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Abstract 
 
 
 

One of the most important and persistent problems in the development of conversational spoken 
language interfaces is their lack of robustness when confronted with understanding-errors. Most of 
these errors stem from limitations in current speech recognition technology, and, as a result, appear 
across all domains and interaction types. There are two approaches towards increased robustness: 
prevent the errors from happening, or recover from them through conversation, by interacting with 
the users.  

In this dissertation we have engaged in a research program centered on the second approach. 
We argue that three capabilities are needed in order to seamlessly and efficiently recover from errors: 
(1) systems must be able to detect the errors, preferably as soon as they happen, (2) systems must be 
equipped with a rich repertoire of error recovery strategies that can be used to set the conversation 
back on track, and (3) systems must know how to choose optimally between different recovery 
strategies at run-time, i.e. they must have good error recovery policies. This work makes a number 
of contributions in each of these areas. 

First, to provide a real-world experimental platform this error handling research program, we 
developed RavenClaw, a plan-based dialog management framework for task-oriented domains. The 
framework has a modular architecture that decouples the error handling mechanisms from the do-
main-specific dialog control logic; in the process, it lessens system authoring effort, promotes port-
ability and reusability, and ensures consistency in error handling behaviors both within and across 
domains. To date, RavenClaw has been used to develop and successfully deploy a number of spoken 
dialog systems spanning different domains an interaction types. Together with these systems, Raven-
Claw provides the infrastructure for the error handling work described in this disseratation.  

To detect errors, spoken language interfaces typically rely on confidence scores. In this 
work we investigated in depth current supervised learning techniques for building error detection 
models. In addition, we proposed a novel, implicitly-supervised approach for this task. No developer 
supervision is required in this case; rather, the system obtains the supervision signal online, from 
naturally-occurring patterns in the interaction. We believe this learning paradigm represents an im-
portant step towards constructing autonomously self-improving systems. Furthermore, we developed 
a scalable, data-driven approach that allows a system to continuously monitor and update beliefs 
throughout the conversation; the proposed approach leads to significant improvements in both the 
overall effectiveness and efficiency of the interaction.  

We developed and empirically investigated a large set of recovery strategies, targeting two 
types of understanding-errors that commonly occur in these systems: misunderstandings and non-
understandings. Our results add to an existing body of knowledge about the advantages and disad-
vantages of these strategies, and highlight the importance of good recovery policies.  

In the last part of this work, we proposed and evaluated a novel online-learning based ap-
proach for developing recovery policies. The system constructs runtime estimates for the likelihood 
of success of each recovery strategy, together with confidence bounds for those estimates. These 
estimates are then used to construct a policy online, while balancing the system’s exploration and 
exploitation goals. Experiments with a deployed spoken dialog system showed that the system was 
able to learn a more effective recovery policy in a relatively short time period.  
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Chapter 1  

Introduction 

Despite recent advances in component technologies, conversational spoken lan-
guage interfaces are still very brittle when confronted with understanding-errors. 
Most of these errors stem from limitations in current speech recognition technol-
ogy, and as a result they appear across all domains and interaction types. Left un-
checked, they exert a significant negative impact on the overall quality and success 
of the interactions. In this introductory chapter, we articulate a research program 
that aims to improve robustness in spoken language interfaces by creating the nec-
essary mechanisms for seamlessly and efficiently recovering from errors. They key 
components are: (1) endowing spoken language interfaces with better error aware-
ness, (2) developing and evaluating a rich repertoire of error recovery strategies, and 
(3) developing scalable, data-driven approaches for making error recovery decisions. 
This chapter outlines the contributions this dissertation brings to the proposed re-
search program and provides a roadmap for the rest of this document.  

1.1 Introduction 

Over the recent years, advances in automatic speech recognition, as well as language understanding, 
generation, and speech synthesis have paved the way for the emergence of complex, task-oriented 
conversational spoken language interfaces. Here are a few examples: Jupiter (MIT) [142] provides up-
to-date weather information over the telephone; CMU Communicator (CMU) [101] acts as a travel 
planning agent and can arrange multi-leg itineraries and make hotel and car reservations; TOOT 
(AT&T) [121] gives spoken access to train schedules; Presenter (Microsoft) [83] provides a continu-
ous listening command and control interface to PowerPoint presentations; WITAS (Stanford) [66] 
provides a spoken language interface to an autonomous robotic helicopter; AdApt (KTH) [45] pro-
vides real-estate information in the Stockholm area; TRIPS (Rochester) [34] is a spoken-language 
enabled planning assistant. These are only a few; for a longer list, see [10]. 

Traditionally, the research community has focused on building spoken dialog systems1 for 

                                                      
 
1 In this document, we will use the terms spoken dialog system and (conversational) spoken language interface inter-
changeably. The first term has been traditionally used by a large number of researchers, and highlights the “system” nature 
of these artifacts and the fact that they rely on a large number of communicating subcomponents that perform different 
functions. The second term highlights the “interface” or “interactive media” aspects, and the fact that building good speech 
interfaces requires significant expertise in the field of human-computer interaction (see discussion in [46]) 
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information access and command-and-control tasks. Current initiatives aim at the development of 
more sophisticated language-enabled interactive agents, such as personal assistants (e.g. CALO [21], 
LARRI [13]), taskable agents (e.g. Orion [59, 110]), interactive tutors (e.g. Paco [96]), call-routing sys-
tems (e.g. How May I Help You? [41]), embodied conversational agents (e.g. Rea [23], Olga [120], 
etc.) At the other end of the complexity spectrum lie simpler systems that have already transitioned 
into day-to-day use. United Airlines handles claims for missing and delayed luggage via their spoken 
dialog system called Simon. Newsweek magazine uses one for subscription renewal and cancellations. 
Various companies (e.g. Nuance, TellMe, BeVocal, HeyAnita, etc.) are successfully commercializing 
platforms and applications to deliver voice dialing, messaging and a large variety of telephone-based 
automatic customer care services.  

The development of these systems has benefited from, but at the same time prompted, nu-
merous advances in the component technologies. Speech recognition accuracy has improved over 
time, allowing spoken dialog systems to handle larger vocabularies and user populations. Dialog 
management paradigms, such as finite-state, form-filling, task or plan-based dialog have been pro-
posed and empirically validated in the field. Novel text-to-speech synthesis techniques, such as unit-
selection, have allowed the development of natural voices in limited domains. A certain consensus 
has been reached with respect to how to architecturally structure a spoken dialog system. Neverthe-
less, a lot of problems remain in need of better solutions. Automatic recognition and understanding 
of spontaneous speech are still far from perfect and as a result spoken language interfaces remain 
very brittle. Current solutions for system development do not transfer well across tasks and domains, 
and require considerable amounts of human effort and expertise. More complex aspects of human-
computer interaction, such as multi-modality, multi-party conversations, embodied interfaces, fine-
granularity timing and turn-taking are just beginning to be addressed.  

1.2 The problem 

Perhaps one of the most important and persistent problems in the development of spoken language 
interfaces is their lack of robustness when confronted with understanding-errors. Most of these er-
rors stem from limitations in current speech recognition technology, and, as a result, they appear 
across all domains and interaction types. Automatic speech recognition is a difficult problem in gen-
eral. In the context of spoken language interfaces, the difficulties are further exacerbated by the con-
ditions under which these systems are meant to operate. In general, these systems are targeted to 
large user populations. As a consequence they have to accommodate large variations in speaking 
styles (i.e. accents, native, non-native speakers), as well as variations in the quality of the input lines 
(e.g. regular phone lines, cell-phones, close talking microphones) and in the amount and type of envi-
ronmental noise. Additionally, they have to deal with various spontaneous speech phenomena like 
disfluencies, stutters, false starts, repairs, hesitations, filled pauses, and various other non-lexical 
acoustic events. 

Under these circumstances, it is not surprising that typical word-error-rates in all but the 
most simple systems range from 15% to as high as 40% or even higher for non-native populations or 
under adverse noise conditions [15, 89]. Unless mediated by a better awareness and robust recovery 
mechanisms, speech recognition errors propagate to the higher levels of these systems and exert a 
considerable impact on the quality and success of the interactions.  

1.2.1 An example 
To make these problems more concrete, consider the sample conversation from Figure 1. This ex-
ample was extracted from a corpus of dialogs collected with the CMU Communicator [101], a spo-
ken dialog system that operates in the air travel planning domain.  

In the first turn, the system asks for the departure city. Unfortunately, the user’s response – 
‘Urbana Champaign’ – is misrecognized by the system as ‘OKAY IN THAT same PAY’. The language 
understanding component fails to generate a semantic representation for this recognition result. The 
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system knows that the user said something, i.e. an utterance was detected, but has no useful informa-
tion about the contents of this utterance. In this case, we say that a non-understanding has oc-
curred. In turn 3, the system notifies the user that it did not understand the previous utterance, and 
repeats the question. The user responds again ‘Urbana Champaign’, but unfortunately his response is 
again misrecognized. This second recognition error led to another non-understanding. In the absence 
of a mechanism for diagnosing the source of the non-understandings, or of a richer set of error re-
covery strategies, the system persists in asking the same question again in turn 5. At this point, the 
user decides that the system is unlikely to correctly understand Urbana Champaign, and changes the 
departure to another nearby city – Chicago (turn 6).  

Next, in turn 7, the system asks about the arrival city. The user responds ‘Huntsville’. This 
city name was not in the system’s vocabulary, and the recognition engine produces another erroneous 
result: ‘Seoul’. In this case, we say that a misunderstanding has occurred: the system has obtained 
a semantic interpretation of the user’s utterance, but this interpretation is unfortunately incorrect. In 
the next turn (9), the system echoes back the value it heard (Seoul) to the user, and continues with 
the next question (what day did you need to travel?); the assumption is that, if the arrival city value 
was incorrect, the user would be able to detect this error and correct the system. This is indeed what 
happens in the dialog, but unfortunately the user’s correction is also misrecognized by the system 
(turn 10). Without the ability to assess the reliability of the hypotheses generated by the recognizer 
and to update its beliefs based on subsequent user responses, the system takes this misunderstanding 
as fact, and continues the dialog using invalid information. Next, the system asks for the departure 

 1 S: What city are you leaving from? 

 2 U: Urbana Champaign 

  R: [OKAY IN THAT same PAY] 

 3 S: Sorry I’m not sure I understood what you said. What city 

are you leaving from? 

 4 U: Urbana Champaign 

  R: [for minute since HEY] 

 5 S: I’m still having trouble understanding you. To go on, I 

need you to answer the following question. What city are 

you leaving from? 

 6 U: Chicago  

  R: [CHICAGO] 

 7 S: traveling from Chicago. Where would you like to go? 

 8 U: Huntsville 

  R: [SEOUL] 

 9 S: traveling to Seoul. What day did you need to travel? 

 10 U: no no I’m traveling to … Birmingham 

  R: [THE TRAVELING to berlin P_M] 

 11 S: traveling in the afternoon. Okay what day would you be de-

parting Chicago? 

 12 U: /uh/ the tenth of august 

  R: [AT THE TENTH OF AUGUST] 

 13 S: a flight tomorrow ... I have a Korean Airlines flight de-

parting Chicago at 1:40pm, arrives Seoul at 5pm the next 

day. Do you want to take that? 

 14 U: my destination is Birmingham 

  R: [flight destination mr WEEKEND] 

 15 S: traveling on Saturday, August 12th ... I have a flight de-

parting Chicago at 1:40pm arrives Seoul ... 

 
Figure 1. A sample conversation with the CMU Communicator [101] (S: marks system utterances; U: marks 
user utterances; R: marks recognition results; the words in lowercase in the recognition results are marked 

as unconfident by the speech recognizer and are ignored for language understanding purposes 
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date again (turn 11) and this time it correctly recognizes the user response (turn 12). However, the 
results presented to the user in turn 13 are affected by the previous misunderstandings. In turn 14, 
the user attempts again to correct the system, but to no avail.  

1.2.2 Some statistics 
Unfortunately, the sample conversation from Figure 1 is not just a contrived corner-case interaction 
carefully chosen to make a point. The example was indeed selected to illustrate a spectrum of differ-
ent problems over a short number of turns. However, these types of breakdowns are not uncommon 
at all in any state-of-the-art spoken dialog system.  

Here are some statistics. An analysis of the CMU Communicator corpus indicated that 32% 
of the utterances contain understanding-errors [22]. Similar results are reported in the literature for 
other spoken dialog systems [62, 68, 89, 121]. Research on semantic confidence annotation shows 
that typically 20 - 40% of the utterances addressed to a system are not understood correctly (see 
Table 1). Other work shows that approximately a quarter to one third of the utterances addressed to 

a system are dedicated to correcting system mistakes: 32% in a Dutch spoken dialog system that pro-
vides train time-table information [62]; 29% in TOOT [121]. Due to changes in speaking style (e.g. 
frustration, hyper-articulation), these corrections are themselves two to three times more likely to be 
misrecognized than other utterances [68, 121]. 

The relatively large numbers of understanding-errors and corresponding user corrections 
have a significant impact on the overall quality and success of the interactions. In the CMU Commu-
nicator, the 32% understanding-error rate results in 66% of the sessions having at least one under-
standing-error. In 40% of these cases (26% of the total number of sessions), the end result was com-
plete breakdown in interaction and failure to achieve the task. The users managed to get the interac-
tion back on track in only 60% of the sessions containing misunderstandings. In a similar error analy-
sis study, Shin and Narayanan [113] found 235 error segments in 141 dialogs in the air-travel plan-
ning domain; this equates to an average of 1.66 error segments per session. 22% of the error seg-
ments (37% of the sessions) led to a complete breakdown of the interaction.  

The effect of speech recognition errors on overall performance is illustrated in Figure 2. This 
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Figure 2. Probability of task success as a function of average word-error-rate  
in a deployed spoken dialog system 

System Semantic  
error rate 

CMU Communicator [101] 32% 
CU Communicator [103] 27% 
How May I Help You [130] 36% 
Jupiter [49] 28% 
SpeechActs [138] 25% 

 
Table 1. Semantic error rates in current spoken dialog systems 
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plot shows the probability of task success as a function of average word-error-rate in a deployed spo-
ken dialog system that can assist users in making conference room reservations. As this figure shows, 
there is a sharp drop in the probability of task success in the 15-40% word-error-rate range. In addi-
tion, repeated studies [128, 129] have found a strong inverse correlation between word-error-rate and 
user satisfaction. 

The statistics discussed above, as well as large amounts of anecdotal evidence show that 
these problems occur in significant numbers across most domains and interaction types.  

1.2.3 Factors and limitations underlying interaction breakdowns 
Today, the speech recognition process is the primary source of errors in spoken language interfaces. 
Would speech recognizers produce perfect results, most problems would disappear2. We would 
mostly be left with the task of managing the dialog under assumed perfect inputs, a problem for 
which various approaches have been proposed and are evolving in the community. In reality, auto-
matic recognition of spontaneous speech is still imperfect at best. In the example from Figure 2, the 
recognition errors were triggered by the use of out-of-vocabulary words; this is however just one of a 
number of factors that can trigger such errors. Small changes in the environment, microphone or 
telephone line quality can seriously impair recognition performance. Since spoken dialog systems are 
generally targeted to large user populations, speaker variability represents another major concern. If 
we add to this mix the disfluencies which characterize spoken language, the recognition word-error-
rates can jump from a typical 8-10% for read speech to as high as 30%, or even higher, for sponta-
neous speech. 

The impact of recognition errors on overall dialog performance is very pronounced because 
systems are not well prepared to handle the resulting uncertainties. Two important deficiencies are: 
(1) shortcomings in the ability to accurately detect and diagnose problems, and (2) a lack of sufficient 
and effective error recovery strategies. Moreover, a principled yet practical computational framework 
for making error handling decisions (3) is still missing. In the absence of these three core competen-
cies, speech recognition errors will continue to exert a strong negative impact on overall perform-
ance, and to severely limit the naturalness of the interaction and the complexity of tasks that can be 
addressed. In the reminder of this section, we discuss each of the three limiting factors outlined 
above in more detail. 

§ Error detection and diagnosis 

A first important deficiency that can be observed in many current spoken dialog systems is their in-
ability to accurately identify and diagnose errors. Left unchecked, speech recognition errors can lead 
to two types of understanding-errors: non-understandings and misunderstandings. A non-
understanding occurs when the system fails to acquire any useful information from the user’s turn. 
For instance, if the parsing component lacks robustness, then even the smallest recognition error can 
ruin the whole language understanding process. In such cases no meaningful semantic representation 
of the input can be obtained, and a non-understanding occurs. In contrast, a misunderstanding 
occurs when the system extracts some information from the user’s turn, but that information is in-
correct. This generally happens when the language understanding layer generates a plausible semantic 
representation, which happens to match the current discourse context, but which does not corre-
spond to the user’s expressed intent. In Chapter 2, we will discuss in more detail these two types of 
understanding-errors and investigate their sources and impact on overall performance. 

In the absence of a mechanism for assessing the reliability of their inputs or for updating 
their beliefs throughout the conversation, systems will take misunderstandings as fact and will act 

                                                      
 
2 Other sources of understanding errors exist besides the recognition process. Parsing (i.e. grammar coverage) errors can 
lead to misunderstandings or non-understandings as well. High-level interpretation, reference resolution, and intention 
recognition can also create similar problems. Nevertheless, in most spoken dialog systems the largest proportion of errors 
stem from the speech recognition process – see [20, 22], as well as our empirical analysis from Chapter 6. 
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based on invalid information. We have seen this happening in turns 8, 10 and 14 of the example 
from Figure 1. For instance in turn 8 the system “heard” that the user had said the arrival city was 
Seoul. Ideally, we would like the system to be able to detect immediately that ‘Seoul’ is an uncertain 
recognition result. In the next turn (10), the user tried to correct the value. While this response was 
also affected by recognition errors, the garbled recognition result should have further increased the 
system’s skepticism about the correctness of Seoul. Lacking the ability to accurately update its beliefs 
based on evidence from subsequent user responses, the system persisted in the same error.  

In contrast, when a non-understanding occurs no false information is incorporated into the 
system. However, the situation is not much better. Without a diagnosis process that can indicate the 
likely sources of the non-understanding, the system’s follow-up options are limited and uninformed. 
In the given example they amounted to asking the question again and “hoping for better luck next 
time” (turns 3 and 5). A system that can detect the possible source of the error (was it an out-of-
vocabulary word? a transient noise? does the user speak with a pronounced accent? does the user not 
know what to say? etc.) could make more informed decisions, and therefore be more likely to set the 
dialog back on track. The ability to assess how well the interaction is proceeding within a given turn, 
a certain discourse segment, or over the whole conversation, as well as to diagnose potential prob-
lems would provide a better basis for making error recovery decisions. 

§ Error recovery strategies 

A second important limitation that contributes to interaction breakdowns is the lack of effective 
conversational strategies for preventing errors and recovering from them. When faced with under-
standing-errors, humans use a large variety of strategies to set the conversation back on track [115, 
141]: confirmations, disambiguations, repeating information, checking context, trying alternative 
plans to achieve the same dialog goal, even guessing or ignoring unreliable information. More strate-
gies can be envisioned in the context of a task-oriented human-machine conversation: lexically en-
training the users, providing help, falling back to a stricter initiative and constraining the input lan-
guage, relying on alternate input modalities such as DTMF (touch-tone) or pen-based input, etc. 
Only a few of these strategies have been thoroughly investigated and are consistently used in today’s 
spoken dialog systems. Our understanding of the advantages, disadvantages and relative trade-offs 
between these strategies is fragmentary at best.  

§ Error recovery policies 

The third missing component is a practical computational framework for making the error handling 
decisions. The problem of error handling is often regarded as an add-on, and the large majority of 
systems use handcrafted heuristic decision rules to engage in a small number of error recovery strate-
gies. This approach lacks a solid basis. The technique cannot be extended to handle a larger number 
of strategies, since the trade-offs that need to be solved become ever more complex. More systematic 
approaches, based on Bayesian decision theory and reinforcement learning, have been proposed but 
so far they lack scalability are not applicable in large, practical spoken dialog systems. 

§ Other factors 

The factors discussed above are not the only contributors to the brittleness observed in today’s spo-
ken dialog systems. Other factors, such as inconsistency and poor design of the system’s actions at 
the task level, deficiencies in the user’s knowledge about the system’s functionality, lack of basic con-
versational skills on the system side (i.e. timing, turn-taking, handling, repeat, etc.), and lack of sup-
port for user-initiated repairs can also lead to interaction breakdowns. 

1.3 Towards increased robustness in spoken dialog systems 

The discussion from the previous section highlights two different pathways for increasing the ro-
bustness of spoken language interfaces. One approach is to increase the accuracy of the speech rec-
ognition and language understanding process, in an effort to eliminate the errors altogether. A differ-
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ent approach is to assume some errors will always be present and create the mechanisms for recover-
ing from them through conversation (i.e. by acting robustly at the dialog management level.) 

Reducing the speech recognition error rates would certainly lead to corresponding improve-
ments in the performance. Not surprisingly, the problem has received a great deal of attention. Nu-
merous efforts are directed at improving the baseline speech recognition performance: more robust 
representations, more sophisticated statistical models, better search, acoustic- and language-modeling 
techniques. The typical results so far have been consistent but small incremental improvements. In 
contrast, the most effective and widely applied technique for improving recognition accuracy in spo-
ken dialog systems is remarkably unsophisticated: constrain the input language. By imposing limits on 
what users can say at any given point in the conversation, the recognition problem is simplified and 
the decoding process becomes less prone to errors. A widely used technique is to build systems that 
always keep the initiative, and constrain user responses based on the current focus of the conversa-
tion. Other techniques, such as interpolating state-specific and generic language models [43, 137], or 
backing off from grammar-based to SLM-based recognition, can regain some of the lost flexibility 
while still improving recognition performance. The Universal Speech Interface [99, 122, 123] is an-
other approach, still aimed at alleviating the recognition problems. In this case the constraints are 
imposed on the form rather than the contents of the user’s language. Users are trained (or entrained) 
to speak in a stylized fashion, within the bounds of a well-defined universal grammar. In the end, all 
these techniques trade off naturalness and flexibility for accuracy. They are applicable in a number of 
relatively simple domains and interaction types, and can indeed lead to increased robustness. How-
ever, these techniques do not provide a suitable solution if the goal is to build natural spoken lan-
guage interfaces that operate in complex domains. 

The alternative approach is to assume that the recognition process will always be unreliable, 
and compensate by creating the mechanisms for acting robustly at the conversation level. In this 
case, we need to address the limitations described in the previous section. Three ingredients are re-
quired. First, we need to endow spoken language interfaces with the ability to detect and diagnose 
errors (1), preferably as soon as they happen. Second, we need to endow these systems with a rich 
repertoire of error recovery strategies3 (2). Last, we need to develop techniques that allow these 
systems to optimally choose between these strategies at runtime (e.g. when should the system ask the 
user to repeat? When should it ask the user to rephrase? etc.). In other words we need to endow sys-
tems will good error recovery policies (3).  

This second approach has a number of advantages. While incremental improvements in 
speech recognition performance continue to be made, the demands also increase, as the interests 
shift towards ever more complex domains and interaction types. This visible trend predicts that rec-
ognition performance will not satisfactorily match the tasks at hand in the near future. By default, 
spoken language interfaces will remain either brittle or significantly constrained. In contrast, systems 
that can handle the uncertainties at a high level can more safely relax the language constraints, and 
allow increasingly natural interactions over complex domains, even in the presence of imperfect rec-
ognition. The approach bears similarities to the ways humans handle uncertainties in communication: 
after all, human speech recognition capabilities are not perfect either, but we are able to repair con-
versations and reestablish mutual ground when misunderstandings occur. Although the recognition 
process is a major source of problems in spoken dialog systems, it is not the only such source. Errors 
can be introduced by other components such as language understanding, reference resolution and 
intention recognition. Increasing the robustness at the dialog management level will also allow spo-
ken dialog systems to accommodate other sources of uncertainty. 

The two approaches briefly outlined above – improving recognition accuracy and recovering 
from errors through conversation – do not stand in opposition. Clearly, a combined effort would 

                                                      
 
3 by error recovery strategy we will denote a one-step conversational action that the system might take to set the conversa-
tion back on track, such as asking the user to rephrase, asking the user to speak less loud, confirming a certain concept 
value, etc. 
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lead to the best results. The research program described in this document focuses on the second ap-
proach: it aims to construct the mechanisms for seamlessly and effectively recovering from errors 
through conversation. 

1.4 Thesis goals 

The high-level goal of this dissertation is therefore to increase the robustness of task-oriented 
spoken language interfaces by creating the necessary mechanisms for recovering from errors 
through conversation. 

We propose to accomplish this high-level goal by:  
 

(1) endowing spoken language interfaces with better error awareness; 

(2) constructing and evaluating a rich repertoire of error recovery strategies; 

(3) developing an adaptive, scalable, data-driven approach for making error recovery deci-
sions, i.e. an error recovery policy. 

 

Together with the two types of understanding-errors we have previously identified (misun-
derstandings and non-understandings) these three components define the underlying coordinates for 
the research program described in this document, as illustrated in Figure 3.  

We seek task-independent, adaptive, and scalable solutions for these problems. First, we seek 
task-independent solutions: the error handling mechanisms should ideally be decoupled from the 
particularities of the actual dialog task performed by the system. This separation can favor the reuse 
of the proposed solutions across different systems operating in different domains, and in the process 
lessen the system authoring effort. Furthermore, the decoupling would ensure uniformity and consis-
tency in error handling behaviors both within and across tasks. 

Secondly, we seek adaptive solutions. Spoken language interfaces operate under a large vari-
ety of conditions: different performance in the underlying speech recognition and language under-
standing components, different and changing user populations, different qualities of the input lines, 
different costs for various types of errors, etc. We seek data-driven, learning-based solutions that 
compensate for these differences by adapting to the characteristics of the domain in which the sys-
tem operates. Moreover, in the ideal case systems should learn online, from their own experiences, 
without requiring extensive supervision from their developers.  

Last but not least, we seek scalable solutions. Previous learning-based approaches in dialog 
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Figure 3. A six-component research program for increased robustness in spoken language interfaces 
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control have shown some success in limited domains, but do not scale to large, real-world spoken 
language interfaces. The computational costs for learning and acting should grow at most linearly 
with the size of the dialog task, making the solution applicable in real-world systems operating with 
larger, more complex tasks.  

To validate these properties, we will empirically evaluate the proposed solutions in the con-
text of a number of real-world, deployed spoken language applications, built upon of the same dialog 
management and error handling infrastructure.  

The dissertation work described in this document brings a number of important contribu-
tions within the problem space described above. At the same time, it does not complete the entire 
research program we have outlined. Rather, it is best viewed as a concerted effort at advancing the 
state-of-the-art in a number of these areas, while also raising a number of additional scientific and 
technical questions. 

1.5 Brief overview of current solutions 

The six sub-problems we have outlined in Figure 3 have already received a fair amount of attention. 
In this section, we give a brief overview of typical current solutions – Figure 4 provides a graphical 
summary. Our goal here is not to provide an exhaustive review of error handling research, but rather 
to outline some of the common solutions and describe the larger context for the work undertaken in 
this dissertation. We will review the relevant literature and related research for each of the issues we 
address later on, in the corresponding chapters. 

Current spoken language interfaces generally rely on confidence scores to detect misunder-
standings. These scores are computed automatically by a confidence annotation model and are 
meant to reflect the degree of accuracy of the decoding or language understanding process. Typically, 
supervised learning techniques are used to build confidence annotation models: a corpus of utter-
ances is manually labeled, a set of potentially relevant features is identified, and a classifier is trained 
to predict whether or not a given utterance was correctly understood by the system. Although confi-
dence scores are not perfectly accurate, they can provide an initial assessment of the reliability of the 
information received from the recognizer. Hence, they can be used to detect potential misunder-
standings: a low confidence score means an increased likelihood of misunderstanding and a high con-
fidence score means a decreased likelihood of misunderstanding. 

The most common4 strategies for recovering from misunderstandings are explicit and 

                                                      
 
4 Although other strategies such as disambiguation might be used (e.g. “Did you say Boston or Austin?”), they are in general 
rare because the increased complexity of subsequent user responses can lead to significant recognition and understanding 
problems. 

Figure 4. Brief overview of typical current solutions for error handling  
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implicit confirmation. In an explicit confirmation the system asks a yes/no question to validate a 
piece of information (e.g. “Did you say you were flying from Boston?”). In an implicit confirmation, 
the system echoes back the value it wants to confirm to the user, and then continues with the next 
dialog contribution (e.g. “flying from Boston … when would you like to leave?”). The assumption is 
that, if there was a misunderstanding, the user will detect the error and interject a correction. Alterna-
tively, if the value is correct, the user will implicitly signal that to the system by simply responding to 
the next question; the dialog will advance normally towards its goals.  

The policies for engaging the misunderstanding recovery strategies are typically based 
on a predetermined set of confidence thresholds, also known as confirmation thresholds. If the con-
fidence score for an utterance5 is very high, the system accepts the utterance and considers it 
grounded. If the confidence score is medium-high, the system might engage in an implicit confirma-
tion; chances are the value is correct and the dialog will advance normally. Alternatively, if the confi-
dence score is medium-low, the system will engage in an explicit confirmation: in this case, the in-
creased likelihood of misunderstanding justifies the cost of taking an extra dialog turn to validate that 
information. Finally, if the confidence score is very low, given the very high likelihood of misunder-
standing, the system might decide to reject the utterance altogether.  

For non-understandings, detection is in general a trivial task. By definition, the system 
automatically knows when non-understandings occur: the user takes a turn (a speech signal is de-
tected), but no meaningful information can be extracted from the recognized hypothesis. There is 
one special case – rejection non-understandings – in which detection does pose questions. A rejec-
tion non-understanding occurs when the system decides to reject the utterance because of a low con-
fidence score, even though it could extract information from the user’s turn. In effect, the system 
creates a (rejection) non-understanding to avoid a potential misunderstanding. An interesting ques-
tion in this case (discussed later in this work) is how can we set the rejection threshold in a principled 
manner? Commonly encountered solutions to this problem rely on simple rules of thumb regarding 
the relative cost of false-rejections. 

A relatively large set of non-understanding recovery strategies have been proposed and 
used in various spoken language interfaces. When a non-understanding occurs, a number of strate-
gies can be used to attempt a repair. For instance, the system may ask the user to repeat; it may ask 
the user to rephrase; it may repeat its previous question; it may notify the user that a non-
understanding has occurred; it may give various levels of help; it may ask users to speak softer, 
louder, with fewer or longer utterances, etc.; it may even ignore the current non-understanding and 
try to advance the dialog in a different manner, by moving on to a different question or using an al-
ternative dialog plan. Although a large number of strategies have been proposed in different systems, 
in most cases only a limited subset of such strategies is used.  

In contrast to misunderstandings, the relative trade-offs between non-understanding recov-
ery strategies are not very well understood. As a consequence, most systems use very simple, heuristic 
policies for engaging the non-understanding recovery strategies in conjunction with a small set 
of recovery strategies. A commonly encountered policy is to cycle through three different recovery 
strategies on consecutive non-understandings and to transfer the user to an operator after three con-
secutive failures. This is also known as the “three strikes and you’re out” approach [5].  

To summarize, for misunderstandings, detection is the key issue. If a system is able to accu-
rately assess the reliability of the information it operates with, it can then use various confirmation 
strategies (e.g. explicit or implicit confirmation) to verify information when needed. These strategies 
have been previously investigated [62, 132] and they are fairly well understood. Furthermore, while 
some tuning is involved, a simple threshold-based mechanism is generally sufficient for engaging 
these strategies. In contrast, for non-understandings, detection is in general a simple task: the system 
automatically knows when non-understandings occur because a user input is detected but no mean-
ingful semantic interpretation can be constructed for the corresponding recognition result. At the 

                                                      
 
5 policies for recovering from misunderstandings can operate either at the utterance or at the concept level. 
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same time, the set of strategies that can be used to recover is much larger, and the relative trade-offs 
between these strategies are less well understood. As a result, the construction of policies for recover-
ing from non-understanding is perhaps the most challenging task for this type of errors.  

1.6 Thesis contributions 

This dissertation brings a number of contributions in the problem space described above. For a quick 
overview, the complete list of contributions (numbered C1 through C10) is outlined in Figure 5. For 
indexing purposes, the number in parentheses in Figure 5 shows the chapter in which that contribu-
tion is described in detail. The primary contributions and main thrust of this work centers on the two 
more challenging problems we have identified in the previous section: detection of misunderstand-
ings and recovery policies for non-understandings. At the same time, we make several other contri-
butions with respect to problems such as detection of non-understandings, error recovery strategies 
(both for misunderstandings and non-understandings), as well as error handling infrastructure. Be-
low, we provide a synopsis of these contributions. 

§ Detection of misunderstandings 

This dissertation brings three important contributions with respect to the issue of detecting misun-

Figure 5. A summary of contributions; for indexing purposes, the number in parentheses indicates the 
chapter in which each contribution is described 
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derstandings.  

First, we have performed a thorough investigation of four supervised-learning tech-
niques for developing confidence annotation models (C1). While supervised-learning is com-
monly used for building confidence annotation models, we have focused our attention on a number 
of issues less thoroughly investigated in the literature. These include the appropriateness of various 
evaluation metrics for confidence annotation, the sample efficiency of various supervised learning 
techniques and the transferability of confidence annotation models across domains. We advocate the 
use of proper probabilistic scoring rules for evaluating confidence annotation performance and show 
empirically that relying solely on classification-error (a commonly used approach) is insufficient. Em-
pirical results show that, when enough data is available for training, models constructed using differ-
ent supervised learning techniques perform similarly. No single technique is most appropriate for this 
task; rather, the power is in the feature set. However, when only little training data is available, logis-
tic regression models significantly outperform other supervised learning techniques. Finally, we also 
investigate how well confidence annotation models transfer across domains. Results indicate that, 
while some models transfer well, this is not always the case. We propose a simple post-transfer cali-
bration procedure that uses a small amount of labeled data in the target domain and generally im-
proves the performance of the transferred model. 

Second, we have proposed a novel, implicitly-supervised approach for learning confi-
dence annotation models (C2). Traditional supervised-learning techniques require a pre-existing 
corpus of labeled instances. This is often costly and labor intensive to acquire; furthermore super-
vised learning favors a batch approach that leads to fixed, un-adaptive solutions. We have proposed a 
novel approach (dubbed implicitly-supervised learning) in which no developer supervision is re-
quired. Instead, the system automatically extracts the required supervision signal online, from a cor-
rection pattern that naturally occurs in the conversation. In effect, the system can learn throughout 
its lifetime, from its own experience with the users. Experimental results in two different domains 
indicate that the proposed approach can attain 80% of the performance of a traditional, fully-
supervised model. We believe this novel learning paradigm can be applied in a number of other prob-
lems in spoken dialog (as well as other interactive systems) and constitutes an important step towards 
building autonomously self-improving systems. 

The third and perhaps central contribution this dissertation makes with respect to the prob-
lem of detecting misunderstandings is the development of a scalable data-driven belief updating 
framework (C3). We have seen that systems typically rely on confidence scores to form an initial 
assessment of the reliability of the information obtained from the speech recognizer. Ideally, spoken 
language interfaces should continuously monitor and improve the accuracy of their beliefs by inte-
grating evidence across multiple turns in a conversation. In this work, we formalize this belief updat-
ing problem, and propose a scalable, supervised-learning based solution. An empirical evaluation 
with a deployed spoken dialog system shows that the proposed approach constructs significantly 
more accurate beliefs than previous heuristic solutions and leads to large gains in both the effective-
ness and the efficiency of the interaction.  

§ Misunderstandings: recovery strategies 

Dialog systems typically rely on confirmation strategies to recover from potential misunderstandings. 
To gain a better understanding of these strategies, we have performed an empirical analysis of user 
responses to explicit and implicit confirmations (C4). We followed a methodology previously 
used in a similar study by Krahmer et al. [63]. Our results corroborate their previous observations in 
a different domain. They indicate that user responses to confirmation strategies cover a wide lan-
guage-spectrum, especially after implicit confirmations, and especially when the information to be 
confirmed is incorrect. Furthermore, we have found that users interact strategically with the system: 
often they will not correct the system following a confirmation strategy, unless the correction is es-
sential for the task at hand. These observations add to an existing body of knowledge regarding the 
functioning of these strategies, and shed more light on the challenges we face in developing accurate 
misunderstanding detection and belief updating mechanisms.  
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§ Misunderstandings: recovery policies 

The work described in this dissertation does not offer a direct contribution to the area of developing 
misunderstanding recovery policies. We shall note however that, the data-driven error-cost assess-
ment methodology developed in contribution C8 (see below) could be extended to infer costs for 
various confirmation actions. This methodology can therefore provide a more principled basis for 
tuning the confirmation thresholds that typically define misunderstanding recovery policies. 

§ Non-understandings: detection 

As we have previously noted, detection of non-understandings is in most cases trivial. There is one 
interesting exception – that of rejection non-understandings, i.e. situations in which the system pur-
posefully rejects an utterance because of a low confidence score. An interesting question in this case 
is what should the rejection threshold be? In this work, we propose a principled approach for de-
termining state-specific rejection thresholds (C5). The approach relies on a data-driven method-
ology for assessing the costs of errors, described in contribution C8. Experimental results confirm 
the intuition that different rejection thresholds should be used at different points in the dialog, cor-
roborating previous anecdotal evidence from observing the system.  

§ Non-understandings: recovery strategies 

The next contribution is an in-depth empirical investigation of 10 non-understanding recovery 
strategies (C6). The analysis focused primarily on identifying the relationships between each strategy 
and subsequent user responses and determining which user behaviors are more likely to lead to suc-
cessful recovery. In addition, we investigated the relative performance of various non-understanding 
recovery strategies, when engaged in an uninformed manner and when engaged using a “smarter” 
policy, implemented by a human operator in a wizard-of-oz setup. The results add to an existing 
body of knowledge about the relative advantages and disadvantages of these recovery strategies, and 
highlight the importance of good recovery policies.  

§ Non-understandings: recovery policies 

Developing good recovery policies is perhaps the most challenging task for non-understandings. This 
is especially difficult when the system is equipped with a large set of recovery strategies. In this dis-
sertation, we have proposed and evaluated a novel online-learning based approach for develop-
ing non-understanding recovery policies (C7). The proposed approach consists of two steps: 
first, we construct runtime estimates for the likelihood of success of each recovery strategy, together 
with confidence bounds for those estimates. Then, we use these estimates to construct a policy 
online, while balancing the system’s exploration and exploitation goals. Initial experiments in a de-
ployed spoken dialog system indicate that the proposed approach produces statistically significant 
improvements in the average non-understanding recovery rate. 

§ Infrastructure and other contributions 

In addition, this dissertation brings a number of other, cross-cutting contributions to the field of er-
ror handling in conversational spoken language interfaces.  

One such contribution is a novel data-driven approach for error-cost assessment (C8). 
The method relates the number of errors (of different types and at different points in the dialog) to a 
chosen global dialog performance metric. In the process, it allows us to infer the costs of these errors 
from data. Error-costs computed using this methodology in conjunction with data from a deployed 
dialog system corroborate our intuitions and our prior experience with this system. These costs are 
very useful for adjusting error handling behaviors. For instance, in contribution C5 we show how 
these costs can be used to determine state-specific rejection thresholds in a principled manner. More 
generally, we believe the proposed methodology can be applied to infer costs for various confirma-
tion actions; in turn, these costs can be used to infer confirmation thresholds and construct better 
misunderstanding recovery policies.  

The experimental platform for evaluating the solutions proposed in this dissertation consists 
of a number of real-world, deployed spoken language interfaces. These systems were constructed 
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using RavenClaw, a plan-based, task-independent dialog management framework (C9). Apart 
from supporting the error handling research program that constitutes the main focus of this disserta-
tion, RavenClaw represents an important contribution to the field of plan-based dialog management. 
The framework enforces a clean separation between the domain-specific and domain-dependent as-
pects of the dialog control logic, and in the process significantly lessens the system authoring effort. 
To date, RavenClaw has been used to build and successfully deploy a dozen spoken dialog systems 
spanning different domains and interaction-types [1, 13, 14, 47, 89, 90]. Together with these systems, 
RavenClaw provides a robust basis for other research projects addressing issues such as dialog man-
agement, timing and turn-taking [86] and multi-participant conversation [47].  

To support the error handling research described in this dissertation, we have developed a 
scalable, task-independent error handling architecture (C10) in the context of the plan-based 
RavenClaw dialog management framework. The proposed error handling architecture decouples the 
set of error handling strategies, as well as the mechanisms used for engaging them, from the domain-
specific aspects of the dialog control logic. This significantly lessens the development effort. System 
authors describe the domain-specific dialog control logic under the assumption that inputs to the 
system will always be perfect; the responsibility for ensuring that the system uses valid information 
and that the conversation advances normally towards its goals is delegated to the error handling 
mechanisms in the dialog engine. This decoupling facilitates the reuse of error recovery strategies and 
policies across domains and ensures uniformity and consistency in behavior both within and across 
domains. Although encapsulated approaches to error handling have been previously developed in 
different contexts, to our knowledge this is the first systematic, task-decoupled error handling archi-
tecture developed in the context of a complex, plan-based dialog management framework.  

§ Future directions  

The work described in this dissertation represents a concerted effort in the area of error recovery in 
conversational spoken language interfaces, within the confines of the research program we have pre-
viously outlined. At the same time, the proposed research program is by no means complete. Each of 
the contributions summarized above leaves a number of specific, follow-up questions. For instance: 
how can we generalize error detection models across different dialog domains? Can we further im-
prove the performance of the proposed belief updating models (C3) by using information from an n-
best list? Can we use the proposed data-driven error cost assessment models (C8) to develop misun-
derstanding recovery policies in a principled manner? Does the proposed online method for learning 
non-understanding recovery policy (C7) scale-up to even larger sets of recovery strategies?  

In addition, this work also raises a number of more general research questions. For instance, 
we believe that the implicitly-supervised learning paradigm proposed in contribution C2 is applicable 
in a number of other learning problems. We conjecture that this paradigm can enable significant 
autonomous learning both in spoken dialog systems and in the larger class of interactive systems in 
general. The confidence annotation experiments we have conducted using this methodology (C2) 
represent only the first step towards understanding the properties, advantages and limitations of this 
approach. A number of important research questions remain to be answered: how can systems effec-
tively exploit naturally-ocurring interaction patterns to acquire knowledge and improve their models 
online, through interaction? How can systems create such learning opportunities without having a 
negative impact on the interaction? How can systems automatically identify novel knowledge-
producing patterns in the interaction and thereby increase the range of learning opportunities? 

Another cross-cutting question regards the locality of the error handling process. In the 
work described in this dissertation, we have made the tacit assumption that error handling can be 
modeled as a (mostly) local process, and can be decoupled from the specific dialog task that the sys-
tem implements. This assumption facilitates the development of scalable, portable and reusable solu-
tions. At the same time, it introduces a number of limitations and drawbacks (we shall discuss these 
in more detail later.) In future work, it would be interesting to investigate more closely the impact of 
this assumption on the proposed solutions, both in terms of scalability and performance gains; an 
inherent trade-off between the two exists. 
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1.7 A reader’s guide 

This dissertation is organized into five parts. 

Part I contains preliminaries. After this introductory chapter, in Chapter 2 we discuss in 
more detail the two types of understanding-errors that commonly affect spoken language interfaces: 
misunderstandings and non-understandings. We investigate the main sources of these errors. Then, 
we introduce a data-driven error-cost assessment method (8), and use it to assess the impact of these 
errors on global dialog performance.  

Part II describes the infrastructure and experimental platforms used in the error handling 
research conducted in the rest of the dissertation. In Chapter 3 we outline the internals of the 
RavenClaw dialog management framework (9), and describe the various spoken language interfaces 
that have been developed using this framework. Next, in Chapter 4, we discuss the task-decoupled 
error handling architecture (10) in the RavenClaw dialog management framework, and explain how 
the rest of the work described in this dissertation fits into this architecture.  

Part III deals with misunderstandings.  It contains two chapters. In the first one, 
Chapter 5, we focus on the problem of turn level detection of misunderstandings (a.k.a. the problem 
of semantic confidence annotation.) We describe an in-depth investigation of four supervised-
learning techniques for this task (1) in the first part of this chapter; then, in the second part, we dis-
cuss a novel, implicitly-supervised learning approach for the same problem (2). Next, in Chapter 6, 
we introduce and formalize the problem of updating beliefs across multiple turns in spoken language 
interfaces. We propose a scalable data-driven solution for this problem (3), and discuss empirical re-
sults using the proposed approach in a deployed spoken dialog system. In order to better portray the 
challenges we face in the belief updating task, we also report in this chapter results from an empirical 
analysis of user responses following two strategies used to recover from misunderstandings: explicit 
and implicit confirmation (4). 

Part IV deals with non-understandings. The topic for Chapter 7 is detection of (rejec-
tion) non-understandings. More specifically, we propose a principled approach for determining state-
specific rejection thresholds (5). We extend the data-driven error-cost assessment method introduced 
in Chapter 2 to include state distinctions (8). In Chapter 8 we focus our attention on non-
understanding recovery strategies and policies. In the first part of this chapter we present an in-depth 
investigation of ten non-understanding recovery strategies (6), focused on understanding the relation-
ship between each strategy and follow-up user responses. We then propose and evaluate a novel, 
online approach for learning non-understanding recovery policies over a large set of recovery strate-
gies (7).  

Part V summarizes the contributions and presents directions for future research. The 
dissertation document ends with a conclusion chapter, in which we briefly summarize the main con-
tributions of this work, the lessons learned, and we outline a number of interesting directions for 
future research. 

 





 

Chapter 2  

Understanding-errors in  
spoken language interfaces 

In the previous chapter we have introduced two types of understanding-errors that 
commonly affect spoken language interfaces: misunderstandings and non-under-
standings. In this chapter we analyze these errors in more detail. We begin by defin-
ing the terms misunderstanding and non-understanding more precisely in the first 
section. Then, in the second and third sections of this chapter we investigate the 
main sources of these errors and empirically assess their impact on global dialog 
performance.  

2.1 Misunderstandings and non-understandings 

Left unchecked, speech recognition errors can lead to two types of understanding-errors in spoken 
language interfaces: misunderstandings and non-understandings. In this section we will take a closer 
look at these two types of errors. We begin by describing a typical input processing architecture in a 
spoken language interface. Next, we provide precise definitions for misunderstanding and non-
understanding errors and we introduce a number of related issues, such as confidence scores, rejec-
tions, and the misunderstanding / non-understanding trade-off. Then, in the next section, 2.2, we 
analyze the main sources of these understanding-errors. Finally, in section 2.3 we evaluate their im-
pact on overall dialog performance and in section 2.4 we summarize the results we have found and 
present concluding remarks. 

2.1.1 Input processing in spoken language interfaces 
Spoken language interfaces typically process the user input in several consecutive stages. A classical 
pipelined input processing architecture is depicted in Figure 6. The main components are a speech 
recognition component, a language understanding component and the dialog manager.  

To illustrate these processing stages, imagine the following exchange with a spoken dialog 
system that performs conference room reservations: the system asks “At what time do you need the 
room?”, and the user responds “until two p.m.”. The audio signal captured through a microphone (or 
telephone, etc.) serves as input to the speech recognition component. The recognizer decodes this 
audio signal and generates a recognition hypothesis for the user’s response (“two p.m.” in this case). 
Typically, speech recognition engines use end-pointers to perform speech and silence detection and 
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to segment the incoming audio signal into individual user utterances.  

The recognition hypothesis is then forwarded to a language understanding component that 
constructs a semantic representation from the recognition result. Typically, either a frame (consisting 
of an attribute-value list and potentially an identifier) [84] or a logical form [33] is used to capture the 
semantics of the user’s response. In the example from Figure 6, the semantic representation of the 
user input is an attribute-value combination: [time=2pm]. 

The semantic representation is then forwarded to the dialog manager, where it will be inter-
preted in the larger discourse context. For instance, in our example, the dialog manager knows that it 
had previously asked for the end time for the reservation, and consequently the [time=2pm] seman-
tic input corresponds to [end_time=2pm] at the discourse-level. If the same answer had been re-
ceived when the system asked for the start time, the discourse-level interpretation would have been 
different, i.e. [start_time=2pm]. 

The input processing line described above is typical for most spoken language interfaces. 
Nevertheless, differences might exist across various systems. Some systems use push-to-talk solutions 
to avoid end-pointing problems (e.g. systems that operate in open, noisy environments, or where no 
close-talking microphones are available). In these cases an end-pointer is not required. Some systems 
might use context free grammars instead of statistical n-gram language models. The same grammar 
that is used for recognition can in this case also be used for language understanding. The discussion 
that follows in the rest of this chapter as well as the rest of the work in this dissertation assumes the 
input processing architecture illustrated in Figure 6. However, most conclusions remain valid and 
most results remain applicable under small deviations from this architecture, like the ones mentioned 
above.  

Errors can occur in any of the input processing stages described above. In Section 2.2 we 
analyze in more detail how understanding-errors come into being. For now, we focus our attention 
on the final product of the input processing stage, i.e. the discourse-level interpretation, illustrated in 
the grayed box in Figure 6. By definition, we say that an understanding-error occurs when the dis-
course-level interpretation constructed by the system does not match the user’s expressed 
intent. This can happen in two ways: (1) the system constructs an incorrect discourse-level interpre-
tation of the user’s turn, or (2) the system fails altogether to construct a discourse-level interpretation. 
These two failure modes correspond to the two main types of understanding-errors affecting spoken 
language interfaces: misunderstandings and non-understandings.  

If the system’s discourse-level interpretation matches the user’s expressed intent, we say that 
we have a correct understanding. Note that correct understanding can happen even in the presence 
of some input processing errors. For instance in the example given in Figure 6, the speech recogni-
tion component incorrectly misrecognized “two p.m.” instead of “until two p.m.”; nevertheless the 
final, discourse-level interpretation constructed by the system, [end_time=2pm], matches the user’s 
expressed intent.  

[time=2pm] 

Figure 6. Typical input processing line in a spoken language interface 
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2.1.2 Misunderstandings  
By definition, we say that a misunderstanding-error (or misunderstanding in short) happens 
when the system constructs an incorrect discourse-level interpretation of the user’s turn. 
Figure 7 shows two examples. In the first example, the recognition engine misrecognized “Tuesday” 
instead of “Thursday”. The recognition hypothesis is still semantically coherent. The language under-
standing module creates a corresponding semantic representation and forwards it to the dialog man-
ager. The dialog manager integrates this incorrect information into the discourse structure, and con-
tinues the dialog. The system is not aware that a misunderstanding has occurred. In this first exam-
ple, neither is the user. Several turns can pass until the user will finally notice that the system misun-
derstood. The user detects the misunderstanding only when the system echoes back the incorrect 
information (e.g. in turn 5 in our example), or presents some other information from which the user 
can infer that the system had misunderstood. In some cases, a misunderstanding might go unnoticed 
throughout the whole conversation.  

In the second example, the user response, “guest user” is misrecognized as “next Tuesday”. 
Again, a coherent semantic interpretation is formed and the system believes that the user wants to 
change the date for the reservation to next Tuesday. Next, the system acts based on this incorrect 
information, and presents a new list of rooms to the user. In this case the user is able to detect im-
mediately that the system misunderstood because the system immediately echoed back the informa-
tion it thought it heard (turn 3.)  

To guard against misunderstandings, spoken dialog systems typically rely on recognition con-
fidence scores. Besides the recognition hypothesis, most speech recognizers also output a score (gen-
erally between 0 and 1), that reflects the estimated accuracy of the recognition result. This confidence 
score can be used by a spoken language interface to make error handling decisions. For instance, if 
the system is not very confident about a particular result, it might decide to ask the user to confirm 
that information, or even ignore (reject) it altogether. Note that confidence scores do not perfectly 

Example 1: (misunderstanding in turn 2) 
1 S: Welcome to RoomLine, the automated conference room reserva-

tion system. How may I help you? 

2 U: I need a reservation for next Thursday 

  R: I NEED A RESERVATION FOR NEXT TUESDAY / 0.68 

  P: [date=next Tuesday] 

3 S: Okay, for what time do you need the room? 

4 U: two to four p.m. 

  R: TWO TO FOUR P.M. / 0.88 

  P: [start_time=2pm, end_time=4pm] 

5 S: Let’s see ... I found four room available Tuesday, June 27th 

between two and four p.m. Would you like a small room or a 

large one? 

 

Example 2: (misunderstanding in turn 2) 
1 S: Could I have your name please? If you are not registered 

with the system, just say ‘guest user’. 

2 U: guest user 
  R: NEXT TUESDAY / 0.51 

  P: [date=next Tuesday] 

3 S: a room for Tuesday, June 27th ... I found three rooms avail-

able for Tuesday, June 27th between 2 and 4 p.m. Would you 

like a small room or a large one? 

 
Figure 7. Example misunderstandings in a conference room reservation system 

(S: marks the system turns, U: marks the user turns, R: marks the recognition result, P: marks the 
semantic representation of the recognition result) 
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reflect the system’s recognition performance, as our examples illustrate. If the confidence scores were 
perfect, no misunderstandings would ever happen. Specifically, misrecognitions might happen, but 
the dialog manager would be aware of them and would avoid integrating incorrect information into 
the discourse. In Chapter 5 we discuss several methods for constructing accurate confidence scores. 
For now, it suffices to say that confidence scores are available in most systems, they are more or less 
accurate, and that they can be used to guard against misunderstandings.  

2.1.3 Non-understandings  
We now turn our attention to non-understandings. By definition, we say that a non-understanding-
error (or non-understanding in short) happens when the system fails to construct a discourse-
level interpretation for the user’s turn6. Figure 8 provides a number of examples. For instance, in 
the first example, the user response “two” was incorrectly recognized as “do you”. The language un-
derstanding module was not able to construct a semantic interpretation for this recognition hypothe-
sis. As a result, an empty semantic frame was forwarded to the dialog manager. The dialog manager 
was aware that the user said something, but did not obtain any semantic representation for this turn. 
As a result, the dialog manager was not able to form a meaningful interpretation of the user’s turn at 
the discourse level. We call this a no-input non-understanding, since the dialog manager does not 
receive a semantic interpretation for the user’s utterance.  

Depending on the amount and the type of information that the dialog manager receives 
from the language understanding component, two other types of non-understandings can be defined: 
unexpected-input non-understandings, and rejection non-understandings.  

An unexpected-input non-understanding occurs when the language understanding compo-
nent generates a semantic representation, but the dialog manager cannot incorporate it into the cur-
rent discourse structure. The second example in Figure 8 shows an unexpected-input non-
understanding. The user response “large” was incorrectly recognized as “March”. The language un-
derstanding component constructed a corresponding semantic representation [month=March], and 
forwarded it to the dialog manager. However, the dialog manager did not expect to hear a date at this 
point in the dialog, and therefore could not incorporate this answer in the discourse structure. Like in 
the first case, no discourse level interpretation was generated for the user’s turn.  

The third type of non-understanding, rejection non-understanding, occurs when the system 
deliberately rejects an input because of a low confidence score. Take for instance the third example in 
Figure 8. Although the language understanding component generated a semantic input that could be 
integrated in the current context, the system decided to reject it because of a low recognition confi-
dence score. In effect, a non-understanding error was deliberately created by the system, in order to 
avoid a potential misunderstanding. Note however that a low confidence score (as in example 3) does 
not necessarily mean that the recognition result (or the constructed semantic representation) was in-
correct – confidence scores do not always reflect the accuracy of the system understanding. As a re-
sult, sometimes the system might incorrectly reject an accurate semantic input, such as in the example 
above. In this case, we say we have an incorrect- or false-rejection. In contrast, if the system rejects 
an inaccurate semantic representation, then we have a correct- or true-rejection.  

In the sequel, we will use the term genuine non-understanding to denote no-input and 
unexpected input non-understandings, and distinguish them from rejection non-understandings. In 
the first two cases, the system is not able to form a meaningful discourse-level interpretation of the 
user’s utterance. In the last case, the system is able to form an interpretation, but actively chooses not 
to; the system creates a non-understanding in order to avoid a potential misunderstanding.  

                                                      
 
6 Note that our term non-understanding is different from not-understanding, as used by McRoy and Hirst in [73]. In their 
work, McRoy and Hirst define not-understanding as “a participant’s failure to obtain any complete and unique interpreta-
tion of an utterance”. A not-understanding therefore can happen if the participant cannot obtain an interpretation (same as 
our non-understanding), but also if a participant obtains an interpretation that is either incomplete or ambiguous.  
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2.1.4 The misunderstandings / non-understandings trade-off 
Whenever used, the rejection mechanism described above introduces a trade-off between misunder-
standings and non-understandings. Generally, systems decide whether or not to reject an utterance by 
comparing the confidence score against a preset rejection threshold. By changing this threshold, the 
system can change the relative proportions of misunderstandings and non-understandings that occur 
in the conversation. Figure 9 illustrates this trade-off. As the rejection threshold increases from 0 (no 
rejections) to 1 (all utterances are rejected) the misunderstanding error rate (i.e. the proportion of 
misunderstandings in a conversation) decreases from a maximum value to 0%. At the same time the 
non-understanding error rate increases from an initial non-zero value (due to no-input and unex-
pected-input non-understandings) to 100%. Later on, in Chapter 7, we discuss this trade-off in more 
detail and present a data-driven approach for optimizing dialog-state specific rejection thresholds 
with respect to a chosen global performance metric.  
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Figure 9. Trade-off between misunderstandings and non-understandings (as a function of rejection 
threshold) in a conference room reservation system 

Example 1: (no-input non-understanding in turn 2) 
1 S: Until what time will you need this conference room? 

2 U: two 

  R: DO YOU / 0.33 

  P: [] 

 

Example 2: (unexpected-input non-understanding in turn 2) 
1 S: I found four rooms available in Wean Hall. Would you like a 

small room or a large one? 

2 U: large  

  R: MARCH / 0.45 

  P: [month=March] 

 

Example 3: (rejection non-understanding in turn 2) 
1 S: How else can I help you today? 

2 U: I need to make sure the room will hold forty people and has a network connection and a 

data projector 
  R: I NEED TO RESERVE A ROOM FOR HOLD FORTY PEOPLE AND HAS A  

   NETWORK CONNECTION BENNETT DATA PROJECTOR / 0.14 
  P: [size=40, equipment=network;projector] 

Figure 8. Example non-understandings in a conference room reservation system (S: marks the system 
turns, U: marks the user turns, R: marks the recognition result, P: marks the semantic representation of 

the recognition result) 
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2.2 Sources of understanding-errors  

In the previous section, we have defined precisely two types of understanding-errors commonly en-
countered in spoken language interfaces: non-understandings and misunderstandings. We now turn 
our attention to the main sources of these errors. We describe a four-level model for error-source 
analysis and empirically analyze the distribution of error sources in two deployed spoken dialog sys-
tems.  

2.2.1 A four-level model for error source analysis 
As a starting point for the error source analysis, we used Clark’s model of grounding in human-
human communication [27]. In Clark’s model, participants in a conversation (let’s call them A and B) 
collaborate and coordinate on four different levels to establish mutual ground. At the first level, the 
“pre-linguistic, or nonlinguistic level” (channel) A executes a behavior t, and B attends to it. At the 
second level (or the signal level) A conveys a linguistic signal s to B and B identifies this signal. At the 
third level (intention), A is signaling a certain intention p to B, and B is understanding A’s intention. 
Finally, at the last level (conversation), A is proposing a collaborative activity w to B, and B is consider-
ing A’s proposal. 

Clark’s original grounding model has already been used as a basis for error classification in 
the context of human-machine interaction. In [81], Paek uses Clark’s model as the starting point for 
constructing a unified taxonomy of communication errors. Paek argues that various classifications of 
communication errors have been proposed in different disciplines (e.g. conversation analysis, second 
language acquisition, computational linguistics, etc), but that little effort has been made to compare 
and contrast those classifications. Paek’s proposed taxonomy is anchored in Clark’s model and aims 
to bridge insights from different areas of research into an interdisciplinary approach. In [109], 
Schlangen also uses Clark’s model as a basis for identifying possible causes for requesting clarifica-
tions in dialog. Schlangen argues that the distinctions made by Clark’s model are still fairly coarse-
grained and he suggests a further decomposition of the third level.  

In this work, we use Clark’s model and Paek’s taxonomy as starting points. In addition, we 
make the observation that a mapping (or correspondence) can be established between: (1) the four 
levels of grounding in Clark’s model, (2) the flow of information from the user to the system, and (3) 
the various components in the system’s input processing line. This correspondence is illustrated in 
Figure 10. At the conversation level, the user has a high-level goal (w). Subsequently this goal acquires 
a corresponding semantic (p), lexical (s) and eventually an acoustic (t) representation in the lower 
levels. The acoustic signal then passes through a noisy channel, and arrives at the system side. Here, a 
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series of chained components – end-pointer, speech recognition, language understanding, and dis-
course interpretation – are used to progressively reconstruct the user’s higher level goal from the in-
coming acoustic signal. 

Understanding-errors typically occur when a mismatch happens (on a certain level) between 
the expressed form of the user’s intent and the system’s modeling and/or recognition abilities. For 
example, at the conversation level, the user might not be aware of the system’s scope and limitations 
and might start off with a goal which the system cannot handle. For instance the user might ask if a 
certain room has windows in a conference room reservation system. In this situation, because the 
system does not model this type of query, it will be impossible to correctly reconstruct the user’s goal 
(w); an understanding-error will be inevitable. Similarly, at the signal level, mismatches between a 
user’s pronunciation style and the system’s acoustic models can lead to speech recognition errors, 
and ultimately to understanding-errors.  

This view of understanding-errors highlights two complementary approaches that can be 
used to mitigate the mismatches. The first approach is to create models that provide better coverage, 
while still maintaining good performance (i.e. enlarge the ovals in Figure 10). For instance, at the sig-
nal level, we could expand the system’s language (and acoustic) models to capture more variability in 
the user’s speech. The second approach is to steer the user’s responses into the space covered by the 
system’s models. For instance, carefully designed “you-can-say” help prompts can inform users about 
the best (in-language-model) way to express a request. Both approaches pose their own sets of chal-
lenges. Enlarging the system’s models raises difficulties in preserving system performance since rec-
ognition is a search problem: a larger search space in general leads to more difficult problem. Shaping 
the user’s responses is not an easy task either. Finding the best ways for entraining the users, without 
increasing frustration is an active research area [123]. In general, this type of approach can be used to 
address “language domain” problems, such as ungrammatical [123], out-of-domain, or out-of-
application scope utterances. Acoustic and channel-level problems are harder to address in this 
framework (how can we entrain someone to speak without an accent?) 

Coming back to the error source analysis, we identify four major sources of errors, based on 
the level at which the mismatch occurs:  

• Out-of-Application (OOA) [Conversation Level]: The user’s utterance falls outside the 
application’s functionality. These errors can be further divided into out-of-domain ut-
terances (e.g. the user asks the room-reservation system about the weather), and out-of-
application-scope utterances, i.e. utterances that express in-domain goals but which the 
system is however not able to handle (e.g. the user asking for an uncovered bus route in 
a bus information system.) 

• Out-of-Grammar (OOG) [Intention Level]: The user’s utterance is within the domain 
and scope of the application, but outside of the system’s semantic grammar (e.g. the user 
says “erase reservation”, which is not in the system’s grammar; the system could have 
handled the request had the user said “cancel reservation” or “delete reservation”, which are 
in the system’s grammar.) 

• ASR Error (ASR) [Signal Level]: The user’s utterance is within the application’s do-
main, scope and grammar, but is not recognized correctly due to acoustic or statistical 
language modeling mismatches (e.g. the user says “Thursday morning” but this is mis-
recognized as “Friday morning”.) 

• End-pointer Error (END) [Channel Level]: The end-pointer is not able to correctly 
segment the incoming audio signal (e.g. it truncates the utterance or sends an empty ut-
terance into the input line.)  

We used this taxonomy to label the sources of misunderstandings and non-understandings in 
two different spoken dialog systems: RoomLine and the Let’s Go! Public Bus Information System. 
The empirical results are discussed below. 
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2.2.1.1 Empirical error source analysis in the RoomLine domain 

We first analyzed the sources of misunderstandings and non-understandings in a corpus collected 
with RoomLine, a deployed spoken dialog system that provides access to conference room schedule 
information and allows users to make conference room reservations. The system has access to live 
schedules for 13 conference rooms in 2 buildings on the CMU campus, and to the various character-
istics of these rooms such as location, size, network access, whiteboards, and audio-visual equipment. 
To perform a room reservation, the system finds the list of rooms that satisfy an initial set of user-
specified constraints. Next, RoomLine presents this information to the user, and engages in a follow-
up negotiation dialog to identify which room best matches the user’s needs. Once the desired room is 
identified, registered users can authenticate using a 4-digit touch-tone PIN, and the system performs 
the reservation through the campus-wide CorporateTime calendar server. More details about this 
system are presented later, in Chapter 3, subsection 3.4.1.  

The corpus used for the error source analysis was collected during a user study with this sys-
tem, described in detail in Chapter 8, subsection 8.3.1. Here, it suffices to say that the experiment was 
a controlled user study in which first-time users performed up to 10 scenario-based interactions with 
the system. We used for our analysis a portion of this corpus (collected in the control condition of 
the above-mentioned experiment) containing 226 dialogs and 4012 user utterances. Each misunder-
standing and non-understanding in the corpus was manually annotated with a tag indicating the error 
source, according to the classification scheme described we have previously described. 

The breakdown of misunderstandings and non-understandings by error source is shown in 
Table 2 and illustrated in Figure 11. Most errors (62% of non-understandings and 84% of misunder-
standings) originate at the signal or speech recognition level. At the same time, a large number of 
non-understandings, and a smaller but still significant number of misunderstandings are caused by 
out-of-application and out-of-grammar utterances, as well as end-pointing errors.  

The out-of-application errors encountered in the RoomLine data consist almost entirely of 
out-of-application-scope utterances. These utterances are in-domain, but they refer to inexistent ap-
plication functionality (We believe that the lack of out-of-domain utterances is most likely due to the 
scenario-driven nature of the interactions; participants in the experiment were given a brief explana-
tion about the system prior to the interaction.) A closer inspection of the out-of-application-scope 
utterances revealed that they subsume roughly equal numbers of requests for inexistent task-level 
functionality (e.g. “I need a room for Monday or Tuesday” – the system does not handle “or” requests), 
and requests for inexistent meta functionality, such as “go back!” or various types of corrections (e.g. 
“You got the wrong day!”, “Change the date!”, “The time is wrong”, etc.)  

Together with the out-of-grammar utterances, the out-of-application utterances reflect one 
facet of an existing mismatch between user and system at the intention and conversation levels. A 
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Figure 11. Error sources for non-understandings and 
misunderstandings in the RoomLine system 

Table 2. Error sources for non-
understandings and misunderstandings in 

the RoomLine system 

 Non-
understandings 

Mis-
understandings 

OOA 16.8% 6.7% 
OOG 15.3% 6.1% 

ASR 62.2% 84.5% 

END 5.7% 2.7% 

TOTAL 100% 100% 
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second interesting facet, revealed through an analysis of the transcripts, is that there are certain as-
pects of system functionality which are never (or very rarely) addressed by the users. For instance, 
although the users were told during the pre-experiment briefing that they can say “Help” to the sys-
tem at any point in time, this function was invoked in only in 7 of 226 sessions. Other types of help 
commands like “where are we?”, “what can you do?”, “what can I say?”, “interaction tips”, although available 
at all times, were not discovered by the users and therefore were never used. We found similar exam-
ples with respect to task-level functionality for commands like “tell me all the rooms”, “I want a smaller / 

larger room”, “I don’t care” (about room size), “how big is this room”, “tell me about this room”, etc. Based 
on these observations, we conjecture that, apart from out-of-grammar errors, users are also not 
aware of the full functionality of the application. The fairly large number of out-of-application and 
out-of-grammar utterances suggests that the number of non-understandings could be reduced by 
better informing the users about the application capabilities and boundaries as well as directing them 
into this space. How exactly this shaping can be performed remains an active research issue [123].  

The majority of non-understandings – 62% (and even more so for misunderstandings – 
84%) originate at the speech recognition level. Although a large number of contributing factors can 
be identified, precise blame assignment is harder to perform. For instance, non-native accents have a 
significant impact on ASR performance: average word-error-rate was 20.7% for natives, versus 
42.3% for non-natives in this experiment. Ambient noises also have a pronounced effect on recogni-
tion performance: average word-error-rate for noisy utterances was 32.8%, significantly larger than 
25.1% for noise-free utterances (the percentages were computed based on noise labels present in the 
ortographic transcription of the user utterances.) Other factors, such as speaking rate, user frustra-
tion, hyper-articulation, have also been shown to correlate well with recognition accuracy [25]. 

Finally, a small proportion of the non-understandings (6%) and misunderstandings (3%) in 
the RoomLine corpus were caused by end-pointing errors. In most of these cases the end-pointer 
prematurely (and therefore falsely) detected an end-of-utterance, chopping the user’s turn into two 
parts and leading to an understanding-error.  

In Figure 12 and Table 3 we also show how often each of the four error sources led to mis-
understandings and non-understandings. Out-of-application, out-of-grammar and end-pointing er-
rors lead in roughly equal amounts to both misunderstandings and non-understandings. At the same 
time, three out of four (more precisely 72%) of the signal-level (or speech recognition) errors lead to 
misunderstandings, while only one out of four results in a non-understanding.  
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 OOA OOG ASR END 

Misunderstandings 42.4% 42.6% 71.6% 46.5% 

Non-understandings 57.6% 57.4% 28.4% 53.5% 

TOTAL 100.0% 100.0% 100.0% 100.0% 

 

Figure 12. Percentages of utterances within each error source that lead to misunderstandings and 
non-understandings 

Table 3. Percentages of utterances within each error source that lead to misunderstandings and non-
understandings 
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§ Rejection non-understandings 

So far the discussion has focused on genuine non-understandings, i.e. situations in which the in-
put is corrupted to the point that the system is no longer able to construct a meaningful discourse-
level interpretation of the user’s turn. However, as we have seen in subsection 2.1.3, the dialog man-
ager also uses rejections to guard against potential misunderstandings: if the system obtains an inter-
pretation of the user’s input, but the confidence score is below a preset threshold, then the utterance 
will be rejected. Figure 13 illustrates the ratios of non-understandings and misunder-standings, as 
computed before and after the rejection mechanism. After rejections, the total ratio of non-
understandings grows by 7.1% absolute from 10.1% to 17.2%. About 40% of the rejections (2.9% of 
the total number of turns, and 17% of the total number of non-understandings) are false-rejections, 
i.e. utterances correctly understood but falsely rejected because of a low confidence score. The rela-
tively high false rejection rate contributes significantly to the total number of non-understandings, 
which is on par with other sources of errors. The false-rejection rate can be lowered by building bet-
ter confidence annotators, or by tuning the rejection threshold to the domain. 

Overall, the current limitations in the speech recognition technology seem to be the most 
important source of misunderstandings and non-understandings. Out-of-application and out-of-
domain utterances were a second important source of errors, followed by end-pointer errors and 
false-rejections.  

2.2.1.2 Empirical error source analysis in the Let’s Go! Public domain 

In an effort to create a more comprehensive picture and to understand how well the observations we 
made above generalize to other domains, we conducted a second analysis based on data from an-
other deployed spoken dialog system: the Let’s Go! Public Bus Information system [88, 89]. Let’s 
Go! public  is a telephone-based spoken dialog system that provides access to bus route and schedule 
information. The system knows about 12 bus routes, and 1800 place names in the greater Pittsburgh 
area. In order to provide bus schedule information, the system tries to identify the user’s departure 
and arrival stop, and the departure or arrival time. Once the results are provided, the user can ask for 
the next or previous bus on that route, or can restart the conversation from the beginning to get in-
formation for a different route. In contrast to the RoomLine system, Let’s Go! Public has a system-
initiative interaction style.  

The system is connected live to the Port Authority of Pittsburgh customer service line dur-
ing non-business hours; the corpus we analyze here was collected during one of the first weeks of 
deployment, and consists of 186 calls (2968 utterances) from users with real needs (in contrast to the 
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scenario driven interactions from the RoomLine domain.)  

The breakdown of misunderstandings and non-understandings by error source in the Let’s 
Go! Public data is shown in Table 4.A and Figure 14.A. For comparison purposes, we show again the 
same results for the RoomLine data in Table 4.B, Figure 14.B. The breakdown of misunderstandings 
and non-understandings in the four different error sources is similar across the two systems. In both 
cases, the largest proportion of errors is caused by signal-level (i.e. speech recognition) errors. In 
both cases, this proportion is larger in the case of misunderstandings. Out-of-application and out-of-
grammar errors contribute in about equal proportions to the overall number of misunderstandings 
and non-understandings in both domains.  

Despite the similarity in the proportion of out-of-application utterances, the breakdown of 
these errors into out-of-application-scope and out-of-domain utterances is different. In the previous 
section, we have seen that in the RoomLine data most of the out-of-application errors were out-of-
application scope. The lack of out-of-domain utterances in the RoomLine data was explained by the 
scenario driven nature of the interactions and the controlled experiment aspects of the data collec-
tion process. In contrast, in the Let’s Go! Public data the largest number (65%) of out-of-application 
utterances are out-of-domain utterances. They generally contain various remarks and expressions of 
frustration, or user speech that is not directed to the system. The out-of-application-scope utterances 
mostly contain bus routes or bus stop addresses that are not covered by the system. 

The most striking difference between the two domains regards the proportion of under-
standing-errors caused by end-pointing errors (see Figure 14 and Table 4.) The numbers are signifi-
cantly larger in the Let’s Go! Public domain: 19.3% versus 5.7% of the non-understandings and 9.5% 
versus 2.7% of misunderstandings. We believe the difference is explained by the more adverse envi-
ronmental conditions in which the Let’s Go! Public system operates. The system receives calls at 
night (during non-business hours) from users with real-needs. Oftentimes, the calls are made from 
public phones or cellular phones on the street. As a consequence, there is a much larger variability in 
this corpus in terms of environmental noise, quality of input channel, as well as speaking style. Anec-

 Non-
understandings 

Mis-
understandings 

OOA 16.8% 6.7% 
OOG 15.3% 6.1% 

ASR 62.2% 84.5% 

END 5.7% 2.7% 

TOTAL 100.0% 100.0% 

 

Table 4. Error sources for non-understandings and misunderstandings in the Let’s Go! Public and 
RoomLine systems 

 Non-
understandings 

Mis-
understandings 

OOA 14.4% 10.7% 
OOG 11.3% 6.3% 

ASR 55.0% 73.5% 

END 19.3% 9.5% 

TOTAL 100.0% 100.0% 
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Figure 14. Error sources for non-understandings and misunderstandings in the Let’s Go! Public and 
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dotally, we have observed a large number of turn-overtaking problems, i.e. situations in which the 
user and the system barge-in on each other. Overall, end-pointing is a more challenging problem in 
the Let’s Go! Public domain.  

We again analyzed how often each error source leads to misunderstandings and non-
understandings. The results for the two domains are shown in Figure 15. The pattern that emerges is 
similar across the two domains: signal-level errors lead more often to misunderstandings than to non-
understandings; in comparison, out-of-application, out-of-grammar and end-pointer errors lead to 
roughly equal amounts of misunderstandings and non-understandings. 

In summary, a number of similarities in the distribution of various sources of errors was 
found across the two domains. In both datasets, the largest proportion of understanding-errors is 
caused by speech recognition (i.e. signal-level) errors. This proportion is larger in the case of misun-
derstandings (conversely, signal-level errors lead more often to misunderstandings than to non-
understandings). Language domain-errors, such as out-of-application and out-of-grammar utterances, 
contribute in a smaller but still significant proportion to the overall number of errors. At the same 
time, domain-specific differences can also be identified. For instance, we have seen a significantly 
larger number of end-pointing and out-of-domain errors in the Let’s Go! Public system, caused ulti-
mately by a more challenging operating environment.  

The empirical analysis of error sources described in this section confirms the anecdotal ob-
servation that the speech recognition layer constitutes one of the main sources of errors in spoken 
language interfaces. At the same time, the differences observed across the two datasets indicate that a 
system-specific analysis of error sources can more accurately point to certain trouble spots, and help 
focus development and tuning efforts (e.g. a better end-pointing algorithm would probably lead to 
significant performance increases in the Let’s Go! Public domain.) 

2.3 Impact of understanding-errors on dialog performance 

In the previous two sections in this chapter we have introduced two types of understanding-errors 
that commonly affect spoken dialog systems (i.e. misunderstandings and non-understandings), and 
investigated the main sources of these errors. We now turn our attention to a second important ques-
tion: what is the impact of these understanding-errors on overall dialog performance? 

Understanding-errors clearly obstruct the normal progress of a conversation. During non-
understandings, the system fails to construct a discourse-level interpretation of the user’s turn. No 
useful information is acquired by the system, and no progress is made. During misunderstandings, 
the system acquires incorrect information, which will have to be corrected later. In general, under-
standing-errors lead to longer dialogs and increased user frustration. When present in large numbers, 
they lead to total communication breakdowns. Intuitively, these errors clearly exert a significant nega-
tive impact on system performance. However, we would like to be able to better qualify and quantify 
this effect.  
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Figure 15. Percentages of utterances within each error source that lead to misunderstandings and non-
understandings in the Let’s Go! Public and RoomLine systems 
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In this section, we present a data-driven method for quantitatively assessing the impact of 
understanding-errors on global dialog performance. We show that misunderstandings and non-
understandings have different dialog costs, and that these costs vary across domains and systems. 
The proposed analysis technique allows us to infer the costs from data, and provides a detailed view 
of the impact of understanding-errors on performance.  

2.3.1 A data-driven approach for error-cost analysis 
We introduce the proposed approach with an example. Suppose we are interested in assessing the 
impact of misunderstandings and non-understandings on the probability of task success7. To per-
form this assessment we construct a regression model that relates the ratio of misunderstandings and 
non-understandings in the dialog to overall task success. Each data-point in the model corresponds 
to a dialog session. The independent variables will be the misunderstanding error rate (%MIS in the 
sequel) and the non-understanding error rate (%NONU in the sequel). These variables are computed 
for each session. The dependent variable in the regression model is a task success indicator (TS). 

NON%MIS%TS +←  

The type of regression used should be adapted to the underlying distribution for the de-
pendent variable. In this case, since task success is a binary measure (0 marks a failed dialog, 1 marks 
a successful dialog), a logistic regression model is appropriate. The model is: 
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Alternatively, if we were interested in studying the effect on task duration (TD), measured as 
turns to completion, a Poisson model would be more appropriate: 

NON%MIS%)TDlog( ⋅γ+⋅β+α=  

Once the model is fit, the regression coefficients characterize the impact of misunderstand-
ings and non-understandings on performance. Assume for instance that we find the following fit 
(this in fact is the fit obtained in the RoomLine domain, and described in more detail in the next sub-
section):  
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The regression coefficients indicate that both misunderstandings and non-understandings 
exert a significant effect on performance, and that misunderstandings are about three times more 
costly than non-understandings in this domain (i.e. -11.28 versus -4.36).  

