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Today's widespread, cheap and fast communication makes a great variety and quantity of data
available to consumersinformation presentation addresses the important problem of packaging and
visualizing this data for users in a way that facilitates understanding and analysis. Information
presentations can be created by human designers or they can be automatically generated by expert
computer systems. Automatic generation offers great flexibility in performing data and information
analysis tasks, because new designs are generated on a case by case basis to suit current and changing
future needs. This is crucial in areas or domains where it is difficult to capture beforehand all combinations
of data and analysis goals desired by users, since pre-conceived human designs are then less feasible. The
focus of this thesis is to improve designs generated by automatic systems and to expand the range of tasks
that can be addressed by such systems. Previous work in this area dealt primarily with how data can be
mapped to graphics effectively, based on established design knowledge and perceptual rules. In this thesis
| expand automatic presentation design to include not only effective mapping rules but also rules describing
how data may be pre-processed before it is presented. | will show that expanding automatic design in this
way allows us to consider a much wider range of designs, improves the quality of automatically generated
designs, and enables automatic systems to deal with larger data sets and a wider range of tasks. The
addition of data pre-processing functions also allows us to include input devices in graphical presentations,
thus making them more active, engaging and flexible for users. Previous work did not consider input
devices because their usdimsited when we consider only mapping functions in our designs. This thesis
develops a framework and design strategies for expanding the quality and breadth of automatically
generated information presentations. This will in turn improve the effectiveness with which computer
systems can communicate data to users, facilitating understanding and analysis of a large variety of data,

over a wide range of information goals.
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Chapter I: Introduction

Automatic Visualization Design

Automatic visualization systems have two primary goals: 1) to improve communication between the
computer system and users both in terms of effectiveness and breadth and 2) to serve as a design assistant
and help facilitate the creation of graphics for information presentation and analysis. To support the more
complex and heavy demands that are made of information analysis systems today it is necessary to expand
the effectiveness and flexibility with which computers can communicate with users. The range of tasks,
data, media types and user preferences that these information systems must accommodate make it
unfeasible to anticipate every possible output scenario. |I.e. it is impossible to custom design graphics and
interfaces here because there are too many possible output alternatives. Automatic visualization systems
enable the flexible generation of information presentation graphics that are crafted on a case by case basis
to suit the wide range of communication goals that may arise. Design rules and theories of cognition and
perception are applied within these automatic systems to ensure the effectiveness and correctness of the
graphics generated. Automatic visualization systems can also help users create and design graphic
presentations. The SageBrush and SageBook interfaces [Roth, 1994] show that automatic visualization
research can be applied to help users complete partial designs or browse and adapt existing designs to show
new data. This helps users with the more straightforward design operations, leaving them free to quickly
explore many more design alternatives. It isimportant to stress that work in automatic visualization design
is not meant to remove the “human” aspect from design and neither is its goal to design a “better” graphic
than human designers. Instead, the power of automatic visualization systems is derived from the
cooperative process between user and automatic system. The advantage of such systems as a design tool is
that it can quickly generate a large range of possible design solutions and show them to the user who can
then decide between similarly effective designs based on their preferences. In this way an automatic design
system can aid a designer or less experienced user in creating graphics by performing the more mundane
and simple visualization design tasks as well as give design suggestions that are based on compiled
knowledge from graphic design and perceptual theory. Ultimately, the synergy between the user and the

expert design system will be able to generate good designs more effectively and easily.

Previous research in automatic visualization deslackinlay, 1986a, 1986b; Casner 1991; Roth
1994] focussed on developing rules for mapping data to graphical elements effectively so that the generated
designs support the desired user task(s) and can be clearly and correctly interpreted. However mapping data

to graphics is only one step in the visualization creation process. Before we map data to graphical
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representations it is commonly effective to first process the data either by summarizing, computing, or
culling out less relevant elements. By first massaging the data to a more appropriate form before
presentation, we can construct more effective graphical designs for expressing user goals. This thesis
expands the automatic design process to include these pre-processing data operations. This expansion
alows a significant improvement over previous automatic design systems because it enables usto:

1. Generate more effective designs.

2. Address alarger range of tasks.

3. Produce alarger range of interesting design alternatives.

4

Usefully integrate input-devices into the design process.

1. Generate more effective designs

The advantages of this work can be quickly seen in the following airline reservation task that was
used in a previous automatic visualization system [Casner, 1991]. In this task the user is interested in
finding flights from Los Angeles to Boston with a layover in Chicago where they will be a meeting from 2
p.m. to 4 p.m.. The user would like to schedule the flights such that the total downtime in Chicago before
and after the meeting is relatively small.

Fight uber Origin city Destination city Flight arrival trne, Flight departure e

United_&52 ORD ES7R 532am 230 am.

NW_§28 MEM ATL 10:13am. 00 am

Trans_235 D LGa 200 am. 335 am.

United_244 LAX ORD 337pm 945 am.

United_342 ORD HCo 12:19am. 855 am

American_4%4 ORD EWR TdZ am 430 am.

American_4%1 BOS DEW T2%am 4l5am.
"

United_7282 IFE EOE 23lam. 700am.
MW _5875 MEM MOE P45am 220 am.
Delta_725 DFW SFO 10:54 am. 9:00 am.

TWA_7782 PHL JFE T:53am. T04am.
American_346 ORD LGA 1004 am. T:00 arn
American_340 ORD LG& 11:36am. 230am

Continental 1943 AH Las 96 am g30am.

Figure|-1: Cognitive design for the airline-scheduling task
(Notethat the flightsare not all shown here becausethetableisvery large)

Performing this task cognitively using the raw data arranged in atable format (Figure I-1) would take
up to approximately 4 minutes (based on a GOMS evaluation of the visualization). Previous automatic

systems explored how this cognitive design can be appropriately mapped to graphics (Figure I-2), which

1-2



lowers the total task time to only 30 seconds (assuming no occlusion). In our work we alow automatic
preprocessing of data before presentation and the design generated by our system allows the task to be
quickly solved in 3 seconds (Figure I-3). A summary of the GOMS estimated time for all three designs is
shown in Figure I-4. We briefly describe the perceptual and cognitive steps for these displays in section |-
2. The detailed GOM S sequences for these three visualizations can also be found in appendix C-1.

