Verifying Correct Usage of Atomic Blocks and Typestate: Technical Companion

Nels E. Beckman ${ }^{\dagger}$ Jonathan Aldrich ${ }^{\dagger}$

August 2008
CMU-ISR-08-126

Institute for Software Research
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
${ }^{\dagger}$ Institute for Software Research, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

This work was supported by a University of Coimbra Joint Research Collaboration Initiative, DARPA grant \#HR00110710019, Army Research Office grant \#DAAD19-02-1-0389 entitled "Perpetually Available and Secure Information Systems", the Department of Defense, and the Software Industry Center at CMU and its sponsors, especially the Alfred P. Sloan Foundation.

Keywords: transactional memory, typestate, proof

Abstract

In this technical report, we present a static and dynamic semantics as well as a proof of soundness for a programming language presented in the paper entitled, Verifying Correct Usage of Atomic Blocks and Typestate [1]. The proof of soundness consists of a proof of preservation, which shows that well-typed expressions evaluate to other well-typed expressions, and a proof of progress, which shows that well-typed expressions are either values or can take an evaluation step in the dynamic semantics. The notion of progress is complicated by a specific notion of a well-typed heap, which ensures that only one reference in the entire thread-pool can know the exact state of an object of share or pure permission.

1 Proof of Soundness

Our soundness criterion is as follows: It is either the case that all of the threads in a program are values, or their exists one thread such that the expression this thread is evaluating is well-typed and can take a step to another well-typed expression. If one of the threads in the thread-pool is currently executing within a transaction, then that thread must step, and if no threads in the threadpool are currently executing within a transaction, then any threads that is not a value must be able to step. The dynamic semantics track typestate, and there is no evaluation rule to allow a method call if method preconditions are not met. In order to prove that method preconditions are always met for well-typed programs, our store typing judgment requires the invariant that only one thread can pinpoint the state of a share or pure object at a time.

The language of proof differs from the language used in the paper in a few ways. We have restored the original effects system used by Bierhoff and Aldrich [2]. This system was removed from the paper for purposes of clarity. The effects system keeps track of the fields that are modified in a subexpression to ensure that only the fields of the unpacked object are modified, and no field permissions "escape" beyond the packing of that object. Otherwise, our proof language resembles their proof language in most ways. As it was for Bierhoff and Aldrich, we have simplified the language of proof by removing linear disjunction (\oplus) and additive conjunction (\&). In the paper, an object is known to be unpacked if there is an unpacked (k, s) permission inside of the linear context. In the system shown here, we use a separate context u. One u appears on the left-hand side of the judgment. This shows us which object is unpacked before the expression takes an evaluation step. The other u appears on the right-hand side, and shows us which object is unpacked after the expression has finished an evaluation step.

For the majority of the proof, things proceed much as they did in the proof of soundness presented by Bierhoff and Aldrich [2] with many of the multi-threaded features coming from Moore and Grossman [3]. Our system is different in a few ways. In Bierhoff and Aldrich the stack permissions, that is the dynamic representation of permissions that are currently available for use by the evaluating expression, were actually stored inside the heap. Because we have many threads, we have a separate environment S_{p} attached to each thread expression which holds these stack permissions. Additionally, when typing a pool of threads, T (essentially a list of expressions and their stack permissions), we associate each with their own linear context Δ and incoming unpacking flag u. We often must refer to the entire collection of linear contexts and packing flags, and this will usually be written $\bar{\Delta}$ and \bar{u}. Keep in mind that each linear context and unpacking flag is associated with one specific thread. This would most accurately be written as a list of tuples except that our Δ and u usually appear on the left-hand side of the rule, while the thread itself will appear on the right-hand side, and so treating them as a tuple would be notationally awkward.

When type-checking the top-level thread pool, the members of $\bar{\Delta}$ and \bar{u} are tagged with an additional bit of information, and are written $\overline{\Delta^{\mathcal{E}}}$ and $\overline{u^{\mathcal{E}}}$. At most one Δ and u pair are allowed to contain specific state information about pure and share permissions. If this is the case, that Δ and u will be tagged with wt, whereas others may not be. The fact that at most one linear context and unpacking flag is allowed to contain state information about share and pure permissions is checked by the $a ;\left\langle\overline{\Delta^{\mathcal{E}}}, \overline{u^{\mathcal{E}}}\right\rangle$ ok judgment.

1.1 Proof Language

```
    program \(P G::=\langle\overline{C L}, e\rangle\)
    class decls. \(\quad C L::=\) class \(C\{\bar{F} I \bar{N} \bar{M}\}\)
        methods \(\quad M::=C_{r} m(\overline{C x}): P_{1} \multimap \exists\) result \(: C_{r} \cdot P_{2}=e\)
        terms \(\quad t::=x, y, z \mid o\)
    expressions \(\quad e::=k \cdot t|k \cdot t . f| t_{1} \cdot f:=k \cdot t_{2}\)
        \(\mid\) new \(C(\overline{k \cdot t}) \mid k \cdot t \cdot m(\overline{k \cdot t})\)
        | inatomic (e)
        let \(x=e_{1}\) in \(e_{2}\)
        \(|\operatorname{spawn}(k \cdot t . m(\overline{k \cdot t}))|\) atomic \(e\)
        | unpack \({ }_{\mathcal{E}} k \cdot t @ s\) in \(e \mid\) pack \(t\) to \(s^{\prime}\) in \(e\)
expression types \(\quad E \quad::=\exists x: C . P\)
        \(I::=\operatorname{init}\langle\exists \overline{f: C} \cdot P, s\rangle\)
        atomic \(\quad \mathcal{E}::=\mathrm{wt} \mid\) ot \(\mid\) emp
        states \(\quad S::=s \mid\) unpacked \((k) \mid \operatorname{unpacked}(s)\)
        Predicates \(\quad P::=k \cdot r @ \$ \mid P_{1} \otimes P_{2}\)
        \(\$::=s \mid\) ?
        \(N::=s=P\)
valid contexts \(\quad \Gamma::=\cdot \mid \Gamma, x: C\)
linear contexts \(\quad \Delta^{\mathcal{E}}::=\cdot \mid \Delta^{\mathcal{E}}, P\)
    stores \(\quad \Sigma::=\cdot \mid \Sigma, o: C\)
    heaps \(\quad H::=\cdot \mid H, o \mapsto C(\overline{f=k \cdot o}) @ S\)
    \(k::=\) full | pure \(\mid\) share \(\mid\) immutable | unique
    \(u::=-\mid k \cdot t @ s\)
    \(\omega::=\emptyset|\{t . f\}| \omega_{1} \cup \omega_{2}\)
```


1.2 Judgment Forms

Figure 1: Transaction-aware linear judgement

1.3 Thread Pool and Expression Typing

$$
\begin{gathered}
\frac{k \cdot o @ s \notin \Delta}{} \\
\frac{k \cdot o @ s \notin \cdot}{} \frac{k \cdot o @ s \notin P \quad k \cdot o @ s \notin \Delta}{k \cdot o @ s \notin \Delta, P} \\
\overline{k \cdot o @ s \notin P} \\
\overline{k \cdot o @ s \notin k \cdot o @ ?} \frac{\left(k \neq k^{\prime}\left|o \neq o^{\prime}\right| s \neq s^{\prime}\right)}{k \cdot o @ s \notin k^{\prime} \cdot o^{\prime} @ s^{\prime}} \\
\frac{a ; \overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle} \mathrm{ok}}{\text { not-wt }\left(\overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle_{1}}\right)} \mathrm{not-wt(} \mathrm{\left.\left.\overline{ } \mathrm{\langle } \mathrm{\Delta}^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle_{2}\right)} \frac{\text { not-wt }\left(\overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle}\right)}{\circ ; \overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle} \mathrm{ok}}
\end{gathered}
$$

Figure 2: Well-formedness of all linear contexts.

$$
\begin{gathered}
\overline{\operatorname{not}-\mathrm{wt}\left(\overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle}\right)} \\
\frac{\operatorname{not}-\mathrm{wt}\left(\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle\right) \quad \operatorname{not}-\mathrm{wt}\left(\overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle}\right)}{\operatorname{not}-\mathrm{wt}\left(\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle, \overline{\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle}\right)} \\
\frac{\operatorname{not}-\mathrm{wt}\left(\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle\right)}{\operatorname{not}-\mathrm{wt}\left(\Delta^{\mathcal{E}}\right) \quad \text { where } \mathcal{E}=\operatorname{share} \mid \text { pure }} \\
\operatorname{not-wt}\left(\left\langle\Delta^{\mathcal{E}}, u^{\mathcal{E}}\right\rangle\right)
\end{gathered}
$$

$$
\operatorname{not}-w t\left(\Delta^{\mathcal{E}}\right)
$$

$$
\frac{k \cdot o @ s \notin \Delta^{\mathcal{E}} \text { where } k=\text { share|pure }}{\operatorname{not}-\mathrm{wt}\left(\Delta^{\mathcal{E}}\right)}
$$

not-active(e)

```
\(\underline{\operatorname{mbody}(C, m)=\bar{x} \cdot e_{m}}\)
    not-active \(\left(e_{m}\right) \quad \overline{\text { not-active }(k \cdot t)}\)
\(\overline{\text { not-active }(k \cdot t . f)} \quad \overline{\text { not-active }\left(t_{1} \cdot f:=k \cdot t_{2}\right)}\)
\(\overline{\text { not-active }(\text { new } C(\overline{k \cdot t})}) \quad \overline{\text { not-active }(k \cdot t \cdot m(\overline{k \cdot t}))}\)
\(\frac{\text { not-active }\left(e_{1}\right) \quad \text { not-active }\left(e_{2}\right)}{\text { not-active }\left(\text { let } x=e_{1} \text { in } e_{2}\right)} \quad \frac{\text { not-active }(e)}{\text { not-active }\left(\operatorname{unpack}_{\mathcal{E}} k \cdot t @ s \text { in } e\right)}\)
\(\frac{\operatorname{not}-\operatorname{active}(e)}{\text { not-active }\left(\text { pack }_{\mathcal{E}} t \text { to } s \text { in } e\right)}\)
\(\frac{\text { not-active }(e)}{\text { not-active }(\operatorname{atomic}(e))}\)
```

Figure 3: Expressions with no active subexpressions.

$$
\begin{gathered}
\operatorname{active}(e) \\
\frac{\operatorname{active}\left(e_{1}\right) \quad \text { not-active }\left(e_{2}\right)}{\operatorname{active}\left(\text { let } x=e_{1} \text { in } e_{2}\right)}
\end{gathered}
$$

Figure 4: Expressions with an active subexpression.

$$
\begin{gathered}
\text { forget }(P)=P^{\prime} \\
\frac{k=\text { immutable|unique|full }}{\text { forget }(k \cdot o @ s)=k \cdot o @ s} \frac{k=\text { pure|share }}{\text { forget }(k \cdot o @ s)=k \cdot o @ ?} \\
\frac{\text { forget }\left(P_{1}\right)=P_{1}^{\prime} \quad \text { forget }\left(P_{2}\right)=P_{2}^{\prime}}{\operatorname{forget}\left(P_{1} \otimes P_{2}\right)=P_{1}^{\prime} \otimes P_{2}^{\prime}}
\end{gathered}
$$

Figure 5: The forget judgement.

$$
\begin{gathered}
\operatorname{forget}_{\mathcal{E}}(P)=P^{\prime} \\
\frac{\mathcal{E}=\mathrm{wt}}{\text { forget }_{\mathcal{E}}(P)=P} \frac{\mathcal{E} \neq \mathrm{wt} \quad \text { forget }(P)=P^{\prime}}{\operatorname{forget}_{\mathcal{E}}(P)=P^{\prime}}
\end{gathered}
$$

$$
\text { writes }(k)
$$

$\overline{\text { writes(unique) }} \overline{\text { writes(full) }} \overline{\text { writes(share) }}$

$$
\text { readonly }(k)
$$

$$
\overline{\text { readonly(pure) }} \overline{\text { readonly(immutable) }}
$$

$$
\begin{gathered}
\overline{S \leq S^{\prime}} \\
\overline{S \leq S} \\
\overline{\operatorname{unpacked}(s) \leq s} \overline{s \leq ?} \\
\frac{k \leq k^{\prime}}{k \leq k^{\prime}} \\
\frac{k \cdot o @ s \Rightarrow k^{\prime} \cdot o @ s}{k \leq k^{\prime}}
\end{gathered} \frac{k \cdot o @ s \Rightarrow k^{\prime} \cdot o @ s \otimes k^{\prime \prime} \cdot o @ s}{k \leq k^{\prime}}
$$

$$
\begin{aligned}
& \overline{\Gamma ; P \vdash P} \text { LinHyp } \quad \frac{\Gamma ; \Delta \vdash P^{\prime} \quad P^{\prime} \Rightarrow P}{\Gamma ; \Delta \vdash P} \text { SUBST } \\
& \frac{\Gamma ; \Delta_{1} \vdash P_{1} \Gamma ; \Delta_{2} \vdash P_{2}}{\Gamma ;\left(\Delta_{1}, \Delta_{2}\right) \vdash P_{1} \otimes P_{2}} \otimes I \quad \frac{\Gamma ; \Delta \vdash P_{1} \otimes P_{2} \quad \Gamma ;\left(\Delta^{\prime}, P_{1}, P_{2}\right) \vdash P}{\Gamma ;\left(\Delta, \Delta^{\prime}\right) \vdash P} \otimes E \\
& \overline{\Gamma ; \vdash \mathbf{1}} \mathbf{1} I \\
& \frac{\Gamma ; \Delta \vdash P_{1} \quad \Gamma ; \Delta \vdash P_{2}}{\Gamma ; \Delta \vdash P_{1} \& P_{2}} \& I \\
& \frac{\Gamma ; \Delta \vdash \mathbf{1} \quad \Gamma ; \Delta^{\prime} \vdash P}{\Gamma ;\left(\Delta, \Delta^{\prime}\right) \vdash P} \mathbf{1} E \\
& \frac{\Gamma ; \Delta \vdash P_{1} \& P_{2}}{\Gamma ; \Delta \vdash P_{1}} \& E_{L} \\
& \frac{\Gamma ; \Delta \vdash P_{1} \& P_{2}}{\Gamma ; \Delta \vdash P_{2}} \& E_{R} \\
& \overline{\Gamma ; \Delta \vdash \top}\rceil \text { no } \top \text { elimination } \\
& \frac{\Gamma ; \Delta \vdash P_{1}}{\Gamma ; \Delta \vdash P_{1} \oplus P_{2}} \oplus I_{L} \\
& \frac{\Gamma ; \Delta \vdash P_{1} \oplus P_{2} \quad \Gamma ;\left(\Delta^{\prime}, P_{2}\right) \vdash P}{\Gamma ;\left(\Delta, \Delta^{\prime}\right) \vdash P} \oplus E \\
& \frac{\Gamma ; \Delta \vdash P_{2}}{\Gamma ; \Delta \vdash P_{1} \oplus P_{2}} \oplus I_{R} \\
& \text { no } 0 \text { introduction } \\
& \frac{(\Gamma, z: H) ; \Delta \vdash P}{\Gamma ; \Delta \vdash \forall z: H . P} \forall I \\
& \frac{\Gamma ; \Delta \vdash \mathbf{0}}{\Gamma ;\left(\Delta, \Delta^{\prime}\right) \vdash P} \mathbf{0} E \\
& \frac{\Gamma \vdash h: H \quad \Gamma ; \Delta \vdash \forall z: H . P}{\Gamma ; \Delta \vdash[h / z] P} \forall E \\
& \frac{\Gamma \vdash h: H \quad \Gamma ; \Delta \vdash[h / z] P}{\Gamma ; \Delta \vdash \exists z: H . P} \exists I \quad \frac{\Gamma ; \Delta \vdash \exists z: H . P \quad(\Gamma, z: H),\left(\Delta^{\prime}, P\right) \vdash P^{\prime}}{\Gamma ;\left(\Delta, \Delta^{\prime}\right) \vdash P^{\prime}} \exists E
\end{aligned}
$$