The proposed analysis technique bears similarities to the PARADISE evaluation framework 
[127, 128]. In both cases, multivariate regression models are used to model relationships between 
various factors and overall dialog performance. PARADISE posits user satisfaction as the overall 
evaluation criterion, and uses two types of factors to predict user satisfaction: on one hand task suc-
cess, and on the other hand a battery of other factor modeling interaction costs (e.g. word-error-rate, 
barge-ins, etc.) In our proposed methodology, we focus on identifying the relationship between un-

                                                      
 
7 Depending on the domain, different global dialog performance metrics might be of interest. For instance, in a tutoring 
spoken language interface learning gains would be a more appropriate metric. The error cost analysis method presented in 
this section can be applied with respect to any global performance metric. 
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derstanding-errors and global objective performance metrics such as task success and task duration. 
The relationship to subjective dialog performance metrics could also be investigated in the same 
manner. The analysis would be however more difficult from a practical standpoint: subjective met-
rics, such as survey-elicited user-satisfaction scores, can be strongly influenced by a number of other 
random factors, such as user expectations and previous experiences using language technology. In 
the absence of good normalization techniques [48], or large amounts of data, this increases the diffi-
culty of teasing appart the effects of various understanding-errors.  

Next, we discuss empirical results obtained by applying the proposed approach in two spo-
ken dialog systems: RoomLine and the Let’s Go! Public Bus Information System. 

2.3.1.1 Experimental results in the RoomLine system 

We first used the proposed approach to assess the impact of non-understandings and misunderstand-
ings on global dialog performance in the RoomLine domain. The analysis was based on data col-
lected in the same user study we mentioned above. The collected corpus contained 449 dialogs. We 
eliminated sessions with less than 3 turns and sessions with differences between perceived and objec-
tive task completion. The final corpus contained 411 dialogs. The average task success rate in this 
corpus was 81.27%. 

We began by investigating the impact of misunderstandings on the probability of task suc-
cess. The independent variable is the misunderstanding error rate (%MIS). The dependent variable is 
the binary task success (TS). Table 5 shows the result of the fit. The model confirms that misunder-
standings exert a significant negative impact on the probability of task success: the regression coeffi-
cient for %MIS is negative, -12.13, and statistically significant, p<10

-4. On the training set, the fitted 
model increases the average log-likelihood of the data from -0.4824 to -0.3592. A similar result is 
obtained when using a 10-fold cross-validation process, indicating a robust fit. In Figure 16 we show 
the predicted probability of task success P(TS=1), as a function of the misunderstanding error rate 
%MIS, together with 95% confidence bands. The dots at P(TS=1)=100% represent successful dialog 
sessions; the dots at P(TS=1)=0% represent failed dialog sessions. The star marks the average misun-
derstanding error rate and the average task success rate in the dataset. A histogram of the per session 
misunderstanding error rate is also shown. As the misunderstanding error rate increases, the prob-
ability of task success drops sharply. As Figure 16 illustrates, the dependence is not linear. For in-
stance, a 10% reduction of the misunderstanding error rate from 30% to 20% corresponds to a 29% 
increase in the probability of task success, from 39% to 68%. However, a 10% reduction in misun-
derstanding error rate from 15% to 5% corresponds to only a 13% increase in the probability of task 
success, from 80% to 93%. The proposed model provides a detailed quantitative assessment of the 
effect of misunderstandings on task success. This type of information can be very useful in channel-
ing system optimization and tuning efforts. 

Next, we built a similar model for assessing the impact of the non-understanding error rate 
(%NONU) on the probability of task success (TS). The model is shown in Table 6, and illustrated in 
Figure 17. Non-understandings also exert a significant negative effect on task success even though 
the effect is less pronounced (the drop in the curve is less sharp). Note that the estimated probability 
of task success is less reliable when the non-understanding error rate is above 35-40% - the confi-
dence bounds are wider due to data sparsity issues. Our corpus contains few sessions with a very 
high non-understanding error rate, and some of these sessions happen to actually be successful.  

Next, we constructed a third model that takes into account both misunderstandings and 
non-understandings. The results are presented in Table 7. Both the misunderstanding error rate 
(%MIS) and non-understanding error rate (%NONU) have a significant negative impact on the 
probability of task success. The model provides a precise quantitative assessment of this impact. An 
analysis of the regression coefficients reveals that misunderstandings are almost three times more 
costly (-11.27) than non-understandings (-4.35). This finding corresponds to the intuition that acquir-
ing false information is more detrimental than not acquiring any information. The effect is also visi-
ble in Figure 18, which shows the estimated probability of task success at different misunderstanding 
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and non-understanding error rates.  

Lastly, we constructed a model that also included the average per session word-error-rate 
(WER) as a dependent variable in the model (besides %MIS and %NONU): 

WERNON%MIS%)
)0TS(P

)1TS(P
log( ⋅δ+⋅γ+⋅β+α=

=

=
 

This model did not produce an improved fit when compared to the model shown in Table 7. 
The resulting WER coefficient was not statistically significantly different than zero (p=0.2012). The 
model therefore indicates that the misunderstanding and non-understanding error rates already fully 
account for the impact of speech recognition errors on the system’s performance.  

Before concluding, it is important to note that the error-cost assessment models described 
above are correlational, rather than causative. In other words, the models cannot be used to draw 
firm conclusions like: “reducing the non-understanding error rate by x% will lead to an improvement 
of y% in task success”. However, the models provide a quantitative assessment of the impact of un-
derstanding-errors on a chosen global performance metric. They can be used to make predictions 
which in turn can be useful in focusing optimization efforts. For instance, in the current RoomLine 
system, it seems that reducing the misunderstanding error rate is more important than reducing the 
non-understanding error rate. Such predictions remain however to be confirmed empirically.  

logit(TS) = 3.19 – 12.14 · %MIS 

 Coef. p-value S.E. 
(constant) 3.1900 < 10

-4 
0.2792 

%MIS -12.1375 < 10
-4
 1.4438 

 
Model AVG-LLIK HARD 

Baseline -0.4824 18.73% 
Model (train) -0.3592 14.36% 

Model (CV) -0.3680 14.37% 

Table 5. Model for impact of misunderstand-
ings on task success in the RoomLine system 

Figure 16. Probability of task success as a func-

tion of the misunderstanding error rate (%MIS) 
in the RoomLine system 
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logit(TS) = 2.51 – 6.29 · %NONU 

 Coef. p-value S.E. 
(constant) 2.5110 < 10-4 0.2476 

%NONU -6.2919 < 10-4 1.1133 

 
Model AVG-LLIK HARD 

Baseline -0.4824 18.73% 
Model (train) -0.4405 18.25% 

Model (CV) -0.4466 18.50% 

Table 6. Model for impact of non-
understandings on task success in the 

RoomLine system 

Figure 17. Probability of task success as a func-
tion of the non-understanding error rate 

(%NONU) in the RoomLine system 
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2.3.1.2 Experimental results in the Let’s Go! Public system 

A second set of experiments were performed using data collected with the Let’s Go! Public Bus In-
formation system. The corpus contained 467 dialogs collected in the first month the system was re-
leased to the larger public (March 2005). Again, we eliminated sessions with less than 3 turns. The 
resulting corpus contains 432 dialogs. The average task success rate in this corpus is 56.25%. This 
lower average task success rate is to a large extent explained by the more difficult operating condi-
tions for this system. 

The model for assessing the impact of misunderstandings on the probability of task success 
is shown in Table 8 and illustrated in Figure 19. For comparison purposes, Figure 19 also shows the 
fitted probability of task success in the RoomLine system. As expected, misunderstandings also exert 
a significant negative impact on performance in the Let’s Go! Public system. The impact is however 
different than in the RoomLine domain. When the misunderstanding error rate is in the range of 0-
40%, the impact on performance is mostly linear. The estimated probability of task success is lower 
than in the RoomLine system in this range. Additionally, the Let’s Go! Public system seems to be a 
bit more robust at high misunderstanding error rates (above 40%).  

The model for assessing the impact of non-understandings is shown in Table 9 and illus-
trated in Figure 20. Here, the task success profile is more similar to the RoomLine system than in the 
case of misunderstandings.  

The third model, shown in Table 10, provides an assessment of the combined effect of mis-
understandings and non-understandings on task success. Again, both misunderstandings and non-
understandings exert a significant negative impact on performance. The resulting regression coeffi-
cients show that the cost for misunderstandings (-8.17) is similar to the cost of non-understandings (-
9.26) in the Let’s Go! Public system. The relative costs are different when compared to the 
RoomLine system; in that domain misunderstandings were significantly more costly than non-

logit(TS) = 3.79 – 11.28 · %MIS – 4.36 · %NONU 

 Coef. p-value S.E. 
(constant) 3.7908 < 10-4 0.3539 

%MIS -11.2771 < 10-4 1.4755 

%NONU -4.3586 0.0006 1.2645 

 
Model AVG-LLIK HARD 

Baseline -0.4824 18.73% 
Model (train) -0.3445 13.63% 

Model (CV) -0.3547 14.38% 

 Table 7. Model for impact of misunderstandings and non-understandings on task success in the 
RoomLine system 

Figure 18. Probability of task success as a function of the misunderstanding (%MIS) and non-

understanding (%NONU) error rates in the RoomLine system 
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understandings. A potential explanation lies in the confirmation policy used by the Let’s Go! Public 
system. This system always explicitly confirmed each piece of information obtained from the users. 
This aggressive confirmation policy reduces the relative cost of misunderstandings. In contrast, since 
RoomLine does not always explicitly confirm, misunderstandings can go undetected (by both the 
system and the user) for a longer period of time. Corrections are harder to perform at a later stage, 
and as a result misunderstandings have a more pronounced overall impact in the RoomLine domain. 

Again, adding the average session word-error-rate (WER) to the list of predictor variables did 
not further improve the fit for the model. The p-value for the WER regression coefficient was 
0.9492, indicating again that the misunderstanding and non-understanding error rates fully character-
ize the impact of poor speech recognition on task success. 

2.4 Summary 

In this chapter, we closely investigated the two types of understanding-errors that commonly affect 
spoken language interfaces: misunderstandings and non-understandings. We started by providing 
precise definitions for these terms, identifying different types of non-understandings, and pointing to 
an inherent trade-off between these errors that appears in most interfaces. Then, we focused our at-
tention on two questions: (1) what are the main sources of these understanding-errors, and (2) how 
large is their impact on overall dialog performance?  

logit(TS) = 0.90 – 5.47 · %MIS 

 Coef. p-value S.E. 
(constant) 0.8964 < 10-4 0.2066 

%MIS -5.4686 < 10-4 0.8936 

 
Model AVG-LLIK HARD 

Baseline -0.6853 43.75% 
Model (train) -0.6328 36.81% 

Model (CV) -0.6365 36.77% 

Table 8. Model for impact of misunderstand-
ings on task success in the Let’s Go Public 

system 

Figure 19. Probability of task success as a function 

of the misunderstanding error rate (%MIS) in the 
Let’s Go Public and RoomLine systems 
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logit(TS) = 1.87 – 6.71 · %NONU 

 Coef. p-value S.E. 
(constant) 1.8703 < 10-4 0.2376 

%NONU -6.7063 < 10-4 0.7089 

 
Model AVG-LLIK HARD 

Baseline -0.6853 43.75% 
Model (train) -0.5246 27.08% 

Model (CV) -0.5295 26.40% 

Table 9. Model for impact of non-
understandings on task success in the Let’s Go 

Public system 

Figure 20. Probability of task success as a function 

of the non-understanding error rate (%NONU) in 
the Let’s Go Public and RoomLine systems 
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To address the first question, we proposed the use of a four-level model for error source 
analysis, inspired by Clark’s model of grounding in conversation [27]. Using the proposed scheme, 
we conducted empirical investigations of the main sources of understanding-errors in two spoken 
dialog systems that operate in different domains and have different interaction styles: RoomLine and 
Let’s Go! Public. The results corroborate the intuition that the primary source of errors in these in-
terfaces is the speech recognition process. We believe this result holds across most conversational 
spoken language interfaces. Our analysis also showed that language-domain errors, such as out-of-
domain and out-of-grammar utterances, contribute significantly to the total number of misunder-
standings and non-understandings. While the distribution of error sources is generally similar across 
the two domains, domain-specific differences can also be identified. For instance, a significantly lar-
ger number of errors in the Let’s Go! Public system is caused by adverse environmental conditions.  

Additionally, we proposed a data-driven approach for assessing the impact of various types 
of understanding-errors on global dialog performance. The proposed approach uses a regression 
model to relate the frequency of understanding-errors to overall dialog performance. Experiments 
conducted with the RoomLine and Let’s Go! Public systems have confirmed that both misunder-
standings and non-understandings exert a significant negative impact on task success. The models we 
constructed allow us to quantify this impact and provide additional insights into the relationship be-
tween understanding-errors and overall performance. We have seen that this relationship is often 
non-linear and that the costs of errors are different across domains. In RoomLine, misunderstand-
ings are more costly than non-understandings, while in the Let’s Go! Public system the two types of 
errors seem to exert a similar effect on task success. This latter result aligns with the more conserva-
tive confirmation policy used by the Let’s Go! Public system.  

The data-driven error-cost assessment methodology we have introduced in this chapter is 
not limited to inferring the costs for understanding-errors. We believe the approach can be extended 
to capture costs for other types of errors or actions that the system engages in. In Chapter 7, we ex-
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logit(TS) = 4.37 – 9.29 · %MIS – 8.17 · %NONU 

 Coef. p-value S.E. 
(constant) 4.3736 < 10-4 0.4436 

%MIS -9.2856 < 10-4 1.2186 

%NONU -8.1680 < 10-4 0.8191 

 
Model AVG-LLIK HARD 

Baseline -0.6853 43.75% 
Model (train) -0.4282 19.91% 

Model (CV) -0.4354 19.66% 

 Table 10. Model for impact of misunderstandings and non-understandings on task success in the  
Let’s Go! Public system 

Figure 21. Probability of task success as a function of the misunderstanding (%MIS) and non-

understanding (%NONU) error rates in the Let’s Go! Public system 
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tend this methodology by introducing state distinctions: error-costs are different not only across dia-
log systems, but also across different dialog states within the same system; we then use the derived 
costs to adjusted rejection thresholds in a principled manner, on a state-by-state basis.  

In conclusion, the error-source and error-impact analysis methodologies we have described 
in this chapter have confirmed a number of previous intuitions: speech recognition errors are the 
major source of understanding-errors; both misunderstandings and non-understandings have a sig-
nificant effect on overall dialog performance; the costs for different types of errors are different 
across domains. In addition, they have helped us to more precisely quantify and characterize these 
intuitions and have provided additional insights: for instance, the impact of understanding-errors on 
overall dialog performance is often non-linear. We believe these analysis techniques can be very use-
ful in guiding system development and optimization efforts. 
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Chapter 3  

The RavenClaw dialog management  
framework 

In this chapter, we describe RavenClaw, a plan-based, task-independent dialog man-
agement framework. RavenClaw isolates the domain-specific aspects of the dialog 
control logic from domain-independent conversational skills, and in the process fa-
cilitates rapid development of systems operating in complex, task-oriented domains. 
System developers can focus exclusively on describing the dialog task control logic, 
while a large number of domain-independent dialog mechanisms (e.g. error han-
dling, timing and turn-taking) are transparently supported and enforced by the 
RavenClaw dialog engine. To date, RavenClaw has been used to construct and suc-
cessfully deploy a number of spoken dialog systems spanning different domains and 
interaction styles. Together with these systems, RavenClaw provides the infrastruc-
ture for the error handling research described in the rest of this dissertation.  

3.1 Introduction 

The dialog manager component plays a central role in any conversational spoken language interface: 
given the decoded semantic input corresponding to the current user utterance, it determines the next 
system action. In essence, the dialog manager is responsible for planning and maintaining the coher-
ence, over time, of the conversation. Several tasks must be performed in order to accomplish this 
goal successfully.  

First, the dialog manager must maintain a history of the discourse and use it to interpret the 
perceived semantic inputs in the current context. Second, a represention (either explicit or implicit) 
of the system task is typically required. The current semantic input, together with the current dialog 
state and information about the task to be performed is then used to determine the next system ac-
tion. As we shall see later, different theories and formalisms have been proposed for making these 
decisions. In some dialog managers, a predefined universal plan for the interaction exists, i.e. the sys-
tem actions are predetermined for any given user input. Other systems make certain assumptions 
about the structure of the interaction and dynamically plan the next move at run-time, based on ge-
neric dialog rules. Often, dialog managers have to also interact with various domain and application-
specific agents. For instance, a dialog system that assists users in making flight reservations must 
communicate with a database to obtain information and to perform the required transactions.  



60 Error awareness and recovery in conversational spoken language interfaces  
 

 

In guiding the conversation, the dialog manager must also be aware of, and must implement 
a number of conversational norms. A first example is timing and turn-taking. Most systems make the 
assumption that the two participants in the conversation make successive contributions to the dialog. 
More complex models need to be developed to support barge-ins, backchannels, or multi-participant 
conversation. Another example is error handling. In speech-based conversational systems, the dialog 
management component must be able to take into account the underlying uncertainties in the recog-
nition results and plan the conversation accordinly. Unless robust mechanisms for detecting and re-
covering from errors are present, speech recognition errors can lead to complete breakdowns in in-
teraction. Other generic conversational skills include the ability to respond appropriately to various 
requests like “can you repeat that?”, “wait a second”, etc. 

In this chapter, we describe RavenClaw, a plan-based dialog management framework we 
have developed to provide the infrastructure for the error handling research program outlined in the 
introduction. We begin by reviewing some of the current dialog management solutions and outlining 
the main objectives that have guided the development of RavenClaw in this section. Then, in section 
3.2, we describe the overall architecture of the RavenClaw dialog management framework, and dis-
cuss the various algorithms and data-structures that govern its function and confer the desired prop-
erties. In order to build a fully functioning spoken language interface, a number of other components 
besides a dialog manager are however required: speech recognition, language understanding and gen-
eration, speech synthesis, etc. In section 3.3 we give a quick overview of Olympus [12], a collection 
of freely available dialog system components (and corresponding control logic) that we have used in 
conjunction with RavenClaw to build and deploy spoken language interfaces. Then, in section 3.4 we 
describe a number of systems developed using the RavenClaw/Olympus infrastructure. Finally, in 
section 3.5 we present a number of concludring remarks and discuss directions for further extending 
the RavenClaw dialog manager and the Olympus framework. 

3.1.1 Current dialog management solutions 
A number of different solutions for the dialog management problem have been developed to date in 
the community. Some of the most widely used techniques are: finite-state, form-filling, information-
state-update, and plan-based approaches. Each of these approaches makes different assumptions 
about the nature of the interaction; each has its own advantages and disadvantages. 

In a finite-state dialog manager, the flow of the interaction is described via a finite-state 
automaton. At each point in the dialog, the system is in a certain state (each state typically corre-
sponds to a system prompt). In each state, the system expects a number of possible responses from 
the user; based on the received response, the system transitions to a new state. To develop a dialog 
management component for a new application, the system author must construct the corresponding 
finite state automaton. In theory, the finite-state automaton representation is flexible enough to cap-
ture any type of interaction. In practice, this approach is well suited only for implementing relatively 
simple systems that retain the initiative throughout the conversation. In these cases, the finite-state 
automaton representation is very easy to develop, interpret, and maintain. However, the finite-state 
representation does not scale well for more complex applications or interactions. For instance, in a 
mixed-initiative system (where the user is also allowed to direct and shift the focus of the conversa-
tion), the number of transitions in the finite-state automaton grows very large; the representation 
becomes difficult to handle. Representative examples of this approach are the industry standard 
VoiceXML [126], the CSLU dialog management toolkit [29, 125], and Nuance’s SpeechObjects [78]. 

Another dialog management technology, especially useful in information access domains is  
form-filling (also known as slot-filling). In this case the basis for representing the system’s interaction 
task is the form (or frame). A form consists of a collection of slots, or pieces of information to be 
collected from the user. For instance, in a train schedule information system, the slots might be the 
departure and arrival city, the travel date and time. Each slot has an associated system prompt that 
will be used to request the corresponding information from the user. Typically, an action is associ-
ated with each form, for instance access to the schedule database in the train system. The system 
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guides the dialog such as to collect the required slots from the user (some of the slots might be op-
tional); the user can also take the initiative and provide information about slots that the system has 
not yet asked about. Once all the desired information is provided, the system performs the action 
associated with the form. The system’s interaction task may be represented as a collection of chained 
forms, with a specied logic for transitioning between these forms. In comparison with the finite-state 
representation, the form-filling approach makes stronger assumptions about the nature of the inter-
action task, and in the process allows system authors to more easily specify it. As we have mentioned 
before, this approach is well-suited in information access domains where the user provides some in-
formation to the system, and the system accesses a database or performs an action based on this in-
formation. However, the approach cannot be easily used to construct systems in domains with dif-
ferent interaction styles: tutoring, guidance, message delivery, etc. A representative example of the 
form-filling approach is Phillips’ SpeechMania system [3]. 

A third dialog management approach that has recently received a lot of attention and wide 
adoption in the research community is information-state-update (ISU). In this approach the interac-
tion flow is modeled again as a sequence of states. However, these states are not explicitly repre-
sented like in the finite-state approach. Rather, the system state (also known as information-state) is a 
data structure that contains information accumulated throughout the discourse. In addition, a set of 
information-state update rules govern how the system updates its state based on the perceived user 
inputs. A potential drawback of this approach is that, as the set of update rules increases, interactions 
between these rules and their overall effects become more difficult to anticipate. At the same time, 
the ISU approach allows for a high of flexibility in managing the interaction. Different ISU systems 
can capture different information in the state, and implement different linguistic theories of discourse 
in the state-update rules. Representative examples of the ISU approach include the TrindiKit dialog 
move engine [64, 124] and DIPPER [17].  

The fourth dialog management technology we have mentioned are plan-based approaches. 
In this case, the system models the goals of the conversation, and uses a planner to guide the dialog 
along a path towards these goals. These systems reason about user intentions, and model relation-
ships between goals and subgoals in the conversation, and the conversational means for achieving 
these goals. As a consequence, they require more expertise from the system developer, but can en-
able the development of more complex interactive systems. Examples include the TRAINS and 
TRIPS systems [34], and Collagen [94, 95]. The RavenClaw dialog manager we describe in the rest of 
this chapter falls in this last category.  

3.1.2 RavenClaw 
The RavenClaw dialog management framework was developed as a successor of the earlier Agenda 
dialog management architecture used in the CMU Communicator project [101]. The primary objec-
tive was to develop a robust platform for research in dialog management and conversational spoken 
language interfaces. In support of this goal, we identified and pursued several desirable characteris-
tics:  

Task-independence. The framework should provide a clear separation between the do-
main-specific aspects of the dialog control logic and domain-independent, reusable dialog control 
mechanisms. This decoupling will significantly lessen the system development effort and promotes 
reusability of various solutions and components. System authors focus exclusively on describing the 
domain-specific aspects of the dialog control logic, while a reusable, domain-independent dialog en-
gine transparently supports and enforces a number of generic conversational skills (e.g. error han-
dling, timing and turn-taking, context establishment, help, etc.) 

Flexibility. The framework should accommodate a wide range of application domains and 
interaction styles. Some dialog management formalisms are more suited for certain types of applica-
tions. For instance, form-filling approaches are typically well-suited in information access domains; 
however, the form-filling paradigm does not easily support the development of a tutoring applica-
tion. The RavenClaw dialog management framework uses a hierarchical plan-based formalism to rep-
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resent the dialog task. We have found that this representation provides a high degree of flexibility, 
while also leading to good scalability properties. To date, RavenClaw has been used to construct over 
a dozen dialog systems spanning different domains and interaction styles: information-access, guid-
ance through procedural tasks, message-delivery, comman-and-control, web-search, scheduling.  

Transparency. The framework should provide access to detailed information about each of 
its internal subcomponents, states and run-time decisions. RavenClaw supports configurable multi-
ple-stream logging: each of its subcomponents provides generates a rich log stream containing in-
formation about internal state, computations, and decisions made. Furthermore, a number of task-
independent data analysis and visualization tools have been developed.  

Modularity/reusability. Specific functions, for instance dialog planning, input processing, 
output processing, error- handling, etc. should be encapsulated in subcomponents with well-defined 
interfaces, that are decoupled from the domain-specific dialog control logic. RavenClaw users are 
able to inspect and modify each of these components individually, towards their own ends. Modular-
ity promotes the reusability and portability of the developed solutions. For instance, error handling 
strategies developed in the context of a system that helps users make conference room reservations 
[14] have been later plugged into a system that provides bus schedule information [89]. The Raven-
Claw dialog management framework was adapted to work with different types of semantic inputs 
(Phoenix [131] and Gemini [33]) by simply overwriting the input processing class.  

Scalability. The framework should support the development of practical, real-world spoken 
language interfaces. While simple, well-established approaches such as finite-state call-flows allow the 
development of practical, large-scale systems in information access domains, this is usually not the 
case for frameworks that provide the flexibility and transparency needed for research. At the same 
time, a number of relevant research questions do not become apparent until one moves from toy 
systems into large-scale applications. In RavenClaw, the hierarchical plan-based representation of the 
domain-specific dialog control logic confers good scalability properties, while at the same time it does 
not sacrifice flexibility or transparency.  

Open-source. Together with a number of end-to-end spoken dialog systems developed 
withing this framework, complete source code for RavenClaw has been released under an open-
source licence [90]. We hope this will foster further research and contributions from other members 
of the research community.  

To date, RavenClaw has been used to construct a number of applications spanning multiple 
domains and interaction types. Some of these have been deployed into day-to-day use. For instance, 
RoomLine is a mixed-initiative telephone-based system that helps users make conference room res-
ervations on the CMU campus [14]. The Let’s Go! Public bus information system [87-89] provides 
bus route and schedule information in the greater Pittsburgh area; this system is connected to the 
Port Authority of Allegheny County customer service line during non-business hours and receives 
50-60 calls per night. ConQuest [11] is a spoken dialog system that provides schedule information 
during technical conferences; this system has been recently deployed during the Interspeech’06 and 
IJCAI’07 conferences. Together with these systems, the RavenClaw dialog management framework 
provides the infrastructure for the error handling work described in the rest of this dissertation. In 
addition, RavenClaw also provides the basis for a number of additional research projects, such as 
multi-particiapant conversation [47] and fine-grained timing and turn-taking [86].  

3.2 The RavenClaw dialog management architecture 

In this section we describe the architecture of the RavenClaw dialog management framework, and 
the various data-structures and algorithms that govern its operation.  

3.2.1 A top-level architectural view 
RavenClaw is a two-tier dialog management architecture that enforces a clear separation between the 
domain-dependent and the domain-independent aspects of dialog control – see Figure 22. The do-
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main-specific aspects of the dialog control logic are captured by the dialog task specification, 
essentially a hierarchical-plan for the interaction, provided by the system author. A reusable, domain-
independent dialog engine manages the conversation by executing the given dialog task 
specification. In the process, the dialog engine also contributes a basic set of domain-independent 
conversational strategies such as error handling, timing and turn-taking behaviors, and a variety of 
other universal dialog mechanisms, such as help, repeat, cancel, suspend/resume, quit, start-over, etc. 

The decoupling between the domain-specific and domain-independent aspects of dialog 
control significantly lessens the system authoring effort. System developers can focus exclusively on 
describing the dialog task control logic, while a large number of domain-independent dialog mecha-
nisms are transparently supported and enforced by the dialog engine. Consider for instance error 
handling. System developers construct a dialog task specification under the assumption that inputs to 
the system will always be perfect, therefore ignoring the underlying uncertainties from the speech 
recognition channel. The responsibility for ensuring that the system maintains accurate information 
and that the dialog advances normally towards its goals is delegated to the dialog engine (how exactly 
the engine makes this happen makes the subject of the next chapter). This decoupled approach sig-
nificantly lessens the authoring effort, promotes portability and reusability, and ensures a certain de-
gree of uniformity and consistency in behavior both within and across tasks. 

In the rest of this section, we describe in more details the internals of the RavenClaw dialog 
management architecture. We begin by discussing the dialog task specification language in the next 
subsection. Then, in subsection 3.2.3, we describe the algorithms and data-structures which govern 
the RavenClaw dialog engine. Finally, we discuss the set of task-independent conversational strategies 
automatically supported by the dialog engine.  

3.2.2 The dialog task specification 
The dialog task specification captures the domain-specific aspects of the dialog control logic. Devel-
oping a new dialog manager using the RavenClaw framework therefore amounts to writing a new 
dialog task specification. We begin with a high-level overview. 

The dialog task specification describes a hierarchical plan for the interaction. More specifi-
cally, the dialog task specification consists of a tree of dialog agents, where each agent is responsible 
for handling a subpart of the interaction. For instance, Figure 23 depicts the top portion of the dialog 
task specification for RoomLine, a spoken dialog system which can assist users in making conference 
room reservations (more details about this system are presented in subsection 3.4.1). The root node 
subsumes several children: Login, which identifies the user to the system, GetQuery, which obtains 
the time and room constraints from the user, GetResults, which executes the query against the 
backend, and DiscussResults which presents the obtained results and handles the forthcoming 
negotiation for selecting the conference room that best matches the user’s needs. Moving one level 

Figure 22. RavenClaw - a two-tier dialog management architecture 
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deeper in the tree, the Login agent decomposes into Welcome, which provides a short welcome 
prompt, AskRegistered and AskName, which identify the user to the system, and finally GreetUser, 
which sends a greeting to the user.  

The dialog agents in a dialog task specification fall into two categories: fundamental dialog 
agents, shown grayed in Figure 23, and dialog-agencies, shown in clear in Figure 23. The funda-
mental dialog agents are located at the terminal positions in the tree (e.g. Welcome, AskRegis-
tered) and implement atomic dialog actions, or dialog moves. There are four types of fundamental 
dialog agents: Inform – produces an output (e.g. Welcome), Request - requests information from the 
user (e.g. AskRegistered), Expect - expects information from the user, but without explicitly re-
questing it (e.g. Projector) and Execute - performs a domain-specific operation, such as database 
access (e.g. GetResults). The dialog-agencies occupy non-terminal positions in the tree (e.g. 
Login, GetQuery); their purpose is to control the execution of their subsumed agents, and encapsu-
late the higher level temporal and logical structure of the dialog task. 

Each dialog agent implements an Execute routine, which is invoked at runtime by the dialog 
engine. The Execute routine is specific to the agent type. For example, inform-agents generate an 
output when executed, while request-agents generate a request but also collect the user’s response. 
For dialog-agencies, the Execute routine is in charge of planning the execution of their subagents. 
Besides the Execute routine, each dialog agent can define preconditions, triggers, as well as success 
and failure criteria. These are taken into account by the dialog engine and parent dialog-agencies 
while planning the execution of the various agents in the tree.  

If the dialog agents are the fundamental execution units in the RavenClaw dialog manage-
ment framework, the data that the system manipulates throughout the conversation is encapsulated 
in concepts. Concepts can be associated with various agents in the dialog task tree (e.g. registered 
and user_name in Figure 23), and can be accessed and manipulated by any agent in the tree. Several 
basic concept types are predefined in the RavenClaw dialog management framework: Boolean, string, 
integer and float. Additionally, the framework provides support for more complex, developer-defined 
concept types such as (nested) structures and arrays. Internally, the “value” for each concept is repre-
sented by a set of value/confidence pairs (e.g. city_name = {Boston/0.35; Austin/0.27}). The 
dialog engine can therefore track multiple alternate hypotheses for each concept, and can quantita-
tively capture the level of uncertainty in each hypothesis. Additionally, each concept also maintains 
the history of previous values, as well as information about the grounding state, when the concept 
was last updated, etc.  

To summarize, the dialog task tree describes an overall hierarchical plan for the interaction. 
However, this developer-specified plan does not prescribe a fixed order for the execution of the 
various dialog agents (as might be found in a directed dialog system). When the dialog engine exe-
cutes a given dialog task specification, a particular trace through this hierarchical plan is followed, 
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Figure 23. A portion of the dialog task tree for the RoomLine system 
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based on the user inputs, the encoded domain constraints and logic, as well as the various execution 
policies in the dialog engine. This type of hierarchical task representation has been used for tasks 
execution in the robotics community. More recently, this formalism has gained popularity in the dia-
log management community. Other examples besides RavenClaw include the use of a tree-of-
handlers in Agenda Communicator [101], activity trees in WITAS [66] and recipes in Collagen [94, 
95]. In the context of spoken dialog systems, hierarchical plan-based representations present several 
advantages. Most goal-oriented dialog tasks have an identifiable structure which naturally lends itself 
to a hierarchical description. The subcomponents are typically independent, leading to ease in design 
and maintenance, as well as good scalability properties. The tree representation captures the nested 
structure of dialog and thus implicitly represents context (via the parent relationship), as well as a 
default chronological ordering of the actions (i.e. left-to-right traversal). Finally, the tree structure can 
be extended at run-time, and allows for the dynamic construction of dialog structure, a very useful 
feature in certain types of tasks.  

In the next three subsections, we describe in more detail the various components of the dia-
log task specification. We begin by introducing the dialog task specification language in the next sub-
section. Then, in subsection 3.2.2.2, we describe in more detail the four types of fundamental dialog 
agents, and the dialog-agencies. Finally, in subsection 3.2.2.3 we describe in more detail the concept 
representation and the associated concept operators. 

3.2.2.1 The RavenClaw dialog task specification language 

The dialog task specification is described by the system author using an extension of the C++ lan-
guage constructed around a set of predefined macros. Figure 24 illustrates a portion of the dialog task 
specification for the RoomLine system, corresponding to the Login sub-tree. 

Each agent in the dialog task tree is specified using a define agent directive (e.g. DE-
FINE_AGENCY, DEFINE_REQUEST_AGENT, etc.) For instance, the lines from 1 to 10 define the Login 
dialog-agency. This agency stores a Boolean concept which indicates whether the user is registered 
with the system or not (registered) and a string concept that will contain the user’s name 
(user_name). The agency has 4 subagents (Welcome, AskRegistered, AskName and GreetUser), 
and succeeds when the GreetUser agent has completed. Lines 13-15 define the Welcome inform- 
agent. This agent sends a non-interruptible output prompt that will welcome the user to the system. 
Next, lines 17-20 define the AskRegistered request-agent. When executed, this agent asks whether 
the user is registered with the system or not. It expects a [Yes] or a [No] semantic answer, and, 
upon receiving such an answer, it will fill in the registered concept with the appropriate value (e.g. 
true or false). Similarly, the AskName agent defined in lines 22-26 asks for the user_name concept. 
Note that this agent also has a precondition, i.e. that the registered concept is true. If the user an-
swered that she is not registered with the system this agent will be skipped during execution. Finally, 
lines 28-31 define the GreetUser inform-agent. This agent sends out a greeting prompt; the values 
of the registered and user_name concepts are also sent as parameters to the language generation 
module.  

The various macros shown in this example (e.g. DEFINE_AGENCY, DEFINE_REQUEST_AGENT, 
REQUEST_CONCEPT, GRAMMAR_MAPPING, etc) are expanded at compile-time by the C++ preprocessor 
and a class is generated for each defined dialog agent. The directives and parameters specified for 
each agent (e.g. PROMPT, REQUEST_CONCEPT, GRAMMAR_MAPPING, etc.) are expanded into methods 
that overwrite virtual methods from the base class, in effect customizing the agent to implement the 
desired behavior.  

Next, we describe in more detail the dialog task specification language, and the various types 
of agents and concepts that can populate the dialog task tree. This description is not exhaustive, but 
rather it is meant to illustrate some of the main aspects of the dialog task specification language. The 
reader who is not interested in the dialog task specification language can safely skip to section 3.2.3, 
where we discuss the algorithms that govern the RavenClaw dialog engine.  
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3.2.2.2 Dialog agents 

The dialog agents in the dialog task specification fall into two main categories: fundamental dialog 
agents (Inform, Request, Expect, Execute), located at the terminal positions in the tree, and dialog-
agencies located at non-terminal positions.  

A number of methods and parameters are common to all agent types. 

Each agent can define a precondition (via the PRECONDITION macro). Under the default 
execution policy (see the Dialog-agencies below), agents are planned for execution only when their 
preconditions hold. By default, unless otherwise specified by the system developer through the PRE-
CONDITION macro, the precondition value is true. For instance, in the example from Figure 24, the 
AskName agent has a precondition that the registered concept is true.  

Each agent can also define a success (SUCCEEDS_WHEN) and a failure criterion 
(FAILS_WHEN). An agent is considered completed by the dialog engine when either one of these crite-
ria are met. The default success criterion is different for each type of agent. By default, Inform and 
request-agents succeed as soon as they have executed once. Request-agents succeed when there is a 
new, grounded value for the concept they request. Dialog-agencies succeed when all their subagents 
have completed. Finally, expect-agents do not have a success criterion since they never get executed 
(see more in the expect-agents subsection below). In the example from Figure 24, the Login agency 
overwrites the default success criterion: this agency succeeds as soon as the GreetUser agent has 
completed its execution. The default failure criterion on all agents is that the number of execution 
attempts exceeds a maximum execution attempt counter (which can be controlled via the 
MAX_ATTEMPTS directive.) 

Each agent can also define a trigger condition (TRIGGERED_BY) and/or a trigger com-
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DEFINE_AGENCY( CLogin, 

  DEFINE_CONCEPTS( 

    BOOL_USER_CONCEPT( registered, “default” ) 

    STRING_USER_CONCEPT( user_name, “default” ) 

  DEFINE_SUBAGENTS( 

    SUBAGENT( Welcome, CWelcome, “” ) 

    SUBAGENT( AskRegistered, CAskRegistered, “default” ) 

    SUBAGENT( AskName, CAskName, “default” ) 

    SUBAGENT( GreetUser, CGreetUser, “” )) 

  SUCCEEDS_WHEN(COMPLETED(GreetUser)) 

) 

 

DEFINE_INFORM_AGENT( CWelcome, 

  PROMPT(“:non-interruptible inform welcome”) 

) 

 

DEFINE_REQUEST_AGENT( CAskRegistered, 

  REQUEST_CONCEPT(registered) 

  GRAMMAR_MAPPING(“[Yes]>true, [No]>false”) 

) 

 

DEFINE_REQUEST_AGENT( CAskName,  

  PRECONDITION(IS_TRUE(registered)) 

  REQUEST_CONCEPT(user_name) 

  GRAMMAR_MAPPING(“[Identification.user_name]”) 

) 

 

DEFINE_INFORM_AGENT( CGreetUser,  

  PROMPT(“inform greet_user <registered <user_name”) 

) 

 
Figure 24. A portion of the dialog task specification for the RoomLine system 
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mand (TRIGGERED_BY_COMMANDS). The trigger conditions and trigger commands are checked by the 
dialog engine at each turn in the dialog. When the trigger condition becomes true, or when the cur-
rent semantic input matches the trigger command, the dialog engine will shift the focus to this agent, 
by placing it on top of the dialog stack (more details about the focus shift mechanism are discussed 
later, in section 3.2.3.1).  

Additionally, a number of operations can be performed on dialog agents, via a set of helper 
methods: 

• The finish operation (via the FINISH(agent) directive) forces a dialog agent to com-
plete and eliminates it from the dialog stack. 

• The reset operation (via the RESET(agent) directive) performs a re-initialization of the 
agent. All the subagents are also reset, and all concepts held by the agent are cleared. 
The agent is marked as not-completed. 

• The reopen operation (via the REOPEN(agent) directive) is similar to the reset opera-
tion. However, the concepts are reopened rather than cleared (i.e. the current value of 
the concept is pushed into history, and the concept is again empty – see more details in 
subsection 3.2.2.3). 

• The reopen topic operation (via the REOPEN_TOPIC(agent) directive) is similar to re-
opening an agent, but it leaves the concepts untouched. 

Finally, each agent can also define a number of call-back methods:   

• ON_CREATION is executed immediately after the agent is created. 

• ON_INITIALIZATION is executed when the agent is initialized. Agents are initialized im-
mediately after they are created, but also when they are reset or reopened (see the RESET 
and REOPEN operations below). 

• ON_DESTRUCTION is executed right before the agent is destroyed. 

• ON_REOPEN is executed when an agent is reopened for conversation (see REOPEN_AGENT) 

• ON_COMPLETION is executed when the agent completes and is eliminated from the dialog 
stack by the dialog engine; system authors can use this macro to write side-effect code 
that will be invoked upon completion of the agent. 

Each agent in the dialog task tree can be referenced by the other agents using the A() func-
tion call with a relative or absolute tree path to the agent. For instance A(/RoomLine/Login) refers 
to the Login dialog-agency in the example from Figure 23, by using an absolute path. Similarly, in the 
context of the AskName agent, A(../AskRegistered) refers to the sibling agent AskRegistered. 

In the next subsections, we describe some of the main methods and parameters that are spe-
cific to the four types of fundamental dialog agents: Inform, Request, Execute, and Expect. 

§ Inform-agents 

Inform-agents are defined via the DEFINE_INFORM_AGENT macro: 

DEFINE_INFORM_AGENT(CAgentTypeName, 

 {directive} 

) 

The role of inform-agents is to issue output prompts. The prompt for each inform-agent is 
specified through the PROMPT directive (see lines 14 and 29 in Figure 24.) The prompt specification 
obeys the following syntax:  

prompt    ::= <act> <object> {parameter} 

parameter ::= [attr] ‘<’ <concept> |  

              attr ‘=’ value 

The act and the object uniquely identify the prompt for the language generation module. 
A number of acts are predefined and commonly used in the RavenClaw framework: inform, re-
quest, explicit_confirm, implicit_confirm, establish_context. The system developer can 
extend this list, while ensuring that the language generation module handles the new prompts accord-
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ingly.  

The prompt parameters provide the language generation module with an attribute-values list 
for the prompt. This list is used to populate the language generation templates with values. An attrib-
ute for a prompt can be declared by simply specifying a concept name or referent (the attribute name 
will be set to the concept name, and the attribute value to the concept value), or by specifying an at-
tribute name and a constant value. For instance, the prompt on line 29 in Figure 24 is: 

inform welcome <registered <user_name 

The language generation module receives as parameters the registered and user_name 
concepts and can use them to construct an appropriate prompt. For instance, if registered=true 
and user_name=”John Doe”, the natural language generation might generate “Hi John Doe!”. Al-
ternatively if registered=false and user_name=””, the natural language generation module might 
generate “Hello, guest user! If you would like to register with the system, please send an email to 
roomline@cs.cmu.edu.” 

A number of additional flags control how the prompts are rendered:  

• :non-listening – the decoder will be set in non-listening mode for the duration of the 
prompt. 

• :non-interruptible – the barge-in mechanism will be disabled for the duration of the 
prompt. 

• :non-repeatable – this prompt will not be repeated by the output manager, if the user 
asks the system to repeat. 

• :<device> – specifies the output device to which the prompt will be sent. By default, 
prompts are sent to the natural language generation device. However system developers 
can specify additional output devices (e.g. a GUI in a multimodal system.) 

§ Request-agents 

Request-agents are defined via the DEFINE_REQUEST_AGENT macro: 

DEFINE_REQUEST_AGENT(CAgentTypeName, 

 {directive} 

) 

The role of request-agents is to request and acquire concept values from the user.  

To do so, a request-agent declares the concept it requests via the REQUEST_CONCEPT macro, 
and the semantic grammar slots it expects to hear from the user via the GRAMMAR_MAPPING macro. 
For instance, here is again the AskRegistered request-agent from the previous example: 

DEFINE_REQUEST_AGENT( CAskRegistered, 

  REQUEST_CONCEPT(registered) 

  GRAMMAR_MAPPING(“[Yes]>true, [No]>false”) 

) 

The agent requests the registered Boolean concept (which is defined and stored in the 
parent agent, Login). The grammar mapping describes what the agent expects to hear in the user 
response, and how the values from the semantic parse will be mapped into a corresponding value for 
the concept. In this case, the agent expects to hear a [Yes] or a [No] answer. If it hears a [Yes] 
answer, it will update the registered concept with the value true; if it hears a [No] answer, it will up-
date the registered concept with the value false. More generally, the syntax for the grammar map-
ping definition is: 

grammar_mapping ::= {gm_element,} 

gm_element      ::= [gm_scope] ‘[’<grammar_slot_name>‘]’  

[ ‘>’ (value | ‘:’binding_filter_name) ] 

gm_scope        ::= ‘!’ | ‘@’ | ‘*’ | ‘@(’{<agent_referent>;}‘)’ 

Here are four other example grammar mappings: 
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1. [Identification.user_name]  
2. ![Yes]>projector, [Projector]>projector  
3. [DateTime.date_relative]>:datetime  
4. @(/RoomLine/AnythingElse)[NeedRoom.date_time]>:datetime  
A grammar mapping is generally defined as a comma separated list of grammar mapping 

elements. Each element specifies one semantic grammar slot (e.g. [Identification.user_name], 
[Yes], etc.) During the input processing phase, the dialog engine will look for that slot in the current 
input. If the slot is found, the value for the slot (the corresponding string is the input) is used to up-
date the requested concept. For instance, if the recognition result is “My name is John Doe” we 
obtain the parse: 

[Identification] (my name is [user_name] (John Doe)) 

In this case, according to grammar mapping (1), the string “John Doe” will be used to up-
date the requested concept.  

The >value postfix construct allows system developers to perform a very simple normaliza-
tion of the input string. For instance, for the user response “That’s right”, we obtain the parse: 

[Yes] (that’s right) 

In this case, according to grammar mapping (2), the value projector will be used to update 
the requested concept.  

More sophisticated processing of the input can be accomplished by using binding filters. A 
binding filter is a developer-defined function that is applied to the parse string to construct a concept 
value. For instance, for grammar mapping 4, if the user responds “I need a room tomorrow”, we 
obtain the parse: 

[NeedRoom](i need a room) [DateTime]([date_relative](tomorrow)) 

In this case, according to grammar mapping (3), the string “tomorrow” is passed to the 
datetime binding filter. This filter will process the string and return an actual date-time value, such 
as 2006-03-22, that will be used to update the requested concept.  

During the input processing phase, each defined expectation can be either active or closed. 
A request-agent can collect information from the input only through active expectations. The system 
developer can control at what times expectations are active by using a scope operator in front of the 
grammar slot (e.g. !, *, or @). For clarity purposes, we will discuss these scope operators later, in sec-
tion 3.2.3.2, when we describe the input processing algorithms in the dialog engine. Additionally, the 
system author can control when expectations are active by specifying a Boolean condition with an 
EXPECT_WHEN directive. 

Unless otherwise specified by the system developer, the precondition for a request-agent is 
that no value is available for the requested concept. The success criterion is that the requested con-
cept has been updated.  

Apart from the requested concept and the grammar mapping, system developers can also 
specify the prompt for the request-agent via the PROMPT directive. The prompt syntax is the same as 
the one presented above for the inform-agents. If a request-agent does not specify a prompt, then a 
{request <concept_name>} prompt will be generated by default, where concept_name is the 
name of the requested concept (declared via REQUEST_CONCEPT). In the language generation module, 
system authors may specify four different versions of the request prompt: (1) default, (2) ex-
plain_more, (3) what_can_i_say, and (4) timeout. Normally, the default version is invoked by 
the dialog manager. The explain_more version contains a more comprehensive version of the 
prompt, which is used by the dialog engine on certain types of help requests (see subsection 3.2.4.1). 
Similarly, the what_can_i_say version contains information about how the user could respond to 
the system request; this prompt is also invoked to provide help to the users. Finally, the timeout 
version is used when the system re-prompts the user if a timeout has elapsed (see subsection 3.2.4.1) 

System developers may specify for each request-agent a rejection threshold, via the REJEC-
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TION_THRESHOLD directive, and a timeout period, via the TIMEOUT_PERIOD directive. If the confi-
dence score of the input is below the rejection threshold when the agent is in focus, the input is re-
jected and no concept updates happen. Finally, if the timeout period elapses and no user input is re-
ceived, the system internally generates a timeout event, which is captured and handled accordingly by 
the timeout handling agency (see section 3.2.4.1). 

§ Expect-agents 

Expect-agents are defined via the DEFINE_EXPECT_AGENT directive: 

DEFINE_EXPECT_AGENT( CAgentTypeName, 

 {directive} 

) 

Expect-agents are used to acquire information from the user input, without explicitly re-
questing for this information (as the request-agents do). The expect-agents are never directly exe-
cuted by the dialog engine, but they declare their expectations for the user input and participate in the 
input processing phase (described in detail in subsection 3.2.3.2). Just like request-agents, the expect-
agents declare the concepts they expect through the EXPECT_CONCEPT directive, and the semantic 
grammar slots they expect to hear through the GRAMMAR_MAPPING directive.  

§ Execute-agents 

Execute-agents are defined via the DEFINE_EXECUTE_AGENT directive: 

DEFINE_EXCUTE_AGENT( CAgentTypeName, 

 {directive} 

) 

The role of execute-agents is to implement various domain-specific operations, such as calls 
to various back-end modules (e.g. database, back-end reasoning component, application interface, 
etc). By default, the success condition for an execute-agent is that it has executed once.  

Calls to back-end modules can be declared via the CALL directive. The syntax is as follows: 

call      ::= <module.function> query=<query_name>  

              {parameter} [:non-blocking] 

parameter ::= [attr] ‘<’ <concept> | [attr] ‘>’ <concept> | 

              attr ‘=’ value |  

module.function identifies the external component and service that is invoked. 
query_name defines the type of query. The parameter list is very similar to the one used in the 
prompt definitions. The only exception is that now return values can be collected and used to update 
concepts using the attr > concept construct. Finally, the :non-blocking flag is used to specify 
calls for which the dialog manager should not expect an immediate answer.  

More generally, system developers can overwrite the entire Execute routine for execute-
agents via the EXECUTE directive. By default, the Execute routine invokes the back-end calls speci-
fied through the CALL directive.  

§ Dialog-agencies 

Dialog-agencies are defined via the DEFINE_AGECY directive: 

DEFINE_AGECY( CAgentTypeName, 

 {directive} 

) 

For example, here is again the Login dialog-agency from Figure 24: 

DEFINE_AGENCY( CLogin, 

  DEFINE_CONCEPTS( 

    BOOL_USER_CONCEPT( registered, “default” ) 

    STRING_USER_CONCEPT( user_name, “default” ) 

  DEFINE_SUBAGENTS( 

    SUBAGENT( Welcome, CWelcome, “” ) 
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    SUBAGENT( AskRegistered, CAskRegistered, “default” ) 

    SUBAGENT( AskName, CAskName, “default” ) 

    SUBAGENT( GreetUser, CGreetUser, “” )) 

  SUCCEEDS_WHEN(COMPLETED(GreetUser)) 

) 

Dialog-agencies are located at non-terminal position in the dialog task tree. Each dialog-
agency handles a subpart of the interaction; their role is to plan and coordinate the execution of their 
subagents. This sub-task planning problem is currently handled by combining a set of simple execu-
tion policies (i.e. left-to-right traversal of subagents), while checking the preconditions that each 
agent holds. More sophisticated execution policies can be manually specified by the system develop-
ers by overwriting the EXECUTE routine for the corresponding dialog agency. In all the systems built 
to date using the RavenClaw dialog management framework, the simple planning method described 
above has sufficed. At the same time, the framework leaves open the possibility of developing more 
advanced execution/planning algorithms. 

The subagents for a dialog-agency are defined via the DEFINE_SUBAGENTS, and SUBAGENT 
directives, as illustrated above. The SUBGENT directive takes three parameters: the name of the sub-
agent, the type of the subagent and the type of error handling model to be used in conjunction with 
this subagent. The error handling models implement the error handling behaviors associated with a 
particular dialog agent, and are discussed in more detail in Chapter 4.  

Unless otherwise specified by the system developer, the success criterion for a dialog-agency 
is that all its subagents have completed successfully. However, this condition is often overwritten, as 
in the example shown above. In this example, the Login agency succeeds as soon as the GreetUser 
agent has completed, regardless of the state of its other subagents.  

3.2.2.3 Concepts 

Having introduced the types of dialog agents that populate the dialog task tree, we now turn our at-
tention to concepts. Concepts encapsulate the information (i.e. the data) that the system manipulates 
throughout the conversation. They are defined and stored in various dialog-agents (usually in dialog-
agencies), via the DEFINE_CONCEPTS macro. For instance, in the example discussed above, the Login 
agency defines two concepts: registered, which is a Boolean concept and user_name, which is a 
string concept. Like agents, concepts can be referenced from any dialog agent in the task tree by us-
ing the C() function, with a relative or with an absolute path (e.g. ../Login/registered or 
/RoomLine/Login/registered).  

Each concept has a predefined type. A number of basic concept types, such as Boolean, in-
teger, string and float are predefined in the RavenClaw dialog management framework. Additionally, 
system developers can define custom extended types such as frames, structures and arrays.  

Each concept maintains: 

• a set of value/confidence pairs, as illustrated in Figure 25; this representation allows the 
dialog manager to monitor the uncertainty in the information it manipulates, and to en-
gage in concept-level error handling strategies such as explicit and implicit confirmation, 
disambiguation, etc.  

• a concept error handling model that implements the error handling behaviors associated 
with the concept (in the next chapter, we will describe extensively the error handling ar-
chitecture in the RavenClaw dialog management framework, including the concept error 
handling models.)  

• a history of previous concept values for the concept. 

• information about when the concept was last updated. 

• information about whether or not the concept was conveyed to the user. 

• flags indicating whether the concept was grounded, and which hypotheses were explic-
itly or implicitly confirmed. 

• information about the prior likelihood of each potential concept value. 
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• information about the confusability of each potential concept value. 

Additionally, a number of concept operators are available: 

• assignment operators are used to assign concept values from other concepts or variables. 

• comparison operators are use for comparing the values of different concepts of the 
same type. 

• history operators are used to access and manipulate the concept history values. 

• belief updating operators. Throughout the interaction with the users, concepts are up-
dated with information from the subsequent user inputs. The belief updating operation 
takes into account (1) the current set of hypotheses for a concept, with their respective 
confidence scores, (2) the set of current hypotheses heard from the recognizer, and (3) 
other contextual information, and generates as a result a new set of value/confidence 
pairs reflecting the new system belief. Performing accurate belief updating constitutes 
one of the main foci of the research described in this dissertation, and is discussed ex-
tensively in Chapter 6. For now, it suffices to say that RavenClaw supports both heuris-
tic belief updating rules (typically used in most spoken language interfaces), as well as 
data-driven, model-based belief updating approach. 

• other operators, allowing access to various concept attributes and flags (e.g. concept 
name, whether or not the concept was conveyed to the user, whether or not the concept 
is grounded, etc.) 

Together with the belief updating operators, this rich concept representation provides the 
necessary infrastructure for performing concept-level error handling in the RavenClaw dialog man-
agement. The concept error handling models and the error handling architecture are described in 
more detail later, in the next chapter. The belief updating mechanisms are discussed in Chapter 6.  

3.2.3 The RavenClaw dialog engine 
In this section we discuss the algorithms used by the RavenClaw dialog engine to execute a given 
dialog task specification. The dialog engine algorithms are centered on two data-structures: a dialog 
stack, which captures the discourse structure at runtime, and an expectation agenda, which 
captures what the system expects to hear from the user in any given turn. The dialog is controlled by 
interleaving Execution Phases with Input Phases (see Figure 26). During the Execution Phase, 
dialog agents from the task tree are placed on and executed from the dialog stack, creating in the 
process the system behavior. During the Input Phase the system uses the expectation agenda to 
transfer information from the current user input into the concepts defined in the dialog task tree. 
Below, we describe in more detail each of these two phases. 

Figure 25. Value/confidence concept representation  
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departure_city = { Boston/0.47; 

                   Austin/0.16 

      Aspen/0.37 } 

               
the departure city is Boston with probability 
0.47, Austin with probability 0.16 or Aspen 
with probability 0.37 
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3.2.3.1 The Execution Phase 

During the Execution Phase the RavenClaw dialog engine performs a number of operations in 
succession (see Figure 26).  

First, the dialog engine invokes the Execute routine of the agent on top of the dialog stack. 
The effects of the Execute routine are different from one agent-type to another, and have been de-
scribed previously in Section 3.2.2.2. For instance, inform-agents output a system prompt; request-
agents output a system request and then request an Input Phase; dialog-agencies push one of their 
subagents on the dialog stack. Once the Execute routine completes, the control is returned to the 
dialog engine. If no Input Phase was requested (some agents can make this request upon completing 
the Execute routine), the dialog engine tests the completion conditions for all the agents on the dia-
log stack. Any completed agents are eliminated from the dialog stack. Next, the dialog engine invokes 
the Error Handling Decision Process. In this step, the Error Handling Decision Process (described 
in detail in the next chapter) collects evidence about how well the dialog is proceeding, and decides 
whether or not to engage in an error handling action. If an error recovery action is necessary, the Er-
ror Handling Decision Process dynamically creates and pushes an error handling agency (e.g. explicit 
confirmation, etc.) on the dialog stack. Finally, in the last stage of the Execution Phase, the dialog 
engine inspects the focus claims (or trigger) conditions for all the agents in the dialog task tree. If any 
agents in the task tree request focus, they will be pushed on top of the dialog stack. 

To better illustrate the Execution Phase, we will present a step-by-step trace through the 
execution of the RoomLine dialog task – see Figure 27. The corresponding dialog task tree is also 
shown in the same figure. At start-up, the dialog engine places the root agent (RoomLine in this case) 
on the dialog stack. Next, the dialog engine goes into an Execution Phase. First, the engine invokes 
the Execute routine for the agent on top of the stack – RoomLine. RoomLine is a dialog-agency, 
which, based on its execution policy and on the preconditions of its subagents, decides that it needs 
to first engage the Login agent. It therefore pushes Login on the dialog stack (see Figure 27, step 2), 
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Figure 26. Block diagram for core dialog engine routine 
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and returns the control to the dialog engine. Next the dialog engine pops all completed agents from 
the dialog stack. Since neither RoomLine nor Login is yet completed, the dialog engine continues by 
invoking the error handling decision process. No actions error handling actions are taken in this 
case8. Next the dialog engine inspects the focus claims, but no focus claims are present at this point. 
The dialog engine therefore engages in a new Execution Phase. This time, Login is on top of the 
stack, so the dialog engine invokes Login.Execute. Login pushes the Welcome agent on the dialog 
stack and returns the control to the dialog engine (see Figure 27, step 3). Again no agents are com-
pleted, no grounding actions are taken and no focus claims are present. Next, the dialog engine exe-
cutes Welcome. This is an inform-agent, which will send out a welcome message to the user. The sys-
tem says: “Welcome to RoomLine, the conference room reservation assistant.” Next, when the dia-

                                                      
 
8 For clarity purposes, we have kept this example simple. For instance, no focus shifts or error handling strategies have been 
illustrated. In the next section, we will present another example that includes a focus shift. Another more complex execu-
tion trace which involves the invocation of various error handling strategies is presented in the next chapter, during the 
discussion of the error handling architecture. 

date_time 

results 

RoomLine 
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Figure 27. Execution trace through the RoomLine task 
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AskRegistered 

Dialog Stack Inputs and Outputs 

   registered: [Yes]>true, [No]>false 

   registered: [Yes]>true, [No]>false 

   user_name: [Identification.user_name] 
 

   registered: [Yes]>true, [No]>false 

   user_name: [Identification.user_name] 
 

S: Welcome to RoomLine! Are you a registered user? 

U: yes this is john doe 
     

  [YES] (yes)  

  [Identification.user_name] (this is john doe) 

 
S: Hi, John Doe 
    … 
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log engine inspects the completion conditions, it will find that Welcome has completed (inform-
agents complete as soon as they output the prompt), and it will therefore pop Welcome from the exe-
cution stack (see Figure 27, step 4). In the next execution phase, Login.Execute is invoked again. 
This time, since the Welcome agent is already completed, the Login agency will plan the AskRegis-
tered agent for execution by pushing it on the dialog stack (see Figure 27, step 5). Again, none of 
the agents on the stack are completed, no grounding actions are taken and no focus claims are made. 
When the dialog engine next executes AskRegistered, this agent will output a request (“Are you a 
registered user?”), and then invoke an Input Phase by passing a certain return-code to the dialog en-
gine. We will discuss the Input Phase in the next section.  

The dialog stack therefore captures the nested structure of the discourse. Note that the iso-
morphism between the dialog stack and the task tree is only apparent. There is an essential functional 
difference between the two structures: the dialog stack captures the temporal and hierarchical struc-
ture of the discourse, while the tree describes the hierarchical goal structure of the dialog task. Al-
though in the example discussed above the two structures match, this is not always the case. For in-
stance, if the trigger condition for an agent foo becomes true, the dialog engine will push that agent 
on top of the dialog stack. The dialog focus will be shifted to that agent. The execution will therefore 
continue with that agent, and the isomorphism between the stack and the tree will be broken. Once 
the agent completes and is popped from the stack, we’re back to where we were before the focus 
shift (a concrete example is shown in the next section).  

In general, the agent on top of the stack represents the current focus of the conversation, 
and, the agents below it (which typically sit above it in the tree) capture successively larger discourse 
contexts. As we have already seen, the dialog stack provides support for maintaining the context dur-
ing focus shifts and correctly handling sub-dialogs. Additionally the dialog stack is used in to con-
struct of the system’s agenda of expectations at every turn, described in the next section. 

3.2.3.2 The Input Phase 

§ Overview 

An Input Phase is invoked each time a request-agent is executed (in the example discussed above, the 
Input Phase was triggered by the execution of the AskRegistered agent). Each Input Phase consists 
of three stages: (1) assembling the expectation agenda, (2) obtaining the input from the user, and (3) 
updating the system’s concepts based on this input.  

First, the system assembles the expectation agenda, i.e. a data-structure that describes what 
the system expects to hear from the user in the current turn. The agenda is organized into multiple 
levels. Each level corresponds to one of the agents on the dialog stack, and therefore to a certain 
discourse segment. In the example described above, immediately after the AskRegistered agent 
triggered an Input Phase, the stack contains the AskRegistered, Login and RoomLine agents – see 
Figure 27, step 5. The dialog engine therefore constructs the first level of the agenda by collecting the 
expectations from the AskRegistered agent. The AskRegistered agent expects to hear a value for 
registered concept, in the form of either a [Yes] or a [No] grammar slot in the input. The second 
level in the agenda is constructed by collecting the expectations from the next agent on the stack, i.e. 
Login. When an agency declares its expectations, by default it collects all the expectations of its 
subagents. In this case, the Login agency expects to hear both the registered concept (from the 
AskRegistered agent), and the user_name concept (from the AskUserName agent). Finally, the 
third (and in this case last) level of the expectation agenda is constructed by collecting all the 
expectations from the RoomLine agent. Apart from the registered and user_name concepts, this 
last level contains the expectations from all other agents in the dialog task tree. In effect, the levels in 
the expectation agenda encapsulate what the system expects to hear starting from the currently 
focused question and moving in larger and larger discourse segments (contexts).  

After the expectation agenda has been assembled, the dialog engine waits for an input from 
the user.  

Finally, once the input arrives, the dialog engine engages in a concept binding stage. In this 



76 Error awareness and recovery in conversational spoken language interfaces  
 

 

step, the information available in the input is used to update system concepts. The updates are 
governed by the expectation agenda. The dialog engine performs a top-down traversal of the agenda, 
looking for matching grammar slots in the user input. Wherever a match is found, the corresponding 
concept is updated accordingly. For instance, in the example from Figure 27, the recognized user 
response is “Yes this is John Doe”, which parses as:  

[YES] (yes) [Identification.user_name] (john doe) 

In this case the [YES] slot matches the expectation for the registered concept on the first 
level in the agenda, and the [Identification.user_name] slot matches the expectation for the 
user_name concept on the second level in the agenda. These two concepts will be updated 
accordingly: the registered concept will contain true, and the user_name concept will contain 
“john doe”. The concept updating process relies on the belief updating operators, which take into 
account information about the initial belief about the concept (i.e. the set of alternate hypotheses and 
their corresponding confidence scores), the user response, as well as the current context (e.g. the last 
system action, etc). 

Once the Input Phase completes, the dialog engine starts another Execution Phase. The 
AskRegistered agent will be popped from the dialog stack (this agent has completed since the reg-
istered concept is now updated). When Login will plan again, it will skip over AskUserName since 
the user_name concept is already available (the default precondition on request-agents is that the 
requested concept is not available). The next agent planned by Login will therefore be GreetUser, 
and the system responds: “Hello, John Doe … “ 

The expectation-agenda driven concept update mechanism provides a number of 
advantages: (1) it allows for the user to over-answer system questions, (2) in conjunction with the 
dialog stack, it provides support for mixed-initiative interaction, (3) it automatically performs 
context-based semantic disambiguation, and (4) it can provide a basis for dynamic state-specific 
language modeling. The first aspect was already illustrated in the example discussed above: the user 
not only answered the system question, but he also provided his name. In the next subsections we 
discuss in more detail the other three aspects listed above. 

§ Expectation agenda and mixed-initiative interaction 

The expectation agenda facilitates mixed-initiative conversation, since the system can integrate 
information from the user’s response that does not necessarily pertain to the question in focus. In the 
previous example, we have illustrated a simple case in which the user over-answers a system question. 
More generally, in combination with the dialog stack, the expectation agenda allows the user to take 
initiative and shift the focus of the conversation.  

We illustrate the focus-shift mechanism with an example from a spoken dialog system that 
operates in the air travel planning domain – see Figure 28. At turn n, the system question is “Will you 
be returning from San Francisco?”, corresponding to the /FlightLine/Leg1/AskReturn agent in 
the dialog task tree. At this point, instead of responding to the system question, the user decides to 
ask about a booking a particular hotel in San Francisco. The decoded input matches the expectation 
for [HotelName], on the last level in the agenda, and the hotel_name concept is updated 
accordingly. Once this Input Phase completes, the system continues with an Execution Phase. 
During focus claims analysis, the /FlightLine/Hotels agent claims focus, since this agent has a 
trigger condition that the hotel_name concept is updated: TRIGGERED_BY(UPDATED(hotel_name)). 
As a consequence, the dialog engine places this agent on top of the dialog stack – see the stack at 
time n+1 in Figure 28. As the dialog engine continues execution, the conversation continues from 
the Hotels dialog agency. Once the hotels sub-dialog completes, the Hotels agency is popped from 
the execution stack and we’re back in the previous context, on the AskReturn question.  

The system author can control the amount of initiative given to the user at every point in the 
dialog by controlling which expectations on the agenda are active and which expectations are closed 
(expectations that are closed will not bind). By default, the expectations defined by a request- or an 
expect-agent are active only when the focus of the conversation is under the same main topic as the 
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agent that defines the expectation. For instance, if our Hotels agent was defined as a main topic 
(using the IS_MAIN_TOPIC directive), then the [HotelName] expectation would be closed at step n 
in Figure 28, and the hotel_name concept would not be updated. System authors can therefore 
control which expectations are active and which are closed by defining the main topics in the tree. 

A finer-grained level of control can be achieved through expectation scope operators, 
which can be used to alter this default behavior: 

• the ! operator; when this operator is used while defining an expectation (e.g. 
![Yes]>true), the expectation will be active only when the agent that defines the 
expectation is actually in focus.  

• the * operator; when this operator is used, the expectation is always open.  

• the @(<agent_name>;<agent_name>; …) operator; the expectation is open only when 
the focus of the conversation is under one of agents in the specified list. For instance, if 
we wanted to allow the hotel_name concept to bind only while the conversation is on 
the first leg of the trip, but not the second leg of the trip, the expectation could be 
defined as: @(/FlightInfo/Leg1;/FlightInfo/Hotels)[HotelName] 

The EXPECT_WHEN macro provides yet another degree of control over when expectations are 
active and when they are closed. This macro can be used on request- and expect-agents to define a 
Boolean condition that describes at which times the expectation should be open. System authors can 
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Figure 28. Focus-shift in a mixed-initiative conversation 
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take into account any (state) information available to the dialog manager in order to control the 
opening and closing of expectations.  

So far, we have discussed how system authors can control the amount of initiative the user is 
allowed to take at any point in the dialog. Note that the dialog engine could also automatically 
control the amount of initiative by limiting how deep in the agenda bindings are allowed. For 
instance, allowing bindings only in the first level in the agenda corresponds to a system-initiative 
situation, where the user is allow to respond only to the question in focus. While this type of 
behavior has not yet been implemented in the RavenClaw dialog engine, it is easy to envision a 
system where, perhaps depending on how well the dialog is progressing, the dialog engine 
automatically adjusts the level of initiative permitted to the user.  

§ Expectation agenda and context-based semantic disambiguation 

Another advantage provided by the expectation agenda is automatic resolution of some semantic 
ambiguities based on context. This feature appears as a side-effect of the top-down traversal of the 
agenda during the concept binding phase.  

Consider the example from Figure 29, again drawn from a fictitious system operating in the 
air travel domain. The focus of the conversation is on the AskFrom request-agent, which is in charge 
of obtaining the departure city for the first leg of the trip. This agent declares two expectations for 
the from_city concept: [FromCity], which captures constructs like for instance “I’d like to leave 
from San Francisco”, and [City] which captures city names spoken in isolation, for instance “San 
Francisco”. At the same time, the AskTo request agent in the Arrival subtree also declares the 
expectations [ToCity] and [City] in order to capture the arrival city (in the to_city concept). The 
user responds to the system question with a simple city name, which is semantically decoded as 
[City]. A semantic ambiguity arises: should this city bind to the from_city concept, or to the 
to_city concept? The ambiguity is automatically resolved given the top-down traversal of the 
agenda in the concept binding phase. In this case, the input updates the from_city concept, since 
this appears on the higher (in this case first) level in the agenda.  

The expectation agenda therefore automatically implements an ambiguity resolution 
heuristic: if an input could be used to update more than one concept, always update the concept that 
is closest to the current context (higher in the agenda).  

§ Expectation agenda and dynamic state-specific language modeling 

The expectation agenda can also support dynamic, context-specific language modeling. At each turn 
in the dialog, the expectation agenda captures what the system expects to hear from the user, at the 
semantic level. This information could be used to dynamically construct a context-specific 
recognition language-model by interpolating a large number of smaller, fixed language models. For 
instance, considering the example from Figure 29, the system could create a state-specific language 
model by interpolating models  [Yes], [No], [FromCity], [ToCity], [City], etc. The level-based 
organization of the expectation agenda could also provide additional information about the 
likelihood of different user responses. The weights in the interpolation could be assigned based on 
the depth of the corresponding item in the expectation agenda. An advantage of this type of 
interpolated language models is that they can take into account the current context and dialog history 
in a more accurate fashion than a simple state-specific language model would (the expectation agenda 
might contain different grammar slots when a certain agent is in focus, depending on the dialog 
history). Secondly, the approach would not require the models to be retrained after each change to 
the dialog task structure. While this type of context-sensitive language-modeling approach has not yet 
been implemented in the RavenClaw dialog engine, Gruenstein and co-authors [43] have shown 
considerable reductions in word-error-rate under certain circumstances with a similar technique.  

3.2.4 Task-independent conversational strategies 
A characteristic that greatly influences the usability and ultimately the success of spoken dialog sys-
tems is their ability to engage in a rich set of conversational strategies. Apart from handling the actual 
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dialog task, a dialog manager must be able to engage in error handling behaviors (e.g. explicit and 
implicit confirmation, disambiguation, asking the user to repeat, etc.), turn-taking and timing behav-
iors, as well as other generic dialog mechanisms, like the ability to handle requests for help, for re-
peating the last utterance, suspending and resuming the conversation, starting over, re-establishing 
the context, etc.  

The RavenClaw dialog engine provides automatic support for a wide array of such conversa-
tional strategies. Internally, the strategies are implemented as library dialog agencies, using the same 
dialog task specification formalism as the domain-specific task tree. The system author simply speci-
fies which strategies the dialog engine should use, and parameterizes them accordingly. The respon-
sibility for invoking these strategies at the right time is delegated to the RavenClaw dialog engine. 
Additionally, developers can write new task-independent conversational strategies, encapsulate them 
as library agents, and make them available for use in other RavenClaw-based dialog systems. The cur-
rent architecture promotes reusability, and ensures consistency in behaviors both within and across 
systems.  

The task-independent conversational strategies currently available in the RavenClaw dialog 
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management framework fall into two categories: (1) generic dialog mechanisms (e.g. help, repeat, 
suspend, establish context, start over, etc.), and (2) error recovery strategies (e.g. explicit and im-
plicit confirmation, asking the user to repeat, asking the user to rephrase, etc.) In the next two sub-
sections we list and briefly discuss the strategies currently available in each class.  

3.2.4.1 Generic dialog mechanisms 

To date, six generic dialog mechanisms have been implemented and are available as library agencies 
in the RavenClaw dialog management framework; these mechanisms provide automatic support for 
servicing a number of domain-independent conversational requests like “Help!”, “Repeat!”, “Where are 

we?”, “Start-over!”, etc. The corresponding grammars for these requests are predefined in a common 
grammar library; however, system authors can further extend or modify these grammars. Similarly, a 
number of these strategies use predefined natural language generation templates (e.g. “Are you sure 
you would like to start over?”) System authors can overwrite these templates, and customize them 
for a particular application.  

We now briefly describe the six generic dialog mechanisms currently available in the Raven-
Claw dialog management framework. 

§ Help 

The RavenClaw dialog management framework currently supports five types of help requests: estab-
lish context, what-can-I-say, full-help, interaction-tips, and system-capabilities. 

The Help.EstablishContext strategy provides information about the current system state 
in response to user requests like “Where are we?” This strategy issues the establish_context 
prompt for the request agent that was in focus (i.e. on top of the dialog stack) at the time the help 
request occurred. The content of the establish_context prompts is provided by the system au-
thor. Generally, these prompts provide information about the system state, for instance “I am cur-
rently trying to collect enough information to make a room reservation for you. So far, I know you 
need a room on Friday starting at 10 a.m.” 

The Help.WhatCanISay strategy provides examples for what the user could say at this point 
in the dialog, in response to requests like “What can I say?” The strategy issues the what_can_i_say 
prompt for the request agent that was in focus at the time the help request occurred. These prompts 
are also provided by the system author, and they contain information such as “For instance, you 
could say something like ‘until 2 p.m.’, or ‘for two hours’ ”.  

The Help.FullHelp strategy provides a full help message to the user, in response to a sim-
ple help request - “Help!” This strategy issues in sequence the establish_context, explain_more, 
and what_can_i_say prompts for the request agent previously in focus. For instance, a full help 
prompt could be: “I am currently trying to collect enough information to make a room reservation 
for you. So far, I know you need a room on Friday starting at 10 a.m. Right now, I need you to tell 
me until what time you need this room. For instance, you can say something like ‘until 2 p.m.’ or ‘for 
two hours’ “. The Help.FullHelp strategy can also be configured to provide a shorter help message 
by omitting the establish_context prompt. 

The Help.InteractionTips strategy provides a generic help message containing guidelines 
for how to best interact with the system. Systems authors customize the corresponding language 
generation template. A typical example is:  “Here are some tips for a smooth interaction. Please speak 
clearly and naturally. Do not speak too quickly or too slow. You can interrupt the system at any time 
by saying anything you wish. If you need to make a correction, just restate the new information. For 
example, if you’d like a room in the afternoon instead of morning, you can simply say, ‘I’d like a 
room in the afternoon’. To get help at any time, please say ‘help’. To hear what your options are at 
any point, say, ‘what can I say’. To hear a summary of the system’s state, say, ‘where are we’ ”. 

Finally, the Help.SystemCapabilities strategy provides a generic message about the sys-
tem’s capabilities, in response to user requests like “What can you do?” Again, system authors have to 
customize the corresponding language generation template. For instance, in the RoomLine system, 
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this prompt is: “I can assist you to make conference room reservations in S C S. I have information 
about 13 rooms throughout Newell Simon and Wean Hall. For instance, if you want to reserve a 
room for next Wednesday, you can say: ‘I want a room for next Wednesday from ten until noon.’ I 
also have information about the equipment available in each of the rooms, like overhead projectors, 
whiteboards, room size, and networking. You could say for instance, I want a room with a projector 
and a whiteboard for tomorrow morning. If you want more hints about how to interact with the sys-
tem, say, ‘interaction tips’ Now, moving back to where we were …”. 

§ Quit 

The Quit strategy allows users to terminate a conversation at any point by saying something like 
“Quit!” or “Good-bye”. The strategy asks a verification question “Are you sure you would like to ter-
minate this session?” Upon confirmation, the dialog is terminated.  

§ Repeat 

The Repeat strategy implements support for repeating the previous system prompt, for instance if 
the user says “Repeat!” or “What?”  

§ StartOver 

The StartOver strategy allows users to restarting the conversation from the beginning. After the 
system confirms the user’s intention to restart, the dialog task tree is reset to the initial configuration 
(e.g. all agents are reset, all concepts are cleared.) In addition, the system author can also specify a 
customized start-over routine. This is useful in situations when the system must retain some informa-
tion on a start-over, rather than start from scratch.  

§ Suspend 

The Suspend strategy implements support for temporarily suspending the conversation, on a user 
request like “Suspend!” or “Hold on a minute.” The system informs the user that the conversation is 
temporarily suspended, and the user can restart by saying “Resume conversation!” Once the resume 
command is given, the strategy first issues the establish_context prompt on the agent that was 
previously in focus, and then completes; the conversation then continues from where it was left over.  

§ Timeout 

There are two Timeout strategies available in the RavenClaw dialog management framework.  Both 
handle situations in which no user response is received within a specified timeout interval since the 
end of the last system prompt. Timeout intervals can be defined globally, and overwritten locally 
through the TIMEOUT_PERIOD macro on individual dialog agents. If the timeout period elapses and 
no response is received from the user, the RavenClaw dialog engine creates an internal [TIMEOUT] 
event, which triggers the Timeout strategy.  

The first timeout strategy, Timeout.Terminate, attempts to reestablish the channel by first 
issuing the timeout prompt corresponding to the previously focused agent. If that fails, the strategy 
tries again to reestablish the channel by asking “Are you still there?” If the system still does not re-
ceive an answer, this strategy will terminate the conversation by issuing a prompt like “I assume you 
are no longer there. I will hang up now.” 

The second timeout strategy, Timeout.Suspend, suspends the conversation when a timeout 
occurs. The user can resume the conversation by saying something like “Resume” or “Let’s restart”. 
System authors specify which one of these two timeout strategies the dialog manager should use.  

3.2.4.2 Error recovery strategies 

The error recovery strategies in the RavenClaw dialog management framework fall into two catego-
ries: (1) strategies for handling potential misunderstandings, and (2) strategies for handling non-
understandings. Just like the other task-independent conversational strategies, the error recovery 
strategies are implemented as library dialog agencies. The dialog engine monitors the conversation 
and, during the error handling phase it decides whether or not it needs to engage in any error han-
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dling action. If an action is deemed necessary, an instance of the corresponding error recovery strat-
egy is created on the fly, and dynamically added to the dialog stack. In the next chapter, we will de-
scribe the RavenClaw error handling architecture, and give a more detailed presentation of each of 
these strategies, and of the mechanisms used to invoke them. Here, we enumerate the strategies, and 
provide examples for each of them – see Table 11. 

3.3 The Olympus dialog system infrastructure 

In the previous section, we have provided an overview of the RavenClaw dialog management frame-
work. We have seen that RavenClaw is a two-tier architecture that decouples the domain-specific 
aspects of the dialog control logic from the domain-independent dialog engine. To build a new dialog 
manager, system authors have to develop a dialog task specification, essentially a hierarchical plan for 
the interaction. The dialog engine then manages the dialog by executing this dialog task specification. 
However, in order to build a fully functioning spoken language interface, a number of other compo-
nents besides a dialog manager are required: speech recognition, language understanding and genera-
tion, speech synthesis, etc.  

Table 11. Task-independent error handling strategies in the RavenClaw dialog management framework 

 

Error Handling Strategy 
 

 

Example 

 

Strategies for handling misunderstandings 

 

Explicit confirmation Did you say you wanted a room starting at 10 a.m.? 
Implicit confirmation starting at 10 a.m. … until what time? 
 

Strategies for handling non-understandings [suppose a non-understanding happens after the system asks: “Would 
you like a small room or a large one?”] 
 