Origin city

Drestination city
P
WS
ChH]

Origin city
Destation eity

LAK

ORD) \

\

MDW]

DFW]

220 am. 10:20 a.m. 520 pom.
.50 a.m. 1:50 p.m. 8:50 pum.

%10 am, 10 am. €10 p.m. Flight departure time
440 am 1:40 p.m. 10:40 pom Flight arrival time

Flight departure time
Flight arrival time

(a) Full data set
Thisvisualization shows all the elementsin the
data set (i.e. all 135 flights).

(b) Truncated data set.
Thisexample visualization showsthe ideal case
wherethereislittle occlusion among the different
flight lines. Thisdata set was chosen so that it
contains some flights that fulfill the task
constraints as well as some other random flights
that do not occlude one another.

Figure|-2: Perceptual design for the airline-scheduling task
Each linerepresents a flight with origin and destination city mapped onto the y-axisand arrival and departure
time mapped onto the x-axis. Thisisthe best design that gets generated when ONLY mapping operationsare
considered by the automatic system. |.e. thisisthe best possible design from current state of the art systems.



Flight number, Flight number

American_446 Arnerican_1092
Delta_1171 AfrTran_81
AmericaWest_4057) TWA 622
American 584 United_124
United_12 United_52
Aumerican_1847) Continental_30
United_11 Drelta_34
Unated_11 United_57
United_174) United_101
Unated_10. American_132

180.00 500.00 250,00
20.00 340.00 110,00
Time before meetng [in minutes] Time after meeting [in minutes]

Figure|-3: Design generated when data processing operations are integrated into the automatic visualization
system. Thefull data set is considered here but data transforms are applied by the automatic system to filter the
data set so that only relevant flights are shown. The total downtime before the meeting for the flightsfrom LAX
to ORD isshown on theleft chart and the total downtime after the meeting for the flightsfrom ORD to BOSis

shown on theright chart.
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Figurel-4: GOM S estimated total time for solving the airline-scheduling task for a data set of 135 flights.
Detailed GOM S sequences for each design are presented in appendix C-1.

2. Addressalarger range of tasks

Adding data processing functions into the automatic design process also allows us to address a larger
range of tasks than was possible with previous systems. Some tasks do not have a purely perceptua
solution, including processing of large data sets, abstract mathematical operations (e.g. log, exp) or
complex calculations that contain multiple related mathematical operations (e.g. (a+b) / (c+d)). In this
thesis we enable automatic design systems to deal with these problems by automatically computing the

-4



tasks fully or partially so that users are presented with combined computation (data transforms) and

perceptual (mapping transforms) solutions. Note that while it is possible to always compute a task fully

before conveying it to the automatic designer it is also undesirable and restrictive to do so. Aswe will show

in chapter IV, pre-computing entire tasks may severely constrain the flexibility of users and may not

produce the most effective design solution. To generate “good” design solutions we must integrate data
processing with mapping decisions because design decisions made in the data processing phase affects the
mapping phase and vice versa. And just as we cannot anticipate all combinations of data and information
analysis tasks that may be demanded by users, we cannot anticipate all combinations of data processing and

mapping operations that are appropriate and useful in our designs.

3. Produce alarger range of interesting alter native designs

Expanding automatic design to include data processing operations also allows us to generate a larger
range of interesting alternative designs compared to previous systems. Designs generated may be purely
perceptual, purely computed, or hybrid computed and perceptual designs. This larger range of choices is
important because the data analysis process is an iterative process where users first construct mental models
of their current tasks and based on these mental models, pose design requests to an automatic system.
Depending on the results of the design request, users may then update their mental models and then repeat
the process. The ability of users to arrive at useful answer(s) to their data analysis problems depends on the
range and quality of design solutions returned by the automatic system as this will facilitate the next
iterative cycle. The wider range of design alternatives provided by our system enable users to better match

design solutions to their data analysis goals as well as personal preferences.

4. Usefully integrate the application of input-devices into the design process

Input-devices are very effective for allowing end-users to flexibly change a visualization design
interactively. This allows large data spaces to be represented because we can interactively focus in on
different subsets of data elements at different times. Previous automatic systems did not consider the use of
input-devices. This is primarily because these systems always showed all of the available data (i.e. there
was no data summarization, computation, or culling). As a result there was no need for users to navigate
through the visual representation by using input-devices. Unfortunately, the lack of interactivity and data
summarization operations also constrained these systems so that they can only address problems with
relatively small data sets (< 20 elements). This was clearly illustrated in Figure 1-2b where showing the
entire data set of 135 flights produced a visual display that was too occluded to be of any use. In this thesis
we add input-devices and data transforms into the automatic design process so that our system can deal

with larger data sets (> 100 elements) through data culling, summarization, and interactivity.



To integrate data processing functions into automatic design we develop three core technologies in this

thesis:

1. Methods: We develop a way to characterize data and mapping functions within a visualization design,
how these methods may be combined with each other, with the output media and with available input-
devices.

2. Principles: We also develop a set of design dimensions and strategies that can help us gauge the
quality of different design alternatives. These dimensions and strategies determine when and how data
and mapping methods should be used based on user tasks, data, and preferences.

3. Systems: We show that the methods and principles developed are complete and applicable by using
them to implement an automatic visualization design system. We then evaluate the system through a
series of GOMS analyses to show that the results generated by our prototype designer are correct (i.e.
they support the input tasks) and are ordered based on cognitive, perceptual, and motoric complexity.
l.e., the most effective or least complex design is generated first and the most complex design is
generated last.

-1  Methods: Visualization Techniques Framework

In this thesis we develop a framework that characterizes the function and structure of visualization
techniques that are used to create and modify visual designs. This framework provides our automatic
design system with the necessary constructs to build visuaization interfaces that may contain data

processing functions, mapping functions, as well as input-devices.