Figure 6: Linear logic for permission reasoning

$$
\begin{gathered}
\vdash a ; H ; T \\
\frac{\vdash \Sigma \overline{;} \overline{\Delta^{\mathcal{E}}} ; \bar{u} \vdash H ; \overline{S_{p}} \Sigma ; \overline{\Delta^{\mathcal{E}} ; \bar{u} \vdash T}}{\text { correct-atomic }(a, T) \text { where } T=\overline{\left\langle e, S_{p},\right\rangle}} \stackrel{\vdash a ; H ; T}{ }
\end{gathered}
$$

Figure 7: Top-level typing rules

$\Sigma ; \bar{\Delta} ; \bar{u} \vdash T$

$$
\overline{\Sigma ; \cdot ; \vdash \cdot} \frac{\Sigma ; \Delta_{1}^{\mathcal{E}} ; \mathcal{E}_{1} ; u_{1} \vdash e_{1}: E_{1} \backslash \omega \mid u \quad \Sigma ; \Delta_{2}^{\mathcal{E}}, \ldots, \Delta_{n}^{\mathcal{E}} ; u_{2}, \ldots, u_{n} \vdash T}{\Sigma ; \Delta_{1}^{\mathcal{E}}, \Delta_{2}^{\mathcal{E}}, \ldots, \Delta_{n}^{\mathcal{E}} ; u_{1}, u_{2}, \ldots, u_{n} \vdash\left\langle e, S_{p}\right\rangle_{1}, T}
$$

Figure 8: Well-typed thread-pool

$$
\frac{(o: C) \in \Sigma \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} P}{; ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash k \cdot o: \exists x: C \cdot[x / o] P \backslash \emptyset \mid u} \text { T-LoC }
$$

$\frac{\text { readonly }\left(k_{u}\right) \text { implies readonly }(k) \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} P \text { localFields }(C)=\overline{f: C}}{\cdot \cdot \Sigma \Sigma ; \Delta ; \mathcal{E} ; k_{u} \cdot o @ S_{u} \vdash k \cdot o . f_{i}: \exists x: T_{i} .\left[x / f_{i}\right] P \backslash \emptyset \mid k_{u} \cdot o @ s_{u}}$ T-READ

$$
\text { localFields }\left(C^{\prime \prime}\right)=\overline{f: C} \quad\left(o^{\prime}: C^{\prime}\right) \in \Sigma \quad \text { writes }\left(k^{\prime}\right)
$$

$$
\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} k \cdot o: \exists x: C_{i} \cdot P \quad \cdot ; \Sigma ; \Delta^{\prime} \vdash_{\mathcal{E}}\left[o^{\prime} . f_{i} / x^{\prime}\right] P^{\prime}
$$

$$
\overline{; \Sigma ; \Delta, \Delta^{\prime} ; \mathcal{E} ; k^{\prime} \cdot o^{\prime} @ s^{\prime} \vdash o^{\prime} \cdot f_{i}^{\prime}:=k \cdot o: \exists x^{\prime}: C_{i} \cdot P^{\prime} \otimes\left[o^{\prime} \cdot f_{i} / x\right] P \backslash\left\{o_{i} \cdot f\right\} \mid k^{\prime} \cdot o^{\prime} @ s^{\prime}} \text { T-AssiGN }
$$

$$
\frac{\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[\bar{o} / \bar{f}] P \quad \overline{o: C} \subseteq \Sigma \operatorname{init}(C)=\langle\exists \overline{f: C} \cdot P, s\rangle}{\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash \text { new } C(\overline{k \cdot o}): \exists x: C . \text { unique } \cdot x @ s \backslash \emptyset \mid u} \text { T-NEW }
$$

$$
\operatorname{forget}_{\mathcal{E}}(k \cdot o @ s)=k \cdot o @ \$
$$

$$
k=\text { immutable } \mid \text { pure } \text { implies } s=s^{\prime} \cdot ; \Sigma ; \Delta^{\prime}, k \cdot o @ \$; \mathcal{E} ;-\vdash e^{\prime}: E \backslash \emptyset \mid-
$$

$$
\text { localFields }(C)=\overline{f: C} \quad(o: C) \in \Sigma \quad ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o / \text { this }] \operatorname{inv}_{C}(s, k)
$$

No temporary permissions for o.f in Δ^{\prime}
$\cdot ; \Sigma ;\left(\Delta, \Delta^{\prime}\right) ; \mathcal{E} ; k \cdot o @ s \vdash$ pack o to s^{\prime} in $e^{\prime}: E \backslash\{o \bar{f}\} \mid-$
$k=$ unique \mid full \mid immutable $(o: C) \in \Sigma \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} k \cdot o @ s$
$\frac{\mathcal{E}=\operatorname{emp} \mid \text { ot } \cdot ; \Sigma ; \Delta^{\prime},\left[o / \text { this } \operatorname{linv}_{C}(s, k) ; \mathcal{E} ; k \cdot o @ s \vdash e^{\prime}: E \backslash \omega \mid-\right.}{\quad ; \Sigma \Sigma\left(\Delta, \Delta^{\prime}\right) ; \mathcal{E} ;-\vdash \operatorname{unpack}_{\mathcal{E}} k \cdot o @ s \text { in } e^{\prime}: E \backslash \emptyset \mid-}$ T-UNPACK
$(o: C) \in \Sigma \cdot ; \Sigma ; \Delta \vdash_{\mathrm{wt}} k \cdot o @ s$
$\frac{\cdot ; \Sigma ; \Delta^{\prime},[o / t h i s] \operatorname{inv}_{C}(s, k) ; \mathbf{w t} ; k \cdot o @ s \vdash e^{\prime}: E \backslash \omega \mid-}{\cdot ; \Sigma ;\left(\Delta, \Delta^{\prime}\right) ; \mathbf{w t} ;-\vdash \text { unpack }_{\mathrm{wt}} k \cdot o @ s \text { in } e^{\prime}: E \backslash \emptyset \mid-}$ T-UnPACK-WT

$$
\begin{aligned}
& (o: C) \in \Sigma \overline{o: C} \subseteq \Sigma \\
& \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o / \text { this }][\bar{o} / \bar{f}] P \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap \exists x: C . P_{r} \\
& \text { forget }_{\mathcal{E}}\left(P_{r}\right)=P_{r}^{\prime} \\
& \cdot ; \Sigma ; \Delta ; \mathcal{E} ;-\vdash k \cdot o . m(\overline{k \cdot o}): \exists x: C . P_{r}^{\prime} \backslash \emptyset \mid- \\
& o: C \in \Sigma \overline{o: C} \in \Sigma \operatorname{mtype}(C, m)=\forall \overline{x: C} . P \multimap E \\
& \cdot ; \Sigma ; \Delta^{\text {ot }} \vdash_{\text {ot }}[o / \text { this }][\bar{o} / \bar{f}] P \\
& \overline{\cdot ; \Sigma ; \Delta ; \text { ot } ;-\vdash \operatorname{spawn}(k \cdot o . m(\overline{k \cdot o})): \exists-: C_{d} \text {.immutable } \cdot o_{d} @ s_{d} \backslash \emptyset \mid-} \\
& \Sigma ; \Delta_{2}, P \vdash_{\mathcal{E}} P^{\prime} \\
& \cdot ; \Sigma ; \Delta_{1} ; \mathcal{E} ; u \vdash e_{1}: \exists x: T . P \backslash \omega_{1}\left|u_{2} \quad x: C ; \Sigma ; P^{\prime} ; \mathcal{E} ; u_{2} \vdash e_{2}: E \omega_{2}\right| u^{\prime} \\
& \text { No permissions for } \omega_{1} \text { in } \Delta_{2} \\
& \cdot ; \Sigma ;\left(\Delta_{1}, \Delta_{2}\right) ; \mathcal{E} ; u \vdash \text { let } x=e_{1} \text { in } e_{2}: E \backslash \omega_{1} \cup \omega_{2} \mid u^{\prime} \\
& \frac{\cdot ; \Sigma ; \Delta ; \text { wt } ; u \vdash e: \exists x: C . P \backslash \omega \mid u^{\prime} \quad \text { forget }_{\mathcal{E}}(P)=P^{\prime}}{\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash \text { inatomic }(e): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime}} \text { T-INATOMIC } \\
& \frac{\cdot ; \Sigma ; \Delta ; \text { wt } ; u \vdash e: \exists x: C . P \backslash \omega \mid u^{\prime} \quad \text { forget }_{\mathcal{E}}(P)=P^{\prime}}{\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash \text { atomic }(e): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime}} \text { T-ATOMIC }
\end{aligned}
$$

1.4 Dynamic Semantics

$$
\begin{gathered}
a ; H ; T \rightarrow a^{\prime} ; H^{\prime} ; T^{\prime} \\
\frac{a ; H ; e \rightarrow a^{\prime} ; H^{\prime} ; e^{\prime} ; T^{\prime}}{a ; H ; T_{a}, e, T_{b} \rightarrow a^{\prime} ; H^{\prime} ; T_{a}, e^{\prime}, T_{b}, T^{\prime}}
\end{gathered}
$$

Figure 9: Top-level Dynamic Semantics

$$
a ; H ;\left\langle\operatorname{unpack}_{\mathcal{E}} k \cdot o @ S \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow
$$

$$
a ; H[o \mapsto C(\ldots) @ u n p a c k e d(s)] ;\left\langle e^{\prime}, S_{P}\left[\left(k^{\prime}-k\right) \cdot o\right]\right\rangle ; \cdot
$$

$$
k^{\prime} \cdot o \in S_{p} \text { readonly }(k) \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime}
$$

$$
k=\operatorname{immutable} \supset S=(\text { unpacked }(s) \mid s), k=\text { pure } \supset S=s
$$

$$
\circ ; H ;\left\langle\operatorname{unpack}_{\mathrm{wt}} k \cdot o @ s \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow \quad \text { E-UnPACK-R-WT }
$$

$$
\circ ; H[o \mapsto C(\ldots) @ u n p a c k e d(s)] ;\left\langle e^{\prime}, S_{P}\left[\left(k^{\prime}-k\right) \cdot o\right]\right\rangle ; \cdot
$$

$$
\frac{\mathcal{E}=\text { ot } \mid \mathrm{emp} \quad k^{\prime} \cdot o \in S_{p} \quad \text { writes }(k) \quad o \mapsto C(\ldots) @ s \in H \quad k \leq k^{\prime}}{a ; H ;\left\langle\operatorname{unpack}_{\mathcal{E}} k \cdot o @ s \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow} \text { E-UNPACK-RW }
$$

$$
a ; H[o \mapsto C(\ldots) @ u n p a c k e d(k)] ;\left\langle e^{\prime}, S_{P}\left[\left(k^{\prime}-k\right) \cdot o\right]\right\rangle ; \cdot
$$

$$
\frac{k^{\prime} \cdot o \in S_{p} \text { writes }(k) \quad o \mapsto C(\ldots) @ s \in H \quad k \leq k^{\prime}}{\circ ; H ;\left\langle\operatorname{unpack}_{\mathrm{wt}} k \cdot o @ s \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow} \text { E-UnPACK-RW-WT }
$$

$$
\circ ; H[o \mapsto C(\ldots) @ u n p a c k e d(k)] ;\left\langle e^{\prime}, S_{P}\left[\left(k^{\prime}-k\right) \cdot o\right]\right\rangle ; \cdot
$$

$$
\operatorname{inv}_{C}(s) \text { satisfied by o's fields }
$$

$$
k_{o} \cdot o \in S_{p} \quad o \mapsto C(\overline{f=k \cdot o}) @ u n p a c k e d(s) \in H
$$

$$
\frac{k_{o} \cdot o \in S_{p} \quad o \mapsto C(f=k \cdot o)}{a ; H ;\left\langle\text { pack } o \text { to } s^{\prime} \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow a ; H[o \mapsto C(\overline{f=k \cdot o}) @ s] ;\left\langle e^{\prime}, S_{p}\right\rangle} \text { E-PACK-R }
$$