Notify that a non-understanding hap-
pened 

Sorry, I didn’t catch that …  

Ask user to repeat Can you please repeat that? 

Ask user to rephrase Can you please rephrase that? 

Repeat prompt Would you like a small room or a large one? 

Give a you-can-say help message 
For instance, you could say something like “I want a small room”, or “I 
want a large room” 

Give an explain-more help message 
Right now I need you to tell me if you would prefer a small room or a 
large room.  

Give a full help message 

I found seven rooms available Friday from 10 to 12. Right now I need 
you to tell me if you would prefer a small room or a large room. For in-
stance, you could say something like “I want a small room”, or “I want a 
large room” 

Give tips about how to best interact with 
the system 

Okay, I know this conversation isn't going well. There are things you can 
try to help me understand you better. Speak clearly and naturally; don't 
speak too quickly or too slowly. Give short, concise answers. Calling 
from a quiet place helps. If you'd like to start from scratch, you can say 
‘start-over' at any time. 

Ask for a short answer and repeat 
prompt 

Please use shorter answers because I have trouble understanding long 
sentences… Would you like a small room or a large one? 

Ask for a short answer and give a you-
can-say help message 

Please use shorter answers because I have trouble understanding long 
sentences… For instance, you could say something like “I want a small 
room”, or “I want a large room” 

Ask user to speak less loud and repeat 
prompt 

I understand people best when they speak softer. Would you like a small 
room or a large one? 

Fail the current request and move-on 
Sorry, I didn’t catch that. One choice would be Newell Simon 1507. This 
room can accommodate 50 people, and has a projector, a whiteboard 
and network access. Do you want a reservation for Newell Simon 1507? 

Yield the turn  […] (system remains silent, yielding the turn to the user) 

Ask user if they’d like to start over 
I’m sorry I’m still having trouble understanding you, and I might do better 
if we restarted. Would you like to start over? 

Give up 
I’m sorry but I’m having lots of trouble understanding you and I don’t 
think I will be able to help you. Please call back during normal business 
hours. 
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In this section we give a quick overview of Olympus, a collection of freely available dialog 
system components (and corresponding control logic) that we have used in conjunction with Raven-
Claw to build and deploy spoken language interfaces. Then, in section 3.4, we will discuss a number 
of spoken dialog systems that have been developed within the RavenClaw/Olympus framework. 
These systems provide the experimental platform for the error handling research program discussed 
in the rest of this dissertation.  

Olympus [12] is a dialog system infrastructure that, like RavenClaw, has its origins in the ear-
lier CMU Communicator project [101]. At the high-level, Olympus consists of a series of compo-
nents connected in a classical, pipeline architecture – see Figure 2. The audio signal for the user ut-
terance is captured and passed through a speech recognition module that produces a recognition hy-
pothesis (e.g. “two p.m.”). The recognition hypothesis is then forwarded to a language understand-
ing component that creates a corresponding semantic representation, e.g. [time=2p.m.]. Next, the 
RavenClaw-based dialog manager integrates this semantic input into the current discourse context, 
and produces the next system action in the form of a semantic output (e.g. {request end_time}). 
A language generation module produces the corresponding surface form, which is subsequently 
passed to a speech synthesis module and rendered as audio.  

Figure 31 provides a more detailed account of a typical RavenClaw/Olympus based system. 
While the pipeline illustrated in Figure 2 captures the logical flow of information in the system, in 
practice the various system components do not communicate directly. Rather, they rely on a central-
ized message-passing infrastructure – Galaxy [111]. Each component is implemented as a separate 
process that connects to a centralized traffic router – the Galaxy hub. The messages are sent through 
the hub, which forwards them to the appropriate destination. The routing logic is described by 
means of a configuration script.  

For recognition, Olympus uses the Sphinx decoding engine [58]. A recognition server com-
ponent captures the audio stream (typically from the sound-card), forwards it to a set of parallel rec-
ognition engines, and collects the corresponding recognition results. All the top-level recognition 
hypotheses (one from each engine) are then forwarded to the language understanding component. 
Currently, Sphinx-II (semi-continuous HMM recognition) and Sphinx-III (continuous HMM recog-
nition) engines are available and can be used in conjunction with the recognition server. The individ-
ual recognition engines can be configured to use a variety of off-the-shelf acoustic models, and either 
n-gram or grammar-based language models. State-specific as well as class-based language models are 
supported, and tools for constructing language and acoustic models from data are readily available. 

Figure 30. Olympus: a classical dialog system architecture 
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Additionally, a DTMF (touch-tone) decoder is also available as a recognition engine. Most of the 
RavenClaw/Olympus systems described in the next section use two parallel Sphinx-II recognizers: 
one configured with acoustic models trained using male speech and the other configured with acous-
tic models trained using female speech. Other parallel decoder configurations can also be created and 
used.  

Language understanding is implemented via Phoenix, a robust semantic parser [131]. Phoe-
nix uses a semantic hand-written grammar to parse the incoming set of recognition hypotheses (one 
or more parses can be generated for each hypothesis). The semantic grammar is constructed by con-
catenating a set of reusable grammar rules that capture domain-independent constructs like [Yes], 
[No], [Help], [Repeat], [Number], etc., with a set of domain-specific grammar rules authored by 
the system developer. For each recognition hypothesis the output of the parser consists of a se-
quence of slots containing the concepts extracted from the utterance.  

From Phoenix, the set of parsed hypotheses is passed to Helios, the confidence annotation 
component. Helios uses features from different knowledge sources in the system (e.g. recognition, 
understanding, dialog, etc.) to compute a confidence score for each parsed hypothesis. This score 
reflects the probability of correct understanding, i.e. how much the system trusts that the current 
semantic interpretation corresponds to the user’s expressed intent. The hypothesis with the highest 
confidence score is then forwarded to the dialog manager.  

The next component in the chain is the RavenClaw-based dialog manager. The dialog man-
ager integrates the semantic input in the current discourse context, and decides which action the sys-
tem should engage in next. In the process, the dialog manager may consult / exchange information 
with a number of other domain-specific agents, such as an application-specific back-end. 

The semantic output from the dialog manager is then processed by the Rosetta language 
generation component, which creates the corresponding surface form. Rosetta supports template-
based language generation. Like the grammar, the set of language generation templates is assembled 
by concatenating a set of predefined, domain-independent templates, with a set of manually authored 
task-specific templates.  

Finally, the prompts are synthesized by the Kalliope speech synthesis module. Kalliope can 
be configured to use a variety of speech synthesis engines: Festival [8], which is an open-source 
speech synthesis system, as well as Theta [24] and Swift [24], which are commercial solutions. Kal-

Figure 31. The Olympus/RavenClaw dialog system architecture: a more detailed view 
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liope supports both open-domain (e.g. diphone) and limited-domain (e.g. unit selection) voices. The 
SSML markup language is also supported. 

The various components briefly described above form the core of the Olympus dialog sys-
tem infrastructure. Additional components have been added throughout the development of various 
systems, and, given the modularity of the Olympus architecture, they can be easily reused. Here are 
some examples. A text input-and-output server (TTYServer) provides support for text-based sys-
tems, and can also be very useful for debugging purposes. More recently a GoogleTalk agent was 
implemented in the Olympus framework to support interactions via the popular internet messaging 
system. A Skype speech client component is also available. A Process Monitor component is used to 
start-up and to monitor all the other components in an Olympus system. Additionally, the Process 
Monitor can automatically restart components that crash, and send notification emails to a system 
administrator. Finally, a variety of logging and data processing and analysis tools are also available as 
part of the Olympus distribution.  

3.4 RavenClaw-based systems 

Evaluation of spoken language interfaces is a difficult task, and has received significant amounts of 
attention from the research community [48, 55, 127-129]. Evaluating a dialog management frame-
work poses even harder challenges. To our knowledge, no such objective assessments have been per-
formed to date. Characteristics such as ease-of-use, portability, domain-independence, scalability, 
robustness, etc. are very hard to capture in a quantitative manner. In a sense, perhaps the problem is 
ill-posed. Comparing dialog management frameworks is like comparing programming languages: 
while arguments can be made about various strengths and weaknesses of various programming lan-
guages, no clear order or measure of absolute performance can be established. Certain programming 
languages are more appropriate for certain tasks than others. Even evaluating the suitability of a pro-
gramming language (or dialog management framework) for a given task is difficult, since many appli-
cations can be recast into a form that is tractable in a particular approach.  

As a first step towards a more rigorous evaluation of the RavenClaw dialog management 
framework, we decided to use this framework to build a number of spoken dialog systems spanning 
different domains and interaction types. In the process, we monitored various aspects of the devel-
opment process and noted the degree of accommodation required by RavenClaw.  

To date, about a dozen such systems have been developed using the RavenClaw dialog man-
agement framework and the larger Olympus infrastructure. Some of these systems have been de-
ployed successfully into day-to-day use. Table 12 provides a quick summary of 8 of these systems. As 
the table shows, these systems operate in structurally different domains and were constructed by de-
velopment teams with different degrees of experience building spoken language interfaces.  

In the following subsections, we briefly describe each of these systems. For each system, we 
present more details about the domain, the interaction style, as well as various system characteristics 
such as vocabulary and grammar size, etc. Whenever available, we present performance statistics and 
discuss issues encountered throughout development and deployment stages. In addition, we also de-
scribe research issues that have been or are currently investigated in the context of these systems. I 
the last subsection, 3.4.9, we summarize our overall experience in using the RavenClaw dialog man-
agement framework in these application domains.  

3.4.1 RoomLine 
RoomLine is a telephone-based mixed-initiative spoken dialog system that provides access to confer-
ence room schedule information and allows users to make conference room reservations. The system 
has access to live information about the schedules of 13 conference rooms in 2 buildings on the 
CMU campus: Wean Hall and Newell Simon Hall. Additionally, the system has information about 
the various characteristics of these rooms such as location, size, network access, whiteboards, and 
audio-visual equipment. To perform a room reservation, the system finds the list of rooms that sat-
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isfy an initial set of user-specified constraints. Next, RoomLine presents this information to the user, 
and engages in a follow-up negotiation dialog to identify which room best matches the user’s needs. 
Once the desired room is identified, registered users can authenticate using a 4-digit touch-tone PIN, 
and the system performs the reservation through the campus-wide CorporateTime calendar server. 
Following the interaction, the user also receives a confirmation email for the room reservation. A 
sample conversation with the system is presented in Appendix A. 

RoomLine engages in a slot-filling type interaction in the initial phase of the dialog, and a 
negotiation-type interaction in the second part of the dialog, where users can take the initiative and 
navigate the solution space by specifying additional constraints, or relaxing the existing ones. The 
plan-based RavenClaw dialog management framework successfully supports both interaction types.  

The current (as of December 2006) version of the RoomLine system uses two parallel 
Sphinx-II engines for recognition equipped with gender specific acoustic models. The vocabulary 
size is 1092 words. The semantic grammar used for language-understanding purposes contains 45 
top-level grammar slots. The system uses a confidence annotation model that leverages multiple 
knowledge sources and is trained with in-domain data according to the methodology described in 
Chapter 5. The dialog task specification contains 117 dialog agents and 28 concepts. The dialog man-
ager is configured to use both explicit and implicit confirmations to recover from potential misun-
derstandings, and ten strategies to recovery from non-understandings. The system uses template-
based language generation, and a Cepstral-based [24] open-domain unit-selection synthesizer. In a 
scenario-driven in-lab experiment (described later in Chapter 8), the system attained an average task-
success rate of 75.1% (85.2% for native speakers and 44.1% for non-native speakers) at an average 
word-error-rate of 25.7% (19.7% for native speakers, and 39.8% for non-native speakers). 

RoomLine was one of the first systems developed using the RavenClaw dialog management 
framework. The system has been publicly deployed in 2003, and has been available 24x7 to students 

System name Domain / Description Interaction type Developers 

RoomLine 

telephone-based system that pro-
vides support for conference room 
reservation and scheduling within the 
School of Computer Science at CMU. 

information access 
(mixed initiative) 

Bohus D. 

Let’s Go! Public  
[87-89] 

telephone-based system that pro-
vides access to bus route and 
scheduling information in the greater 
Pittsburgh area 

information access 
(system initiative) 

Raux A., Bohus D., 
Langner B., Black A., 
Eskenazi M. 

LARRI 
[13] 

multi-modal system that provides 
assistance to F/A-18 aircraft person-
nel during the execution of mainte-
nance tasks 

multi-modal task 
guidance and proce-
dure browsing 

Bohus D., Sun Y., 
Patel K.,  
Chotimongkol A. 

Intelligent Procedure 
Assistant 
[1, 2] 

early prototype for a multi-modal 
system aimed at providing guidance 
and support to the astronauts on the 
International Space Station during 
the execution of procedural tasks and 
checklists 

multi-modal task 
guidance and proce-
dure browsing 

RIALIST group/NASA 
Ames, Aist G.,  
Bohus D. 

TeamTalk 
[47] 

multi-participant spoken language 
command-and-control interface for a 
team of robots operating in the treas-
ure-hunt domain 

multi-participant 
command-and-control 

Harris T.K., Banerjee 
S., Sison J., Kishore 
S.P., Bodine K., Bohus 
D. 

VERA 

telephone-based taskable agent that 
can be instructed to deliver mes-
sages to a third party and make 
wake-up calls. 

message-passing 
Bardak U., Judy S., 
Pedro V., Blum T., Ko 
J., Miyata R. 

Madeleine 
text-based dialog system for medical 
diagnosis 

diagnosis Bohus D. 

ConQuest 
[11] 

telephone-based spoken dialog sys-
tem that provides conference sched-
ule information (deployed during 
Interspeech-2006) 

information access 
(mixed-initiative) 

Bohus D., Kumar, R., 
Krishna G., Keri V., 
Grau S., Tomko S., 
Raux A. 

 
Table 12. RavenClaw-based spoken dialog systems 
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and faculty on campus ever since. Overall, RoomLine provides one of the main experimental plat-
forms for the implementation and evaluation of the error handling research described in the rest of 
this dissertation. Data collected with this system provides the basis for our empirical error analysis 
presented in Chapter 2, our experiments in confidence annotation and belief updating described in 
Chapter 5 and Chapter 6, as well as our investigation of non-understanding recovery strategies de-
scribed in Chapter 8. 

3.4.2 Let’s Go! (Public) Bus Information System 
The Let’s Go! Public Bus Information system [87-89] is a telephone-based spoken dialog system that 
provides access to bus route and schedule information. The system knows about 12 bus routes, and 
1800 place names in the greater Pittsburgh area. In order to provide bus schedule information, the 
system tries to identify the user’s departure and arrival stop, and the departure or arrival time. Once 
the results are provided, the user can ask for the next or previous bus on that route, or can restart the 
conversation from the beginning to get information for a different route. A sample interaction with 
this system is illustrated in Appendix A. Additional information is available on the system’s web-site: 
http://www.cmuletsgo.org. 

Let’s Go! Public is therefore a slot-filling, information-access system. The conversation be-
gins with an open-ended “How can I help you?” prompt, but continues with a set of focused ques-
tions in which the system asks in order for the departure place, arrival place and travel time. The user 
is allowed to over-answer any particular question, but all concept values are explicitly confirmed by 
the system before moving on. After the results are presented, the system offers a menu-style set of 
options for finding more information about the current selected route or restarting the conversation. 
No significant challenges were encountered in implementing this type of interaction using the 
RavenClaw dialog management framework.  

Let’s Go! Public uses three parallel decoding engines: two gender-specific Sphinx-II engine 
and a touch-tone recognition engine. The vocabulary size is 7911 words (including variants for 1800 
place names on 12 bus routes.) The system uses state-specific, class-based tri-gram language models. 
The semantic grammar contains 29 top-level grammar slots. The confidence annotation model lever-
ages multiple knowledge sources in the system and is trained with in-domain data according to the 
methodology described in Chapter 5. The dialog task specification contains 62 dialog agents and 17 
concepts. The current version of this system uses a pessimistic policy for handling potential misun-
derstandings: the system explicitly confirms all concept values received from the user. While initially 
the system used 5 strategies for recovering from non-understandings, in February 2006 this set of 
strategies was refined and expanded [87]. The policy used to engage these strategies was learned 
online, using an approach we will later describe in section 8.4 from Chapter 8. Let’s Go! Public uses 
template-based language generation and a Cepstral-based [24] open-domain unit-selection synthe-
sizer. 

The Let’s Go! Public Bus Information system was developed as a follow-up, public version 
of the earlier Let’s Go! Bus Information system. This first system, also based on the RavenClaw-
Olympus architecture, was developed earlier at CMU as part of a research project focused on investi-
gating methods for making spoken language interfaces more accessible to elderly and non-native 
speakers. In fall of 2004 the management of the Port Authority of Allegheny County (PAAC) called 
the Let’s Go! experimental system and found that it could correspond to the user’s needs. After a 
redesign stage aimed to increase robustness, the new version of the system, dubbed Let’s Go! Public 
was open to the Pittsburgh population on March 4th, 2005. The system is connected to the PAAC 
customer service line during non-business hours, when no operators are available to answer the calls 
(i.e. 7 p.m. to 6 a.m. on weekdays, and 6 p.m. to 8 a.m. on weekends and national holidays.) Since it 
deployment, the system has serviced on average about 40-50 calls per night, for a total of over 30,000 
calls.  

The constant and relatively large traffic to the system, together with the real-world nature of 
the application (the calls come from users with real needs) make it an excellent platform for research. 
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To date, a number of studies and investigations have been performed using this system. With respect 
to the work described in this dissertation, the Let’s Go! Public system provided the experimental 
platform for investigating an online supervised approach for learning non-understanding recovery 
strategies described in Chapter 8. In other work [89], Raux et al. have performed an analysis of user 
responses to various non-understanding recovery strategies in this system. In addition, in [87], Raux 
et al have investigated the impact of four different factors (recognition accuracy, turn-taking errors, 
non-understanding recovery strategies, initial prompt) on overall dialog performance. More generally, 
the Let’s Go! Public system currently provides the experimental test-bed for the development and 
evaluation of RavenClaw/Olympus-II, the next version of the RavenClaw/Olympus infrastructure 
which addresses research issues related to timing and turn-taking in conversation [86]. Future plans 
with the Let’s Go! Public system also include opening up the system for experimentation to other 
researchers in the spoken language interaction community.  

3.4.3 LARRI 
LARRI [13], or the Language Based Retrieval of Repair Information system is a multi-modal system 
for support of maintenance and repair activities for F/A-18 aircraft mechanics. The system imple-
ments a level 4/5 IETM (Interactive Electronic Technical Manual), that is, semantically annotated 
documentation. LARRI integrates a graphical user interfaces for easy visualization of dense technical 
information (e.g. instructions, schematics, video-streams, etc.) with a spoken dialog system that facili-
tates information access and offers assistance throughout the execution of procedural tasks.  

A sample interaction with LARRI is presented in Appendix A. After the user logs into the 
system, LARRI retrieves the user’s profile from a backend agent, and allows the user to view their 
current schedule and to select a task to be executed. The typical maintenance task consists of a se-
quence of steps, which contain instructions, optionally followed by verification questions in which 
the possible outcomes of each step are discussed. Basic steps can also include animations or short 
video sequences that can be accessed by the user through the GUI or through spoken commands. By 
default, LARRI guides the user through the procedure, in a step-by-step fashion. At the same time, 
the user can take the initiative and perform random access to the documentation/task, either by ac-
cessing the GUI or by simple spoken language commands such as “go to step 15” or “show me the fig-

ure”. Once the maintenance task is completed, the system provides a brief summary of the activity, 
updates the information on the back-end side, and moves to the next scheduled task.  

In contrast to RoomLine and Let’s Go! Public systems, which operate in information-access 
domains, LARRI provides assistance and guidance throughout the execution of a procedural task. 
The hierarchical representation of the dialog task used in RavenClaw is also very well suited in this 
domain, as it maps directly onto the structure of the actual tasks to be performed by the user (with 
sub-tasks, steps, sub-steps, etc). Moreover, since the procedural tasks are extracted on-the-fly from a 
task repository, the framework’s ability to dynamically generate/expand the dialog task specification 
at runtime plays a very important role. Another important difference is that LARRI is a multi-modal 
application that integrates a graphical user interface for easy visualization of dense technical informa-
tion (e.g. instructions, video-sequences, animations, etc.) with a spoken language interface that facili-
tates information access and offers task guidance in this environment. The graphical interface is ac-
cessible via a translucent head-worn display connected to a wearable client computer. A rotary mouse 
(dial) provides direct access to the GUI elements. The GUI is connected via the Galaxy hub [111] to 
the rest of the system: the rotary mouse events are rendered as semantic inputs and are sent to Helios 
which performs the multimodal integration and forwards the corresponding messages to the dialog 
manager.  

Speech recognition is performed via the Sphinx-II decoder, using semi-continuous HMMs. 
Acoustic models were trained using the Wall Street Journal (WSJ-0) corpus, and a class-based, tri-
gram language model was constructed and used for recognition. The current vocabulary contains 408 
words, and the semantic grammar contains 61 top-level grammar slots. The system uses a simple 
confidence annotation model that relies on a heuristic based on a goodness-of-parse score. The dia-



 The RavenClaw dialog management framework 89 

 

log task specification is constructed dynamically, based on the task that the user is currently execut-
ing. The number of agents and concepts in the task can therefore grow from a minimum of 61 to 
several hundreds, depending on length of the current task. In practice, the system scaled up grace-
fully. LARRI uses template-based language generation, and a Festival-based [8] open-domain unit-
selection synthesizer.  

Although this system was never deployed into day-to-day use, we did evaluate LARRI on 
two separate occasions. The evaluations were performed on a military base, with the participation of 
trained Navy personnel, and the focus was on understanding the experience of the mechanics. While 
users commented favorably on the language-based interface, a closer analysis of the sessions and 
feedback revealed a number of issues. They included the need for better feedback on the system’s 
state; a more flexible (controllable) balance between the spoken and graphical outputs, as well as im-
provements to the GUI design.  

An interesting research question raised by the development of the LARRI system was: how 
can we automatically prepare the necessary resources (e.g. language models, grammars, generation 
templates, etc.) for a spoken language interface for a technical manual? (assume we are given the 
documentation in a PDF format.) While this is not a critical problem for small closed-domain appli-
cations, it needs to be addressed for large and constantly mutating domains such as aircraft mainte-
nance.  

3.4.4 Intelligent Procedure Assistant 
The Intelligent Procedure Assistant (IPA) [1, 2] was an early prototype of a multimodal spoken dia-
log system meant to assist astronauts on the International Space Station during the execution of 
checklists and various procedural tasks. This system is very similar in domain, interaction-style and 
challenges to the LARRI system (F-18 maintenance task) described in the previous subsection. Like 
LARRI, the IPA system allows users to browse through a procedure, either one-line-at-a-time or in 
larger steps. The system also allows users to request images and diagrams associated with various 
steps in the checklist, record voice notes and associate them with various steps, and control the audio 
volume.  

In contrast to the other RavenClaw-based systems described in this section, the IPA system 
was not constructed using the Olympus infrastructure and components. This system was developed 
in collaboration with the RIACS group at NASA Ames and used a series of other spoken language 
processing components connected using the Open Agent Architecture [72]. Speech recognition was 
accomplished using a Nuance 8 recognizer with a context-free language model constructed from a 
unification grammar and then compiled into a recognition model [92]. The top recognition hypothe-
sis was parsed using the Gemini parser [33] and finally rendered as predicate-argument structures 
such as volume(up). The system used a RavenClaw-based dialog manager. A few changes were re-
quired in the RavenClaw dialog management framework to support inputs in predicate-argument 
form and a connection with the Open Agent Architecture. Given the modularity of the RavenClaw 
architecture, these changes were easy to make: an additional dialog interface class (supporting OAA) 
and input processing class (supporting predicate-argument inputs) were defined. The visual display 
was implemented as an HTML document rendered in a regular web browser (the current step and 
sub-step was highlighted accordingly at each point in the dialog). Speech synthesis was handled by 
AT&T’s speech synthesizer, equipped with a customized pronunciation dictionary. 

Overall, no significant challenges were encountered in implementing the IPA dialog manager 
using RavenClaw, or in using the RavenClaw dialog management framework in a different environ-
ment, i.e. OAA communication infrastructure, and different input and output representations. Al-
though IPA was only an early demonstration prototype, the system was well received. Its successor, 
Clarissa [93], was the first spoken language interface tested in outer space.  
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3.4.5 TeamTalk 
TeamTalk [47] is a multi-participant spoken language interface that facilitates communication be-
tween a human operator and a team of robots. The system operates in a multi-robot-assisted treas-
ure-hunt domain. The human operator is tasked to search a space for objects of interest and to bring 
those objects to a specified location. To achieve this task, the human operator directs the robots in a 
search operation. For instance, in one experiment [47], users were required to navigate (only by using 
the speech channel) two robots through corridors towards a certain location in a building.  

The domain is command-and-control in flavor, but poses a number of additional challenges 
due to the multi-participant nature of the conversation. On the input side, the robots need to be able 
to identify who the addressee of any given user utterance is. On the output side, the robots need to 
address the problem of channel contention (i.e. multiple participants speaking over each other). For 
the interested reader, details about the current solutions to these problems are discussed in [47]. 
More generally, TeamTalk constitutes an excellent research platform for multi-agent dialog dynamics. 
Apart from the multi-participant aspects, some of the other current research goals in this project are: 
(1) understanding the skills needed for communication in a human-robot team, (2) developing lan-
guages for robot navigation in novel environments and (3) understand how novel objects, locations 
and tasks come to be described in language.  

The RavenClaw/Olympus framework was relatively easily adapted to the demands of this 
domain. In the current architecture, each robot uses its own RavenClaw-based dialog manager, but all 
robots share the other Olympus components: Sphinx-II based speech recognition, Phoenix-based 
language understanding, Rosetta-based language generation and Festival-based speech synthesis (each 
robot uses a different voice.) TeamTalk can interface with real robots, including the Pioneer P2DX 
and the Segway RMP. In addition, it can interface with virtual robots within the high-fidelity USAR-
Sim [4] simulation environment. The processed user inputs are sent to all dialog managers (robots) in 
the system; each dialog managers decides based on a simple algorithm [47] whether or not the cur-
rent input is addressed to it. If so, an action is taken; otherwise the input is ignored (it will be proc-
essed and responded to by another robot.) A few small changes were required in the Raven-
Claw/Olympus architecture to support multiple dialog managers. For instance, the RavenClaw out-
put messages were augmented with information about the identity of the dialog manager that gener-
ated them; this information was later used by the synthesis component to decide on the voice to use.  

3.4.6 VERA 
VERA (Voice Enabled Reminder Assistant) is a taskable agent that can be instructed to deliver mes-
sages to a third party, make wake-up calls, etc. The system consists of two different telephone-based 
spoken language interfaces, each constructed using the RavenClaw/Olympus infrastructure. The first 
interface – Vera In – handles incoming requests and places the desired reminders and messages in a 
database. The messages are saved as full audio files, and subsequently delivered as such (no speech 
recognition is performed on them.) The second system – Vera Out – continuously polls the same 
database and initiates calls to deliver the messages. Apart from the messages to be delivered, the da-
tabase also contains contact information with various phone numbers / locations for each registered 
user and potential message recipient. The system cycles through these numbers, according to a pre-
defined preference ordering. In each call the system starts by greeting the person that picked up the 
phone, and then tries to identify whether or not they are the desired message recipient. If the desired 
recipient is reached, the corresponding message is delivered. Otherwise the system continues to try 
the other numbers until the intended recipient is reached.  

VERA is interesting in that, in contrast to typical spoken language interfaces, it does not 
simply receive calls and provide information. It also initiates calls. The dialog in which the system 
attempts to identify the person at the end of the line (who might be an answering machine or who 
might not expect to be called by an automated system) poses a number of interesting research chal-
lenges.  

The system was developed as part of a class project, by a team of six students who had no 
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prior experience with RavenClaw or Olympus. Modulo an initial lack of documentation, no major 
problems were encountered in the development of this system. In terms of the actual infrastructure, 
the VERA In and VERA Out systems are very similar to the other RavenClaw/Olympus systems 
described so far. One notable difference is that a VoIP Skype-connection component was written for 
this system and integrated with the rest of the Olympus infrastructure.  

3.4.7 Madeleine 
Madeleine is a text-only dialog system implemented in response to a workshop challenge problem 
launched by MITRE in Fall of 2003. The challenge problem involved the rapid development of a 
spoken dialog system for medical diagnosis, where the application back-end was provided by MITRE 
Corporation. The back-end consisted of a set of disease diagnostic trees. At each point in the dialog, 
the system could collect more information about symptoms from the user or perform various tests 
until a unique diagnosis was reached.  

Like LARRI, the Madeleine system dynamically generates the dialog task specification. The 
set of possible symptoms are loaded from the back-end, and the corresponding dialog task structures 
for talking about or performing the associated tests are created on the fly. Furthermore, while the 
default execution policy in the RavenClaw dialog management framework was an in-order traversal 
of the task tree (see subsection 3.2.2.2), in this case a customized execution policy was used. The sys-
tem made relies of the decision trees in the application backend to determine which symptom should 
be investigated next, i.e. which subagent should be planned for execution by the root diagnosis 
agency.  

Throughout the development of this system we performed an informal wall-clock analysis of 
the amount of time required to build each of the system components. The total time has 21 hours 
and 15 person-minutes. Note that the developer of this system – the author of this dissertation – had 
expert knowledge of the RavenClaw/Olympus framework. Figure 32 illustrates the break-down of 
this time into various components. It is interesting to notice that no single component dominated the 
development time; rather, a number of hours were dedicated to each component. The interface de-
sign stage, together with developing and debugging the dialog manager accounted for close to 50% 
of the total development time. The other half was accounted for (in fairly equal portions) by the de-
velopment of the domain-specific system grammar and language generation templates, the develop-
ment of the backend connections, and miscellaneous setup tasks. This evaluation is informal, does 
not capture the effort required for developing speech recognition and synthesis resources (the system 
was text-in / text-out) and addresses only the initial development stages. Nevertheless, we believe 
this exercise highlights both the flexibility and the rapid-development character of the RavenClaw 
dialog management framework.  

Dialog manager (4h)

18%

Dialog manager bug-fixes 

(2h15m)

11%

Language generation 

templates (2h45m)

13%
Backend (3h20m)

16%

Grammar (3h45m)

18%

Setup (1h10m)

5%

System design (4h)

19%

Figure 32. Wall-clock development time for various components of the Madeleine  
RavenClaw/Olympus system 
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3.4.8 ConQuest 
ConQuest (Conference Questions) [11] is a spoken dialog system that provides technical schedule 
information during scientific conferences, and the latest addition to the RavenClaw/Olympus family 
of systems. ConQuest facilitates access to information about papers and their authors, sessions, top-
ics, special events, as well as various announcements made throughout the conference. Users can 
query for particular papers by specifying an author, a topic, session name, venue, or date and time. 
Similarly, users can query for sessions by topic, date and time, or venue. Once a session of interest is 
identified, the system can provide more details about the various papers presented in that session. In 
addition, the system can provide information about the social events associated with the conference, 
and allows participants to cast their votes for a People’s Choice Best Paper Award. A sample interac-
tion with the system is available in Appendix A.  

The system implements an information access interface to the conference technical schedule. 
The interaction is largely slot-filling, with a few twists: the system has several back-off and constraint 
relaxation strategies. The user can take the initiative at any point in the dialog and switch between 
various topics of interests (e.g. from talking about papers to finding information about social events, 
to casting a vote for the best paper award, etc.) No significant challenges were encountered in im-
plementing this interaction type in the RavenClaw dialog management framework. 

The first version of this system, Conquest-IS06, was deployed during the InterSpeech-2006 
conference in Pittsburgh, PA. Like the majority of RavenClaw/Olympus systems, Conquest-IS06 was 
configured with two parallel gender-specific Sphinx-II recognition engines. The vocabulary size was 
4795 words, including 1492 author names, 659 lexicalized paper titles, 78 session names, 213 key-
words and 7 room names. The semantic grammar used for language-understanding purposes con-
tained 40 top-level grammar slots. The dialog task specification contained 73 dialog agents and 41 
concepts. The dialog manager was configured with both explicit and implicit confirmations, and a 
wide array of non-understanding recovery strategies. The system used template-based language gen-
eration, and a Cepstral-based open-domain unit-selection synthesizer. Two versions of the system 
were available throughout the conference: a telephone version and a desktop-based system (available 
by the registration desk). A corpus totaling 174 sessions was collected during the conference. A new 
deployment is planned for the IJCAI-2007 conference in Hyderabad, India.  

ConQuest not merely a dialog system that operates in a closed domain. Rather, ConQuest is 
better viewed as a “system template” that can be repeatedly instantiated for various conferences. The 
core resource needed to create a ConQuest instance is a database containing the technical schedule 
information. Based on this database, the corresponding vocabulary, grammar, language generation 
and synthesis resources can be semi-automatically generated, with relatively little manual effort. The 
dialog task specification is largely independent9 of the conference database. While the development 
of the first system – ConQuest-IS06 – was similar to that of any other closed domain system, subse-
quent instantiations should be much easier to build. Once the ConQuest-IJCAI system is complete 
and deployed, it will be interesting to perform a comparative analysis of development time/effort and 
of the system’s portability. We have released the ConQuest system (as well as the data collected with 
it so far) to the research community. We believe that in the future this system can provide a good 
platform and user base for research and comparative evaluations in spoken language interfaces. 

3.4.9 Concluding remarks 
In this section (3.4) we have described a number of conversational spoken language interfaces devel-
oped using the RavenClaw dialog management framework and the larger Olympus dialog system in-
frastructure. The systems operate across a variety of domains, including information-access, guidance 

                                                      
 
9 Changes to the dialog task specification will be necessary only if new event types (beyond papers, sessions, keynote 
speech, social event) are present in the schedule database.  
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through procedural tasks, command-and-control, and message delivery. Three of these systems – 
RoomLine, Let’s Go! Public, and ConQuest, have been successfully deployed into daily use.  

The plan-based, hierarchical representation of the domain-specific control logic has easily 
accommodated each of these domains, indicating a high degree of versatility and scalability. Further-
more, the decoupling between the domain-specific dialog control logic and the RavenClaw dialog 
engine allows for dynamically extending and controlling the interaction plan at runtime. This prop-
erty plays a key role in domains like LARRI, the Intelligent Procedure Assistant, and Madeleine, 
where the structure of the interaction is not known apriori, but rather generated on the fly, based on 
various back-end objects (i.e. procedural task in LARRI and the Intelligent Procedure Assistant, and 
medical diagnosis tree in Madeleine). The modularity of the RavenClaw implementation has also al-
lowed us to easily port it into a different, open-agent-architecture based dialog system infrastructure 
in the Intelligent Procedure Assisstant system. Although further research is required (see more details 
in the following section), the framework was adapted to support a simple multi-participant conversa-
tion with a team of robots in the TeamTalk domain.  

The high degree of flexibility afforded by the hierarchical plan-based dialog task specification 
is beneficial, especially if one is interested in building complex interactions. At the same time, we 
have learned through developing these systems that the increased expressive power of this represen-
tation can also pose a number of challenges. Consider for instance the less flexible finite-state para-
digm for designing and specifying an interaction plan. In this case, the interaction plan is specified in 
a “positive” manner, by specifying possible transitions in the interaction: for instance, from state A 
the system can move to states B, C or D. Developing complex, mixed-initiative interactions in this 
formalism is in general a labor-intensive task: the number of possible transitions increases quickly 
with the total number of states. In contrast, in RavenClaw, the interaction plan is by default10 defined 
in a “negative” fashion, by specifying constraints that need to always hold. At runtime, a path 
through the dialog task is generated, depending on the user inputs; anything can happen, as long as 
the constraints are satisfied. This allows for a mixed-initiative interaction and lessens development 
effort for complex interactions. At the same time, it means that multiple solutions are possible for 
any desired interaction. In addition, this can increase the amount of effort required to insure correct 
behavior under all possible inputs; debugging the system or tracing the reasoning behind dialog con-
trol decisions and outcomes can become a more difficult task. An interesting direction for future re-
search would be to explore more closely the spectrum of possibilities between the two polarities we 
have mentioned above: the constraint-based task representation and the explicit state transition rep-
resentation.  

3.5 Summary and future work 

In this chapter we described RavenClaw, a plan-based, task-independent dialog management frame-
work. One of the key characteristics of the RavenClaw framework is that it enforces a clear separa-
tion between the domain-specific aspects of the dialog control logic and domain-independent con-
versational strategies. The domain-specific aspects are captured via a hierarchical plan for the conver-
sation, provided by the system author. At the same time, a domain-independent dialog engine plans 
the conversation according to the specified logic and the user inputs, and automatically provides a 
rich repertoire of conversational skills, such as error handling, timing and turn-taking, context estab-
lishment, etc. This decoupled approach has a number of benefits: it lessens system development ef-
fort, it promotes reusability and portability of proposed solution, and it ensures consistency and uni-
formity in behavior both within and across systems. The hierarchical, plan-based representation of 
the domain-specific dialog control logic provides a high degree of versatility. To date, over a dozen 

                                                      
 
10 Note that the framework allows the system developer to implement a different planning mechanism, including finite-state 
control in any of the agencies in the dialog task tree; this can be accomplished by overwriting the Execute routine for the 
desired agencies.  
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spoken dialog systems, operating in different domains, have been developed using the RavenClaw 
framework. Some of these systems have been deployed in day-to-day use. Overall, the framework has 
easily accommodated each of these domains and interaction styles.  

Together with these systems, RavenClaw provides a robust platform for research in dialog 
management and conversational spoken language interfaces. Apart from the error handling work 
described in this dissertation, RavenClaw currently supports wo other research efforts. The first pro-
ject, led by Harris and Rudnicky [47] aims to develop capabilities for multi-participant conversation. 
Most current spoken language interfaces are built for one-to-one conversation. However, new issues 
arise once we move to a multi-participant setting, where multiple agents can simultaneously engage in 
conversation. For instance, a number of problems regarding the conversation floor and the threading 
of subdialogs must be solved: how does each system identify who has the conversation floor and 
who is the addressee for any spoken utterance? How can multiple agents solve the channel conten-
tion problem, i.e. multiple agents speaking over each other? The second project, led by Raux and 
Eskenazi [86] investigates low-level interactional phenomena such as timing and turn-taking in con-
versation. Like the majority of other dialog management frameworks, the current version of Raven-
Claw makes a rigid “one-speaker-at-a-time” assumption. Although barge-in capabilities are sup-
ported, the dialog engine works asynchronously from the real-world: it does not use low-level infor-
mation about the realization of various utterances; rather, utterances and actions are assumed to be 
executed instantaneously, as soon as they are planned. User barge-ins and backchannels are often 
interpreted in the incorrect context, and can lead to turn over-taking problems, and sometimes to 
complete interaction breakdowns. In order to investigate these issues, and enable better real-time 
reactive behaviors and more robust timing and turn-taking, Raux is currently developing a second 
version of the RavenClaw dialog manager and surrounding Olympus components that will take into 
account the precise timing of events perceived from the real-world and system actions. This novel 
architecture is currently deployed in the Let’s Go! Public system and will enable research on low-level 
interactional phenomena.  

The RavenClaw dialog management framework, together with a number of the systems de-
scribed in section 3.4, provides the infrastructure for the error handling research conducted in this 
dissertation. Central for this work is the task-decoupled error handling architecture implemented as 
part of the RavenClaw dialog engine. In the next chapter, we describe this architecture in more detail.  



 

Chapter 4  

The RavenClaw error handling  
architecture 

In this chapter we describe the key components of the error handling architecture 
underlying the RavenClaw dialog management framework. The architecture is task-
independent and decouples both (1) the error handling strategies and (2) the error 
handling decision process from the actual dialog task specification. In doing so, it 
promotes reusability and learning, lessens the system authoring effort and ensures 
uniformity and consistency in behavior both within and across systems. Together 
with the larger, encompassing RavenClaw dialog management framework, this error 
handling architecture provides the infrastructure and experimental platform for the 
rest of the work described in this dissertation. 

4.1 Background and objectives 

The ability to accurately detect errors and recover from them is paramount in any spoken language 
interface. Although certain error detection mechanisms can operate early in the input processing 
stage, some errors such as no-match non-understandings can only be detected at the dialog manage-
ment level. Only at this level, after the system attempts to integrate the decoded semantics of the cur-
rent user turn into the larger discourse context, enough information is accumulated to make a fully 
informed judgment in an error detection (or diagnosis) task. Similarly, the decisions to engage in 
various error handling strategies such as confirming a concept, asking the user to repeat, asking the 
user to rephrase, etc. are made at the dialog management level. The system has to balance the costs 
of engaging in an error recovery strategy against those of continuing the interaction with potentially 
incorrect information. Error handling is therefore an important function in any dialog manager.  

The responsibility for handling potential errors is often delegated to the system author. Error 
handling is regarded as an integral part of the system’s dialog task. In this case, the system author has 
to write code that handles potential misunderstanding and non-understanding errors. This approach 
leads to monolithic one-time solutions that tend to lack portability, are prone to bugs and hard to 
maintain. Furthermore, they often result in inconsistent behaviors throughout different parts of the 
dialog. 

The alternative is a decoupled, task-independent or “toolkit” [71] approach to error han-
dling. We argue that this type of approach is feasible in the context of a plan-based dialog manage-
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ment framework, and it creates a number of advantages. We have already discussed in the previous 
chapter the benefits that result from insulating the domain-independent aspects of the dialog control 
logic from the domain-independent ones. We believe that, for a wide class of task-oriented systems, 
error handling can and should be regarded as a domain-independent conversational skill, and can 
therefore be decoupled from the domain-specific aspects of dialog control logic, i.e. from the dialog 
task specification.  In general, a large number of error recovery strategies, such as asking the user to 
repeat or rephrase, are entirely task-independent. Other more complex strategies, for instance explicit 
and implicit confirmations, can also be decoupled from the task by using appropriate parameteriza-
tions, for instance explicitly confirm concept foo. 

A task-independent approach has several benefits. First, it increases the degree of consis-
tency in the interaction style, both within and across tasks. This in turn leads to a better user experi-
ence, and facilitates the transference of learning effects across systems. Second, the approach signifi-
cantly decreases development and maintenance efforts; it fosters reusability and ease-of-use. Ideally, 
system authors should not have to worry about handling understanding-errors11. Rather, they should 
simply focus on describing the domain-specific dialog control logic, under the assumption that inputs 
to the system will always be perfect. At the same time, the dialog engine should automatically prevent 
understanding-errors or gracefully recover from them. Last but not least, a task-independent ap-
proach represents a more sensible choice from a software engineering perspective. 

The case for separating out various task-independent aspects of the conversation has in fact 
been made previously. Balentine and Morgan [5] recommend identifying a set of generic speech be-
haviors and constructing dialogue systems starting from these basic building blocks. Lemon et al [65] 
propose a dialog management architecture where “content-level communicative processes” and “in-
teraction-level phenomena” are handled in separate layers. The Universal Speech Interface project  
[99, 122, 123] proposes to identify and leverage a basic set of dialog universals that transfer across 
applications and domains. Error handling capabilities are also a good candidate for this type of de-
coupling, and can be implemented as domain- and task-independent conversational mechanisms.  

In this chapter, we describe the practical implementation for a decoupled, task-independent 
error handling architecture in the context of a complex, hierarchical plan-based dialog management 
framework (RavenClaw). This error handling architecture provides the infrastructure and experimen-
tal platform for the research described in the rest of this dissertation. Apart from task-independence, 
several other objectives were pursued in its development:  

Modularity. The error handling architecture should be modular, i.e. it should encapsulate 
and separate the mechanisms for detecting errors, the error recovery strategies, and the error recov-
ery policies. The architecture should allow independent access to each of these components: it should 
be easy to develop and plug in new mechanisms for detecting or diagnosing errors, new error recov-
ery strategies, or new error recovery policies.  

Ease-of-use. The error handling architecture should be easy-to-use and should lessen the 
system authoring effort. Ideally the dialog engine should ensure automatically that there are no un-
derstanding-errors and that the dialog advances normally towards its goals. System authors should 
mostly focus on describing the domain-specific aspects of the dialog control logic. Additionally, they 
should be able to customize at a high-level the error handling behaviors. For instance system authors 
should be able to specify the set of strategies to be used for recovery, and other behavioral parame-
ters like for instance how conservative the system should be in error handling. 

Reusability. The proposed error handling architecture should promote the reusability of 
various error handling components (e.g. detection mechanisms, recovery strategies, recovery policies) 
across domains.  

Adaptability. The performance of the underlying speech recognition and language under-

                                                      
 
11 Here, we refer to understanding-errors rather than domain-specific errors, e.g. booking a flight between the same arrival 
and destination cities in a flight reservation system; the burden for handling this latter type of domain-specific errors re-
mains with the system author. 
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standing components can vary dramatically across different domains and systems. As a consequence, 
we are interested in developing data-driven, learning-based error handling solutions that are adapted 
to the particular characteristics of the domain in which the system operates. The architecture should 
allow for automatic tuning of error handling behaviors and should facilitate learning from experience, 
preferably without requiring large amounts of developer supervision. 

Scalability. The proposed error handling architecture should scale well to real-world, practi-
cal spoken language interfaces. 

We begin by presenting a high-level overview of the proposed error handling architecture in 
the next section. Then, in sections 4.3 and 4.4, we discuss the mechanisms for detecting and recover-
ing from misunderstandings and non-understandings. Finally, in section 4.5 we present concluding 
remarks.  

4.2 Architecture 

4.2.1 Organizing principles 
The error handling architecture in the RavenClaw dialog management framework subsumes two 
main components: (1) a set of error recovery strategies, and (2) an error handling decision process 
that engages these strategies at the appropriate time (see Figure 33.) 

The error recovery strategies fall into two categories: (1) strategies for recovering from mis-
understandings such as explicit and implicit confirmation, and (2) strategies for recovering from non-
understandings such as asking the user to repeat, asking the user to rephrase, providing help, etc. 
These strategies were authored using the RavenClaw dialog task specification formalism described in 
the previous chapter; they are available as library dialog agencies. System authors simply specify 
which strategies should be used by the dialog manager, and configure them accordingly (later on, we 
will describe the various parameters these strategies take.) Furthermore, system authors may also de-
velop additional error handling strategies and plug them into any new or existing RavenClaw-based 
system.  
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The responsibility for handling potential errors is delegated to the error handling decision 
process, a subcomponent of the RavenClaw dialog engine. At each point in the dialog (more pre-
cisely during each Execution Phase), the error handling decision process collects available evidence 
and decides which error recovery strategy (if any) should be engaged. If action is deemed necessary, 
the error handling decision process creates an instance of the corresponding error recovery strategy, 
parameterizes it accordingly, and pushes it on the dialog stack. In effect the error handling decision 
process changes the dialog task to ensure that potential errors are handled accordingly. For instance, 
in the example illustrated in Figure 33, the system decided to engage an explicit confirmation for the 
start_time concept (more details about how these decisions are made will be presented later in this 
chapter.) The system therefore instantiated an ExplicitConfirm agency (which implements an ex-
plicit confirmation strategy), parameterized it by passing a pointer to the concept to be confirmed (in 
this case start_time), and placed it on the dialog stack. Next, the strategy executes. Once com-
pleted, it is removed from the stack and the dialog resumes from where it left off. During the execu-
tion of the explicit confirmation, all other dialog control mechanisms are still in place; for instance, 
the user could request more help, or even shift the current dialog topic. 

This design, in which both the error recovery strategies and the error handling decision 
process are decoupled from each other as well as from the actual dialog task specification has a num-
ber of benefits. First, it significantly lessens the system development effort. System authors are free 
to write the dialog task specification (i.e. the domain-specific aspects of the dialog-control logic) un-
der the assumption that the inputs to the system will be understood correctly. The responsibility for 
ensuring that the system maintains accurate information and that the dialog advances normally to-
wards its goals is delegated to the error handling decision process in the RavenClaw dialog engine. 
The error handling process will modify the dialog task dynamically, engaging various strategies to 
prevent and recover from errors. Second, the proposed architecture promotes the reusability of error 
handling strategies across different systems. A large set of error recovery strategies are currently 
available in the RavenClaw dialog management framework. These strategies, together with any new 
strategies developed by a system author can be easily plugged into any new or existing RavenClaw-
based spoken dialog system. Lastly, the approach ensures uniformity and consistency in the system’s 
behavior, both within and across systems.  

4.2.2 Distributed error handling decision process 
The error handling decision process is implemented in a distributed fashion. It consists of a collec-
tion of smaller error handling models, automatically associated with each request agent and each 
concept in the dialog task tree, as illustrated in Figure 34.  

The error handling models associated with individual concepts, also known as concept error 
handling models, are in charge of recovering from misunderstandings on those concepts. They use 
as evidence confidence scores for that particular concept (i.e. the current belief over that concept) 
and engage the misunderstanding recovery strategies such as explicit or implicit confirmation.  

The error handling models associated with individual request-agents, also known as request 
error handling models, are in charge of recovering from non-understandings that occur during the 
corresponding requests. They use as evidence features characterizing the current non-understanding 
and dialog state and engage the non-understanding recovery strategies, such as asking the user to re-
peat, asking the user to rephrase, repeating the system prompt, providing help, etc.  

During the error handling phase, each concept- and request error handling model computes 
and forwards its decision to a gating mechanism. The gating mechanism queues up these actions (if 
necessary) and executes them one at a time. For instance, in the example from Figure 34, the error 
handling model for the start_time concept signaled that it wanted to engage an explicit confirma-
tion on that concept; the other local models did not take any action. In this case the gating mecha-
nism created a new instance of an explicit confirmation agency, passed it a pointer to the concept to 
be confirmed (start_time), and placed it on the dialog stack, as illustrated in Figure 33. On comple-
tion, the belief over the confirmed concept is updated in light of the user response, and the dialog 
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resumes from where it left off.  

Several implementations for the local error handling models are available in the RavenClaw 
dialog management framework. They are discussed in more detail in the sections 4.3 (for concept 
error handling models) and 4.4 (for request error handling models). The behavior for each error han-
dling model is specified by means of a control-policy. Typically, a control-policy defines the 
model’s behavior via a set of parameters that describe the cost of various actions under various cir-
cumstances. (Other parameters might also be used, depending on the model structure; more details 
will be presented in the following sections.) For instance a predefined “pessimistic” policy for a con-
cept-level error handling model specifies a high cost for false-acceptances; as a result the model tends 
to always engage in explicit confirmations. Alternatively an predefined “optimistic” policy specifies a 
lower relative cost for false-acceptances, and as a result the model engages in explicit confirmations 
only if the confidence for the top concept hypothesis is below a certain threshold. A number of pre-
defined error handling models and associated control policies are available in the RavenClaw dialog 
management framework. When developing a new system, system authors must specify the type of 
error handling model and corresponding policy for each concept and request agent in the dialog task 
tree (defaults are also available). In addition, system authors can also define new control policies, or 
implement new error handling models altogether. 

The distributed and encapsulated nature of the error handling decision increases its scalabil-
ity and favors learning-based approaches to error handling. First, the structure and parameters of 
individual error handling models can be tied across different concepts or request-agents. In the ex-
ample from Figure 34, the error handling model for the start_time concept can be assumed to be 
identical to the one for the end_time concept; all models controlling Boolean (Yes/No) concepts 
could be also tied together. Parameter tying can greatly improve the scalability of learning-based ap-
proaches because the data is polled together and the total number of parameters grows sub-linearly 
with the size of the task (i.e. with the number of concepts and request-agents in the dialog task tree). 
Secondly, policies learned in a system can be reused in other systems because the error handling 
models are decoupled from the actual dialog task specification. For instance, we expect that the 
grounding of yes/no concepts functions similarly at different locations in the dialog, but also across 
domains. Thirdly, the proposed architecture accommodates dynamic task generation. The dialog task 
tree (the dialog plan) can be dynamically expanded at runtime, and the corresponding concept- and 
request- error handling models will be created on the fly. If the model structure and parameters are 
tied, we do not need to know the full structure of the task to be executed by the system in advance.   

These advantages stem from an independence assumption made by the proposed architec-
ture: the error handling models associated with different concepts and request-agents in the dialog 
task tree operate independently of each other. In some dialog tasks, long-range dependencies might 
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exist; in these cases, the independence assumption is violated. Such long-range dependencies can be 
addressed to a large extent by including global information (e.g. dialog history information, inter-
concept dependencies etc.) in the local error handling models. In fact, in Chapter 6 and Chapter 8 we 
will discuss a number of error handling models that do incorporate such global information. The 
view taken in this work is that error handling can (to a large extent) be modeled as a local process. I 
believe that overall the advantages gained by making this independence assumption and resorting to a 
distributed and encapsulated error handling process significantly outweigh the potential drawbacks.  

In the remaining two sections of this chapter, we discuss the structural and functional details 
of the concept- and request error handling models. We begin with the concept error handling mod-
els. 

4.3 Concept error handling models 

In the RavenClaw error handling architecture, a concept error handling model is automatically asso-
ciated with every concept in the dialog task tree. Each model makes error handling decisions with 
respect to the corresponding concept. The models insure that the information contained in concepts 
is accurate; they can engage various strategies to recover from potential misunderstandings. The con-
cept error handling models represent the system’s line of defense against misunderstandings.  

In this section, we describe the structure and function of concept error handling models in 
more detail. We begin by discussing the concept-level belief representation and RavenClaw belief-
updating mechanisms, since they play a key role in these models. Next, in subsection 4.3.2, we dis-
cuss the strategies used by these models to recover from misunderstandings. Lastly, in subsection 
4.3.3, we discuss the models’ internal structure and the decision-making mechanisms used by these 
models, and we describe the set of predefined control-policies. 

4.3.1 Belief representation and belief updating 
The concept-level error handling model relies heavily on the advanced concept-level belief represen-
tation discussed in subsection 3.2.2.3 from the previous chapter. RavenClaw represents belief in a 
concept via a set of possible values for that concept and their corresponding confidence scores. For 
instance, the belief over the departure_city concept in a flight reservation system might be de-
scribed at some point in the dialog as departure_city = {Boston/0.43; Aspen/0.17}. Initially, 
these concept-level beliefs are constructed based on the incoming recognition results and corre-
sponding confidence scores (potentially using information from an n-best list). Throughout the dia-
log, the beliefs are updated based on information from subsequent user responses to various system 
actions. For instance, if the system attempts to explicitly confirm a top concept hypothesis (e.g. Bos-
ton in the example above) and hears another concept hypothesis in the user response (e.g. Austin), 
a new updated belief for the departure_city concept will be assembled – see Figure 35. 

The concept error handling model bases its decisions to engage in various confirmation 
strategies on the concept belief. As a consequence, the belief representation and belief updating cal-
culus play an essential role in concept-level error handling. The more accurate the constructed beliefs 
are, the better the model’s decisions will be.  

Most spoken language interfaces do not track multiple alternate values at the concept level. 
Typically, systems store a single current value for a concept, together with a confidence score, or a 
confidence indicator (e.g. low, medium, high). Concept updates are generally performed based on 
simple heuristic rules. For instance, a commonly encountered rule is to let new values overwrite old 
values. The intuition behind this rule is that users will correct the system throughout the conversa-
tion, and therefore trusting the last value heard is better than keeping an old value. Additionally, spe-
cialized rules are defined for the confirmation cases: if the system hears a yes-type answer (e.g. yes, 
that’s correct, that’s right, etc.) to an explicit confirmation action, it boosts the confidence for the 
confirmed value to very high; if the system hears a no-type answer, it deletes the current concept hy-
pothesis altogether.  
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The RavenClaw dialog management framework can store and track multiple concept-level 
hypotheses. It supports the traditional, heuristic-rule based approach to belief updating. In addition, 
RavenClaw also supports a novel, data-driven belief updating mechanism that significantly outper-
forms the heuristic approach. Below, I present the heuristic belief updating mechanism in the 
RavenClaw dialog management framework, and briefly outline the more advanced, data-driven ap-
proach. (This second approach constitutes one of the main contributions of this dissertation and is 
discussed in depth in Chapter 6.) 

4.3.1.1 Heuristic belief updating  

The heuristic belief updating mechanism in the RavenClaw dialog management framework relies on a 
natural, naïve probabilistic update rule.  

When the concept is empty and a first potential value is obtained from a recognition result, 
the system constructs an initial belief by considering that value in conjunction with the incoming rec-
ognition (or semantic) confidence score. For instance, in the example from Figure 35, the system 
constructs the initial belief departure_city = {Boston/0.35} by taking into account the first de-
coded response from turn 2 and the corresponding utterance-level confidence score. The remaining 
probability mass is considered to be distributed uniformly across all other potential hypotheses for 
that concept. For instance, if there are 500 possible departure cities, the probability for each of the 
499 remaining cities is assumed to be 0.65/499=0.0013. RavenClaw does not actively store this full 
probability distribution; instead, it stores departure_city = {Boston/0.35}, the cardinality of 
that concept, and works with the assumption that the rest of the mass is distributed equally among all 
other hypotheses.  

To update its beliefs throughout the conversation, the system “multiplies” the probability 
distribution for its current (initial) belief with the probability distribution corresponding to the new 
recognition hypothesis, and renormalizes. For instance, in Figure 35 the system engaged in an explicit 
confirmation in turn 3 and obtained a user response (Austin). The initial belief it has over the depar-
ture_city concept contains Boston with confidence 0.35 and all other cities with confidence 
0.0013. The distribution corresponding to the recognition result contains Austin with confidence 
0.57 and all other cities with confidence 0.00086. These two distributions are multiplied and the re-
sulting distribution is renormalized. In this case the updated belief will be departure_city = 
{Austin/0.4631; Boston/0.1881}.  

Throughout these computations, the RavenClaw heuristic belief updating mechanism en-
sures that the probability mass for all hypotheses heard so far does not exceed 0.95. This extra con-
straint is imposed to ensure that the unheard hypotheses still receive some probability mass. In the 
absence of this constraint, if the system repeatedly heard the same concept value in successive user 
turns, the probability mass for the unheard hypotheses would drop to a very low value. This would 
prevent those values from gaining enough mass to compete with the previously heard hypothesis, 
even if they started appearing again in the recognition results. The need for this extra constraint al-
ready hints at the limitations and ad-hoc nature of heuristic approaches to belief updating. In Chapter 
6 we will describe a data-driven solution to this belief updating problem that addresses this as well as 
other shortcomings.  

In addition, two other heuristic rules are used to update the system’s beliefs after explicit and 
implicit confirmation actions. If the user response to an explicit confirmation contains a positive 
marker (e.g. yes, that’s right, that’s correct, etc.), the confidence score for that concept value is set to the 
maximum possible value, 0.95, and the alternate hypotheses (if any) are deleted from the belief space; 
the framework still considers the remaining probability mass, 0.05, to be equally distributed among all 
other possible values. If the user response to an explicit confirmation contains a negative marker (e.g. 
no, that’s wrong, etc.), the corresponding hypothesis is deleted from the belief space; its probability 
mass is therefore assumed to be uniformly reassigned across all the unheard hypotheses.  

After implicit confirmations, the system updates the confidence score for the confirmed hy-
pothesis to 0.95 if no negative marker or new concept value is found in the user response. The sys-
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tem assumes that if user is not contradicting or correcting the system, the value is correct. If a nega-
tive marker is found in the user response (and the system action following the implicit confirmation 
is not a yes/no question), the system deletes the hypothesis from the belief space, like after an ex-
plicit confirmation. Finally, if another value for the concept appears in the decoded response, the 
system relies on the naïve probabilistic update rule described above.  

4.3.1.2 Data-driven belief updating models  

The heuristic approach to belief updating described in the previous section has a number of short-
comings. First, looking for simple confirmation and disconfirmation markers after explicit and im-
plicit confirmation actions is insufficient. User responses to these system actions can go beyond sim-
ple yes/no answers, as we shall see in the empirical analysis from Chapter 6, subsection 6.4.3. Fur-
thermore, user responses are also subject to speech recognition errors. Naively multiplying the prob-
ability distributions can artificially inflate the confidence for a repeatedly misrecognized item.  

In Chapter 6, we describe an alternative, data-driven method for performing belief updates. 
The proposed method is one of the main contributions of this dissertation, and is allocated an entire 
chapter by itself. In short, the belief updating problem is cast as a supervised learning task: given an 
initial belief, a system action and a set of features that characterize the user response, construct an 
updated belief that is as accurate as possible. Experimental results indicate that the proposed data-
driven approach significantly outperforms the heuristic rules described previously, and leads to large 
improvements in the overall effectiveness and efficiency of the interaction.  

departure_city={} 
 

   1 S: Where are you flying from? 

  2 R: I’M FLYING FROM BOSTON / 0.35 
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   3 S: Did you say from Boston? 
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Figure 35. Heuristic belief updating in the RavenClaw dialog management framework 
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4.3.2 Recovery strategies 
The belief updating mechanisms described above provide the basis for decision making in the con-
cept error handling models; the decision to engage in one recovery strategy or another is based on 
the confidence scores for the different concept hypotheses. Next, I will discuss the strategies that can 
be engaged by these models to recover from potential misunderstandings. Currently, two such strate-
gies are available in the RavenClaw dialog management framework: explicit confirmation and im-
plicit confirmation.  

In an explicit confirmation, the system asks the user a yes/no question, in an effort to di-
rectly (or explicitly) confirm a certain concept value. For instance: “Did you say from Boston?” – see 
Figure 35. Alternatively, in an implicit confirmation, the system echoes back the value it heard to 
the user, and continues with the next question; the assumption is that, if the value is incorrect, the 
user will detect the error and interject a correction – see Figure 36. Below, I discuss these two strate-
gies in more detail. Although not currently available, other strategies for recovering from misunder-
standings, such as disambiguation12 could also be easily implemented and used in the RavenClaw dia-
log management framework.  

4.3.2.1 Explicit confirmation 

Like all other error recovery strategies in the RavenClaw dialog management framework, the explicit 
confirmation strategy is decoupled from the dialog task specification. The strategy is implemented as 
a library request-agent. At runtime, when the concept error handling model decides to engage in an 
explicit confirmation, an instance of this explicit confirmation request-agent is created. A pointer to 
the concept to be confirmed is passed to the explicit confirmation request-agent, which is then 
placed on top of the execution stack. In effect, the dialog engine automatically creates a sub-dialog 
for confirming the concept value. When executed, the explicit confirmation agent requests a Boolean 
confirm concept, and expects a yes- or no-type answer (using the [Yes] and [No] generic grammar 
slots). For generating the request, the agent issues an explicit_confirm prompt for the corre-
sponding concept; this prompt must be supplied by the system author at the language generation 
level. Throughout the explicit confirmation sub-dialog, all the other dialog mechanisms remain in 
effect. For instance, the user could still over-answer the system’s explicit confirmation question (e.g. 
“yes from Boston to San Francisco”), ask for help, attempt to shift the conversation topic, etc. 

Once a response is received and the belief over the concept is updated, the explicit confir-
mation agent completes and is eliminated from the dialog stack. The dialog resumes from where it 
left off. Note that, depending on the updated belief and the error handling policy, the system might 
subsequently engage in a new confirmation action on the same concept. For instance, in the example 
from Figure 35, the system might continue with another explicit confirmation on the same concept, 
e.g. “Did you say Austin?” 

Three other parameters can be used to control the behavior of the explicit confirmation 
strategy. First, the confirmation_lm parameter can specify a language model to be used when the 
explicit confirmation agent is in focus (since in general yes/no answers are expected to explicit con-
firmation questions, a language model focused on this type of answers might be more appropriate). 
Secondly, the strategy can be configured to accept DTMF (touch-tone) inputs (e.g. press 1 for ‘yes’, 
or 0 for ‘no’). The last parameter, grounding_model, specifies the error handling model and control-
policy for the request agent that implements the explicit confirmation. This model governs recovery 
from non-understanding errors that might occur during the system’s explicit confirmation action (re-
quest-level error handling models are discussed later in this chapter, in section 4.4.) 

4.3.2.2 Implicit confirmation 

                                                      
 
12 in a disambiguation the system tries to determine which one of two concept hypotheses is the correct one. For instance: 
“Did you say Boston or Austin?” 
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The implicit confirmation strategy is implemented by means of a pair of library dialog agents. The 
first agent is an inform agent that echoes back the value-to-be-confirmed to the user. It does so by 
issuing an implicit_confirm prompt that must be provided by the system author at the language 
generation level. The second agent is an expect-agent that captures a potential confirmation or dis-
confirmation from the user. At runtime, when the concept error handling model decides to trigger an 
implicit confirmation, an instance for each of these agents is created. A pointer to the concept un-
dergoing the confirmation is passed to each agent. The agents are placed on top of the execution 
stack. The inform agent executes, issues the implicit confirmation prompt, and then completes and is 
eliminated from the dialog stack. Since the expect agent is not executable, the dialog planning contin-
ues from where it left off. The expect agent remains however on the execution stack, and will define 
its expectations on the agenda during the next Input Phase. Based on the follow-up user response, 
RavenClaw updates the belief over the confirmed concept. The expect agent also completes once the 
follow-up user response is received. 

4.3.3 Structure and control-policies 
So far, we have discussed the belief updating mechanisms and the confirmation strategies available to 
the concept error handling model. Next we turn our attention to the structure of the concept-level 
error handling model, which ties the two together: based on the constructed beliefs, it decides which 
strategy should be engaged at any given point in the dialog.  

The decision of which strategy to engage is predicated on the likelihood of a misunderstand-
ing (captured by the confidence scores in the concept belief representation) and on the trade-offs 
between the explicit and implicit confirmation strategies. These trade-offs are relatively well under-
stood. During an explicit confirmation, the system takes an extra dialog turn to confirm a concept 
value; in general explicit confirmation questions lead to simple user responses, such as “yes”, “no”, or 
equivalents. At the same time, excessive use of explicit confirmations can significant increase dialog 
length and also user frustration. In contrast, implicit confirmations do not take an extra dialog turn; 
but responses to implicit confirmations can be more difficult to handle. When the system attempts to 
implicitly confirm an incorrect value, it increases the cognitive load on the user [62], who now has to 
choose between formulating a correction, providing an answer to the next question, or both. In gen-
eral, user responses to implicit confirmations span a wider language spectrum and are more difficult 
to recognize and understand correctly (see [63] as well as our own empirical analysis from Chapter 6, 
subsection 6.4.3). This can also further increase the difficulty of the belief updating task. Given these 
trade-offs, explicit confirmations are typically used when the system is more unsure about the value 
to be confirmed. Implicit confirmations are used when the system is fairly confident that the value to 
be confirmed is correct. In the latter case, the cost for the implicit confirmation is lower than for an 
explicit confirmation: the user can respond to the system’s follow-up prompt and the dialog can ad-
vance normally13, without the loss of an extra turn. 

Based on these trade-offs, a typical control-policy for handling potential misunderstandings 
is illustrated in Figure 37: if the confidence score for the top concept hypothesis is very high, above a 
certain threshold t1, accept that value as correct, i.e. consider it grounded. If the confidence for the 
top concept hypothesis is medium-high, i.e. below t1 but above another threshold t2, then engage in 
                                                      
 
13 a caveat here is that users might back-channel an acknowledgement immediately after the system’s implicit confirmation, 
before they provide an answer to the follow-up system prompt; in this situations the system must be ready to absorb this 
backchannel  

 

   1 S: flying from Boston... where would you like to go? 

  2 U: no from Austin 

    R: NO FROM AUSTIN / 0.75 
 

 Figure 36. A sample implicit confirmation for the departure city concept 
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an implicit confirmation. Alternatively, if the confidence score is medium-low, i.e. below t2, but 
above another threshold t3, then engage in an explicit confirmation. Finally, if the confidence is very 
low, below t3, then reject that concept value altogether.  

The default concept error handling model available in the RavenClaw dialog management 
framework implements this type of control policy. Currently, RavenClaw deals with rejections sepa-
rately, at the utterance, rather than at the concept level. The concept-level error handling model can 
therefore engage one of three actions: accept, explicit confirmation, and implicit confirmation. In the 
following subsection, we describe in more detail the implementation of the default concept error 
handling model, and some of the predefined control-policies. 

4.3.3.1 The default concept-level error handling model 

The default concept-level error handling model in RavenClaw is currently implemented as a Markov 
decision process (MDP). An MDP is defined by a discrete set of states {si}i=1..n, a number of actions 
available from each state {aj}j=1..k and a set of transition probabilities that stochastically define which 
state the model moves to once an action is engaged P(st+1 | st, ap).  

The structure of the default concept error handling model is illustrated in Figure 38. The 
model has 4 states: inactive, correct, incorrect and grounded. The model is in the inactive 
state when the corresponding concept is empty, i.e. the system does not yet have a candidate hy-
pothesis for this concept. The model is in the correct state if the current top hypothesis for the 
concept is indeed correct. Alternatively, if the current top hypothesis is incorrect, the model is in the 
incorrect state. Finally, the model is in the grounded state when the current top hypothesis for the 
concept is considered grounded (this happens once the system takes an accept action and the con-
cept is not empty). There are 3 actions that the model can engage at any given point in the dialog: 
accept, explicit_confirm and implicit_confirm. The accept action is only available from the 
inactive, correct and incorrect states; when engaged from the inactive state it does nothing; 
when engaged from the correct or incorrect state it marks the concept as grounded. The ex-
plicit_confirm and implicit_confirm actions are available only from the correct and incor-
rect states – see Figure 38; they engage the corresponding confirmation strategies.  

At each point in the dialog, the state of the concept error handling model is inferred from 
the belief over the corresponding concept. Note that the system does not know whether the current 
top hypothesis is correct or incorrect. Rather, it knows a probability of that value being correct or 
not (this probability is extracted from the belief over that concept: it is given by the confidence score 
for the current top hypothesis.) The concept error handling model is therefore a partially-observable 
Markov decision process: at every point in the dialog, rather than knowing the precise state, the error 
handling model only knows a probability distribution over the 4 states (i.e. a belief state): <pinactive, 
pcorrect, pincorrect, pgrounded>. Given the structure of the model, the set of belief states is restricted to a 
certain subspace of that simplex: 

0 1 t3 t2 t1 

reject 

explicit con-
firmation 

implicit confir-
mation 

accept 

confidence score of top hypothesis 

Figure 37. A typical control policy for engaging concept-level confirmation strategies 
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• initially, when no value has yet been heard for the concept, the error handling model is 
in the inactive state: <pinactive=1, pcorrect=0, pincorrect=0, pgrounded=0>; the model will 
therefore engage the only available action, accept, which in this case has no effect.  

• if the belief over the concept contains a top hypothesis, the belief state for the model is 
a mixture of the correct and incorrect states <pinactive=0, pcorrect, pincorrect, pgrounded=0>, 
where pcorrect is given by the confidence score of the current top hypothesis and pincorrect 
= 1-pcorrect. In this case, the system may decide to engage in an accept, ex-
plicit_confirm or implicit_confirm action. If the system engages in an accept ac-
tion, the concept is marked as grounded (a binary flag is set on the concept indicating 
that the concept has been grounded.); otherwise, one of the corresponding confirmation 
strategies is engaged. 

• finally, if the concept has been already marked as grounded, the corresponding error 
handling model is in the grounded state: <pinactive=0, pcorrect=0, pincorrect=0, pgrounded=1>. 

The transitions from one state to another are not modeled directly by the concept error han-
dling model. The belief state for the concept error handling model is recomputed at each point in the 
dialog, based on the current belief for the corresponding concept. The belief updating process (which 
takes into account the user inputs) governs the actual dynamics of the model.  

The behavior of the concept error handling model is specified by means of a control-policy 
that defines which action the model should engage from every state. The control-policy is specified 
by providing the utility for each action in each state. An example policy is presented in Figure 39. 
The only available action from the inactive and grounded states is accept. If the concept value is 
correct, the utility of accepting that value and therefore considering it grounded is 2; the utility of 
performing an explicit confirmation is -4 and the utility of performing an implicit confirmation is 0 
(explicit confirmation is more costly since it takes an extra dialog turn). If the concept value is incor-
rect, accepting it has a high cost (-4), while explicit confirmation would be the most useful action (4). 
At runtime, the system computes the overall expected utility for each action by taking into account 
the state probabilities and the defined utilities. These utilities induce a control-policy that in fact cor-
responds to a classical threshold-on-confidence-score model. For instance, in the example shown in 
Figure 39, the model will engage an accept action if the confidence score is above 0.8; alternatively, 
if the score is between 0.44 and 0.8, the model will engage the implicit confirmation strategy and if 
the score is below 0.44 the system will engage the explicit confirmation strategy.  

At this point, the reader might ask: why not just use a simpler model? As we have seen just a 
pair of thresholds could implement the same control policy; also, the policy would be easier to spec-
ify. Such a model could be easily implemented in the RavenClaw dialog management framework and 
used wherever appropriate. There are a number of reasons the MDP representation was chosen. 
First, this representation brings the costs for various actions to the forefront. In general, the thresh-
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Figure 38. Structure for the default concept-level error handling model (not all transitions are illustrated) 
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olds themselves are tuned based on relative costs for actions, and the current error handling model 
implementation makes this process transparent. Perhaps more importantly, the MDP implementation 
allows us to explore various learning-based approaches to the problem of deriving a control policy. 
In so far we have assumed that the model chooses the action with the highest expected utility. How-
ever, while collecting data for learning it is desirable not only to exploit the current maximum utility 
action, but also to explore how some of the other apparently suboptimal actions would perform un-
der the current circumstances (the exploration-exploitation trade-off). The MDP-based implementa-
tion enables exploratory policies via the exploration_mode parameter. This parameter controls how 
the model chooses between different actions, once the expected utilities are computed. The following 
options are available:  

• greedy: the model chooses the action with the highest expected utility. 

• epsilon-greedy: with probability 1-epsilon, the model chooses the action with the 
highest expected utility; with probability epsilon the model chooses a random action; ep-
silon is specified via the exploration_param parameter. 

• stochastic: the model chooses an action with a probability proportional to the ex-
pected utility for that action (in this case the utilities must be positive). 

• soft-max: the model uses a soft-max (Boltzmann) heuristic for choosing between dif-
ferent actions. The probability for engaging an action is:  

∑
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where U(Ak) is the utility for action Ak, and T is a temperature parameter 
specified via the exploration_param parameter. 

A number of predefined control-policies for concept error handling models are available in 
the RavenClaw dialog management framework. For instance, a predefined pessimistic policy sets 
the costs such that the accept and implicit confirmation thresholds are very high; in contrast an pre-
defined optimistic policy set these thresholds at lower levels. Finally, an explicit-only policy sets the 
costs such that the system always explicitly confirms. System authors can define and use additional 
policies by providing the costs/utilities for the different actions in different states. An interesting 
question is: can the system learn these costs through experience? Later on, in Chapter 7 we will dis-
cuss a method for inferring such costs in a data-driven manner.  

Moreover, system authors can also define, implement and use new concept error handling 
models. A simple example would be the threshold- based model we have mentioned above. More 
sophisticated models could use additional evidence (e.g. the confidence score of the second best con-
cept hypothesis), and engage additional strategies for recovering from potential misunderstandings 
(e.g. disambiguation.) 
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Figure 39. Control policy for concept-level error handling model (right-hand side); thresholds induced 
by control policy (left-hand side) 
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4.4 Request error handling models  

If the concept error handling models are in charge of recovering from misunderstandings, the re-
sponsibility for handling non-understandings is delegated to the request error handling models. In 
the RavenClaw error handling architecture, a request error handling model is automatically associated 
with every request-agent in the dialog task tree. When a non-understanding occurs, the model for the 
currently focused request agent (i.e. the agent that is on top of the dialog stack) is in charge of engag-
ing an appropriate non-understanding recovery strategy.  

In this section, we discuss these models in more detail. We begin by describing the set of 
available non-understanding recovery strategies in the next subsection, 4.4.1. Then, in subsection 
4.4.2, we describe the structure and function of several request error handling models currently avail-
able in the RavenClaw dialog management framework.  

4.4.1 Recovery strategies 
A rich repertoire of non-understanding recovery strategies are available in the RavenClaw dialog 
management framework. They range from very generic strategies, such as notifying the user that a 
non-understanding has occurred or asking the user to repeat or rephrase, to strategies that are tai-
lored to specific error conditions such as giving the user examples of how to answer the current sys-
tem question or telling the user to provide shorter answers or to speak softer. Some of these strate-
gies have parameters which further control their behavior, such as whether or not an apology is is-
sued before the recovery strategy.  

Table 13. Non-understanding recovery strategies in the RavenClaw dialog management framework (sup-
pose a non-understanding happens after the system asks “Would you like a small room or a large one?” 

 

Non-understanding recovery strategy 
 

 

Example 

Notify Non-understanding Sorry, I didn’t catch that …  
Ask Repeat Can you please repeat that? 

Ask Rephrase Can you please rephrase that? 

Repeat Prompt Would you like a small room or a large one? 

You-Can-Say 
For instance, you could say something like “I want a small room”, or “I 
want a large room” 

Explain More 
Right now I need you to tell me if you would prefer a small room or a 
large room.  

Full Help 

I found seven rooms available Friday from 10 to 12. Right now I need 
you to tell me if you would prefer a small room or a large room. For in-
stance, you could say something like “I want a small room”, or “I want a 
large room” 

Interaction Tips 

Okay, I know this conversation isn't going well. There are things you can 
try to help me understand you better. Speak clearly and naturally; don't 
speak too quickly or too slowly. Give short, concise answers. Calling 
from a quiet place helps. If you'd like to start from scratch, you can say 
‘start-over' at any time. 

Ask Short Answers and Repeat Prompt 
Please use shorter answers because I have trouble understanding long 
sentences… Would you like a small room or a large one? 

Ask Short Answers and You-Can-Say 
Please use shorter answers because I have trouble understanding long 
sentences… For instance, you could say something like “I want a small 
room”, or “I want a large room” 

Speak Less Loud and Reprompt 
I understand people best when they speak softer. Would you like a small 
room or a large one? 

Move On 
Sorry, I didn’t catch that. One choice would be Newell Simon 1507. This 
room can accommodate 50 people, and has a projector, a whiteboard 
and network access. Do you want a reservation for Newell Simon 1507? 

Yield Turn […] (system remains silent, yielding the turn to the user) 

Ask Start Over 
I’m sorry I’m still having trouble understanding you, and I might do better 
if we restarted. Would you like to start over? 

Give Up 
I’m sorry but I’m having lots of trouble understanding you and I don’t 
think I will be able to help you. Please call back during normal business 
hours. 
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Currently (as of December 2006), 15 such non-understanding recovery strategies are imple-
mented and available for use in the RavenClaw dialog management framework. These strategies are 
briefly illustrated in Table 13. In the rest of this subsection, we discuss them in more detail (the 
reader for whom the description in Table 13 is sufficient can safely skip to subsection 4.4.2). Similar 
to the confirmation strategies used to recover from potential misunderstandings, the non-
understanding recovery strategies have been implemented and are available as library dialog agents.  

4.4.1.1 Notify Non-understanding 

This strategy notifies the user that a non-understanding has occurred – see Figure 40. The strategy is 
implemented as a library inform agent. When executed, it issues the notification prompt ({inform 
notify_nonunderstanding}), then it requests an Input Pass and completes. In the Olympus 
framework (see section 3.3 from Chapter 3), a default version of the corresponding prompt for noti-
fying the user (e.g. “Sorry, I didn’t catch that…”) is already available as part of the set of domain-
independent templates in the language generation module. The system author can optionally redefine 
this prompt. 

