM, and runtime
system, which takes concurrency-by-default as one of its main design principles. Achieving this goal implies
language design, development of the runtime system, performance evaluations and case studies.

1.2 Example: Proposed Approach

To illustrate these concepts, consider the transfer function shown below, which transfers a specific amount
between two bank accounts. It first withdraws the specified amount of money from the ‘from’ account and
then deposits the same amount into the ‘to’ account.

Listing 1.1: Transfer Code

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
deposit(to, amount);

}

2Think of it as one global permission, which grants the right to access or change all state in the system.
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For this example we assume that the order in which we perform the withdraw and deposit operations
does not matter. In particular, they could be executed concurrently because both the withdraw and deposit
operations should only affect the specified bank account and no other. To encode this extra information
ÆMINIUM uses permission annotations. Permissions [32] specify aliasing and access information for objects.
The transfer method specifies that it requires a unique permission to both bank accounts and an immutable
permission to the amount parameter. The unique permission means that there is only one valid reference to
the specified object in the whole system at the moment of a function call, and modifications to the object
within the function are possible. The immutable permission specifies that there might be multiple aliases to
this object but none of them can be used to change the object.

Assuming the method declarations for the deposit and withdraw methods given below, ÆMINIUM

is now able to compute the permission flow within the transfer method. The unique permission of
the ‘to’ parameter flows to the deposit method while the unique permission of the ‘from’ parameter
flows to the withdraw. But we only have an immutable permission to the ‘amount’ object while both
withdraw and deposit require one each. Because immutable permissions explicitly allow aliasing
ÆMINIUM automatically splits the one immutable permission into two permissions, which are then passed to
the two method calls:

Listing 1.2: Prototypes for withdraw and deposit functions

public void withdraw(unique Account account,
immutable Amount amount) {...}

public void deposit(unique Account account,
immutable Amount amount) {...}

The permission flow of the transfer method is shown in Figure 1.1. After the split operation the
unique ‘to’ and immutable ‘amount’ permissions are passed to deposit method while the unique ’from’
permission and immutable ‘amount’ permission flow to the withdraw method. After those methods
complete ÆMINIUM will automatically join the previously split immutable permissions. The permission
flow graph corresponds to the data flow graph which is used to execute the transfer methods. Although
this example illustrates only unique and immutable data, we will later show how ÆMINIUM supports shared
mutable data with shared permissions and an atomic synchronization primitive.
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Figure 1.1: Permission Flow in the Transfer Example. We use the notation var : perm to indicate that we have permission
‘perm’ for variable ‘var’.

transfer(to, from, amount) {

split(amount)

deposit(to, amount) withdraw(from, amount)

join(amount)

}

to : unique,
from : unique,
amount : immutable

amount : immutable,
to : unique

amount : immutable,
from : unique

to : unique,
amount : immutable

from : unique,
amount : immutable

to : unique,
from : unique,
amount : immutable

1.3 Thesis Statement

Following a concurrent-by-default philosophy we leverage the flow of access permissions (static alias
descriptions of program references, cf Section 3) and data group permissions (static access privileges to data
groups, cf Section 3) through a program to automatically parallelize its execution in a safe way at runtime.
This leads us to define the following thesis statement:

The flow of access- and group-permissions provides a powerful ab-
straction to capture common programming idioms while simultaneous
enabling the safe extraction of efficient concurrency.

We break the thesis statement down into more concrete and measurable hypotheses:

1.3.1 Hypothesis: Safety

To ensure safety we can develop and formalize an analysis that uses flow of access permission and data group
permission throughout a program to compute data dependencies, which allow the concurrent execution of the
program while guaranteeing the absence of race conditions.
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Validation

This hypothesis will be validated by developing and formalizing a type system and operational semantics
based on our permission system and formally proving the type system sound with respect to its semantics.
The proof essentially says that if we parallelize the program based on the flow of permissions and our rules
(e.g., simultaneous access to immutable data is safe) then there cannot get a race condition at runtime. We do
not include deadlock freedom in our definition of safety because prior work already demonstrated possible
solutions for either a static [59] or dynamic [60] deadlock detection and for simplicity reasons we want to
focus on the concurrent-by-default aspect of our system.

1.3.2 Hypothesis: Efficiency

Programs written in our concurrent-by-default approach can be parallelized automatically, achieving a
better performance than their sequential counterparts (provided sufficient availability of parallelism in the
application itself).

Validation

We validate this hypothesis by performing several case studies showing that applications written in our
concurrent-by-default style can achieve performance improvements through automatically parallelization
over their sequential counterparts.

1.3.3 Hypothesis: Practicality

We claim that access permissions and data group permissions provide a powerful abstraction for concurrent-
by-default applications, which allows common program idioms to be captured.

Validation

This hypothesis is validated by performing several case studies modeling common program patterns can be
expressed in the concurrent-by-default ÆMINIUM approach while achieving performance improvements
compared to the sequential counterparts. Furthermore we will report the difficulties and issues encountered
while developing those case studies. While the current system not fully practical for every day development,
we have have shown that the approach is doable with a small number of annotations written by the programmer,
being this just a first step towards practicality.
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1.4 Contributions

The overall contribution of this dissertation is the examination of using access permission and data groups to
automatic parallelize programs for general purpose programming languages. The main contributions are:

Core Calculus The first contribution consists of the development of µÆMINIUM, a sound core-calculus
modeling a concurrent-by-default programming languages based on permissions (cf. 4). µÆMINIUM

allowed us to study the core principles of ÆMINIUM and consists of a static type checking rules and a
concurrent-by-default small-step evaluation semantics.

Proof of Soundness We proofed the soundness of our µÆMINIUM core-calculus stating that all programs
which type check are free of data races (cf. Appendix A).

Implementation We developed a prototype implementation of ÆMINIUM, including the static type checking,
the dependency computation and the concurrent-by-default execution (cf. Chapter 5)

Evaluation We evaluated our ÆMINIUM implementation through conducting several case studies to validate
our claims. We also report on our experience use ÆMINIUM to develop those case studies (cf. Chapter
6).
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T
his chapter provides an overview of the current state of the art in the area of concurrent
programming. There are many different and often orthogonal concepts and principles in the
area of concurrent programming. Since our system is focused on implicit concurrency this
dimension is followed when presenting related work. We first present explicit concurrency

approaches for concurrent programming along with their advantages and disadvantages. Then we present
implicit concurrency approaches for concurrent programming, again with their advantages and disadvantage.
Given the huge number of sometimes just marginally-different approaches and systems, we are focusing on
general concepts and the most closely-related research. Also there is no strict borderline between implicit
and explicit concurrency, but we are going to use the following definitions:

explicit In an explicit concurrency system, the programmer is actively involved in the creation and manage-
ment of concurrent execution. This means in particular the programmer writes explicit code1 to create
or manage concurrent tasks (e.g creating threads, task pools, . . . ) and coordinate synchronisation (e.g.,
locks, conditional variables, etc).

implicit An implicit concurrency system does not require the user to actively write code for concurrent
execution. In an implicit system the semantics of the language or library interfaces imply that certain
operations can be performed concurrently without user intervention.

2.1 Explicit Concurrency

Explicit concurrency is all about the manual management of different threads of execution. The most simple
and most coarse grain form of explicit concurrency is separate, sequential processes which exchange data via
a communication channel. A minimalistic formal description of those communicating sequential processes
(CSP) is given by [33]. It is the common case for CSP to communicate via message passing. In message
passing all necessary synchronization is implicitly handled by the message-passing abstraction and relieves
the programmer from explicitly managing synchronization via low-level primitives. Because processes have
strong isolation between each other, data needs to be copied from one process to another. This leads to
message passing systems being in general free of low-level race-conditions (i.e., when the output of a system
unexpectedly depends on the timing of other events), but also contributes to its inefficiency when a large
amount of data needs to be exchanged. In general the support for spawning new processes is not directly

1Often code that uses low-level abstractions of operating or hardware features.
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included in mainstream programming languages and is rather provided via libraries. Those libraries range
from simple wrappers that call straight into the operating system (e.g., fork), to highly-sophisticated libraries
that support complex communication operations and provide infrastructure management support (e.g., MPI
[67, 68]).

The Message Passing Interface (MPI) [67, 68] is one example of such an sophisticated library. MPI is
the established de-facto standard for developing high-performance distributed memory applications. MPI
implementations provide, besides the library itself, several tools for starting and managing multiple jobs.
The latest MPI standard [68] also added support for dynamically creating processes. The MPI standard
defines a rich set of communication abstractions, ranging from synchronous and asynchronous point-to-point
operations to complex collective operations (e.g., a collective reduce operation with user-defined data types
and operator functions).

Erlang [16] is one of the few programming languages that has built-in support for process creation and
communication channels between processes. Erlang processes do not map directly to operating system
processes. Erlang provides a strong isolation guarantee between processes and a high-level communication
abstraction, which allows processes to run either on the same virtual machine or on different virtual machines
on different nodes. Therefore we consider Erlang a member of the CSP family and it inherits all the
corresponding features and shortcomings.

Threads are concurrent entities inside a process that share the address space with their host process.
Therefore, threads allow fast and easy shared memory communication. Instead of sending data between
processes, and eventually duplicating shared data, data can be uniformly accessed by all threads in the system.
One side effect is that all accesses to shared data needs to be coordinated to avoid race conditions. Similar to
process management, many older programming languages (like, for instance, C, C++2, . . . ) support threads
via external libraries, providing simple wrappers around operating system functionality. As shown in [29], if
threads are not part of the programming language, the compiler can generate incorrect code while optimizing
the program. Therefore many modern programming languages support threads at a language level and provide
explicit descriptions of the memory model used [64].

Mutexes and semaphores are the most commonly used and supported synchronization primitives when
it comes to protecting access to shared resources. The usage of those low-level primitives is notoriously
complicated and error-prone. Several different static verification mechanism have been proposed to verify
the correct usage of those locking primitives. We present two example systems which relate closest to our
research. Terauchi [87] describes a type-system for generating a linear equation problem based on its input
program. The linear equations are constructed in a way that if the linear equations are solvable if and only
if the corresponding program is guaranteed to be free of race-conditions. In [89] a concurrent extension of

2The new C++11 standard has a thread and memory model defined in: http://www.hpl.hp.com/personal/Hans_
Boehm/c++mm/

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/


2.1. EXPLICIT CONCURRENCY 9

typestate [84] is described to detect race-conditions. While protected through the correct lock3 the system
will follow the normal typestate protocol and, as soon as the lock is released, all typestate information is
immediately forgotten. Therefore if the critical zone is not wide enough to protect all critical accesses, the
system will not be able to establish the typestate conditions and will trigger an error. All those systems either
require a whole program analysis or extensive annotations, and therefore have limitations with regard to
practical usage.

Transaction Memory (TM) [60], which avoids the explicit reasoning about which lock protects which
shared state, became a very active research area during the past few years. In TM the programmer indicates,
by using an atomic-block, which code should run as if it would be one atomic-instruction. Like an atomic
instruction, either the whole execution successfully completes and the rest of the system can see the changes
or no changes are performed at all. The underlying runtime-system will automatically take care of protecting
access to shared resources, detecting possible conflicts and resolving them. We consider TM more an implicit
than an explicit concurrency control mechanism because the programmer does not specify which lock protects
which data, he rather declares which piece of code should required to be run under atomic conditions.

Cilk [26] is a programming language which includes higher-level, but still explicit, concurrency abstrac-
tions (i.e., language constructs which do not necessarily represent hardware or OS entities). Cilk extends
the C programming language with three new keywords: cilk (to mark spawn-able functions), spawn (to
spawn function calls asynchronously) and sync (to wait for completion of previously started asynchronous
functions). Figure 2.1 shows a simple Cilk program for concurrently computing a Fibonacci number. Al-
though Cilk simplifies the management of concurrent tasks, it still relies on the programmer to explicitly
specify where and how to extract concurrency and how to correctly synchronize access to shared resources.
Cheng [38] describes a mechanism to check for race freedom when locks are used for protecting access to
shared resources. The proposed approach is not a general verification tool, but rather debugging tool for
checking the absence of race conditions for one specific input by sequentializing the execution of a Cilk
program. Besides language-based, higher-level abstractions, one of the major contributions of Cilk is its very
efficient runtime-system [45], which employs a work-stealing approach for load-balancing.

Kilim [82] is an actor-based programming language for shared memory systems. In Kilim actors run
concurrently inside the same process and communicate via message passing. Similar to the Microsoft
Singularity operating system [55], Kilim uses statically verified ownership transfer between actors to avoid
expensive data copy operations. Therefore Kilim merges the implicit synchronization of message passing
with the performance associated with shared memory communication. But the programmer is still in charge
of specifying the concurrency and needs to map the concrete problem to an actor model [52].

3If the correct lock is not manually specified by the user the system employs heuristics to guess the correct lock automatically.
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Listing 2.1: A Cilk example program to concurrently compute a Fibonacci number. The main and all spawn-able
functions must be marked with the cilk specifier. In line 21 an asynchronous computation is started, indicated by the
spwan keyword. With the sync keyword the program waits for the completion of this task. While asynchronously
executing the fib function, it recursively spawns off new asynch. tasks (line 11 and 12), and waits in the following line
via the sync keyword for their completion.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <cilk.h>
4

5 cilk int fib (int n)
6 {
7 if (n<2) {
8 return n;
9 } else {

10 int x, y;
11 x = spawn fib (n1);
12 y = spawn fib (n2);
13 sync;
14 return (x+y);
15 }
16 }
17

18 cilk int main (int argc, char ⇤argv ])
19 {
20 int result;
21 result = spawn fib(atoi(argv[1]));
22 sync;
23 printf (”Result: %d\n”, result);
24 return 0;
25 }

Axum4 [69], similar to Kilim, is an actor-based programming language. But unlike Kilim, which mainly
supports mail boxes as a communication primitive, Axum provides an extensive set of operators to build
dataflow graphs. To achieve strong isolation between actors, all data that is sent must be serialized before
the send operation and de-serialized after its reception. Axum supports the specification of communication
protocols for specific channels, which allows the detection of certain deadlock scenarios by detecting a
protocol violation. To avoid the expensive data copy operations that are involved in the message passing,
Axum supports shared state via ’domains’. Domains are groups of data/objects that are shared between several
actors. Each actor has to specify if is just reading or also writing to the mutable state of the corresponding
domain. This allows the system to order accesses to mutable state and avoid race conditions. This approach
can be seen as a very simple form of group permissions to domains (to be discussed later in Section 3).

4Formerly known as Maestro.
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Dryad [57] is a runtime-system for execution of dataflow graphs. Dryad allows the execution of programs
on platforms ranging from multi-core CPUs to big computer clusters. Dryad is mainly used as backend
execution engine for high-level concurrent programming languages. For instance DryadLINQ [90], a LINQ5

implementation, and SCOPE [35], a high-level data processing language, use Dryad as (one of) their backend
execution engines.

X10 [37] is an new programming language that has been developed in a DARPA-funded supercomputing
initiative. It aims at the creation of a next generation programming language for high-performance computing.
One of the major design-goals of X10 was the support for distributed computing. X10 uses a global
partitioned address space, where the distinct partitions are called places, to take the Non-Uniform Memory
Access (NUMA) of current systems into account. X10 allows the programmer to start asynchronous activities
in other places to modify or fetch data from places. Asynchronous activities can be coordinated via barrier-
like objects, called clocks, which allow the execution of activities based on phases. X10 also provides an
atomic-block for protecting access to shared resources.

MapReduce [42] is a simple computational model in which the input data is mapped into smaller
intermediate result data which is then reduced to the final result. The mapping and (partially) the reduction
can be parallelized if the mapping function supports mapping of a partial set of input data to a partial set of
intermediate result data. MapReduce work very well for embarrassingly parallel problems (such as counting
occurrences of specific data in the input data).

SharC [15] is a data race checker for C programs. SharC uses lightweight type annotation system which
bares some resemblance to ÆMINIUM’s permission and data group approach. SharC has private and readonly
annotations which compare to ÆMINIUM’s unique and immtable permissions. In SharC, all shared data
accesses need to be marked with an locked(lock) indicating which lock needs to be held before accessing the
corresponding data. This resembles ÆMINIUM’s shared permissions associated with data groups. To allow
for more flexibility, SharC uses on top of a static typesystem additionally a dynamic runtime checks. Unlike
ÆMINIUM, SharC is a checker only and can only check that a user parallelized program is accessing its state
in a safe manner.

SvS (Synchronization via Scheduling) [20] optimizes task graph executions by avoiding synchronization
operations on shared data. SvS utilizes a static analysis for finding dependencies between tasks. To overcome
the conservative approximations of the static analysis SvS uses additionally a dynamic analysis to refine those
task dependences and only execute task in parallel which read/write sets do not overlap.

5Discussed in section 2.2.



12 CHAPTER 2. STATE OF THE ART

2.2 Implicit Concurrency

One of the main characteristics of implicit concurrency systems is their declarative nature. Instead of
specifying how to do something, the programmer rather specifies what should be done and lets the system
decide how to do it. Therefore implicit concurrency systems relieve the programmer from the complex
specification of and reasoning about concurrent execution.

Pure functional programming [58] provides a good match for implicit concurrency. The lack of side-
effects and the explicit dependencies inside the code allow the runtime-system/compiler to extract high levels
of concurrency. As previously mentioned, pure functional programming is not suitable for all cases (e.g.,
high productivity and ease of use). Therefore functional programming languages increase their features by
allowing mutable state and side effects. When it comes to mutual state and side effects, Haskell [58] has
one of the most interesting approaches in dealing with those. In Haskell all side effects, namely changes to
mutable state, must be explicitly mentioned in the function signature. For instance, a function that needs
to perform I/O must declare that it requires an I/O monad. The I/O monad is a permission to change the
’world’ and everything in it. The flow of the I/O monad is used by Haskell to sequentialize the execution of
all methods that change mutable state and therefore avoid race-conditions. Having just one permission for the
whole system is rather limiting and leads to a major bottleneck in highly-concurrent systems.

HPF [63], Nesl [22, 23] and ZPL [43] are examples of data-parallel programming languages. In these
languages the programmer works mainly with arrays and the application of functions to the all or just part
of the array elements. Those programming languages naturally fit to scientific computing, which mainly
involves computation on huge datasets. General purpose programs, like for instance a web server, are hard to
realize in such programming languages.

OpenMP [36, 75] is an industry standard for shared-memory programming in C and Fortran. OpenMP
specifies transparent annotations that allow the compiler to automatically parallelize the program. OpenMP
supports parallelization of non-regular code via parallel sections and tasks, but the main focus of OpenMP
is the parallelization of regular problems that are expressed via loops. The goal of OpenMP annotations is
not to tell the compiler how to parallelize the code, but rather to point the compiler to the code-fragments
that make most sense to parallelize. Having said that, the programmer still has a fair amount of liberty
on controlling how it’s done. In Figure 2.2 a simple OpenMP program for the concurrent computation of
matrix-multiplication is shown. Similar to data-parallel programming languages, OpenMP is a natural fit
for scientific computing but has several shortcomings when it comes general purpose programming (e.g.,
limited support for expressing parallelism in irregular structures). Intel developed an OpenMP version for
parallelizing programs across multiple machines called Cluster OpenMP [54]. Given the higher overhead
of the underlying distributed shared memory (DSM) model, this approach seems rather inefficient for most
cases.
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Listing 2.2: A OpenMP example program that performs a parallel matrix multiplication. After allocating memory and
initializing the matrices (line 28, code omitted for brevity) the program calls the matrix mult function to perform the
matrix multiplication. The matrix mult implements a standard matrix multiplication algorithm, consisting of three
nested loops. The pragma in line 7 tells an OpenMP-capable compiler, that the following (the most outer) for loop should
be automatically parallelized.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <assert.h>
4

5 static void matrix mult(double ⇤A, double ⇤B, double ⇤C, int size)
6 {
7 #pragma omp parallel for
8 for ( int i = 0; i < size; i++ ) {
9 for ( int k = 0 ; k < size ; k++ ) {

10 for ( int j = 0; j < size ; j++ ) {
11 C[i+j⇤size] += A[i+k⇤size] + B[k+j⇤size];
12 }
13 }
14 }
15 }
16

17 int main(int argc, char ⇤argv[])
18 {
19 int size = 0;
20 double ⇤A = NULL, ⇤B = NULL, ⇤C = NULL;
21

22 size = atoi(argv[1]);
23

24 A = (double⇤)malloc(size⇤size⇤sizeof(double));
25 B = (double⇤)malloc(size⇤size⇤sizeof(double));
26 C = (double⇤)malloc(size⇤size⇤sizeof(double));
27

28 ...
29

30 matrix mult(A, B, C, size);
31

32 free(A);free(B);free(C);
33 return 0;
34 }

Language Integrated Query (LINQ, [66]) is an extension to the C# programming language, which
allows Structured Query Language (SQL, [3])-like operations on data objects. Any object that implements
IEnumerablehTi can the used as source in an LINQ query. This allows LINQ to work with a variety of
data objects, ranging from simple arrays, over complex collection objects to objects that represent remote
databases. The high-level declarative nature of SQL is used inside databases for various optimizations,
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Listing 2.3: A simple PLINQ program for finding all people of the given name that are over 21. Note that the only
difference to a normal (sequential) LINQ programs is in line 26, where the program uses the AsParallel method to
retrieve a parallel collection.

1 using System.Collections.Generic;
2 using System.Linq;
3

4 class Person {
5 public int id;
6 public string name;
7 public int age;
8

9 public override string ToString() {
10 return ”[” + id + ”] > ” + name + ”(” + age + ”)”;
11 }
12 };
13

14 public class Simple
15 {
16 public static int Main(string[] args) {
17

18 var objs = new List<Person> {
19 new Person {id=1, name=”Hans”, age=12},
20 new Person {id=2, name=”Willi”, age=45},
21 new Person {id=3, name=”Gustav”, age=34},
22 new Person {id=6, name=”Hans”, age=67},
23 new Person {id=11, name=”Willi”, age=100},
24 };
25

26 var result = from o in objs.AsParallel()
27 where o.name == args[0] && o.age >= 21
28 orderby o.age ascending
29 select new {o.name, o.age};
30

31 foreach(var o in result) {
32 System.Console.WriteLine(o);
33 }
34 return 0;
35 }
36 };

including parallel execution. With Parallel LINQ (PLINQ) [44] the same idea is transformed to LINQ. The
PLINQ extension allows queries to be executed in parallel, as long as there are no data dependencies between
the different computations. Figure 2.3 shows a simple example for concurrently filtering a list of people
that match certain criteria. It is worth to mention that most of (P)LINQ is implemented as library. The
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main languages changes for supporting (P)LINQ have been the introduction of lambda functions and some
syntactic sugar to write the queries in a more SQL-style way.

Fortess [14] is one of the most closely related projects to our approach. Fortress has been funded by
DARPA for high-performance computing. The syntax of Fortress closely resembles Java’s syntax, but Fortress
employs a significantly different evaluation semantics. In Fortress many evaluation contexts, like for instance
tuples and for-loops, execute concurrently by default. In the possible case of data races, the programmer
either has to force a sequential execution or protect critical accesses with an atomic block. Fortress does not
support any mechanism to detect possible data races. It is the responsibility of the programmer to localize
potential data-races and take appropriate countermeasures. A very useful feature of Fortress is the usage of
UNICODE symbols (e.g the sum or integral symbol), to render formulas and program code in ’pseudo-code’
style format. This feature explicitly aims at the target user group of scientist who have a solid understanding
of their domain, but might have limited programming skills.

Several Automatic Parallelization approaches and techniques for compilers have been proposed. In
general these approaches focus on instruction level parallelism (ILP) by exploiting special vector units or
improving pipeline utilization. Nowadays all mainstream compilers [1, 2, 4, 5] support ILP at different levels.
While these approaches improve single threaded performance, they do not parallelize the program across
multiple CPU cores. Therefore more coarse grain approaches for the automatically parallelization of programs
have been investigated. Hall et al. [51] describe SUIF, an automatically parallelizing compiler for coarse grain
parallelism. SUIF uses a scalar, an array and an inter-procedural analysis to automatically parallelize loops.
A similar approach is used by T-Systems Cell-Compiler [9]. The T-System Cell-Compiler automatically
extracts parallelism at the loop level to execute on a Cell processor [88]. Because both approaches rely
on highly regular problems, they are a good fit for scientific computing but have limited applicability for
irregular, general purpose programs.

Deterministic Parallel Java (DPJ, [27, 28]) an extension to Java with parallel for loops and blocks. It
therefore has quite a resemblance to Open MP but instead using annotation the user needs to explicitly use
new language constructs. But unlike Open MP, DPJ is able to statically check correctness through an effect
system. In the initial version DPJ [27] only supported deterministic computations, which means that the
type system checked that all possible parallel computations operate on disjoint sets of data. DPJ was later
extended to support shared state and therefore non-determinism [28]. DPJ has many similarities to ÆMINIUM,
especially to ÆMINIUM’s data groups and the fork-join approach they are handled. The main differences of
DPJ compared to ÆMINIUM are the lack of true data flow parallelism and the usage of effects system instead
of permissions.

Craik et al. [40] describe a system which uses ownership information to automatically parallelize code
in a dataflow style. Craik’s ownership contexts are similar to ÆMINIUM’s data groups, but they do not
have the concept of unique or immutable permissions. Their system supports only deterministic parallelism.
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While they provide an argument for soundness, our formal model goes further in incorporating a small-step
operational semantics model of parallelism and a rigorous progress/preservation proof approach.

Pig latin [74] is a high level data processing language that supports various backends. Conceptually Pig
latin aims for the sweet spot between the declarative stye of SQL and the procedural style of MapReduce.
Pig latin allows the composition of complex data flow graphs through the composition of single data
transformations.

2.3 Background

Access Permissions are a novel abstraction mechanism encoding information regarding how the referenced
object can by used through the current reference as well as through possible other reference in the system
(i.e., it encodes effect information and alias information). Access permissions are an extension to Fractional
Permission [32], which have been introduced 2003 to check for race conditions. Boyland’s fractional
permissions included unique, immutable and shared. In 2007 Kevin Bierhoff [21] added pure and full
permissions to better support verify typestate information in sequential programs. In 2008 Nels Beckman [18]
extended Bierhoff’s work to verify typestate in concurrent programs. Our work represents the next logical
step. After using access permission to check parallel programs for correctness, we use access permissions to
infer potential parallelism in programs.

Regions have originally been proposed 1999 by Aaron Greenhouse [50]. Regions are encapsulations of
mutuable state. Greenhouse used regions and an effect system to determine whether there exists data
dependencies between two computations or not. In 2002 Leino proposed and extension to their in 1998
proposed data groups [62] allowing for more precise side effect analysis. The main difference between data
groups and regions is that a field can only be associated with one region but can be part of many data groups.
In ÆMINIUM we use data groups to group objects (i.e., all fields of an object are associated with the same
data group). Despite the fact that we do not allow an object (and therefore its fields) to be associated with
multiple data groups we still called it a data group, rather than a regions, for semantic reasons.

Ownership, in particular ownership types, have been proposed in 1998 by Clarke [39] and provide a statically
enforceable object-level encapsulation. Using ownership and strong encapsulation allows reasoning about
disjointness of different objects. ÆMINIUM supports ownership and encapsulation through data groups which
are only accessible inside object methods.

2.4 Summary

Table 2.1 provides a compact overview of the discussed systems. The overview shows for each system if
the system is either implicit or explicit concurrent. It furthermore describes the generality of each system
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Table 2.1: System Comparision

System Style Generality Safety Modularity

Threads explicit general purpose none -
Locks/Mutexes explicit general purpose none re-entrant locks
MPI explicit general purpose isolation -
Erlang explicit general purpose isolation -
Cilk explicit fork/join parallelism none -
Kilim explicit general purpose isolation -
Axum explicit general purpose isolation -
Dryad explicit data flow none -
X10 explicit general purpose isolation -
MapReduce explicit data parallelism isolation -
SharC explicit general purpose no data races effects annotation
SvS explicit task graphs no data races effects annotation
Functional Programming implicit functional programming type safety monads
HPF/Nesl/ZPL implicit data parallelism type safety -
Open MP semi-implicit data parallelism none -
LINQ implicit data parallelism none -
Fortress implicit data parallelism none -
Parallelizing Compilers implicit data parallelism none -
DPJ implicit fork/join parallelism type safety effects annotations
Craik’s System implicit data parallelism type safety -
Pig latin implicit data parallelism none -

differentiate systems which are specifically designed for some specific use cases and systems which are
designed to work with any problem space. We also analyze the systems which safety guarantees they make
with regards to the parallelisms. In particular we differentiate three kinds if safety classes: system which
provide none safety guarantees, systems which mainly rely on isolation to avoid race conditions and systems
in which the type system guarantees that no data races can occur. Lastly we look add concurrency specific
support for modularity for each system.

When looking at this summary we can make two observations. The first observation is that explicit
parallel systems seem to be more generic applicable than implicit systems. This observations makes sense
because in many explicit approaches the programmer has a certain freedom to use the available parallel
constructs in any way they want while in implicit parallel systems the availability/usage of parallel features is
limited or automated. The limitation in implicit systems is necessary to allow for automatic parallelization.

Another observation which can be drawn from the overview is that implicit parallel systems seem to
offer more safety guarantees than explicit systems. This makes sense as in implicit parallel systems the
compiler/runtime performs many parts of the parallelization automatically with little to no user intervention.
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To make sure that the parallelization is actually correct many implicit systems limit the ways code can be
parallelized and have some sort of checking that the parallelization can be performed safely.

Those observations lead to the question how to write parallel code in the medium to long term future?
Manually managing parallelism becomes infeasible with continuously growing systems. Implicit parallel
systems relieve the programmer from some of those burdens but are often limited to domain specific areas.
There seems to be a trend towards Domain Specific Languages (DSL) in general and for parallel computing
[34] in particular. A question left open is if there is way to have a generic enough approach which captures
most of the common parallel programming paradigms that frees programmer from the burdens of low-level
parallel reasoning while still maintaining . We claim that using the permission flow of programs we can
achieve such a system. Permissions have been designed with modularity in mind. Also not part of this
dissertation permission permission seem to provide a good abstraction for embedding DSL in safe and
predictable manner.
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I
n this section we provide a high level overview of the ÆMINIUM approach and describe the
ÆMINIUM programming language, which realizes a concurrent-by-default programming
model [83] with a concrete design and precise semantics. ÆMINIUM uses access permissions
[18] and group permissions for data groups [62] to compute the permission flow throughout

the code (explained in the next sub-sections). The compiler uses this information to compute a data flow
graph, which can then be executed in parallel on available computing resources.

While the general ÆMINIUM approach is language agnostic, we use an extended Java syntax for presenting
the examples in this section. This requires extending the Java syntax to the missing language constructs and
permissions annotations. We implemented a working prototype implementation in the Plaid [13] language.
Plaid has permissions built-in as an first class language construct and therefore requires only minor extensions
to support ÆMINIUM.

3.1 Access Permissions

Access Permissions (AP) combine alias and effects information for object references and have been studied in
the past for checking interface protocol compliance and verifying the correct use of synchronization [18]. In
ÆMINIUM we use access permissions, and more precisely the flow of the access permissions through the
application, to model possible concurrent execution strategies for a program. Access permissions are abstract
capabilities associated with object references. The primary purpose of access permissions is to keep track of
how many references to a given object exist in a moment in time, and to specify what kind of operations are
permitted on the object at that moment. In ÆMINIUM we adapted the following three permissions kinds:

unique A unique access permission to an object reference indicates that there is exactly one reference (the
current reference to that object) at this moment in time. A unique access permission allows clients to
read and modify the object.

shared A shared access permission to an object reference indicates that there is an arbitrary number of
references to the object in the system and all the permissions are shared. A shared access permission
allows the client to read and modify the object.

immutable An immutable access permission to an object reference indicates that there is an arbitrary number
of references to the object in the system and all of them are immutable. An immutable access permission
allows only read access to the object.
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Figure 3.1: Permission Split and Join Operations

Split Operations

unique ! immutable + immutable
unique ! shared + shared
immutable ! immutable + immutable
shared ! shared + shared

Join Operations

immutable + immutable ! unique
shared + shared ! unique

immutable + immutable ! immutable
shared + shared ! shared

Access permissions follow the rules of linear logic [47]. They are analogous to physical resources that are
unavailable once consumed. Permissions can be converted from one type to another as long as the previously
described invariants hold. For instance, a unique AP can be split into two shared APs. Because of the linearity
of APs the unique AP is gone, having been replaced by two shared APs. Each of the shared APs can be
further split into more shared APs, but not into unique or immutable permissions. Using fractions [32] for
keeping track of the individual AP allows permissions to be joined, eventually enabling the recovery of a
unique access permission. We call the immutable and shared permission symmetric , because an unique splits
always in a pair of either of those permission and further splitting yields to the same symmetric permission.
Figure 3.1 summaries the available split and join operations.

The type system computes the AP flow to the program and automatically splits/joins APs as needed. In
ÆMINIUM two expressions may execute concurrently if their permissions do not interfere: that is, they have
a disjoint set of unique permissions or an arbitrary set of overlapping shared and immutable permissions. To
avoid data races ÆMINIUM only allows access to shared data within atomic blocks. The AP flow obeys
the lexical order of statements, meaning that if two pieces of code need the same unique AP, the unique AP
will first flow to the first expression and then to the latter one.

A simple example is shown in Listing 3.1. The endOfYearAccounting method in line 5 is called at
the end of a fiscal year for every bank account in the system. It takes an unique account object as input and
first calls the depositInterest method to add the outstanding interest to the current bank account and
then calls the sendFinancialStatement method to generate the financial statement report and sent
it to the owner of the account. Both methods require a unique permission to the account object. Therefore
the type checker will first pass the account object into the depositInterest. Upon the completion of
the depositInterest method the type checker will regain the unique permission to the account object
which then is passed into the sendFinancialStatement method. By definition we can only have one
unique permission at a time for any given object. Therefore the sendFinancialStatement method
needs to wait for the completion of the depositInterest to return this unique permission before it can
execute. This sequentializes the execution of both methods.



3.2. ÆMINIUM IN A NUTSHELL 21

Listing 3.1: End of Year Accounting Example

public void depositInterest(unique Account account) { ... }

public void sendFinancialStatement(unique Account account) { ... }

public void endOfYearAccounting(unique Account account) {
depositInterst(account);
sendFinancialStatement(account);

}

3.2 ÆMINIUM in a Nutshell

Before discussing the remaining ÆMINIUM language concepts in more details, this section provides a quick
overview of how the overall approach works. The first and most important part of the system is the type
checking of the code. The following illustrations will go over the bank transfer example in more detail and
explain step-by-step how the program is type checked with permissions. This explanation is for illustrative
purposes and for all formal aspects of the type systems please refer to Chapter 4. The permissions available
at the given step are described in comments as a list of variable and permission pair following the format
’variable’ : ’permission’.