$\operatorname{inv}_{C}(s)$ satisfied by o's fields

$$
\frac{k_{o} \cdot o \in S_{p} \quad o \mapsto C(\overline{f=k \cdot o}) @ u n p a c k e d(k) \in H}{a ; H ;\left\langle\text { pack } o \text { to } s \text { in } e^{\prime}, S_{p}\right\rangle \rightarrow a ; H[o \mapsto C(\overline{f=k \cdot o}) @ s] ;\left\langle e^{\prime}, S_{p}\left[\left(k+k_{o}\right) \cdot o\right]\right\rangle} \text { E-PACK-RW }
$$

$$
\begin{aligned}
& \frac{k=\text { pure } \mid \text { immutable } \quad o \mapsto C\left(\ldots, f_{i}=k^{\prime} \cdot o^{\prime}\right) @ \text { unpacked }\left(s^{\prime \prime}\right) \in H}{a ; H ;\left\langle k \cdot o . f_{i}, S_{p}\right\rangle \rightarrow a ; H\left[o \mapsto C\left(\ldots, f_{i}=\left(k^{\prime}-k\right) \cdot o\right)\right] ;\left\langle k \cdot o^{\prime},\left(S_{p}+k \cdot o^{\prime}\right)\right\rangle ; \cdot} \text { E-READ-R } \\
& k \leq k^{\prime} \quad o \mapsto C\left(\ldots, f_{i}=k^{\prime} \cdot o^{\prime}\right) @ \operatorname{unpacked}\left(k^{\prime \prime}\right) \in H \\
& a ; H ;\left\langle k \cdot o . f_{i}, S_{p}\right\rangle \rightarrow \\
& a ; H\left[o \mapsto C\left(\ldots, f_{i}=\left(k^{\prime}-k\right) \cdot o^{\prime}\right) @ u n p a c k e d\left(k^{\prime \prime}\right)\right] ;\left\langle k \cdot o^{\prime},\left(S_{p}+k \cdot o^{\prime}\right)\right\rangle ; \cdot \\
& k_{1} \cdot o_{1} \in S_{p} \quad o_{1} \mapsto C\left(\ldots, f=k^{\prime} \cdot o^{\prime}, \ldots\right) @ \text { unpacked }\left(k^{\prime \prime}\right) \in H \\
& k_{2} \cdot o_{2} \in S_{p} \quad o_{2} \mapsto C(\ldots) @ S_{2} \in H \\
& \frac{H^{\prime}=H\left[o_{1} \mapsto C\left(\ldots, f=k \cdot o_{2}, \ldots\right) @ u n p a c k e d\left(k^{\prime \prime}\right)\right] \quad S_{p}^{\prime}=S_{p}\left[\left(k_{2}-k\right) \cdot o_{2}\right], k^{\prime} \cdot o^{\prime}}{a ; H ;\left\langle o_{1} \cdot f:=k \cdot o_{2}, S_{p}\right\rangle \rightarrow a ; H^{\prime} ;\left\langle k^{\prime} \cdot o^{\prime}, S_{p}^{\prime}\right\rangle .} \text { E-ASSIGN } \\
& \frac{H ; S_{p} \vdash[\bar{o} / \bar{f}] P \operatorname{init}(C)=\langle\exists \overline{f: C} \cdot P, s\rangle \quad S_{p}^{\prime}=S_{p}-\overline{k \cdot o} \quad o_{n} \notin \operatorname{dom}(H)}{a ; H ;\left\langle\text { new } C(\overline{k \cdot o}), S_{p}\right\rangle \rightarrow a ; H, o_{n} \mapsto C(\overline{f=k \cdot o}) @ s ;\left\langle\text { unique } \cdot o_{n},\left(S_{p}^{\prime}, \text { unique } \cdot o_{n}\right)\right\rangle ; \cdot} \text { E-NEW } \\
& \mathcal{E}=\text { ot } \mid \text { emp } \quad k^{\prime} \cdot o \in S_{p} \text { readonly }(k) \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime} \\
& k=\text { immutable } \supset S=(\operatorname{unpacked}(s) \mid s), k=\text { pure } \supset S=s
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{mbody}(C, m)=\bar{x} \cdot e_{m} \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap E \\
& H ; S_{p} \mid k \cdot o, \overline{k \cdot o} \vdash[o / t h i s][\bar{o} / \bar{x}] P \\
& a ; H ;\left\langle k \cdot o . m(\overline{k \cdot o}), S_{p}\right\rangle \rightarrow a ; H ;\left\langle[o / \text { this }][\bar{o} / \bar{x}] e_{m}, S_{p}\right\rangle ; \cdot \text { E-CALL } \\
& \operatorname{mbody}(C, m)=\bar{x} \cdot e_{m} \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap E \\
& \frac{H ; S_{p_{2}} \mid k \cdot o, \overline{k \cdot o} \vdash[o / \text { this }][\bar{o} / \bar{x}] P}{\circ ; H ;\left\langle\operatorname{spawn}(k \cdot o . m(\overline{k \cdot o})),\left(S_{p_{1}}, S_{p_{2}}\right)\right\rangle \rightarrow \circ ; H ;\left\langle o_{d}, S_{p_{1}}\right\rangle ;\left\langle[o / \text { this }][\bar{o} / \bar{x}] e_{m}, S_{p_{2}}\right\rangle} \text { E-SpAWN } \\
& \frac{a ; H ;\left\langle e_{1}, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e_{1}^{\prime}, S_{p}^{\prime}\right\rangle ; T}{a ; H ;\left\langle\text { let } x=e_{1} \text { in } e_{2}, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle\text { let } x=e_{1}^{\prime} \text { in } e_{2}, S_{p}^{\prime}\right\rangle ; T} \text { E-LET-E } \\
& \frac{k^{\prime} \cdot o \in S_{p} \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime}}{a ; H ;\left\langle\text { let } x=k \cdot o \text { in } e_{2}, S_{p}\right\rangle \rightarrow a ; H ;\left\langle[o / x] e_{2}, S_{p}\right\rangle ; \cdot} \text { E-LET-V } \\
& \bar{\circ} ; H ;\left\langle\text { atomic }(e), S_{p}\right\rangle \rightarrow \bullet ; H ;\left\langle\text { inatomic }(e), S_{p}\right\rangle ; \cdot \text { E-ATOMIC-BEGIN } \\
& \bar{\bullet} ; H ;\left\langle\text { inatomic }(k \cdot o), S_{p}\right\rangle \rightarrow 0 ; H ;\left\langle k \cdot o, S_{p}\right\rangle ; \text { E-Atomic-Exit } \\
& \frac{a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T}{\bullet ; H ;\left\langle\text { inatomic }(e), S_{p}\right\rangle \rightarrow \bullet ; H^{\prime} ;\left\langle\text { inatomic }\left(e^{\prime}\right), S_{p}^{\prime}\right\rangle ; T} \text { E-InATomic }
\end{aligned}
$$

1.5 Preservation

1.5.1 Definition of Store Typing

$$
\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}
$$

The above judgement is true if:

1. $\Sigma ; \overline{\Delta^{\mathcal{E}} \vdash S_{p}}$
2. $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{S_{p}} ; \overline{u^{\mathcal{E}}} \vdash H$

$$
\begin{gathered}
\boxed{\Sigma ; \overline{\Delta^{\mathcal{E}} \vdash S_{p}}} \\
\frac{\Sigma ; \Delta_{1}^{\mathcal{E}} \vdash S_{p 1} \quad \Sigma ; \Delta_{2}^{\mathcal{E}}, \ldots, \Delta_{n}^{\mathcal{E}} \vdash S_{p 2} \ldots S_{p n}}{\Sigma ; \Delta_{1}^{\mathcal{E}}, \Delta_{2}^{\mathcal{E}}, \ldots, \Delta_{n}^{\mathcal{E}} \vdash S_{p 1}, S_{p 2}, \ldots, S_{p n}} \overline{\Sigma ; \cdot \vdash \cdot} \\
\overline{\Sigma ; \Delta^{\mathcal{E}} \vdash S_{p}} \\
\frac{\{o \mid k \cdot o @ \$ \in \Delta\} \subseteq\left\{o \mid k \cdot o \in S_{p}\right\} \quad \forall k \cdot o \in S_{p} \cdot ; \Sigma ; \Delta \vdash k^{\prime} \cdot o @ \$ \otimes \top \supset k^{\prime} \leq k}{\Sigma ; \Delta^{\mathcal{E}} \vdash S_{p}}
\end{gathered}
$$

Where the above rule ignores permissions on fields.

$$
\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{S_{p}} ; \overline{u^{\mathcal{E}}} \vdash H
$$

The above judgement is true if:

1. $\operatorname{dom}(\Sigma)=\operatorname{dom}(H)$
2. $a ;\left\langle\overline{\Delta^{\mathcal{E}}, u^{\mathcal{E}}}\right\rangle$ ok
3. $\forall u^{\mathcal{E}} \in \overline{u^{\mathcal{E}}}, u^{\mathcal{E}}=k \cdot o @ s \supset \mathcal{E}=\mathbf{w t} \mid k=$ immutable|unique|full and $o \mapsto C(\ldots) @ S \in H$, where $S=\operatorname{unpacked}(s)$ if readonly (k) or $S=\operatorname{unpacked}(k)$ if writes (k). Also, $o \notin \bar{u} \supset$ o is packed in H and $\operatorname{inv}_{C}(o$, unique $)$.
4. $\forall o \in \operatorname{dom}(\Sigma), \forall \Delta \in \bar{\Delta}:$ if $o \mapsto C(\overline{f=k \cdot o}) @ S \in H$ then
(a) $(o: C) \in \Sigma$
(b) Either $S=\operatorname{unpacked}(k)$ or $S=\operatorname{unpacked}(s)$ and $\left[o /\right.$ this $^{\operatorname{sinv}} \lim _{C}(s$, immutable) is satisfied by o's fields, or $S=s$ and $[o /$ this $] \operatorname{inv}_{C}(s$, unique) is satisfied by o's fields.
(c) If $\cdot ; \Sigma ; \Delta \vdash k \cdot o @ \$ \otimes T$ then $S \leq \$$.
(d) If $\cdot ; \Sigma ; \Delta \vdash k_{i}^{\prime} \cdot o . f_{i} @ \$ \otimes \top$, then $k_{i}^{\prime} \leq k_{i}$ (and $o=o_{\text {unp }}$) and $o_{i} \mapsto C_{o}(\ldots) @ s_{o} \in H$ and either $S=\operatorname{unpacked}(s)$, which implies readonly $\left(k_{i}^{\prime}\right)$, or $S=\operatorname{unpacked}\left(k^{\prime}\right)$. If $S=\operatorname{unpacked}(s)$ then $\$=s_{o}$ or $\$=$?.
(e) unique $\cdot o @ s \in \Delta, u \supset k \cdot o @ \$$ not in any other Δ or u in $\bar{\Delta}$ or \bar{u}. Also, full $\cdot o @ s \in$ $\Delta, u \supset$ full $\cdot o @ \$$ and $k \cdot o @ s$ not in any other Δ or u in $\bar{\Delta}$ or \bar{u}.
(f) immutable $\cdot o @ s \in \Delta, u \supset(k \cdot o @ \$ \in \bar{\Delta}, \bar{u} \supset k=$ immutable $\&(\$=s \mid \$=$? $))$
(g) Where $k_{i}=$ unique implies $k \cdot o_{i} \notin \bar{\Delta}, \bar{u}$, where $k_{i}=$ full implies full $\cdot o_{i} @ \$$ and $k \cdot o_{i} @ s \notin \bar{\Delta}, \bar{u}$ and where $k_{i}=$ immutable and $o \mapsto C(\ldots) @ S$, where $S=$ $s \mid$ unpacked (s) implies $k^{\prime} \cdot o_{i} @ s^{\prime} \notin \bar{\Delta}, \bar{u}$, where $k^{\prime} \neq$ immutable $\mid s^{\prime} \neq s$.

1.5.2 Property Satisfied at Runtime

If

- $\overline{o \mapsto C(\ldots) @ s} \subseteq H$ and $\overline{k^{\prime} \cdot o} \in S_{p}$
- • $|\overline{o: C}| \overline{k \cdot o @ s} \vdash P($ an instance of $\Gamma|\Sigma| \Delta \vdash P)$
- $\overline{k \leq k^{\prime}}$
then $H ; S_{p} \mid \overline{k \cdot o} \vdash P$

1.5.3 Lemma: Compositionality

If $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ and $\Delta_{i}=\Delta_{i 1}, \Delta_{i 2}$ then $\Sigma ; \overline{\Delta^{\mathcal{E}^{\prime}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ where Δ_{i} is replaced with $\Delta_{i 1}$

Proof: Immediate from the definition of store typing. We are always allowed to know less statically about permissions than what is true at run-time, so long as what we know statically is consistent with the run-time information.

1.5.4 Lemma: Packing Flag

If $\Gamma ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime}$ then either (a) $u=-$ and $\omega=\emptyset$ or (b) $u=k \cdot t @ s$ and ω contains only fields of t.
Proof:(a) $u=-$ is not a valid precondition for producing effects (using assignment or packing).
(b) By induction on typing derivations, using (a). Only one object can be unpacked at a time, permission for unpacked object is needed for assignments and packing, and effect of unpack expression is \emptyset.