4.4.1.2 Ask Repeat 

This strategy asks the user to repeat their previous utterance, which was not understood by the sys-
tem – see Figure 41. Intuitively, this strategy can be useful if the non-understanding was caused by a 
transient noise. An additional a notify parameter that controls whether or not this strategy first no-
tifies the user that a non-understanding has occurred – see the second example in Figure 41. Unless 
otherwise mentioned, this parameter is available for all the other strategies described in the rest of 
this section. 

The Ask Repeat strategy is implemented as a library inform-agent, in a manner similar to 
the Notify Non-understanding version. Predefined versions of the corresponding prompts (both 
for asking the user to repeat and for notifying that a non-understanding has occurred) are already 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform notify_nonunderstanding} 

     ST: Sorry, I didn’t catch that ...  

 

Figure 40. The Notify Non-understanding recovery strategy (SO denotes the semantic output prompt 
from the dialog manager, and ST denotes the corresponding surface form realization; R denotes the 

perceived user response; [NONU] marks the non-understanding) 

 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform ask_repeat} 

     ST: Could you please repeat what you said?  

 

Example 1 
 

Example 2 
 
 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform notify_nonunderstanding} {inform ask_repeat} 

     ST: Sorry, I didn’t catch that … could you please repeat 

    what you said?  

 

 Figure 41. The Ask Repeat non-understanding recovery strategy (example 1 is the default behavior, 
example 2 includes a notification that a non-understanding has occurred) 
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available as part of the domain-independent templates in the language generation module, and can be 
overwritten by the system author.  

4.4.1.3 Ask Rephrase 

This third strategy is similar to the previous one. Instead of asking the user to repeat, this strategy 
asks the user to rephrase their previous utterance – see Figure 42. Intuitively, this strategy can be use-
ful if the non-understanding is caused by an input that falls outside the system’s grammar or language 
modeling abilities.  

From an implementation standpoint, the strategy is also very similar to the Ask Repeat 
strategy. Predefined versions for the system prompts (both for asking the user to rephrase and for 
notifying that a non-understanding has occurred) are available, and can be overwritten by the system 
author.  

4.4.1.4 Repeat Prompt 

In the Repeat Prompt strategy, the system repeats its previous prompt (question) – see Figure 43. 
This strategy can be useful in turn overtaking situations, i.e. if the user barges-in on the system and as 
a result does not hear the last system prompt, or in any other situation when the user has not cor-
rectly understood the last system question. 

The strategy is implemented as an inform-agent that reissues the prompt corresponding to 
the request-agent that was in focus at the time the non-understanding occurred. The strategy has ac-
cess to this prompt since upon instantiation the error handling decision process passes it a pointer to 
the request-agent in focus.  

4.4.1.5 You-Can-Say 

The You-Can-Say strategy gives the user a few examples of how to answer the current system ques-
tion – see Figure 44. In general, this strategy can be helpful when the user’s response falls outside the 
system’s grammar or language model.  

The You-Can-Say strategy is implemented as an inform-agent that issues the 
what_can_i_say version of the prompt (see section 3.2.2.2 from the previous chapter) correspond-
ing to the request-agent that was in focus when the non-understanding occurred. When using this 
strategy, system authors must define the what_can_i_say version of the prompts for each request-
agent in the dialog task tree (this is in fact already required to support the user-triggered Help con-
versational strategy discussed in section 3.2.4.1 from the previuos chapter).  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform ask_rephrase} 

     ST: Could you please rephrase that?  

 

Figure 42. The Ask Rephrase non-understanding recovery strategy  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request date} 

     ST: For which day would you like the conference room?  

 

Figure 43. The Repeat Prompt non-understanding recovery strategy  
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4.4.1.6 Explain More 

The Explain More strategy gives a more comprehensive version of the previous system prompt – 
see for instance Figure 45. Like the Repeat Prompt strategy, the Explain More strategy can be use-
ful in situations when the user has not correctly or fully understood the last system question. 

The strategy is implemented as an inform-agent that issues the explain_more version of the 
prompt for the request-agent that was in focus at the time the non-understanding occurred. The sys-
tem author must define these prompts for all request-agents in the dialog task tree.  

4.4.1.7 Full Help 

The Full Help strategy provides a comprehensive help message that contains a description of the 
current system state, the more comprehensive version of the previous system prompt and a few ex-
amples of appropriate answers at this point in the dialog – see Figure 46.  

The strategy is implemented as an inform-agent which issues in turn the estab-
lish_context, explain_more, and what_can_i_say versions of the prompt for the request-agent 
that was in focus at the time the non-understanding occurred. The strategy is very similar to the user-
triggered Help.FullHelp conversational strategy described in section 3.2.4.1 from the previuos 
chapter. The system author must define these prompts for all request-agents in the dialog task tree 
(this is already required to support the user-triggered Help.FullHelp conversational strategy.) 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request date version=what_can_i_say} 

     ST: For instance, you could say something like ‘Monday’ 

    or ‘tomorrow’ or ‘next Tuesday’ 

 

Figure 44. The You-Can-Say non-understanding recovery strategy  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request date version=explain_more} 

     ST: Right now I need you to tell me for which day you  

    would like to reserve the conference room 

 

Figure 45. The Explain More non-understanding recovery strategy  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request date version=establish_context} 

    {request date version=explain_more} 

     {request date version=what_can_i_say} 

     ST: I am currently trying to gather enough information  

    to make a room reservation for you. So far I know 

    you want the room at 10 a.m. Right now I need you to 

    tell me for which day you would like to reserve the 

    conference room. For instance, you could say  

    something like ‘Monday’ or ‘tomorrow’ or ‘next 

    Tuesday’ 

 
Figure 46. The Full Help non-understanding recovery strategy  
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4.4.1.8 Interaction Tips 

The Interaction Tips recovery strategy gives provides a help message containing generic guide-
lines for how to best interact with the system – see Figure 47. The strategy is similar to the user-
triggered Help.InteractionTips conversational strategy described in 3.2.4.1 from the previuos 
chapter.  

The Interaction Tips strategy is implemented as an inform-agent. A predefined corre-
sponding prompt is available as part of the set of domain-independent language generation tem-
plates; this prompt can be redefined by the system author.  

4.4.1.9 Ask Short Answers and Repeat Prompt 

This strategy asks the user to provide a short answer, and then reissues the previous system prompt – 
see Figure 48. The strategy is targeted for situations when the user response is either too long, or un-
grammatical.  

The strategy is implemented as a library inform agent that first issues a generic prompt ask-
ing the user to speak shorter utterances, and then reissues the prompt corresponding to the request-
agent that was in focus when the non-understanding occurred. A predefined version of the prompt 
asking the user to speak shorter is available; system authors can redefine this prompt.  

4.4.1.10 Ask Short Answers and You-Can-Say 

This strategy asks the user to provide a short answer, and then gives a few sample answers to the cur-
rent system question – see Figure 49. In general, this strategy can be useful when the user response is 
too long, ungrammatical, and/or does not match the system expectations. Providing information 
about possible responses at the current point in the dialog can shape user behavior and help recover 
from the non-understanding. 

The strategy is implemented as a library inform-agent that first issues a prompt asking for a 
short answer, and then issues the what_can_i_say version of the prompt for the request-agent that 
was in focus at the time the non-understanding occurred. A predefined version of the prompt asking 
the user to speak shorter utterances is available, and can be overwritten by system authors. When 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform interaction_tips} 

    ST: Okay, I know this conversation isn't going well. 

    There are things you can try to help me understand 

    you better. Speak clearly and naturally; don't speak 

    too quickly or too slowly. Give short, concise 

    answers. Calling from a quiet place helps. If you'd 

    like to start from scratch, you can say ‘start-over' 

    at any time.  

 

Figure 47. The Interaction Tips non-understanding recovery strategy  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform ask_short_answer} {request date} 

    ST: Please use shorter answers because I have trouble 

    understanding long sentences. For which day would 

    you like the conference room? 

 

Figure 48. The Ask Short Answers and Repeat Prompt non-understanding recovery strategy  
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using this strategy, the what_can_i_say prompts for all request-agents in the dialog task tree need to 
be defined at the language generation level. 

4.4.1.11 Speak Less Loud and Repeat Prompt 

This strategy asks the user to speak less loud, and then reissues the previous system prompt – see 
Figure 50. The strategy is useful when the user is speaking too loud, for instance because of accumu-
lated frustration, adverse noise conditions, etc. Loud speech can lead to clipping which in turn leads 
to significant degradation of recognition performance.  

The Speak Less Loud and Repeat Prompt strategy is implemented as a library inform-
agent that first asks the user to speak less loud, and then reissues the prompt corresponding to the 
request-agent that was in focus when the non-understanding occurred. A predefined version of the 
prompt asking the user to speak less loud is available; system authors can redefine this prompt. 

4.4.1.12 Move On 

The Move On strategy is different from the previously described strategies in that it does not try to 
directly address the current non-understanding. Instead, the system ignores the current non-
understanding and continues the dialog by moving on to a different question, or by switching to an 
alternative dialog plan for accomplishing the same goal. Figure 51 provides two examples. For in-
stance, in the first example (extracted from the RoomLine system) the system abandoned the goal of 
finding out whether the user would like a small or a large room, and started suggesting rooms from 
the current list. In the second example (extracted from the Let’s Go! Public system), the system 
abandoned the goal of directly identifying the departure stop and moved on to first trying to identify 
the neighborhood.  

Typically, as the number of consecutive errors increases in a conversation, so does user frus-
tration [39, 100]. This generally leads to hyper-articulation and other deviations from normal speech 
patterns, which in turn further exacerbate the recognition difficulties, leading to more errors. A vi-
cious circle of errors (as known as an error spiral) is created. When using the Move On strategy, the 
system ignores the current non-understanding and continues with a different question. This can alle-
viate user frustration and break the spiral of errors. Skantze has shown in a wizard-of-oz study that 
this strategy is very often used by human operators faced with the same type of understanding-errors 
as a dialog system [115].  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform ask_short_answer} {request date  

     version=what_can_i_say} 

    ST: Please use shorter answers because I have trouble 

    understanding long sentences. For instance, you 

    could say something like ‘Monday’ or ‘tomorrow’ or 

    ‘next Tuesday’ 
 

Figure 49. The Ask Short Answers and You-Can-Say non-understanding recovery strategy  

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {inform ask_less_loud} {request date} 

    ST: I understand people best when they speak softer. For 

    which day would you like the conference room? 

 

Figure 50. The Speak Less Loud and Repeat Prompt non-understanding recovery strategy  
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The Move On strategy is implemented by means of a library execute-agent that sets the re-
quest-agent that was in focus to a “completed-with-failure” state (see section 3.2.2.2 from Chapter 3.) 
The system author needs to ensure that the dialog control logic successfully handles the cases when 
the request agents that have the Move On strategy available fail.  

4.4.1.13 Yield Turn 

In the Yield Turn strategy, the system remains silent after a non-understanding, pretending in effect 
that it never heard the user. Sometimes, users will repeat their last utterance in this case.  

The strategy is implemented as an inform agent that issues an empty prompt. The notify 
parameter previously described is not available for this strategy.  

4.4.1.14 Ask Start Over 

The Ask Start Over strategy notifies the user that the system is having problems understanding 
correctly, and asks whether the user would like to start-over from the beginning. The strategy is illus-
trated in Figure 52: in the first example, the user declines; in the second example the user complies. 
Like the Move On strategy, this strategy also aims to break a spiral of errors by giving the user an op-
portunity to eliminate in one turn all the potential misunderstandings the system has accumulated 
and start afresh.  

The strategy is implemented via a library dialog agency consisting of (1) a request-agent that 
asks the user whether they would like to restart the conversation, (2) an inform-agent that notifies the 
user that the conversation will be restarted, and (3) an execute-agent that reinitializes the dialog (the 
last two agents are preconditioned on a positive user response to the “Would you like to start over” 
question). Default versions of the system prompts corresponding to the request- and inform-agents 
are available as part of the domain-independent language generation templates, and can be redefined 
by the system author.  

 

   1  SO: {request room_size} 

      ST: I found 4 rooms Friday between 1 and 3 p.m. Would  

    you like a small room or a large one? 

   2  R: ANYTIME CECILY [NONU] 

   3  SO: {inform suggest_room <results suggest=1} 

    {request want_this_room} 

     ST: One choice would be Newell Simon 1507. This room can 

    accommodate 50 people, and has a projector, a  

    whiteboard and network access. Do you want a  

    reservation for Newell Simon 1507?  

 

Example 1 
 

Example 2 
 

 

   1  SO: {request departure_stop} 

      ST: Where are you leaving from? 

   2  R: OKAY IN THAT SAME PAY [NONU] 

   3  SO: {inform step_by_step} {request neighborhood} 

     ST: Let’s proceed step by step … Which neighborhood 

    would you like to leave from? 

 

Figure 51. The Move On non-understanding recovery strategy (example 1 is extracted from the 
RoomLine system; example 2 is extracted from the Let’s Go! Public system) 
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4.4.1.15 Give Up 

The Give Up strategy terminates the conversation and asks the user to call at a later time – see Figure 
53. The strategy can be useful if the conditions are such as the likelihood of success in the conversa-
tion is very small, for instance adverse noise conditions, very poor recognition, etc. In this case the 
system might be better off terminating the conversation or directing the user to a human operator. 
The system is then free to serve another call.  

The strategy is implemented as a library inform-agent that first issues a prompt informing 
the user the conversation will be terminated, and then sends an end-of-session signal to the dialog 
engine. A predefined version of the corresponding prompt is available as part of the domain-
independent language generation templates; this prompt can be redefined by the system author.  

4.4.2 Request-agent error handling models 
After having discussed the repertoire of non-understanding recovery strategy available in the Raven-
Claw dialog management framework, we now turn our attention to the request-agent error handling 
models which are in charge of engaging these strategies. If concept-level error handling models are 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request nonu_want_start_over}    

   ST: I’m having lots of trouble understanding you, but I 

    might do better if we restarted. Would you like to 

    start over? 

   4  R: NO 

   5  SO: {request date} 

      ST: For which day would you like the conference room? 

 

Example 1 
 

Example 2 
 

 

   1  SO: {request date} 

      ST: For which day would you like the conference room? 

   2  R: DOES IT AGAIN PLEASE [NONU] 

   3  SO: {request nonu_want_start_over}    

   ST: I’m having lots of trouble understanding you, but I 

    might do better if we restarted. Would you like to 

    start over? 

   4  R: YES 

   5  SO: {inform starting_over} {inform welcome} ... 

      ST: Okay, let’s restart. By the way, you can say ‘help’ 

    at any time if you get stuck. Welcome to  

    Roomline ... 

 

Figure 52. The Ask Start Over non-understanding recovery strategy (in example 1 the user declines, in 
example 2 the user accepts) 

 

Figure 53. The Give Up non-understanding recovery strategy  

 

   1  SO: {request departure_stop} 

      ST: Where are you leaving from? 

   2  R: OKAY IN THAT SAME PAY [NONU] 

   3  SO: {inform give_up} 

     ST: I’m sorry but I’m having lots of trouble  

    understanding you and I don’t think I will be able 

    to help you. Please call back during normal business 

    hours. 
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associated with every concept in the dialog task specification, similarly, request-agent error handling 
models are associated with every request agent in the tree. When a non-understanding occurs, the 
model for the currently focused agent is in charge of engaging an appropriate non-understanding 
recovery strategy. The request-agent error handling models therefore implement control policies over 
the set of available non-understanding recovery strategies. 

We have seen that for misunderstandings detection is a key issue, and the set of confirma-
tion strategies that can be engaged is relatively small and well understood. In contrast, for non-
understandings, the set of strategies that could be used to recover is much larger – see the 15 strate-
gies described in the previous subsection. The relative trade-offs between these strategies are less 
obvious; in fact, they might be task- and domain-specific. Intuitively, certain strategies are more help-
ful in certain situations. For instance, asking the user to repeat might be an appropriate course of 
action if the non-understanding was caused by a transient noise. In contrast, if the non-
understanding is the result of an out-of-vocabulary word, asking the user to repeat will not be very 
helpful. Correctly diagnosing the source of a non-understanding is also a difficult problem. As a con-
sequence, designing a good control policy over these strategies is in general a challenging task. 

Typically, most spoken dialog system use a limited set of non-understanding recovery strate-
gies and very simple heuristic policies for engaging them. A typical example is the so-called “three 
strikes and you’re out” approach [5]: repeat the system question after the first non-understanding, 
provide more help after the second one, and transfer the user to a human operator if a third consecu-
tive non-understanding occurs.  

RavenClaw supports this type of heuristic policies, via two different types of request-agent 
error handling models: default and NoN (number-of-non-understandings). We describe these mod-
els in more detail in the next two subsections – 4.4.2.1 and 4.4.2.2. Other heuristic-based error han-
dling models can be easily defined and used by a system author. We argue however that these models 
are ad-hoc in nature, and do not accurately capture the trade-offs, costs and particular characteristics 
of the domain in which the system operates. To address this issue, we have developed an online, su-
pervised learning based approach for deriving non-understanding recovery policies from data. The 
method and corresponding empirical results are described in detail in section 8.4 from Chapter 8. 
Here, we limit ourselves to outlining the structure of the corresponding error handling model in sub-
section 4.4.2.3. 

4.4.2.1 The default request-agent error handling model 

Like for the concept error handling models, the representation for the default request-agent error 
handling model is a Markov decision process (MDP).  

The structure of this model is illustrated in Figure 55. The model has 2 states: understand-
ing, non-understanding. In contrast to the concept error handling model, the request model is 
fully observable since non-understandings are automatically detected by the system.  

The only available action from the understanding state is no-action (this will be engaged 
by the model at each time step when no non-understanding occurs). The set of non-understanding 
recovery strategies described previously are available and can be engaged from the non-

understanding state.  

The policies for this model are defined in a similar manner to the concept-level policies, i.e. 
by specifying the relative utilities for various strategies. The exploration_mode and explora-
tion_param parameters are also available for the request-agent policies. In addition, system authors 
can further customize this error handling model by overwriting a method that defines which strate-
gies are available from the non-understanding state. System authors can therefore use any other 
information available at runtime in the system to constrain which strategies are available at any given 
point. For instance, rules such as “don’t ask the user to repeat three times in a row”, or “don’t ask for 
a short answer if the current non-understanding has a small number of words already”, etc. can be 
enforced via this method. At each decision point, the model chooses between the available strategies 
based on their defined utilities and specified the exploration policy. The default request-agent error 
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handling model therefore allows system authors to create stochastic heuristic policies.  

4.4.2.2 The NoN request-agent error handling model 

The NoN (Number-of Non-understandings) request-agent error handling model is very similar to the 
default model described in the previous subsection. This model is implemented as an MDP that 
uses information about the number of consecutive non-understandings in the current error segment. 
The model consists of four states, illustrated in Figure 55: nonu_1, nonu_2, nonu_3_or_more and 
understanding. The model is in the state nonu_1 when the current non-understanding is the first 
one in a segment, i.e. when the previous utterance was not a non-understanding. The model is in the 
state nonu_2 when this is the second non-understanding in a segment, i.e. when the previous utter-
ance was a non-understanding but the one before that was not. Finally, the model is in the state 
nonu_3_or_more when there were at least two previous non-understandings preceding the current 
one. The non-understanding recovery strategies are available as actions from the 3 non-
understanding states, and only no-action is available from the understanding state. This model 
structure allows the system author to specify different utilities for the different non-understanding 
recovery strategies, depending on whether or not this is the first, second or later non-understanding 
in a non-understanding segment. Like for the default model, system authors can overwrite a rou-
tine that defines which strategies are available at any given point in the dialog.  

4.4.2.3 The LR (data-driven) request-agent error handling model 

The default and NoN request-agent error handling models described in the previous two sections 
allow a system author to implement various stochastic heuristic policies. This is an ad-hoc approach 
that relies on rules of thumb and expert knowledge. It is typically used in most spoken language in-
terfaces. In addition to these models, RavenClaw also supports a data-driven request-agent error 
handling model.  
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understanding 

Figure 54. Structure for the default request-agent error handling model (not all transitions are illustrated) 

 

N 

U … 

recovery  
actions 

no-action 

nonu_1 

understanding 

Figure 55. Structure for the NON request-agent error handling model (not all transitions are illustrated) 

 

recovery 
actions 

no-action 

U 

 

N3 

… 

 

N2 

… 

 

N1 

… 

nonu_2 nonu_3_or_more 



118 Error awareness and recovery in conversational spoken language interfaces  
 

 

We start from the intuition that certain non-understanding recovery strategies are more likely 
to succeed under certain circumstances. For instance, if the source of the non-understanding is an 
out-of-vocabulary word, asking the user to repeat is less likely to help than asking the user to re-
phrase. However, if the non-understanding is caused by a transient noise, then asking the user to re-
peat might be a more appropriate course of action. If we could accurately estimate the likelihood of 
success for each non-understanding recovery strategy (success being defined as “follow-up user re-
sponse will be correctly understood by the system”), the optimal policy would be relatively easy to 
construct: simply select the strategy with the highest likelihood of success.  

The data-driven request-agent error handling model relies on a number of such predictors – 
one for each non-understanding recovery strategy. The individual predictors are trained in a super-
vised learning fashion, using logistic regression models (hence the name LR for this error handling 
model), and a large set of features available online to the system (the approach is described in detail 
in section 8.4 from Chapter 8.) At runtime, the system uses these predictive models to estimate the 
likelihood of success for each non-understanding recovery strategy given the current situation. In 
essence, we are using logistic regression to model the probability of transitioning to the under-
standing state from the non-understanding state when a certain action is taken, P(U|N, Ak) in 
the MDP from Figure 54. Based on the constructed estimates, the model then chooses the strategy 
that is most likely to succeed. 

Additionally, the individual logistic regression models provide confidence intervals for each 
predicted likelihood of success. These confidence intervals reflect the system’s certainty about that 
prediction and allow us to guide the system in an online approach to learning the individual models. 
The system starts with a set of agnostic models, and, as more data is gathered the individual models 
are retrained and become more and more accurate; the system learns a non-understanding recovery 
policy online. In section 8.4 from Chapter 8, we discuss in more detail the technical aspects of this 
learning-based approach and present empirical results in a deployed spoken dialog system.  

4.5 Summary and future directions 

In this chapter we have described the error handling architecture in the RavenClaw dialog manage-
ment framework. The architecture is task-independent and decouples both the error handling strate-
gies and the error handling decision process from the actual dialog task specification. The error han-
dling strategies are implemented as library dialog agencies, using the RavenClaw dialog task specifica-
tion formalism (see previous chapter.) The error handling decision process is implemented in a dis-
tributed fashion, as a collection of local, independent error handling models associated with every 
concept and request-agent in the dialog task specification. The concept error handling models are in 
charge of handling potential misunderstandings: they use information about the confidence score of 
each heard concept value, and can engage various confirmation actions. The request error handling 
models are in charge of recovering from non-understandings: they can trigger a wide array of non-
understanding recovery strategies, such as asking the user to repeat, asking the user to rephrase, pro-
viding help, etc. While task-decoupled implementations of various conversational components have 
been advocated before in different contexts [5, 65, 71, 99, 122, 123], to our knowledge this is the first 
task-independent error handling architecture implemented in a complex, plan-based dialog manage-
ment framework.  

This task-decoupled solution provides a number of advantages. First, it lessens the system 
development effort. System authors specify at a high level which recovery strategies and policies 
should be used, and focus on developing the domain-specific dialog control logic under the assump-
tion that inputs to the system will always be perfect. The responsibility for ensuring that the conver-
sation is on track and advances normally is delegated to the underlying error handling architecture. 
The architecture is modular and promotes the reusability of components: error indicators, strategies 
and policies can be developed separately can be easily plugged into any new or existing RavenClaw-
based system. In addition, the task decoupled approach ensures consistency and uniformity in behav-
ior both within and across systems. It also represents a more sensible solution from a software engi-
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neering perspective.  

The distributed nature of the error handling process represents a strength but perhaps also a 
weakness. On one hand, this approach confers good scalability properties, supports dynamic genera-
tion of dialog tasks14, and favors learning based approaches for error handling. The error handling 
problems are encapsulated (and solved) locally and decoupled from the actual task performed by the 
system. Parameters for different error handling models can be tied across models; this in turn im-
proves scalability of learning-based approaches, because the total number of parameters to be learned 
grows sublinearly with the size of the dialog task. At the same time, the error handling models oper-
ate locally, on individual concepts and requests in the dialog plan. This raises a number of questions. 
For instance, long-range dependencies (e.g. inter-concept relationships) are not directly captured; in 
some situations, these dependencies can provide additional useful information for the error handling 
process. For instance, knowing that the start-time for a room reservation is 2p.m. puts a number of 
constraints on what the end-time can be. Furthermore, the error handling strategies operate individu-
ally on concepts or request agents. The gating mechanism implements a heuristic that can sometimes 
couple multiple recovery actions in a single turn. For instance an implicit confirmation can be cou-
pled with a follow-up explicit confirmation on a different concept: “a small room … Did you say in 
Wean Hall?”.  Difficulties arise however if we want the system to combine multiple concepts in a 
single confirmation action, such as “Did you say you wanted a small room in Wean Hall?”. The view 
taken in this work is that, to a large extent, error handling can be modeled as a local process. I believe 
that significant gains in overall performance can be obtained by optimizing the error handling behav-
iors locally. Nevertheless, in future work it would be interesting to consider and address the limita-
tions described above.  

Together with the larger RavenClaw dialog management framework and the system built on 
top of it, the error handling architecture we have presented in this chapter provides the infrastructure 
and experimental platform for the rest of the work described in this dissertation. Throughout this 
chapter, we have already pointed to a number of important and challenging questions: how can we 
accurately detect misunderstandings? How can a system update its beliefs based on evidence col-
lected throughout a conversation? How can we set various confidence thresholds? How can a system 
learn a non-understanding recovery policy over a large set of strategies from data? In the remaining 
chapters we address these, as well as a few other issues. We begin from the issue of detecting misun-
derstandings. 

 

                                                      
 
14 The dialog task tree can grow dynamically at runtime; the corresponding concept and request-agent error handling mod-
els will be automatically created by the dialog engine. 
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Chapter 5  

Confidence annotation 

In order to detect potential misunderstandings, spoken language interfaces typically 
rely on recognition confidence scores. In this chapter we investigate various learning 
methodologies for building semantic confidence annotation models. We begin by 
focusing on supervised learning techniques. We report on a comparative analysis of 
four such techniques (i.e. logistic regression, boosting, decision trees and Naïve 
Bayes), using corpora from three different spoken dialog systems. We investigate 
different evaluation metrics, the advantages and disadvantages of various supervised 
learning models, the relationship between training set size and performance, and to 
which extent confidence annotation models generalize across domains. Next, in the 
second part of this chapter, we propose a novel, implicitly supervised approach for 
learning confidence annotation models. This approach eliminates the need for de-
veloper supervision; instead, the system obtains its supervision signal directly from 
the interaction, from user responses to system confirmation strategies. We believe 
this implicitly-supervised learning approach is applicable to other problems, and 
represents an important step towards developing autonomous, self-improving inter-
active systems.  

5.1 Introduction 

In the introductory chapter, we have identified two types of understanding-errors that commonly 
affect spoken language interfaces: misunderstandings and non-understandings. In this chapter, we 
focus our attention on misunderstandings, more specifically on the problem of detecting these errors.  

By definition, we say that a misunderstanding happens when the system constructs an incor-
rect discourse-level interpretation of the user’s turn. Figure 56 provides an example. In turn 2, the 
user responded “I need a reservation for next Thursday”; unfortunately, due to speech recognition errors, 
this answer is understood as “I need a reservation for next Tuesday”. In order to detect 
such misunderstandings, most spoken dialog systems rely on confidence scores. These scores are 
automatically computed by the system at runtime, and they reflect the likelihood that the decoded 
result corresponds to the user’s expressed intention. Confidence scores can be constructed at the 
lexical or semantic level, and can be associated with words, concepts, or entire utterances. For in-
stance, in the example from Figure 7, the utterance-level confidence score was 0.68: the system be-
lieves that, with probability 0.68, the user’s expressed intent in this utterance was to reserve a room 
for next Tuesday. The problem of computing these scores is known as the confidence annotation 
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problem. In the context of conversational spoken language interfaces, detecting misunderstandings 
reduces therefore to performing accurate semantic-level confidence annotation. 

The confidence annotation problem has already received a fair amount of attention. Tradi-
tionally, work on confidence annotation was conducted in the context of dictation and broadcast 
news transcription tasks [30, 49, 112, 118, 133]. Accordingly, the proposed schemes work at the lexi-
cal level. For instance, word-level confidence annotation models assign a reliability tag (or a probabil-
ity score) to each word token in the decoder hypothesis. However, in the context of spoken dialog 
systems, the high-level semantic interpretation is what really matters: small lexical errors can be safely 
absorbed by a dialog system because the dialog manager actions are dictated by the input semantics. 
As a result, a number of researchers [18, 38, 44, 52, 53, 70, 85, 102, 104, 117], including the author [9, 
22], have investigated various methods for building confidence annotators operating at the semantic 
level. Typically, the problem is cast as a supervised learning task: given a set of features that charac-
terize the current semantic hypothesis and the current context, does this semantic hypothesis corre-
spond to the user’s expressed intention? 

Although the semantic confidence annotation problem has also received a significant 
amount of attention (see also section 5.2.), a number of interesting questions remain to be explored:  

(4) what is an appropriate metric for evaluating confidence annotation performance 
in the context of a conversational spoken language interface? Typically, confidence 
annotators are evaluated in terms of classification error, accuracy, or ROC curves. These 
metrics are well suited when one is interested in making accept/reject decisions based on 
the confidence score. They are however not appropriate if one plans to use the confi-
dence score as a probability estimate, for instance to make more fine-grained confirma-
tion decisions. We discuss this issue in more detail in section 5.3. We propose two alter-
native metrics, and empirically show that an evaluation based only on classification error 
can create misleading results (see subection 5.4.2.5.) 

(5) what are the advantages and disadvantages of various supervised learning tech-
niques on this task? In previous work [22], we have comparatively evaluated six differ-
ent classification models on the semantic confidence annotation task. With the notable 
exception of the Naïve Bayes classifier (which performed somewhat worse), no statisti-
cally significant differences were found between the other models. Since then, a few 
other authors have compared different supervised learning techniques for this task. 
Their results generally corroborate our initial analysis. In [118] Stemmer reports no sig-
nificant differences between decision trees and artificial neural networks. In [116] 
Skantze reports no significant differences between a memory-based and a transforma-
tion-based learner. In [75] Moreno reports very small improvements of a boosting-based 
algorithm over decision trees and support-vector-machines. In this chapter we extend 
this body of work by performing a more detailed comparative evaluation of four super-
vised learning techniques on three different corpora. 

Current supervised learning techniques rely on the existence of a labeled corpus from which 
the confidence annotation model parameters are estimated. Unfortunately labeled corpora are expen-
sive and difficult to acquire, especially in the early stages of system development and deployment. 

1 S: Welcome to RoomLine, the automated conference room reserva-

tion system. How may I help you? 

2 U: I need a reservation for next Thursday 

  R: I NEED A RESERVATION FOR NEXT TUESDAY / 0.68 

  P: [date=next Tuesday] 

 
Figure 56. Example misunderstanding in a conference room reservation system 

(S: marks the system turns, U: marks the user turns, R: marks the recognition result, P: marks the 
semantic representation of the recognition result) 
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Furthermore, supervised learning favors an off-line, batch approach that leads to fixed models that 
do not respond well to changes in the system’s environment. In an effort to address these limitations, 
we have also investigated the following questions:  

(6) what is the relationship between training set size and confidence annotation per-
formance? How much data is enough? Are some supervised learning techniques more 
sample efficient than others? 

(7) can we successfully transfer a confidence annotator that was trained with data 
from domain A into domain B without any labeled data from B? Alternatively, can 
we adapt the annotator into the new domain with a minimal amount of labeling effort? 

(8) can we train a confidence annotator in an unsupervised fashion, or bootstrap it 
from small amounts of labeled data? Can a system learn and adapt its confidence an-
notation model online, without explicit supervision from its developers? 

In this chapter, we discuss in detail the problem of semantic confidence annotation in con-
versational spoken language interfaces, and address each of the questions raised above. We begin 
with a brief review of related work in section 5.2. Then, in section 5.3, we formalize the semantic 
confidence annotation problem and discuss different evaluation methodologies (question 1). In sec-
tion 5.4 we discuss a number of issues related to the supervised learning approach for training confi-
dence annotators. We conduct experiments with multiple corpora and compare four supervised 
learning techniques on the confidence annotation task (question 2). We also empirically investigate 
the relationship between the amount of available training data and annotator performance (question 
3), and the portability of the constructed confidence annotators across different domains (question 
4). Finally, in section 5.5 we propose and evaluate a novel, implicitly supervised approach for building 
semantic confidence annotation models (question 5). We conclude this chapter in section 5.6 by out-
lining some potential directions for further extending this work.  

5.2 Related work 

5.2.1 Lexical confidence annotation 
Initially, confidence annotation schemes have been developed in the context of speech recognition 
tasks such as dictation or broadcast news transcription [30, 49, 112, 118, 133]. The proposed schemes 
use language and acoustic model information, as well as search information captured in the recogni-
tion lattices or n-best lists. They assign a confidence score either to the whole recognized hypothesis 
[49] or to each word in the recognized hypothesis [30, 49, 112, 118, 133]. Here are some examples. 
Hazen et al [49] use normalized acoustic scores at the phone-level, word-level and utterance-level in 
conjunction with a discriminative training procedure to derive phone-level, word-level and utterance-
level confidence scores. Wessel et al [133] describe a methodology for constructing word-posterior 
probabilities (i.e. word-level confidence scores) by using information available in the recognition lat-
tice or in the n-best list. Others have proposed integrating additional features in the confidence anno-
tation process. Shi and Zhou [112] report improvements in a word-level confidence annotation task 
for dictation by using part-of-speech information as well as syntactic features derived from a link 
grammar. Similarly, Stemmer et al [118] use an artificial neural network to combine different word-
level features (e.g. part-of-speech, length, frequency) with acoustic measures and word-graph based 
features. Cox and Dasmahapatra [30] use latent semantic analysis to construct between-words seman-
tic similarity scores, and then use this information to construct a word-level confidence score. They 
showed that, when combined with an n-best list based confidence annotator, this technique can pro-
duce improved results over the simple n-best list based approach. 
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5.2.2 Semantic confidence annotation 
The confidence annotation schemes described above operate at the lexical level. However, in the 
context of spoken dialog systems, actions are determined by the semantic representation of the rec-
ognized result. Lexical errors do not matter if the semantics of the utterance are correctly captured. 
For instance, if the user responds “yes” but the recognizer produces “yeah”, although the have 100% 
word-error-rate, the semantic-error-rate is 0%. An accurate (low in this case) recognition confidence 
score would not be helpful for a spoken dialog system. In general, although word-error-rate and con-
cept-error-rate are correlated, this correlation is not perfect. In Figure 57 we show the empirical cor-
relation between these metrics in three different dialog systems; the correlation coefficients range 
from 0.59 to 0.76.  

Given this incongruence, the focus changes in the context of spoken dialog systems, from 
generating confidence scores that reflect the lexical accuracy of the decoded hypothesis, to generating 
confidence scores that reflect the semantic accuracy. In the sequel, we will use the term recognition 
confidence scores to denote the first category, and semantic confidence (or simply confidence scores) 
scores to denote the latter.  

We have already seen that additional features such as part-of-speech information [112, 118] 
and semantic similarity [30] can provide useful information for constructing recognition confidence 
scores. The same holds true for semantic confidence scores. In spoken dialog systems, the user input 
typically passes through at least two additional processing stages: language understanding and dis-
course interpretation. These stages can provide additional information for the semantic confidence 
annotation task. For instance, utterances that do not parse well, or utterances that do not match the 
dialog manager expectations are more likely to be misunderstandings. As a result, a number of re-
searchers [18, 38, 44, 52, 53, 70, 85, 102, 104, 117], including the author [9, 22], have proposed inte-
grating information from these various knowledge sources to derive more accurate semantic-level 
confidence scores.  

For instance, in [22] we have assessed the utility of several speech recognition, language un-
derstanding and dialog-level features for constructing a semantic confidence annotator for the CMU 
Communicator, a spoken dialog system operating in the air travel domain [101]. We used a corpus of 
4550 utterances collected with this system, and investigated six different supervised learning tech-
niques: Bayesian networks, boosting, decision trees, neural networks, support vector machines and a 
Naïve Bayes classifier. The results indicate that all classifiers except for Naïve Bayes attained a classi-
fication error rate of about 18%. This result was equivalent with a 45% relative reduction in error 
from a majority baseline, and a 30% relative reduction in error from the heuristic rules previously 
used for confidence annotation in the CMU Communicator system.  

In a similar study [70], Litman et al used RIPPER, a rule-based machine learning approach to 
derive a semantic confidence annotator. The data used in their study came from three different spo-
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ken dialog systems: ANNIE – an agent for voice dialing and messaging, ELVIS – an agent for ac-
cessing email, and TOOT – an agent for accessing online train schedules. The authors used a large 
number of features from different knowledge sources in the system: acoustic features, dialog effi-
ciency features, dialog quality features, lexical features, etc. The trained confidence model attained a 
classification error rate of 23%, equivalent with a 52% relative reduction from the majority baseline 
(which was 48% in their case).  

These two studies are representative for a larger body of work on semantic confidence anno-
tation [9, 18, 38, 44, 52, 53, 85, 102, 104, 117]. Typically, the problem is cast as a supervised learning 
task: given a set of features characterizing the current recognition result and the current context, pre-
dict whether or not the user’s utterance was correctly understood by the system. The general meth-
odology is as follows. 

First, a corpus of in-domain user utterances is collected and each utterance is manually la-
beled as either correctly-understood or misunderstood by the system. In some approaches [44, 102, 
104], the labeling and the subsequent confidence annotation are performed at the concept rather than 
utterance level. The training corpora can range in size from hundreds [38, 52] to tens of thousands of 
utterances [44, 85].  

Second, a set of potentially relevant features from different knowledge sources in the system 
are identified. Various features have been proposed and evaluated to date: decoder level features 
(acoustic and language model scores, lattice information) [18, 38, 70, 85, 102, 117], other acoustic 
information such as energy, pauses and prosodic characteristics [70], lexical information [53, 117] 
(e.g. presence or absence of certain word-tokens), part-of-speech information [117], parsing scores 
and other grammar-level features [22, 85], discourse-level features [18, 22, 52, 53, 70], as well as 
pragmatic plausibility features [38]. Because the confidence annotation models need to run live in the 
system, only features that can be computed at run-time are used.  

The third component is the supervised learning method. A large variety of such methods 
have been explored to date: artificial neural networks [44, 102], decision trees [85, 104], support-
vector-machines [75, 117], transformation-based-learning [112], linear discriminant functions [52], 
rule-based learning [18, 38, 53, 70], memory-based learning [18, 38, 116], and boosting [75].  

In the final step, the confidence annotator is trained using a portion of the collected corpus 
and evaluated on a held-out test set. Typically, the evaluation is performed by computing the classifi-
cation error and comparing it against majority (always predicting the majority class) or heuristic base-
lines. A typical result is a 50% relative reduction of classification error, from the majority baseline 
[22, 44, 53]. Some authors also report ROC curves [85, 112], or performance at different false accep-
tance rates [44, 52, 102], since the costs for false acceptances and false rejections are different, and 
most likely domain-specific.   

5.3 Problem statement 

Let R be a user input, typically characterized in terms of a set of features from different knowledge 
sources in the system R=<f1, f2, …, fn>. Let C be a binary variable which encodes whether or not the 
system correctly understood the user (C=1 represents correct understanding, C=0 represents incor-
rect understanding). The semantic confidence annotation problem can then be formulated as follows:  

given a user input R=<f1, f2, …, fn>, compute the probability that the system 
correctly understood the user P(C=1|R). 

A restricted binary version of this problem can also be formulated:  

given a user input R=<f1, f2, …, fn>, predict whether or not this input was 
correctly understood by the system.  

This second formulation of the problem, also known as misunderstanding detection, is a bi-
nary classification task. A significant body of research has been dedicated to this latter problem [18, 
38, 53, 70]. However, in the context of conversational spoken language interfaces, a continuous con-
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fidence score that accurately reflects the probability of correct understanding can provide a much 
more informative basis for error handling than a simple binary indicator. The probability of correct 
understanding can be used (in conjunction with costs for various system actions) in a decision theo-
retic framework for engaging in various error recovery strategies. We therefore argue that, in the con-
text of spoken language interfaces, the focus should be on the first rather than the second formula-
tion of the confidence annotation problem. Ideally, we would like to generate continuous confidence 
scores that accurately reflect the probability of correct understanding. In the following subsection we 
discuss two desirable properties for confidence scores – calibration and refinement, together with a 
corresponding evaluation criterion.  

5.3.1 Evaluation criteria 

5.3.1.1 Classification error and accuracy 

Perhaps influenced by the binary formulation of the confidence annotation problem, the quality of 
confidence annotators is often evaluated using metrics such as average classification error 
(Avg.CE), its complement – average classification accuracy (Avg.CA) [18, 38, 53, 70]. If the con-
fidence annotator outputs a binary label indicating correct or incorrect understanding Bi, these met-
rics are defined as follows:  

∑ −⋅−+⋅=
i

iiii )B1()C1(BCCA.Avg  

∑ ⋅−+−⋅=
i

iiii B)C1()B1(CCE.Avg  

Sometimes a combined measure of precision and recall (e.g. an F-measure), or ROC curves 
are reported for the constructed classifiers [44, 52, 85, 102, 112]. The use of these metrics is common 
even when the confidence annotator produces a continuous confidence score yi . A threshold (th) is 
applied to derive a binary classification; by varying this threshold, different trade-offs between false-
acceptances and false-rejections can be achieved. Average classification accuracy and/or average clas-
sification error are then computed as follows: 
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These metrics operate on a linear scale and the results are easy to interpret. For instance, an 
improvement from 60% to 80% in accuracy can be considered sizable. A t-test can be used to detect 
whether the performance differences between two annotators are statistically significant.  

5.3.1.2 Calibration, refinement and the Brier score 

As we have argued at the beginning of this section, spoken dialog systems make important error 
handling decisions based on confidence scores. In this context, a continuous score that accurately 
reflects the probability of correct understanding is more desirable than a binary estimate of correct 
understanding. The ideal confidence annotator acts as a probability forecaster. Two properties are 
desirable in this context: calibration and refinement [28, 32].  

A confidence annotator (or a probability forecaster in general) is said to be calibrated if, as 
the number of predictions goes to infinity, the predicted probability P(C=1|R) corresponds to the 
empirical probability of correct understanding. In other words, in the limit, the system correctly un-
derstands the user in y% of the cases when the confidence annotator assigns a score of P(C=1|R)=y. 
Calibration therefore measures to which extent the predicted probability accurately reflects the em-
pirical probability of correct understanding.  

The second important property is refinement. A confidence annotator that always predicts 
the average rate of correct understanding is perfectly calibrated, but also completely useless. Refine-
ment measures the usefulness of each forecast. The more concentrated P(C=1|R) is towards 0 or 1, 
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the more refined the confidence annotator [28]. A well-refined and well-calibrated confidence anno-
tator always predicts probabilities close to 0 or 1, and these probabilities correspond to the empirical 
probabilities of correct understanding.  

Metrics that capture both calibration and refinement are called proper scoring rules. Two 
such proper scoring rules are the log-loss (LL) [40] and the Brier score (Br) [28]. They are com-
puted as follows:  

∑ −⋅−+⋅=
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iiii )y1log()C1()ylog(CLL.Avg  
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In the limit both these metrics accurately reflect the quality of the confidence annotation 
predictions. However, when only a small number of data points is available for the evaluation, the 
log-loss scoring function is less robust. A single prediction error can introduce a fairly large loss (be-
cause of the log function), and can significantly lower the overall, average log-loss. For this reason, 
we will use the Brier score in the rest of this work for assessing the confidence annotation predic-
tions. To facilitate comparison with other works, and to provide a fuller understanding of the per-
formance of the developed confidence annotators, we also report classification error. In section 
5.4.2.5, we discuss the relationship between these metrics, based on empirical results in three differ-
ent dialog domains.  

Note that each of the metrics discussed above penalizes the confidence annotator’s predic-
tions with a certain loss function (cost structure). The loss functions are illustrated in Figure 58. The 
classification error metric uses a threshold of 0.5 and penalizes errors equally according to a zero-one 
loss function. The log-loss metric penalizes the predictions with a log-loss function. The Brier score 
corresponds to using a quadratic-loss function. The actual dialog-level loss function (cost structure) 
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Figure 58. Loss functions for confidence annotation evaluation metrics 
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depends on the set of actions that dialog controller might engage, and on the relative costs of these 
actions. For instance, a commonly encountered approach is to use a set of thresholds t1, t2, t3 on the 
confidence score and take different confirmation actions depending on how the confidence score 
P(C=1|R) compares to these thresholds. If P(C=1|R)<t1 the system rejects the input. If 
t1<P(C=1|R)<t2, the system engages in an explicit confirmation. If t2<P(C=1|R)<t3, the system en-
gages in an implicit confirmation. Finally, if t3<P(C=1|R), the system accepts the input without any 
further confirmation. In this case, the actual cost structure is shown in the bottom right image from 
Figure 58. The costs are most likely asymmetric (e.g. the cost of rejecting a correct input is different 
from the cost of accepting an incorrect input). It is important to notice that, if we can generate well-
calibrated confidence scores, we don’t need to consider these domain-specific costs while optimizing 
or evaluating the confidence annotator. The annotator will produce scores that accurately reflect the 
probability of correct understanding, and these scores can be used at a later stage in conjunction with 
the domain-specific costs for making dialog control decisions. 

5.4 A supervised learning approach for confidence annotation 

In the previous section, we have formally introduced the problem of semantic confidence annotation 
and we have discussed several metrics for evaluating performance on this task. In this section, we 
discuss supervised learning approaches for building confidence annotation models. We begin by out-
lining the general methodology in subsection 5.4.1. Then, in subsection 5.4.2 we empirically investi-
gate the use of four supervised learning techniques for building confidence annotation models using 
data from three different dialog domains. We address issues such as performance, sample-efficiency 
and cross-domain generalization of the proposed models. In subsection 5.4.3 we draw a number of 
conclusions based on these experiments.  

5.4.1 Method 
The semantic confidence annotation problem can be cast as a probabilistic prediction task:  

given a user input R=<f1, f2, …, fn>, compute the probability that the system 
correctly understood the user P(C=1|R). 

The supervised learning methodology for building a confidence annotation models is:  

(1) collect a training corpus and label each utterance as either misunderstood or correctly-
understood by the system; 

(2) extract informative features from different knowledge sources in the system; 

(3) train the confidence annotator on the collected corpus; 

(4) evaluate the confidence annotator. 

In the next section we describe a series of experiments in which we used this methodology 
to construct semantic confidence annotators in three different dialog domains.  

5.4.2 Experimental results in the RoomLine, Let’s Go!, and Let’s Go! Public 
domains 

5.4.2.1 Systems 

We conducted experiments for building semantic confidence annotators based on three corpora 
from different spoken dialog systems: RoomLine, Let’s Go!, and Let’s Go! Public. RoomLine is a 
telephone-based, mixed-initiative spoken dialog system that can assist users in making conference 
room reservations on the CMU campus. The Let’s Go! and the Let’s Go! Public systems provide bus 
route and schedule information in the greater Pittsburgh area (the Let’s Go system was an earlier 
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prototype of the Let’s Go! Public system.) More information about the functionality of these systems 
was presented earlier, in subsections 3.4.1 and 3.4.2 from Chapter 3.  

The RoomLine, Let’s Go!, and Let’s Go! Public systems were constructed using the same 
RavenClaw/Olympus infrastructure and components described in section 3.3 from Chapter 3 and in 
[12]. This input processing pipeline for these systems is illustrated in Figure 59. For speech recogni-
tion, the systems used 2 parallel Sphinx-II decoders [58]. Both decoders used the same trigram lan-
guage model, but separate gender-specific acoustic models. The Sphinx-II recognition engines al-
ready provide a primitive form of confidence annotation: words in the recognition result where the 
language model was forced to back-off from a trigram to a bigram were marked as unconfident (see 
words surrounded by ‘?’ in Figure 59). After decoding, the top-level hypothesis from each recognizer 
was forwarded to the language-understanding module. The Phoenix [131] robust semantic parser was 
used to generate a semantic representation for each of these hypotheses. The parse results for each 
hypothesis were then sent to Helios, the component responsible for confidence annotation. Helios 
assigned a confidence score to each hypothesis and forwarded the hypothesis with the highest confi-
dence score to the dialog manager.  

1 S: Welcome to RoomLine, the automated conference room reserva-

tion system. How may I help you? 

2 U: I want to reserve a room next Thursday for two hours in the afternoon 

Figure 59. Input processing in the RoomLine, Let's Go!, and Let's Go! Public systems 
(S: marks the system turn; U: marks the user response; R: marks the recognition result; words 

tagged with ‘?’ in the recognition result were marked as unconfident by the recognizer; P: marks the 
semantic representation of the recognition result) 
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5.4.2.2 Data 

The RoomLine corpus was collected in a controlled user study described in more detail in section 8.3 
from Chapter 8. During this study, 46 first-time users performed up to 10 scenario-driven interac-
tions with the system. The resulting corpus contains 484 dialog sessions. All the non-understandings 
from this corpus were eliminated when training the confidence annotation models because confi-
dence scores are not required for the non-understood utterances. The remaining corpus contains 
8037 utterances. Of these, 1523, or 18.95% are misunderstandings. To facilitate comparison between 
the corpora, these numbers are also shown in Table 14. 

The second corpus was collected with an early prototype version of the Let’s Go! Bus In-
formation system, before this system became available to the larger public. The system was adver-
tised to the CMU community, and as a result this corpus contains calls made by various students and 
faculty on campus, as well as system developers. The total number of dialog sessions in this corpus is 
874. After eliminating the non-understandings, the remaining corpus contains 4667 user turns, out of 
which 1489, or 31.90% are misunderstandings.  

Finally, the third corpus was collected with the public version of the Let’s Go! Bus Informa-
tion system. In March 2005 this system was connected to the Pittsburgh Port Authority customer 
service line during non-business hours, and therefore became available to the larger Pittsburgh com-
munity. We used a corpus of 617 dialog sessions collected during the first month of operation for the 
system. After eliminating the non-understandings, the remaining corpus used for training contains 
6029 utterances, out of which 1863, or 30.90% are misunderstandings.  

5.4.2.3 Features 

We considered a large set of features extracted from different knowledge sources in the system. Be-
low, we give a brief overview of the feature set. The full set of features is presented in Table 15.  

• speech recognition features. We considered features such as the acoustic and language 
model scores, the number of words and frames in the recognized hypothesis, as well as 
word-level confidence information generated by the Sphinx recognizer (Sphinx tags each 
word in the decoded results as confident/unconfident, depending on the language 
model back-off pattern). We also considered a number of additional acoustic features 
such as the signal and noise-levels (as reported by the recognizer), and the speech-rate 
(computed on a per-word and per-syllable basis).  

• prosody features. We included a large set of prosody features such as various pitch 
characteristics (mean, max, min, standard deviation, min and max slopes, etc.). These 
features were extracted in batch mode using the get_f0 program.  

• lexical features. We identified the top-10 words most correlated with misunderstand-
ings, and added binary features to capture the presence or absence of these words (note 
that these lexical features are system-specific).  

 RoomLine Let’s Go! Let’s Go! Public 

Dialog system domain conference room  
reservations 

bus schedule and 
route information 

bus schedule and 
route information 

Initiative type mixed mixed system 

Number of sessions 484 847 617 

Number of utterances 8037 4667 6029 

Number of misunderstandings 1523 1489 1863 

Percentage misunderstandings 18.95% 31.90% 30.90% 

 Table 14. Basic statistics for confidence annotation corpora in the RoomLine, Let's Go! and Let's 
Go! Public systems 
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Table 15. Features for confidence annotation  
 
A superscript on the feature name indicates that the feature is specific to a certain dataset. 
The feature types are encoded as follows: R=real, C=count, N=nominal, B=boolean 
The derived features are encoded as follows: 
  norm = normalized version of the feature (z-score) 
  >m = binary version indicating if the feature value is greater than the mean value of the feature in the dataset 
  >0 = binary version indicating if the feature value is greater than 0 
  >1 = binary version indicating if the feature value is greater than 1 
  >2 = binary version indicating if the feature value is greater than 2 
  >4 = binary version indicating if the feature value is greater than 4 
  dtf = difference between the current feature value and the feature value in the first turn in the dialog 
  dtp = difference between the current feature value and the feature value in the previous turn in the dialog 

 
Feature name Type Derived  

features 
Feature Description 

 

Speech recognition features 
 

engine_id C  which recognition engine (male or female) generated this hypothesis  
am_score R norm, >m the acoustic model score 
lm_score R norm, >m the language model score 
decoder_score R  the decoder score 
acoustic_gap

LG,LGP 
R >m Indicates the difference between the current acoustic model score and the acoustic score corresponding to an all-

phone model 
min_word_conf

LG,LGP 
R  the minimum word-level confidence score  

avg_word_conf
LG,LGP

 R  the average word-level confidence score 
max_word_conf

LG,LGP
 R  the maximum word-level confidence score 

frame_num C >m the number of frames 
word_num C >1, >2, >4 the number of words in the utterance 
word_num_class N  nominal feature indicating whether the utterance Rains 1 word, 2 words, 3 or 4 words, or more than 4 words 
unconf_num C norm, >0 number of unconfident words (Sphinx tags individual words as unconfident if no trigram is found in the language model 

ending in the current word, and a bigram back-off is forced) 
unconf_ratio R  the percentage of unconfident words in the hypothesis  
conf_num C norm number of confident words 
speak_rate R >m speech rate, computed as number of frames per word 
speak_rate_phones R >m speech rate, computed as number of frames per phone 
speak_rate_syl R >m speech rate, computed as number of frames per syllable 
npow R >m noise level 
pow R >m signal level 
pow_npow_diff R >m Signal-to-noise ratio 
 

Prosody features 
 

pitch_mean R >m, dtf, dtp the pitch mean 
pitch_range R >m, dtf, dtp the range of the pitch (max – min) for the utterance 
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pitch_min R >m, dtf, dtp the minimum pitch level in the utterance 
pitch_max R >m, dtf, dtp the maximum pitch level in the utterance 
pitch_std  R >m, dtf, dtp the pitch standard deviation 
pitch_min_slope R  the minimum value for the pitch slope in this utterance (the largest pitch decrease) 
pitch_max_slope R  the maximum value for the pitch slope in this utterance (the largest pitch increase) 
num_voiced_segments C  the number of voiced segments in the utterance 
perc_unvoiced R >m the percentage of the utterance (in frames) that is not voiced 
prepau R >m the length of the initial unvoiced segment (initial pause) 
 

Lexical features 
 

mark_confirm B  presence of confirmation markers 
mark_disconfirm B  presence of disconfirmation markers 
mark_lex_bool B  presence of confirmation or disconfirmation markers 
lex

BL, LG,LGP
 B  a set of binary features that captures the presence / absence of 10 words correlated with misunderstandings. The 

words are different for each corpus, and were selected via a corpus based computation of mutual information between 
the words and the misunderstanding labels 

 

Language understanding features 
 

slot_num C  number of grammar slots 
rep_slots_num C >0 number of repeated grammar slots (wrt the previous turn) 
new_slots_num C >0 number of new grammar slots (wrt the previous turn) 
words_per_slot R >1, >2 average number of words per grammar slot 
uncov_num C >0, norm number of words not covered by the parse 
uncov_conf_num C >0, norm number of confident words not covered by the parse 
uncov_ratio R  the percentage of words not covered by the parse 
uncov_conf_ratio R  the percentage of unconfident words not covered by the parse 
cov_num C norm the number of words covered by the parse 
frag_num C >1 the number of fragments in the parse 
frag_ratio R  the percentage of fragments in the parse 
gap_num C >0, >1 the number of gaps in the parse 
frag_and_gap_num C >1 the number of fragments and gaps in the parse 
hyp_num_parses C  the number of alternative parses generated for this recognition hypothesis (due to grammar ambiguities, Phoenix can 

sometimes generate multiple parses for a single recognition hypothesis) 
total_num_parses C  the total number of alternative parses generated for this user input 
num_parses_ratio R  hyp_num_parses divided by total_num_parses 
 

Inter-hypotheses features 
 

ih_diff_lexical B  the two recognition hypotheses from the male and female recognition engine are different 
ih_am_score_diff_to_max R >0 the difference between the acoustic model score of the current hypotheses to the maximum acoustic model score of 

the two hypotheses 
ih_am_score_diff_to_min R >0 the difference between the acoustic model score of the current hypotheses to the minimum acoustic model score of the 

two hypotheses 
ih_lm_score_diff_to_max R >0 the difference between the language model score of the current hypotheses to the maximum language model score of 
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the two hypotheses 
ih_lm_score_diff_to_min R >0 the difference between the language model score of the current hypotheses to the minimum language model score of 

the two hypotheses 
 

ih_frag_ratio_diff_to_max R >0 the difference between the fragmentation ratio of the current hypotheses to the maximum fragmentation ratio of the two 
hypotheses 
 

ih_frag_ratio_diff_to_min R >0 the difference between the fragmentation ratio of the current hypotheses to the minimum fragmentation ratio of the two 
hypotheses 
 

 

Dialog features 
 

slots_matched C >1 the number of grammar slots that matched an open dialog expectation 
slots_blocked C >0 the number of grammar slots that matched a closed dialog expectation 
first_level_matched C >0, >1 the first level in the expectation agenda where a slot from the current input matched an open expectation 
last_level_matched C >0, >1 the last level in the expectation agenda where a slot from the current input matched an open expectation 
last_level_touched C >0, >1 the last level in the expectation agenda where a slot from the current input matched a (open or closed) expectation 
matched_in_focus B  the input matched the dialog expectation in focus (the first level on the agenda) 
barge_in B  the user barge-in on the system 
turn C >0, >1, >m the turn number 
dialog_state_4 N  indicates whether the current dialog state is an open request (e.g. How may I help you?), a request for a Boolean con-

cept (e.g. Would you like this room?) or a request for a non-boolean concept (e.f. For what time would you like this 
room?) 

dialog_state_5 N  Indicates whether the current dialog state is an open request (e.g. How may I help you?), a request for a specific con-
cept (e.g. For what time would you like this room?) or an explicit confirmation (e.g. Did you say you wanted the room for 
10 a.m.?) 

dialog_state_id
BL, LG,LGP

 B  set of binary features capturing the state the dialog manager is in.  
 

Dialog history features 
 

last_turn_nonu B  indicates if the previous turn was a non-understanding 
num_prev_nonu C >1 indicates how many consecutive non-understandings preceded the current user turn 
num_prev_not_nonu C >1 indicates how many consecutive turns that were not non-understandings preceded the current turn 
h_ratio_nonu R >m, wind indicates the ratio of non-understandings up to this point in the dialog; the “wind” version indicates the percentage in 

the last 5 user turns (same holds true for all following features) 
h_avg_uncov_num R >m, wind indicates the average number of words uncovered by the parse up to this point in the dialog, and within the 5 last turns 
h_avg_gap_num R >m, wind indicates the average number of parse gaps up to this point in the dialog, and within the 5 last user turns 
h_avg_slots_matched R >m, wind indicates the average number of slots that match an open expectation up to this point in the dialog, and within the 5 last 

user turns 
h_avg_am_score R >m, wind indicates the average acoustic model score up to this point in the dialog, and within the 5 last user turns 
h_avg_lm_score R >m, wind indicates the average language model score up to this point in the dialog, and within the 5 last user turns 
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• language understanding features. We used various features describing the semantic 
parse constructed by the Phoenix parser: the number of slots, how many of these slots 
were new or repeated, as well as various measures of parse-fragmentation.  

• inter-hypotheses features. Since two parallel decoders were used, we also computed a 
set of features describing the relationship between the top-most hypothesis from the 
two recognizers. For instance, we computed whether these two hypotheses were identi-
cal at the lexical level, as well as the difference between their acoustic-model, language-
model and parse-fragmentation scores.  

• dialog management. We used a number of features capturing the match between the 
recognized hypothesis and the dialog manager expectation, as well as system-specific 
features describing which state the dialog was in.  

• dialog history. Finally, we also included a number of features capturing various aspects 
of the dialog history: the number of previous consecutive non-understandings, the ratio 
of non-understandings up to the current point in the dialog, and tallied averages of the 
acoustic-model, language-model, and various parse-fragmentation scores.  

As Table 15 illustrates, various normalized versions of these features were also created (e.g. 
z-score normalization, binary normalization, etc.)  

5.4.2.4 Supervised learning techniques 

We conducted comparative experiments with four different supervised learning techniques: 

• Logistic regression models. We used a stepwise approach for constructing logistic re-
gression models [76]. In each step, the next most informative feature was added in the 
model, as long as the average data likelihood on the training set improved by a statisti-
cally significant (p-accept=0.05) margin. After each step, the p-values for all the features 
currently in the model were reassessed, and any feature with a p-value larger than p-
reject=0.3 was eliminated from the model. To avoid over-fitting to the training data, we 
used Bayesian Information Criterion as a stopping criterion.  

• CART (Classification and Regression Trees). We constructed regression trees [74] 
using Gini’s diversity index [134] as a splitting criterion. Tree pruning was performed 
based on a 10-fold cross-validation procedure. 

• AdaBoost. We used Shapire’s Adaboost.M1 algorithm [37] with simple decision stubs as 
weak learners, and 100 boosting stages.  

• Naïve Bayes. We constructed a Naïve Bayes classifier [74] using the full set of features 
described in the previous section.  

We have previously argued that in the context of spoken dialog systems we are interested in 
generating continuous confidence scores that accurately reflect the probability of correct understand-
ing. In other words, we need to generate well-calibrated class posterior probabilities P(C=1|R). Most 
discriminative classifiers do not automatically generate well-calibrated outputs. The problem can be 
addressed by recalibrating the classifier outputs. A relatively simple method15 for post-calibration is 
to fit a sigmoid function that transforms the classification output into a probability score. If the clas-
sification model M generates output M(R) for input R, then we can fit a sigmoid such that: 
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This post-calibration step is not necessary for logistic regression, since the logistic regression 
model has this calibration step embedded. In fact, logistic regression directly models P(C=1|R) as in 
equation [1], using a weighted linear feature combination to describe M(R). Post-training calibration 
was therefore performed for the other three supervised learning techniques: the regression tree, the 

                                                      
 
15 More complex methods for calibration have been recently proposed and evaluated [7].  
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AdaBoost model and the Naïve Bayes model. For these models, we report below both calibrated and 
un-calibrated results. 

5.4.2.5 Experimental results 

§ Individual feature analysis 

We began by investigating the informative power of individual features. Each feature was used to 
construct a simple logistic regression model for predicting whether the utterance was misunderstood 
or not. The features were then ranked according to the average Brier score in a 10-fold cross-
validation process. The top-25 most informative features for each dataset are shown in Table 16. 

This preliminary analysis confirms that informative features can be extracted from different 
knowledge sources in the system. A large number of features from the speech recognition, language 
understanding, and dialog management levels appear in the top-25 list. Additionally, a few inter-
hypothesis, prosody, lexical, and dialog history features are also present in the top-25. Some of the 
most informative features come from the dialog management level, and they describe how well the 
decoded hypothesis corresponds to the dialog manager expectation (e.g. first_level_matched, 
last_level_matched, last_level_touched, expectation_match, etc.). Language understanding 
features, such as goodness-of-parse scores (e.g. uncov_num_bool, gap_num, etc.) also carry relevant 
information. Although the majority of these features are informative for more than one domain, the 
identity and relative ranking of the top-25 features is not the same across the three domains. For in-
stance, in the RoomLine domain the top-10 list contains dialog management, lexical, inter-
hypothesis, language understanding and speech recognition features. In the Let’s Go! domain, the 
top-10 list is dominated by speech recognition features. Finally, in the Let’s Go! Public domain, the 
dialog management features seem to be the most informative. In conclusion, although similarities 
exist, no small domain-independent subset of informative features can be easily identified. In the rest 

RoomLine Let’s Go! Let’s Go Public! 

DM last_level_matched IH ih_diff_lexical SR acoustic_gap 

LEX mark_lex_bool SR min_validword_conf DM last_level_matched>0 

IH ih_diff_lexical SR avg_validword_conf DM last_level_touched>0 

DM first_level_matched SR avg_word_conf DM first_level_matched>0 

LU uncov_num_bool SR min_word_conf DM expectation_match 

LU gap_num SR am_score_norm DM matched_in_focus 

LU frag_ratio SR lm_score DM last_level_touched 

LU uncov_ratio SR decoder_score SR am_score_norm 

LU uncov_num_norm SR am_score PR num_voiced_segments 

SR unconf_num_bool LU uncov_num_bool DM last_level_matched 

SR unconf_ratio LU gap_num SR lm_score 

LU frag_and_gap_num LU uncov_num_norm DM first_level_matched 

DM last_level_touched LU frag_and_gap_num SR decoder_score 

DM last_level_matched>0 LU frag_ratio SR am_score 

DM last_level_matched>1 SR unconf_num_norm SR acoustic_gap>m 

SR unconf_num_norm DH h_avg_am_score_norm SR am_score_norm>m 

DM last_level_touched>0 PR num_voiced_segments SR frame_num 

DM last_level_touched>1 SR frame_num LEX lex(YES) 

LEX lex(YES) LU uncov_ratio IH ih_am_score_norm_diff_to_min 

DM expectation_match SR unconf_num_bool LEX mark_confirm_bool 

DM first_level_matched>0 SR unconf_ratio DM last_level_touched>1 

SR lm_score SR unconf_num LEX mark_lex_bool 

DM first_level_matched>1 DH h_wind_avg_am_score_norm IH ih_am_score_norm_diff_to_min_bool 

SR frame_num_gtm SR acoustic_gap_gtm SR word_num_norm 

LEX mark_confirm_bool SR am_score_norm_gtm SR word_num 

 
Table 16. Top 25 most informative features for semantic confidence annotation in the RoomLine, 

Let's Go! and Let's Go! Public domains (DM – dialog management features; SR – speech recognition 
features; LU – language understanding features; IH – inter-hypothesis features; PR – prosody features; 
DH – dialog history features; lightly shaded cells contain features present in the top-25 list for 2 of the 

3 domains; the darkest shaded cells contain features present in the top-25 list for all 3 domains) 
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of this work we therefore consider the full list of features (presented in Table 15) for building the 
confidence annotation models.  

§ Results 

Next, we trained confidence annotators for each of the 3 corpora, using the four machine learning 
techniques outlined in the previous subsection. For each dataset and machine learning technique, we 
built two models: one that used the full set of features available for that dataset (FULL), and one that 
used only the features available across all datasets (COMM). The models were evaluated by computing 
classification-error and the Brier score in a 20-fold cross-validation procedure (20 random permuta-
tions of each dataset were generated, and 500 points were held-out for testing from each permuta-
tion.) The results are presented in Table 17 and illustrated in Figure 60; the figure shows only results 
on the COMM models.  

Several consistent patterns can be observed across domains. First, the models using the full 
set of features (FULL) generally perform better than the models using only the common set of fea-
tures (COMM) – see Table 17. This is an expected result; we have already seen that some domain-
specific features carry relevant information for the confidence annotation task. The performance gap 
is however not very large, indicating that successful models can be built using only domain-
independent features.  

The logistic regression model performs best overall. When evaluated in terms of classifica-
tion error, the decision tree and the AdaBoost models perform similarly well. The Naïve Bayes model 
performs significantly worse than the other three models in all cases. In the RoomLine domain, the 
Naïve Bayes model performs worse than the majority baseline. This result is in line with our observa-
tions in an earlier confidence annotation experiment on the CMU Communicator data [22]. We be-
lieve the explanation lies in part in the fact that the independence assumption made by the Naïve 
Bayes model is violated by our feature set. 
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Figure 60. Confidence annotation model performance in the RoomLine, Let's Go!, and Let's Go! Pub-
lic domains (classification error and Brier score for calibrated and un-calibrated classifiers) 
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Figure 61. Brier score evolution as a function of the number of boosting stages (Adaboost model) 
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Although the classification error results indicate that the logistic regression, decision tree and 
AdaBoost models perform similarly well, the Brier score evaluation reveals a different state of affairs. 
The AdaBoost model has a significantly worse Brier score than the logistic regression model and the 
regression tree. However, the performance of the post-calibrated AdaBoost model equals the per-
formance of the logistic regression model. Figure 61 provides a more detailed picture of the Brier 
score evolution of the AdaBoost model. As the number of boosting stages increases, the classifier 
focuses on the harder examples and strives to maximize their margin. In this process, the classifier 
becomes less and less calibrated (after an initial decrease, the Brier scores increases with the number 
of boosting stages). Recalibrating the resulting classifier corrects this problem. For the Naïve Bayes 
classifier, the post-calibration procedure produces similar significant improvements. No improve-
ment was attained for the regression tree.  

§ Model analysis 

Next, we inspected the resulting logistic regression models in order to better understand which fea-
tures were most informative when considered in combination. Table 18 shows the model con-
structed from the RoomLine corpus. The coefficients describe the effect of each feature on the log-
odds of misunderstanding. A positive coefficient indicates a feature that increases the likelihood of 
misunderstanding; a negative coefficient indicates a feature that decreases that likelihood. The last 
column in the table shows the sign of the coefficient.  

As expected, several of the features that performed very well individually are present in this 

A. Classification error 
Corpus RoomLine Let’s Go! Let’s Go! Public 

Majority baseline 19.6% 32.0% 31.4% 

Feature set COMM FULL COMM FULL COMM FULL 

Logistic regression 14.9% 12.8% 21.1% 20.1% 16.7% 16.7% 

Decision Tree 13.9% 13.6% 23.6% 21.6% 17.7% 17.3% 

Adaboost 14.1% 12.6% 21.8% 20.3% 16.5% 16.2% 

Naïve Bayes 25.0% 24.8% 25.4% 24.2% 21.4% 20.7% 

 
B. Brier score 
Corpus RoomLine Let’s Go! Let’s Go! Public 

Majority baseline 0.1574 0.2175 0.2156 

Feature set COMM FULL COMM FULL COMM FULL 

Logistic regression 0.0989 0.0873 0.1454 0.1373 0.1200 0.1171 

Decision Tree 0.0985 0.0969 0.1581 0.1529 0.1290 0.1276 
Dec. Tree (calibr.) 0.1020 0.1012 0.1604 0.1549 0.1314 0.1300 

Adaboost 0.1783 0.1422 0.1884 0.1778 0.1542 0.1536 
Adaboost (calibr.) 0.0976 0.0896 0.1518 0.1419 0.1159 0.1151 

Naïve Bayes 0.2420 0.2391 0.2426 0.2319 0.2011 0.1954 
N. Bayes (calibr.) 0.1325 0.1306 0.1731 0.1682 0.1479 0.1445 

 
Table 17. Confidence annotation performance  
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model: mark_lex_bool, ih_diff_lexical, last_level_matched, etc. At the same time, a number 
of additional features become informative when considered in conjunction with other features. For 
instance, the model contains 4 dialog-state features that were not present in the top-25 list from 
Table 16. According to the learned model, misunderstandings are more likely to happen when the 
system asks for the start_time, the end_time and the date concepts, and less likely to happen 
when the system asks the user whether they would like a small or a large room (dialog_state: 
RefineSize). A decoded result is more likely to be a misunderstanding if there is a difference be-
tween the 2 parallel decoded hypotheses (ih_diff_lex), if the input matches an expectation that is 
placed in the lower levels of the expectation agenda (last_level_matched), if there is a domain-
specific constraint violation (pragmatic_flag), if the number of slots in the decoded results is high 
(slot_num), and so on. The structure of the model corresponds therefore in a lot of ways to our in-
tuitions about misunderstandings. At the same time, the precise weights are derived from data, and 
optimized for the task at hand.  

§ Performance versus training set size 

The three corpora we have used in the experiments described above ranged in size from 4500 to 
8000 data-points.  In other previous work reported in the literature the dataset sizes for training con-
fidence annotation models ranged from hundreds [38, 52] to several tens of thousands of utterances 
[44, 85]. Labeled data is generally difficult and costly to acquire. As a consequence, it is interesting to 
better understand the relationship between training set size and performance. Would more data have 
helped build a better confidence annotator in our domains? Or is performance already reaching an 
asymptote? Which one of the supervised learning techniques discussed above is the most sample ef-
ficient?  

To assess the relationship between training set size and performance, we trained successive 
models using increasingly larger amounts of data. The same 20-fold cross-validation process was 
used: first, we generated 20 random permutations of each dataset, and held-out 500 of these data-
points for testing. Next, each of the 4 models discussed in the previous section were trained using 
increasingly larger amounts of training data: 100, 200, 300, 400, 500, 1000, 1500 samples, and so forth 
continuing in increments of 500 samples. In these experiments, the full set of features (FULL) was 
used in each domain. The evaluation was performed by computing average performance on the 500 
held-out points, across the 20 permutations. 

RoomLine 
 Feature Coef. Effect 

 k -17.58 - 

LEX mark_lex_bool -2.55 - 

IH ih_diff_lexical 1.45 + 

DM last_level_matched 0.54 + 

SR am_score_norm -0.00 - 

DM pragmatic_flag 2.01 + 

LU uncov_ratio 3.51 + 

SR lm_score_norm_2 0.00 + 

DM dialog_state_id:RequestStartTime 1.46 + 

LU slot_num 0.74 + 

DM dialog_state_id:RefineSize -1.37 - 

DM dialog_state_id:RequestEndTime 0.90 + 

IH ih_am_score_norm_diff_to_min -0.00 - 

LU uncov_num -0.28 - 

DH h_avg_gap_num>m 0.44 + 

LU slots_relevant_num>1: 0.86 + 

SR lm_score_norm_1: -0.00 - 

SR speak_rate_syl: -44.37 - 

DM dialog_state_id:RequestDate 1.08 + 

 
Table 18. Confidence annotation logistic regression model in the RoomLine domain  

(DM – dialog management features; SR – speech recognition features; LU – language understanding 
features; IH – inter-hypothesis features; DH – dialog history features) 



142 Error awareness and recovery in conversational spoken language interfaces  
 

 

The results are illustrated in Figure 62. In all three domains, the performance of the classifi-
ers (measured as the Brier score) reaches an asymptote by the time we use the full training corpus. 
These results indicate that more training data will not further improve the quality of the confidence 
annotation model. In fact, for all models the largest part of the performance gain is obtained after 
using about 1 or 2 thousand training instances. Following that point, adding more data only margin-
ally improves performance. The logistic regression model is the most sample efficient in all three 
domains. With only 500 training instances, this model significantly outperforms the other ones. 
Given its simplicity, good calibration, and good sample efficiency properties, from now on we will 
focus our attention only on the logistic regression confidence annotation models.  

5.4.2.6 An investigation of cross-domain transferability 

Supervised learning techniques require a pre-existing in-domain corpus of labeled data. For each new 
system developed, we need to collect a new corpus and train a new confidence annotation model. 
Unfortunately, collecting such corpora is generally costly and labor intensive. In this subsection, we 
investigate how well existing confidence annotation models generalize across new domains.  

To investigate this question, we conducted a cross-domain evaluation of the learned confi-
dence annotation models. We focused our attention on the COMM version of logistic regression mod-
els, since they use features available across all domains. We evaluated each model in the other two 
domains, and compared performance against the corresponding in-domain models.  

The results are presented in Table 19, and illustrated in Figure 63. The models trained with 
data from the RoomLine and Let’s Go! domains generalized relatively well to the other domains. 
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Figure 62. Confidence annotator performance (Brier score) as a function of training set size 
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They led to significant improvements over the majority baseline, covering 60-70% of the Brier score 
gap between the baseline model and the in-domain model – see Table 19. At the same time, the Let’s 
Go! Public model did not generalize that well: it covered only 30% of the gap in the RoomLine do-
main and 20% of the gap in the Let’s Go! domain. The improvements from the majority baseline are 
statistically significant in all cases with p-values smaller than 10-4. These results indicate that confi-
dence annotation models may sometimes generalize relatively well to other domains, but this is not 
always the case. Moreover, the transfer seems to be asymmetric: for instance, the RoomLine model 
generalizes relatively well to the Let’s Go! Public domain, but the same is not true in reverse. A simi-
lar asymmetry can be observed between the Let’s Go! and Let’s Go! Public models. 

We believe the explanation for the differences in how well the models generalize and the ob-
served asymmetry lies in the nature of the supervised learning paradigm. Data-driven confidence an-
notation models are automatically tuned to the characteristics of the training set, and, unless the new 
domain has the same characteristics, the model will not perform as well as a model trained with in-
domain data. For instance, a comparison of the word-error-rate (WER) distribution across the three 
corpora reveals significant differences between the Let’s Go! Public corpus and the other two cor-
pora – see Figure 64. There are a larger number of high WER utterances in the Let’s Go! Public cor-
pus. As a consequence, the Let’s Go! Public model is focused more on these utterances (in compari-
son with the other two models.) When transferred into the other two domains, this model encoun-
ters less utterances with a high WER (on which it can presumably predict well) and more utterances 
with low WER (on which it falters more often). As a result the model does not generalize well. In 
contrast, when the RoomLine model is transferred into the Let’s Go! Public domain, although the 
model does not perform as well on the high WER utterances, the majority of utterances is still low 
WER and overall the model transfers better. In Figure 65 we show the classification error rates of the 
RoomLine and Let’s Go! Public models across both domains, for utterances in each of the three 
word-error-rate ranges introduced above: 0-40%, 40-80% and >80%. These plots corroborate our 
explanation. 

Another potential explanation for the observed asymmetry is the automatic feature selection 
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Figure 63. Cross-domain evaluation of confidence annotation models 
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B:  Baseline 
RL: RoomLine model 
LG: Let’s Go! model 
LGP: Let’s Go! Public model 

Corpus RoomLine data Let’s Go! data Let’s Go! Public data 
 Brier sc. %GAP Brier sc. %GAP Brier sc. %GAP 

Baseline 0.1574 0% 0.2175 0% 0.2156 0% 

RoomLine model 0.0989 100% 0.1668 70% 0.1610 57% 
Let’s Go! model 0.1146 73% 0.1454 100% 0.1521 66% 

Let’s Go! Public model 0.1400 30% 0.2031 20% 0.1200 100% 

 Table 19. Cross-domain evaluation of logistic regression confidence annotation models 
(in-domain model performance is in bold-face; %GAP indicates which percentage of the gap between 

the baseline Brier score and the in-domain model is covered by the cross-domain model) 
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process. Each model, when trained, selects a subset of the available features that is most informative 
for performing confidence annotation on the given training set. The features selected by the Let’s 
Go! Public model are different than those selected by the RoomLine model, and the distributional 
similarity between the two datasets along those two sets of coordinates might also be significantly 
different (this could be one reason for the observed asymmetry.)  

Since our results show that an automatic reliable transfer is not always possible, we focused 
our attention next on the following question: how well can we do if we have access to a small 
amount of labeled data in the new domain? (recall that our motivation is that labeling data is ex-
pensive, and that we would like to reuse or adapt an existing confidence annotator into a new domain 
with a minimal amount of developer effort.) We took a simple supervised adaptation based approach 
to this problem. We randomly considered 100 labeled data-points in the target domain, and recali-
brated the confidence score produced by the out-of-domain model using this small amount of in-
domain data. In other words, we build a calibration model that is trained to predict an adapted confi-
dence score CA based on the original confidence score C produced by the model: 

C

C

e1

e
CA

⋅β+α

⋅β+α

+
=  

The calibration model was trained using only 100 randomly selected labeled data-points from 
the target domain. Given the relatively small number of labeled data-points used (100), we will refer 
to the post-calibrated model as the small-calibration model. For comparison purposes, we also con-
structed a full-calibration model that uses all the data-points in the target domain to perform a re-
calibration. In addition, we also report the performance of an in-domain model trained using 100 
data-points (i.e. what would happen if instead of adapting a model from a different domain by using 
100 labeled data-points, we would directly train an in-domain confidence annotation model using 
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Figure 64. Different word-error-rate distribution in the RoomLine, Let’s Go! and Let’s Go! Public domains 
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those data-points?) 