Each visualization technique within our framework is defined to have a selection component and a
transformation component. Selection can be achieved through enumeration or through a constraint function
(functional description). Transformation can be achieved using the four different functions within the
visualization creation process shown in Figure 1-5. To build richer visualization techniques, we can

combine multiple techniques together through a set of composition functions.

Mapping Rendering
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Data ap
Transforms
. Output
Data Set Graphical Scene b
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Figure|-5: Thefour phases of the visualization creation process



The visualization creation process consists of four primary phases: data, mapping, graphical, and
rendering. Initially in the data phase the task data is processed and a portion of it is chosen for subsegquent
mapping. In the mapping phase the chosen data elements from the previous phase are mapped onto
graphical properties (e.g. color, position, shape) and graphical objects (e.g. marks, bars, lines). In the
graphical phase, the graphical scene constructed from data mapping is further processed to accommodate
changes that may not be reflected in the data set. For example objects in dense areas may be made smaller
to avoid occlusion. Finaly in the rendering phase the graphical scene is transferred onto an output media.
There are currently many different media types available (e.g. PalmPilot™, CRT screens, image projection
screens) with different constraints on visualization size, number of colors, resolution, mobility, etc. All

these constraints affect the way with which the visualization design may be displayed and explored.

Previous automatic design systems only considered the use of mapping functions. In this thesis we
expand automatic visualization design to include both data and mapping functions. Even though our
automatic design system only uses functions from the data and mapping phases we decided to lay out all
four transformation classes in Figure I-5 in our framework because it helps us better understand the roles
that data and mapping functions can play in the design process, it allows graphical and rendering functions
to be easily integrated into the automatic design process in the future, and it increases the applicability of

our framework, allowing us to categorize and analyze current visualization systems and techniques.

Below we show how a very simple visualization technique can be specified based on the primitives
and composition rules in our framework. The technique is a simple highlighting technique that allows users
to select a set of objects usingaunding-box and then subsequently highlights the selected ohjedts

€

Graphical raphical
property
Get values

Graphical
value set

Figure|-6: Highlight technique specification. The input-device bounding-box is used to select a set of objects.
These objects (selected-objects) are extracted from the bounding-box device using the get-values function. We
then get the color valuesfrom all of the selected objects using a subsequent get-values function. Finally we
change all of the color graphical valuesto red using the assign function.

All function primitives are shown with normdimes-Roman font within rectangles and all inputs to
the primitive functions are shown #alicized bold text within ovals. Inputs provided by users are shown
with dotted ovalsand those provided as designer defaults are shown with regular unbroken ovals. The

directed arrows © ) connecting one primitive function to another indicate a flow of objects or values from



a source function to a destination function. The italicized bold labels next to the connecting links indicate
the types of objects or values that are being passed through that link.

Aside from being a crucial component to our automatic design system, this framework also provides
multiple other contributionsto the field:

1. Prototype and Tailor Visualization Interfaces

Our framework helps designers prototype and tailor visualization interfaces. For example, a
visualization designer can very easily adjust the technique in Figure 1-6 so that it highlights objects blue
instead of red by changing the oval marked red to blue. Alternatively we can let end-users specify the
highlight color through an input-device by replacing the oval marked red with an input-device. The high-
level visualization techniques description language provided by our framework enables designers to create

and adjust visualization techniques without resorting to writing code.

We show more examples of our visualization techniques language and how they can be created and
varied in chapters Il and I11. For now however, it is important to stress that this visualization language is
not meant for end-use. A user-friendly interface should be built on top of the specification language before
it can be readily accessed by end users. For example the SAGE system [Roth, 1994] has an underlying
language for describing the data and graphical elements within a visualization as well as the mapping
relationships among them. However it is also attached to a graphical user interface, SageBrush, that
provides end users with simple drag and drop techniques for utilizing this language. The same situation
applies for the data, mapping, graphical, and rendering functions considered in this work. A friendlier
interface is needed for end-users but this interface must be based on an underlying language that captures
the functionality and structure of visualization techniques. Our framework can serve asthis basis.

2. New Two-level Design Methodol ogy

Our framework also presents a new design methodology for creating visualization techniques. This
methodology divides the design process into two different levels of abstraction: a functional level, and an
instantiation level. At the functional level designers focus on providing users with the proper operations to
serve their current goals. |.e. focus is on choosing appropriate functions from each of the four visualization
phases and combining these functions. The instantiation level, on the other hand, is more concerned with
the general appearance and usage of the visualization technique. At this level focus is on choosing
appropriate devices for input entry, choosing effective graphical attributes for visual feedback, as well as
general layout of the visualization interface. This division helps designers separate the two different aspects
of visualization techniques, function and form, so as to decrease the likelihood of falsely constraining

functionality based on appearance concerns. This two level methodology is an advance over previous work



that only considers either the functional [ Tweedie, 1997; Card, 1999] or instantiation [Brodlie, 1991] levels

in isolation.

3. Exploration of the Visualization Technigues Design Space

Finally the framework helps to scope out alarge part of the visualization techniques design space, and
alows for more systematic exploration within that space. We show at the end of chapter |1 the space of
current visualization techniques and how they may be combined to form new methods. A description of the
current space of techniques is important because it shows us the areas we have explored and points to new
and future areas of exploration. For example we found that most visualization techniques that are used to
search for data objects utilize simple feedback methods to show their results. Feedback for these techniques
usually involve changing a single graphical property (e.g. color) to different constants (e.g. red). Thus one
new area of exploration could be in developing useful object search techniques with richer feedback

methods that change multiple graphical properties simultaneously in meaningful ways.

I-2  Principles: Design Dimensions and Strategies for

Measuring the Goodness of Visualization Designs

The visualization techniques framework described in the previous section provides an automatic design
system with the proper language for expressing a wide variety of visualization designs. However there are
many possible different alternative designs that fulfill a particular data analysis task. For example, the
airline-scheduling task presented earlier can be solved using any of the three alternative designs shown in
Figure I-1, Figure I-2 and Figure I-3. Thus in addition to a visualization techniques language, an automatic
system must also be equipped with design rules and strategies that help guide it down more promising
design paths and prevent it from generating ineffective designs. For this purpose we develop a set of design
dimensions for measuring the goodness of different design alternatives as well as a set of design strategies
that help our system first generate designs that are deemed more effective based on our design dimensions.