1.5.5 Object Weight

- $w(o, \Delta)=\Sigma_{k \cdot o \in \Delta} k$, ignoring fields.
- $w(o, u)=k$, if $u=k \cdot o @ s$, and 0 otherwise.
- $w\left(o, S_{p}\right)=\Sigma_{k \cdot o \in S_{p}} k$

Where:

$$
k+k^{\prime}
$$

is defined as:

- full + pure $=$ full
- share + pure $=$ share, share + share $=$ share
- immutable + immutable $=$ immutable
- pure + pure $=$ pure

1.5.6 Preservation for Thread Pools

If

- $a ; H ; T \rightarrow a^{\prime} ; H^{\prime} ; T^{\prime}$
- $\vdash a ; H ; T$

Then there exists

- $\Sigma^{\prime} \supseteq \Sigma$
- ${\overline{\Delta^{\mathcal{E}}}}^{\prime}$
- $\overline{u^{\varepsilon^{\prime}}}$
- $\overline{\omega^{\prime}}$
such that
- $\Sigma^{\prime} ; \bar{\Delta}^{\prime} ;$ ot $; \bar{u}^{\prime} \vdash \overline{e^{\prime}}: \bar{E} \backslash \overline{\omega^{\prime}} \mid \overline{u^{\prime \prime}}$
- $\Sigma^{\prime} ;{\overline{\Delta^{\mathcal{E}}}}^{\prime} ;{\overline{u^{\mathcal{E}}}}^{\prime} \vdash H^{\prime} ;{\overline{S_{p}}}^{\prime}$, where $T^{\prime}=\overline{\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle}$
- correct-atomic(a', T^{\prime})
- $\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$, for each Δ in $\bar{\Delta}, S_{p}$ in $\overline{S_{p}}, \Delta$ in $\bar{\Delta}^{\prime}$, and S_{p} in ${\overline{S_{p}}}^{\prime}$

Proof: By structural induction on the derivation of $a ; H ; T \rightarrow a^{\prime} ; H^{\prime} ; T^{\prime}$.
Case Top-Level
$\vdash a ; H ; T$
Assumption
$a ; H ; e \rightarrow a^{\prime} ; H^{\prime} ; e^{\prime} ; T^{\prime}$ where $T_{a}\|e\| T_{b}$
Inversion of only eval rule.
$\cdot ; \Sigma ; \overline{\Delta^{\mathcal{E}}} ; \bar{u} \vdash H ; \overline{S_{p}}$
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \bar{u} \vdash T$
correct-atomic (a, T) where $T=\overline{\left\langle e, S_{p},\right\rangle}$
Inversion of only typing rule. $\cdot ; \Sigma ; \Delta ;$ ot $; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
From well-typed thread pool.
Invoke preservation for single threads.
$\Sigma^{\prime}, \Delta^{\mathcal{E}^{\prime}}, u^{\mathcal{E}^{\prime}}, \omega^{\prime}, a^{\prime}$, s.t.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ;$ ot $; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime \prime}$
Single-threaded lemma.
If $T \neq:$
$\cdot ; \Sigma^{\prime} ; \Delta_{t}^{\text {ot }} ;$ ot $;-\vdash e_{t}: E_{t} \backslash \omega_{t} \mid u^{\prime \prime \prime}$
Single-threaded lemma.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Single-threaded lemma.
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$,
for each Δ in $\bar{\Delta}, S_{p}$ in $\overline{S_{p}}, \Delta$ in $\bar{\Delta}^{\prime}$, and S_{p} in ${\overline{S_{p}}}^{\prime}$
Single-threaded lemma.
not-active $\left(T^{\prime}\right)$ by single-threaded lemma.

If $a=\circ$ implies not-active (T). If $a^{\prime}=\bullet$, then by single-threaded lemma active $\left(e^{\prime}\right)$. If $a^{\prime}=\circ$ the by single-threaded lemma not-active $\left(e^{\prime}\right)$. Thus, correct-atomic $\left(a^{\prime}, T^{\prime}\right)$.
If $a=\bullet$ and active (e) implies not-active $\left(T_{a} \| T_{b}\right)$. If $a^{\prime}=\bullet$ then by single-threaded lemma active $\left(e^{\prime}\right)$. If $a^{\prime}=\circ$ then by the single-threaded lemma not-active $\left(e^{\prime}\right)$ Thus, correct-atomic $\left(a^{\prime}, T^{\prime}\right)$. If $a=\bullet$ and not-active (e) implies active $\left(T_{a}\right)$ or active $\left(T_{b}\right)$. Only one may be active but neither will change during e^{\prime} s step, so $a^{\prime}=\bullet$. Single-threaded lemma gives us not-active $\left(e^{\prime}\right)$ Thus, correct-atomic $\left(a^{\prime}, T^{\prime}\right)$.

1.5.7 Preservation for Single Threads

If

- $\Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
- $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$, where $\overline{\Delta^{\mathcal{E}}}=\left(\Delta_{1}, \Delta_{1}^{*}\right)^{\mathcal{E}},\left(\Delta_{2}, \Delta_{2}^{*}\right)^{\mathcal{E}}, \ldots\left(\Delta_{n}, \Delta_{n}^{*}\right)^{\mathcal{E}}$, where Δ_{i}^{*} contains extra permissions that contain no temporary state information and no permissions for fields in ω.
- $a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T$
- And exactly one of the following:
- $a=\circ$ and not-active(e)
- $a=\bullet$ and not-active (e)
$-a=\bullet$ and $\operatorname{active}(e)$
Then there exists
- $\Sigma^{\prime} \supseteq \Sigma$
- u^{\prime} tagged with \mathcal{E}, written $u^{\mathcal{E}^{\prime}}$.
- ω^{\prime}, where either (a) $a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T$ unpacks an object o, i.e., $u^{\mathcal{E}}=-$ and $u^{\mathcal{E}^{\prime}}=k \cdot o @ s$ and $\omega^{\prime}-\omega$ only mentions fields of \mathbf{o}, or (b) $\omega^{\prime} \subseteq \omega$.
- Δ^{\prime} tagged with \mathcal{E}, written $\Delta^{\mathcal{E}^{\prime}}$.
- $S_{p t}, \Delta_{t}^{\mathcal{E}}$ and $u_{t}^{\mathcal{E}}$.
such that
- T is either e_{t} or .
- $\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime \prime}$
- $\Sigma ; \overline{\Delta^{\varepsilon}} ; \overline{u^{\varepsilon}} \vdash H ; \overline{S_{p}}$, where $\bar{\Delta}^{\prime}$ and ${\overline{S_{p}}}^{\prime}$ are $\bar{\Delta}$ and $\overline{S_{p}}$ with $\left(\Delta^{\prime}, \Delta^{*}\right)$ swapped for $\left(\Delta, \Delta^{*}\right)$ and S_{p}^{\prime} swapped for S_{p} (and including $S_{p t}$ and Δ_{t} if $T=e_{t}$).
- $\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$, for each Δ in $\bar{\Delta}, S_{p}$ in $\overline{S_{p}}, \Delta$ in $\bar{\Delta}^{\prime}$, and S_{p} in ${\overline{S_{p}}}^{\prime}$
- If T is e_{t} then $\cdot ; \Sigma^{\prime} ; \Delta_{t} ;$ ot $;-\vdash e_{t}: E_{t} \backslash \omega \mid-$
- As well as all of the following, although exactly one will not be vaccuous:
- if $a=a^{\prime}$ and not-active (e) then not-active $\left(e^{\prime}\right)$
- if $a=a^{\prime}$ and active (e) then $\operatorname{active}\left(e^{\prime}\right)$
- if $a=\circ$ and $a^{\prime}=\bullet$ and not-active (e) then active $\left(e^{\prime}\right)$
- if $a=\bullet$ and $a^{\prime}=\circ$ and $\operatorname{active}(e)$ then not-active $\left(e^{\prime}\right)$

Proof: By structural induction on the derivation of $a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T$.
CASE E-UnPACK-RW-WT
So $e=\operatorname{unpack}_{\mathrm{wt}} k \cdot o @ s$ in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}=\circ, H^{\prime}=H[o \mapsto C(\ldots) @ u n p a c k e d(k)]$, $S_{p}^{\prime}=S_{p}\left[\left(k^{\prime}-k\right) \cdot o\right]$ and $T=$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
writes $(k) \quad o \mapsto C(\ldots) @ s \in H \quad k^{\prime} \cdot o \in S_{p} k \leq k^{\prime}$
Inversion of only eval rule
$o \in \Sigma \quad \Delta^{\mathcal{E}}=\Delta^{\mathrm{wt}}=\left(\Delta_{1}^{\mathrm{wt}}, \Delta_{2}^{\mathrm{wt}}\right)=\left(k \cdot o @ s, \Delta_{2}\right)$
$\cdot ; \Sigma ; \Delta_{1} \vdash_{\mathrm{wt}} k \cdot o @ s \quad u=u^{\prime \prime}=-\quad \omega=\emptyset$
$\cdot ; \Sigma ; \Delta_{2},[o /$ this $] \operatorname{inv}_{C}(s, k) ; \mathbf{w t} ; k \cdot o @ s \vdash e_{2}: E \backslash \omega_{2} \mid-\quad$ Inversion of only typing rule Let $\Sigma^{\prime}=\Sigma, \quad \Delta^{\mathrm{wt}^{\prime}}=\Delta_{2},[o /$ this $] \operatorname{inv}_{C}(s, k), \quad u^{\mathrm{wt}^{\prime}}=k \cdot o @ s, \quad \omega^{\prime}=\omega_{2}$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathbf{w t} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-$
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathrm{wt}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
We have removed $k \cdot o$ from Δ and S_{p}, and added field perms to Δ which are ignored.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$

Must show $\Sigma^{\prime} ; \overline{\Delta^{\varepsilon^{\prime}} ; S_{p}^{\prime} ; u^{\varepsilon^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or dom (H)
2.) ok
$\Delta^{\mathrm{wt}}{ }^{\prime}$ and $u^{\mathrm{wt}}{ }^{\prime}$ were and remain the only wt elements.
3.) ok For $u^{\mathrm{wt}^{\prime}}, \mathcal{E}=\mathrm{wt}$. $o \mapsto C(\ldots) @ u n p a c k e d(k) \in H^{\prime}$ and writes (k).

No change
$S=\operatorname{unpacked}(k)$
No new stack perms in Δ^{\prime}.
4.b. was true before step. Fields added to Δ^{\prime} are given by $\operatorname{inv}_{C}(s, k)$.
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other $\Delta \mathrm{s}$ and u.
4.f.) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok
o was unpacked.
$\omega^{\prime}-\omega=\omega^{\prime}$ only contains fields of o.
No fields altered. $u=-$ and $u^{\prime}=k \cdot o @ s$.

Packing flag lemma $\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$

Net is unchanged. Permission moved from Δ to u^{\prime}.
$T=$.
not-active(unpack) implies not-active (e_{2})
Inversion of not-active.
active(unpack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active (e^{\prime})
Above

Case E-Unpack-RW

So $e=\operatorname{unpack}_{\mathcal{E}} k \cdot o @ s$ in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}, H^{\prime}=H[o \mapsto C(\ldots) @ u n p a c k e d(k)]$, $S_{p}^{\prime}=S_{p}\left[\left(k^{\prime}-k\right) \cdot o\right]$ and $T=$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
writes $(k) \quad o \mapsto C(\ldots) @ s \in H \quad k^{\prime} \cdot o \in S_{p} k \leq k^{\prime} \quad \mathcal{E}=\mathrm{ot} \mid e m p$
Inversion of only eval rule
$o \in \Sigma \quad \Delta^{\mathcal{E}}=\left(\Delta_{1}, \Delta_{2}\right)$
$\cdot ; \Sigma ; \Delta_{1} \vdash_{\mathcal{E}} k \cdot o @ s \quad u=u^{\prime \prime}=-\quad \omega=\emptyset$
$k=$ unique|full|immutable $\quad \cdot ; \Sigma ; \Delta_{2},[o /$ this $] \operatorname{inv}_{C}(s, k) ; \mathcal{E} ; k \cdot o @ s \vdash e_{2}: E \backslash \omega_{2} \mid-$
Inversion of only typing rule
Let $\Sigma^{\prime}=\Sigma, \quad \Delta^{\mathcal{E}^{\prime}}=\Delta_{2},[o /$ this $] \operatorname{linv}_{C}(s, k), \quad u^{\mathcal{E}^{\prime}}=k \cdot o @ s, \quad \omega^{\prime}=\omega_{2}$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-\quad$ Substitution
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
We have removed $k \cdot o$ from Δ and S_{p}, and added field perms to Δ which are ignored. $\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$

No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) ok

We have not changed the number of wt elements from before.
If $\mathcal{E} \neq \mathrm{wt}$, then not-wt $\left(\Delta^{\prime}\right)$ because invariants cannot contain pure and shared information.
3.) ok $\quad k=$ immutable|full|unique. $o \mapsto C(\ldots) @ u n p a c k e d(k) \in H^{\prime}$ and writes (k).
4.a.) ok
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.b. was true before step. Fields added to Δ^{\prime} are given by $\operatorname{inv}_{C}(s, k)$.
4.f.) ok
4.g.) ok
o was unpacked.
$\omega^{\prime}-\omega=\omega^{\prime}$ only contains fields of o.
No change
$S=\operatorname{unpacked}(k)$
No new stack perms in Δ^{\prime}.
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net is unchanged. Permission moved from Δ to u^{\prime}.
$T=$.
not-active(unpack) implies not-active $\left(e_{2}\right)$ Inversion of not-active. active(unpack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active (e^{\prime})
Above

Case E-UnPack-R

So $e=\operatorname{unpack}_{\mathcal{E}} k \cdot o @ s$ in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}, H^{\prime}=H[o \mapsto C(\ldots) @ u n p a c k e d(s)]$, $S_{p}^{\prime}=S_{p}\left[\left(k^{\prime}-k\right) \cdot o\right]$ and $T=\cdot$
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\mathcal{E}=$ ot \mid emp $\quad k^{\prime} \cdot o \in S_{p} \quad$ readonly $(k) \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime}$
$k=$ immutable $\supset S=(\operatorname{unpacked}(s) \mid s), k=$ pure $\supset S=s$
Inversion of only eval rule
$\cdot ; \Sigma ;\left(\Delta_{1}, \Delta_{2}\right) ; \mathcal{E} ;-\vdash$ unpack $_{\mathcal{E}} k \cdot o @ s$ in $e_{2}: E \backslash \emptyset \mid-$
$k=$ unique | full | immutable $(o: C) \in \Sigma \cdot ; \Sigma ; \Delta_{1} \vdash_{\mathcal{E}} k \cdot o @ s$
$\mathcal{E}=$ emp \mid ot $\quad \cdot ; \Sigma ; \Delta_{2},[o /$ this $] \operatorname{inv}_{C}(s, k) ; \mathcal{E} ; k \cdot o @ s \vdash e_{2}: E \backslash \omega_{2} \mid-$
Inversion of only typing rule
Let $\Sigma^{\prime}=\Sigma, \quad \Delta^{\mathcal{E}^{\prime}}=\Delta_{2},[o /$ this $] \operatorname{linv}_{C}(s, k), \quad u^{\mathcal{E}^{\prime}}=k \cdot o @ s, \quad \omega^{\prime}=\omega_{2}$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-\quad$ Substitution
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
We have removed $k \cdot o$ from Δ and S_{p}, and added field perms to Δ which are ignored.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime \prime}}$
No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) Ok

We have not changed the number of wt elements from before.

If $\mathcal{E} \neq \mathrm{wt}$, then not-wt $\left(\Delta^{\prime}\right)$ because invariants cannot contain pure and shared information. 3.) ok $\quad k=$ immutable|full|unique. $o \mapsto C(\ldots) @ u n p a c k e d(k) \in H^{\prime}$ and writes (k).
4.a.) ok
4.b.) ok
4.c.) Ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
o was unpacked.
$\omega^{\prime}-\omega=\omega^{\prime}$ only contains fields of o.
Δ^{\prime} does not contain any fields in $\omega-\omega^{\prime}$
Before step, either $S=$ unpacked (s) and invariant holds by this rule, or $S=s$ and invariant held by this rule. Fields have not changed.
No new stack perms in Δ^{\prime}.
4.b. was true before step. Fields added to Δ^{\prime} are given by $\operatorname{inv}_{C}(s, k)$. 4.g. was true before step. Any unique or full fields cannot be in other $\Delta \mathrm{s}$ and u. 4.g. was true before step. Other permissions to fields must agree with state. No fields altered. $u=-$ and $u^{\prime}=k \cdot o @ s$.

Packing Flag lemma $\omega-\omega^{\prime}=\emptyset$
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net is unchanged. Permission moved from Δ to u^{\prime}.
$T=$.
not-active(unpack) implies not-active $\left(e_{2}\right)$ Inversion of not-active. active (unpack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active (e^{\prime})
Above

Case E-UnPack-R-Wt
So $e=\operatorname{unpack}_{\mathrm{wt}} k \cdot o @ s$ in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}, H^{\prime}=H[o \mapsto C(\ldots) @ u n p a c k e d(s)]$, $S_{p}^{\prime}=S_{p}\left[\left(k^{\prime}-k\right) \cdot o\right]$ and $T=\cdot$
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$k^{\prime} \cdot o \in S_{p}$ readonly $(k) \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime}$
$k=$ immutable $\supset S=(\operatorname{unpacked}(s) \mid s), k=$ pure $\supset S=s$
Inversion of only evaluation rule.
$\cdot ; \Sigma ;\left(\Delta_{1}, \Delta_{2}\right) ; \mathbf{w t} ;-\vdash$ unpack $_{\mathrm{wt}} k \cdot o @ s$ in $e^{\prime}: E \backslash \emptyset \mid-$
$(o: C) \in \Sigma \quad \cdot ; \Sigma ; \Delta_{1} \vdash_{\mathrm{wt}} k \cdot o @ s \quad \cdot ; \Sigma ; \Delta_{2},[o /$ this $] \operatorname{inv}_{C}(s, k) ; \mathbf{w t} ; k \cdot o @ s \vdash e^{\prime}: E \backslash \omega_{2} \mid-$
Only typing rule and its inversion.
Let $\Sigma^{\prime}=\Sigma, \quad \Delta^{\mathrm{wt}}=\Delta_{2},\left[o /\right.$ this $\left.^{\prime}\right] \operatorname{inv}_{C}(s, k), \quad u^{\mathrm{wt}^{\prime}}=k \cdot o @ s, \quad \omega^{\prime}=\omega_{2}$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-\quad$ Substitution Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathrm{wt}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
We have removed $k \cdot o$ from Δ and S_{p}, and added field perms to Δ which are ignored. $\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$

No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) ok

Still the only wt, no need to prove not-active.
3.) ok
4.a.) ok
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
o was unpacked.
$\omega^{\prime}-\omega=\omega^{\prime}$ only contains fields of o.
Δ^{\prime} does not contain any fields in $\omega-\omega^{\prime}$
$\mathcal{E}=\mathrm{wt}$.
No change
Before step, either $S=$ unpacked (s) and invariant holds
by this rule, or $S=s$ and invariant held by this rule.
Fields have not changed.
No new stack perms in Δ^{\prime}.
4.b. was true before step. Fields added to Δ^{\prime} are given by $\operatorname{inv}_{C}(s, k)$.
4.g. was true before step. Any unique or full fields cannot be in other $\Delta \mathrm{s}$ and u.
4.g. was true before step. Other permissions to fields must agree with state.

No fields altered.
$u=-$ and $u^{\prime}=k \cdot o @ s$.
Packing Flag lemma
$\omega-\omega^{\prime}=\emptyset$
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net is unchanged. Permission moved from Δ to u^{\prime}.
$T=$.
not-active(unpack) implies not-active $\left(e_{2}\right)$ Inversion of not-active. active (unpack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active $\left(e^{\prime}\right)$ Above

Case E-Pack-R
So $e=$ pack o to s in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}, H^{\prime}=H[o \mapsto C(\ldots) @ s], S_{p}^{\prime}=S_{p}\left[\left(k+k_{o}\right) \cdot o\right]$ and $T=$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\varepsilon}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\operatorname{inv}_{C}(s)$ satisfied by o 's fields
$k_{o} \cdot o \in S_{p} \quad o \mapsto C(\overline{f=k \cdot o}) @ u n p a c k e d(s) \in H$
$o \in \Sigma \quad \Delta^{\mathcal{E}}=\left(\Delta_{1}, \Delta_{2}\right)$
$\Sigma ; \Delta_{1} \vdash_{\mathcal{E}}[o /$ this $] \operatorname{linv}_{C}(s, k)$
$\Sigma ; k \cdot o @ s \vdash_{\mathcal{E}} k \cdot o @ \$$
$\cdot ; \Sigma ; \Delta_{2}, k \cdot o @ \$; \mathcal{E} ;-\vdash e_{2}: E \backslash\{l . \bar{f}\} \mid-$
No temporary permissions for o. \bar{f} in Δ_{2}
Inversion of only typing rule
Let $\Sigma^{\prime}=\Sigma, \quad D^{\mathcal{E}^{\prime}}=\Delta_{2}, k \cdot o @ \$ \quad u^{\mathcal{E}^{\prime}}=-\quad \omega^{\prime}=\emptyset$
$\cdot ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-$
Substitution
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
k added back to $\Delta, S_{p} \Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$
1.) ok

Inversion of only evaluation rule

No other Δ or S_{p} changed. No change to $\operatorname{dom}(\Sigma)$ or dom (H)
2.) ok

We have not added a wt that was not previously there. If $\mathcal{E} \neq \mathrm{wt}$, not-wt $\left(\Delta^{\mathcal{E}^{\prime}}\right)$ by inversion of $\Sigma ; \Delta^{\prime} \vdash_{\mathcal{E}} k \cdot o @ \$$.
3.) ok

We have only removed a permission from $u^{\mathcal{E}}$. This o is packed and $\operatorname{inv}_{C}(o$, unique) from above.
4.a.) ok

No change
4.b.) ok

For only modified $o, S=s$ and invariant satisfied from assumption and 4. d being true before step.
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
$\omega^{\prime}=\emptyset \subset \omega$
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net is unchanged. Permission moved from u to Δ^{\prime}. $T=$.
not-active(pack) implies not-active $\left(e_{2}\right)$ Inversion of not-active. active (pack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active (e^{\prime})
Above

Case E-Pack-RW

So $e=$ pack o to s in $e_{2}, e^{\prime}=e_{2}, a=a^{\prime}, H^{\prime}=H[o \mapsto C(\ldots) @ s], S_{p}^{\prime}=S_{p}\left[\left(k+k_{o}\right) \cdot o\right]$ and $T=$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$o \mapsto C(\ldots) @ u n p a c k e d(k) \in H \quad k_{o} \cdot o \in S_{p} \quad \operatorname{inv}_{C}(s)$ satisfied by o's fields
Inversion of only eval rule
$o \in \Sigma \quad \Delta^{\mathcal{E}}=\left(\Delta_{1}, \Delta_{2}\right)$
$\Sigma ; \Delta_{1} \vdash_{\mathcal{E}}[o /$ this $] \operatorname{inv}_{C}(s, k)$
$\Sigma ; k \cdot o @ s \vdash_{\mathcal{E}} k \cdot o @ \$$
$\cdot ; \Sigma ; \Delta_{2}, k \cdot o @ \$; \mathcal{E} ;-\vdash e_{2}: E \backslash\{l . \bar{f}\} \mid-$
No temporary permissions for o. \bar{f} in Δ_{2}
Inversion of only typing rule
Let $\Sigma^{\prime}=\Sigma, \quad D^{\mathcal{E}^{\prime}}=\Delta_{2}, k \cdot o @ \$ \quad u^{\mathcal{E}^{\prime}}=-\quad \omega^{\prime}=\emptyset$
$\cdot ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid-$
Substitution
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
k added back to $\Delta, S_{p} \Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}} \quad$ No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok
2.) Ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$ We have not added a wt that was not previously there.

If $\mathcal{E} \neq \mathrm{wt}, \operatorname{not}-\mathrm{wt}\left(\Delta^{\mathcal{E}^{\prime}}\right)$ by inversion of $\Sigma ; \Delta^{\prime} \vdash_{\mathcal{E}} k \cdot o @ \$$.
3.) ok

We have only removed a permission from $u^{\mathcal{E}}$. This o is packed and $\operatorname{inv}_{C}(o$, unique) from above.
4.a.) ok

No change
4.b.) ok

For only modified $o, S=s$ and invariant satisfied from assumption and 4.d being true before step.
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
$\omega^{\prime}=\emptyset \subset \omega$
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net is unchanged. Permission moved from u to Δ^{\prime}.
$T=$.
not-active(pack) implies not-active $\left(e_{2}\right)$ Inversion of not-active. active (pack) cannot be derrived.
$a=a^{\prime}$ and not-active (e) implies not-active (e^{\prime})
Above

CASE E-Assign
So $e=o_{1} \cdot f:=k \cdot o_{2}, e^{\prime}=k^{\prime} \cdot o^{\prime}, a=a^{\prime}, H^{\prime}=H\left[o_{1} \mapsto C\left(\ldots, f=k \cdot o_{2}, \ldots\right) @ u n p a c k e d\left(k^{\prime \prime}\right)\right]$, $S_{p}^{\prime}=S_{p}\left[\left(k_{2}-k\right) \cdot o_{2}\right], k^{\prime} \cdot o^{\prime}$ and $T=\cdot$
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$k_{1} \cdot o_{1} \in S_{p}$
$o_{1} \mapsto C\left(\ldots, f=k^{\prime} \cdot o^{\prime}, \ldots\right) @ u n p a c k e d\left(k^{\prime \prime}\right) \in H$
$k_{2} \cdot o_{2} \in S_{p} \quad o_{2} \mapsto C(\ldots) @ S_{2} \in H$
Inversion of only eval rule
$\Delta^{\mathcal{E}}=\left(\Delta_{1}, \Delta_{2}\right) \quad \omega=\left\{o_{i} . f\right\}$
localFields $\left(C^{\prime \prime}\right)=\overline{f: C} \quad\left(o^{\prime}: C^{\prime}\right) \in \Sigma \quad$ writes $\left(k^{\prime}\right)$
$\cdot ; \Sigma ; \Delta_{1} \vdash_{\mathcal{E}} k \cdot o: \exists x: C_{i} . P$
$\cdot ; \Sigma ; \Delta_{2} \vdash_{\mathcal{E}}\left[o^{\prime} . f_{i} / x^{\prime}\right] P^{\prime}$
Inversion of only typing rule
Let $\Sigma^{\prime}=\Sigma, \quad \Delta^{\mathcal{E}^{\prime}}=\left[o^{\prime} / x^{\prime}\right] P^{\prime} \otimes\left[o_{i} . f / x\right] P \quad u^{\mathcal{E}^{\prime}}=u^{\mathcal{E}}=k^{\prime} \cdot o^{\prime} @ s^{\prime} \quad \omega^{\prime}=\emptyset$
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime \prime} \quad$ By rule T-Loc. Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ $\left.\Delta^{\prime}=\left[o_{i} . f / o_{2}\right]\left(\left[o^{\prime} / o_{i} \cdot f\right] \Delta\right)\right)$

From above.
$\Sigma^{\prime} ;\left(\Delta^{\mathrm{wt}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
$k^{\prime} \cdot o^{\prime}$ went into both Δ^{\prime}, as subst. for field permission and S_{p}^{\prime}.
Field permissions inserted, which are ignored.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$

Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to dom (Σ) or dom (H)
2.) ok

We have not changed the number of wt elements from before.
The permissions added to Δ^{\prime} were cleansed, by the inverse of transaction-aware linear judgment.
3.) ok
$u^{\mathcal{E}}$ unchanged.
No change
$S=\operatorname{unpacked}(k)$
From 4.d. true before step.
From 4.c. true before step.
From 4.g. true before step.
From 4.g. true before step.
From 4.d,e,f. true before step.
4.g.) ok
$\omega^{\prime}=\supset \omega=\left\{o_{1} . f\right\} \forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
$\omega^{\prime}=\supset \omega=\left\{o_{1} \cdot f\right\} \forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}\right)-w(o, \Delta)-w\left(o, u^{\prime}\right)$
$k \cdot o_{2}$ and $k^{\prime} \cdot o^{\prime}$ move between field and stack.
$T=$.
$a^{\prime}=a$ and only not-active (e) can be derrived.
not-active $\left(e^{\prime}\right)$
not-active rules for field.
4.a.) ok
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
not-active rules for loc.

Case E-Call
So $e=k \cdot o . m(\overline{k \cdot o}), e^{\prime}=[o /$ this $][\bar{o} / \bar{f}] e_{m}, H^{\prime}=H^{\prime}, S_{p}=S_{p}, a^{\prime}=a$,
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\operatorname{mbody}(C, m)=\bar{x} . e_{m} \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} . P \multimap E$
$H ; S_{p} \mid k \cdot o, \overline{k \cdot o} \vdash[o / t h i s][\bar{o} / \bar{x}] P$
Inversion only eval rule
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ;-\vdash k \cdot o . m(\overline{k \cdot o}): \exists x: C . P_{r}^{\prime} \backslash \emptyset \mid-$
$(o: C) \in \Sigma \overline{o: C} \subseteq \Sigma$
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o /$ this $][\bar{o} / \bar{f}] P \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap \exists x: C . P_{r}$
forget $_{\mathcal{E}}\left(P_{r}\right)=P_{r}^{\prime}$
Only typing rule and its inversion.
$\overline{x: C}$, this : $C ; ; P ; \mathbf{w t} ;-\vdash e_{m}: \exists x: C . P_{r} \backslash \emptyset \mid-$
$\overline{x: C}$, this $: C ; \cdot P ;$ ot $;-\vdash e_{m}: \exists x: C . P_{r}^{\prime \prime} \backslash \emptyset \mid-$
Inversion of M ok
$\mathcal{E}=\mathrm{wt}$ implies $P_{r}=P_{r}^{\prime}$
$\mathcal{E} \neq$ wt implies $P_{r}^{\prime \prime}=P_{r}^{\prime}$
Inversion of forget
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash[o /$ this $][\bar{o} / \bar{f}] e_{m}: E \backslash \omega^{\prime} \mid u^{\prime \prime}$
$\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
Above and substituion.
No changes
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
No changes
$a^{\prime}=a$ and not-active (e)
not-active (e^{\prime})

Only notactive can be derrived for call.
Well formed method body cannot be active.

Case E-Spawn

So $e=\operatorname{spawn}(k \cdot o . m(\overline{k \cdot o})), H^{\prime}=H^{\prime},{\overline{S_{p}}}^{\prime}=\overline{S_{p}}, S_{p 2}$ with $S_{p 1}$, immutable $\cdot o_{d} @ S_{d}$ replacing S_{p}.
$\cdot ; \Sigma \bar{\Delta} \boldsymbol{\Delta} ; \underline{\mathcal{E}} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}} \quad$ Assumption
$\operatorname{mbody}(C, m)=\bar{x} . e_{m} \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} . P \multimap E$
$H ; S_{p_{2}} \mid k \cdot o, \overline{k \cdot o} \vdash[o / t h i s][\bar{o} / \bar{x}] P$
Inversion of only eval rule
$o: C \in \Sigma \overline{o: C} \in \Sigma \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap E$
$\cdot ; \Sigma ; \Delta^{\text {ot }} \vdash_{\text {ot }}[o /$ this $][\bar{o} / \bar{f}] P$
Inversion of only typing rule
Let $e^{\prime}=$ immutable $\cdot o_{d}, T=\left\langle[o /\right.$ this $\left.][\bar{o} / \bar{f}] e_{m}, S_{p 2}\right\rangle, \Sigma^{\prime}=\Sigma, \Delta^{\text {ot }^{\prime}}=$ immutable $\cdot o_{d} @ S_{d}$,
$\Delta_{t}^{\mathrm{ot}}=\Delta, u_{t}^{\mathrm{ot}}=-, u^{\mathrm{ot} t^{\prime}}=-$
$\cdot ; \Sigma^{\prime} ; \Delta_{t} ;$ ot $;-\vdash e_{t}: E_{t} \backslash \emptyset \mid-$
$\overline{x: C}$, this $: C ; \cdot ; P ;$ ot $;-\vdash e_{m}: E_{t} \backslash \emptyset \mid-\quad$ Inversion of mtype.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ;$ ot $;-\vdash$ immutable $\cdot o_{d}: \exists_{-}: C_{d}$.immutable $\cdot o_{d} @ S_{d}$
Always true of o_{d}, which is implicitly in all Δ.
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathrm{ot}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime \prime}$
$\Sigma^{\prime} ; \Delta_{t}^{\text {ot }} ; \vdash S_{p 2}$
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$
Only one permission in Δ^{\prime} and we added it to S_{p}^{\prime}.

Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) Ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) okNew $\Delta \mathrm{s}$ are tagged with ot. Δ^{\prime} on has immutable objects and Δ_{t} is clean, inverse of TALJ.
3.) ok
4.a.) ok
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
$\omega^{\prime} \subseteq \omega$
$\omega_{t} \subseteq \omega$
Δ^{\prime} contains no permissions for fields in \emptyset Δ_{t} contains no permissions for fields in \emptyset

New u s are both -.
No change
No states or fields changed.
Nothing new in $\Delta \mathrm{s}$ w.r.t. the heap.
Nothing new in $\Delta \mathrm{s}$ w.r.t. the heap.
Nothing new in Δ s w.r.t. the heap or u.
Special default object, o_{d}, is always in state s_{d}.
No fields modified.
$\omega^{\prime}=\omega=\emptyset$
$\omega_{t}=\omega=\emptyset$

$$
\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime} \cup S_{t p}\right)-w\left(o, \Delta^{\prime}, \Delta_{t}\right)-w\left(o, u^{\prime}, u_{t}\right)
$$

Net is unchanged. immutable $\cdot o_{d} @ s_{d}$ added to S_{p}^{\prime} and Δ^{\prime}
$a^{\prime}=a$ and not-active (e)
not-active (e^{\prime})
not-active rule for Spawn. not-active rule for o_{d}.
not-active $\left(e_{t}\right)$
Property of well-typed method body.

Case E-READ-R

So $e=k \cdot o . f_{i}, e^{\prime}=k \cdot o^{\prime}, T=\cdot, a^{\prime}=a, H^{\prime}=H\left[o \mapsto C\left(\ldots, f_{i}=\left(k^{\prime}-k\right)\right.\right.$. $\left.o, \ldots) @ u n p a c k e d\left(s^{\prime \prime}\right)\right], S_{p}^{\prime}=S_{p},\left(k \cdot o^{\prime}\right)$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$k=$ pure \mid immutable $\quad o \mapsto C\left(\ldots, f_{i}=k^{\prime} \cdot o^{\prime}\right) @ u n p a c k e d\left(s^{\prime \prime}\right) \in H$
Inversion of only eval rule
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; k_{u} \cdot o @ S_{u} \vdash k \cdot o . f_{i}: \exists x: T_{i} \cdot\left[x / f_{i}\right] P \backslash \emptyset \mid k_{u} \cdot o @ s_{u}$ readonly $\left(k_{u}\right)$ implies readonly $(k) \quad ; \Sigma \Sigma \Delta \vdash_{\mathcal{E}} P$ localFields $(C)=\overline{f: C}$

Only typing rule and its inversion
Let $\Sigma^{\prime}=\Sigma, u^{\mathcal{E}^{\prime}}=u^{\mathcal{E}}, \Delta^{\mathcal{E}^{\prime}}=\left[o^{\prime} / o . f_{i}\right] P, \omega^{\prime}=\omega=\emptyset$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E}^{\prime} ; u^{\prime} \vdash k \cdot o^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime}$
Rule T-Loc.
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime} \quad \Delta^{\prime}$ only has permissions for o^{\prime}, this object was added to S_{p}.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}} \Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}} \quad$ No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) ok
3.) ok
4.a.) ok
u^{\prime} has not changed.
No change
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
4.g.) ok
$\omega^{\prime} \subseteq \omega$
True by inversion of subtraction on permissions.

$$
\omega^{\prime}=\omega=\emptyset
$$

Δ^{\prime} contains no permissions for fields in \emptyset
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net unchanged. $k \cdot o^{\prime}$ added to S_{p} and Δ.
$T=$.
$a^{\prime}=a$ and only not-active (e) can be derrived.
Only not-active (e^{\prime}) can be derrived.
not-active rule for field reads. not-active rule for location reads.

Case E-READ-RW

So $e=k \cdot o . f_{i}, e^{\prime}=k \cdot o^{\prime}, T=\cdot, a^{\prime}=a, H^{\prime}=H\left[o \mapsto C\left(\ldots, f_{i}=\left(k^{\prime}-k\right) \cdot\right.\right.$ $\left.o, \ldots) @ u n p a c k e d\left(k^{\prime \prime}\right)\right], S_{p}^{\prime}=S_{p},\left(k \cdot o^{\prime}\right)$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$k \leq k, \quad o \mapsto C\left(\ldots, f_{i}=k^{\prime} \cdot o^{\prime}\right) @ u n p a c k e d\left(k^{\prime \prime}\right) \in H$
Inversion of only eval rule.
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} P \quad$ localFields $(C)=\overline{f: C}$
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; k_{u} \cdot o @ S_{u} \vdash k \cdot o . f_{i}: \exists x: T_{i} .\left[x / f_{i}\right] P \backslash \emptyset \mid k_{u} \cdot o @ s_{u}$
Inversion of only typing rule.
Let $\Sigma^{\prime}=\Sigma, u^{\mathcal{E}^{\prime}}=u^{\mathcal{E}}, \Delta^{\mathcal{E}^{\prime}}=\left[o^{\prime} / o . f_{i}\right] P, \omega^{\prime}=\omega=\emptyset$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E}^{\prime} ; u^{\prime} \vdash k \cdot o^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime}$
Rule T-Loc.
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime} \quad \Delta^{\prime}$ only has permissions for o^{\prime}, this object was added to S_{p}.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$
No other Δ or S_{p} changed.
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No change to $\operatorname{dom}(\Sigma)$ or $\operatorname{dom}(H)$
2.) ok We have not added a wt that was not previously there. If $\mathcal{E} \neq \mathrm{wt}$, $\operatorname{not}-\mathrm{wt}\left(\Delta^{\mathcal{E}^{\prime}}\right)$ by inversion of $\Sigma ; \Delta^{\prime} \vdash_{\mathcal{E}} k \cdot o @ \$$.
3.) ok
4.a.) ok
u^{\prime} has not changed.
No change
$S=\operatorname{unpacked}(k)$
4.d.) was true before step.
4.c.) ok
field permissions from Δ.
4.d.) Ok
4.g.) was true before step.
4.g.) was true before step.

True by inversion of subtraction on permissions.
4.f.) ok
$\omega^{\prime}=\omega=\emptyset$
4.g.) Ok
$\omega^{\prime} \subseteq \omega$
Δ^{\prime} contains no permissions for fields in \emptyset
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
Net unchanged. $k \cdot o^{\prime}$ added to S_{p} and Δ.
$T=$.
$a^{\prime}=a$ and only not-active (e) can be derrived.
not-active rule for field reads.
Only not-active (e^{\prime}) can be derrived. not-active rule for location reads.

Case E-Inatomic

So $e=$ inatomic $\left(e_{1}\right), e^{\prime}=$ inatomic $\left(e_{1}^{\prime}\right), a^{\prime}=a, H^{\prime}=H^{\prime}$ from I.H., $S_{p}^{\prime}=S_{p}^{\prime}$ from I.H., $\omega^{\prime}=\omega^{\prime}$ from I.H.

$$
\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}
$$

Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$a ; H ;\left\langle e_{1}, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e_{1}^{\prime}, S_{p}^{\prime}\right\rangle ; T$
Inversion of only eval rule
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ inatomic $\left(e_{1}\right): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime}$
$\cdot ; \Sigma ; \Delta ; \mathbf{w t} ; u \vdash e_{1}: \exists x: C . P \backslash \omega \mid u^{\prime} \quad$ forget $_{\mathcal{E}}(P)=P^{\prime}$
Inversion of only typing rule
Apply induction hypothesis.

```
\Sigma;\overline{\mp@subsup{\Delta}{}{\mathcal{E}}};\overline{\mp@subsup{u}{}{\mathcal{E}}}\vdashH;\overline{\mp@subsup{S}{p}{}}
T ok
\omega
active(e')
```

$a^{\prime}=a$ and $\operatorname{active}\left(\right.$ inatomic $\left.\left(e_{1}\right)\right) \quad$ active rule for inatomic.
I.H.
I.H.
I.H.
active rule for inatomic.
active rule for inatomic.

Case E-Atomic-Exit

So $e=$ inatomic $(k \cdot o), e^{\prime}=k \cdot o, S_{p}^{\prime}=S_{p}, H^{\prime}=H, a^{\prime}=0$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ inatomic $(e): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime \prime}$
$\cdot ; \Sigma ; \Delta ; \mathbf{w t} ; u \vdash e: \exists x: C . P \backslash \omega \mid u^{\prime \prime} \quad$ forget $_{\mathcal{E}}(P)=P^{\prime}$
Only typing rule and its inverse. Let $\Sigma^{\prime}=\Sigma, \omega^{\prime}=\omega$
Case: $\mathcal{E}=\mathrm{wt}$
Let $\Delta^{\mathrm{wt}^{\prime}}=\Delta, u^{\mathrm{wt}}$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathbf{w t} ; u^{\prime} \vdash k \cdot o: \exists X: C . P \backslash \omega \mid u^{\prime \prime}$
By sustitution, and $\mathrm{P}^{\prime}=\mathrm{P}$ when $\mathcal{E}=\mathrm{wt}$
Tag for u and Δ did not change.
$\left\langle\overline{\Delta^{\mathcal{E}}, u^{\mathcal{E}}}\right\rangle$ ok
Above
Case: $\mathcal{E} \neq \mathrm{wt}$
Let $\Delta^{\mathcal{E}}=P^{\prime}, u^{\mathcal{E}}=u$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash k \cdot o: \exists X: C . P^{\prime} \backslash \omega \mid u^{\prime \prime}$
$\Delta^{\mathcal{E}}$ contains no share or pure perms.
Rules T-LOC
$u^{\mathcal{E}}$ contains no share or pure permissions.
Unpacking share or pure requires $\mathcal{E}=\mathrm{wt}$
$\left\langle\overline{\Delta^{\mathcal{E}}, u^{\mathcal{E}}}\right\rangle$ ok
Above
Heap cond 3 satisfied.
Above
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Rest of heap unchanged. $T=\cdot a^{\prime}=\circ \neq \bullet=a$, active (e) not-active (e^{\prime})

Active rule for inatomic Only derivable rule for $k \cdot o$

Case E-Atomic

So $e=\operatorname{atomic}\left(e_{1}\right), e^{\prime}=$ inatomic $\left(e_{1}\right), H^{\prime}=H, S_{p}^{\prime}=S_{p}, a^{\prime}=\bullet, \omega^{\prime}=\omega$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ atomic $\left(e_{1}\right): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime \prime}$
$\cdot ; \Sigma ; \Delta ; \mathbf{w t} ; u \vdash e_{1}: \exists x: C . P \backslash \omega \mid u^{\prime \prime} \quad$ forget $_{\mathcal{E}}(P)=P^{\prime}$
only typing rule and its inversion. Let $\Sigma^{\prime}=\Sigma, u^{\prime}=u, \Delta^{\prime}=\Delta, \omega^{\prime}=\omega$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} \vdash e^{\prime}: \exists x: C . P \backslash \omega^{\prime} \mid u^{\prime \prime}$
By rule T-Inatomic. Let u^{\prime} and Δ^{\prime} be tagged with wt.
$\left\langle\overline{\Delta^{\mathcal{E}}, u^{\mathcal{E}}}\right\rangle$ ok
$a=\circ$ implies no u or Δ tagged with wt before step.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
No other changes to heap.
$a^{\prime}=\circ \neq \bullet=a$. Given not-active (e).
active $\left(e^{\prime}\right)$
active rule for inatomic.

Case E-New

So $e=$ new $C(\overline{k \cdot o}), e^{\prime}=$ unique $\cdot o_{n}, H^{\prime}=H, o_{n} \mapsto C(\overline{f=k \cdot o}) @ s, S_{p}^{\prime}=\left(S_{p}-\right.$ $\overline{k \cdot o}$, unique $\cdot o_{n}, a^{\prime}=a$.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime} \quad$ Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$H ; S_{p} \vdash[\bar{o} / \bar{f}] P \quad \operatorname{init}(C)=\langle\exists \overline{f: C} \cdot P, s\rangle$
Inversion of only evaluation rule
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ new $C(\overline{k \cdot o}): \exists x: C$.unique $\cdot x @ s \backslash \emptyset \mid u$
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[\bar{o} / \bar{f}] P \quad \overline{o: C} \subseteq \Sigma \operatorname{init}(C)=\langle\exists \overline{f: C} \cdot P, s\rangle$
Only typing rule and its inversion.
Let $\Sigma^{\prime}=\Sigma, o_{n}: C, u^{\mathcal{E}^{\prime}}=u, \Delta^{\mathcal{E}^{\prime}}=$ unique $\cdot o_{n} @ s$, where \mathcal{E} tag is the same as before step, $\omega^{\prime}=\omega=\emptyset$.
$\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash$ unique $\cdot o_{n}: \exists x: C$. unique $\cdot x @ s$
By rule T-Loc
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\Sigma^{\prime} ;\left(\Delta^{\mathcal{E}^{\prime}}, \Delta^{*}\right) ; \vdash S_{p}^{\prime}$
We removed $\overline{k \cdot o}$ from both S_{p} and Δ and added unique $\cdot o_{n} @ s$ to both.
$\Sigma^{\prime} ; \overline{\Delta^{\prime}} \vdash \overline{S_{p}^{\prime}}$
Must show $\Sigma^{\prime} ; \overline{\Delta^{\mathcal{E}^{\prime}} ; S_{p}^{\prime} ; u^{\mathcal{E}^{\prime}}} \vdash H^{\prime}$
1.) ok

No other Δ or S_{p} changed.
2) 0 We have \mathcal{E}.
3.) ok o_{n} is packed. inv_{C} holds \mathbf{b} / c inverse of init and runtime proof of P.
4.a.) ok
4.b.) ok
4.c.) ok
4.d.) ok
4.e.) ok
4.f.) ok
$o: C$ added to both.
$S=s$ for o_{n} and invariant holds from above.

No fields added to Δ.
True b/c $o_{n} \notin \operatorname{dom}(\Sigma)$ until now. None added.
4.g.) ok Fields were all in Δ before step, therefore by 4.e and 4.f property now holds for fields. $\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
$\overline{k \cdot o}$ removed from S_{p}^{\prime} and Δ^{\prime}.
$T=$.
$a^{\prime}=a$ and only not-active (e) can be derrived.
inv on not-active rule. not-active (e^{\prime})

Case E-Let-E

So $e=$ let $x=e_{1}$ in $e_{2}, e^{\prime}=$ let $x=e_{1}^{\prime}$ in e_{2}.
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$a ; H ;\left\langle e_{1}, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e_{1}^{\prime}, S_{p}^{\prime}\right\rangle ; T \quad$ Inversion of only eval rule
$\Delta^{\mathcal{E}}=\left(\Delta_{1}, \Delta_{2}\right) \quad \cdot ; \Sigma ; \Delta_{1} ; \mathcal{E} ; u \vdash e_{1}: \exists x: C . P \backslash \omega_{1} \mid u_{2}$
$\Sigma ; \Delta_{2}, P \vdash_{\mathcal{E}} P^{\prime}$
$x: C ; \Sigma ; P^{\prime} ; \mathcal{E} ; u_{2} \vdash e_{2}: E \backslash \omega_{2} \mid u^{\prime \prime}$
Inversion of only typing rule
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ where $\overline{\Delta^{\mathcal{E}}}$ has Δ_{1} instead of Δ.
Compositionality
Apply induction hypothesis where $\left(\Delta_{2}, \Delta^{*}\right)$ is the additional linear context.
$\Sigma^{\prime} ; \bar{\Delta}^{\prime} ; u^{\prime} \vdash H^{\prime} ; \overline{S_{p}^{\prime}}$
$\bar{\Delta}^{\prime}$ is the same as $\bar{\Delta}$ except Δ is now $\Delta_{1}^{\prime}, \Delta_{2}, \Delta^{*}$.
I.H.

Gives us $\Sigma^{\prime} \supseteq \Sigma$. $u^{\mathcal{E}^{\prime}}$ and ω_{1}^{\prime}
I.H.

Either (a) $u=-$ and $u^{\prime}=k \cdot o @ s$ and $\omega_{1}-\omega_{1}^{\prime}$ only contains fields of o or (b) $\omega_{1}^{\prime} \supseteq \omega_{1}$.
I.H.
$\cdot ; \Sigma^{\prime} ; \Delta_{1} ; \mathcal{E} ; u^{\prime} \vdash e_{1}^{\prime}: \exists x: C . P \backslash \omega_{1}^{\prime} \mid u_{2}$
I.H.
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
I.H. Fractions in Δ_{2} unchanged.
T ok
I.H.

SUBCASE: $u=-$ and $u^{\prime}=k \cdot o @ s$ and $\omega_{1}^{\prime}-\omega_{1}$ only contains fields of o .
Δ_{2}, Δ^{*} do not contain permissions for fields of o.
Definition of well-typed store.
Δ_{2}, Δ^{*} do not contain permissions for fields in ω_{1}^{\prime} $\omega_{1}^{\prime}-\omega_{1}$ contains only fields of o

$$
\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime \prime}
$$

By rule T-LET
SUBCASE: $\omega_{1}^{\prime} \supseteq \omega_{1}$
Δ_{2}, Δ^{*} do not contain permissions for fields in ω_{1}^{\prime}

$$
\cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e^{\prime}: E \backslash \omega^{\prime} \mid u^{\prime \prime}
$$

$$
\omega_{1}^{\prime} \supseteq \omega_{1}
$$

By rule T-LET
If $a=a^{\prime}$ and $\operatorname{active}(e)$, then $\operatorname{active}\left(e_{1}\right)$, not-active $\left(e_{2}\right)$
Inversion active
active $\left(e_{1}\right)$ implies active $\left(e_{1}^{\prime}\right)$
active $\left(e_{1}^{\prime}\right)$ and not-active $\left(e_{2}\right)$ imply active $\left(e^{\prime}\right)$
If $a=a^{\prime}$ and not-active (e) then not-active $\left(e_{1}\right)$ and not-active $\left(e_{2}\right)$
$a=a^{\prime}$ and not-active $\left(e_{1}\right)$ implies not-active $\left(e_{1}^{\prime}\right)$
not-active (e_{1}^{\prime}) and not-active $\left(e_{2}\right)$ imply not-active $\left(e^{\prime}\right)$
If $a=\circ$ and $a^{\prime}=\bullet$, then not-active $\left(e_{1}\right)$ and active $\left(e_{1}^{\prime}\right)$
$a=\circ$ implies not-active (e)
not-active (e) imples not-active $\left(e_{2}\right)$
active $\left(e_{1}^{\prime}\right)$ and not-active $\left(e_{2}\right)$ imply active $\left(e^{\prime}\right)$
If $a=\bullet$ and $a^{\prime}=\circ$ then active $\left(e_{1}\right)$ and not-active $\left(e_{1}\right)$
$a=\bullet$ implies either active (e) or not-active (e)
Given active $\left(e_{1}\right)$, not-active (e) impossible
active (e)
active (e) implies not-active $\left(e_{2}\right)$
not-active $\left(e_{1}^{\prime}\right)$ and not-active (e_{2} implies not-active $\left(e^{\prime}\right)$

Induction
Active rule, Let Inversion not-active (e)

Induction
Not-active rule, Let
Induction
Assumption
Inversion, not-active Let
Active rule, Let
Induction
Assumption
Definition of active for Let
Above
Active rule, Let Not active rule, Let.

Case E-LET-V

So $e=$ let $x=k \cdot o$ in $e_{2}, e^{\prime}=[o / x] e_{2}, H^{\prime}=H, S_{p}^{\prime}=S_{p}, a^{\prime}=a$.
$\cdot ; \Sigma ; \Delta ; \underline{\mathcal{E} ;} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
Assumption
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$k^{\prime} \cdot o \in S_{p} \quad o \mapsto C(\ldots) @ S \in H \quad k \leq k^{\prime}$
Inversion of only eval rule.
$\cdot ; \Sigma ;\left(\Delta_{1}, \Delta_{2}\right) ; \mathcal{E} ; u \vdash$ let $x=e_{1}$ in $e_{2}: E \backslash \omega_{1} \cup \omega_{2} \mid u^{\prime}$
$\Sigma ; \Delta_{2}, P \vdash_{\mathcal{E}} P^{\prime}$
$\cdot ; \Sigma ; \Delta_{1} ; \mathcal{E} ; u \vdash e_{1}: \exists x: T . P \backslash \omega_{1}\left|u_{2} \quad x: C ; \Sigma ; P^{\prime} ; \mathcal{E} ; u_{2} \vdash e_{2}: E \omega_{2}\right| u^{\prime}$
No permissions for eff f_{1} in Δ_{2}
Only typing rule and its inversion.
Let $\Sigma^{\prime}=\Sigma, \Delta^{\mathcal{E}}=P^{\prime}, u^{\mathcal{E}}=u, \omega^{\prime}=\omega . \cdot ; \Sigma^{\prime} ; \Delta^{\prime} ; \mathcal{E} ; u^{\prime} \vdash e_{2}: E \backslash \omega_{1} \mid u_{2}$
Substitution
Must show $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
No change at all except forgetting permissions in Δ.
$\forall o \in \operatorname{dom}(H): w\left(o, S_{p}\right)-w(o, \Delta)-w(o, u) \leq w\left(o, S_{p}^{\prime}\right)-w\left(o, \Delta^{\prime}\right)-w\left(o, u^{\prime}\right)$
No changes
$T=$.
$a^{\prime}=a$.
not-active $(e) \quad$ No active rule for locations, let rule.
not-active $\left(e_{2}\right)$ notactive Let rule.

1.6 Progress

1.6.1 Top-Level Progress

If $\vdash a ; H ; T$
Then there exists either:

- \bar{v} such that $T=<\bar{v}, \overline{S_{p}}>$, or
- $a^{\prime} ; H^{\prime} ; T^{\prime}$ such that $a ; H ; T \rightarrow a^{\prime} ; H^{\prime} ; T^{\prime}$

Proof: By structural induction on the derivation of $\vdash a ; H ; T$
Case T-Top-Level
$\vdash a ; H ; T$
correct-atomic (a, T)
Asssumed

Subcase: $a=0$
Every e_{i} in $\left\langle o l e, S_{p}\right\rangle$ is not-active $\left(e_{i}\right)$. Inversion of correct-atomic
Subcase: Every e in \bar{e} is a value
Proof satisfied
Subcase: $\exists e_{i}$ in \bar{e} s.t. e_{i} not a value
e_{i} must take a step
Global thread pool steps
Single-threaded lemma rule E-Thread-Pool
SUBCASE: $a=\bullet$
There is a e_{i} in \bar{e} such that active $\left(e_{i}\right)$.
e_{i} must take a step
Global thread pool steps

Inversion of correct-atomic
Single-threaded lemma
rule E-Thread-Pool

1.6.2 Thread-Level Progress

If

- $\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$

Then the following three items must hold true:

1. If $\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u$ and $\operatorname{active}(e)$, then $\exists e^{\prime}, a^{\prime}, H^{\prime}, T, S_{p}^{\prime}$ such that $\bullet ; H ;\left\langle e, S_{p}\right\rangle \rightarrow$ $a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T$, where Δ and S_{p} come from $\bar{\Delta}$ and $\overline{S_{p}}$ respectively and are associated.
2. If $\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u$, and not-active (e), then e is a value, or $\exists e^{\prime}, a^{\prime}, H^{\prime}, T, S_{p}^{\prime}$ such that $\circ ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T$, where Δ and S_{p} come from $\bar{\Delta}$ and $\overline{S_{p}}$ respectively and are associated.

Proof: By structural induction on the derivation of $\Gamma ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash e: E \backslash \omega \mid u^{\prime \prime}$
CASE T-LOC $k \cdot o$ is already a value.
Case T-Call
So $e=k \cdot o . m(\overline{k \cdot o})$.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ;-\vdash k \cdot \operatorname{o.m}(\overline{k \cdot}): \exists x: C . P_{r}^{\prime} \mid-$
Assumption
$(o: C) \in \Sigma \overline{o: C} \subseteq \Sigma$
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o /$ this $][\bar{o} / \bar{f}] P \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} \cdot P \multimap \exists x: C \cdot P_{r}$
forget $_{\mathcal{E}}\left(P_{r}\right)=P_{r}^{\prime}$
Inversion of typing rule. $o, \bar{o} \in \operatorname{dom}(H)$
Heap condition 1
$o, \bar{o} \in \operatorname{dom}\left(S_{p}\right)$
$\left\{k^{\prime} \cdot o, \overline{k \cdot o}\right\} \subseteq S_{p}$
$k \leq k^{\prime}, \overline{k \leq k^{\prime}}$
$\Sigma ; \Delta \vdash S_{p}$
Above
$H, S_{p} \mid k \cdot o, \overline{k \cdot o} \vdash[o /$ this $][\bar{o} / \bar{f}] P$
$\Sigma ; \Delta \vdash S_{p}$ and heap well-typed
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-CALL
not-active (e)
No rule for active Call.
Rule works for $a=\circ$

CASE T-Spawn

$$
\operatorname{So} e=\operatorname{spawn}(k \cdot o . m(\overline{k \cdot o})) .
$$

$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ;$ ot $;-\vdash \operatorname{spawn}(k \cdot o . m(\overline{k \cdot o})): \exists_{-}: C_{d}$.immutable $\cdot o_{d} @ s_{d} \backslash \emptyset \mid-$
Assumption
$o: C \in \Sigma \overline{o: C} \in \Sigma \operatorname{mtype}(C, m)=\forall \overline{x: C} . P \multimap E$
$\cdot ; \Sigma ; \Delta^{\text {ot }} \vdash_{\text {ot }}[o /$ this $][\bar{o} / \bar{f}] P$
$o, \bar{o} \in \operatorname{dom}(H)$
$o, \bar{o} \in \operatorname{dom}\left(S_{p}\right)$
$\left\{k^{\prime} \cdot o, \overline{k \cdot o}\right\} \subseteq S_{p}$
Inversion of only typing rule.
$k \leq k^{\prime}, \overline{k \leq k^{\prime}}$
Above
$H, S_{p} \mid k \cdot o, \overline{k \cdot o} \vdash[o / t h i s][\bar{o} / \bar{f}] P$
Heap condition 1 $\Sigma ; \Delta \vdash S_{p}$ $\Sigma ; \Delta \vdash S_{p}$
$\Sigma ; \Delta \vdash S_{p}$ and heap well-typed
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-Spawn
not-active (e)
No rule for active Spawn.
Rule works for $a=0$

Case T-Unpack-Wt

So $e=u_{n p a c k}^{w t} k \cdot o @ s$ in e_{2}.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ;\left(\Delta, \Delta^{\prime}\right) ; \mathbf{w t} ;-\vdash$ unpack $_{\mathrm{wt}} k \cdot o @ s$ in $e^{\prime}: E \backslash \emptyset \mid-$
Assumption
$(o: C) \in \Sigma \overline{o: C} \subseteq \Sigma$
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o /$ this $][\bar{o} / \bar{f}] P \quad \operatorname{mtype}(C, m)=\forall \overline{x: C} . P \multimap \exists x: C . P_{r}$
forget $_{\mathcal{E}}\left(P_{r}\right)=P_{r}^{\prime}$
$k^{\prime} \cdot o \in S_{p}$
Inversion of only typing rule
$o \in \operatorname{dom}(H)$
$k \leq k^{\prime}$
$\Sigma ; \Delta \vdash S_{p}$

SUBCASE: readonly (k)
$k=$ immutable implies $o \mapsto C(\ldots) @ s \in H$ or $o \mapsto C(\ldots) @ u n p a c k e d(s) \in H$
From heap condition 4.c and $\leq . \quad k=$ pure implies $o \mapsto C(\ldots) @ s \in H$ From heap conditions 4.c, 2 and 3.

$$
a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}
$$

By rule E-UNPACK-R-WT
Only not-active (e) can be derrived, and we can step when $a=0$.
SUbCASE: writes (k)
$k=$ share|full|unique implies $o \mapsto C(\ldots) @ s \in H$
$k^{\prime} \in S_{p} \quad k \leq k^{\prime}$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
Heap condition 4.c. $\Sigma ; \Delta \vdash S_{p}$

By rule E-UnPACK-RW-WT
Only not-active(e) can be derrived, and we can step when $a=\circ$.

Case T-Unpack

So $e=$ unpack $_{\mathcal{E}} k \cdot o @ s$ in e_{2}.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ;\left(\Delta, \Delta^{\prime}\right) ; \mathcal{E} ;-\vdash \operatorname{unpack}_{\mathcal{E}} k \cdot o @ s$ in $e^{\prime}: E \backslash \emptyset \mid-$
$k=$ unique | full | immutable $(o: C) \in \Sigma \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} k \cdot o @ s$
$\mathcal{E}=$ emp \mid ot $\quad ; \Sigma ; \Delta^{\prime},[o /$ this $] \operatorname{inv}_{C}(s, k) ; \mathcal{E} ; k \cdot o @ s \vdash e^{\prime}: E \backslash \omega \mid-$
Inversion of only typing rule
$o \in \operatorname{dom}(H)$ $\Sigma ; \Delta \vdash S_{p}$
$k \leq k^{\prime}$
From $\Sigma ; \Delta \vdash S_{p}$
SUBCASE: readonly (k)
$k=$ immutable implies $o \mapsto C(\ldots) @ s \in H$ or $o \mapsto C(\ldots) @ u n p a c k e d(s) \in H$
From heap condition $4 . \mathrm{c}$ and \leq.

$$
a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}
$$

By rule E-UnPACK-R
Only not-active(e) can be derrived, and we can step when $a=0$.
Subcase: writes (k)
$k=$ full|unique implies $o \mapsto C(\ldots) @ s \in H$
Heap condition 4.c.

$$
\begin{aligned}
& k^{\prime} \in S_{p} \quad k \leq k^{\prime} \\
& a ; H ;\left\langle e, S_{p}\right\rangle \xrightarrow{\rightarrow} a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}
\end{aligned}
$$

$$
\Sigma ; \Delta \vdash S_{p}
$$

By rule E-UnPACK-RW
Only not-active(e) can be derrived, and we can step when $a=0$.

CASE T-PACK

So $e=$ pack o to s^{\prime} in e_{2}.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ;\left(\Delta, \Delta^{\prime}\right) ; \mathcal{E} ; k \cdot o @ s \vdash$ pack o to s^{\prime} in $e^{\prime}: E \backslash\{o \bar{f}\} \mid-$
Assumption
$\operatorname{forget}_{\mathcal{E}}(k \cdot o @ s)=k \cdot o @ \$$
$k=$ immutable | pure implies $s=s^{\prime} \cdot ; \Sigma ; \Delta^{\prime}, k \cdot o @ \$; \mathcal{E} ;-\vdash e^{\prime}: E \backslash \emptyset \mid-$ localFields $(C)=\overline{f: C} \quad(o: C) \in \Sigma \quad ; \Sigma ; \Delta \vdash_{\mathcal{E}}[o /$ this $] \operatorname{inv}_{C}(s, k)$
No temporary permissions for o. \bar{f} in Δ^{\prime}
Inversion of only typing rule.
Subcase: writes (k)
$o \mapsto C(\ldots) @ u n p a c k e d(k) \in H$
Heap condition 3
o 's fields satisfy $[o / t h i s] \operatorname{inv}_{C}(s, k)$
$k^{\prime} \cdot o \in S_{p}$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
Only not-active (e) can be derrived.
We can step when $a=0$.
Subcase: readonly (k)
$o \mapsto C(\ldots) @ u n p a c k e d(s) \in H$
o 's fields satisfy $[o / t h i s] \operatorname{inv}_{C}(s, k)$
$k^{\prime} \cdot o \in S_{p}$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$

Heap condition 3
Above and heap condition 4.d.
$\Sigma ; \Delta \vdash S_{p}$
By rule E-PACK-RW

Above and heap condition 4.d.
$\Sigma ; \Delta \vdash S_{p}$

Only not-active (e) can be derrived. We can step when $a=0$.

Case T-Atomic

$$
e=\operatorname{atomic}\left(e_{1}\right)
$$

$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ atomic $\left(e_{1}\right): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathbf{w t} ; u \vdash e_{1}: \exists x: C . P \backslash \omega \mid u^{\prime} \quad$ forget $_{\mathcal{E}}(P)=P^{\prime}$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
Inversion of only typing rule
By rule E-Atomic-Begin
Only active (e) can be derrived.
e can step when $e=0$

Case T-Inatomic

$$
e=\text { inatomic }\left(e_{1}\right)
$$

$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ inatomic $(e): \exists x: C . P^{\prime} \backslash \omega \mid u^{\prime} \quad$ Assumption
$\cdot ; \Sigma ; \Delta ; \mathbf{w t} ; u \vdash e: \exists x: C . P \backslash \omega \mid u^{\prime} \quad$ forget $_{\mathcal{E}}(P)=P^{\prime}$
Inversion of typing rule.
SUBCASE: e_{1} is a value It is only possible to derrive active (e).
When $a=\bullet$, we can step.

$$
a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}
$$

By rule E-Atomic-Exit
SUbCASE: e_{1} is not a value.
e_{2} can take a step Induction hypothesis
It is only possible to derrive active (e).
When $a=\bullet$, we can step.
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-Inatomic

Case T-Read

So $e=k \cdot o . f_{i}$.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash k \cdot o: \exists x: C .[x / o] P \backslash \emptyset \mid u$
Assumption
readonly $\left(k_{u}\right)$ implies readonly $(k) \quad \cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} P \quad$ localFields $(C)=\overline{f: C}$
Inversion of typing rule

$$
o \mapsto C\left(\ldots, f_{i}=k_{i} \cdot o_{i}, \ldots\right) @ S
$$

$k \leq k_{i}$
Heap condition 3
SUBCASE: writes $\left(k_{u}\right)$
$S=\operatorname{unpacked}\left(k_{u}\right)$
Heap condition 3
Only not-active (e) can be derrived.
We can step when $a=0$ $a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$

By rule E-READ-RW
SUbCASE: readonly $\left(k_{u}\right)$
$S=\operatorname{unpacked}(s)$
Heap condition 3
$k=$ immutable|pure
Above
Only not-active (e) can be derrived.
We can step when $a=0$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-READ-R

Case T-LET

So $e=$ let $x=e_{1}$ in e_{2}.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ Assumption
$\cdot ; \Sigma ;\left(\Delta_{1}, \Delta_{2}\right) ; \mathcal{E} ; u \vdash$ let $x=e_{1}$ in $e_{2}: E \backslash \omega_{1} \cup \omega_{2} \mid u^{\prime} \quad$ Assumption
$\Sigma ; \Delta_{2}, P \vdash_{\mathcal{E}} P^{\prime}$
$\cdot ; \Sigma ; \Delta_{1} ; \mathcal{E} ; u \vdash e_{1}: \exists x: T . P \backslash \omega_{1}\left|u_{2} \quad x: C ; \Sigma ; P^{\prime} ; \mathcal{E} ; u_{2} \vdash e_{2}: E \omega_{2}\right| u^{\prime}$
No permissions for ω_{1} in Δ_{2}
Inversion of typing rule
SUBCASE: e_{1} is a value.
$e_{1}=k \cdot o$
No other values.
$k^{\prime} \cdot o \in S_{p} \quad k \leq k^{\prime}$
$o \in H$
By inversion of T-LOC and $\Sigma ; \Delta \vdash S_{p}$ Heap condition 1
Only not-active (e) possible when e_{1} is a value.
We can step when $a=0$.
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
SUbCASE: e_{1} is not a value.
e_{1} is well-typed
e_{1} must step
If active (e) then active $\left(e_{1}\right)$
e_{1} must step when $a=\bullet$
If not-active (e) then not-active $\left(e_{1}\right)$
By rule E-Let-V
e_{1} must step when $a=o$
Above
Induction hypothesis
active for Let
I.H
not-active for Let
I.H

$$
a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}
$$

By rule E-LET-E

Case T-New

So $e=$ new $C(\overline{k \cdot o})$.
$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$
Assumption
$\cdot ; \Sigma ; \Delta ; \mathcal{E} ; u \vdash$ new $C(\overline{k \cdot o}): \exists x: C$.unique $\cdot x @ s \backslash \emptyset \mid u$
Assumption
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}}[\bar{o} / \bar{f}] P \quad \overline{o: C} \subseteq \Sigma \operatorname{init}(C)=\langle\exists \overline{f: C} \cdot P, s\rangle$
Inversion of typing rule
$H ; S_{p} \vdash[\bar{o} / \bar{f}] P$
Heap condition 4.c.
$\overline{k \cdot o} \in S_{p}$
$\overline{k \leq k^{\prime}}$
$\Sigma ; \Delta \vdash S_{p}$ $\Sigma ; \Delta \vdash S_{p}$
We can only derrive not-active (e)
We can step when $a=0$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-NEw-E

Case T-Assign

$\Sigma ; \overline{\Delta^{\mathcal{E}}} ; \overline{u^{\mathcal{E}}} \vdash H ; \overline{S_{p}}$ Assumption
$\cdot ; \Sigma ; \Delta, \Delta^{\prime} ; \mathcal{E} ; k^{\prime} \cdot o^{\prime} @ s^{\prime} \vdash o^{\prime} . f_{i}^{\prime}:=k \cdot o: \exists x^{\prime}: C_{i} . P^{\prime} \otimes\left[o^{\prime} . f_{i} / x\right] P \backslash\left\{o_{i} . f\right\} \mid k^{\prime} \cdot o^{\prime} @ s^{\prime}$
Assumption
localFields $\left(C^{\prime \prime}\right)=\overline{f: C} \quad\left(o^{\prime}: C^{\prime}\right) \in \Sigma \quad$ writes $\left(k^{\prime}\right)$
$\cdot ; \Sigma ; \Delta \vdash_{\mathcal{E}} k \cdot o: \exists x: C_{i} . P \quad \cdot ; \Sigma ; \Delta^{\prime} \vdash_{\mathcal{E}}\left[o^{\prime} . f_{i} / x^{\prime}\right] P^{\prime}$
Inversion of typing rule.
$o \mapsto C(\ldots) @ u n p a c k e d\left(k^{\prime}\right) \in H$
$k_{i}^{\prime} \in S_{p}$
Heap condition 3
$k_{i} \leq k_{i}$
Heap condition 4.d

Only not-active (e) can be derrived.
We can step when $a=0$
$a ; H ;\left\langle e, S_{p}\right\rangle \rightarrow a^{\prime} ; H^{\prime} ;\left\langle e^{\prime}, S_{p}^{\prime}\right\rangle ; T^{\prime}$
By rule E-Assign-E

References

[1] Beckman, N., Bierhoff, K., Aldrich, J. Verifying Correct Usage of Atomic Blocks and Typestate. OOPSLA ‘08, Nashville, TN. October, 2008.
[2] Bierhoff, K., Aldrich, J. Modular Typestate Checking of Aliased Objects. OOPSLA ‘07, Montreal, Canada. October, 2007.
[3] Moore, K., Grossman, D. High-Level Small-Step Operational Semantics for Transactions. POPL ‘08, San Francisco, CA. January, 2008.

