
Toward a Practical Type Theory
for Recursive Modules

Derek R. Dreyer Robert Harper Karl Crary

March 2001

CMU-CS-01-112

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Module systems for languages with complex type systems, such as Standard ML, often lack the
ability to express mutually recursive type and function dependencies across module boundaries.
Previous work by Crary, Harper and Puri [5] set out a type-theoretic foundation for recursive
modules in the context of a phase-distinction calculus for higher-order modules. Two constructs
were introduced for encoding recursive modules: a fixed-point module and a recursively dependent
signature. Unfortunately, the implementations of both constructs involve the use of equi-recursive
type constructors at higher-order kinds, the equivalence of which is not known to be decidable.

In this paper, we show that the practicality of recursive modules is not contingent upon that
of equi-recursive constructors. We begin with the theoretical infrastructure described above and
study precisely how equi-recursiveness is used in the recursive module constructs, resulting in
a clarification and generalization of the underlying ideas. We then examine in depth how the
recursive module constructs in the revised type system can serve as the target of elaboration for a
recursive module extension to Standard ML.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

Keywords: Type systems, module systems, functional programming, phase splitting.

1 Introduction

Modular programming is critical to the development of large-scale software systems. By enabling
programs to be broken into relatively independent components that interact with one another
through statically-defined interfaces, modularization provides a way for multiple programmers to
work on a project simultaneously and coherently. The power of a module system lies in the flexibility
of its facility for expressing dependencies between modular components. Some languages (such as
Java, Modula-3 and Ada95) only allow inter-module dependencies to be hardwired. Yet frequently
in such languages those dependencies are permitted to be mutually recursive. The module system of
Standard ML [16] is much more expressive. Its functor construct encourages generic programming
in the style of Modula’s generics or C++’s templates, but also allows a modular component of a
large program to be written and compiled separately by abstracting the component over its import
dependencies. However, Standard ML does not support any kind of mutually recursive type or
function definitions across module boundaries. In other words, dependencies between Standard
ML modules, separately compiled or not, must be strictly hierarchical.

A mechanism for writing recursive modules is one of the most requested extensions for Stan-
dard ML. One obvious reason is that the need to write mutually recursive datatypes and functions
in inseparable bundles inhibits modularity. Yet even forgetting the goal of separate compilation,
recursive modules seem to the typical ML programmer like a natural generalization of recursive
constructs in the core language. Consider a simple syntax. If one can write mutually recursive
datatypes separated by the keyword “and” and mutually recursive functions separated by the key-
word “and”, why can’t one write mutually recursive modules separated by the keyword “and”?
(Note: ML actually has an “and” syntax for simultaneous module declarations, but such decla-
rations are not mutually recursive.) Consider a simple semantics. Suppose that these mutually
recursive modules are restricted to contain only datatypes and functions. A mutually recursive
bundle of modules could be compiled into a single non-recursive module by joining the datatypes in
all the modules into one recursive bundle of datatypes and joining the functions in all the modules
into one recursive bundle of functions.

The simplicity of this “naive” programmer’s point of view is a dual-edged sword. To the compiler
hacker, it gives the impression that recursive modules, perhaps in a limited form, would be an easy
extension to design and implement. To the type theorist, it makes them appear like so much ad
hoc syntactic sugar. From either angle, it does not suggest a fruitful line of research, which is
unfortunate considering the perennial demand for recursive modules.

1.1 Workarounds

In the absence of recursive modules, there are two major techniques that programmers typically
employ to work around them. The first, more primitive, technique is based on the philosophy that
mutually recursive types and terms ought to be written together to begin with and “modularized
after the fact” by copying them into separate modules. For example, if we wanted to separate
two mutually recursive functions f and g into separate modules A and B, we would have to first
define them together in one module with a fun declaration, then copy the functions into A and B
as follows:

structure AandB = struct
fun f x = ... g(...) ...
and g y = ... f(...) ...

end

1

structure A = struct val f = AandB.f end
structure B = struct val g = AandB.g end

The same technique can be applied to datatypes by means of ML’s “datatype copying” mechanism.
While this first workaround is certainly straightforward, it is unsatisfying for two reasons. First,

it is no more nor less than a namespace management trick and does not address the problem of
modularizing the actual recursive code. Second, if the module is large, as is typical for the kinds of
modules one would like to use recursive modules to break up, copying each type or value declaration
into a separate module after the fact can be quite cumbersome.

The second common approach, known often as the “parameterization” technique, allows for real
separate compilation of mutually recursive datatypes and functions, but is in turn more complex.
There are a number of variations on this approach, but the basic idea is to define the recursive
modules hierarchically so that they can be written separately. In order to do that, the functions
in the first module in the hierarchy, which is defined in the absence of the others, must be pa-
rameterized over the functions they refer to from the other modules. When referring to the first
module, the functions in the other modules must supply themselves (recursively) as arguments to
instantiate the import dependencies of the functions in the first module. The first module can then
be defined “for real” by applying its original parameterized functions to the functions defined in
the other modules, thereby tying the recursive knot manually. Continuing the simple example from
the first technique, we could do the following:

structure preA =
struct fun f g x = ... g(...) ... end

structure B =
struct fun g y = let val f = preA.f g in ... f(...) ... end

structure A =
struct val f = preA.f B.g end

A similar technique can be applied to datatypes by means of polymorphic types (which are really
λ-expressions at the type level).

While this kind of approach is undeniably effective at breaking up recursive code, it also forces
considerable changes at the level of individual functions and types, not to mention the overall
program structure. Every function in A that needs to refer to B must explicitly convert its import
dependencies (such as B.g above) into function arguments. Code transformations like this that
affect all the code in a module are what modules were invented to simplify. For instance, it is not
necessary to program with functors in ML, but they simplify and clarify programming tremendously
in the situation where all the code in a module is parameterized over the code in another module.
Unfortunately, there is no way to generalize the recursive parameterization trick to the module
level, e.g.:

functor preA (B : BSIG) =
struct fun f x = ... B.g(...) ... end

structure B =
let structure A = preA(B) in (* Type Error: B not defined here *)

struct fun g y = ... A.f(...) ... end

In addition, the complexity of the parameterization technique introduces inefficiency due to function
applications that is avoided by simply writing the functions in all the modules together under one
fixed-point.

2

1.2 Type Theory for Recursive Modules

In response to the inadequacies of the recursive module workarounds, there have been a few attempts
to extend ML-like languages with real recursive modules, most notably by Flatt and Felleisen [8]
and Duggan and Sourelis [6, 7]. However, the former’s extension is bound up with dynamic linking
and first-class modules in the concept of a unit. The latter’s extension is tied to mixin modules,
which can be used to achieve the effect of virtual types in a functional language. Both extensions
are interesting (and we will return to them in Section 6 on related work), but neither explains what
a recursive module is, in a fundamental sense independent of the specific language extension in
which it appears.

Toward this end, Crary, Harper and Puri [5] (hereafter, CHP) have given an analysis of recursive
modules in the setting of type theory, specifically in a phase-distinction calculus in the style of
Harper, Mitchell and Moggi [9] (hereafter, HMM). The main reason for working in such a calculus
is to show how module constructs can be split into separate compile-time (type-level) and run-
time (term-level) core constructs. This ability to “phase-split” a module is important for several
reasons. Modern type-directed compilers track type information throughout compilation to enable
certain type-based optimizations. Phase-splitting enables them to compile module code into core
language code without discarding the type part of the module. In addition, working in the style of
HMM provides compatibility with fully transparent higher-order modules, including functors and
nested structures. Although higher-order modules are not the concern of this paper, we will see
in Section 5.2 that the ability to phase-split functors and functor applications leads to increased
expressiveness for recursive modules.

As the recursive core constructs at the type and term levels of the core calculus take the
form of a fixed-point, the analogous module construct that CHP study is a fixed-point module.
This fixed-point module has a straightforward typechecking rule, and an intuitive phase-splitting
interpretation that separates the module into a fixed-point type constructor and a fixed-point term.
However, simple examples exhibit serious limitations in the new module construct. To remedy the
problem, CHP introduce a new signature construct called a recursively dependent signature, or rds,
that more accurately models types inside a recursive module. Rds’s are required by their phase-
splitting interpretation to be fully transparent, and hence the combination of fixed-point modules
with rds’s is termed “transparent recursive module” programming, in contrast to the “opaque”
programming with the fixed-point construct alone.

While transparent recursive modules constitute a useful and expressive extension to the module
system, there is a serious problem with the entire analysis. The phase-splitting rules for both
fixed-point modules and rds’s depend on the assumption that the recursive core construct at the
type level is equi-recursive, i.e. a fixed-point over type constructors that is equal to its unrolling,
not merely isomorphic. This is an odd assumption since recursive datatypes in Standard ML are
iso-recursive, requiring explicit rolls (and unrolls) into (and out of) the fixed-point. Moreover,
checking type equivalence in the presence of equi-recursive type constructors of higher kind is not
known to be decidable, thus casting doubt on the practicality of the whole type system.

1.3 Overview

In this paper, we will begin with the rigorous analysis and technical infrastructure afforded by CHP
and show what is needed to make recursive modules useful and practical. Our approach to the
theory involves determining which constructs are fundamentally equi-recursive and which are not,
with the ulterior goal of developing a practical design for recursive modules that depends only on
iso-recursive type constructors.

3

kinds κ ::= T | 1 | s(c) |Πα:κ1.κ2 | Σα:κ1.κ2

constructors c ::= α | ? | λα:κ.c | c1c2 | 〈c1, c2〉 | c.1 | c.2 | 1 | c1 ⇀ c2 | c1 × c2 | µ≡α:κ.c
types σ ::= T (c) | σ1 → σ2 | σ1 ⇀ σ2 | σ1 × σ2 | ∀α:κ.σ
terms e ::= x | ? | λx:σ.e | e1e2 | 〈e1, e2〉 | e.1 | e.2 | Λα:κ.e | e[c] | fix (x:σ.e)
contexts Γ ::= ε | Γ[α : κ] | Γ[x : σ] | Γ[α ↑ κ] | Γ[x ↑ σ]

Figure 1: The Core Calculus

First, in Section 2, we review the definitions and motivations for the fixed-point and rds con-
structs introduced by CHP, as well as the type-theoretic framework in which they are situated.
Then, in Section 3, we split fixed-points and rds’s into opaque and transparent forms in an attempt
to isolate the uses of equi-recursive constructors and to clarify the similarities and differences be-
tween opaque and transparent recursive modules. In Section 4, we examine how well the theoretical
constructs defined in Section 3 fare in practice, culminating in a proposal for a modest recursive
module extension to Standard ML. Finally, Section 5 explores some directions for future work re-
lated to the interaction of recursive modules and abstraction, and Section 6 provides a brief survey
of related work.

2 Summary of CHP Analysis

In this section, we will briefly summarize the type-theoretic framework of CHP, the new constructs
they introduce and the problems that arise.

2.1 Framework

The analysis is conducted in a phase-distinction calculus, consisting of a core calculus and a prim-
itive structure calculus. The core calculus (Figure 1) is a fairly standard higher-order predicative
polymorphic lambda calculus with a few extensions, namely dependent and singleton kinds, equi-
recursive type constructors and fixed-point expressions.

Dependent and singleton kinds have proven to be a convenient and expressive mechanism for
fine-grained control of type information in module signatures. Specifically, the kind s(c) classifies
all types (actually, type constructors of base kind T) that are equivalent to c. The kind Σα:κ1.κ2

is used to classify pairs of constructors where the kind of the second constructor may refer to the
name of the first constructor. The kind Πα:κ1.κ2 is used to classify constructor functions where the
result kind may refer to the name of the argument. To illustrate all three, the following faux-ML
functor signature

(X : sig type t end) -> sig type ’a u; type v = X.t * int u end

could be translated into the kind

Πα:T.Σβ:T→T.s(α× β(int))

As shown in Figure 2, one can define singletons at higher kind, written s(c : κ), inductively in terms
of singletons at kind T . The thesis work of Chris Stone [26] explores the issue of singleton kinds
in great depth, including a detailed proof that type equivalence remains decidable in a language
containing them. Dependent and singleton kinds are currently implemented in the MIL intermediate

4

s(c : T) def= s(c)
s(c : s(c′)) def= s(c)

s(c : Πα:κ1.κ2) def= Πα:κ1.s(c α : κ2)
s(c : 1) def= 1

s(c : Σα:κ1.κ2) def= s(c.1 : κ1)× s(c.2 : κ2[c.1/α])

Figure 2: Higher-Order Singletons

language of the TILT compiler for Standard ML [19]. See Stone and Harper [25] for a more concise
account of the motivation and practicality of singleton kinds.

The recursive operators at the constructor and term levels take the form µ≡α:κ.c and fix (x:σ.e),
respectively. The type constructor µ≡α:κ.c denotes the unique fixed-point of the constructor func-
tion λα:κ.c and is subject to the following well-formedness rule:

α 6∈ Dom(Γ) Γ ` κ kind Γ[α ↑ κ] ` c ↓ κ
Γ ` µ≡α:κ.c : κ

The second premise checks that c has the right kind and that it is contractive in a context where α
is not. In the context of this rule, this means that all references in c to α must occur under a type
construction operation like α×α. In general, contractiveness can be viewed as a way of ensuring
that there exists a unique fixed-point for λα:κ.c. For instance, the non-contractive identity function
λα:κ.α has no unique fixed-point because every constructor of kind κ is a fixed-point of the identity.

The notation ≡ in µ≡ indicates that the recursive type constructor is equi-recursive, as opposed
to iso-recursive constructors, which we will denote with µ∼=. Equi-recursive constructors obey the
following “equational unrolling” rule, which exhibits the fact that µ≡ is a fixed-point (here, as in
the rest of this paper, we write E′[E1, · · · , En/X1, · · · , Xn] to indicate the simultaneous capture-
avoiding substitution of E1, · · · , En for X1, · · · , Xn in E′):

α 6∈ Dom(Γ) Γ ` κ kind Γ[α ↑ κ] ` c ↓ κ
Γ ` µ≡α:κ.c ≡ c [µα:κ.c/α] : κ

Uniqueness is guaranteed by the following “bisimilarity” rule, which says that any constructor that
is a fixed-point of λα:κ.c is equivalent to the µ≡:

α 6∈ Dom(Γ) Γ ` κ kind Γ ` c′ ≡ c[c′/α] : κ Γ[α ↑ κ] ` c ↓ κ
Γ ` c′ ≡ µα:κ.c : κ

The fixed-point equations induced by unrolling and bisimilarity make µ≡ apposite for CHP’s and
our theoretical development of recursive modules, as we will see in the next section. However,
having a true fixed-point operator in our core calculus complicates the procedure for deciding
constructor equivalence to the point that it is not known to be decidable. We will study iso-
recursive constructors, which complicate the theory but are more practical, in Section 4.2.1.