Our design dimensions are built upon previous work by Abowd and Beale for measuring the
effectiveness of user interfaces. This framework calculates the overall “goodness” of a visualization design
or its “semantic distance” by using four distancesarticulatory distance, functional distance, expressive
distance, and observational distance. Semantic distance refers to the degree with which user goals are
fulfilled by the visualization. A large semantic distance means that the goals are not achieved well and a
small semantic distance means that the goals have been satisfied accéptadllatory distance
measures the amount of input-device manipulation required from uUsertional distance refers to

whether the system possesses software functions or procedures capable of achieving USer taske.



distance determines whether sufficient feedback or information is provided to usersto solve the input tasks.
Finaly, observational distance refers to the ease with which a user can interpret system feedback.
Specifically, observational distance measures the effectiveness of the visual objects, visual properties, and
visual compositions used to fulfill the input analysis tasks. Based on these dimensions we develop a set of

design strategies that help minimize the overall semantic distance of a visualization.

The data processing operations added by this work can improve the semantic distance of a
visualization design by offloading difficult cognitive operations onto the computer system in addition to
offloading them onto the user’s perceptual system with mapping transforms as was done previously. For
example consider the airline-scheduling task presented at the start of this chapter. The pure mapping design
(Figure 1-2) encodes each flight withiae graphical object. Therigin anddestination cities are mapped
to they-axis and thearrival anddeparture times are mapped to theaxis. To perform the task, users must
first search for all lines that originate frobmos Angeles (LAX) and flies toChicago (ORD) as well as
originate fromChicago (ORD) and flies tdBoston (BOS). Next the set must also be narrowed down to only
those flights that arrive before tBg.m. meeting time irChicago and leaves aftef p.m. (i.e. end-point of
LAX-ORD flight is to the left of2 p.m. on thex-axis and starting-point of ORD-BOS flight is to the right of
4 p.m.). In contrast, Figure I-3 uses data transforms to offload these cognitive search tasks to the computer
system instead of to the perceptual system. Specifically, the computer system perfoeitysahetime
search and only presents those flights that fulfill both the city and time constraints in the task. As a result

the design is less cluttered and easier to interpret compared to the pure mapping design (Figure 1-2).

However, a significant portion of the information from the original data set has been filtered out in
Figure 1-3 so that if we changed our meeting time or our meeting venue the data transform design would no
longer be usable and we would have to generate a new visualization. In contrast the pure mapping design
(Figure 1-2) is more flexible and can better accommodate changes in user goals (i.e. the mapping design can
still be used to solve the modified scheduling task). Thus depending on the demands of current tasks, an
automatic design system may choose to apply different blends of data and mapping transforms. In chapter
11l we explore these issues and develop design strategies that can help our automatic system decide when it
is more appropriate to use data transforms to offload a task onto the computer system and when it is more

appropriate to use mapping transforms to offload a task onto the user’s perceptual system.

In appendix F we outline how graphical and rendering functions can also be integrated into automatic
design in the future. Specifically, graphical and rendering functions improve the semantic distance of a
visualization design by addressing readability issues. By readability we mean problems arising from
constraints of the output media and its interactions with our perceptual system that impede the optimal use
of a visual design (e.@bject occlusion). It is crucial to address these readability issieEmbse they may

cause an otherwise valid design to become unusable because of extreme clutter, or overly small graphical
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representations. In appendix F we identify four important readability issues: occlusion, density, dwarfing
and information proximity and discuss how these issues can be addressed through the use of graphical and
rendering functions. Readability problems can sometimes also be avoided through judicious use of data
transform functions or by mapping the data to a larger graphical representation. We discuss some of these
data and mapping readability enhancements in chapter 1V. Previous automatic systems did not consider

readability issues because it is difficult to address these issues with only mapping transform functions..

-3 Systems: AVID — Automatic Visualization Interface

Designer

Finaly to show that our theoretical concepts are sound, practical, and sufficiently complete, we
implement an automatic design system, called AVID, based on our framework as well as our design
dimensions and strategies. AVID accepts a task specification like the one shown in Figure I-7 as input.
Based on this task specification it will generate a series of design aternatives ranked based on their
effectiveness with respect to the input task(s).

Task language:

(setf setl (Find ‘ (RELATIONSHIP . <)
(Lookup “(OBJECT . NIL) ‘(VALUE . house_price))
*(VALUE . 100K)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup ( setl1 “(VALUE.date_on_market))
(Lookup (  set1 °(VALUE.date_sold)))

l

Phase 1: Task interpretation

Task object and
task argument structures

l

’ Phase 2: Visualization design ‘

/\.

Visual structure design Functional design
Phase 3: E&ign Readlization
Visual Functional
Structure Realizer
Realizer

v

Visualization interface

Figure|-7: Three componentswithin AVID
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AVID, consists of three components corresponding to the three stages of the automatic design process
(Figure1-7):
1. Thetaskinterpretation phase

Initially, a higher level agent (user or a domain specific system) that has a deeper understanding of the
problem domain generates a set of tasks for AVID. Tasks are expressed using a simple language based on
the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tuket, 1977] and later refined
by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purpose is to
capture important components of atask that may affect the visual design process. We do not expect typical
end users to specify tasks in this language; rather, specifications will most likely be generated by domain
specific systems that use graphics to present and summarize their results to users, such as automatic
planning systems, automatic information analysis systems, agent based information gatherers, etc. The task
interpreter within AVID evaluates the input task language and generates a set of task objects and argument

structures.

2. Thedesign phase
AVID’s design component parses the task objects and argument structures generated from the task

interpretation phase and converts them to design constraints and cost preferences. These design constraints
and cost preferences are generated based on the design dimensions and strategies we discussed in section I-
2 (detailed descriptions are in chapter IV). Based on these constraints, AVID explores the design space for
the input tasks and automatically generates a set of visualizations ordered from best to worst. These output
designs are expressed in a language that captures the visual structure of a visualization interface as well as
any underlying transform functions and active interactive components. Visual structure descriptions have
been developed in previous womdgckinlay 1986a, 1986b; Roth, 1990]. As was discussed in section I-1,

this thesis develops a language for capturing the functions and active components within a visualization

(detailed descriptions are in chapters Il and I11).

