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Abstract

Extracting sentiments from unstructured text has emerged as an important problem in many dis-
ciplines. An accurate method would enable us, for example, to mine on-line opinions from the
Internet and learn customers’ preferences for economic or marketing research, or for leveraging
a strategic advantage. In this paper, we propose a two-stage Bayesian algorithm that is able to
capture the dependencies among words, and, at the same time, finds a vocabulary that is efficient
for the purpose of extracting sentiments. Experimental results on the Movie Reviews data set show
that our algorithm is able to select a parsimonious feature set with substantially fewer predictor
variables than in the full data set and leads to better predictions about sentiment orientations than
several state-of-the-art machine learning methods. Our findings suggest that sentiments are cap-
tured by conditional dependence relations among words, rather than by keywords or high-frequency
words.
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1 Introduction

Traditionally, researchers have used surveys to collect a limited amount of data in a structured form
for their analyses. In recent years, the advent of the Internet, and the widespread use of advanced
information technologies in general, have resulted in a surge of information that is freely available
on-line in an unstructured format. For example, many discussion groups and review sites exist
where people post their opinions about a product. The automatic understanding of sentiments
expressed within the texts of such posts could lead to a number of new applications in the fields of
marketing and information retrieval.

Researchers have been investigating the problem of automatic text categorization for the past
two decades. Satisfactory solutions have been found for the cases of topic categorization and
of authorship attribution; briefly, topics are captured by sets of keywords, whereas authors are
identified by their choices about the use of non-contextual, high-frequency words. Pang et al [17]
showed that such solutions, or extensions of them, yield cross-validated accuracies and areas under
the curve (AUC) in the low 80%s when ported to sentiment extraction. We conjecture that one
reason for the failure of such approaches maybe attributed to the fact that the features used in
the classification (e.g. the words) are assumed to be pairwise independent. The goal of this paper
is to present a machine learning technique for learning predominant sentiments of on-line texts,
available in unstructured format, that:

• is able to capture dependencies among words, and

• is able to find a minimal vocabulary, sufficient for categorization purposes.

Our two-stage Markov Blanket Classifier (MBC) learns conditional dependencies among the
words and encodes them into a Markov Blanket Directed Acyclic Graph (MB DAG) for the senti-
ment variable (first stage), and then uses a Tabu Search (TS) meta-heuristic strategy to fine tune
the MB DAG (second stage) in order to yield a higher cross-validated accuracy. Learning depen-
dencies allows us to capture semantic relations and dependent patterns among the words, thus
approximating the meaning of sentences, with important applications for many real world applica-
tions. Further, performing the classification task using a Markov Blanket (MB) for the sentiment
variable (in a Bayesian network) has important properties: (a) it specifies a statistically efficient
prediction of the probability distribution of the sentiment variable from the smallest subset of pre-
dictors, and (b) it provides accuracy while avoiding over-fitting due to redundant predictors. We
test our algorithm on the publicly available Movie Reviews data set and achieve a cross-validated
accuracy of 87.5% and a cross-validated AUC of 96.85% respectively, against best performances of
competing state-of-the-art classifiers in the low 80%s. This paper is organized as follows: Section

2 surveys related work. Section 3 provides some background about Bayesian networks, Markov
Blankets, and Tabu Search. Section 4 contains details about our proposed methodology. Section 5
describes the data and presents the experimental results. Last, Section 6 discusses of our findings
and concludes.

2 Related Work on Sentiments

The problem of sentiment extraction is also referred to as opinion extraction or semantic classifica-
tion in the literature. A related problem is that of studying the semantic orientation, or polarity, of
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words as defined by Osgood et al. [16]. Hatzivassiloglou and McKeown [10] built a log-linear model
to predict the semantic orientation of conjoined adjectives using the conjunctions between them.
Huettner and Subasic [11] hand-crafted a cognitive linguistic model for affection sentiments based
on fuzzy logic. Das and Chen [6] used domain knowledge to manually construct lexicon and gram-
mar rules that aim to capture the “pulse” of financial markets as expressed by on-line news about
traded stocks. They categorized news as buy, sell or neutral using five classifiers and various voting
schemes to achieve an accuracy of 62% (random guesses would top 33%). Turney and Littman [23]
proposed a compelling semi-supervised method to learn the polarity of adjectives starting from a
small set of adjectives of known polarity, and Turney [22] used this method to predict the opinions
of consumers about various objects (movies, cars, banks) and achieved accuracies between 66% and
84%. Pang et al. [17] used off-the-shelf classification methods on frequent, non-contextual words
in combination with various heuristics and annotators, and achieved a maximum cross-validated
accuracy of 82.9% on data from IMDB. Dave et al. [7] categorized positive versus negative movie
reviews using support vector machines on various types of semantic features based on substitutions
and proximity, and achieved an accuracy of at most 88.9% on data from Amazon and Cnn.Net.
Last, Liu et al. [14] proposed a framework to categorize emotions based on a large dictionary of
common sense knowledge and on linguistic models.

3 Theoretical Background

3.1 Bayesian Networks and Markov Blanket

A Bayesian network is a graphical representation of the joint probability distribution of a set of
random variables as nodes in a graph, connected by directed edges. The orientations of the edges
encapsulate the notion of parents, ancestors, children, and descendants of any node [18, 20].

More formally, a Bayesian network for a set of variables X = {X1, ...,Xn} consists of: (i) a
network structure S that encodes a set of conditional independence assertions among variables in
X; and (ii) a set P = {p1, ..., pn} of local conditional probability distributions associated with each
node and its parents. Specifically, S is a directed acyclic graph (DAG) which, along with P , entails
a joint probability distribution p over the nodes.

We say that P satisfies the Markov condition for S if every node Xi in S is independent of its non-
descendants, conditional on its parents. The Markov Condition implies that the joint distribution
p can be factorized as a product of conditional probabilities, by specifying the distribution of
each node conditional on its parents. In particular, for given a structure S, the joint probability
distribution for X can be written as

p(X) =

n∏

i=1

pi(Xi|pai) , (1)

where pai denotes the set of parents of Xi.
Given the set of variables X and target variable Y , a Markov Blanket (MB) for Y is the smallest

subset Q of variables in X such that Y is independent of X\Q, conditional on the variables in Q.
Intuitively, given a Bayesian network (S,P ), the Markov Blanket for Y consists of paY , the set of
parents of Y ; chY , the set of children of Y ; and pa chY , the set of parents of children of Y .

Example 1. Consider the two DAGs in Figure 1 and Figure 2, below. The factorization of p
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entailed by the Bayesian network (S,P ) is

p(Y,X1, ...,X6) = C · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3,X4, Y ) ·
· p(X2|X1) · p(X3|X1) · p(X6|X4) ,

(2)

where C is a normalizing constant.
The factorization of the conditional probability p(Y |X1, ...,X6) entailed by the Markov blanket

for Y corresponds to the product of those local factors in (2) which contain the term Y , that is

p(Y |X1, ...,X6) = C ′ · p(Y |X1) · p(X4|X2, Y ) · p(X5|X3,X4, Y ) (3)

where C ′ is a different normalizing constant.
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Figure 1: Bayesian network (S,P ).
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Figure 2: Markov Blanket for Y in (S,P ).

Different MB DAGs that entail the same factorization for p(Y |X1, ...,X6) belong to the same
Markov equivalence class. Our algorithm searches the space of Markov equivalent classes, rather
than that of DAGs, thus boosting its efficiency. Markov Blanket classifiers have been recently
rediscovered and applied to several domains, but very few studies focus on how to learn the structure
of the Markov Blanket from data. Further, the applications in the literature have been limited to
data sets with few variables. Theoretically sound algorithms for finding DAGs are known (e.g. see
[4]), but none has been tailored to the problem of finding MB DAGs.

3.2 Tabu Search

Tabu Search (TS) is a powerful meta-heuristic strategy that helps local search heuristics explore
the space of solutions by guiding them out of local optima [9]. It has been applied successfully to
a wide variety of continuous and combinatorial optimization problems, and has been shown to be
capable of reducing the complexity of the search process and accelerating the rate of convergence.

The basic Tabu Search starts with a feasible solution and iteratively chooses the best move,
according to a specified evaluation function, while assuring that solutions previously generated are
not revisited in the short-term. This is accomplished by keeping a tabu list of restrictions on possible
moves, updated at each step, which discourage the repetition of selected moves. Typically tabu
restrictions are based on a short-term memory function, called the tabu tenure, to prevent loops
in the search, but intermediate and long-term memory functions may also be adopted to intensify
and diversify the search.
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4 Proposed Methodology: Two-Stage MB Classifier

4.1 1st Stage: Learning Dependencies with an Initial MB DAG

The first stage generates an initial MB for Y from the data. This procedure involves the following:
It begins by selecting those variables in {X1, ...,XN} that are associated with Y within two hops
in the graphical representation; that is, it finds potential parents and children (LY ) of Y , and
potential parents and children (∪iLXi

) of nodes Xi ∈ LY , using conditional independence tests,
representing adjacencies by undirected edges. At this point, the list Y ∪ LY ∪i LXi

is a skeleton
(an undirected graph) which contains the MB for Y ( See above the precise definition of MB(Y ) in
terms of paY , chY , and pa chY .) The algorithm then orients the edges using six edge orientation
rules described in Bai et al. [1]. Finally , it prunes the remaining undirected edges and bi-directed
edges to avoid cycles, puts them in a list L for Tabu Search, and returns the MB DAG.