The term-level construct fix (x:σ.e) enables the definition of recursive values. The well-formedness
rule for fixed-point expressions is similar to the rule for equi-recursive constructors:

x 6∈ Dom(Γ) Γ ` σ type Γ[x ↑ σ] ` e ↓ σ
Γ ` fix (x:σ.e) : σ

5

signatures S ::= [α:κ, σ]
modules M ::= s | [c, e]
constructors c ::= · · · | Fst M
terms e ::= · · · | Snd M
contexts Γ ::= · · · | Γ[s : S] | Γ[s ↑ S]

Figure 3: The Structure Calculus

The last premise involves a valuability check analogous to the contractiveness check. Essentially,
it must be statically checkable that the evaluation of e will terminate without side-effects, and
references in e to x must occur inside λ-abstractions (i.e. functions). The fix construct is basically a
generalization of ML’s fun declarations to allow valuable expressions to be included in the recursive
definition.

The primitive structure calculus (Figure 3) consists of two new syntactic classes: modules M
and signatures S. The module class is inhabited by a primitive phase-split module construct and
the signature class by a primitive phase-split signature construct. Each phase-split construct is
composed directly from core constructs. A phase-split module [c, e] consists of a type constructor
c and a term e. Sometimes we will use the notation [α = c, e] as shorthand for [c, e[c/α]]. A
phase-split signature [α:κ.σ] classifies a phase-split module, under the following typing rule:

α 6∈ Dom(Γ) Γ ` c : κ Γ ` e : σ[c/α] Γ[α : κ] ` σ type
Γ ` [c, e] : [α:κ.σ]

The “static” (or “compile-time” or “constructor”) part of a phase-split module can be extracted
through a new form of type constructor Fst M , and the dynamic part (or “run-time” or “term”)
part can be extracted through a new form of expression Snd M . They are subject to the following
typing rules:

Γ `M : [α:κ.σ]
Γ ` Fst M : κ

Γ `M : [α:κ.σ]
Γ ` Snd M : σ[Fst M/α]

Valuability for modules is embodied in the judgement Γ ` M ↓ S, which ensures that the static
part of the module is contractive and the dynamic part is valuable:

α 6∈ Dom(Γ) Γ ` c ↓ κ Γ ` e ↓ σ[c/α] Γ[α : κ] ` σ type
Γ ` [c, e] ↓ [α:κ.σ]

HMM show that higher-order modules, such as functors and nested structures, are already
present in the primitive structure calculus described here. We may thus assume compatibility with
higher-order modules while working within a simpler system. The method HMM employ is to define
typing rules for higher-order module and signature constructs, then to equate those constructs with
primitive forms through non-standard equational rules on modules and signatures. As we shall see
below, CHP use the same technique to define the phase-splitting interpretation of the recursive
module and signature constructs they introduce in terms of core constructs.

The full set of typing rules for the core and structure calculi can be found in Appendices A.1
and A.2, respectively.

6

2.2 Fixed-Point Modules

CHP study two styles of recursive module programming: opaque and transparent. Both utilize a
simple recursive module construct analogous to the recursive constructs for constructors and terms
in the core calculus: the fixed-point. CHP’s fixed-point module takes the form fix (s:S.M), and
obeys the following typing rule, typical for a fixed-point:

s 6∈ Dom(Γ) Γ[s ↑ S] `M ↓ S Γ ` S sig
Γ ` fix (s:S.M) : S

The module body is required to be valuable in a context where the recursive module variable is
not. This valuability restriction is essentially the same as the restriction on polymorphic bindings
imposed in the revised 1997 definition of Standard ML[16], but here it is applied to all the bindings
in the body of a fixed-point, not just the polymorphic ones. Note that this restriction is rather
conservative in the sense that there are perfectly acceptable recursive modules with non-valuable
bodies, e.g. those containing the binding val x = ref 2. The practical implications of this con-
servativity are not really the focus of CHP or this paper, but we will return to the issue briefly in
Section 4.4.

Phase-splitting for fixed-point modules works as follows. Note that sc and sr are used here to
signify the compile-time and run-time components, respectively, of primitive structure variable s
after phase-splitting, but they are merely specially-named variables, unrelated to s.

α, s, sc, sr 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` σ type
Γ[sc ↑ κ] ` c ↓ κ Γ[sc : κ][sr ↑ σ[sc/α]] ` e ↓ σ[c/α]

Γ ` fix (s:[α:κ.σ].[c[Fst s/sc], e[Fst s,Snd s/sc, sr]]) ≡
[sc = µ≡s

c:κ.c,fix (sr:σ[sc/α].e)] : [α:κ.σ]

Essentially, phase-splitting a fixed-point module wraps an equi-recursive constructor around the
static part c and a term-level fixed-point around the dynamic part e. It should be noted that the
use of an equi-recursive constructor here is necessary for the term-level fixed-point to typecheck.
Specifically, e has type σ[c/α] but it needs to match the type of the fixed-point, which is σ[sc/α].
With sc as an abbreviation for µ≡sc:κ.c, it is clear that c (with free references to sc) is the unrolling
of sc. Thus, the equality of σ[c/α] and σ[sc/α] is predicated on the equality of sc and its unrolling,
i.e. on the use of the equi-recursive µ≡.

2.3 Opaque Recursive Modules

What CHP call opaque recursive modules are simply the fixed-point modules presented above, with
no other extensions to the type system. These modules per se are termed opaque because the
only information afforded the body M about the recursive module variable s in fixed-point module
fix (s:S.M) is the signature S. It should be understood that making S opaque is not an abstraction
mechanism. It does not hide the implementation of types defined inside the fixed-point from code
outside the module, because the fixed-point module can always be phase-split and its static part
revealed. (In practice, such abstraction can be achieved by opaquely ascribing S to the entire
fixed-point, e.g. fix (· · ·) :> S.) Rather, it merely hides some of the static part of s from the code
in the body M of the module.

What purpose, then, does this opacity serve? In cases where the fixed-point is used solely to
write mutually recursive function definitions that cross module boundaries, there is no reason not
to make S transparent. Trouble arises, however, when one wishes to define mutually recursive type

7

definitions that cross module boundaries. In order to encode such definitions, at least one of them
must be defined using a module-recursive type constructor1, i.e. a type constructor in the body of
the fixed-point that refers to the recursive module variable. The issue is that a module-recursive
constructor definition like type t = c, where c refers to s, cannot be realized in the signature S,
since S must be valid in the ambient context that does not contain s. Thus, making t opaque in S
is a seemingly necessary evil attendant upon module-recursive constructor definitions.

A simple example of how the opacity forced upon module-recursive constructor definitions
causes a problem is the following failed attempt to use an opaque recursive module to implement
a (recursive) integer list type through the recursive module. (Assume that the core language has
been extended with binary sum types and the corresponding standard term-level constructors, inl
and inr, and destructor, case. Note also that we will use a sort of pidgin-ML syntax to convey
the examples, but this is intended to represent code in our internal language and make it more
readable, not to imply extensions to ML itself.)

signature LIST =
sig

type t
val nil : t
val cons : int * t -> t

end

structure List = fix (List : LIST.
type t = 1 + int * List.t
val nil : t = inl ()
fun cons (x : int, L : List.t) : t =

inr (x,L)
)

In this example, the body of the fixed-point is well-typed, but the cons function has type int *
List.t -> t, not the required int * t -> t, so the fixed-point is not valid. Alternatively, one
could try assigning L the type t in the definition of cons, but this clearly fails as well because the
inr requires int * List.t, not int * t.

Another good example given by CHP is the canonical ExpDec example. The idea is that one
would like to separate two syntactic classes in a mutually recursive abstract syntax tree, such as
expressions (Exp) and declarations (Dec), into two mutually recursive modules. A similar problem
arises here as in the List example. In addition, the ExpDec example illustrates problems in pro-
gramming with mutually recursive modules that do not affect the single recursive module of List.
However, the distinction between List and ExpDec is not the focus of the core analysis of CHP, so
we will not be concerned with the details of ExpDec until Section 3.2.

2.4 Transparent Recursive Modules and Recursively Dependent Signatures

The problem with opaque recursive modules boils down to the inability to make any correlation
between the implementation of a type in the body (e.g. t) and the corresponding type component
of the recursive module variable (e.g. List.t), when the type is left abstract in the signature of
the recursive module variable. CHP suggest that the way to remedy this is to somehow make
the signature transparent, so that the module-recursive type definitions in the body are reflected

1Module-recursive is our term, not CHP’s.

8

in the signature. As discussed above, näıvely realizing the signature with the module-recursive
type definition would result in an ill-formed signature with free references to the recursive module
variable List. Luckily, the effect of such a realization can be achieved through a more complex
signature mechanism introduced by CHP: a recursively dependent signature, or rds.

An rds takes the form ρsc.S, where the constructor variable sc is bound in signature S. (Actu-
ally, CHP’s rds construct takes the form ρs.S, where s is a module variable, but since a signature
can only contain references to the static part of s, the two constructs amount to the same thing.)
Intuitively, a type definition in S that refers to sc is expressing a module-recursive type not express-
ible in normal signatures; sc can essentially be viewed as a placeholder for the static part of the
module to which the rds is ascribed. The introduction and elimination rules for rds’s are simple,
but somewhat unusual. Applications of these rules can be thought of as roll and unroll operations,
respectively, at the module level:

Γ `M : S[Fst M/sc] Γ ` ρsc.S sig
Γ `M : ρsc.S

Γ `M : ρsc.S

Γ `M : S[Fst M/sc]

Now consider our List example again. We can close the free module-recursive references in the
fully transparent version of the LIST signature by binding List in an rds:

ρ List.
sig

type t = 1 + int * List.t
...

end

When the recursive module variable List is assigned the above rds, the rds elimination rule allows
List to be given the unrolled form of this rds, with free references to itself. Projecting from
the unrolled signature, it is then apparent that List.t ≡ 1 + int * List.t, which equals the
definition of t in the body of the fixed-point.

What this implies about rds’s is that their interpretation into the core language requires the
use of equi-recursive constructors to “solve” the module-recursive type equations introduced by the
roll/unroll rules. The phase-splitting rule for rds’s achieves this by wrapping the fully transparent
static part of an rds with a µ≡ by means of singleton kinds:

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc ↑ κ] ` c ↓ κ Γ[sc : κ][α : κ] ` σ type

Γ ` ρsc.[α:s(c : κ).σ] ≡ [sc:s(µ≡sc:κ.c : κ).σ[sc/α]] sig

The way rds phase-splitting works requires the body of the rds to be fully transparent. Hence,
the combination of a fixed-point module and an rds is termed a transparent recursive module. The
typechecking rule for rds’s reflects the full transparency requirement:

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ] ` S ≡ [α:s(c : κ).σ] sig Γ[sc ↑ κ] ` c ↓ κ
Γ ` ρsc.S sig

3 Recursive Modules in Theory

The recursive module dichotomy as we have presented it is somewhat unsatisfying because the
distinction between opaque and transparent recursive modules is not entirely clear. Consider the
following: Both idioms use the same fixed-point module construct, but transparent modules use fully

9

transparent rds’s while opaque modules use arbitrary non-rds signatures. Opaque recursive modules
appear not to be able to encode module-recursive type constructors, rendering them inexpressive
in comparison to transparent recursive modules. However, since rds’s can be interpreted through
phase-splitting as primitive signatures, it would seem that transparent recursive modules are really
a subset of opaque ones!

In fact, this paradox is easily resolved by a clarification of what is meant by a “non-rds signa-
ture”. When we assert that the signature in an opaque recursive module is not an rds, it is not
enough to merely prohibit the signature from having the syntactic form ρsc.S; the point is that the
signature should not require the expressive power necessary to encode transparent definitions of
module-recursive type constructors. In our system, module-recursive constructors are implemented
with equi-recursive constructors, so the precise definition of a non-rds signature is one whose phase-
split form is expressible without the use of equi-recursive constructors. Now there is no question
that transparent modules have the expressive edge.

That this confusion in terms was glossed over by CHP indicates an implicit assumption in their
presentation of recursive modules: namely, that the notion of a module-recursive constructor in
fixed-points and rds’s encapsulates the ways that equi-recursiveness is used, so the programmer who
is equipped with these recursive module constructs should not need to make explicit use of equi-
recursive constructors. It is reasonable to want to isolate equi-recursiveness in the phase-splitting
rules for fixed-points and rds’s. The core language of ML allows only a very restricted form of
recursive type definition with the datatype mechanism, whose elaboration only requires the use of
iso-recursive constructors. Ultimately, we will not want to rely on constructs that are implemented
with equi-recursive constructors, so it is unfortunate that the phase-splitting interpretations of both
fixed-point modules and rds’s seem to require them.

In this section, we will reassess the idioms of opaque and transparent recursive module program-
ming by defining them in terms of opaque and transparent variants, respectively, of the fixed-point
module and rds constructs. Splitting fixed-points and rds’s this way will help to isolate and clarify
the uses of equi-recursiveness in the opaque and transparent idioms. In addition, we will state a
“fundamental” property of recursive modules unifying the two idioms and prove that they both
adhere to it. We end the section with some remarks on the relevance of our theoretical analysis.

3.1 Opaque Fixed-Point Modules

Recall the List example from Section 2.3. The problem there was not that the body of the fixed-
point was ill-typed, but that its signature contained references to the recursive module variable List
and thus did not match the required signature LIST. Specifically, the type of the cons function in
the body was int * List.t -> t, instead of int * t -> t as in LIST. Solving this problem by
making the LIST signature transparent means that not only are the actual and required types for
cons identified, but t and List.t are identified during typechecking of the body. This solution is
unnecessarily generous because the opacity of List.t did not cause a problem during typechecking,
only when matching the body’s signature against the required signature.

This suggests a generalization of the fixed-point module rule. If the recursive module variable s
is given signature [α:κ.σ1], then allow the body to have signature [α:κ.σ2], where σ1 ≡ σ2[α/Fst s].
(We view the signatures here in their phase-split form in order to have access to the α that gets
substituted for Fst s; in Section 3.4 we will see how this can be avoided.) For instance, the List
example would now typecheck, because if we substitute t for occurrences of List.t in the actual
type of cons (int * List.t -> t), we obtain the required type (int * t -> t). Note, however,
that the signature of s is still opaque (i.e. κ can be anything) during typechecking.

10

Let’s call this generalization an opaque fixed-point module and denote it with fixO. The type-
checking rule is as one would expect from the description above:

α, s 6∈ Dom(Γ) Γ ` S ≡ [α:κ.σ1] sig
Γ[s ↑ S] `M ↓ [α:κ.σ2] Γ[α : κ] ` σ1 ≡ σ2[α/Fst s] type

Γ ` fixO(s:S.M) : S

This generalization only makes sense, of course, if it does not adversely affect phase-splitting.
Fortunately, it does not affect phase-splitting at all. In fact, the idea for the generalization came
from looking at what premises of the phase-splitting rule for fixed-points could be safely relaxed.
The intuitive reason the opaque fixed-point works is that the equi-recursive constructor used in
phase-splitting turns the static part of the recursive module variable and the static part of the
body into the same thing. E.g., after phase-splitting, List.t becomes µ≡α. 1 + int × α and t
becomes 1 + int × List.t, which are equal since µ≡ is equi-recursive. For completeness, here is
the phase-splitting rule for opaque fixed-points, which differs from the original phase-splitting rule
only in the more flexible premises:

α, s, sc, sr 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` σ1 type Γ[sc : κ][α : κ] ` σ2 type
Γ[sc ↑ κ] ` c ↓ κ Γ[sc : κ][sr ↑ σ1[sc/α]] ` e ↓ σ2[c/α] Γ[α : κ] ` σ1 ≡ σ2[α/sc] type

Γ ` fixO(s:[α:κ.σ1].[c[Fst s/sc], e[Fst s,Snd s/sc, sr]]) ≡ [sc = µ≡s
c:κ.c,fix (sr:σ1[sc/α].e)] : [α:κ.σ1]

Note that the fixed-point expression on the right-hand side of the equation typechecks because
σ2[c/α] ≡ σ2[sc/α] (where sc ≡ µ≡sc:κ.c), and σ1[sc/α] ≡ σ2[α/sc][sc/α] ≡ σ2[sc/α].