3. Therealization phase

AVID’s "realizer" component interprets design specifications generated by the design component and
renders an active visualization interface. This component makes layout decisions and assigns default values
to visual components that are left unspecified or unconstrained in the design specifications. Currently,
AVID's realizer is capable of interpreting most of the visualization technique primitives described in this
thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can
generate a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple

semantic zoom, SDM graphical manipulation operations, navigation operations, etc.
In chapter V we provide details on how our visualization techniques framework as well as design

dimensions and strategies are codified within our automatic design system, AVID, and how the design

search space is explored. In appendix E we perform a series of GOMS evaluations on the designs generated
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by our automatic system to ensure that its design rankings conform to cognitive, perceptual, and motoric
complexity.

-4  Previous Work

Thisthesis builds upon awide variety of previous work. In the following sections we divide work related to
this thesis into two classes: 1) work that pertains to the visualization techniques framework, and 2) work
that pertains to automatic visualization design (including design dimensions and strategies, as well as

system implementations).

[-4.1 Visualization Techniques Framework

There are two classes of visualization frameworks: functional frameworks and instantiation
frameworks. Some example functional frameworks include Tweedie’s DIVA researciwgedie, 1997] and
Card et al's frameworkGard, 1997, 1999]. These frameworks are high-level and are used to analyze and
classify existing techniques based on task, data, functionality, etc. Instantiation frameworks such as Data
Explorer, IRIS Explorer, and AVSfodlie, 1991], on the other hand, establishes a concrete language for
describing visualization techniques. Instantiation languages are very detailed and describe visualization
techniques completely. Because they are much lower-level compared to functional languages, they are also
less appropriate for the analyses and classification of techniques. However, instantiation descriptions,
unlike functional descriptions, are realizable or renderable (i.e. these descriptions can be easily translated
into an active visualization interface). Our framework differs from all previous frameworks because it
encapsulates both the functional and instantiation levels of descriptions. In appendix B-1 we compare our

framework to previous work.

The design of our framework is based on previous work in visual specification languacms [
1986], user interface languageisdey, 1990; Card, 1990; Mackinlay, 1990] and visualization frameworks
[Card, 1997, 1999].

[-4.2 Automatic Visualization Design

There are hundreds of rules that graphic designers use to generate visualizations based on their
intended task and the data they represent. In addition, there are also a large number of rules that can be
derived from psychophysical literature and from user testing of visualization systems. In the next sections
we present some background on automatic visualization systems and their internal heuristics which
primarily consists of graphic design rules. In addition we will briefly describe some of the work performed
in perceptual theory and visualization system testing that can also be used to support automatic

visualization design.
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1-4.2.1 Automatic Visualization Systems
Tufte [Tufte, 1983] and Bertin [Bertin, 1983] started the initial work in laying out a set of useful

graphic design rules and in characterizing the structure of visualization displays. In his book, A Semiology

of Data Graphicg Bertin, 1983], Bertin identified some of the most important issuesin visualization design

and exposed many of the important artifactsin their structure. Bertin's work was later refined by Mackinlay
[Mackinlay, 1986a, 1986b] who developed a syntax for expressing the components of visualizations,
effectiveness criteria to decide when and how to use the different graphical components and rules of
composition that specify how and under what conditions graphical elements can be combined. Mackinlay

then used the expressiveness and effectiveness criteria that he developed to implement a system called APT

that could automatically design a well-defined set of visualizations. Casner [Casner, 1991] later continued
Mackinlay's work by taking a task centered approach to creating visualizations. While Mackinlay
previously generated visualization designs solely based on the structure of the input data, Casner now also
considered user goals. Casner proposed decomposing a user task into a series of logical operators. These
logical operators were then replaced by more efficient perceptual operators where possible, and
visualizations were then created based on these perceptual operators. The SAGHRsiist&89(, 1994]

carried this area farther by developing a richer data representation for visualizations thus allowing a wider
and more complex set of abstract visualizations to be generated. The SAGE system also allowed users to
direct the automatic design system by entering in design preferences in the form of partial designs or a
previous favorite design.

Our work builds on these previous systems in two primary areas. First of all, these previous systems
only considered the issue of how data can be effectively mapped to graphics. In our work, we additionally
consider how the input data can be effectively processed before it is mapped and shown to users. Secondly,
these previous systems only generated static, non-manipulable visualizations. Our work allows automatic
design systems to generate interactive visualization interfaces so that users can navigate through the visual
representations and explore larger data sets than was previously possible.

1-4.2.2 Psychophysical Studies
Most of the previous work done on developing effectiveness and expressiveness criteria for automatic

design are based more on well established graphic design Tufess 1983, Bertin, 1983] rather than on
perceptual theory. This is because it is difficult to abstract from the low-level results contained in
perceptual literature and apply them to higher level perceptual operations that occur in visualization
analyses. A large cause of this complexity is due to the presence of a wide variety of graphical styles and
graphical properties that may be used. This makes it difficult to isolate the effects of each element and even
more difficult to determine the conflicts and relationships between the different graphical artifacts. Studies
of perceptual theory are further complicated by the external knowledge of graph reading that is assumed of
the user.
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Thus it is not feasible to define effectiveness and expressiveness criteria solely based on
psychophysical results. Doing so will produce an incomplete model of design and limit the generality of the
system. However that is not to say that psychophysical results cannot be used. Green [Green] showed
various instances in which psychophysical literature can be used to support some of Bertin's design
strategies and other instances in which the literature showed errors in those strategies. Senay and Ignatius
[Senay, 1994] are also beginning to apply psychophysical results to design decisions. In this work we will

also use perceptual theolyiyingstone, 1988; Treisman, 1982, 1988] to enrich our design strategies.