The results were computed using the same 20-fold cross-validation procedure and are shown 
in Table 20 and illustrated in Figure 66. Overall, the post-calibration procedure improves the per-
formance of the confidence annotation models. In two cases, there is a small decrease in perform-
ance incurred after calibration (moving the Let’s Go! model into the RoomLine domain and moving 
the RoomLine model into the Let’s Go! Public domain); in all other cases, performance improves. 
The calibration procedure significantly improves the performance in the transfer of the Let’s Go! 
Public model (this model was the worst performing one in the un-calibrated setting.) When transfer-
ring into the RoomLine domain, the calibrated model closes now 41% of the gap between the major-
ity baseline and the fully-supervised model (as opposed to 30% for the un-calibrated model). The 
improvement is larger when transferring to the Let’s Go! domain: the calibrated model closes 67% of 
the gap (as opposed to 20% for the un-calibrated model.) All calibrated models perform better than 
the 100 data-points baseline, indicating that we can make more efficient use of small amounts of la-

Corpus RoomLine data Let’s Go! data Let’s Go! Public data 
 Brier sc. %GAP Brier sc. %GAP Brier sc. %GAP 
Majority baseline 0.1574 0% 0.2175 0% 0.2156 0% 
100 data-points in-domain model 0.1545 5% 0.1911 37% 0.1687 49% 

RoomLine model 0.0989 100% 0.1668 70% 0.1610 57% 
RoomLine model + small calibration   0.1667 70% 0.1637 54% 
RoomLine model + full calibration   0.1640 74% 0.1603 58% 

Let’s Go! model 0.1146 73% 0.1454 100% 0.1521 66% 
Let’s Go! model + small calibration 0.1211 62%   0.1445 74% 
Let’s Go! model + full calibration 0.1175 68%   0.1419 77% 

Let’s Go! Public model 0.1400 30% 0.2031 20% 0.1200 100% 
Let’s Go! Public model + small calibr. 0.1333 41% 0.1694 67%   
Let’s Go! Public model + full calibration 0.1290 49% 0.1659 72%   

 
Table 20. Cross-domain evaluation of logistic regression confidence annotation models with calibration 
(in-domain model performance is in bold-face; %GAP indicates which percentage of the gap between 

the baseline Brier score and the in-domain model is covered by the cross-domain model) 
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Figure 66. Cross-domain evaluation of confidence annotation models with calibration 
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beled data when an out-of-domain annotator is already present. Finally, while the full-calibration 
models perform better than the small-calibration models across the board, the differences between 
these models are relatively small indicating that we can get most of the potential recalibration gains 
by using this relatively small amount of labeled data.   

5.4.3 Concluding remarks 
We have performed a comparative analysis of four supervised learning approaches for training confi-
dence annotation models (logistic regression, decision trees, boosting and Naïve Bayes), using data 
from three different spoken dialog systems. In a previous, more limited study with the CMU Com-
municator system, we have investigated two additional learning techniques: support vector machines 
and Bayesian networks [22]. Overall, several interesting observations emerged.  

First, we have discussed the use of proper scoring rules (e.g. Brier score, log-likelihood) for 
evaluating confidence annotation models. In contrast to the widely used classification-error or accu-
racy metrics, proper scoring rules capture both refinement and calibration, two important properties 
for a confidence annotator. In fact, we have empirically shown that judging the performance of a 
confidence annotator based on classification-error alone can lead to misleading conclusions (see sub-
section 5.4.2.5.) 

Second, we have seen that, after calibration, all the proposed supervised learning techniques 
with the exception of Naïve Bayes led to similar results. We suspect that the Naïve Bayes models are 
negatively impacted by the lack of independence between the features available for training the mod-
els. Perhaps in combination with a feature selection algorithm, this technique would lead to similar 
results. The constructed models have revealed that features extracted from different knowledge 
sources in the system (e.g. speech recognition, language understanding, dialog state and history) can 
provide useful and orthogonal information for the confidence annotation task. Performance stems 
mostly from the set of features used, rather than from the supervised learning technique.  

The third conclusion regards the sample efficiency of the proposed models. Although once 
calibrated the supervised learning techniques we investigated led to similar results, the logistic regres-
sion models are the most sample efficient. When little training data is available, they significantly out-
perform the other models. Furthermore, no post-calibration procedure is required in their case. If we 
also take into account the simplicity of these models (both in terms of training and run-time use), we 
conclude that the logistic regression models are the most appropriate ones for the task at hand. 

Finally, we have also investigated how well the confidence annotation models generalize 
across domains. Our empirical results indicate that, while some confidence annotation models might 
generalize well, this is not always the case. Furthermore, the transfer can be asymmetric: a model 
trained in domain A might generalize well to domain B, but not the other way around. We believe the 
explanation lies in the nature of the supervised-learning process. Data-driven confidence annotation 
models are automatically tuned to the characteristics of the dataset on which they were trained, and, 
unless the new domain has the same characteristics, an out-of-domain model will not perform as well 
as a model trained with in-domain data. We have shown that a simple calibration procedure using 
small amounts of labeled data from the target domain can be used to adapt an out-of-domain model 
into a new domain, generally leading to further performance improvements. 

5.5 An implicitly supervised learning approach 

Supervised learning approaches, such as the ones discussed in the previous section, have at least two 
important limitations. First, they require a pre-existing a corpus of in-domain16 user utterances.  Un-

                                                      
 
16 In the previous section, we have seen that confidence annotation models trained with out-of-domain data can give some 
performance gains, but fall short of models trained with in-domain data. Moreover, the type of cross-domain transfer de-
scribed in the previous section makes the assumption that there is a common input-line infrastructure (i.e. the systems need 
to use the same recognition, understanding and dialog management components); this is not always the case.  
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fortunately, such corpora are difficult and expensive to collect and label, especially in the early stages 
of system development. Secondly, supervised learning techniques generally favor an off-line, or batch 
approach. A corpus is collected, manually labeled, and then the confidence annotation model pa-
rameters are estimated from this data. The resulting model mirrors the properties of the training cor-
pus, but does not respond well to changes in the system’s environment and the underlying distribu-
tion of data. Unfortunately, such changes are to be expected during the early stages of deployment. 
Oftentimes, the system authors might wish to alter certain aspects of system functionality based on 
early feedback and observations. In addition, as users repeatedly interact with the system and famil-
iarize themselves with it, their behavior also changes (e.g. novice users become expert users.) Finally, 
the very introduction of a new confidence annotation model will in fact lead to changes in the inter-
action. Conversational spoken language interfaces are interactive systems that operate in dynamic 
environments, and shifts in the underlying distribution of the data are inevitable.  

In this section, we propose and evaluate a novel approach for learning confidence annota-
tion models that addresses these drawbacks. The proposed approach, (online) implicitly super-
vised learning, builds on a key property of spoken dialog systems: their interactivity. The central 
idea is to extract the required supervision signal from naturally-occurring patterns in the conversa-
tion, for instance from user corrections. In this approach, no developer supervision is required; 
rather, the system learns online, throughout its lifetime, by interacting with its users. We believe this 
new learning paradigm can be applied in a number of other problems, and represents an important 
step towards building routinely self-improving systems.  

We begin by describing the details the proposed implicitly supervised approach, as applied to 
the confidence annotation problem, in the next subsection. Then, in subsection 5.5.2 we present em-
pirical results from a set of initial experiments using this approach in two different dialog domains 
(RoomLine and Let’s Go! Public). Finally, in subsection 5.5.3, we discuss several ideas for continuing 
this work and for applying the proposed implicitly-supervised learning paradigm to other problems.  

5.5.1 Method 
We start from the observation that a spoken dialog system can automatically obtain the labels neces-
sary for building a confidence annotation model by leveraging a certain interaction pattern that oc-
curs naturally in conversation. Consider the first example from Figure 67, extracted from the Let’s 
Go! Public system. In the first turn, the system asked for the departure location. The user responded 
“the airport”, but this was misrecognized as “Liberty and Wood”. Next, in turn 2, the system en-
gaged in an explicit confirmation, trying to verify the departure location it heard (Liberty and Wood). 
The user, who is cooperative and invested in the interaction, corrected the system by answering “no”. 
The immediate reason for the system’s action and user response in turn 2 was to allow the conversa-
tion to proceed correctly. Notice however that this interaction pattern – a user response to a system 
confirmation action – generates additional useful information. The system knows now that it misun-
derstood the user in the first turn, and it can use this information to train or refine a confidence an-
notation model.  

Notice that the labels implicitly obtained via this interaction pattern are not noise-free. In the 
example discussed above, the user response was a simple “no”, which was correctly understood by 
the system. In general, user responses to explicit confirmation actions extend beyond simple yes and 
no answers, and can also be subject to recognition errors (see [63], as well as our own empirical 
analysis from the next chapter, subsection 6.4.3.) As a consequence, the labels produced by this inter-
action pattern will not always be perfect. For instance, in the second example from Figure 67, the 
user response to the system’s explicit confirmation action is also misunderstood (“no” instead of 
“yeah”), and this leads to an incorrect label.  

This interaction pattern can therefore generate confidence annotation labels at a certain level 
of accuracy, and also at a certain recall. In this context, by accuracy we refer to the accuracy of the 
implicit labels with respect to the reference set of manually created labels. By recall we refer to the 
proportion of utterances for which this interaction pattern can generate labels (i.e. the utterances fol-
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lowed by an explicit confirmation and a simple response.) The empirical analysis of user responses to 
explicit confirmation actions that we will describe in the next chapter indicates that a significant pro-
portion of user responses are indeed as simple as “yes”, “no”, or equivalents (e.g. “that’s correct”, 
“wrong”, etc.). In these cases, they are generally easy to recognize. As a consequence, the accuracy of 
the implicit labels should be high enough. If a system engages in explicit confirmations often enough, 
it should be able to collect sufficient reliable data to automatically train a confidence annotation 
model, without any explicit supervision from its developers.  

In the implicitly supervised learning paradigm, the model training methodology remains the 
same, i.e. supervised learning. The labels are however obtained automatically, through interaction 
with the users. They can be used to constantly evaluate and adjust the confidence annotation model 
throughout the system’s lifetime. For instance, a spoken dialog system could start by explicitly con-
firming all the information it acquires from the user – some systems do this routinely. As the system 
collects more labels through interaction and updates its confidence annotation model, its error detec-
tion abilities improve. The system can start trusting the confidence scores more, and use explicit con-
firmations only when these scores are very low.  

To fully exploit the proposed implicitly-supervised learning paradigm, we need to better un-
derstand its properties, advantages and limitations. Three interesting questions arise: (1) can we make 
effective use of the labels obtained through interaction? (2) how can a system balance its long-term 
learning goals with the short-term need to efficiently provide information to the user? and (3) could a 
system discover new interaction patterns that can provide labels for confidence annotation? In this 
work, we have focused on the first one of these issues. In the next subsection, we present results ob-
tained using the proposed implicitly-supervised learning methodology in two different dialog do-
mains: RoomLine and Let’s Go! Public. Then, in subsection 5.5.3, we briefly discuss the second and 
the third question outlined above. We believe the answers to these questions can lead the way to-
wards building autonomously self-improving systems.  

Example 1:  
1 S: Where are you leaving from? 

2 U: the airport 
  R: LIBERTY AND WOOD 

  P: [departure=LIBERTY AND WOOD] 

3 S: Leaving from Liberty and Wood .. Is that correct? 

4 U: nope 
  R: NO 

  P: [NO] 

 

Example 2:  
1 S: Where are you leaving from 

2 U: Forbes and Murray 
  R: FORBES AND MURRAY 

  P: [departure=FORBES AND MURRAY] 

3 S: Leaving from Forbes and Murray .. Is that correct? 

4 U: yeah 
  R: NO 

  P: [NO] 

 

Figure 67. Leveraging explicit confirmation patterns for implicit learning of confidence annotation 
models (S: marks the system turns, U: marks the user turns, R: marks the recognition result, P: 

marks the semantic representation of the recognition result) 

misunderstanding 

misunderstanding 
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5.5.2 Experimental results in the RoomLine and Let’s Go! Public domains 
We conducted a set of initial experiments to evaluate the proposed implicitly-supervised learning 
methodology using corpora collected from two different dialog systems: RoomLine and Let’s Go! 
Public. We did not use the Let’s Go! corpus since that system did not engage in explicit confirma-
tions, a pre-requisite for the proposed approach. Although the implicitly-supervised methodology 
enables an online approach to learning confidence annotation models, the experiments we describe 
below have been conducted in an offline fashion. We have focused our attention on the first one of 
the three questions outlined in the previous subsection: can we make effective use of the labels ob-
tained through interaction? The next step, an online solution, remains as future work and is briefly 
discussed in subsection 5.5.3. 

5.5.2.1 Implicit supervision signal  

We have already outlined a naturally-occurring interaction pattern that can provide implicit labels for 
the confidence annotation task: simple user responses to the system’s explicit confirmation actions. 
More precisely, in this work, we generated the implicit supervision labels as follows:  

• if (1) the current dialog state is an explicit confirmation, and (2) the user response con-
tains a positive confirmation marker (e.g. yes, right, correct, etc.) and (3) the previous 
dialog state is not an explicit confirmation, then label the previous user turn as correctly 
understood by the system; 

• otherwise if (1) the current dialog state is an explicit confirmation, and (2) the user re-
sponse contains a negative confirmation marker (e.g. no, wrong, incorrect, etc.) and (3) 
the previous dialog state is not an explicit confirmation, then label the previous user turn 
as incorrectly understood by the system; 

• otherwise do not label the previous turn.  

Condition number (3) ensures that the current explicit confirmation and the subsequent 
positive or negative user response refer indeed to the immediately previous user turn, rather than an 
earlier one. It is possible that a number of non-understandings occur following an explicit confirma-
tion. This will typically lead to a sequence of explicit confirmation states, such as in Figure 68. In this 
case a positive or negative user response to the last explicit confirmation does not tell us anything 
about the previous user turn; rather, the user response corresponds to the initial turn that caused the 
system to engage in an explicit confirmation.  

1 S: Where are you leaving from? 

2 U: the airport 
  R: LIBERTY AND WOOD 

  P: [departure=LIBERTY AND WOOD] 

3 S: Leaving from Liberty and Wood .. Is that correct? 

4 U: no 

  R: [NOW] 

  P: NON-UNDERSTANDING 

5 S: Leaving from Liberty and Wood .. Is that correct? 

6 U: no 

  R: [NOW] 

  P: NON-UNDERSTANDING 

7 S: Leaving from Liberty and Wood .. Is that correct? 

8 U: no 

  R: [NO] 

  P: [NO] 

 
Figure 68. Sequence of explicit confirmations with no implicit confidence annotation labels gener-

ated (S: marks the system turns, U: marks the user turns, R: marks the recognition result, P: 
marks the semantic representation of the recognition result) 
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5.5.2.2 Data 

The experiments described below were conducted based on the RoomLine and Let’s Go! Public cor-
pora described previously in subsection 5.4.2.1. Recall that for these corpora we do have the refer-
ence (manually generated) confidence annotation labels.  

The RoomLine and Let’s Go! Public systems used very different policies for engaging in ex-
plicit confirmations. The RoomLine system made the decision based on the confidence score of the 
recognized utterance (at the time of the data collection, RoomLine was using a pre-existing confi-
dence annotation model that had been trained on data from the CMU Communicator system [22].) 
RoomLine used a threshold-based, exploratory policy for engaging in confirmation actions: if the 
confidence score was below 0.3, the utterance was rejected. If the confidence score was above 0.3, 
then with probability 0.2, the system chose randomly between accepting the utterance, engaging in an 
implicit confirmation or engaging in an explicit confirmation; alternatively, with probability 0.8, the 
system followed a threshold-based policy: explicitly confirm if the confidence score is below 0.5, im-
plicitly confirm if the confidence score is between 0.5 and 0.8, and accept if the confidence score is 
above 0.8. As a result, the total number of explicit confirmations in the RoomLine corpus is 1412, 
amounting to 17.6% of the total number of utterances (8037). These statistics are summarized in 
Table 21.  

In contrast, given the more adverse environment, the Let’s Go! Public system used a sim-
pler, more conservative confirmation policy: the system always explicitly confirmed every piece of 
information received from the user (unless the confidence score was below 0.3, in which case the 
utterance was rejected.) The number of explicit confirmations in the Let’s Go! Public corpus is there-
fore significantly larger – 2594, representing 43.0% of the total number of utterances (6029). 

As a consequence of the different confirmation policies, the recall and also the accuracy of 
the implicit labeling scheme described above was different across the two domains. As expected, 

given that explicit confirmations were more often engaged in the Let’s Go! Public system, the recall 
of the implicit labeling scheme was significantly larger than in the RoomLine system 33.1% versus 
10.8% (see also Table 21.) At the same time, given the more adverse noise conditions and worse rec-
ognition performance in this domain, the accuracy of the labels is lower: 82.5% versus 89.9% in the 
RoomLine system. 

5.5.2.3 Features 

The same set of features described in subsection 5.4.2.3 and Table 15 was used in these implicitly-
supervised learning experiments.  

5.5.2.4 Supervised learning techniques 

Given our previous observations with respect to performance and sample efficiency, we used logistic 
regression [76] as the supervised learning technique of choice in these experiments.  

5.5.2.5 Experimental results 

The confidence annotation models were trained using the same 20-fold cross validation procedure 
described earlier in subsection 5.4.2.5. The difference is that this time we only used the implicitly la-

Statistics RoomLine Let’s Go Public 

Total # of utterances 8037 6029 
Total # of explicit confirmations 1412 2594 

% of explicit confirmations 17.6% 43.0% 

Total # Implicit labels  976 1998 
Implicit labels recall 10.8% 33.1% 

Implicit labels accuracy 89.9% 82.5% 

 
Table 21. Implicitly supervised learning - corpus statistics 
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beled portion of each training set. Because the number of implicitly labeled training points in the 
Let’s Go! Public domain is larger and enables a more robust analysis, we begin by describing the re-
sults on this corpus domain 
 

§ Experimental results in the Let’s Go! Public domain 

The average test-set performance (Brier score) of the implicitly-supervised confidence annotation 
model is illustrated in Figure 69. As this figure shows, the proposed implicitly-supervised approach 
has a Brier score of 0.1443, closing 75% of the gap between the majority baseline and the fully su-
pervised model. Furthermore, a post-calibration procedure based on 100 randomly chosen labeled 
data-points further increases the model’s performance to 0.1390, closing 80% of that gap. The differ-
ence between the un-calibrated and calibrated model is statistically significant (paired t-test, p=0.002). 
The proposed implicitly-supervised learning approach produces results that are close to the fully su-
pervised model, without requiring any manual annotations.  

The remaining performance gap between the implicitly- and fully-supervised models is ex-
plained by the smaller training set used in the implicit approach, i.e. the recall factor of the implicit 
labeling scheme, and by the noise in the implicit labels, i.e. the accuracy factor of the implicit learning 
scheme. To better understand the effect of these two factors on model performance, we constructed 
a number of additional models. 

First, to distinguish between the effects of accuracy and recall, we constructed a model, 
dubbed full-accuracy/same-recall (FA/SR). This model used for training only utterances that 
were implicitly labeled (hence same-recall), but in conjunction with the reference labels (hence full 
accuracy). The average test-set Brier score for this model was 0.1321, about half-way between the 
implicitly-supervised and fully-supervised models, with both differences statistically significant (p<10-

6) – see Figure 70. This result indicates that both the lack of recall, i.e. the smaller number of available 
training points, and the lack of accuracy in the implicit labels contribute in roughly equal amounts to 
the observed performance gap.  

So far we have characterized the labels implicitly generated by user responses to explicit con-
firmations in terms of their accuracy and recall. Another factor plays however an important role: the 
sampling bias. It is important to notice that, even though the proposed interaction pattern provides 
labels for 33% of the utterances in the corpus, these 33% of the utterances are not randomly se-
lected. Rather, these are utterances followed by explicit confirmations, which in turn are followed by 
simple user responses. The underlying distribution of the features in this subset of utterances does 
not necessarily match the general distribution in the full set of utterances. Similarly, the implicit label-
ing scheme might also bias the target labels (i.e. their accuracy) in a certain direction. For instance, if 
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Figure 69. Implicitly versus fully-supervised learning approach on Let’s Go! Public data; * indicates that the 
post-calibrated implicitly supervised model performs statistically significantly better than the uncalibrated 
model; the implicitly supervised model closes 75% of the performance gap between the baseline and fully 

supervised model 
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yes-type responses are more easily recognized than no-type responses, the implicit labels will be bi-
ased towards the “correctly-understood” class.  

To investigate the effect of sampling bias on performance, we constructed two additional 
models. The first one of these models, full-accuracy/random-same-recall (FA/RR), addresses 
the recall-bias issue and was trained with a randomly selected subset of utterances that has the same 
recall (size) as the implicitly labeled subset (hence random-same-recall). The second model, random-
same-accuracy/same-recall (RA/SR), addresses the accuracy-bias issue. This model uses the ut-
terances that were implicitly labeled (hence same-recall); the training labels were however constructed 
by starting from the reference labels and randomly altering them to attain the same accuracy as the 
implicit labels. The test-set average Brier score performance of these models is also shown in Figure 
70. 

The performance of the full-accuracy/random-same-recall model, 0.1239, places it closer to 
the the fully-supervised model (0.1200) than to the full-accuracy/same-recall-model (0.1321). Both 
differences are statistically significant in a paired t-test (p=0.002 and p=0.0002 respectively). The lar-
ger difference to the full-accuracy/same-recall model seems to indicate that the recall bias does affect 
performance in this case. On the other hand, the random-same-accuracy/same-recall model per-
forms similarly to the implicitly supervised model, in fact slightly worse (0.1475 versus 0.1443). No 
statistically significant difference can be detected between these two models. This result indicates 
that, at least in this domain, the proposed implicitly generated labels do not exhibit a detrimental ac-
curacy bias.  

On a final note, recall that in Figure 69 we have seen that the implicitly-supervised approach 
closes 75% of the gap between the majority baseline and a fully-supervised approach. A comparison 
with the full-accuracy/random-same-recall model is perhaps more informative, because these two 
models use the same amounts of labeled data. Correcting for sample bias represents a difficult and 
interesting research problem [140]. At the same time, we can easily envision using more data (since 
we don’t need to manually label it). As more data becomes available, the full-accuracy/random-same-
recall model will eventually reach the performance of the fully supervised model (given the perform-
ance asymptotes we have seen in subsection 5.4.2.5.) When compared to this model, the proposed 
implicitly-supervised approach closes 78% of the performance gap; the post-calibrated model closes 
84% of this gap. 
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Figure 70. Implicitly- versus fully-supervised learning performance gap decomposition (arrows with 
stars mark statistically significant differences, p<0.001) 
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§ Experimental results in the RoomLine domain 

We now shift our attention to the RoomLine domain. Here, due to the more optimistic confirmation 
policy, the recall of the proposed implicit labeling scheme is lower – 10.8%. At the same time, due to 
better environmental conditions and less speech recognition errors, the accuracy is higher – 89.9%.  

The results in this domain are illustrated in Figure 71. Again, the implicitly-supervised ap-
proach attains a significant improvement over the majority baseline. The improvement is compara-
tively smaller with the one attained in the Let’s Go! Public domain. On the RoomLine corpus, the 
implicitly supervised approach closes only 48% of the gap to the fully-supervised model; the post-
calibrated model performs slightly better, but the improvement is not statistically significant. When 
compared to the full-accuracy/random-same-recall model, the implicitly supervised approach closes 
59% of the gap. The inferior performance on the RoomLine domain was somewhat expected due to 
the more optimistic confirmation policy and the resulting lower recall of the implicit labeling scheme. 
In the ideal case, in order to build a confidence annotation model using implicit learning we would 
like the system to start with an always-confirm policy, like Let’s Go! Public system did. Overall, in the 
RoomLine corpus we had only 977 implicitly labeled training points, while in the Let’s Go! corpus 
we had more than double. The full-accuracy/same-recall model (FA/SR in Figure 71), confirms that 
a significant part of the remaining performance gap is indeed explained by the lower recall. At the 
same time, a significant amount of the remaining performance gap is explained by the lack of accu-
racy. This is somewhat surprising, since the accuracy is higher than in the Let’s Go! Public domain. A 
possible explanation is that, when only small amounts of data are available for training, and/or when 
the class marginals are more skewed17, precision plays a more important role. Finally, the random-
same-accuracy/same-recall and full-accuracy/random-same-recall models reveal that there is no det-
rimental sampling or recall bias in this domain. Like before, as the amount of training data increases, 
we can expect the gap between the full-accuracy/same-random-recall and fully-supervised model to 
decrease; further performance gains for the implicitly-supervised model are therefore expected, as we 
increase the dataset size.  

§ Performance versus training set size 

To better understand these underlying trends, we also investigated the relationship between the per-
formance of the implicitly-supervised confidence annotation models and the overall training set size. 

                                                      
 
17

 The majority baseline is 19.6% in the RoomLine corpus and 31.4% in the Let’s Go! Public corpus.  
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Figure 71. Implicitly- versus fully-supervised learning in the RoomLine domain (arrows with stars 
mark statistically significant differences, p<0.001) 
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The results are shown in Figure 72.A for the RoomLine domain, and Figure 72.B for the Let’s Go! 
Public domain.  

In the RoomLine domain, the performance of the implicitly-supervised model does not yet 
reach an asymptote by the time we have considered the full training set (7537 utterances.) This result 
corroborates our previous conjecture that, if more data were available, further performance gains 
would be possible. As more data becomes available, the full-precision/random-same-recall model is 
guaranteed to reach the same asymptote as the fully supervised model. At the same time, we expect 
that the gap between the implicitly supervised method and the full-precision/random-same-recall 
model will stay roughly constant. As a consequence, we expect corresponding gains in the implicitly-
supervised model performance.  

Another interesting observation is that the random-same-precision/same-recall model 
closely tracks the implicitly supervised model, and the full-precision/random-same-recall model 
closely tracks the full-precision/same-recall model. These trends confirm that there is no detrimental 
sample bias (neither in terms of accuracy nor recall) in the proposed implicit learning scheme in the 
RoomLine data.  

In the Let’s Go! Public domain, the implicitly-supervised model seems to have reached a 
performance asymptote; this is not surprising, given the larger recall of the implicit labeling scheme 
in this domain. As the amount of data increases, the full-precision/random-same-recall model shows 
increasingly larger improvements over the full-precision/same-recall model.  

5.5.3 Concluding remarks 
In this section, we have proposed a novel paradigm for constructing confidence annotation models 
in conversational spoken language interfaces: implicitly-supervised learning. In contrast to previous 
supervised learning solutions, the proposed approach does not require developer supervision. In-
stead, the system obtains the supervision signal directly from its users, from their responses to the 
system’s explicit confirmation actions. In effect, the system learns from its own experiences.  

To evaluate the proposed approach we have conducted a set of initial experiments in two 
different dialog domains: RoomLine and Let’s Go! Public. The experiments were centered on assess-
ing (1) various characteristics (e.g. precision, recall, bias) of the confidence annotation labels that can 
be obtained through interaction, and (2) how these characteristics affect the model building process. 
The empirical results confirm that a system can indeed successfully leverage interaction patterns to 
automatically construct a confidence annotation model that performs similarly to a fully-supervised 
model. In the Let’s Go! Public domain, the proposed implicitly-supervised learning approach closed 
78% of the performance gap between a majority baseline and a supervised model (84% if an addi-

Figure 72. Implicitly supervised confidence annotation model performance as a function of training 
set size (in the RoomLine and Let’s Go! Public domains) 
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tional 100 manually labeled data-points are available for calibration.) In the RoomLine domain, the 
proposed approach closed 59% of the performance gap to the supervised model, but we expect that 
further improvements could be made if more data unlabeled were available.  

While these initial results are very encouraging, they represent only a first step towards un-
derstanding the properties, advantages and limitations of the proposed implicitly-supervised para-
digm. So far, we have performed a batch mode evaluation. However, apart from eliminating the re-
quirement for a manually labeled corpus, a second important advantage of the implicitly-supervised 
paradigm is that it facilitates online learning and adaptation. The next question therefore is: how can 
a system elicit knowledge-producing interaction patterns in pursuit of its learning goals but 
without significantly disrupting the interaction? This is essentially an online control problem, 
where the system must balance the benefits of gaining knowledge by engaging in explicit confirma-
tions with the costs potentially incurred by the user. If used excessively, explicit confirmations can 
have a negative impact on the quality of the interaction, and lead to user frustration. 

To a certain extent, dialog managers already have to solve similar trade-offs when deciding 
between different confirmation strategies, such as explicit or implicit confirmation. Explicit confir-
mations take an extra dialog turn, but the system has a better chance of understanding the follow-up 
user response, especially if the information to be confirmed is incorrect (see [63], as well as our own 
analysis from the next chapter, subsection 6.4.3.) Typically, the dialog costs are assumed to be known 
and are immediate. Solutions to these trade-off problems range from hard-coded heuristics [61, 91] 
to various offline corpus-based methods [36, 114, 136]. In an online implicitly-supervised approach, 
the additional learning goals change the nature of the problem in two different ways. First, system 
actions not only create immediate dialog costs, but also produce knowledge that can be used to im-
prove future performance. To address this new trade-off, the system must be able to assess the long-
term benefits of the knowledge that stands to be gained: given the current state, what is the utility of 
one additional data point (at a certain expected precision and bias) for future system performance? 
Secondly, we would like an online solution for this problem. Systems should be able to continuously 
monitor their current performance and adjust their control policies online, as their models improve.  

Finally, another interesting question regards the knowledge-producing interaction pattern it-
self. In the experiments discussed above, the knowledge-producing interaction pattern consisted of 
user responses to system confirmation queries. Intuitively, other informative patterns could be found. 
For instance, if in a certain segment the dialog advances normally towards its goals (i.e. the dialog-
state progression looks normal) and no non-understandings happen, we might consider all those user 
turns correctly understood by the system; in this case we obtain positive labels for confidence anno-
tation. Alternatively, if a certain concept is corrected by the user at a later point in the dialog, we 
might mark the initial utterance from which the system extracted the first value for that concept as 
incorrect; in this case we obtain negative labels. We believe that an interesting avenue for future re-
search is to develop techniques that allow systems to automatically discover such knowledge-
producing interaction patterns.  

A possible approach to this problem is to cast pattern discovery as a feature selection prob-
lem in a supervised learning task. Assume that we do have a small, pre-existing labeled corpus. We 
can define a set of features corresponding to each user turn by including not only attributes of that 
particular turn, but also attributes of prior and subsequent user and system turns. Interaction patterns 
can therefore be captured by various combinations of these features. For instance, the explicit con-
firmation pattern we have used so far can be captured as follows: (sys-

tem_action_in_next_turn=explicit_confirmation) AND (user_response_in_next_turn 

=yes). Once an appropriate set of features is established, we can investigate various supervised learn-
ing techniques in conjunction with feature selection methods to detect other interaction patterns (i.e. 
feature combinations) that correlate well with our target labels. An interesting challenge from a ma-
chine learning perspective will be dealing with the very large feature space (each user response in our 
systems can be characterized by several hundred features extracted from different knowledge 
sources, e.g. acoustic, prosodic, language, understanding, and dialog). We believe that, with a carefully 
designed feature set, this proposed method can lead to the discovery of new and interesting patterns, 
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or of useful improvements to existing patterns. In effect, the system will mine the pre-existing labeled 
corpus to discover interaction patterns that correlate well with confidence labels (note that the pat-
terns can reference features from “future” turns, and therefore cannot be used directly as a runtime 
confidence annotation model). Next, the system can use the patterns it has discovered to automati-
cally label a larger, unlabeled corpus of current experiences. In a final learning step, the system learns 
a runtime confidence annotation model using only features available at runtime from this automati-
cally labeled corpus.  

We believe that the proposed implicitly-supervised learning paradigm can be applied to a 
number of other learning problems, both in conversational spoken language interfaces, and in the 
more general class of interactive systems. The central idea is to acquire knowledge online, by discov-
ering, eliciting and leveraging natural patterns that occur in interaction as a by-product of the collabo-
ration between the system and an invested user. This paradigm can eliminate the need for developer 
supervision and enables fast online adaptation and learning. We conjecture that it can supplement 
and or even provide a strong alternative to existing learning approaches, and enable significant 
autonomous learning in interactive systems. 

5.6 Summary and future directions 

In this chapter, we have investigated different methodologies for building semantic confidence anno-
tation models in the context of conversational spoken language interfaces.  

Semantic confidence annotation can be viewed as a pattern recognition, or detection task: 
given a set of features that characterize a semantic hypothesis for the user’s turn, determine whether 
or not this hypothesis corresponds to the user’s expressed intent. We began by investigating the use 
of supervised learning techniques for this task, and centered our attention on a number of issues less 
thoroughly investigated in the literature: evaluation metrics, sample efficiency, and how well the 
learned models generalize across domains.  

Specifically, we performed a comparative analysis of four different supervised learning tech-
niques (i.e. logistic regression, boosting, decision trees and Naïve Bayes), using data from three dif-
ferent dialog domains. The analysis indicates that different knowledge sources in the system can gen-
erate informative features for the confidence annotation process. Additionally, the analysis highlights 
the importance of using proper probabilistic scoring rules (e.g. log-loss or Brier Score) when evaluat-
ing the performance of confidence annotation models. In fact, empirical results show that an evalua-
tion that relies solely on classification error (a commonly used metric) can lead to misleading conclu-
sions. In terms of performance, we have seen that once the outputs are calibrated, different super-
vised learning techniques perform similarly. At the same time, logistic regression models directly pro-
duce well-calibrated confidence scores, and are more sample efficient: when only small amounts of 
training data are available, logistic regression significantly outperforms the other supervised learning 
techniques. We have also analyzed how well confidence annotation models generalize across do-
mains. Results indicate that while some confidence annotation models transfer well across domains, 
this is not always the case and the transfer can be asymmetric. Post-transfer calibration with small 
amounts of labeled data from the target domain can bring further improvements.  

The analysis described in this chapter also points to a number of interesting directions for 
future research with respect to the use of supervised learning for confidence annotation. First, we 
have seen that a number of features from different knowledge sources in the system provide useful 
and complementary information for the confidence annotation task. We believe that the key for fur-
ther improving confidence annotation performance lies with identifying additional knowledge 
sources and additional features. Second, the ability to transfer a trained confidence annotation model 
into a new domain  is very important; training a new model for each new domain is a labor-intensive 
process that we would like to shortcut. The cross-domain analysis we have described above, although 
to our knowledge is the first one of this kind in dialog systems, was limited to the three available cor-
pora. In the future, it would be interesting to extend this analysis to other corpora in an effort to gain 
a better understanding of the transfer process. An interesting direction of research would to investi-
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gating the distributional similarities between the corpora and to identify (without labels in the new 
domain) the conditions under which we can expect an existing confidence annotation model to gen-
eralize to a new domain. A second interesting direction of research is the use of active learning tech-
niques for post-transfer calibration. In the work described in this chapter, we have proposed a very 
simple calibration method that relies on a small random sample of labeled data-points in the target 
domain. An active-learning approach (in which we identify the sample to be labeled based on the 
existsing model) might lead to further performance gains.  

In the second part of this chapter, we have proposed a novel paradigm for building confi-
dence annotation models that addresses two limitations of the classical supervised learning approach: 
the need for a pre-existent manually labeled corpus of utterances and the batch-style model building 
process. In the new approach, dubbed implicitly-supervised learning, no explicit developer supervi-
sion is required: the system acquires the labels necessary for training the confidence annotation 
model through interaction, from user responses to the system’s explicit confirmation actions. Results 
from a set of initial experiments with data from two different dialog domains have confirmed the 
feasibility of the proposed approach.  

The experiments we have reported here represent only a first step towards a fuller under-
standing of the proposed implicit-learning paradigm. The encouraging results we have obtained on 
the confidence annotation task point towards what we believe to be a very interesting research ave-
nue. We conjecture that the proposed approach can be applied to address a number of other prob-
lems in conversational spoken language interfaces, and in interactive systems in general. To fully ex-
ploit this approach, we first need to better understand its properties, advantages and limitations. Spe-
cific questions that will need to be addressed include: what are the characteristics (e.g. accuracy, recall 
distributional biases, etc.) of knowledge obtained through an interaction pattern? How sensitive are 
current modeling approaches to variations in the quality and quantity of knowledge available? Can we 
develop techniques for making effective use of the knowledge extracted through interaction? Can we 
develop techniques that allow systems to automatically monitor the knowledge they have, need, or 
can acquire? Can we compute the utility of incremental additions to knowledge? Can this information 
be used to actively manage the learning process? Can we develop techniques that automatically dis-
cover new knowledge-producing patterns in the interaction? We believe that answers to these ques-
tions will pave the way towards developing autonomous, adaptive and self-improving interactive sys-
tems. 

 





 

Chapter 6  

Belief updating 

While confidence scores can provide an initial assessment for the reliability of the 
information obtained from the recognizer, ideally spoken language interfaces should 
continuously monitor and improve the accuracy of their beliefs throughout a con-
versation, by leveraging information available in subsequent user turns. In this chap-
ter we formalize this belief updating problem and we propose and evaluate a scal-
able, data-driven solution. The proposed approach relies on a compressed, ab-
stracted concept-level representation of beliefs and casts the belief updating prob-
lem as a multinomial regression task. Experimental results indicate that the con-
structed belief updating models significantly outperform typical heuristic rules used 
for this purpose in current systems. Furthermore, a user study with a mixed-
initiative spoken dialog system shows that the proposed approach leads to signifi-
cant improvements in both the effectiveness and the efficiency of the interaction 
across a wide range of recognition error rates. 

6.1 Introduction 

In the previous chapter, we have investigated supervised and unsupervised methods for constructing 
semantic confidence scores. These scores can be used by spoken dialog systems to assess the reliabil-
ity of their inputs, on a turn-by-turn basis. Based on the confidence score, the system can construct 
an initial belief about the value of the concepts contained in the recognition hypothesis. However, 
conversation occurs over multiple turns, and subsequent user responses oftentimes also carry rele-
vant information that could be used to change the system’s initial beliefs. Ideally, spoken dialog sys-
tems should leverage this information, and continuously update and improve the accuracy of their 
beliefs, throughout the whole dialog.  

For instance, consider the first example shown in Figure 73. Based on the user response 
from turn 2, the system constructs an initial belief that the start_time for the desired room reserva-
tion is 10 a.m., with probability 0.35. Since the probability is low, the system engages in an explicit 
confirmation to validate this belief in turn 3. The recognized user response is “yes”. Based on this 
response, the system can now update its belief about the start_time concept, presumably by boost-
ing the probability that the start_time is indeed 10 a.m.  

Although in this first example the belief update is seemingly trivial, this is not the case in 
general. A few problematic cases are illustrated in Figure 73. In the second example, the initial system 
belief is again that start_time is 10 a.m. with probability 0.35. Again the system engages in an ex-
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plicit confirmation. However, this time the user’s response is misrecognized by the system as “GUEST 
UNTIL ONE”. How should the system update its belief in this case? Even for the first example, be-
cause there a small but non-negligible chance that “YES” was a misrecognition, what exactly should 
the updated probability be for start_time=10 a.m.? In the third example the system engages in an 
implicit confirmation. The initial belief is incorrect and the user attempts to correct the system by 
saying “I need a different time”. This response is unfortunately misrecognized as “CAN YOU DETAILS 
TIME”, which produces a non-understanding. Again, it is not clear how exactly the system should 
update its belief in light of this recognition result. Finally, in the last example, the system doesn’t even 
engage in a confirmation action. It just presents the list with the rooms it found to the user. How-
ever, since the value for the date concept is incorrect, the user interjects a correction, but this correc-
tion is misunderstood by the system. How should the system take into account the perceived user 
response, and what should the system believe about the date for the reservation in light of this inter-
action? 

In the sequel, we will refer to this problem as the 1-step belief updating problem: how 
should systems update their beliefs in light of follow-up user responses to various system actions? 
Most spoken dialog systems rely on simple heuristic rules to perform these updates. In this chapter, 

Example 1: 1 S: For what time do you need the room? 

  2 U: 10 a.m. 

    R: TEN A_M / 0.35 

start_time={10am/0.35} 

   3 S: Did you say 10 a.m.? 

  4 U: yes 

    R: YES / 0.87 

start_time={10am/?} 
 

 

Example 2: 1 S: For what time do you need the room? 

  2 U: 10 a.m. 

    R: TEN A_M / 0.35 

start_time={10am/0.35} 

   3 S: Did you say 10 a.m.? 

  4 U: yes until noon 

    R: GUEST UNTIL ONE / 0.87 

start_time={10am/?} 
 

 

Example 3: 1 S: For what time do you need the room? 

  2 U: 10 a.m. 

    R: TWO P_M / 0.65 

start_time={2pm/0.65} 

   3 S: starting at 2p.m. ... until what time? 

  4 U: I need a different time 

    R: CAN YOU DETAILS TIME / NONU-0.00 

start_time={2pm/?} 
 

 

Example 4:  
date={Mon/0.83} 1 S: I found 3 rooms Monday between 2 and 4 

p.m. Would you like a small one or a large 

one? 

  2 U: no not Monday, Friday 

    R: ABOUT MONDAY THURSDAY / 0.22 

date={Mon/? ; Th/?} 

 

Figure 73. Sample 1-step belief updating problems in a conference room reservation system 
(S: marks the system turns, U: marks the user turns, R: marks the recognition results; system beliefs 

are shown on the left-hand side) 
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we argue that current heuristic approaches are suboptimal. Instead, we propose a novel data-driven, 
machine-learning based solution for the belief updating problem. The proposed approach bridges 
ideas from confidence annotation and correction detection into a unified framework that allows spo-
ken dialog systems to integrate information across multiple turns in the dialog, and to continuously 
update and improve the accuracy of their beliefs.  

The rest of this chapter is structured as follows: we begin by reviewing related work in the 
next section, 6.2. Then, in section 6.3 we formalize the belief updating problem and discuss evalua-
tion criteria for this task. In section 6.4, we present in detail the proposed model and we report em-
pirical results based on data collected with the RoomLine system. In section 6.5, we investigate the 
impact of the proposed belief updating mechanism on global dialog performance. Finally we present 
a number of concluding remarks and discuss several opportunities for further advancing this work in 
section 6.6.  

6.2 Related work 

6.2.1 Confidence annotation 
Semantic confidence scores clearly play an important role in the belief updating process. They pro-
vide the basis for constructing the initial system beliefs, and can also be used to assess the reliability 
of the information present in the subsequent user turns. In the previous chapter, we have already 
reviewed the semantic confidence annotation literature and we have discussed in detail various meth-
odologies for constructing these scores.  

6.2.2 Correction detection  
A second vein of previous research relevant for the belief updating problem is work on correction 
detection [54, 68, 69, 121]. If in semantic confidence annotation the goal was to detect whether or 
not a user turn was correctly understood by the system, in correction detection the goal is to detect 
whether or not a particular turn represents a user correction. For instance, turn 4 from example 3 
and turn 2 from example 4 in Figure 73 are user corrections. In these cases an accurate correction 
detector might be able to signal to the dialog manager that the user is attempting to correct the sys-
tem. The dialog manager could take this information into account to update its beliefs.  

The methodology for building correction detectors is very similar to the one for building 
semantic confidence annotators. Typically the problem is cast as a binary classification task. User cor-
rections are manually labeled in a corpus of dialogs, and machine learning techniques are then used in 
conjunction with a large number of features to derive a correction detection model. For instance, in 
[121], Swerts et al. show that corrections are different from non-corrections prosodically. Based on 
these findings, the authors then use a rule-based machine learning algorithm (RIPPER) in conjunc-
tion with prosody, recognition and dialog features to detect corrections [54]. The trained detector is 
able to identify corrections with a classification error rate of 16% (versus a 29% majority baseline). 
The study also indicates that, although prosody can be informative, simply using generic recognition 
features yields similar performance on the correction detection task. In [69], the same authors take 
this work a step further and aim to detect not only corrections, but also aware-sites. These are turns 
in which the user becomes aware for the first time that the system has committed a recognition error; 
the user might however not yet correct the system at this point. Their results indicate that aware-sites 
are also different prosodically and can be detected at a 12% error-rate. In earlier work [68], Levow 
showed that corrections of system misunderstandings are prosodically different from corrections of 
system non-understandings, and that a decision tree can be used to distinguish between these two 
classes of corrections, with an accuracy of about 75%.  

Both confidence and correction scores carry relevant information for the belief updating 
task. However, taken in isolation, they do not provide a solution to the problem. For instance, even if 
an estimate for the probability of correction in turn 4 from example 3 were available, it would still be 
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unclear how exactly the system should update the confidence score for the start_time concept. We 
argue that an integrated approach is needed, in which information about potential misunderstandings 
and corrections is brought together in a unified framework for accurate belief updating.  

6.2.3 Heuristic belief updating  
In the examples from Figure 73, we have assumed that the dialog system can track multiple alternate 
values for a single concept – see example 4. This however is not the case in most spoken dialog sys-
tems. Usually, a single value is stored, together with the confidence score, or a confidence flag (e.g. 
low, medium, high confidence). If a new value is present in the user response, it will generally over-
write the old value. In general, simple heuristic rules are used to update the confidence scores.  

For instance, after engaging in an explicit confirmation, most systems will look for a yes-type 
answer, such as “yes”, “that’s correct”, “right”, etc., or a no-type answer, such as “no”, “that’s wrong”, 
etc. If a yes-type answer is detected, the current hypothesis is considered confirmed or grounded, i.e. 
the confidence is set to 1.0, or high-confidence. Alternatively, if a no-type answer is detected, the 
current hypothesis is deleted altogether. In the case of implicit confirmations, most systems rely on 
the user to overwrite the concept if the confirmed value is incorrect.  

We believe that these heuristic approaches are suboptimal for a number of reasons. First, 
they do not really take the initial and subsequent confidence scores into account. Secondly, as the 
third example in Figure 73 illustrates, users don’t always overwrite previous concept values. Previous 
studies have revealed that user responses following implicit confirmations cover a wide language 
spectrum [132], and simple heuristic rules will fall short on that account. As we show in subsection 
6.4.3, even in the cases of explicit confirmations, user responses are not limited to yes- and no-type 
answers. Furthermore, user responses to system confirmation actions are also subject to speech rec-
ognition errors. This renders the problem even more difficult for rule-based approaches (see exam-
ples 2, 3 and 4 in Figure 73). Finally, these heuristic rules lead to polarized beliefs, such as trust that 
value or don’t trust that value. The resulting beliefs are not well calibrated, and cannot be reliably 
used in a decision theoretic approach for error handling. In light of the shallow solutions currently 
used for belief updating, results such as “users discovering errors through implicit confirmations are 
less likely to get back on track” [113] are not so surprising. The problem might not lie with the im-
plicit confirmations per se, but rather with an inability to handle user responses and to accurately up-
date beliefs.  

6.2.4 Other related work 
The idea of tracking multiple alternate hypotheses and updating beliefs through time appears in a few 
other previous works. In [57], Paek and Horvitz present DeepListener, a spoken language system 
that fuses evidence from multiple turns to guide clarification dialog using dynamic belief nets. The 
system operates in a simple command-and-control domain, where the goal is to detect the user’s in-
tention. The intention is captured with a single concept, which can take one of 5 different values. 
The authors handcraft a dynamic Bayesian network that uses information about context, the user 
action and the recognized hypothesis to infer the user’s goal. The probability distribution (belief) 
over the user’s intention is then used in conjunction with handcrafted utilities to engage in various 
clarification actions. In this chapter we take inspiration from Horvitz and Paek’s work, and propose a 
belief updating approach that scales up to complex spoken language interfaces and does not require 
handcrafting a large set of parameters. The proposed belief updating model is automatically induced 
from labeled data. The model can be scaled up to systems that operate with an unlimited number of 
concepts (slots), which in turn can take an unlimited number of possible values. Last but not least, 
the proposed learning approach allows us to consider a very large number of features from different 
knowledge sources in the system. The approach does not require expert knowledge about the poten-
tial relationships between these features, as a more structured model would.  

Previous work by Higashinaka et al [51] also bears some commonalities with the problem 
and approach discussed in this chapter. In [51], Higashinaka et al describe a data-driven method for 
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updating the dialog-state in a spoken dialog system. Their system tracks the likelihood of multiple 
alternate dialog states by using statistical information about the probabilities of various dialog-
act/dialog-act and dialog-state/dialog-act sequences. Each dialog-act is assigned a score sact based on 
the linguistic and acoustic scores from the recognizer. The dialog-act/dialog-act bigrams and dialog-
state/dialog-act bigrams are also assigned scores based on the frequency of their occurrence in the 
training corpus – sngram and scol. Then, the score for each next dialog state candidate is computed us-
ing the following heuristic: 

colngramactt1t
sssSS ⋅γ+⋅β+⋅α+=

+
(the α , β , and γ  weighting factors are 

set manually). In contrast, in the work discussed here, we focus on updating beliefs about the con-
cepts the system operates with, rather than over which state the system is in. In RavenClaw, the an-
swer to the latter question is inferred automatically by the dialog engine, based on the beliefs about 
the individual concepts. The problem we are addressing is different (and arguably more difficult) 
since the space of possible values for a concept is much larger. Furthermore, we investigate a signifi-
cantly larger feature set and provide an entirely data-driven solution for the problem.  

6.3 Problem statement 

We have already introduced the 1-step belief updating problem in the previous section: how 
should the system update its beliefs in light of subsequent user responses to various system actions?  

Let us formalize this problem. Let C denote a concept that the system acquires from the user 
(e.g. start_time, date, etc). By Bt(C), or system belief over a concept C, we denote a representation 
of the system’s uncertainty in the value of concept C at a certain time t. In the most general case, this 
would be a probability distribution over the full set of possible values for the concept C. Let SSt be 
the system state at time t; let SAt(C) denote the system action with respect to concept C at time t; 
finally, let Rt denote the perceived user response to the system action at time t. Then, the 1-step be-
lief updating problem can be restated as follows:  

given the system state at time t – SSt, and the user response Rt to the last sys-
tem action, compute the updated belief over concept C – Bt+1(C). 

Bt+1(C) ← f ( SSt, Rt ) 

Two components of the system state clearly play a very important role in the belief updating 
process: the initial belief at time t over concept C – Bt(C), and the system action taken with respect to 
this concept at time t - SAt(C). Note that the system might take multiple actions with respect to dif-
ferent concepts in the same turn. For instance, in turn 3, example 3, Figure 73, the system implicitly 
confirms the start_time concept and requests the end_time concept. Therefore, with respect to 
the start_time concept, the system action can be described as: 

SAt(start_time) = ImplicitConfirm(start_time) + Request(other) 

At the same time, with respect to the end_time concept, we have: 

SAt(end_time) = ImplicitConfirm(other) + Request(end_time) 

If we consider only these two components of the system state in the belief updating process, 
the problem becomes:  
 

given an initial belief over a concept Bt(C), the last system action with respect 
to this concept - SAt(C), and the user response to this action - Rt, compute 
the updated belief Bt+1(C). 

Bt+1(C) ← f ( SSt:{Bt(C), SAt(C)}, Rt ) 

In formulating the problem this way, we have made a couple of assumptions. First, we as-
sumed a Markovian belief updating process. In other words, the system’s belief at time t+1 only de-
pends on the system’s belief at the previous time-step t. Secondly, we assumed concept-
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independence. The updated belief for concept C only depends on the initial belief for that particular 
concept and the corresponding system action. Generally, this might not be the case, and concept in-
terdependencies might exist; for instance if the user specifies the start time for a conference room 
reservation, this introduces constraints on the possible values for the end time for the reservation, i.e. 
the end time cannot precede the start time. 

One way to relax these assumptions is to introduce an extra variable in the model. Let Xt 
denote any additional system state information that might be pertinent to the belief updating process. 
Xt can include information about concept histories, beliefs about other concepts, as well as other 
global or historical information about the dialog, for instance how well the dialog has been going so 
far, etc. Then, the problem can be stated as:  

Bt+1(C) ← f ( SSt:{Bt(C), SAt(C), Xt}, Rt, ) 

Some of the belief updating models we discuss in the following sections incorporate such 
additional information. 

6.3.1 Evaluation criteria 
In the previous chapter, we have shown that evaluating semantic confidence annotation models in 
terms of classification accuracy is insufficient, and sometimes even misleading. Instead, we have ar-
gued that proper scoring rules that measure both calibration and refinement should be used (see sec-
tion 5.3.1.) The same holds true for belief updating models: we are interested in generating beliefs 
that are both well-calibrated and refined. To provide a complete picture, we will therefore evaluate 
the performance of the proposed models both in terms of accuracy and Brier score. 

6.4 A supervised learning approach for belief updating 

In the previous sections, we have introduced and formalized the belief updating problem. In this sec-
tion, we propose and evaluate a scalable, data-driven solution to this problem. We describe in more 
detail the proposed approach in the next subsection, 6.4.1. Then, in subsection 6.4.2 we describe the 
corpus that was used to develop the proposed belief updating models, and in subsection 6.4.3 pre-
sent an analysis of user responses to system confirmation actions based on this corpus that sheds 
more light on the challenges we face in the 1-step belief updating problem. Next in subsections 6.4.4 
through 6.4.6 we discuss a set of increasingly more complex belief updating models. We compare 
these models to each other in subsection 6.4.7. Finally, we conclude this section with a summary of 
our findings in subsection 6.4.8. 

6.4.1 Method 
We propose a supervised learning approach for constructing the one-step belief updating model: we 
will learn the function f from labeled data. To make the problem tractable, we use a compressed, ab-
stracted representation of beliefs. We begin by discussing this representation in the next subsection. 
Then, in subsection 6.4.1.2 we discuss a refinement in this representation that allows us to dynami-
cally add new hypotheses and drop old ones from this compressed belief space throughout the inter-
action. Finally, we present the proposed supervised learning model in the third subsection, 6.4.1.3.  

6.4.1.1 A compressed, abstracted belief representation 

So far, by belief over a concept, B(C), we have denoted a representation of the system’s uncertainty 
in the value of that particular concept. But how are beliefs represented? In the most general case, the 
system’s belief over a concept can be modeled by a multinomial probability distribution over the full 
set of possible values for that concept. Consider for instance, the departure_city concept in a 
spoken dialog system for flight reservations. This concept can be represented by a multinomial vari-
able that can take one of several hundred possible values: {Aberdeen, Abileen, Albany, Albuquerque 
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… Yuma}. The system’s belief about the value of this concept can be modeled by a multinomial dis-
tribution over this set of possible values (see left-hand side of Figure 74). 

B(departure_city) = <pAberdeen, pAbileen, … pYuma>, 

where pAberdeen + pAbileen + … + pYuma = 1. 

This type of representation poses however several challenges. First, the concept cardinality 
can range from very small (yes/no or Boolean concepts) to large (~800 city names in the CMU 
Communicator system [101]) and very large (~20k song titles in a music library). This renders learn-
ing approaches intractable, due to data sparsity issues. Furthermore, a model using this representation 
would be specific to the actual space of possible concept values. Separate belief updating models 
would therefore be needed for each concept, and no generalization would be possible. Finally, this 
representation does not distinguish between the belief that all concept values are equiprobable, and 
the belief that the user has not yet specified any value for the concept – they would both be encoded 
by a uniform distribution.  

To address these issues, we introduce a compressed and abstracted representation of beliefs. 
We start from the observation that, while concept cardinalities might be large, a speech recognizer 
will generally produce only a small number of different, conflicting values for a concept throughout a 
conversation. This intuition is indeed confirmed by empirical evidence. In a corpus collected with the 
RoomLine system, the system “heard” at most 3 different conflicting values for any given concept 
throughout any given conversation. Furthermore, the system “heard” more than one value for a con-
cept in only 7% of the cases. We believe that, even if the system would extract and use more infor-
mation from an n-best list (our system, like most other systems, did not), the number of alternative 
conflicting values for a concept that a system might hear throughout a conversation would still be a 
relatively small integer (3-7).  

Under these circumstances, a compressed representation of beliefs has the potential of 
greatly simplifying the problem, without causing any significant degradation in performance. Instead 
of keeping a multinomial distribution over the full set of possible values for a concept, we abstract 
over the actual concept values, and keep the probabilities only for the k most likely values, where k is 
a small integer. We accumulate the rest of the probability mass into an “other” category. The identity 
of the k most likely values is stored separately, and, as we shall see later, might change from one time-
step to the next. In the sequel, we use the term k+other to denote this compressed, abstracted belief 
representation. 

Consider the example from Figure 74. The left-hand side illustrates a belief over the depar-
ture_city in a spoken dialog system that handles flight reservations. This concept can take one of n 
possible values: {Aberdeen, Abileen, Albany … Yuma}. The full belief is represented as a multino-
mial distribution of degree n, B(C) = <pAberdeen=0.21, pAbileen=0.18, pAlbany=0.13, pAlbuquerque=0.10, … 
pYuma=0.02>. The corresponding k+other belief representation only keeps track of the most likely, 
or top k hypotheses. We denote the hypothesis with the highest probability score h1, the one with 
the second highest probability h2, and the one with the third highest probability h3. The event space 
for this compressed belief therefore is: {h1, h2, h3, other}. Note that this representation abstracts 
away from the actual concept values; the system keeps track of the actual values that correspond to 
h1, h2, and h3 separately. The compressed belief E(C) consists therefore of a multinomial distribu-
tion of degree k+1: e = <ph1=0.21, ph2=0.18, ph3=0.13, pother=0.48>, and a top-k hypotheses map-
ping S = {h1=Aberdeen; h2=Albany; h3=Abileen} that maintains the identities of the top-k most 
likely hypotheses.  

The proposed k+other belief compression is lossy. We only keep track of probabilities for k 
most likely hypotheses at a time. For instance, in the example illustrated in Figure 74, we have lost 
information about the individual probabilities for Albuqueque, Allentown, … Yuma. The corre-
sponding probability mass is clustered under the “other” category. This does not pose a significant 
problem if k is chosen sufficiently large. As we have argued before, the number of alternate hypothe-
ses a system will hear throughout a conversation is relatively small, and will rarely exceed k. On the 
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other hand, this representation leads to a significant reduction in the number of parameters needed 
to model the belief: from n, the cardinality of the concept (which we have seen can be quite large), 
down to k – a small integer. Using this representation, a supervised learning approach to the belief 
updating problem becomes tractable. The target variable is a multinomial of small degree.  

Secondly, the proposed k+other belief representation abstracts away from the actual con-
cept values, and therefore allows us to construct a concept-independent belief updating model. The 
model performs updates in an abstracted belief space: {h1, h2, h3, … , hk,  other}. The values corre-
sponding to the top k hypotheses are stored separately. The cardinality of the concept becomes ir-
relevant, since all concepts are reduced to a k+other representation. Using this representation, we 
can construct a model that answers questions such as: if the system initially believed that the prob-
ability for the top hypothesis h1 was ph1=0.21, how should the probability for this hypothesis be up-
dated in the next time step given a certain system action and user response? Note that the computa-
tion is not specific to the actual value for h1 (Aberdeen). Nevertheless, abstracted information about 
this value, such as “does h1 appear in the user response again?”, or “what is the prior likelihood of 
h1?” can be used in the computation since the system has access to the actual value at runtime 
through the S mapping.  

Finally, “empty concept” beliefs (i.e. the concept has not yet been specified by the user) are 
naturally encoded in the k+other representation by assigning the full probability mass to the “other” 
category: {e=<ph1=0, ph2=0, … phk=0, pother=1>; S={h1=Ø, h2=Ø, … hk=Ø}}. 

6.4.1.2 Dynamic belief space 

Using the proposed k+other belief representation, the belief updating problem becomes: 

Et+1(C):{et+1, St+1} ← f ( Et(C):{et, St}, SAt(C), Rt ) 

The task of generating an updated compressed belief et+1 can be cast as a supervised learning 
problem: given a set of features characterizing the initial belief Et(C), system action SAt(C), and user 
response Rt(C), compute the multinomial variable et+1. One issue remains. Throughout the interac-
tion, the model needs to update not only the variable e, but also the top-k hypotheses mapping S. In 

B(C) = <pAberdeen, pAbileen, pAlbany, …, pYuma> 
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Figure 74. "k+other" belief compression 
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other words, we would like to be able to dynamically add and drop hypotheses from the abstracted 
belief space. Initially the top-k hypotheses mapping is S0={h1=Ø, h2=Ø, … hk=Ø}. As the system 
starts hearing hypotheses for this concept, this mapping should be updated accordingly. Further-
more, if more than k hypotheses are heard throughout the conversation, some of the low-probability 
old hypotheses should be dropped in order to make space for the newer hypotheses.  

This problem is addressed as follows. Let m and n be two small integers, such that k=m+n. 
In each step, the new abstracted belief space is constructed by retaining the top-m of the initial k hy-
potheses, and adding the top-n new hypotheses from the user response. Formally, let St={h1, h2, … 
h3, other}. We assume that, in the most general case, the user response Rt can contain more than one 
hypothesis for the concept C (for instance, if Rt is an n-best list). Let RHt={r1, r2, …, rp} be the set 
of new hypotheses for concept C that are present in the user response Rt. Note that these are new 
hypotheses, i.e. they are not already present in St. (RHt ∩ St = Ø). Then, the new abstract belief space 
at time t+1 is St+1 = {h1, h2, …hm, r1, r2, rn, other}. Consequently, et+1= <ph1, ph2, … phk, pr1, pr2, 
… prn, pother>.  

For clarity, we show a concrete, detailed example of how the proposed belief space and 
probabilities are updated throughout a conversation in Figure 75. The example illustrates three con-
secutive belief updating steps for the departure_city concept in a spoken dialog system that han-
dles flight reservations. The belief updating model illustrated in this example is a 4[2;2]+other 
model, i.e. it tracks up to k=4 simultaneous alternate hypotheses for the concept, and it each step it 
keeps the top m=2 initial hypotheses and adds up to n=2 new concept hypotheses from the recogni-
tion n-best list. Note that the system in the given example uses a 3-best list returned by the recogni-
tion engine.  

As illustrated in Figure 75, the proposed approach allows us to dynamically add and drop 
hypotheses from the belief space, while maintaining the abstraction over the actual concept values. 
The belief updating model can track up to k different values for a concept simultaneously, and inte-
grates information across multiple turns in a conversation. The model can also integrate information 
from multiple recognition hypotheses (up to n alternative values in each time-step). Note that, in the 
degenerate case when m=0, the model k[m=0;n=k]+other essentially performs an n-best list res-
coring task.   

Using the proposed k[m;n]+other abstraction, the belief updating problem reduces to:  

et+1(C) ← f ( Et(C):{et, St}, SAt(C), Rt ) 

where et+1(C) = <ph1, ph2, … phk, pr1, pr2, … prn, pother> is a multinomial distribution of de-
gree k+1 that captures the probabilities that the correct concept values is one of the initial top-m 
values (h1, h2, … hm) or one of the new top-n values from the recognition result (r1, r2, … rn), or 
something else (pother) 

6.4.1.3 Belief updating as a multinomial regression task 

Using the proposed compressed belief representation, the 1-step belief updating problem can be 
stated as a multinomial regression task: given a set of features that characterize the initial system be-
lief at time t, Et(C):{et, St}, the system action SAt(C) and the corresponding user response Rt, com-
pute the updated belief (multinomial distribution) et+1(C). 

et+1(C) ← f ( Et(C):{et(C), St(C)}, SAt(C), Rt ) 

This problem can be addressed by constructing a multinomial logit model, also known as a  
multinomial generalized linear model [76]. The multinomial logit model is a natural extension of the 

logistic regression model, for the case when the response variable is multinomial. If F  is a set of fea-

tures (including a constant feature for the intercept), and Y  = <y1, y2, … yN> is a multinomial re-

sponse variable of degree N, then the multinomial logit model Y  ← F  has the form: 
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Figure 75. Three consecutive belief updating steps with a 4[2;2]+other belief updating model 



 Belief updating 169 

 

1N,1i,

e1

e
)F|yY(P

1N

1j

F

F

i

j

i

−=

+

==

∑
−

=

⋅α

⋅α

, 

∑
−

=

⋅α
+

==
1N

1j

F

N

je1

1
)F|yY(P  

In the belief updating problem, the response variable is Y=et+1(C)=<ph1, ph2, …, phm, pr1, pr2, 

… prn, pother> of degree k+1, and the set of features F  characterizes the initial belief over the con-
cept Et(C), the system action SAt(C) and the user response Rt. The multinomial logit model in this 
case computes: 

1m,1i,

ee1

e
)F|}hi{SC(P

1n

1j

F
1m

1j

F

F

t

rjhj

hi

−=

++

==

∑∑
−

=

⋅α
−

=

⋅α

⋅α

 

1n,1i,

ee1

e
)F|}ri{SC(P

1n

1j

F
1m

1j

F

F

t

rjhj

ri

−=

++

==

∑∑
−

=

⋅α
−

=

⋅α

⋅α

 

∑∑
−

=

⋅α
−

=

⋅α
++

==
1n

1j

F
1m

1j

F rjhj ee1

1
)F|otherC(P  

The model parameters can be estimated in a maximum likelihood fashion from training data. 
The total number of parameters in this model is F#k⋅ , where #F is the number of features used in 
the model. For small values of k, this model can be trained using relatively little data (more details 
about the scalability of the proposed approach will be presented later). Similar to logistic regression 
models, multinomial logit models can be constructed in a step-wise fashion: a large number of fea-
tures are inspected in each step, and the feature that leads to the best improvement is added. The 
Bayesian Information Criterion can be used to decide when to stop adding features to the model. 
This approach allows us to investigate and leverage a very large number of potential features, without 
having explicit knowledge of the relationships between these features.  

6.4.2 Data  
We now describe the data that was used to train the proposed 1-step belief updating models. 

6.4.2.1 System 

The training data was collected using RoomLine, a telephone-based, mixed-initiative spoken dialog 
system. The system, described in more detail in 3.4.1 from Chapter 3, assists users in performing 
conference room reservations in two buildings on the CMU campus. The system knows about the 
schedules and characteristics (e.g. size, location, a/v equipment) of 13 conference rooms, and can 
engage in a negotiation dialog to identify the room that best matches the user’s needs.  

The RoomLine dialog manager operates with a set of 28 concepts of different cardinalities. 
10 of these are trigger concepts, which can take only one possible value except for “empty”; these 
concepts are used to capture user commands, like “help!”, “repeat!”, etc. In addition, RoomLine uses 
8 Boolean concepts that can take 2 possible values (yes / no). Finally, there are 10 non-Boolean con-
cepts with cardinalities ranging from 1 to 500. Table 22 presents a brief summary.  
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6.4.2.2 Data collection experiment and corpus  

The data used for training and evaluating the belief updating models was collected through a user 
study, described later in Chapter 8, subsection 8.3.1. Here, we briefly present a number of details and 
statistics pertinent to the belief updating work.  

The corpus contains 449 sessions and 8278 user turns. The user turns were orthographically 
transcribed and checked by a second annotator. Based on these transcriptions, we manually anno-
tated whether or not the system misunderstood the user (e.g. turn-level misunderstanding), and 
whether or not the user was trying to correct the system (e.g. turn-level correction). Additionally, we 
also annotated the correct concept values, as they were specified by the user, at each point in the dia-
log. This latter information was used to generate the target labels for the multinomial regression be-
lief updating models.  

6.4.2.3 System actions 

The RoomLine system engages in 5 types of actions with respect to any given concept. The actions 
are illustrated in Table 23.  

The first example shows a request action on the start_time concept. This happens when 

request  S: For what time do you need the room? 

 U: 10 a.m. 

 R: TEN A_M / 0.35 

explicit  
confirmation 

 S: Did you say 10 a.m.? 

 U: yes until noon 

 R: GUEST UNTIL ONE / 0.87 

implicit 
confirmation 

 S: starting at 2p.m. ... until what time? 

 U: I need a different time 

 R: CAN YOU DETAILS TIME / NONU-0.00 

unplanned  
implicit  
confirmation 

 S: I found 3 rooms Monday between 2 and 4 p.m. Would you  

 like a small one or a large one? 

 U: no not Monday, Friday 

 R: ABOUT MONDAY THURSDAY / 0.22 

no action  S: Okay. To make the reservation, please tell me your  

 name, or say ‘guest user’ if you are not registered  

 with the system 

 U: guest user 

 R: NEXT TUESDAY / 0.62 
 

Table 23. System actions in the RoomLine corpus 

Concept type (name) Example possible values Cardinality 

10 trigger concepts trigger concepts have only one possible value, i.e. “on”, 
besides being empty. 

1 

8 boolean concepts 
want_reservation_single, 
want_summary, satisfied, any-
thing_else, etc. 

yes/no 

2 

10 non-boolean concepts:  
start_time 
end_time 
date 
room_equip 
room_size 
room_size_spec 
room_location 
room_number 
user_name 
timeperiod_spec 

 
9:15, 8:30, etc (every 15 minutes during the day) 
9:15, 8:30, etc (every 15 minutes during the day) 
any date in the year 
projector, network, whiteboard, computer 
15, 200, etc (# of people the room should hold) 
small, large, smaller, larger, smallest, largest 
wean hall, newell simon hall 
7220, 8220, 4625, etc (13 room numbers) 
“guest user” 
morning, afternoon 

 
96 
96 
365 
4 
500 
6 
2 
13 
1 
2 

 
Table 22. Concepts in the RoomLine system 
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the system explicitly asks for the value for a concept.  

The second example shows an explicit confirmation action on the same start_time con-
cept. The system explicitly asks a simple yes-no question to verify the current value of the 
start_time concept.  

The third example shows an implicit confirmation action on the start_time action. The 
system echoes back the current value, and continues with the next question. Note that in a single 
turn the system might engage in multiple actions with respect to multiple concepts. In the example 
fromTable 23, the system coupled the implicit confirmation on the start_time concept with a re-
quest for the end_time concept. The belief updating mechanism works independently on these two 
concepts; each concept is updated separately and the system action with respect to the concept to be 
updated is taken into account. In this case, this single turn generates two learning instances for the 
belief updating model: one for the start_time concept, and one for the end_time concept.  

The fourth example shows unplanned implicit confirmation actions. In this case, the sys-
tem prompt includes information previously acquired from the user (e.g. the date, the start_time 
and the end_time). This information is echoed back to the user, but this is not part of a planned 
implicit confirmation action like in the third example. Rather, this happens as a side-effect of the sys-
tem prompt design. The system prompt from the fourth example therefore includes three unplanned 
implicit confirmations (one for the date, one for the start_time and one for the end_time), as well 
as one request action for the room_size concept. This turn will generate four learning instances for 
the belief updating model.  

Finally, the last example illustrates a special case: no-action. In this example, the system 
does not engage in any request or confirmation action with respect to the date concept. Nevertheless 
the system hears a value for this concept – “NEXT TUESDAY”. In this case, the value for the date con-
cept appears as a result of misrecognition. However, in a mixed-initiative spoken language interface, 
this can also happen because the user can take the initiative or provide information that was not di-
rectly requested by the system. Furthermore, in many cases users do not correct the system immedi-
ately after a mistake (see more in section 6.4.3). As a consequence, we argue that spoken language 
interfaces should update their beliefs not only for the concepts requested or confirmed in the previ-
ous turn, but also for all concepts heard in the user response. In fact, in section 6.6, we discuss ideas 
for extending this further to all concepts the system operates with.  

Note that the five action types we have described above are domain-independent. At the 
same time, the belief updating approach described in this chapter is not tied to any particular action 
set. For instance, if a spoken dialog system also uses a disambiguation action (e.g. “Did you say Aus-
tin or Aspen?”), this could be easily added to the set described above.  

6.4.2.4 Belief updating heuristics 

Throughout the data collection experiment, the system kept track of multiple alternate hypotheses 
for each concept, together with their confidence scores. The system used both explicit and implicit 
confirmations to guard against potential misunderstandings. These strategies were engaged following 
a commonly used confidence threshold model, combined with an epsilon-exploration approach. 
With probability epsilon (0.2 in our case), the system would take a random action from the set {ac-
cept, explicit confirm, implicit confirm}. With probability 1-epsilon, the system would use 2 thresh-
olds to decide the action: if the confidence score for the top hypothesis was above 0.8 the system 
would accept that value; if the confidence score was between 0.5 and 0.8 the system would implicitly 
confirm the value; otherwise, the system would explicitly confirm the value. The system also used a 
rejection threshold of 0.3. Finally, note that the implicit confirmation action was not available on all 
concepts. For instance, the system never engaged in implicit confirmations on trigger concepts.  

RoomLine used a set of simple heuristic rules to perform belief updating. After explicit con-
firmations the system boosted the confidence score to 0.95 when the perceived user response con-
tained a positive marker (e.g. yes, right, etc.) and deleted the hypothesis if the response included a 
negative marker (e.g. no, wrong, incorrect, etc.)  For implicit confirmations, the system would dis-
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credit the hypothesis if it heard a negative marker in the user response and the implicit confirmation 
was not followed by a yes/no question; if the user response included a new value for the confirmed 
concept, the system overwrote the old value (hence deleted the initial hypothesis); finally, for all other 
responses to implicit confirmations the system assumed that the initial hypothesis was correct, and 
increased its confidence score to 0.95. In general (as opposed to after a confirmation action), the sys-
tem used a naïve probabilistic update rule to update its beliefs. It multiplied the initial probability dis-
tribution (belief over the concept) with the new distribution coming from the recognizer, and renor-
malized. Note that the naïve probabilistic update rule was applied during unplanned implicit confir-
mations (see section 6.4.1.2), because the dialog manager did not plan and was not direclty aware of 
the confirmation action.  

6.4.3 An empirical investigation of user responses to confirmation actions 
To gain a better understanding of the challenges that we are facing with respect to belief updating, we 
performed an analysis of user responses to system confirmation actions.  

A similar analysis was previously conducted by Krahmer et al [63]. The authors analyzed user 
responses to explicit and implicit confirmations in a corpus of 120 dialogs from a Dutch train-table 
information system. Several positive and negative cues for user corrections were identified and a dis-
tributional analysis revealed that some of these cues have good predictive capacity to signal errors. 
Furthermore, the study confirmed that user responses to system confirmation actions can be fairly 
complex. Even for explicit confirmations, which are simple yes/no questions, user responses do not 
always incorporate confirmation or disconfirmation markers (e.g. yes, no, that’s right, wrong, etc.)  

Because we were interested in comparing results across domains, we followed the same 
methodology as Krahmer et al [63]. We divided the user responses into the 3 response types: yes, no 
and other. This classification was performed twice: once using the transcripts, and once using the 
recognition hypotheses. Next, we cross-tabulated these classes against whether the system was 
atempting to confirm a correct or an incorrect concept value. The results are presented in Table 
24.A-F. 

As Table 24.A shows, user responses following explicit confirmations included positive 
markers in 94% of the cases when the valued to be confirmed was indeed correct. In contrast, the 
answers included a negative marker in only 72% of the explicit confirmations with incorrect values. 
This discrepancy is consistent with prior observations made by Krahmer et al [63] (the numbers from 
their study are shown in brackets in the Table 1.A). In a significant number of cases (27%) users at-
tempted to correct the system by other means than a negative answer to the explicit confirmation 
question. A closer look at these instances reveals that in most of these cases (~70%) users repeated 

A. Explicit Confirmation (from transcripts) 

 Yes No Other 

Correct (1159) 94% [93 %] 0% [0%] 5% [7%] 

Incorrect (279) 1% [6%] 72% [57%] 27% [37%] 

 

B. Explicit Confirmation (from decoded results) 

 Yes No Other 

Correct (1159) 87% 1% 12% 

Incorrect (279) 1% 61% 38% 

 
C. Implicit Confirmation (from transcripts) 

 Yes No Other 

Correct (554) 30% [0%] 7% [0%] 63% [100%] 

Incorrect (229) 6% [0%] 33% [15%]  61% [85%] 

 

D. Implicit Confirmation (from decoded results) 

 Yes No Other 

Correct (554) 28% 5% 67% 

Incorrect (229) 7% 27% 66% 

 

E. Unplanned Implicit Conf. (transcripts) 

 Yes No Other 

Correct (2725) 25%  19% 56% 

Incorrect (457) 12%  28%  60%  

 

F. Unplanned Implicit Conf. (decoded) 

 Yes No Other 

Correct (2725) 24%  17% 59% 

Incorrect (457) 10%  21%  69%  

 
Table 24. Cross-tabulation of response-type against correct and incorrect system confirmation  

actions. Percentages reflect proportions from the correct and respectively incorrect confirmations. 
Bracketed numbers were reported by Krahmer and Swerts in a similar study of a Dutch train-timetable 

information system [63] 
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the correct value for the concept. Other times, users ignored the system’s explicit confirmation and 
tried to change the focus of the conversation. Prompted by this observation, we cross-tabulated us-
ers’ correction attempts versus the correctness of the value the system tried to confirm. The results 
are shown in Table 25.A. We noted that 10% of the incorrect explicit confirmations (29 of the 
29+250=279 cases) were not corrected by the users – these are mostly the cases in which users were 
trying to shift the focus of the conversation. Finally there were a small number of other-type re-
sponses on explicit confirmations that stemmed from audio end-pointing errors and turn-overtaking 
issues. 

A comparison between Table 24.A and Table 24.B reveals an increased proportion of the 
other-type responses in the decoded results. This difference is explained by misrecognitions of yes / 
no into acoustically similar words (e.g. this / small). The difference is also present for both planned 
and unplanned implicit confirmations, and highlights again that the presence of recognition errors 
increases the difficulties of detecting corrections and building accurate beliefs. 

For implicit confirmations, there are much fewer yes- and no-type responses, and the 
other-type responses dominate (see Table 24.C). For correct implicit confirmations this large num-
ber is expected: users mostly answer the follow-up system question. The large number of other-type 
responses on incorrect implicit confirmations is explained by the fact that often users will avoid cor-
recting the system in this situation. Table 25.B. shows that for 51.5% (118 / 118+111=229) of incor-
rect implicit confirmations users are not attempting to correct the system.  

A closer analysis of these instances led to several observations. First, although in these 118 
cases users did not immediately correct the system’s incorrect implicit confirmation, in 49 of these 
cases (~40%) users did attempt to correct the error in a later turn. More interestingly, the analysis 
revealed that users interact with the system strategically: they correct the errors which have to be 
recovered for the successful completion of the task (we shall refer to these as critical errors), and 
mostly ignore the others. Given the nature of the domain, certain scenarios could be completed by 
users in different ways. This in turn rendered some concepts more important for task success than 
others. For instance, if the system accidentally misrecognized that the user wanted a room with a 
whiteboard, this incorrectly filled concept (equipment) had no impact on task success if the goal was 
only to make a reservation for a room on Friday morning from 10 to 11. A user could ignore this 
system error altogether and still complete the task successfully. Out of the 49 later-turn corrections, 
47 were on critical errors, and only 2 on non-critical errors. At the same time, there were only 14 
critical errors that were never corrected, and hence had a direct contribution to task failure. These 
results confirm that users adapt their behaviors to their specific goals, and engage in corrections only 
when it is necessary to do so. 

Finally, for unplanned implicit confirmations, the distribution of response types is similar to 
the one for the planned implicit confirmations, and the same phenomenon of users not always cor-
recting the system can be observed.  

Our analysis in the RoomLine domain corroborates previous observations made by Krah-
mer et al [63]. The results indicate that user responses to system confirmation actions span a wide 
language spectrum. In consequence, simple heuristics for updating beliefs (e.g. looking for confirma-
tion and disconfirmation markers in the user responses) will fall short both in terms of accuracy and 
coverage. In the next three subsections, we discuss several supervised-learning based belief updating 
models that leverage a large set of user response features in order to construct more accurate beliefs.  

A. Explicit Confirmation 

 User 
corrects 

User does 
not correct 

Correct 0 1159 

Incorrect 250 29 

 

B. Implicit Confirmation 

 User 
corrects 

User does 
not correct 

Correct 2 552 

Incorrect 111 118 

 
Table 25. Users’ correction attempts versus correctness of confirmed values. 

C. Unplanned Implicit Confirmation 

 User 
correct 

User does not 
correct 

Correct 11 2714 

Incorrect 138 319 
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6.4.4 The 1m

0nBU =
=  model: updating beliefs after confirmation actions 

6.4.4.1 Model 

We begin with the simplest belief updating model: 1m

0nBU =
=  (k=1, m=1, n=0). This model updates the 

confidence score for the initial top hypothesis in light of the user response to a system action. The 
belief space is static, and no new concept hypotheses are accumulated throughout the interaction 
(n=0). As a consequence, this model is useful only for the cases when the system already has an ini-
tial top hypothesis for a concept, and attempts to verify it. The model was constructed for the three 
confirmation actions: explicit confirmation (EC), implicit confirmation (IC) and unplanned implicit 
confirmation (UIC).  

In the 1m

0nBU =
=  model, the multinomial output variable et+1 reduces to a simple binary variable 

et+1=<ph1, pother>. The multinomial regression model reduces to a logistic regression model that es-
timates the likelihood of the initial top hypothesis in light of the system action and user response: 
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The learning instances for this model are individual concept updates. The target values for 
training the model, et+1, are provided by the manual labeling of correct concept values. If the correct 
concept value following an update is indeed h1, then et+1=1, otherwise et+1=0. During training the 

vector of model parameters α  is estimated in a maximum likelihood procedure.  

6.4.4.2 Features 

We characterized the initial system belief and the user response in terms of a large set of features F , 
extracted from different knowledge sources in the system. The complete set of features is presented 

in Table 26. Note that this table also includes features which are not used in the 1

0BU  model, but 

only in latter, more complex belief updating models.  

The features can be classified broadly in the following categories: 

• features describing the initial system belief: these include information about the 
identity of the concept undergoing the update, the confidence scores and availability of 
the initial hypotheses for this concept, as well as information on whether the initial top 
hypothesis had already been explicitly confirmed or disconfirmed at the time of the up-
date.  

• features describing new concept values in the user response: these include infor-
mation about the presence of new concept hypotheses in the user response, as well as 

the associated confidence scores. (For the purposes of the 1m

0nBU =
=  belief updating model, 

the user response consists of the selected recognition hypothesis; for some of the more 
advanced models discussed later, this is extended to include multiple alternate recogni-
tion hypotheses).  

• features describing the prior likelihood of the initial and new concept hypothe-
ses: a domain expert, who did not have access to the training and evaluation corpora 
manually constructed priors for three of the most important concepts in the system: 
start_time, end_time and date. For all other concepts, we assumed uniform priors.  
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Table 26. Features for belief updating 

 
The feature types are encoded as follows: R=real, C=count, N=nominal, B=boolean 
The derived features are encoded as follows: 
  >m = binary version indicating if the feature value is greater than the mean value of the feature in the dataset 
  >0 = binary version indicating if the feature value is greater than 0 
  >1 = binary version indicating if the feature value is greater than 0 
  >2 = binary version indicating if the feature value is greater than 0 
  >4 = binary version indicating if the feature value is greater than 0 
  dtf = difference between the current feature value and the feature value in the first turn in the dialog 
  dtp = difference between the current feature value and the feature value in the previous turn in the dialog 
 
We use the term concept hypothesis to denote a possible value for a concept (e.g. 2a.m. is a concept hypothesis for the start_time concept); we use the term recognition hypothesis to 
denote a hypothesis generated by the speech recognizer. In our setup, two different recognizers were used (one using acoustic models trained with data from male speakers, one 
using models trained with data from female speakers). After the confidence score is assigned only the recognition hypothesis with the highest confidence score is forwarded to the 
dialog manager. We use the term selected recognition hypothesis to denote the hypothesis that was forwarded to the dialog manager. 

 
 
Feature name Type Derived  

features 
Feature Description 

 

Features characterizing the initial belief (before the update) 
 

concept_id B  set of binary features capturing the identity of the concept undergoing the update (there RoomLine system operates 
with a set of 38 different concepts) 

i_h1_confidence C >m the confidence score for the initial (before the update) top concept hypothesis  
i_h2_confidence C >m the confidence score for the initial second concept hypothesis  
i_h3_confidence C >m the confidence score for the initial third concept hypothesis  
i_h1_avail B  indicates that a top concept hypothesis exists in the initial belief   
i_h2_avail B  indicates that a second concept hypothesis exists in the initial belief 
i_h3_avail B  indicates that a third concept hypothesis exists in the initial belief 
i_h1_explicitly_confirmed_alre
ady 

B  indicates that the initial top concept hypothesis has already been explicitly confirmed by the user (prior to this up-
date) 

h_h1_explicitly_confirmed_alr
eady 

B  indicates that the history value for this concept has already been explicitly confirmed by the user (prior to this update) 

iorh_h1_explicitly_confirmed_
already 

B  indicates that either the initial top concept hypothesis or the history value (if the concept was recently reopened and 
no top concept hypothesis exists) has been explicitly confirmed by the user (prior to this update) 

 

Features characterizing new values in the user response (the selected recognition hypothesis) 
 

srh_h_h1_avail B  the history value for the concept is again present in the selected recognition hypothesis 
srh_i_h1_avail B  the initial top concept hypothesis is present in the selected recognition hypothesis 
srh_i_h1_confidence C  the confidence score for the top concept hypothesis in the selected recognition hypothesis  
srh_iorh_h1_avail B  the initial top concept hypothesis or the history value for the concept is again present in the selected recognition 

hypothesis 
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srh_i_h2_avail B  the initial second concept hypothesis is again present in the selected recognition hypothesis 
srh_i_h2_confidence C  the confidence score for the initial second concept hypothesis in the selected recognition hypothesis  
srh_i_h3_avail B  the initial third concept hypothesis is again present in the selected recognition hypothesis 
srh_i_h3_confidence C  the confidence score for the initial third concept hypothesis in the selected recognition hypothesis  
srh_r1_avail B  the selected recognition hypothesis contains a new value for the concept, which is different from the values in the 

initial belief (r1) 
srh_r1_confidence C >0.25, >0.5, 

>0.75 
the confidence score for the new concept hypothesis in the selected recognition hypothesis 

srh_r1_explicitly_disconfirmed
_already 

B  the new concept hypothesis present in the selected recognition hypothesis was already disconfirmed earlier 

 

Priors  
 

i_h1_prior C >1 prior score for the initial top concept hypothesis  
i_h2_prior C >1 prior score for the initial second concept hypothesis  
i_h3_prior C >1 prior score for the initial third concept hypothesis  
h_h1_prior C >1 prior score for the history value for the concept  
iorh_h1_prior C >1 prior score for the initial top concept hypothesis or for the history value (whichever is available) 
srh_r1_prior C >1 prior score for the new concept hypothesis contained in the selected recognition hypothesis 
 

Confusability scores 
 

i_h1_confusability C >m confusability score for the initial top concept hypothesis  
i_h2_confusability C >m confusability score for the initial second concept hypothesis  
i_h3_confusability C >m confusability score for the initial third concept hypothesis  
h_h1_confusability C >m confusability score for the history value for the concept 
iorh_h1_confusability C >m confusability score for the initial top concept hypothesis or for the history value for the concept (whichever is avail-

able) 
srh_r1_confusability C >m confusability score for the new concept hypothesis contained in the selected recognition hypothesis 
 

Other features characterizing the user response: speech recognition features  
 

am_score R  the acoustic model score 
lm_score R  the language model score 
decoder_score R  the decoder score 
frame_num C >m the number of frames 
word_num C >1, >2, >4 the number of words  
word_num_class N  nominal feature indicating whether the selected recognized hypothesis contains 1 word, 2 words, 3 or 4 words, or 

more than 4 words 
unconf_num C  number of unconfident words (Sphinx tags individual words as unconfident if no trigram is found in the language 

model ending in the current word, and a bigram back-off is forced) 
 

Other features characterizing the user response: prosody features  
 

pitch_mean R >m, dtf, dtp the pitch mean 
pitch_range R gtm, dtf, dtp the range of the pitch (max – min)  
pitch_min R >m, dtf, dtp the minimum pitch level  
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pitch_max R >m, dtf, dtp the maximum pitch level  
pitch_std  R >m the pitch standard deviation 
pitch_min_slope R  the minimum value for the pitch slope (the largest pitch decrease) 
pitch_max_slope R  the maximum value for the pitch slope (the largest pitch increase) 
pitch_max_increase R  the maximum pitch increase  
pitch_max_decrease R  the maximum pitch decrease  
num_voiced_segments C  the number of voiced segments  
rate_voiced_segments C  the ratio of voiced segments (out of the total number of voiced and unvoiced segments) 
perc_unvoiced R >m the percentage of the selected recognized hypothesis (in frames) that is not voiced 
prepau R >m the length of the initial unvoiced segment (initial pause) 
 

Other features characterizing the user response: lexical features  
 

mark_confirm B  presence of confirmation markers  
mark_disconfirm B  presence of disconfirmation markers 
answer_type N  3-class answer type: yes-type answer, no-type answer or other-type answer 
lex B  a set of binary features that captures the presence of 10 words correlated with misunderstandings.  
lexw1 B  same as above, but with the condition that the selected recognition hypothesis contains only one word  
 

Other features characterizing the user response: language understanding features  
 

no_parse B  indicates that no parse was constructed for the selected recognition hypothesis 
slot_num C  number of grammar slots 
rep_slots_num C >0 number of repeated grammar slots (wrt the previous turn) 
new_slots_num C >0 number of new grammar slots (wrt the previous turn) 
uncov_num C >0 number of words not covered by the parse 
frag_num C  the number of fragments in the parse 
gap_num C >0, >1 the number of gaps in the parse 
hyp_num_parses C  the number of alternative parses generated for the selected recognition hypothesis (due to grammar ambiguities, 

Phoenix can sometimes generate multiple parses for each recognition hypothesis) 
total_num_parses C  the total number of alternative parses generated for this user input (e.g. considering the recognition hypotheses from 

both male and female decoders) 
 

Other features characterizing the user response: inter-recognition hypotheses features  
 

ih_diff_lexical B  the two recognition hypotheses from the male and female recognition engine are different 
ih_diff_lexical_one_word B  the two recognition hypotheses from the male and female recognition engine are different, and they are both one 

word long 
 

Other features characterizing the user response: dialog-level features  
 

nonu B  indicates that the current turn was a non-understanding 
confidence R >0.25, >0.5, 

>0.75 
the confidence score for the selected recognition hypothesis 

slots_matched C >1 the number of grammar slots in the selected recognition hypothesis that matched an open expectation 
slots_blocked C >0 the number of grammar slots in the selected recognition hypothesis that matched a closed expectation 
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first_level_matched C >0, >1 the first level in the expectation agenda where a slot from the current selected recognition hypothesis matched an 
open expectation 

matched_in_focus B  the selected recognition hypothesis matched the dialog expectation in focus (first level in the agenda) 
barge_in B  the user barge-in on the system 
timeout B  the user did not respond in time, and a time-out was triggered 
 

Dialog state and history features 
 

turn C >0, >1, >m the turn number 
dialog_state_4 N  indicates whether the current dialog state is an open request (e.g. How may I help you?), a request for a Boolean 

concept (e.g. Would you like this room?) or a request for a non-boolean concept (e.f. For what time would you like 
this room?) 

dialog_state_5 N  Indicates whether the current dialog state is an open request (e.g. How may I help you?), a request for a specific 
concept (e.g. For what time would you like this room?) or an explicit confirmation (e.g. Did you say you wanted the 
room for 10 a.m.?) 

dialog_state_id B  set of binary features capturing the state the dialog manager is in (there are 71 different states were encountered in 
the RoomLine corpus) 

last_turn_nonu B  indicates if the previous turn was a non-understanding 
prev_confidence C >0.25, >0.5, 

>0.75 
indicates the confidence score of the previous user turn 

num_prev_nonu C >1, >2, >3 indicates how many consecutive non-understandings preceded the current user turn 
num_prev_not_nonu C  indicates how many consecutive turns that were not non-understandings preceded the current turn 
h_avg_confidence R >m, >0.25, 

>0.5, >0.75 
Indicates the mean confidence score up to this point in the dialog 

h_ratio_nonu R >m indicates the ratio of non-understandings up to this point in the dialog;  
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• features describing the confusability of the initial and new concept hypotheses: 
confusability for each concept value was computed empirically, from the training data. 
One confusability score was computed for each concept value encountered in the train-
ing set (for all other concept values, we assumed the mean confusability score). The 
score reflected the proportion of times that a concept value was recognized correctly; 
for instance: “out of all the times we had Tuesday in the recognition result, how many 
times did the user indeed say Tuesday?”. Note that a higher value for this confusability 
score actually indicates that the concept is less likely to be confused with something else.  

• other features characterizing the user response: these include speech recognition, 
prosodic, lexical, language understanding, as well as dialog level features characterizing 
the user response (for an in-depth description, see Table 26). 

• features characterizing the current dialog state and history: these include informa-
tion about the current state, the last turn (was it a non-understanding, what was the pre-
vious confidence score, etc), and the dialog history (e.g. the average ratio of non-
understandings so far, and the average confidence score) 

The constructed models did not use any features characterizing the system action SAt(C). In-
stead, separate models where constructed for each system action, because we expected that the user 
response features interact differently with the target variable depending on the system action. For 
instance, the presence of a positive marker like “yes” in the recognition result means something in 
the context of an explicit confirmation action, but something different in the context of a request 
action. We therefore separated the collected corpus of concept updates into 3 datasets, according to 
whether the system action was an explicit confirmation, an implicit confirmation, or an unplanned 
implicit confirmation, and we trained and evaluated a separate model for each dataset.  

6.4.4.3 Empirical results 

The 1-step belief updating models for each action were trained using a stepwise logistic regression 
approach. The next most informative feature (as measured by the improvement in average log-
likelihood over the training data) was added to the model at each step. To prevent over-fitting, the 
Bayesian Information Criterion was used as a stopping mechanism.  

We computed both the accuracy and the Brier score for the trained models in a 10-fold 
cross-validation process, and compared models’ performance against three different baselines: initial, 
heuristic and correction. 

The initial baseline reflects the accuracy (or error) of the initial system belief, at time t, be-
fore the system engages in an action and obtains the user response.  

The heuristic baseline reflects the accuracy of the updated belief at time t+1, as it was con-
structed by the heuristic update rule currently used by the system. The heuristically updated beliefs 
should on average be more accurate than the initial beliefs; this is indeed the case, as the numbers we 
will present later show. At the beginning of this chapter, we have argued however that heuristic up-
date rules face a number of difficulties. Our goal is to construct belief updating models that signifi-
cantly improve upon these heuristic rules. 

Finally, the correction baseline reflects the accuracy of a heuristic updating rule that has ac-
cess to the actual transcript of the user response Rt. In other words, if we had perfect speech recogni-
tion, how well would we be able update our beliefs in one step? The heuristic rule used in conjunc-
tion with the transcripts essentially is: “assume the current top hypothesis is correct, unless the user 
corrects it, either by a disconfirmation marker, or by presenting a different value for the concept”. It 
is important to notice that beliefs constructed based on this rule will not be 100% accurate, even if 
transcript information is used. One reason is that, as we have seen in our analysis from the previous 
section, users do not always correct the system in the turn following the confirmation. Secondly, 
even if users do correct the system, corrections cannot always be detected by simply looking for dis-
confirmation markers and new concept values (e.g. “I need a different time”). Nevertheless, the correc-
tion baseline provides a good target accuracy level for our belief updating models.  
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For each system action we trained three different models, using three different feature sets: 
basic, full and runtime. The basic model (BM) uses all features, except for the priors and confus-
ability scores. The full model (FM) uses the full set of features. Finally, the runtime model (RM) uses 
only the features available to the system at runtime, i.e. all the features except the prosody ones.  

The results for the constructed models are presented in Table 27, and illustrated in Figure 
76. For explicit confirmations, the initial baseline (i) error rate is 30.8% (in other words, in 30.8% of 
the cases when the system engaged in an explicit confirmation, the value that the system tried to con-
firm was incorrect). Applying the belief updating heuristic rule reduces this error to 16.4% (heuristic 
baseline – h). Finally, if we had access to the transcript and applied the heuristic belief updating rule, 
the error rate would decrease to 4.1% (correction baseline – c). All the proposed models construct 
beliefs that are significantly more accurate than the heuristic rule, and very close to the correction 
baseline: 4.9% using the basic features (basic model – BM), 4.3% if we add information about priors 
and confusability (full model – FM), and 4.4% if we use only the runtime features (runtime model – 
RM). The same effects can be observed in the Brier score evaluation (see Table 27, and the second 
row from Figure 76).  

For implicit confirmations, the initial baseline is at 30.3%. The correction baseline is at 
18.3%. Here, the relative improvement produced by the heuristic belief updating rule is smaller, from 

Baselines Models 
Action initial heuristic correction basic full runtime 

EC (classif. error) 
(Brier score) 

30.8% 
0.1715 

16.5% 
0.1201 

4.1% 
0.0406 

4.9% 
0.0375 

4.3% 
0.0325 

4.4% 
0.0345 

IC (classif. error) 
(Brier score) 

30.3% 
0.2081 

26.1% 
0.2180 

18.3% 
0.1827 

16.4% 
0.1277 

14.0% 
0.1063 

14.0% 
0.1063 

UIC (classif. error) 
(Brier score) 

15.2% 
0.1267 

14.9% 
0.1201 

12.4% 
0.1239 

11.7% 
0.0976 

9.4% 
0.0760 

9.4% 
0.0760 

 
Table 27. Performance of 1m

0nBU =
=  belief updating models (all models produce statistically significant 

improvements over the heuristic baseline; results in bold face represent statistically significant im-
provements over the correction baseline) 
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Figure 76. Performance of 1m

0nBU =
=  belief updating models 
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30.3% to 26.1%. The heuristic rule closes only 35% of the gap between the initial and correction 
baseline (30.3-26.1 / 30.3-18.3). The weak performance of the belief updating heuristics in this case is 
somewhat expected, given our observations from the previous section. User responses following im-
plicit confirmations cover a wider language spectrum (when compared to responses to explicit con-
firmations), and the belief updating task becomes more difficult. Nevertheless, the data-driven belief 
models performed significantly better, even exceeding the performance of the correction baseline: 
16.4% error rate for the basic model, 14.0% for the full model and 14.0% for the runtime model. 
The data-driven models outperform the correction baseline by leveraging a number of contextual and 
pragmatic features that are not used by the correction baseline heuristic. For instance, information 
such as the identity of the concept undergoing the confirmation can play an important role because 
certain concepts are more often misunderstood than others. Additional information about barge-in, 
turn number, dialog state, concept priors and confusability, etc. also helps construct more accurate 
beliefs in a single time-step.  

Finally, updating beliefs following unplanned implicit confirmations seems to be the most 
difficult of the three tasks. The heuristic baseline – 14.9%, produces only a minimal improvement 
over the initial baseline – 15.2%. The correction baseline is also fairly high – 12.4%. The problem is 
more difficult since typically the system performs more than one unplanned implicit confirmation in 
a single turn. As a result, even if disconfirmation markers are available in the user response, we are 
facing the problem of detecting which of the implicitly confirmed concepts the user is trying to cor-
rect. Still, the proposed data-driven models significant outperform both the heuristic and the correc-
tion baseline.  

We tested the statistical significance of the improvements produced by the proposed models. 
The results indicate that the improvements over the heuristic baselines are significant (both in terms 
of classification error and Brier score) at levels below p<0.003 (in most cases below 10-5). The belief 
updating models for implicit and unplanned implicit confirmations also significantly outperform the 
correction baseline (p<0.001). For these actions, the full model significantly outperformed the basic 
model, indicating the usefulness of prior and confusability features. Finally, no statistically significant 
differences could be observed at a p-level of 0.05 between the full and runtime models.  

6.4.4.4 Model analysis 

We inspected the resulting logistic regression models (see Table 28), in an effort to better understand 
which features were most informative for the belief updating tasks. The coefficients for each feature 
describe the effect of the feature on the log-odds of the “other” hypothesis being correct, versus the 
initial hypothesis h1. A negative coefficient indicates that the feature that increases the likelihood of 
the initial hypothesis being correct; a positive coefficient indicates a feature that decreases that likeli-
hood.  

For explicit confirmations, the presence of positive or negative confirmation markers (an-
swer_type=YES, answer_type=NO, answer_type=other) is informative, as expected. The confus-
ability score of the initial hypothesis (i_h1_confusability) is also informative, and the larger the 
score, the more likely that the initial hypothesis is correct (recall that higher values of the confus-
ability score mean the value is less confusable). On the other hand, the presence of a new hypothesis 
for that concept in the recognition result (srh_r1_avail) indicates that the initial hypothesis is less 
likely to be correct. The model also learned that, when the recognized user response consists of the 
single word “small” (lex_w1:SMALL), the initial hypothesis is most likely incorrect. This happens 
because “no” is often misrecognized as “small” (the two words are acoustically similar). Finally, the 
last feature in this model indicates that, when the concept confirmed is equip (concept_id:equip), 
the initial hypothesis is most likely incorrect.  

Similarly, for implicit confirmations, the presence of lexical confirmation markers (an-
swer_type), the initial confusability (i_h1_confusability), as well as the presence of a new con-
cept value in the recognition result (srh_r1_avail) plays an important role.  Another feature se-
lected by this model is the initial confidence score of the confirmed hypothesis (i_h1_confidence): 
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the higher the initial confidence score, the more likely that the initial hypothesis is correct. Finally, the 
model also includes information about the turn number and the presence of the word “three” in 
the recognized user response.  

The features selected and their weights correspond largely to our intuitions about the belief 
updating process. In fact, a number of these features are already used by our heuristic belief updating 
rule (the lexical confirmation markers, the initial confidence score, and the presence of a new value in 
the follow-up user response). However, the data-driven models discovered a number of additional 
informative features (e.g. contextual, prosodic, lexical, confusability), and tuned their weights to op-
timize the accuracy of the resulting beliefs.  

6.4.5 The 1m

1nBU ≥
=  model: updating beliefs after all system actions 

6.4.5.1 Model 

The 1m

0nBU =
=  model described in the previous section did not incorporate any new hypotheses from 

the recognition result into the belief space (n=0). In this section, we remove this restriction and re-

port results on the more general model family: 1m

1nBU ≥
= . These models keep track of m initial hypothe-

ses, and add one new hypothesis from the recognition result in each belief updating step. Since these 
models can incorporate new values from the user response, they can be used in conjunction with any 

system action, including request, and no-action. (In contrast to the 1m

0nBU =
=  model could only be 

used following confirmation actions). Note that we are still using a single recognition hypothesis at 
any given time (n=1).  

We report results on 2 different models: 1m

1nBU =
=  and 2m

1nBU =
= . In the first case, the multino-

mial output variable et+1 has degree 3: et+1=<ph1, pr1, pother>. In the second case, it has degree 4: 
et+1=<ph1, ph2, pr1, pother>. For instance, the equations governing the first model are:  
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6.4.5.2 Features 

The same set of features F  described in the previous section (see Table 26) was used. Again, one 
separate belief updating model was constructed for each of the five possible system actions.  

EC (explicit confirmation): full model 
Feature Coef. Effect 

k 4.33 + 

answer_type=YES -5.04 - 
answer_type=NO 2.87 + 

answer_type=other -1.00 - 

i_h1_confusability -4.83 - 

srh_r1_avail 2.87 + 

perc_unvoiced>m -1.79 - 

lexw1:SMALL 34.43 + 
concept_id:equip 4.51 + 

Table 28. 1m

0nBU =
=  belief updating models for explicit and implicit confirmations 

IC (implicit confirmation): full model 
Feature Coef. Effect 

k 3.64 + 

i_h1_confusability -4.49 - 
answer_type=YES -1.71 - 

answer_type=NO 1.59 + 

srh_r1_avail 3.30 + 

lex:THREE -2.69 - 

i_h1_confidence -3.49 - 

turn 0.03 + 
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6.4.5.3 Empirical results  

§ Results for 1m

1nBU =
=  model 

We begin by discussing the results for the 1m

1nBU =
=  model. The training and evaluation procedure was 

the same as the one described in the previous section. The results are presented in Table 29 and illus-
trated in Figure 77. 

For the request action, the initial baseline is uninformative. Prior to engaging in a request, 
the concept is empty, and therefore the initial hypothesis (empty) will most often be incorrect 
(98.2%). In a few remaining cases (1.8%), the initial empty value is indeed correct since the user does 
not actually specify a value for the requested concept in the follow-up response. The heuristic belief 
updating rule constructs an updated belief by taking into account the value heard from the recog-
nizer, with the corresponding confidence score. This leads to a classification error of 9.5%, which 
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1nBU =
=  belief updating models 
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constitutes our heuristic baseline. The correction baseline is not defined because in this case the sys-
tem did not engage in a confirmation action. The basic belief updating model leads to a small im-
provement over the heuristic (8.6% versus 9.5%), which is not statistically significant. Our confi-
dence annotator is well-tuned to this domain, and the proposed belief updating model cannot signifi-
cantly improve performance above that (when it uses a very similar feature set.) However, once prior 
and confusability features are added, a significant performance gain can be observed: 5.7% for the 
full model. The runtime model performs similarly at 5.6%. These results highlight again the useful-
ness of value-specific features such as priors and confusability. The Brier score evaluation (see Table 
29) reveals a similar result.  

For the no-action case, the initial baseline (79.7%) is again uninformative because in a large 
number of cases the initial value for the concept is empty. Like in the request case, the correction 
baseline is not defined. The heuristic belief updating rule leads to an error rate of 44.8%. All models 
show improvements over the heuristic rule: 19.3% for the basic model and 14.8% for the full and 
runtime models. The full models (which include priors and confusability) significantly outperform 
the basic models.  

For the remaining three actions – explicit confirmation, implicit confirmation, and un-
planned implicit confirmation – the results are very similar to previous results obtained with the 

1m

0nBU =
=  model. The 1m

1nBU =
= model creates beliefs that are significantly more accurate than the ones 

constructed by the heuristic rule, and even than the correction baseline. The improvements in Brier 
score are statistically significant across the board.  

The small differences in the initial, heuristic and correction baselines between Table 29 and 
Table 27 are explained by the fact that the models operate over different belief spaces. For the 

1m

0nBU =
=  model, the target variable is binomial, so the classification error and Brier scores correspond 

to a 2-class problem. For the 1m

1nBU =
= model, the target variable is a multinomial of degree 3, and the 

classification error and Brier score correspond to a multiple (3) class classification problem.  

§ Results for 2m

1nBU =
=  model 

In general, the 2m

1nBU =
=  belief updating model performed similarly to the 1m

1nBU =
=  model. The results 

are illustrated in Table 30. A comparison of training and test set performance revealed that for some 

actions, shown in boldface in Table 30, the 2m

1nBU =
=  models did over-fit to the training data. A closer 

investigation of these models showed that the cause is data sparsity. The multinomial target variable 

for the 2m

1nBU =
=  model has degree 4: the underlying belief space is {h1, h2, r1, other}. The h2 class is 

very poorly represented in the training set. In only 151 out of the 11332 training instances the h2 
hypothesis is non-empty, i.e. the initial belief contains a second concept hypothesis. Furthermore, in 
only 40 of these cases h2 is the correct class, i.e. the second initial hypothesis is the correct hypothe-
sis. As a consequence, very few or zero observations exist for certain combinations of feature values 

Baselines Models 
Action initial heuristic correction basic full runtime 

REQ (classif. error) 
(Brier score) 

98.2% 
0.8860 

9.5% 
0.0862 

- 
- 

8.6%
Ø
 

0.0672 
5.7% 

0.0489 
5.6% 

0.0491 
NO-A (classif. error) 

(Brier score) 
79.7% 
0.7094 

44.8% 
0.2704 

- 
- 

19.3% 
0.1603 

14.8% 
0.1189 

14.8% 
0.1189 

EC (classif. error) 
(Brier score) 

30.8% 
0.1755 

16.1% 
0.1240 

6.2% 
0.0619 

6.1% 
0.0478 

5.0% 
0.0409 

5.2% 
0.0401 

IC (classif. error) 
(Brier score) 

30.3% 
0.2168 

26.0% 
0.2238 

21.5% 
0.2145 

17.4% 
0.1373 

15.0% 
0.1168 

15.8% 
0.1209 

UIC (classif. error) 
(Brier score) 

15.2% 
0.1273 

14.9% 
0.1205 

14.1% 
0.1412 

11.7% 
0.0987 

9.2% 
0.0759 

9.2% 
0.0759 

 
Table 29. Performance of 1m

1nBU =
=  belief updating models (all results except for the one marked Ø rep-

resent statistically significant improvements over the heuristic baseline; results in bold face represent 
statistically significant improvements over the correction baseline) 
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and the h2 output class. In some cases those features appear as very informative, but this conclusion 
is based on a very small number of samples, and hence often invalid. We suspect these problems 
might be alleviated if more training data were available.  

Given the limited amount of available training data, a more conservative approach was used 
to prevent over-fitting: instead of using the Bayesian Information Criterion, we stopped adding fea-
tures to the model as soon as the average data log-likelihood on the validation set decreased. The 
results using this new cross-validation regularization method are also shown side by side with the 
initial results in Table 30. The new models do not over-fit the training data.  

The classification error rates and Brier scores for the models discussed so far ( 2m

1nBU =
=  in 

Table 30, 1m

1nBU =
=  in Table 29, and 1m

0nBU =
=  in Table 27) are not directly comparable since the underly-

ing belief spaces for these models are different. A comparative performance analysis of these models, 
using a common evaluation metric, is discussed later, in section 6.4.7. 

6.4.5.4 Model analysis 

Next, we inspected the learned models in order to identify the most informative features. The full set 

of 1m

1nBU =
=  models is presented in Appendix B. For brevity purposes we only discuss here the model 

for the no-action system action – see Table 31. Recall that this is the case in which the system hears a 
value for the concept, without specifically asking for that concept or engaging in any confirmation 
action with respect to it.  

The model coefficients are somewhat more difficult to interpret in this multinomial model. 
The r1/h1 coefficient reflects the log-odds for the new hypothesis (r1) being correct versus the initial 
top hypothesis (h1); in other words, how many times more likely is the new hypothesis versus the old 
hypothesis (on a log scale). A positive coefficient indicates that a higher feature value will increase the 
likelihood of the new hypothesis versus the old hypothesis; a negative coefficient indicates the oppo-
site. The other/r1 coefficient indicates the log-odds for the other hypothesis being correct, i.e. nei-
ther h1 or r1 being correct, versus the initial hypothesis being correct. 

As Table 31 shows, the model selects a fairly large number of features (22 in this case) from 
different knowledge sources in the system. The model uses prior and confusability information about 
both the initial and the new hypothesis, as well as other information such as the number of words in 
the recognized results (word_num), the identity of the concept confirmed (concept_id), whether the 

Table 30. Performance for the 1m

1nBU =
=  belief updating models (using BIC and Cross-Validation for 

regularization) 

Baselines Models 
Action initial heuristic correction basic full runtime 

BIC 
8.6% 

0.0672 
5.7% 

0.0489 
5.6% 

0.0491 REQ (c.e.) 
(Brier) 

CV 

98.2% 
0.8860 

9.5% 
0.0862 

- 
- 8.6% 

0.0667 
5.9% 

0.0499 
5.9% 

0.0499 

BIC 
20.1% 
0.1669 

21.1% 
0.1887 

21.1% 
0.1887 NOA (c.e.) 

(Brier) 
CV 

79.7% 
0.7094 

44.8% 
0.2704 

- 
- 22.2% 

0.1851 
19.8% 
0.1499 

19.8% 
0.1499 

BIC 
6.1% 

0.0491 
5.0% 

0.0439 
5.5% 

0.0445 EC (c.e.) 
(Brier) 

CV 

30.9% 
0.1757 

16.2% 
0.1242 

6.2% 
0.0619 8.1% 

0.0537 
5.6% 

0.0461 
6.1% 

0.0479 

BIC 
29.0% 
0.2548 

16.0% 
0.1308 

16.2% 
0.1300 IC (c.e.) 

(Brier) 
CV 

30.3% 
0.2168 

26.0% 
0.2238 

21.5% 
0.2145 19.8% 

0.1568 
16.3% 
0.1317 

16.4% 
0.1334 

BIC 
11.6% 
0.0980 

9.2% 
0.0771 

9.2% 
0.0771 UIC (c.e.) 

(Brier) 
CV 

15.2% 
0.1273 

14.9% 
0.1205 

14.1% 
0.1412 11.8% 

0.1013 
9.8% 

0.0810 
9.8% 

0.0810 
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initial hypothesis or the new hypothesis had already been confirmed or disconfirmed, lexical informa-
tion (lex), language model information (lm_score), etc.  

The precise contribution of each of these features is determined based on the training data. 
In most cases, the coefficients confirm the intuition. For instance if the new hypothesis heard had 
already been disconfirmed previously in the dialog (srh_r1_explicitly_disconfirmed_already), 
then its likelihood drops with respect to the initial hypothesis (-5.89). At the same time, the likelihood 
of the “other” hypothesis is slightly increased. On the other hand, if the initial hypothesis had already 
been confirmed (srh_h1_explicitly_confirmed_already), then the likelihood of the new hy-
pothesis drops dramatically (-13.68), but so does the likelihood of the “other” hypothesis (-14.84).  

In summary, the belief updating models take into account many other knowledge sources in 
comparison with current heuristics. The informative features are automatically selected from a large 
pool of features, and the model parameters are optimized accordingly.  

6.4.5.5 Scalability: an analysis of belief updating performance vs. concept cardinality 

Next, we investigated the scalability of the proposed belief updating models. Clearly, the proposed 
approach scales well with the number of concepts in the system. In fact, since the models update 
each concept independently, the proposed approach can be used in spoken dialog systems operating 
with an unlimited number of concepts. Information about concept identity can be used as a feature 
in the models, but a separate model does not need to be trained for every concept the system oper-
ates with. Instead, the compressed, abstracted belief representation allows us to use the entire corpus 
of concept updates in order to train belief updating models that generalize across concepts.  

Nevertheless, a second scalability issue remains: how well do the proposed models scale with 
the cardinality of the concept? What is the model performance for concepts with a small versus large 

numbers of possible values? In Figure 78 we show the 1m

1nBU =
=  model performance (obtained in cross-

validation, and averaged across different system actions) as a function of concept cardinality. With 
the notable exception of the Boolean concepts, the models perform similarly, regardless of the cardi-
nality of the concept, both in terms of classification error and Brier score. For instance the model 

Table 31. 1m

1nBU =
= belief updating model for no-action.  

NOA (no action): full model 
 Coefficients 
Feature r1/h1 other/h1 

k 1.79 6.90 

srh_r1_confusability 5.17 -0.26 

ivs=value -2.96 -1.79 

ivs=empty_no_hist -2.33 -3.43 

word_num=1 -2.37 -0.04 

word_num=2 -0.22 0.16 

word_num=3 0.12 0.31 

i_h1_prior -0.58 -0.99 

concept_id:date 0.77 6.43 

i_h1_prior_gt_1 0.89 -3.45 

srh_r1_explicitly_disconfirmed_already -5.89 1.33 

concept_id:_ChooseAnyRoom_trigger 16.31 3.37 

i_h1_confusability -4.52 -3.77 

ih_diff_lexical -1.15 -0.51 

srh_r1_prior 0.28 -0.02 

srh_h_h1_avail -1.68 -4.05 

lex:THAT'S 1.21 2.52 

concept_id:size 0.80 8.15 

dialog_state_id:HowMayIHelpYou -0.25 -1.59 

h_avg_confidence 3.25 1.29 

i_h1_explicitly_confirmed_already -13.68 -14.84 

word_num 0.40 0.03 

lm_score 0.00 0.00 
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performance for the start_time concept (cardinality 96), date concept (cardinality 365) and 
room_size concept (cardinality 500) is very similar to the model performance for the room_equip 
concept (cardinality 4), room_size_spec concept (cardinality 6), or room_location concept (cardi-
nality 13). We believe the better performance for the Boolean concepts is in part explained by better 
speech recognition performance for the possible values for this concept, i.e. yes and no.  

6.4.5.6 Sample efficiency: an analysis of training set size requirements  

Next, we investigated the relationship between model performance and training set size. Like for 
confidence annotation, we are interested in finding out how sample efficient the proposed models 
are, i.e. what are the training set size requirements?  

Successive models were trained using increasingly larger amounts of data: 20 random permu-

tation of each dataset were generated, and 200 data-points were held out for testing. The 1m

1nBU =
=  

concept cardinality (log-scale) concept cardinality (log-scale) 
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Figure 78. Average performance for the 1m

1nBU =
= model, as a function of concept cardinality 
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Figure 79. Brier score for 1m

1nBU =
=  model as a function of increased training set size (dotted line shows 

Brier score for heuristic belief updating rule) 
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models were trained using 100, 200, 300, 400, 500, 1000 samples, and so forth, continuing in incre-
ments of 500. The models were evaluated on the 200 held out data-points.  

The Brier score results for the 5 models corresponding to each system action are illustrated 
in Figure 79 (the classification error results reveal a very similar pattern). The performance of the 
models seems to have reached an asymptote for all system actions. The results from Figure 79 indi-
cate in fact that the models could be trained to attain very similar performance with only a third of 
the available training data, i.e. with only 150 dialogs.  

6.4.6 The 1m

1nBU ≥
≥  model: considering multiple recognition hypotheses 

6.4.6.1 Model 

The 1m

1nBU ≥
=  belief updating models described in the previous section added at most one additional 

hypothesis from the recognition result in each belief updating step (n=1). In this section we remove 

this restriction and consider the more general class of models 1m

1nBU ≥
≥ . These models allow the system 

to integrate multiple (n>1) concept-level hypotheses from each input, for instance by using a recog-
nition n-best list.  

The Sphinx-II speech recognition engine used in these experiments is not able to perform 
the n-best list computation fast enough to sustain a real-time end-to-end interaction. As a conse-
quence, we could not obtain and/or use this type of information at runtime. Recall however that the 
RoomLine system is equipped with two parallel Sphinx-II recognition engines, using gender-specific 
acoustic models. Each of these engines provides a separate recognition hypothesis; selection is per-
formed later, based on the utterance-level confidence score assigned by Helios. The availability of 

these two hypotheses allowed us to develop and evaluate 1m

2nBU ≥
= models.  

In particular, in this section, we report on a 1m

2nBU =
=  model. The model updates the belief 

space by retaining the previous topmost hypothesis, and adding at most two new hypotheses (r1, r2) 
from the user response; the user response consists in this case of the two recognition hypotheses 
generated by the parallel Sphinx-II engines. The multinomial output variable in this model, et+1, has 
degree 4: et+1=<ph1, pr1, pr2, pother>. The equations that govern the model are:  
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6.4.6.2 Features 

To construct this model, we started with the same set of features used in the previous models (de-
scribed in Table 26), and added a number of additional features that capture aspects of he extended 
user response. The additional features are described in more detail in Table 32.  

6.4.6.3 Empirical results 

The results for the 1m

2nBU =
= model are shown in Table 33.  As with the 2m

1nBU =
= models, simply using the 

Bayesian Information Criterion is not sufficient to always prevent over-fitting in these models. The 

belief space for the 1m

2nBU =
=  model has degree 4: the underlying belief space is {h1, r1, r2, other}. In 
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this case, the r2 class is under-represented in the training data. The r2 hypothesis is non-empty in 
only 327 of the total 11332 number of training points; in other words, in only 327 instances the sys-
tem can extract two new different concept hypotheses from the two parallel recognition hypotheses. 
And only in 83 of these instances the second new hypothesis (r2) is the correct one. As Table 33 
shows, using a cross-validation regularization method (as opposed to the Bayesian Information Crite-
rion) also helps in these cases.  

Table 33. Performance for the 1m

2nBU =
=  belief updating models (using BIC and Cross-Validation for 

regularization) 

Baselines Models 
Action initial heuristic correction basic full runtime 

BIC 
8.8% 

0.0741 
6.2% 

0.0531 
6.2% 

0.0535 REQ (c.e.) 
(Brier) 

CV 

98.2% 
0.8860 

9.5% 
0.0862 

- 
- 8.7% 

0.0718 
5.8% 

0.0505 
5.8% 

0.0505 

BIC 
22.1% 
0.1799 

24.8% 
0.2111 

17.0% 
0.1356 NOA (c.e.) 

(Brier) 
CV 

79.7% 
0.7094 

44.8% 
0.2704 

- 
- 23.5% 

0.1815 
18.2% 
0.1439 

18.2% 
0.1439 

BIC 
11.8% 
0.0894 

10.5% 
0.0790 

15.1% 
0.1077 EC (c.e.) 

(Brier) 
CV 

30.9% 
0.1757 

16.2% 
0.1242 

6.2% 
0.0619 5.7% 

0.0441 
5.1% 

0.0415 
5.8% 

0.0437 

BIC 
26.5% 
0.1793 

18.8% 
0.1424 

18.8% 
0.1449 IC (c.e.) 

(Brier) 
CV 

30.3% 
0.2168 

26.0% 
0.2238 

21.5% 
0.2145 21.7% 

0.1610 
17.1% 
0.1287 

17.1% 
0.1287 

BIC 
13.2% 
0.1082 

10.4% 
0.0811 

10.4% 
0.0811 UIC (c.e.) 

(Brier) 
CV 

15.2% 
0.1273 

14.9% 
0.1205 

14.1% 
0.1412 12.0% 

0.1005 
9.9% 

0.0790 
9.9% 

0.0790 

 

Feature name Type Derived 
features 

Feature description 

 

Features characterizing new values in the user response (the two parallel recognition hypothesis) 
 

ur2_i_h1_avail B  the initial top concept hypothesis is present in the user response 
(i.e. in at least one of the 2 parallel hypotheses) 

ur2_i_h1_confidence C  the confidence score for the top concept hypothesis in the user 
response 

ur2_r1_avail B  the user response contains a new concept hypothesis 

ur2_r1_confidence C >.25, >.50, 
>.75 

the confidence score for the first new concept hypothesis con-
tained in the user response 

ur2_r2_avail B  the user response contains a second new concept hypothesis  

ur2_r2_confidence C >.25, >.50, 
>.75 

the confidence score for the second new concept hypothesis 
contained in the user response 

ur2_r1_diff_r2 B  the two parallel hypotheses contain two different new concept 
values 

 

Priors 
 

ur2_r1_prior C >1 prior score for the first new concept hypothesis in the user re-
sponse 

ur2_r2_prior C >1 prior score for the second new concept hypothesis in the user 
response 

 

Confusability 
 

ur2_r1_confusability C >m confusability score for the first new concept hypothesis in the user 
response 

ur2_r2_confusability C >m confusability score for the second new concept hypothesis in the 
user response 

 
Table 32. Additional belief updating features for the 1m

2nBU =
=  model 
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6.4.7 A comparative evaluation of belief updating models 
In the previous sections we have described and evaluated four incrementally more complex belief 

updating models. The first model, 1m

0nBU =
= , reasons only about the top initial hypothesis of a concept 

and updates the system’s belief in that value in light of user responses to system confirmation ac-

tions. The second model, 1m

1nBU =
= , keeps track of at most two concept hypotheses: in each belief up-

dating step, it keeps the current top concept hypothesis, adds a new hypothesis from the follow-up 
user response, and constructs an updated belief over this space. The third and fourth models keep 

track of at most three concept hypotheses. The third model, 2m

1nBU =
= , operates with a belief space 

formed top two initial concept hypotheses and a new hypothesis from the recognizer. The fourth 

model, 1m

2nBU =
= , operates with a belief space formed of the top initial concept hypothesis and two new 

concept hypotheses extracted from two parallel recognition results; in the more general case, these 
hypotheses could be exatracted from an n-best list. 

It is interesting to understand how these models compare to each other. The classification-
error-rates and Brier scores presented so far for these models in Table 27, Table 29, Table 30 and 
Table 33 are not directly comparable to each other because each model operates and is evaluated in a 
different underlying belief space. To perform a valid comparison, we expanded the compressed be-
liefs constructed by each model into their corresponding full beliefs. This was accomplished by uni-
formly dividing the probability mass associated with the “other” hypothesis among the remaining 
possible concept values. The Brier scores were then re-computed in this full belief space. The results 
are presented in Table 34 and illustrated in Figure 80.  

The results indicate that the three models that take into account at least one new hypothesis 

from the follow-up user turn, 1m

1nBU =
= , 2m

1nBU =
= , 1m

2nBU =
= , perform better than the simplest model 

1m

0nBU =
= . This result is expected: ignoring new concept hypotheses in the user response is clearly det-

rimental. In addition, there are no significant differences between the performance of the last three 
models: increasing the value of k beyond 2 does not lead to additional performance gains. This result 
is also not surprising because there are only few cases in the training data in which there was a valu-
able second hypothesis in the initial belief or in the user response. We believe that this result is to a 
large extent an artifact of the particular recognition system and experimental setup we have used. In 
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general, we conjecture that the more complex models could leverage an n-best list that contained 
multiple alternate concept-level hypotheses for further performance gains. In the future, it would be 
interesting to understand how the proposed belief updating models perform under those conditions.  

6.4.8 Concluding remarks 
Spoken dialog systems typically use confidence scores to detect potential misunderstandings. While 
confidence scores can provide an initial, turn- or concept-level assessment of the reliability of the 
information obtained from the recognizer, ideally systems should combine evidence from subsequent 
user turns to update their beliefs throughout the conversation.  

In this section, we have discussed a data-driven approach for this belief updating problem. 
The proposed approach builds upon previous work on confidence annotation and correction detec-
tion and provides a unified framework that allows a spoken dialog system to integrate evidence from 
multiple turns in the conversation and continuously update and improve the accuracy of its beliefs. 
The approach uses a compressed representation of beliefs: instead of storing and updating a prob-
ability distribution over the full set of possible values for a concept, the proposed belief updating 
models keep track only of the top-k most likely hypotheses (where k is a small integer). In each belief 
updating step, the system remembers the top-m of the initial top-k hypotheses for a concept, and 
adds n new hypotheses from the recognition results. The underlying compressed belief space for 
each concept changes therefore throughout the conversation, as new concept hypotheses are added 
and old ones are dropped. This compressed belief representation allows us to cast the 1-step belief 
updating problem as a multinomial regression task, and makes a learning-based approach tractable. 

Using the proposed methodology, we have constructed and evaluated four different belief 
updating models operating with increasingly larger belief spaces (from k=1 to k=3). Empirical results 
show that the proposed models significantly outperform typical heuristic rules used for this task. In 
some cases, the models perform even better than a heuristic that has access to a perfect correction 
detector. Additionally, we have analyzed the sensitivity of these models to the amounts of training 
data and to the cardinality of the concepts they operate over. The results indicate that the models are 
both sample efficient and scalable. 

The proposed belief updating models select and combine a large number of features ex-
tracted from different knowledge sources in the system. The relative weights of these features are 
learned automatically from data; often, the selected features and their weights are in line with our 
intuitions. Experiments with different feature subsets have highlighted the importance of high-level 
and domain-specific information such as the identity of the concept to be updated, the prior likeli-
hoods of various concept values, and confusability scores. We believe that further improvements in 
performance can be attained by leveraging additional high-level features. For instance, in these ex-
periments the prior likelihoods were constructed manually by a domain expert, for only 3 of the 28 
concepts that the system operates with. Data-driven priors might provide an even more accurate ba-
sis for belief updating. Other high-level knowledge such as domain-specific constraints or inter-
concept dependencies may also lead to further performance improvements. For instance, no confer-
ence room reservations are made from 4 p.m. to 2 p.m.; rather, reservations are made from 2 p.m. to 
4 p.m. This type of domain-specific constraint could also be captured as a feature and used in the 
belief updating process. 

Baselines Models 

Action initial heuristic 1m

0nBU =
=  

1m

1nBU =
=  

2m

1nBU =
=  

1m

2nBU =
=  

REQ 0.6711 0.1212 - 0.1019 0.1014 0.0949 
NO-A 0.7872 0.4259 - 0.3264 0.3389 0.3249 

EC 0.2862 0.1851 0.1870 0.1693 0.1675 0.1696 

IC 0.3652 0.2991 0.3076 0.2766 0.2731 0.2820 
UIC 0.1637 0.1650 0.1557 0.1373 0.1380 0.1377 

 
Table 34. Performance comparison between 1m

2n
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=

=
=

=
=

=
= belief updating models 

 



192 Error awareness and recovery in conversational spoken language interfaces  
 

 

In these experiments, the models operating over larger belief spaces, e.g. using k=3, did not 
produce significant improvements over the simpler k=2 models. We believe this is an artifact of the 
particular setup in which the training data was collected: no n-best list information was available. If 
the speech recognizer can generate a dense concept-level n-best list, further performance improve-
ments might be possible by using models with larger values of n, i.e. models that incorporate in the 
belief space multiple hypotheses from the n-best list in each turn.  

The model evaluations discussed so far were local in character. While the results are encour-
aging, our ultimate goal is not just to construct accurate beliefs, but rather to improve the efficiency 
and effectiveness of the interaction by doing so. One important question therefore remains: will the 
observed improvements on the one-step belief updating task lead to significant improvements in 
global dialog performance? We address this question in the next section.  

6.5 Impact on global dialog performance 

To assess the impact of the proposed belief updating models, we conducted an additional user study 
in which we compared a system that used the heuristic belief updating rules against a system that 
used the proposed data-driven belief updating models. We begin by describing the experimental de-
sign in the next subsection. Then, in subsection 6.5.2.1, we discuss in detail the results of this ex-
periment.  

6.5.1 Experimental design 
The user study was designed as a between-groups experiment, during which 40 participants inter-
acted with the RoomLine system. The participants were randomly assigned into 2 gender-balanced 
groups: control and treatment. Participants in the control group interacted with a version of the 
system that used simple heuristic update rules (described more extensively in section 6.4.2.4) to per-
form belief updates. Participants in the treatment group interacted with a version of the system that 
used the runtime belief updating models. In all other respects, the two systems were identical. 

During the experiment, each participant attempted a maximum of 10 scenario-based interac-
tions with the system, within a set time of 40 minutes. The same 10 scenarios were presented in the 
same order to all participants. The scenarios were designed to cover all the important aspects of the 
system’s functionality and had different degrees of difficulty. To avoid language entrainment, the 
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scenarios were presented to the participants in a graphical fashion. An example scenario is shown in 
Figure 81. In this example, the user had to reserve a conference room with a projector and a network 
connection on the following Wednesday, from 2 p.m. to 4 p.m.  The graphical encoding was ex-
plained to the participants prior to the experiment. 

All the participants in this experiment were non-native speakers of north-American English; 
none of them had any previous experience with the RoomLine system. This choice was motivated by 
the intuition that improvements in belief updating performance are likely to translate into overall per-
formance improvements especially when if the word-error-rate is high. At low word-error-rates, sim-
ply trusting the inputs leads to generally accurate beliefs. Not many opportunities for improvement 
exist in this case. However, as recognition performance degrades, it becomes more and more impor-
tant that the system is able to accurately assess its beliefs. In this case, an accurate belief updating 
mechanism has the potential to significantly improve dialog performance. This hypothesis was in-
deed confirmed by empirical evidence; we discuss it in more detail in section 6.5.2.  

6.5.2 Empirical results 

6.5.2.1 Data 

The corpus collected in this experiment contains a total of 384 dialog sessions and 6389 user turns. 
Each user turn was orthographically transcribed by a human annotator and the turn-, session- and 
user-level word-error-rates were computed. A binary measure of task success was also computed.  

One of the 40 participants systematically misunderstood 7 out of the 10 scenarios. We ex-
cluded all the data collected from this participant from the analysis presented below. Keeping the 
corresponding data in the corpus leads to a stronger, but we believe less accurate result. 

6.5.2.2 Impact on effectiveness 

We first investigated the impact of the experimental condition on the effectiveness of the interaction, 
i.e. on the task success rate. The overall task success rate in the treatment condition was larger than in 
the control condition: 81.3% versus 73.7% (p=0.0724).  

Apart from the experimental condition, another factor that exerts a very significant effect on 
dialog performance is the recognition accuracy. As discussed earlier we expected improvements es-
pecially at higher word-error-rates (WER). As a first step towards better understanding the effect of 
the belief updating models at different word-error-rates we binned the sessions in 6 classes according 
to their average word-error-rate and then computed the average task success rates in the treatment 
and control conditions for each class. The results are shown in Figure 82. The plot seems to confirm 
that indeed larger gains in performance are obtained when the word-error-rates are higher.  

A lot of the variance in task success in each of the two experimental conditions is therefore 
explained by the word-error-rate of each individual user. A more sensistive statistical analysis of the 
impact of the belief updating models on task success can therefore be performed if we also take into 
account this additional word-error-rate factor. We therefore performed a statistical analysis of covari-
ance (ANCOVA) using task success (TS) as the independent variable, the experimental condition 
(Condition) as a main effect and the average word-error-rate (WER) as a covariate.  

TS ← WER + Condition 

The analysis was performed both at the session- and user-level. At the session level, the task 
success variable is binary; we therefore performed a logistic ANOVA. The resulting model was:  

Condition681.0WER049.0085.2)
)0TS(P

)1TS(P
log( ⋅+⋅−=

=

=
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Adding the WER as a covariate in the model indeed improves the sensitivity of our statistical 
analysis and confirms that the experimental condition exerts a statistically significant impact on task 
success: p=0.0102. The effect of the WER is also significant, at a p-value < 10-4. Based on this fitted 
model, we plotted the expected probability of task success as a function of WER in the two experi-
mental conditions in Figure 83.A. The proposed models lead to gains in task success across a wide 
range of WER. As expected, at low word-error-rates the improvements are relatively small (see 
Figure 83.B.). As the word-error-rate increases, the expected improvement in the probability of task 
success also increases, and reaches a maximum of 16.3% absolute for a WER of 47%. Finally, at very 
high word-error-rates the size of the improvement decreases again. This profile can be explained by 
the fact that at low word-error-rates the recognition results are mostly correct, and simple heuristic 
belief updating rules will suffice. At the same time, very high word-error-rates limit the ability of any 
belief updating mechanism to construct accurate beliefs. In the extreme, if the correct value is never 
hypothesized by the recognizer, it will be nearly impossible to construct an accurate belief.  

In the middle WER range, the proposed belief updating models allow the system to con-
struct more accurate beliefs, which in turn lead to significant improvements in task success. For in-
stance, at an average WER of 30%, the belief updating models produce a 14% absolute improvement 
in task success, from 64% to 78%. To attain the same task success with the control system, we would 
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Figure 82. Empirical probability of task success at different WER for the treatment and control conditions 
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need a word-error-rate of 16%. In this case, the improvement is equivalent with cutting the word-
error-rate in half. More specifically, the proposed models improve the log-odds of task success by the 
same amount as a 13.8% absolute reduction in WER (this number is obtained by dividing the corre-
sponding weights for the WER and Condition in the ANCOVA model 0.681 / 0.049).  

A second analysis of covariance was performed at the user-level. In this case the independ-
ent variable in the model was the average per-user task-success rate, the main effect was the experi-
mental condition and the average per-user word-error rate was the covariate. The results are illus-
trated in Figure 84. Both the word-error-rate (F=21.07, p=0.0001) and the experimental condition 
(F=4.44, p=0.0423) exerted a statistically significant effect on the average per-user task success rate. 
The regression lines from Figure 84 again reflect that larger improvements are obtained within the 
user population with larger word-error-rates.  

6.5.2.3 Impact on efficiency 

In the previous subsection, we have seen that the proposed belief updating models significantly im-
prove the probability of task success, across a wide range of word-error-rates. In addition, we also 
investigated the impact of the proposed models on the efficiency of the interaction. We suspected 
that, apart from leading from more successes, the increased system ability to construct accurate be-
liefs would also help users complete the tasks in a shorter period of time.  

We performed an analysis of variance using task duration for successful tasks as the inde-
pendent variable (TD). Task duration was measured as the number of turns to completion, and mod-
eled as a Poisson variable. Like for the task success analysis, we used the experimental condition as 
the main effect and the session-average word-error rate as a covariate. Since the scenarios involved a 
different degree of complexity, they inherently had different mean durations. We normalized for the 
identity of the scenarios by introducing an offset variable in the model (this is equivalent to dividing 
each session length by the mean length of that particular scenario). The model therefore was:  

TD ← Offset + WER + Condition 

The resulting fitted model is described by the following equation 

log(TD) =  -0.21 + 0.013·WER - 0.106·Condition + log(offset) 

Both the word-error-rate (p<10-4) and the experimental condition (p=0.0003) exert a signifi-
cant effect on task duration. This time, the effect of the word-error-rate is positive, i.e. the higher the 
word-error-rate, the longer the time to completion. The experimental condition exerts a negative im-
pact on duration. The fitted normalized duration as a function of word-error-rate in the two experi-
mental conditions is illustrated in Figure 85. Users (successfully) complete tasks faster with the sys-
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Figure 84. Expected user-level probability of task success as a function of word-error-rate in the con-
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tem that uses the new belief updating models. The improvement produced by the belief updating 
models is equivalent in this case with a 7.9% absolute reduction in word-error-rate (0.106/0.013 = 
7.9). 

6.6 Summary and future directions 

To date, various machine learning methods have been proposed for detecting misunderstandings [22, 
44, 53, 70, 85, 102, 104, 117, 130] and corrections [54, 63, 68, 69, 121] in spoken dialog systems. 
Typically, these detectors work at the turn level (either on the whole utterance or on individual con-
cepts in the utterance.) In this chapter, we have argued that spoken dialog systems should integrate 
evidence across multiple turns in a conversation and continuously monitor and improve the accuracy 
of their beliefs. We have proposed and evaluated a scalable, data-driven approach for this belief up-
dating problem.  

The approach relies on a compressed representation of beliefs and tracks up to k hypotheses 
for a concept at any given time (k is a small integer). The rest of the probability mass corresponding 
to all the other possibilities is clustered into a single “other” category. Using this representation, the 
belief updating problem can be cast as a multinomial regression task, and a data-driven approach be-
comes tractable. A multinomial generalized linear model can be trained from data to perform the 
updates. Experimental results discussed in this section show that the proposed approach significantly 
outperforms the heuristic rules currently used for this task in current systems. Furthermore, a user 
study with a mixed-initiative spoken dialog system shows that the approach leads to significant gains 
in task success and in the efficiency of the interaction, across a wide range of recognition error rates. 

Independent of the gains in belief accuracy, and dialog effectiveness and efficiency, the pro-
posed method has several other desirable properties. First, the proposed approach learns from data, 
tracks multiple hypotheses, and integrates information across multiple turns in the conversation. The 
idea of updating beliefs through time in spoken language interfaces also appears in previous work. 
For instance Higashinaka et al. [51] keep track of multiple dialog-states and resolve the ambiguities 
using empirical probabilities of dialog-act / dialog-act and dialog-act / dialog-state sequences. Before 
that, Paek and Horvitz [83] used a handcrafted Dynamic Bayesian Network to continuously update 
the belief over a user’s goal in a command-and-control application. We take inspiration from their 
work and we automatically induce the models from data. One important advantage of the proposed 
machine learning technique (multinomial generalized linear models) is that it allows us to consider a 
very large number of features from different knowledge sources in the system, and it does not require 
expert knowledge about the potential relationships between these features. The most informative 
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Figure 85. Expected task duration (# turns) for successful tasks as a function of word-error-rate in the 
control and treatment conditions 
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features are automatically selected and weighted accordingly.  

 Second, the proposed approach is sample efficient and scalable. The focus is on a local, one-
turn, rather than a global optimization. Furthermore, beliefs over each concept are updated inde-
pendently: no inter-concept dependencies are modeled at this point. Such dependencies could how-
ever be taken into account in the proposed framework by adding inter-concept features. Although 
we sacrifice a theoretical notion of global optimality, learning is feasible even with relatively little 
training data. We have shown that this approach can lead to significant gains in task success and dia-
log efficiency in a real-world, fairly complex spoken dialog system. RoomLine operates over a space 
of 28 concepts with cardinalities ranging between two to several hundred possible values. Our results 
indicate that good local decisions can sum up to improvements in overall performance.  

Third, the approach is portable. The belief updating framework was implemented as part of 
a generic dialog engine, decoupled from any particular dialog task. Modulo training data require-
ments, the approach can be reused in any new domain. More importantly, the approach does not 
make any strong assumptions about the dialog management technology used (e.g. form-filling, plan-
based, task-oriented, information state update, etc). Consequently, the system developer is not tied to 
any particular type of dialog controller. The approach we have discussed in this chapter has been 
constructed in the context of a plan-based dialog manager, but is applicable in the context of any 
other dialog manager, as long as a notion of concept/slot/goal with multiple hypotheses exists.  

The belief updating framework described in this chapter also raises a number of interesting 
follow-up questions. First, we believe that further performance improvements are possible. We have 
seen that high-level and domain-specific features play a very important role in these models. We be-
lieve that identifying and leveraging additional high-level knowledge such as domain-specific con-
straints or inter-concept dependencies can lead to additional performance gains. Furthermore, the 
models we have discussed so far have not made use of n-best list information. This was an artifact of 
the particular system we experimented with: our speech recognizer was not fast-enough to produce 
n-best lists online. The structure of the proposed belief updating models does however enable the 
use of n-best list information. In the presence of a speech recognizer that can generate a dense con-
cept-level n-best list, further performance improvements might be possible.  

The abstracted nature of the compressed belief representation also opens up a number of 

other opportunities in terms of model structure. For instance, the 1m

1nBU =
=  model discussed in subsec-

tion 6.4.5 remembers in each belief updating step the top initial hypotheses {h1} and adds one new 
hypothesis from the recognition result {r1}; the model constructs a new belief over the space {h1, 
r1, other}. The model does take into account confusability information, but only in the form of 
scores that reflect how confusable each of the h1 and r1 hypotheses is. Knowing for instance that the 
new value heard from the recognizer (r1) is in general confusable is useful, but knowing which value 
r1 is most often confused with can provide additional information; this latter information is not used 
by the current model. One way to take such information into account would be to construct a belief 
updating model with a slightly different structure. In each belief updating step, the model would re-
member the top initial hypothesis {h1} and would add one new value from the recognition result 
{r1}, but also the value that is most confusable with r1 – let’s call it cr1. (Pre-computed confusability 
pairs would be necessary in this case.) The model would then construct an updated belief over the 
space {h1, r1, cr1, other}.  

The belief updating models we have discussed in this chapter were trained via a supervised 
learning technique: multinomial regression models. The multinomial regression model is the natural 
extension of the logistic regression model to the case when the output variable is multinomial. This 
modeling technique has a number of good properties: the models are simple, can be trained from 
relatively little data and an automatic feature selection mechanism is integrated in the model building 
process (i.e. stepwise regression.) However, other multi-class supervised learning techniques could be 
used for the same task, such as decision trees, Bayesian networks, multi-class SVMs, etc. In the fu-
ture, it would be interesting to comparatively evaluate several such techniques, like we did on the 
confidence annotation task in the previous chapter. Furthermore, in section 5.5 we have outlined two 
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general drawbacks of the supervised learning paradigm in the context of spoken language interfaces: 
(1) the require a pre-existing labeled corpus which is expensive and labor intensive to acquire, and (2) 
they favor “batch”-style training which does not match well the dynamic nature of the environments 
in which these systems operate. To address these drawbacks, in the previous chapter on confidence 
annotation we have investigated methods for generalizing error detection models across new do-
mains, and we have proposed an implicitly-supervised learning paradigm for training models in an 
online fashion by extracting the supervision signal directly from the interaction. In the future, it 
would be interesting to investigate the same issues in the context of the proposed belief updating 
models: can we transfer or easily adapt models trained in one dialog domain to a different domain? 
Can we train these models online, by leveraging naturally-ocurring patterns in the interaction?  

The belief updating models described in this chapter operate over concepts, i.e. they allow us 
to infer and update beliefs over the various pieces of information that the system acquires from the 
user. They do not provide any information about the correctness of the system state (i.e. are the sys-
tem and the user grounded in terms of the current state in the task?) or about how to guide the sys-
tem actions. In fact, in the RavenClaw arhictecture, there is no direct, explicit notion of state. Rather, 
the state is implicitly defined by the current values (and corresponding uncertainties) of the concepts 
acquired from the user and by the current dialog stack (see section 3.2.3.) Nevertheless, we believe 
that introducing a model of uncertainty and performing belief updates over the system state (in this 
case over the dialog stack) can provide an even more flexibility and can further increase the error 
handling abilities in the system. For instance, in [56], Horvitz and Paek articulate a conversational 
architecture for goal-oriented dialog that represents the possible user goals in a hierarchical fashion 
and allows for inference at different levels in this hierarchy. The authors show how value-of-
information analyses can be used to guide the system’s actions and to allow it to make principled de-
cisions about when to backtrack in the dialog. In the future, it would be interesting to consider how a 
similar model of state uncertainty could be trained from data and integrated in a task-oriented dialog 
management framework like RavenClaw.  

Finally, we believe the compressed belief calculus described in this chapter is applicable in a 
number of other problems beyond updating system beliefs in conversational spoken language inter-
faces. The “k+other” representation can be used in any problem that involves updating a large-
degree multinomial distribution through time. Generally these are detection problems with large sets 
of possible outcomes. The “k+other” calculus can be seen as a useful heuristic that, under certain 
conditions makes learning-based approaches tractable. To fully exploit this heuristic, we need how-
ever to better understand its properties, advantages and limitations. A number of interesting theoreti-
cal questions arise. For instance, what is the relationship between a “k+other” multinomial model 
and the corresponding full multinomial model? Can we construct any guarantess (i.e. bounds) regard-
ing the performance loss we can expect due to the lossy “k+other” compression? Intuitively, the loss 
depends on k, on the total number of possible outcomes, and on the nature of the underlying proc-
ess that generates the observations throughout time. For instance, in the particular context of updat-
ing beliefs in spoken dialog systems, we have seen that, given the nature of the speech recognition 
process, the system hears (observes) only a limited set of possible outcomes throughout a conversa-
tion (i.e. throughout time). As a consequence, a small value for k is sufficient in this case, and we 
have empirically verified that further increasing k does not lead to any additional performance gains. 
This will however not be the case for any setting. In fact, adversarial conditions that lead to signifi-
cant performance degradations can be easily envisioned. Clearly, k introduces a trade-off between 
tractability and expected- or perhaps worst-case performance. In the future, it would be interesting to 
start from a theoretical characterization of the process that generates the underlying observations, 
and, based on it, study these tradeoffs and create more principled solutions for choosing k.  
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Chapter 7  

Rejection threshold optimization 

We now turn our attention to the second type of understanding-error that affects 
spoken language interfaces: non-understandings. More precisely, in this chapter we 
address the issue of rejection non-understandings, and the trade-off it introduces be-
tween non-understandings (in the form of false-rejections) and misunder-standings. 
We start from the assumption that different understanding-errors have different 
costs at different points in the dialog. We develop a data-driven method that allows 
us to infer these costs by relating the number of errors to global dialog performance. 
Once the costs are known, we use them to optimize state-specific utterance rejec-
tion thresholds in a principled manner. We applied this method on data collected 
with the RoomLine systems. The resulting costs and state-specific rejection thresh-
olds confirm our expectations, and are consistent with other anecdotal evidence 
gathered throughout the use of the system. 

7.1 Introduction 

Detection of non-understandings is, in general, an easy task. By definition a non-understanding is a 
situation in which the system knows the user took a turn (because a speech signal was identified), but 
fails to construct a valid discourse-level interpretation for the recognized result. In subsection 2.1.3 
from Chapter 2 we have defined three types of non-understandings: no-input, in which no semantic 
interpretation can be obtained for the current recognition hypothesis; unexpected-input, in which a 
semantic representation is generated, but this representation cannot be incorporated in the current 
discourse structure; and rejection, in which the system deliberately rejects an input because of a low 
confidence score. The first two types, no-input and unexpected-input non-understandings can be 
detected automatically by definition. The last type, rejection non-understanding, does however raise 
an interesting question: when should a system reject an utterance? (i.e. how low does the confidence 
score have to be?)  

The rejection mechanism is used as a device to guard against potential misunderstandings. 
We have seen in the previous chapters that spoken language interfaces typically use confidence scores 
to assess the reliability of the information contained in the recognition results. If an utterance has a 
very low confidence score, the system might decide that the likelihood of a misunderstanding is too 
high, and reject the utterance altogether. In effect, the system creates a rejection non-understanding 
in order to avoid a potential misunderstanding. Figure 86 provides a couple of examples. In the 
RavenClaw/Olympus infrastructure rejection is performed at the utterance level, i.e. a whole utter-
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ance is rejected at a time due to a low confidence score. This however need not be the case; rejection 
could also be performed on a concept-by-concept basis.  

Spoken dialog systems typically decide to reject utterances by comparing the confidence 
score against a certain rejection threshold: if the score falls beneath this preset threshold the risk of 
misunderstanding is considered too high and the system rejects the utterance. Unfortunately, as we 
have already seen from the previous chapters, confidence scores are not perfectly accurate. Incor-
rectly understood utterances can have high confidence scores; conversely, correctly understood utter-
ances can have low confidence scores. As a consequence, the system will sometimes reject correctly 
understood utterances; we deem these false-rejections. The use of a rejection mechanism18 introduces 
a trade-off between the number of misunderstandings and false-rejections. As the rejection threshold 
increases the system becomes more conservative: it accepts only inputs that have high confidence, 
and as a result the number of misunderstandings will decrease. This happens however at the cost of 
increasing the number of false rejections. The corresponding trade-off curves are illustrated in Figure 
87.A.  

Another way to think about this trade-off is in terms of correctly and incorrectly transferred 
concepts. In each utterance, the user tries to convey one or more concepts to the system. If the con-
fidence score is below the rejection threshold, the system rejects the utterance and no concept is 
transferred. On the other hand, if the system accepts the utterance, some concepts will be transferred 
correctly, while others might be misrecognized (in general, any given utterance might contain a mix-
ture of correctly- and incorrectly-recognized concepts). Ideally, we would like to maximize the num-
ber of correctly transferred concepts and minimize the number of incorrectly transferred ones. How-
ever, as we raise the rejection threshold in order to lower the number of incorrectly transferred con-
cepts, the number of correctly transferred ones also decreases, as shown in Figure 87.B. 

The question we address in this chapter is: given the existence of this trade-off, how can 
we set the rejection threshold in a principled manner? We begin by discussing a number of cur-
rent approaches for this problem in the next section; these approaches are heuristic in nature and do 
not take into account the fact that the optimal trade-off between non-understandings and misunder-
standings might vary at different points in the dialog. Next, in section 7.3 we formalize the task at 
hand. Then, in section 7.4 we propose a principled, data-driven approach for inferring state-specific 

                                                      
 
18 this rejection mechanism is commonly encountered in most spoken language interfaces. However, it is not mandatory: 
some systems might accept (and perhaps explicitly confirm) all inputs; as we shall see in this chapter, experimental results 
indicate that a “never-reject” strategy might be more appropriate in a number of situations.  

Example 1: (rejection non-understanding in turn 2 / true-rejection) 
1 S: For when do you need the room? 

2 U: next Thursday noon to two  
  R: NEXT DAY ONE TO / 0.11 

  P: [day=tomorrow, start_time=one] 

 
Example 2: (rejection non-understanding in turn 2 / false-rejection) 
1 S: How else can I help you today? 

2 U: I need to make sure the room will hold forty people and has a network connec-

tion and a data projector 
  R: I NEED TO RESERVE A ROOM FOR HOLD FORTY PEOPLE AND 

HAS NETWORK CONNECTION BENNETT DATA PROJECTOR / 0.14 
  P: [size=40, equipment=network; projector] 

Figure 86. Sample rejection non-understandings in a conference room reservation system; example 1 
shows a true-rejection, example 2 shows a false-rejection 

(S: marks the system turns, U: marks the user turns, R: marks the recognition result, P: marks the 
semantic representation of the recognition result) 
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costs for various types of understanding-errors; we show how this technique can be used to optimize 
the non-understanding/misunderstanding trade-off in a state-specific manner. Finally, in section 7.5 
we summarize the results and outline several potential directions for further extending this work.  

7.2 Related work 

Oftentimes rejection thresholds are set either at some arbitrary point (e.g. 0.3), or according to vari-
ous rules-of-thumb and existing recommendations. For instance, the Nuance speech recognition en-
gine [77] has a default value of 45 for the rejection threshold (the range is 0-100); the manual strongly 
recommends that this value is not to be changed – see Figure 88. Such an apriori, fixed rejection 
threshold is likely to be suboptimal for a number of reasons. Confidence annotators included in off-
the-shelf speech recognition engines are typically optimized with respect to word-error-rate, while in 
the context of a spoken dialog system semantic-error is more important (see Chapter 5). Even if the 
annotator captures semantic confidence, intuitively the relative costs of false-rejections and misun-
derstandings are likely to vary across different systems. Moreover, these costs can vary even across 
different dialog states within the same system (some pieces of information are more important than 
others). As a consequence, the trade-offs between these types of errors, and hence the optimal rejec-
tion threshold is likely to be different in each of these conditions. 

Another common approach is to empirically construct the trade-off curves and optimize the 
threshold based on rules-of-thumb regarding the costs of misunderstandings and rejections [31, 61, 
91]. If the misunderstandings in a corpus are manually labeled, these trade-off curves can be inferred 
by counting how many misunderstandings and false rejections would occur in the system at various 
simulated rejection thresholds. Once the trade-off curve is available, a frequently used rule-of-thumb 

Figure 88. Rejection threshold recommendation in Nuance speech recognizer documentation  

Figure 87. Typical rejection trade-off curves 
A. misunderstandings and false rejections. B. correctly and incorrectly transferred concepts per turn 

  Misunderstandings 

  False rejections 

  Correctly transf. conc. / turn 

  Incorrectly transf. conc. / turn 

0      0.2      0.4      0.6      0.8      1.0 
                        Rejection threshold 

0      0.2      0.4      0.6      0.8      1.0 
                        Rejection threshold 

A. B. 
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is to assume that these costs are equal and therefore minimize the total sum of errors (i.e. find the 
break-even point.) Another commonly used rule-of-thumb is that misunderstandings are twice more 
costly than rejections; this rule is justified by the observation that accepting incorrect information is 
in general more costly since the user will have to spend one (or even more) future turn(s) on correct-
ing this error.  

In subsection 2.3.1 from Chapter 2 we introduced a data-driven model for assessing the im-
pact of various types of understanding-errors on global dialog performance. We showed that this 
type of model can allow us to infer the relative costs of misunderstandings and non-understandings, 
with respect to a desired global performance metric. In this chapter, we start from the intuition that 
the costs for different types of understanding-errors might vary across domains and even across dif-
ferent dialog states. We expand on the models described in Chapter 2 by introducing distinctions 
between different dialog states. The new models allow us to capture the costs of various types of un-
derstanding-errors at different points in the dialog and to optimize the rejection threshold in a prin-
cipled, state-specific manner.  

7.3 Problem statement 

The problem we are addressing can be stated as follows:  

How can we compute in a principled manner the relative costs of misunder-
standings and false rejections at different points in the dialog? Given these 
costs, can we adjust the rejection thresholds in a state-specific fashion, such 
as to maximize a chosen global performance metric?  

7.4 Data-driven error-cost assessment and rejection threshold 
optimization 

We propose a data-driven approach for this problem. We describe the proposed method in the next 
subsection, 7.4.1. Then, in subsection 7.4.2 we present a set of empirical results obtained by applying 
the proposed method in the RoomLine system. In the next section, 7.5, we present a number of con-
cluding remarks and directions for further extending this work.  

7.4.1 Method 

7.4.1.1 A data-driven model for error-cost assessment 

We have already introduced a method for assessing the impact of various types of understanding-
errors on global dialog performance in our analysis from subsection 2.3.1, Chapter 2. We begin by 
recapping this method. Then, in subsection 7.4.1.2 , we extend it to infer state-specific error-costs.  

The central idea behind the proposed error-cost assessment method was to construct a re-
gression model that relates the number (or proportions) of various types of understanding-errors in a 
given dialog to the overall performance in that particular session. We illustrate again the proposed 
method using an example. Assume we are interested in optimally balancing the average number of 
correctly and incorrectly transferred concepts per turn. Let’s call these variables CTC and ITC. Note 
that these quantities vary with the rejection threshold: as the threshold increases, the average number 
of incorrectly transferred concepts per turn will decrease, but so will the average number of correctly 
transferred concepts – see Figure 87.B. In addition, let’s assume we want to optimize for task success 
(TS) modeled as a simple binary variable. We can determine the relative costs of correctly and incor-
rectly transferred concepts with respect to task success by fitting a logistic regression model [76] us-
ing CTC and ITC as predictor variables, and designating TS as the dependent variable. Each data-
point in the regression model corresponds to an entire dialog session. Now, let’s assume we obtain a 
good fit for the model, represented by the following regression equation (this is a fictitious example): 
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This equation tells us that on average an incorrectly transferred concept has a cost (-4.12) 
about twice as high as the utility (+2.14) a correctly transferred concept. With these costs and the 
trade-off curves for CTC and ITC in hand, we can find the threshold that maximizes the overall util-
ity: we compute, plot and find the maximum point for the curve 2.14·CTC – 4.12·ITC. In using a 
rejection threshold that maximizes this expression, we are implicitly maximizing the log odds of task 
success, according to the constructed regression model. 

The proposed method can be summarized in four steps: 

(1) identify a set of variables A, B, … involved in the rejection tradeoff; these parameters 
vary with the rejection threshold (th): 

)th(BB

)th(AA

=

=
 

(2) choose a global dialog performance metric P to optimize for; 

(3) fit a model m that relates the trade-off variables to the chosen global dialog performance 
metric: 

)B,A(mP ←  

(4) find the rejection threshold that maximizes the performance: 

)))th(B),th(A(m(maxarg)P(maxargth
thth

* ==  

In general, the performance metric P (i.e. the dependent variable in the regression model) 
can be any objective or subjective global dialog performance metric. Some candidates include: task 
success (measured either as a binary variable or using the Kappa agreement statistic on an attribute-
value matrix in a slot filling system [128]), task duration, user satisfaction, etc. Objective metrics such 
as task success and duration are better suited for this type of modeling. Subjective metrics exhibit 
large variance not only due to the system’s performance, but also due to variations in user’s expecta-
tions [48]. As a consequence, it is generally more difficult to build predictive models using these met-
rics, unless sufficiently large amounts of data are available. The nature of the performance metric P 
dictates the type of the regression model. For instance, if we are interested in optimizing for binary 
task success, the logistic regression model is the most appropriate – the output variable is distributed 
according to a binomial distribution. On the other hand, task duration, expressed at the total number 
of turns to completion, is Poisson distributed; in this case a Poisson generalized linear model would 
be more appropriate [76]. 

Any variables affected by the rejection trade-off can be used as predictors in the model. In 
the example discussed above, we used the average number of correctly and incorrectly transferred 
concepts per turn (CTC and ITC). In general, any variables that are involved in the rejection trade-
off could be used, such as the relative proportions of misunderstandings and false-rejections in a 
conversation.  

7.4.1.2 A data-driven model for state-specific error cost assessment 

The approach discussed above allows us to assess the relative costs of different understanding-errors 
with respect to a global dialog performance metric. This assessment is however global in nature. In 
the first section of this chapter, we have argued that different errors might have different costs at 
different points in the dialog. In this subsection we extend this methodology to determine state-
specific error costs, and therefore find state-specific rejection thresholds. 

The central idea is to use a different, more refined set of predictor variables, defined on a 
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state-by-state basis. For instance, instead of using the average number of correctly and incorrectly 
transferred concepts per turn in a session, we can define the same variables on a per-state basis. As-
sume a system operates with n dialog states numbered 1 to n. The regression model then becomes:  

)ITC,CTC,...,ITC,CTC,ITC,CTC(mP nn2211←  

where CTCi and ITCi capture the average number of correctly and incorrectly transferred 
concepts per turn in state i. The coefficients resulting from the regression model reflect the impact, 
and therefore the cost of a correctly or incorrectly transferred concept on the chosen dialog perform-
ance metric (P). These costs can be used to optimize separate rejection thresholds for each of the 
states under consideration.  

The proposed approach suffers from one important limitation. In general, only a relatively 
small number of states can be taken into consideration. The number of predictor variables in the re-
gression model equals the product of the number of variables involved in the rejection trade-off and 
the number of states considered. Unless large amounts of training data are available, it will be impos-
sible to build a robust regression model using a correspondingly large set of predictor variables. A 
second assumption made by this model is that changing the rejection threshold in one state does not 
affect the rejection trade-off curve for a different state; in other words, we treat the rejection mecha-
nisms for each state independently.  

In systems where the number of underlying states is large compared to the amounts of data 
available for building the error-cost assessment model, the scalability issue can be circumvented by 
clustering the states into several groups, and determining costs and optimizing thresholds for each 
state-cluster rather than for each state. State clustering can be performed heuristically, by a system 
developer, based on domain-specific knowledge. Alternatively, data-driven methods for clustering the 
states could be investigated. In the empirical work described in the following section we used the first 
method; we briefly comment on a potential data-driven approach to clustering in the concluding re-
marks for this chapter.  

The proposed method can be formalized as follows: 

(1) identify a set of variables A, B, … involved in the rejection tradeoff 

(2) define the set of states, or state clusters {si}i=1..n 

(3) choose a global dialog performance metric P to optimize for; 

(4) fit a model m that relates the trade-off variables (computed on a per-state or per-state-
cluster basis) to the chosen global dialog performance metric: 

)B,A,...,B,A,B,A(mP nn2211←  

(5) for each state or state-cluster, find the optimal threshold that maximizes performance: 

)))th(B),th(A),...,th(B),th(A),th(B),th(A(m(maxarg)P(maxargth nn2211
thth

* ==  

7.4.2 Experimental results in the RoomLine domain 
Next, we describe results obtained using the proposed state-specific error cost assessment methodol-
ogy in the RoomLine domain.  

7.4.2.1 System and data 

The experiments were conducted in the context of RoomLine, a mixed-initiative spoken dialog sys-
tem for conference room reservations. The corpus used in these experiments was collected through a 
user-study in which 46 participants performed each up to 10 scenario-based interactions with the 
system. Each scenario required the user to make a room reservation, within a specified set of con-
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straints. The RoomLine system was described extensively earlier, in subsection 3.4.1 from Chapter 3. 
The data collection experiment is described extensively later, in subsection 8.3.1 from Chapter 8. 

Here, it suffices to say that the corpus contained 449 dialog sessions and 8278 user turns. 
The user speech data was orthographically transcribed by a human annotator, and checked by a sec-
ond annotator. Each dialog session was labeled as successful or not, depending on whether or not 
the user completed the scenario as instructed. Based on an automatic comparative analysis of the 
decoded results and reference transcripts, each user turn was annotated with the number of correctly 
and incorrectly transferred concepts. If a turn contained at least one incorrectly transferred concept, 
it was labeled as a misunderstanding.  

Throughout the data collection experiment, the system used a global, fixed rejection thresh-
old of 0.3. 

7.4.2.2 State clustering 

The state-space for the RoomLine system subsumes 71 states. Since we cannot reliably build a re-
gression model with 142=71x2 predictor variables using just 449 data-points (each session is a data-
point in the model), we resorted to the state clustering methodology we described earlier in subsec-
tion 7.4.1.2. We manually clustered the 71 states into 3 classes which we suspected would exhibit dif-
ferent characteristics in terms of the rejection trade-off. The first state cluster, open-request (or S1), 
included the states in which the system asked an open question such as “How may I help you?” The 
second state cluster, request(bool) (or S2), included the states in which the system requested a 
Boolean concept, i.e. a yes/no answer from the user (e.g. “Do you want a reservation for this 
room?”). Finally, the last state-cluster, request(non-bool) (or S3), included all the other states, in 
which the system requested a concept with more than 2 possible values from the user (e.g. “Starting 
at what time do you need the room?”). We believe that finer distinctions could be made if larger 
amounts of training data were available. 

7.4.2.3 Optimizing for task success 

In a first set of experiments, task success was used as the target for optimization. The predictor vari-
ables were the average number of correctly and incorrectly transferred concepts per turn, for each of 
the three dialog state-clusters discussed above.  

Given that task success is modeled as a binary variable, a logistic regression model was used. 
The model showed a good fit, increasing the average log-likelihood on the training set from a major-
ity baseline of -0.4655 to -0.2927 (p<10-4 in a likelihood ratio test). To confirm the robustness of the 
model and check for over-fitting, we also performed a 10-fold cross-validation procedure. We split 
the training set into 10 chunks and repeatedly trained a model on 9 of these subsets and tested on the 
remaining validation set. The average log-likelihood in this cross-validation process was 0.3136, close 
to the training set average log-likelihood, indicating a robust fit. In a hard metric evaluation, the re-
gression model is able to predict task success with an error rate of 11.91% (the majority baseline was 
at 17.62%). The resulting model was: 
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where CTCS1 and ITCS1 are the average numbers of correctly and incorrectly transferred 
concepts per turn in state-cluster S1 (open-request), CTCS2 and ITCS2 are the average numbers of 
correctly and incorrectly transferred concepts per turn in state-cluster S2 (request(bool)), and 
CTCS3 and ITCS3 are the average numbers of correctly and incorrectly transferred concepts per turn 
in state-cluster S3 (request(non-bool)). 
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The regression coefficients are shown in Table 35, together with their corresponding stan-
dard errors and p-values (the null hypothesis is that the coefficient is 0). The regression coefficients 
reflect the impact of correctly and incorrectly acquired concepts on the probability of task success. 
As expected, the coefficients for correctly transferred concepts are all positive, while the coefficients 
for incorrectly transferred concepts are all negative. This result is in line with our prior intuition: a 
large number of correctly transferred concepts per turn increases the probability of task success, 
while a large number of incorrectly transferred concepts per turn decreases the probability of task 
success. Note also that the ratio of the costs for an incorrectly transferred concept and the utility for 
a correctly transferred is different in each state: in the open-request state, the ratio is 0.37:0.58 or 
1:1.57; in the request(bool) state the ratio is 0.62:3.39, or 1:5.47; finally, in the request(non-
bool) state the ratio is 3.56:2.53 or 1:0.71. These differences confirm the initial intuition that the 
average costs for various types of errors are different at different points in the dialog.  

Next, we used the costs obtained via the regression model to find optimal thresholds for 
each of the three dialog-state-clusters, in light of the CTC/ITC trade-off curves. The CTC/ITC 
curves were computed empirically for each dialog-state-cluster, by simulating different rejection 
thresholds. We then computed the overall cost (or utility) as a function of the rejection threshold in 
each state-cluster. The CTC/ITC and utility curves are illustrated in Figure 89. The optimal threshold 
is the one that maximizes the corresponding utility function. For the open-request state-cluster the 
maximum utility is attained when the rejection threshold is at zero; or model indicates that in this 
state the system should use an always-accept (or never-reject) policy. Similarly, the optimal threshold 
for the request(bool) state-cluster is also zero. If for the open-request state-cluster, 0 is clearly 
the maximizing point, for the request(bool) state-cluster the utility profile has a large plateau indi-
cating that for a wide range of threshold values (0 – 0.6), the utility stays roughly constant. Finally, in 
the request(non-bool) state-cluster, the utility function has again a clear maximum; that maximum 
is reached for a rejection threshold value of 0.61. 

Because the standard errors on the regression coefficients (i.e. costs) raised some concerns, 
we performed an additional robustness check. We split the data into two halves, built separate mod-
els on each half and compared the results. The variations in the coefficients were minor and the re-
sulting utility profiles had similar shapes for all states across the models; the optimal thresholds were 
at the same locations. 

The resulting threshold values are consistent with anecdotal evidence gathered throughout 
the data collection experiment, and corroborate our prior intuitions. For instance, we noticed that 
long utterances (which were very frequent after the initial, open “How may I help you?” prompt) 
would generally have low confidence scores and would therefore be rejected by the system even 
though they were correctly recognized. This observation was confirmed by a later analysis that 
showed that in the open-request state the proportion of falsely-rejected utterances was much larger 
than in the other two state-clusters (17.4% as opposed to 2.0% and 1.7%). We conjecture that this 
behavior was caused by a mismatch between the data encountered by the system throughout the ex-
periment and the data used to train the confidence annotator.  

Table 35. Regression coefficients (i.e. costs) for task success model 
 

Variable Coefficient S.E. p-value 

Const -2.40 1.16 0.0386 

CTC / open-req 0.58 0.30 0.0510 

ITC / open-req -0.37 0.47 0.4286 

CTC / req(bool) 3.39 1.01 0.0008 

ITC / req(bool) -0.62 1.32 0.6363 

CTC / req(non-bool) 2.53 0.82 0.0019 

ITC / req(non-bool) -3.56 1.12 0.0014 
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The data used to train the confidence annotation model consisted of calls to an earlier live 
version of the system. In this data a number of users were exploring the boundaries of the system, 
and long utterances were generally out-of-domain or out-of-application-scope and led to misunder-
standings. This pattern was picked up by the confidence annotator, which generally assigned low 
confidence scores to long utterances. However, this pattern was no longer valid throughout the sub-
sequent data collection experiment: the users were more goal-oriented and long utterances were gen-
erally in-domain and correctly understood. The data-driven error cost assessment model we devel-
oped indicates that the cost for incorrect concepts is not very high in this state (we are at the begin-
ning of the dialog), relative to the utility for correctly transferred concepts: -0.40 versus 0.55. Taking 
also into account the potentially larger number of correctly transferred concepts in this state-cluster 
(due to longer utterances), the model correctly indicates that the system should use a threshold of 
zero, i.e. accept all utterances regardless of the confidence score. We believe this result shows how 
the proposed data-driven error cost model can indeed mitigate potential mismatches between the 
given confidence annotator and the characteristics of the domain in which the system operates. The 
approach is therefore well-suited to situations when a pre-trained, off-the-shelf confidence annota-
tion model is used. 

Figure 89. State-specific CTC/ITC tradeoff, utility, and rejection threshold optimization (for task success) 
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We believe that the explanation for the large plateau in the resulting cost profile for the re-
quest(bool) state-cluster lies in the fact that most responses in this case are simple yes/no answers. 
These responses are typically easily recognized by the system, and are generally assigned high confi-
dence scores (see Figure 90). As a result, for a wide range of low rejection thresholds, very few utter-
ances are rejected, and the numbers of correctly and incorrectly transferred concepts, as well as the 
overall cost, stay roughly constant. 

This is no longer the case in the request(non-bool) state-cluster. The distribution of con-
fidence scores is less sharp in this state (see Figure 90), and as a result the utility changes more sig-
nificantly as the rejection threshold varies. This is the only state-cluster where the cost of an incor-
rectly transferred concept (-3.44) exceeds in absolute value the utility of a correctly transferred con-
cept (+2.55). This relationship is in line with the intuition that non-Boolean concepts are the most 
crucial ones for task success in this domain (e.g. the date, start-time, and end-time for the reservation 
as well as various characteristics such as room size and equipment). As a result, the system should be 
more conservative in this state, and accept only high-confidence responses: the optimal threshold is 
at 0.61. 

The last question we investigated was: what changes should we expect in the system as we 
move the rejection threshold from its previous global setting at 0.3 to the new, state-specific values? 
Because dialog is an interactive process, another end-to-end experiment would be required to answer 
this question: changing the thresholds might in fact change the dynamics of the interaction, which in 
turn might lead to changes in the task success model. We can however construct an informed esti-
mate by analyzing the effect of the new rejection thresholds on the average CTC/ITC numbers in 
each state-cluster; we can then use the current task success model to project the influence of the new 
CTC/ITC numbers on task success. The results are shown in Table 36. For the open-request state, 
we expect that the change in the rejection threshold will lead to an average increase of 0.35 correctly 
transferred concepts per turn, at the expense of a 0.15 increase in incorrectly transferred ones. For 
the request(bool) state-cluster the situation stays roughly the same as before (the CTC/ITC pro-
files are roughly constant in the 0.3-0.6 threshold range). For the request(non-bool) state-cluster 
we expect a small decrease in both the incorrectly and the correctly transferred concepts per turn. 
Finally, we can also project an expected value for the overall task success rate, by using the con-
structed logistic regression model and the new expected CTC/ITC values in each state-cluster. The 
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Figure 90. Confidence score histograms in the 3 state-clusters: open-request, request(bool) and re-
quest(non-bool) 

 

Table 36. Estimated changes in CTC, ITC and task success 

State Variable Current New Delta 

CTC 0.54 0.89 +0.35 open 
request ITC 0.16 0.31 +0.15 

CTC 0.84 0.86 +0.02 request 
bool ITC 0.09 0.12 +0.03 

CTC 0.72 0.66 -0.06 request 
non-bool ITC 0.25 0.17 -0.08 

Task success rate 82.75% 87.16% +4.41% 
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model predicts a 4.4% absolute increase in task success rate.  

7.4.2.4 Optimizing for task duration 

The methodology we have described in section 7.4.1 can be used to determine error-costs relative to 
any global dialog performance metric. In the previous subsection, we used task success as the target 
for optimization. In this subsection, we report experiments using a different optimization target: task 
duration for successful tasks.  

Because task duration is expressed as the number of turns, we modeled it as a Poisson re-
sponse variable in a generalized linear model [76]. Since the data consists of scenario-driven interac-
tions with the system, we normalized for the inherent differences in durations between the 10 differ-
ent scenarios in this corpus by introducing the mean duration for each scenario as an offset variable 
in the regression model. The resulting model was:  
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where D is the task duration (expressed as number of turns) and MSD is the mean task dura-
tion for the corresponding scenario (log(MSD) is used as an offset variable in the regression model). 
CTCS1, ITCS1, CTCS2, ITCS2, CTCS3 and ITCS3 are again the numbers of correctly and incorrectly 
transferred concepts per turn in each state-cluster. The model showed a good fit. The correlation 
coefficient between the actual and predicted task durations is R=0.62, and is illustrated in Figure 91.  

The regression coefficients are also shown in Table 37, together with their corresponding 
standard errors and p-values (the null hypothesis is that the coefficient is 0). The regression coeffi-
cients reflect the impact of correctly and incorrectly acquired concepts on normalized task duration. 
As expected, the coefficients for incorrectly transferred concepts are larger (more positive) in this 
case than the coefficients for correctly transferred concepts: they lead to increases in task duration. 
The ratio for the costs for an incorrectly transferred concept and the utility for a correctly transferred 
is again different across the three state-clusters.  
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We used the costs obtained in regression to identify the optimal rejection thresholds, this 
time with respect to minimizing task duration. The resulting utility profiles and optimal thresholds 
are illustrated in Figure 92. For the open-request and request(bool) state-clusters, the profiles 
are very similar to those obtained when optimizing for task success (shown in Figure 89), indicating 
again an optimal rejection threshold of 0 for these states. For the request(non-bool) state-cluster, 
the optimal threshold was again 0.61. However, in this case the utility profile had a less pronounced 
maximum: for a relatively wide range of threshold values (i.e. 0.2 – 0.6), the overall utility in this 
state-cluster stays roughly the same.  

Figure 92. State-specific CTC/ITC tradeoff, utility, and rejection threshold optimization (for task duration) 
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Table 37. Regression coefficients (i.e. costs) for normalized task duration models 
 

Variable Coefficient S.E. p-value 

Const 1.2403 0.11 0.0000 

CTC / open-req -0.1650 0.02 0.0000 

ITC / open-req -0.0944 0.04 0.0276 

CTC / req(bool) -0.7630 0.09 0.0000 

ITC / req(bool) -0.3641 0.15 0.0141 

CTC / req(non-bool) -0.5440 0.05 0.0000 

ITC / req(non-bool) 0.4979 0.10 0.0000 
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7.5 Summary and future directions 

Spoken dialog systems typically rely on confidence scores to guard against potential misunderstand-
ings. If the confidence score for the current input is too low, the system might decide to reject the 
input altogether. In this case, a rejection non-understanding is purposefully created in order to avoid 
a potential misunderstanding. An inherent trade-off therefore exists between misunderstandings and 
non-understandings. The system can exert control over the proportions of non-understandings and 
misunderstandings in a dialog by adjusting the rejection threshold.  

In this chapter we have proposed a principled method for optimizing rejection thresholds. 
The proposed method builds on top of a data-driven approach for inferring the costs for various 
types of understanding-errors in a spoken dialog system (the method was already introduced in 
Chapter 2.) The central idea behind this error-cost assessment method was to use a regression model 
to capture the relationship between the frequency of errors and global dialog performance. Once the 
model is fit, the regression coefficients reflect the cost of errors with respect to the chosen perform-
ance metric. The computed costs can then be used to optimize utterance-level rejection thresholds in 
a principled manner. We have started from the intuition that different errors have different costs at 
different points in the dialog and have shown that the proposed error-cost assessment methodology 
can be extended to derive these state-specific costs. In turn, these costs allow us to perform a state-
specific optimization of rejection thresholds. Experiments conducted based on a dataset collected 
with the RoomLine system confirmed our expectations. The relative trade-offs between different 
types of understanding-errors are indeed different at different points in the dialog. The resulting op-
timal rejection thresholds are consistent with our intuitions and with other evidence gathered 
throughout the data collection experiments.  

The proposed approach has a number of advantages over current solutions for setting rejec-
tion thresholds. First, the approach is data-driven. Instead of setting a rejection threshold based on 
rules-of-thumb or postulated costs, the error costs and therefore the thresholds are inferred from 
data. They are adapted to the particular characteristics of the domain and components (i.e. speech 
recognizer, confidence annotation model) with which the system operates. In fact in subsection 
7.4.2.3 we have that the proposed approach bridges a mismatch between the distribution of the data 
encountered by the system at runtime and an off-the-shelf confidence annotator trained on different 
data.  

Second, any chosen global dialog performance metric can be targeted for optimization. In 
this chapter we have experimented with task success and task duration; the resulting optimal thresh-
olds were similar. The similarity is not surprising in this case. The RoomLine system operates in an 
information access domain, where the two metrics are related: “successful” and “short” go generally 
hand in hand in these domains. However, this relationship does not necessarily hold across all do-
mains and interaction-types. For instance in a tutoring system, learning gain might be a more appro-
priate target for optimization than time-on-task.  

Third, the proposed methodology can be used to infer state-specific costs for errors and 
state-specific rejection thresholds. In subsection 7.4.1.2, we have pointed out a limitation of this ap-
proach: the number of state distinctions that can be made is bounded by the amount of available 
training data. In our experiments, a three-way distinction was used – we manually identified three 
state-clusters that we believed exhibited similar properties in terms of the rejection trade-off. In fu-
ture work, it would be interesting to investigate data-driven approaches to this state clustering prob-
lem. For instance, could we automatically identify the state clusters in which the error costs are simi-
lar? A potential method would be to start with a single initial cluster that contains all the states and 
iteratively split based on a criterion that reflects the goodness-of-fit of the resulting regression model. 
This approach would help ensure that number of resulting state-clusters is adequately balanced for 
the amount of training data available.  

 Finally, before we move on to the next chapter, we would like to bring forward another po-
tential use of the proposed error cost assessment methodology. In this work, we have used it to bal-
ance the costs for different variables involved in the rejection trade-off. We believe the same ap-
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proach could be used to optimize confidence thresholds for explicit and implicit confirmations and 
in effect build policies for recovering from misunderstandings.  

Insofar, we have focused on whole-utterance rejection as a mechanism to guard against po-
tential misunderstandings. This was an infrastructure constraint rather than a limitation in the pro-
posed methodology. However, spoken dialog systems might use rejection at the concept-level (i.e. 
reject individual concept values rather than an entire utterance.) Other strategies, such as explicitly or 
implicitly confirming the current concept hypothesis may also be used to guard against potential mis-
understandings. The decision to engage one of these actions is typically based on the confidence 
score of the current concept hypothesis. A typical policy is illustrated in Figure 93: reject the value if 
its confidence score is below t3, explicitly confirm if the confidence score is between t3 and t2, implic-
itly confirm if the score is between t2 and t1, and accept that value as grounded if the confidence 
score is above t1. We believe the technique described in this chapter could be used to optimize these 
thresholds (i.e. t1, t2, t3) and therefore offers a principled solution to the problem of developing mis-
understanding recovery policies.  

Consider for instance a system that engages in four different actions to guard against misun-
derstandings: reject (R), explicit confirmation (EC), implicit confirmation (IC) and accept (A), as il-
lustrated in Figure 93. To infer the three thresholds confidence, we need to estimate the costs in-
curred for engaging in each of these actions in two cases: when the concept value is correct, and 
when the concept value is incorrect. Let’s denote by Rc the number of false-rejections (i.e. the re-
jected concept value was in fact correct in a dialog session) and by Ri the number of true-rejections 
(i.e. the rejected concept value was incorrect). Similarly, ECc, ICc, and Ac are the numbers of explicit 
confirmations, implicit confirmations and accepts with correct concept values; ECi, ICi, and Ai are 
the numbers of explicit confirmations, implicit confirmations and accepts with incorrect concept val-
ues. Like before, we can build a regression model that relates these variables to an overall dialog per-
formance metric: 

)A,A,IC,IC,EC,EC,R,R(mP iCiCiCiC←  

Once the model is fitted, the regression coefficients will reflect the costs for each of these 
actions. The corresponding optimal thresholds can then be easily inferred (see for instance Figure 39 
from subsection 4.3.3 in Chapter 4.) If sufficient amounts of training data are available, further dis-
tinctions between different dialog states (in this case concepts) could be introduced in the model. 

 

0 1 t3 t2 t1 

reject 

explicit confir-
mation 

implicit con-
firmation 

accept 

confidence score of top concept-level hypothesis 

Figure 93. A typical misunderstanding recovery policy 
 



 

Chapter 8  

Non-understanding recovery:  
strategies and policies 

In this chapter we turn our attention to the problem of recovering from non-
understandings. In the first part of the chapter, we describe an in-depth empirical 
analysis of ten non-understanding recovery strategies and two different recovery 
policies. The questions under investigation are: (1) how do various strategies for re-
covering from non-understandings compare to each other (both in terms of local 
recovery performance and subsequent user behaviors), and (2) can a good recovery 
policy lead to significant improvements in performance, both locally and globally? 
In the second part of the chapter, we propose a scalable, online, data-driven ap-
proach for learning non-understanding recovery policies over large sets of strategies. 
An evaluation performed in the context of a deployed spoken dialog system shows 
that the proposed approach leads to statistically significant improvements in the 
non-understanding recovery rate.  

8.1 Introduction 

We have argued that three components are required in order to successfully recover from under-
standing-errors: first, spoken language interfaces must be able to detect these errors, preferably as 
soon as they happen. Second, they must be equipped with a rich repertoire of error recovery strate-
gies that can be used to set the conversation back on track (recall that by strategy we denote a simple, 
one-turn action the system might engage in to recover.) Third, systems need to know how to choose 
optimally between different recovery strategies at runtime; in other words, they must have good re-
covery policies.  

We have seen that in the case of non-understandings, detection is in general a simple task 
(except for the special case of rejections, discussed in detail in the previous chapter.) On the other 
hand, developing good strategies and policies for recovering from non-understanding errors poses a 
number of significant challenges.  

The number of strategies that could be used to recover from a non-understanding is rela-
tively large. For instance, the system could ask the user to repeat; it could ask the user to rephrase; it 
could notify the user that an error has occurred; it could repeat the previous prompt; it could ignore 
the non-understanding and try to advance the task in a different manner; it could provide various 
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types of help messages, e.g. tell the user what she can say at this point, tell the user to speak softer or 
louder, or tell the user to move to a quieter place. And this is not an exhaustive list.  

Intuitively, each of these strategies will be more appropriate under certain circumstances. For 
example, asking the user to repeat is not a good course of action if the non-understanding was the 
result of an out-of-grammar utterance. In contrast, if the non-understanding was caused by a tran-
sient noise, such as a door slam, asking the user to repeat is probably more likely to succeed. How-
ever, if detecting non-understandings is an easy task, diagnosing the actual source of the error is a 
challenging one. In addition, the relative trade-offs between non-understanding recovery strategies 
are not well understood; oftentimes, these trade-offs are task and system-specific. As a consequence, 
it becomes difficult to design provably good policies for choosing between different recovery strate-
gies at runtime.  

In this chapter, we focus our attention on issues related to non-understanding recovery 
strategies and policies. More specifically, we address the following questions:  

• How do various strategies for recovering from non-understandings compare to 
each other? We believe that a better understanding of the various non-understanding 
recovery strategies and of user behaviors following these strategies can help improve 
their design and can provide useful insights for the developing good recovery policies.  

• Can a good non-understanding recovery policy lead to significant improvements 
in performance? While the intuitive answer to this question is yes, we believe that an 
empirical validation of this hypothesis is necessary before we decide to focus efforts on 
developing recovery policies. The performance of the error recovery process is a prod-
uct of both the set of available strategies and the policy used to engage them. If the set 
of strategies does not provide good coverage for the types of problems encountered by 
the system, it will be very difficult to significantly improve performance just by designing 
a new recovery policy. Should this be the case, our efforts would probably be better fo-
cused on developing more efficient recovery strategies, rather than on trying to learn a 
policy. 

• How can we develop good non-understanding recovery policies operating with 
large sets of recovery strategies? We argued that, especially when the underlying set of 
non-understanding recovery strategies is large, it is difficult to manually construct heuris-
tic policies. Ideally, we would like systems to learn recovery policies online, through trial-
and-error, from their own experiences.  

In an effort to address the first two questions, we performed an empirical analysis of ten 
non-understanding recovery strategies using a dialog corpus collected with RoomLine, a conference 
room reservation system. We introduced a number of local metrics for measuring recovery perform-
ance, and we used them to compare the ten non-understanding recovery strategies. Additionally, we 
analyzed the relationship between each strategy and subsequent user behaviors, and investigated 
which behaviors are more likely to lead to successful recovery. Finally, we also investigated the im-
pact of the non-understanding recovery policy on performance. We started with the assumption that 
both local recovery and global dialog performance can be improved by using a better recovery policy. 
To validate this hypothesis, we designed a between-groups experiment in which we investigated per-
formance differences between an uninformed recovery policy (i.e. system picked randomly between 
recovery strategies) and a “smarter” policy implemented by a human, in a wizard-of-oz setup. The 
experiment, analysis and corresponding results and observations are presented in detail in section 8.3. 

Next, in section 8.4, we turn to the third question. We proposed a novel, online approach 
for learning recovery policies from data. In an initial experiment conducted with Let’s Go! Public, a 
deployed spoken dialog system that provides bus schedule information, the proposed approach led 
to statistically significant improvements in recovery performance over the current heuristic policy.  

We begin by briefly reviewing other related work and solutions commonly encountered for 
recovering from non-understandings. 
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8.2 Related work 

8.2.1 Non-understanding recovery strategies 
A relatively large number of strategies for recovering from non-understandings have been proposed 
and are commonly used in different spoken language interfaces. They range from generic strategies 
such as notifying the user that a non-understanding has occurred, repeating the system prompt, ask-
ing the user to repeat or rephrase, to context-specific and problem-specific strategies such as provid-
ing different levels of help, telling the user to speak louder or softer, or to move to a quieter place.  

Although these strategies are commonly used, our current knowledge about their relative ad-
vantages and disadvantages is fragmentary at best. A number of user studies [19, 26, 39, 42, 113, 115, 
132, 138, 141] have been conducted to empirically investigate such recovery strategies. In addition, 
different voice interface experts have also established and published various sets of “best practices” 
or “guidelines”, from an industry perspective [5, 46]. Although progress has been made, the emerging 
picture is incomplete, and sometimes even inconsistent. For instance, there is wide agreement that 
repeating (especially multiple times) the exact system prompt is not a good error recovery strategy, as 
it leads to increased user frustration, which in turn correlates with poor recognition [39, 100]. At the 
same time, contradictory advice and evidence can also be found.  For instance, in [39] it was found 
that strategies including apologies were associated with lower incidence of frustration in the user re-
sponses; the voice interface guidelines described in [5] argue however the opposite. We believe that 
to a large extent, the difficulties we are facing in assembling a coherent picture stem from the fact 
that the trade-offs between these strategies are in fact context- (i.e. domain-, task-, user-population-) 
dependent.  

In more recent work, a number of researchers have proposed and investigated in more detail 
more specialized non-understanding recovery strategies centered on extracting more information 
from the non-understood utterance. In [42] Gorrell et al. describe and implement a targeted-help 
strategy based on classifying the non-understood utterance into one of several classes. In [88] Raux et 
al propose a method to automatically generate confirmation prompts that are close to the non-
understood user utterance, and at the same time fall within the system’s language model and 
grammar. In [35], Filisko and Seneff describe a speak-and-spell approach to acquiring city names; this 
can in general be a very useful non-understanding recovery strategy if the user is trying to specify an 
out-of-vocabulary word. Additionally, a number of other strategies leveraging other modalities have 
been proposed and evaluated in the context of multimodal systems [79, 97, 98, 119]. 

To identify additional recovery strategies, several researchers have turned to wizard-of-oz 
studies aimed at discovering how humans would handle speech recognition errors. In these studies, 
instead of hearing the actual user utterance, the wizard receives the text of the recognition result, 
potentially annotated with confidence information. Zollo shows that under these settings wizards 
tend to provide large amounts of feedback, even when speech recognition works perfectly [141]. 
Zollo’s study identifies a number of positive and negative feedback strategies: wh-replacement of a 
missing or erroneous word (e.g. “how many people are where?”), attempts to salvage a correctly 
recognized word (e.g. “what about the helicopter?”), explicitly verifying of a turn (e.g. “you are ready 
to begin…”), repeating part or all of the content of the user’s utterance, using simple 
acknowledgements, etc. The majority of the strategies revealed by Zollo’s study have no direct 
equivalent in current spoken dialog systems. In a similar study in a map domain, Skantze shows that 
wizards tend not to signal non-understandings, but rather try to advance the dialog by other means 
such as asking different task-related questions [115]. Overall, these studies have confirmed that 
humans employ a larger repertoire of conversational error handling strategies when faced with 
uncertainties stemming from poor speech recognition.  

In our own effort to add to this body of knowledge, we have conducted an empirical investi-
gation of 10 non-understanding recovery strategies; the results are described in detail and compared 
to previous observations reported in the literature in section 8.3. 
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8.2.2 Non-understanding recovery policies 

8.2.2.1 Heuristic approaches 

Most spoken language interfaces use only a limited number of non-understanding recovery strategies 
in conjunction with simple heuristic policies. The policies are generally designed by a system author, 
based on their empirical, domain-specific observations or on various guidelines [5, 46] and rules-of-
thumb. For instance, it is generally agreed [5, 39, 50, 138] that a good policy must avoid repeating the 
same recovery strategy over and over. A system might therefore apologize and repeat its question on 
the first non-understanding, provide more (targeted) help on the second non-understanding, and 
transfer the user to a human operator if a third consecutive non-understanding occurs. This ap-
proach, in which the system tries different strategies on consecutive non-understandings (and per-
haps gives up after a number of failed attempts), is quite common. It has been referred to as “pro-
gressive assistance” in [138], and as the “three-strikes-and-you’re-out” approach in [5].  

The problem with heuristic policies is that they are static, and generally under-informed. 
They use limited amounts of information (such as the number of non-understandings in the current 
segment) to determine which recovery strategy should be engaged. The system’s behavior is based on 
prior, generic observations rather than on the particular characteristics of the current error or of the 
domain and environment in which the system operates.  

8.2.2.2 Reinforcement learning based approaches 

In an effort to provide a more principled and adaptive solution to the problem of developing dialog 
control policies, a number of researchers have turned their attention to learning based approaches. A 
technique that has received a lot of attention recently is reinforcement learning [67, 107, 108, 114]. 
The dialog management problem (or a subset thereof) can be reformulated in terms of a Markov 
Decision Process (MDP), and reinforcement learning techniques are used to derive an optimal dialog 
control policy from a training corpus of dialogs. For a detailed overview of this approach, see [114]. 

The approach has produced successful results in a number of small domains. For instance, 
Singh et al report on using reinforcement learning to optimize the performance of NJFun, an 
information access spoken dialogue system [114]. An initial version of the system was used to collect 
a corpus of exploratory dialogues to serve as training data. The rewards were defined based on a 
binary measure of task completion, and various choices regarding the type of initiative and 
confirmation and clarification actions were explored. In the subsequent evaluations of the learned 
control policy, NJFun showed significant improvements not only in the reward measure for which 
the optimization was performed, but also on other objective performance metrics. The learned policy 
outperformed other fixed, handcrafted policies commonly encountered in the literature.  

Since the non-understanding recovery policy is a subset of the larger dialog control policy, a 
reinforcement learning based approach for this problem can be in principle envisioned. Such an 
approach could provide several advantages: it would allow a system to learn optimal behavior from 
experience and therefore adapt to the characteristics of particular domains and to slow changes in 
these characteristics; it could handle delayed feedback, an important feature given the temporal 
aspects of human-computer interaction; finally, the approach would stand on a solid theoretical 
foundation. Unfortunately, the reinforcement learning techniques proposed to date suffer from a 
number of shortcomings that have prevented their use in large scale, practical spoken dialog systems 
(for an in-depth discussion, see [82].)  

Perhaps the most important limitation with respect to developing non-understanding 
recovery policies is the lack of scalability. As the state- and action-spaces increase, significantly larger 
amounts of training data are required to estimate model parameters reliably enough and converge on 
a policy. In part, the difficulties stem from the fact that approach performs a global optimization and 
takes into account the temporal dimension of the interaction (the number possible paths in the 
state/action space that need to be explored grows exponentially with the time horizon.) Several 
approaches have been proposed to alleviate this problem. Typically, the state-space representation is 
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reduced by using an abstraction of the full information-state of the system [114]. Other researchers 
have proposed obtaining the required training data through user simulation [67, 108]; later work has 
however pointed important limitations and pitfalls in simulation-based training [82, 106]. A reduced 
yet informative state-space is difficult to design in the context of the non-understanding recovery 
policy problem. As we shall see later, in subsection 8.4.2.3, the set of state features that could carry 
potentially relevant information for choosing between strategies is very large (e.g. several hundreds); 
the relative importance of these features is not well known a priori. Furthermore, the cardinality of 
the action space is dictated by the number of non-understanding recovery strategies under 
consideration; ideally we would like to build policies that operate over dozens or even more recovery 
strategies. In contrast, current reinforcement learning based approaches to dialog control are 
tractable only for a limited number of actions. For instance, in NJFun [114], 2 actions were available 
in each state; in [108] the total number of actions in the model was 6, but the number of actions 
available in each state was smaller (2-4). The current lack of scalability renders reinforcement learning 
based approaches intractable in the context of large, practical spoken dialog systems.  

In the work later described in section 8.4, we propose an online, supervised learning 
approach that, instead of aiming for a global optimum, focuses on improving local recovery 
performance. In the proposed approach, the system still learns a policy from data in an on-line 
fashion, and balances between exploration and exploitation. By focusing on a local optimization, we 
can develop a scalable solution to this problem, in which the system exploits a large set of features 
(hundreds) to select between a large number of recovery strategies (10 in this case). Initial 
experiments with a deployed spoken dialog system indicate that the proposed approach leads to 
significant improvements in the non-understanding recovery rate.  

8.3 An empirical investigation of non-understanding recovery 
strategies and policies 

In this section, we investigate ten non-understanding recovery strategies, and two different recovery 
policies. We begin by describing the experimental setup for the user study that was used to collect the 
data for this analysis. Next, in subsection 8.3.2 we briefly describe the collected corpus19. Then, in 
subsection 8.3.3 we analyze the performance of each strategy, and in subsection 8.3.4 we analyze the 
user responses to each strategy. Finally, in subsection 8.3.5 we investigate the effects of different re-
covery policies on the performance of individual recovery strategies and on global dialog perform-
ance. Finally, we summarize the results from this analysis and present a number of concluding re-
marks in subsection 8.3.6.  

8.3.1 A wizard-of-oz data collection experiment 
The data collection experiment was designed with two primary goals in mind. First, we wanted to 
investigate the performance of different non-understanding recovery strategies and analyze subse-
quent user behaviors, in an effort to develop a better understanding of these strategies. Second, we 
wanted to validate the hypothesis that the performance of non-understanding recovery strategies can 
be improved by engaging them at the right time, i.e. by using a good recovery policy. To this end, we 
designed a user study with two conditions: control and wizard. Participants in the control condi-
tion interacted with a system that used an uninformed recovery policy: each time a non-
understanding occurred, the system randomly chose one of the ten recovery strategies. Participants in 
the wizard condition interacted with a version of the same system where the policy was imple-
mented at runtime by a human operator (in a wizard-of-oz setting). We begin by describing the sys-

                                                      
 
19

 Parts of this corpus have been used for other experiments reported in this dissertation: the error source analysis from 
Chapter 2, the confidence annotation models from Chapter 5, the belief updating models from Chapter 6 and the error-cost 
assessment models from Chapter 7. 
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tem and the set of non-understanding recovery strategies. Then, we discuss in more detail the ex-
perimental design. Finally, we describe the participants and the experimental procedure.  

8.3.1.1 System 

The data collection experiment was conducted using RoomLine, a mixed-initiative, telephone-based 
spoken dialog system that can assist users in making conference room reservations. The system, de-
scribed in detail in subsection 3.4.1 from Chapter 3, has access to live information about the sched-
ules and characteristics (e.g. size, location, audio-visual equipment, etc.) of 13 conference rooms in 
two buildings on campus: Wean Hall and Newell Simon Hall. To make a room reservation, the sys-
tem finds the list of available rooms that satisfy an initial set of user-specified constraints, and en-
gages in a follow-up negotiation dialog to present this information to the user and identify which 
room best matches their needs. A sample conversation with the RoomLine system is available in Ap-
pendix A.  

8.3.1.2 Non-understanding recovery strategies 

The system was equipped with ten different strategies for recovering from non-understandings, de-
scribed and illustrated in Table 38. The strategies represent a subset20 of the larger repertoire of non-
understanding recovery strategies available in the RavenClaw dialog management framework. A 
number of these strategies, such as asking the user to repeat or rephrase, reissuing the system prompt 
or providing various levels of help are often encountered in other spoken dialog systems. Two strate-
gies we would like to draw the reader’s attention upon are Yield and Move On. In the Yield strat-
egy, the system remains silent, as if it did not hear the user’s response, and hence implicitly signals a 
communication problem. In the Move On strategy, the system ignores the current non-understanding 
altogether and tries to advance the conversation by moving on to a different question. Note that this 
second strategy is available only at certain points in the dialog, where an alternative dialog plan for 
achieving the same goals is present. For instance, in the case illustrated in Table 38, the Move On 
strategy gives up on trying to find whether the user wants a small or a large room, and starts suggest-
ing rooms one by one. In another case, the system tries to advance the dialog by using a simpler 
question, for instance asking “For which day do you need the room?” instead of “How can I help 
you?” 

8.3.1.3 Experimental design 

The data collection experiment was designed as a between-groups user study, with two conditions: 
control and wizard.  

Participants in the control condition interacted with a version of the RoomLine system that 
used an uninformed policy to engage the non-understanding recovery strategies: each time a non-
understanding occurred, the system randomly chose one of the ten available strategies. 

Participants in the wizard condition interacted with a modified wizard-of-oz version of the 
same system. In this version, each time a non-understanding occurred a human wizard decided which 
of the ten recovery strategies should be used. In all other aspects, this system was identical with the 
system used in the control condition. The wizard had live access to the user’s speech. Several other 
system state variables were presented to the wizard via a graphical user interfaces (e.g. current recog-
nition result, confidence score, semantic parse). When a non-understanding occurred, the wizard se-
lected which strategy should be used through the GUI, and the decision was forwarded back to the 
system. The wizard had to make this decision during a relatively short time interval (1-2 seconds) in 
order to maintain the illusion that users were interacting with an autonomous system. A single wizard 

                                                      
 
20 The current, full set of non-understanding recovery strategies in the RavenClaw dialog management framework was dis-

cussed earlier in subsection 4.4.1 from Chapter 4. The 10 non-understanding recovery strategies shown in Table 38 were 
the only ones available at the time this investigation was run. 
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(the author of this dissertation) was used throughout the whole experiment. The wizard had very 
good knowledge of the system’s functionality and of the domain. 

The experimental design described above satisfies the two needs outlined at the beginning of 
subsection 8.3.1. On one hand, we wanted to be able to comparatively evaluate the ten recovery 
strategies, when engaged in an uninformed fashion. This analysis can be performed based on data 
collected in the control condition. The results are discussed in detail in subsections 8.3.3 and 8.3.4. 
At the same time, we wanted to investigate whether or not a better recovery policy (implemented in 
this case by the human wizard) can significantly improve performance. The results of this compara-
tive analysis are presented in subsection 8.3.5. 

At this point we would like to briefly comment on the decision to give the wizard full access 
to the live user speech. This puts the wizard in an apparently privileged position when compared to a 
system that would have to make the same recovery decisions: the system does not accurately know 
what the user says, especially during non-understandings. However, recall that our goal is simply to 
investigate whether a better recovery policy exists and can improve performance, and not to establish 
upper bounds or to prove that this particular policy can be learned or implemented by the system.  

Note that the experimental design we have followed does not allow us to establish an abso-
lute upper-bound on the performance of a recovery policy that uses the given set of strategies. This is 
an interesting and difficult problem, which we have not pursued here. Another interesting baseline, 

 S:  Would you like a small room or a large one? 
U: [Non-Understanding] 

1 
Ask Repeat (AREP) [system asks the user to repeat the non-understood utterance] 

S: Can you please repeat that? 

2 
Ask Rephrase (ARPH) [system asks the user to rephrase the non-understood utterance] 

S: Can you please try to rephrase that? 

3 
Repeat Prompt (RP) [system repeats the previous prompt] 

S: Would you like a small room or a large room? 

4 

Detailed Repeat Prompt (DRP) [system repeats a more verbose version of the previous prompt] 

S: I’m sorry, I don’t think I understood you correctly. Right now I’m trying to find out if you would 
 prefer a small room or a large one. 

5 
Notify Non-understanding (NTFY) [system notifies the user that a non-understanding has occurred] 

S: Sorry, I didn’t catch that  …  

6 

Yield Turn (YLD) [system remains silent, and thus implicitly notifies the user that a non-understanding has 
occurred] 

S: Ø 

7 
Move On (MOVE) [system advances the task by moving on to a different question] 

S: Sorry, I didn’t catch that. One choice would be Wean Hall 7220. This room can accommodate  
 20 people and has a whiteboard and a projector. Would you like a reservation for this room? 

8 

You-Can-Say (YCS) [system tell the user what he or she can say at this point in the dialog] 

S: Sorry, I didn’t catch that. Right now I’m trying to find out if you would prefer a small room or a  
 large one. You can say ‘I want a small room’ or ‘I want a large room’. If the size of the room  
 doesn’t matter to you, just say ‘I don’t care’. 

9 

(Terse)-You-Can-Say (TYCS) [a terser version of the You-Can-Say strategy] 

S: Sorry, I didn’t catch that. You can say ‘I want a small room’ or ‘I want a large room’. If the size  
 of the room doesn’t matter to you, just say ‘I don’t care’. 

10 

Full Help (HELP) [system provides a longer help message which includes an explanation of the current 
state of the dialog, as well as what the user can say at this point] 

S: I’m sorry, I don’t think I understood you correctly. So far I have found five conference rooms  
 available matching your constraints. Right now I’m trying to find out if you would prefer a 
 small room or a large room. You can say ‘I want a small room’ or ‘I want a large room’. If the 
 size of the room doesn’t matter to you, just say ‘I don’t care’. 

 
Table 38. Ten non-understanding recovery strategies in the RoomLine system 
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again not afforded by our experiment, is the human “gold standard” as defined by Paek in [80]. The 
goal standard recovery policy would be implemented by a human wizard that has access only to the 
same variables as the dialog manager has at run-time, i.e. recognition results plus all other features 
available on-line. If computed, the absolute upper-bound and “gold standard” for recovery perform-
ance could also help us better understand how much potential for improvement exists.  

In this experiment we have simply focused on showing that a better policy exists. The ra-
tionale for not computing the “gold standard” (i.e. for giving the wizard access to the live user 
speech) was as follows. Without access to the user’s speech, the decision making task might have 
been too difficult for the wizard, especially given the response-time constraints. In this case, a nega-
tive result, i.e. the lack of detectable differences in the performance of the policies in the control 
and wizard conditions, would not be very informative. On the other hand, a negative result obtained 
when the wizard has full access to the user’s speech would cast more serious doubts about the possi-
bility of improving performance through a better recovery policy. Conversely, we believe that the 
detection of a significant recovery performance gap between the control and wizard conditions 
would justify pursuing algorithms for developing better policies (note that the absolute upper-bound 
is higher than the wizard policy performance in our experiment.) 

8.3.1.4 Participants 

46 subjects, mostly undergraduate students and staff personnel on campus, participated in the data 
collection experiment. The participants had only marginal prior experience with spoken language 
interfaces; some of them had previously interacted with phone-based customer-service interactive 
systems. We randomly assigned the participants into two groups corresponding to the control and 
wizard conditions. At the same time, a balance was maintained between groups in terms of the par-
ticipants’ gender and whether or not their first language was north-American English. Each group 
had 1 female non-native speaker, 11 female native speakers, 5 male non-native speakers and 6 male 
native speakers.  

8.3.1.5 Tasks and experimental procedure 

Each participant attempted a maximum of 10 scenario-based interactions with the system, within a 
set time period of 40 minutes. The same 10 scenarios were presented in the same order to all partici-
pants. The scenarios were designed to cover all the important aspects of the system’s functionality 
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Figure 94. Sample room reservation scenario 
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and had different degrees of difficulty. To avoid language entrainment, the scenarios were presented 
graphically. For instance, in the example illustrated in Figure 81 the user was required to make a 
room reservation for the following Wednesday from 2 to 4 p.m. The room had to have a projector 
and a network connection. The meaning for the various icons was explained to the participants in a 
brief introduction prior to their interactions with the system.  

After completing their interactions with the system, the participants filled a SASSI evaluation 
questionnaire [55] containing 35 questions grouped in 6 factors: response accuracy, likeability, cogni-
tive demand, annoyance, habitability, and speed. In addition, participants were asked to describe what 
they liked most, what they liked least and what would be the first thing they would change in the sys-
tem. 

8.3.2 Data 
The corpus of dialogs collected in this experiment (including both the control and wizard condi-
tions) contains 449 sessions and 8278 user turns. In Table 39 we present a number of additional de-
scriptive statistics. Since pronounced differences exist on a large number of metrics between native 
and non-native users, we report the breakdown of these figures in the two populations. 

Following the experiment, the user speech data was orthographically transcribed by a human 
annotator, and subsequently checked by a second annotator. The transcriptions include annotations 
for various human and non-human noises in the audio signal. Based on these transcriptions, a num-
ber of additional annotations were created. At the turn level, we manually labeled: 

• Concept transfer and misunderstandings: each user turn was annotated with the 
number of concepts that were correctly and incorrectly transferred from the user to the 
system; each turn with at least one incorrectly transferred concept was automatically la-
beled as a misunderstanding. 

• Transcript grammaticality: each user turn was manually annotated as either in-
grammar, out-of-grammar, out-of-application-scope or out-of-domain; these labels 
were used in an analysis of error sources, described earlier in Chapter 2. 

• User responses to non-understandings: the user response types following non-
understandings were labeled according to a tagging scheme first introduced by Shin and 
Narayanan [113]; more details are available in subsection 8.3.4, where we investigate user 
behaviors following non-understanding recovery strategies. 

• Corrections: each turn in which the user was attempting to correct a system error was 
flagged as a correction, as in [121]. These annotations were used in the analysis of user 
responses to explicit and implicit confirmation strategies, described previously in subsec-
tion 6.4.3 from Chapter 6.  

In addition, at the session level, we manually labeled binary task success. A task was con-
sidered successfully completed if all the criteria for the room reservation described by the corre-
sponding scenario were correctly satisfied.  

Statistic Total Native Non-native 

# Subjects 46 34 12 

# Sessions 449 338 111 

# Turns 8278 5783 2495 

Word-error-rate 25.7% 19.7% 39.8% 

Concept-error-rate 35.6% 26.2% 57.5% 

% Non-understandings 17.0% 13.4% 25.2% 

% Misunderstandings 13.5% 9.6% 22.4% 

Task success rate 75.1% 85.2% 44.1% 

 
Table 39. Overall corpus statistics 
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8.3.3 Performance of non-understanding recovery strategies 
We now comparatively analyze the performance of the ten non-understanding recovery strategies. 
This analysis was performed using only the data from the control condition. Recall that in this con-
dition, the strategies were engaged by an uninformed policy (i.e. randomly), and therefore they were 
on equal footing. Later on, in subsection 8.3.5 we discuss and compare the performance of the same 
strategies, when engaged by the wizard’s recovery policy.  

We begin by introducing a number of metrics for evaluating recovery performance in sub-
section 8.3.3.1. Then, in subsection 8.3.3.2 we present the results of the comparative analysis using 
these different metrics.  

8.3.3.1 Metrics for evaluating non-understanding recovery performance 

To our knowledge no traditional, well-established metrics exist in the community for evaluating the 
performance of non-understanding recovery strategies. We therefore propose a number of metrics, 
which we describe below. The metrics are local in nature; each of them evaluates various characteris-
tics of the user response following the system’s attempt to recover from a non-understanding. 

The first metric we considered was the recovery rate (RR). This metric takes into account 
whether or not the next user turn following the system’s non-understanding recovery strategy is cor-
rectly understood by the system. If the next turn is correctly understood, i.e. it is not a misunder-
standing and it is not a non-understanding, then we say that the strategy has successfully recovered. 
The recovery rate is then defined as the ratio of successful recoveries with respect to the total num-
ber of attempts to recover. The underlying variable in this metric is binary: the next turn is either cor-
rectly understood or not. The metric does not therefore take into account the magnitude or the costs 
of potential errors in the follow-up user response. Nevertheless, this metric provides a first order 
estimate of recovery performance. It is easy to understand and interpret, and, because of its low vari-
ance, is especially useful when only a small number of samples is available for evaluation.  

The recovery rate metric introduced above provides a first, high-level approximation for the 
performance of the recovery process. However this metric has a number of drawbacks. First, it is 
rather coarse: it only takes into account whether or not the next user turn is correctly understood, 
and does not distinguish between different types of errors in the opposite case. For instance, if the 
user turn following a recovery attempt is a misunderstanding, the system acquires incorrect informa-
tion. In this case the penalty should be higher than if the next turn was another non-understanding, 
because, as we have seen in Chapter 2, misunderstandings are in general more costly than non-
understandings. Second, the recovery rate is somewhat inappropriate for measuring the performance 
of the Move On strategy. When this strategy is engaged, the system moves on to a different question. 
It does not really solve the current problem, and an alternative dialog path might have a higher cost 
than the current one. Last, the recovery rate does not take into account the time elapsed during re-
covery: some strategies use shorter prompts and therefore might recover (or fail) faster than others. 
In general, fast recovery is desirable in task-oriented dialog, and ideally we would like to take this into 
account. 

To compensate for these deficiencies and construct a more accurate image of recovery per-
formance, we define three additional, incrementally more refined metrics: recovery word-error-rate, 
recovery concept utility, and recovery efficiency. 

The first refined metric is the recovery word-error-rate (RWER). Instead of looking at 
whether the next turn is correctly understood or not, we compute and average the word-error-rate 
for the user turns following non-understanding recovery attempts. This metric captures in more de-
tail the magnitude of the speech recognition errors in the user responses following the system’s re-
covery strategy.  

In a spoken dialog system, we are more interested in the correctness of the concepts ac-
quired by the system rather than the correctness of the recognition process per se. The second re-
fined metric we used, recovery concept utility (RCU), operates at the concept level. Instead of 
considering whether or not the next user turn is correctly understood by the system, we actually 
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count how many concepts were correctly (CTC) and incorrectly (ITC) acquired by the system in that 
turn. Additionally, we estimate the average utility of correctly and incorrectly acquired concepts 
(UtilCTC and UtilITC) via a data-driven cost-assessment model that relates the average number of cor-
rectly and incorrectly acquired concepts to task success. (This type of model has been discussed in 
detail earlier, in subsection 2.3.1 from Chapter 2 and in section 7.4 from Chapter 7.) The model con-
structed from the collected corpus revealed that, in the RoomLine domain the average utility of a 
correctly acquired concept (UtilCTC) is 7.81, and the average utility (cost) of an incorrectly acquired 
concept (UtilITC) is -7.19. Recovery concept utility is therefore computed as follows: 

ITCUtilCTCUtilRCU ITCCTC ⋅+⋅=  

ITC19.7CTC81.7RCU ⋅−⋅=  

Because it takes the domain-specific costs for correct and incorrect concepts into account, this metric 
is more appropriate than the traditional concept-error-rate.  

Finally, the last metric we considered was recovery efficiency (RE). This metric is similar 
to recovery concept utility. In addition, it also normalizes for the amount of time spent by the system 
during recovery. The motivation behind this metric is that some recovery strategies use shorter 
prompts than others, and therefore might succeed (or fail) faster. To normalize for the amount of 
time spent during recovery, we compute the number of concepts (correct and incorrect) we would 
expect the system to acquire on average during that time interval. We then subtract these numbers 
from the number of correct and incorrect concepts the system did acquire in the follow-up user turn. 
Recovery efficiency is therefore defined as follows: 

)rtITC(Util)rtCTC(UtilRE ITCITCCTCCTC ⋅−⋅+⋅−⋅=  

where t is the time elapsed between the original non-understanding and the next user turn, and rCTC 
(and rITC) are the average rates (per second) of acquiring correct (and incorrect) concepts during non-
understanding recovery segments. In other words, during the amount of time t the system spent in its 
attempt to recover, we would expect to obtain on average t� rCTC correct concepts and t� rITC incor-
rect concepts. We subtract these from the actual number of correct (CTC) and incorrect (ITC) con-
cepts obtained in the user response, and then take the corresponding utilities into account. The val-
ues for rCTC and rITC are estimated from the collected data. In the RoomLine domain, they are 
rCTC=5.41e-5 concepts/sec, and rITC=2.16e-5 concepts/sec. The formula for recovery efficiency be-
comes:  

)0000216.0tITC(19.7)0000541.0tCTC(81.7RE ⋅−⋅−⋅−⋅=  

Next, we present results from the comparative analysis of the ten non-understanding recov-
ery strategies, using the four performance metrics introduced above. 

8.3.3.2 A comparative analysis of non-understanding recovery strategies 

We first computed the average non-understanding recovery rate for each of the ten recovery strate-
gies. The resulting performance for each strategy, together with the 95% binomial confidence inter-
vals for these estimates, is illustrated in Figure 95.  

To analyze whether or not there are statistically significant differences between the mean re-
covery rates of the 10 strategies, we performed an overall analysis of variance for binary response 
variables, i.e. logistic ANOVA. This analysis confirmed that statistically significant differences exist 
between the means (p=0.000037).  

Next, we used logistic ANOVAs to compare each pair of strategies individually. As we have 
already seen in Table 39, pronounced differences in performance exist between the native and non-
native users. As a consequence, we added whether or not the speaker was native as a factor in the 
pair-wise ANOVAs; this added factor explains a significant amount of the observed variance in the 
recovery rate, and increases the sensitivity of the statistical analysis.  The results are illustrated in 
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Table 40: each cell contains the ratio of the non-understanding recovery rates between the strategies 
in the corresponding row and column. Since 45 pair-wise comparisons were performed, the p-values 
need to be corrected for multiple comparisons. The correction was performed using the false-
discovery-rate method [6]. This method allows us to compute the expected rate of false-detections 
among the detected significant differences. The false-discovery-rate (FDR) for each result is illus-
trated by the gray shading in each cell. For instance, we expect that 5% of the 10 cells with 
FDR=0.05 do not actually represent significant differences. Similarly, we expect that 10% of the 18 
cells with FDR=0.10 and 51% of the 21 cells with FDR=0.15 are actually not statistically significant 
differences.  

Although significant differences cannot be established for every strategy pair, the detected 
differences allow us to identify a partial ordering. The Move On, Help and (Terse)-You-Can-Say 
strategies occupy the top 3 positions, with no statistically significant differences detectable between 
them. In retrospect, this result is not surprising.  A number of studies [100, 121] have shown that 
once an error has occurred, the likelihood of having another error in the next turn is significantly 
increased (our data also confirms this result). As we go deeper into a spiral of errors, patience runs 
out, frustration is likely to increase, and the acoustic and language mismatches are likely to become 
more pronounced. Moreover, the fact that there was a non-understanding in the first place indicates 
that the system is in a difficult position in terms of decoding the current user intention. When the 
system abandons the current question and attempts to solve the problem by using a different dialog 
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Figure 95. Individual strategy recovery rates (uninformed policy) 

Table 40. Comparison of non-understanding recovery rates; the cells show the ratio of the non-understanding 
recovery rate between the strategy in the corresponding row and column; the shading shows the false-discovery-
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Move On MOVE 64.4% - 1.10 1.14 1.31 1.33 1.35 1.71 1.80 1.91 2.06 

Full Help HELP 58.5% - - 1.03 1.19 1.20 1.22 1.55 1.64 1.73 1.87 

(Terse)You-Can-Say  TYCS 56.5% - - - 1.15 1.16 1.18 1.50 1.58 1.68 1.81 

Repeat Prompt RP 49.2% - - - - 1.01 1.03 1.31 1.38 1.46 1.58 

You-Can-Say YCS 48.6% - - - - - 1.02 1.29 1.36 1.44 1.55 

Ask Rephrase ARPH 48.6% - - - - - - 1.27 1.34 1.42 1.53 

Detailed Repeat Prompt DRP 37.7% - - - - - - - 1.06 1.12 1.21 

Notify Non-understanding NTFY 35.7% - - - - - - - - 1.06 1.14 

Ask Repeat AREP 33.7% - - - - - - - - - 1.08 

Yield Turn YLD 31.2% - - - - - - - - - - 
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plan, these effects are likely to be attenuated, and chances of correct understanding increase. Simi-
larly, when the system provides help including sample responses for the current question, users might 
find better ways (from a system’s perspective) to express their goals, or they might discover other 
available options for continuing the dialog from this point.  

The high performance of the Move On strategy is consistent with prior evidence from a wiz-
ard-of-oz study of error handling strategies performed by Skantze [115]. Skantze’s study has revealed 
that, unlike most spoken dialog systems, human wizards often did not signal the non-understandings 
to the user; instead, they asked different task-related questions to advance the dialog. This strategy 
generally led to a speedier recovery. In the RoomLine system, the Move On strategy implements this 
idea in practice, and the observed performance confirms the prior evidence from Skantze’s study. 
Although not surprising, we find this result interesting, as it points towards a road less traveled in 
spoken dialog system design: when non-understandings occur, instead of trying to repair the current 
problem, use an alternative dialog plan to advance the conversation.  

The next three strategies, Repeat Prompt, You-Can-Say and Ask Rephrase, form a sec-
ond tier, all having a statistically better recovery rate than the last 4 strategies. Finally, no significant 
differences could be detected in terms of recovery rate between the last four strategies: Detailed 
Repeat Prompt, Notify non-understanding, Ask Repeat and Yield Turn. 

The discussion above was based on the non-understanding recovery rate metric. In section 
8.3.3.1, we introduced three additional, more refined metrics that also take into account the quality of 
the system’s understanding of the follow-up user response, and the time elapsed before this response 
reaches the system. The ranked list of strategies, according to these additional metrics, is shown in 
Table 41.B-D. The evaluation on the first two of these metrics, recovery word-error-rate and recov-
ery concept utility (presented in Table 41.B and Table 41.C) leads to results similar to the evaluation 
based on recovery rate: the Move On, Full Help and (Terse)You-Can-Say strategies are the top 
performing ones, and Detailed Repeat Prompt, Notify non-understanding, Ask Repeat and 
Yield Turn occupy the bottom positions. The distance between these lists can be measured using 

Ranking by Recovery Rate Recovery 
Rate 

Move On 64.4% 

Full Help 58.5% 

(Terse)You-Can-Say  56.5% 

Repeat Prompt 49.2% 

You-Can-Say 48.6% 

Ask Rephrase 48.6% 

Detailed Repeat Prompt 37.7% 

Notify Non-understanding 35.7% 

Ask Repeat 33.7% 

Yield Turn  31.2% 

 

Ranking by Recovery  
Word-Error-Rate 

Recovery 
WER 

Move On 33.0% 

(Terse)You-Can-Say 36.6% 

Full Help 39.9% 

Notify Non-understanding 41.3% 

Repeat Prompt 44.0% 

Ask Rephrase 47.1% 

Ask Repeat 50.1% 

You-Can-Say 51.0% 

Yield Turn 52.2% 

Detailed Repeat Prompt 53.4% 

 

Ranking by Recovery  
Concept Utility 

Recovery 
Concept Util. 

Move On 3.98 

Full Help 3.92 

(Terse)You-Can-Say 3.75 

You-Can-Say 2.75 

Ask Rephrase 2.63 

Repeat Prompt 2.19 

Yield Turn 1.95 

Detailed Repeat Prompt 1.71 

Notify Non-understanding 1.51 

Ask Repeat 1.47 

 

Ranking by Recovery  
Efficiency 

Recovery 
Efficiency 

Move On 1.43 

(Terse)You-Can-Say 1.11 

Ask Rephrase 0.75 

Repeat Prompt 0.29 

Ask Repeat -0.1 

Notify Non-understanding -0.38 

Full Help -0.4 

You-Can-Say -0.47 

Detailed Repeat Prompt -0.94 

Yield Turn -1.93 

A. Ranking by recovery rate B. Ranking by recovery word-error-rate 

C. Ranking by recovery concept utility D. Ranking by recovery efficiency 

Table 41. Ranked performance of ten non-understanding recovery strategies using four evaluation metrics 
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Spearman’s rank correlation coefficient [135]. The correlation between the recovery rate ranking and 
recovery word-error-rate ranking is ρ=0.7454; the correlation between the recovery rate ranking and 
the recovery concept utility ranking is even higher ρ=0.8848. 

Once we also take the elapsed time into account (see Table 41.D), the ranking changes more 
significantly: ρ is significantly lower, 0.5878. Move On remains the top performing strategy. However, 
due to longer prompts, the more verbose help strategies (Full Help and You-Can-Say) drop sig-
nificantly in rank, and other shorter strategies gain relatively (Ask Rephrase and Ask Repeat.) The 
recovery efficiency estimates and 95% confidence intervals are illustrated in Figure 96. We repeated 
the pair-wise comparisons between the strategies using this new metric. This time, Mann-Whitney U-
tests were used to compute the p-values, because recovery efficiency is a continuous-score and is not 
normally distributed; again the p-values were corrected using the false-discovery-rate method. Unfor-
tunately, the larger variance in the recovery efficiency metric (introduced by the time normalization), 
coupled with the relatively small number of samples available for each strategy, does not allow us to 
identify many statistically significant differences. At an FDR of 0.10 we find that the Yield Turn 
strategy performs significantly worse than the top 6 strategies, and Detailed Repeat Prompt per-
forms significantly worse than the top 3 strategies. 

8.3.4 Analysis of user responses to non-understanding recovery strategies 
Next, we analyzed the user responses that follow each non-understanding recovery strategy, in an 
effort to identify which user response-types lead more often to successful recoveries. The analysis 
was conducted using data collected in the control condition, where the strategies were engaged in 
an uninformed manner. 

8.3.4.1 Tagging scheme 

To perform this analysis, each user turn that followed a non-understanding was labeled according to 
a tagging scheme for error segments first introduced by Shin [113]. Subsequently, versions of this 
tagging scheme have been used by others: for instance, Choularton and Dale [26] used an abbrevi-
ated version of Shin’s original scheme to analyze a corpus of dialogs from a deployed dialog system 
for ordering pizza; Raux et al. [89] used it to analyze data collected with Let’s Go! Public, a deployed 
telephone-based system that provides bus route and schedule information.  

In this analysis, we used the same tagging scheme as Choularton and Dale [26]. User re-
sponses during error segments are classified into one of five categories:  

• repeat: the user repeats the previous utterance identically (at the lexical level); 
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• rephrase: the user rephrases the same semantic content, but using different lexical 
choices; 

• change: the user changes the semantic concepts with respect to the previous utterance; 

• contradict: the user contradicts the system (often as a barge-in); 

• other: subsumes response types that do not fall in any of the previous categories (e.g. 
hang-ups, timeouts, requests for help, etc.) 

8.3.4.2 Experimental results 

Figure 97 shows the overall distribution of user response types in our dataset. As a reference, we also 
show the user response type distributions found by Shin in an analysis of the Communicator corpus 
[113], and Choularton and Dale in an analysis of a deployed system for ordering pizza [26].  

Note however that a direct comparison between these experiments is not valid since we only 
analyzed user responses that followed a non-understanding (any user turn throughout any error seg-
ment). The distribution of user response types we observed is nonetheless similar to the previous 
studies. When faced with non-understandings, users tend to rephrase (~45%) more than repeat 
(~20%). One notable difference across the distributions can be observed between the change and 
contradict user response-types. We believe this difference is largely due to the fact that we only 
analyzed the user turns following non-understandings: contradicts occur mostly when a system 
misunderstands. 

The larger number of change-type responses is to a large extent introduced by the Move On 
strategy (see also Figure 98 and Figure 99). While in Shin’s study of the Communicator data a lot of 
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change responses occurred because users randomly changed their travel plans to simply advance the 
dialog, this is not the case in our study. Recall that participants in the study were compensated ac-
cording to the number of scenarios they managed to complete successfully. The change responses in 
the collected data generally represent valid contributions to the dialog, within the confines of the 
given scenarios. For instance, consider a scenario where the user needs to reserve a conference room 
for two hours in the morning. When asked for the start time, the user says “from 8 a.m. to 10 a.m.” but 
this leads to a non-understanding. The system asks the user to repeat, and the user responds “from 9 

a.m. to 11 a.m.”. This is a change-type response; at the same time, the ultimate user goal (making a 2-
hour reservation in the morning) has not changed.  

Next, we analyzed the relationship between each strategy and the follow-up user response-
types. The distribution of response-types for each strategy is illustrated in Figure 98. Figure 99 also 
shows a three dimensional representation of the strategies in the space of user response-types. The 
results indicate that, as expected, Ask Repeat leads to the largest number of repeat-type responses 
(31%); the Move On strategy leads to the largest number of change-type responses (52%); finally, the 
Ask Rephrase and Notify Non-understanding strategies lead to the largest number of re-
phrase-type responses (64%). Although the recovery strategies have a significant impact on the dis-
tribution of user response-types, this effect is not particularly strong. If we make the assumption that 
certain types of user responses are more desirable in certain circumstances, the results presented 
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above raise the following question: could we control the user response-types even more, for instance 
by using a more “aggressive” prompting style? (e.g. “Could you repeat what you just said?” instead of 
“Can you please repeat that?”)  

To a certain degree, the patterns we have observed in the RoomLine corpus are consistent 
with prior observations by Goldberg et al. [39] in a study of NIST 2000 Communicator evaluation 
corpus. For instance, Goldberg found that users were most likely to rephrase (84%) after a Notify 
Non-understanding prompt. In addition Goldberg also found that users are more likely to rephrase 
rather than repeat their utterances, regardless of the non-understanding recovery strategy used. This 
again is corroborated by our observations: in Figure 99.D, all strategies are placed above the line of 
equal repeats and rephrases. 

Last, we analyzed which user response-types are more likely to lead to successful recovery. 
Figure 100 shows the average recovery rate for each user response-type. The best recovery perform-
ance is attained on change responses (63%). Together with the large number of change responses 
on the Move On and help strategies, this result corroborates the high performance of these strategies, 
and the discussion from section 8.3.3. Somewhat surprisingly, we were not able to establish a statisti-
cally significant difference between the recovery rates of user repeat and rephrase responses. In 
this respect, our results conflict with a prior study by Goldberg et al. [39], in which it was found that 
user rephrases are better recognized and more likely to lead to successful recovery. Moreover, the 
same analysis performed on the sessions collected in the wizard condition shows that in that case 
repeat  responses were actually significantly better recognized than rephrase responses. Briefly, we 
believe this last result is explained by the fact that the wizard made intensive use of the Ask Repeat 
strategy, when this strategy was appropriate. This in turn boosted the overall number, as well as the 
recovery performance, of repeat-type responses. This result confirms the intuition that the per-
formance of various non-understanding recovery strategies is sensitive to the context (i.e. domain, 
task, user-population, recovery policy) in which the strategies are used. 

8.3.5 Effect of policy on performance: wizard versus uninformed 
So far, we have discussed the performance of individual recovery strategies and the follow-up user 
responses, when the strategies are engaged in an uninformed manner. In this section, we compare the 
recovery policy implemented by the human wizard against the uninformed policy. The comparison is 
performed based on the data collected in the two conditions: wizard and control. We study the 
effect of the policy on local recovery performance, as well as on global dialog performance metrics. 
In addition, we investigate the impact of the non-understanding recovery policy on the performance 
of individual non-understanding recovery strategies.  

8.3.5.1 Effect of policy on local recovery performance and global dialog performance 

We measured the impact of the recovery policy on local recovery performance using the four metrics 
that we have previously introduced in section 8.3.3.1 – recovery rate (RR), recovery word-error-
rate (RWER), recovery concept utility (RCU) and recovery efficiency (RE). 
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In addition, to evaluate the impact on global dialog performance, we measured overall task 
success and user satisfaction. Task success was defined as a binary variable and manually annotated 
after the data was transcribed. A task was considered successfully completed if the user made a room 
reservation that satisfied all the constraints specified in the corresponding scenario. User satisfaction 
was captured on a 1-7 Likert scale, and was elicited through the SASSI [55] post-experiment ques-
tionnaire. The user satisfaction score corresponds therefore to the overall experience the user had 
with the system.  

The results of the comparison are shown in Table 42 and illustrated in Figure 101.A-F. Since 
performance varies considerably between the native and non-native users, we present the breakdown 
of the differences in these two populations. In Table 42, the second column shows the overall per-
formance (both groups together); the third column shows the overall differences between the wiz-
ard and the control conditions, while columns 4 and 5 show the differences between these two 
conditions within the native and non-native populations. The shaded cells mark differences that are 
statistically significant at a p-value smaller than 0.05. To test for statistical significance we used t-tests 
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Figure 101. Performance comparison between the wizard and the uninformed recovery policy (* marks a 
statistically significant difference at p < 0.05) 

Metric Overall Wizard vs Uninformed Wizard vs Uninformed 
(only natives) 

Wizard vs Uninformed 
(only non-natives) 

Task Success (%)  (a) 75.1 78.5 ≈ 71.7 85.2 ≈ 85.2 57.4 > 31.6 

User Satisfaction (1-7) (b) 3.93 3.87 ≈ 4.00 4.29 ≈ 4.47 2.67 ≈ 2.67 

Recovery rate (%) (c) 48.7 50.1 ≈ 46.5 61.0 ≈ 56.4 37.9 ≈ 34.4 

Recovery word-error-rate (%) (d) 38.9 35.4 < 44.5 26.6 < 35.7 46.4 < 55.7 

Recovery concept utility (e) 2.80 3.01 ≈ 2.58 4.13 ≈ 4.12 1.62 > 0.63 

Recovery efficiency (f) 0.41 0.81 > 0.00 1.74 ≈ 1.50 -0.34 > -1.90 

 

Table 42. Performance comparison between the wizard and the uninformed recovery policy (* marks statisti-
cally significant differences at p < 0.05) 
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when comparing proportions (e.g. binary task success or recovery rate), and non-parametric Mann-
Whitney U-tests for the other continuous-valued performance metrics. 

As Figure 101 and Table 42 illustrate, an overall pattern emerges. The wizard policy does in-
deed lead to statistically significant performance improvements on a number of metrics, but the im-
provements appear mostly within the non-native population, i.e. in the group of users that had more 
difficulties using the system. For instance, while no task success improvement can be detected for 
native users, there is a large task success improvement for non-native users – see Figure 101.A. The 
average task success rate grows significantly from 31.6% in the control condition to 57.4% in the 
wizard condition. This increase bridges half of the original performance gap between native and 
non-native users in the control condition. Despite this increase in task success rate, no statistically 
significant differences can be detected in user satisfaction – see Figure 101.B; the small number of 
available samples (one per user) and the large variance of this metric (perhaps also due to different 
user expectations) preclude a reliable comparison. Nevertheless, the same trend of larger, statistically 
significant improvements for the non-native users is again observed on the local recovery perform-
ance metrics – see Figure 101.C-F. Statistically significant improvements can be detected in the non-
native population for three of these metrics: recovery word-error-rate, recovery concept utility, and 
recovery efficiency.  

We believe the explanation for the observed result lies in the fact that it is easier to improve 
performance when performance is low (in our case, for the non-native users). This result is consis-
tent with our previous analysis of the impact of non-understanding errors on task success described 
in section 2.3 from Chapter 2. 

8.3.5.2 Effect of policy on individual strategy performance 

In the previous subsection, we have seen that the wizard recovery policy leads to overall improve-
ments in performance, especially for the non-native users. In this section, we analyze the effect of the 
policy on the performance of individual recovery strategies. Our initial hypothesis was that, if the 
strategies are engaged “at the right time”, their performance would improve. 

Figure 102 shows the number of times each non-understanding recovery strategy was en-
gaged by the wizard. Figure 103 shows the recovery rate for each of the ten strategies, under the two 
different policies (wizard and uninformed). We found a statistically significant difference (p=0.0023, 
or p=0.023 Bonferroni corrected for multiple comparisons [105]) only for the Ask Repeat strategy. 
Note however that Ask Repeat is the strategy most often engaged by the wizard. While this strategy 
ranked 9th when engaged in an uninformed fashion, its performance improved considerably from 
33.7% to 53.0% under the wizard policy and is on par with the other top-performing strategies such 
as giving help, such as (Terse)You-Can-Say and Full Help, or advancing the task by asking a dif-

Figure 102. Number of times each strategy was engaged by the wizard 
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ferent question, such as Move On. The same improvement in the Ask Repeat strategy was also de-
tected on the other three recovery performance metrics.  

This result confirms that indeed strategy performance can be improved by the use of a better 
recovery policy. At the same time, the lack of detectable differences in the other strategies is some-
what unexpected. In retrospect, this result might be explained by the fact that the decision task the 
wizard had to perform was quite difficult, even with access to the full audio signal. To maintain the 
illusion that users were interacting with an autonomous system, the wizard had to choose one of ten 
recovery strategies in a very short time interval: 1 to 2 seconds. This selection task is easier for some 
of the strategies than for others. Furthermore, a number of strategies, such as You-Can-Say, Repeat 
Prompt, and Detailed Repeat Prompt, were very rarely engaged by the wizard and as a result the 
confidence bars on their performance estimates are very wide, and preclude an accurate comparison.   

8.3.6 Concluding remarks 
In this section, we have described an empirical investigation of ten non-understanding recovery 
strategies engaged by two different recovery policies. The questions under investigation were: (1) 
how do various non-understanding recovery strategies compare to each other? and (2) can a 
good non-understanding recovery policy lead to significant performance improvements? 

We began by introducing four metrics for assessing recovery performance, and comparing 
the ten strategies across these dimensions. The results show that, when engaged in an uninformed 
fashion, the best performing strategies in our domain are: (1) advancing the conversation by ignoring 
the non-understanding and trying an alternative dialog plan (Move On), and (2) providing help mes-
sages containing sample responses for the current system question. At the same time, generic strate-
gies such asking the user to repeat or notifying that a non-understanding has occurred, did not per-
form well. An analysis of user responses to various strategies indicates that, while there is an effect of 
strategy on the subsequent user behavior (e.g. users repeat most when they are asked to repeat, etc.), 
this effect is not particularly strong. In the future, it would be interesting to investigate to which ex-
tent user responses can be controlled, for instance by using a more aggressive prompting style, such 
as “Could you repeat what you just said?” instead of “Can you please repeat that?” 

To a certain degree, our results are in line with previous observations made by others. For 
instance, the high performance of the Move On strategy corroborates prior evidence from a wizard-
of-oz study [115] that showed that human operators often do not signal non-understandings, but 
rather try to advance the task by asking different questions. In the future, we plan to explore in more 
detail the potential uses of this strategy, as well as its pitfalls. Potential issues to be investigated in-
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clude identifying more situations in which this strategy is applicable, studying the extent to which this 
strategy can be decoupled from the system’s task, and developing more appropriate metrics for as-
sessing its performance. Our analysis also corroborated previous observations made by Shin et al. 
[113], and Choularton and Dale [26] with respect to the overall distribution of user respose-types 
during non-understanding segments. Furthermore, our data also corroborates findings by Goldberg 
[39] that users are more likely to rephrase than repeat, after any prompt in an error sub-dialog.  

At the same time, it is important to notice that a coherent, consistent image about the per-
formance and effects of various non-understanding recovery strategies is hard to establish. While 
informative, results regarding the performance of these strategies and the distribution of user re-
sponses do not necessarily generalize across domains. For instance, we found conflicting evidence 
with Goldberg’s study [39] on the relative likelihood of recovery for user repeats and user rephrases. 
The success of various strategies can be strongly influenced by a number of factors such as the na-
ture of the task, the user population, as well as the policy used to engage the strategies. We believe 
that the solution for successful recovery lies in endowing spoken dialog systems with the capacity to 
adapt their error handling behaviors to the specific characteristics of the domains and environments 
in which they operate. 

As a first step in this direction, we have investigated whether or not a more informed recov-
ery policy (in our case implemented by a human in a wizard-of-oz setup) can lead to significant per-
formance improvements. The empirical results confirm this hypothesis. The more informed policy 
led to significant improvements in task success, as well as on a number of other local performance 
metrics. The improvements occurred mostly within the non-native population, i.e. the group of users 
that had more difficulties interacting with the system.  

In the next section, we turn our attention to the third issue we have outlined in the introduc-
tion of this chapter: how can we develop good non-understanding recovery policies that oper-
ate over large sets of recovery strategies? 

8.4 An online, supervised approach for learning non-
understanding recovery policies 

We have seen in the previous section that a good non-understanding recovery policy can lead to sta-
tistically significant improvements in both local and global performance metrics. However, develop-
ing good policies is a challenging task. The number of potential strategies the system could engage is 
relatively large. The trade-offs between these strategies are not always well understood and they 
probably differ across domains. Ideally, we would like systems to learn from their own experiences, 
and adapt to the particular characteristics of the domain and environment in which they operate.  

In this section, we propose an online, data-driven approach for developing non-understan-
ding recovery policies over a large set of recovery strategies. We begin by describing the proposed 
method in the next section, 8.4.1. Then, in section 8.4.2 we describe an experiment conducted to 
evaluate the proposed learning methodology in the context of a real-world, deployed spoken dialog 
system. Finally, in section 8.4.3 we summarize the results and discuss a number of avenues for fur-
ther developing and extending this work.  

8.4.1 Method 
The starting point for the proposed method lies in the observation that certain non-understanding 
recovery strategies are more likely to succeed in certain circumstances. If we were able to compute 
the likelihood of success for each recovery strategy at runtime, a policy would be easy to construct: 
for instance we could choose the strategy with the highest likelihood of success. We therefore pro-
pose a method that works in two steps: first, we use a supervised learning approach to construct pre-
dictors for the likelihood of success of each individual recovery strategy. Then, we use these predic-
tors at run-time to select which strategy to engage.  

Note that we are interested in developing an online solution to this problem: the likelihood-
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of-success predictors should be refined as increasingly larger amounts of data become available to the 
system; the policy should adjust accordingly. As we have argued in the introductory chapter, spoken 
dialog systems are interactive by nature and operate in shifting environments. Simple changes in the 
recovery policy might trigger subsequent changes in user behavior. Other independent factors such 
as learning effects enabled by long-term use of the system might also affect user behavior. In general, 
we should expect that the underlying distribution of the training data changes through time; an online 
solution (as opposed to a batch mode approach) could track these changes in the underlying training 
data and adjust the policy accordingly.  

8.4.1.1 Predictors for strategy success 

We use logistic regression models to predict the likelihood of success for each recovery strategy. One 
separate model is constructed for each strategy. Each model predicts whether or not the strategy has 
successfully recovered, in the sense defined in subsection 8.3.3.1, i.e. the next user turn is correctly 
understood by the system. For training and evaluation purposes, this information is manually anno-
tated. In fact, the system already knows automatically when non-understandings occur. As a conse-
quence, a semi-automatic approach can be used to create the recovery labels: all the non-
understandings followed by another non-understanding are automatically labeled as not-recovered; 
the remaining non-understandings are inspected and labeled by a human annotator. Later, in subsec-
tion 8.4.3, we also outline a possible implicitly-supervised approach for training these predictors. 

The features, or the dependent variables in the regression model, capture various aspects of 
the last non-understanding, as well as information about the current dialog state and about the his-
tory of the dialog so far. The full set of features used in these experiments is described in detail later, 
in subsection 8.4.2.3.  

Logistic regression models [76] present a number of advantages over other machine learning 
techniques in this task. As we have already seen in Chapter 5, in contrast with other discriminative 
approaches, logistic regression generally produces well-calibrated class posterior probability scores 
[28, 139]. In other words, the model predictions accurately reflect the probability of success: a strat-
egy will be successful in x% of the cases when the model predicts that the likelihood of success is x. 
Like for building confidence annotators, this is an important property because we plan to use the 
model outputs as probability estimates. Second, logistic regression models are sample efficient. This 
is another desirable property because we plan to learn one separate model for each strategy and only 
a relatively small number of data-points will be available for training each predictor. A third advan-
tage of logistic regression models is that they can be constructed in a stepwise manner. This allows us 
to consider a very large number of features; the relevant features are automatically selected and in-
cluded in the model. Last, logistic regression models can automatically provide the confidence inter-
vals for their predictions, which is an essential prerequisite for the strategy selection method de-
scribed in the next subsection.  

8.4.1.2 Highest-upper-bound strategy selection method 

Once we can predict the likelihood of success for each individual recovery strategy, we are left with 
choosing the method for selecting between the strategies. Ideally, we should choose the strategy with 
the highest likelihood of success. However, we are interested in developing an approach in which the 
system learns a recovery policy on-line, through experimentation. As a result, we are faced with an 
exploration-exploitation tradeoff. The system needs to strike the right balance between using strate-
gies it knows to be successful (exploitation) and gathering more training data for the strategies about 
which it is still unsure (exploration).  

One method for addressing this exploration-exploitation trade-off is to always select the 
strategy that has the highest upper bound for the estimated probability of success. This highest-
upper-bound selection method, also known as the interval-estimation, was initially proposed by 
Kaelbling in [60], and was shown empirically to perform very well in a variery of exploration-
exploitation tasks.  
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The intuition behind this method is illustrated in Figure 104. By selecting the strategy with 
the highest upper bound, the system either chooses a strategy with a high likelihood of success 
(Figure 104.A), or a strategy with a low likelihood of success but with wide confidence bounds 
(Figure 104.B1). In the first case, the system is exploiting: it is engaging a strategy that is already 
known to be successful in that situation. In the second case, the system is exploring. Consider for 
instance the situation in Figure 104.B1. After strategy A is engaged, a new data-point for training the 
predictor for that strategy is obtained. As more data becomes available for a given strategy, generally 
the confidence interval for the corresponding prediction model will shrink. As a result, another strat-
egy (C in this case) will have the highest upper bound, and the system will switch to exploring that 
strategy (Figure 104.B1 � Figure 104.B2). As more data becomes available for the model predicting 
the likelihood of success for C, its corresponding confidence interval will shrink more, and again an-
other strategy (A in this case) will be selected – see Figure 104.B2 � Figure 104.B3. In effect, as 
more data is collected, the confidence bounds on the various predictors iteratively shrink, and the 
system explores the space of strategies, while at the same time generally engaging strategies that are 
known to be well-performing.  

8.4.2 Experimental results in the Let’s Go! Public system 
To evaluate the proposed learning methodology, we conducted an experiment with the Let’s Go! 
Public spoken dialog system. In the next two subsections, we describe the system and the set of non-
understanding recovery strategies used in this experiment. Then, in subsection 8.4.2.3 we describe the 
set of features used to construct the individual predictors for the likelihood of success for each re-
covery strategy. In subsection  we describe the experimental setup, and finally, in subsection 8.4.2.5 
we present the results we obtained. 

8.4.2.1 System 

The experiment described below was performed in the context of Let’s Go! Public [89], a telephone-
based spoken dialog system that provides access to bus route and schedule information for the Pitts-
burgh Port Authority busses. The system, described in more detail in subsection 3.4.2 from Chapter 
3, has been available to the general public via the Port Authority customer service line during non-
business hours (i.e. 7pm-7am on weekdays and 6pm-8am on weekends and holidays) since March 
2005. Throughout this time, the system has serviced over 30,000 calls. On average, the system re-
ceives about 50 calls per night.  

Given the high traffic volume, and the real-world nature of the application, this system pro-
vides an excellent platform for evaluating the proposed online learning method. Because the system 
services calls only at night, we could label the data and retrain the strategy success prediction models 
on a daily basis (more details about the learning setup are described later, in subsection .) 

8.4.2.2 Strategies  

During the first year of operation, the system used 5 non-understanding recovery strategies in con-
junction with a simple heuristic policy that took into account the number of consecutive non-
understandings (for more details, see [89]). Prior to starting the policy learning experiment, we ex-

A         B        C A         B        C A         B        C 

            A                                          B1                                B2                                  B3 

Figure 104. Highest-upper-bound selection between 3 fictitious strategies (A, B, and C) 

A         B        C 
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panded and redesigned the set of non-understanding recovery strategies. The final set is shown in 
Table 43.  

In addition, we designed a set of rules to restrict the circumstances under which each non-
understanding recovery strategy can be used:  

• after three consecutive non-understandings in the states where the Move On strategy is 
possible, force the Move On strategy (i.e. all other strategies become unavailable) 

• don’t use Ask Repeat more than twice in a row (avoids triggering frustration by repeti-
tive behavior; 

• don’t use Ask Rephrase more than twice in a row (avoids triggering frustration by re-
petitive behavior); 

• don’t use Ask Rephrase if the recognized hypothesis has only one word (it’s likely that 
short utterances cannot be really rephrased); 

• don’t use Repeat Prompt more than twice in a row  (avoids triggering frustration by re-
petitive behavior); 

 S:  Where do you want to leave from? 
U: [Non-Understanding] 

1 
Ask Repeat (AREP) [system asks the user to repeat the non-understood utterance] 

S: Can you repeat what you just said? 

2 
Ask Rephrase (ARPH) [system asks the user to rephrase the non-understood utterance] 

S: Can you please try to rephrase that? 

3 
Repeat Prompt (RP) [system repeats the previous prompt] 

S: Where do you want to leave from? 

4 
Move On (MOVE) [system advances the task by moving on with a different question] 

S: Let’s proceed step by step… In what neighborhood is your departure stop? 

5 
(Terse)-You-Can-Say (TYCS) [a terse version of the You-Can-Say strategy] 

S: For example, you can say, FORBES AND MURRAY, DOWNTOWN, or MCKEESPORT. 

6 

(Terse)-You-Can-Say and Restart (TYCS_R) [a terse version of the You-Can-Say strategy that also told 
users they can say ‘start over’ if they want to restart the dialog] 

S: For example, you can say, FORBES AND MURRAY, DOWNTOWN, or MCKEESPORT, or say 
 ‘start over’ to restart. 

7 

Ask Short Answer (ASA) [ask the user for a short answer] 

S: Please use shorter answers because I have trouble understanding long sentences. Where do 
 you want to leave from? 

8 
Speak Less Loud (SLL) [asks the user to speak less loud] 

S: I understand people best when they speak softer. Where do you want to leave from? 

9 

Interaction Tips (IT) [give general interaction tips to the user] 

S: Okay, I know this conversation isn't going well. There are things you can try to help me 
 understand you better. Speak clearly and naturally; don't speak too quickly or too slowly. Give 
 short, concise answers. Calling from a quiet place helps. If you'd like to start from scratch, you 
 can say ‘start-over' at any time. Where do you want to leave from? 

10 

Ask Start Over (ASO) [asks the user if he/she would like to start over] 

S: I’m sorry, I’m still having trouble understanding you and I might do better if we restarted. Would 
 you like to start over? 

11 

Give Up (GUP) [give up the dialog and hang up] 

S: I'm very sorry, but it doesn't seem like I'm able to help you. If your question can wait until 7, you 
 can call back then to speak to a person.  I hope that I can be more helpful the next time you 
 call. Thank you for calling the CMU Let's Go bus information system. Goodbye. 

 
Table 43. Non-understanding recovery strategies in the Let’s Go! Public system 
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• don’t use (Terse)-You-Can-Say and (Terse)-You-Can-Say and Restart if the last 
strategy was also (Terse)-You-Can-Say or (Terse)-You-Can-Say and Restart 
(avoids triggering frustration by repetitive behavior); 

• don’t use (Terse)-You-Can-Say and (Terse)-You-Can-Say and Restart if they 
were already used three times in this particular dialog state; 

• don’t use (Terse)-You-Can-Say and Restart unless there were already 10 turns in 
the dialog (ensures the system doesn’t tell the user about restarting at the very beginning 
of the dialog); 

• don’t use (Terse)-You-Can-Say and Restart on the initial “How may I help you?” 
state (ensures the system doesn’t tell the user about restarting at the very beginning of 
the dialog); 

• don’t use Speak Less Loud if it was already used in the last four turns or if the signal 
energy level is below a certain threshold; 

• don’t use Ask Short Answer unless the number of words in the recognized hypothesis 
is above 4;  

• don’t use Ask Short Answer if it was already used in the last 4 turns; 

• don’t use Interaction Tips unless there are at least 4 consecutive non-understandings 
(this strategy should be used sparingly, as a last resort); 

• don’t use Interaction Tips more than once per dialog; 

• don’t use Ask Start Over unless there are 4 or more consecutive non-understandings, 
at least 10 turns in the dialog, and the ratio of non-understandings so far is above 0.5 
(this strategy should be used sparingly, as a last resort); 

• don’t use Give Up unless there are 4 or more consecutive non-understandings, at least 
30 turns in the dialog, and the ratio of non-understandings so far is above 0.8 (this strat-
egy should be used very sparingly, only when things are going very badly). 

This set of rules encapsulates prior expert knowledge. It is used to ensure that the system 
never takes an unreasonable action as well as to constrain the search space for the policy learning 
algorithm. In effect, the rules implement a heuristic strategy selection policy, which, instead of select-
ing one strategy, selects a set of valid strategies whenever a non-understanding occurs. Given these 
heuristic constraints, 4.2 non-understanding recovery strategies were available on average at any given 
point (the minimum was 1 and the maximum was 9.) 

8.4.2.3 Features 

We identified a large set of features that carry potentially relevant information for predicting the like-
lihood of successful for individual recovery strategies. These features can be grouped into three cate-
gories, briefly described below. The full set of features is presented in Table 44. 

• features describing the current non-understanding. We characterized the current 
non-understanding in terms of a large set of features extracted from different knowledge 
sources in the system. These include speech recognition features, such as acoustic and 
language model scores, speech rate, signal and noise levels, clipping information; lexical 
features, such as the number of words, presence and absence of confirmation markers; 
language understanding features, such as various goodness-of-parse scores, number 
of grammar slots; inter-hypothesis features reflecting the differences in the top recog-
nized hypotheses between the male and female recognition engines; other features such 
as timing information (e.g. barge-ins and timeouts) and the non-understanding type (e.g. 
no-parse vs. rejection); 

• features describing the current non-understanding segment: the length of the cur-
rent non-understanding segment; information about which recovery strategies were al-
ready taken in the current non-understanding segment, etc.; 
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Table 44. Features for predicting the likelihood of success for non-understanding recovery strategies 

 
The feature types (marked in the T column) are encoded as follows: R=real, C=count, N=nominal, B=boolean 
The derived features are encoded as follows: 
  >m = binary version indicating if the feature value is greater than the mean value of the feature in the dataset 
  >0 = binary version indicating if the feature value is greater than 0 
  >1 = binary version indicating if the feature value is greater than 0 
  >2 = binary version indicating if the feature value is greater than 0 
  >4 = binary version indicating if the feature value is greater than 0 
  dtf = difference between the current feature value and the feature value in the first turn in the dialog 
  dtp = difference between the current feature value and the feature value in the previous turn in the dialog 

 

 
 
 
Feature name Type Derived  

features 
Feature Description 

 

Features describing the current non-understanding: speech recognition 
 

engine_id B  the identity of the recognition engine that generated the selected hypothesis (male or female) 

am_score R norm, >m the acoustic model score 

lm_score R norm, >m the language model score 

decoder_score R norm, >m the decoder score 

acoustic_gap R norm, >m indicates the difference between the current acoustic model score and the acoustic score corresponding to an 
all-phone model 

min_word_conf R  the minimum word-level confidence score  

avg_word_conf R  the average word-level confidence score 

max_word_conf R  the maximum word-level confidence score 

frame_num C >m the number of frames 

word_num C norm, >1, >2, >4 the number of words in the utterance 

word_num_class N  nominal feature indicating whether the utterance Rains 1 word, 2 words, 3 or 4 words, or more than 4 words 

unconf_num C norm, >0, >1 number of unconfident words (Sphinx tags individual words as unconfident if no trigram is found in the lan-
guage model ending in the current word, and a bigram back-off is forced) 

unconf_ratio R >m the percentage of unconfident words in the hypothesis  

speak_rate R >m speech rate, computed as number of frames per word 

speak_rate_phones R >m speech rate, computed as number of frames per phone 

speak_rate_syl R >m speech rate, computed as number of frames per syllable 

npow R >m noise level 

pow R >m signal level 

pow_npow_diff R >m signal-to-noise ratio 

clip_info C  information about whether or not the signal is clipped 
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Features describing the current non-understanding: lexical 
 

mark_confirm B  presence of confirmation markers 

mark_confirm_barge_in B  presence of confirmation markers, and the utterance was a barge-in 

unconf_mark_confirm B  confirmation markers are present, but they are tagged as unconfident by the recognizer 

mark_disconfirm B  presence of disconfirmation markers 

mark_disconfirm_barge_in B  presence of disconfirmation markers, and the utterance was a barge-in 

unconf_mark_disconfirm B  disconfirmation markers are present, but they are tagged as unconfident by the recognizer 
 

Features describing the current non-understanding: language understanding 
 

slot_num C >1, >2 number of grammar slots 

rep_slots_num C >0 number of repeated grammar slots (wrt the previous turn) 

new_slots_num C >0 number of new grammar slots (wrt the previous turn) 

words_per_slot R >1, >2 average number of words per grammar slot 

uncov_num C >0, >1, norm number of words not covered by the parse 

uncov_ratio R >m the percentage of words not covered by the parse 

frag_num C >1 the number of fragments in the parse 

frag_ratio R >m the percentage of fragments in the parse 

gap_num C >0, >1 the number of gaps in the parse 

frag_and_gap_num C >1 the number of fragments and gaps in the parse 

hyp_num_parses C  the number of alternative parses generated for this recognition hypothesis (due to grammar ambiguities, Phoe-
nix can sometimes generate multiple parses for a single recognition hypothesis) 

total_num_parses C  the total number of alternative parses generated for this user input 
 

num_parses_ratio R  hyp_num_parses divided by total_num_parses 
 

 

Features describing the current non-understanding: inter-hypotheses  
 

ih_diff_lexical B  the two recognition hypotheses from the male and female recognition engine are different 
 

ih_diff_lexical_one_word B  the two recognition hypotheses from the male and female recognition engine are different and they both con-
tain only one word 

ih_am_score_norm_diff_to_max R >0 the difference between the acoustic model score of the current hypotheses to the maximum acoustic model 
score of the two hypotheses 

ih_am_score_norm_diff_to_min R >0 the difference between the acoustic model score of the current hypotheses to the minimum acoustic model 
score of the two hypotheses 

ih_lm_score_norm_diff_to_max R >0 the difference between the language model score of the current hypotheses to the maximum language model 
score of the two hypotheses 

ih_lm_score_norm_diff_to_min R >0 the difference between the language model score of the current hypotheses to the minimum language model 
score of the two hypotheses 

ih_frag_ratio_diff_to_max R >0 the difference between the fragmentation ratio of the current hypotheses to the maximum fragmentation ratio of 
the two hypotheses 

ih_frag_ratio_diff_to_min R >0 the difference between the fragmentation ratio of the current hypotheses to the minimum fragmentation ratio of 
the two hypotheses 
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Features describing the current non-understanding: other  
 

slots_matched C >0, >1 the number of grammar slots that matched an open dialog expectation 

slots_relevant C >0, >1 the number of grammar slots that are relevant to the system (this excludes for instance courtesy slots like 
[please]) 

slots_blocked C >0, >1 the number of grammar slots that matched a closed dialog expectation 

first_level_matched C >0, >1 the first level in the expectation agenda where a slot from the current input matched an open expectation 

last_level_matched C >0, >1 the last level in the expectation agenda where a slot from the current input matched an open expectation 

last_level_touched C >0, >1 the last level in the expectation agenda where a slot from the current input matched a (open or closed) expec-
tation 

matched_in_focus B  the input matched the dialog expectation in focus (the first level on the agenda) 

barge_in B  the user barge-in on the system 

turn_number C >0, >1, >m the turn number 

no_parse B  indicates that no parse was constructed for the selected recognition hypothesis 

confidence C >.25, >.50, >.75, 
>m 

the confidence score of the hypothesis  

 

Features describing the current non-understanding segment 
 

last_turn_nonu B  indicates if the previous turn was a non-understanding 

num_prev_nonu C >1, >2 indicates how many consecutive non-understandings preceded the current user turn 

num_prev_not_nonu C >1, >2, >5 indicates how many consecutive turns that were not non-understandings preceded the current turn 
 

Features describing the current dialog state and dialog history 
 

dialog_state_id B  set of binary features capturing the state the dialog manager is in (there are 2 different states in the Let’s Go! 
Public system) 

last_nonu_action_id B  set of binary features describing the identity of the last non-understanding recovery action taken 

h_ratio_nonu C  the ratio of non-understandings so far in the dialog 

h_avg_am_score_norm C >m the average normalized acoustic model score so far in the dialog 

h_avg_lm_score_norm C >m the average normalized language model score so far in the dialog 

h_avg_confidence C >25, >50, >75, 
>m 

the average confidence score so far in the dialog 

h_avg_gap_num C >m the average value for the gap_num feature so far in the dialog 

h_avg_slots_matched C >m the average value for the slots_matched feature so far in the dialog 

h_avg_uncov_num C >m the average value for the uncov_num feature so far in the dialog 
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• features describing the current dialog state and the dialog history: we encoded the 
22 dialog states in the Let’s Go! Public system with a set of 22 binary variables; addition-
ally, we computed history features such as the ratio of non-understandings, and running 
averages of  confidence scores, goodness-of-parse scores, acoustic and language model 
scores, etc. 

8.4.2.4 Experimental design 

The online learning experiment consisted of two phases: baseline and learning.  

The baseline phase was started on March 11th 2006, and lasted for two weeks, until March 
26th, 2006. The goal in this phase was to establish the baseline performance of the system. Through-
out this phase, the system randomly chose a recovery strategy whenever a non-understanding oc-
curred, while obeying the set of constraints described in subsection 8.4.2.2. Note that, although the 
system chooses randomly between the available strategies, this policy is not uninformed. The con-
straints described in subsection 8.4.2.2 encapsulate a significant amount of expert knowledge. Cou-
pled with the random choice, they in effect create a heuristic stochastic non-understanding recovery 
policy.  

The learning phase of the experiment was started on March 26th and lasted for 6 weeks, 
until May 5th. Throughout this phase, we used the proposed online supervised learning method to 
develop a recovery policy. Each morning the data collected during the previous night was semi-
automatically labeled with non-understanding recovery information: each user turn that followed a 
non-understanding (and was not itself a non-understanding) was inspected and manually annotated 
as correctly understood or not. This labeling effort took about 30 person minutes every day. The 
models for predicting the likelihood of success for each recovery strategy were retrained based on the 
data collected up to that point, and introduced in the system for the following night. Consequenly, 
the system learned new policies on a daily basis.  

At the beginning of the learning phase, we realized that we had to exclude the last two 
strategies shown in Table 43, due to their incompatibility with our local definition of successful re-
covery. The first excluded strategy, Ask Start Over, notifies the user that a non-understanding oc-
curred and asks if the user would like to start over. This generally elicits a yes/no type answer from 
the user. Although this answer might be correctly understood by the system in, a correct understand-
ing does not really represent a successful recovery from the previous non-understanding; rather, the 
dialog starts again from the beginning. Similarly, when the Give Up strategy is engaged, the system 
apologizes, asks the user to call during normal business hours, and hangs up. No recovery is there-
fore possible in this case. 

8.4.2.5 Experimental results and analysis  

We first evaluated the proposed approach by computing the average non-understanding recovery 
rate throughout the baseline and learning periods.  

The presence of the two extra strategies during the baseline period acts unfortunately as a 
confounding variable in our evaluation. Since time constraints21 prevented us from rerunning the 
baseline phase once more without these strategies, to make the comparison fair we decided to ex-
clude all sessions from the baseline period in which these strategies were engaged (27 out of 524). 
Unless otherwise mentioned, the results presented below are computed by excluding these sessions. 
It is important to notice that this correction in fact artificially inflates the measured system perform-
ance throughout the baseline period. This happens because the Ask Start Over and Give Up 
strategies were only available during sessions with large numbers of non-understandings – due to the 
nature of the heuristic constraints. Ask Start Over was available when the non-understanding ratio 

                                                      
 
21 Due to other experimental demands on the Let’s Go! Public system, we had only a fixed period of time allocated for 
experimenting with this system. 
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was above 50% and Give Up was available when this ratio was above 80%. By eliminating any ses-
sion that contained one of these strategies, we also eliminated a significant number of other non-
understandings that were not successfully recovered; the average non-understanding recovery rate in 
the eliminated sessions was 10.7%, as compared to 34.2% in the rest of the sessions. As a conse-
quence, the baseline performance is artificially inflated. Nevertheless, as we shall see below, a learn-
ing effect is still detected.  

In Figure 105 we show the number of sessions collected with the system every night. The 
spikes correspond to the weekends, when the number of calls to the system increases significantly. 
The comparatively lower number of calls for April 15th is explained by a bug that crashed the system 
for part of that day.  

We evaluated the performance of the learned non-understanding recovery policy in terms of 
the average non-understanding recovery rate (ANRR). The daily average non-understanding recovery 
rate (throughout the baseline and learning phases) was computed as the mean of the average 
non-understanding recovery rate within each session for that day. The results are illustrated in Figure 
106. Note that the daily average recovery rate exhibits a wide variance: this is due to the fact that the 
number is computed as an average over the sessions, and the number of sessions in each day is not 
very large. However, despite the fairly wide daily fluctuations, a comparison of average recovery per-
formance between the first two weeks (i.e. the baseline period) and the last two weeks of the 
learning period reveals a statistically significant improvement: from 34.2% to 38.9%, a 13.6% rela-
tive improvement (p=0.0375).  

This improvement represents a lower bound on the actual improvement generated by the 
new policy. As mentioned before, the baseline performance is artificially inflated due to the exclusion 
of all sessions containing an Ask Start Over or a Give Up strategy. If, instead of eliminating the 
whole sessions we only eliminate the turns corresponding to these strategies from the sessions where 
they appear, the baseline performance drops to 33.1%, which would imply a 17.4% relative im-
provement in the average non-understanding recovery rate.  

To gain a better insight into the learning process, we fitted a learning curve to the data, de-
scribed by a sigmoid: 
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This curve describes the evolution of performance in a temporal learning process, where n is 
the number of days elapsed. Learning starts from a baseline performance level A and reaches an as-
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Figure 105. Number of sessions collected with the Let's Go! Public system throughout the baseline and 
learning phases 
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ymptote at A+B. The learning rate is captured by the C parameter. The D parameter allows for a 
shift in the starting point for the learning. We fitted this curve using a mean-squared error criterion 
to the daily average non-understanding recovery rates observed in our corpus. The resulting fitted 
curve is also illustrated in Figure 106. The resulting coefficients are: A=0.3385, B=0.0470, C=0.5566, 
and D=-11.44. The fitting process recovered our baseline (A=33.85%) and indicates that the asymp-
tote ANRR is 38.55% (A+B). Furthermore, the fitting process also recovered the starting point for 
the learning (the curve starts moving up after Match 26th). More interestingly, the curve reveals that 
the system reached the asymptote performance quickly, in only ten days after the beginning of the 
learning phase.  

Next, we present a more detailed analysis of the system’s performance and evolution 
throughout the learning period. As expected, the average size of the confidence intervals for the like-
lihood of success prediction shrinks as more and more data becomes available – see Figure 107. This 
happens faster for the strategies that are engaged very often such as providing help for what users 
can say (TYCS) and slower for strategies that are engaged less often, such as asking for short answers 
(ASA). 

In Figure 108.A, we illustrate (on a weekly basis) how often each strategy was engaged, as a 
proportion of the total number of times that strategy was available. Recall that a set of predefined 
rules constrained the availability of each strategy. As Figure 108.A shows, the daily invocation per-
centages exhibit a wide variance, in part due to data sparsity issues, in part due to the fact that the 
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Figure 107. Average size of confidence interval for likelihood of success predictions 
throughout the learning phase 
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system is exploring various strategies more than others. To compensate for data sparsity, we show a 
smoothed version of this plot in Figure 108.B; in this case, we computed the invocation percentages 
by running a 7-day overlapping window over the data. As seen in Figure 108.B, before March 26th 
(i.e. during the baseline phase) the invocation percentages were roughly constant, because the system 
randomly chose between the strategies available at any given point. Once the system started learning, 
the invocation percentages started changing significantly. Some of the strategies, like backing off to 
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the neighborhood (MOVE) and providing help about what users can say (TYCS) were engaged more 
often than before, while others such as asking the user to repeat (AREP) or rephrase (ARPH) were en-
gaged less often. These trends are in line with previous observations from the RoomLine data (see 
sub-section 8.3.3.1). Another interesting trend can be observed for the strategy that asks for shorter 
answers (ASA): initially, this strategy was rarely engaged (we suspect the corresponding predictor was 
unreliable due to small amounts of training data); as more data accumulated, the performance of this 
strategy was better assessed and as a consequence its usage increased significantly.  

Next, we investigated to which extent the learning process has stabilized. Large oscillations 
in the invocation percentages for some strategies can still be observed towards the end of the learn-
ing phase. In Figure 109, we show the volatility of these invocation percentages, computed as the 
difference between the maximum and minimum daily invocation percentage throughout each week. 
As expected, during the baseline period, the volatility is low (below 20%) and is explained by ran-
dom variations from one day to the next. The plot shows that throughout the first two weeks of the 
learning phase, the volatility is significantly increased. Afterwards it generally tends to decrease. 
However, it only reaches the baseline levels (i.e. below 20%) for the Ask Repeat (AREP) and Ask 
Rephrase (ARPH) strategies. We believe this result indicates that the policy has not yet stabilized. At 
the same time, Figure 106 indicates that we seem to have already reached an asymptote in terms of 
recovery performance. A potential explanation is that some of the strategies currently in use are 
equally successful at recovering from non-understandings, and, as a consequence, the highest-upper-
bound selection policy creates an oscillating behavior.  

We also inspected the final versions of the predictors for the likelihood of success of each 
individual strategy – see Table 45. Recall that these predictors are logistic regression models con-
structed in a supervised manner, using a large feature set in conjunction with a stepwise regression 
procedure. We use the Bayesian Information Criterion to regularize the stepwise regression and avoid 
over-fitting to the training data. For three of the strategies – asking the user to repeat (AREP), provid-
ing more interaction tips (IT), and ask the user to speak less loud (SLL) – no informative features 
were found. The models included only a constant factor, and thus predicted the average training set 
success rate for each of these strategies. A potential explanation is that the number of training sam-
ples collected by the end of the experiment for each of these strategies is still relatively low (653, 273, 
and 300 respectively).  

Two of the models, the ones corresponding to the Ask Rephrase and Move On strategies 
have selected a single feature as predictive. The Ask Rephrase model uses information about 
whether or not the previous recovery action was Move On (last_nonu_action:MOVE). The Move On 
model uses information about the number of words in the recognized hypothesis: the larger the 
number of words, the more likely it is that this strategy will succeed. The remaining four models, for 
the strategies that asked the user to provide a shorter answer (ASA, 637 samples), repeating the system 
prompt (RP, 2532s), and the two help strategies (TYCS, 3698s; TYCS_R, 989s) are based on at least 
four predictive features. Some of the most informative features were the dialog state indicators: for 
instance the two help strategies are likely to be more successful during explicit confirmation states. 
This result corresponds to our intuition: for explicit confirmation states the help strategies instruct 
the users to provide a simple yes or no answer, and this generally leads to successful recovery. Dialog 
history features are also informative: the likelihood of recovery is proportional with how well the 
dialog went so far. In particular, for the Repeat Prompt strategy, the likelihood of success decreases 
as the ratio of non-understandings encountered previously in the dialog (h_ratio_nonu) increases. 
Similarly, for the (Terse)You-Can-Say and Restart strategy, the likelihood of success increases 
as the average number of slots matched in the dialog (h_avg_slots_matched – a measure of the 
discourse understanding quality) increases. 

Finally, it is important to notice that the individual performance of the likelihood-of-success 
predictors for each individual strategy is not very high. In fact, for three of these strategies no infor-
mative features were found and the models predicted the majority baseline. For the other strategies, 
the models showed only small relative improvements in Brier score over a majority baseline (5-12% 
relative.) Nevertheless, improvements in recovery performance were possible. Better individual pre-
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dictors can lead to further performance improvements. Based on our experience, we believe that two 
aspects will play a key role: (1) identifying other informative features, and (2) further extending the 
existing set of non-understanding recovery strategies.  

8.4.3 Concluding remarks 
In this section (8.4), we have proposed and evaluated a data-driven approach for developing non-
understanding recovery policies over large sets of recovery strategies.  

The approach has a number of advantages over current heuristic solutions. First, it is data-
driven and online in nature. The system starts from an agnostic policy and learns through experience 
how to better engage the various recovery strategies. The starting point need not be completely ag-

Ask Rephrase (ARPH) 
Feature Coef. Effect 

k -2.16 - 

last_nonu_action:MOVE 1.18 + 
   

Ask Short Answer (ASA) 
Feature Coef. Effect 

k -2.65 - 
num_prev_not_nonu>2 1.42 + 

total_num_parses 0.60 + 

dialog_state_id:RequestDepartureInNeighborhood 1.73 + 
avg_word_conf 4.98 + 

   

Move On (MOVE) 
Feature Coef. Effect 

K -0.86 - 
word_num 0.06 + 

   
Repeat Prompt (RP) 

Feature Coef. Effect 

k -0.22 - 
dialog_state_id:RequestArrivalPlace -0.62 - 

dialog_state_id:GetDepartureNeighborhood -1.04 - 

h_ratio_nonu -1.96 - 

dialog_state_id:ExplicitConfirm(departure_place) 1.37 + 
dialog_state_id:ExplicitConfirm(time) 1.65 + 

dialog_state_id:RequestTravelTime 0.89 + 

dialog_state_id:ExplicitConfirm(arrival_place) 1.32 + 

dialog_state_id:ExplicitConfirm(neighborhood) 1.62 + 

   
(Terse)You-Can-Say (TYCS) 

Feature Coef. Effect 

k 0.11 + 
h_ratio_nonu -2.28 - 

dialog_state_id:ExplicitConfirm(route_number) 1.49 + 

dialog_state_id:ExplicitConfirm(departure_place) 1.39 + 

dialog_state_id:ExplicitConfirm(arrival_place) 1.54 + 
dialog_state_id:ExplicitConfirm(time) 1.48 + 

dialog_state_id:ExplicitConfirm(neighborhood) 1.90 + 

dialog_state_id:ExplicitConfirm(uncovered_neigh) 2.22 + 

   

(Terse)You-Can-Say and Restart (TYCS_R) 
Feature Coef. Effect 

k -3.64 - 
h_avg_slots_matched 3.65 + 

dialog_state_id:ExplicitConfirm(time) 1.67 + 

dialog_state_id:ExplicitConfirm(departure_place) 1.35 + 

dialog_state_id:RequestDepartureInNeighborhood -1.38 - 

 
Table 45. Models for predicting likelihood of success for individual recovery strategies at the end of the 

learning period 
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nostic: the approach allows us to encode certain expert knowledge as constraints on the policy space. 
While learning, the proposed approach relies on the highest-upper selection method to strike a bal-
ance between exploiting strategies that are known to be good and gaining more knowledge about the 
other, less well understood strategies. In the process, the policy is adapted to the characteristics of 
the domain in which the system operates. Our initial experiments with a publicly available spoken 
dialog system indicate that the proposed approach leads to statistically significant improvements (in 
terms of average non-understanding recovery rate) over a heuristic policy designed by a domain ex-
pert. In our case, the system learned a better recovery policy over a set of nine non-understanding 
recovery strategies in a fairly short time period: 10 days, or about 500 dialog sessions. 

Another advantage of the proposed approach is that it scales well, as the number of non-
understanding recovery strategies increases. In fact, the approach would in principle allow us to add 
new strategies into the mix later on. The highest-upper-bound policy will explore and exploit them 
accordingly. The good scalability property stems from the fact that the learning happens independ-
ently for each strategy and is local in nature: the learning process focuses on the next, immediate user 
turn, rather than on a global dialog optimization. The assumption we are making is that non-
understanding recovery strategies have only local effects, and no long-term interactions exist. In gen-
eral, this assumption does not hold for all recovery strategies and domains; for instance, we have seen 
that we had to eliminate the Ask Start Over and Give Up strategies due to their incompatibility 
with the local definition of success. Assessing the performance of the Move On strategy just in terms 
of recovery rate is also problematic (this latter problem could be addressed by using a more refined 
metric, such as the ones described in subsection 8.3.3.1.) However, with a carefully chosen set of re-
covery strategies, we believe the costs of violating this assumption are surpassed by the benefits it 
affords: good local recovery performance does generally sum up to good global dialog performance.  

The proposed approach, as described and evaluated in this section, is supervised in nature. 
The system learns predictors for the likelihood of success for each recovery strategy in a supervised 
fashion: throughout the experiment, a human annotator manually labeled the instances in which the 
system successfully recovered, and the ones in which it failed to do so. This is generally a costly en-
deavor, and it can be regarded as a drawback of the proposed approach. We believe however that the 
implicitly-supervised learning paradigm introduced earlier in Chapter 5 could be applied to this prob-
lem, and might lead to performance improvements similar to the fully-supervised approach. Instead 
of defining successful recovery as “the next turn is correctly understood by the system” (which re-
quires manual labeling), we could define it as “the next turn is not another non-understanding). An-
other alternative is “the next turn has a high confidence score”, because presumably confidence 
scores can provide a finer-grained assessment. A third alternative would be to use explicit confirma-
tions: after each apparent non-understanding recovery (e.g. after each turn following a non-
understanding that is not itself a non-understanding), the system would explicitly confirm the user 
response. As we have seen in the confidence annotation work, this interaction pattern can provide 
meaningful labels at a sufficiently high level of accuracy. Although these labels would not be perfect, 
we believe the potential benefits (i.e. an unsupervised online approach for tuning recovery policies) 
make this a line of research worth exploring.  

8.5 Summary and future directions 

In this chapter, we have focused our attention on non-understanding recovery strategies and policies.  

In an effort to add to a growing body of knowledge regarding the properties of various non-
understanding recovery strategies, we performed an empirical investigation of ten such strategies in 
the context of a telephone-based, mixed-initiative spoken dialog system. We introduced four differ-
ent metrics for assessing recovery performance, and performed a comparative analysis of these 
strategies under two different conditions: (1) when engaged by an uninformed policy and (2) when 
engaged by a human operator in a wizard-of-oz setup.  

The results we obtained corroborate in part previous results reported in the literature: the 
high performance of the Move On strategy (i.e. ignoring the problem and continuing with an alterna-
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tive dialog plan) is consistent with previous experiments by Skantze [115]; the distribution of user 
response types after non-understanding recovery strategies is similar to the one observed by Shin et 
al. [113], and Choularton and Dale [26]; the observation that users are generally more likely to re-
phrase than to repeat (regardless of the recovery strategy) confirms a previous study by Goldberg 
[39]. At the same time, it is important to notice that observations regarding the relative performance 
of various strategies and user responses do not always generalize well across domains. For instance, 
we found conflicting evidence with Goldberg’s study [39] regarding the relative likelihood of recov-
ery for user repeats and user rephrases. In addition, we also found that the success of a non-
understanding recovery strategy, and in general global dialog performance, can be strongly influenced 
by the recovery policy used to engage the strategy. Other factors, such as the user population, envi-
ronmental conditions, etc. can also play an important role.  

These results indicate that fixed rules-of-thumb (even based on quantitative, empirical ob-
servations) are not always reliable. Instead, spoken dialog systems should learn from their interactions 
throughout their lifetime and continuously adapt their policies to the particular environments in 
which they operate. With that in mind, we have proposed an on-line, data-driven solution for devel-
oping non-understanding recovery policies over large sets of recovery strategies. In the proposed 
approach the system constructs estimators for the likelihood of success for each recovery strategy 
(together with confidence bounds for these estimators), and uses a highest-upper-bound selection 
method to balance between exploration and exploitation. Initial experiments with a publicly available 
spoken dialog system indicate that the system is able to learn in a relatively short time period a policy 
that performs better than a heuristic, expert-designed policy.  

The work described in this chapter has also opened up a number of interesting avenues for 
future work. First, the high performance of the Move On strategy, together with prior evidence from 
Skantze [115], points to a road less traveled in spoken dialog systems: instead of trying to recover 
from errors, ignore them and try an alternative dialog plan. Currently, this strategy is used only at 
certain points in the dialog, pre-specified by the system author. In addition, when the strategy is en-
gaged, the dialog engine marks the current request as failed and moves on to the next action: it is the 
author’s responsibility that the dialog plan can continue and be completed successfully despite this 
local failure. The system never returns to the failed request. In future work, it would be interesting to 
explore in more detail potential uses and extensions of this strategy, as well as its drawbacks. For in-
stance, it would be interesting to identify more situations in which the Move On strategy is applicable. 
Could the dialog engine automatically infer from a given dialog plan when this strategy is applicable 
(and therefore remove the burden from the system’s author)? We believe different solutions to this 
problem might exist in the context of a plan-based dialog manager like RavenClaw.: the system could 
continue with  the next question, mark the request that triggered the non-understanding as “tempo-
rarily failed” and return to it at a later point in the conversation; with some hints from the system’s 
author, it could probably also do this at the level of dialog plans rather than simple requests. Building 
a policy that uses such a strategy does raise some interesting challenges since long-term effects come 
into play: abandoning a dialog plan and switching to an alternative one generally means the losing 
information and the time invested in the current plan so far.  

The proposed online method for learning non-understanding recovery policies only consti-
tutes a first step towards building adaptive, self-improving systems. Much remains to be done. For 
instance, it would be interesting to investigate different implicitly supervised solutions in an effort to 
completely eliminate the developer from the loop. Longer longitudinal studies would be necessary to 
better understand whether or not the policy stabilizes in time, and how the proposed online learning 
paradigm handles shifts in the environmental conditions. What happens if we change the language 
model and in the process improve speech recognition performance by 20% relative? What happens if 
we add three new strategies and 50 more features in the middle of the learning phase? In addition, it 
would be interesting to understand how well the proposed solutions scale to very large numbers of 
strategies. Prompt design is essential in developing effective non-understanding recovery strategies. 
Using the proposed policy learning approach, we could introduce 5 prompt variants for each strategy 
(therefore creating a set of 5x10=50 strategies), and let the system learn which of these variants is 
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most appropriate. Finally, it would be interesting to investigate whether or not the learning paradigm 
could be adjusted to deal with a non-local definition of successful recovery and therefore handle 
more complex recovery strategies with longer term effects. 
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Chapter 9  

Conclusion 

The work described in this dissertation aims to create the mechanisms for seam-
lessly and efficiently recovering from understanding-errors in conversational spoken 
language interfaces. In this final chapter we briefly recap the motivation for this 
work and summarize our accomplishments. We draw a number of conclusions 
based on the work conducted and the results obtained. Finally, we discuss a number 
of questions that remain unanswered and directions for further extending this work.  

Spoken language interfaces hold a number of great promises. They rely on natural language and 
therefore require little or no user training; this in turn makes them accessible to a large user popula-
tion. Additionally, natural language allows us to express complex concepts and construct complicated 
queries with little effort, which creates an opportunity for a very efficient interaction. Also, speech is 
an ambient rather than attentional modality. This makes it appropriate in eyes-busy and hand-busy 
situations; this flexibility means that ultimately speech technologies could play a key enabling role in 
the quest for ubiquitous computing and building ambient intelligences.  

Unfortunately, despite these great promises and many years of progress in the science and 
technology of the underlying components, today’s spoken language interfaces are still very brittle 
when confronted with understanding-errors. This lack of robustness seriously affects the function of 
current spoken language interfaces, often leading to complete conversational breakdowns, task fail-
ure, and increased user frustration. Anecdotal evidence, as well as statistics reported in the literature 
[62, 68, 89, 121] indicate that conversational speech-based interfaces are oftentimes seen as annoy-
ance rather than the enabling technology we would like them to be.  

Most understanding-errors stem from current limitations in speech recognition technology. 
As a consequence they appear in all domains and interaction-types. Automated speech recognition is 
a difficult task to begin with, and, in the context of conversational spoken language interfaces, the 
difficulties are further exacerbated by the conditions under which these systems are meant to operate. 
Generally, spoken language interfaces are targeted at wide user populations and therefore they have 
to accommodate large variations in speaking styles (e.g. native, non-native, various accents) and qual-
ity of the input lines (e.g. land lines, cell phones, VoIP, PDA microphones). If we add to the mix the 
disfluencies that characterize conversational speech, it is not surprising that recognition error rates 
range between 15 and 40% (and even higher) in any but the simplest systems.  

Left unchecked, speech recognition errors propagate to the higher levels of these systems 
where they can lead to two types of understanding-errors: misunderstandings or non-
understandings. In a misunderstanding, the system incorrectly understands the user: for instance, 
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the user says "Boston" but the system understands "Austin". In a non-understanding, the system 
does not understand the user at all: for instance, the user says "Urbana Champaign", but the speech rec-
ognition engine produces "OKAY IN THAT SAME PAY" - which makes no sense semantically in the 
current dialog context. Repeated studies have shown that these errors exert a significant negative im-
pact on the overall quality and success of the interactions [128, 129].  

Two approaches to increasing robustness can be envisioned: (1) prevent the errors altogether 
(e.g. build better speech recognition and spoken language understanding technologies) and (2) work 
under the assumption that some errors will always be there and build the capabilities for recovering 
from them through conversation, by interacting with the user. Of course, these two methods do not 
stand in opposition; rather, a combined effort would lead to the best results.  

The work described in this dissertation focuses on the second approach: it aims to create the 
mechanisms for seamlessly and efficiently recovering from errors through conversation. We have 
argued that three key capabilities are needed to accomplish this goal. First, systems must be able to 
accurately detect errors, preferably as soon as they happen. Second, systems should be equipped 
with a rich repertoire of error recovery strategies that can be used to set the conversation back on 
track (e.g. asking the user to repeat, to rephrase, to speak softer or louder, providing help, confirming 
a piece of information, etc.). Third, systems should be able to choose wisely between the available 
recovery strategies at runtime (when should a system ask the user to repeat? when should it ask the 
user to rephrase? when should it provide more help?, etc.). In other words, spoken dialog systems 
need good error recovery policies to guide their error recovery actions.  

These three issues, i.e. error detection, error recovery strategies and error recovery policies, 
together with the two types of understanding-errors introduced before, define the coordinates for the 
long-term research program we have articulated in this dissertation (see Figure 110). Within this 
space, a number of important and interesting research problems can be identified. At the error detec-
tion level, we are mostly faced with a pattern recognition problem. At the recovery strategies level we 
are faced with a human-computer interaction design problem. Last, at the recovery policy level we 
are faced with a problem of control under uncertainty.  

In this work, the context for addressing these problems has been practical, real-world spo-
ken dialog systems. These are complex, layered systems that subsume multiple components and in-
teract with a dynamic world, more specifically with another intelligent, goal-driven individual. Their  
complexity represents both a challenge and an opportunity. The different components in a spoken 
language interface (e.g. speech recognition, language understanding, dialog management, etc.) ma-
nipulate different types of knowledge. We have seen throughout this work that features extracted 
from these different knowledge sources can provide useful, orthogonal information for solving prob-
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strategies 

error recovery 
policies 
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Figure 110. A research program for increased robustness in conversational spoken language interfaces 
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lems. In addition, the presence of an intelligent, goal-oriented, and invested individual “at the other 
end of the line” creates interesting learning opportunities. We have seen that an implicitly-supervised 
learning paradigm can enable significant autonomous, online learning and pave the way towards self-
improving systems.  

At the same time, the error detection and recovery problems and solutions that we have dis-
cussed in this work are not confined just to spoken dialog systems. Error handling is an important 
issue in general in interactive systems of any type. For instance, many similarities can be drawn be-
tween conversational spoken language interfaces and robotics. In both cases, we are dealing complex, 
layered systems that interact with a dynamic world. In both cases the systems have limited sensing 
abilities. As expected, cross-fertilization between these areas has happened in the past, and we believe 
will continue to happen in the future. We conjecture that some of the solutions proposed in this dis-
sertation, such as expectation-driven error detection, belief updating using compressed representa-
tions, learning from implicit supervision, can generalized and applied in other domains beyond con-
versational spoken language interfaces.  

9.1 Summary of contributions 

The dissertation work described in this document brings a number of contributions within the error 
handling problem space outlined above. At the same time, this work does not complete the entire 
research program we have articulated. Rather, it is best viewed as a concerted effort at advancing the 
state-of-the-art in a number of these areas, while also raising a number of other interesting scientific 
and technical questions.  

The main contributions of this work are summarized in Figure 111. In this section, we 
briefly review these contributions and present several concluding remarks. In the next section, 9.2, 
we discuss a number of remaining open questions and we outline a few directions for future research 
within this problem space.  

We began in Chapter 2 by discussing in detail the two types of understanding-errors that 
commonly affect conversational spoken language interfaces: misunderstandings and non-
understandings. To identify the sources of these errors, we proposed a four-level model of error-
source analysis anchored in Clark’s model of grounding in communication [27]. An analysis of cor-
pora from two different dialog domains confirmed that most understanding-errors do stem from the 
speech recognition level. At the same time, language-domain errors, such as out-of-grammar, out-of-
domain and out-of-application-scope utterances, also contribute to increasing the total number of 
understanding-errors. Both misunderstandings and non-understanding exert a significant negative 
impact on overall system performance. We proposed a data-driven approach for quantifying this im-
pact. The central idea is to relate the total number of misunderstandings and non-understandings in a 
dialog session to the overall performance in that session by using a regression model. The proposed 
models corroborate previous intuitions and can help quantify and shed more light on the impact of 
understanding-errors on performance. For instance, experiments in two different dialog domains 
revealed that the impact of misunderstandings and non-understanding on performance is non-linear 
and the relative costs of these errors are different across domains.  

Next, in Part II (Chapter 3 and Chapter 4) we outlined the experimental platform and infra-
structure we have developed to support the proposed error handling research program. The infra-
structure consists of RavenClaw, a plan-based, task-independent dialog management frame-
work (C9) and a number of spoken dialog systems that have been developed within that framework. 
In Chapter 3 we provided an overview of the RavenClaw framework: we outlined the architecture, 
functionality, core algorithms in the RavenClaw dialog engine, as well as the set of available task-
independent conversational strategies. The key characteristic of the RavenClaw dialog management 
architecture is that it enforces a clear separation between the domain-specific and domain-
independent aspects of the dialog control logic. The domain-specific aspects are provided by the sys-
tem author via a dialog task specification, essentially a hierarchical plan for the interaction. The dialog 
engine manages the conversation based on the dialog task specification, and in parallel automatically 
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ensures a basic set of conversational skills such as error handling, timing and turn-taking. This de-
coupling significantly lessens the system development effort, promotes both portability and reusabil-
ity and ensures uniformity and consistency in behaviors within and across systems. To date, the 
RavenClaw dialog management framework has been used to develop and successfully deploy a num-
ber of spoken dialog systems operating in different domains and interaction types.  

In Chapter 4 we described the error handling architecture in the RavenClaw dialog 
management framework (C10). The error handling architecture is task-independent: it decouples 
both the error handling strategies and the error handling decision process from the actual dialog task 
specification. This decoupling significantly simplifies the authoring effort. System developers de-
scribe the dialog task control logic under the assumption that inputs to the system will always be per-
fect. The responsibility for ensuring that the system operates with correct information and that the 
dialog progresses normally towards its goals is delegated to the error handling decision process in the 
dialog engine. Whenever necessary, this process will automatically engage various recovery strategies 
to set the conversation back on track. The task-decoupled implementation favors portability of the 
recovery strategies and policies across domains, and ensures consistent error handling behaviors 
within and across systems. Together with the surrounding RavenClaw dialog management framework 
and the systems developed within this framework, the error handling architecture provides the infra-

Figure 111. A summary of contributions; for indexing purposes, the number in parentheses indicates the 
chapter in which each contribution is described 
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structure for the rest of the research program we have tackled in this dissertation. 

Part III of this dissertation (Chapter 5 and Chapter 6) is dedicated to the issue of handling 
misunderstandings. This part is largely focused on developing better misunderstanding detection 
mechanisms. In addition, we have also conducted an empirical investigation of two misunderstanding 
recovery strategies: explicit and implicit confirmation. In Chapter 5 we discussed the problem of se-
mantic confidence annotation, or utterance-level detection of misunderstandings. We opened the 
chapter with an in-depth investigation of four supervised learning techniques for building 
confidence annotation models using data from three different dialog domains (C1). We inves-
tigated a number of issues that have received less attention in the literature, such as evaluation met-
rics for confidence annotation, sample efficiency of different supervised learning techniques and how 
well the confidence annotation models generalize across domains. Our results highlight the impor-
tance of using proper probabilistic scoring rules that measure both accuracy and calibration (e.g. log-
loss, Brier score) when evaluating confidence annotation models for conversational spoken language 
interfaces. In addition, the results show that some classifiers (e.g. AdaBoost, Naïve Bayes) suffer 
from a lack of calibration; this can be corrected in a simple, post-training calibration step. Although 
similar performance is attained by supervised learning techniques (i.e. logistic regression, decision 
trees, AdaBoost), the logistic regression models are the most sample efficient. When the amount of 
available training data is small, these models significantly outperform the others. Finally, we have in-
vestigated how well confidence annotation models generalize across different dialog domains. Results 
indicate that, although some models generalize well across domains, this is not always the case. Fur-
thermore the transfer can sometimes be asymmetric. We have shown that a simple post-transfer cali-
bration procedure that relies on a small number of labeled data-points in the target domain can gen-
erally improve the performance of the transferred model.  

In the second part of Chapter 5 we proposed a novel, implicitly-supervised learning 
paradigm for building confidence annotation models (C2). The proposed approach eliminates 
the need for a pre-existing corpus of labeled utterances. Instead, the system obtains the labels directly 
from the interaction, from user corrections following the system’s explicit confirmation actions. 
Batch experiments conducted with data from two deployed spoken dialog systems show that the 
proposed approach can attain around 80% of the performance of a fully-supervised model. Further-
more, the proposed implicitly-supervised paradigm favors an online approach to learning confidence 
annotation models. A spoken dialog system could start with an agnostic confidence annotation 
model and aggressively confirm every piece of information received from the user. As the system 
collects more data and builds a more reliable confidence annotation model, it can start trusting it 
more and relying less on explicit confirmations. We believe the proposed implicitly-supervised learn-
ing approach can be applied in a number of other learning problems in spoken dialog systems and in 
general in other interactive systems. We conjecture that this paradigm can enable significant autono-
mous learning and represents an important step towards building continuously self-improving sys-
tems.  

While confidence scores can be used to perform turn-level detection of misunderstandings, 
ideally spoken dialog systems should fuse evidence from multiple turns in the dialog to continuously 
monitor and improve the accuracy of their beliefs. In Chapter 6, we proposed a scalable, data-
driven approach for updating beliefs in spoken dialog systems (C3). The proposed approach 
relies on a compressed representation of beliefs and casts the 1-step belief updating problem as a 
multinomial regression task: given an initial belief over a concept, a system action with respect to that 
concept, and a follow-up user response (as this response is perceived by the system), construct an 
updated belief in a manner as accurate as possible. The approach bridges ideas from previous work 
on confidence annotation and correction detection; it provides a unified framework for integrating 
evidence collected from multiple turns in a conversation to continuously monitor and improve the 
accuracy of the system’s beliefs. Empirical results show that the proposed approach constructs be-
liefs that are significantly more accurate than previous heuristic solutions and produces significant 
gains in both the efficiency and the effectiveness of the interaction. Independent of these perform-
ance gains, the approach has a number of other good properties: it scales well with the number of 
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concepts in the dialog and their cardinality, it is sample efficient and portable.  

To better understand the challenges we face in the belief updating task, we have conducted 
an empirical investigation of user responses to explicit and implicit confirmations (C4). The 
results, also described in Chapter 6, corroborate prior observations by Krahmer et al. [63], and indi-
cate that user responses to confirmation actions cover a wide language spectrum, especially after im-
plicit confirmations, and especially if the information to be confirmed is incorrect. Secondly, we also 
found that users interact strategically with the system: oftentimes, they correct the system only if the 
correction is essential for accomplishing the task at hand.  

Part IV of this dissertation (Chapter 7 and Chapter 8) is dedicated to the issue of handling 
non-understandings. In Chapter 7 we focused on the issue of detecting non-understandings, more 
specifically rejection non-understandings. Spoken dialog systems often reject utterances if the confi-
dence score falls below a preset rejection threshold; in effect, the system will create a rejection non-
understanding to avoid a potential misunderstanding. In Chapter 7 we proposed a principled 
method for determining state-specific rejection thresholds (C5). The approach relies on the 
data-driven error cost assessment models we introduced earlier, in Chapter 2. We extended these 
models to account for state distinctions and used them to infer state-specific costs for various 
types of errors (C8) involved in the rejection trade-off, like false-rejections and false-acceptances. 
The resulting costs, based on data from a deployed spoken dialog system, corroborate our intuitions 
and a number of other anecdotal observations made throughout the use of this system. The inferred 
costs allow us to optimize rejection thresholds in a state-specific manner.  

In Chapter 8 we turned our attention to the set of non-understanding recovery strategies and 
the problem of constructing non-understanding recovery policies. In the first part of this chapter, we 
reported on an in-depth investigation of 10 non-understanding recovery strategies (C6). In an 
effort to add to an existing body of knowledge regarding the relative advantages and disadvantages 
these strategies, we performed a comparative analysis of these strategies, under two different condi-
tions: when engaged in an uninformed manner, and when engaged using a “smarter” policy imple-
mented by a human in a wizard-of-oz setup. We analyzed recovery performance, the distribution of 
user responses to these strategies, and which user responses lead more often to successful recovery. 
To some extent, our results corroborate observations previously made by others in different domains 
(e.g. the success of Move On and Help strategies, the overall distribution of user response types 
throughout non-understanding segments). At the same time, we also found conflicting evidence. 
Overall, the lesson learned is that the success of various recovery strategies is context-sensitive; fac-
tors such as the nature of the dialog task, the user population and the policy used to engage the 
strategies can significantly affect their performance. The solution to successful error recovery there-
fore lies in creating mechanisms that allow systems to adapt their behaviors to the particular charac-
teristics of the domain in which they operate.  

To this end, in the second half of Chapter 8 we have proposed an online data-driven 
method for learning non-understanding recovery policies over a large set of recovery strate-
gies (C7). The approach works in two steps: at each time point (say every day), we construct runtime 
estimates for the likelihood of success for each non-understanding recovery strategy, together with 
confidence bounds for these estimates. The predictors are constructed based on a large number of 
features extracted from different knowledge sources in the system, and data collected with the system 
up to that point. The confidence bounds reflect the uncertainty in each prediction, due to data spar-
sity. We then use a highest-upper-bound selection method in conjunction with these predictors to 
select which strategy to engage in at runtime. In doing so, we guide exploration while at the same 
time exploiting well-performing strategies. An empirical evaluation in a deployed spoken dialog sys-
tem shows that the proposed approach leads to statistically significant improvements in the non-
understanding recovery rate.  
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9.2 Concluding remarks and future work 

The work described in this document is best viewed as a concerted effort contributing to the area of 
error recovery in conversational spoken language interfaces. The work was conducted within the 
confines of a research program that centers on three important components of error handling: detec-
tion, strategies and policy. However, this research program is by no means complete. Each of the 
work items described in this dissertation leaves specific follow-up questions (we have signaled most 
of them in the corresponding chapters.) In addition, this work also raises a number of more general, 
cross-cutting open questions. In this section, we draw a number of high-level concluding remarks 
and outline several interesting directions for future work.  

§ Error detection  

Error detection can be viewed a pattern recognition problem. A key step in solving this problem is 
the identification of features that can inform the error detection task. In the confidence annotation 
work described in Chapter 5, we showed that features from different knowledge sources in the sys-
tem (e.g. speech recognition, prosody, lexical, grammar, dialog) can provide useful and complemen-
tary information for detecting errors. In the belief updating work from Chapter 6, we showed how 
fusing evidence from multiple turns in the conversation can give an additional boost in performance. 
Again high-level, domain-specific information such as priors, confusability, concept identity, played a 
key role in constructing more accurate beliefs. In future work it would be interesting to identify and 
investigate other knowledge sources that can provide additional information for this task (e.g. do-
main-specific knowledge, inter-concept dependencies, etc.) Another interesting direction for future 
research is the development of methods for automatically generalizing error detection models across 
domains. Training new error detection models for each new domain is a labor-intensive process that 
we would like to shortcut. In Chapter 5, we have performed a preliminary investigation of cross-
domain generalization for confidence annotation models. The results are promising, but more re-
search is needed. Can we do the same for the belief updating models? Can we identify the conditions 
under which we can expect an existing error detection model to generalize well to a new domain? 
Better yet, can we create the mechanisms for adapting existing error detection models to new do-
mains in the absence of any labeled data?  

§ Error recovery strategies 

At the error recovery strategies level, we are mostly faced with a design or human-computer interac-
tion issue. Our empirical investigations of confirmation strategies (subsection 6.4.3 from Chapter 6) 
and non-understanding recovery strategies (section 8.3 from Chapter 8) have added to an already 
existent but sometimes inconsistent body of knowledge regarding the function and performance of 
these strategies. To some degree, the results we have found are in line with previous observations. At 
the same time, we have also found evidence that contradicts previously reported results.  

The most important lesson learned is perhaps obvious in hindsight. A consistent image 
about the performance of these strategies is hard to establish because their function and performance 
are strongly influenced by a number of contextual factors. These include the nature of the system’s 
task, the user population, the environmental conditions, and the policy used by the system to engage 
these strategies. To a large extent, the solution for successful error recovery lies therefore not only in 
endowing spoken dialog systems with a rich set of error recovery strategies, but also in creating the 
mechanisms for adapting error handling behaviors to the characteristics of the environments in 
which the system operates.  

§ Error recovery policies 

Finally, at the policy level, we are faced with a problem of control under uncertainty. The work de-
scribed in this dissertation focused mostly on policies for recovering from non-understandings. In 
section 8.4 from Chapter 8 we proposed an online approach for learning such policies from data. 
Experiments with a deployed spoken dialog system showed that the proposed approach leads to im-
provements in the non-understanding recovery rate. At the same time, a number of questions regard-
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ing this approach remain open: do the improvements in recovery rate translate into overall improve-
ments in dialog performance? Does the learned policy stabilize in time? How robust is the learning 
process under changes the set of recovery strategies, predictive features, or in general, environmental 
conditions? How does the proposed approach scale to larger numbers of recovery strategies? Can the 
learning paradigm be adjusted to handle a non-local definition of successful recovery and therefore 
accommodate more complex recovery strategies with longer term effects?  

Although this dissertation does not directly contribute to the problem of developing policies 
for recovering from misunderstandings, it does point to an interesting approach in this area. In this 
work, we used the classical threshold-on-confidence model for engaging the various misunderstand-
ing recovery strategies (explicit and implicit confirmation.) At the same time, we argued that the data-
driven error-cost assessment methodology described in subsection 2.3.1 from Chapter 2 and section 
7.4 from Chapter 7 can be extended to infer the costs of various confirmation actions. These costs 
could be used to compute confidence thresholds in a more principled manner, and optimize the mis-
understanding recovery policy. This approach remains to be validated empirically. 

§ Other observations and future work 

Throughout this work, we have sought task-independent, scalable and adaptive solutions for various 
problems related to error handling. The underlying design of the error handling architecture in the 
RavenClaw dialog management framework confers the desired task-indepedence and scalability 
properties. The error handling architecture decouples the error detection mechanisms, the error re-
covery strategies and the error recovery policies from the dialog task and from each other. Further-
more, error handling decisions are made independently with respect to various dialog entities, i.e. 
concepts and request-agents. We made a tacit assumption throughout this work: error handling can 
be modeled as a local process, and decoupled from the actual task that the system operates with. We 
showed that this decoupling brings a number of important benefits: it lessens the system develop-
ment effort, it promotes portability and reusability, it ensures consistency in behavior both within 
and across tasks, it supports dynamic generation of dialog tasks, it confers good scalability properties, 
and it enables learning-based approaches.  

At the same time, the distributed and task-decoupled approach also has a number of limita-
tions and drawbacks. For instance, domain-specific inter-concept dependencies are not modeled. 
Knowing that the start-time for a conference room reservation is 4 p.m. imposes constraints on what 
the end-time can be. This information can be very useful in detecting potential misunderstandings for 
the end-time concept. However, the current architecture treats each concept independently and does 
not directly take advantage of such information. In addition, complex combinations of recovery ac-
tions are not supported. For instance, in the current architecture the system cannot explicitly confirm 
two concepts in a single turn, e.g. “Did you say tomorrow at 5?” Furthermore, long-range effects of 
recovery actions are not directly modeled. To some extent, these limitations can be addressed in the 
context of the proposed architecture by adding global information in the local error handling deci-
sion processes. In fact, we have done so already in work reported in this dissertation: for instance, 
the belief updating models described in Chapter 6 make use of both domain-specific (e.g. priors, con-
fusability, concept identity, dialog-state, etc.) and global (e.g. history of confidence scores, etc.) in-
formation; the same holds true for the non-understanding recovery policies described in Chapter 8.  

Other approaches discussed in the literature, most notably reinforcement-learning [67, 82, 
106-108, 114], do not make this assumption and aim to optimize the system’s behavior globally. Al-
though these approaches stand on a more theoretically sound basis, they do not scale well and are 
currently still impractical in real-world spoken dialog systems (for an in-depth discussion of strengths 
and weaknesses, see [82].) In constrast, the work described in this dissertation regards error handling 
as a mostly local problem. The view taken in this work is that this assumption can be safely made in a 
large class of task-oriented systems, and that the overall benefits outweight the potential drawbacks. 
To give a concrete example, we empirically showed in the belief updating work described in Chapter 
6 that good local decisions do sum up to significant improvements in overall dialog performance. 
Perhaps further performance improvements would be possible by taking into account other inter-
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concept dependencies and long-range effects. In future work, it would be interesting to investigate 
more closely the impact of this assumption on the proposed solutions, both in terms of scalability 
and performance gains.  

The third desirable property we sought in the proposed error handling solutions is adaptabil-
ity. Spoken language interfaces operate under a large variety of conditions: different performance in 
the underlying speech recognition and language understanding components, different and changing 
user populations, different qualities of the input lines, different costs for various types of errors, etc. 
We sought solutions that compensate for these differences by adapting to the characteristics of the 
domain in which the system operates. To this end, most of the error detection and recovery mecha-
nisms proposed in this work have relied on supervised learning techniques.  

Although these solutions are adapted to the training data, they also have at least two impor-
tant drawbacks. First, they require a pre-existing a corpus of in-domain labeled data.  Unfortunately, 
such corpora are difficult and expensive to collect and label, especially in the early stages of system 
development. Secondly, supervised learning techniques generally favor an off-line, or batch approach. 
A corpus is collected, manually labeled, and then model parameters are estimated from this data. The 
resulting model mirrors the properties of the training corpus, but does not respond well to changes 
in the system’s environment and the underlying distribution of data. However, conversational spoken 
language interfaces are interactive systems that operate in dynamic environments. Consequently, 
shifts in the underlying distribution of the data are inevitable. To address these issues, in Chapter 5 
we have proposed the use of a new learning paradigm, implicitly-supervised learning, in which the 
system obtains the desired supervision signal directly from naturally-ocurring patterns in the interac-
tion. We have shown that this approach can be successfully applied to train confidence annotation 
models. We believe the approach is applicable in a number of other learning problems, not only in 
conversational spoken language interfaces, but also in the more general class of interactive systems. 
The paradigm eliminates the need for developer supervision and facilitates online adaptation and 
learning. We conjecture that it can supplement and even provide a strong alternative to existing learn-
ing approaches, and enable significant autonomous learning in interactive systems. The experiments 
we have conducted and results we have obtained on the confidence annotation task are very encour-
aging, but they represent only a first step towards understanding the properties, advantages and limi-
tations of the proposed implicitly-supervised learning paradigm. In [16], we have articulated an exten-
sive research program in this direction, centered on the following three questions: (1) how can sys-
tems make the most effective use of knowledge extracted from interaction patterns? (2) How can 
systems actively trigger these patterns to create learning opportunities but without having a signifi-
cant negative impact on the interaction? (3) How can systems automatically identify novel knowl-
edge-producing patterns in interaction and thereby increase the range of learning opportunities? 

Lastly, it should be noted that the aim of the work described in this dissertation was to in-
crease robustness in conversational spoken language interfaces by creating the mechanisms for seam-
lessly and efficiently recovering from errors. The high level question we addressed question: given 
that understanding-errors will occur, how can we detect them and set the conversation back on 
track? There is however a second important approach towards increased robustness that we have 
mentioned in the introduction chapter, but not addressed in this work: prevent the errors from hap-
pening altogether. These two approaches do not stand in opposition. Rather, a combined effort will 
lead to the best results. Error prevention is an area of research as important and challenging as error 
recovery. Based on lessons learned through this work, we expect that integrating high-level domain-
specific information at the lower level of spoken dialog systems will play a key role in reducing the 
number of errors. Today, the “arrows” in the input processing pipeline in spoken language interfaces 
go mostly in one direction: speech recognition � language understanding � discourse interpreta-
tion. In order to reduce the number of errors, we will have to push more information (expectations) 
in the opposite direction. Simple solutions, like state-specific language models are already in use. The 
challenge lies in representing and integrating other types of discourse-level, domain-specific and 
world-knowledge into the search processes that govern the lower recognition and understanding lev-
els. Accomplishing this integration in a general fashion remains an open area of research. 





 

 

Appendix A  

Sample conversations with  
RavenClaw/Olympus systems 

This appendix contains several sample conversations with several RavenClaw-
Olympus spoken dialog systems: RoomLine, Let’s Go! Public, LARRI and Con-
Quest. 

§ Conversation with RoomLine  

 

 1 S: Welcome to RoomLine, the automated conference room reservation 

system within S C S. How may I help you today? 

 2 U: I need a room for next Friday morning 

 3 S: I need you to be more specific and tell me from what time until 

what time you need the room. 

 4 U: Help! 

 5 S: I am currently trying to gather enough information from you to 

make a conference room reservation. So far, I know you want a 

room for Friday, May seventh. I understood you want the room in 

the morning, but I need you to be more specific and tell me pre-

cisely from what time until what time you need the room. You can 

say something like 'from nine until eleven'. 

 6 U: from ten until eleven thirty  

 7 S: I found 4 rooms available Friday, May seventh between 10 and 

11:30 a.m. Would you like a small or a large room? 

 8 U: I want one which can seat thirty people 

 9 S: 2 of these 4 rooms can accommodate 30 people: Newell Simon 1507, 

and Wean Hall 4623. Would you like a reservation for any of 

these rooms? 

 10 U: sure 

 11 S: Which room do you want? 

 12 U: what were the rooms again? 

 13 S: The list of available rooms we are discussing is : Newell Simon 

1507, and Wean Hall 4623. These rooms are available Friday, May 

seventh between 10 and 11:30 a.m. Which room do you want? 
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 14 U: which one has a projector? 

 15 S: Both these rooms have projection units. Which room do you want? 

 16 U: I’ll take any of them  

 17 S: One choice would be Newell Simon 1507. This room can accommodate 

50 people, and has a projector, a whiteboard and network access. 

Do you want a reservation for Newell Simon 1507? 

 18 U: sure 

 19 S: Okay, I will now make the reservation for Newell Simon 1507. 

Could I have your name please? If you are not registered with 

the system, just say 'guest'. 

 20 U: guest 

 21 S: Okay, I have successfully completed the reservation. Would you 

like me to summarize it for you? 

 22 U: yes please 

 23 S: I have reserved Newell Simon 1507 for Friday, May 7th, between 

10 and 11:30 a.m. This room can accommodate 50 people, and has a 

projector, a whiteboard and network access. Is there anything 

else I could do for you today? 

 24 U: no 

 25 S: Thank you for calling. Have a nice day. 

 

 

§ Conversation with Let’s Go! Public  

 

 1 S: Welcome to the CMU Let’s Go Bus Information System. To get help 

at any time, just say ‘Help!’ or press zero. What can I do for 

you? 

 2 U: next 54C leaving from leaving from 18
th

 and Arlington headed to the Junction 

 3 S: the 54C … Did I get that right? 

 4 U: yes 

 5 S: Alright. Leaving from 18th and Arlington … Is this correct? 

 6 U: yes  

 7 S: Alright. Going to the Junction … Did I get that right?  

 8 U: yes 

 9 S: Right. When are you going to take that bus? 

 10 U: now 

 11 S: You want the next bus. Is that correct? 

 12 U: yes 

 11 S: Alright. Hold on … The next 54C leaves South 18th Street at Ar-

lington at 7:51 p.m.  

 

 

§ Conversation with LARRI 

 

 1 S: Hi, this is LARRI. State your name please 

 2 U: Hi my name is John Doe 

 3 S: Hello John Doe. Before you start on your scheduled work, we need 

you to finish an urgent task 

 4 U: ok 
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 5 S: Let's reprioritize your schedule: first you will perform the INS 

Ground Initiated BIT Test on plane 301. You last performed this 

task 3 months ago. Is that correct? 

 6 U: yes, that’s right 

 7 S: Then you will do the BXF radar check on plane 304. You last per-

formed this task 2 weeks ago. Is that correct?  
 8 U: affirmative 

 9 S: When you are ready to start working on the INS Bit Test, please 

say ready to work. 

 10 U: ready to work 

 11 S: … [system presents task summary] 

 12 S: Step A: On RDDI press and release the MENU pushbutton switch un-

til HSI pushbutton switch option appears.  

 13 U: done 

 14 S: Does the RDDI menu display the HSI? 

 15 U: affirmative 

 16 S: Step B: Now press the HSI pushbutton switch. 

 17 U: Ok. RDDI displays the HSI  

 18 S: Ok. Step C: Press the DATA pushbutton switch. 

 19 U: …[long timeout] … 

 20 S: Did you push the DATA pushbutton? 

 21 U: yes, I just did 

 22 S: Does the RDDI display DATA option display with the WYPT option 

boxed? 

 23 U: yes 

 24 S: Ok. Step D: Select WYPT 0. 

 25 U: okay. WPT is 0 and the latitude is local 

 26 S: Good. Skipping to step J. On RDDI press and release MENU 

pushbutton switch until BIT pushbutton switch option appears. 

 27 U: … 

 

 

 

§ Conversation with ConQuest 

 

 1 S: Welcome to ConQuest […] I can give you information about papers, 

sessions, special events and announcements at InterSpeech 2006. 

You can also cast a vote for the best paper award. How can I 

help you? 

 2 U: are there any papers on spoken dialog systems today 

 3 S: There are 23 papers on spoken dialog systems today. These papers 

are being presented in 3 sessions: Dialog and Discourse, Lan-

guage Modeling for Spoken Dialog Systems and Spoken Dialog Sys-

tems I. To browse this list of papers, please tell me the author 

name, the paper title, the time or the venue you’re looking for. 

If you’re not interested in any of these papers say ‘quit’. 

 4 U: which ones are in the afternoon 

 5 S: There will be 11 papers on spoken dialog systems this afternoon. 

Would you like to hear information about all these papers? 

 6 U: yes 

 7 S: The list of papers on spoken dialog systems this afternoon is: 

Paper 1 - “Dynamic Extension of a Grammar-based Dialogue System: 

Constructing an All-Recipes Knowing Robot”, Paper 2 –  […] Would 

you like more information about any of these?  
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 8 U: tell me more about the third one 

 9 S: Paper 3 is titled “System- versus user-initiative dialog strat-

egy for driver information systems”, and was presented yesterday 

at 2 pm in the poster session in Allegheny Ballroom Foyer. This 

paper was written by Chantal Ackermann, and Marion Libossek. 

Would you like more information about any of these? 

 10 U: no when is the Banquet 

 11 S: The Banquet will be held Wednesday from 7pm to 9:30 pm in the 

Heintz History Center. The Heinz History Center is located on 

Smallman street between 12th and 13th streets. The History Cen-

ter is a museum that relates and interprets 250 years of history 

in the Western Pennsylvania area. Is there anything else I can 

do for you?  

 13 U: yes I’d like to cast a vote 

 14 S: Please tell me the title of the paper you’d like to vote for ... 

 15 U: I don’t really know the title but I think it had Diane as one of the main authors [non-

understanding] 
 16 S: Sorry, I didn’t catch that. Please dial the first six letters 

from the title of the paper you would like to vote for.  

 17 U: I don’t know it, it’s a paper by Diane Litman 

 18 S: There are 3 papers by Diane Litman. Paper 1 – “Discourse Struc-

ture and Speech Recognition Problems”, Paper 2 – […], Paper 3 – 

[…] Would you like to vote for any of these? 

 19 U: Discourse Structure and Speech Recognition Problems 

 20 S: Okay, I’ve recorded your vote for the paper entitled “Discourse 

Structure and Speech Recognition Problems” What else can I do 

for you?  

 21 U: … 

 



 

 

Appendix B  

Belief updating models 

This appendix contains the five 1m

1nBU =
=  models trained based on the RoomLine cor-

pus, as discussed in subsection 6.4.5 

 

 

 

 

 

 

 

 

 

 

REQ (request): full model 
 Coefficients 
Feature r1/h1 other/h1 

k -0.79 3.57 

barge_in -2.08 -1.40 

concept_id:date 11.29 9.80 

concept_id:user_name 1.93 -13.91 

dialog_state_id:RequestSpecificTimes 13.29 14.27 

ih_diff_lexical -1.55 1.18 

i_h2_avail -21.71 -2.72 

total_num_parses -1.07 -0.41 

srh_r1_confidence 4.09 1.76 

srh_r1_confusability 5.81 1.70 

srh_r1_prior 0.67 0.98 

srh_r1_prior>1 -1.00 -6.38 
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NOA (no action): full model 
 Coefficients 
Feature r1/h1 other/h1 

k 1.79 6.90 

srh_r1_confusability 5.17 -0.26 

ivs=value -2.96 -1.79 

ivs=empty_no_hist -2.33 -3.43 

word_num=1 -2.37 -0.04 

word_num=2 -0.22 0.16 

word_num=3 0.12 0.31 

i_h1_prior -0.58 -0.99 

concept_id:date 0.77 6.43 

i_h1_prior_gt_1 0.89 -3.45 

srh_r1_explicitly_disconfirmed_already -5.89 1.33 

concept_id:_ChooseAnyRoom_trigger 16.31 3.37 

i_h1_confusability -4.52 -3.77 

ih_diff_lexical -1.15 -0.51 

srh_r1_prior 0.28 -0.02 

srh_h_h1_avail -1.68 -4.05 

lex:THAT'S 1.21 2.52 

concept_id:size 0.80 8.15 

dialog_state_id:HowMayIHelpYou -0.25 -1.59 

h_avg_confidence 3.25 1.29 

i_h1_explicitly_confirmed_already -13.68 -14.84 

word_num 0.40 0.03 

lm_score 0.00 0.00 

 

EC (explicit confirm): full model 
 Coefficients 
Feature r1/h1 other/h1 

k -15.96 3.61 

answer_type:yes -12.67 -5.91 

answer_type:no 4.56 3.15 

answer_type:other 1.21 -0.75 

concept_id:equip 6.96 4.43 

i_h1_confusability -3.67 -4.81 

ih_diff_lexical_one_word -15.99 -1.17 

lexw1:SMALL 17.64 20.27 

srh_r1_avail 18.85 0.41 

 

IC (implicit confirm): full model 
 Coefficients 
Feature r1/h1 other/h1 

k -16.83 3.76 

mark_confirm 0.32 -1.75 

mark_disconfirm 3.40 1.58 

i_h1_confidence 0.39 -3.63 

i_h1_confusability -4.18 -4.55 

lex:THREE -2.26 -2.69 

srh_r1_avail 20.89 1.70 

turn_number 0.00 0.03 

 



 Belief updating models 271 

 

 

 

 

 

 

 

UIC (unplanned implicit confirm): full model 
 Coefficients 
Feature r1/h1 other/h1 

k -29.76 3.46 

barge_in 0.72 0.78 

concept_id:equip 15.76 1.66 

i_h1_confusability -2.12 -4.73 

i_h1_explicitly_confirmed_already -16.93 -19.12 

i_h1_prior>1 -1.59 -2.50 

mark_disconfirm 1.44 0.47 

mark_confirm -1.05 -0.77 

srh_r1_avail 30.84 0.73 

word_num>2 2.82 0.37 
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