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

// from : unique, to : unique, amount : immutable
withdraw(from, amount);
deposit(to, amount);

}

At the beginning of every method the type checker has
to establish the known fact. This means all the cur-
rently available permissions. In general this includes
all available parameters and the receiver if available.
In the case of the transfer method this means that we
a unique permission to the from and to references
and an immutable for the amount reference.

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount); // amount : immutable
// to : unique

deposit(to, amount);
}

To type check the method call to the withdraw

method we need to pass in a unique permission for
the from reference and an immutable permission
to amount object. The type checker passes in the
unique permission to the from object and splits and
passes in an immutable permission to the amount
object. This leaves an unique permission ot the to
object and an immutable permission to the amount
object behind.
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public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
// from : unique, to : unique, amount : immutable
deposit(to, amount);

}

After the method call completes the method, indi-
cated by the type annotation, returns the exact permis-
sions which have passed in. The type checker regains
a unique permission to the from object and an im-
mutable permission to the amount object. In our case
the type checker immediately joins those immutable
permissions back together (cf. Section 5.4.1).

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);
deposit(to, amount); // amount : immutable

// from : unique
}

To type check the method call to the deposit

method we need to pass in a unique permission for
the to reference and an immutable permission to
amount object. The type checker passes in the
unique permission to the to object and splits and
passes in an immutable permission to the amount
object. This leaves an unique permission of the from
object and an immutable permission to the amount
object behind.

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);
deposit(to, amount);
// from : unique, to : unique, amount : immutable

}

After the method call completes the method, indicated
by the type annotation, returns the exact permissions
which have passed in. The type checker regains a
unique permission to the to object and an immutable
permission to the amount object. In our case the type
checker immediately joins those immutable permis-
sions back together (cf. Section 5.4.1). We reached
the end of the method an the type checker checks that
the permissions we got left match the permission we
have to return to the caller, which in this case are the
exact same permissions that have been passed in.

Based on the permission flow the compiler can compute a dependency graph for the method. Figure
3.2a shows the dependency graph computed by the compiler. We defer the detailed description of the graph
representation we defer to Chapter 5. As mentioned in the text the type checker implementation is eager,
meaning it joins permissions back as soon as possible. This leads to the introduction of sequentialization
dependencies into the graph. Therefore the compiler transforms the initial dependency graph and transforms
into another dependency graph with enhanced parallelism (see Figure 3.2b, cf. Section 5.4.2). The next step
comprises dealing with granularity issues by clustering operations into more coarse grain tasks, resulting in
a task graph (see Figure 3.2c on the facing page, cf. Section 5.4.3). Based on the task graph the compiler
generates source code (cf. Section 5.4.4) which at runtime will create task as necessary and schedules them
on the ÆMINIUM runtime (cf. Section 5.5).
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Figure 3.2: Dependency and Task Graphs
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3.3 Data Groups

Although pure APs define a clean execution model for unique and immutable data, our permission splitting
rules will allow all operations on shared data to proceed concurrently. We need a way to express when one
operation on a shared data structure depends on another. Furthermore, we’d like to control these dependencies,
as well as synchronization on shared data, at a granularity greater than one object at a time. To illustrate this
consider the example shown in Figure 3.3a on the next page. The example shows a simple implementation
of the observer pattern [46]. There is Subject class which is the source of the events and the Observer
class which is reception of events. In the main function we first create a new Subject object and the we
create two new Observer objects. We pass the subject into the Observer constructor so that the newly
created object register itself with the subject. After that we trigger the subject twice to notify the subscribed
observers. All methods use require a shared permission to the Subject object because we want to allow the
concurrent execution of the code (this means we cannot use unique as this would sequentialize the execution)
and we want to allow for the possibility to add and remove observers later on (this means we cannot use
immutable permissions) as those would prohibit the update of the subject object). we defined that operations
can run in parallel if the intersection of their required permission does not contain a unique permission. The
creation of the observer objects and the calls to the update method only overlap in their need to a shared
permission to the subject object. This leads, as shown in Figure 3.3b on the following page, to the concurrent
exception of all those operations. This is not necessarily what we planned to express. We wanted to first



24 CHAPTER 3. PROPOSED APPROACH

Figure 3.3: Observer Example

class Subject {
unique Subject() { ... }
void add(shared Observer obs) : shared { ... }
void del(shared Observer obs) : shared { ... }
void update() : shared { ... }

}

class Observer {
shared Observer(shared Subject s) {

s.add(this);
}
public notify(shared Subject s) : shared { ... }

}

void main() {
unique Subject s = new Subject();
shared Observer o1 = new Observer(s);
shared Observer o2 = new Observer(s);

s.update();
s.update();

}
(a) Source Code

new Subject()

split(s)

new Observer(s)new Observer(s) s.update() s.update()

join(s)

...

s : unique

s : shareds : shared s : shared s : shared

s : shareds : shared s : shared s : shared

s : unique

(b) Dependency Graph

create the observers and then allow them to receive the updates. In the current way all four operations can
execute in any order. We could force an order by using unique permissions for the subject object, but this
would inhibit parallelism and might not be achievable if we need to store a reference to the subject object in a
field.

To address this challenge we leverage data groups (DG, [62]). A data group represents an abstract
collection of objects. Using data groups for grouping multiple objects differs from previous work, which used
data groups exclusively to partition the state of one object. Data groups resemble closely to Greenhouse’s
regions [49]. Regions allows the grouping of state across multiple objects and its association with a specific
lock. Data groups allows grouping of state across multiple states and provides an abstract protection
mechanism through atomic blocks. When an object is part of a data group, we say that this object is
owned by that data group. In ÆMINIUM all shared objects must be part of exactly one data group. We write
sharedhmyGroupi to indicate that the shared object is part of the data group myGroup.
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Figure 3.4: Permissions in ÆMINIUM. Shows different permission kinds and what each permission controls (including
arity). Access permissions control access to objects and group permissions control access to data groups of shared objects.
There can only exist one unique, exclusive or protected permission to an object or data group at a time in the system,
while there can be an arbitrary number of shared and immutable permissions. Shared permissions refer to the data
group to which they belong to (e.g., sharedh↵i means the object belongs to data group ↵).
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Additionally, we adapt the concept of access permissions to data groups and call them data group
permissions (GP). ÆMINIUM currently defines the following data group permissions:

exclusive There is at most one exclusive GP to a data group in the whole system at a time. This resembles
a unique AP. Similar to a unique permission, a exclusive GP represents the only currently existing
permission through which the data of the data group can be accessed. This allows access to shared data
group objects without synchronization.

An exclusive group permission (similar to unique access permissions) act like “thread-local” data
(although we do not have the notions of threads in ÆMINIUM). An execution path that holds an
exclusive group permission can safely access the associated shared objects of the group without
synchronization. This is an important feature as many data structure intrinsically require shared access
permissions to the objects they are composed of (e.g., a doubly linked list which requires at least two
valid references to its linked node objects).

shared A shared GP resembles a shared AP: there can be an arbitrarily number of shared GP in the system.
Having a shared GP does not grant any kind of access to the associated data because there is the danger
of data races.

protected A protected GP indicates that the access to its shared data is safe because the access to the
shared data group has been protected by a corresponding atomic block. The semantics of protected
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Figure 3.5: Group Permission Splitting/Joining via Shared and Atomic blocks. The notation gr : gp means that we have
group permission gp for data group gr.

1 // gr : gp with
2 // gp 2 {exclusive, shared}
3 split hgri {
4 // gr : gp with
5 // gp : shared
6 atomic hgrii {
7 // gri : protected
8 }
9 // gr : gp with

10 // gp : shared
11 }
12 // gr : gp with
13 // gp 2 {exclusive, shared}

(a) Split/Atomic Block

exclusive

shared

protected

split

split

atomic

(b) Group Permission Conversion Diagram

permissions is that there can only be one protected permission per data group at a time. This is enforced
by the runtime system.

Figure 3.4 provides an global overview of all available permissions in the ÆMINIUM system. Access
permissions are used to classify object references and consist of unique, shared and immutable. By definition
every shared object must be associated with a data group (e.g., ↵) for which we use a data group permission
exclusive, shared or protected.

3.3.1 Management of Data Group Permissions

Unlike the automatic splitting of access permissions, data group permissions are split and joined manually to
provide the programmer with better control over dependencies between operations. By default, each operation
on a data group depends on the previous operation on that data group; when the operations are conceptually
independent, an explicit split block is used to split an exclusive GP into an arbitrarily number of shared
GPs (see Figure 3.5). The split block specifies data groups for which it splits the available permission
(either exclusive or shared) into more shared permissions (one for each statement in the body). Group
permissions to data groups not mentioned are simply passed through its body. The available permissions
inside the body are partitioned into disjoint sets. Each one of the those permission subsets flows to one
statement of the body. This means that if multiple statements in the block require the same unique AP or
an exclusive GP (which is not mentioned in the split block) then the code will not typecheck because
permissions cannot be duplicated. After the completion of all body statements, the shared block joins the
generated shared permissions back to the permission that existed before the block was entered.
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In order to give programmers control over the granularity of synchronization, each atomic block
protects access to objects in the particular data groups that are specified at the atomic block entry point.
It will provide a protected GP for the specified data group to its body expression. The specification of
the data group is optional as the compiler can automatically infer the required data groups. Providing an
explicit annotation however provides a useful documentation of the programmers intent and helps catching
unintended data accesses. In particular, the semantics of the atomic block is that its body is executed as if it
has exclusive access to the shared data associated with the specified data group. Similar to the split block,
the atomic block will upon its completion revert the GP to the state it was in before entering the atomic
block. The semantics of split and atomic blocks is illustrated by example in Figure 3.5.

Data groups are declared inside classes in a similar way to fields (see Figure 3.2, line 6). Data groups
are only visible inside classes and their subclasses (similar to Java’s protected). Before accessing
data associated with those inner groups, the programmer must gain access to those data groups via an
‘unpackInnerGroups {. . .}’ construct. The unpackInnerGroups block will trade the permission to
the owner group of the receiver object for permissions to inner groups defined in the receiver’s class. This
exchange prohibits recursive method calls from accessing the same inner groups, which would violate the
permission invariants (e.g., only one exclusive data group permission per data group). What happens is that
when unpackInnerGroups is called, the exclusive permission for the “owner” is replaced by exclusive
permissions for the inner data groups of the receiver object (i.e., the “this” object). This approach transitively
avoids the need for synchronization. Analogously, when the client has either a shared or protected permission
to the owner (rather than exclusive), the owner permission is replaced by a shared permission to the inner
groups.

We decided to use this semantics to allow more concurrency at the cost of having additional synchroniza-
tion on sub datagroups. An alternative semantics we considered was that unpackInnerGroups replaces
the exclusive permission of the “owner” with exclusive permissions for the inner groups and protected
permissions of the “owner” with protected permissions for the inner groups. To preserve soundness we would
not allow the unpacking of inner groups of shared owners. The reason for this is that if we would allows the
unpacking of shared inner group permissions another concurrent entity could use an atomic block to gain a
second protected group permission (remember the protection of the “owner” group is not expanded to the
inner groups to gain more parallelism). This approach would avoid the extra synchronization on the inner
groups, but would loose potential parallelism by not be able to unpack shared permissions (which would
enable parallelism amongst inner data groups). The unpackInnerGroups block can automatically be
inferred by the compiler, but adding it explicitly helps the documentation and capturing the programmers
intent.
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Listing 3.2: A DoubleLinkedList with Data Groups. The example has two add methods. The first one requires an exclu-
sive permission to the owner and transitively provides an exclusive permission to the inner groups, and does not requires
synchronization. The second version only requires a shared permission to the owner and only provides shared permis-
sions to the inner groups, requiring synchronization i.e. atomic blocks. In comments ‘//’ we show which permissions we
currently hold via the notation dg : gp, meaning for data group dg we have permission gp.

1 class DoubleLinkedListItemhowner, datai {
2 ... // standard double linked list item
3 }
4

5 class DoubleLinkedListhdatai {
6 grouphinternali // inner data group
7

8 // ‘head’ belonging to inner data group ‘internal’
9 sharedhinternali DoubleLinkedListItemhinternal, datai head;

10

11 void addhexclusive owner, shared datai(sharedhdatai Objecthdatai o)
12 : sharedhowneri // shared permission to the receiver
13 {
14 // owner : exclusive, data : shared
15 unpackInnerGroups {
16 // internal : exclusive, data : shared
17 // access internal data directly
18 }
19 // owner : exclusive, data : shared
20 }
21

22 void addhshared owner, shared datai(sharedhdatai Objecthdatai o)
23 : sharedhowneri // shared permission to the receiver
24 {
25 // owner : shared, data : shared
26 unpackInnerGroups {
27 // internal : shared, data : shared
28 atomic hinternali {
29 // internal : protected, data : shared

30 // need protection to access internal data
31 }
32 }
33 // owner : shared, data : shared
34 }
35 ...
36 }

3.3.2 Discussion

The introduction of data groups and data group permissions allows programmers to introduce nondeterminism
when they need it, but ensures that they are explicit about where nondeterminism is permitted and helps them
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Listing 3.3: Producer/Consumer Example

1 class ProducerConsumer {
2 static void producerhshared �i(sharedh�i Queueh�i q) {
3 // ↵ : shared
4 atomic h�i {
5 // ↵ : protected
6 ...
7 }
8 }
9 static void consumerhshared �i(sharedh�i Queueh�i q) {

10 // ↵ : shared
11 atomic h�i {
12 // ↵ : protected
13 ...
14 }
15 }
16 static sharedh�i Queueh�i createQueuehexclusive �i(){...}
17 static void disposeQueuehexclusive �i(sharedh�i Queueh�i q){...}
18

19 static void mainhexclusive ↵i() {
20 // ↵ : exclusive
21 sharedh↵i Queueh↵i q = createQueueh↵i()
22

23 split h↵i {
24 producerh↵i(q) // ↵ : shared
25 consumerh↵i(q) // ↵ : shared
26 }
27 // ↵ : exclusive
28 disposeQueueh↵i(q)
29 }
30 }

to control the granularity of parallelization and therefore of synchronization. Nondeterminism can only be
introduced via explicit split blocks, and its impact is limited to accesses within that block. This explicitness
helps ensure that programmers have thought about the semantics of their program enough to avoid errors
due to unexpected nondeterminism. Furthermore, data groups allow coarse-grained synchronization because
an atomic block on a data group protects all the objects within that data group, eliminating the need to
synchronize separately on each object. In the case of an exclusive group permission, no synchronization is
needed at all.

To make this more clear, consider the doubly linked list example in Figure 3.2. In line 5, the Double-
LinkedList class is defined with group parameter data, using the same syntax as Java type parameters.
The data group parameter specifies the data group to which the objects stored in the list belong. Line
6 defines a new data group called ‘internal’. Line 9 declares the ‘head’ field pointing to the chain of
‘DoubleLinkedListItems’ which are all associated with the ‘internal’ data group of the surrounding ‘Dou-
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bleLinkedList’. Because inner groups are not visible outside the class it is impossible for these objects
to leave the scope of the class. This strong encapsulation resembles ownership types [39], and allows
ÆMINIUM developers to incrementally refine their internal data structures to increase internal concurrency
(e.g., modifying a hash table that uses one data group for all hash buckets to an implementation that uses one
data group per hash bucket).

Lines 11 and 22 show the definitions of two add functions that specify data group parameters along with
their required permissions. The signature of the two add methods are identical, with the exception that the
add method in line 11 requires an exclusive permission to the data group that owns the receiver, while the add
method in 22 requires a shared GP. The effect of this difference can be observed in the implementation of the
corresponding bodies. In the case of the add method that requires an exclusive permission to the receiver’s
data group, the unpackInnerGroups can provide an exclusive permission to the inner data groups, which
in turn allows the programmer to access the shared inner state without any synchronization. In the case of the
add method that requires a shared permission to the receiver’s data group, the unpackInnerGroups can
only provide a shared permission to the inner data groups, requiring the programmer to synchronize on the
inner data group (line 28).

Note that the current design of ÆMINIUM only protects against race conditions and not against deadlocks.
The latter has been handled in prior work [31], and is orthogonal to our approach, so it is left out of this
discussion for simplicity.

3.4 Producer/Consumer Example

After the discussion of access permission, data groups and their correlation we now present an example
for a producer/consumer in ÆMINIUM (see Figure 3.3). The program starts execution at the global entry
method main (line 19). When entering the body it has an exclusive permission to a data group ↵. This
permission will first flow into the createQueue method call (line 21). The exclusive permission matches
the method permission requirements as specified in line 16. After the createQueue call returns the
exclusive permission to ↵, the permission flows into the split block at line 23. As previously described,
the split block will replace the exclusive permission with one corresponding shared permission for each
statement in its body. This leads to the fact that one shared permission to ↵ is flowing in parallel to the
producer and consumermethod calls (line 24 + 25). After those calls have been completed, and therefore
returned their shared permissions to ↵, the share block will collect them and join them back together to an
exclusive permission (line 26). This newly gained exclusive permission is then fed to the disposeQueue
method call. Note that if either producer or consumer want to access the shared queue, they first have to
protect their access to this data group via an atomic block (lines 4 and 11). Figure 3.6 shows the resulting
permission flow and the derived data flow graph for this example program.
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Figure 3.6: Data Flow Graph for Producer/Consumer Example
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3.5 Dataflow is not Fork/Join

ÆMINIUM supports both dataflow and fork/join parallelism. To better understand the difference between
those concepts consider the example shown in Listing 3.4. The exchange function, which could be part of
a bi-directional ring network implementation, receives a new packet via the provided socket s into the Packet
inp. It then checks the newly received packet inp for errors (e.g., that checksums match). The function then
updates the outgoing packet outp (e.g., updates header fields and re-computes checksums), before this packet
is sent through the socket.

Assuming that all functions called in the exchange method require exclusive permissions to the
corresponding data groups, the permission flow forms a graph as shown in Figure 3.7. The graph shows that
receiving the incoming packet can be performed in parallel to updating the outgoing packet. As soon as
the incoming packet has been received the newly received packet can be checked. When additionally the
updates of the outgoing packet have completed, the outgoing packet can be sent in parallel to checking of
the incoming packet. This kind of parallelism is naturally supported by ÆMINIUM’s dataflow approach, but
cannot be directly expressed in a fork/join paradigm unless extra dependencies or synchronization is used.
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Listing 3.4: Exchange Source Code

1 void exchangehexclusive S,
2 exclusive I,
3 exclusive Oi(sharedhSi Socket s,
4 sharedhIi Packet inp,
5 sharedhOi Packet outp) {
6 receivePackethS, Ii(s, inp);
7 checkPackethIi(inp);
8 updatePackethOi(outp);
9 sendPackethS, Oi(s, outp);

10 }

Figure 3.7: Data Flow Graph for exchange Function (for simplicity we show only the flow of data group permissions as
the access permissions do not cause additional dependencies)
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T
his section formalizes the object-oriented µÆMINIUM core language. We briefly discuss the
syntax of the language and then elaborate on how the static and dynamic semantics of the
calculus prohibit race conditions. We conclude this section by giving an overview of the
soundness proof. The complete proof is presented in Appendix A. The goal of µÆMINIUM is

to explore a simple, efficient mechanism to track data dependencies via permission flow and to guarantee
the absence of race conditions. Because only shared data can lead to race conditions and the tracking of
object permissions and data group permissions can be done using similar mechanisms, we focused the core
calculus on modeling data groups and data group permissions, assuming that all data is implicitly shared. µ
ÆMINIUM’s typechecking rules generate a data group configuration representing the graph of dependencies
between primitive expressions in the language; this configuration is used along with run-time permissions to
model parallel execution in the dynamic semantics. Access permission have been previously formalized in
[21].

4.1 Syntax

The grammar of µÆMINIUM is shown in Figure 4.1 and is formulated as an extension to Featherweight
Java (FJ, [56]). FJ is small core calculus for a functional subset of the Java programming language. The FJ
language is limited to objects with fields, field reads, method calls, casts and object creation.

In a nutshell the major extensions to FJ are: i ) addition of data group parameters to method calls, class
and method declarations; ii ) addition of group types and extensions of the object types to be parametrized
with group parameters; iii ) new language constructs to deal with data groups and to support field assignments.

We use the overbar notation to abbreviate a list of elements (e.g. x : T = x1 : T1, . . . , xn : T
n

). Unless
otherwise mentioned this notation includes the empty list. We write • to indicate the empty sequence.

A program consists of a set of classes and a main method. In µÆMINIUM the global starting expression
of FJ is explicitly wrapped in a main method, to provide an initial data group for the top level objects. A
class declaration (CL) gives the class a unique name C and defines its data group parameters, internal data
groups (G), fields (F ) and methods (M ). Note that the sequence of data group parameters may not be empty,
and instead of having an explicit owner parameter, the first data group parameter specifies the data group to
which the class instances belong. µÆMINIUM does not provide an explicit constructor. Upon creation of a
new object all its fields are initialized to null and must later be explicitly set. ALthough this might seem to



34 CHAPTER 4. FORMALISM

Figure 4.1: µÆMINIUM Grammar

(programs) P ::= hCL,maini
(class decl.) CL ::= class Ch↵,�i extends Dh↵i {G F M}
(field decl.) F ::= T f
(group decl.) G ::= grouphgni
(method decl.) M ::= T

r

mhgp �i(T
x

x) { e }
(main meth.) main ::= Ch↵i mainhexclusive ↵i() { e }
(values) v ::= o | null
(references) r ::= x | v
(group ref.) gr ::= r.gn | ↵
(expressions) e ::= a

| unpackGroupsOf r in e
| let x = e in e
| atomic hgri e
| split hgri between e1 k e2
| inatomic hgri e

(atoms) a ::= r
| r.f
| r.f := r
| r.mhgri(r)
| new Chgri(r)

(types) T ::= Chgri | G | ?
(object) obj ::= C[f = v]
(group perm.) gp ::= exclusive | shared | protected
(group state) S ::= U | L
(class table) CT ::= • | CT, hC 7! CLi

C,D,E 2 CLASSES m 2METHODS f 2 FIELDS
x, y,this 2 VARS ↵,�, � 2 GROUP VARS o 2 OBJ. REFS.

gn 2 GROUP NAMES

be a severe issue, the initialization problem is a general issue which has already been studied and solutions
have been proposed [79]. Fields (F) are declared with a name and type. Data groups (G) are declared by name,
which is passed to the group constructor. Methods (M) specify their result type, the data group permissions
they require, their formal parameters and a body expression.

We syntactically distinguish between expressions and possibly effectful atoms. Atoms are straightforward
and consist of field read and assignment, method invocation and new object creation. Besides the standard
let binding ( let ), expressions consist of atomic blocks ( atomic ) which specify the data group
they protect access to and a body expression; an operation that exchanges permission to the owner of an
object for permission to its inner data groups ( unpackGroupsOf ), which specifies the object and an
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expression which should gain access to the inner groups of the specified object (the unpackInnerGroups
of ÆMINIUM essentially limits the object reference to the receiver object); and a share primitive ( split ),
which specifies which data groups should be shared between the two specified expressions. Note that
the sequence of data group references in the share construct must be non-empty. The inatomic primitive
( inatomic ) does not appear at the source level and is only used as an intermediate form for tracking
entered atomic blocks. We use a global class table (CT ) to map class names to class declarations.

4.2 Static Semantics

This section first provides an overview of all definition forms, then discusses the detailed typing rules. We
implicitly assume that names of fields, groups and methods in a class declaration are unique.

4.2.1 Typing Context

The typing context � contains all the typing information for object references and data group references. We
use G as the type for all data group references and use ? to denote a unit type.

(Typing Context) � ::= • | �, x : Chgri | �, gr : G | �, x : ?

4.2.2 Store Typing

The store typing ⌃ contains all the typing information for location in the heap.

(Store Typing) ⌃ ::= • | ⌃, v : Chgri | ⌃, v : ?

4.2.3 Permission Context

The permission context� is a linear context that keeps track of the currently available permissions. We write
gr : gp to indicate that we have group permission gp for data group gr.

(Linear Context) � ::= • | �, gr : gp
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4.2.4 Data Group Configuration

The data group configuration G hierarchically tracks the data group requirements of an expression, including
any ordering or concurrency among those requirements. It vaguely resembles NESL’s [24] approach for
tracking profiling information, but instead of tracking operation costs we track permission requirements. A
data-group configuration can either be empty (•); a collection of group references ({gr}), indicating the
permission requirements of the current expression; the sequential composition of data group configurations
(�), used to combined data group configurations of expressions that are sequentially ordered, or the parallel
composition of data group configurations (k), used to combine data group configurations of expressions that
are executed in parallel. We also define a global data group configuration table (GT ) which maps class and
method tuples to data group configurations.

(DG configuration) G ::= • | {gr} | (G1 � G2) | (G1 k G2)

(G table) GT ::= • | GT , h(C,m) 7! Gi

4.2.5 Typing Judgments

We type-check an expression with the judgment �|⌃|� C̀ e : T | G, which reads: given the typing context
�, the store typing ⌃, the permission context �, the expression e checks in the context of class C with type
T and has data group configuration G.

We use the judgment T
f

f ok in C to check that the given field declaration is valid in class C.

We use the judgment T
r

mhgp �i(T
x

x) { e } ok in C to check that the method declaration is valid in
class C.

4.2.6 Helper Functions

Throughout the typing and evaluation rules we use a several helper functions to abbreviate common function-
ality. For space reasons we delegate the full definitions of these function in Appendix A and just provide a
short overview of their effects in Figure 4.2.

4.2.7 Typing Rules

The typing rules are shown in Figure 4.3 and 4.4. Most rules are straightforward; we highlight the most
interesting ones. T-PROGRAM starts the checking with a top-level data group ↵. The T-UNPACKGROUPSIN-*
rules exchange a permission to the data group of an object for a permission (exclusive or shared, depending



4.2. STATIC SEMANTICS 37

Figure 4.2: µÆMINIUM Helper Functions

fields(C) = F returns fields of class C and its superclasses
groupDecls(C) = gn returns the declared groups of class C and its superclasses

override(C,m) ok checks if a method correctly overrides another method
requiredPerms(G) = gr returns the set of all permissions in G

requiredTokens(e) = {gr@L} return the set of group access tokens for which e contains an corre-
sponding inatomic .

mdecl(C,m) = M looks up the method declaration of m in class C
mbody(C,m) = �.x.e⇥ G looks up the method body of m in class C, and returns the body

expression with the method parameter names and the data group con-
figuration

Figure 4.3: Static Semantics of µÆMINIUM top-level constructs.

T-PROGRAM
CL ok

main = Ch↵i mainhexclusive ↵i() { e }
(↵ : G)| • |(↵ : exclusive) ` e : T |G

(↵ : G) ` T <: Ch↵i
hCL,maini : Ch↵i

T-CLASS
M ok in C F ok in C

class Ch↵,�i extends Dh↵i {G F M} ok

T-FIELD
CT (C) = class Ch↵,�i extends Dh↵i {G FM}

(↵ : G,� : G, this : Ch↵,�i, G : G) ` EhgrEi ok
EhgrEi f ok in C

T-METHOD
CT (C) = class Ch↵,�i extends Dh↵i {G FM}

override(C,m) ok � = (this : Ch↵,�i,↵ : G,� : G, � : G)

� ` Tx ok �, (x : Tx)| • |(� : gp) C̀ e : Te | G � ` Te <: Tr

Tr mhgp �i(Tx x) {e} ok in C

on the outer permission) to the inner groups of that object. T-SHARE splits the incoming permission context
in two, duplicating the named shared permissions, while T-ATOMIC allows the protected expression to
treat a shared data group as protected. T-LET supports sequential composition, as specified by the group
configuration G1 � G2, while T-SHARE specifies parallel use of any shared groups, as specified by the group
configuration G1 k G2. T-FIELD-READ and T-FIELD-ASSIGN requires an exclusive or protected permission
to the first data group parameter (gr0) of the object being read or assigned. This ensures that either a data
group is unshared, or it is locked with an atomic section before being used. Field reads and writes generate
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Figure 4.4: Static Semantics of µÆMINIUM Expression.

T-UNPACKGROUPSIN-EXCLUSIVE
�|⌃ ` r : Chgri

� = �

0, (gr0 : exclusive) groupDecls(C) = gn �, (r.gn : G)|⌃|�0, (r.gn : exclusive) ` e : T | G
�|⌃|� C̀ unpackGroupsOf r in e : T | ({gr0, r.gn}� G)

T-UNPACKGROUPSIN-SHARED
�|⌃ ` r : Chgri � = �

0, (gr0 : gp)

gp 2 {shared, protected} groupDecls(C) = gn �, (r.gn : G)|⌃|�0, (r.gn : shared) ` e : T | G
�|⌃|� C̀ unpackGroupsOf r in e : T | ({gr0, r.gn}}� G)

T-SPLIT
{gp} ✓ {exclusive, shared} � = �1,�2,�r

�|⌃|(�1, gr : shared) C̀ e1 : T1 |G1 �|⌃|(�2, gr : shared) C̀ e2 : T2 |G2 G = (G1 k G2)

�|⌃|(�, gr : gp) C̀ split hgri between e1 k e2 : ? | G

T-ATOMIC
�|⌃ ` gr : G �|⌃|(�, gr : protected) C̀ e : T | G

�|⌃|�, (gr : shared) C̀ atomic hgri e : T | ({gr}� G)

T-NULL

�|⌃|� C̀ null : ? |•

T-INATOMIC
�|⌃ ` gr : G �|⌃|�, (gr : protected) C̀ e : T | G

�|⌃|�, (gr : shared) C̀ inatomic hgri e : T | ({gr}� G)

T-REFERENCE
⌃(v) = T

�|⌃|� C̀ v : T |•

T-VAR
�(x) = T

�|⌃|� C̀ x : T |•

T-LET
�|⌃|�1 ` e1 : T1 | G1 (�, x : T1)|⌃|�1,�R C̀ e2 : T2 | G2

�|⌃|�1,�R C̀ let x = e1 in e2 : T2 | (G1 � G2)

T-FIELD-READ
�|⌃ ` r : Dhgri, gr0 : G

gp 2 {exclusive, protected}
fields(D) = Tf f

�|⌃|�, (gr0 : gp) C̀ r.fi : Tfi | {gr0}

T-FIELD-ASSIGN
�|⌃ ` rv : Tv, r : Dhgri, gr0 : G
gp 2 {exclusive, protected}

fields(D) = T f � ` Tv <: Tfi

�|⌃|�, (gr0 : gp) C̀ r.fi := rv : Tv | {gr0}

T-NEW
CT (D) = class Dh↵,�i extends Eh↵i{G F M}

�|⌃ ` gr : G
�|⌃|� C̀ new Dhgri() : [gr/↵,� ]Dh↵,�i | •

T-CALL
�|⌃ ` r : Tr, p : Tp, gr : G � ` gr : gp Tr = DhgrDi

CT (D) = class Dh↵,�i extends Eh↵i{G F M} mdecl(D,m) = Tresult mhgp �i(Tx x){ e }
� ` Tp <: [

gr,grD/�,↵,� ]Tx � ` Tr <: [

gr,grD/�,↵,� ]Dh↵,�i
�|⌃|� C̀ r.mhgri(p) : [gr,grD/�,↵,� ]Tresult | {gr}

a data group configuration that is just the group being read or assigned. Finally, T-CALL ensures that the data
groups required by the called function are provided by the caller.
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4.3 Dynamic Semantics

This section first provides an overview of the definition forms used, then discusses the evaluation rules
in detail. Instead of generating an explicit data flow graph, the dynamic semantics use the data group
configuration together with runtime permission tokens to model the permission flow at runtime and emulate
the dependencies.

4.3.1 Store

The store µ is a mapping of object references o to objects obj. A store can either be a potentially empty set
of object mappings or race, which indicates the case that a race condition occurred during the execution
(our soundness theorem will show that these races cannot occur in well-typed code). An object is a record
consisting of all instance fields. The inner groups (i.e., data groups that are declared by every object) along
with their corresponding state are managed separately in the group access token context (cf. Section 4.3.3)

(store) µ ::= ho 7! obji | race

During the evaluation of an expression, differential stores (µ
�

) containing the accessed objects are
generated. Those differential stores are merged via the ] operator. To generate a new global heap we write
µ0

= [µ
�

]µ for element wise update/substitution of objects.

µ� = µ�1]µ�2 =

8
><

>:

µ�1 , µ�2 dom(µ�1) \ dom(µ�2) = •

race OTHERWISE

µ0
= [µ� ]µ =

(
race µ� = race

[o 7! obj]µ 8ho 7! obji 2 µ�

4.3.2 Runtime Permission Context

The runtime permission context � is used to model permission flows at runtime and is either empty or consists
of a set of o.gn (i.e. runtime permissions). The runtime semantics do not allow an expression to execute until
all of its required permissions, as expressed in its group configuration, are available. A runtime permission
can be split and can flow along different paths, just as static permissions can.

The top level permission context always contains only one initial permission to the global data group of
the main function. More runtime permissions are successively generated by unpacking inner groups.

(runtime permission context) � ::= • | �, o.gn
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4.3.3 Group Access Token Context

The group token context  is a set of group access tokens, i.e., group references along with their current
locking state S = {U |L}. A locking state U indicates an unlocked state meaning that one atomic block
referring to that data group can be entered. A locking state L indicates a locked state meaning that an atomic
block referring to that data group is currently executing. There is a controversial discussion [30] regarding
the correct semantics for atomic blocks. Some argue that transactional semantics should be used while others
argue that lock-based semantics should be used. A major problem with using a lock based approach is
associated with the risk of creating deadlocks when different threads try to acquire two locks in the reverse
order. The main problems with STM are the lack of unified semantics and an inherently performance problem
though the massive overhead caused by STM implementations. We decided to use a lock-based approach for
its simplicity of implementation and semantics. In future we might reconsider this decision and evaluate a
transactional semantics [71].

There exists exactly one group access token for every data group in the system and unlike runtime
permissions, group access tokens cannot be split. In several rules the unlocked group access token context
is split in a non-deterministic way. This models non-determinism of how atomic blocks can lock data
groups. Locked group access tokens are forced to flow into the expression that contains the corresponding
inatomic . This approach is not strictly necessary but allows us to formulate a stronger preservation
induction hypothesis.

(group context)  ::= • |  , o.gn@S

4.3.4 Evaluation Judgment

To evaluate expressions we use the judgment µ|�| |G ` e 7! e0 a µ
�

| 0|G0, which reads as follows: given
the store (µ), the runtime permissions (�), the group access tokens ( ), the data group configuration (G) the
expression e steps to e0 and produces a differential store (µ

�

), an updated set of group access tokens ( 0) and
an updated data group configuration (G0).

4.3.5 Program State

A program state is a quintuple of the form (µ|�| |G|e), consisting of a store (µ), a runtime permission context
(�), a group access token context ( ) of available tokens, a data group configuration (G) and an expression
(e). A program state represents a consistent state of the execution. To transition from one program state to
another, the expression takes a step following the evaluation judgment and then generates a new global store
(see E-TRANS-N in Figure 4.5).
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Figure 4.5: µÆMINIUM Program State Transitions Rules

E-TRANS-Z

(µ|�| |G|e) 7! (µ|�| |G|e)

E-TRANS-N
µ|�| |G ` e 7! e1 a µ� | 1|G1 µ1 = [µ� ]µ (µ1|�| 1|G1|e1) 7!⇤

(µ0|�| 0|G0|e0)
(µ|�| |G|e) 7!⇤

(µ0|�| 0|G0|e0)

Figure 4.6: Dynamic Semantics of µÆMINIUM Atoms

E-FIELD-READ
G = {vg.gn} vg.gn 2 � µ ` hv 7! C[f = vf ]i µ� = hv 7! C[f = vf ]i

µ|�| |G ` v.fi 7! vfi a µ� | |•

E-FIELD-ASSIGN
G = {vg.gn} vg.gn 2 � µ ` hvr 7! objri

objr = C[fr = vfr , fri = vfi, fr = vfr ] obj0r = C[fr = vfr , fri = ov, fr = vfr ] µ� = hvr 7! obj0ri
µ|�| |G ` vr.fri := ov 7! ov a µ� | |•

E-NEW
G = • groupDecls(C) = gn onew fresh µ� = honew 7! C[f = null]i

µ|�| |G ` new Chvg.gni() 7! onew a µ� | , onew.gn@U |•

E-CALL
G = {vg.gn}

vg.gn 2 � µ ` hvr 7! C[f = vfr ]i mbody(C,m) = ↵.x.e⇥ Ge G0
= [

vg.gn/↵][
vp/x][

vr/this]Ge

µ|�| |G ` vr.mhvg.gni(vp) 7! [

vg.gn/↵][
vp/x][

vr/this]e a •| |G0

4.3.6 Evaluation Rules

The Evaluation rules for atoms are shown in Figure 4.6 and the rules for expressions are shown in Figure 4.7
and 4.8. Once again we describe the most interesting rules. E-FIELD-READ demonstrates the basic approach:
we look up the permissions required based on the group context G (which was computed by the typechecking
rules), and the read cannot execute unless and until the required permission is in the permission context �.
Other atom rules are similar. The E-UNPACKGROUPSOF-* rules make the inner permissions available to
the enclosed expression if and only if the permission to the outer object is available; otherwise the enclosed
expression can only take steps for which these permissions are not required. There are three variants of the
let and share rules: one where the first expression takes a step, one where the second steps, and one where
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Figure 4.7: Dynamic Semantics of µÆMINIUM Expressions (1/2)

E-UNPACKGROUPSOF-REPLACE
G = ({v0.gn0, vr.gn}� Ge)

� = �0, v0.gn0, µ|�0, vr.gn| |Ge ` e 7! e0 a µ� | 0|G0
e G0

= ({v0.gn0, vr.gn}� G0
e)

µ|�| |G ` unpackGroupsOf vr in e 7! unpackGroupsOf vr in e0 a µ� | 0|G0

E-UNPACKGROUPSOF-NONE
G = ({v0.gn0, vr.gn}� Ge)

v0.gn0 /2 � µ|�| |Ge ` e 7! e0 a µ� | 0|G0
e G0

= ({v0.gn, vr.gn}� G0
e)

µ|�| |G ` unpackGroupsOf vr in e 7! unpackGroupsOf vr in e0 a µ� | 0|G0

E-LET-1
G = (G1 � G2) �1 = � \ requiredPerms(G1)  =  1, 2

requiredTokens(e1) ✓  1 µ|�1| 1|G1 ` e1 7! e01 a µ� | 0
1|G0

1 G0
= (G0

1 � G2)  

0
=  

0
1 [ 2

µ|�| |G ` let x = e1 in e2 7! let x = e01 in e2 a µ� | 0|G0

E-LET-2
G = (G1 � G2) �2 = � � requiredPerms(G1)  =  1, 2 requiredTokens(e1) ✓  1

requiredTokens(e2) ✓  2 µ|�2| 2|G2 ` e2 7! e02 a µ� | 0
2|G0

2  

0
=  1 [ 0

2 G0
= (G1 � G0

2)

µ|�| |G ` let x = e1 in e2 7! | let x = e1 in e02 a µ� | 0|G0

E-LET-12
G = (G1 � G2) �1 = � \ requiredPerms(G1) �2 = � � �1  =  1, 2

requiredTokens(e1) ✓  1 requiredTokens(e2) ✓  2 µ|�1| 1|G1 ` e1 7! e01 a µ�1 | 0
1|G0

1

µ|�2| 2|G2 ` e2 7! e02 a µ�2 | 0
2|G0

2  =  

0
1 [ 0

2 G0
= (G0

1 � G0
2) µ� = µ�1 ] µ�2

µ|�| |G ` let x = e1 in e2 7! let x = e01 in e02 a µ� | 0|G0

E-LET-VALUE
G = (•� G2) G0

= [

v/x]G2

µ|�| |G ` let x = v in e2 7! [

v/x]e2 a •| |G0

E-UNPACKGROUPSOF-VALUE

µ|�| |G ` unpackGroupsOf vr in v 7! v a •| |•

both expressions step (this can occur even in the sequentializing LET construct if the permissions required do
not overlap). The rules for split differ in that LET divides the permissions without duplicating any, while
SPLIT duplicates the permissions named in the split block. Finally, the rules for the atomic block do not
pass a permission to the named data group inwards until a lock is acquired, at which point the state of the
lock changes to @L and the expression changes to inatomic for tracking purposes. For a more detailed
description of each rule cf. Appendix A.
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Figure 4.8: Dynamic Semantics of µÆMINIUM Expressions (2/2)

E-SPLIT-1
G = (G1 k G2) �1 = � \ requiredPerms(G1)  =  1, 2 requiredTokens(e1) ✓  1

requiredTokens(e2) ✓  2 µ|�1| 1|G1 ` e1 7! e01 a µ� | 0
1|G0

1  

0
=  

0
1 [ 2 G0

= (G0
1 k G2)

µ|�| |G ` split hv.gni between e1 k e2 7! split hv.gni between e01 k e2 a µ� | 0|G0

E-SPLIT-2
G = (G1 k G2) �2 = � \ requiredPerms(G2)  =  1, 2 requiredTokens(e1) ✓  1

requiredTokens(e2) ✓  2 µ|�2| 2|G2 ` e2 7! e02 a µ� | 0
2|G0

2  

0
=  1 [ 0

2 G0
= (G1 k G0

2)

µ|�| |G ` split hv.gni between e1 k e2 7! split hv.gni between e1 k e02 a µ� | 0|G0

E-SPLIT-12
G = (G1 k G2) �1 = � \ requiredPerms(G1) �2 = � \ requiredPerms(G2)  =  1, 2

requiredTokens(e1) ✓  1 requiredTokens(e2) ✓  2 µ|�1| 1|G1 ` e1 7! e01 a µ�1 | 0
1|G0

1

µ|�2| 2|G2 ` e2 7! e02 a µ�2 | 0
2|G0

2 µ� = µ�1 ] µ�2  

0
=  

0
1 [ 0

2 G0
= (G0

1 k G0
2)

µ|�| |G ` split hv.gni between e1 k e2 7! split hv.gni between e01 k e02 a µ� | 0|G0

E-ATOMIC-STEP1
G = ({v.gn}� Ge) v.gn /2 � µ|�| |Ge ` e 7! e0 a µ� | 0|G0

e G0
= ({v.gn}� G0

e)

µ|�| |G ` atomic hv.gni e 7! atomic hv.gni e0 a µ� | 0|G0

E-ATOMIC-STEP2
G = ({v.gn}� Ge)

� = �0, v.gn v.gn@U /2  µ|�0| |Ge ` e 7! e0 a µ� | 0|G0
e G0

= ({v.gn}� G0
e)

µ|�| |G ` atomic hv.gni e 7! atomic hv.gni e0 a µ� | 0|G0

E-ATOMIC-INATOMIC
G = ({v.gn}� Ge) v.gn 2 �  =  

00, v.gn@U  

0
=  

00, v.gn@L

µ|�| |G ` atomic hv.gni e 7! inatomic hv.gni e a •| 0|G

E-INATOMIC-STEP
v.gn 2 �  =  

00, v.gn@L
G = ({v.gn}� Ge) µ|�| 00|Ge ` e 7! e0 a µ� | 000|G0

e  

0
=  

000, v.gn@L G0
= ({v.gn}� G0

e)

µ|�| |G ` inatomic hv.gni e 7! inatomic hv.gni e0 a µ� | 0|G0

E-SPLIT-VALUE
G = (• k •)

µ|�| |G ` split hv.gni between v1 k v2 7! null a •| |•

E-INATOMIC-VALUE
 =  

00, v.gn@L v.gn 2 �  

0
=  

00, v.gn@U

µ|�| |G ` inatomic hv0.gni v 7! v a •| 0|•
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4.4 Properties

We prove the correctness of our system by induction on the derivation of program state transitive rules
(cf. Figure 4.5). We prove the type safety following the standard approach [76] by proofing progress and
preservation separately.

Our progress lemma (cf. Appendix A, Lemma 5) states, when given a well formed program state, then
either our expression e is a value, or the program state can take a step (i.e., advance to another program state),
e is waiting for some resource to become available or execution has stopped because of a null dereference.
We prove the correctness of the progress lemma through induction on typing derivation. We show that for
every program state (and therefore well typed expression) we can apply our progress lemma.

Our preservation lemma (cf. Appendix A, Lemma 6) states, when we have a well formed program state
and perform a single step the resulting program state is again well formed. We prove preservation through
induction over the evaluation rules.

We define type safety (cf. Appendix A, Lemma 1) to state that starting from every well formed program
state we can take an arbitrary amount of steps and always produce another well formed program state which
is not stuck (meaning the expression is not a value and cannot take a step or is not waiting for resources, cf.
Appendix A, Definition 2). We prove type safety by induction over the program transitions rules by applying
our progress and preservation lemma.

The full definitions and prove details can be found in Appendix A. By proofing the soundness of our
system we proved that any well typed program is data race free. This validates our first hypothesis that our
system avoids data races.



IMPLEMENTATION
5

T
he goal of this chapter is to describe the prototype implementation of ÆMINIUM. The im-
plementation of ÆMINIUM is based on the Plaid programming language [12]. The Plaid
programming language is a typestate oriented programming language [85] with built-in sup-
port for access permission. Having access permissions already built-in into the language

allows us to leverage Plaid’s typechecker. Additionally we get Plaid’s typestate checking infrastructure for
free, and vice-versa, users of the Plaid language can get free access to concurrent execution of their programs.
The intent of this chapter is to provide a brief overview of how the Plaid language is implemented and how
we extended this implementation to realize the ÆMINIUM implementation. We will explain language features
if they are necessary for the implementation strategy. For more in depth information about Plaid’s language
features and semantics refer to official language specification [12] and our related publications [13, 72, 85].

5.1 Plaid Primer

This section provides a short introduction to the Plaid programming language explaining all necessary
constructs required for this thesis. Please refer to the official Plaid language specification [12] for a more in-
depth overview of Plaid. By design the Plaid language resembles the Java language as much as possible. The
main conceptional difference between Plaid and Java is the usage of states instead of classes. Conceptionally,
Plaid uses state abstractions to naturally encode the various states an object can be in a direct and checkable
way. We discuss state composition and state change semantics in [85]. An overview of Plaid’s type system is
given in [72]. Those concepts are orthogonal to ÆMINIUM parallelization approach and we therefore limit
ourselves to a subset of Plaid which most closely resembles normal Java.

Listing 5.1 on the next page shows a simple counter example emphasizing the commonalities with Java.
In line 1 on the following page we define a new state Object. States, similar to Java classes, are a collection
of state and methods to manipulate this state. Instead of using the class keyword Plaid uses the state
keyword to declare such a collection. Like in Java we call the instanced of states objects. Line 2 on the next
page shows that the Object state defines only one method called toString. Plaid’s method declaration
follows the same syntax as a Java method declarations with the following exceptions. All method declarations
in Plaid start with the keyword method to indicate the start of a new method declaration. Note that Plaid does
not support Java’s modifiers (i.e., public, final, abstract, etc) but has its own (discussed later). After
the method keyword we have the return type of the method followed by the method name and its parameter
list. After the parameter list we have the so called environment of the method declared in square brackets. The
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Listing 5.1: Basic Plaid Example

1 state Object {
2 method immutable String toString() [ local immutable Object this ];
3 }
4

5 state Counter case of Object {
6 var immutable Integer count = 0;
7

8 method void inc() [ unique Counter this ] {
9 this.counter = this.counter + 1;
10 }
11

12 method void dec() [ unique Counter this ] {
13 this.counter = this.counter 1;
14 }
15

16 method immutable Integer get() [ local immutable Counter this ] {
17 this.counter
18 }
19

20 method immutable String toString() [ local immutable Counter this ] {
21 ”Counter(” + this.count.toString() + ”)”
22 }
23 }

environment is an implicit parameter list specifying all the objects that are implicitly passed into the method.
As shown in the example the environment contains the declaration of this reference. Note the additional
local keyword in front of the immutable permission of the this reference. local permissions is a
permission modifier to correctly implementing the permission join operation between permissions without
requiring the user to worry about concrete fractions (cf. [72]). The this reference is implicitly passed into
the method and therefore we need to specify which permissions we need. After the environment we usually
would declare the method body in curly braces, but in this case we finish the declaration with a semicolon to
indicate an abstract method declaration.

In line 5 we define a new state Counter as a sub-state of Object. Plaid uses the case of instead of
Java’s extends to declare sub-typing. The Counter defines a local field in line 6. All fields and variable
declarations start with either val (immutable) or var (mutable). In lines 8, 12 and 8 the Counter defines
various methods to increase, decrease or retrieve the current counter value. In Plaid, like in Smalltalk [48],
everything is an object. This means unlike in Java there are no primitive types (like int, boolean, etc).
The addition operation ‘this.count + 1’ in line 8 is translated into a method call in on the first operand
‘this.count.+(1)’. This is possible because Plaid supports operator overloading. Another important
obervation is the absence of the return statement in Plaid. Plaid automatically returns the value of the
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Listing 5.2: Plaid Fibonacci Example

1 method immutable Integer fibonacci(immutable Integer n) {
2 match ( n <= 2 ) {
3 case True { 1 }
4 default {
5 fibonacci(n�1) + fibonacci(n�2)
6 }
7 }
8 }

Listing 5.3: Plaid Boolean

1 state Boolean { ... }
2

3 state True case of Boolean { ... }
4

5 state False case of Boolean { ... }

last statement in a method body. In line 20 on the facing page the Counter objects implements the abstract
toString method as defined by its super state.

Pattern matching is the only control flow mechanism built into the Plaid programming language. The
pattern matching in Plaid currently works on type level does not allow automatic binding of internal state to
temporary variables. The simplest way to describe Plaid’s match statement is to think of Java’s switch
statement combined with the instanceof operations to compare for matching types instead of values. An
example of Plaid’s pattern matching is shown in Figure 5.2. The example shows a Plaid implementation of
the Fibonacci number computation. The example uses a global method defined in line 1. Global methods in
Plaid are like static methods in Java meaning they can be called without having an object instance available.
In line 2 the match block starts. It will take the result of the expression n <= 2 and checks which case
matches the result type. The result of the comparison is of type Boolean.

Note that in Plaid booleans are not part of the language and are implemented as part of the standard
library. Figure 5.3 shows an abbreviated version of Plaid’s boolean declaration. Line 1 defines the top-level
Boolean type. In line 3 and 5 define two orthogonal sub-types, one for true values and one for false values.

Coming back to the Fibonacci example in Figure 2 line 3 we define a case to check if the value of the
comparison operations is of type True. If so we simply return the constant value one. In line 4 the declares
the default case which is used when no other case applies. In this case we simply use the recursive definition
of fibonacci number to compute the result. Note that the result value of the method body is the value to which
the last statement reduces. In this case the last statement is the match block which evaluates to the value of
the taken case.

5.2 System Architecture

The overall system architecture is shown in Figure 5.1 on the next page. This section provides a high level
overview of the general approach before we explore the details in the reminder of this chapter. The compiler
user writes Plaid code and feeds it into our compiler. The compiler first translates the Plaid source code
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Figure 5.1: System Architecture
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into an Abstract Syntax Tree (AST). The newly generated AST is then used by the type checker to check
that the input program does not violate Plaid typing rules. Besides checking the programs conformance the
type checker also computes a sequential dependency graph based on the permission flow. The AST and the
dependency graph is then used by the Æminiumfier (cf. Section 5.4.2) which analyses and transforms the
sequential dependency graph into a parallel dependency graph. The parallel dependency graph and the AST
are then used by by the Task Builder (cf. Section 5.4.3) to cluster operations into more coarse tasks. The
generated task graph and AST is used by the Code Generator (cf. Section 5.4.4) to generate the final Java
byte code.

The generated code uses the Plaid and ÆMINIUM runtime libraries to create and manage objects and
parallelism. The Plaid runtime is responsible for managing states, objects and Java interoperability. The
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ÆMINIUM runtime (cf. Section 5.5) is responsible for managing the execution of the tasks generated by the
program.

5.3 The Plaid Language Compiler

This section provides a high-level overview of the Plaid compiler infrastructure. The goal of this section is to
provide enough information to the reader to understand the changes and extension that have been made to
implement ÆMINIUM. By no means is this section supposed to be an exhaustive presentation of the whole
Plaid language infrastructure. The source code is publicly available at the Plaid Google Code repository [78].

5.3.1 General Compiler Architecture

The Plaid compiler has been written in Plaid itself. Some of the core design was inspired by various other
compiler designs (such as Polyglot [73] and the Java compiler) . The Plaid compiler is a source-to-source
compiler i.e, the compiler reads Plaid source code and generates Java source files. Those Java source files are
then compiled to Java bytecode. The overall compiler architecture is shown in 5.2 on the following page. The
compiler reads the specified Plaid source files and generates an internal compiler job for each file. Each job
maintains a list of operations (called passes) to track which operations are left to perform for a particular job.
There exist two different kinds of passes. The first kind implements one specific functionality that needs to
be performed for the job (e.g., the Parsing Pass is responsible to parsing the source code into an abstract
syntax tree (AST)). The second kinds of passes represents a synchronization operation across all jobs ,e.g.,
the Parsing Barrier Pass which forces all jobs to finish the Parsing Pass before executing the next pass on
their list. We need the synchronization passes to ensure that we precompute all necessary information for
later passes. The following sections describe each pass individually.

5.3.2 Parsing Pass

The parsing converts the Plaid source code into an Abstract Syntax Tree (AST). This transformation does not
alter, modify or extend the information represented in the source code, but solely represents a one-to-one
mapping.

5.3.3 Name Resolution Pass

The name resolution pass resolves top-level constructs and variables. By resolving we mean that we
associating symbols with all variables in the source code and all globally resolvable identifiers (e.g., state
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Figure 5.2: Plaid Compiler Architecture. The dashed box identifies the Plaid compiler boundaries.
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names). Symbols represent an uniform abstraction of low level information (e.g., type of element, mutability,
etc.). This pass additionally resolves fully qualified names (FQN, e.g., “plaid.lang.Boolean”) and
additionally resolves Java static fields and methods.

5.3.4 Type Resolution Pass

The type resolution pass uses the symbol information and populates the AST with type information. The
Plaid syntax is ambiguous without type information. Plaid supports first class function (i.e., lambdas) which
can be storred in object fields. There it is syntactically not clear if we apply some arguments to a lambda
function stored in a field or if we call a method. Listing 5.4 on the next page highlights this problem. In
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Listing 5.4: Plaid Syntax Ambiguity

state Foo {
val fn ()! void m1 = fn ()) {};

method void m2() [immutable Foo this] { }

method void bar() [immutable Foo this] {
this.m1();
this.m2();

}
}

the bar method it is not clear if this.m1() (or this.m2()) is a method call or an application of a
function stored in a field. Because the parser cannot determine which one is the correct answer both cases are
parsed as function applications. During the type resolution pass we eventually will determine if the target of
the application is actually a function or a real method. Therefore the type resolution pass will convert all
applications that target a method into proper method calls.

5.3.5 Type Checker Pass

The type checking pass uses the type information generated by the type resolution pass to perform the
actual type checking of the code. The Plaid type system is not part of this dissertation and we refer the
interested reader to [72] for detailed information regarding the full type system. Plaid runs on the Java
Virtual Machine and supports interoperability with Java, meaning it is possible to create and use any Java
class in a Plaid program. Because Java code does not naturally support permissions Plaid’s type checker
needs to be extended to automatically deduct appropriate permissions for Java code (e.g., always assume
the most conservative permission possible). As of this writing this Java interoperability feature is still work
in progress. To allow the usage of Java code in Plaid programs the compiler supports a special annotation
called @sequential. Annotating a method with this annotation disables the typechecking for its body and
therefore allows the usage of Java code inside. The main usage for this annotation is the creation of wrapper
states which encapsulate Java objects and methods and provide a permission annotated interface to the Plaid
compiler.

5.3.6 Code Generation Pass

The code generator pass translates the annotated AST into Java source code. This source code is compiled
and run against the Plaid runtime system.
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The Plaid runtime is a Java library which provides pre-defined data types and helper routines to create
and initialize objects. Plaid does not support primitive types like for instance Java does. This means that in
Plaid everything is an Object (like in Smalltalk). As we will see in Chapter 6 this approach has an effect on
the overall performance of Plaid programs. We omit the exact details of the Plaid runtime library as they are
not part of this thesis and not important for the overall ÆMINIUM implementation.

5.4 ÆMINIUM Inside Plaid

5.4.1 Extensions to Type Checker Pass

ÆMINIUM leverages Plaid’s type checker which handles the permission flow and checking of the code.
Therefore our main tasks were:

Dependent Typesystem To support data groups we extended Plaid’s type system to support a simple form of
dependent types [77]. The implementation follows the approach described in [77]. To fully support data
groups we had to add minor changes to the type checker to track data group permissions additionally
to access permissions.

Dependency Computation We extended the Plaid type checker to generate a dependency graph based
on the permissions flow according to the sequential order in which the type checker performs its
operations.

Optimization Using the generated dependency graph we perform multiple optimization. The first kind of
optimizations we perform tries to maximize parallelism by finding available parallelism based on the
permission flow. The second optimization we perform is the clustering of operations into tasks. This
operation tries to be as aggressive as possible to reduce the number of created tasks while maintaining
as much concurrency as possible.

Code Generation We needed to update the code generation to support the unique ÆMINIUM constructs and
to generate parallel code.

Dependency Information Graph Representation

For further processing we generate a dependency graph containing all the permission flow dependencies (for
both permission kinds, access permission and data group permissions). The graph G
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differentiate the following kind of dependency nodes:
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MethodCall ’this.foo’ (666)
AST nodes are simple wrappers to represent actual operations of the

AST (e.g., method calls, field assignments, etc). We represent AST nodes as light red boxes with
rounded corners. We highlight method calls by drawing their border slightly thicker than the average
AST node. The label of AST nodes starts with the identification of which AST node it represents,
followed by concrete information (e.g., which method we call, the specific variable we read, etc). At
the end we have an unique identifier in parenthesis. We use this identifier to uniquely identifier each
node in the graph.

Split ’foo’ [⇢! ⇢0](667)
Split nodes represent a split operation of a permission performed by the type

checker. We represent all nodes representing permission operations (i.e, splits and joins) as light blue
ellipses. The label starts with the Split to identify the node as a split node, followed by the variable
we perform the split operation on. Next we have the actual split operation encoded between square
brackets. We abbreviate the different permissions with their initial character (i.e., Immutable, Unique
and Shared). We write ⇢! ⇢0 when we split permission ⇢ to ⇢0 (e.g., unique! immutable). At the
end we have an unique identifier for the node. We only encode the split off permission and not the
residual permission as it easily computed given the available information. Split nodes depend on the
last usage of the symbol it is splitting because this is the place were the original permission came from.

Join ’foo’ [⇢! ⇢0](668)
Join nodes represent a join operation of a permission performed by the type

checker. The graphical representation of join nodes is similar to split nodes with two distinct differences.
The first difference is that we start the label with Join instead of Split. The second difference is in the
semantics of the permission operation. In the case of join nodes, ⇢! ⇢0 specifies a join operation of ⇢
into ⇢0. We encode only one of the input permissions as the other permission can be inferred by the
first input permission and the resulting permission. Join nodes depend on the last usage of the symbol
it is joining and the node which represents the residual permission created by the split operation.

MatchEnter (669)
Match Enter Nodes represent the start of a match expression. We represent the start

of a match block with a yellow rectangle with rounded corner. The label consists of the MatchEnter
and the unique identifier in parenthesis. A MatchEnter node depends on all last usages of the symbols
used in its cases and condition.

MatchLeave (670)
Match Leave Nodes represent the end of a match block. We represent the end of a

match block with a yellow rectangle with rounded corner. The label consists of the MatchLeave and
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the unique identifier in parenthesis. The MatchLeave node depends on all last usages of the symbols
used in its cases and condition of the corresponding match block.

AtomicEnter (671)
Atomic Enter Nodes represent the start of an atomic block. We represent the start

of an atomic block with a green rectangle with rounded corner. The label consists of the AtomicEnter
and the unique identifier in parenthesis. The AtomicEnter node depends on all last usages of the
symbols used in its body expression and to all specified data groups symbols.

AtomicLeave (672)
Atomic Leave Nodes represent the end of an atomic block. We represent the start

of an atomic block with a green rectangle with rounded corner. The label consists of the AtomicLeave
and the unique identifier in parenthesis. The AtomicLeave node depends on all last usages of the
symbols used in its body expression of the corresponding atomic block.

UnpackEnter (673)
Unpack Enter Nodes represent the start of a unpackInnerGroups block. We

represent the start of a unpackInnerGroups block with a yellow rectangle with rounded corner.
The label consists of the UnpackEnter and the unique identifier in parenthesis. The UnpackEnter node
depends on all last usages of the this symbol.

UnpackLeave (674)
Unpack Leave Nodes represent the end of a unpackInnerGroups block. We

represent the end of a unpackInnerGroups block with a yellow rectangle with rounded corner.
The label consists of the UnpackLeave and the unique identifier in parenthesis. The UnpackLeave
node depends on all last usages of the inner data groups symbols used of the body expression of the
corresponding unpackInnerGroups block.

SplitEnter (675)
Split Enter Nodes represent the start of a split block. We represent the start of a

split block with a yellow rectangle with rounded corner. The label consists of the SplitEnter and the
unique identifier in parenthesis. The SplitEnter node depends on all last usages of the symbols used in
its body expression and to all specified data groups symbols.

SplitLeave (676)
Split Leave Nodes represent the end of a split block. We represent the end of a

split block with a yellow rectangle with rounded corner. The label consists of the SplitLeave and
the unique identifier in parenthesis. The SplitLeave node depends on all last usages of the symbols
used in its body expression and all specified data groups symbols.
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Figure 5.3: Plaid Bank Transfer Example Revisited
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state BankOperations {
method void withdraw(unique BankAccount account, immutable Integer amount)

[immutable BankOperations this] { }

method void deposit(unique BankAccount account, immutable Integer amount)
[immutable BankOperations this] { }

method void transfer(unique BankAccount from,
unique BankAccount to,
immutable Integer amount) [immutable BankOperations this] {

this.withdraw(from, amount);
this.deposit(to, amount);

}
}

Dependency Information Graph Example

Figure 5.3 revisits the transfer examples from Chapter 1. The main changes of the example are that we use
actual Plaid syntax and follow Plaid’s object oriented approach. We use a BankOperation state to group
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Table 5.1: Parallelizing Peephole Optimizations for

Name Description

Chained Splits Simplifies chains of split nodes introduced by binary permission split rules.
Chained Joins Simplifies chains of split nodes introduced by binary permission split rules.
Unique Join/Split Removes unnecessary split/join operations which split which slit nothing off a

unique permission.
Symmetric Join/Split Transforms sequential dependencies to symmetric permissions into parallel depen-

dencies.

those helper methods together. Figure 5.3 on the previous page show the dependency graph inferred by the
compiler. This graph is slightly more busy than the idealized graph shown in Figure 5.3 on the preceding
page. First, this is because the graph contains all the information from the source code (e.g., variables
reads). Second, in addition to the parameters, we track the permission of the receiver object (i.e., this).
As described in Section 5.4.1 the graph represents the sequential execution of the type checker. Following
the this permission you can see that the second method call to this.deposit (30) depends on the first
method call to this.withdraw (20) through the permission flow of the receiver (30! 25! 24! 23)
and the amount argument (30! 29! 28! 21! 20).

This example clearly shows the eager permission joining approach of the current Plaid typechecker
implementation. By eager we mean that the type checker joins permissions back as soon as they become
available, instead of a lazy approach where permissions are only merged back when it is required. The
next section describes how we can enhance the available parallelism in such an eager dependency graph by
following the rules defined in Section 3.1.

5.4.2 ÆMINIUM Parallelizing Pass

The ÆMINIUM parallelizing pass runs directly after the type checking pass and transforms the sequential
dependency graph inferred by the type checker into a parallel version by applying multiple peephole
optimizations [65]. A peephole optimization searches for specific patterns inside generated code (in our
case the ‘code’ is the dependency graph) and replaces those patterns by a simpler or more efficient one. The
following sections explain each performed optimization and Table 5.1 provides a short summary.

Simplification of Chained Splits

Type checking follows a bottom up approach. This leads to cases where multiple subsequent permissions can
be split off the same variable before they get merged back. A simple example of such a case would the type
checking of a method call where the same variable is passed multiple times as parameter to the call. This
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Figure 5.4: Chained Split Block Optimization
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begin
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) (V,E) ;
foreach �  V do

if � is split node then
if �.permIn == �.permOut then

if DEP(�) is split node then
(V 0, E0

) DELETE NODE(�, (V 0, E0
)) ; /* see Figure 5.5 on the

following page */
end

end
end

end
return (V 0, E0

);
end

chaining of permission splits is unnecessary and can be optimized. Instead of having a binary split node and
building chains of them we simply merge those nodes to create one n-ary split node. Figure 5.4 shows this
operations as graph and algorithm. The graph on top shows a chain of split nodes along with node further
defined nodes depending on them (�1, ..., �n+1). The optimization is applied locally to individual nodes. For
every node in the graph the algorithm checks whether the current node is a split node. If it is a split node
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Figure 5.5: Node Delete Operation
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Input: � the node to remove
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) dependency graph without �

begin
(V 0, E0

) (V,E) ;
V 0  V 0\� ; /* remove node from nodes */
foreach �

dep

2 {�
dep
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dep

) 2 E0} do
foreach �

rdep

2 {�
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: (�
rdep

, �) 2 E0} do
E0  E0\(�

rdep

, �) ; /* remove backwards dependency */
E0  E0\(�, �

dep

) ; /* remove forwards dependency */
E0  E0 [ (�

rdep

, �
dep

) ; /* add new dependency */
end

end
return (V 0, E0

) ;
end

it will check if the input permission is the same as the output permission and if the current node depends
on another split block. If all conditions hold the algorithm deletes the current split block from the graph by
preserving the dependencies (see Figure 5.5).

Simplification of Chained Joins

Similar to chained splits the type checker can generate chained join nodes to merge those chained spitted
permissions back to the original permission. Therefore the same principle as for chained splits can be applied
and we can reduce those chains to a single join node. Figure 5.6 on the next page shows the approach and the
algorithm. The algorithm operates on a individual nodes. It first filters out all joins nodes. Then for every
join node the algorithm checks whether it joins the input permission into the same kind of permission. If it
does it checks if there is any other join node depending on him. If all conditions hold the algorithm deletes
the current node by preserving the dependencies.
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Figure 5.6: Chained Join Block Optimization
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if �.permIn == �.permOut then

if 9�0 : (�0, �) 2 E ^ �0is join node then
(V 0, E0

) DELETE NODE(�, (V 0, E0
)) ; /* see Figure 5.5 on the

facing page */
end

end
end

end
return (V 0, E0

);
end

Simplification of Unique Split/Join Sequences

Following the type checking rules the compiler splits of the unique permission from a variable and leaves
a none permission associated with the variable. Later when the unique permission is returned to the
variable the type checker merges the incoming unique permission with the available none permission.
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This is a typical scenario for method calls where the permission gets conceptually splits off from the variable
and later (after the method call) merged back. Figure 5.7 shows the scenario on the left hand side where
unique permission from ↵ has been split of to satisfy the operations �2. Figure 5.7 also show the algorithm to
implement this operation which simply removes those unnecessary nodes.

Figure 5.7: Simplify Unique Join/Split sequences

�1

Split ’↵’ [U ! U ] (1)

�2

Join ’↵’ [U ! U ] (2)

�3

�1

�2

�3

Input: G = (V,E) dependency graph
Output: G’ = (V’, E’) dependency graph without split chains

begin
(V 0, E0

) (V,E) ;
foreach �  V 0 do

if � is join node then
if �.permIn == �.permOut == unique then

if 9�0 : (�, �0) 2 E ^ �0is split node then
E0  E0\(�, �0) ;
(V 0, E0

) DELETE NODE(�, (V 0, E0
)) ; /* see Figure 5.5 */

(V 0, E0
) DELETE NODE(�0, (V 0, E0

)) ; /* see Figure 5.5 */
end

end
end

end
return (V 0, E0

);
end
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Figure 5.8: Remove Symmetric Join/Split

Input: G = (V,E) dependency graph
Output: G’ = (V’, E’) dependency graph without split/join patterns

begin
(V 0, E0

) (V,E) ;
foreach �  V 0 do

if � is split node then
if SIZE(DEPS(�)) == 0 then

�0  DEPS(�).get(0) ;

if

0

BB@

�0 is split node
PERM OUT (�) == PERM IN(�0)

SYM PERM(PERM IN(�0))
INATOMIC(�) == false

1

CCA then

if HAS LOWER JOIN(�) then
�00  findLowerJoin(�) ;
(V 0, E0

) fixSymetricJoinSplitWithLowerJoin(�, �0, �00, (V 0, E0
));

else
(V 0, E0

) fixSymetricJoinSplitWithoutLowerJoin(�, �0, (V 0, E0
)) ;

end
end

end
end

end
return (V 0, E0

);
end

Simplification of Symmetric Join/Split Sequences

As described in Section 3.1 we define that operations which only overlap in symmetric permissions can be
executed in parallel. The current version of the type checker implements a greedy approach for merging
permissions back. For every operation the greedy approach splits off the required permissions and joins them
back as soon as they become available again (i.e., the operation completes). This leads to the problem that
if two operations require a symmetric permission the type checker creates unnecessary dependencies. For
instance in Figure 5.3 on page 55 the immutable permission of the amount parameter is first split into
two immutable permissions (node 18), one for the method call to withdraw and one to keep around. Because
of the greedy approach the join the split off permission as soon as the method call is over back with the
immutable permission (node 21). Right after we joined the permissions back we split the permission again
to satisfy the permission requirements of the method call to deposit (node 30). These extra dependencies
are only necessary in the case both operations require different symmetric permissions. If for instance one the
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Figure 5.9: Symmetric Join/Split Optimization
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j1 – the join of the join/split pattern

Input: �
j2 – the join which merges the permissions of �

s2 back
Input: G = (V,E) – dependency graph
Output: G0

= (V 0, E0
) – dependency graph without join/split pattern for �

j1, �s1

begin
(V 0, E0

) (V,E) ;
�
s1  SPLIT OF(�

j1) ;
E0  E0\(�

j1, �s1) ;
E0  E0\(�

j2, �s2) ;
for � 2 {�0 : (�

j1, �
0
) 2 E0} do

E0  E\(�
j1, �) ;

E0  E [ (�
j2, �) ;

end
for � 2 {�0 : (�0, �

s2) 2 E0} do
E0  E\(�, �

s2) ;
E0  E [ (�, �

s1) ;
end
E0  E0 [ (�

j2, �s1) ;
V 0  V 0\{�

s2, �j1} ;
E0  E0\(�

s2, �j1) ;
return (V 0, E0

);
end

first operation requires a shared permission while the second one requires an immutable permission we
need to merge first back into an unique before we can split them into a different kind of permission again.
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Figure 5.10: Symmetric Join/Split Without Lower Join Optimization
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begin
(V 0, E0

) (V,E) ;
�
s1  SPLIT OF(�

j1) ;
E0  E0\(�

j1, �s1) ;
E0  E0\(�

j2, �s2) ;
for � 2 {�0 : (�

j1, �
0
) 2 E0} do

E0  E\(�
j1, �) ;

end
for � 2 {�0 : (�0, �

s2) 2 E0} do
E0  E\(�, �

s2) ;
E0  E [ (�, �

s1) ;
end
V 0  V 0\{�

s2, �j1} ;
E0  E0\(�

s2, �j1) ;
return (V 0, E0

);
end

To solve this issue we want to detect such unnecessary join/split patterns and eliminate them such that
both operations can operate in parallel. Figure 5.9 on the facing page shows how we remove those inner
join/split nodes and reorganize the graph so that we initially split multiple symmetric permission off the
original permission and execute the operations in parallel. Figure 5.8 on page 61 shows the algorithm to
detect these join/split patterns. For all split nodes we check if it depends on a join node and if the join node
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Figure 5.11: Task Builder Approach
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merges to the same kind of symmetric permission the split block splits to and that we are not in a sequential
context (i.e., inside an atomic block). If the conditions applies we found a join/split case that can be optimized.
Before we can perform the transformation we have to check for one of two cases. The first case, as shown in
Figure 5.9 on page 62, where we have a second join block merging the split off permission back together.
And a second case, shown in Figure 5.10 on the previous page, where we do not have a later join of the split
permission (e.g., in the case we split of a permission that is returned by the method). The algorithm removes
the inner join/split nodes and connect the operations to the upper split and the lower join node.

5.4.3 Task Builder Pass

Generating a new task for every node in the dependency graph (i.e., a single operation) is prohibitive expensive
because the ratio of actual work per task compared to the task creation and execution overhead is too small.
Therefore we use developed the Task Builder Pass who goals it is to combine multiple operations into bigger
tasks. Figure 5.11 shows the basic idea. The task builder takes as input a dependency grap (see Figure 5.11a)
and then computes the which operations can be mapped into the same task without loosing parallelism.
Figure 5.11b shows the input graph with the task clustering. The task builder outputs a task graph only
containing consisting of only tasks (see Figure 5.11b).

The general idea idea behind the task builder is called edge zeroing. The task builder uses a certain cost
metric to estimate the overall execution costs of a specific dependency graph. The algorithm then analyses
for every edge in the dependency graph how removing the edge and merging the connecting nodes affects
the execution cost of the whole graph. If the execution cost do not increase the task builder performs the
actual removal of the current edge from the graph and merges the connecting nodes together. The following
sections explain the task builder in more details.
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ÆMINIUM Task Graph Representation

An ÆMINIUM task graph (G
⌧

= (V
⌧

, E
⌧

)) is a tuple consisting of a non-empty sets of tasks (V
⌧

= ⌧ ) and
edges (E

⌧

= {(⌧, ⌧ 0) : ⌧ 2 V
⌧

^ ⌧ 0 2 V
⌧

}) between those tasks. Without loss of generally we define if
(⌧, ⌧ 0) 2 E then task ⌧ depends on task ⌧ 0.

In our illustrations we represent tasks as a gray rectangle ( ) with a label. Figure 5.12 shows that a task
label is composed of three pieces of information. The first information is the unique task identifier ⌧ . The
next information encoded on the label are the operations which are performed by the task which are enclosed
by square brackets. We use � to represent an arbitrary dependency information operation and use � to identify
a non empty collection of such operations. We write �

⌧

to refer to the operations associated with task ⌧ . The
last bit of information consists of the tasks weight ! enclosed in angle brackets. We write !

⌧

to refer to the
weight of task ⌧ . The weight of a task in our setting is an abstract measure for the tasks runtime. If we do not
care about the additional information we write ⌧ for ⌧@[�]h!i.

Figure 5.12: Task Notation

⌧ @ [�] h!i

Task Identifier Task Operations Task Weight

Task Simplifier

Before we start to group operations into tasks we simplify the graph by delete all helper nodes (see Figure 5.5
on page 58). Helper nodes are nodes which have no representation in the source code (i.e., split and join
nodes) and are solely used to keep track of dependencies via the heap accesses. After removing those helper
nodes we create an initial task graph in which every operation gets wrapped in their own task and have the
dependencies of the task graph mirror the dependencies of the dependency graph. This results in a task
graph which exactly looks as the dependency graph with the exception that the nodes are tasks representing
wrapping the individual operations of the dependency graph. We remove all dependencies from the graph for
which we have transitive dependencies. This means, for instance, if A! B and A! C and C ! B then A

depends on B directly via A! B and indirectly via A! C ! B. We can safely remove the A! B and
save unnecessary dependencies and synchronization/communication costs.
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Task Builder Algorithm

We now have a dataflow graph of operations. Unfortunately the granularity of every operation is rather small
while the overhead of executing and synchronizing all those tasks is rather high. This leaves two options,
either increasing the granularity level of the operations we perform or decreasing the overhead costs for
parallel execution of those tasks. Unfortunately there is a minimum overhead we have to cope with on
commodity hardware and software. We therefore focus on the optimizing the task granularity to outweigh the
overhead costs while still preserving enough parallelism to achieve performance gains.

One way to increase the granularity is to cluster operations into bigger tasks. We developed a task
building algorithm (TBA) based on the idea of Sarkar’s Algorithm (SA, [81]) to cluster a fine grain data
flow graph into coarse grain task graph. The main idea of the Sarkar Algorithm is to optimize a data flow
graph by merging nodes as long as the merging does not increase the overall runtime. The deviation between
our initial TBA algorithm and SA is the fact that SA only computes a mapping of tasks to groups while
our algorithm makes this transformation in place and output the optimized task graph directly. The TBA
extends the normal graph representation by adding cost functions for nodes and weights for edges. Those
costs are used to determine the overall execution cost of the dataflow graph. The fundamental approach
of the algorithm is to reduce the commutation time by removing edges and merging the connecting tasks.
In particular the algorithm tries to optimize the parallel execution time of the dataflow graph. The parallel
execution time assumes that we have an infinite amount of parallel processing units available. The parallel
execution time is defined to be the longest path from a starting node to an end node in the dataflow graph.
We call this longest path the critical path (CP) of a weighted data flow graph. The algorithm is shown in
Figure 5.13 on the facing page and works as follows:

1. compute the critical path length (CP ) for the input graph

2. for every edge in the graph

(a) compute the critical path length (CP 0) without the current edge

(b) if the critical path without the edge did not increase the critical path

i. update the current critical path length to CP 0

ii. remove edge from graph

iii. merge nodes which the edge connected.

iv. simplify newly generated transitive edges

The Sarkar Algorithm, on which our task builder algorithm is based on, was originally designed for
mapping whole program dataflow graphs to hardware CPUs. We generate Java source code which uses the
Plaid runtime. With all of this running on the JVM abstraction on various platforms it is not eminently clear
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Figure 5.13: Task Builder Algorithm
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) ;

end
end
return (V 0, E0

);
end

what the exact weights for the each task or edge should be. Similar to Sarkar we could extend our system to
use profiling information to get more accurate runtimes for specific methods. Another approach would be
to use a whole program analysis or specific type systems extension [24, 80] for more accurate results. One
alternative would be to ask the programmer to provide us with the necessary runtime information (see Section
5.4.3). Acar et al. [11] propose with oracle scheduling an interesting dynamic approach to the granularity
issues. In oracle scheduling the user provides for every function a second function which quickly estimates
for a concrete input set how long the function will run. This information can the be used at runtime to decide
case by case if a method call is worth spanning off a task or not.

In our first approach we use a simple approach and associated the following weights1: we assigned
!
edge

for all edges, !
call

for all method calls and !
cheap

for all other operations (e.g., variable read, field
assignment). This is not exact because different methods might run differently long. But there is no general
way of solving this issue, especially in a static context. Solving this issue would require some abstract

1The exact values not important for this analysis, except for the fact that !cheap is set to 0 to allow aggressive merging of trivial
operations.
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Listing 5.5: Broken Sarkar Example

state BrokenSarkarExample {
method immutable Integer compute() [immutable BrokenSarkarExample this] {

val immutable Integer a = 0;

val immutable Integer b1 = a + 1;
val immutable Integer b2 = b1 + 1;
val immutable Integer b3 = b2 + 1;
val immutable Integer b4 = b3 + 1;
val immutable Integer b = b4 + 1;

val immutable Integer c = a + 1;

val immutable Integer d = a + 1;

val immutable Integer e = c + d;

b + e
}

}

function that could statically determine how long any given method runs. Having such a function would
trivially solve the halting problem. Additionally we have to deal with dynamic dispatch, which makes it
almost impossible to determine which function will be called at runtime. While implementing and evaluating
this first approach it became clear that there was one issue with having fixed node weights. The problem is
that the algorithm might optimize parallelism away because the overall runtime of a method is determined by
a long critical path.

To make this problem more clear let’s consider the example shown in Listing 5.5, specifically designed
to highlight the problem. In this example, we can identify three potential parallel paths which depend on
the variable a. We have the b-branch (consisting of b1, b2, b3, b4 and b), the c-branch (consisting of
c) and the d-branch (consisting of d). We further combine the c-branch and d-branch into e-branch. At
the end we combine the results of the b-branch with the e-branch. Figure 5.14a on the next page shows
the compiler generated task graph before we run the task builder algorithm on it. Note the long chain of
tasks on the right hand side corresponding to the b-branch and the ‘Y’ shaped tasks on the left forming
the cde-branches. Assuming that every method call is expensive (remember that in Plaid all operators are
transformed into method calls e.g., a + 1 7! a.+(1)) we can see that the CP of the method is a(b*). In
particular we see that the b-branch has five method call operations while the combined cde-branches have
a total of three method call operations. Assuming that all method calls have the same weight SA would
merge the cde-branches into one task, because doing so does not increase the overall runtime as the critical
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path is not increases. This is the correct behavior when we have the exact weight of each method call, as
this approach reduces the number of tasks and communication between those tasks along with the required
computational resources. Figure 5.14b shows the output produced for this program for SA. As described
earlier we do not have the exact runtime costs and merging the tasks of the cde-branches together reduces
possible parallelism between the b-branch and c-branch. In the next section we discuss how we can avoid
this loss of parallelism.

Figure 5.14: Broken Sarkar Example For Basic Sarkar Algorithm
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(c) Task Graph After SA With Local Regression
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(d) Task Graph After SA With Local Regression and Cheap Function Calls

Task Builder Algorithm With Local Regression

The previous section discussed the basics of TBA and demonstrated one of its weaknesses for our scenario.
To avoid that the TBA optimizes parallelism away we extend the base algorithm to check additionally that
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Figure 5.15: Task Builder Algorithm With Local Regression
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we only delete an edge and merge tasks if this does not cause additional effort for any other path in the
graph. We therefore check for every node that the removal of an edge does not increases its minimum path.
The minimum path is the counter part to the maximum path length but using the path with the smallest
costs instead of the biggest costs. The usage of the minimal path allows us to retain parallelism while still
benefitting from SA merging capabilities. Figure 5.15 shows this extended version of TBA. We marked the
extensions in gray. The output graph of this extended algorithm is shown in Figure 5.14c on the preceding
page. The graph shows that the algorithm merged all tasks of the b-branch into one task on the right, and
merged the cde-branches into individual tasks in the left, preserving the ‘Y’ shape. This means that we are
still capable of executing the c-branch in parallel with the d-branch.
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Cheap Functions

We described in Section 5.4.3 that we use a simply cost model. While we cannot get access to the exact
time a method call costs we can do better than just assuming all method calls cost the same. In particular
we divide method call costs into two categories. The first category method calls are equivalent to the old
method calls, meaning that we do not know the runtime costs and assign a weight of !

call

. The second
category are the so called cheap method calls for which we assign the !

cheap

weight to indicate that executing
those method calls is much cheaper than creating tasks for them. To identify such cheap method calls we
introduced the @cheap annotation for method declarations. Every call to a method with this annotation is
assumed to a cheap call. By default we declared all method of basic types (i.e., String, Integer, etc.)
as cheap methods. The compiler checks that methods with cheap annotations are actually cheap (i.e, they
have no parallelism inside and only perform cheap operations). We choose an user annotation to allow for a
modular design. Explicitly specifying methods as cheap forms a contract and all possible implementations
of this method needs to obey this. The cheapness property must be preserved by every overriding method.
This allows use to compile agains the definition of a method and later use any possible implementation
(which are checked by the compiler to obey the cheap requirement). The cheap annotations allows the user
to give additional hints to the compiler. The compiler does not only check for the consistency of the cheap
annotation but my also point out methods which should have a cheap annotation. We do not automatically
insert cheap annotations because of the modular compilation approach of Plaid. Transparently introducing a
cheap annotation at one state can break another sub-classing state which violates the cheap annotation. We
therefore insist on the explicit specification of cheap annotations to form an contract.

If we look at the example in Listing 5.5 we can see that all method call in this method are calls to the
plus method of the integers. Figure 5.14d on page 69 show the optimized task graph after introducing cheap
function annotations for built-in types. The figure shows that the whole graphs has been collapsed into one
single task indicating that there is no benefit of parallel execution.

Matching Support for Task Builder Algorithm

Now that we have a basic algorithm for clustering our operations into a manageable set of tasks we have to
deal with the remaining features of Plaid. As described in 5.4.1, our dataflow graph also contains control flow
edges caused by match blocks. We therefore have to make the TBA aware of those different edges. The
main problem is that a match block represents a choice of possible execution paths at runtime. Because
we do not know statically which of the paths are executed we use a MatchEnter and MatchLeave nodes to
represent the start/end of a match block. These virtual markers allows use to identify match blocks in the
graph and help us to differentiate between static dependencies and control flow dependencies only known
at runtime. Without this additional nodes and special handling the TBA could easily end up in merging
operations of different execution branches into the same task.
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Figure 5.16: Match Simplification
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The way we deal with match blocks is by recursively optimizing them in a bottom-up approach. Before
we apply the TBA we first simplify the match blocks in the task graph. The simplification process finds
the top-level match blocks and then recursively optimizes its cases by using the TBA (which recursively
simplifies top-level match-blocks and so on). The operation of the simplifyMatches function is shown
in Figure 5.16. On the left side we see the task graph representing a match block that is supposed to be
optimized. As shown in the right hand side of Figure 5.16 the simplifyMatches can simplify matches in
one of two ways.

In the first, case simplfiyMatches removes case tasks from the task graph and connects the match
leave task to the match enter task (upper right hand size). The function additionally generates a match
information (M = (�

enter

, �
leave

, C)) object. The match information object consists of the dependency
information identifying the match enter (�

enter

) and match leave (�
leave

) and a case information object for
each case (C = (⌧

all

, �
depEnter

, �
leaveDeps

)). A case information object tracks all the tasks forming the case
task graph (⌧

all

), the dependency information of the operations that depend on the beginning of the match
block (�

enter

) and the operations which the match leave depends on (�
leave

). We keep the match enter and
match leave separated so TBA can merge the start or end of a matching block with other operations to reduce
the number of tasks. This is the reasons we cannot represent the simplified match block by a simple task.
If we would use just a single task and we merged it with other operations, the compiler would not know
(without further computation) which operations happened before and which happened after the match block.
We therefore keep the start and the end task separated. To avoid that TBA merges this special case we have
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Figure 5.17: Task Builder Algorithm With Match Support

Input: G = (V,E) – task graph graph to optimize
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end
end
return (V 0, E0,M)

end

to extend TBA slightly to never remove edges between match enter and leave tasks. Figure 5.17 shows the
extension to TBA (changes in gray).

In the second possible simplification that can occur is shown in the lower right hand side of Figure 5.16 on
the preceding page. If all cases reduce to a single task then all possible execution path represent a sequential
code path. In this case the whole match block and all its cases are collapsed into a single task.

Figure 5.18 on the following page shows the algorithm for simplifyMatches. The algorithm works
as follows. We iterate over all tasks and check if we found a top-level match block leave task. We identify
top-level match blocks by traversing all possible paths from the match leave task upwards and count how
many unmatched match open tasks we encounter. An unmatched match open task is a match open task for
which we have not seen a corresponding match leave task. In the case of a top-level match we should find
exactly one open match enter task (namely the one which corresponds to the current match leave tasks).
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Figure 5.18: simplifyMatches

Input: G = (V,E) – task graph to optimize
Output: G0

= (V 0, E0
) – optimized task graph

Output: M – Match Case Information

begin
M ;, C  ;
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for ⌧ 2 V 0 do
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Vc  ⌧c
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0
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end
if 8c 2 C : |x.⌧all| == 1 then

⌧merge  mergeTasks(⌧enter, C.⌧all, ⌧leave)
for (⌧enter, ⌧

0
) 2 E0 do
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C  ;

end
end
return (V 0, E0,M)

end
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Finding more than one unmatched match enter task indicates that the current match block is nested inside
another match block. Once we identified a top-level match block the algorithm computes the a set of task
sets, each representing one case of the match block. For each case we completely detach the case sub-task
graph from the original task graph, forming smaller independent task graph. We recursively use the TBA
to optimize this smaller task graphs. After TBA we generate a case information object and accumulate the
match information objects for he recursive TBA applications. After all cases have been optimized we check
if all case task graphs consist of exactly one task. If so we collapse the whole match block into one task
and substituting it for the match block in the input task graph. If at least one of the cases contains some
parallelism we just connect the match leave to the match enter task and generate a match information object
for this match block.

Atomic Blocks and the Task Builder Algorithm

After making TBA aware of the matching blocks, the only outstanding feature missing are atomic blocks. By
choice we do not support nested concurrency inside atomic blocks. Therefore we do not want to generated any
concurrent execution inside atomic blocks. This means that all atomic blocks execute sequentially. Therefore
we merge all tasks forming an atomic block (i.e., tasks for the body of the atomic blocks and the atomic block
tasks) into one (sequential) task before we apply TBA. This means that atomic blocks look just like normal
tasks to the TBA and are handled automatically without having to change the algorithm itself.

5.4.4 ÆMINIUM Code Generation Pass

This section presents the code generation approach of ÆMINIUM. We purposly separated optimizations out
into their own sections to focus our presentation on the core idea of the basic code generation and optimization
approaches.

The stating concept of the ÆMINIUM code generation is to schedule only the start tasks of each method.
Every task upon its completion, decrements the dependency counter of all tasks which it depends on it. This
includes the start tasks. If the dependency counter of a dependent task drops to zero it will be scheduled. This
approach leads to an inlined schedule for every method. This approach has the advantage that the runtime
system (cf. 5.5) only needs to support an efficient mechanism of executing tasks and does not need to deal
with dependency management issues.

To illustrate the idea consider the small example shown in Listing 5.6. For the purpose of this example we
focus on the getTwo method which first creates a zero which is used to compute two ones which are finally
added together. Figure 5.19 on the next page shows the compiler generated dependency and task graph of the
getTwo method. The task graph looks as expected. First we have task 39 which calls the zero method to
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Listing 5.6: getTwo Code

package plaid.examples.codegenExample;

state CodeGenExample {
method immutable Integer zero() [ immutable CodeGenExample this ] { 0 }

method immutable Integer inc(immutable Integer value) [ immutable CodeGenExample this ] {
value + 1

}

method immutable Integer getTwo() [ immutable CodeGenExample this ] {
val immutable Integer z = this.zero();
this.inc(z) + this.inc(z)

}
}

Figure 5.19: Dependency and Task Graph for getTwo Method
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obtain the zero, then we have tasks 37 and 29 depending on task 39 to compute the zero value. At last we
have task 35 depending on tasks 37 and 29 to add their computed ones together.
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Listing 5.7: getTwo Generated Code

1 package plaid.examples.codegenExample;
2

3 import java.util.ArrayList;
4 import plaid.fastruntime.PlaidObject;
5 import plaid.fastruntime.aeminium.Task;
6

7 public final class CodeGenExample{
8 public PlaidObject zero(PlaidObject this$plaid) { ... }
9 public PlaidObject inc(PlaidObject this$plaid, PlaidObject value) { ... }

10 public PlaidObject getTwo(PlaidObject this$plaid) {
11 /⇤ array for local variables ⇤/
12 final plaid.fastruntime.PlaidObject[] = new PlaidObject[11];
13

14 // TA$K$[0] = 37@[26,23]<10>
15 // TA$K$[1] = 29@[33,30,32]<10>
16 // TA$K$[2] = 35@[16,36]<0>
17 // TA$K$[3] = 39@[19,25,21,18]<10>
18 final Task[] TA$K$ = new Task[4];
19

20 /⇤ create tasks ⇤/
21 TA$K$[0] = new Task(1) {
22 @Override public void compute() {
23 [10] = this$plaid;
24 [8] = ((plaid.generated.Iinc$1$plaid) [10].getDispatch()).inc( [10], [9]);
25 if ( TA$K$[2].decDepCount() == 0 ) { Task.invokeAll(TA$K$[2]); }
26 }
27 };
28 TA$K$[1] = new Task(1) {
29 @Override public void compute() {
30 [6] = /⇤z⇤/ [4];
31 [7] = this$plaid;
32 [5] = ((plaid.generated.Iinc$1$plaid) [7].getDispatch()).inc( [7], [6]);
33 if ( TA$K$[2].decDepCount() == 0 ) { Task.invokeAll(TA$K$[2]); }
34 }
35 };
36 TA$K$[2] = new Task(2) {
37 @Override public void compute() {
38 [0] = ((plaid.generated.Iplus$plaid$1$plaid) [8].getDispatch()).plus$plaid( [8], [5]);
39 }
40 };
41 TA$K$[3] = new Task(0) {
42 @Override public void compute() {
43 [3] = this$plaid;
44 [2] = ((plaid.generated.Izero$0$plaid) [3].getDispatch()).zero( [3]);
45 /⇤z⇤/ [4] = [2];
46 [1] = plaid.fastruntime.Util.unit();
47 [9] = /⇤z⇤/ [4];
48 Collection<Task> nextTa$ks = new ArrayList<E>(2);
49 if ( TA$K$[0].decDepCount() == 0 ) { nextTa$ks.add(TA$K$[0]); }
50 if ( TA$K$[1].decDepCount() == 0 ) { nextTa$ks.add(TA$K$[1]); }
51 Task.invokeAll((Task[]) nextTa$ks.toArray(new Task[nextTa$ks.size()]));
52 }
53 };
54 /⇤ schedule start tasks ⇤/
55 Task.invokeAll(TA$K$[3]);
56 /⇤ return ⇤/
57 return [0];
58 }
59 }
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Listing 5.7 shows the generated code of the codegetTwo method function. In line 12 the method creates
a final array of PlaidObjects to hold all the local variables (replacing the current stack). The array
needs to be final in order to be captured by the tasks which use Java’s anonymous class feature. The
methods then creates another final array of Tasks in line 18 to hold the references to the tasks we
generate. Starting at line 21 we generate all for tasks of this method (using the array index mapping:
[0] 7! 37, [1] 7! 29, [2] 7! 35, [3] 7! 39). Note that the task constructor takes the dependency count of the
created task. This dependency count will be used to determine of the a task is ready to be scheduled or not.
In line 55 we finally start our start tasks (i.e., task 39 or array entry [3]) by passing it to the invokeAll
method. The invokeAll method adds the provided tasks to the internal thread pool and only returns once
all the passed tasks have completed their execution. Once task 39 is executing its compute method (line 42)
it first executes all of its operations (i.e., calling the zero method and storing its result value in the local
variable array). After those operations have been completed the task decrements the reference count of the
tasks that depend on it by calling the decDepCount method on those tasks. The decDepCount method
returns the outstanding dependencies of the task. In this example both tasks have only one dependency and
therefore the decDepCount method returns 0, indicating that both tasks are able to run. Both tasks will be
added to the list of next tasks and schedule via another invokeAll method call in line 51.

Both tasks 29 and 37 will upon their execution call the inc method and store the result in the local
variable array. Afterwards both tasks will decrement the outstanding dependency count on their dependent
tasks. In this example both tasks will decrement the dependency count of task 35. The last task to decrement
task 35 dependency count schedules task 35 while the other task simply completes its execution without any
further actions. Task 35 will take the values stored in the local variable array and add them together and
stores the result back in the local variable array. After task 35 finishes the “inc” task which scheduled it can
finish. This allows the completion of task 39 which was waiting for the completion of both “inc” tasks. The
completion of task 39 allows the schedule call in line 55 to return. After the completion of the task execution
the only thing left is the to return the result of the method in line 57.

The generic code generation approach is shown in Figure 5.8. We handle control flow (i.e., match
blocks) by pulling the matching condition check into all case tasks and execute the associated operations only
if the matching condition applies (a more efficient approach to handle control flow is presented in Section
5.4.4). The generic approach consists of the following parts:

1� Extraction of variables. We extract all locally used variables in an array at the beginning of each
method by associating every variable a unique slot. We need this extra level of indirection as we
leverage Java’s anonymous inner class feature to generate specific tasks. Because anonymous inner
classes are only able to catch final variables we need this additional layer of indirection to allows us to
set those variables from inside a task without causing an non-initialized error of the Java compiler.
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Listing 5.8: Pseudo Code for Generalized Selective Task Scheduling

public PlaidObject m(. . .) {
// create variables

1� PlaidObject[] = new PlaidObject[
���{V arDecl(x) 2 {� : ⌧@[�]h!i}}

���];

// create task objects
2� 8⌧i 2 ⌧ : Task T⌧i = new Task(|DEPS(⌧i)|) {

public void compute() {
IS CASE TASK(⌧i) =) if ( CASE MATCH COND(⌧i) ) { �⌧i }
¬IS CASE TASK(⌧i) =) �⌧i
8⌧ 0 2 RDEPS(⌧i) : if ( T⌧ 0 .decDepCount() == 0) { schedule(T⌧ 0 ); }

}
};

// compute dependencies and schedule tasks
3� 8⌧i 2 START TASKS(⌧) : schedule(T⌧i );

// wait for ’body’ task to finish
4� return TBODY TASK(⌧).wait();

}

2� Task Creation. For each task in the graph we generated a new task object by using Java’s anonymous
inner class feature. In the method body of the computemethod we create the code for of the associated
operations. The code generation for those operations follows the sequential code generation rules, with
the exception that reads/writes to variables get expanded to deal with the extra level of indirection
introduced by the local variable array. We further wrap every task that is part of a control flow path
(i.e., match block) to check the corresponding control flow decision to see if its code is supposed to
execute or not.

3� Task scheduling. After all tasks have been created we schedule all start tasks.

4� Waiting for body task. The last statement of the function will wait for the task which contains the
method body operation to complete and return it’s value.

Match Selective Task Scheduling

While functionally correct, running all the tasks for every possible control flow path is prohibitive expensive.
Ideally we should execute tasks only if necessary. Listing 5.9 shows and improved version that only executes
tasks of control flow paths which are actually executed at runtime using the decomposed match information
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Table 5.2: Code Generation HelperFunctions

Name Description

DEPS(⌧) Return a collection of tasks on which ⌧ depends on.
DEPS(⌧) = {⌧ 0 : (⌧, ⌧ 0) 2 E}

RDEPS(⌧) Return a collection of tasks on which depend on ⌧ .
RDEPS(⌧) = {⌧ 0 : (⌧ 0, ⌧) 2 E}

BODY TASK(⌧) Return the task which contains the end of the method body operations.

START TASKS(⌧) Returns the set of tasks without dependencies.
START TASKS(⌧) = {⌧ 0 : ⌧ 0 2 ⌧ ^ DEPS(⌧ 0) = ;}

CASE MATCH COND(⌧) Returns the code to check if the surrounding matching block condition
matches the case of this task.

IS CASE TASK(⌧) Return true in the case that this task is part of matching case, false
otherwise.

OPEN MATCHES(⌧) Returns a set of match descriptor for every open match enter block in �. A
match descriptor consists of the information which task contains the open
match enter and open match leave information and a set of tasks for the
specified cases.

CASES OF MATCH(m) Returns a set of the available cases of the match.

TASKS OF CASE(c) Return the tasks associated with the given case.

MATCH LEAVE TASK(m) Return the task which contains the open match leave block information of
the given match.

NON CASE TASKS OF(⌧) Returns ⌧ 0 with ⌧ 0 ✓ ⌧ where for all ⌧ 0 is not part of a case path of a match.

generated by the TBA. The core concept it to defer scheduling control flow dependent tasks until we know at
runtime which tasks to schedule. In particular the code generation strategy comprises of the following steps:

1� Extraction of variables. No changes.

2� Task Creation. We are creating all task at the beginning When generating code we differentiate
between tasks containing open match blocks and the tasks not containing open match blocks. In the
later case we simply generate the operations associated with this task. In the first case, identified
through the open match block we know that we have a non-simplified match block (i.e., its cases
are explicitly represented in the data flow graph). The code we generate for this task consists of the
following steps:

2a� First we execute all possible operations that could have been merged into the task.

2b� For every task we first check if the condition will activate this case at runtime.
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Listing 5.9: selective match

public PlaidObject m(. . .) {
// create variables

1� PlaidObject[] = new PlaidObject[
���{V arDecl(x) 2 {� : ⌧@[�]h!i}}

���];

// create task objects
2� 8⌧i 2 ⌧ : Task T⌧i = new Task(|DEPS(⌧i)|) {

public void compute() {
2a� �⌧i // execute possible merged in operations
8M 2 OPEN MATCHES(⌧i) : {
8C 2M.C : {

2b� if ( MATCHES COND(M, C) ) {
// schedule case tasks whithout subcase tasks

2c�8⌧c 2 START TASKS(C.⌧all) : schedule(T⌧c );
}

}
}

}
};

// compute dependencies and schedule tasks
3� 8⌧i 2 START TASKS(⌧) : schedule(T⌧i );

// wait for dependencies of the body task to finish
4� return TBODY TASK(⌧).wait();

}

2c� If the conditions applies we schedule the tasks of this case. But we do not schedule all the tasks
but “top-level” tasks (i.e., tasks which are not part of a match structure inside the case).

3� Task scheduling. No changes.

4� Waiting for body task. No changes.

To illustrate this approach consider the simple task graph shown in Figure 5.20 on the following page.
The graph consists of two tasks (⌧ 0, ⌧ 00) which represent some arbitrary operations that do not contain any
open match enter block We then have a task (⌧

enter

) which contains an open match enter block. Without
loss of generality we show that the corresponding match blocks consists of two cases. We represent the two
difference case with task clouds (⌧

c1, ⌧c2). We abstract the details of those case tasks away as the approach
work recursively inside those cases. At the end we have the open match leave block (⌧

leave

) depending on
both case tasks to finish.
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Figure 5.20: Input graph for selective task example
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Figure 5.21 visualizes different stages during the execution of this generated code. We represent
unscheduled tasks as slightly shaded. In Figure 5.21a we represented the state of step 2� has been executed.
All tasks have been created but not yet scheduled (indicated through the shaded representation). After the
execution of step 3� only the “top-level” tasks have been scheduled with the corresponding dependencies
(shown in Figure 5.21b). The method execution will the wait in step 4� for the completion of the body task
(note that waiting does not mean blocking, because of the work stealing algorithm). In the mean meantime
tasks ⌧ 0 and ⌧ 00 can be executed. As soon as those tasks complete the ⌧

enter

can start to execute. As describe,
it will first execute any merged operations (see 2a�) and then determine which of the cases is selected. Once
the case has been determined the start task(s) of this case will be scheduled. The last tasks of the case task
graph will trigger the scheduling of the ⌧

leave

task.

Figure 5.21: Selective Match Execution Example
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Table 5.3: Overiew of Code Generation Optimizations

Name Description

Sequentializing Single Task Graphs Generate sequential code for methods which have a task graph of
only one node.

Inlining Starter Task Inline start task into method body code block .
Inlining Body Task Inline body task into the method body code block.

Code Generation Optimizations

While the task builder tries to minimize the number of task, there are still a few optimizations that can be
performed during code generation to further reduce the number of creates tasks. The following sections
present several optimizations that can help to reduce the number of created tasks (cf, Table 5.3 for a summary
overview). We discuss each of the optimizations separately to focus on the core concept of each optimization.
We present all optimizations for the method call levels, but notice that all optimizations are also applicable
for case optimizations of match blocks. To focus on the optimization technique and for brevity reasons we
use the generic scheduling algorithm as base for our extensions when we present those optimizations.

Sequentializing Single Task Graphs If the task builder manages to reduces the task graph of a whole
method body to a single task, then the code generation will inline this task. This results in the generation of a
sequential method body equivalent to the sequential method body that would have been generated by the
standard code generator.

Listing 5.10: Single Task Function Graph

method PlaidObject m(. . .) {
⌧@[�]h!i

}

Listing 5.11: Single Task Function Code

method PlaidObject m(. . .) {
�⌧

}

Inlining Body Task Because the method always has to wait for the body task we can inline this task into
the method body and avoid the creation and synchronization overhead for this task. Figure 5.12 on the next
page shows the code generation strategy which comprises of the following steps:

1� Extraction of variables. No changes.

2� Task Creation. We create all tasks except out body task.



84 CHAPTER 5. IMPLEMENTATION

3� Task scheduling. No changes.

4� Wait for dependencies. Wait for all tasks the body task depended on to complete.

5� Execute body task. Execute the remaining operations of the body task and return the value of the last
statement.

Listing 5.12:
Inline Body Task Graph

method PlaidObject m(. . .) {

⌧\⌧b

⌧b

}

Listing 5.13: Inline Body Task Code

public PlaidObject m(. . .) {
// create variables

1� PlaidObject[] = new PlaidObject[
���{V arDecl(x) 2 {� : ⌧@[�]h!i}}

���];

// create task objects
2� 8⌧i 2 {⌧\BODY TASK(⌧)} : Task T⌧i = new Task(|DEPS(⌧i)|) {

public void run() {
IS CASE TASK(⌧i) =) if ( CASE MATCH COND(⌧i) ) { �⌧i }
¬IS CASE TASK(⌧i) =) �⌧i

8⌧ 0 2 RDEPS(⌧i) : if ( T⌧ 0 ! = BODY TASK(⌧) &&

T⌧ 0 .decDepCount() == 0 ) {
schedule(T⌧ 0 );

}
}

};

// compute dependencies and schedule tasks
3� 8⌧i 2 START TASKS(⌧) : schedule(T⌧i );

// wait for dependencies of the body task to finish
4� 8⌧i 2 DEPS(BODY TASKS(⌧)) : T⌧i .wait();

5� return �BODY TASKS(⌧);

}

Inlining Single Starter Task If a tasks graph has only one starter task we can inline this task similar to
the inlining of the body task.

1� Extraction of variables. No changes.

2� Execute start task code. Execute the operations associated with the start task directly in method body.

3� Task Creation. We create all tasks except the start task.
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4� Task scheduling. Schedule all start tasks which depends on the original start task.

5� Wait for body task. No changes.

Listing 5.14:
Inlining Start Task Graph

method PlaidObject m(. . .) {

⌧s

⌧\⌧s

}

Listing 5.15: Inlinig Start Task Code

public PlaidObject m(. . .) {
// create variables

1� PlaidObject[] = new PlaidObject[
���{V arDecl(x) 2 {� : ⌧@[�]h!i}}

���];

// execute start task code
2� �START TASK(⌧)

// create task objects
3� 8⌧i 2 {⌧\START TASK(⌧)} : Task T⌧i = new Task(|DEPS(⌧i)|) {

public void compute() {
IS CASE TASK(⌧i) =) if ( CASE MATCH COND(⌧i) ) { �⌧i }
¬IS CASE TASK(⌧i) =) �⌧i

8⌧ 0 2 RDEPS(⌧i) : if ( T⌧ 0 .decDepCount() == 0) { schedule(T⌧ 0 ); }
}

};

// compute dependencies and schedule tasks
4� 8⌧i 2 RDEPS(START TASKS(⌧)) : schedule(T⌧i );

// wait for dependencies of the body task to finish
5� return TBODY TASK(⌧).wait();

}

Dynamic Load Balancing

Despite the implemented optimizations our system can produce significant more tasks than we have parallel
execution units. To eliminate the high costs of task creation and scheduling we implemented dynamic load
balancing approach. Listing 5.16 on the following page shows the our current dynamic load balancing
approach. Every method which supports parallel execution, first performs a check whether we have enough
parallelism (i.e., enough generated tasks to utilize the available computation units) or not by calling the
PARALLELIZE method. If this method returns false it means that we have enough work and should not
generate new work. In this case we simply execute the sequential method body instructions. If the return value
is true we need to generate more parallel work and we execute the parallel method body implementation as
described earlier.
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Listing 5.16: Dynamic Load Balancing

public PlaidObject m(PlaidObject pthis, ...) {
if ( PARALLELIZE() == false ) {

... // sequential code
} else {

... // parallel code
}

}

An important observation is that when we execute the sequential code branch the sequentiality is only
enforced for the current method. If the sequential code call a function which contains potential parallel
executions this function will do the same check to determine if it should parallelize the code or not. This is an
important feature of the system as it allows us to recover from heavily imbalanced code paths. The drawback
of this approach is that we have to check for parallelization on every method which has potential parallelism.

Atomic Block Implementation

Our implementation allows seamlessly mixing of code with and without data groups. If we use code
without data groups we are talking about plain shared permissions and atomic blocks without any datagroup
parameters. In this datagroup-less mode we implicitly pass a share datagroup permission to an anonymous
global datagroup into every method. Figure 5.17 on the next page shows that we simply translate an atomic
block into the an enterAtomic and leaveAtomic method call on the corresponding datagroup. Once
we entered an global atomic block we decided for simplicity reasons to sequentialize the execution of its body.
This means that when we call a method from inside a global atomic block this methods needs to execute
sequentially even if it could execute in parallel. There are two approaches to achieve this behavior. The first
option is to have a dynamic check at runtime to force sequential execution. The second option is to have
two versions of every method. One version which is called by default and another version which can only
be called from inside an atomic block directly or transitively (cf. AtomJava [53]). We decide to go for the
dynamic approach because it can be easily merged with the dynamic load balancing and avoids code explosion.
Figure 5.18 on the facing page shows the implementation of the global atomic block sequentiallizing check.

In the case that we have actual data groups we translate an atomic block the same way with the exception
of replacing the GLOBAL DATAGROUP with the corresponding data groups specified by the user. Note that
we do not have to sequentialize the execute of methods called from inside a non-global atomic block as we
have explicit specified datagroup permissions which automatically enforce sequentialization where necessary.
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Listing 5.17: Atomic Block Translation

atomic { GLOBAL DATAGROUP .enterAtomic();
... =) ...

} GLOBAL DATAGROUP .leaveAtomic();

Listing 5.18: Global Atomic Test

public PlaidObject m(PlaidObject pthis, ...) {
if ( GLOBAL DATAGROUP.inAtomic() ) {

... // sequential code
} else {

... // parallel code
}

}

5.5 ÆMINIUM Runtime

To execute the task we adapted the Fork-Join framework (FJ, [61]). The Fork-Join framework is thread
pool utilizing a work-stealing approach (cf. [45]). The work-stealing approach utilizes thread-local work
queues. This means if a thread creates additional tasks those tasks get added its local work queue instead
of adding them to a global work queue. This approach avoid that the global work queue becomes a single
point of congestion. If a thread runs out of he will try to steal tasks for the other threads in the thread pool. In
other words, the work stealing algorithm uses a distributed work queue to avoid congestion. We changed the
implementation slightly by adding a callback to FJ threads. As soon as a thread runs out of work it notifies
the dynamic load balancer so that at least one thread is waiting for work. The dynamic load balancer uses this
information to generate additional work as soon as possible.

Additionally to the modified FJ runtime we added two new classes. The first class is the Task class (see
Listing 5.19) which extends FJ RecursiveAction and is used as base class for the task we create. The
class consists of a constructor which takes the dependency count of this task as parameter. It furthermore has

Listing 5.19: ÆMINIUM Runtime Task

public abstract class Task extends RecursiveAction {
public Task(int depsCount) { ... }
final public int decDepCount() { ... }

}
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Listing 5.20: ÆMINIUM Runtime Datagroup

public final class Datagroup implements PlaidObject {
public final void enterAtomic() {
public final void leaveAtomic()

}

a function decDepCount to decrement the internal dependency counter by one. This function returns the
new dependency count.

The second class introduced is the Datagroup class (see Listing 5.20). Note that the this class
implements the PlaidObject interface. This allows us to store datagroup objects directly as fields without
having to go through the indirection via a PlaidJavaObject. The datagroup class features two simple
functions. The enterAtomic method to indicate that we entered an atomic block for the specific data group
and the leaveAtomic method to indicate that the atomic block has finished. In the current implementation
the datagroup class represent a simple wrapper for a re-entrant lock which gets locked upon entering an
atomic block and unlock when we leave it. Other implementation options such as Software Transactional
Memory (STM) systems are applicable to our system as we. Based on our previous experience with STMs
(cf. [19]) we decided to use a lock based approach for its simplicity and smaller performance overhead.



EVALUATION
6

I
n this chapter we present the evaluation of the ÆMINIUM implementation. The evaluation
consists of several case studies evaluating various aspects of the system. We demonstrate that
ÆMINIUM is capable of improving the performance of an application, compared to its serial
version, and is practical enough to be useful in several different scenarios. We conclude the

chapter by elaborating on our experience with developing the case studies and on potential improvements to
ÆMINIUM.

6.1 Methodology

Two of our hypothesis were that we can achieve performance improvements through ÆMINIUM and that
ÆMINIUM is practical (cf. Chapter 1.3). We evaluate both by conducting several case studies. For each
case study we evaluate how much performance benefit can be achieved compared to its sequential counter
part (using the standard speedup metric). Practicality is slightly less straightforward than the performance
evaluation. This is mainly due the fact that there is no exact definition what practicality means and how
to measure it. Systems that are very practical in one situation (e.g., like SQL for processing uniform data
in tables) can be completely impractical (e.g., not efficient or cumbersome) in other situations (e.g., using
SQL for implementing a web server). We evaluate ÆMINIUM like similar systems have been evaluated. We
choose to use case studies of common domains or problems which are known to benefit from parallelization,
to show that ÆMINIUM is powerful enough to encode them. A common use case are applications with high
latency input/output operations. A common solution is the use of concurrency to overlap communication
and computation. To evaluate ÆMINIUM’s capabilities to handle high latency input/output use cases we
developed a web server application (cf. Section 6.3). Many algorithms rely on basic data structures such as
lists, dictionaries, sets, etc. In a concurrent setting the scalability of those basic data structures is of paramount
importance to the overall scalability of the algorithm. To evaluate how well ÆMINIUM handles common data
structures we developed a case study implementing a dictionary (i.e., a hashmap, cf Section 6.4). A common
use case for concurrency is the parallelization of highly computation-intensive applications to shorten the
execution time (e.g., weather forecast). To demonstrate ÆMINIUM’s suitability for this domain we developed
a case study to numerically compute the integral of a function for a given interval (cf. Section 6.5 and 6.6).

The second part of this chapter evaluates how much overhead ÆMINIUM imposes on the programmer
when writing code. We measure how many lines of source code (SLOC, measured with wc) we had to modify
by: annotating types (i.e., adding permission information to types), how often we had to add additional
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group parameters to method calls, and how many ÆMINIUM specific operations we used (e.g., atomic
blocks). We decided to use this metric as this is the most commonly used approach to quantify annotation
overhead of comparable systems. Using the ’default’ approach when measuring annotation overhead makes
our evaluation comparable to others. We report and compare the numbers for the fully annotated program
(i.e., every possible annotation is written out by the programmer) and a version which leverages Plaid’s
default permission system. Plaid’s default permission system allows the programmer to omit permission
annotations and let the compiler use a default permission for those objects. An example of this is Plaid’s
Integer state. In Plaid Integer objects, like Java integer objects, are always immutable as numbers
cannot be changed. This means that the programmer can write Integer and the compiler will automatically
expand it to immutable Integer.

All of our benchmark results (with exception of the webserver benchmark) have been measured on
an eight-core machine (Intel Xeon CPU X5460@3.16GHz) with 32GB of main memory. The eight-core
machine runs under Fedora Linux 7 and all the benchmarks were run under the Java HotSpot 64-Bit Server
VM (build 20.4-b02). For the we webserver we uses quad-core machine (Intel i7@2.0GHz) with 8GB of
main memory. The quad-core machine runs OSX Mountain Lion using the Java HotSpot 64-Bit Server
VM (build 20.14-b01-477). Unless otherwise stated we use the default settings of the installed Java Virtual
Machine. All benchmarks ran at least 20 times each and we report the average runtimes along with the
standard deviation, showing low variance in those runs. All measured values can be found in Appendix B.

6.2 Plaid’s Baseline Performance Evaluation

To get a better understanding of the performance numbers, this sections evaluates the baseline performance
of Plaid. In particular we compare the performance of Plaid against Java (as a statically typed comparison)
and JavaScript (for a dynamically typed comparison). For this evaluation we defined a simple fork/join

Figure 6.1: Baseline Benchmark Method : forkJoin

Input: level dependency graph

begin
isZero level == 1 ;
if isZero == false then

nextLevel level � 1 ;
forkJoin(nextLevel) ;
forkJoin(nextLevel) ;

end
end
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based benchmark to evaluate the overall performance overhead for method calls, control flow and basic
arithmetic operations. The benchmark emulates a divide-and-conquer algorithm. The pseudo code for
benchmark is shown in Figure 6.1 on the preceding page (cf. Appendix C.1 for the source code of the actual
implementations). When invoked the method first checks if the passed-in parameter is zero. In the case the
value is zero, the method simply returns. In the case the parameter was not zero, the method decrements the
parameter value and invokes itself recursively twice with the decremented parameter value. We implemented
this benchmark in all three programming languages (Plaid, Java and JavaScript) in two different variants.
The first variant uses global methods (i.e., methods not bound to an specific object instance) and member
methods (i.e., bound to a specific object instance) to evaluate if there is a performance penalty for using
member methods with dynamic dispatch.

Figure 6.2: Base Line Performance Evaluation. Comparing performance of Java, JavaScript and Plaid
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We run all benchmarks on our eight-core machine (cf. Section 6.1) repeating each benchmark 20 times.
The average runtimes and standard deviation of those runs are shown in Figure 6.2. We choose a reasonably
high start value to produce enough work for the Java implementation. The results of our evaluation are shown
in Figure 6.2. There are several observations worth pointing out. The first one being that regardless of the
programming language, global method calls are faster than ordinary member method calls. While in Java
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and Java Script those differences are marginal, the performance improvements for Plaid are much more
noticeable. Comparing the 5.9s for the Plaid member method implementation to the 3.4s of Plaid’s global
methods results in almost 74% faster method calls for global methods. This big performance difference
is caused by the way Plaid’s dynamic dispatch is implemented. Plaid’s dynamic dispatch uses the same
principle as in Thorn [25], Jython [6] or JRuby [8]. The idea is to generate a dispatch interface for every
method which is implemented by all classes which have a matching method signature. Because Plaid allows
dynamic composition of states at runtime the system will generate appropriate classes through dynamic code
generation with proxy functions to forward all method calls to the actually generated methods. This leads to
one level of indirection where first the proxy method is called and then calls the compiler generated method.
This is obviously a slower approach than calling a global method which does not require dynamic dispatch
and results into a direct static method call to the compiler generated code.

The other important observation regarding the overall performance of Plaid. Plaid performs in this
benchmark generally better than JavaScript but worse than Java. JavaScript takes about 13.4s to complete
the benchmark while Java only need about 1.1s. This means that JavaScript is about 12 times slower than
Java in this benchmark. Plaid needs about 5.9s in the case of member methods and about 3.4s in the global
method case to complete the benchmark. This means that using dynamic dispatch results in a slowdown of
5.3 times compared to Java and using global methods in a slow down of 3.1 times compared to Java. Having
a slightly worse performance than plain Java makes sense as the Plaid compiler translates Plaid code into
Java code (cf. Section 5.3) and Plaid has additionally to support dynamic Plaid. Note that the numbers are of
fully typed programs. Using the dynamic subset of Plaid might result in worse performance because some
optimizations require type information.

6.3 Case Study: Webserver

This case study analyses a webserver application for serving static webpages. The goals of this case study
are to see how well ÆMINIUM helps to parallelize code and how well it works to improve performance by
overlapping computation and communication. The full source code of the Plaid implementation is listed in
Section C.2.

6.3.1 Code Generation Analysis

This section analyses the generated code by the Plaid compiler. The Plaid webserver implementation consists
of four files. Two simple wrapper states for Java’s socket classes, a main method to start the webserver and
the actual webserver state. This section solely focuses on the webserver state as the remaining code mainly
consists of wrapper methods for Java classes.
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Table 6.1: WebServer Method Overview

Name Annotations #Tasks #Inlined Description

getRoot @sequential 1 1 Locates root directory in file system.
run • 1 1 Starts the accept loop.
acceptLoop • 3 2 Accepts new connections in an infinite loop.
fileExists @sequential 1 1 Checks if requested file exists and is accessible.
serveClient • 1 1 Processes accepted connection.
transferData @sequential 1 1 Transfers binary data from file to socket.
transferFile • 1 1 Helper function to transfer requested file.
transferHeader • 1 1 Generates HTML response header.

Listing 6.1: acceptLoop code

state ServerSocket {

method unique Socket accept() [ unique ServerSocket this ] { . . . }

. . .
}

state WebServer {

method void acceptLoop(unique ServerSocket serverSocket) [immutable WebServer this] {
val unique Socket client = serverSocket.accept();
this.serveClient(client);
this.acceptLoop(serverSocket);

}

method void serveClient(unique Socket client) [immutable WebServer this] { . . . }

. . .
}

Table 6.1 shows all the methods defined in the WebServer state along with their annotations, the
number of computed tasks by the Plaid compiler, how many tasks have been inlined (cf. Section 5.4.4 all
implemented task inlining optimizations), and a short description of the methods. All access to the file system
has been extracted into three methods annotated with @sequential (as they need to use Java code to
access the file system). For all but one method the Plaid compiler reduced the method body to one task.
As described in Section 5.4.4, one task method graphs do not encode any parallelism and therefore result
in sequential code for this method. On the flip side this means that only the acceptLoop method was
considered by the compiler to contain (enough) parallelism.
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Figure 6.3: Compiler generated dependency and task graphs of the acceptLoop method.
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Listing 6.1 on the previous page shows the source code of the acceptLoop method along with the
method signature of all called methods. As shown the acceptLoop method first calls the accept method
on the passed in ServerSocket. The acceptmethod waits until there is a new client connection available
and returns the corresponding Socket object. After a new connection has been established the method
calls the serveClient method to process the client request. Then the acceptLoop method call itself
recursively to accept the next client.
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The dependency graph of the acceptLoop method is shown in Figure 6.3a on the facing page. Due
to the eager type checker implementation (cf. Chapter 5) all three statements are dependent on each other
because they require an immutable permission to the receiver. As described, the Æminiumifier pass will
infer potential parallelism and transforms the graph into a parallel version. The Æminiumified dependency
graph of the acceptLoop method is shown in Figure 6.3b on the preceding page. The recursive call to
acceptLoop depends now on the accept call of the ServerSocket instead of the serveClient
method call. The serveClient method call still depends on the accept method call because it needs to
wait for the client socket to be returned. The resulting task graph is shown in Figure 6.3c on the facing page.
With task @43 representing the socket method call, task @49 representing the recursive acceptLoop
method call and task @47 encapsulates the serveClient method call. This allows the processing of the
client connection in parallel with the recursive method call, which in turns represents the opportunity to accept
and process the next client. This allows the ÆMINIUM compiled version to handle multiple connections at a
time.

6.3.2 Performance Evaluation

We evaluated the performance of our webserver by comparing the sequential Plaid version against the
ÆMINIUM parallelized version of the webserver. We ran each benchmark 20 times. We show the avergage
runtimes and standard deviation in Figure 6.4 on the next page. As a reference, we additionally compare the
performance to sequential and parallel Java versions. To evaluate the performance we installed each version
on our quad-core machine (cf. Section 6.1) hosting the Python 2.7 documentation [7]. We then mirrored this
documentation with Parallel URL Fetcher ([10], puf) to our local machine. Puf is a multi-threaded download
utility which tries to fetch its data with up to 20 connections. We ensured that all accessed files are cached in
the memory buffers to limit our measurements to network input/output latency and avoid additional hard drive
input/output latency. We repeated each measurement three times in a round robin fashion to avoid temporary
network congestion that impacts one specific version. Figure 6.4 on the following page shows the average
performance values measured. The Plaid version of the webserver is the slowest (49.1s) followed by the
sequential Java version (48.5s). This makes sense as Plaid is generally slower than Java. The performance
difference is not as big as shown in Section 6.2 because this application consists of a computational and
communication component. The communication component is the same for both cases, therefore the slower
performance of Plaid does not affect the overall performance that much. The ÆMINIUM compiled version
of the webserver is the second fastest (37.4s) version. It is approximating 31% faster than its sequentially
compiled counterpart. The reason for this is that the webserver in the ÆMINIUM compiled version is able
to handle multiple requests in parallel. This allows the overlapping of communication and computation
and results in a higher throughput. The manually parallelized Java version delivered the best performance
(31.2). The performance difference between the parallelized Java and the ÆMINIUM version is bigger
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Figure 6.4: WebServer Performance Graph

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

T
o
ta

l t
im

e
 [
s]

Plaid

Java

AEminium

Java (Parallel)

Plaid Java (sequential) ÆMINIUM Java (parallel)

Average Runtime 49.1s 48.5s 37.4s 31.3s
Standard Deviation 2.1s 3.5s 1.92 0.8s

compared to their sequential counter parts. This effect is caused by the parallel execution and the overlap
of communication and computation which hides the communication costs to some degree. Because the
communication effect is reduced the computation part gains relatively more weight. Section 6.2 established
that Plaid is several times slower that Java code. Therefore the ÆMINIUM version is slower than parallel
Java version.

6.3.3 Annotation Overhead

Table 6.2 on the next page shows the annotation overhead measured for the Plaid webserver applications as
described in Section 6.1. We denote fully annotated version as ‘⇤’ and the version that uses Plaid’s build-in
default permission with ‘†’. The numbers show that, on average, in the fully annotated programs every 5

th

line of code needs to be annotated. All those changes are solely caused by permission annotations to types.
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Table 6.2: Annotation overhead in WebServer application

Filename SLOC Modified SLOC Type Annotations Group Arguments ÆMINIUM
Constructs

main.plaid⇤ 6 1 (16.6%) 1 0 0
ServerSocket.plaid⇤ 16 5 (31.5%) 6 0 0
Socket.plaid⇤ 34 9 (26.5%) 11 0 0
WebServer.plaid⇤ 171 32 (18.7%) 41 0 0

⌃⇤ 227 47 (20.7%) 59 0 0

main.plaid† 6 0 (0%) 0 0 0
ServerSocket.plaid† 16 0 (0%) 0 0 0
Socket.plaid† 34 0 (0%) 0 0 0
WebServer.plaid† 171 0 (0%) 0 0 0

⌃† 227 0 (0%) 0 0 0

Leveraging Plaid’s default permission mechanism allows us to essentially write the whole webserver program
without any additional permission annotations.
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6.4 Case Study: Dictionary

The Problem Based Benchmark Suite (http://www.cs.cmu.edu/˜pbbs/) defines several problems
representing real-world tasks. We choose to developed a dictionary benchmark to evaluate the effectiveness
of data groups. Our implementation is based on a hash map using separate chaining to handle collisions. We
developed two versions: a global version which uses plain shared permissions for its internal data structures
and a fine version in which every bucket has its own data group. The global version which uses plain shared
permissions for which the mutual exclusion in the current implementation defaults to global locking strategy.
The fine version uses shared permissions associated with data groups, enabling a more fine-grained locking
approach, and yielding in a better scalability compared the global version.

6.4.1 Code Generation Analysis

The dictionary by itself does not generate any parallelism by itself as all used operations (i.e., add and
contains) are sequential by nature. The implementation allows parallel access if the dictionary is shared
amongst different entities.

6.4.2 Performance Evaluation

Figure 6.5 on the facing page shows the average runtimes (based on 50 iterations of each benchmark) and
standard deviation of the dictionary benchmarks. The benchmark first inserts the identity mapping for the
numbers 20 to 2

16 into the dictionary (initialization). Then we lookup every mapping to check for correctness
(checking). We used a dictionary with 64 hash buckets. To avoid artificial patterns we randomized the
sequence in which the numbers are inserted/checked with a constant seed to guarantee reproducibility. The
first bar ‘global/unique’ (15.1s) represents the results of the global dictionary implementation with a unique
permission to the dictionary. The linearity of the unique permission sequentiallizes all insert/check operations.
In the second bar ‘global/shared’ (15.1s) we have a shared permission to the dictionary, which allows us
to perform our operations in parallel. This case performs no better because each parallel operation must
immediately synchronize on the entire shared dictionary structure, thus sequentializing all the accesses.
The third bar ‘fine/unique’ (10.0s) uses the implementation which utilizes data groups for its internal
representation. This scenario is faster than any of the cases using the global implementation, because of
the use of fine-grained data groups, one for each bucket. The unique receiver permission allows us to get
exclusive group permissions to the inner groups of the dictionary. This means we do not require protection to
access data within those data groups and therefore we avoid unnecessary synchronization operations. The last
case ‘fine/shared’ (2.3s) also allows the parallel execution of our operations. Because the implementation
associates each bucket with its own data group, we achieve a very fine-grained protection mechanism which

http://www.cs.cmu.edu/~pbbs/
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Figure 6.5: Dictionary Performance Graph
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allows the parallel modification of disjoint parts of the dictionary. This results in a speedup of 6.5X compared
to the ‘global/shared’ version.

6.4.3 Annotation Overhead

Tables 6.3 on the next page and 6.4 on the following page shows the annotation overhead measured for our
dictionary implementations (global and fine) as described in Section 6.1. We denote fully annotated source
code versions with ‘⇤’ and the versions that use Plaid’s build-in default permissions with ‘†’. The numbers
for the global implementation show that, on average, in the fully annotated case, every 4

th line needs to be
changed. Using Plaid’s built-in default permissions significantly reduces the annotation overhead down to
3%. The numbers for the fine implementation are approximately the same for the fully annotated case, which
requires every 4

th line to be changed. When employing Plaid’s default permission mechanism we still have
to modify every 5

th line of code. While achieving some reduction the overall overhead is not as low as in the
other cases. This overhead could not be reduced by Plaid’s default permission as the fine implementation
associates its internally shared data with data groups. To inform the compiler that those shared data belong to
a specific data group, we need to add additional information.
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Table 6.3: Annotation overhead of Global Dictionary implementation.

Filename SLOC Modified
SLOC

Type
Annotations

Group
Arguments

ÆMINIUM
Constructs

Bucket.plaid⇤ 42 9 (21.4%) 13 0 2
BucketList.plaid⇤ 38 8 (21.1%) 9 0 1
GlobalHashmap.plaid⇤ 38 16 (42.1%) 24 0 0
GlobalHashmapAddOperations.plaid⇤ 9 1 (11.1%) 5 0 0
GlobalHashmapContainsOperations.plaid⇤ 9 1 (11.1%) 5 0 0
GlobalHashmapOperations.plaid⇤ 9 1 (11.1%) 3 0 0
package.plaid⇤ 24 5 (20.8%) 6 0 0

⌃⇤ 169 41 (24.2%) 65 0 3

Bucket.plaid† 42 2 (4.7%) 0 0 2
BucketList.plaid† 38 1 (2.6%) 0 0 1
GlobalHashmap.plaid† 38 2 (5.2%) 2 0 0
GlobalHashmapAddOperations.plaid† 9 0 (0%) 0 0 0
GlobalHashmapContainsOperations.plaid† 9 0 (0%) 0 0 0
GlobalHashmapOperations.plaid† 9 0 (0%) 0 0 0
package.plaid† 24 0 (0%) 0 0 0

⌃† 169 5 (3%) 2 0 3

Table 6.4: Annotation overhead of Fine Dictionary implementation.

Filename SLOC Modified
SLOC

Type
Annotations

Group
Arguments

ÆMINIUM
Constructs

Bucket.plaid⇤ 100 24 (24%) 32 4 2
BucketList.plaid⇤ 52 16 (30.7%) 18 2 0
FineHashmap.plaid⇤ 38 16 (42.1%) 24 0 0
FineHashmapAddOperations.plaid⇤ 14 1 (7.1%) 12 2 0
FineHashmapContainsOperations.plaid⇤ 14 1 (7.1%) 12 2 0
FineHashmapOperations.plaid⇤ 9 1 (11.1%) 5 0 0
package.plaid⇤ 24 5 (20.8%) 6 0 0

⌃⇤ 251 71 (28.3%) 109 10 2

Bucket.plaid† 100 24 (4.7%) 20 4 2
BucketList.plaid† 52 10 (19.2%) 8 2 0
FineHashmap.plaid† 38 2 (5.2%) 2 0 0
FineHashmapAddOperations.plaid† 14 4 (28.6%) 4 2 0
FineHashmapContainsOperations.plaid† 14 4 (28.6%) 4 2 0
FineHashmapOperations.plaid† 9 2 (22.2%) 3 0 0
package.plaid† 24 0 (0%) 0 0 0

⌃† 251 46 (18.3%) 41 10 2
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Listing 6.2: Integral code

state Integral {
method immutable Float64 compute(immutable Float64 x1, immutable Float64 x2) [immutable Integral this] {

val immutable Float64 delta = x2 � x1;

val immutable Boolean divide = delta.nativeLessThan(0.00000001);
match ( divide ) {

case True {
val immutable Float64 f1 = this.f(x1);
val immutable Float64 f2 = this.f(x2);
val immutable Float64 combinedf = f1 + f2;
val immutable Float64 avgf = combinedf / 2.0;
val immutable Float64 area = avgf ⇤ delta;

area
}
default {

val immutable Float64 combinedx = x1 + x2;
val immutable Float64 middle = combinedx / 2.0;
val immutable Float64 area1 = this.compute(x1, middle);
val immutable Float64 area2 = this.compute(middle, x2);

area1 + area2
}

}
}

@cheap
method immutable Float64 f(immutable Float64 x) [immutable Integral this];

}

6.5 Case Study: Integral

This case study evaluates ÆMINIUM capability to parallelize purely functional, highly computation intensive
problems. We developed a small integral library which computes the integral of a user-defined function.
The integral is computed by subdividing the overall interval into infinitesimal small intervals for which we
calculate the approximate area, and then add up all fractions to compute the area of the whole integral.

6.5.1 Code Generation Analysis

The main functionality of the integral case study is implemented in the Integral.plaid file shown in
Figure 6.2. The Integral state has a compute method responsible for the computation of the integral
and an abstract method f which users need to override in their implementation to implement the actual
function. The compute method has two parameters defining the start and end of the interval. The method
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Figure 6.6: Compiler generated dependency and task graphs of the Integral.compute method.
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(c) Task Graph

first determines if the current interval is below a certain threshold or not. In the case that the interval is below
the threshold the method approximates the area of the interval by computing its trapezoidal area using the
user overridden method f and returns it. If the interval is above the threshold the method divides the interval
and computes the integral of those subintervals recursively.
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Table 6.5: Integral Method Overview

Name Annotations #Tasks #Inlined Description

Integral.compute • 7 5 Sub-divides and computes integral recursivley.
Integral.f @cheap 1 1 User defined function prototype.
main • 1 1 Program entry point.
Runner.stdout @sequential 1 1 Print messages to stdout.
Runner.run • 1 1 Runs integral computation.
SquareIntegral.f • 1 1 Implements square function (i.e., x2).

Figure 6.6a on the facing page shows original dependency graph of the Integral.compute method.
The parallelized dependency graph, Figure 6.6b on the preceding page, allows the parallel execution of the
recursive method calls and the method calls to the user-defined function f. We choose to annotate the user
defined method with a @cheap annotation as we do not expect the computation of a function value to require
significant computation effort. This allows the compiler to merge the two method calls to the user-defined
function f into one task instead of generating parallel tasks for each of those method calls. The final task
graph of the Integral.compute method is shown in Figure 6.6c on the facing page. The first task (157)
represents the threshold computation and the begin of the match block. The long task (101) on the right hand
side represents the True case which approximates the integral area for the given interval. Thanks to the
cheap annotation on the user-defined function f, the task builder is able to reduce the whole case into a single
task. The ‘diamond’ shaped task graph on the left represents the False case which recursively computes the
interval. The top task (135) of the diamond represents the computation of the subintervals. The two edge
tasks (119 and 139) represent the recursive method calls to compute the integral for the subintervals. The
bottom task (129) of the diamond graph represents the accumulation of the sub interval area values.

Table 6.5 shows the methods in the integral case study along with the number of inferred and inlined
tasks. The numbers show that all but the Integral.compute have been reduced into one task. The
Integral.compute consists of seven tasks of which five are inlined by the code generator. The two task
which have not been inlined consist of the two recursive method calls.

6.5.2 Performance Evaluation

We evaluated the performance by computing the integral of the square function (i.e., f(x) = x2) for the
interval [0, 1]. We run the sequential Plaid and parallel ÆMINIUM version on our eight-core machine each 20
times. The average runtime and standard deviation of both cases are shown in Figure 6.7 on the following
page. The Plaid version requires 8.9s while the ÆMINIUM version needs only 4.2s. This results in a
speedup of 2.1 meaning that ÆMINIUM was able to parallelize the program and achieve some performance
improvements. But it also means that the ÆMINIUM version was only twice as fast on an eight core machine,
which would suggest a speedup closer to eight. Our investigation revealed that the main source for this poor
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Figure 6.7: Integral Performance Graph
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performance lays in the Plaid’s object system. As described previously, Plaid does not support primitive
types which means that value in Plaid is an object. This means that in this computation-heavy application we
have to create a new object for every floating point value we compute. Our investigation showed that the
this particular benchmark allocates more than 1.8 billion (1.8⇥ 10

9) floating point objects. This means that
overall performance of out benchmark is limited the throughput of the virtual machine memory system. This
result does not invalidate the ÆMINIUM approach, because the problem is an intrinsic limitation of the Plaid
programming language and not of ÆMINIUM.

6.5.3 Annotation Overhead

Table 6.6 on the next page shows the annotation overhead measured for the Plaid integral applications as
described in Section 6.1. We denote the fully annotated version of ‘⇤’ and the version that uses Plaid’s
build-in default permission with ‘†’. The numbers show that in the fully annotated program every 3

rd line
of code needs to be annotated. All those changes are solely caused by permission annotations to types.
Leveraging Plaid’s default permission mechanism makes it possible to write the whole integral program
without any additional permission annotations.



6.6. CASE STUDY: FORKJOIN 105

Table 6.6: Annotation overhead of Integral implementation.

Filename SLOC Modified
SLOC

Type
Annotations

Group
Arguments

ÆMINIUM
Constructs

Integral.plaid⇤ 30 13 (43.3%) 18 0 0
main.plaid⇤ 17 1 (5.8%) 1 0 0
Runner.plaid⇤ 8 4 (50%) 4 0 0
SquareIntegral.plaid⇤ 6 1 (16.6%) 3 0 0

⌃⇤ 61 19 (31.2%) 26 0 0

Integral.plaid⇤ 30 0 (0%) 0 0 0
main.plaid⇤ 17 0 (0%) 0 0 0
Runner.plaid⇤ 8 0 (0%) 0 0 0
SquareIntegral.plaid⇤ 6 0 (0%) 0 0 0

⌃† 61 0 (0%) 0 0 0

6.6 Case Study: ForkJoin

Our Integral case study in Section 6.5 showed that ÆMINIUM is capable to parallelize purely functional
programs while achieving performance benefits. Because of the memory issue we were not able to evaluate
how well our implementation actually scales. We therefore conducted another case study, specifically
designed to emulated the core principle of the Integral case study but without the memory issues. We decided
to reuse the fork join benchmark we used in Section 6.2 to evaluate our baseline performance. This benchmark
uses the same divide-and-conquer approach as the Integral case study, but only uses small integer values. The
usage of small integer values is vital as Plaid, like Java, uses a singleton pattern to cache small integer object
between -127 and 128. This avoid the memory explosion in the Integer case.

6.6.1 Code Generation Analysis

The generated code resembles closely the code generated for the Integral case study. This makes sense as
the ForkJoin case study has been designed to emulate the Integral case study. Table 6.7 shows the method
information for the ForkJoin case study. The main function forkJoin, like the compute function of the
Integral, consists of seven tasks. In both cases five tasks can be inlined.

Table 6.7: ForkJoin Method Overview

Name Annotations #Tasks #Inlined Description

FJ.compute • 7 5 Recursiveley calls itself until a certain depth is reached.
main • 1 1 Program entry point.
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Figure 6.8: Compiler generated dependency and task graphs of the FJ.forkJoin method.
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Figure 6.9: ForkJoin Performance Graph
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6.6.2 Performance Evaluation

We evaluated five different cases, (sequential) Plaid, (sequential) ÆMINIUM, (parallel) ÆMINIUM, (parallel)
ÆMINIUM with oracle scheduling [11] and manually parallelized Plaid version using threads. We run every
case 20 times on our eight-core machine and Figure 6.9 shows the average runtimes and standard deviations.
We increased the input size to a reasonably high number to achieve a higher computation demand that
can be parallelized. The sequential Plaid version took 12.0s to complete the benchmark. To measure the
overhead introduced by our dynamic load balancing approach we used the ÆMINIUM parallelized version
and manually modified the runtime system to let the PARALLELIZE method (cf. Section 5.4.4) always
return false. This sequentializes the whole benchmark execution and allows us to determine the overhead we
introduced by our code transformations. The sequential ÆMINIUM execution took 12.7s to complete the
benchmark. This means that our overhead compared to the sequential Plaid version is about 5.2%. Note that
the dynamic scheduling check is only inserted into methods which exhibit parallelism and not into methods
which execute sequentially. The ÆMINIUM parallelized version with the dynamic load-balancing properly
working needed on average 2.4s. Comparing the sequential Plaid version with the ÆMINIUM version, this
results in a speedup of 4.9 times. This means that our implementation provides much more speedup than the
speedup of 2 measured for the Integral case. Despite the fact that the speedup significantly improved, our
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improved value is not as close to the perfect speedup of 8 as one would expect. Our investigation revealed that
the main cause of this performance loss is due the creation of of tasks which represent too small computation,
because as soon as an internal thread runs out of work it triggers the runtime to create more work. The
runtime does not know the exact runtime costs of specific tasks as those might depend on the current input.
Therefore the runtime might create too small tasks which cause too much overhead compared to the actual
runtime of the task.

As mentioned in Section 5.4.3, one proposed solution to this problem is oracle scheduling [11]. The idea
behind oracle scheduling is that the user supplies an additional function which is used by the runtime system
to estimate the how many operations the original function will run for the given input size. For evaluation
purposes we manually implemented the oracle scheduling in the compiler generated code. The ÆMINIUM

version with the manual oracle scheduling took 2.1s to complete the benchmark. Compared to the sequential
Plaid version this results in a speedup of 5.9. While yielding in higher performance we still do not achieve
the optimal performance.

To gain a better idea about the baseline performance of Plaid we implemented a manually parallelized
version of the program using threads. This version creates one thread per CPU and uses the sequential
Plaid version to compute the appropriate sub-problem. Because the fork join benchmark represents perfectly
balanced binary call tree, each thread has the same amount of computation. This version needed 2.0s to
complete the benchmark resulting in a speedup of 6. This version represents the best possible case. There
is exactly one thread per CPU and all threads have to perform the same amount of work (which eliminates
potential load imbalances). This means that the oracle enabled version achieves almost the same performance
as the optimal case and is only 2.4% slower compared to the optimal case. This also means that the ÆMINIUM

version without the oracle scheduling is only 21.4% slower than the optimal case. The optimal version
also shows that we are still losing scalability somewhere. The manually threaded version does not use our
runtime and uses only Java threads and executes sequential Plaid code. Given that each thread executes
purely functional code there is no reasons for any kind of inter-thread dependency. Our initial investigation
revealed that this slow down is associated with the Plaid runtime system. To further investigate we manually
removed step-by-step all Plaid specific features from the generated code until we had a plain Java version of
the benchmark. This investigation isolated the performance issue to Plaid’s dynamic dispatch as one of the
main sources for this scalability issue. Plaid’s object system is beyond the scope of this thesis and orthogonal
to our problem as the ÆMINIUM approach is language agnostic and does not depend on Plaid’s object system.
A future version of the Plaid runtime may address these issues.

6.6.3 Annotation Overhead

Table 6.8 on the facing page shows the annotation overhead measured for the Plaid fork join benchmark
as described in Section 6.1. We denote the fully annotated version as ‘⇤’ and the version that uses Plaid’s
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Table 6.8: Annotation overhead of ForkJoin implementation.

Filename SLOC Modified
SLOC

Type Anno-
tations

Group
Arguments

ÆMINIUM
Constructs

package.plaid⇤ 21 4 (19.1%) 5 0 0

⌃⇤ 21 4 (19.1%) 5 0 0

package.plaid⇤ 21 1 (4.7%) 1 0 0

⌃† 21 1 (4.7%) 1 0 0

Figure 6.10: Annotation Overhead over Java

Program Total SLOC Annotaded
SLOC

Type
Annotations

Group
Arguments

ÆMINIUM
Constructs

webserver⇤ 227 47 (20.7%) 59 0 0
dictionary/global⇤ 169 41 (24.2%) 65 0 3
dictionay/fine⇤ 251 71 (28.3%) 109 10 2
integral⇤ 61 19 (31.2%) 26 0 0
forkJoin⇤ 21 4 (19.1%) 5 0 0
Total⇤ 729 182 (25.0%) 262 10 5

webserver† 227 0 ( 0.0%) 0 0 0
dictionary/global† 169 5 ( 3.0%) 2 0 3
dictionary/fine† 251 41 (18.3%) 41 10 2
integral† 61 0 ( 0.0%) 0 0 0
forkJoin† 21 1 ( 4.7%) 1 0 0
Total† 729 52 ( 7.1%) 44 10 5

build-in default permission with ‘†’. The numbers show that in the fully annotated program every 5

th line
of code needs to be annotated. All those changes are solely caused by permission annotations to types.
Leveraging Plaid’s default permission mechanism allows us to reduce this to every 20

th line.

6.7 Reflection on Case Studies

Figure 6.10 shows the summary for all our case studies. The values marked with ‘⇤’ are versions fully
annotated and values marked with ‘†’ are programs which use Plaid’s default permission mechanism which
allows omitting the annotations by specifying a default permission. The numbers show that type annotation
are the most common source of overhead and that Plaid’s default permissions help to reduce it substantially.
The second important observation is that the more developers specify, the more performance the compiler
can achieve. Figure 6.11 on the following page compares the percentage of SLOC that has to be changed
(with the numbers for Plaid’s default permissions) against how much speedup has been achieved. As the
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Figure 6.11: Comparison of Speedup against percentage of changed SLOCs.
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diagram shows for programs which only use unique and immutable permissions we can achieve speedup
with little to no annotation overhead. When it comes to using shared data the amount of effort put into
annotating the source code reflects how good the speedup is. Using only the bare minimum of annotation
(i.e., Dic/Global) we do not achieve any performance improvements at all. When using more annotations (i.e.,
Dic/Fine) the overall speedup goes up. This means users can start with a simple version of a program and then
incrementally add more annotations to increase the performance. It is worth pointing out that using Plaid’s
default permission approach we are able to extract concurrency in the webserver and integral example without
the need for any additional annotations. Overall we achieve a reasonable 7.1% annotation overhead which is
comparable to the 10.7% reported by DPJ [27]. Further improvements to our system (e.g., type inference)
should allows us to further mitigate the programmers’ burden. The reader should also take into account that
access permission information in Plaid serves additional purposes (e.g., checking typestate). The following
sections elaborate on specific observations we experienced during the evaluation of our implementation.

6.7.1 Readonly group permission

When we used data groups and group permissions in our case studies we encountered certain scenarios (e.g.,
in the dictionary case study to avoid synchronization the case of immutable permissions to the dictionary) in
which it would have been useful to have a readonly group permission. The readonly group permission
would allow concurrent read access to the objects of a data group (by guaranteeing there is no write present,
similar to immutable permissions for Objects). Adding readonly group permissions to the language
does not seem to impose a major change to the system and should merely be a matter of working out the
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appropriate language abstraction to split an exclusive permission to a readonly permission along with
minor modifications to type checker to correctly check and compute dependencies.

6.7.2 Inference

Plaid’s default permission support is a useful feature to reduce the amount of permission information that the
programmer has to write. Adding automatic inference represents another opportunity to further reduce the
annotation overhead. Inference seems particularly useful for local variable declarations and group parameters
of method calls. In the case of variable declarations the programmer would just declare a new local variable
using the var or val keyword and the variable name. The resulting type would be determined by the
type of the initialization expression. The group parameters for methods calls could easily be omitted by the
programmer and inferred from the type of the passed in parameters. If the automatic inference is not possible
(e.g., the programmer passes in a unique reference which need to be split to the concrete shared permission)
the programmer can always fall back to the manual annotation.

6.7.3 Polymorphism

One shortcoming we noticed during the implementation of the case studies was the lack of parametric
polymorphism (i.e., generics) in the Plaid language. Prior to Java 5 programmers had to use Object as
the combined type for their data structures if they wanted them to be applicable to any type, and later use
a dynamic state test to determine the actual type of the object. This approach works only partly in Plaid
because every type in Plaid also contains a permission for which we do not have a generic abstraction. We
therefore need to have a special version for each kind of permission, which results in code duplication. Some
preliminary work on polymorphic permissions has been conducted by Nels Beckman [17].

6.7.4 Oracle Scheduling

We already discussed the usage of oracle scheduling to improve the overall parallelization strategy. In Section
6.6 we shows by manually implementing oracle scheduling in the compiler generated code that we can
achieve close to optimal performance. We did not add oracle scheduling support to the source level at this
point. The original proposal for oracle scheduleing, used user-defined methods to perform the runtime cost
estimation. While this works well in a purely function setting (where oracle scheduling has been implemented
and evaluated) it has some shortcomings in an object-oriented setting with dynamic dispatch. Also, using
a more high-level declarative approach for specifying the runtime heuristic would be beneficial, both for
programmer to specify and for the compiler to verify them.
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6.7.5 Java Interoperability and Standard Library

Plaid targets the Java Virtual Machine (JVM) and was designed with Java interoperability in mind. While
it is possible to create and use Java objects in the dynamic subset of Plaid, the current implementation of
the type checker does not support checking of Java object creation and method calls. Therefore we have to
wrap every Java object into a Plaid wrapper state and use the @sequential annotation to prevent type
checking. This causes additional work for the programmer. An automatic approach to support Java code
inside Plaid has been started but requires more effort before it can be completed.

6.7.6 Tooling Support

We did not only developed our case studies in Plaid but also wrote the whole Plaid compiler (with exception
of the parser) in Plaid itself (cf. Section 5.3). The Plaid compiler uses our first prototype implementation
to compile and execute. Out first prototype implementation does not support type checking. This means
that users can use permission and type information in their code but the compiler will not check or enforce
them. Despite the fact that those type annotations are not necessary in the code, most parts of the Plaid
compiler are fully annotated. Having those annotations in the code, despite the fact that they are not checked
or enforced, helped the readability and maintenance of the code. This becomes particularly obvious when
realizing that the Plaid compiler comprises of almost 29 KLOC. The type annotations serves as crucial part
of the documentation to quickly determine for instance what kind of object to pass into certain functions.

All our case studies use the new Plaid compiler which supports type checking. In our experience this
was a big improvement in productivity. Some of the most common mistakes we made using the dynamic
Plaid prototype compiler were the misspelling of variables and method names or passing the wrong type or
number of arguments to functions. All of those issues are caught by the new compiler at compile time instead
of run time. While the current Plaid compiler reflects a significant leap forward it is by no means free of
flaws. The current compiler uses our initial prototype implementation which is several order of magnitude
worse in every almost aspect: execution performance, memory footprint and generated code size. Currently
some effort is made to make the new compiler self hosting, which eliminates many of those issues. Another
criticism of the current compiler is the way errors are reported. Plaid supports a powerful type system which
allows relatively detailed knowledge of what problems occur. Unfortunately the compiler does a rather poor
job communicating this knowledge to the user, and sometimes provides rather cryptic error messages which
only make sense when knowing the internal details of the compiler.

Aside from the compiler issues, the lack of any additional development tools provides an additional
barrier. We developed several syntax highlighting plugins for various editors (e.g., Emacs, TextWrangler, etc).
While simple syntax highlighting provided additional help it cannot replace the a fully featured development
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system. The development tool which we missed most was a source level debugger. The only way to debug
Plaid programs at this point is to debug the generated Java code. This requires in depth knowledge of the
compiler internals. Aside from that, another important Integrated Development Environments (IDE) feature
we missed was a fully featured editor for the source code. By fully featured editor we mean an editor which
not only supports syntax highlighting, but also code completion, background compilation and automatic
indention. Other useful features which would improve productivity are refactoring, an incremental build
system, a profiler, etc.

6.7.7 Programming and Parallelizing with Permissions

One of the main differences when writing programs in Plaid compared with Java is the use of the permissions.
As described in Section 6.7.3, permissions add another dimension of flexibility. Instead of just thinking
which objects are used the programmer also needs to think about which permissions are required. During
the development of our case studies we had to refine our interfaces as the original anticipated permissions
were not strong enough or were too strong for what we actually needed. While those changes seem annoying
at first they actually reveal the power of the system. Because the compiler complains, for instance about
not having strong enough permission to perform a specific operation, we can catch inconsistencies early on.
Having to change the permissions on the interface of a state can lead to ripple effect because dependent code
might not type check any longer because of the changes we made. Adapting this code to the changes might
break other code and so on. In most cases those changes are solely changes to the required permissions and
would not have been necessary in Java which has no permission information at all. While this implies that
annotations can require more effort to accommodate changes it also shows a strength of the system, namely
that it can check that the permissions invariants hold for the whole program.

When it comes to parallelizing with permissions we already established that it is technically feasible to
use permission to parallelize code. A question remaining is how easy are permissions to use to parallelize
code. In our experience the main issue we encountered is lack of feedback caused by the lack of available
tooling (cf. Section 6.7.6). At this point the compiler reads in a Plaid file and generates Java files as output or
lists all errors encountered. This means that the programmer does not know if and which functions actually
have been parallelized. It has been our objective to automate as much as possible in ÆMINIUM and require
as little as possible for programmers to understand what is happening internally. But sometimes having
additional knowledge about what the compiler actually might be useful, in particular if the generated code
does not behave as expected (e.g., the code does not get parallelized). As happened to us in a few instances,
sometimes the compiler did not parallelize enough (e.g., we overlooked certain dependencies) or parallelized
too much (e.g., a very simple operation for which we had forgotten to add the cheap annotation). In those
situations we used a special debug flag to make the compiler generate dependency and task graphs and then
manually mapped the source code onto the nodes. Having this information allowed us to understand quickly
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what the compiler did and why it did what it did. The mapping of source code to task and the graphical
representation can be done automatically and should help to provide for a smoother programming experience.
In particular having such a feature built into an IDE would have helped with most questions we encountered
during our evaluation. Similarly useful would have been a profiler to identify hotspots.

6.8 General Limitations

By using automatic parallelization we abstract away any low-level parallel programming constructs from the
developer. In some case this approach might be limiting and reduce the expressiveness of our system. For
instance it is not possible to express wait-free algorithms with ÆMINIUM, because of there is not support for
low-level operations such as compare-and-swap.

Another limitation of programs that can be expressed in ÆMINIUM comes from access permissions itself.
While access permissions are a powerful abstraction, there are programs which are hard to express with
access permissions. For instance, if access permissions cannot be joined back in the same scope in which the
split happened it is very hard for a static type system to merge them back at a later point. An example of such
a situation is when a programmer splits of a permission and stores the permission in a field in the heap.

The current system allows shared permissions only to be associated with a single data group. While have
not encountered any concrete issues with this approach in general there are situations in which multiple data
groups per shared permission could make sense. An example for such a multi data group scenario could be a
matrix implementation in which we either want to group rows or columns together depending on the use case.

While the current system demonstrates the general feasibility of the approach, there are still a few usability
issues that need to resolved before it can be used for every day developing (e.g., further simplifications to
the language, proper tooling support such as debuggers and profilers, etc). Nonetheless the current work
represents a good first step towards practicability.



CONCLUSION
7

W
e conclude this dissertation by revisiting our original claims and how we validated them. We
outline some future work for further improving ÆMINIUM. We conclude this chapter by
summarizing the whole thesis.

7.1 Thesis Statement and Hypothesis, Revisited

Our thesis statement claims:

“The flow of access- and group-permissions provides a powerful abstraction to cap-
ture common programming idioms while simultaneous enabling the safe extraction of
efficient concurrency.”

We systematically evaluated this claim by breaking it into small hypothesis which we individually
validated (cf. Chapter 6).

Hypothesis: Safety

To ensure safety we can develop and formalize an analysis that uses the access permission and data group
permission flow throughout a program to compute data dependencies, which allow the concurrent execution
of the program while guaranteeing the absence of race conditions.

Validation

We validated this hypothesis through the development of the core calculus called µÆMINIUM (cf. Chapter 4).
µÆMINIUM consists of static type checking rules and concurrent-by-default small-step evaluation semantics
and consists of data groups and permissions. We proofed the type soundness of the system stating that every
correctly typed program is free of data races (cf. Appendix A). µÆMINIUM also uses the permission flow to
compute the correct dependencies and to model a concurrent-by-default evaluation.

Hypothesis: Efficiency

Programs written in our concurrent-by-default approach can be parallelized automatically, achieving a
better performance than their sequential counterparts (provided sufficient availability of parallelism in the
application itself).
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Validation

To validate this hypothesis we conducted several case studies and showed that ÆMINIUM is capable to
extracting parallelism and achieves performance improvements. Our case studies also show that our generated
load balancing code introduces a modest overhead of merely 5.2% compared to its sequential Plaid counter
part. We also showed that ÆMINIUM parallelized code about 21.4% slower than an equivalent program that
has been manually been parallelized.

Hypothesis: Practicality

We claim that access permissions and data group permissions provide a powerful abstraction for concurrent-
by-default applications, which allows common program idioms to be captured.

Validation

We validated this hypothesis by conducting several case studies in different domains, ranging from I/O
heavy operations, to essential data structures to computational heavy programs. We further reported on our
experience developing those case studies using permissions. We found that using permission requires some
additional overhead either because of additional code that needs to be written or mentally about thinking
about the usage pattern of objects. Additionally we found that access permission are a powerful abstraction
but can have some limitations in expressiveness. But because permissions are checked by the compiler, its
is rather easy to find the violation as the compiler points them out. We demonstrated in Section 6.7 that
Plaid’s built-in default permission mechanism significantly reduces the require annotation overhead. Another
advantage is the assurance that when the compiler accepts the program that every object is only accessed
according to its available permission. That being said the system is still not ready for every day development.
Further improvements, such as automatic permission inference and better tooling support, building upon our
initial work will help to further improve every day usability.

7.2 Future Work

In our opinion additional effort to push ÆMINIUM to the next level should focus on two areas: improvements
to the language and development of tooling. Besides implementing the remaining features of Plaid (e.g.,
lambda abstractions in the type system ) we discussed the potential addition of readonly group permissions.
Further improvements that would benefit the overall programming experience are polymorphism and type
inference.
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We also believe that developing decent tool support is of paramount importance. The Plaid/ÆMINIUM

compiler contains a wealth of useful information that can be leveraged to reduce the programmers burden
and increase his productivity. Standard IDE features ranging from better error messages to a good source
editor to a debugger are essential in today’s development process. Additional tools building on top of our
unique features (e.g., type state, parallelization, etc) should be developed to provide the programmers with
all the available information. Tools like sophisticated visualizations seem to be a good first target. When
thinking about ÆMINIUM it would be particularly useful to have an easy way to visualize the generated task
graph and have a visual mapping between the source code and the graphs.

More investigation and integration of ÆMINIUM with other language features needs to be done. In our
proposed approach we did not address the synchronization on our programs, but we believe that the approach
of Damiani et al. [41] provides an elegant solution to combine Plaid’s typestate feature with ÆMINIUM’s
automatic parallelization approach. Damiani proposes to the state of an object, more precisely the changes
of states, to implicitly synchronize programs. For example, if a certain piece of code want to remove an
element from a list which is in the ‘EMPTY’ state, then the code will wait until the list changes its state to a
state which indicates that it has elements which can be removed. Another language feature which we did not
discuss in details is error handling mainly because Plaid itself does not have a clearly defined error model.
Future work should investigate how to support errors in the ÆMINIUM approach. This investigation should
first evaluate existing error approaches (such as exceptions, error code, etc) regarding their suitability for
the concurrent-by-default programming style and might continue on in investigating new error models as
necessary.

Access permissions still have some limitations in which programs can be expressed. Some of the problems
with permissions are related to collections, polymorphism and recovering access permission stored in the
heap. Future work needs to address those issue to further increase the applicability of access permissions.

7.3 Reflection: Concurrency-By-Default

We presented ÆMINIUM as a concrete example of a concurrent-by-default programming approach based on
permissions. We demonstrated that ÆMINIUM work very well in a purely functional settings (as advocated
by the functional community) and provides reasonable support for imperative programming with shared data.
Only time will tell whether ÆMINIUM will be adopted by other people in future, but addressing its existing
shortcomings (cf. Section 7.2 and Section 6.7) will play a vital role.

The core idea proposed by this thesis was a new programming paradigm called concurrent-by-default.
While we proposed ÆMINIUM as as an concrete example, potential other approach exists and could proof
more suitable than ÆMINIUM. Nonetheless all those approaches will share the overall idea to move away
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from sequential thinking when writing programs into concurrent-by-default setting. One of our goals was
to develop as system that works for parallelism like a garbage collectors work for memory management.
Our experience so far shows quite some similarities. On many cases the system just works as expected, but
there occasional situation were the system does not behave as expected (e.g., does not parallelize code or the
performance we get does not meet the performance we expected). In those situation a more thorough analysis
is required. Having better tooling support and a more internalized shift towards a concurrent-by-default
paradigm might help to easy this burden. Similar to garbage collectors, our approach is generally applicable
but is not suitable in special purpose situations. Examples of such situations are realtime systems in which a
specific timing needs to be guaranteed or low-level systems in which certain code needs to be executed on
specific hardware resources.

We are convinced that a concurrent-by-default is a viable programming model for the future. While there
are still cases in which a low-level programming model is ore desirable (e.g., for wait-free algorithms) we
believe a concurrent-by-default approach to be more suitable for mainstream programming. Whether the
permission based approach of ÆMINIUM will be the adopted solution or another approach following the
concurrent-by-default paradigm does not matter as it is the core principle which matters.

7.4 Summary

In this thesis we proposed a new programming paradigm called: concurrency-by-default. In this new paradigm
all parts of a program, to the extent of not violating dependencies, can be executed concurrently by default.
Therefore the programmer no longer needs to reason about complicated and error prone ordering constraints.
The programmer simply reasons about dependencies and leaves the execution and scheduling to the runtime
system.

We presented ÆMINIUM, a new programming language, designed after the concurrency-by-default
paradigm. ÆMINIUM uses access permissions and data groups to specify and verify dependencies. So far we
successfully developed a core calculus for a representative subset of the ÆMINIUM language. After having
evaluated a proof-of-concept prototype implementation in a master thesis [70] we implemented the full
ÆMINIUM system inside the Plaid programming language (cf. Chapter 5). We evaluated our implementation
through several case studies showing that ÆMINIUM is capable of extracting parallelism based on the
permission flow while achieving performance numbers close to manually parallelized code. As shown in
Chapter 6 our case studies demonstrated that the ÆMINIUM approach is applicable to the chosen examples
and allows us to gain performance improvements. There are still several issues that need to be solved before
a concurrent-by-default programming model can become mainstream. We consider ÆMINIUM a first step
towards this goal, demonstrating that such a system is doable.
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PROOF OF FORMAL SYSTEM
A

A.1 Judgements

Name Form Description

Evaluation Judgement µ|�| |G ` e 7! e0 a µ� | 0|G0 Given the store (µ), the runtime permissions
(�), the group access tokens ( ), the data group
configuration (G) the expression e steps to e0

and produces a differential store (µ�), an up-
dated set of group access tokens ( 0) and an
updated data group configuration (G0).

Typechecking Judgement �|⌃|� C̀ e : T |G Given the typing context �, the store typing
⌃, the permission context �, the expression e
checks in the context of class C with type T
and has data group configuration G.

Object Typing µ|�|⌃ ` o : T Given the heap µ, the typing context � and the
store typing context ⌃ the object the location
o refers to has type T .

Program State Well-Formedness �|⌃|� ẁf (µ|�| |G|e) cf. Definition Well-Formed Program State
Type Well-Formedness � ` Tok Given the typing context �we check verify that

the given type T corresponds to an existing
type and that the number of provided group
parameters corresponds with required number
of group parameters.

Sub-Typing � ` T <: T 0 Checks that T is a proper sub-type if T 0.

A.2 Sub-Typing

Standard sub-typing rules. Extended to cover data group parameters.

ST-CLASS
class Ch↵,�i extends Dh↵i{G F M}

� ` Chgr
D

, gr
C

i <: Dhgr
D

i

ST-REFL

� ` Chgr
C

i <: Chgr
C

i

ST-TRANS
� ` Chgr

C

i <: Dhgr
D

i � ` Dhgr
D

i <: Ehgr
E

i
� ` Chgr

C

i <: Ehgr
E

i

ST-BOTTOM

� ` ? <: Chgri
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A.3 Definitions

Definition 1 (Program State) A program state is a quintuple of the form (µ|�| |G|e), consisting of a store
(µ), a runtime permission context (�), a group access token context ( ) of available tokens, a data group
configuration (G) and an expression (e).

Definition 2 (Stuck) An program state (µ|�| |G|e) is stuck if e is not a value and:

• (µ|�| |G|e) does not take a step (i.e. (µ|�| |G|e) 7!/ (µ0|�0| 0|G0|e0) for all e0, µ0, �0, 0,G0)

• (µ|�| |G|e) does not wait for resources to become available (i.e,. it is waiting for the corresponding
group access token to become available)

Definition 3 (Unique Allocation) If multiple expressions simultaneously allocate new objects, then every
creation site will get a unique object reference.

Definition 4 (Store Typing) A store µ is said to be well typed, written �|⌃ ` µ, if:

• dom(⌃) = dom(µ)

• 8o 2 dom(µ) : µ|�|⌃ ` o : ⌃(o)

OBJ-TYPING
ho

r

7! obji 2 µ obj = C[f = v
f

] CT (C) = class Ch↵,�i extends Eh↵i{G F M}
fields(C) = T

f

f ⌃(o
r

) = Cho.gni ⌃(v
f

) <: [

o.gn/
↵,�

][

or/
this

]T
f

µ|�|⌃ ` o
r

: Cho.gni

Definition 5 (Well-Formed Program State) A program state is well typed, written as ·|⌃|�
ẁf

(µ|�| |G|e),
if :

• ·|⌃|� ` e : T |G
• �|⌃ ` µ

• If o.gn 2 � then there exists the corresponding o.gn : gp 2 �
• µ 6= race

• (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e

• o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

Lemma 1 (Weakening) If �

0 ✓ � , ⌃

0 ✓ ⌃ and �

0 ✓ � then �

0|⌃0|�0 ` e : T |G implies
�|⌃|� ` e : T |G . Proof straightforward through standard induction.

Lemma 2 (Store Monotonicity) If �|⌃ ` µ and ⌃ ✓ ⌃0 then �|⌃0 ` µ.

Proof: By induction on typing derivation.
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Lemma 3 (Substitution) If �, x : T
x

,�0|⌃|� ` e : T
e

|G
e

and �|⌃|� ` r : T
r

| • and T
r

<: T
x

then
�, [r/

x

]�

0|⌃|[r/
x

]� ` [

r/
x

](e : T
e

|G
e

) (with [

r/
x

](e : T
e

|G
e

) being the capture-avoiding substitution).

Proof: By induction on a derivation of the statement �, x : T
x

,�0|⌃|� ` e : T
e

|G
e

.

Lemma 4 (Inversion) • If �|⌃|� ` let x = e1 in e2 : T2|G then � = �1,�R

and G = (G1 � G2)

and �|⌃|�1 ` e1 : T1 |G1 for some T1 and �, x:T1|⌃|�1,�R

` e2 : T2 |G2

• If �|⌃|� ` r.f
i

: T
i

|G then �|⌃|� ` r : Dhgri for some D and gr and G = {gr0} and T
i

f
i

2
fields(D) and � ` gr

o

: gp with gp 2 {exclusive, protected}.

• If �|⌃|� ` r
v

.f
i

:= r
v

: T
v

|G then �|⌃|� ` r
v

: Dhgri for some D and gr and G = {gr0}
and T

i

f
i

2 fields(D) and �|⌃|� ` r
v

: T
v

|• with T
v

<: T
i

and � ` gr
o

: gp with gp 2
{exclusive, protected}.

• If �|⌃|� ` new Cho
g

.gn
g

i : T |G then CT (D) = class Dh↵,�i extends Eh↵i{G F M}
and �|⌃ ` gr : G and T = [

og .gng/
↵,�

]Ch↵, bi and G = •.

• If �|⌃|� ` r.mhgri(r
p

) : T |G then �|⌃ ` r : T
r

, p : T
p

, gr : G and � ` gr : gp and T
r

= Dhgr
D

i
and CT (D) = class Dh↵,�i extends Eh↵i{GF M} and mdecl(D,m) = T

result

mhgp �i(T
x

x){ e }
and T

p

<: [

gr,grD/
�,↵,�

]T
x

and T
r

<: [

gr,grD/
�,↵,�

]Dh↵,�i and T = [

gr,grD/
�,↵,�

]T
result

and
G = {gr}.

• If �|⌃|� ` unpackGroupsOf r in e then �|⌃ ` r : Chgri and � = �

0, (gr0 : qp) and
groupDecls(C) = gn and �, (r.gn : G)|⌃|�0, (r.gn : qp0) ` e : T | G

e

and G = ({gr
o

, r.gn}} �
G
e

).

• If �|⌃|� C̀ atomic hgri e : T | G then G = ({gr} � G
e

) and � = �

0, (gr : shared) and
�|⌃ ` gr : G and �|⌃|(�0, gr : protected) C̀ e : T | G

e

• If �|⌃|� C̀ inatomic hgri e : T | G then G = ({gr} � G
e

) and � = �

0, (gr : shared) and
�|⌃ ` gr : G and �|⌃|(�0, gr : protected) C̀ e : T | G

e

• If �|⌃|� C̀ share hgri between e1 k e2 : ? | G then {gp} ✓ {exclusive, shared} and
� = �1,�2,�r

, (gr : gp) and �|⌃|(�1, gr : shared) C̀ e1 : T1 |G1 and �|⌃|(�2, gr : shared) C̀

e2 : T2 |G2 and G = (G1 k G2).

Proof: Immediate from the definition of the typing relation.

Lemma 5 (Progress) If �|⌃|�
ẁf

(µ|�| |G|e) (i.e. a well-formed program state) then either:

• e is a value and G = •
• µ|�| |G ` e 7! e0 a µ

�

| 0|G0 for some e0, µ
�

, 0,G0

• e stops execution with null-dereference, meaning that the expression e contains a sub expression of the
form null.f .

• e is waiting for resource to become available

Lemma 6 (Preservation) If �|⌃|�
ẁf

(µ|�| |G|e) with �|⌃|� ` e : T |G and µ|�| |G ` e 7! e0 a
µ
�

| 0|G0 and µ0
= [µ

�

]µ then there exists:
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• ⌃0 ◆ ⌃
• T 0

such that:

• �|⌃0|�
ẁf

(µ0|�| 0|G0|e0) with �|⌃0|� ` e0 : T 0 |G0 and T 0 <: T

Theorem 1 (Type-Safety) If �|⌃|�
ẁf

(µ|�| |G|e) and (µ|�| |G ` e) 7!⇤
(µ0|�0| 0|G0|e0) then �|⌃0|�

ẁf

(µ0|�0| 0|G0|e0) and not stuck.

A.4 Proofs

A.4.1 Proof Type-Safety

Proof (Type-Safety) by induction on (µ| F | L|G|e) 7!⇤
(µ| 0

F | 0
L|G0|e0):

Case [(µ| F | L|G|e) 7! (µ| 
F

| L|G|e)] :
by progess lemma: e (= e0) either is value | e takes a step | e causes a null-dereference
) (µ| F | L|G|e) is not stuck

Case

2

64
µ| F | L|G ` e 7! e1 a (µ

�R , µ�W )| F1| L1|G1

µ1 = [µ
�W ]µ (µ1| F1| L1|G1|e1) 7!⇤ e0 a µ0| 0

F | 0
L|G0

(µ| F | L|G|e) 7!⇤
(µ0| 0

F | 0
L|G0|e0)

3

75 :

by preservation lemma: �|⌃|�
p̀rog

(µ1| F1 | L1 |G1|e1)
by IH on (µ1| F1 | L1 |G1|e1): (µ0| 0

F1
| 0

L|G0|e0) not stuck

A.4.2 Proof of Preservation

Proof (Preservation) by induction on µ|�| |G ` e 7! e0 a µ
�

| 0|G0

Case E-FIELD-READ :
) e = o

r

.f
i

) e0 = o
v

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|o
v

) i.e.
(TS1.1) �|⌃0|� ` o

v

: T 0 |G0 with T 0 <: T
(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e
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by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G|o
r

.f
i

)

by DEFINITION:
(AS1) �|⌃|� ` o

r

.f : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
T
i

f
i

2 fields(D)

o
r

: Dhgri
G = {gr0}
gr

o

: gp 2 � with gp 2 {exclusive, protected}
WLOG: let o0.gn0

= gr0

by E-FIELD-READ:
o0.gn0 2 �
 

0
=  

G0
= •

µ
�

= ho
r

7! D[f = v
f

]i
WLOG: let ⌃0

= ⌃

by STORE-TYPING: o
v

: T
v

2 ⌃ with T
v

<: T
i

by T-REFERENCE: �|⌃0|� ` o
v

: T
v

|• (TS1.1)
by CONSTRUCTION: µ

�

6= race =) µ0
= [µ

�

]µ 6= race (TS1.2)
by CONSTRUCTION: µ0

= [µ
�

]µ = µ (TS1.3)
by E-FIELD-READ: �,� do not change (TS1.4)
by E-FIELD-READ,AS5,AS6:  =  

0 (TS1.5, TS1.6)
by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�

ẁf

(µ0|�| 0|G0|o
v

) (TS1)

Case E-Let-12 :
) e = let x = e1 in e2
) e0 = let x = e01 in e02
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TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0| let x = e01 in e02) i.e.
(TS1.1) �|⌃0|� ` let x = e01 in e02 : T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| let x = e1 in e2)
by DEFINITION:

(AS1) �|⌃|� ` let x = e1 in e2 : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
� = �1,�R

G = G1 � G2

�|⌃|�1 ` e1 : T1 |G1 for some T1

�, x:T1|⌃|�1,�R

` e2 : T |G2

by E-LET-12:
let �1 = � \ requiredPerms(G1) be the (sub-)set of permissions that are required by e1
) o.gn 2 �1 =) o.gn : gp 2 �1

µ 6= race and is well typed with respect to ⌃
let  =  1, 2 with requiredTokens(e1) ✓  1 and requiredTokens(e2) ✓  2

) o.gn@L 2  1 =) 9 exactly one inatomic ho.gni . . . 2 e1
) (o.gn@U 2  1 _ o.gn@ /2  1) =) @ inatomic ho.gni . . . 2 e1
) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni . . . 2 e2
) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni . . . 2 e2
�|⌃|� ` e1 : T1 |G1 is well typed
) �|⌃|�1

ẁf

(µ|�1| 1|G1|e1)
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by IH: on �|⌃1|�1
ẁf

(µ1|�1| 1|G1|e1) with �|⌃|�1 ` e1 : T1 |G1 where µ|�1| 1|G1 ` e1 7! e01 a
µ
�1 | 0

1|G0
1

for some G0
1,⌃ ✓ ⌃1

(IS1.1-1) �|⌃1|�1 ` e01 : T1 |G0
1

(IS1.2-1) µ1 6= race
(IS1.3-1) µ1 is well typed with respect to ⌃1

(IS1.4-1) o.gn 2 �1 =) o.gn : gp 2 �1

(IS1.5-1) (o.gn@U 2  1 _ o.gn@ /2  1) =) @ inatomic ho.gni . . . 2 e01
(IS1.6-1) o.gn@L 2  1 =) 9 exactly one inatomic ho.gni . . . 2 e01

by E-LET-12:
let �2 = (� � �1) be the sub-set of permissions that did not go to e1
) o.gn 2 �2 =) o.gn : gp 2 �2

µ 6= race and is well typed with respect to ⌃
let  =  1, 2 with requiredTokens(e1) ✓  1 and requiredTokens(e2) ✓  2

) o.gn@L 2  1 =) 9 exactly one inatomic ho.gni . . . 2 e1
) (o.gn@U 2  1 _ o.gn@ /2  1) =) @ inatomic ho.gni . . . 2 e1
) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni . . . 2 e2
) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni . . . 2 e2
�|⌃|� ` e2 : T2 |G2 is well typed
) �|⌃|�2

ẁf

(µ|�2| 2|G2|e2)

by IH: on �|⌃2|�2
ẁf

(µ2|�2| 2|G2|e2) with �|⌃|�1 ` e2 : T1 |G1 where µ|�2| 2|G2 ` e2 7! e02 a
µ
�2 | 0

2|G0
2

for some G0
2,⌃ ✓ ⌃1

(IS1.1-2) �|⌃2|�2 ` e02 : T |G0
2

(IS1.2-2) µ2 6= race
(IS1.3-2) µ2 is well typed with respect to ⌃2

(IS1.4-2) o.gn 2 �2 =) o.gn : gp 2 �2

(IS1.5-2) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni 2 e02
(IS1.6-2) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni 2 e02

by UNIQUE ALLOCATE:
⌃1 = ⌃ [ ⌃0

1 and ⌃2 = ⌃ [ ⌃0
2 with dom(⌃

0
1) \ dom(⌃

0
2) = •

) let ⌃0
= ⌃ [ ⌃1 [ ⌃2

dom( 

0
1) \ dom( 

0
2) = •

by E-LET-12:  0
=  

0
1, 

0
2 with dom( 

0
1) \ dom( 2)

0

by IS1.5-1, IS1.5-2:
(o.gn@U 2  0 _ o.gn@ /2  0

) =) @ inatomic ho.gni . . . 2 e0 (TS1.5)
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by IS1.6-1, IS1.6-2:
o.gn@L 2  0

=) 9 exactly one inatomic ho.gni . . . 2 e0 (TS1.6)

by E-LET-12: � = �1, �2
) @o1, o2 : o1 2 dom(µ

�1) ^ o2 2 dom(µ
�2) ^ ⌃0

(o1) = Cho0.gn0 . . .i ^ ⌃0
(o2) = Dho0.gn0 . . .i

) dom(µ
�1) \ dom(µ

�2) = •
) µ

�

= µ
�1 ] µ

�2 6= race
) µ0

= [µ0
�

]µ 6= race (TS1.3)

by IS1.3-1,IS1.3-2:
µ1 is well typed with respect to ⌃1

µ2 is well typed with respect to ⌃2

) µ0 well typed with respect to ⌃0 (TS1.2)

by E-LET-12: �,� does not change
o.gn 2 � =) o.gn : gp 2 � (TS1.4)

by T-LET-12: �|⌃0|� ` let x = e01 in e02 : T |G0 (TS1.1)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: (TS1)

Case E-LET-1 :
Proof is a sub-case of case E-LET-12, without the e2 sub-expression step.

Case E-LET-2 :
Proof is a sub-case of case E-LET-12, without the e1 sub-expression step.

Case E-LET-VALUE :
) e = let x = v in e2
) e0 = [

v/
x

]e2

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|[v/
x

]e2) i.e.
(TS1.1) �|⌃0|� ` [

v/
x

]e2 : T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e
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by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| let x = v in e2)
by DEFINITION:

(AS1) �|⌃|� ` let x = v in e2 : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
� = �1,�R

G = G1 � G2

�|⌃|�1 ` v : T1 |G1 for some T1

�|⌃|�1,�R

` e2 : T2 |G2

by rule E-LET-VALUE:
G0

= [

v/
x

]G2

 

0
=  

µ
�

= •

by SUBSTITUTION:
�, x : T1,�

0|⌃|�1,�R

` e2 : T2 |G2 =) �, [v/
x

]�

0|⌃|[v/
x

]�1,�R

` [

v/
x

](e2 : T2 |G2) (TS1.1)

by E-LET-VALUE: µ
�

= •
) µ0

= [µ
�

]µ = µ 6= race (TS1.3)

WLOG: let ⌃0
= ⌃

by AS2: µ0
= µ is well typed with respect ⌃0

= ⌃ (TS1.2)

by E-LET-VALUE: neither �� changes (TS1.4)

by AS5,AS6:  0
=  (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.5: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-FIELD-ASSIGN :
) e = v

r

.f
i

:= o
v

) e0 = o
v
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TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|o
v

) i.e.
(TS1.1) �|⌃0|� ` o

v

: T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G|v
r

.f
i

:= o
v

)

by DEFINITION:
(AS1) �|⌃|� ` v

r

.f
i

:= o
v

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
T
i

f
i

2 fields(D)

o
r

: Dhgri
G = {gr0}
gr

o

: gp 2 � with gp 2 {exclusive, protected}
o
v

: T
v

with T
v

: T
i

WLOG: let o0.gn0
= gr0

by E-FIELD-ASSIGN:
o0.gn0 2 �
o0.gn0

@ 2  
 

0
=  

G0
= •

µ
�

= ho
r

7! D[f = v
f

]i
WLOG: let ⌃0

= ⌃

by STORE-TYPING: o
v

: T
v

2 ⌃ with T
v

<: T
i

by T-REFERENCE: �|⌃0|� ` o
v

: T
v

|• (TS1.1)
by CONSTRUCTION: µ

�

6= race =) µ0
= [µ

�

]µ 6= race (TS1.2)
by CONSTRUCTION: µ0

= [µ
�

]µ = µ (TS1.3)
by E-FIELD-ASSIGN: �,� do not change (TS1.4)
by E-FIELD-ASSIGN,AS5,AS6:  =  

0 (TS1.5, TS1.6)
by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�

ẁf

(µ0|�| 0|G0|e0) (TS1)
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Case E-NEW :
) e = new Chv

g

.gn
g

i
) e0 = o

new

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|o
new

) i.e.
(TS1.1) �|⌃0|� ` o

new

: T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| new Chv
g

.gn
g

i)
by DEFINITION:

(AS1) �|⌃|� ` new Chv
g

.gn
g

i : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
T = [

og .gng/
↵,�

]Ch↵, bi
G = •

by E-NEW:
o0.gn0 2 �
o0.gn0

@ 2  
groupDecls(C) = gn

c

 

0
=  , o

new

.gn
c

@U
G0

= •
µ
�

= ho
new

7! C[f = null]i

by E-NEW:
µ
�

6= race =) µ0
= [µ

�

]µ (TS1.3)
�,� do not change (TS1.4)

WLOG: let ⌃0
= ⌃, o

new

: T
by E-TRANS-N: µ0

= [µ
�

]µ is well typed with respect to ⌃0 (TS1.2)

by T-REFERENCE: �|⌃0|� ` o
new

: T |G0 (TS1.1)
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by E-NEW,AS5,AS6:  0
=  , {o

new

.gn
c

@U}
newly added access tokens are in unlocked state
) atomic ! inatomic transmission could have happened so far (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-CALL :
) e = v

r

.mhv
g

.gn
g

i(v
p

)

) e0 = [

vg .gng/
↵,�

][

vp/
x

][

vr/
this

]e

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|[vg .gng/
↵,�

][

vp/
x

][

vr/
this

]e
b

) i.e.
(TS1.1) �|⌃0|� ` [

vg .gng/
↵,�

][

vp/
x

][

vr/
this

]e
b

: T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G|v
r

.mhv
g

.gn
g

i(v
p

))

by DEFINITION:
(AS1) �|⌃|� ` v

r

.mhv
g

.gn
g

i(v
p

) : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
�|⌃ ` r : T

r

, p : T
p

, gr : G
� ` gr : gp
T
r

= Dhgr
D

i
CT (D) = class Dh↵,�i extends Eh↵i{G F M}
mdecl(D,m) = T

result

mhgp �i(T
x

x){ e }
T
p

<: [

gr,grD/
�,↵,�

]T
x

T
r

<: [

gr,grD/
�,↵,�

]Dh↵,�i
T = [

gr,grD/
�,↵,�

]T
result

G = {gr}
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by E-CALL:
vg

g

.gn
g

2 �
mbody(C,m) = ↵.x.e

b

⇥ G
e

G0
= [

vg .gng/
↵,�

][

vp/
x

][

vr/
this

]G
e

 

0
=  

µ
�

= •
WLOG: let ⌃0

= ⌃

by SUBSTITUTION: �0, x : T
x

,this : T
r

, gr : G,�0|⌃|� ` e : T
e

|G
e

) �, [vg .gng/
↵,�

][

vp/
x

][

vr/
this

]�

0|⌃|[vg .gng/
↵,�

][

vp/
x

][

vr/
this

]� ` [

vg .gng/
↵,�

][

vp/
x

][

vr/
this

](e : T
result

|G
e

)

(TS1.1)

by E-CALL: µ
�

= • =) µ0
= [µ

�

]µ = µ
µ0 is well typed with respect to ⌃0 (TS1.2)
µ0 6= Race (TS1.3)

by E-CALL: �,� do not change (TS1.4)

by E-CALL, AS5, AS6: inatomic /2 e
b

because it is a runtime only construct (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-UNPACKGROUPSOF-REPLACE :
) e = unpackGroupsOf v

r

in e
sub

) e0 = unpackGroupsOf v
r

in e0
sub

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0| unpackGroupsOf v
r

in e0
sub

) i.e.
(TS1.1) �|⌃0|� ` unpackGroupsOf v

r

in e0
sub

: T 0 |G0 for some T 0 <: T
(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e
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by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| unpackGroupsOf v
r

in e
sub

)

by DEFINITION:
(AS1) �|⌃|� ` unpackGroupsOf v

r

in e
sub

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
�|⌃ ` v

r

: Dhgri
� = �

0, (gr0 : qp)
groupDecls(D) = gn
�

00
= �

0, (v
r

.gn : qp0)
�, (v

r

.gn : G)|⌃|�00 ` e : T | G
e

G = ({gr
o

, r.gn}}� G
e

)

by E-UNPACKGROUPSOF-REPLACE:
G = ({v0.gn, v

r

.gn}� G
e

)

� = �0, v0.gn
�00 = �0, v

r

.gn

Sub-Case T-UNPACKGROUPSOF-SHARED :
qp 2 {shared, protected}) qp0 = shared

Sub-Case T-UNPACKGROUPSOF-EXCLUSIVE :
If qp 2 {exclusive}) qp0 = exclusive

by IH: on �, (v
r

.gn : G)|⌃|�00
ẁf

(µ|�00| |G
e

|e
sub

) with �|⌃|�00 ` e
sub

: T |G
e

where µ|�00| |G
e

`
e
sub

7! e0
sub

a µ
�

| 0|G0
e

for some G0
2,⌃ ✓ ⌃0, T 0 <: T

(IS1.1) �|⌃0|�00 ` e0
sub

: T 0 |G0
e

(IS1.2) µ0 6= race
(IS1.3) µ0 is well typed with respect to ⌃0

(IS1.4) o.gn 2 �00 =) o.gn : gp 2 �00

(IS1.5) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni 2 e0
sub

(IS1.6) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni 2 e0
sub
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by IS1.2, IS1.3, IS1.5, IS1.6: (TS1.2, TS1.3, TS1.5, TS1.6)

by T-UNPACKGROUPSOF-EXCLUSIVE, T-UNPACKGROUPSOF-SHARED, E-UNPACKGROUPSOF-REPLACE:
�|⌃0|� ` unpackGroupsOf v

r

in e0
sub

: T 0 |G0 (TS1.1)

by IS1.4, E-UNPACKGROUPSOF-REPLACE:
o.gn 2 � =) o.gn : gp 2 � (TS1.1)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-UNPACKGROUPSOF-NONE :
) e = unpackGroupsOf v

r

in e
sub

) e0 = unpackGroupsOf v
r

in e0
sub

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0| unpackGroupsOf v
r

in e0
sub

) i.e.
(TS1.1) �|⌃0|� ` unpackGroupsOf v

r

in e0
sub

: T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| unpackGroupsOf v
r

in e
sub

)

by DEFINITION:
(AS1) �|⌃|� ` unpackGroupsOf v

r

in e
sub

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
�|⌃ ` v

r

: Chgri
� = �

0, (gr0 : qp)
groupDecls(C) = gn
�

00
= �

0, (v
r

.gn : qp0)
�, (v

r

.gn : G)|⌃|�00 ` e : T | G
e

G = ({gr
o

, r.gn}}� G
e

)

WLOG: let v0.gn = gr0
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by E-UNPACKGROUPSOF-NONE:
gr0 /2 �
G = ({v0.gn}� G

e

)

G0
= ({v0.gn}� G0

e

)

by IH: on �, (v
r

.gn : G)|⌃|�00
ẁf

(µ|�00| |G
e

|e
sub

) with �|⌃|�00 ` e
sub

: T |G
e

where µ|�00| |G
e

`
e
sub

7! e0
sub

a µ
�

| 0|G0
e

for some G0
2,⌃ ✓ ⌃0

(IS1.1) �|⌃0|�00 ` e0
sub

: T |G0
e

(IS1.2) µ0 6= race
(IS1.3) µ0 is well typed with respect to ⌃0

(IS1.4) o.gn 2 � =) o.gn : gp 2 �0

(IS1.5-2) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni 2 e0
sub

(IS1.6-2) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni 2 e0
sub

by IS1.2, IS1.3, IS1.5, IS1.6: (IS1.2, IS1.3, IS1.5, IS1.6)

by T-UNPACKGROUPSOF-EXCLUSIVE, T-UNPACKGROUPSOF-SHARED, E-UNPACKGROUPSOF-NONE:
�|⌃0|� ` unpackGroupsOf v

r

in e0
sub

: T |G0 (IS1.1)

by IS1.4, E-UNPACKGROUPSOF-NONE:
o.gn 2 � =) o.gn : gp 2 � (IS1.1)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-UNPACKGROUPSOF-VALUE :
) e = unpackGroupsOf v

r

in v
) e0 = v

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|v) i.e.
(TS1.1) �|⌃0|� ` v : T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e
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by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| unpackGroupsOf v
r

in e
sub

)

by DEFINITION:
(AS1) �|⌃|� ` unpackGroupsOf v

r

in e
sub

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
�|⌃ ` v

r

: Chgri
� = �

0, (gr0 : qp)
groupDecls(C) = gn
�

00
= �

0, (v
r

.gn : qp0)
�, (v

r

.gn : G)|⌃|�00 ` e : T | G
e

G = ({gr
o

, r.gn}}� G
e

)

by E-UNPACKGROUPSOF-VALUE:
G0

= •
µ0
�

= •
 

0
=  

WLOG: let ⌃0
= ⌃

by STORE-TYPING: v : T 2 ⌃

by T-REFERENCE: �|⌃0|� ` v : T |• (TS1.1)

by E-UNPACKGROUPSOF-VALUE:
µ
�

= • =) µ0
= [µ

�

]µ 6= race (TS1.3)
µ0

= µ is well typed with respect to ⌃0
= ⌃ (TS1.2)

by AS1.4, AS1.5, AS1.6,E-UNPACKGROUPSOF-VALUE: d,�, do not change (TS1.4, TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-ATOMIC-STEP1 :
Follows the reasoning as the E-UnpackGroupsOf-None case, by allowing the sub-expression to execute code

that does not depend on the aotmic permission.
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Case E-ATOMIC-STEP2 :
Analog to case E-Atomic-Step1. Despite the fact that we have the necessary permission the data group

access token indicate the already another atomic block is executing. Therefore only allow sub-expression
only to execute code that does not depend on the atomic permission.

Case E-ATOMIC-INATOMIC :
) e = atomic hgri e

sub

) e0 = inatomic hgri e0
sub

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0| inatomic hgri e
sub

) i.e.
(TS1.1) �|⌃0|� ` inatomic hgri e

sub

: T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| atomic hgri e
sub

)

by DEFINITION:
(AS1) �|⌃|� ` atomic hgri e

sub

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
G = ({gr}� G

e

)

� = �

0, (gr : shared)
�|⌃ ` gr : G
�|⌃|(�0, gr : protected) C̀ e

sub

: T | G

by E-ATOMIC-INATOMIC:
 =  

00, gr@U
 

0
=  

00, gr@L
G0

= G
µ
�

= •
WLOG: let ⌃0

= ⌃
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by AS2, E-ATOMIC-INATOMIC: µ
�

= • =) µ0
= [µ

�

]µ
µ0

= µ 6= race (TS1.3)
µ0

= µ is well typed with respect to ⌃0
= ⌃ (TS1.2)

by T-INATOMIC:
�|⌃0|� ` inatomic hgri e

sub

: T |G0 (TS1.1)

by E-ATOMIC-INATOMIC: �,� do not change (TS1.4)

by AS1,AS5,AS6:
gr@L 2  =) 9 exactly one inatomic hgri . . . 2 e
gr@ /2  00

=) @ inatomic hgri . . . 2 e
sub

gr@L 2  0
=) @ inatomic hgri . . . 2 e0 (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-INATOMIC-STEP1 :
Follows a similar logic as E-Atomic-Step2. In this case the all permissions are passed to the sub-expression

let the sub-expression take a step.

Case E-INATOMIC-VALUE :
) e = inatomic hgri v
) e0 = v

TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0|v) i.e.
(TS1.1) �|⌃0|� ` v : T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| inatomic hgri e
sub

)

by DEFINITION:
(AS1) �|⌃|� ` inatomic hgri e

sub

: T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e
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by INVERSION:
G = ({gr}� G

e

)

� = �

0, (gr : shared)
�|⌃ ` gr : G
�|⌃|(�0, gr : protected) C̀ v : T | G

by E-INATOMIC-VALUE:
gr 2 �
 =  

00, gr@L
 

0
=  

000, gr@U
µ
�

= 0

G0
= •

WLOG: let ⌃0
= ⌃

by STORE-TYPING: v : T 2 ⌃

by T-REFERENCE: �|⌃0|� ` v : T |• (TS1.1)

by E-INATOMIC-VALUE:
µ
�

= • =) µ0
= [µ

�

]µ 6= race (TS1.3)
µ0

= µ is well typed with respect to ⌃0
= ⌃ (TS1.2)

by AS1.4 E-UNPACKGROUPSOF-VALUE: d,�, do not change (TS1.4)

by AS1,AS5,AS6:
gr@L 2  =) 9 exactly one inatomic hgri . . . 2 e
gr@U 2  0

=) @ inatomic hgri . . . 2 e0 (TS1.5, TS1.6)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: �|⌃|�
ẁf

(µ0|�| 0|G0|e0) (TS1)

Case E-SPLIT-12 :
) e = share hgri between e1 k e2
) e0 = share hgri between e01 k e02
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TO SHOW:
(TS1) �|⌃|�

ẁf

(µ0|�| 0|G0| share hgri between e01 k e02) i.e.
(TS1.1) �|⌃0|� ` share hgri between e01 k e02 : T |G0

(TS1.2) µ is well typed with respect to ⌃0

(TS1.3) µ0 6= race
(TS1.4) o.gn 2 � =) o.gn : gp 2 �
(TS1.5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(TS1.6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by ASSUMPTION: �|⌃|�
ẁf

(µ|�| |G| share hgri between e1 k e2)
by DEFINITION:

(AS1) �|⌃|� ` share hgri between e1 k e2 : T |G
(AS2) µ 6= race
(AS3) µ is well typed with respect to ⌃
(AS4) o.gn 2 � =) o.gn : gp 2 �
(AS5) (o.gn@U 2  _ o.gn@ /2  ) =) @ inatomic ho.gni . . . 2 e
(AS6) o.gn@L 2  =) 9 exactly one inatomic ho.gni . . . 2 e

by INVERSION:
{gp} ✓ {exclusive, shared}
� = �1,�2,�r

, (gr : gp)
�|⌃|(�1, gr : shared) C̀ e1 : T1 |G1

�|⌃|(�2, gr : shared) C̀ e2 : T2 |G2

G = (G1 k G2)

by E-SPLIT-12:
G = (G1 k G2)

�1 = � \ required(G1) the sub-set of permission that are required by e1
�2 = � \ required(G2) the sub-set of permission that are required by e2
 =  1, 2 with requiredTokens(e1) ✓  1 and requiredTokens(e2) ✓  2

 

0
=  

0
1, 

0
2

G0
= (G0

1 k G0
2)

by ASSUMPTION:
�|⌃|�1

ẁf

(µ|�1| 1|G1|e1)
�|⌃|�2

ẁf

(µ|�2| 2|G2|e2)
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by IH: on �|⌃1|�1
ẁf

(µ1|�1| 1|G1|e1) with �|⌃|�1 ` e1 : T1 |G1 where µ|�1| 1|G1 ` e1 7! e01 a
µ
�1 | 0

1|G0
1

for some G0
1,⌃ ✓ ⌃1

(IS1.1-1) �|⌃1|�1 ` e01 : T1 |G0
1

(IS1.2-1) µ1 6= race
(IS1.3-1) µ1 is well typed with respect to ⌃0

(IS1.4-1) o.gn 2 �1 =) o.gn : gp 2 �1

(IS1.5-1) (o.gn@U 2  1 _ o.gn@ /2  1) =) @ inatomic ho.gni . . . 2 e01
(IS1.6-1) o.gn@L 2  1 =) 9 exactly one inatomic ho.gni . . . 2 e01

by IH: on �|⌃2|�2
ẁf

(µ|�2| 2|G2|e2) with �|⌃|�1 ` e2 : T1 |G1 where µ|�2| 2|G2 ` e2 7! e02 a
µ
�2 | 0

2|G0
2

for some G0
2,⌃ ✓ ⌃1

(IS1.1-2) �|⌃2|�2 ` e02 : T |G0
2

(IS1.2-2) µ2 6= race
(IS1.3-2) µ2 is well typed with respect to ⌃0

(IS1.4-2) o.gn 2 �2 =) o.gn : gp 2 �2

(IS1.5-2) (o.gn@U 2  2 _ o.gn@ /2  2) =) @ inatomic ho.gni 2 e02
(IS1.6-2) o.gn@L 2  2 =) 9 exactly one inatomic ho.gni 2 e02

by UNIQUE ALLOCATE:
⌃1 = ⌃ [ ⌃0

1 and ⌃2 = ⌃ [ ⌃0
2 with dom(⌃

0
1) \ dom(⌃

0
2) = •

) let ⌃0
= ⌃ [ ⌃1 [ ⌃2

dom( 

0
1) \ dom( 

0
2) = •

by E-SPLIT-12:  0
=  

0
1, 

0
2

by IS1.5-1, IS1.5-2:
(o.gn@U 2  0 _ o.gn@ /2  0

) =) @ inatomic ho.gni . . . 2 e0 (TS1.5)

by IS1.6-1, IS1.6-2:
o.gn@L 2  0

=) 9 exactly one inatomic ho.gni . . . 2 e0 (TS1.6)

by E-SPLIT-12: � = �1, �2
) @o1, o2 : o1 2 dom(µ

�1) ^ o2 2 dom(µ
�2) ^ ⌃0

(o1) = Cho0.gn0 . . .i ^ ⌃0
(o2) = Dho0.gn0 . . .i

) dom(µ
�1) \ dom(µ

�2) = •
) µ

�

= µ
�1 ] µ

�2 6= race
) µ0

= [µ0
�

]µ 6= race (TS1.3)
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by IS1.2-1,IS1.2-2:
µ1 is well typed with respect to ⌃1

µ2 is well typed with respect to ⌃2

) µ0 well typed with respect to ⌃0 (TS1.2)

by E-SPLIT-12: �,� does not change
o.gn 2 � =) o.gn : gp 2 � (TS1.4)

by T-SPLIT-12: �|⌃0|� ` e0 : T |G0 (TS1.1)

by TS1.1, TS1.2, TS1.3, TS1.4, TS1.5, TS1.6: (TS1)

Case E-SPLIT-1 :
Follows the same approach as case E-Split-12 with the difference that the evaluation of e2 is not considered.

Case E-SPLIT-2 :
Follows the same approach as case E-Split-12 with the difference that the evaluation of e1 is not considered.

Case E-SPLIT-VALUE :
Follows the same approach as case E-UnpackGroupsOf-Value.

A.4.3 Proof of Progress

Proof (Progress) by induction on �|⌃|� C̀ e : T |G.

Case T-UNPACKGROUPSOF-EXCLUSIVE :
e = unpackGroupsOf r in e1

by IH: e1 is value | e1 takes a step | e1 stops with null-dereference | e1 waits for resources

Sub-Case e1 is value :
by E-UNPACKGROUPSOF-VALUE: µ|�| |G ` unpackGroupsOf r in v1 7! v1 a •| |•
) e 7! e0 takes a step

Sub-Case e1 takes a step (with s) :
by E-UNPACKGROUPSOF-REPLACE:

µ|�| |G ` unpackGroupsOf r in e1 7! unpackGroupsOf r in e01 a µ
�

| 0|G0

) e 7! e0 takes a step

Sub-Case e1 stops with null-dereference :
Then e stops with null-dereference.
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Sub-Case e1 waits for resources :
Then e waits for resources.

Case T-UNPACKGROUPSOF-SHARED :
Symmetric to the T-UNPACKGROUPSOF-EXCLUSIVE case.

Case T-SPLIT :
e = split hr.gni between e1 k e2

by GRAMMAR: r
i

= null or r
i

= o

Sub-Case 9i : r
i

= null :
Then e stops with null-dereference.

Sub-Case 8i : r
i

6= null :
by IH: e1 is value | e1 takes a step | e1 stops with null-dereference | e1 waits for resources

Sub-Sub-Case e1 is value :
by IH: e2 is value | e2 takes a step | e2 stops with null-dereference | e2 waits for resources

Sub-Sub-Sub-Case e2 is value :
by E-SPLIT-VALUE:

µ|�| |G ` split hr.gni between v1 k v2 7! null a •| |• ) e 7! e0 takes a step

Sub-Sub-Sub-Case e2 7! e02 takes a step :
by E-SPLIT-2:

µ|�| |G ` split hr.gni between e1 k e2 7! split hr.gni between e1 k e02 a
µ
�

|G0
; |G0

) e 7! e0 takes a step

Sub-Sub-Sub-Case e2 stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Sub-Case e2 waits for resources :
Then e waits for resources.

Sub-Sub-Case e1 7! e01 takes a step :
by E-SPLIT-1:

µ|�| |G ` split hr.gni between e1 k e2 7! split hr.gni between e01 k e2 a µ
�

| 0|G0

) e 7! e0 takes a step

Sub-Sub-Case e1 stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case e1 waits for resources :
Then e waits for resources.
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Case T-ATOMIC :
e = atomic hr.gni e1

by GRAMMAR: r = null or r = o

Sub-Case : r = null :
Then e stops with null-dereference.

Sub-Case r 6= null :
by IH: e1 is value | e1 takes a step | e1 stops with null-dereference | e1 waits for resources

Sub-Sub-Case e1 is value :
by E-ATOMIC-INATOMIC:

µ|�| |G ` atomic hr.gni v1 7! inatomic hr.gniv1 a •| 0|•
) e 7! e0 takes a step

Sub-Sub-Case e1 stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case e1 waits for resources :
Then e waits for resources.

Case T-INATOMIC :
e = inatomic hr.gni e1

by GRAMMAR: r = null or r = o
by T-INATOMIC: G = ({r.gn}� G

e

)

Sub-Case r = null :
Then e stops with null-dereference.

Sub-Case r 6= null :
by IH: e1 is value | e1 takes a step | e1 stops with null-dereference | e1 waits for resources

Sub-Sub-Case e1 takes a step (with µ|�| \{r.gn@L}|G
e

` e1 ! e01 a µ
�

| 0|G0
e

) :
by E-INATOMIC-STEP:

µ|�| |G ` inatomic hr.gni e1 7! inatomic hr.gni e01 a µ
�

| 0, r.gn@L|({r.gn}� G0
e

)

) e 7! e0 takes a step

Sub-Sub-Case e1 is value :
by E-INATOMIC-VALUE:

µ|�| |G ` inatomic hr.gni v1 7! v1 a •| 0|•
) e 7! e0 takes a step

Sub-Sub-Case e1 stops with null-dereference :
Then e stops with null-dereference.

Sub-Sub-Case e1 waits for resources :
Then e waits for resources.
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Case T-LET :
e = let x = e1 in e2

by T-LET: G = (G1 � G2)

by IH: e1 is value | e1 takes a step | e1 stops with null-dereference | e1 waits for resources

Sub-Case e1 is value :
by IH: e1 is value =) G1 = •
by E-LET-VALUE:

µ|�| |G ` let x = v1 in e2 7! [

v1/
e2 ] a •| |•

) e 7! e0 takes a step

Sub-Case e1 7! e01 takes a step :
by T-LET: requiredTokens(e) = requiredTokens(e1) [ requireTokens(e2)
by T-LET: requiredTokens(e) ✓  
let  1 =  

by E-LET-1:
µ|�| |G ` let x = e1 in e2 7! let x = e1 in e2 a µ

�

| 0|G0

) e 7! e0 takes a step

Sub-Case e1 stops with null-dereference :
Then e stops with null-dereference.

Sub-Case e1 waits for resources :
Then e waits for resources.

Case T-REFERENCE :
e = r

by GRAMMAR: r = null or r = o

Sub-Case r = null :
Then e stops with null-dereference.

Sub-Case r 6= null :
The e is value.

Case T-FIELD-READ :
) e = r.f

i

by GRAMMAR: r = null or r = o
by T-FIELD-READ: �|⌃ ` r : Dhgri
) µ(r) = D[f = v]

Sub-Case r = null :
Then e stops with null-dereference.

Sub-Case r 6= null :
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Sub-Sub-Case r.gn 2 � :
by T-FIELD-READ: �|⌃ ` r : Dhgri and fields(D) = T

f

f
by E-FIELD-READ:

µ|�| |G ` r.f
i

7! v
i

a µ
�

| |G0

) e 7! e0 takes a step

Sub-Sub-Case r.gn /2 � :
Then e is waiting for resources.

Case T-FIELD-ASSIGN :
) e = r.f

i

:= v
by GRAMMAR: r = null or r = o
by T-FIELD-ASSIGN: �|⌃ ` r : Dhgri
) µ(r) = D[f = r

f

]

Sub-Case r = null :
Then e stops with null-dereference.

Sub-Case r 6= null :

Sub-Sub-Case r.gn 2 � :
by E-FIELD-READ:

µ|�| |G ` r.f
i

:= r
v

7! v
i

a µ
�

| |G0

) e 7! e0 takes a step

Sub-Sub-Case r.gn /2 � :
Then e is waiting for resources.

Case T-NEW :
e = new Chr.gni()

by GRAMMAR: r
i

= null or r
i

= o

Sub-Case 9i : r
i

= null :
Then e stops with null-dereference.

Sub-Case 8i : r
i

6= null :
by E-NEW:

µ|�| |G ` new Chr.gni() 7! o a µ
�

| 0|G0

) e 7! e0 takes a step

Case T-CALL :
e = r

r

.mhr
g

.gni(r
p

)

by GRAMMAR: r
i

2 {r
r

, r
g

} =) r
i

= null or r
i

= o

Sub-Case 9i : r
i

= null :
Then e stops with null-dereference.
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Sub-Case 8i : r
i

6= null :

Sub-Sub-Case 9r
g

/2 � :
Then e waits for resources.

Sub-Sub-Case 8r
g

2 � :
by E-CALL:

µ|�| |G ` r
r

.mhr
g

.gni(r
p

) 7! [

rg .gn/
↵

][

rp/
x

][

rr/
this

]e
b

a •| |G
b

) e 7! e0 takes a step



DATA
B

B.1 Base Line Performance Data

Plaid Java Java Script
global member global member global member

3.375 5.879 1.059 1.182 13.390 13.245
3.415 5.903 1.054 1.148 13.243 13.198
3.356 5.795 1.054 1.163 13.488 13.865
3.313 5.877 1.093 1.156 13.500 13.512
3.420 5.890 1.063 1.141 13.581 13.182
3.294 5.813 1.079 1.149 13.730 13.432
3.361 5.797 1.095 1.171 13.508 13.458
3.350 5.971 1.121 1.139 13.720 13.279
3.386 6.013 1.095 1.163 13.555 13.184
3.354 5.876 1.087 1.150 13.445 13.228
3.365 5.852 1.069 1.149 13.306 13.196
3.412 5.863 1.083 1.158 13.438 14.002
3.370 5.872 1.080 1.161 13.302 13.155
3.344 5.928 1.086 1.170 13.408 13.111
3.351 5.887 1.054 1.140 13.284 13.637
3.342 5.901 1.062 1.204 13.706 13.280
3.451 5.833 1.041 1.145 13.578 13.218
3.389 5.802 1.042 1.150 13.739 13.186
3.368 5.878 1.091 1.172 13.443 13.285
3.379 5.791 1.049 1.133 13.816 13.269
3.369 5.871 1.073 1.157 13.509 13.346
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B.2 Webserver Performance Data

Plaid ÆMINIUM Java (Sequential) Java (Parallel)

46.40 38.10 50.78 30.27
46.18 38.64 48.31 32.51
49.82 40.13 50.15 30.45
47.47 42.12 49.21 31.19
51.81 33.79 49.09 31.91
48.14 38.60 50.10 30.31
49.48 34.73 50.04 30.69
52.79 38.46 45.08 31.27
51.47 42.22 51.45 30.91
52.24 31.99 46.41 30.49
51.48 34.81 48.54 32.67
47.32 36.29 47.07 32.98
50.98 42.23 48.60 31.36
46.06 37.42 47.48 30.89
47.69 35.98 48.43 31.23
47.82 42.09 44.72 30.80
49.45 31.93 47.47 31.34
47.48 32.00 46.29 31.67
49.37 41.84 48.77 30.57
49.41 34.24 51.95 32.07
49.14 37.38 48.50 31.28
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B.3 Dictionary Performance Data

global/unique global/shared fine/unique fine/shared
init check init check init check init check

7.989 7.059 8.849 8.004 5.266 4.487 1.379 0.944
7.724 7.060 8.722 7.958 5.355 4.684 1.400 0.940
7.916 7.251 8.641 7.987 5.378 4.737 1.405 0.946
7.667 7.149 8.693 8.024 5.282 4.509 1.376 0.939
8.088 7.300 8.734 8.176 5.364 4.925 1.387 0.944
8.108 7.248 8.882 4.250 5.212 4.402 1.386 0.942
7.946 7.075 8.691 8.019 5.315 4.606 1.396 0.947
7.860 7.203 9.175 4.128 5.434 4.676 1.374 0.938
7.855 7.096 8.557 7.928 5.394 4.667 1.394 0.945
8.104 7.203 8.845 7.902 5.336 4.711 1.387 0.941
7.983 7.239 8.847 3.905 5.423 4.713 1.374 0.931
7.965 7.149 8.723 7.997 5.273 4.468 1.412 0.943
8.109 7.009 8.866 4.127 5.403 4.478 1.399 0.937
7.755 7.079 8.697 7.856 5.475 4.718 1.398 0.935
7.860 7.349 8.736 8.030 5.239 4.553 1.367 0.939
7.978 7.136 8.726 7.794 5.229 4.687 1.380 0.939
7.908 6.872 8.826 3.996 5.409 4.669 1.386 0.939
7.950 7.190 8.784 7.893 5.244 4.526 1.395 0.937
8.028 7.259 8.689 4.088 5.417 4.765 1.375 0.932
7.802 7.126 8.833 7.871 5.147 4.492 1.392 0.936
7.769 7.265 8.859 4.305 5.562 4.661 1.407 0.942
7.955 7.253 8.727 7.954 5.384 4.701 1.393 0.941
8.047 7.135 8.831 7.912 5.187 4.475 1.418 0.949
7.935 7.253 8.581 7.947 5.315 4.486 1.391 0.932
8.125 7.263 8.964 4.323 5.480 4.714 1.392 0.924
8.036 7.045 8.912 4.095 5.667 4.693 1.375 0.960
7.647 7.203 8.670 7.856 5.378 4.711 1.366 0.930
7.830 7.164 8.821 4.170 5.208 4.365 1.385 0.939
8.033 7.200 8.828 4.055 5.396 4.548 1.420 0.946
7.906 7.308 8.796 4.035 5.473 4.601 1.421 0.945
8.091 7.335 8.995 4.163 5.463 4.673 1.384 0.945
7.920 7.174 8.674 7.934 5.439 4.710 1.390 0.946
8.027 7.124 8.972 4.165 5.076 4.478 1.381 0.935
8.105 7.236 8.689 7.871 5.324 4.607 1.383 0.950
7.926 7.173 8.765 7.845 5.200 4.509 1.410 0.930
7.784 7.189 8.815 8.015 5.463 4.683 1.382 0.928
7.944 7.305 8.665 3.988 5.157 4.417 1.406 0.946
8.084 7.286 8.782 7.973 5.151 4.509 1.379 0.930
7.925 7.285 8.787 4.048 5.515 4.762 1.383 0.927
7.969 7.172 8.749 7.917 5.334 4.469 1.384 0.937
7.850 7.202 8.867 4.261 5.400 4.648 1.395 0.930
7.873 7.091 8.815 4.153 5.219 4.486 1.405 0.932
7.945 7.327 8.683 8.077 5.405 4.697 1.421 0.948
7.993 7.285 8.606 7.938 5.218 4.451 1.376 0.937
7.908 7.189 8.789 7.889 5.432 4.734 1.400 0.943
7.661 7.202 8.649 7.916 5.123 4.511 1.414 0.929
8.016 7.196 8.790 7.860 5.238 4.448 1.390 0.938
7.928 7.332 8.821 5.194 5.299 4.680 1.380 0.940
7.820 7.243 8.819 3.970 5.143 4.503 1.389 0.934
8.052 7.401 8.741 4.077 5.356 4.739 1.380 0.926
7.933 7.197 8.779 6.356 5.332 4.602 1.391 0.938
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B.4 Integral Performance Data

Plaid ÆMINIUM

8.755 4.318
8.624 4.292
9.062 4.087
9.157 4.107
8.777 4.306
8.905 3.995
8.752 4.291
8.597 4.289
8.577 4.200
9.325 3.791
8.849 3.989
8.857 4.106
8.670 4.295
8.795 4.192
9.012 4.309
9.139 4.330
8.760 3.990
8.738 3.989
8.895 4.198
8.847 4.098
8.855 4.159
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B.5 ForkJoin Performance Data

Plaid ÆMINIUM (sequential) ÆMINIUM ÆMINIUM +Oracle Plaid/Threaded

11.902 12.597 2.494 2.118 1.960
12.000 12.994 2.532 1.976 2.021
11.968 12.584 2.405 2.167 2.027
12.041 13.609 2.418 2.012 2.060
11.870 12.094 2.399 2.017 2.020
12.103 13.206 2.507 2.089 2.008
11.979 12.797 2.500 1.975 2.092
11.989 12.696 2.428 1.995 2.011
12.073 12.501 2.396 2.110 1.962
11.981 12.297 2.398 2.098 2.031
12.036 12.375 2.398 2.197 1.983
11.960 13.592 2.506 2.097 1.985
12.263 12.280 2.503 2.021 2.105
11.889 12.382 2.423 2.109 2.024
12.202 12.783 2.403 2.035 1.902
12.122 12.295 2.404 2.105 2.047
11.996 12.602 2.412 2.017 1.938
12.107 12.386 2.404 1.985 2.042
12.243 12.477 2.522 2.043 2.054
12.253 12.883 2.395 2.080 1.964
12.049 12.671 2.442 2.062 2.012
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SOURCE CODE
C

C.1 Base Line Examples

C.1.1 Plaid

Listing C.1: Plaid’s Base Line Benchmarks

package plaid.examples.baseline.plaid;

state BaseLine {
method void forkJoin(immutable Integer level) [ immutable BaseLine this ] {

val immutable Boolean isZero = level == 0;

match ( isZero ) {
case False {

val immutable Integer nextLevel = level 1;
this.forkJoin(nextLevel);
this.forkJoin(nextLevel);

}
default { unit }

}
}

}

method void forkJoin(immutable Integer level) {
val immutable Boolean isZero = level == 0;

match ( isZero ) {
case False {

val immutable Integer nextLevel = level 1;
forkJoin(nextLevel);
forkJoin(nextLevel);

}
default { unit }

}
}

C.1.2 Java

Listing C.2: Java’s Member Base Line Benchmark

package plaid.examples.baseline.java;

public class ClassBaseLine {

public void forkJoin(int level){
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boolean isZero = level == 0;
if ( isZero == false ) {

int nextLevel = level 1;
this.forkJoin(nextLevel);
this.forkJoin(nextLevel);

} else {}
}

public static void main(String[] args) {
ClassBaseLine cbl = new ClassBaseLine();
long begin = System.nanoTime();
cbl.forkJoin(28);
long end = System.nanoTime();
long delta = end begin;
double divider = 1000⇤1000⇤1000.0;
double result = delta / divider;
System.out.printf(”%.3f\n”, result);

}

}

Listing C.3: Java’s Global Base Line Benchmark

package plaid.examples.baseline.java;

public class StaticBaseLine {

public static void forkJoin(int level) {
boolean isZero = level == 0;
if ( isZero == false ) {

int nextLevel = level 1;
forkJoin(nextLevel);
forkJoin(nextLevel);

} else {}
}

public static void main(String[] args) {
long begin = System.nanoTime();
forkJoin(28);
long end = System.nanoTime();
long delta = end begin;
double divider = 1000⇤1000⇤1000.0;
double result = delta / divider;
System.out.printf(”%.3f\n”, result);

}

}
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C.1.3 Java Script

Listing C.4: Java Script Member Base Line Benchmark

function BaseLine() {

};

BaseLine.prototype.forkJoin = function (level) {
var isZero = level == 0;
if ( isZero == false ) {

var nextLevel = level 1;
this.forkJoin(nextLevel);
this.forkJoin(nextLevel);

}
};

var begin = new Date();
var bl = new BaseLine();
bl.forkJoin(28);
var end = new Date();
console.log(”” + ((end.getTime()begin.getTime())/1000.0));

Listing C.5: Java Script Global Base Line Benchmark

function forkJoin(level) {
var isZero = level == 0;
if ( isZero == false ) {

var nextLevel = level 1;
forkJoin(nextLevel);
forkJoin(nextLevel);

}
}

var begin = new Date();
forkJoin(28)
var end = new Date();
console.log(”” + ((end.getTime()begin.getTime())/1000.0));

C.2 Webserver Example

Listing C.6: Webserver main.plaid

package plaid.examples.webserver.plaid;

method void main() {
val immutable WebServer ws = new WebServer;
ws.run();

}
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Listing C.7: Webserver WebServer.plaid

package plaid.examples.webserver.plaid;

state WebServer {

@sequential
method immutable String getRoot() [immutable WebServer this] {
java.lang.System.getProperty(”user.dir”) +”/www/”;
}

method void run() [immutable WebServer this] {
val unique ServerSocket ss = new ServerSocket;

this.acceptLoop(ss);
}

method void acceptLoop(unique ServerSocket serverSocket) [immutable WebServer this] {
val unique Socket client = serverSocket.accept();
this.serveClient(client);
this.acceptLoop(serverSocket);

}

@sequential
method immutable Boolean fileExists(immutable String path) [immutable WebServer this] {

val file = java.io.File.new(this.getRoot() + path);

file.exists() && file.isFile() && file.canRead()
}

method void serveClient(unique Socket client) [immutable WebServer this] {

// get request string
val immutable ?String request = client.readLine();
match (request) {

case String {

val immutable Boolean isGet = request.toLowerCase().startsWith(”get ”);
match ( isGet ) {

case True {
// compute path
val immutable Integer requestLength = request.length();
val immutable String reqSuffix = request.substring(4, requestLength);
val immutable Integer indexSpace = reqSuffix.indexOf(” ”);
val immutable Integer indexParam = reqSuffix.indexOf(”?”);

val immutable Boolean possitiveIndexSpace = indexSpace >= 0;
val immutable Boolean possitiveIndexParam = indexParam >= 0;
val immutable Integer index = match (possitiveIndexSpace) {

case True {
match (possitiveIndexParam) {

case True {
val immutable Boolean spaceSmallerThanParam = indexParam >= indexSpace;
match ( spaceSmallerThanParam ) {

case True { indexSpace }
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default { indexParam }
}

}
default { indexSpace }

};
}
default { indexParam }

};
val immutable Boolean possitiveIndex = index >= 0;

match ( possitiveIndex ) {
case True {

val immutable String path = reqSuffix.substring(0, index);
this.transferFile(client, path);

}
default {

this.transferFile(client, reqSuffix);
}

}
}
case False { }

};
}
default { /⇤ connection closed ⇤/ }

};

client.close();
}

@sequential
method void transferData(unique Socket client, immutable String path) [immutable WebServer this] {

val immutable Boolean fileExists = this.fileExists(path);
match ( fileExists ) {

case True {
val file = java.io.File.new(this.getRoot() + path);
client.copyFileToSocket(file);

}
default {

client.writeLine(”<html><body><h1>404 File not found</h1></body></html>”);
}

}
}

method void transferFile(unique Socket client, immutable String path) [immutable WebServer this] {
val immutable Boolean isIndex = path == ”/”;

match ( isIndex ) {
case True {

this.transferHeader(client, ”index.html”);
this.transferData(client, ”index.html”);

}
default {

this.transferHeader(client, path);
this.transferData(client, path);

}
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};
client.flush();

}

method void transferHeader(unique Socket client, immutable String path) [immutable WebServer this] {
val immutable Boolean fileExists = this.fileExists(path);

match ( fileExists ) {
case True {

client.writeLine(”HTTP/1.1 200 Script output follows”);

// HTML
val immutable Boolean isHTML = path.endsWith(”.html”);
match ( isHTML ) {

case True { client.writeLine(”ContentType: text/html; charset=UTF8”); }
default { /⇤ nop ⇤/ }

};

// CSS
val immutable Boolean isCSS = path.endsWith(”.css”);
match ( isCSS ) {

case True { client.writeLine(”ContentType: text/css; charset=UTF8”); }
default { /⇤ nop ⇤/ }

};

// Java Script
val immutable Boolean isJS = path.endsWith(”.js”);

match ( isJS ) {
case True { client.writeLine(”ContentType: text/javascript; charset=UTF8”); }
default { /⇤ nop ⇤/ }

};

// Jpeg
val immutable Boolean isJPEG = path.endsWith(”.jpg”) || path.endsWith(”.jpeg”);
match ( isJPEG ) {

case True { client.writeLine(”ContentType: image/jpeg”); }
default { /⇤ nop ⇤/ }

};

// PNG
val immutable Boolean isPNG = path.endsWith(”.png”);
match ( isPNG ) {

case True { client.writeLine(”ContentType: image/png”); }
default { /⇤ nop ⇤/ }

};

// GIF
val immutable Boolean isGIF = path.endsWith(”.gif”);
match ( isGIF ) {

case True { client.writeLine(”ContentType: image/gif”); }
default { /⇤ nop ⇤/ }

};

// close connection
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client.writeLine(”Connection: close”);

// separator to content
client.writeLine(””);

}
default {

client.writeLine(”HTTP/1.1 404 File not found”);
client.writeLine(””);

}
}

}
}

Listing C.8: Webserver ServerSocket.plaid

package plaid.examples.webserver.plaid;

state ServerSocket {
@sequential
val ss = java.net.ServerSocket.new(8000);

@sequential
method unique Socket accept() [ unique ServerSocket this ] {

val client = this.ss.accept();

val inputReader = java.io.InputStreamReader.new(client.getInputStream());
val reader = java.io.BufferedReader.new(inputReader);

new Socket { val socket = client; val inputReader = reader; val outputStream = client.getOutputStream(); }
}

}

Listing C.9: Webserver Socket.plaid

package plaid.examples.webserver.plaid;

state Socket {
val socket;
val inputReader;
val outputStream;

@sequential
method immutable ?String readLine() [unique Socket this] {

this.inputReader.readLine();
}

@sequential
method void writeLine(immutable String msg) [unique Socket this] {

this.outputStream.write((msg + ”\n”).getBytes());
}

@sequential



170 APPENDIX C. SOURCE CODE

method void flush() [unique Socket this] {
this.outputStream.flush();

}

@sequential
method void close() [unique Socket this] {

this.socket.close();
}

@sequential
method void copyFileToSocket(file) [immutable Socket this] {

val is = java.io.BufferedInputStream.new(java.io.FileInputStream.new(file));
plaid.examples.webserver.java.Webserver.copyFileToSocket(this.outputStream, is);
is.close();

}
}
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C.3 Integral Example

Listing C.10: Integral main.plaid

package plaid.examples.integral.plaid;

method void main() {
val unique Runner runner = new Runner;

runner.run();
}

Listing C.11: Integral Integral.plaid

package plaid.examples.integral.plaid;

state Integral {
method immutable Float64 compute(immutable Float64 x1, immutable Float64 x2) [immutable Integral this] {

val immutable Float64 delta = x2 x1;

val immutable Boolean divide = delta.nativeLessThan(0.00000001);
match ( divide ) {

case True {
val immutable Float64 f1 = this.f(x1);
val immutable Float64 f2 = this.f(x2);
val immutable Float64 combinedf = f1 + f2;
val immutable Float64 avgf = combinedf / 2.0;
val immutable Float64 area = avgf ⇤ delta;

area
}
default {

val immutable Float64 combinedx = x1 + x2;
val immutable Float64 middle = combinedx / 2.0;
val immutable Float64 area1 = this.compute(x1, middle);
val immutable Float64 area2 = this.compute(middle, x2);

area1 + area2
}

}
}

@cheap
method immutable Float64 f(immutable Float64 x) [immutable Integral this];

}
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Listing C.12: Integral SquareIntegral.plaid

package plaid.examples.integral.plaid;

state SquareIntegral case of Integral {
@cheap
method immutable Float64 f(immutable Float64 x) [immutable SquareIntegral this] {

x ⇤ x
}

}

Listing C.13: Integral Runner.plaid

package plaid.examples.integral.plaid;

state Runner {
@sequential
method void stdout(immutable Float64 area) {

val formater = java.text.DecimalFormat.new(”#.####”);

java.lang.System.out.println(formater.format(area));
}

method void run() [unique Runner this] {
val immutable SquareIntegral si = new SquareIntegral;
val immutable Float64 area = si.compute(0.0, 1.0);

this.stdout(area);
}

}
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C.4 Dictionary Example

Listing C.14: Dictionary Hashmap.plaid

package plaid.examples.lib.hashmap;

state Hashmap {
method void addShared(immutable Hashable key, immutable Object value) [ local shared Hashmap this ];
method void addUnique(immutable Hashable key, immutable Object value) [ unique Hashmap this ];
method immutable Boolean containsShared(immutable Hashable obj) [ local shared Hashmap this ];
method immutable Boolean containsUnique(immutable Hashable obj) [ unique Hashmap this ];

}

Listing C.15: Dictionary Hashable.plaid

package plaid.examples.lib.hashmap;

state Hashable case of Object {
method immutable Integer hash() [ immutable Hashable this ] ;

}

C.4.1 Global Dictionary

Listing C.16: Global Dictionary GlobalHashmap.plaid

package plaid.examples.lib.hashmap.global;

import plaid.examples.lib.hashmap.Hashable;
import plaid.examples.lib.hashmap.Hashmap;

import plaid.arrays.GlobalSharedArray;

state GlobalHashmap case of Hashmap {
val immutable Integer bucketCount;
val immutable GlobalHashmapOperations addOps;
val immutable GlobalHashmapOperations containsOps;
val unique GlobalSharedArray buckets;

override method void addUnique(immutable Hashable key, immutable Object data) [ unique GlobalHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable GlobalHashmapOperations bops = this.addOps;
this.buckets.doUniqueData2(index, bops, key, data);

}

override method void addShared(immutable Hashable key, immutable Object data) [ local shared GlobalHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable GlobalHashmapOperations bops = this.addOps;
this.buckets.doLocalSharedData2(index, bops, key, data);

}
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override method immutable Boolean containsUnique(immutable Hashable key) [ unique GlobalHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable GlobalHashmapOperations bops = this.containsOps;
this.buckets.doUniqueData1(index, bops, key);

}

override method immutable Boolean containsShared(immutable Hashable key) [ local shared GlobalHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable GlobalHashmapOperations bops = this.containsOps;
this.buckets.doLocalSharedData1(index, bops, key);

}

}

Listing C.17: Global Dictionary GlobalHashmapOperations.plaid

package plaid.examples.lib.hashmap.global;

import plaid.arrays.AbstractGlobalSharedArrayOperations;

state GlobalHashmapOperations case of AbstractGlobalSharedArrayOperations {
method shared Object initialize(immutable Integer index) [ immutable GlobalHashmapOperations this ] {

new Bucket
}

}

Listing C.18: Global Dictionary GlobalHashmapAddOperations.plaid

package plaid.examples.lib.hashmap.global;

state GlobalHashmapAddOperations case of GlobalHashmapOperations {

@sequential
override method immutable Boolean doSharedData2(shared ?Object obj, immutable Object key, immutable Object value)

[ immutable GlobalHashmapAddOperations this ]{
obj.addShared(key, value);

}
}

Listing C.19: Global Dictionary GlobalHashmapContainsOperations.plaid

package plaid.examples.lib.hashmap.global;

state GlobalHashmapContainsOperations case of GlobalHashmapOperations {

@sequential
override method immutable Boolean doSharedData1(shared ?Object obj, immutable Object key)

[ immutable GlobalHashmapContainsOperations this ]{
obj.containsShared(key);

}
}
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Listing C.20: Global Dictionary Bucket.plaid

package plaid.examples.lib.hashmap.global;

import plaid.examples.lib.hashmap.Hashable;

state Bucket case of Object {
// bucket list
var shared ?BucketList bucketList = unit;

override method immutable Boolean addShared(immutable Hashable key, immutable Object value) [ shared Bucket this] {
atomic {

val shared ?BucketList head = this.bucketList;

match ( head ) {
case BucketList {

// check for existing entry
val immutable Boolean found = head.containsShared(key.hash());
match ( found ) {

case False {
val shared BucketList newHead = new BucketList;
newHead.keyHash = key.hash();
newHead.value = value;
newHead.next = head;
this.bucketList = newHead;
new True

}
default {

new False
}

}
}
default {

// add first element
val shared BucketList newHead = new BucketList;
newHead.keyHash = key.hash();
newHead.value = value;
this.bucketList = newHead;
new True

}
}

}
}

override method immutable Boolean containsShared(immutable Hashable key) [ shared Bucket this] {
atomic {

val shared ?BucketList head = this.bucketList;

match ( head ) {
case BucketList {

// check for existing entry
head.containsShared(key.hash());

}
default { new False }
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}
}

}
}

Listing C.21: Global Dictionary BucketList.plaid

package plaid.examples.lib.hashmap.global;

state BucketList {

var shared ?BucketList next = unit;

@sequential
var immutable Object value = unit;
var immutable Integer keyHash = 0;

method immutable Boolean containsShared(immutable Integer objHash) [ shared BucketList this ] {
atomic {

val immutable Integer thisHash = this.keyHash;
val immutable Boolean found = thisHash == objHash;

match ( found ) {
case False {

val shared ?BucketList next = this.next;
match ( next ) {

case BucketList {
//printLine(”[BucketList] search rest of list.”);
next.containsShared(objHash)

}
default {

//printLine(”[BucketList] end of list.”);
found

}
}

}
default {

//printLine(”[BucketList] found element.”);
found

}
}

}
}

}

Listing C.22: Global Dictionary package.plaid

package plaid.examples.lib.hashmap.global;

import plaid.arrays.GlobalSharedArray;
import plaid.arrays.makeGlobalSharedArray;
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import plaid.examples.lib.hashmap.Hashmap;

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
⇤⇤ factory methods
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

@sequential
method unique Hashmap makeGlobalHashmap(immutable Integer order) {

val immutable Integer bucketCount = 1 << order;
val immutable GlobalHashmapOperations addOps = new GlobalHashmapAddOperations;
val immutable GlobalHashmapOperations containsOps = new GlobalHashmapContainsOperations;
val unique GlobalSharedArray sa = makeGlobalSharedArray(order);
sa.initialize(addOps);
new GlobalHashmap {

val immutable Integer bucketCount = bucketCount;
val immutable GlobalHashmapOperations addOps = addOps;
val immutable GlobalHashmapOperations containsOps = containsOps;
val unique GlobalSharedArray buckets = sa;

}
}

C.4.2 Fine Dictionary

Listing C.23: Fine Dictionary FineHashmap.plaid

package plaid.examples.lib.hashmap.fine;

import plaid.examples.lib.hashmap.Hashable;
import plaid.examples.lib.hashmap.Hashmap;

import plaid.arrays.SharedArray;

state FineHashmap case of Hashmap {
val immutable Integer bucketCount;
val immutable FineHashmapOperations addOps;
val immutable FineHashmapOperations containsOps;
val unique SharedArray buckets;

override method void addUnique(immutable Hashable key, immutable Object data) [ unique FineHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable FineHashmapOperations bops = this.addOps;
this.buckets.doUniqueData2(index, bops, key, data);

}

override method void addShared(immutable Hashable key, immutable Object data) [ local shared FineHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable FineHashmapOperations bops = this.addOps;
this.buckets.doLocalSharedData2(index, bops, key, data);

}

override method immutable Boolean containsUnique(immutable Hashable key) [ unique FineHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
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val immutable FineHashmapOperations bops = this.containsOps;
this.buckets.doUniqueData1(index, bops, key);

}

override method immutable Boolean containsShared(immutable Hashable key) [ local shared FineHashmap this ] {
val immutable Integer index = key.hash() % this.bucketCount;
val immutable FineHashmapOperations bops = this.containsOps;
this.buckets.doLocalSharedData1(index, bops, key);

}

}

Listing C.24: Fine Dictionary FineHashmapOperations.plaid

package plaid.examples.lib.hashmap.fine;

import plaid.arrays.AbstractSharedArrayOperations;

state FineHashmapOperations case of AbstractSharedArrayOperations {
method shared<owner> Object initialize<group exclusive owner>(immutable Integer index) [ immutable FineHashmapOperations this ] {

new Bucket<owner>
}

}

Listing C.25: Fine Dictionary FineHashmapAddOperations.plaid

package plaid.examples.lib.hashmap.fine;

state FineHashmapAddOperations case of FineHashmapOperations {

@sequential
override method immutable Boolean doExclusiveData2<group exclusive owner>

(shared<owner> ?Object obj, immutable Object key, immutable Object value)
[ immutable FineHashmapAddOperations this ] {

obj.addExclusive<owner>(key, value);
}

@sequential
override method immutable Boolean doSharedData2<group shared owner>

(shared<owner> ?Object obj, immutable Object key, immutable Object value)
[ immutable FineHashmapAddOperations this ]{

obj.addShared<owner>(key, value);
}

}

Listing C.26: Fine Dictionary FineHashmapContainsOperations.plaid

package plaid.examples.lib.hashmap.fine;

state FineHashmapContainsOperations case of FineHashmapOperations {
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@sequential
override method immutable Boolean doExclusiveData1<group exclusive owner>

(shared<owner> ?Object obj, immutable Object key)
[ immutable FineHashmapContainsOperations this ] {

obj.containsExclusive<owner>(key);
}

@sequential
override method immutable Boolean doSharedData1<group shared owner>

(shared<owner> ?Object obj, immutable Object key)
[ immutable FineHashmapContainsOperations this ]{

obj.containsShared<owner>(key);
}

}

Listing C.27: Fine Dictionary Bucket.plaid

package plaid.examples.lib.hashmap.fine;

import plaid.examples.lib.hashmap.Hashable;

state Bucket<group Owner> case of Object {
// bucket list
var shared<Owner> ?BucketList<Owner> bucketList = unit;

override method immutable Boolean addExclusive<group exclusive owner>
(immutable Hashable key, immutable Object value) [ shared<owner> Bucket<owner> this] {

val shared<owner> ?BucketList<owner> head = this.bucketList;

match ( head ) {
case BucketList<owner> {

// check for existing entry
val immutable Boolean found = head.containsExclusive<owner>(key.hash());
match ( found ) {

case False {
val shared<owner> BucketList<owner> newHead = new BucketList<owner>;
newHead.keyHash = key.hash();
newHead.value = value;
newHead.next = head;
this.bucketList = newHead;
new True

}
default {

new False
}

}
}
default {

// add first element \
val shared<owner> BucketList<owner> newHead = new BucketList<owner>;
newHead.keyHash = key.hash();
newHead.value = value;
this.bucketList = newHead;



180 APPENDIX C. SOURCE CODE

new True
}

}
}

override method immutable Boolean addShared<group shared owner>
(immutable Hashable key, immutable Object value) [ shared<owner> Bucket<owner> this] {

atomic<owner> {
val shared<owner> ?BucketList<owner> head = this.bucketList;

match ( head ) {
case BucketList<owner> {

// check for existing entry
val immutable Boolean found = head.containsProtected<owner>(key.hash());
match ( found ) {

case False {
val shared<owner> BucketList<owner> newHead = new BucketList<owner>;
newHead.keyHash = key.hash();
newHead.value = value;
newHead.next = head;
this.bucketList = newHead;
new True

}
default {

new False
}

}
}
default {

// add first element
val shared<owner> BucketList<owner> newHead = new BucketList<owner>;
newHead.keyHash = key.hash();
newHead.value = value;
this.bucketList = newHead;
new True

}
}

}
}

override method immutable Boolean containsExclusive<group exclusive owner>
(immutable Hashable key) [ shared<owner> Bucket<owner> this] {

val shared<owner> ?BucketList<owner> head = this.bucketList;

match ( head ) {
case BucketList<owner> {

// check for existing entry
head.containsExclusive<owner>(key.hash());

}
default { new False }

}
}
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override method immutable Boolean containsShared<group shared owner>
(immutable Hashable key) [ shared<owner> Bucket<owner> this] {

atomic<owner> {
val shared<owner> ?BucketList<owner> head = this.bucketList;

match ( head ) {
case BucketList<owner> {

// check for existing entry
head.containsProtected<owner>(key.hash());

}
default { new False }

}
}

}
}

Listing C.28: Fine Dictionary BucketList.plaid

package plaid.examples.lib.hashmap.fine;

state BucketList <group Owner>{

var shared<Owner> ?BucketList<Owner> next = unit;

@sequential
var immutable Object value = unit;
var immutable Integer keyHash = 0;

method immutable Boolean containsExclusive<group exclusive Owner>
(immutable Integer objHash) [ shared<Owner> BucketList<Owner> this ] {

val immutable Integer thisHash = this.keyHash;
val immutable Boolean found = thisHash == objHash;

match ( found ) {
case False {

val shared<Owner> ?BucketList<Owner> next = this.next;
match ( next ) {

case BucketList<Owner> {
next.containsExclusive<Owner>(objHash)

}
default {

found
}

}
}
default {

found
}

}
}

method immutable Boolean containsProtected<group protected Owner>
(immutable Integer objHash) [ shared<Owner> BucketList<Owner> this ] {
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val immutable Integer thisHash = this.keyHash;
val immutable Boolean found = thisHash == objHash;

match ( found ) {
case False {

val shared<Owner> ?BucketList<Owner> next = this.next;
match ( next ) {

case BucketList<Owner> {
next.containsProtected<Owner>(objHash)

}
default {

found
}

}
}
default { found }

}
}

}

Listing C.29: Fine Dictionary package.plaid

package plaid.examples.lib.hashmap.fine;

import plaid.arrays.SharedArray;
import plaid.arrays.makeSharedArray;
import plaid.examples.lib.hashmap.Hashmap;

/⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
⇤⇤ factory methods
⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤/

@sequential
method unique Hashmap makeFineHashmap(immutable Integer order) {

val immutable Integer bucketCount = 1 << order;
val immutable FineHashmapOperations addOps = new FineHashmapAddOperations;
val immutable FineHashmapOperations containsOps = new FineHashmapContainsOperations;
val unique SharedArray sa = makeSharedArray(order);
sa.initialize(addOps);
new FineHashmap {

val immutable Integer bucketCount = bucketCount;
val immutable FineHashmapOperations addOps = addOps;
val immutable FineHashmapOperations containsOps = containsOps;
val unique SharedArray buckets = sa;

}
}
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C.5 ForkJoin Example

Listing C.30: Integral main.plaid

package plaid.examples.forkJoin;

state FJ {
method void forkJoin(immutable Integer level) [local immutable FJ this] {

val immutable Boolean isZero = level == 0;

match ( isZero ) {
case False {

val immutable Integer currentLevel = level 1;
this.forkJoin(currentLevel);
this.forkJoin(currentLevel);

}
case True { unit }

}
}

}

method void main() {
val unique FJ fj = new FJ;
fj.forkJoin(29);

}
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