1-4.2.3 User Studies on Visualization Interfaces
There have been many user tests conducted to show the effectiveness of new interactions and visual

techniquesHlollands, 1989; Ahlberg, 1992; Plaisant, 1996]. These tests are usually conducted over a small
set of specific tasks and are used to illustrate the usefulness of newly introduced techniques and visual
representations. While such experiments are effective for demonstrating the utility of new ideas, they are

usually not broad or general enough for us to derive general design rules and strategies.

-5 Summary

The main contribution of our work is in adding data processing decisions into the automatic
visualization design process. This is in contrast to previous work in automatic design that only considered
mapping transforms. Our work expands the quality and breadth of designs that may be generated and
allows automatic systems to address a larger range of tasks as well as larger data sets. In addition, our work
also expands automatic design systems so that they may now begin to generate interactive interfaces. All of
this enhances human computer communication because a greater, improved, visual vocabulary allows
richer and more complex concepts to be conveyed. In addition, the effectiveness of AVID as a design
assistant is also increased because it is able to provide a larger range of “good” design alternatives and
choices to users. Our design system also culls out bad designs (i.e. task inexpressive designs or designs that
do not support the input task(s)) as well as duplicate designs. This saves users from having to devote
attention to these less appropriate visual representations while still having good coverage of the design

space.

In order to integrate data processing operations into automatic design, we developed three
technologies: 1) a visualization techniques framework, 2) design dimensions and strategies for measuring
the goodness of various visualization designs, and 3) an automatic design system (AVID) that is able to
automatically design visualizations based on a set of user input goals. Our visualization techniques
framework provides our design system with a set of primitives and composition rules from which it may
build and design visualization techniques. In addition to being a crucial component in our automatic design
work, our framework also stands as a contribution in its own right. First of all the framework simplifies the
creation and prototyping of visualization techniques by providing designers with a higher level API set.
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Secondly the framework provides a new design methodology that separates the design process into two
levels, functional and instantiation, and through these two levels promotes better functional design of
techniques. Finally our framework allows a designer to systematically explore the visualization techniques
design space and identify design holes within that space.

In addition to the framework, we also developed a set of design dimensions and strategies that help our
automatic design system pick the best or most effective design alternatives for the current task(s). These
dimensions and strategies can also be applied by human designers as a quick evaluation of their designs and
as yardsticks of comparison among multiple current designs. Finally we implement an automatic design
system based on our framework and design strategies. This automatic system shows that our theories are

sound and complete enough to be actualized.

Concurrent research is also underway for combining the graphics generated by automatic visualization
systems with text [Kerpedjiev, 1997]. Research in this area, while related, does not deal with the same
issues that are relevant to automatic visualization design. Rather, work in this area assumes the existence of
automatic text and visualization generation systems, and focuses instead on how best to integrate these two
communication media. Therefore, the advancements made by our research to automatic visualization

design will naturally feed into the combined text and graphical work as well.

-6  Walkthrough

This thesis is divided based on the three main technologies presented above. Chapters Il and I
describes our visualization techniques framework including primitives, composition rules and how new
techniques may be created by combining previous methods. Chapter IV contains a set of design dimensions
for measuring the effectiveness of visualization designs as well as a set of guidelines that discuss when it is
appropriate to use data transforms and mapping transforms. Chapter V shows how we integrated our
framework and design rules into an automatic design system. Chapter VI presents some concluding
thoughts on the work, discusses its scope, and presents a summary on its impact and how it can be
expanded in future work. The first 4 appendix sections (appendix A, B, C, and D) are organized to provide
additional information and examples on the material in chapters|lI, I, 1V, and V respectively. Appendix E
presents a series of GOMS evaluations on the designs generated by our automatic system and shows that
our design output does indeed conform to cognitive, perceptual and motoric complexity. Finally appendix F
discusses how we anticipate readability issues can be addressed using graphical and rendering functions.
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Chapter II:
Visualization Techniques Framework

A

Functional
Description

The goal of this thesis is to integrate data processing decisions into the design process of an automatic
visualization system. This work enhances the quality and breadth of visualization designs that can be automatically
generated as well as expands the range of tasks that can be addressed by an automatic system. In order to integrate
data processing operations into automatic design, we must first understand what data processing operations are
available, how they can be applied to data elements within a visualization, and how they may be combined together
with data-to-graphical mapping operations’. To achieve this, we analyze existing visualization systems, and develop
a framework or layer of abstraction for understanding current visualization techniques, the types of functions they

are composed of (including data and mapping functions), as well as how they are built, combined, and used.

Creating this framework, however, is a difficult task. The widespread development of new visualization
techniques in recent years, due to significant increases in information processing demands, have left them
fragmented, making it difficult and expensive to combine, customize, or generalize their functionality. Visualization
systems are often written for a variety of domains and exist at many different levels of granularity. In addition, they
provide awide range of functions that operate on such disparate objects asinputs devices (scroll-list, bounding-box),
data concepts (houses, people), data attributes (selling_price, num_rooms), graphical objects (marks, interval-bars)
and graphical properties (color, shape). Techniques that appear to be physically identical may share very little
functional similarity and vice versa.

In this chapter and the next we present a visualization framework that models the functional operations

(including data and mapping operations) within various visualization techniques as well as the relationship of these

! Mapping operations capture how data elements can be mapped to graphical elements, so that complex cognitive processing
tasks can be offloaded onto our perceptual system. Previous automatic systems only considered the use of mapping operations.
This thesis expands automatic design to include both mapping and data functions.
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functions to other visualization elements such as input-devices, data concepts and graphical objects. This framework
alows usto effectively create and customize visualization techniques as well as enables usto integrate a large set of
powerful functions into our automatic visualization design system, thereby increasing its communicative and design
effectiveness. Note that rather than only capturing data and mapping operations, as is needed by our automatic
designer, we decided to establish a wider framework that covers all visualization design functions (i.e. including
data, mapping, graphical and rendering functions). This broader framework is flexible, and provides us with a better
understanding of the role that data processing transforms may play in design, not only with mapping functions, but
also with graphical and rendering operations. This broader framework is also easily extensible so that graphical and

rendering visualization designs can be integrated into automatic systemsin the future.