The core of the first stage lies in the search for the nodes (LY ) associated with Y , and for those
(∪iLXi

) associated with the nodes in LY , based on causal discovery theory. [18, 20] This search is
non trivial and is performed by two recursive calls to the function findAdjacencies(Y ), as shown
in figure 3: independence tests between Y and each Xi are performed to identify a list (AY ) of
variables associated to Y ; then, for Xi ∈ AY and for all distinct subsets S ⊂ {AY \Xi}

d, where d

controls the size of S, conditional independence tests between Y and Xi given S are performed to
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Figure 3: Illustration of findAdjacencies (Y ). AY and AXi
are shown.

remove unfaithful associations; For more details about unfaithful associations and distribution see
Spirtes et al. [20]. Then, for all pairs (Xi,Xj)i6=j , independence tests are performed to identify lists
of variables (AXi

, i=1,...,N) associated to each Xi; last, for Xi ∈ AY and for all distinct subsets
S ⊂ {AXi

}d, conditional independence tests between Y and each Xi given S are again performed
to prune unfaithful associations.

4.2 2nd Stage: Tabu Search to Improve the MB Classifier

Tabu Search (TS) is then applied to improve the initial MB DAG. Our algorithm searches for
solutions in the space of logical Markov equivalence classes, instead of searching the space of MB
DAGs; that is, moves that yield Markov Blankets within the same Markov equivalent class are not
considered, and moves that result in cyclic graphs are not valid moves.

Briefly, four kinds of moves are allowed in the TS procedure: edge addition, edge deletion,
edge reversal and edge reversal with node pruning. At each stage, and for each allowed move, the
corresponding MB DAG is computed, its conditional probability factored, its predictions scored,
and the best move is then selected and applied. Best solution and best score at each step are
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tracked. The tabu list keeps a record of m previous moves, so that moves in the tabu list will not
be repeated till their corresponding tabu tenure expires. Details can be found in [2].

4.3 A Sketch of the Algorithm

We present a sketch of the algorithm below. The parameters are: D, a data set with N variables
and K examples; Y , the class variable; d, the maximum number of nodes for the conditional
independence tests; α, the significance level for the G2 statistical independence tests (for a definition
of G2 see [20]). The final output is the graphical Markov Blanket structure (MB) for Y .

InitialMBsearch (Data D, Target Y , Depth d, Significance α)

1. LY = findAdjacencies (Y , {X1, ...,XN}, d, α)

2. for Xi ∈ LY

2.1. LXi
= findAdjacencies (Xi, {X1, ...,XN}\Xi, d, α)

3. G = orient (Y ∪ LY ∪i LXi
)

4. {MB DAG, L} = prune (G)

5. return {MB DAG, L}

TabuSearch (Data D, Target Y )

1. init (bestSolution = currentSolution = MB DAG, bestScore = 0, ...)

2. repeat until (bestScore does not improve for k consecutive iterations)

2.1. form candidateMoves for currentSolution

2.2. find bestMove among candidateMoves according to function score

2.3. if (bestScore < score (bestMove))

2.3.1. update bestSolution and bestScore by applying bestMove

2.3.2. add bestMove to tabuList // not re-considered in the next t iterations

2.4. update currentSolution by applying bestMove

3. return bestSolution // an MB DAG

findAdjacencies (Node Y , List of Nodes L, Depth d, Significance α)

1. AY := {Xi ∈ L: Xi is dependent of Y at level α}

2. for Xi ∈ AY and for all distinct subsets S ⊂ {AY \Xi}
d

2.1. if Xi is independent of Y given S at level α

2.2. then remove Xi from AY

3. for Xi ∈ AY

3.1. AXi
:= {Xj ∈ L: Xj is dependent of Xi at level α, j 6= i}

3.2. for all distinct subsets S ⊂ {AXi
}d

3.2.1. if Xi is independent of Y given S at level α

3.2.2. then remove Xi from AY

4. return AY
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5 Experiments

5.1 Movie Reviews Data

We tested our method on the data set used in Pang et al [17]. This data set contains approximately
29,000 posts to the rec.arts.movies.reviews newsgroup archived at the Internet Movie Database
(IMDb). The original posts are available in the form of HTML pages. Some pre-processing was
performed to produce the version of the data we used. Specifically, only reviews where authors’
ratings were expressed explicitly (either by stars or by numerical values) were selected. Then
explicit ratings were removed and converted into one of three categories: positive, negative, or
neutral. Finally, 700 positive reviews and 700 negative reviews, which the authors of the corpus
judged to be more extreme, were selected for our study. Various versions of the data are available
on-line [24].