3.2 Opaque Rds’s

Although the above generalization of the fixed-point construct solves the problem with opaque
recursive modules in the List example, it does not entirely solve the similar problem in CHP’s
ExpDec example. We will now examine the details of ExpDec because they motivate the idea of an
opaque rds.

In ExpDec, we essentially want to break up a pair of mutually recursive types exp and dec,
representing abstract syntax for expressions and declarations in some object language, and put
them in mutually recursive modules Exp and Dec, respectively. In the absence of rds’s, this is
impossible — even if exp and dec are kept abstract, the types of some of exp’s constructors will
need to refer to dec and vice versa, and there is no way to express this in typical hierarchical
signatures (e.g. the boxed types are mutually recursive references, the first of which is illegal):

signature EXPDEC = sig
structure Exp : sig

type exp
val make let : Dec.dec * exp -> exp (* let DEC in EXP end *)
... (* other constructors and destructors *)

end
structure Dec : sig
type dec
val make val : identifier * Exp.exp -> dec (* val ID = EXP *)
... (* other constructors and destructors *)

end
end

11

CHP observe that this problem does not arise when signatures are written in phase-split form
because the recursive dependencies are dynamic-on-static (i.e. terms on types), not static-on-static
(i.e. types on types). Once the static and dynamic parts of the signature have been separated,
dynamic-on-static dependencies are no longer recursive. Indeed, there was no problem in the List
example because the LIST signature was naturally in phase-split form.

Although writing signatures in phase-split form solves the problem, it is not reasonable to force
code to be written in phase-split style in general. CHP illustrate a failed attempt to avoid this by
declaring exp and dec in the signatures of both Exp and Dec, all opaquely:

signature EXPDEC CHP = sig
structure Exp : sig

type exp
type dec
val make let : dec * exp -> exp

end
structure Dec : sig
type dec
type exp
val make val : identifier * exp -> dec

end
end

This rids the signature of recursive references, but now there is no connection between the types
Exp.exp and Dec.exp (and Dec.dec and Exp.dec). Thus, syntax trees constructed with the
datatype constructors in Exp are incompatible with those constructed with the datatype construc-
tors in Dec, rendering a module with this signature useless.

Our solution is to define an opaque variant of the rds construct, denoted ρ̂, that only allows
dynamic-on-static recursive dependencies. (The original rds construct, which we will continue to
denote with ρ, is by its very nature transparent.) First, the typechecking rule:

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ] ` S ≡ [α:κ.σ] sig
Γ ` ρ̂sc.S sig

The restriction on recursive dependencies is enforced by requiring the static part κ of signature S to
be well-formed in the ambient context (so S cannot contain static-on-static references to sc). The
phase-splitting rule makes clear that there is nothing fundamentally recursive about this opaque
rds, in contrast to the fully transparent rds defined previously:

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ][α : κ] ` σ type

Γ ` ρ̂sc.[α:κ.σ] ≡ [sc:κ.σ[sc/α]] sig

With the opaque rds, we can “close” the dynamic-on-static dependencies desired in the EXPDEC
signature as follows:

ρ̂ ExpDec.
sig
structure Exp : sig

type exp
val make let : ExpDec.Dec.dec * exp -> exp

12

end
structure Dec : sig

type dec
val make val : identifier * <ExpDec.>Exp.exp -> dec

end
end

The angle brackets around ExpDec in the type of Dec.make val signify that the reference to Exp.exp
could be chosen to be local or recursive, and the signature would phase-split the same either way.

3.3 Transparent Fixed-Point Modules

In the spirit of isolating equi-recursiveness, one may wonder whether the transparent recursive
module idiom requires the power of equi-recursive constructors in both its fixed-point and rds
constructs. Interestingly, the answer is no.

Any fixed-point module with transparent signature is equivalent to a module of the form
fix (s:[α:s(c : κ).σ].[c′, e]). After phase-splitting, the static part of the module is µ≡α:s(c : κ).c′[α/Fst s].
Since the kind of this constructor is s(c : κ), it is provably equal to c! So, in fact, equi-recursive
constructors are not needed here. This leads us to observe that the notion of a transparent fixed-
point module — that is, a fixed-point module with fully transparent signature — is orthogonal to
that of a transparent rds and would benefit from being treated separately. This does not imply,
of course, that the examples of transparent recursive modules presented in CHP do not require
equi-recursive constructors in their interpretation. It simply means that the equi-recursiveness is
completely encapsulated in the notion of a transparent rds and those examples require the use of
rds’s.

We will denote the transparent fixed-point module construct with fixT . The typechecking and
phase-splitting rules are as one would expect:

s 6∈ Dom(Γ) Γ[s ↑ S] `M ↓ S Γ ` S ≡ [α:s(c : κ).σ] sig

Γ ` fixT (s:S.M) : S

α, s, sc, sr 6∈ Dom(Γ) Γ ` s(c : κ) kind Γ[α : s(c : κ)] ` σ type
Γ[sc ↑ s(c : κ)] ` c′ ↓ s(c : κ) Γ[sc : s(c : κ)][sr ↑ σ[sc/α]] ` e ↓ σ[c′/α]

Γ ` fixT (s:[α:s(c : κ).σ].[c′[Fst s/sc], e[Fst s,Snd s/sc, sr]])
≡ [sc = c,fix (sr:σ[sc/α].e)] : [α:s(c : κ).σ]

Note that the generalization from Section 3.1 would not increase the expressiveness of transparent
fixed-points. Specifically, any references to Fst s in the signature of the body of the fixed-point
could be replaced by α anyway, since both Fst s and α have kind s(c : κ) and thus are equivalent.

3.4 Fundamental Property of Recursive Modules

Now that we have defined two clearly differentiated recursive module idioms, it is interesting to
examine what they have in common.

In their treatment of practical issues regarding recursive modules, CHP suggest an “appealing
typechecking strategy” for transparent recursive modules that basically works as follows. Assume
the module has the form fix (s:S.M), where S ≡ ρsc.SB, the notation SB signifying the body of
S. Instead of checking that M has signature S as prescribed by the fixed-point typechecking rule,
check that M has signature SB[Fst s/sc], in a context where s has signature S. In other words,

13

check that the body of the fixed-point can be ascribed the body of the rds, under the assumption
that the recursive module variable can be ascribed the rds. CHP give a simple proof that this
typechecking strategy is sound and complete with respect to the fixed-point typechecking rule.

This approach is appealing because it provides a more intuitive and practical way of defining
and implementing fixed-point module typechecking than that supplied by the type system directly.
In ordinary fixed-point typechecking, one would have two options for checking that the body M
of a fixed-point has rds ρsc.SB. One could use the rds roll rule to reduce this to checking that M
has SB[Fst M/sc], but this involves a substitution of Fst M when it is not even known that M is
well-formed. The substitution of Fst s for sc in the new strategy is much more straightforward to
implement. Alternatively, one could compute the principal signature of M , phase-split it and check
if it is a subtype of the rds. While this is feasible to implement, the new approach is far more
elegant because it can be described at a high level above the “implementation” level of phase-split
forms.

What we find particularly appealing about this approach is that it turns out to apply to opaque
recursive modules as well, albeit in a slightly weaker form. This leads us to believe that, in addition
to being a guide to implementation, this typechecking strategy is fundamental to recursive module
systems, at least of the kind we have studied. Here we formalize it for arbitrary fixed-point and
rds constructs FIX and R:

Definition 1 (Fundamental Property of Recursive Modules)
A fixed-point module construct FIX(s:S.M) and an rds construct Rsc.S form a recursive module
system if they satisfy the following property:

• Γ ` FIX(s:S.M) : S if and only if
∃SB such that Γ ` S ≡ Rsc.SB sig and Γ[s ↑ S] `M ↓ SB[Fst s/sc].

The rule described above was stronger than the one given here in that the equivalence of S and
Rsc.SB was an assumption, whereas here it appears inside the “iff”. The reason for this weakening
is that, for opaque modules, there exists an rds equivalent to S that models the signature of the
module body correctly, but not every equivalent rds does so. This makes this strategy arguably less
practical than the first one, but more useful in theory as a shared high-level property of recursive
modules.

We now proceed to show that both the opaque and transparent idioms obey this fundamental
property. The proof requires us to be able to perform inversion on the typechecking rules for fixO
and fixT , which we cannot do with the rds roll and unroll rules from Section 2.4 built into the
type system. Luckily, the roll and unroll rules are not essential (for either opaque or transparent
rds’s) and can be shown to be admissible in the type system without them. The proofs are fairly
straightforward. It is worth noting that the admissibility proof for opaque rds’s makes use of the
“self” rule to reify the static part of the opaque signature; and that the proof for transparent rds’s
makes use of equi-recursive unrolling for admissibility of unroll and bisimilarity for admissibility of
roll.

Lemma 2 (Admissibility of Roll and Unroll for Opaque Rds’s)
Suppose Γ ` ρ̂sc.S sig . Then, Γ `M : ρ̂sc.S if and only if Γ `M : S[Fst M/sc].

Proof: Suppose Γ ` ρ̂sc.S sig . Then, by well-formedness of opaque rds’s, we know that Γ[sc :
κ] ` S ≡ [α:κ.σ] sig , and Γ ` ρ̂sc.S ≡ [α:κ.σ[α/sc]] sig .

=⇒ : Suppose Γ ` M : ρ̂sc.S. Then, Γ ` M : [α:κ.σ[α/sc]]. By selfification, Γ ` M : [α:s(Fst M :
κ).σ[α/sc]]. This signature is equivalent to [α:s(Fst M : κ).σ[Fst M/sc]] ≤ [α:κ.σ[Fst M/sc]] ≡

14

S[Fst M/sc].

⇐= : Suppose Γ ` M : S[Fst M/sc]. Then, Γ ` M : [α:κ.σ[Fst M/sc]]. By selfification,
Γ ` M : [α:s(Fst M : κ).σ[Fst M/sc]]. This signature is equivalent to [α:s(Fst M : κ).σ[α/sc]] ≤
[α:κ.σ[α/sc]] ≡ ρ̂sc.S. �

Lemma 3 (Admissibility of Roll and Unroll for Transparent Rds’s)
Suppose Γ ` ρsc.S sig . Then, Γ `M : ρsc.S if and only if Γ `M : S[Fst M/sc].

Proof: Suppose Γ ` ρsc.S sig . Then, by well-formedness of transparent rds’s, we know that
Γ[sc : κ] ` S ≡ [α:s(c : κ).σ] sig , and Γ ` ρsc.S ≡ [α:s(µ≡sc:κ.c : κ).σ[α/sc]] sig , where
Γ[sc ↑ κ] ` c ↓ κ.

=⇒ : Suppose Γ ` M : ρsc.S. Then, Γ ` M : [α:s(µ≡sc:κ.c : κ).σ[α/sc]]. Since Γ ` Fst M ≡
µ≡s

c:κ.c : κ, M ’s signature is equivalent to [α:s(µ≡sc:κ.c : κ).σ[Fst M/sc]], which, by equi-recursive
unrolling, is equivalent to [α:s(c[Fst M/sc] : κ).σ[Fst M/sc]] ≡ S[Fst M/sc].

⇐= : Suppose Γ ` M : S[Fst M/sc]. Then, Γ ` M : [α:s(c[Fst M/sc] : κ).σ[Fst M/sc]]. Since
Γ ` Fst M ≡ c[Fst M/sc] : κ, bisimilarity implies that Fst M ≡ µ≡s

c:κ.c, so M ’s signature is
equivalent to [α:s(µ≡sc:κ.c : κ).σ[α/sc]] ≡ ρsc.S. �

Theorem 4
The opaque fixed-point and rds constructs form a recursive module system.

Proof:
=⇒ : Suppose Γ ` fixO(s:S.M) : S. By inversion on typechecking for fixO, Γ ` S ≡ [α:κ.σ1] sig ,
Γ[s ↑ S] ` M ↓ [α:κ.σ2[Fst s/sc]] and Γ[α : κ] ` σ1 ≡ σ2[α/sc] type. Choosing SB to be
[α:κ.σ2], it is clear that Γ[s ↑ S] ` M ↓ SB[Fst s/sc]. By phase-splitting for ρ̂, we also have
Γ ` ρ̂sc.SB ≡ [α:κ.σ2[α/sc]] ≡ [α:κ.σ1] ≡ S sig .

⇐= : Suppose Γ ` S ≡ ρ̂sc.SB sig and Γ[s ↑ S] ` M ↓ SB[Fst s/sc]. Well-formedness of ρ̂sc.SB
requires that Γ[sc : κ] ` SB ≡ [α:κ.σ2[sc/Fst s]] sig , where Γ ` κ kind (i.e. SB contains only
dynamic-on-static recursive references) and sc is not free in σ2. Choose σ1 to be σ2[α/Fst s].
Then, by phase-splitting for ρ̂, we have that Γ ` S ≡ [α:κ.σ2[α/Fst s]] ≡ [α:κ.σ1] sig . Since
SB[Fst s/sc] ≡ [α:κ.σ2], the initial assumption gives us Γ[s ↑ S] ` M ↓ [α:κ.σ2]. We have thus
fulfilled the premises of the typechecking rule for fixO, so Γ ` fixO(s:S.M) : S. �

Theorem 5
The transparent fixed-point and rds constructs form a recursive module system.

Proof:
=⇒ : Suppose Γ ` fixT (s:S.M) : S. By inversion on typechecking for fixT , Γ ` S ≡ [α:s(c : κ).σ]sig
and Γ[s ↑ S] ` M ↓ S. Choose SB to be S. Since sc 6∈ FV(S), Γ ` SB[Fst s/sc] ≡ S sig , and
so Γ[s ↑ S] ` M ↓ SB[Fst s/sc]. Also, because sc 6∈ FV(c) ∪ FV(σ) and by phase-splitting for ρ,
Γ ` ρsc.SB ≡ [α:s(µ≡sc:κ.c : κ).σ[α/sc]] ≡ [α:s(c : κ).σ] ≡ S sig .

⇐= : Suppose Γ ` S ≡ ρsc.SB sig and Γ[s ↑ S] ` M ↓ SB[Fst s/sc]. Well-formedness and phase-
splitting for ρ tell us that Γ ` SB ≡ [α:s(c : κ).σ] sig and Γ ` S ≡ [α:s(µ≡sc:κ.c : κ).σ[α/sc]] sig .

15

(Note of course that S is transparent, a requirement of the fixT typechecking rule.) By equational
reasoning with singleton kinds, Γ[s ↑ S] ` Fst s ≡ µ≡sc:κ.c : κ. Therefore, Γ[s ↑ S] ` SB[Fst s/sc] ≡
[α:s(c[µ≡sc:κ.c/sc] : κ).σ[µ≡sc:κ.c/sc]] ≡ [α:s(µ≡sc:κ.c : κ).σ[α/sc]] ≡ ρsc.SB ≡ S sig . Combining
this with the initial assumption yields Γ[s ↑ S] `M ↓ S. We may now apply the typechecking rule
for fixT to obtain Γ ` fixT (s:S.M) : S. �

3.5 Theoretical Conclusions

What has our theoretical analysis achieved? First of all, we have expanded the scope of the opaque
recursive module idiom by generalizing the fixed-point construct and defining an opaque form of
rds, so that the examples from CHP do not require the use of transparent modules. Second, we
have isolated the uses of equi-recursiveness in the two idioms by demonstrating that opaque rds’s
and transparent fixed-points do not involve recursion on type constructors. We can therefore freely
employ the latter two constructs in a recursive module design extension for the external language.

However, we cannot simply discard the other two equi-recursive constructs as impractical since
they are the only constructs that encode module-recursive constructors at all! Enabling the defini-
tion of mutually recursive types in separate modules is one of the main motivations behind recursive
modules, so a recursive module design that does not handle module-recursive types is highly unde-
sirable. This points to a weakness in our theory, namely that, for simplicity, we have conflated the
notions of recursive and equi-recursive.

If the choice between opaque and transparent programming were to be made based on the
analysis thus far, the transparent idiom would still be preferable because, while both require equi-
recursive constructors, transparent recursive modules are strictly more expressive than opaque
recursive modules. That is, every opaque module is, by phase-splitting, equivalent to the trans-
parent module formed by reifying all the abstract type constructors in the opaque rds with their
module-recursive definitions in the body of the fixed-point. Intuitively, the transparent idiom is
more expressive because it propagates more type equations during typechecking. (It is worth not-
ing that the reverse is true for the fixed-point constructs per se, in the sense that transparent
fixed-points are a special case of opaque fixed-points.)

Why bother, then, with the opaque idiom? Because the power of the opaque idiom, strong
enough to handle the examples from CHP, relies less on equi-recursiveness than that of the trans-
parent idiom. In the next section, we will explore if and how iso-recursive constructors can be
used to replace equi-recursive constructors. In the process, we will see that the restricted use of
equi-recursiveness in opaque programming can be an advantage when the goal is eliminating equi-
recursiveness. Thus, understanding why the opaque idiom was able to encode both examples from
CHP, despite the fact that it is generally less expressive than the transparent idiom, is a fruitful
starting point for our practical analysis.

4 Recursive Modules in Practice

We will now take the theoretical constructs studied in the previous section and attempt to develop a
recursive module extension for Standard ML based on them. The key criteria for such an extension
are how practical it is and how well it generalizes recursive constructs at the ML core level (i.e.
datatypes and recursive functions). Not surprisingly, our end result is a proposal that combines
aspects of both opaque and transparent programming. Before arriving there, however, we will look
at each fixed-point and rds construct and judge its usefulness by the abovementioned criteria.

16

4.1 The Practical Uses of Fixed-Point Modules

We begin the practical comparison of the two recursive module idioms with the question that ended
the previous section: If transparent programming is more expressive than opaque programming,
why did the examples from CHP work fine in the opaque idiom? The answer is very simple: both
the List and ExpDec examples were essentially implementations of ML-style datatypes.

The datatype mechanism, one of ML’s strongest successes, provides the only way of defining
(mutually) recursive types in the language, specifically recursive (tuples of) labeled sums. The
labels corresponding to a datatype serve as constructors of the type, as well as destructors when
used in pattern matching against elements of the type. In order to make the relationship between
datatypes and opaque programming absolutely clear, it is first necessary to define what we mean
by “implementing datatypes”. In Section 4.1.1, we provide a brief review of Harper and Stone’s
formalization of the implementation of datatypes. In Section 4.1.2, we discuss how opaque recursive
modules generalize datatypes. Then, in Section 4.1.3, we present an example of non-datatype code
in an opaque module that suggests opaque modules are better suited to implementing datatypes
than to general programming. Finally, in Section 4.1.4, we look at how transparent fixed-points
generalize ML’s recursive function definitions.

4.1.1 The Harper-Stone Interpretation of Datatypes

Harper and Stone have given an interpretation of Standard ML into an underlying type theory
with modules [10], which serves as the basis of the front-end of the TILT compiler for Standard
ML in development at Carnegie Mellon University. This interpretation takes the form of a set of
elaboration rules that involve typechecking of the ML source program as well as the “desugaring” of
ML features such as pattern matching and signature patching. Perhaps the most infamous of these
elaboration rules, for its length and complexity, is the one for handling datatype declarations.

What datatype elaboration essentially does is to translate a datatype into a module containing
a recursive sum type along with a constructor function for each branch of the sum and a single
destructor function (labeled expose) returning a non-recursive sum. Suppose for the moment that
Harper-Stone used equi-recursive types. Then, the constructors would merely be sum injections
and the destructor a no-op. For example, an integer list type written in ML as

datatype intlist = nil | cons of int * intlist

could be elaborated to

struct
type intlist = µ≡α. 1 + int× α
val nil : intlist = inl ()
fun cons (x:int, L:intlist) : intlist = inr (x,L)
fun expose (L:intlist) : 1 + int * intlist = L

end

Voilà! This is the phase-split form of the List example. One could similarly write ExpDec as two
mutually recursive datatype declarations (connected with an and), and it would elaborate to the
phase-split form of the recursive ExpDec module. This is what we mean by saying that the CHP
examples are implementations of ML datatypes.

In practice, however, equi-recursiveness is not necessary here. An iso-recursive constructor
(denoted µ∼=) can be used, with rolls and unrolls added to the constructor and destructor definitions,
respectively, in order to mediate between the recursive sum type and its unrolling. (More specifics

17

about iso-recursive types and their typing rules will be given in Section 4.2.1.) Thus, Harper-Stone
actually elaborates datatype intlist to the following:

struct
type intlist = µ∼=α. 1 + int× α
val nil : intlist = rollintlist(inl ())
fun cons (x:int, L:intlist) : intlist = rollintlist(inr (x,L))
fun expose (L:intlist) : 1 + int * intlist = unrollintlist(L)

end

Note that we are simplifying here by ignoring the details of equality compilation (i.e. the generation
of recursive equality functions for datatypes) and polymorphic datatypes, because they are basically
orthogonal to the discussion. In addition, there is some controversy over whether or not the
module resulting from datatype elaboration should be sealed with an opaque signature hiding the
implementation of the datatype, as is prescribed in Harper-Stone. We will return to that issue in
Section 4.3.

4.1.2 Generalization of ML Datatypes

There are two main ways in which opaque recursive modules generalize ML datatypes. First, the
ExpDec example exhibits how recursive modules permit mutually recursive type definitions across
module boundaries, so long as the type definitions occur under the roof of a single opaque fixed-
point and refer to each other through it. We have discussed already that this was one of the primary
motivations for a recursive module extension in the first place.

Second, opaque recursive modules generalize and simplify ML’s withtype mechanism. In ML,
withtype provides a way of writing ordinary type definitions in a mutually recursive bundle with
datatype definitions. In order to avoid the need for equi-recursive types, the ordinary type def-
initions may only refer to the datatypes, not one another. The Definition of Standard ML [16]
specifies that each occurrence of one of the withtype identifiers in the datatype definitions should
be macro-expanded to the type bound to the identifier. This is viewed by some as a rather ugly
style of definition, if a necessary one.

In an opaque recursive module, the withtype definitions are unnecessary and can be replaced
by ordinary type definitions. In order to do this, we simply need to make the withtype definitions
transparent in the rds, which is feasible because they are not module-recursive. Consider a simple,
if admittedly useless, reworking of the List example, where the int * List.t is extracted into a
withtype definition. Here is the ML version:

datatype list = nil | cons of headtail
withtype headtail = int * list

ML macro-expands this to:

datatype list = nil | cons of int * list
type headtail = int * list

The opaque recursive module can skip the macro-expansion:

signature LIST =
sig

type list

18

type headtail = int * list
val nil : list
val cons : headtail -> list
val expose : t -> 1 + headtail

end

structure List = ofix (List : LIST.
type list = 1 + List.headtail
type headtail = int * list
...

)

Having shown that opaque recursive modules are closely tied to ML datatypes and generalize
them in interesting ways, it remains for us to show that they can be implemented without the use
of equi-recursive constructors. That issue warrants more extended discussion and is taken up in
Section 4.2.

4.1.3 The Limitations of Opacity

Suppose we want to extend our trusty List example with a simple function called nthtail that
takes a list L and an integer n and returns the result of removing the first n elements from the
list. Writing this function inside the body of the List module gives the programmer access to the
module-recursive sum implementation of the datatype t. Here is a naive attempt to make use of
the access to that implementation:

fun nthtail (L : t, n : int) : t =
if n = 0 then L
else case L of

inl () => raise Error
| inr (hd : int, tl : List.t) => nthtail(tl, n-1)

This fails to typecheck because the type of tl does not match the argument type of nthtail in
the recursive call. There are two ways to fix this. We could either make the type of argument L
be List.t instead of t, or add nthtail to the rds LIST and replace the recursive call to nthtail
with a call to List.nthtail. Either way, both the argument type and result type of nthtail will
become List.t because the argument L is also the result in the case that n = 0.

This in turn causes a problem because the case expression requires L to be of sum type, which
List.t is not since it is abstract. The simple way to solve this is to make a module-recursive call
to List.expose before case analysis. The new nthtail implementation is as follows:

fun nthtail (L : List.t, n : int) : List.t =
if n = 0 then L
else case List.expose(L) of

inl () => raise Error
| inr (hd : int, tl : List.t) => nthtail(tl, n-1)

This example illustrates that “programming inside the datatype” is not only of limited utility,
but sometimes impossible. Attempts to exploit access to the datatype implementation result in
confusing and unintuitive typechecking errors. The solution we have arrived at for nthtail is
really an instance of “programming outside the datatype” because it treats the datatype completely

19

abstractly and could have just as easily been written outside the module. This does not imply that
there is anything wrong with writing code like nthtail inside the List module. In fact, in a
recursive module design for ML, we will definitely want to be able to write such functions in the
same modules as the datatypes they traverse. The point is simply that there is no expressiveness to
be gained from having access to the datatype implementation, and it does not make sense to thrust
the “opaque” distinction between t and List.t on the ML programmer if it is not necessary. We
thus turn to transparent fixed-points now to see how they generalize recursive programming in the
absence of the opaque distinction.

4.1.4 Transparent Fixed-Points and Polymorphic Recursion

For transparent fixed-point modules, practicality is not an issue since they do not involve any
recursion on types at all. The most obvious way that transparent fixed-points generalize ML’s
recursive function definitions is that the fixed-point allows mutually recursive functions to be defined
in separate submodules. In addition, perhaps less immediately clear is that the fixed-point module
construct provides a very systematic way of expressing polymorphic recursion.

“Polymorphic recursion” refers to the ability of a polymorphic function to call itself recur-
sively at different instantiations of its polymorphic type. This is particularly useful when writing
a function that traverses a non-uniform datatype. Analogously, non-uniform datatypes allow a
polymorphic datatype definition to refer to itself recursively at different instantiations of its type
argument. Here is a simple contrived example to illustrate the two together:

datatype ’a t = A | B of ’a * ’a t t

(* val collect : ’a t -> ’a list
Collects all the data of type ’a in t and forms a list. *)

fun collect (A) = []
| collect (B(x,FF)) = (* x : ’a, FF : ’a * ’a t t *)
let val FL = collect FF (* collect needs type ’a t t -> ’a t list *)

val LL = map collect FL (* collect needs type ’a t -> ’a list *)
val L = foldl (op @) [] LL

in x::L end

The difference between non-uniform and uniform datatypes (and between polymorphic and
monomorphic recursion) is simply a matter of where the constructor-level (or term-level) type
abstraction occurs — inside or outside the fixed-point. Non-uniform datatypes and polymorphi-
cally recursive functions are fixed-points at function kind and function type, respectively, the type
lambda occurring underneath the fixed-point construct. Oddly, Standard ML admits non-uniform
datatypes, but not polymorphic recursion, the reason being that the latter causes type inference
to be undecidable. The issue of type inference in the presence of polymorphic recursion, as well
as any debate over the merits of polymorphic recursion, is outside the scope of this paper. (See
[17, 11, 12, 18] for more on the subject.)

By forcing the types of the functions in the module body to be specified in the rds, transparent
fixed-points enable the coexistence of monomorphic and polymorphic recursion without affecting
type inference at all. While ordinary recursive calls remain monomorphic, module-recursive calls
are free to be polymorphic. So, for instance, in the example above, the collect function could be
expressed in a transparent fixed-point as follows:

tfix (Mod : sig val collect : ’a t -> ’a list end.

20

fun collect (A) = []
| collect (B(x,FF)) =
let val FL = Mod.collect FF (* polymorphic recursive call *)

val LL = map collect FL (* monomorphic recursive call *)
val L = foldl (op @) [] LL

in x::L end
)

The reason transparent fixed-points have no trouble expressing polymorphic recursion is that they
are implemented with the term-level fix construct, which is defined to work over an arbitrary type.
In a sense, relying on the explicitness of the rds in a transparent fixed-point could be viewed as
a non-solution to the type inference problem for polymorphic recursion. On the other hand, it
follows the “pay as you go” principle of language design — polymorphic recursion is encapsulated
in the transparent fixed-point construct, so ML code that does not need polymorphic recursion
may continue to employ type inference.

4.2 Implementing Generalized Datatypes

Deeming opaque recursive modules a useful generalization of ML datatypes, we would like to make
them practical by replacing the use of equi-recursive constructors with iso-recursive constructors.
First, in Section 4.2.1, we will discuss how iso-recursive constructors work. Then, in Sections 4.2.2
and 4.2.3, we will explore a technique for implementing datatype-generalizing opaque fixed-points
using iso-recursive constructors.

4.2.1 Iso-Recursive Constructors

Despite their practicality, iso-recursive constructors have not been studied as thoroughly as equi-
recursive constructors in the type theory literature (perhaps because they are not real fixed-points),
and so there are fewer standard formalisms to go by2. To ground our presentation in reality, we will
begin with the limited form of iso-recursive constructor that appears in the Middle Intermediate
Language (MIL) of the TILT compiler [19], and then generalize it to suit our purposes. We believe
that our generalized iso-recursive constructors preserve the decidability of the MIL, but a proof
will not be attempted here.

In the MIL theory, the iso-recursive constructor is defined only at the kind of a pair of types (i.e.
T×T , which is easily generalized in practice to n-tuple kinds) and takes the form µ∼=(α, β).(c1, c2).
The typing rule is the same as for equi-recursive constructors, except that there is no contractiveness
condition. Modulo βη-equivalence, an iso-recursive constructor can only be equivalent to another
iso-recursive constructor, on the condition that their bodies are equivalent.

Γ[α : T][β : T] ` c1 : T Γ[α : T][β : T] ` c2 : T
Γ ` µ∼=(α, β).(c1, c2) : T×T

Γ[α : T][β : T] ` c1 ≡ c3 : T Γ[α : T][β : T] ` c2 ≡ c4 : T
Γ ` µ∼=(α, β).(c1, c2) ≡ µ∼=(α, β).(c3, c4) : T×T

One may construct an element of type µ∼=(· · ·).1 or µ∼=(· · ·).2 with a roll expression and deconstruct
one with an unroll expression. The typing rules are straightforward:

Γ ` c : T Γ ` c ≡ µ∼=(α, β).(c1, c2).i : T Γ ` e : T (ci[c.1, c.2/α, β])
Γ ` rollc(e) : T (c)

2The authors would appreciate pointers to any references on type theory of iso-recursive constructors.

21

Γ ` e : T (c) Γ ` c ≡ µ∼=(α, β).(c1, c2).i : T
Γ ` unrollc(e) : T (ci[µ∼=(α, β).(c1, c2).1, µ∼=(α, β).(c1, c2).2/α, β])

The MIL formalism is sufficient for expressing ML datatypes, but to replace equi-recursive
constructors, we need iso-recursive constructors at arbitrary higher kind. The generalized construct
can take the form µ∼=α:κ.c, and the corresponding typing and equivalence rules are easy:

Γ ` κ kind Γ[α : κ] ` c : κ
Γ ` µ∼=α:κ.c : κ

Γ ` κ1 ≡ κ2 kind Γ[α : κ1] ` c1 ≡ c2 : κ1

Γ ` µ∼=α:κ1.c1 ≡ µ∼=α:κ2.c2 : κ1

The interesting question is how to generalize the typing rules for roll and unroll. The problem
is that rolls and unrolls only mediate between constructors of kind type (obviously, since they are
term-level constructs). In the case of the MIL, the pair kind limited the c in rollc(e) to be either
a first or second projection of a µ∼=. In the general case, we propose to allow c to be any series (or
“path”) of destructions — in our calculus, either projections from a pair or function applications
— starting with a µ∼= and resulting in a constructor of kind T . Formally, we define these paths of
destruction P as follows:

P ::= • | P c | P.1 | P.2

The • signifies the “head” of the path where the µ∼= will be substituted, and the notation P{c}
represents P with c as the head. The syntax for paths does not enforce either that the head is a
µ∼= or that that the path has kind T , but the generalized typing rules for roll and unroll do:

Γ ` c ≡ P{µ∼=α:κ.c′} : T Γ ` c′′ ≡ P{c′[µ∼=α:κ.c′/α]} : T Γ ` e : T (c′′)
Γ ` rollc(e) : T (c)

Γ ` c ≡ P{µ∼=α:κ.c′} : T Γ ` c′′ ≡ P{c′[µ∼=α:κ.c′/α]} : T Γ ` e : T (c)
Γ ` unrollc(e) : T (c′′)

In practice, the unrolled constructors c′′ can be obtained by β-normalizing P{c′[µ∼=α:κ.c′/α]}.

4.2.2 The Coercion Calculus

Recall the phase-splitting interpretation of opaque fixed-points detailed in Section 3.1. The dynamic
part of the module body, e, has type σ[(c[µ≡sc:κ.c/sc])/α], and the dynamic part of the resulting
phase-split structure has type σ[µ≡sc:κ.c/α]. Equi-recursiveness makes the constructors being
substituted for α here equal, so e’s actual type matches the required type of the phase-split result
and the phase-splitting rule was able to just wrap e with a term-level fixed-point. Suppose now
that we replace the equi-recursive constructor with an iso-recursive constructor. The types are no
longer equal, so we need a way to coerce e from its actual type to the required type, preferably
without any added run-time cost for the coercion.

The approach that we have investigated is to use Crary’s “coercion calculus” [3]. The broader
goal of the coercion calculus is to eliminate inclusive subtyping and bounded quantification in type-
directed compilers, without introducing the run-time costs of coercions inherent in the well-known
“Penn interpretation” of Breazu-Tannen et al. [2]. Crary achieves this by putting the subtyping
coercion functions into a separate syntactic class so that they can be easily discarded before run-
time.

22

Crary’s system is appealing for our purposes because it can generate static coercions between
any two extensionally equivalent types. (By extensionally equivalent, we mean that both types
are inclusive subtypes of each other.) The coercion calculus is limited, however, in that it is only
defined for a type system that lacks higher-order type constructors. In Section 4.2.3, we will specify
a normal form in which generalized datatype modules can be written so that the type of the code
in the module body and the type of the code in the phase-split form are indeed extensionally
equivalent. Fortunately, for this restricted class of normal form modules, the limitations of the
calculus can be overcome by replacing its simple roll/unroll coercions with our more general ones
that handle µ∼=’s of higher kind. We now give some idea of how coercions work.

Coercions q are like witnesses to casts from a subtype to a supertype, but they comprise a
separate syntactic class from term-level functions in order to simplify their eventual elimination:

q ::= id | rollc | unrollc | q1→ q2 | q1× q2 | q1 + q2 | ∀α:κ.q

id is the identity coercion. rollc and unrollc are as we have defined them. The rest of the coercions
correspond to arrow (function), product, sum and universally quantified types, respectively. The
typing judgment for coercions takes the form Γ ` q : σ1 ⇒ σ2, signifying that q is a coercion from
σ1 to σ2 in context Γ. The inference rules are shown below:

Γ ` σ type
Γ ` id : σ ⇒ σ

Γ ` c ≡ P{µ∼=α:κ.c′} : T Γ ` c′′ ≡ P{c′[µ∼=α:κ.c′/α]} : T
Γ ` rollc : T (c′′)⇒ T (c)

Γ ` c ≡ P{µ∼=α:κ.c′} : T Γ ` c′′ ≡ P{c′[µ∼=α:κ.c′/α]} : T
Γ ` unrollc : T (c)⇒ T (c′′)

Γ ` q1 : σ′1 ⇒ σ1 Γ ` q2 : σ2 ⇒ σ′2
Γ ` q1→ q2 : σ1→σ2 ⇒ σ′1→σ′2

Γ[α : κ] ` q : σ1 ⇒ σ2

Γ ` ∀α:κ.q : ∀α:κ.σ1 ⇒ ∀α:κ.σ2

Γ ` q1 : σ1 ⇒ σ′1 Γ ` q2 : σ2 ⇒ σ′2
Γ ` q1× q2 : σ1×σ2 ⇒ σ′1×σ′2

Γ ` q1 : σ1 ⇒ σ′1 Γ ` q2 : σ2 ⇒ σ′2
Γ ` q1 + q2 : σ1 +σ2 ⇒ σ′1 +σ′2

Coercions are folded into our core calculus by adding a new term-level form, q e, that applies
coercion q to expression e. The typechecking rule for coercion applications is the obvious thing:

Γ ` q : σ1 ⇒ σ2 Γ ` e : σ1

Γ ` q e : σ2

The dynamic semantics of coercion applications are incorporated into the operational semantics
of the core calculus through a separate “canonicalization” judgement, which takes applications of
a coercion to a value, q v, and translates them to a canonical form. This organization facilitates
a formalization of the idea that coercion applications are static. Specifically, when types, type
abstractions and coercions are erased at code generation time, a coercion application q v and its
canonical form — in essence, the result of evaluating the coercion application — are shown to
become the same untyped code. See Crary [3] for more details.

Let’s look at what coercion is generated for the List example. Let s = µ∼=α:T.1 + int×α, and
let t = 1 + int× s. Here, s corresponds to List.t and t corresponds to the definition of type t
in the module body. The code in the module body (consisting of the definitions of nil, cons and
expose) has type

t× (int× s→ t)× (t→ 1 + int× s)

23

while the type we need to coerce to is

s× (int× s→ s)× (s→ 1 + int× s)

Since s and t are extensionally equivalent, the coercion judgment will generate the following coercion
to be applied to the module body:

rolls× (id→ rolls)× (unrolls→ id)

Note here how arrow subtyping — contravariant in the argument type, covariant in the result type
— yields a rolls in the result of cons and an unrolls in the argument of expose.

It is interesting to observe that if we use the canonicalization judgment to find the canonical
form of the application of the above coercion to the List module body, we obtain precisely the
Harper-Stone interpretation of the integer list datatype given in Section 4.1.1. For instance, what
the arrow coercion id→ rolls does, when applied to the cons function, is to leave the argument
alone and apply a rolls to the result. Likewise, the nil value gets rolled, and the argument to
the expose function gets unrolled while the result is unchanged.

4.2.3 Generalized Datatype Normal Form

Define an opaque recursive module to be in generalized datatype normal form if:

1. The body (and, recursively, its substructures) consists of only two kinds of things: transparent
and abstract type declarations.

2. A transparent type declaration is simply a type constructor definition, which is restricted to
appear transparent in the rds and may therefore not contain any references to the recursive
module variable.

3. An abstract type declaration consists of a type constructor definition, which is restricted to
appear abstract in the rds, of the form

t = λα:κ.Σ{l1 7→ c1, · · · , ln 7→ cn}

where the Σ notation indicates a labeled sum, with each li labeling a branch, and where
the ci (in a dual requirement to the transparent types) may not contain any references to
other types defined in the body. (Note: Non-polymorphic type definitions can be written
by using κ = 1.) Along with the type definition are n constructor functions for t, the
i-th one having type ∀α:κ. ci→ t(α) (or just ∀α:κ. t(α) if ci = 1), and a destructor of type
∀α:κ. t(α)→Σ{l1 7→ c1, · · · , ln 7→ cn}. The constructors are implemented as simple polymor-
phic injections into the sum and the destructor as the polymorphic identity. Abstract type
declarations will also be referred to as datatype declarations, for the obvious reason.

We will not formalize a normalization process here, but it is not hard to see how “generalized
datatypes” of the kind discussed in Section 4.1.2 can be converted to this normal form. Essentially,
(non-uniform) datatypes defined mutually recursively through ML’s datatype mechanism need to
be separated and turned into plain polymorphic sums by making all mutually recursive references
to themselves or one another be module-recursive. All the types defined in the module body are
accessible in the signature of the recursive module variable, so this is not a problem.

It can also be shown that the coercion judgment discussed in the previous section will generate
coercions for normal form modules that are very similar in form to the coercion generated for the

24

List example. It is worthwhile noting that the restriction on the form of datatype declarations —
specifically, the full module-recursiveness of the ci’s — is important for ensuring that we can use
the identity coercion id in precisely the places it occurred in the coercion for List, that is, in the
argument types of the constructor functions and the result type of the destructor.

4.3 Comparison of Rds Constructs

In theory, transparent rds’s are more expressive than opaque rds’s because they use equi-recursive
constructors to encode transparent module-recursive type definitions. In practice, however, the need
for equi-recursiveness is an impediment to the success of transparent rds’s, whereas the simplicity of
opaque rds’s makes them readily usable. The question is whether the static-on-static dependencies
that transparent rds’s support can be limited in a way that does not require equi-recursiveness
but still gives transparent rds’s the expressive edge. In our estimation the answer is no, but the
argument for or against transparent rds’s is wholly dependent on whether one follows the opaque
or transparent interpretation of datatype specifications in signatures. (This is yet another way in
which recursive modules and datatypes are inextricably linked.) We will therefore first compare
the two datatype interpretations before arguing for the superiority of opaque rds’s.

4.3.1 Transparent and Opaque Interpretations of Datatypes

In the Harper-Stone interpretation of Standard ML, datatype specifications appearing in signatures
are elaborated in such a way that the (recursive) implementations of the datatypes are held abstract.
This is termed the “opaque interpretation” of datatypes. The problem with making datatypes
abstract is that uses of the datatype constructors and destructor cannot be safely inlined, and a
function call is a heavy cost to pay for a sum injection or a no-op (rolls and unrolls are generally
implemented as no-ops).

One solution, incorporated into the FLINT compiler for Standard ML [23] and later into the
TILT compiler, is to use a transparent interpretation of datatypes, exposing the iso-recursive sum
implementation. While this solves the efficiency problem with the opaque interpretation, Crary
et al. have pointed out that it introduces a separate problem, namely that certain kinds of valid
Standard ML programs fail to typecheck [4]. For example, suppose that the argument signature of
a functor F includes the specification of a type t1 and a datatype t2 that refers to it:

functor F (X: sig
type t1
datatype t2 = C | D of int * t1
...

end) = ...

Then, suppose F is applied to a pair of mutually recursive datatypes t1 and t2 defined as follows:

datatype t1 = A | B of string * t2
and t2 = C | D of int * t1

In the opaque interpretation, the functor application is valid because t2 is abstract in the argument
signature of F and the constructors and destructor of t2 have the correct types. In the transparent
interpretation, the argument signature specifies that t2 must have type µ∼=α.1 + int× t1. However,
the actual argument types t1 and t2 are defined as the first and second projections from an iso-
recursive constructor t of kind T ×T : t = µ∼=(α, β).(1 + string ×β, 1 + int ×α). Under the simple

25

equivalence rule for iso-recursive constructors that was given in Section 4.2.1, there is no way to
equate the actual and required definitions for t2, so the functor application is not valid under the
transparent interpretation of datatypes.

One way to remedy this problem, as detailed by Crary et al. [4], is to use what they refer
to as Shao’s equation (after its original implementation by Shao in the FLINT compiler). For
iso-recursive types, the equation can be written as follows:

µ∼=α.σ ≡ µ∼=α.(σ[µ∼=α.σ/α])

For iso-recursive constructors of tuple kind (the only kind of iso-recursive constructors generated
from ML datatypes), the rule has not to our knowledge been formalized, but can be described
in words as: “Projections from iso-recursive constructors are equal if their unrollings are equal.”
(Note that this does not imply that a type is equal to its unrolling, only that two types are equal if
they unroll to equal things.) Shao’s equation solves the problem in the above example. The actual
definition of t2 is t.2. The required definition of t2 is µ∼=α.1 + int× t.1. When unrolled, these both
become 1 + int× t.1, so Shao’s equation dictates that the t2’s match.

While Shao’s equation is easy to implement and is currently employed in the TILT compiler, it
is a troublesome solution because the effect the equation has on the type system is not understood
well at all. Petersen et al. [20] are developing a different approach that returns to the opaque
interpretation of datatypes and involves the coercion calculus. Assume that the constructors of a
datatype are all condensed into one function hide whose type is the reverse of the expose function.
In other words, whereas previously each constructor would perform a sum injection followed by a
roll, there is now one constructor and it just performs a roll; just as there is only one destructor
and it just performs an unroll. In this version of the opaque interpretation, the constructor and
destructor are merely static coercions (as in the coercion calculus), so Petersen’s idea is to make
this apparent in the datatype signature by declaring the constructor and destructor to be coercions
instead of ordinary functions. This is actually more complicated than it sounds, mainly because
adding coercion variable declarations requires coercions to be threaded through the type system
(and the compiler) in non-trivial ways. The result, however, is that applications of datatype
constructors and destructors that cannot be inlined due to datatype opacity will eventually be
eliminated because they are known to be coercion applications.

4.3.2 Datatypes and Rds’s

Whether one adopts the opaque or transparent interpretation of datatypes has a major effect on
which kind of rds is more appropriate. First, suppose that datatype specifications are transparent
and Shao’s equation is used to solve the problems discussed above. In this situation, CHP con-
jecture, based on a small example, that equi-recursiveness is completely eliminable for transparent
rds’s whose static-on-static recursive dependencies are restricted to occur inside datatypes, i.e. un-
derneath iso-recursive constructors. It seems likely that this “datatype-on-static” restriction, which
is similar to our “generalized datatype normal form” for opaque fixed-points, works in general. (We
refer the reader to CHP for a detailed description of equi-recursiveness can be eliminated.) How-
ever, 1) the success of the CHP restriction relies on Shao’s equation, and 2) transparent rds’s must
be fully transparent. The latter is a particularly odd requirement to justify to an ML programmer.

Suppose now that we adopt the opaque interpretation of datatypes. Since datatypes are
abstract, references to the recursive module variable within a datatype specification are purely
dynamic-on-static, occurring in the types of the constructors and destructor. It is therefore per-
fectly acceptable for datatype-on-static references to occur in an opaque rds. Thus, other than the

26

prohibition of static-on-static references in ordinary type definitions, there are no restrictions on
opaque rds’s.

The only distinction between the opaque and transparent interpretations of datatypes that is
visible to the ML programmer is that the opaque interpretation enforces datatype generativity,
which is of questionable import either way. We claim therefore that transparent rds’s under CHP’s
datatype-on-static restriction offer no clear benefits over opaque rds’s, while they require full trans-
parency. In other words, the very restriction suggested to make transparent rds’s practical also
make them a special case of opaque rds’s. Betting on the success of Petersen’s work on efficient
compilation of the opaque interpretation of datatypes, we see no convincing arguments in favor of
transparent rds’s.

4.4 Putting It Together

Having analyzed the fixed-point and rds constructs on practical criteria, we now fit them together
into a general design for a recursive module extension to Standard ML. Our proposal consists of one
simple fixed-point mechanism and one simple rds mechanism. We will describe at a high level their
elaboration into the opaque and transparent constructs we have studied. Since recursive modules
interact with so many other features in the language, it should be noted that the details of our
proposal are not set in stone. Rather, we intend this to serve not as a final solution, but as a
starting point for language designers and implementors.

The rds construct is a signature expression of the form

sig rec <modname> in <specs> end

where <modname> is the recursive module variable and <specs> is a sequence of type, datatype,
value and module specifications comprising the signature body. Datatype and value specifications
are permitted to contain references to <modname>, but transparent type specifications are not.
The sig rec construct is implemented directly as an opaque rds — we are assuming the opaque
interpretation of datatypes — and obeys the rds roll and unroll rules presented in Section 2.4.

The fixed-point construct is a structure expression of the form

struct rec <modname>:<sig> in <decls> end

where <modname> is the recursive module variable, <sig> is the rds, and <decls> is a sequence of
type, datatype, value and module declarations comprising the module body. The body is subject to
the same restriction as rds’s: datatype and value declarations are permitted to contain references
to <modname>, but transparent type declarations are not. Elaboration of the body is quite a bit
more complicated because it involves a combination of opaque and transparent fixed-points.

The basic idea is to use transparent fixed-points as the main mechanism for implementing
struct rec since it is more appropriate for general programming, and to use opaque fixed-points
to handle the datatype declarations. This approach gives us the best of both worlds: ease of
programming and polymorphic recursion from transparent fixed-points, module-recursive datatypes
from opaque fixed-points. The main issue in this setup is that the specified rds <sig> is not required
to be transparent, so we need to reify it with the implementation of types in the body. To accomplish
this, there is a first pass over the module body that extracts all the datatype and type declarations.
These are converted into generalized datatype normal form and then “solved” with an opaque
fixed-point. The solutions of the module-recursive datatypes given by the opaque fixed-point are
linked back into the module body through datatype copying. For instance, suppose that the opaque
fixed-point is called Static (for the “static” part of the module body) and a datatype dt is defined

27

in substructure A of the body. Then dt’s definition, having been extracted into the definition of
Static, is replaced in the body by

datatype dt = datatype Static.A.dt

which copies the type dt along with its constructors and destructor.
It is important here to mention that it is not always the case that the type declarations can be

extracted and solved separately. Specifically, if the body contains module abstraction operations of
the form Mod :> Sig, and Sig contains an abstract type specification such as type t, then writing
the transparent definition of Mod.t separately would break abstraction. We thus require that the
static part of the body, except for datatypes, be fully transparent, which bans most uses of opaque
signature ascription. We will return to this restriction and its implications in Section 5 on future
work.

Thanks to this restriction, however, replacing the module-recursive datatype definitions with
links to their solutions in Static removes all module-recursiveness from the static part of the body.
It is thus ripe for implementation with a transparent fixed-point, as soon as the types in Static are
used to fill in the abstract types in the rds. The remainder of elaboration reduces to transparent
fixed-point typechecking, that is, the body must satisfy the specifications of the rds and be valuable,
in a context where the recursive module variable is assigned the reified rds and is not valuable.

A note on the valuability restriction: In this paper, we have directly adopted CHP’s use of the
fixed-point expression fix (x:σ.e) in phase-splitting fixed-point modules, thus taking the compilation
of “dynamic-on-dynamic” references in recursive modules for granted. We have done so because the
primary focus of this paper has been on compiling module-recursive references to types, not terms.
In practice, however, imposing the valuability restriction on the entire recursive module body may
prove to be a hard sell to ML programmers. It is simply an unintuitive hindrance, for instance, to be
prohibited from defining any top-level non-module-recursive ref cells as one might use to implement
“flags” (e.g. val x = ref true) in a recursive module. This might suggest that if module-recursive
references were restricted to occur under λ-abstractions, as is implied by the valuability restriction,
we could get away without the full restriction. A simple example demonstrates that this is a fallacy
(here, M is the recursive module variable, and the following code appears in the module body):

fun f () = M.x
val x = f()

The valuability restriction catches the infinite loop in the definition of x because the non-valuability
of M means that f is a partial function and its application is not valuable. Finding an intuitive
middle ground between these two levels of restrictions will be an important prerequisite for the
acceptance of our recursive module proposal.

Another noteworthy issue involves the ability of the module body to contain declarations that
are not specified by the rds. So long as the body provides all the components the rds requires,
it seems intuitive that providing more should be allowed, in the same way that a module in ML
may be ascribed a signature that specifies a proper subset of the components the module actually
provides. However, allowing for the body to declare more than is specified introduces some slight
complication because, in a transparent fixed-point, the body must match the rds exactly. This can
be solved by first generating a total functor that coerces a module from the full signature of the
module body to the rds. Then, the application of that functor coercion to the original module body
matches the rds and can be used as the body of the transparent fixed-point. Harper and Stone [10]
show how to generate such functor coercions automatically, as they are the same sort of coercions
that are generated during the elaboration of signature ascription and functor application.

28

Finally, for the design to be successful, there must be a straightforward way to explain recursive
module typechecking to the ML programmer without referring to opaque and transparent fixed-
points. Aside from the valuability restriction, which seems unavoidable, typechecking for our
proposed recursive modules is actually very intuitive and can be presented as follows:

1. The purpose of associating an rds with a struct rec is to specify what the module body is
allowed to know about itself when it makes module-recursive references.

2. Any types that appear abstract in the rds are really equal to their implementations in the
module body.

3. Module-recursive references may occur in datatype declarations and inside function defini-
tions, but nowhere else.

4. Opaque ascription and functor applications resulting in the definition of abstract types are
not permitted in the module body.

5. Assume (as alpha-equivalence allows) that the recursive module variable is the same in both
the recursive module and the associated rds. Then the recursive module typechecks if the
module body provides the specifications in the rds body and the module body is valuable.

The last part of the intuitive typechecking description is a rewording of the “fundamental property
of recursive modules” studied in Section 3.4. Rather than saying that the module body should
match the rds, we say it should match the body of the rds, which is an equivalent condition for
transparent fixed-points but easier to understand.

5 Directions for Future Work

Throughout our entire study of recursive modules, with the exception of disallowing the use of
opaque ascription in the bodies of struct rec’s, we have made hardly any mention of abstraction.
The reason is that the phase-distinction framework of Harper, Mitchell and Moggi, which serves
as the very basis of our analysis, does not model abstraction at all. It is not a mere oversight:
blithely phase-splitting a module abstraction (such as a module of the form Mod :> Sig) would
expose the implementation of the static part of the module, breaking abstraction. We have already
discussed the importance of ameliorating the harshness of the valuability restriction as one avenue
of future work. In this section we will look at two other directions for future research involving
the interplay of recursive modules, phase-splitting and abstraction — namely, separate compilation
and higher-order modules.

5.1 Separate Compilation

A desired feature of recursive modules that our proposal does not provide is the ability to separately
compile mutually recursive modules. CHP describe how to separately compile substructures of a
transparent recursive module using functors. The idea is that each substructure can be written
separately by abstracting over the recursive module variable (assuming that the substructures only
refer to each other through the recursive module variable). Then, a transparent recursive module
is used to join the implementations, instantiating each functor with the actual recursive module
variable. For instance, in the ExpDec example, Exp and Dec could be compiled separately as follows:

29

functor ExpFun (structure ExpDec : EXPDEC) = ...
functor DecFun (structure ExpDec : EXPDEC) = ...
structure ExpDec = tfix (ExpDec : EXPDEC.

structure Exp = ExpFun(ExpDec)
structure Dec = DecFun(ExpDec)

end

The problem in CHP is that EXPDEC is required to be fully transparent. This limits the usefulness
of separate compilation by forcing the implementations of all the types to be settled on beforehand.

Our proposed struct rec appears on its face to be more amenable to separate compilation than
CHP because there is no transparency requirement on the rds. However, struct rec elaboration
involves reification of the entire opaque rds prior to typechecking of (the dynamic part of) the
body, so it would seem that the implementation of all the types still needs to be known in advance
in order to compile any one submodule separately. In fact, though, this is an instance where our
proposal is overly simplistic. The purpose of the two-pass elaboration is to ensure that all references
to a type defined in the recursive module, whether they be local or module-recursive references,
are equal (e.g. there is no “opaque” distinction between t and List.t). Reifying the entire rds
before elaborating the body the second time is an overly crude way of achieving this goal because
it makes all the submodules fully transparent to one another.

One could imagine a more refined design taking the form of a bundle of mutually recursive
module declarations (comprising one big module), each of whose implementations would be trans-
parent to itself but opaque to all the other modules. In order to prevent the inter-module opacity
from re-introducing the undesirable “opaque” distinction, we could require that any inter-module
references be interpreted as “bundle-recursive” references (i.e. module-recursive references to the
recursive bundle variable) rather than local references within the bundle. A simple syntax might
be

structure rec M1 :> S1 = implementation of M1

and ... and Mn :> Sn = implementation of Mn

where the associated rds implied by this notation is

sig rec M in (* Inter-module references replaced by *)
structure M1 : S1[M.Mi/Mi]i∈1..n (* bundle-recursive references to M. *)
...
structure Mn : Sn[M.Mi/Mi]i∈1..n

end

Although the elaboration of the whole bundle still requires the reification of the entire rds because
of our interpretation of recursive modules into transparent fixed-points, the typechecking of each
particular Mi would only require type information gleaned from Mi alone in order to reify Si.

A design along these lines lends itself more to separate compilation than our original proposal
because each submodule need know nothing about the implementation of the types in the other
submodules. In addition, by making the submodules opaque to one another, it can be viewed
as a way of introducing abstraction into the body of a recursive module, which is not possible
in our original proposal. Nevertheless, to actually separate the submodules, we still cannot use
functors in the straightforward way that CHP did because functors are incapable of capturing the
special two-pass elaboration of struct rec. We would need to develop a new separate compilation
mechanism, which might only be able to do separate typechecking, not full compilation. As pointed

30

out in recent work by Pierce and Harper [21], functors may not be appropriate as a general separate
compilation mechanism anyway, so a special construct for separately compiling recursive modules
may be in order.

In any case, it should be understood that separate compilation and separate typechecking are
predicated on the specification of the rds a priori. Since the rds specifies what each submodule may
know about the others, changes to it potentially affect the validity of all submodules and may thus
require recompilation of all of them. On the flip side, some may not care so much about separate
compilation as about the ability to simply write mutually recursive modules in separate files that
are compiled together. Such a “separate-location” mechanism is not fundamentally any different
from the structure rec bundle declaration sketched above.

5.2 Higher-Order Modules

A classic problem that nicely motivates recursive modules and that the usual workarounds described
in Section 1 fail to work around is data-structural bootstrapping (see Okasaki [18]). For example,
suppose we wish to implement a “set of sets”, defined to be a datatype sos that is either an integer,
say, or a set of sos’s constructed by means of the predefined total functor MakeSetFn. Assume that
MakeSetFn is defined in the following way:

signature KEY = sig type key; val compare : key * key -> order end
signature SET = sig type element; type set; (* set functions *) end
functor MakeSetFn (Key:KEY) : SET where type element = Key.key
= struct ... end

Now, we can define sos using struct rec rather easily:

signature SOS = sig rec Sos in
datatype sos = Int of int | Set of Sos.SosSet.set
structure SosSet : SET where type element = sos

end
structure Sos = struct rec Sos : SOS in

datatype sos = Int of int | Set of Sos.SosSet.set
structure SosKey = struct

type key = sos
fun compare (sos1,sos2) = ...

end
structure SosSet = MakeSetFn(SosKey)

end

It is important here that the datatype definition come before the functor application so that
the transparent type references type element = sos in SOS and type key = sos in Sos are not
module-recursive.

Unfortunately, our success in coding this example was subtly dependent on our use of transpar-
ent ascription in defining MakeSetFn. If we had used opaque ascription and hidden the implemen-
tation of the set type, the application of MakeSetFn in the body of Sos would have been invalid.
The reason is that functors in ML are generative, that is, every application of a functor that has
abstract types in its result signature generates a fresh abstract type, and abstract types are not
allowed in the body of a struct rec.

One might expect this problem to be solved by Leroy’s applicative functors [13], which are
used in the Objective CAML dialect of ML [14]. Applicative functors do not generate fresh types

31

every time they are applied, so even if MakeSetFn were defined opaquely, every application of
MakeSetFn(SosKey) would result in the same set type. To achieve this, Leroy allows functor
applications to occur in type paths, so the result of MakeSetFn(SosKey) has the fully transparent
signature

sig type element = sos; type set = MakeSetFn(SosKey).set; ... end

If MakeSetFn were generative, which is the only possibility in Standard ML, MakeSetFn(SosKey).set
would not even be well-defined. There is still a problem, however: Leroy restricts functor applica-
tions in paths to be in named form, i.e. they can only refer to structure paths, not actual structure
definitions. Our elaboration for struct rec requires that we be able to extract the definition of set
into the opaque fixed-point that solves the static part of the module. In that opaque fixed-point,
SosKey will only consist of the static part of the definition of SosKey in the module body, so the
functor application below is no longer valid since the static part of SosKey does not have signature
KEY:

structure StaticPartOfSos = ofix (...
datatype sos = ...
structure SosKey = struct type key = sos end
structure SosSet = struct

type element = sos
type set = MakeSetFn(SosKey).set (* Error: SosKey has wrong signature *)

end
)

Leroy’s applicative functors were motivated by a desire to add type-theoretic support to Stan-
dard ML for fully transparent higher-order modules in the presence of abstraction [15]. Shao has
also presented a type theory for higher-order modules that extends applicative functors and solves
the problems we encountered with applicative functors using “fully syntactic signatures” [24]. In
his system, the set type above would be expressed as MakeSetFn({type key = sos}).set, where
MakeSetFn denotes the static part of MakeSetFn — in essence, Fst (MakeSetFn). This type could
be extracted into the opaque fixed-point with no difficulty.

The reason Shao’s system is successful, as he points out, is that his general approach is “to
adapt and incorporate the phase-splitting interpretation of higher-order modules into a surface
module calculus”. However, Shao does not actually make use of a full phase-distinction calculus,
and it is unclear why not. One reason may be that he does not use singleton kinds to express
type definitions in signatures, and it is difficult to equate an arbitrary translucent signature with a
primitive signature of the form [α:κ.σ] without singleton kinds.

During our study of recursive modules, one of our sanity checks has been to attempt to formalize
the elaboration of our ML extension in the Harper-Stone framework. The lack of higher-order
modules, let alone phase-splitting, in the HIL — the high-level intermediate language that serves
as the target of Harper-Stone elaboration — made extension of the HIL with fixed-point and rds
constructs rather difficult. The opaque fixed-point typechecking rule, for example, relies on the
ability to compare the phase-split forms of the rds and body signatures. The distinction between
static-on-static and dynamic-on-static dependencies that defines the rds typechecking rule is hard
to express in a calculus without phase-splitting, as is the equivalence between rds’s and other
signatures that the non-standard equational rules of HMM induce. We therefore believe it would
be a useful contribution to the theory and practice of recursive and higher-order modules to devise
a way to combine a full phase-splitting calculus along the lines of HMM with a mechanism for
abstraction.

32

6 Related Work

Flatt and Felleisen [8] have studied recursive modules in the form of units. Units are essentially
first-class modules, i.e. modules that can be passed as values, dynamically linked and “invoked” at
run-time. Each unit consists of a set of import declarations, a body containing type and function
definitions, an initialization expression that is executed when the unit is invoked, and a set of
export declarations. The recursive aspect of units comes into play in the linking of two units into
a compound unit: the first unit’s exports may be used to satisfy the second unit’s imports, while
the second unit’s exports are simultaneously used to satisfy the first unit’s imports.

Units were designed to serve as the module system for the MzScheme programming environment
for Scheme, which is no surprise considering the emphasis on dynamic, first-class modules. Only
after Flatt and Felleisen define the system over a dynamically-typed (i.e. untyped) core language do
they consider the implications of type declarations, so issues involving types are not at the center
of the design philosophy. Although the extensions to units for dealing with type declarations are
reasonable (e.g. using type dependency declarations to check that there are no cyclic dependencies
between transparent type definitions in separate units), the fact that units are first-class precludes
them from providing fine-grained control over type propagation. For instance, as Flatt and Felleisen
point out, ML-style type sharing is not supported by units, resulting in crude resolutions to situ-
ations like the “diamond import problem”. On the other hand, units make separate compilation
easy.

Duggan and Sourelis [6, 7] have presented a recursive module extension to ML in the context
of mixin modules. Mixins were originally studied [6] as a mechanism akin to virtual types but in a
non-object-oriented (or “data-oriented”) setting. They are defined using a special mixin construct
consisting of two sections: the first containing mutually recursive type and function definitions,
the second containing initialization code as in units. One can write two separate mixins, each of
which defines different branches of the same datatype(s) along with functions that operate over
the branches it defines. Then, the two mixins can be combined with the mixcomp construct,
which “merges” the type and term fixed-points. Typically, in an object-oriented language, one
could achieve something similar by defining an abstract or virtual class with each of the mixins as a
subclass, but mixins have the advantage that they do not require runtime type checks. Programming
with mixins enables a certain kind of recursive module programming. Mutually recursive modules
can be written separately as mixins by replacing inter-module references with references to local
“stub” definitions of datatypes and functions. When a mixcomp is performed, these stubs get
merged with the actual definitions of types and functions from the other modules.

In their later work [7], Duggan and Sourelis propose a mixlink construct that allows for more
natural recursive module programming and has some interesting correspondences with our proposal.
mixlink is used to declare (or “link”) a bundle of mutually recursive mixin modules, which are
divided into two groups. The typing rules differ for the two groups in very subtle ways, but it
appears that the first group are like a simplified version of the structure rec declarations sketched
in Section 5.1, while the second group are similar to opaque fixed-points in that they introduce an
“opaque” distinction between the types defined in their bodies and bundle-recursive references to
those types. mixlink is capable of expressing the “set of sets” example discussed in Section 5.2,
but requires the functor application to occur in the second section of the mixlink. Unfortunately,
the construct is not amenable to separate compilation in the way that mixcomp is. Moreover, it is
simply unclear why the two different styles of recursive module programming afforded by mixcomp
and mixlink are tied to the same concept of a mixin module.

Claudio Russo has designed a recursive module extension for Standard ML and implemented it

33

in the Moscow ML 2.00 compiler [1]. The only documentation seemingly available regarding this
extension is on pages 23–24 of the Moscow ML Owner’s Manual [22]. What can be discerned from
this is that Russo’s extension is cosmetically similar to ours, defining two new constructs analogous
to fixed-points and rds’s. In his extension, however, both module and signature constructs have
the same basic syntax:

rec (X:<forwardsig>). <mod | sig>

Here, <forwardsig> is used to give forward declarations of any types or values that are referred
to module-recursively in the fixed-point body (<mod>) or rds body (<sig>). In our extension, sig
rec’s have no need for forward declarations because the validity of module-recursive references in
the rds body can be determined through phase-splitting it. In addition, the rds associated with a
struct rec supplies the signature for the entire module, not just the forward declarations.

An odd feature of Russo’s extension is that “any opaque type or datatype specified in the
signature [associated with a recursive module] must be implemented in the body [of the module]
by copying it using a forward reference”, demonstrated by the following example taken verbatim
from the manual:

structure Ok = (* well-typed *)
rec (X:sig datatype t = C type u type v = int end)
struct datatype t = datatype X.t type u = X.u type v = int end

structure Fail = (* ill-typed *)
rec (X:sig datatype t = C type u type v = int end)
struct datatype t = C type u = int type v = int end

Perhaps the reason this seems so odd is that in our extension, the analogous encoding of structure
Ok would be ill-typed and the analogous encoding of structure Fail would be well-typed. Still, it is
not even clear what the definition of type u in Ok is supposed to be, or what is wrong with giving
it a definition in Fail. At any rate, it indicates a marked difference from our proposal, but the
extent to which the designs differ is impossible to determine from our limited understanding of the
theory and details of Russo’s extension.

Acknowledgements

We would like to give special thanks to Leaf Petersen and Chris Stone for invaluable discussion and
insight on all things recursive, modular and TILTed. We would also like to thank Perry Cheng and
Dave Walker for helpful comments and Peter Lee for his warm guidance.

References

[1] The Moscow ML 2.00 compiler. URL: http://www.dina.dk/~sestoft/mosml.html.

[2] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172–221, 1991.

[3] Karl Crary. Typed compilation of inclusive subtyping. In 2000 ACM SIGPLAN International
Conference on Functional Programming, pages 68–81, Montreal, Canada, September 2000.

34

[4] Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, and Chris Stone. Transparent and
opaque interpretations of datatypes. Technical Report CMU-CS-98-177, Carnegie Mellon Uni-
versity, School of Computer Science, November 1998.

[5] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In 1999 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 50–63,
Atlanta, GA, May 1999.

[6] Dominic Duggan and Constantinos Sourelis. Mixin modules. In 1996 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 262–273, Philadelphia, Pennsylvania,
June 1996.

[7] Dominic Duggan and Constantinos Sourelis. Parameterized modules, recursive modules, and
mixin modules. In 1998 ACM SIGPLAN Workshop on ML, pages 87–96, Baltimore, Maryland,
September 1998.

[8] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. In 1998 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 236–248,
Montreal, Canada, June 1998.

[9] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase
distinction. In Seventeenth ACM Symposium on Principles of Programming Languages, pages
341–354, San Francisco, California, January 1990.

[10] Robert Harper and Christopher Stone. An interpretation of Standard ML in type theory.
Technical Report CMU-CS-97-147, Carnegie Mellon University, Pittsburgh, PA, June 1997.
Also published as Fox Memorandum CMU-CS-FOX-97-01.

[11] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253–289, April 1993.

[12] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. ACM Transactions on Programming Languages and Systems,
15(2):290–311, April 1993.

[13] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In 1995 ACM
Symposium on Principles of Programming Languages, pages 142–153, San Francisco, CA, Jan-
uary 1995.

[14] Xavier Leroy. The Objective Caml system: Documentation and user’s guide. Available at
http://pauillac.inria.fr/ocaml/htmlman/, 1996.

[15] Xavier Leroy. A syntactic theory of type generativity and sharing. Journal of Functional
Programming, 6(5):1–32, September 1996.

[16] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[17] Alan Mycroft. Polymorphic type schemes and recursive definitions. In International Sym-
posium on Programming, volume 167 of Lecture Notes in Computer Science, pages 217–228.
Springer-Verlag, April 1984.

35

[18] Chris Okasaki. Purely Functional Data Structures, chapter 10. Cambridge University Press,
1998.

[19] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT internal
language. Technical Report CMU-CS-00-180, Carnegie Mellon University, December 2000.

[20] Leaf Petersen, Karl Crary, and Robert Harper. Coercions for datatypes. To be submitted.

[21] Benjamin Pierce and Robert Harper. Advanced module systems: A guide for the perplexed.
Invited talk at the 2000 ACM SIGPLAN International Conference on Functional Programming,
September 2000.

[22] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Owner’s Manual (Version
2.00), June 2000. Available at ftp://ftp.dina.kvl.dk/pub/mosml/doc/manual.ps.gz.

[23] Zhong Shao. An overview of the FLINT/ML compiler. In Proceedings of the 1997 ACM
SIGPLAN Workshop on Types in Compilation, Kyoto, Japan, June 1997.

[24] Zhong Shao. Transparent modules with fully syntactic signatures. In 1999 ACM SIGPLAN In-
ternational Conference on Functional Programming, pages 220–232, Paris, France, September
1999.

[25] Christopher A. Stone and Robert Harper. Deciding type equivalence for a language with sin-
gleton kinds. In Twenty-Seventh ACM Symposium on Principles of Programming Languages,
pages 214–227, Boston, MA, January 2000.

[26] Christopher Allan Stone. Singleton Kinds and Singleton Types. PhD thesis, Carnegie Mellon
University, Department of Computer Science, Pittsburgh, PA, August 2000.

A Type Theory of HMM + Singleton Kinds + Recursive Modules

A.1 Core Calculus

Γ ` κ kind

Γ ` T kind Γ ` 1 kind
Γ ` c : T

Γ ` s(c) kind

α 6∈ Dom(Γ) Γ ` κ1 kind Γ[α : κ1] ` κ2 kind
Γ ` Πα:κ1.κ2 kind

α 6∈ Dom(Γ) Γ ` κ1 kind Γ[α : κ1] ` κ2 kind
Γ ` Σα:κ1.κ2 kind

Γ ` κ1 ≡ κ2 kind

Γ ` T ≡ T kind Γ ` 1 ≡ 1 kind
Γ ` c1 ≡ c2 : T

Γ ` s(c1) ≡ s(c2) kind

α 6∈ Dom(Γ) Γ ` κ1 ≡ κ′1 kind Γ[α : κ1] ` κ2 ≡ κ′2 kind

Γ ` Πα:κ1.κ2 ≡ Πα:κ′1.κ
′
2 kind

36

α 6∈ Dom(Γ) Γ ` κ1 ≡ κ′1 kind Γ[α : κ1] ` κ2 ≡ κ′2 kind

Γ ` Σα:κ1.κ2 ≡ Σα:κ′1.κ
′
2 kind

Γ ` κ1 ≤ κ2 kind

Γ ` T ≤ T kind Γ ` 1 ≤ 1 kind

Γ ` c1 ≡ c2 : T
Γ ` s(c1) ≤ s(c2) kind

Γ ` c : T
Γ ` s(c) ≤ T kind

α 6∈ Dom(Γ) Γ ` κ′1 ≤ κ1 kind Γ[α : κ′1] ` κ2 ≤ κ′2 kind Γ[α : κ1] ` κ2 kind

Γ ` Πα:κ1.κ2 ≤ Πα:κ′1.κ
′
2 kind

α 6∈ Dom(Γ) Γ ` κ1 ≤ κ′1 kind Γ[α : κ1] ` κ2 ≤ κ′2 kind Γ[α : κ′1] ` κ′2 kind

Γ ` Σα:κ1.κ2 ≤ Σα:κ′1.κ
′
2 kind

Γ ` c : κ
α : κ ∈ Γ
Γ ` α : κ

α ↑ κ ∈ Γ
Γ ` α : κ Γ ` ? : 1

α 6∈ Dom(Γ) Γ ` κ1 kind Γ[α : κ1] ` c : κ2

Γ ` λα:κ1.c : Πα:κ1.κ2

Γ ` c1 : Πα:κ1.κ2 Γ ` c2 : κ1

Γ ` c1c2 : κ2[c2/α]

α 6∈ Dom(Γ) Γ ` c1 : κ1 Γ ` c2 : κ2[c1/α] Γ[α : κ1] ` κ2 kind

Γ ` 〈c1, c2〉 : Σα:κ1.κ2

Γ ` c : Σα:κ1.κ2

Γ ` c.1 : κ1

Γ ` c : Σα:κ1.κ2

Γ ` c.2 : κ2[c.1/α]

Γ ` 1 : T
Γ ` c1 : T Γ ` c2 : T

Γ ` c1 ⇀ c2 : T
Γ ` c1 : T Γ ` c2 : T

Γ ` c1 × c2 : T

α 6∈ Dom(Γ) Γ ` κ kind Γ[α ↑ κ] ` c ↓ κ
Γ ` µ≡α:κ.c : κ

Γ ` c : κ′ Γ ` κ′ ≤ κ kind
Γ ` c : κ

Γ ` c : T
Γ ` c : s(c)

α 6∈ FV(c) Γ ` λα:κ1.c α : Πα:κ1.κ2

Γ ` c : Πα:κ1.κ2

Γ ` 〈c.1, c.2〉 : Σα:κ1.κ2

Γ ` c : Σα:κ1.κ2

37

Γ ` c ↓ κ

Γ[B] def=

Γ[α : κ] if [B] is [α ↑ κ]
Γ[s : S] if [B] is [s ↑ S]
Γ[B] otherwise

Γ ` c ≡ c′ : κ Γ ` c′ ↓
Γ ` c ↓ κ

Γ ` c ↓
α : κ ∈ Γ
Γ ` α ↓ Γ ` ? ↓

α 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` c ↓
Γ ` λα:κ.c ↓

Γ ` c1 ↓ Γ ` c2 ↓
Γ ` c1c2 ↓

Γ ` c1 ↓ Γ ` c2 ↓
Γ ` 〈c1, c2〉 ↓

Γ ` c ↓
Γ ` c.i ↓ (i = 1, 2)

Γ ` 1 ↓ Γ ` c1 ⇀ c2 ↓ Γ ` c1 × c2 ↓

α 6∈ Dom(Γ) Γ ` κ kind Γ[α ↑ κ] ` c ↓
Γ ` µ≡α:κ.c ↓

Γ ` c1 ≡ c2 : κ
Γ ` c : κ

Γ ` c ≡ c : κ
Γ ` c2 ≡ c1 : κ
Γ ` c1 ≡ c2 : κ

Γ ` c1 ≡ c2 : κ Γ ` c2 ≡ c3 : κ
Γ ` c1 ≡ c3 : κ

α 6∈ Dom(Γ) Γ ` κ1 ≡ κ′1 kind Γ[α : κ1] ` c ≡ c′ : κ2

Γ ` λα:κ1.c ≡ λα:κ′1.c
′ : Πα:κ1.κ2

Γ ` c1 ≡ c′1 : Πα:κ1.κ2 Γ ` c2 ≡ c′2 : κ1

Γ ` c1c2 ≡ c′1c′2 : κ2[c2/α]

α 6∈ Dom(Γ) Γ ` c1 ≡ c′1 : κ1 Γ ` c2 ≡ c′2 : κ2[c1/α] Γ[α : κ1] ` κ2 kind

Γ ` 〈c1, c2〉 ≡ 〈c′1, c′2〉 : Σα:κ1.κ2

Γ ` c ≡ c′ : Σα:κ1.κ2

Γ ` c.1 ≡ c′.1 : κ1

Γ ` c ≡ c′ : Σα:κ1.κ2

Γ ` c.2 ≡ c′.2 : κ2[c.1/α]

38

Γ ` c1 ≡ c′1 : T Γ ` c2 ≡ c′2 : T
Γ ` c1 ⇀ c2 ≡ c′1 ⇀ c′2 : T

Γ ` c1 ≡ c′1 : T Γ ` c2 ≡ c′2 : T
Γ ` c1 × c2 ≡ c′1 × c′2 : T

α 6∈ Dom(Γ) Γ ` κ ≡ κ′ kind Γ[α : κ] ` c ≡ c′ : κ
Γ[α ↑ κ] ` c ↓ κ Γ[α ↑ κ] ` c′ ↓ κ

Γ ` µ≡α:κ.c ≡ µ≡α:κ′.c′ : κ

Γ ` c1 ≡ c2 : κ′ Γ ` κ′ ≤ κ kind
Γ ` c1 ≡ c2 : κ

Γ ` c : s(c′)
Γ ` c ≡ c′ : T

Γ ` c ≡ c′ : T
Γ ` c ≡ c′ : s(c)

Γ ` c : 1
Γ ` c ≡ ? : 1

α 6∈ Dom(Γ) Γ ` c1 : κ1 Γ[α : κ1] ` c2 : κ2

Γ ` (λα:κ1.c2)c1 ≡ c2[c1/α] : κ2[c1/α]

α 6∈ Dom(Γ) Γ ` c1 : Πα:κ1.κ
′
2 Γ ` c1 : Πα:κ1.κ

′′
2 Γ[α : κ1] ` c1α ≡ c2α : κ2

Γ ` c1 ≡ c2 : Πα:κ1.κ2

Γ ` c1 : κ1 Γ ` c2 : κ2

Γ ` 〈c1, c2〉.i ≡ ci : κi
(i = 1, 2)

α 6∈ Dom(Γ) Γ ` Σα:κ1.κ2 kind
Γ ` c1.1 ≡ c2.1 : κ1 Γ[α : κ1] ` c1.2 ≡ c2.2 : κ2[c1.1/α]

Γ ` c1 ≡ c2 : Σα:κ1.κ2

α 6∈ Dom(Γ) Γ ` κ kind Γ[α ↑ κ] ` c ↓ κ
Γ ` µ≡α:κ.c ≡ c[(µ≡α:κ.c)/α] : κ

α 6∈ Dom(Γ) Γ ` κ kind Γ ` c ≡ c′[c/α] : κ Γ[α ↑ κ] ` c′ ↓ κ
Γ ` c ≡ µ≡α:κ.c′ : κ

Γ ` σ type
Γ ` c : T

Γ ` T (c) type
Γ ` σ1 type Γ ` σ2 type

Γ ` σ1 → σ2 type

Γ ` σ1 type Γ ` σ2 type
Γ ` σ1 ⇀ σ2 type

Γ ` σ1 type Γ ` σ2 type
Γ ` σ1 × σ2 type

39

α 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` σ type
Γ ` ∀α:κ.σ type

Γ ` σ1 ≡ σ2 type
Γ ` σ type

Γ ` σ ≡ σ type
Γ ` σ2 ≡ σ1 type
Γ ` σ1 ≡ σ2 type

Γ ` σ1 ≡ σ2 type Γ ` σ2 ≡ σ3 type
Γ ` σ1 ≡ σ3 type

Γ ` c ≡ c′ : T
Γ ` T (c) ≡ T (c′) type

Γ ` c1 : T Γ ` c2 : T
Γ ` T (c1 ⇀ c2) ≡ T (c1) ⇀ T (c2) type

Γ ` c1 : T Γ ` c2 : T
Γ ` T (c1 × c2) ≡ T (c1)× T (c2) type

Γ ` σ1 ≡ σ′1 type Γ ` σ2 ≡ σ′2 type
Γ ` σ1 ⇀ σ2 ≡ σ′1 ⇀ σ′2 type

Γ ` σ1 ≡ σ′1 type Γ ` σ2 ≡ σ′2 type
Γ ` σ1 × σ2 ≡ σ′1 × σ′2 type

Γ ` σ1 ≡ σ′1 type Γ ` σ2 ≡ σ′2 type
Γ ` σ1 → σ2 ≡ σ′1 → σ′2 type

α 6∈ Dom(Γ) Γ ` κ ≡ κ′ Γ[α : κ] ` σ ≡ σ′ type
Γ ` ∀α:κ.σ ≡ ∀α:κ′.σ′ type

Γ ` e : σ
x : σ ∈ Γ
Γ ` x : σ

x ↑ σ ∈ Γ
Γ ` x : σ Γ ` ? : 1

x 6∈ Dom(Γ) Γ ` σ type Γ[x : σ] ` e ↓ σ
Γ ` λx:σ.e : σ → σ′

x 6∈ Dom(Γ) Γ ` σ type Γ[x : σ] ` e : σ
Γ ` λx:σ.e : σ ⇀ σ′

Γ ` e1 : σ → σ′ Γ ` e2 : σ
Γ ` e1e2 : σ′

Γ ` e1 : σ ⇀ σ′ Γ ` e2 : σ
Γ ` e1e2 : σ′

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 × σ2

Γ ` e : σ1 × σ2

Γ ` e.i : σi
(i = 1, 2)

α 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` e ↓ σ
Γ ` Λα:κ.e : ∀α:κ.σ

40

Γ ` e : ∀α:κ.σ Γ ` c : κ
Γ ` e[c] : σ[c/α]

x 6∈ Dom(Γ) Γ ` σ type Γ[x ↑ σ] ` e ↓ σ
Γ ` fix (x:σ.e) : σ

Γ ` e : σ′ Γ ` σ ≡ σ′ type
Γ ` e : σ

Γ ` e ↓ σ
Γ ` e : σ Γ ` e ↓

Γ ` e ↓ σ

Γ ` e ↓
x : σ ∈ Γ
Γ ` x ↓ Γ ` ? ↓

Γ ` λx:σ.e ↓
Γ ` e1 ↓ σ1 → σ2 Γ ` e2 ↓

Γ ` e1e2 ↓

Γ ` e1 ↓ Γ ` e2 ↓
Γ ` 〈e1, e2〉 ↓

Γ ` e ↓
Γ ` e.i ↓ (i = 1, 2)

α 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` e ↓ σ
Γ ` Λα:κ.e ↓ ∀α:κ.σ

Γ ` e ↓
Γ ` e[c] ↓

x 6∈ Dom(Γ) Γ ` σ type Γ[x ↑ σ] ` e ↓
Γ ` fix (x:σ.e) ↓

A.2 Structure Calculus

Γ ` c : κ
Γ `M : [α:κ.σ]
Γ ` Fst M : κ

Γ ` c ↓
Γ `M ↓ S

Γ ` Fst M ↓

Γ ` e : σ
Γ `M : [α:κ.σ]

Γ ` Snd M : σ[Fst M/α]

Γ ` e ↓
Γ `M ↓ S

Γ ` Snd M ↓

41

Γ ` S sig
α 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` σ type

Γ ` [α:κ.σ] sig

Γ ` S1 ≡ S2 sig
Γ ` S sig

Γ ` S ≡ S sig
Γ ` S2 ≡ S1 sig
Γ ` S1 ≡ S2 sig

Γ ` S1 ≡ S2 sig Γ ` S2 ≡ S3 sig
Γ ` S1 ≡ S3 sig

α 6∈ Dom(Γ) Γ ` κ ≡ κ′ kind Γ[α : κ] ` σ ≡ σ′ type
Γ ` [α:κ.σ] ≡ [α:κ′.σ′] sig

Γ ` S1 ≤ S2 sig
Γ ` S1 ≡ S2 sig
Γ ` S1 ≤ S2 sig

Γ ` S1 ≤ S2 sig Γ ` S2 ≤ S3 sig
Γ ` S1 ≤ S3 sig

α 6∈ Dom(Γ) Γ ` κ ≤ κ′ kind Γ[α : κ] ` σ ≡ σ′ type Γ[α : κ′] ` σ′ type

Γ ` [α:κ.σ] ≤ [α:κ′.σ′] sig

Γ `M : S
s : S ∈ Γ
Γ ` s : S

s ↑ S ∈ Γ
Γ ` s : S

α 6∈ Dom(Γ) Γ ` c : κ Γ ` e : σ[c/α] Γ[α : κ] ` σ type

Γ ` [c, e] : [α:κ.σ]

Γ `M : S′ Γ ` S′ ≤ S sig
Γ `M : S

Γ `M : [α:κ′.σ] Γ ` Fst M : κ
Γ `M : [α:κ.σ]

Γ `M ↓ S
s : S ∈ Γ
Γ ` s ↓ S

α 6∈ Dom(Γ) Γ ` c ↓ κ Γ ` e ↓ σ[c/α] Γ[α : κ] ` σ type
Γ ` [c, e] ↓ [α:κ.σ]

Γ `M ↓ S′ Γ ` S′ ≤ S sig
Γ `M ↓ S

Γ `M ↓ [α:κ′.σ] Γ ` Fst M : κ
Γ `M ↓ [α:κ.σ]

Γ `M1 ≡M2 : S
Γ `M : S

Γ `M ≡M : S
Γ `M2 ≡M1 : S
Γ `M1 ≡M2 : S

42

Γ `M1 ≡M2 : S Γ `M2 ≡M3 : S
Γ `M1 ≡M3 : S

α 6∈ Dom(Γ) Γ ` c ≡ c′ : κ Γ ` e : σ[c/α] Γ[α : κ] ` σ type

Γ ` [c, e] ≡ [c′, e] : [α:κ.σ]

Γ `M1 ≡M2 : S′ Γ ` S ≤ S′ sig
Γ `M1 ≡M2 : S

A.3 Recursive Module Calculus

Γ `M : S
α, s 6∈ Dom(Γ) Γ ` S ≡ [α:κ.σ1] sig

Γ[s ↑ S] `M ↓ [α:κ.σ2] Γ[α : κ] ` σ1 ≡ σ2[α/Fst s] type

Γ ` fixO(s:S.M) : S

s 6∈ Dom(Γ) Γ[s ↑ S] `M ↓ S Γ ` S ≡ [α:s(c : κ).σ] sig

Γ ` fixT (s:S.M) : S

Γ `M ↓ S
Γ ` fixO(s:S.M) : S
Γ ` fixO(s:S.M) ↓ S

Γ ` fixT (s:S.M) : S
Γ ` fixT (s:S.M) ↓ S

Γ `M1 ≡M2 : S

α, s 6∈ Dom(Γ) Γ ` S ≡ [α:κ.σ1] sig
Γ[s ↑ S] `M ↓ [α:κ.σ2] Γ[α : κ] ` σ1 ≡ σ2[α/Fst s] type

Γ ` S ≡ S′ sig Γ[s ↑ S] `M ′ ↓ [α:κ.σ2] Γ[s : S] `M ≡M ′ : [α:κ.σ2]

Γ ` fixO(s:S.M) ≡ fixO(s:S′.M ′) : S

s 6∈ Dom(Γ) Γ[s ↑ S] `M ↓ S Γ ` S ≡ [α:s(c : κ).σ] sig
Γ ` S ≡ S′ sig Γ[s ↑ S] `M ′ ↓ S Γ[s : S] `M ≡M ′ : S

Γ ` fixT (s:S.M) ≡ fixT (s:S′.M ′) : S

α, s, sc, sr 6∈ Dom(Γ) Γ ` κ kind Γ[α : κ] ` σ1 type Γ[sc : κ][α : κ] ` σ2 type
Γ[sc ↑ κ] ` c ↓ κ Γ[sc : κ][sr ↑ σ1[sc/α]] ` e ↓ σ2[c/α] Γ[α : κ] ` σ1 ≡ σ2[α/sc] type

Γ ` fixO(s:[α:κ.σ1].[c[Fst s/sc], e[Fst s,Snd s/sc, sr]]) ≡ [sc = µ≡s
c:κ.c,fix (sr:σ1[sc/α].e)] : [α:κ.σ1]

α, s, sc, sr 6∈ Dom(Γ) Γ ` s(c : κ) kind Γ[α : s(c : κ)] ` σ type
Γ[sc ↑ s(c : κ)] ` c′ ↓ s(c : κ) Γ[sc : s(c : κ)][sr ↑ σ[sc/α]] ` e ↓ σ[c′/α]

Γ ` fixT (s:[α:s(c : κ).σ].[c′[Fst s/sc], e[Fst s,Snd s/sc, sr]])
≡ [sc = c,fix (sr:σ[sc/α].e)] : [α:s(c : κ).σ]

43

Γ ` S sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ] ` S ≡ [α:κ.σ] sig
Γ ` ρ̂sc.S sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ] ` S ≡ [α:s(c : κ).σ] sig Γ[sc ↑ κ] ` c ↓ κ
Γ ` ρsc.S sig

Γ ` S1 ≡ S2 sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ] ` S ≡ [α:κ.σ] sig Γ[sc : κ] ` S ≡ S′ sig

Γ ` ρ̂sc.S ≡ ρ̂sc.S′ sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc ↑ κ] ` c ↓ κ
Γ[sc : κ] ` S ≡ [α:s(c : κ).σ] sig Γ[sc : κ] ` S ≡ S′ sig

Γ ` ρsc.S ≡ ρsc.S′ sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc : κ][α : κ] ` σ type

Γ ` ρ̂sc.[α:κ.σ] ≡ [sc:κ.σ[sc/α]] sig

α, sc 6∈ Dom(Γ) Γ ` κ kind Γ[sc ↑ κ] ` c ↓ κ Γ[sc : κ][α : κ] ` σ type

Γ ` ρsc.[α:s(c : κ).σ] = [sc:s(µ≡sc:κ.c : κ).σ[sc/α]] sig

44