Our visualization techniques framework stands as a contribution of its own and can be used to characterize and

capture the state of visualization techniques today. Contributions of our framework include:
1. Visualization function primitives: Our framework presents a set of primitive functions that commonly
occur in visualization techniques. These primitives form the basic building blocks of our automatic design
system. In addition they give us a better understanding of the class of tasks that can be achieved by different
visualization methods and allow us to consider such methods at the same level of granularity (by decomposing
them down into the same set of primitives). We show in section 11-3 that this set of primitives can express a
wide range of visualization methods. These functional primitives can aso provide the basis for establishing a

visualization techniques library which will simplify the process of creating interactive visualization systems.

2. Composition rules for merging visualization primitives and exploring the design space: Once we have
defined a set of primitives, we specify rules that determine how these primitives can be combined to form more
complex behaviors. These composition rules are very powerful because they allow us to generate an infinite set
of visualization techniques from a small set of primitives. By combining together components of existing
visualization methods, we can adapt these methods to serve in new domains, devise interesting new ways of
achieving tasks, and begin exploring and expanding the design space of visualization techniques.

3. Visualization independent specification of visualization techniques. Our framework provides a general
language for specifying visualization techniques that is not tied to any particular visual representation. Once
specified, a visualization technique may be easily attached to a variety of visualization designs. Such flexibility

increases the effectiveness with which we are able to generate, prototype and test visualization techniques.

4, New design methodology for analyzing the interactive design space: Our framework presents a two-level
design methodology for creating visualization techniques: the functional level and the instantiation level. The
functional level isamore abstract level of characterization that allows us to group, categorize, and reason about
techniques based on their functionality and application to tasks. The instantiation level, on the other hand,

characterizes techniques based on a set of low-level primitives. At thislevel we capture all the specificswithin a
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technique so that based on the instantiation description we can fully generate a visualization interface. Because
the instantiation description is detailed and low-level, it is difficult to make generalizations about the various
visualization techniques, unlike in the functional level. This low-level description, however, is necessary for our
automatic design system because it must be able to describe and generate instantiable or realizable designs. In
addition, primitives at the instantiation level form a useful visualization API set. Our framework describes both
the functional and instantiation levels as well as presents a systematic process of how to move from a functional
description into an instantiable description. This is an advance over previous frameworks that only considered
either one of these levelsin isolation. Refer to appendix B-1 for a more complete discussion of the differences

between our framework and previous work.

In this chapter we describe the functional level of our design methodology. In particular we show how
visualization techniques can be functionally decomposed into two primary components, object definition and
transformation, as well as how these two-component techniques can be combined to create interesting behaviors.
Our automatic design system later uses this object definition/transformation framework (ODT framework) to build
and generate visualization designs that utilize both data processing and mapping functions. To illustrate the
generdlity and applicability of our framework, we will aso show how it can be used to map out part of the
visualization techniques design space, and give some interesting observations made from analyzing that space.
Readers who are only interested in the automatic design aspects of this thesis can skip section 11-3 of this chapter as
it pertains to the generality and scope of the framework rather than to its use in our automatic system. By using our
framework to explore current and future techniques, however, we show that it is not only useful to our central thesis
in automatic design but also generally applicable to the analysis of a large range of techniques (some of which are
not currently captured by our automatic design system). The next chapter will explore visualization design at the
concrete instantiation level, as well as evaluate the entire framework based on completeness, coverage, and
practicality.

lI-1 Visualizations & Visualization Techniques

A visualization is agraphical rendering of a set of data attributes. The process of creating a visualization begins
with the data transformation phase as is shown in Figure I1-1. Data transforms are used to calculate derived results
or summarize attribute values within a data set. For example we can use a subtraction data transform to compute the
duration that a house stays on the market from the date_on_market and date_sold house attributes. Alternatively we
can use the mean data transform to summarize the selling price of al housesin the Shadyside area. Data transforms
can also be used to compute new meta-data from an existing data set such as the number of times a particular object
appears, or the alphabetical or numerical ordering of a set of values. Data transforms exist solely in the data realm
and are used to generate new data concepts and values based on the existing data set.
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Figurell-1: Visualization generation process consisting of four transformation classes (data, mapping, graphical, and
rendering) acrossthree different realms (data, graphical, output media)

Once we have processed all the necessary data, we proceed to the mapping phase where data concepts are
mapped to graphical objects and data attributes are mapped onto graphical properties. For example, the visualization
in Figure l1-2a contains four mapping transforms. An object mapping transform represents all house concepts with
graphical marks, and a set of attribute mappings link different data attributes of the house data concepts such as
selling_price, neighborhood and date _sold to different graphical properties of the mark graphical objects such as x-
position, color, and y-position respectively. At the end of the mapping phase we would have constructed a graphical
scene representing the data we want to show in the visualization. A graphical scene is an abstract model of a

boundless space, capturing the position, relationships and appearance of all visual objects (e.g. marks, axes, legend,

labels) within avisualization.
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Figurell-2: Example visualization with house data. Each mark represents a house data concept. The x-axis shows
date sold; the y-axis shows sdlling_price; and color shows neighborhood.
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Graphical transforms are used to change the appearance of objects within a graphical scene. For example in
Figure I1-2b graphical transforms are applied to several selected or focus graphical objects from Figure 11-2a so that
they appear larger and more salient than the other objects in the visualization. Note that these size enlargements do
not correspond to any information in the data set and thus cannot be appropriately shown with mapping transforms.
Graphical transforms can also be used to change other graphical properties (e.g. color, shape, position) and other

graphical object classes such as legends, axes or even the entire chart region.

Finally in the rendering process, abstract graphical objects in the graphical scene are transferred onto a bounded
output media such as paper, a physical 3D model, or a CRT screen. Figure 11-2 shows a rendering of a visualization
design on paper. Different media types constrain the classes of techniques that can be used as well as their
effectiveness. In this thesis we will only consider the use of CRT screens, thus in our work rendering transforms
describe for each screen pixel, the part of the graphical scene to which it corresponds. Note that rendering
transforms are the only transform class that operates on physical screen space. All other transformation classes
operate on abstract objects such as data concepts and data attributes or graphical objects and graphical properties.
The visualization generation process presented here is based on previous work by Card et al.[ Card, 1999] and Chuah
& Roth [Chuah, 1996]. These four transform classes in the visualization generation process (Figure 11-1) form the

basis of visualization techniques.

User initiated or

Designer default Transformations Goal
! Data Derived
! Transform Summary
v Meta-data
Object Definition Mapping Object
all Enumeration | operational Transform Attribute
i set > Scope ch.
Functional Desc. Graphical Feedback
Transform Readability
Rendering Feedback
Transform Readability
-
~ ~
Phase 1: object definition Phase 2: transformation

Figurell-3: A visualization techniqueis defined in thiswork to contain two components (object definition and
transformation). Object definition can be achieved through enumeration or functional description. Transformation can
be achieved through data, mapping, graphical, or rendering functions. The transformation functions can be further
divided based on their goals.

In this thesis, a visualization technique is defined as having two components, an object definition component
and a transformation component (Figure I1-3). In the object definition component, we define a set of elements that
can be from any of the three realms (data, graphical or output media) in Figure 11-1. For example, an interaction
may operate over a set of house records, a set of graphical marks and bars, or even a display space within the
visualization window. The resulting set of elements from the object definition component (operational set) is
subsequently processed in the transformation component according to our current goals. These transform functions
can be used in a multitude of ways to solve different tasks, thus, apart from specifying the transformation class it is
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also useful to capture the general goal(s) or effects of these visualization function primitives. The goals of data and
mapping transforms, which occur at the start of the visualization generation process, are usually to prepare and set
the contents of a visualization. The goals of graphical and rendering transforms, which occur at the end of the
visualization generation process, are to provide users with feedback on a visualization technique, or to enhance the

readability of the visualization content defined in the data and mapping transform stages.

Visualization techniques allow us to create new visualization designs or modify existing ones. A set of mapping
transforms and at |east one rendering transform are requisites for creating a new visualization. These transforms are
necessary to convert a set of data values to a rendered visual representation of that data. On the other hand data
transforms are only necessary if the data set is not in the desired state to begin with and must be further processed.
Graphical transforms are needed only when there are readability, feedback or rhetorical requirements. While data
and graphical transforms operate within a single realm, mapping and rendering transforms operate across realms,
expressing relationships between different object classes. Mapping transforms relate data concepts to graphical
objects and rendering transforms relate the graphical objects within a graphical scene to an output media such asthe
CRT screen. Apart from data, graphical, or media objects, a visualization technique may also be attached to input-
devices that allow end-users to interactively alter a technique’s functionality or results even if only in a limited way.
Techniques that are attached to input-devices are commonly referreihtier @ive techniques. Subsequently we

describe the two visualization technique components: object definition and transformation.

[I-1.1 Object Definition Component

4 )
MALAGOMS 500 SELLING_PRICE _330000.00 M ROt T A R
(a) Before any data attribute constraints are set (b) After data attribute constraints are set

Figurel1-4: Dynamic Query Sliders applied to house data. Each bar encodes a house data concept; x-axis encodes
date_on_market and date_sold; y-axis encodes house_address. There are two dynamic query diders[Ahlberg, 1992], one
allows usersto place constraints on the num_rooms data attribute and the other allows usersto place constraints on the

selling_price data attribute. Houses that do not fulfill constraints become non-visible asin (b).
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The object definition component may be initiated by a user or it may be preset as a system default by the
designer of the technique. For example, the dynamic query slider technique [Ahlberg, 1992] alow users to search
for data elements by placing constraints on their attributes. Constraints are placed by setting data attribute threshold
values through the use of input-devices such as sliders (e.g. as in Figure 11-4). Once the constraints are set, only
those data concepts that fulfill the search constraints are shown. Thus the dynamic query slider technique lets users

manually initiate object definition by controlling aslider.

The visualization system shown in Figure 11-5, on the other hand, uses system default objects. Figure I1-5 shows
a campus map of Carnegie Mellon University with a “Next Lot” button. Pressing this button will cause one campus
parking lot to be shown in red. Pressing the button again will cause a different campus parking lot to get highlighted
and so on. The particular parking lot to highlight is preset by the system designer. Morewood Parking gets

highlighted first, followed by the Parking Garage, etc.
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Figurell-5: Map showing the different parking lotsat CM U (borrowed from http://www.cmu.edu). Clicking the
next-lot button will cause a predefined parking lot to get highlighted red (e.g. morewood parking). Subsequent pressesto
the next-lot button will cause subsequent parking lotsto get highlighted.

There are two primary object definition methods: 1) enumeration or 2) functional description as is shown in
Figure 11-3. The highlighting technique used in Figure 11-5 performs object definition through enumeration because
the designer of the graphic explicity named each and every car park lot on the map. The dynamic query slider
technique on the other hand, defines the operational set through functional description. |.e. the object set is captured
through a mathematical function applied to object attributes rather than by explicit naming. For this technique, the

function used is a simplgreater-than or less-than threshold operator.
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[I-1.2 Transformation Component

After the operational set has been defined, we manipulate and modify it in the transformation component. There
are four classes of transformations, corresponding to the four phases of the visualization generation process: 1) data
transforms, 2) mapping transforms, 3) graphical transforms, and 4) rendering transforms. Previous automatic design
systems only considered the use of mapping transforms. In this thesis we expand the automatic design process to
consider data processing transforms as well. However we leave consideration of graphical and rendering transforms
in automatic design for future work. By capturing all four transformation classes in our framework, however, we can
more clearly and completely see the roles that data and mapping functions can play in visualization design and in

solving data analysis problems.

1. Data Transforms

There are an infinite number of ways with which we can process the information within adata set. Asaresult a
data set may not always contain information that is of interest to us in a form that we desire. By using data
visualization techniques we may direct the system to generate derived data attributes that fit our task requirements.
Data visualization techniques can commonly be found in spreadsheet programs and data analysis software where a

set of different mathematical computations can be applied to selected values in the interface.

2. Mapping Transforms
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Figurell-6: Visualization system that allows re-mapping of data attributesto the two positional axes. Each mark in the
visualization represents a house data concept. