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Abstract
As human students benefit from teachers’ advice to accelerate their learning,

so could agents benefit from advice. Agents can not only learn from humans, e.g.
via human expert demonstrations, but also from other agents. This thesis focuses
on action advising, a knowledge transfer technique built upon the teacher-student
paradigm of reinforcement learning. In this approach, the teacher agent provides
action advice calculated from its policy given the student’s observations.

Although action advising has been studied over the past decade, the focus of the
related work has primarily been on when to advise. We extend the current state-of-
the-art by studying the following additional challenges: (1) In existing work, advice
is given without explaining the rationale behind it. The student can therefore hardly
understand teacher’s decisions, or internalize the knowledge to generalize teacher’s
advice; (2) In many situations, the teacher might be suboptimal in a new environment,
but there are no current approaches that enable the student to discern when some
particular pieces of advice might not be applicable; (3) No present techniques enable
the teacher to evaluate the quality of its advice before giving it to the student; (4) If
the student interacts in a new environment, the teacher has limited knowledge as it
does not collect the student’s data; (5) The teacher with a fixed pre-trained policy
might not be able to provide flexible advice; (6) The advice has rarely been applied
to human students.

In this thesis, we present our solutions to tackle the aforementioned challenges
and exhibit the empirical effectiveness of our proposed methods. We also propose
potential pathways for subsequent research. Our ultimate goal is to delve into the in-
tricacies and potentials of action advising in reinforcement learning, thereby directing
future advancements in the field.

Additionally, this thesis broadens its scope by examining further applications of
transfer learning, showcasing its utility and adaptability in varied contexts beyond
action advising. These explorations contribute to a deeper understanding of transfer
learning’s potential within the broader field of reinforcement learning.
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Chapter 1

Introduction

1.1 Motivation
We believe that agents could benefit from advice from other agents. This could prevent them
spending time exploring unpromising directions and accelerate learning. One suitable area for
action advising is Reinforcement learning (RL). RL’s success spans numerous fields, such as
learning to play various games [84, 133, 134], and training complex policies in autonomous
driving [81, 113, 158]. However, even the most accomplished RL algorithms have not fully
resolved the issue of sample inefficiency in high-dimensional tasks, necessitating large amounts of
training data [127, 162]. High sample complexity remains a bottleneck in various algorithms [32],
resulting in extended training times. In the case of real-world robots, where RL is used for complex
tasks, this poses significant challenges due to the extended time required for sample collection, and
the risk of damage to costly robots or other equipment during prolonged exploratory long-runs.

Recent research in action advising for RL has seen a rise over the past decade [33, 110,
144, 172] . Central to action advising in RL is the teacher-student paradigm, where a teacher
agent, trained in a source task, offers advice to a student agent trained in a target task. The
goal of teacher-student action advising is expediting the learning process of the student agent in
previously unseen situations by transferring the knowledge of the teacher agent to the student.
These methods present potential in various scenarios, including but not limited to: (1) situations
where a direct transfer of all the teacher’s knowledge is infeasible, such as copying a policy from
a different model or from a human; (2) situations when the teacher is sub-optimal, and it would be
beneficial to transfer only a specific subset of its knowledge, instead of a complete application; or
(3) situations where the teacher provides a curriculum for incremental student learning. In teacher-
student action advising, the teacher offers advice in the form of state-action pairs to the student,
suggesting a recommended course of action. This differs from related techniques such as inverse
reinforcement learning [65], intention inference [50], and offline reinforcement learning [45],
which rely on an offline dataset of expert trajectories. Most of the work on teacher-student action
advising to date focuses on when and how to provide advice [144].

We extend the current literature by providing methods to answer the following research
questions:

1. Can the teacher provide explanations for the given advice in addition to the advice itself,
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and let the student assimilate them?

2. If the teacher is non-expert and as a result may give inappropriate advice, how can the
student discern if it should reject the advice?

3. From the teacher’s perspective, how can it filter out bad advice, or suggest advice that
adapts to the student’s preferences?

4. What is the human’s acceptance towards the advice?
Addressing these issues could significantly enhance the teacher-student action advising frame-

work, leading to more effective and efficient knowledge transfer.
Beyond the primary focus on action advising in RL, this thesis expands its exploration to

assess the utility of transfer learning in various contexts, enriching our comprehension of its
versatility and strategic applications. While we delve deeply into action advising to address
sample inefficiency and knowledge transfer challenges in RL, the inclusion of further chapters
broadens our discourse, demonstrating how transfer learning principles can be adeptly applied to
optimize learning and decision-making in distinct domains. This broader examination is integral to
contextualizing our methodology’s strengths and delineating potential applications. By contrasting
these diverse applications with our focused methodologies in action advising, we gain valuable
insights into our approach’s advantages and the prospective directions for its application. These
additional explorations underscore the adaptability and wide-reaching impact of transfer learning
strategies, showcasing their critical role in propelling the field of reinforcement learning forward
and highlighting their potential to foster efficient learning and robust decision-making.

1.2 Related Work
Work on action advising in the field of reinforcement learning (RL) encourages knowledge transfer
from the teacher agent to the student agent. Most of this research considers the advising process
as happening during the training of a student agent, where the student utilizes the teacher’s
knowledge to accelerate and improve its own training process. Early work at the end of the last
century shed light on the direction that advice provision may come from an external observer
[97]. Although the number of studies has grown significantly over the past decade, they stem from
earlier works where the idea of agent advising was first introduced [83, 98, 143]. In these studies,
RL agents were considered teachable and could be guided to improve their training efficiency.
The instrumental assistance came from human agents who could potentially map their expertise
to RL tasks effectively, while a mapping based on domain knowledge had to be pre-designed
by the users to ensure the knowledge could be transferable [145, 146]. In the field of action
advising for reinforcement learning over the recent decade, the teacher guides the student agent
by recommending suitable actions within a given state, based on the student’s observations. This
enables the student agent to swiftly uncover effective actions, leading to efficient explorations,
especially within vast observation spaces, rather than relying solely on self-exploration.

This advising approach typically embeds the teacher-student paradigm where both of the agents
are RL agents, and encompasses a teacher’s knowledge transfer to a student in the form of state-
action pairs. A survey paper [30] lists and analyzes many significant approaches which deploy the
proposed paradigm. Foundational work ventured into the domain with budget constraints as an
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important measuring metric to determine if the advising was efficient, and also offered heuristic
methodologies for issuing advice in single-agent tasks [144] of simple video games. Subsequent
studies delved into various teacher-student dynamics that were defined by who initiated the advice,
for example, (a) student-initiated [32], (b) teacher-initiated [38], and (c) jointly-initiated [4].
Most of the work still considers the teacher initiating the advice, as the teacher is often more
knowledgeable to determine the situations encountered by the student. Additionally, many of
the approaches center around when and which action should be advised. The core of the work
considers how advice allocation can maximize its effect given the limited budget of advising.
Framing advising as a reinforcement learning task, where the teacher agent’s reward is based on
the student’s performance [38, 110, 177], has received much attention. This approach tackles
the problem of when to issue advice in a more robust way, but prolongs the training process
because every time the teacher improves its advising technique in a session, the student has to
converge from scratch in its training episodes. On the other hand, some work advances previously
established heuristic methods for deep reinforcement learning [31, 70], especially when the focus
of the work is not when to advise. Typically the work involves comparing various heuristic
methods or solely implementing the most feasible one.

Within the setting of multi-agent reinforcement learning (MARL), action advising approaches
consider each agent as both a student and a teacher, switching roles alternately [31, 80, 110].
This means the agents teach each other to complete a goal together for the entire team. No
prerequisite expert knowledge is required for the agents, thus all agents start in inexperienced
roles and gradually learn over the training process. These approaches do not assume stationarity in
the MARL setting, but do assume that the policies of other teammates are temporarily fixed while
each agent is being optimized. In order to determine whether to accept advice, some studies have
proposed agents that can probabilistically reject advice from their teammates [31], however, this
approach does not comprehensively consider the quality of the advice. A more robust approach
considers agents learning to teach each other by switching roles of teachers and students [110],
where the quality of the advice is further measured and the mechanism determines if it is helpful
to give advice. To enhance efficiency in the framework of agents learning to teach each other,
option learning is used to train a high-level agent policy [160] so as to handle more complicated
situations by abstracting the atomic actions away. Additionally, distillation and value-matching
techniques are utilized to aggregate knowledge from various homogeneous agents, simplifying the
multi-agent task [153]. Besides the framework of agents learning to teach each other, studies have
also delved into teaming with agents who are in partially observable environments in decentralized
settings [69]. Here, heuristic teaching strategies are employed to offer advice to a decentralized
team. This approach contrasts with the centralized settings, which use a single centralized teacher
to oversee the entire space and communicate advice to the student agents [57], who do not have a
complete global awareness.

Recent studies have pioneered the reuse of advice, structured as state-action pairs, in order to
save advising budgets and maximize communication efficiency. One such methodology involves
storing state-action pairs directly in memory, and selectively reusing the advice later [172].
In this work, multiple methods are used to determine if the storage has reached its maximum
capacity. An imitation learning module has been proposed that mimics the teacher’s advice,
enabling the generation of advice even after the advice budget has been used up [70]. This
further improves the reuse of fixed advice by providing similar pieces of advice. Additionally,
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researchers have considered a teacher that can provide qualitative evaluations of a given state,
when advice is required for it. This provides students with an understanding of how favorable
a particular state is [6], which may improve the selection of advice. Nevertheless, while these
approaches successfully save the budget, they encounter difficulties when generalizing action
advice to unfamiliar states and environments.

Human teachers have an innate ability to first determine if their advice is appropriate, and
adjust their advice based on the observed experiences of their students. Even though the human
teachers are not perfect, it is undoubtedly more difficult for artificial teachers to make adjustments.
Most recent approaches in action advising, which rely on an expert policy for advising, struggle
when the teacher’s domain differs from the student’s domain. This especially happens when
agents learn to teach each other and all agents are homogeneous [31, 111]. In a scenario where
the teacher is sub-optimal and the student’s domain differs from the teacher’s, the utility of the
teacher heavily relies on the quality of its advice [165]. This research problem, inspired by
DAGGER [125], was addressed [165] through a curriculum of teachers who constantly observe
and adapt their behaviors. This approach, however, necessitates the presence of multiple teachers,
which means it may not be applicable in scenarios where there is only one sub-optimal teacher.

Even though the field of action advising for reinforcement learning has been studied for more
than a decade, rarely has work been done for representing the rationale behind advising. The
aforementioned approaches overlook the importance of explainability or transparency when the
teacher issues its advice, which is an important part of handling teacher’s suboptimality. In our
work [54], where the teacher is not limited to providing the advice itself, explanations on why
the advice are given are also sent to the student. Although the teacher cannot improve its own
fixed policy, which is equivalent to reusing advice in memory [172], the explanation enables the
student to reflect on the given advice and transfer to a different environment.

We also introduce the approach allowing the teacher to reflect upon its own advice [23] . The
teacher withholds its advice if the expected outcome does not align with the student’s experience,
and gradually learns to filter out bad advice and keep the good ones. Previous work exists to
address sub-optimal teachers [136], however, there is little work done on mechanisms that enable
a student to comprehend the rationale behind sub-optimality. We directly address the domain
shift between the student’s and teacher’s tasks, which quickly adapts the teacher’s world model
composed of prediction networks based on a collection of the student’s observed behavior and
returned reward. Our teacher is thus not limited to withholding advice that negatively impacts
the student, but also can actively improve the quality of issued advice, which is beyond previous
approaches.

1.3 Preliminaries
Reinforcement Learning: We consider the problem of transferring knowledge from a teacher to a
student in the context of reinforcement learning. In our model, both single-agent and multi-agent
scenarios fit our work.

The Markov Decision Process (MDP) [139] of a single-agent reinforcement learning task is a
tuple of (S,A,R, T γ), where S is a set of states, A is a set of actions, R : S 7→ R is a reward
function, T (s, a, s′) = P (s′|s, a) is a transition function, and γ is a discount factor. A stochastic
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policy is denoted by π(a|s) : A × S 7→ [0, 1], indicating the probability that an agent chooses
action a given the state s. To calculate the state-value and action-value functions, definitions are
given as follows:

Vπ(st) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣st
]
,

Qπ(st, at) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣st, at
]
,

where Eπ[·] is the expected value given that an agent follows its policy π. The goal is to learn a
policy which maximizes the discounted cumulative reward, i.e. to learn π such that the expected
discounted return Vπ or Qπ is maximized.

The Multi-agent Markov Decision Process (MDP) of a multi-agent reinforcement learning
task is a tuple of (N ,S,A,R, T , γ), where N = {0...n} is a set of agents, S is a set of states,
A = ΠiAi is a set of joint actions, R : S 7→ R is a reward function, T (s, a0, a1...an, s′) =
P (s′|s, a0, a1...an) is a transition function, and γ is a discount factor. There is a set of policies
πi(s, ai) = P (ai|s) for each agent i, where the single-agent setting is a special case. The goal is
similarly also to learn a policy which maximizes the discounted cumulative reward. Same as the
single-player case, value-based methods similar to Q-learning maintain a Q-table or a Q-value
network, and agents choose actions to maximize Q values, such as VDN [138] and QMIX [120].
Actor-critic methods such as COMA [41] have one policy network for each agent, which takes in
an agent’s observation and infers an action, while another critic network estimates the quality of
the policy.

Action Advising We investigate action advising in the context of reinforcement learning.
Action advising hinges on the teacher-student paradigm, where a teacher agent aims to advise
the student agent by offering guidance in the form of actions based on the student’s observations
during the training process. The teacher agent has access to a policy pre-trained in a source task,
πT , and provides recommended actions to the student agent, who attempts to learn a policy πS in
a target task. Formally, let st represent the student’s perceived state of the environment at time
step t, and at denote the action undertaken by the student. Thus, following the formulation in a
prior work [23], we have:

at = aTt ∼ πT (at|st) if H(st) = 1, or aSt ∼ πS(at|st) if H(st) = 0, (1.1)

where H : S 7→ {0, 1} serves as a binary indicator function, which is assigned 1 when the
teacher provides advice, and 0 when the teacher does not.

1.4 Overview of Chapters
The arrangement of the rest of the chapters is as follows:

Chapter 2 We present our work [54] to demonstrate how we use a decision tree policy as the
distilled policy of a teacher, and how its decision tree paths are served as explanations given to
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the student, in addition to the action advice. Experiments show that the student performance is
accelerated and improved as student assimilates knowledge from teacher into its internal model.

Chapter 3 Based on the explanation work, we let the student determine if the advice from the
teacher should be taken or rejected in an environment that the teacher has never seen before [54].
The student also tests its transferability to an unseen environment without the teacher - only
depending on its learnt internal knowledge.

Chapter 4 Instead of letting the student decide if the advice is good enough, we let the teacher
introspect its own advice [23]. If the teacher’s estimated outcome is similar to what the real
situation is, then the teacher considers the advice beneficial.

Chapter 5 We take one further step where the teacher may improve its own policy to provide
alternative advice. The teacher collects data from its own environment and the student’s environ-
ment to train prediction networks on the student rewards, for the teacher to train in its imagination
to adapt to the student’s need.

Chapter 6 We examine if the artificial agent’s advice is acceptable to human students, and if
explanations improve the acceptance.

Chapter 7 The advising methodology extended to advising humans, utilizing the quickly-
developing large language models.

Chapter 8 We explore transfer learning in urban search and rescue, showcasing how a model
trained in one environment can generalize to aid decision-making in a new, complex setting. This
chapter demonstrates transfer learning’s impact on improving response strategies and operational
efficiency in critical rescue operations.

Chapter 9 Application of transfer learning in self-driving technology, focusing on an inno-
vative approach to optimize parameter selection across different driving contexts. The chapter
highlights a reinforcement learning-based method to enhance model adaptability and efficiency in
international automotive markets.

Chapter 10 We conclude our existing contributions and plan for the future.
While Chapter 2 focuses on providing explanations, and paves the way for Chapter 3 that

utilizes explanations and internal model to reject bad advice, Chapters 3 - 5 considers handling
the sub-optimal advice. Chapter 3 handles from the student’s side, however, as teacher is a more
experienced agent, Chapter 4 - 5 handle sub-optimally from the teacher side and are more effective.
Chapter 6 -7 are the human experiments, where we evaluate our methods with human feedback.
Chapter 8 - 9 are previous related works of transfer learning, that we would like to show how we
motivate our directions and are inspired.

6



Chapter 2

Providing Explanations and Building
Student’s Internal Model

In this chapter, we introduce our work on how Explainable Action Advising (EAA) could improve
the transparency of teacher-student action advising [54]. In our proposed method, we assume we
have access to a teacher’s “black box” policy, i.e., neural network, from which we can sample
demonstration trajectories. These trajectories are used to distill the policy into a decision tree
in which each leaf represents an action, and the corresponding path from root to leaf represents
the explanation for why an action should be taken. When the teacher issues advice, both the
decision path (explanation) as well as the leaf (action) are given to the student, who incrementally
re-assembles the decision paths together in an attempt to reconstruct the teacher’s decision tree in
its internal model. This internal model serves two purposes: 1) it acts as a memory and allows
a student to apply prior advice to same or similar future states, and 2) it allows a student to
identify unhelpful advice and selectively ignore it, which is useful for novel environments. This is
analogous to the self-explanations [26] employed by human students in order to improve learning
effectiveness. Importantly, EAA is agnostic to the student’s underlying reinforcement learning
algorithm – intuitively the teacher is guiding policy exploration.

EAA makes three main contributions: a) introduce an RL algorithm-agnostic action advising
method which uses explanations to improve advice generalization; b) empirically show that
our approach improves policy returns and sample efficiency in single-agent and multi-agent
environments, when compared to multiple state-of-the-art baselines; c) utilize explanations to
make use of sub-optimal advice in transfer learning. Specifically, we discuss (a) and (b), which
focus on how the explanations are generated and how this approach helps the performance, in this
chapter, and (c), which considers transferring to an unseen scenario, in the next chapter.
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2.1 Background
Decision Trees and Policy Distillation: A precondition of our method is the distillation of a
black-box teacher agent policy into an interpretable representation, i.e., a decision tree which is
commonly employed as an interpretable proxy model [46]. Given a pretrained neural network
policy, we extract it into an equivalent decision tree model utilizing the distillation method from
the Verifiability via Iterative Policy ExtRaction (VIPER) [15] framework. VIPER extracts a
suitable decision tree policy π̂∗ from a policy network π∗ through an iterative process of sampling
trajectories and training a decision tree with standard algorithms, in a DAGGER-based [125] setup.
Over the course of N iterations, VIPER samples trajectories of state-action pairs (s, π∗(s)) into a
running data set Dt. This data set is re-sampled according to (s, a) ∼ P ((s, a)) ∝ l̂(s)1[(s, a) ∈
D] where 1() is the indicator function and the loss is computed by:

l̂t(s) = V
(π∗)
t (s)−mina∈AQ(π∗)

t (s, a)

After re-sampling to get the current data set Dt, a single decision tree policy is trained. After N
iterations, the best tree policy π̂∗ out of all candidate policies is selected.
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2.2 Methodology
We introduce Explainable Action Advising (see Fig. 2.1), in which a teacher agent provides action
advice as well as an explanation to a student agent. The student may query its internal model if
there is an advice, or ask the advice from the teacher. If no advice is provided, the student may
take its own advice over its training process.

2.2.1 Explainable Action Advising
An outline of the EAA algorithm is shown in Algorithm 1. The distilled teacher policies π̂∗

1, π̂
∗
2...π̂

∗
n

are provided as input to EAA – one for each student agent – along with a heuristic function h(·)
which determines when advice should be issued to an agent. We define two hyperparameters: an
advising budget b and a decay parameter γ. The budget b is used to limit the amount of advice that
is issued during the student’s training, which is useful for limiting the communication between
teacher and student, and motivated by preventing cognitive overload in potential human students
[144]. The decay rate γ determines the likelihood with which an agent will re-use advice that
has been stored in its internal model π̂i, giving the student freedom to execute its own policy
after it has sufficiently learned from the teacher’s advice and potentially exceed the teacher’s own
performance.

Our algorithm operates over multiple iterations, during which we roll out a policy and sample
T timesteps from the environment. For each time step t, one of three things happens: a) the student
will query its internal model for an action, b) the teacher will issue advice and an explanation
which the student will incorporate into its internal model and then follow, or c) the student will
sample an action from its own current policy. In the first case on Line 6, if the student has
previously received and stored advice applicable to its current state, it follows the corresponding
action with a probability determined by the decay rate γ. Intuitively, the agent should become less
reliant on the teacher’s prior advice over time and increasingly follow its own actions.

9



Teacher

Distilled Policy

Teacher

Distilled Policy

1

2

3

StudentWorld

Internal Model

Teacher

Internal Model Distilled Policy

Observation

Observation

Updating a student's internal model given a teacher's explanation and action advice

If the internal model contains a relevant explanation, the associated action is chosen

No relevant explanation in internal model or teacher. Student's policy is followed.

Observation

Action

Internal Model

Observation

Action Explanation
& Action

Action

World Student

StudentWorld

Update
Expl.

Figure 2.1: Overview of EAA. As the student makes observations during training, one of three
cases may occur.
1) The student has previously received advice for a similar state and is able to identify it through
an explanation in its internal model, then follow the associated action.
2) The student has not previously received advice, but is now given advice by the teacher and
stores the explanation in its internal model, then follows the advised action.
3) The student has not previously received advice and the teacher is not currently providing advice;
the student follows its own policy. In cases where the teacher is trained in a different environment
than the student, the student may choose to reject unhelpful advice.
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Algorithm 1 Explainable Action Advising
Input: Distilled teacher policies π̂∗

1, ...π̂
∗
n for n-agent mission, heuristic function h(·)

Parameter: Advice budget b, advice decay rate γ

1: Internal model π̂i = ∅, student πi = ∅ ∀i = 1, . . . , n
2: for iter j = 1, 2, . . . do
3: for time step t = 1, . . . , T do
4: for agent i = 1, . . . , n do
5: if γj < α ∼ U [0, 1] and sti ∈ π̂i then
6: take action ati = π̂i(s

t
i)

7: else if b > 0 and h(sti) then
8: give advice âti and expl. p̂ti = path(π̂∗

i , s
t
i)

9: update internal model π̂i = store(π̂i, p̂ti)
10: take action âti
11: else
12: take action ati = πi(s

t
i)

13: end if
14: end for
15: end for
16: Update πi via policy optimization for i = 1, . . . , n
17: end for

In the second case on Line 8, if the student has not previously received relevant advice the
teacher agent determines whether advice should be issued to its student, which is controlled
by the heuristic function h(·), the remaining budget b, and the uncertainty associated with the
advised action such that only sufficiently confident predictions are used as advice. If this occurs,
the teacher samples a leaf node action âti and its decision path explanation p̂ti from its distilled
decision tree and sends them to the student. The student takes this explanation, incorporates it
into its own internal model π̂i, and follows the advised action.

Lastly, in the third case on Line 12 the student simply follows its own current policy πi, which
is itself updated on each iteration with the data collected from the rollouts. Additionally, there
is an optional check in which a teacher agent may only issue advice if: a) the uncertainty of
executing the action is sufficiently small, and b) the advice from its internal model matches the
action from its expert policy – useful if the distilled tree is overly noisy. If the action uncertainty
is too high, the teacher may choose to issue only action advice and withold the explanation from
the student. This allows the student to leverage the teacher’s learned action probabilities without
committing them to memory.

The algorithm is explainable as the decision tree policy, who represents the original agent’s
policy, is explainable. The features on the decision tree paths indicate what features lead to
the output action as the leaf node. This ensures the decisions generated from black-box neural
networks could be explained.
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Student Policy Student PolicyTeacher Policy

Updated
BranchInitial DT

Figure 2.2: The decision tree reconstruction process that is performed when updating a student’s
internal model π̂. The student receives an explanation decision path F1∧!F2 from the teacher’s
distilled policy π̂∗, finds the last common node F1 currently in its model, and adds all subsequent
missing nodes – in this case only !F2.

2.2.2 Decision Tree Reconstruction
The reconstruction process performed in the store function, shown in Fig. 2.2, consists of
merging the current decision tree π̂i and the decision path explanation, p̂ti which reduces to
merging two trees. Following standard decision tree architecture, we assume that the tree consists
of a set of K nodes u0, . . . , uK , where each node contains information regarding its child nodes
and branching condition. By transferring the teacher’s tree in a piece-wise fashion, we transmit
only useful advice which aids in the generalization process – uncertain actions are ignored – while
minimizing the amount of information transmitted. The size of the student’s tree is conditional on
the budget and complexity of the policy.
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Figure 2.3: Environment Screenshots. The 4 and 14 room environment have a medic (red circle),
engineer (blue circle) and victims (red plus).

2.3 Experiment
We empirically evaluate EAA in three simulated environments: Pacman, Half Field Offense
(HFO), and Urban Search and Rescue (USAR). In each of the environments we first train a teacher
policy to convergence and use this policy to subsequently advise a student policy using EAA as
well as several baseline algorithms. To evaluate EAA’s transfer learning ability, we perform an
additional experiment in the USAR environment where the teacher is trained in a variant where a
feature is missing, and then advise a student in the environment with that feature.
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2.3.1 Experimental Setup
Figure 2.3 depicts our three environments (Pacman, HFO, and USAR), with the USAR task
implemented in a simpler 4-room and more difficult 14-room setup.

Pacman: a single-agent scenario with a discrete state space [73]. We use the standard
single-agent environment [73] with the OriginalClassic layout (Fig. 2.3 (a)) and 4 aggressive
ghosts. An additional reward penalty of −1 is received when an invalid action is predicted, in
place of action masking. The student and teacher policies were trained via PPO [130] for 10, 000
episodes with an advice budget of b = 10. The teacher and distilled teacher achieved average
rewards of 450.

HFO: a multi-agent scenario with a continuous state space where two homogeneous RoboCup
agents play as a team [61, 77]. We use the standard 2v2 environment [77] (Fig. 2.3 (b)) and
train teacher and student policies for the offense agents with SARSA [139] as in prior work [31]
for 2, 000 episodes with an advice budget of 300. The teacher and distilled teacher achieved an
average reward of 0.8.

USAR: a multi-agent scenario with a discrete state space and heterogeneous agents with
different action spaces and hard coordination constraints [42, 53, 86]. We have two layouts:
a simple 4-room layout (Fig. 2.3 (c)) and a more complex 14-room layout (Fig. 2.3 (d)). The
environment consists of rubble which can be cleared and victims which must be healed, and a team
of two agents: a medic who heals unblocked victims and an engineer who can clear rubble from
blocked victims. The reward is team-level and gives +10 for each victim healed. Both layouts
contain rubble in every room, while the 4-room layout contains 1 victim randomly distributed
and the 14-room layout contains 2 victims. The teacher and student policies are trained using
COMA [41] for 16, 000 episodes with an advice budget of 100, 000. The teacher and distilled
teacher achieved an average reward of 10 in both layouts, indicating a sub-optimal teacher for the
14-room layout. This task necessitates cooperation between a medic and an engineer robot to save
trapped victims – the engineer must remove rubble before the medic comes across and heals the
victim, and is the most difficult environment.

14



2.3.2 Benchmarks
In all experiments, we define four variants of EAA utilizing the heuristic functions established
in prior work [144] as h(·): EAA with early advising (EAA-E), alternative advising (EAA-A),
importance advising (EAA-I), and mistake correcting advising (EAA-M). EAA-Median indicates
the median performance of all EAA variants. The heuristics are the same as in the Action Advising
baselines and are defined below.

Action Advising: We compare EAA to four heuristic-based Action Advising algorithms [144]
in all environments:

1. (AA-E) Early : Continuously advise at each state.

2. (AA-A) Alternative : Advise with a fixed frequency.

3. (AA-I) Importance : Advise when the state importance I(s) > threshold.

4. (AA-M) Mistake Correcting : Advise if I(s) > threshold and astudent ̸= a∗.
Memory-based Action Advising: For the discrete state environments, we compare EAA

to three recently introduced [172] benchmark algorithms: Q-change Per Step, Decay Reusing
Probability, and Reusing Budget. These works are conceptually similar to ours in that students
have a memory and reuse teacher advice in the form of state-action pairs, so they serve as a strong
state-of-the-art comparison.

Action Advising with Adaptive Teacher: In the USAR environment, we further compare
EAA against an approach in which reinforcement learning is used to learn an optimal teacher [110,
177], and denote this as Learn to Teach. This algorithm learns over multiple sessions, within
each of which the teacher learns to allocate its advice budget with the constraint that the student’s
policy must converge. All methods except for Learn to Teach are trained for 5 random seeds.
Due to the computational demand of the inner reinforcement learning loop, Learn to Teach (100x
slower) is only evaluated once for USAR.
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Figure 2.4: Comparing Explainable Action Advising (Early: Red, Alternative: Purple, Importance:
Yellow, Mistake Correcting: Green) with Action Advising (Blue) on the PacMan, HFO, and USAR
(four and fourteen room) environments.
Dash-Dotted lines indicate when advising budget is exhausted.
Results are averaged over 5 independent trials except for 14-room over 3.

2.3.3 Results
Figures 2.4 and 2.5 show the results of our EAA variants to the action advising baselines described
above, and are intended to demonstrate improved policy return and sample efficiency owing to
advise re-use from explanations.

Comparison to Action Advising: In Fig. 2.4, we compare our four EAA variants described
in Sec. 2.3.2 to AA [144] in all environments. We observe that EAA converges to the teacher’s
reward significantly faster than the AA baselines and with lower reward variance, indicating more
training stability. Of note is PacMan, where the lack of initial state randomization enables heavy
advice re-use and offsets the small advice budget, allowing EAA to perform remarkably well. In
HFO, EAA achieves only a slight improvement over AA; we conjecture that this is due to the
simplicity of the task – it was designed for classical methods such as SARSA, which enables AA
to perform well. Advise re-use and generalization is evident in the HFO and USAR environments
where EAA results in later budget exhaustion (dashed lines, Fig. 2.4) across all heuristics. This is
not evident in PacMan simply due to the extremely small advice budget; it is spent quickly at the
start of training. All algorithms except for EAA-A (Fig. 2.4 (b)) also suffer from a large drop in
reward when the teacher’s budget is exhausted. While this is expected, it is interesting to observe
that our EAA variants tend to recover quicker from this drop than AA.
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Figure 2.5: Baseline of Pacman (left) and 14-room USAR comparing EAA to SOTA algorithms.
Results are averaged over 3 random seeds except for Learn to Teach which uses 1 due to run-time.

Comparison to Memory-based Action Advising: In Fig. 2.5, we see that EAA again
demonstrates both improved convergence rate and maximal policy return when compared to the
memory-based action advising baselines, achieving optimal performance in both the Pacman and
USAR 14 room environments. The memory-based method simply maps from observations to
actions by storing teacher’s previous advice, so the advice from student model always matches
teacher’s. Q-change Per Step displays the worst performance because it assumes a strict increase
in Q-values when the student receives advice, otherwise discarding it. However, this assumption
is often violated, especially in USAR where an action such as removing rubble does not directly
result in an increase in Q-values – only healing victims does. Decay Reusing Probability and
Reusing Budget are able to achieve optimal performance, yet take significantly longer to converge
than EAA.

Comparison to Action Advising with Adaptive Teacher: Figure 2.5 (b) shows the compari-
son the adaptive teacher action advising method, Learn to Teach, in the USAR 14-room layout.
While Learn to Teach converges to the teacher’s reward, it takes considerably longer to do so,
requiring nearly 12, 000 episodes compared to EAA’s 6, 000.
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2.4 Conclusion
We propose Explainable Action Advising (EAA), a novel action advising algorithm in which
a teacher agent issues explanations in addition to action advice to student agents. Our results
show that EAA improves both policy reward as well as convergence speed with agents trained
via MARL when compared to eight state-of-the-art benchmark algorithms. We demonstrate that
our method is especially effective in budget-constrained advising, as each piece of advice now
conveys more information and helps reduce communication frequency with respect to advice in
the case of artificial agents. EAA also enables explainable transfer to unseen scenarios, which
will be discussed in the next chapter.
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Chapter 3

Student Rejecting Bad Advice Based on
Explanations and its Internal Model

We present how Explainable Action Advising (EAA) leads to explainable generalization in this
chapter, as part of our work in [54]. Recall that EAA improves the transparency of teacher-student
action advising by utilizing the decision tree paths of the distilled decision tree policy, from the
teacher’s “black box” policy where we sample demonstration trajectories with VIPER. Through
collecting those paths where the nodes are features forming explanations leading to the leaves
as the resulting action advice, students may have its internal model to reconstruct the teacher’s
decision tree policy.

If the student is faced with an unseen scenario, 1) It may tell if the teacher’s advice is
generalizable in this new scenario by examining the features in the explanation, which allows
the student to identify the unhelpful advice and selectively ignore them to avoid being misled; 2)
The student may query its internal model to seek for a solution when faced with any observation,
and only explore the environment when its own knowledge is not applicable. In short, every
time the student receives advice, it examines the explanations and internal model, to decide if
the teacher’s advice should be accepted or rejected. Therefore, our method helps improve the
generalizability with the student taking the role of rejecting unsuitable advice and reflecting on its
internal knowledge. We performed experiments to demonstrate its improvement empirically, and
compared with common transfer learning approaches.
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3.1 Background
A fundamental property of decision trees is their ability to perform feature selection [119, 170].
Decision trees operate by partitioning the data along certain feature dimensions in a way that
best separates the target classes. Notably, only a subset of features, known as decision features,
are employed in this process, while others are ignored. This property lends decision trees their
interpretability, as the decision path from the root to a leaf node provides a clear explanation
of the classification decision based on a subset of features. Leveraging this characteristic, EAA
enhances the transparency and adaptability of action advising in reinforcement learning.

The importance of decision tree features is intrinsically determined by their position and
frequency of appearance within the tree’s paths. A feature that frequently appears close to the
root of the tree is generally more important for classification, as it contributes to the majority of
decision paths. On the opposite, a feature sits far away from the root or not shown in the tree is
less important. Let’s denote the set of all features as F and the set of decision features, which
appear in the decision paths of the tree, as FD, where FD ⊆ F . These decision features FD form
the basis of classification decisions. Consequently, understanding these decision paths allows for
an effective and interpretable transfer of knowledge, which is a crucial aspect of our proposed
EAA approach.
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3.2 Methodology
Using a decision tree representation for the internal model allows the student to generalize the
advice to novel states which differ from that in which it was issued. We do this by treating the
decision tree as a classification model, in which the state s is the input and the action a is the
target, and extracting a generalizable classification tree during distillation. Formally, let the set of
all possible observed features in the teacher’s environment, i.e. a source environment, be FS and
the set of features modeled by our reconstructed decision tree be FR where FR ⊆ FS . Then a
given decision path corresponding to a feature vector f ∈ FS will also generalize to any other
feature vector f ′ ∈ FS as long as the features in which they differ are not contained in FR. Such
generalization leads to improved advice reuse, and as a result improved learning performance as
is empirically shown in Sec. 3.3.2.

Similarly, a decision tree representation also lends itself to transfer learning, by allowing
a student to recognize situations in which advice is not applicable and as such should not be
followed, e.g. when the teacher is trained in a different environment. Let us denote the set of
features in the teacher’s source environment as FS and the set of features in the student’s target
environment as FT . We impose an additional constraint on the student such that it rejects advice if
the decision path explanation contains features in FT −FS , which means the advice is applicable
in the source environment but not in the target, and the student instead follows its own policy
to explore to deal with this unseen scenario. Intuitively, we only want to follow advice if it is
dependent on features found in both environments. We refer to this process as learning through
reflection, and empirically demonstrate that this yields significantly improved policy transfer in
Sec. 3.3.2.

21



The overall generalization procedure is shown in Algorithm 2. Ideally, the student will need
to seek for exploration when the advice is not generalizable. This happens when there is one
decision feature given from the teacher or its internal model, where the feature is never observable
by the teacher, and definitely not observable by the student’s own internal model as it is a subset
of teacher’s knowledge. However, if the student will need this feature to make a decision, then
clearly the advice from the teacher is not applicable. If such an feature exists when student is
faced with, the student will reject the advice and explores.

Algorithm 2 EAA - Generalization
Require: FS , FR, FT

1: Initialize EAA normal process.
2: while not End of Training do
3: s← current state
4: a∗ ← action advice from teacher
5: f ← extract every decision feature from advice s
6: if ∃f /∈ FR and f ∈ FT −FS then
7: Follow student’s own policy
8: else
9: Follow advice a∗

10: end if
11: Update the student internal model
12: end while
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3.3 Experiment

3.3.1 Experiment Setup
We use the same environment of USAR in the last chapter. Here we let the teacher train in a
USAR variant where there is no rubble but only victim(s) to be healed. However, the student
is faced with a USAR variant where the team must remove the rubble first before healing any
victim. Rubble existence is an important feature where the student would reject any advice if in
the teacher’s explanation the student does not see this critical feature.

More specifically, the teacher is a trained expert in a USAR 4-room source environment
without rubble, and is used to advise a student in a target environment with rubble, in which
it is a non-expert due to the additional coordination requirement of removing it. The student
rejects advice if the teacher’s advised explanation contains no features related to rubble when
encountering a room with rubble. The team is rewarded only when the medic has healed a victim,
which may be hidden behind rubble and thus requires the engineer to remove. Rubble is scattered
randomly in various rooms without replacement. The action set is meta-actions with respect to
navigation, healing victims, and removing rubble (for the entire room). In the transfer learning
experiments presented in the manuscript, the teacher is trained with the same room layout but
without rubble (0 rubble, 1 victim), and is used to teach students who learn in the standard layout
with rubble (3 rubble, 1 victim).

In the experiments, we first compare EAA against the standard transfer learning technique in
which a policy is pre-trained in a source environment, and then fine-tuned in a target environment,
denoted as NN Pre. We also include results for the pre-trained policy without fine-tuning (NN
Tns.) and a policy baseline trained from scratch (Scratch).

Experiment plots show the results when self-reflection is used to selectively transfer advice
from a teacher trained in a different environment than the student.
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Figure 3.1: Transfer learning performance for students training in the USAR environment with
rubble by a teacher who was originally trained without rubble. The teacher only has access to
the extracted decision tree where the teacher NN is not present in (b), compared to (a) where the
teacher NN is present. Results are averaged over 5 independent trials.

3.3.2 Comparison to Fine-tuning
Figure 3.1 shows EAA’s performance when transferring advice from a teacher’s source environ-
ment to a student’s target environment, as compared to standard transfer learning approaches.

In Fig. 3.1 (a), EAA has access to both the distilled and original policy and does not store
explanations in which the action has a low probability, as discussed in Sec. 2.2.1. This is the
default behavior used for prior experiments in Sec. 2.3.3, and represents the best-case transfer
learning scenario. In Fig. 3.1 (b), the EAA variants are trained by a teacher who only has access
to its distilled decision tree and not its original policy. This represents a more difficult task, and
establishes a baseline for the later case where there is no teacher and the student relies only on its
internal model trained in the source environment (Fig. 3.2).

In Figure 3.1 all four variants of EAA significantly outperform the neural network baselines
and converge to the optimal reward within 10, 000 episodes. The transferred teacher policy (NN
Tns.) serves as a baseline of the non-expert teacher behavior in the target environment without
any additional training; this is the upper limit on the expected sub-optimal advice performance.
Notably neither training from scratch (Scratch) nor pre-training on the source environment
followed by fine-tuning (NN pre.) consistently converges to the optimal reward. Given that EAA
performs nearly as well in Fig. 3.1 (b) as Fig. 3.1 (a), we conclude that maintaining the original
black-box teacher policy is unnecessary.
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Figure 3.2: A comparison of EAA with reflection, called EAA (Explore), to standard EAA.
The student is pretrained in a source environment (4-room no rubble) and transferred to a target
environment (4-room with rubble). Results are averaged over 5 independent trials.

3.3.3 Self-Reflection
Fig. 3.2 shows the results when a student trained via EAA in a source environment continues
training in a target environment, when no teacher – and therefore no advising – is present. We
implement a version of EAA with reflection in which the student examines its own reconstructed
decision tree and ignores actions learned from unhelpful advice and instead executes an exploratory
action (EAA Explore).

When compared to an ablated student without reflection, we find that reflection not only leads
to improved rewards at the start of training, but also an improved convergence rate for EAA-E,
EAA-A, and EAA-I variants. These results show that not only does EAA improve policy transfer
to novel environments in the presence of a teacher, but it even yields benefits when the student
operates in novel environments by itself.

25



Figure 3.3: A comparison of an ablated version of EAA which always takes the teacher’s advice,
EAA (Always Accept), to standard EAA when the teacher has access to both its original neural
network policy and the extracted decision tree (DT + NN).

3.3.4 Comparison to Ablated Version
In this section, we include an experiment in which we compare standard EAA to an ablated
version which lacks the transfer learning check. The results are shown in Figure 3.3 and Figure
3.4.

In both cases – a DT + NN teacher and a DT-only teacher – always accepting the advice
from a non-optimal teacher performs worse than standard EAA. Since the teacher is trained in an
environment with no rubble, and thus when the student encounters a room with rubble, it is more
advantageous for the student to execute an exploratory action rather than listening to the teacher,
which happens in the standard EAA version. In the (Always Accept) versions, this exploratory
action is not taken and instead the student always accepts the teacher’s (potentially non-optimal)
advice, resulting in worse performance.

For EAA-Early, the fact that always accepting advice is similar to standard EAA may be due
to advice being given continuously resulting in the budget being used up at a very early stage.
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Figure 3.4: A comparison of an ablated version of EAA which always takes the teacher’s advice,
EAA (Always Accept), to standard EAA when the teacher only has access to its extracted decision
tree (DT).

This is similar to the Importance variant as the threshold for giving advice is rather low. It can be
observed that EAA is better at the beginning when it ignores non-optimal advice, but this effect is
limited if the advice is given too densely in a limited period of time as in the Early variant. We
suspect that this is due to limited updates in the network parameters per iteration. Instead, if the
advice is given more sparsely, for example in EAA-Alternative, ignoring non-optimal advice has
a more significant effect. Empirically, the later the budget is used up the better the performance,
something that is also seen in the Mistake Correcting variant.

In the ablated EAA version which always accepts advice, we notice that in some cases the
student fails to converge to the optimal reward. We conjecture that this occurs when the budget
lasts a long time – Alternative and Mistake Correcting variants – which prevents the student from
learning to converge to optimal on its own. Additionally, the variance in the policy returns is quite
a bit larger for the ablated versions – again likely due to taking occasionally poor actions resulting
in the policy being more likely to execute non-optimal sequences.
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Moreover, removing the original policy NN from the teacher slightly improves the ablated
EAA variants (Fig. 3.4). When the teacher’s advice is based solely off the extracted DT, the advice
is more likely to be erroneous, which ironically means more likely to be correct if the initial
advice was incorrect (as in this case). So in a roundabout way, due to the lower quality advice
from the teacher, the ablated version which always accepts advice ends up performing better than
the ablated version in which the teacher has access to both its DT and NN policies.
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3.4 Conclusion
We demonstrate that EAA enables the advice to be transferable to other unseen scenarios, by
rejecting teacher’s unhelpful advice and learning through reflection. Limitation exists that the
important feature from the student must be given in advance. Like our experimental scenario
where the rubble existence is an important factor that differs the student and teacher’s environment,
this key feature must be given to EAA. Otherwise, it is difficult to distinguish if the non-existence
of a particular feature is due to the fact that the teacher has no experience of it, or regards it as not
important. More robust transfer methods are introduced in the next two chapters.
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Chapter 4

Teacher’s Introspection for Preventing Bad
Advice

This chapter introduces the work on Introspective Action Advising (IAA) [23], in which the
teacher determines when its advice is transferable from its source task to the student’s target
task, in order to only give out beneficial advice. When the teacher’s advice originates from a
policy trained in a different source task, ensuring its transferability is crucial to avoid misguided
exploration by the student, which could result in misleading the student into low-reward state
space regions. In IAA, advice is regarded as transferable if the resultant expected discounted
returns are considerably similar across tasks. This means the advice is considered suitable if it
triggers an outcome in the target task that is sufficiently “close enough” to the outcome observed
in the source task.
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Algorithm 3 INTROSPECTIVE ACTION ADVISING (Actor-Critic)

Require: πT , πS , V Src.
πT , V new

πT

1: for iteration = 1, 2, . . . do
2: Roll out student’s policy for T timesteps
3: X ← ∅
4: for t = 1, 2, . . . , T do
5: ht ← INTROSPECT(st, V

Src.
πT , V new

πT , t)
6: if ht = 1 then
7: at ∼ πT (at|st)
8: else
9: at ∼ πS(at|st)

10: end if
11: X ← X ∪ (st, at, st+1, rt+1, ht)
12: end for

13: Teacher critic update over X
14: ρT , ρS ← CORRECT(X, πS, πT ), θV T ← θV T + αρT▽θ

V T
LVt

15: Student actor-critic update over X
16: θV S ← θV S + αρS▽θ

V S
LVt , θπS ← θπS + αρS▽θ

πS
Lπt

17: end for

4.1 Methodology
Using standard definitions [139] for the state-value and action-value functions,

Vπ(st) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣st
]
,

where Eπ[·] is the expected value given that an agent follows policy π. An agent’s goal is to learn
π through training such that the expected discounted return Vπ is maximized, given an initial state
distribution.

Formally, the advice action at is transferable for a given state st if∣∣V Tar.
πT (st)− V Src.

πT (st)
∣∣ ≤ ϵ, (4.1)

Our approach involves accurately estimating V Tar.
πT in the target task. However, we assume

advice is only beneficial in the early stages of training when t < τ and it is unlikely that our
estimate of V Tar.

πT has sufficiently converged to the optimal value function in the target task, V ∗
πT :∣∣V ∗

πT (st)− V Tar.
πT (st)

∣∣ > ϵ, (4.2)

which makes it difficult to determine whether advice is not transferable due to a mismatch in
state-values or due to the student not having a sufficiently accurate estimate of the state-value.
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4.1.1 Introspection:
We let the teacher itself directly estimate the state-value function in the target task, with the
assumption that refining the teacher’s existing estimate of the state-values in the source task will
lead to quicker convergence to V ∗

πT than estimating it from scratch. Specifically, we fine-tune a
copy of the teacher’s state-value function learned in the source task, V new

πT , with observed returns
from the student’s exploration in the target task as estimate of V ∗

πT (st). Therefore, Eq. 4.1 becomes∣∣V new
πT (st)− V Src.

πT (st)
∣∣ ≤ ϵ. (4.3)

We introduce a decay hyperparameter, λ ∈ [0, 1), to approximate the temporal cut-off τ . The
teacher’s advice is issued according to a probability that decreases over time, λt, which gives a low
probability of advice issuance when t > τ because while a specific action might lead to similar
results in both the source and target tasks, it may not always remain the optimal choice. The
student thus should be gradually permitted to explore on its own as time progresses. Furthermore,
a trade-off exists between how much returns the teacher should observe and incorporate into
V newπT , and the necessity to provide advice early in the training for maximal effect [54]. The
burn-in hyperparameter δ ∈ R≥ 0 manages this balance, specifying the number of timesteps the
teacher should observe prior to giving advice.

4.1.2 Off-Policy Correction:
IAA fundamentally alters the nature of samples used for training updates as they are no longer
solely derived from the student’s policy rollouts, πS . Instead, actions suggested by the teacher’s
policy intermingle with those produced by the student’s policy, violating assumptions for on-policy
algorithms. To make an off-policy correction for the student ρS , let’s denote a trajectory of n
samples, obtained through the student’s interaction with the environment, as X = x0, . . . , xn,
where each xt = (st, at, st+1, rt+1) represents a single timestep observation. If L is a loss
computed over X , off-policy correction is applied to optimize ρSL with respect to the student’s
model parameters. The off-policy correction ρS is a vector composed of n scalar values.

Each value in ρS is an importance sampling ratio πS(at|st)
πT (at|st) when a specific action comes from

the teacher’s policy, or 1 when it is from the student’s. Similarly, we also apply an off-policy
correction, ρT , when optimizing the teacher’s state-value function estimate V new

πT . This correction
ρT contains an importance sampling ratio πT (at|st)

πS(at|st) when an action comes from the student’s policy,
and 1 from the teacher’s.

4.1.3 Algorithm:
During rollout of the student’s policy (Lines 3-12), actions are from either the teacher’s or student’s
policy (Lines 7, 9). The decision whether to issue advice is determined by our introspection
function (Alg.4), replacing H(·). An off-policy correction, calculated in Alg. 5, is applied to
the teacher’s critic loss LtV (Line 15), and to the student’s actor and critic losses (Ltπ and LtV )
in (Lines 17, 18). These losses are then optimized in relation to the model parameters of the
teacher’s critic (V πT new), θV T , as well as the student’s actor and critic parameters: θπS and θV S ,
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Algorithm 4 INTROSPECT

Require: st, V Src.
πT , V new

πT , t, ϵ, λ
1: ht ← 0
2: p ∼ Bern(λmax(0,t−δ))
3: if t > δ and p = 1 then
4: if

∣∣V new
πT (st, at)− V Src.

πT (st, at)
∣∣ ≤ ϵ then

5: ht ← 1
6: end if
7: end if

Ensure: ht
Algorithm 5 CORRECT

Require: X , πS , πT

1: ρT ← ∅, ρS ← ∅
2: for each ai, si, hi in X do
3: if hi = 1 then
4: ρT ← ρT ∪ 1, ρS ← ρS ∪ πS(at|st)

πT (at|st)
5: else
6: ρT ← ρT ∪ πT (at|st)

πS(at|st) , ρS ← ρS ∪ 1
7: end if
8: end for

Ensure: ρT , ρS

with a learning rate α. This formulation allows for the application of IAA to numerous on-policy
algorithms, demonstrated in our experiments with Proximal Policy Optimization (PPO)[130], and
extends to off-policy algorithms, excluding the proposed off-policy correction.
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4.2 Experiments
We quantitatively and qualitatively analyze our proposed algorithm over two different reinforce-
ment learning domains: Gridworld and Atari. In each domain we examine learning performance
when transferring between tasks of varying similarity with the goal of understanding: 1) does our
proposed approach yield positive transfer performance between tasks; 2) how does our approach
compare to methods based on fine-tuning and action advising; and 3) does our approach allow us
to understand what knowledge has been transferred between tasks.

Gridworld: The Gridworld environment consists of four inter-connected rooms and an agent
which must learn to navigate to a goal position as shown in Fig. 4.1. In the source task, there are
no doors and the agent is free to navigate to any room in order to reach the goal. In the target task,
there is exactly one locked door separating the agent from the goal; a key must first be picked up
and used on the door in order to unlock it and provide access to the goal.

Atari: The Atari environment consists of a subset of games selected from the Arcade Learning
Environment [96]. This is a challenging domain, and has previously been shown to yield negative
transfer for fine-tuning-based transfer methods [126]. We have chosen a set of nine games sharing
similar visuals and strategies to evaluate for transfer – Air Raid, Assault, Asteroids, Beam Rider,
Carnival, Centipede, Demon Attack, Phoenix, and Space Invaders – as well as two games which
substantially differ – Ms. Pacman and Pitfall. Air Raid was arbitrarily chosen as the source task
and the remaining ten games serve as the target tasks as shwon in Fig. 4.2.
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Source Target

Figure 4.1: The source and target Gridworld tasks. Agent start (red triangle), goal (green square),
and key positions are randomized. The agent must learn to navigate to the goal. The source task
contains no locked doors while the target task contains exactly one.

Source Target

Figure 4.2: The source task (Air Raid) and a subset of target tasks in Atari (Phoenix, Space
Invaders, Carnival, and Demon Attack shown). The nature of the task is dependent on the game.
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4.2.1 Experimental Setup
In each domain we define a fixed source task for which to train a source policy and then evaluate
transfer learning performance to a policy trained in one or more target tasks. We compare our
approach to the following six methods:

• Fine-tuning variants: (a) Fine-tune (All Layers) - all layers have weights copied from the
source policy but are fine-tuned in the target task. (b) Fine-tune - only the input layers have
weights copied from the source policy while the remaining are randomly initialized. (c)
Frozen - the same as Fine-tune, except the input layer is frozen and not updated.

• Action Advising: Action advising at every step with no budget constraint.
• Action Advising (Decay): Action advising which has been augmented with our proposed

advice decay rate λ. Rather than issuing advice at every timestep, it is issued according to a
decaying probability over time.

• Policy Distillation (Loss): Policy distillation through the introduction of a cross-entropy
auxiliary loss between the teacher’s and student’s policies [128].

• Policy Distillation (Reward): Policy distillation through a reward shaping term which
captures the difference in the teacher’s critic between the current and previous timesteps [29].

• Baseline: A policy trained from scratch in the target task.
In addition to fine-tuning methods used in prior works [126], we chose to compare to two

widely-used policy distillation methods which transfer knowledge from a teacher policy through
auxiliary losses and reward shaping terms. The source and target policies are trained using
Proximal Policy Optimization (PPO) [130].
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Figure 4.3: The training curves between our proposed method and fine-tuning methods (left) and
transfer methods methods (right) given a Gridworld environment where the source and target
tasks are similar enough such that the teacher issues helpful advice.

4.2.2 Results - Gridworld
Transfer Performance: In Fig. 4.3 we can see that IAA significantly out-performs all of the
fine-tuning based variants. In particular, we can observe that the fine-tuning methods fail to yield
positive transfer and under-perform the Baseline, while IAA results in positive transfer with a 66%
increase in reward. This is an interesting observation and seems to indicate that the target policy
is unable to separate features useful for navigation in an environment without doors to one with
locked doors. Additionally, this is one of the only cases we encountered where fine-tuning with
a frozen input layer outperforms any of the other fine-tuning variants, indicating that randomly
initialized layers after the input are more beneficial – likely due to over-fitting to the source task.
Our decayed version of action advising, AA (Decay), fares better in this regard, producing positive
transfer with a 48% reward increase. Contrast this with the non-decayed action advising variant,
AA, which always gives advice at every timestep and fails to produce any meaningful policy. It
is clear that while some of the advice is useful in the target task, the target policy must still be
allowed to explore on its own. We hypothesize that this is also why Distillation (Reward) yields
no performance improvement; the shaping term as proposed in [29] does not decay over time and
the student never becomes fully independent. Distillation (Loss) does decay over time, however,
and subsequently we see performance gains in line with IAA and AA (Decay).
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Figure 4.4: The training curves for a Gridworld environment where the source and target tasks
differ such that the teacher largely gives unhelpful advice.

Figure 4.4 shows performance when the source task differs more significantly – the agent starts
in the bottom rooms and must navigate to the top rooms – and consequently the teacher issues
more unhelpful advice. This is where we see the advantage of IAA, as it is able to successfully
filter out unhelpful advice and still achieve modest performance improvements, at the expense of
increased variance due to the sparse reward. The policy distillation methods and AA (Decay) all
perform substantially worse than before due to transferring all knowledge, helpful or not.
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Figure 4.5: A sequence from a single training episode showing the student’s sampled action
(red) and the teacher’s advised action (blue) in Gridworld. Bold text indicates the executed
action as determined by IAA given ϵ = 0.1.

Interpretability: Figure 4.5 shows a sequence of states from a training episode for IAA. In
the first three states, the teacher gives seemingly unhelpful advice as it advises the student to move
in the direction of the locked door before the student has picked up the key needed to unlock it.
This is expected behavior, as the source task in which the teacher was trained contains no doors
and keys and so the teacher is unaware of the key. However, this advice is filtered out by IAA and
the student instead performs its own action and collects the key. Once the agent enters the bottom
rooms, the teacher’s advice becomes helpful again and is issued to the student in the fourth and
fifth states. The fourth state in particular demonstrates helpful advice, where the student would
have moved in the wrong direction with its own action, but instead moves towards the goal by
following the teacher’s advised action.
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Figure 4.6: The relative performance of our proposed approach and the transfer learning baseline
models to the Baseline policy learned in the target task without any transfer. Each value represents
the percentage of improvement in the mean reward after 10M environment steps over four
independent training runs with randomly initialized weights. The target task is shown along the
x-axis with Air Raid used as the source task in all scenarios.

Metric IAA Loss Reward AA All Layers Fine-tune Frozen
PTR 9/10 8/10 3/10 7/10 3/10 5/10 0/10
MinT −10% −21% −93% −48% −90% −33% −95%

MedianT 4.6% 3.6% −3.9% 5.4% −3.0% 0.7% −66%
MaxT 99% 43% 72% 93% 73% 31% −7%

Table 4.1: Summary of transfer performance shown in Fig. 4.6. Positive Transfer Ratio is the
number of tasks for which performance improved, Minimum Transfer is the smallest relative
performance achieved over all tasks, and Maximum Transfer is the greatest relative performance
achieved. Bold represents the best value for each metric. PTR, MinT, MedianT, and MaxT refer
to Positive Transfer Ratio, Minimum Transfer, Median Transfer, Maximum Transfer.

4.2.3 Results - Atari
Transfer Performance: Figure 4.6 shows the relative performance values for each method over
each target task after 10M environment steps. Across all target tasks we can observe several
trends: IAA consistently yields positive transfer between tasks, achieving the most number of
tasks with improved performance; IAA achieves the best negative transfer performance for a
single task, producing the least worst result when a task fails to transfer; and IAA also results
in the best positive transfer performance for a single task. This means that while IAA does not
produce the best median transfer performance – that falls to AA (Decay) – it does provide the
highest positive transfer rate while minimizing performance losses in the event transfer fails. We
opted not to show the results for AA as they are not meaningful; this reduces to simply running
the source policy in the target task which consistently yields performance worse than the Frozen
baseline.
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Figure 4.7: The training curves between our proposed method and transfer learning methods (left)
and advising methods (right) for Carnival. Each line is the average reward over four independent
training runs for 10M environment steps, with the shaded region indicating standard deviation.

The training returns for Carnival are shown in Fig. 4.7 where we can see that IAA produces
a significantly higher return than the Baseline while dramatically improving the convergence
rate. This task is interesting in that it is one of the few examples where fine-tuning over all layers
performs quite well, out-performing fine-tuning over just the input layers. This seems to indicate
that the state-action distribution is quite similar between source and target tasks, which would
also contribute to the high performance of both IAA and AA (Decay). Another interesting trend
is present which sometimes emerges for IAA, which is the drop in performance once the burn-in
period is over and advice begins to be issued. This drop occurs after 500K steps – corresponding
with δ = 500K – and has two potential causes: 1) the burn-in period wasn’t long enough for
V new
πT to sufficiently converge to V ∗

πT , and 2) the behavior distribution shift induced by issuance of
advice means that even if it had converged for the prior behavior policy distribution, it may not be
anymore. This invites the possibility of future work which investigates an adaptive introspection
threshold conditioned on distribution shifts in behavior policy.
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Figure 4.8: The training curves between our proposed method and transfer learning methods
(left) and advising methods (right) for Demon Attack. Each line is the average reward over four
independent training runs for 10M environment steps, with the shaded region indicating standard
deviation.

Figure 4.8 shows training performance from another game, Demon Attack, exhibiting more
modest improvements. Rather than the significant increase to convergence rate as seen in Carnival,
this task produces slower, more consistent improvements at the same level as fine-tuning. From
these two tasks we can observe a more general trend: fine-tuning with a frozen input layer nearly
always results in negative task transfer and poor policies after 10M steps. This is unsurprising
given that the features encoded from the observation are likely over-fit to the source task, but
adds further evidence that issuing advice in the form of state-action pairs which is agnostic to the
underlying visual features (like in IAA) may be a desirable strategy.
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Figure 4.9: Training curves for multiple introspection thresholds of IAA for different Atari tasks.

Figure 4.9 shows the sensitivity of IAA to different values of the introspection threshold.
While in general the tested thresholds yield similar results – suggesting that comprehensive hyper-
parameter tuning may not be necessary – an overly high threshold can cause large performance
drops for certain tasks. In Centipede for instance, ϵ = 0.45 produces a sharp drop in performance
right after the burn-in period has elapsed and advice is issued. Similarly, in Pitfall, a target task
which differs significantly from the source task, we can observe increasing variance in the returns
as more advice is issued. Intuitively, we observe that IAA should be used with a more conservative
introspection threshold for target tasks which differ significantly from the source task, which
consequently leads to a decrease in expected performance improvement (ϵ = 0 reduces to baseline
performance).
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Figure 4.10: The relative performance of IAA compared to the distribution shift of each Atari
task.

Figure 4.10 examines this in further detail. We collect states and actions that are sampled
in the teacher’s game and the student’s game respectively. They are then computed to form
distributions, and the difference of the distributions is the distribution shift. The result shows that
there is indeed a negative correlation between performance and distribution shift between source
and target observation distributions, with R2 = 0.34.
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Figure 4.12: The amount of advice issued across Atari games by IAA given ϵ = 0.15.

The amount of advice issued by the advising algorithms for a single game, Carnival, is shown
in Fig. 4.11. As in the Gridworld environment, we see again that IAA is successful in identifying
only useful knowledge and achieves higher returns by giving fewer pieces of advice. Figure 4.12
shows the amount of advice issued for IAA across target tasks when the introspection threshold is
fixed. Unsurprisingly, this indicates that some target tasks have an expected reward distribution
more similar to the source task than others, resulting in more advice being issued by IAA. However,
this figure also indicates that V ∗

πT may be more difficult to learn in some tasks, resulting in a
large variance in issued advice as seen in Ms. Pacman. This variance is undesired and as seen
in Fig. 4.6 led to the only negative task transfer for IAA, likely due to the introspective teacher
failing to discriminate beneficial advice from non-beneficial advice.

45



Figure 4.13: A sequence of states from a single training episode showing the student’s
sampled action (red) and the teacher’s advised action (blue) in Carnival. Bold text
indicates the executed action as determined by IAA given ϵ = 0.45.

Interpretability: Figure 4.13 shows a sequence of states from a training episode for IAA in
Carnival. We can observe that in the first two frames the teacher advises the student to fire, an
action which is filtered out in the first state but issued and executed in the second. Afterwards, the
teacher advises the student to perform movement actions in order to reposition the agent so further
fire actions can be taken. In the fourth state we can observe that the advice is indeed helpful,
as the advised action results in a high-value target being destroyed in the furthest row and a 60
point increase to the score. This example is demonstrative of the insight which IAA provides into
which knowledge is transferred between the teacher and the student; an external observer need
only examine the states for which advice is issued. While prior methods such as policy distillation
also transfer knowledge, it is much more difficult to analyze an auxiliary loss term for a particular
state or even a reward shaping term – particularly as rewards require one to sample actions and
perform a comparative analysis to other state-action rewards.
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4.3 Conclusion
In this chapter, we have introduced Introspective Action Advising (IAA), that is capable of
distinguishing which knowledge is beneficial to transfer from the teacher to the student, while at
the same time providing an opportunity for more fine-grained knowledge transfer.
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Chapter 5

Teacher’s Adaptation to Improve Advice
based on Estimating Student’s Rewards

One of the challenges inherent to the teacher-student paradigm, however, is issuing helpful advice
in the presence of reward misalignment between the teacher’s source and student’s target tasks.
This means the teacher can be an expert that is trained with a reward different from the student’s.
A teacher which blindly issues advice without considering task differences can harm the student’s
learning by actively guiding it to regions of the state space which yield low rewards [54]. Prior
approaches have attempted to address this by identifying the subset of states which is helpful
when following advice, and only issuing advice in these states [54], but this leads to a more
conservative teacher and is thus less beneficial to the student [23]. In this chapter, we instead
propose an approach in which the teacher adapts its own advice such that it maximizes the reward
associated with the target task. Rather than identifying which advice is helpful as in prior methods,
our approach adapts the advice such that all of it is helpful. Upon publication of this thesis, the
manuscript has not been officially published yet, but is accepted and preparing for camera-ready
version and code release within the next month. We refer readers to the original paper [56].

Our proposed teacher, the Reward-Adaptive Teacher (RAT), performs the following steps,
it: a) estimates the unknown target reward function based on the student’s observed returns, b)
uses an internal world model to optimize its own policy with respect to the estimated reward
function, and c) issues action advice from the updated policy. In line with prior action advising
formulations, we assume that our teacher lacks direct access to the environment when advising.
Thus, the key to our approach is the usage of a learned state-action mapped to reward function, to
adapt the teacher’s policy with respect to the target task. The primary contributions of our work
are as follows: 1) We introduce a novel reward-adaptive teacher which is robust to differences in
rewards between the source and target tasks, leading to improved advice quality. 2) We validate
our approach through empirical testing in different environments: a simulated urban search and
rescue (USAR) scenario, a skiing game drawn from the Arcade Learning Environment [96] and
Pacman. We empirically show that our method produces advice of higher quality than existing
methods, improving the sample efficiency of reinforcement learning methods. We also examine
calculating the transition functions in a simulated urban search and rescue (USAR) scenario and a
real-world single-agent navigation task, to estimate the upper limit of the teacher. Our method
delivers superior performance compared to existing state-of-the-art methods in both environments.
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5.1 Background
Action advising, which, at its core, leverages the knowledge of a teacher to expedite the training
process of a student agent, has a long-standing history in the field of RL [83, 98, 143]. Particularly,
in action advising, the teacher provides advice to the student agent by suggesting actions in a
given state, helping the student agent discover the correct actions faster than by relying purely on
their own exploration. To this end, Torrey et al. [145, 146] proposed methods that map human
knowledge to RL tasks by utilizing a user-provided mapping while Maclin and Shavlik [97]
discuss giving advice by an external observer.

Human teachers have the remarkable ability to evaluate whether or not their advice should be
adjusted given the student’s observed experience. Recent work in the domain of action advising
that utilize an expert policy in order to provide advice, struggle when the domain of the teacher
differs from the domain of the student, as most approaches assume the task to be the same [31, 111].
To decide whether or not to give advice, Torrey and Taylor [144] utilizes a heuristic approach while
later work formulates the advising task as a separate learning problem [177]. In such setting in
which the teacher is sub-optimal, as the domain of the student shifted from the teacher’s, the utility
of the teacher heavily depends on the quality of its advice [165]. This work addresses this problem
with a curriculum of teachers that constantly observe and subsequently adapt their behavior in
an approach inspired by DAGGER [125]. However, such an approach requires the existence of
multiple teachers. An alternative approach that addresses this domain shift is presented in Guo
et al. [54], in which the teacher does not only provide the advice itself, but also an explanation
as to why the advice was given. While this enables the student to reflect on the given advice,
the teacher does not improve its performance and continues to provide fixed advice [172]. The
work presented in Campbell et al. [23] introduces Introspective Action Advising, which allows
the teacher to reflect upon its own advice, ultimately learning to withhold advice if the teacher’s
expected outcome does not align with the student’s experience.

In this chapter, we directly address the domain shift between the student’s and teacher’s tasks
by quickly adapting the teacher’s reward model given the student’s observed behavior and returned
reward. This allows our teacher to not only withhold advice that is expected to negatively impact
the student, but also allows it to go beyond prior work by actively improving the quality of issued
advice.
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Figure 5.1: An overview of Adaptive Reward Teaching. The teacher initially issues action advice
to the student from a policy trained in the source task – leading to low rewards in the target task
due to differences in the reward functions. For example, the teacher could be a ghost chaser while
the student is a conservative player that always avoids ghosts and eats food. The teacher has a
much higher reward of eating ghosts than the student, however, it would not find this out until
examining the data collected by the student. After observing the student’s trajectory returns, the
teacher adapts its policy using its so as to maximize the student’s reward in the target task.

5.2 Methods
In this chapter, we consider a scenario in which a teacher that has already learned a policy πT

in a source task seeks to advise a student learning a (randomly initialized) policy πS in a target
task. We assume that the state-action spaces of the source and target tasks are the same, however,
the tasks exhibit different reward functions. This presents a problem for action advising in that
the teacher may issue advice that leads the student to regions of the state space associated with
low rewards in the target task, despite yielding high rewards in the source task. Our goal in this
chapter is to adapt the teacher’s policy πT such that it maximizes the reward associated with the
target task, rather than the source task in which it is trained, side-stepping the above problem.

Our approach consists of three main steps:
1) learning a model of the reward function of the source task during teacher training, involving

the teacher collecting data in its own environment;
2) estimating the unknown reward function associated with the target task when at the begin-

ning of advising the student, so as to collect the true reward through the student’s interaction with
its environment different from the teacher’s, and

3) adapting the teacher’s policy via fine-tuning so as to maximize the target task’s reward,
which can then be used to issue action advice. While step 1 is only performed once prior to
student training, steps 2 and 3 are performed throughout the student’s training process, leveraging
the student’s interactions with the environment as training data.

Intuitively, our approach can be understood as the teacher observing the student’s returns in
the target task, estimating how they differ from those in the source task in which it was trained,
and then tailor its policy to the target task and afterwards advising the student. The process is
shown in the Figure 5.1.

The teacher observes everything the student observes/receives from the environment. There-
fore, it knows the reward of students at every step. However, it does not know about the student’s
current policy or the entire reward space of the student. If the teacher does not advise, the student
takes the action that is computed from its own neural network/internal model. Our method is
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different from vast of the domain adaptation work in that the teacher collects the ground-truth
reward from the student’s, so that it only observes a small amount of data as the student interacts
with the environment, and also needs the teacher’s reward network as the base model to get
corrected. In most domain adaptation tasks, there is no need to consider the agent exploring the
environment, as they are simply supervised learning questions. Moreover, we don’t require access
to the data features that summarize the student’s reward space.

We majorly focus on the reward difference instead of other components to simulate an
environment, such as transition functions, as reward functions may reflect the preference that
can be understandable. Intuitively, the states and actions to gain high rewards are the desirable
behaviors for the agents, while studying other challenging components may lead to more intricacy
and confusion.
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Algorithm 6 Adaptive Reward Teaching

1: Input: Trained teacher policy πT , advising strategy H , adaptation period µ.

2: Prior to student training
3: Teacher collects DT = {(st, at, rt)}ωt=1 in its environment.
4: Teacher trains reward modelM(DT ).

5: During student training
6: if iteration ≤ µ then
7: Teacher collects β student trajectories DS = {(st, at, rt)}βt=1

8: Reward adaptation:M′ =M(DS) + E(DS)
9: Policy adaptation: πT = argmaxπ Eπ

[∑∞
k=0 γ

kM′(st, at)
]

10: end if
11: Teacher issues advice aTt ∼ πT (at|st) if H(st) = 1

Learning Environment and Reward Dynamics: Prior to advising a student in the target
task, the teacher learns an approximation of the source task’s reward functionM. Formally, for
each time step t, the teacher observes its state st, takes an action at under policy πT , and receives
a reward rt from the environment. The collected data takes the format of DT = (st, at, rt)

ω
t=1,

where ω represents the total number of time steps in the teacher’s data sets. (Algorithm 6 Line 3).
DT is utilized to train a reward prediction model, which is a neural networkM parameterized by
ϕ (Algorithm 6 Line 4).
M aims to estimate the reward r given a state-action pair (s, a): M(s, a;ϕ)→ r. Thus the

training objective forM is to minimize the difference between the predicted reward and the actual
reward:

L(ϕ) = E
[
||M(st, at;ϕ)− rt||2

]
, (5.1)

Reward Adaptation:
Once the student begins training, ART observes the student’s interactions with the target

environment for β episodes, gathering the student’s state-action-reward data, denoted by DS =
(st, at, rt),where t ∈ [1, β] (Algorithm 6 Line 7). To accommodate the differences in the rewards
of the source and target tasks, ART introduces an error prediction model E , parameterized by
ψ. This model is trained to predict the discrepancy between the rewards estimated by the initial
reward modelM and the actual rewards obtained by the student in the target task.

The error prediction model E aims to estimate the error ϵt given a state-action pair (st, at):
ϵt = E(st, at;ψ). The error ϵt represents the difference between the predicted reward and the
actual reward observed by the student: ϵt = rt −M(st, at;ϕ). The training objective for E is to
minimize the difference between the predicted error and the actual error:

L(ψ) = E
[
||E(st, at;ψ)− (rt −M(st, at;ϕ))||2

]
,where(st, at, rt) ∈ DS. (5.2)

Following the training of the error prediction model, the adapted reward at each step is computed as
the sum of the predicted reward and the predicted error:M′(st, at) =M(st, at;ϕ) + E(st, at;ψ).
This adaptation allows the teacher to more accurately align its reward predictions with the actual
rewards in the target task, facilitating more effective policy adaptation and advice to the student.
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Policy Adaptation: After adjusting its reward prediction model, the teacher uses the updated
M′ to perform a limited number of reinforcement learning iterations and improve its policy πT

with respect to the target task (Algorithm 6 Line 9), by modifying the parameters of πT based
on the standard update rule: θ′ = θ + α∇J ′(θ), where J ′(θ) maximizes the expected cumulative
reward under the new reward distribution:

J ′(θ) = EπT
[

∞∑
k=0

γkM′(st, at;ϕ)

∣∣∣∣st, at
]

(5.3)

This adaptation process allows the teacher to improve its policy and may be performed numerous
times throughout the student’s training process. The updated policy is subsequently used to
issue future action advice to the student according to an advising heuristic H(·) – our approach
is agnostic of the specific heuristic which is used. The effectiveness of this adaptation step is
contingent on how accurate the reward model is. As a result, adaptation steps performed early in
the interaction when a limited number of student returns have been observed are likely to be more
noisy than those performed later in training.
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Figure 5.2: Search and Rescue: The agent (blue circle) navigates to the room where a rubble is
removable, and a victim represented by red cross needs to be rescued.

5.3 Experiments
We empirically evaluate our proposed adaptive teacher in three separate scenarios. These domains
have been selected such that: 1) the teacher and student have different rewards, and this leads
to different policies and behaviors after the training convergence; 2) the student performance is
better when advised by an adaptive teacher, compared to student’s performance with a teacher that
never adapts or when the student receives no advice; and 3) the student reward may be inferred
from a small batch of data at the beginning of its training.

We use the following environments. USAR: A Gridworld which simulates an urban search
and rescue environment in which the agent needs to remove rubble and rescue trapped victims.
Skiing: The ALE [96] Skiing game game where the agent moves left or right or having no actions.
The agent always sits on top of the screen and the background keeps rolling up to simulate the
agent is moving downwards. Pacman: A variant of the Pacman game with a feature-based state
representation. The maximum steps for are 500, 1500, and 600.
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Figure 5.3: Skiing: The agent (red) needs to avoid the trees (green) and gates (blue). It can pass
the gates if it goes through the empty space between gate pairs.

Figure 5.4: Pacman: The pacman (yellow) eats up food (green) and power pellets (blue). In the
default mode, the ghosts (pink) chase the pacman and can eat it up; After the pacman eats up a
power pellet, it can eat ghosts.
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5.3.1 Action Advising Comparisons
To evaluate the effectiveness of our adaptive advising method, we first compare the learning
performance of the student agent under the action advising of different types of teachers. The
types of teachers we compare are:

Adaptive Reward Teaching (ART): The teacher is trained in the source environment and
adapts its policy to align with the target task’s reward function (used by the student). This
adaptation occurs within one or a few iterations of the beginning of student’s training, leading to
a noticeable improvement or ‘jumpstart’ in the student’s performance, and helps the student to
converge faster.

Non-adaptive Teacher: The teacher is trained in the source environment and provides
consistent advice throughout the learning process without adapting its policy. As a result, the
advice may be suboptimal with respect to the target environment’s reward function.

Ideal Teacher: This hypothetical teacher is an optimal policy within the student’s target
environment. The ideal teacher is included as a baseline to represent the upper limit of teaching
quality.

No Advice: The student agent receives no advice and learns from scratch. This approach
typically shows high variance in performance and, although it can potentially converge to an
optimal solution, there is no guarantee of this outcome.

Additionally, our methodology involves a gradual decay in the probability of advice being
given. When the probability goes to zero, it means no advice is given from the teacher, and thus
the reward reflects the actual student’s performance. Although there are a range of works focusing
on when to issue the advice, we utilized the simple heuristic method and focused on adaptability.
Key hyperparameters in this decay advising process include the initial probability of advice, the
final period when the advice stops, and the rate at which the probability is reduced. We present the
best empirical results from various combinations of these parameters to illustrate the effectiveness
of our adaptive advising approach in different environment settings. This comparative analysis
allows us to robustly evaluate the benefits of adaptive advising in enhancing the student’s learning
process across various environments. Each of the methods is averaged over 5 episodes. Typically
the student advised by the ideal teacher is the best, and the student received no advice or advised
by the non-adaptive teacher is the worst. We show ART can boost performance of the student
after the teacher has finished improving its policy, to the level comparable with the ideal teacher.
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USAR: We apply our method to a simulated search and rescue scenario [42, 86] modeled as a
Gridworld environment. Shown in Fig. 5.2, , this is a single agent scenario in which the agent
(blue circle) must navigate the environment, remove rubble, and rescue victims (red cross). In this
variant, there is a single victim and single piece of rubble randomly located within the 14 room
layout. The source environment only rewards the agent for rescuing the victim with a per-timestep
penalty – no reward is given for removing rubble. The optimal behavior in the source environment
is to ignore rubble and immediately locate and rescue the victim. To induce a change in rewards,
the target task rewards the agent for both removing rubble and rescuing victims. Correspondingly,
the optimal behavior in the target environment is to remove as much rubble as possible before
rescuing the victim.

The baseline comparison result is shown in Figure 5.5 (left). The student receiving no advice
learned the slowest and had the most variance but ultimately converged to the optimal reward.
The student advised by the non-adaptive teacher received sub-optimal advice, yet it was still
beneficial and resulted in an initial performance improvement over the baseline student with no
advice. Despite the sub-optimality, this student was able to converge to the optimal reward due to
the decaying probability of issuing advice. Our proposed method, ART, achieved performance
comparable to the student advised by an ideal teacher. This ideal teacher is the agent that is trained
to be optimal with the student’s rewards, and we empirically have tuned the hyper-parameters
(see supplementary material section) to ensure the most effective advising process. It can be
observed that ART could soon boost the student’s performance to reach the student’s performance
as advised by an ideal teacher. We measured if after the teacher finished adaptation the student’s
learning curve overlapped or surpassed the one advised by the ideal teacher. We note that the
teacher issued no advice in the first 256K training steps, as observations were collected only to
adapt the teacher’s reward function.

Skiing: In the Atari [96] Skiing environment shown in Figure Fig. 5.3, the primary objective
is to navigate a downhill course as quickly as possible while avoiding obstacles such as trees
and navigating through gates. The source environment uses the default reward structure from
ALE, where the agent receives +10000 score for passing through a gate and −1000 for hitting an
obstacle, with a per-timestep penalty. The optimal behavior results in the agent passing through
gates near the agent’s position while avoiding obstacles. Empirically, this results in an agent
trained in the source environment to pass through 58% of the gates on average. The target
environment increases the reward for passing through gates by 10X, thereby encouraging the
agent to focus on passing through every gate while avoiding collisions. This necessitates more
conservative behavior as gates are worth relatively more compared to the per-timestep penalty.
The resulting optimal agent behavior passes through 87% of the gates on average.

Empirical results are shown in Figure 5.5 (middle). The student receiving no advice exhibited
training instability and often failed to converge to optimal behavior. The student with the
non-adaptive teacher did converge to optimal behavior, however, suffered a noticeable drop in
performance once the advising probability fully decayed to 0 and advice was no longer issued.
This was not an issue for the student advised by the adaptive or ideal teacher, where the reward
growth is consistent and smooth even when advising stopped.

Pacman: Pacman is shown in Figure Fig. 5.4, which is a widely used benchmark for rein-
forcement learning. The reward encourages the agent to eat food which increases the agent’s score
as well as power pellets, which cause the ghosts to entire a “frightened” state after which they

57



0M 1M 2M
Number of Environment Steps

0.0

0.5

1.0

Ep
. R

ew
ar

d 
M

ea
n

UsarUsarUsarUsar

0M 1M 2M 3M 4M
Number of Environment Steps

0K

300K

600K

SkiSkiSkiSki

0K 40K 80K 120K
Number of Environment Steps

0K

1K

2K

3K

PacmanPacmanPacmanPacman

ART (Ours) Ideal Teacher Non-adaptive Teacher No Advice

Figure 5.5: Training curves for a student which receives action advice from our proposed method
as well as the action advising variants described in Sec. 5.3. Left-to-right: USAR, Skiing, and
Pacman.

can be eaten for a large increase in score. The source environment highly rewards the agent for
consuming ghosts, resulting in an optimal behavior that is characterized by a strong preference
for chasing ghosts, sometimes leading to risky situations or hesitation between pursuing ghosts
and consuming more pellets. On average, an optimal agent trained in the source environment
consumed approximately 6.4 ghosts and 45% of the available food.

The target environment, in contrast, rewards the agent for collecting food while avoiding
ghosts, as the agent is not rewarded for eating ghosts even when they are in the “frightened” state.
On average, the optimal agent trained in the target environment consumed 1.4 ghosts and 85% of
the food.

The results are shown in Figure 5.5 (right). Our experimental results reveal significant
performance disparities between students advised by adaptive and non-adaptive teachers. The
non-adaptive teacher, though helpful in directing the student to eat food, demonstrates a starkly
inferior performance compared to the adaptive teacher as it encouraged chasing ghosts. In such
cases, the student’s performance aligns more closely with an untrained, random agent, often
getting quickly eaten by ghosts with minimal food consumption. Notably, the difference in
performance between students trained with adaptive and non-adaptive teachers in the Pacman
environment was more pronounced than in the USAR or Skiing scenarios. While the adaptive
teacher’s performance gradually converges towards that of an ideal teacher, it demonstrates a clear
advantage over other baseline approaches. Our experiments, also additionally indicated that an
initial advising probability less than 1.0 (specifically 0.8 in our case) was optimal. This allowed
for sufficient exploration by the student while still benefiting from the teacher’s guidance. Overall,
the Pacman environment is more challenging for the teacher to adapt since there is a large shift
in dynamics after a power pellet is eaten. This challenge is further exacerbated in our scenario,
given the difference in reward between the source and target environments.
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Figure 5.6: Training curves for a student which receives action advice from our proposed method
as well as the methods defined in Sec. 5.3.2. Left-to-right: USAR, Skiing, and Pacman.

5.3.2 Transfer Learning Comparisons
We compare our approach to three state-of-the-art transfer learning methods. All methods use the
same teacher policy which has been pre-trained with the reward in the source environment and
used to transfer to a student learning from scratch with the reward in the target environment.

Introspective Action Advising (IAA)([23]): Action advising method in which the teacher
identifies helpful advice based on the expected state-value in the target task.

Policy Distillation (Loss)([128]): Also known as kickstarting, this is a policy distillation
method which adds an auxiliary loss term based on the cross-entropy between the student and
teacher policies.

Policy Distillation (Reward)([29]): Policy distillation method which introduces a reward
shaping term that captures the difference in the teacher’s critic between the previous and current
timesteps.

We also evaluate against several simple ablations.
Finetune: Student policy initialized with the teacher’s policy and trained in the target task.
Random: A randomly initialized policy trained from scratch in the target task.
In these experiments, our approach uses a heuristic function such that the probability the

advice is issued decays over time, and finally the student has learnt to perform tasks without
teacher’s advice.

The Adaptive Teacher strategy demonstrated superior performance in the USAR and Skiing
scenarios when contrasted with other benchmarks in Figure 5.6. This advantage, however, was
less pronounced in the more complex Pacman environment, though it still maintained a lead.
The efficacy of the Introspective Action Advising (IAA) approach was particularly notable in
environments where differences could be assessed through value function estimations. This
allowed for more advanced advising strategies, as the teacher’s insights were grounded in a robust
understanding of the environment’s dynamics. However, in scenarios where the reward changes
leading to policy differences, the value-based insights provided by IAA became less effective. In
such cases, the performance of IAA aligned more closely with that of traditional policy distillation
methods, which rely on mimicking teacher behaviors either through reward or loss minimization.
This convergence highlights the challenges posed by environments with altered rewards and
underscores the need for adaptable advising.
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Figure 5.7: Training curves for our proposed method as well as a student advised by a non-adaptive
teacher and a student with no advising. The reward for removing each piece of rubble varies from
0.5 (left), 0.25 (middle), and 0.125 (right).

5.3.3 Adaptability with respect to Policy Variance
We further explored the impact and limits of an adaptive teacher on a student’s learning perfor-
mance in a variant of the USAR environment which contained 10 rubble and 1 victim. The agent’s
task was to find the victim and clear the rubble, with the episode ending either upon finding
the victim or after 500 steps. For the teacher, rewards were given for finding victims (+1) and
removing rubble (+1), and these rewards decayed over time. The student’s reward differed from
that of the teacher, with varied levels of difference. While finding the victim always yielded a
reward of 1.0 for the teacher and all the student policies, we varied the reward for rubble removal
between 0.0625 and 0.5 for different students. This necessitated the agent to balance the trade-off
between conserving steps to maximize the reward for finding the victim as soon as possible and
exploring more rooms to locate all the rubble and remove them. As the teacher received high
reward of removing rubble and would remove all of them before finding the victim, the varied
smaller reward for removing rubble by the student indicated the priority of removing rubble
decreased for different students. This setup introduced more variability in behavior and required
longer times for the agent’s policy to converge. We conducted experiments with the teacher
adapting to each of the different student policies and advising them. Each scenario was tested over
five episodes, and the results were evaluated with 1,000 trajectories. Instead of presenting each of
the learning processes, we evaluated the performance to demonstrate adaptability, compared to no
advice and non-adaptive decay advise. The performances are evaluated after the student’s training
has been converged, meanwhile the teacher has already finished its advising and the evaluation is
done for the students’ policies.

First, the adaptive teacher improved the student’s policy convergence as shown in Figure
5.7. This improvement was particularly noticeable when the reward for rubble removal was
set at moderate values (0.25 and 0.5), which is closer to the teacher’s 0.1. The complexity of
the task required the agents to balance between exploring and quickly finding the victim. For
students where the reward was smaller, the adaptive teacher’s impact was less pronounced. The
non-adaptive teacher also helped improving convergence in general, but less so than the adaptive
teacher.
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Figure 5.8: USAR 10 Rubble: Percentage of removed rubble (out of 10) and triaged victims (out
of 1) over 1000 rollouts across five student seeds each.

Intuitively, as shown in Figure 5.8 (left), the decreased reward of removing rubble would lead
to a decreased number of rubble removal of the converged student’s policy. Therefore, from the
general trend, we observed an increase of rubble removal as expected. Notably, when the reward
for rubble removal was equal to that for finding the victim (1.0), the teacher and student achieved
same performances after convergence. Both the adaptive and non-adaptive teacher would not
affect the number of rubble removal after convergence at the end. However, the adaptive teacher
consistently outperformed both the non-adaptive teacher and scenarios with no advice in helping
the agent find victims as shown in Figure 5.8 (right). It guided all the students to find the victims
and reduced the errors of the victims not being found. This was especially evident with reward
settings of 0.5, where the trade-off of exploring and quickly finding the victims was the hardest to
resolve. The non-adaptive teacher, which always prioritizing removing rubble, led to a high error
and unstable performance of the students, while the adaptive teacher’s guidance led to more stable
and efficient victim-finding strategies. In summary, the experiment demonstrated the efficacy of
an adaptive teacher in guiding an agent through varied students’ rewards. The adaptive teacher
not only enhanced the agent’s ability efficiently but also expedited the policy convergence process,
particularly in scenarios with moderate reward discrepancies.

5.4 Supplementary Material

5.4.1 Hyper-parameters
The hyper-parameters most relevant to the performance of ART are as follows:

1. Initial Follow Teacher Probability (IFTP) This is the same as the initial advising proba-
bility that the teacher issues advice. If IFTP=1.0, the teacher always gives advice, otherwise
the teacher advises with a probability and the student has more freedom exploring its own
environment. In our case, the student always follows the teacher’s advice when issued.

2. Burn In (BI) This is the beginning duration where the teacher does not give advice but
instead lets the student explore the environment, and collects the student’s reward data.

3. Advise Decay Rate (ADR) The teacher gradually lowers its probability of giving advice,
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Figure 5.9: Hyper-parameters

until there is no advice at all given to the student. ADR is the decay rate γ where ProbT+1 =
γ ∗ ProbT , where T is the time-steps of a training batch.

4. Advise Decay Rate (ADS) Similar as ADR, ADS is the decay step σ where ProbT+1 =
ProbT − σ, where T is the time-steps of a training batch.

Overall, the freedom that the student initially explores the environment, the amount of data
the teacher collects before its fine-tuning, and the amount of advice issued empirically affect the
performance of ART the most. Figure 5.9 shows an example of the teacher advising the student
with the reward of removing rubble of 0.9 in the 10 rubble USAR scenario that we have shown in
the experiment section. It can be inferred that with a smaller IFTP, longer BI, bigger ADR and
bigger ADS, the advice given to the student is less, and thus the student is less affected by the
teacher’s advice. It may also allow the teacher to be more accurate when estimating the reward in
the student’s environment as it collects more data based on the student’s exploration. However, the
downside of advising less is that if the teacher’s policy is beneficial, the student’s own exploration
maybe unnecessary, especially in this example where the teacher’s advice on removing all the
rubble aligns a lot with the student’s reward.
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As shown in Figure 5.9, from left to right, the student’s performance with ART becomes
more and more similar to the regular RL training where there is no advice. It is common in
action advising that advising too much (left-most columns) may limit the student’s exploration
and when advising stops, the student’s performance drops a lot and takes time to learn from the
unexplored space. This issue empirically may be fixed with a smaller ADS or ADR, and a lower
IFTP, depending on the specific tasks. Additionally, certain combinations of these important
hyper-parameters may not work, as some outlier exist that limit the student’s learning. We avoid
the combinations that produce outliers when selecting important hyper-parameters.

The important hyper-parameters we used in the experiment section are listed as in the following
table, and is shown in Figure 5.10 over timesteps. When the advising probability is reduced close
to 0.2, stopping advising empirically does not cause the student performance to drop since the
student has already learnt, therefore in the figure sharp drops to zero can be observed.

Environment IFTP BI ADR ADS
USAR 0.9 100000 0.9999985 N/A

Ski 0.9 0 0.999999 N/A
Pacman 0.8 0 N/A 0.000015

Table 5.1: Important Hyper-parameters
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Figure 5.10: The advising probability of each environment.

There are other hyper-parameters such as when the teacher stops training, i.e. teacher training
stop timestep (TTST), the teacher training frequency, i.e. inner loop teacher frequency (ILTF),
the teacher training iterations (TTI), and basic RL training hyper-parameters for both teacher
and student. All the experiments use the algorithm of PPO and the framework of Torch in
RLlib. We report the teacher’s training details in the following table, and the remaining could
be identified in our code, which will be released upon acceptance. The other reported hyper-
parameters are common RL training hyper-parameters: learning rate (LR), vf clip param (VFCP),
vf loss coefficient (VFLC), kl coefficient (KLC), entropy coefficient (EC), train batch size (TBS),
stochastic gradient descent mini-batch size (SGDS), and number of stochastic gradient descent
iteration (NSGDI).
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Env TTST ILTF TTI LR VFCP VFLC KLC EC TBS SDGS NSGDI
USAR 100000 5000 150 0.002 10 0.5 0.5 0.01 8192 256 4

Ski 100000 5000 500 0.001 10 0.5 0.5 0.01 4196 256 4
Pacman 10000 500 150 0.001 10 0.5 0.5 0.012 1000 100 10

USAR10R 100000 5000 150 0.002 10 0.5 0.5 0.01 8192 256 4

Table 5.2: RL Training Hyper-parameters

5.4.2 Reward Similarity
Given two reinforcement learning tasks with the same state-action space, we quantify the

average reward difference across all state-action pairs. For each state-action pair (s, a), let
D(s, a) = |R1(s, a)−R2(s, a)| denote the absolute difference in rewards between the two tasks.
The average reward difference D is defined as:

D =

∑
(s,a)∈S·AD(s, a)

|S · A|

This formula calculates D by summing the reward differences for all state-action pairs and
dividing by the total number of pairs, yielding an average of the reward discrepancies.

To facilitate a normalized comparison of reward differences across various environments, we
define Dnorm as:

Dnorm =
D

max(s,a)∈S·AD(s, a)

Here, maxD is the maximum possible average difference, which is determined by the structure
of the tasks’ rewards. Normalizing D to Dnorm scales the average difference to a range between 0
and 1.

For USAR, each room is composed of 3 by 3 grids, the connection between rooms take 1 grid,
rubble, victim, and the agent all occupy 1 grid. Moving to the wall grid, removing non-rubble grid,
and healing non-victim grid are considered invalid. For each time the environment is reset, rubble,
victim, and the agent are all relocated randomly. Therefore, D(USAR) = 0.5/422 = 0.0011848
and Dnorm(USAR)

= 1/422 = 0.0023697.
For Ski, there are 8 gates total, and the student received 10X reward for passing the gate

compared to the teacher’s +10000. The agent for each time step may choose left or right
actions till the borderlines of 10 steps horizontally, and vertically it takes 600 steps. Therefore,
D(Ski) = 720000/10800 = 66.67 and Dnorm(Ski)

= 8/10800 = 0.000741.
For Pacman, the teacher is an aggressive ghost eater, which means eating ghosts with a reward

of 5000 may compensate other potential negative effects such as not finishing eating up foods or
eaten by the ghosts when timer counts down to zero. There are 280 non-wall grids. The pacman
may move only to non-wall grids, and can eat ghosts when has eaten one of the power pellets
within 50 steps. We calculate with a probabilistic approach for this complex dynamics, where
the teacher eats 6.4 ghosts on average. This leads to D(Pacman) = 5000 ∗ 6.4/280 = 114 and
Dnorm(Pacman)

= 6.4/280 = 0.02286.
Generally, the Pacman environment has a bigger reward difference compared to the other

two, where critical objects such as rubble or gates are static, while eating ghosts can happen
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Figure 5.11: Improvement over the reward difference.

anywhere in the maze. In order to further quantify the influence, we calculate the performance
difference between the teacher and the trained student with ART, when evaluated in the student’s
environment.

Performance Improvement =
perfART − perfteacher

perfteacher

Figure 5.11 shows the result where the performance improvement is over the normalized
reward difference. The Pacman who has the highest reward difference also yields a higher
performance improvement. This means our ART is more helpful when the reward difference is
bigger, and may also explain the small difference between ART and the finetune methods in Ski
and USAR, because in these two scenarios the reward difference is smaller, and there is limited
room to for the teacher to improve and provide the student with better advice. However, we
also don’t anticipate the performance improvement keeps growing when the reward difference
becomes bigger. We acknowledge our study majorly focuses on the small Dnorm space. The
boundary exploration will be saved for future work.

5.4.3 Bidirectional Navigation
We further present the results of an additional environment. In a grid environment, a square

room is partitioned into 10x10 grids, serving for a navigation learning task. The source task
involves a teacher agent navigating towards the top-left corner of the grid room. Conversely, the
target task requires the student agent to reach an opposite goal, the bottom-right corner. The agent
is initialized randomly in the room whenever the environment is reset to resample. This setup
highlights a challenge when the source and target tasks have similar forms of reward functions
that reaching the goal with a positive reward, but the ideal behaviors are completely opposite.
Figure 5.12 shows the environment, where the green square is the target for the agent to navigate
to, and the red triangle is the agent, whose angle points to the direction facing with. For both
environments, the only positive reward of 1 is given when the agent reaches the target, discounted
over steps.

The teacher agent excels within its native environment, requiring 15 steps on average to reach
its goal, achieving a 100% success rate and a discounted reward of 0.89 over 100 trials. This
performance contrasts starkly with its performance in the student’s environment when not adapted,
leading to an average of 85 steps to reach the target and a reduced average reward of 0.14. This
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Figure 5.12: En-
vironments of the
teacher and stu-
dent in the bidi-
rectional naviga-
tion task.
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Figure 5.13: Baseline and benchmark results of the bidirectional navigation
task

elucidates the challenges as the ideal behaviors are completely opposite. Even though the goal is
on the bottom right corner, the non-adaptive teacher still keeps navigating towards its previous
goal on the top left corner.

Similar to what we have done for the other three environments of USAR, Ski, and Pacman,
we plot the baseline and benchmark results of this task. The baseline of the result in shown
in Figure 5.13 (left). As the teacher’s advice is for navigating to the opposite direction of the
student’s target, the teacher’s advice can be harmful to the student’s training. Therefore, the
student advised by the non-adaptive teacher is worse than no advice for a long time, until finally
the teacher stops advising and the student is trained by its own to exceed no-advice. Notably,
the teacher’s advice is not completely useless, as during the beginning of the student’s training,
student advised by the teacher who has not improved is still better than the student exploring
with no advice. Additionally, student advised by any type of the teacher finally is slightly better
than the student with no advice. For our ART method, the teacher quickly finetunes its policy to
reach the performance of the ideal teacher, and then avoids giving the misleading advice anymore.
Therefore, the student with ART is always better than the student with no advice over training.

The benchmark result is shown in Figure 5.13 (right). The difficulty of transfer can be further
assured with the method of simple finetune, as the agent with a policy network that leads to the
opposite behavior can be hardly changed. Thus the performance of the finetune method is the
worst. Other benchmark methods may avoid this issue, however, our ART method has the best
performance. This shows our ART is more robust in this scenario where teacher and student have
opposite rewards that lead to opposite ideal behaviors.
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Figure 5.14: Compare with teacher using both its data and the collected student data to train its
reward network.

5.4.4 Joint Data Training
We further conduct an experiment that trains a reward model jointly on teacher-collected data

and student-collected data. For this data-jointly trained teacher, no error prediction model is used.
We plot the results over the Figure 5.14. As shown in the figure, in all three environments, the new
setting only allows the student to be trained slightly better than being advised by a non-adaptive
teacher.

This is because the newly collected student data can hardly override the teacher data. To be
more specific, in the USAR scenario, the teacher receives 0 as its reward when removing rubble,
but when it collects student data, this becomes 0.5 instead. In the Ski scenario, the reward is
10x bigger when collected by the student, but from what the teacher has previously, it is not that
significant. In the Pacman scenario, the reward of eating ghost as received by the teacher is much
bigger than with the student. With data jointly trained, the reward network can hardly discern that
is expected by the student, and handle the conflicts of reward values. Therefore, the teacher is
only slightly improved, as the reward it estimates is still close to its own reward. This is no doubt
worse than our method of ART where the estimation of the student reward is more accurate.
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Figure 5.15: An overview of the Reward-Adaptive Teacher with the predicted transition function.
The teacher initially issues action advice to the student from a policy trained in the source task
– leading to low rewards in the target task due to differences in the reward functions. After
observing the student’s trajectory returns, the teacher adapts its policy using its internal world
model so as to maximize the student’s reward in the target task without requiring direct access to
the environment.

5.5 Extending with Predicting Transition Function

5.5.1 Algorithm

Algorithm 7 Reward Adaptive Advisor

1: Input: Trained teacher policy πT , advising strategy H , adaptation period µ.

2: Prior to student training
3: Teacher collects DT = {(st, at, rt)}ωt=1 in its environment.
4: Teacher trains reward modelM(DT ) and world model N (DT ).

5: During student training
6: if iteration ≤ µ then
7: Teacher collects β student trajectories DS = {(st, at, rt)}βt=1

8: Reward adaptation:M =M(DS)
9: Policy adaptation: πT = argmaxπ Eπ

[∑∞
k=0 γ

kM(st, at)
]

where st+1 = N (st, at)
10: end if
11: Teacher issues advice aTt ∼ πT (at|st) if H(st) = 1

So far we have seen the teacher finetuning its policy with the ground-truth transition function.
Intuitively, our approach in this section can be understood as the teacher observing the student’s
returns in the target task, estimating how they differ from those in the source task in which it
was trained, and then using an internal model of the environment dynamics to tailor its policy
to the target task while advising the student, without ever directly interacting with the target
environment.

Learning Environment and Reward Dynamics: Prior to advising a student in the target
task, the teacher learns a world model N of the environment dynamics in the source task. Under
the assumption that the state-transition function remains constant between the source and target
tasks, this model can be used to perform reinforcement learning without direct access to the actual
environment [59, 60]. In parallel, the teacher learns an approximation of the source task’s reward
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Algorithm 8 World Model Rollout
1: Input: Reward modelM, world model N , Policy π, Current state st, Max Episode Step T .
2: st = s0, t = 0
3: for t < T do
4: at = π(st), rt =M(st, at), st+1 = N (st, at)
5: if st+1 /∈ Send then
6: t = t+ 1
7: end if
8: end for
9: Output: s1...T , a1...T , r1...T

functionM. For efficiency, we learn both of these models jointly with the teacher’s initial policy
in the source task, although there is no requirement to do so. The algorithm is shown in Algo 7.

Similar as previous, DT = (st, at, rt)
ω
t=1, where ω represents the total number of time steps

in the teacher’s training phase, is utilized to train two models representing its knowledge of the
environment dynamics: a reward prediction model, which is a neural networkM parameterized
by ϕ, and a world modelN parameterized by θ. N takes the state st and the action at at time step
t as input, and then outputs the next state st+1: N (st, at; θ)→ st+1. Typically a world model does
not include an estimate of the reward as recent works mostly focus on simulating the transition
functions or modeling dynamics, however, we introduce such a mechanism in RAA so that it
may be later adapted to the target task. M aims to estimate the reward r given a state-action pair
(s, a):M(s, a;ϕ)→ r. Thus same as previous, the training objective forM is to minimize the
difference between the predicted reward and the actual reward:

L(ϕ) = E
[
||M(st, at;ϕ)− rt||2

]
, (5.4)

The transition network N (st, at; θ) → st+1 uses the loss function minimizing the difference
between the network’s predicted next state and the actual next state experienced in the environment:

L(θ) = E
[
||N (st, at; θ)− st+1||2

]
(5.5)

Policy Adaptation: After adjusting its reward prediction model, the teacher uses the updated
M, and its world model N to perform a limited number of reinforcement learning iterations and
improve its policy πT with respect to the target task, by modifying the parameters of πT based
on the standard update rule: θ′ = θ + α∇J ′(θ), where J ′(θ) maximizes the expected cumulative
reward under the new reward distribution:

J ′(θ) = EπT
[

∞∑
k=0

γkM′(st, at;ϕ)

∣∣∣∣st, at
]
,where st+1 = N (st, at). (5.6)

This adaptation process, shown in Alg. 8, allows the teacher to improve its policy without requiring
direct access to the target environment and may be performed numerous times throughout the
student’s training process. The updated policy is subsequently used to issue future action advice
to the student according to an advising heuristic H(·) – our approach is agnostic of the specific
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heuristic which is used. The effectiveness of this adaptation step is contingent on how accurate the
reward model is. As a result, adaptation steps performed early in the interaction when a limited
number of student returns have been observed are likely to be more noisy than those performed
later in training.

5.5.2 Experiments and Results
We empirically evaluate our proposed adaptive teacher with world model in two separate scenarios:
a simulated urban search and rescue environment where the agent needs to remove rubble and
rescue trapped victims; and a navigation task in which a mobile robot must reach a goal while
avoiding obstacles, which we have implemented in both simulation and the real-world. These
domains have been selected such that we can determine: a) whether our reward-adaptive advisor’s
advice adapts to the reward function associated with the target task, b) the degree to which this
adaptation improves over prior state-of-the-art methods, and c) if this adaptation can be achieved
in real-world environments.

5.5.3 Environments
USAR: The urban search and rescue environment [42, 86] is a challenging environment which
enforces strict cooperation [53, 54] among agents with heterogeneous action spaces. We consider
a combined agent role of medic, which can rescue victims, and engineer, which can remove rubble,
who must cooperate such that victims which are trapped behind rubble can be rescued. In addition
to a positive reward for rescuing victims, the source task rewards removing only pieces of rubble
which block access to victims, while the target task rewards removing all pieces of rubble. Both
the teacher and student policies are trained with DQN [109] and discrete state and action spaces.
We evaluate over two variants: a simple 4-room layout and a more complex 14-room layout, as
developed in [54].

Navigation to Goal: This environment is a navigation task in which a differential drive
robot must navigate from a start location to a goal location while avoiding collisions with static
obstacles. While the agent is rewarded for reaching the goal in both the source and target tasks
while avoiding collisions, the reward function is modified in the target environment to penalize
the agent if it gets too close to obstacles. In the source task, the penalty is low and so the agent’s
optimal behavior is to navigate directly to the goal by traveling between the obstacles. In the
target task, the penalty is increased and the agent is encouraged to drive around the outside of the
obstacles to reach the goal. This environment is implemented in both simulation [124] and in the
real-world on the Khepera [76] robot platform; all policies are trained using PPO [129] with a
continuous state space and discrete action space.
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Figure 5.16: RAA (in orange) compared to ablated methods. The shaded region denotes the
adaptation period, which happens every 2 iterations in USAR-4Room, 5 in USAR 14-Room, and
only once in Navigation. No advising occurs prior to the first β episodes.

5.5.4 Results and Analysis
Teacher Performance: We first investigate RAA’s ability to adapt the teacher policy to the target
task, irrespective of a student. Figure 5.16 shows the performance of RAA in the target task
along with several ablated methods. The key outcome from this analysis is that RAA’s adaption
process produces a teacher policy which achieves a higher reward in the target task than the other
methods, substantially faster – with a minimum improvement to convergence rate of 2x (USAR
4-Room). The original teacher policy lacking any adaptation (Source) yields significantly lower
returns across all three scenarios, while training a teacher from scratch (Baseline) or improving
the existing policy (Finetune) requires more than double the amount of time to learn an optimal
policy compared to our proposed adaptation process. Informally, RAA produces a better teacher
policy, faster.

In addition, we measured whether using a learned world model to adapt the teacher’s policy to
the target task led to any performance degradation due to error accumulation. Adaptation using the
ground truth dynamics model and target task reward function, RAA (GT), achieves approximately
the same rewards as RAA, however. This indicates that despite a maximum episode length of 100
timesteps, policy adaptation via our learned world model is an effective strategy.

71



0 10 20 30 40 50
Training Epochs

−40

−20

0

20
Re

wa
rd

USAR 4-Room

0 100 200 300 400 500 600
Training Epochs

200

400

600

Re
wa

rd

USAR 14-Room

0 20 40 60 80 100 120
Training Epochs

−200

−150

−100

−50

Re
wa

rd

Navigation
RAA (Ours) EAA (T) EAA IAA IAA (No Decay) Distill (Loss) Distill (Reward) Baseline

Figure 5.17: RAA (in orange) compared to state-of-the-art transfer learning approaches.

Comparison to Transfer Learning Methods: Next, we compare RAA to state-of-the-art
transfer learning methods to determine whether our adaptive teacher policy is capable of issuing
high-quality advice. The results, shown in Fig. 5.17, indicate RAA’s teacher policy performance
exceeds that of the compared methods for a significant duration of the training period. This
suggests that the teacher is capable of issuing action advice leading which leads to improved
performance; in the extreme case, if RAA were to issue advice at every timestep and the student
were to blindly follow it, then the student would achieve higher rewards at least 5x faster than if
it were trained according to another transfer learning approach. We note that the other transfer
learning methods failed to meaningfully improve upon Baseline performance at all, indicating
that a student trained from scratch (Baseline) is actively misguided by other approaches yet would
benefit from RAA in our scenarios.
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Figure 5.19: Policy adaptation results in simulation and real-world across 50 trajectories respec-
tively. A consistent initialization of Pre-Adaptation and Post-Adaptation is kept.

Real-world Evaluation: We evaluate RAA’s ability to adapt to real-world conditions by
performing student training in a real-world equivalent of our navigation scenario. Using a Khepera
differential drive robot as our embodied agent, we begin student training with PPO and perform
RAA’s adaptation step using a set of 150 real-world trajectories consisting of student interactions.
The real-world trajectories are shown in 5.18. This experiment is designed to test, a) whether
policy adaptation using a learned world model succeeds if the reward network has been fine-
tuned using real-world data, and b) whether the resulting trajectories produce successful student
trajectories despite the sim-to-real gap. Figure 5.19 (bottom row) shows a set of 50 policy rollouts
using the adapted RAA teacher policy (right column) in comparison to the original teacher policy
(left column). We observe that not only do the adapted trajectories exhibit the optimal behavior
for the target task, but that they closely match the adapted policy produced purely in simulation
(top row).
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Adaptation Process:

Figure 5.20: Throughout the teacher’s fine-tuning process, its success rate in its source environ-
ment (gray) gradually decreases while the one in the target environment (pink), which reflects
student’s rewards, grows. This shows the teacher gradually learn to adapt to student’s reward and
is able to make alternative advice based on student’s need.

The effect of the adaptation process on the teacher policy is visualized in Fig. 5.20. In all of
our evaluated scenarios, RAA’s adaptation step modifies the teacher’s policy such that it gradually
results in successful episodes with respect to the target task, at the expense of success with respect
to the source task – under a mutually exclusive success definition.
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5.6 Conclusion
In this chapter, we have introduced Adaptive Reward Teaching – an action advising method which
produces a teacher capable of adapting its advice to a target task in the face of changing rewards.
We empirically show that our approach results in significant policy improvement with respect
to the target task’s reward function in a far more sample efficient manner when compared to a
number of state-of-the-art transfer learning approaches. We have also extended by calculating the
transition functions and estimating the teacher’s boundaries over the world model. In the future,
we plan to further explore the adaptability of the teacher and quantify the distribution shift of the
student’s data from teacher’s.
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Chapter 6

Human Acceptance to Advice and
Explanations from Artificial Teacher

So far, we have presented the work where the student as an artificial agent gets advice from the
teacher, and the performance is improved. As we are motivated from the cognitive literature, that
providing explanations and internal models would help human agents learn, we are interested
in extending the advising framework to human students. Furthermore, due to the scope of this
thesis that majorly focuses on policy transfer, and the complexity of human learning, we examine
human’s acceptance to the advice and explanations provided by an artificial teacher.

More formally, in this chapter we are aimed at using reinforcement learning (RL) policy to
advise human players. This policy is distilled into a decision tree (DT) format to facilitate inter-
pretable advice, particularly in explaining actions via DT path features. This process of providing
explanations is the same as what we have presented in the chapter of providing explanations
(Chapter 2), and modeling student’s internal models. The selected environment for our application
is the Pacman game, where the primary objective is to maximize food consumption. Our aim is to
let the artificial teacher give advice and its explanations to human players, when the teacher is fed
with the observation from a player. The IRB protocol is Pitt STUDY21030223, Crowd-sourced
Behavioral Studies for Human-Agent/Robot Interaction.
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Figure 6.1: The start of pacman game.

Game Rules The start of the game is shown in Figure 6.1. The Pacman game is a classic video
game that has been widely popular. In the game with the classical layout, players controls the
Pacman (in orange) to navigate in a maze. The mouth of the pacman shows the current direction
that the pacman is faced with. The maze is filled with dots (in green), known as foods, which
Pacman can eat to gain points. The maze also contains four ghosts (in pink) that chase Pacman
and attempt to catch it. The player’s goal is to consume all the foods in the maze while avoiding
being caught by the ghosts.

To aid Pacman in evading the ghosts, there are power pellets, i.e. capsules, (in blue) located in
the maze. When Pacman consumes a power pellet, the ghosts temporarily become vulnerable and
can be eaten by Pacman, providing a momentary respite from the chase. The game may progress
in difficulty as the player advances, with the ghosts becoming faster and the power pellets’ effect
lasting shorter durations. The default maximum of the timer is 50 timesteps, when the Pacman
just eats a capsule. When a ghost is eaten, its timer is set to 0 and sent to the center, i.e., not
vulnerable, and starts its chasing.
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6.1 Train the Teacher

6.1.1 RL Expert
The RL agent is trained with PPO. It has four actions of moving one grid up, down, left, and right.
If the action is invalid, such as towards a wall grid, the agent won’t change its location. The policy
is based on the extracted features from the observation of each state. The features, represented as
binary indicators (0s and 1s), have been refined to capture essential aspects:

• Directions (South, North, East, West) based on their potential to lead to the nearest food,
power pellet, or ghost. If there are more than one closest items with the same distance, both
corresponding directions are ones. It uses bfs to expand to find those closest items.

• Proximity to ghosts within a radius of 2. If the distance to ghosts is within the radius, the
corresponding directions are ones.

• The fear status of the closest ghost (if scared for 10, 20, 30, or 40 timesteps) are calculated.
For example, if the scared timer is 25, the first two features are ones and the rest are zeros.

• For each direction, if the next grid is a wall or passable.
Reward Structure The RL agent is expected to eat as many foods as possible, while at

the same time strategically eat more power pellets and avoid ghosts. Unless it is encircled, it
should keep itself safe while looking for foods. The reward function is designed to shape desired
behaviors for the RL agent is as follows:

• Eating a food item: +10
• Consuming a power pellet: +150
• Being caught by a ghost: -500
• Consuming all available food: +1000
• Eating a ghost: -200

The balancing of reward-shaping is challenging, where in this case the agent may have a hard
time choosing to prioritize power pellet to keep itself safe, or be risky to enter into regions where
there are more foods as well active ghosts. It may also be risky to eat up a ghost, especially when
the timer number is still big, as the ghost will be sent back to center and quickly comes towards
the agent again. Additionally, when circumvented, such as multiple ghosts come from two ends
of the road, and no power pellet remains, there is no way for the agent to escape.

Out of the total 229 foods, 4 power pellets, and maximum of 600 steps, the best agent is trained
to reach the following performance, and it becomes our teacher. They are the mean numbers taken
from 200 sample trajectories.

Policy Food Eaten Power Pellet Ghost Eaten Steps Rewards
RL 194 3.5 0.33 248 2068

Table 6.1: Performance evaluation of the best RL policy.
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6.1.2 Representable DT Teacher
Similar as what we have done in Explainable Action Advising, we used VIPER to extract the
RL policy into a representable decision tree policy. Therefore, when giving action advice on any
observation, the features on the decision tree paths are also given as the explanations leading to
the action advice.

To be more specific, in the VIPER process, for each iteration, 20000 steps are sampled and
the maximum iteration is 10. To evaluate if the DT policy is good enough, 200 trajectories are
generated, and the best DT policy is selected among all the iterations over the 5 experiments.

The learnt DT teacher may eat 95% of the food as its performance compared to the RL teacher.
With filtering on teacher’s trajectories that have higher rewards, it might eat more food, however,
it would lead to a smaller diversity of the DT policy. We don’t intend to extend this discussion in
this work.

Policy Food Eaten Power Pellet Ghost Eaten Steps Rewards
DT 185 3.4 0.3 233 1872

Table 6.2: Performance evaluation of DT policy.

6.1.3 Keyboard Interaction Interface
We have developed an interface so that human players may use keyboard arrows (up, down, left,
right) to control the Pacman, aligning with the conventional gameplay mechanics. The reward
setting also follows the conventional Pacman game, except for not receiving reward for eating the
ghosts, as in our game we would like to focus on the goal where finishing eating up all the food is
prioritized. The reward metrics for the game are as follows:

• Consuming food: +10 points.
• Consuming a capsule: +150 points.

The game’s speed significantly influences its difficulty. Intuitively, if the speed is very fast, there
is little time for the player to react, while slowing down the speed can give players enough time to
think and respond. Even though enough time of thinking does not guarantee the success of each
movement, it would trivialize the game and the advice given to players. Therefore, the speed is
set to be 0.5 seconds as one step, which allows the designer, who is an expert playing the game to
reach almost as good performance as the teacher.

Furthermore, we would like to emphasize that we don’t directly ask participants to play the
game with this interface. The human participants are served as observers to the clips of game
playing from a human game expert. At each intersection, the human player receives advice from
the teacher:

• A red arrow indicates the teacher’s suggested direction.
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Figure 6.2: The advice and explanation received.

• Explanations are provided for the suggested action, focusing on the nearest food, ghost, and
capsule.

• There are two types for these explanations:

1. Red text describing the rationale.

2. Visual highlights on game elements related to the advice (e.g., closest food, ghost, and
capsule).

For example, as shown in Figure 6.2, the player is receiving advice from the teacher at an
intersection. The player sees its number of food eaten, capsule eaten, ghost eaten, and the overall
score. In this example, a capsule has just been eaten by the pacman, and the pacman has never
eaten a ghost, so all of the ghosts are edible, with the timer on there top showing the time left to
maintain this edible mode. The red arrow pointing towards north indicates the teacher advising
the player to go north. The explanation that leads to the teacher’s action advice are given from the
teacher’s decision tree path. In this example, the features related are getting closer to the closest
food and getting away from the closest ghost. Only the closest food in the teacher’s direction is
highlighted with a colorful green circle, while other closest foods are highlighted with lighter
colors.
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Filtered Explanations We have filtered the features on the teacher’s decision tree path, where
only the related closest food, ghost, and capsule corresponding to the teacher’s action direction
are given to the player.

The features related to if the next step for each action is wall or passable are hidden as they are
more straightforward in the game view. The features related to the nearby ghosts are also hidden,
because the small radius is only useful for the teacher, while also straightforward in the game
view. The features irrelevant to the directions are hidden, i.e. the timer for the closest ghost is not
given in the explanation because the timers are shown on top of each edible ghosts.

The remaining features on the decision tree paths are given as explanations, in the same order
as in the tree paths.

81



6.2 Amazon Mechanical Turk (MTurk) Experiment

6.2.1 Design of Experiment
Hypothesis: Explanations increase the acceptance of the teacher interventions, compared to the
no-explanation condition.

Dataset: Samples (s, a) are taken from an unknown (our expert human) policy. These are
advised by the teacher policy and explained using the DT policy.

Design: Participants are divided into three between-subject groups based on the type of
explanation they receive: visual-explanation, visual-and-text-explanation, or no-explanation.

Survey Questions: Participants are observers. They are asked the following questions after
watching each of the intervention video clip, with the scores scale from 0 (strongly disagree) to 6
(strongly agree):

• The suggested action makes sense to me.
• If I were to play, I would comply with the suggested action.
• The provided explanation makes sense to me.
• The provided explanation helps me understand the suggested action.
• How do you like the suggested action and explanation?

6.2.2 MTurk Samples Generation

Figure 6.3: MTurk Samples (1)
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Figure 6.4: MTurk Samples (2)
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Figure 6.5: MTurk Samples (3)
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Figure 6.6: MTurk Samples (4)
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Figure 6.7: MTurk Samples (5)
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A total of 25 samples have been generated from 5 trials of an expert play. Each sample is
a small video clip capturing gameplay from one intersection to the next, concluding with the
teacher’s advice. To present those clearly in the thesis, we include the last frames of the samples
instead of the videos, who contain a few prior steps towards this current frame, as displayed from
Figures 6.3, 6.4, 6.5, 6.6, 6.7.

Variations: For each clip, three different versions are prepared:
• no-explanation: The clip includes advice on action without explanations.
• visual-explanation: The advice is paired with visual highlights as explanations.
• visual-and-text-explanation: The advice features both text explanations and visual high-

lights.
The number of parcipants for each of the variations are also listed as follows:

• no-explanation: 30.
• visual-explanation: 30.
• visual-and-text-explanation: 31.

6.2.3 Experiment Results
With score of 6 as the strongest agree, we have an average score of 5.0 for human participants to
accept the advice for all samples. This indicates the teacher’s action advice is generally acceptable
to participants. Among the 25 samples we have, 21 of them has an average score of 5.4, which we
call as the “acceptance” group as they have a high score to accept the advice. However, for the
rest 4 samples, they have an average score of 3.1, and they are all below a score of 4. The attitude
from the participants are neutral towards the advice, and thus we call them the “neutral” group.
We then break down to see the more details of the groups.

Scores breaking-down is shown in Figure 6.8 and Figure 6.9. The left images show average
scores of action advice, and the right images show average scores of explanations. We test with
three different conditions of no explanations, only visual explanations, and visual as well as text
explanations, which are represented in the colorful bars of blue, orange, and green.

Figure 6.8: Acceptance Group
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For the acceptance group in Figure 6.8, it can be clearly inferred that with visual and text
explanations, the scores of action advice are higher than the other two conditions, while the
other two conditions are similar. The p value is smaller than 0.05 and indicates the advantage is
significant. Besides, scores of visual and text explanations are higher than only providing visual
explanations. Therefore, we conclude that explanations, especially in the form of visual and text
combination, make acceptable action advice more acceptable.

Figure 6.9: Neutral Group

However, if we examine the neutral group shown in Figure 6.9, first we can infer from the
right image, that the two forms of explanations do not have much different scores. This means if
humans feel neutral about the advice, the form of explanations does not matter. Besides, action
advice with explanations do not have significant better scores, indicating the explanations do not
help participants accept neutral advice.
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6.3 Conclusion
In this chapter, we show how we evaluate human’s acceptance when they receive action advice and
explanations from an artificial teacher. The advice is generated from a pre-trained reinforcement
learning agent, and explanations are from the corresponding decision tree policy, using the
similar procedure as in the work of explainable action advising. The human participants are
observers to examine various advice and explanations, and we examine if the explanations are
helpful. Interestingly, only the explanations with acceptable advice make advice rated higher. The
explanations of the advice neutral to human participants are rather less influential. Furthermore,
as we only include a simple template for explanations, they are not as human languages. We
examine the usage of a large language model to generate explanation in the next chapter.
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Chapter 7

Utilizing a Language Model to Improve
Explanations to Humans

In the ever-evolving landscape of artificial intelligence, intelligent agents, particularly robots, have
transcended experimental settings to make substantial inroads into real-world applications, many
of which are safety-critical. The ability of these agents to interact and collaborate effectively
with humans hinges on their capacity to explain their decisions and actions in a manner that
is comprehensible to their human counterparts. Despite the prowess of deep neural networks
in driving the decision-making processes of these agents, the intrinsic opacity of such models
poses a significant barrier to interpretability. Addressing this challenge, this chapter pivots on
translating the intricate decision-making processes of agents into natural language explanations.
By observing only the states and actions of these agents, we propose a method that is agnostic to
the model’s internal workings, focusing instead on the outcomes of its decisions. This method
involves distilling the agent’s policy into a decision tree, a representation that inherently lends
itself to interpretability.

The crux of our chapter delves into how these decision tree-based policies can be eloquently
articulated using a language model. Such a model does not merely decode the features on the
decision tree paths but contextualizes them in a pedagogically meaningful manner. This process
is not just about simplifying technical jargon but about fostering a two-way interaction where
learners can query, seek clarifications, and even pose what-if scenarios. Through empirical
validation and user studies, we aim to demonstrate that this methodology does not only make the
agent’s reasoning transparent but also empowering. The work has been published and we refer
readers for more details in the original paper [169]. The IRB protocol is Pitt STUDY21030223,
Crowd-sourced Behavioral Studies for Human-Agent/Robot Interaction.
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7.1 Background
Rapid advances in artificial intelligence and machine learning have led to an increase in the
deployment of robots and other embodied agents in real-world, safety-critical settings [19, 39, 88,
137, 171]. As such, it is vital that practitioners – who may be laypeople that lack domain expertise
or knowledge of machine learning – are able to query such agents for explanations regarding why
a particular prediction has been made – broadly referred to as explainable AI [5, 51, 156]. While
progress has been made in this area, prior works tend to focus on explaining agent behavior in
terms of rules [75], vision-based cues [28, 108], semantic concepts [164], or trajectories [23, 52].
However, it has been shown that laypeople benefit from natural language explanations [3, 104]
since they do not require specialized knowledge to understand [154], leverage human affinity for
verbal communication, and increase trust under uncertainty [47].

In this chapter, we seek to develop a framework to generate natural language explanations
of an agent’s behavior given only observations of states and actions. By assuming access to
only behavioral observations, we are able to explain behavior produced by any agent policy,
including deep neural networks. Unlike prior methods which exhibit limited expressivity due to
utilizing language templates [62, 78, 154] or assume access to a large dataset of human-generated
explanations [37, 92], we propose an approach in which large language models (LLMs) can be
used to generate free-form natural language explanations in a few-shot manner. While LLMs have
shown considerable zero-shot task performance and are well-suited to generating natural language
explanations [87, 103, 157], they are typically applied to commonsense reasoning as opposed
to explaining model behavior, and are prone to hallucination – a well-known phenomenon in
which false information is presented as fact [105]. It is an open question as to how LLMs can
be conditioned on an agent’s behavior in order to generate plausible explanations while avoiding
hallucination.

Our solution, and core algorithmic contribution, is the introduction of a behavior represen-
tation (BR), in which we distill an agent’s policy into a locally interpretable model that can be
directly injected into a text prompt and reasoned with, without requiring fine-tuning. A behavior
representation acts as a compact representation of an agent’s behavior around a specific state and
indicates what features the agent considers important when making a decision. We show that
by constraining an LLM to reason about agent behavior in terms of a behavior representation,
we are able to greatly reduce hallucination compared to alternative approaches while generating
informative and plausible explanations. An additional benefit of our approach is that it enables
interactive explanations; that is, the user can issue follow-up queries such as clarification or
counterfactual questions. This is particularly valuable, as explanations are social interactions
conditioned on a person’s own beliefs and knowledge [106] and thus, are highly individual and
may require additional clarification to be comprehensible and convincing [79].

Our approach is a three-stage process (see Figure 7.1) in which we, 1) distill an agent
policy into a decision tree, 2) extract a decision path from the tree for a given state which
serves as our local behavior representation, and 3) transform the decision path into a textual
representation and inject it into pre-trained LLM via in-context learning [20] to produce a natural
language explanation. In this chapter we show how our framework can be applied to multi-agent
reinforcement learning (MARL) policies – a particularly relevant setting given the complex
dynamics and decision-making resulting from agent-agent interactions. Through a series of
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Figure 7.1: Overview of our three-step pipeline to explain policy actions: left: A black-box policy
is distilled into a decision tree; middle: a decision path is extracted from the tree for a given state
which contains a set of decision rules used to derive the associated action; right: we utilize an
LLM to generate an easily understandable natural language explanation given the decision path.
Lastly, a user can ask further clarification questions in an interactive manner.

participant studies, we show that, a) our approach generates model-agnostic explanations that are
significantly preferred by laypeople over baseline methods, and are preferred at least as much as
those generated by a human domain expert; b) when an agent policy is sub-optimal, participants
find the ability to interact with our explanations helpful and beneficial; and c) our approach yields
explanations with significantly fewer hallucinations than alternative methods of encoding agent
behavior.

Explainable Agent Policies: Many works attempt to explain agent behavior through the use
of a simplified but interpretable model that closely mimics the original policy [90, 117, 132, 151],
a technique which has long been studied in the field of supervised learning [17, 123]. Although
approaches that directly utilize inherently interpretable models with limited complexity during
the training phase [22, 35, 135] exist, many researchers avoid sacrificing model accuracy for
interpretability. We follow a similar approach in the second chapter on explainability, in which
we leverage a distilled interpretable model to gain insight into how the agent’s policy reasons.

Natural Language Explanations: Outside of explaining agent behavior, natural language
explanations have received considerable attention in natural language processing areas such as
commonsense reasoning [102, 118] and natural language inference [116]. Unlike our setting
in which we desire to explain a given model’s behavior, these methods attempt to produce an
explanation purely with respect to the given input and domain knowledge, e.g., whether a given
premise supports a hypothesis in the case of natural language inference [21]. Although self-
explaining models [1, 66, 103] are conceptually similar to our goal, we desire a model-agnostic
approach with respect to the agent’s policy and thus seek to explain the agent’s behavior with a
separate model. While recent works have investigated the usage of LLMs in explaining another
model’s behavior by reasoning directly over the latent representation [18], this approach has
yielded limited success thus far and motivates the usage of an intermediate behavior representation
in this chapter.
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7.2 Methods
We introduce a framework for generating natural language explanations for an agent from only
observations of states and actions. Our approach consists of three steps: 1) we distill the agent’s
policy into a decision tree, 2) we generate a behavior representation from the decision tree, and 3)
we query an LLM for an explanation given the behavior representation. We note that step 1 only
needs to be performed once for a particular agent, while steps 2 and 3 are performed each time an
explanation is requested. We make no assumptions about the agent’s underlying policy such that
our method is model agnostic; explanations can be generated for any model for which we can
sample trajectories. Formally, we examine the setting in which an agent makes an observation of
an environment and executes an action at each time step.
Notation: An agent observes environment state st at discrete timestep t, performs action at, and
receives the next state st+1. Actions are sampled according to the policy π(at|st) and a trajectory
consists of a sequence of state-action pairs τ = s0, a0, s1, a1, . . . , st, at.

7.2.1 Distilling a Decision Tree
Our first step is to distill the agent’s underlying policy into a decision tree, which acts as an
interpretable surrogate. The decision tree is intended to faithfully replicate the agent’s policy
while being interpretable, such that we can extract a behavior representation from it. Given an
agent policy π, we sample N rollouts τ0, . . . , τN−1 with which we learn a decision tree policy.
While decision trees are simpler than other methods such as deep neural networks (DNNs), it has
been shown that they are still capable of learning reasonably complex policies [16]. Intuitively,
DNNs often achieve state-of-the-art performance not because their representational capacity is
larger than other models, but because they are easier to regularize and thus train [7]. However,
distillation is a technique that can be leveraged to distill the knowledge contained within a DNN
into a more interpretable surrogate model [14, 43, 63].

7.2.2 Behavior Representation Generation
Given our surrogate decision tree, the next step is to generate a behavior representation for the
agent given a particular state-action pair that we wish to explain. The behavior representation
is a locally interpretable model of the agent’s behavior at a particular point in the state space.
We create a behavior representation by extracting the decision path from our learned decision
tree corresponding to the given state. Intuitively, this decision path represents the decision rules
that the agent may have reasoned with – we say may because the surrogate decision tree is only
an approximation of the agent’s true reasoning process – when taking the observed action. The
decision path is an ideal behavior representation since we can algorithmically translate it to natural
languge for injection into an LLM prompt without requiring any additional fine-tuning.
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7.2.3 In-Context Learning with Behavior Representations
The last step in our approach is to define a prompt that constrains the LLM to reason about agent
behavior with respect to a given behavior representation. Our prompt consists of four parts: a) a
concise description of the environment the agent is operating in, e.g., state and action descriptions,
b) a description of what information the behavior representation conveys, c) in-context learning
examples, and d) the behavior representation and action that we wish to explain. An example
of this prompt is shown in Fig. 7.2. All parts except for (d) are pre-defined ahead of time and
remain constant for all queries, while our framework provides a mechanism for automatically
constructing (d). Thus, our system can be queried for explanations with no input required by the
user unless they wish to interact and submit follow-up queries.

7.2.4 Interactive Explanations
Because our system leverages an LLM to generate explanations, it facilitates follow-up interactions
that are conditioned on the preceding behavior representation and explanation. This is particularly
valuable when the agent policy is sub-optimal, and the agent’s actions are not aligned with the
user’s expectations. Two common types of interactions are clarification questions, e.g., “Why did
the agent not consider feature X when making its decision?”, and counterfactual questions, e.g.,
“What if feature Y were present instead of feature X?”.
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Why did the medic not consider the victim in room (2, 2)?

[Task Description]

Given an observation of the environment, the agent chooses
to look at a subset of features in order to make its decision,
which we denote as "Behavior Representation". Given this
subset of features that the agent looks at, provide a concise
explanation for why the agent chose to make the action that
it did. The agent may not be making optimal decisions, so
consider that possibility as you look at the Behavior
Representation the agent is looking at. If there is an
important piece of information in the observation but it is
not present in the Behavior Representation, it may
indicate that piece of information is not important to the
agent's current behavior.

[Examples]
Behavior Representation: [Representation]
Action taken by the Medic: [Action]

Explanation: The medic moves east to room (3, 3) because
room (3, 4) has not been explored, and most of the
surrounding rooms have been explored. Moving to (3, 3)
positions the medic closer to the unexplored room (3, 4).
This action suggests that the medic is prioritizing
exploration of unknown areas.

If room (2, 2) contains a victim but that information is not
in the Behavior Representation, it suggests the following:
The observation did not capture this vital information
for some reason.
The medic did not consider this information when
making its decision, which would imply a non-optimal
decision-making process on the part of the medic.

In either case, the absence of this information in the
Behavior Representation and the subsequent decision to
move elsewhere would indicate that saving the victim in
room (2, 2) was not part of the medic's decision criteria
at that time. This could be a flaw or limitation in the
decision-making algorithm of the medic.

Figure 7.2: Interactive Conversation: The user is asking more clarification questions about the
initial explanation generated by our method. The users are fluent English speakers and reside in
the United States. From the right side, the first prompt of providing information to the agent is
from the human researchers, and the second prompt of asking questions is an example question
asked by human participants. The teacher agent’s responses are from the left side.
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7.3 Experiments
We conduct a series of participant studies and empirical experiments in order to answer the
following questions:

• Does our approach generate plausible and useful explanations?
• Is the user interaction enabled by our approach helpful?
• Is our approach able to minimize hallucination?

We evaluate our task in a multi-agent Urban Search and Rescue (USAR) environment, imple-
mented as a 2D grid spanning 4 × 5 rooms in which each room can contain rubble, a victim,
or both (note that victims can be hidden under rubble). The goal of our two distinct agents, an
engineer, who can remove rubble, and a medic, who can heal victims, is to rescue all victims
scattered throughout the rooms. At each step, agents can take a navigation action to explore
previously unexplored rooms, move through them, or conduct their unique action of removing
rubble (engineer) or rescuing a victim (medic). All experiments utilizing an LLM use OpenAI’s
GPT-4 model with no additional fine-tuning [2].
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Figure 7.3: Participant preference when presented with two explanations and asked to choose
which is most helpful to understand agent behavior: Ours vs. Template (top) and Ours vs. Human
(bottom) over 320 responses.
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Figure 7.4: Frequency of selected features when explaining actions. Features highlighted in red
were part of the examples provided in the LLM’s prompt.

7.3.1 Does Our Approach Produce Useful Explanations?
We conduct an IRB-approved human-subject study with 32 participants in which we present ten
environment states and actions – 5 each for the medic and engineer – to each participant alongside
explanations generated by a) our proposed framework, b) an explanation generated via language
templates directly from the behavior representation, and c) a human-generated explanation. The
explanations are presented as two pairwise decisions and each participant is asked to choose which
explanation in each pair is most helpful in understanding the agent’s action. The subjects reside in
the United States and are fluent English speakers.

The results are shown in Fig. 7.3 from which we can draw two conclusions: participants
significantly (p < 0.05 with one-tailed binomial test) prefer the explanation generated by our
approach over the baseline generated from language templates; and participants do not prefer the
human-generated explanations over those generated by our approach. Analysis over the features
which are referenced in each of the explanations (Fig. 7.4) reveals that our explanations and the
human-generated explanations tend to emphasize the same features, while the template-generated
explanations often refer to features that may be less helpful, e.g., “not in room”. From these
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results we reason that our explanations are indeed useful to participants as they focus on helpful
features and are as naturally acceptable as human-generated advice.
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Figure 7.5: Helpfulness of interaction after presented with an explanation with respect to optimal
and sub-optimal policies across 20 responses.

7.3.2 Is User Interaction Helpful?
We conduct a follow-up IRB-approved human-subject study with 5 participants in which we
present 4 environment states, actions, and explanations generated by our framework and offer
the user to further interact with the LLM via a chat window. Participants were asked to indicate
whether they found the ability to interact helpful in understanding the agent’s action. The results
are shown in Fig. 7.5 and resulted in an interesting insight. When the agent’s policy was optimal
and the action aligned with the participant’s expectations, interactions were largely found as not
helpful; the initial explanation was sufficient for most participants. However, when the agent’s
policy was sub-optimal – which we achieved by creating a policy in which the agents explored
all rooms first before rescuing victims or removing rubble – the participants found the ability to
interact with the explanation and ask follow-up clarification questions helpful. An example of
such an interaction is shown in Fig. 7.2.
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Figure 7.6: Number of hallucinations that are factually wrong (left) or have incorrect assumptions
(right) across our samples.

7.3.3 Does Our Approach Decrease Hallucination?
In order to generate useful explanations, we wish to limit the amount of hallucination exhibited
in the LLM’s responses. We quantify the hallucination rate of our proposed approach over 30
generated explanations – 10 each from an optimal, sub-optimal, and “fixed” policy which exhibited
state-invariant behavior, i.e. always traveled north. We compared our explanations with those
generated by an LLM when the behavior representation was replaced by a list of state-action
pairs randomly sampled from the agent’s trajectories τ , and when the behavior representation
was removed entirely. The former represents the case that, rather than producing a compact
representation of the agent’s behavior, we simply provide direct examples of the behavior and let
the LLM reason over them. While seemingly intuitive, in practice this method does not work well
because only a limited number of examples – 5 in this case – are able to fit in the LLM’s context
window.

The results are shown in Fig. 7.6 from which we can see that our approach yields significantly
fewer numbers of hallucinations than either alternative. An interesting observation is that the
explanations generated without a behavior representation (No BR) actually produces fewer
factually wrong hallucinations than a behavior representation consisting of state-action samples
(BR (States)) for the “fixed” policy. We find that this is because, in the absence of a behavior
representation, the LLM tends to be more conservative in making claims and thus hallucinates
less, at the expense of producing less useful explanations.
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7.4 Conclusion
In this chapter we propose a model-agnostic framework for producing natural language explana-
tions for an agent’s behavior. Through construction of a behavior representation, we are able to
prompt an LLM to reason about agent behavior in a way that produces plausible and useful expla-
nations, enables a user to interact and issue follow-up queries, and results in a minimal number of
hallucinations, as measured through two participant studies and empirical experiments. Although
we think this is a promising direction, we emphasize that these results are also exploratory in
nature and represent first steps. For example, the methods apply when the observations of the
model are composed of meaningful features. For the pixel-level input, it does not seem to be able
to provide good explanations, however, maybe LLM can directly tell the explanations from the
image. We intend to follow up with more comprehensive studies and analysis in future work.
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Chapter 8

A Naive Finetuning Approach to Transfer
Prediction

So far we have presented our work on action advising, however, we would also like to introduce
two of our previous works in transfer learning, to provide a more comprehensive background and
motivations to demonstrate the advantages of approaches in action advising. In this chapter, we
delve into the application of transfer learning to enhance the capabilities of agents assisting in
urban search and rescue tasks. Understanding human actions and underlying beliefs is pivotal
for developing agents that can effectively navigate and make strategic decisions in varying and
complex environments. Traditional transfer learning, through direct model parameter transfer,
allows us to leverage pre-existing knowledge from a source environment to improve agent
performance in a novel, target environment. This method maintains core functionalities and adapts
to new contexts without the extensive data collection and training typically required for each
unique setting. We specifically examine the transition from a simpler, less varied environment
to one that is more intricate and diverse, focusing on navigation and victim triage strategy
adaptation. By utilizing a Transfer Learning Diffusion Convolutional Recurrent Neural Network
(TL-DCRNN) alongside attention-based LSTM networks, we aim to capture and transfer spatial
and strategic insights effectively, demonstrating the potential of transfer learning to expedite and
refine the learning process in critical, life-saving applications. This approach not only underscores
the adaptability and efficiency of transfer learning but also provides a comparative perspective
to action advising, illustrating a more conventional yet robust method for neural network-based
knowledge transfer [53].
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8.1 Background
In an urban search and rescue (USAR) task, human rescuers may navigate better and rescue
more victims with the help of an artificial agent that observes and predicts their navigation and
rescue activities, and opportunistically intervenes to give them assistance. Simple assistance
and guidance include reminding rescuers not to revisit an area already visited, how to efficiently
go to desired places, and whether they are likely to find victims that they would consider high
priority in saving. The utility of an agent’s advice to rescuers is dependent on the accuracy of
agent’s predictions of the rescuer’s intents; interventions based on incorrect predictions may be
misleading.

Behavior prediction in an USAR task is challenging due to various factors, including but not
limited to (a) incomplete information about where victims are, (b) changes in environmental and
victim conditions , and (c) difficulty to obtain in obtaining data on rescue missions performed by
humans. In a natural disaster scenario, such as after an earthquake, traversability of a building
may change due to holes opening in walls or debris blocking passages, requiring rescuers to
form ad-hoc navigation strategies during exploration. Rescuers also may be faced with decisions
regarding triage (providing essential medical care to victims) priority. For example, a rescuer may
decide to temporarily disregard lightly injured victims in order to search for and triage critical
victims first, triaging lightly injured victims later.

In USAR tasks, real data is expensive to obtain, and is usually associated with unique
configurations of the environment. This raises the question: how can an agent learn navigation
and victim triage prediction in USAR task that can efficiently generalize and transfer to more
complex environments and tasks? Representation and abstraction of spatial recognition in the
humans has been studied widely. The knowledge human navigation relies on primarily can be
primarily characterized by a labeled graph [27]. Instead of perceiving environments into a global
coordinate system, this cognitive map built from local information cannot guarantee geometric
consistency [155]. There is a general agreement that people have hierarchical representations of
space [24, 48, 64, 141], and this typically leads to the wrong answer to trick questions such as
“What direction is Reno from San Diego?” (Answer: Northwest). Many people know San Diego
is in California and Reno is in Nevada, and the spatial perception on state locations misleads
that on cities. Similar effects are found on a local scale where people cluster buildings and other
landmarks together into regions. Distances between locations within a cluster are judged to be
shorter than they actually are, while the distance between locations in different clusters are judged
to be longer.

Simulations of learning and question answering based on this hypothesized hierarchical
organization have been developed and analyzed in various works [121], [152], [99]. The goal
of this chapter is to develop transfer learning methods that provide zero- or few-shot transfer
for human navigation and triage strategies from a source domain to a more complex target
environment and task. In particular, we developed effective transfer learning techniques for
navigation prediction from a smaller to a larger indoor environment and for a larger number of
victim injury criticality classes. In this work, we used the 3D Minecraft platform [36, 74] as
a testbed. Both source and target environments represented building interior spaces. The two
environments had different room layouts, and we collected human rescuer navigation trajectories
while they performed the simulated USAR tasks. We augmented the trajectories collected from
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human participants with trajectories generated by rule-based simulated participants, in order to
introduce more diversity to the set of rescue strategies for training. Our method has demonstrated
several benefits of our approach: (1) the agent is able to make good predictions on the navigation
and triage strategy of rescuers, (2) its prediction accuracy grows fast even with a small input
number of trajectories, (3) the convergence time of training process is shortened significantly
in the target domain while not affecting the accuracy, and (4) the experiment demonstrates the
potential of transfer learning for USAR missions.

For the past decade, transfer learning has been studied extensively [114, 140, 142, 175, 176] .
It has been recently used in reinforcement learning, where multiple tasks are learnt instead of a
single one. Knowledge gained in some Markov Decision Processes can be leveraged to speed up
the solutions of others [11, 12, 13], In computer vision, Joint Distribution Adaptation is proposed
for robust transfer learning [93], which jointly adapts the marginal and conditional distribution.
Domain invariant features of the source and target are extracted for visual object recognition [10].
Transfer learning applied to graphs has recently gained attention. [34] proposes a network transfer
learning framework using the adversarial domain and graph convolution. Although training and
test data still require having the same feature space and distribution, new tasks that share similar
representations can be resolved easier in [85], and this work transfers the geometric information
from source to target. Graph-based domain mapping is used to identify previously encountered
games, and this provides a good starting place for learning [82]. With graph based skill acquisition,
[85] and [131] capture community detection from a connectivity graph, and speed up learning
using the transferred knowledge. The theoretical grounded framework for the transfer learning of
GNNs can be found in [174].

There are works on training an agent to navigate while adapting to new environments, including
[167] where knowledge is transferred from previous navigation tasks using a successor-feature-
based RL algorithm. In [107], the autonomous agent is trained to navigate in diverse city
environments, while performing transferred tasks of navigating in target new locations. We build
upon our previous work on the observing and predicting agent [71] by incorporating a graphical
representation of the environment, amenable to inference using graph embedded Recurrent Neural
Network models and transfer to new domains (i.e., environment layouts). We refer readers to [67]
[71] for the data collection process where rescuers are equipped with Minecraft skills.

Our approach to navigation prediction builds upon the Transfer Learning Diffusion Convolu-
tional Recurrent Neural Network (TL-DCRNN) architecture presented in [101] to infer participant
navigation, partitioning each domain’s map utilizing the concept of a “clique” in a graph (a set
of connected nodes) to form our clique group assignment for graph division. The original work
predicts on traffic flow based on the Diffusion Convolutional Recurrent Neural Network (DCRNN)
model proposed in [89]. It was able to predict the traffic flow of one city using the data collected
from another. In our work, instead of using the partition for cities [100], we partition the graph
based on the spatial recognition of the rescuers when performing the search task.
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8.2 METHODS
The transfer-learning agent we developed is able to predict the navigation and triage activities
of rescuers in the source task, using training data from human Minecraft players. The agent
divides the space using graph methods and utilizes the TL-DCRNN to predict navigation when
the rescuers search for victims; it also uses LSTM to predict triage strategies when the rescuers
found victims and made decisions. In this work, we transfer the prediction model which is trained
with the old scenarios, to predict the navigation and rescue activities of human rescuers in an
unobserved situation. The implementation code has been released.1

8.2.1 USAR Domains
To train agents and evaluate the ability of agents to transfer to new domains, multiple USAR task
domains were developed using two distinct building layouts (shown in Figure 8.1, and Figure 8.2):
a smaller map with fewer rooms (referred to as Sparky), and a larger, more complex map (referred
to as Falcon). For each domain, victims were placed in specific locations of the environment,
and the environment was perturbed with blockage and holes on the walls, which are not initially
known to rescuers, but are encountered as rescuers navigate the environment. Blockages in the
hallways and rooms might make certain paths in the map impassable, while holes on the walls
opened other possibilities for navigation. For prediction of rescuer navigation, a total of four
task domains were created by varying the location of victims and perturbations: a single variant
of the Sparky map, and three variants of the Falcon map of increasing difficulty (Falcon-easy,
Falcon-medium, Falcon-hard), shown in Figure 8.3.

For prediction of rescuer triage strategy, we created two domains using the Falcon environment.
The first domain, Falcon-2victim, contains victims of two severity levels, which are common to
all domains: regular victims require 7 seconds to triage, and critical victims require 15 seconds to
triage, and will expire 5 minutes after the start of the mission. The second domain, Falcon-3victim,
introduces an additional victim severity level, medium victims, which require 12 seconds to triage
and will expire 7 minutes into the mission.

The USAR mission required a human player/rescuer to work in an indoor environment in a
limited time where victims were scattered. The rescuer is equipped with a medical kit which
enabled them to triage victims in a few seconds. A device that beeps to report if one or more live
victims were inside a room was utilized, however the human participant may or may not have
understood the significance of the beeping. Knowledge of the beeping was a condition that was
varied in different trials, i.e. in some conditions the participant was told the meaning of the beep
at the beginning of the experiment, whereas in other conditions, the participant may not have been
given this information.

1https://github.com/sophieyueguo/tl_navi
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Figure 8.1: Sparky

Figure 8.2: Falcon
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Figure 8.3: Map of the three versions of Falcon: easy, medium, and hard collected in [67]. Grey
indicates walls, Magenta indicates blockages, and Cyan is for openings.

8.2.2 Agent Observations
The agent observes a stream of information containing the following values from the rescuer’s
trajectory:

• Rescuer State: The position and orientation of the rescuer in the environment,
• Field of View Contents: Blocks of interest (e.g., victims) that are present in the rescuer’s

field of view,
• Victim Interaction Events: Including starting, completing, and abandoning triage at-

tempts,
• Environment Interaction Events: Including opening or closing doors, and entering or

exiting rooms,
• Victim Location Device: Emitted beep when the rescuer is near a room containing an

untriaged victim.

The Rescuer State and Field of View Contents update at a rate of 10Hz, all other observations
are asynchronous events.

107



Figure 8.4: The Architecture of the Navigation Prediction Process

8.2.3 Navigation Prediction
The navigation prediction task involves the agent predicting the next room a test (unknown)
human will enter next, predicted at particular time intervals. The humans are players familiar
with the Minecraft games, and are recruited to play the simulated search and rescue mission in
Minecraft. Figure 8.4 illustrates the main components / processes of our architecture (blue blocks)
and data flow between the components (grey blocks). In addition to the agent’s observation stream
listed above, the agent is provided with a map of the environment and victim and environmental
perturbations (e.g., debris blockages and openings in walls), from which it generates a graph-
based representation of the environment. The agent updates the representation based on victims
and environment perturbations observed by the rescuer in the agent’s data stream. Features are
extracted from the graph-based representation, and a TL-DCRNN model is used to forecast future
features, from which room visitation predictions can be made.

Graph Representation

The original map of the environment is converted into an abstract connectivity graph, G = {V,E},
where each v ∈ V represents a predefined, semantically meaningful region (room, a segment of
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hallway, or intersections), and e(v1, v2) ∈ E indicates connectivity between the regions v1 and v2
in the following way. Each (x, y, z) location in the original map is manually assigned to a region;
environment perturbations result in edges either being added (in the case of a wall opening) or
removed (in the case of rubble blockage).

Spatial Recognition Clique Group Subgraph Assignment

Given the connectivity graph G = {V,E}, the sub-graph list {Gc} is referred to as “clique
group”. A clique is defined as a set of rooms with a door adjacent to a common hallway segment.
Formally, for a hallway segment, vh ∈ V , the clique associated with the segment is defined as
Gh
c ≜ {vi|(vi, vh) ∈ E; vi not a hallway segment}. Hallway segment boundaries are defined by

walls or perturbations blocking passage, as well as intersections with other perpendicular hallway
segments (i.e., T-intersections and corners). Clique groups are the hallway clique unions that
share elements, defined as Gc ≜ {Gh1

c ∪Gh2
c |Gh1

c ∩Gh2
c ̸= }. We hypothesize that rescuers are

likely to explore all rooms within a clique, and navigate to an adjacent, unexplored clique once
the current clique has been fully explored.

Real-time Graph Feature Generation

Graph features are computed whenever the rescuer enters a new vertex in the graph representation
of the map (i.e., enters a new room or hallway segment). Graph features are calculated using a
history of the previous T vertices the rescuer occupied. A single graph feature at time t is a vector
denoted as ft ∈ Rk, where k is the number of vertices in the connectivity graph. Each element
in the feature vector is defined as f (i)

t = γ(t−ti), where ti is the most recent time step when the
rescuer was located in vi. In essence, the feature vector captures the region the rescuer currently
occupies (indicated with a value of 1 at the index of the region), and the recent history of the
rescuer’s trajectory (indicated by values less than 1 in the feature vector, where elements with
larger values correspond to more recently visited regions).

TL-DCRNN Navigation Prediction

The future sequence of rooms visited by the rescuer is predicted using a TL-DCRNN model.
The model takes as input as sequence of graph features, Ft = {ft−T+1, ft−T+2...ft}, and the sub-
graph list {Gc}, and predicts the future sequence of graph features, F output

t = {ft+1, ft+2...ft+T}.
The TL-DCRNN model learns as set of filter weights, WO and WI , which intuitively rep-
resent the likelihood of the next room visited by the rescuer (outflow), and the likelihood of
the room previously visited (inflow). After partitioning the graph, the sub-graph features are
passed to a Recurrent Neural Network (RNN), which outputs the series of predicted graph
features. Graph features are calculated using a diffusion process defined by the equation
WGF =

∑K−1
d=0 (WO(D

−1
O A)d+WI(D

−1
I A)d)F [101]. Here, K refers to the maximum number

of steps taken for diffusion, A is the adjacency matrix of the graph, DO and DI are in-degree
and out-degree diagonal matrices of graph nodes, thus D−1

O A and D−1
I A are transition matrices

which indicate the flow, or transition frequency between regions. The predicted sequence of rooms
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visited by the rescuer can be extracted from the index of the maximum value of the predicted
feature vectors at each time step.
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8.2.4 Triage Strategy Prediction
In the triage task, the agent predicts over time the next victim type the human rescuer will triage.
We hypothesize that a rescuer’s triage strategy is agnostic to the location of the victim, and only
depends on the reward that a rescuer gets in triaging a victim of a particular severity class of
injuries.

Triage Strategy

We formulate the triage strategy prediction as a classification problem, using a sequence of Field
of View observations (specifically, the location and severity of victims within the rescuer’s Field
of View) and observation timestamp as input.

Based on the set of victim severity levels, we identify four categories of strategies a rescuer
can employ for triaging victims:

1. Strict: Rescuer exclusively triages critical victims during the first 5 minutes, medium
victims from 5–7 minutes and regular victims from 7–10 minutes. In the Falcon-2victim
domain, the rescuer following this strategy will triage regular victims from 5–10 minutes.

2. Slack: Rescuer triages critical and medium victims as they are discovered during the first 7
minutes, then triage regular from 7–10 minutes.

3. Preemptive: Rescuer triages victims as discovered regardless of victim severity.

4. Probabilistic: Rescuer triages a discovered victim only if the expected number of victims
that can be triaged in the remaining time is less than the number of victims remaining in the
environment. The rescuer is made aware of the total number of victims from each severity
class, and can therefore calculate both the expected and remaining number of victims.

Attention based LSTM

We use a sinusoidal embedding for the position of the victims and the timestamp, following the
works of [150]. At every timestep, we collect the list of victims, and use a common feedforward
network Eψ to convert the information into embeddings. To consider the case of no victims,
we also include a “dummy” victim embedding at each timestep. Let there be Nt victims at
time t. Each victim is depicted by a tuple of severity level, r, and (x, y) locations i.e. vti =
(rti , x

t
i, y

t
i), i ∈ {1 . . . Nt}. This representation is fed into the feedforward network to get the

victim embedding ei = Eψ(vi). The embeddings are given by {ei}
∣∣∣Nt

i=1
∪ {e0} where e0 is the

learned dummy victim embedding. This set of embeddings is passed into a self-attention network
Aθ where θ are the learnable parameters, giving us modified embeddings {fi}Nt

i=0 = Aθ

(
{ei}Nt

i=0

)
.

Next, we take the average of these embeddings as the “summary” vector that goes into the LSTM,

st =
∑Nt

i=0 fi
Nt+1

. This architecture allows us to account for variable number of victims at each timestep
without making the architecture task specific. This vector is used as input to the LSTM. The final
triage strategy prediction yt is given by the LSTM equation yt = softmax(gϕ(ht)), ht, ct =
LSTM(st, ht−1, ct−1), where ht, ct are the hidden and context state of the LSTM, and gϕ is a
feedforward network.
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8.3 EXPERIMENTS
We performed a series of experiments to evaluate the agent’s ability transfer prediction models
trained on a source domain to a target domain in the USAR domains described in Section 8.2.1.
To train and evaluate the networks, we used a previously collected set of trajectories generated by
human participants on the Falcon map variants [67], and collected trajectories generated by human
participants on the Sparky map. In each experimental run, a single human participant navigated a
given map and triaged victims, accumulating score points for each triaged victim. Score point
were allocated in ascending order on seriousness of injury. Each participant was assigned to only
one map or map variant, in the experiment. In other words no participant repeated the experiment
in two or more maps.

For navigation strategy prediction, there were 8 trajectories of map Sparky for training, 138
trajectories of map Falcon for training, and 33 trajectories of map Falcon for test. Trajectories
of different map Falcon perturbations were considered as different trials. For triage strategy
prediction, we used a rule-based agent conditioned on rescue strategy to generate trajectories in
the Falcon map. For domains for triage prediction (Falcon-2victim, Falcon-3vicim), we generated
100 trajectories for each triage strategy, resulting in a total of 300 trajectories for the Falcon-
2victim domain and 400 trajectories for the Falcon-3victim domain. To introduce variation in the
trajectories, we introduced perturbations in victim locations by making the victims do a “random
walk” around their starting locations. Victim severity levels were also randomized.

From each rescue strategy, we used up to 70 trajectories for training, 10 for validation, and
20 for testing. Evaluating the transferability of the prediction models to new domains involves
pre-training a model on trajectories from a source domain (e.g., Falcon-easy), and evaluating the
performance of the model on predicting trajectories from a target domain (e.g., Falcon-hard) after
performing additional training on trajectories from the target domain. Note that the trajectories in
different domains other than the domain where network is trained with are considered “new” data
by the network.

8.3.1 Evaluation Metrics
For evaluating navigation prediction, we used Mean Average Error (MAE) [89] and [101],

MAE(f , f̂) =
1

|Ω|
∑
i∈Ω

|fi − f̂i|

where the ground truth is represented by f = f1, f2...fT , the predictions are represented by
f̂ = f̂1, f̂2...f̂T , and Ω referred to the observed samples. For triage strategy prediction, we used the
mean accuracy over time (MAT) as our final evaluation metric. In the initial stages, the prediction
can be random due to lack of rescuer’s behavior data around the victims. Therefore, the average
is taken only after one minute. Given a sequence of observations O and the ground truth rescue
strategy c, the metric is given by:

MAT(O, c) =
1

|O|
∑
t

I(yt = c)
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where yt is the predicted strategy at timestep t. c is one of the four classes mentioned in Section
8.2.4.
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8.3.2 Navigation Prediction with Transfer Learning
With the transfer learning experiments, we aim to answer the following questions regarding
the navigation prediction model: (1) How effective/accurate is a model in the test domain that
has learned to predict with a certain accuracy in the source domain? Does it achieve zero-shot
learning? (2) How does the performance of the model in the source domain compared with a
model that has been trained from scratch in the target domain? (3) How does the time required to
train a source model and refine in the target domain with few-shot learning compare with the time
to train a model in the target domain from scratch? (4) How does the number of input trajectories
affect performance? (5) How do maps with different room configurations, vs the same map with
different perturbations affect the transfer learning process? (6) Does the abstraction level of graph
affect performance?

Baselines

We compare our mechanism with a Rule-based Navigation Prediction and a traditional time-series
prediction method Autoregressive Integrated Moving Average (ARIMA) Model.
Rule-Based Model. The rule-based agent could make two levels of prediction on the rescuer’s
navigation behavior: (1) the next clique group, and (2) the next room(s). The rule-based prediction
was dependent on the knowledge condition of rescuers, i.e. if they knew about what beeping
meant, how long triaging victims would take, and how much reward they would get after finishing
triaging the victims. Generally the prediction accuracy was higher for rescuers who had the
knowledge of the beep. The rule-based method considers the following to predict next room(s):

• The current location of the rescuer
• The rooms not visited in the current clique group
• Whether the rescuer knows about beep
• Whether seriously injured victims are dead
• The rooms connected to the current location with a hole/internal door
The factors to predict next clique group:
• The current clique group:
• Whether seriously injured victims are dead
• Whether rooms in the current clique group have victims
• Whether there is a new clique group nearby

ARIMA Model. Autoregressive integrated moving average (ARIMA) was widely used [149] to
perform time series prediction. One of its important variation models is Seasonal Autoregressive
Integrated Moving Average with eXogenous variables (SARIMAX) [91], which includes a
seasonal pattern in the prediction for short-term forecasting. By indexing the active regions and
concatenating trajectories of different rescuers, we are able to observe a “seasonal” pattern, where
different rescuers might visit same locations in a similar order. This enabled us to implement
SARIMAX as a baseline. However, this extended ARIMA model does not take a graph structure
of the map into consideration, and cannot be trained with data from other maps or perturbations.
It only took in the training trajectories of the target map and perturbations.
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Figure 8.5: Transfer from Map Sparky to Map Falcon

Figure 8.6: Transfer from Map Sparky to Map Falcon

From Sparky to Falcon

We compared the accuracy of the pre-trained model with fine-tuning Sparky trajectories (in
blue), i.e. adding Falcon trajectories to the Sparky pre-trained model and the accuracy of the
model trained on Falcon from scratch (in red) in Fig. (8.5) and (8.6). We gradually added a
few training and validation trajectories of the Falcon domains (Falcon-easy, Falcon-medium,
Falcon-hard) to the Sparky model (ranging from 1 to 10 incrementally, distinguished by different
map perturbations respectively and took the average). We had the following observations on the
converged accuracy and the training process: (a) TL-DCRNN outperformed ARIMA (in green)
and the rule-based (in brown) baselines. (b) With increasing number of train/val trajectories, the
accuracy after convergence of all models slightly improved with respect to varying the number of
input Falcon trajectories. (c) TL-DCRNN with fine-tuning and TL-DCRNN trained from scratch
have similar converged accuracy, but the one with fine-tuning converged faster.
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Figure 8.7: Transfer from Map Falcon Med to Map Falcon Hard and Easy

Figure 8.8: Transfer from Map Falcon Med to Map Falcon Hard and Easy

From Falcon-med to Falcon-hard and Falcon-easy

When using the trajectories of Falcon domains with different perturbation and victim densities
instead of using the ones of Sparky domain, we obtained the results in Fig. (8.7) and (8.8). All
the conclusions reported previously still held, and there was no significant difference in terms of
accuracy after convergence or training process. This indicated that the data from the same map
but with different perturbations was not necessarily more helpful than data from a different map.
With perturbations, the navigation behavior can be as different as from another map.
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Figure 8.9: Transfer from Map Falcon to Map Sparky

Figure 8.10: Transfer from Map Falcon to Map Sparky

From Falcon to Sparky

We reversed the process to transfer from the Sparky domain to the Falcon domain in Fig. (8.9)
and (8.10). The Sparky map was relatively easier for TL-DCRNN to learn from and resulted in
a higher accuracy than the previous comparison, while ARIMA was not able to improve. The
TL-DCRNN also converged faster.
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Figure 8.11: Compare with Lower Level abstraction

Figure 8.12: Compare with Lower Level abstraction

Comparison with Grid-Based Representation

We compared the graph-based representation prediction with predictions made using a grid
representation of the map in Fig. (8.11) and (8.12). In the grid representation, each 3 cell by 3 cell
region was considered as a graph node; edges connected adjacent node. The state space was 12.5
times larger. The denser graph led to a higher accuracy after convergence when transferring from
Sparky domain to Falcon-easy domain. However, the run-time to convergence increased.
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Figure 8.13: Transfer learning on triage strategy prediction

8.3.3 Triage Strategy Prediction with Transfer Learning
In this section, we compare the performance of the model trained on the harder Falcon-3victim
domain from scratch, and transferring a model pre-trained on the easier Falcon-2victim source
domain, and finetuning on few trajectories from the Falcon-3victim target domain, reducing the
required training data and time. We therefore perform the following experiments:

1. Models trained on the Falcon-3victim domain from scratch, i.e. without finetuning, with a
varying number of training trajectories.

2. Models pre-trained on the Falcon-2victim domain as a source domain with maximum
number of training trajectories, and transferring the model to the Falcon-3victim as the
target domain by finetuning with varying number of target-domain trajectories.

The results are shown in Figure 8.13. The dotted plot shows the test accuracy with 70 training
trajectories in the Falcon-2victim domain. We train with 1, 2, 5, 10, 20 and 50 training trajectories
from each strategy. Finetuning improves generalization performance even given a small number,
such as 2, of finetuning trajectories from target Falcon-3victim. In our case, the source task does not
contain information about the target task at all (for example, no Falcon-2victim trajectory contains
information about medium severity victims), so the finetuning indeed improves generalization.
Moreover, using even as few as 30 trajectories for finetuning the Falcon-2victim source model
reaches the performance of the Falcon-3victim model trained from scratch with all trajectories
(green constant line in the figure) and for more than 30 finetuning trajectories, it outperforms the
Falcon-3victim model.
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8.4 Conclusion
We have built an agent that makes predictions on the navigation and rescue strategies of a human
rescuers in a simulated urban search and rescue mission. We showed experimentally that: (a) using
an abstract representation, i.e graphs enables efficient navigation strategy transfer from source to
target domains from smaller to large maps with different victim and perturbation configurations;
(b) for triage strategy, training a source model with smaller number of victim classes and adding a
few finetuning trajectories form the target domain with larger number of triage victim classes, is
not only high performing and efficient, but surprisingly outperforms a model trained from scratch
in the target domain, while also converging faster. This is an interesting finding and we will
explore it further in additional domains in future work. We also plan to study transfer with a team
of rescuers instead of a single one. This is a very challenging task, not only because of the increase
in the number of humans but also because of the inter-dependency of rescuer policies since they
coordinate as a team. In this work, humans are not advised or received explanations for the advice,
however, we have built a teacher that is strong in predicting the next steps of humans. This paved
the way for our major work on action advising policy transfer. Throughout experiencing transfer
learning with few-short learning, we also developed interest in a more robust approach to transfer
policy.
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Chapter 9

An Automatic Parameter Selection Method
for Network-based Transfer

Transitioning from the previous chapter, where we explored the direct transfer of model parameters
in urban search and rescue scenarios, we now turn our attention to a domain where the implications
of transfer learning are further nuanced by the need for selective parameter adaptation. While the
direct parameter transfer offers a straightforward method of applying learned knowledge to new
contexts, it often lacks the granularity necessary to understand and control the transfer effects fully.
This becomes particularly critical in fields where the direct application of learned models can
result in unpredictable, and sometimes non-explainable, outcomes due to the complex interplay of
domain-specific variables.

In the forthcoming chapter, we address these challenges within the context of self-driving
technology. Here, the necessity for domain-specific training and the high stakes associated
with accurate prediction models underscore the importance of a meticulous approach to transfer
learning. The chapter introduces a sophisticated method of transfer learning in self-driving
vehicles, highlighting the development of an "Automatic Transfer Selector via Reinforcement
Learning." This technique represents a significant advancement in the field, focusing on the
selective transfer of parameters that are most relevant and beneficial to the task at hand, thereby
optimizing the efficiency and efficacy of the transfer process. Unlike the broader strokes of direct
parameter transfer, this method provides a more targeted and thoughtful approach to adapting
pre-existing knowledge to new scenarios, reducing the reliance on extensive manual testing and
adaptation. By leveraging reinforcement learning, this approach not only enhances the precision
of parameter selection but also showcases the versatility and potential of reinforcement learning
in crafting nuanced, application-specific transfer learning strategies [55].
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9.1 Background
The prediction module in autonomous vehicles (AVs) plays a pivotal role, as it enables these AVs
to anticipate the intentions of surrounding vehicles. Data gathered from perception devices is
processed by this module, which typically uses a neural network to generate a label or trajectory
that represents these intentions. The accuracy of this prediction is undoubtedly critical to the AV’s
ability to understand the environment, and serves as a prerequisite of making autonomous and
correct decisions. One of the key challenges in the prediction module is the heavy reliance of
prediction models on domain-specific data sets. Self-driving companies operate across various
markets, each characterized by unique data domains influenced by differing traffic regulations,
driving cultures, and geographical characteristics.

However, the opaque nature of neural network models makes it difficult to identify which
factors specifically influence the models. Moreover, slight variations in data can significantly alter
the parameters of these models. Training domain-specific models is economically burdensome but
necessary for self-driving companies to ensure accuracy across different markets. Additionally, in
some markets, data collection may be constrained by legal, financial, and resource-related factors,
leading to data inefficiency and increasing the difficulty to develop a model specifically for this
domain. Thus, a crucial focus in improving the prediction module is to optimize the utilization
of existing prediction models. This means if a model can effectively generalize its predictions,
successful knowledge transfer could significantly reduce the development costs associated with
prediction models. However, this transfer process is complex, as models developed for specific
markets are not easily transferrable due to domain specifications.

The rapid advancement of transfer learning may provide solutions to the challenges of domain-
specific models. Traditional transfer learning techniques, which reuse models trained on sufficient
data from a specific source domain, can reduce biases in domain features and statistics, even when
the model is applied to another target domain with only a smaller and potentially less representative
dataset available. At first glance, these advancements seem to solve the aforementioned problems.
However, a significant roadblock arises in domain adaptation tasks: these methods typically
require access to both source and target data domains, and the quantity of this data must be enough
to ensure representability. This is because traditional transfer learning studies domain adaptation
and domain generation, with the assumption that a classifier working well in the source dataset
may also function in the target dataset. This is achieved by examining the domain differences
between the two datasets or generalizing from the source dataset. Work in deep transfer learning
specifically focuses on classifiers that are deep neural networks, but these, too, usually require
that both source and target datasets be accessible. Generating and accessing both datasets can be
expensive, and legal regulations can complicate the transfer of data across different markets. For
instance, data protected in one country might not be usable in another, or due to strict regulations,
no data could be exported at all. Consequently, these factors demonstrate that traditional transfer
learning may not fully address the challenge of domain specificity.

A promising subfield of transfer learning, referred to as network-based transfer, provides a
solution to the problem of inaccessible datasets. The basis of this approach lies in the inherent
structure of neural networks, which extract different levels of features. For instance, generic
features can be transferred between domains by replicating high-level parameters of certain
networks. Moreover, given a small amount of data in the target domain, these networks can be
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fine-tuned to exceed the performance achieved by training on the target dataset from scratch.
Network-based transfer eliminates the need for direct access to the source dataset or for comparing
datasets, as the essential knowledge is already encoded within the network after training, and can
be transferred to the new domain.

However, network-based transfer does have two major limitations. (1) Pretraining with specific
features from the source domain can sometimes be misleading, resulting in performance that is
even worse than training from scratch. The success of transfer largely depends on the similarity
between the source and target datasets, and there’s no practical way to ensure this similarity,
nor do technicians know how they can identify potentially harmful features. (2) The issue of
parameter selection emerges when only a few parameters are meaningful for transfer, especially
in the context of deep networks. Manually searching for the optimal combination of parameters to
transfer can be extremely time-consuming. Thus, developing an automatic parameter selector is
crucial to optimize network-based transfer, in order to improve efficiency and facilitate a positive
transfer.

In this chapter, an innovative approach is proposed to enhance network-based transfer, specifi-
cally for prediction in autonomous vehicles across international markets. The Automatic Transfer
Selector via Reinforcement Learning (ATSRL) is introduced, utilizing a reinforcement learning
(RL) agent to automatically select the portions of the network that should be transferred. This
technique significantly enhances the efficiency of parameter selection for transfer prediction,
providing a solution to the labor-intensive task of manually testing each parameter combination or
enduring lengthy training periods to evaluate the impact of prediction transfer. To be more specific,
a teacher neural network trained on inaccessible source data is used as the starting point, and a set
of student networks that pre-load various parameter units from the teacher network is provided.
The RL agent treats its current student selection as its state, the next student selection as its action,
and a statistical score of a small batch of data on which the student network is trained as its
reward. By treating the selection process as an RL problem, the transfer procedure is accelerated,
since the most promising students are prioritized. The experimental setup involves the application
of ATSRL to a temporal convolutional neural network, with the teacher’s training performed
on sufficient China data and transferred to the student’s training on one month’s US data, with
the focus on specific driving scenarios. The results demonstrate significant improvement in the
prediction transfer process.

In summary, this chapter makes the following key contributions:
1. Reinforcement learning (RL) is leveraged to establish an efficient and safe transfer mech-

anism for domain-specific prediction models in self-driving vehicles. The method is
model-agnostic, implying it can be applied to any specific prediction model.

2. The proposed method is not hindered by the need to collect data from various domains;
instead, it requires only the parameters of the prediction model trained with the source data.
This approach enables model training even with a limited amount of self-driving data in a
new market, and most importantly, the transfer procedure is both fast and safe.

3. Experiments have been conducted using a temporal convolutional neural network, an
advanced model widely used in the industry. The effectiveness of the proposed method is
empirically demonstrated.

A highly regarded survey paper suggests four categories of modern transfer learning: instance-
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based, mapping-based, network-based and adversarial-based [140]. Instance-based methods posit
that partial instances from the source domain can be leveraged in the target domain by weight
adjustment. For example, some researchers utilize AdaBoost-based technology to adjust weights of
source domain instances, filtering out ones dissimilar to the target domain for classification [161].
This line of work has seen improvements in extensions to regression problems [58], faster
algorithms [161], and more advanced metric frameworks [159]. However, it assumes access to
source instances, which may not be possible when legal regulations within a market-protected
self-driving data.

Similar issues arise with mapping-based methods, which rely on establishing a mapping
relationship from source to target domains to a new data space with better similarity. Traditional
works have applied transfer component analysis [115, 166], which has been extended to deep
neural networks to develop an adaptation module [95]. However, difficulties arise when the
prerequisite of statistically measuring both source and target datasets is hampered by restricted
access to the source dataset. The unclear legal status of sharing source data statistics can place
burden on technicians collaborating across markets, both in terms of cost and manpower.

Contrastingly, neither network-based nor adversarial-based approaches are concerned with
the inaccessibility to the source dataset. The aim of both is to identify transferable components
within networks. Adversarial-based approaches rely on an adversarial layer, inspired by generative
adversarial nets (GAN) [49] to identify transfer components, an advancement from basic network-
based approaches. However, adversarial-based approaches [44, 148], which incorporate an
adversarial layer into the prediction network, substantially modify the structure of the prediction
networks. Despite increasing interest, most of the experiments have been conducted using basic
CNN networks [147].

This chapter proposes a method that falls into the network-based transfer category. A key
challenge in this category is identifying which components are transferable. For network-based
deep transfer learning, certain pre-trained network parameters from the source domain may be
reused in the target domain to improve the performance. It is important to note that while some
network modules are transferable, others may obstruct transferability [163]. This seminal work
has motivated numerous researchers to explore the idea of transferring parts of the network, as
opposed to traditional data-centric approaches. This strategy has been proven effective across
various areas and is widely employed. This demonstrates neural networks are excellent feature
extractors for clustering algorithms, even though the data domains may be irrelevant. Different
layers extract different data representations, and researchers have used front layers to compute
intermediate image representation across various datasets [112], presenting the success of finding
generic features of the images. Certainly, not all network-based approaches eliminate the need
for direct source data access. In some works, adaptive classifiers and transferable features
are jointly learnt for both source and target datasets [94], or domain adaptation commonly
employed in traditional transfer learning is utilized [173]. Despite the diverse methods offered by
network-based approaches given the advancements in modern neural networks, and their ability to
greatly reduce the need for source data access, these approaches come with their own limitations.
Primarily, there is no systematic method to determine which network parts are beneficial for
transfer. Using the basic method outlined in [163], it is extremely time-consuming to find
transferable network parameters. Moreover, preventing a non-transferable part from hindering the
prediction is not straightforward. A great amount of research work focuses on avoiding “negative
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transfer”, which involves the transfer of inapplicable modules [168]. The proposed method in this
chapter builds an automatic selector to ensure the efficient and positive transfer of the network.

A few works have considered automating the process of transfer. For example, there is an
overlap between a subfield of meta-learning and network-based transfer learning, wherein the
parameters of the network in the source domain may be used to improve the initialization of the
one in the target domain. Works in meta-learning aim to learn optimal parameters for networks,
with a subset considering reusing parameters from a source domain [68]. Few-shot learning is
motivated by the idea of training using only a handful of samples from the target domain, but this
approach is model-specific [122]. Model-Agnostic Meta-Learning (MAML) shares the closest
motivation to the approach proposed in this chapter within the framework of meta learning, where
researchers aim to identify parameters that are most sensitive to task changes and can largely
improve the loss [40]. However, MAML makes the assumption that loading all parameters
directly as an initialization is beneficial for the target task, and that the most promising parameters
should be primarily improved. This approach doesn’t fully address the potential for negative
transfer that can occur when all parameters are copied and used as initial points. Moreover,
more complex and dissimilar datasets may present greater challenges for transfer, as discussed in
[23]. The experiments detailed in the renowned paper are simplistic, either focusing on object
detection or Mojoco robotics, and may be impractical for real-world scenarios such as self-driving
prediction data across different markets. In addition to MAML, a pairwise comparison inspired by
meta-learning has been designed to determine what and where to transfer [72]. This involves using
a meta-network to learn mappings and weights accordingly for transferable layers. This approach,
more robust than MAML, no longer assumes that all parameters are beneficially initialized but
instead attempts to select the good ones. However, this method still requires learning the results
of all combinations of parameters, leading to an inefficient procedure. In contrast, the method
proposed in this chapter doesn’t alter the loss or experiment with all combinations of parameters to
test transferrability. Instead, it judges which parts of the network would be beneficial for transfer
by assigning a small score, and then proceeds with the promising candidates. This approach is
safer and more efficient for transfer for real-world dataset for self-driving prediction.

Other distinct approaches to transfer learning exist. To name a few, unsupervised learning and
fine-tuning of transferable base knowledge are enabled through multi-scale convolutional sparse
coding [25]. Furthermore, RL algorithms have been utilized in the design of neural networks [9],
where a learning agent explores architectures to enhance performance. However, the method
proposed in this chapter, while echoing the idea of RL in architecture design, distinguishes itself
as the first to employ RL in selecting transferable parameters specifically for complex, real-world
datasets, such as self-driving data, in a safe and efficient manner.
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Figure 9.1: A visualization of the procedure.

9.2 Methods
A high-level overview of our proposed method, Automatic Transfer Selector via Reinforcement
Learning (ATSRL) is shown in Figure 9.1. The first block provides a visualization of the
initialization process, the recurring second and third blocks represent the core procedure for
selecting which models to train, and the final block concludes the procedure by inputting the test
data into the various trained model candidates.
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Initialization We assume there is a Teacher Neural Network NT trained from a dataset that is
no longer accessible in the current environment due to legal constraints or technical limitations.
However, the features and the network structures are known. Thus we initialize n student neural
networks identical to the teacher’s, where n is the number of parameter units that we apply freezing
or pretrain-finetuning to. These parameter units can be a single neuron, a layer, or multiple layers
of parameters appropriate for the specific structure of the network. For each student NSi, we copy
the parameter units from 0 to i from the teacher NT .

Select a Student We model the student selection process as an RL problem. We use the
following MDP definitions to represent the RL selector agent:

1. S: The current student NSi being trained

2. A: {i+ 1 or i− 1}

3. R: f1 score of NSi given a batch of Train Data Dt

4. T : Prob(s′|s = NSi, a = i± 1)

5. γ: 1.0
Our RL selector agent treats the selection process as an RL mission. Each state s ∈ S represents
the current student being selected for training. A value (V or Q, depending on the implemented
RL algorithm) provides the estimated cumulative reward the state can achieve. Given the updated
value table, the selector agent chooses an action a ∈ A that decides what should be the next state,
i.e. the next student to be trained. The next student is either the proceeding or the succeeding
student with respect to the current student, depending on ±1. The reward is the f1 score the
student receives from training a batch of data from the train datasetD(the tth batch). The transition
function is set to be deterministic, and the decay rate is 1.0, i.e. a decay over longer episodes is
not considered because it does not affect the outcome.

Update a Student After the selector agent enters the current state, i.e. selects which student
NSi, the student NN is updated. For example, in the third block of Figure 9.1, student 2 is selected.
It is given a small batch of training and validation data from the entire training dataset. The
network of student 2 could either freeze the first 2 parameter units or apply pretrain-finetuning to
them. Regardless, the remaining parameter units are updated, and thus, with the f1 score (or other
meaningful statistics), the selector agent also updates the corresponding value of student 2. Then
the selector agent repeats the process to find the next student to train.

Test all Students After the RL selector agent has completed the training for each of the
student networks, all the students are tested with the testing data. The best model among all the
candidates is then selected as the final output student model.

Complexity Analysis The time complexity of the ATSRL method can be mainly attributed
to the number of student networks and the training process for each of these networks. In the
worst-case scenario, if we consider each student network to be trained independently, the time
complexity is proportional to O(n × T ), where n is the number of student networks, and T
is the time required to train each network. However, the actual runtime could be considerably
less, as the process of training student networks may be optimized by transfer learning from the
teacher network and from each other, and only the most promising student is trained fully with
partial training data. The space complexity, on the other hand, depends on the number of student
networks and the size of each network, and can be approximated as O(n×M), where M is the
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memory requirement for each network.
f1 Score Briefing The f1 score is a crucial statistic in binary classifications, representing a

balance between precision (the ratio of true positives to all predicted positives) and recall (the ratio
of true positives to all actual positives). Calculated as the harmonic mean of precision and recall,
the f1 score ranges from 0 to 1, with 1 indicating perfect precision and recall, and 0 showing a
total absence of either. Though other statistics can be considered as needed, depending on the
characteristics of the data, the f1 score is most widely utilized in real-world datasets.

Algorithm 9 Automatic Transfer Selector via Reinforcement Learning (ATSRL)

Input: Train Data D = {D1, D2...Dm} where m is the number of fold D is split, Teacher NN
NT
Initialize V (si) or Q(si, a), st0, f1_best, Student NN NSi, i ∈ {1, 2...n}

▷ with 1, 2...i parameter units copied from NT to NSi
(optional) lock 1, 2...i parameter units of NSi
while Dt ̸= ϕ do

Dt ← Dj ∈ D
f1 ← Train(NSt, Dt)
Update (Q(st), f1)
if f1 > f1_best then

save NSt
end if
at ← maxaQ(st, a)
st+1 ← T (st, at)

end while

The pesudocode is presented more formally in Algorithm 9. The algorithm’s inputs include
the training data D = {D1, D2...Dm} and the teacher networkNT . The training data D is divided
into smaller batches, each used for fine-tuning in each step. The current state si represents the
current student network NSi being trained, requiring respective initializations of their values. st0
denotes the initial student selected, and f1_best is a list of the best observed f1 scores or other
relevant statistics for each student. Besides, parameter units are transferred from NT to NSi.

At each time step, a batch from the training data is selected. Repeated traversals over the
data are permissible as student models may encounter the same batch of data multiple times. The
selected student is trained with this data batch, and the resulting f1 score is recorded. This f1
score enables the update of the current state’s value. If the score outperforms previously observed
scores for this state, this model NSt is saved. Finally, the action and the next state are selected
based on the current value and transition.
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9.3 Experiments
The data utilized for the experiment is a month’s of truck driving data from the United States,
specifically related to the cutting-in scenario. This data is divided into training + validation, and
testing datasets at a ratio of 0.8 : 0.2. The input data consists of a sequence of 21 features of
length 10, processed for the cutting-in scenario. The output data is a binary integer, indicating
whether or not cutting-in occurs.

The temporal convolutional neural network (TCN) [8] served as the prediction model. TCN
creates a hierarchical structure that integrates temporal features into a convolutional neural
network. Each internal node of the tree-like structure is a residual block, composed of multiple
layers of dilated convolution, activation, and normalization. Due to this structure, the initial
consideration in the experiment was to freeze or pretrain residual blocks instead of individual
layers. The TCN used in this case has a depth of 4, signifying the presence of 4 residual blocks
plus extraneous parameters that could be selected as the transfer target.

A model was trained using the training + validation data and was denoted as ScratchUS.
Additionally, a prediction model trained in China was obtained. Although the features were
identical, the data from China was inaccessible for the experiment. This model was referred to as
TeacherCN. The goal was to leverage both TeacherCN and the existing US training + validation
data to create a new transferred model that would surpass ScratchUS in performance on the testing
data. The chosen metrics were the 5 most important statistics in self-driving prediction:

1. Lane Change False positive Rate (FPR): FPR of accurately predicting the lane change

2. Lane Change Precision: precision of lane change

3. Lane Change Recall: recall of lane change

4. 05 Frame Early Rate: prediction correctness using the 5 latest frames

5. 10 Frame Early Rate: prediction correctness using the 10 latest frames

False Positive Rate (FPR) is a critical statistic in the context of lane change predictions in
autonomous driving. It measures the percentage of instances in which a lane change is incorrectly
predicted, that is, when the prediction system inaccurately indicates that a lane change will occur
when, in fact, it does not. Minimizing FPR is crucial because an excessive number of false alarms
can lead to unnecessary or inappropriate responses from the vehicle, potentially compromising
safety and operational efficiency.

All subsequent experiments were conducted on the same testing data, utilizing the above
statistics. A total of 16382 data points were used for testing. For convenience in visualization,
1 - FPR was displayed instead of FPR. These statistics are empirically informative for the other
teams in the general planning-control-prediction-fuel-economy group at PlusAI, and are thus
more meaningful than other indicators such as validation loss.
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Figure 9.2: Compare freezing and pretraining residual blocks by hand.

9.3.1 Traditional Network Transfer By Hand
The manual freezing and pretraining of residual blocks was first examined. The result is shown in
Figure 9.2. The control group (red dots) utilized the model directly trained by the training set of
data (ScratchUS) to investigate potential co-adaptive features. The results revealed that as residual
block 0, residual block 01, residual block 012, residual block 0123, and all parameters were
gradually frozen, the red dots remained nearly unchanged. This suggested limited co-adaptive
features that might impact the result.

Subsequently, TeacherCN was used as the teacher model, and the same manual freezing
procedure was repeated (blue dots). Almost every freezing procedure remains unchanged except
when all parameters were frozen (with x index at 4). In this case, it was inferred that all parameters
of residual blocks are transferable except for the remaining parameters. This further suggested
that TeacherCN was not directly applicable to the data collected in the US as the lane change
recall and 10 frame early rate were extremely poor.

Manual pretraining with TeacherCN (green dots) served as a sanity check. As expected, it
performed slightly better than the control group and manual freezing of residual blocks. Notably,
pretraining and finetuning with all parameters again proved to be an exception (with x index at
4), which could also be inferred from the blue dots. For other transfer options, performance was
slightly better than the control group. The rest of the experiment aimed to enhance this advantage
using the proposed methods.

Each point on the plot represented an independent training procedure, with the training +
validation data divided into 3 folds, each taken by each training. 50 episodes were assigned for
each fold to ensure convergence. All training procedures used the same 3 folds.
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9.3.2 RL Variations Trained Over Time
Figure 9.3 illustrated how 5 important statistics changed over time, from iterating 60 folds of data
to 150 folds. The entire training + validation data was divided into 30 folds, representing the
performance for 2 and 5 iterations of traversing the entire data. As the number of folds increased,
fewer data entries were contained in each fold, and convergence time was accordingly shortened
to 30 episodes for each fold. Moreover, in contrast to providing the same 3 folds to all the training
procedures, only the model represented by the current state was given one of the 30 folds of data,
and trained to convergence at a time.

Three RL algorithm variations were experimented with: TD(0) (in orange), SARSA (in green),
and DQN (in blue). Similar to Figure 9.2, but reversed, the y-axis displayed the transferred
residual blocks, and the x-axis presented the accuracy. Darker colors represented 60 folds while
the lighter colors represented 150 folds.

For the lane change FPR, regardless of what residual blocks were transferred, DQN clearly
performed better than the other two. Increasing the number of folds did not necessarily improve
the FPR. For TD and SARSA, the difference was more pronounced. This was also similar for lane
change precision where DQN outperformed the other two and showed smaller improvement over
time. This inferred that DQN trained the fastest and best and no additional folds were necessary.
For the remaining three statistics of lane change recall, 05 frame early rate, and 10 frame early rate,
DQN behaved in a general manner. Small variances were observed among the specific residual
blocks selected for transfer according to those statistics.

Interestingly, though SARSA selected actions based on the estimation of Q values, it did not
demonstrate more advantage than TD(0) where the selection process was largely random. It could
be concluded that DQN performed better than the other two variations, but SARSA did not seem
to be more advantageous as a general observation. However, the best model trained by SARSA
outperformed TD(0), as will be shown in the next sub-section.
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Figure 9.3: Compare RL variations with 60 folds and 150 folds of data to train.
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Figure 9.4: Compare best RL variations.

9.3.3 Best Models of RL Variations
From Figure 9.2 and Figure 9.3, it might be difficult to define what constitutes the best model,
since there were five statistics of interest. A high early rate might also correlate with a high FPR
rate, making it challenging to decide which one should be sacrificed for the trade-off.

However, from Figure 9.3, it was also observed that pretraining and finetuning with residual
blocks of 0123 resulted in the lowest FPR, highest precision, and 05 frame early rate, while at the
same time the other 2 statistics were within the top 3. This observation was consistent with Figure
9.2, though the advantage was small. It was inferred that the algorithm designed with RL agents
was capable of pointing out the best candidate as well.

In this case, transferring residual blocks of 0123 was treated as the best, and its RL variations
and manual pretrain were compared in Figure 9.4. Notably, DQN (in blue) was found to be
optimal as it achieved the highest number among four in all statistics except for lane change recall.
TD(0) and SARSA showed alternate advantages over each other, generally doing a better job than
pretraining manually. One possible explanation was that multiple small batches allowed for better
finetuning. However, the primary focus was not on surpassing the manual pretraining, but on
improving the auto-selection process.

In summary, the DQN transfer model with residual blocks of 0123 was retained as the best,
and further compared with a layer-level selection model in the next sub-section.
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Figure 9.5: Layer level Transfer

9.3.4 Layer-level Transfer
Up until now, pre-training and finetuning was performed with the parameters of entire residual
blocks - one reason was due to the structure of TCN, and the second was that traditional manual
pretraining and finetuning made it too laborious to approach optimal transfer by hand. The results
in the previous sub sections validated the methodology, leading to exploration if pre-training
and finetuning with parameters of single layers could yield even better results. Additionally, the
number of folds was increased to 50, while the episode of each fold was decreased to 20 to achieve
convergence, and similarly each time only the model with specific layers transferred was being
trained.

In line with transferring by residual blocks, layer-level transfer referred to transferring pa-
rameters of the 1st, 1st + 2nd, 1st + 2nd + 3rd, ... until all the parameters. Therefore, with some
layers transferred, they were exactly the same as transferring the residual blocks as previous. In
the results shown in Figure 9.5, the x axis referred to layers transferred, and the y axis showed
the accuracy. The blue dots and red dots denoted transferring the single layer or whole residual
blocks respectively, where they had the same x axis, it meant the corresponding residual blocks
composed of the layers.

Most red dots were close to the blue dots representing the same layers to transfer. To clarify,
there was no interest in boosting the corresponding blue dots to perform significantly better than
the red ones. It was anticipated that the slight difference was due to training variance. The goal
of this experiment was to find out if there were candidate layers that could be transferred and
outperform the existing performance, i.e., could any blue dots be found that were better among all
candidates of blue and red dots. The answer was affirmative, as readers could easily observe that
red dots were never the optimal among the 5 statistics. Therefore, with the proposed algorithm, it
was claimed that the selection became more efficient for this transfer model.
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Figure 9.6: Runtime of the Experiments

9.3.5 Runtime Comparison
A comparison of the runtime of the experiments was also performed, as shown in Figure 9.6. One
significant challenge with manual pretraining and finetuning is its labor-intensive nature. Selecting
with RL agents can save time because the advantage of neural networks is that finetuning a small
amount of data can significantly enhance performance. With less data, training converges faster
and the use of various batches of data prevents overfitting.

It’s worth noting that the result was empirical, with statistics provided in the previous sections.
In this comparison, “dqn0” and “dqn1” referred to the DQN selector with 60 and 150 folds,
respectively, and the same applied to “sarsa” and “td”. The result showed that with the same
amount of data used for training (5 iterations traversing the entire training + validation data, with
various batch size), the DQN selector with the single layer transferred was the most efficient.
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9.4 Conclusion
This chapter introduced innovative methods of Automatic Transfer Selector via Reinforcement
Learning applied to the self-driving prediction model domain. There was a successful use of a
network trained in China, despite no access to the China data, to assist the learning of a prediction
network for US data. This process proved more efficient and effective than manual training, and it
also surpassed pre-training and fine-tuning conducted solely using US data.

Future work could expand the current scenario to include not only cut-in but also cut-out and
merge. The claim was also made that the algorithm is not limited to the temporal convoluntional
network. While it is is the most recent module in the company’s infrastructure and hence served
as the test-bed, future plans include extending to newer models as they become available, and
making further comparisons. Furthermore, plans to perform experiments with a teacher model
either from the US or China are in place to assist students with a small amount of Germany data.
This will likely prove to be a more challenging task given the differences in traffic rules and
culture between Germany and both China and the US.

The focus of this work was largely practical, aimed at improving the existing architecture.
Thus, extensive comparison with a broad range of network-based transfer learning methods was
not performed. Additionally, the most advanced RL algorithms were not considered in the study,
as the aim was to validate the practicability of the current approach. These represent the limitations
and two key areas for further exploration in future work.
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Chapter 10

Conclusion

In this thesis, we have demonstrated that the knowledge transferring process between reinforce-
ment learning agents in the form of teacher-student action advising can significantly expedite the
learning process and enhance overall performance. Our work has discussed the limitations of
conventional reinforcment learning techniques in dealing with the inherent complexity and sample
inefficiency of these tasks, while highlighting the potential of teacher-student action advising
strategies in a few directions.

In addition to identifying the benefits of action advising, we have also proposed innovative
enhancements to the teacher-student framework. These include allowing the teacher to explain the
rationale behind its advice, equipping students with the ability to determine reliability of the given
advice, developing a feedback system to help teachers identify and filter out poor advice, and
additionally enabling teachers to offer alternative advice that is more catered to students’ needs.
Our methods have been thoroughly tested and documented in individual chapters, and the positive
outcomes substantiate the validity and effectiveness of our approach.

In our future work, we aim to extend the application of our findings in more complex scenarios
involving heterogeneous multi-agent teams. We plan to let the teacher guide these diverse student
agents towards achieving collective goals. Furthermore, we aim to investigate dynamic peer-
to-peer advising, enabling agents to switch roles between teacher and student based on their
situational knowledge and experience.

The studies conducted and the future directions outlined herein have the potential to signifi-
cantly enhance the existing frameworks for teacher-student action advising. They pave the way
for more efficient learning processes, improved performance in high-dimensional tasks, and a
greater degree of collaboration and knowledge exchange in the context of reinforcement learning.
By continuing to investigate and enhance these techniques, we can unlock a vast number of
possibilities for reinforcement learning and multi-agent systems.
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