5.2 Feature Definition

In our study, we used words as features, where words are strings of letters enclosed by non-letters
to the left and to the right. Note that our definition excludes punctuation sign even though
exclamation signs and question marks may be helpful for our task. Intuitively the task of sentiment
extraction is a hybrid task between authorship attribution and topic categorization; we look for
frequent words, possibly not related to the context, that help express lexical patterns, as well as low
frequency words which may be specific to few review styles, but very indicative of an opinion. We
considered all the words that appeared in more than 8 documents as our input features, whereas
words with lower counts were discarded since they appear too rarely to be helpful in the classification
of many reviews. We were left with a total number of 7,716 words, as input features. In our
experiments, we represented each document as a vector, X := [X1, ...,X7716], of the size of the
initial vocabulary, where each Xi is a binary random variable that takes the value of 1 if the ith

word in the vocabulary is present in the document and the value of 0 otherwise.

5.3 Experimental Set-Up

In order to compute unbiased estimates for AUC and accuracy we used a nested, stratified, five-
fold cross-validation scheme. The parameters in our experiments were the scoring criteria, the
maximum size of the condition set to consider for conditional independence tests when learning the
MB DAG (i.e. the depth d), and the α level to decide whether to accept or reject each of these
tests. We explored 24 configurations of parameter combinations, shown in Table 1. We found

Table 1: Experimental Parameter Configurations.

Parameters Scoring Criteria Depth of Search Alpha C.V. Folds

Configurations AUC 1, 2, 3 0.001, 0.005, 5-fold
Accuracy 0.01, 0.05

the dominant configuration of the parameters on the training data and estimated the performance
on the testing data, according to the (outer) five-fold cross-validation scheme. In order to find
this configuration, within each fold i, we further split the training data in two (TRi1 and TRi2),
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trained the MB classifier on TRi1 for each parameter configuration, and tested the performance on
TRi2. The configuration that led to the best MB, in terms of accuracy on TRi2 across all five folds
i = 1, ..., 5, was chosen as the best configuration.

5.4 Results and Analysis

We compared the performances of our two-stage MB classifier with those of four widely used
classifiers: a näıve Bayes classifier based on the multivariate Bernoulli distribution with Laplace
prior for unseen words, discussed in Nigam et al. [15], a support vector machine (SVM) classifier
along with a TF-IDF re-weighting of the vectors of word counts, discussed by Joachims [12], an
implementation of the voted Perceptron, discussed in Freund and Schapire [8], and a maximum
entropy conditional random field learner, introduced by Lafferty et al. [13].

Table 2 compares the two-stage MBC with the performances of the other classifiers using the
whole feature set as input. As we expected, more features did not necessarily lead to better results,
as the classifiers were not able to distinguish discriminating words from noise. In such a situation we
also expected the SVM with TFIDF re-weighting and the voted perceptron to perform better than
the other classifiers. As shown in table 2, the two-Stage MB classifier selects 22 relevant words out
of 7,716 words in the vocabulary. The feature reduction ratio is 99.71%; the cross-validated AUC
based on the 22 words and their dependencies is 96.85%, which is 14.3% higher than the best of
the other four methods; the corresponding cross-validated accuracy is 87.5%, which is 3.5% higher
than the best of the other four methods. We notice that the two-Stage MB classifier is able to

Table 2: Average performances on the whole feature set.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 82.61 66.22 7716 0%
SVM + TFIDF 81.32 84.07 7716 0%
Voted perceptron 77.09 70.00 7716 0%
Max. entropy 75.79 79.43 7716 0%

automatically identify a very discriminating subset of features (or words) that are relevant to the
target variable (Y , the label of the review). Specifically, the selected features are those that form
the Markov Blanket for Y . Further, the two-Stage MB classifier yields the best results in terms of
both cross-validated AUC and accuracy. Other methods perform worse on the whole feature set
and need to be paired with a variable selection strategy.

Table 3 compares the performance of the two-stage MBC with others classifiers using the same
number of features selected by information gain. We notice that feature selection using information
gain criterion does not tell us how many features have to be selected, but rather allows us to
rank the features from most to least discriminating instead. Again, the two-Stage MB classifier
dominates the other methods both in terms of AUC and accuracy, though it is not clear whether the
extra performance comes form the different feature selection strategies, or from the dependencies
encoded by the MB.

To investigate this point, in Table 4 we compare the performance of the two-stage MBC with
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Table 3: Average performances on the same number of features.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 78.85 72.07 22 99.71%
SVM + TFIDF 67.30 70.43 22 99.71%
Voted perceptron 78.68 71.71 22 99.71%
Max. entropy 68.42 71.93 22 99.71%

others classifiers using the same exact features. We find that a small part of the difference between
the accuracy of the MBC and that of other classifiers in Table 3 arises from the fact that we selected
features using information gain; in fact all the four competing classifiers performed better on the
set of features in the Markov blanket. We also find that the major portion of such differences is
due to the MB classification method itself. We attribute the jump in the accuracy and AUC

Table 4: Average performances on the same exact features.

Method AUC Accuracy # Selected Size
Method (%) (%) Features Reduction

Two-stage MB 96.85 87.52 22 99.71%
Näıve Bayes 81.81 73.36 22 99.71%
SVM + TFIDF 69.47 72.00 22 99.71%
Voted perceptron 80.61 73.93 22 99.71%
Max. entropy 69.81 73.44 22 99.71%

to the fact that the MB classifier encodes and takes advantage of conditional dependencies among
words, which all other methods fail to capture.

Finally, in Figure 4 below we show the best MB DAG learned by the two-Stage MB classifier.
All the directed edges are robust over at least 4 out of five cross validation runs; the variation
is very small. The structure of the final MB DAG does not indicate independence of the words
conditional on the sentiment variable, which is the strong assumption underlying all the competing
classifiers.

These experiments, as well as more results we have obtained on other medical data sets [1],
suggest that for problems where the independence assumption is not appropriate, the two-stage
MB classifier is a better choice and leads to more robust predictions by: (i) selecting statistically
discriminating features for the class variable, and (ii) learning a more realistic model that allows for
dependencies among the predictors. Further, according to the empirical findings in Pang et al [17],
the baseline accuracy for human-selected vocabularies can be set at about 70%. Comparing the
human intuition to our fully automated machine learning technique (two-stage MBC), we observe
a non-negligible improvement.
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Figure 4: Best Fitting MB DAG for the Movie Dataset.

6 Discussion and Conclusions

The two-stage Markov Blanket classifier that we have proposed in this paper

• is able to capture dependencies among words, and

• is a fully automated system able to select a parsimonious vocabulary, customized for the
classification task in terms of size and relevant features.

Overall, the two-Stage MB classifier significantly outperforms the four baseline methods and is
able to extract the most discriminating features for classification purposes. The main drawbacks of
the competing methods are that they cannot automatically select relevant features, and they cannot
encode the dependencies among them. While the first issue is easily overcome by combining the
classifiers with off-the-shelf feature selection methods, the second issue cannot be addressed. In fact,
it is a direct consequence of the assumption of pairwise independence of features underlying all the
competing methods. Further, many techniques have been tried in order to automatically capture
the way people express their opinions, including models for the contextual effects of negations, the
use of feature frequency counts instead of their presence or absence, the use of different probability
distributions for different positions of the words in the text, the use of sequences of words or N -
grams, the combination of words and part of speech tags, noun-phrase chunks, and so on. However,
the empirical results in terms of prediction accuracy and AUC always remain in the same ballpark.

We performed three sets of experiments to compare the methods along various dimensions,
in Tables 2, 3, 4. In particular, Table 4 shows that given the same exact features, which were
identified by the MBC as belonging to the Markov blanket, the MBC leads to significantly higher
AUC and accuracy, thus suggesting that taking into account dependencies among words is crucial
to perform sentiment extraction. The comparison of results of Table 3 and Table 4 suggests that
information gain is not the best criterion to select discriminating variables, but the statistical
tests that measure association among features and causal reasoning are better tools to perform the
selection. The findings of Bai et al. [1], who obtained similar results on four more data sets form
different domains, add strength to our claims. We acknowledge that these are experimental results,
and other selection strategies and data sets may tell different stories.

In conclusion, we believe that in order to capture sentiments we have to go beyond the search
for richer feature sets and the independence assumption. Rather we need to capture those elements
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of the text that help identify context and meaning. We believe that a robust model, which would
naturally lead to higher performance, is obtained by encoding dependencies among words, and by
actively searching for a better dependency structure using heuristic and optimal strategies. Finally,
the analysis of the relations among words underlying accurate MBC DAGs may lead to a better
understanding of the way contextual meaning arises from the occurrence of words.
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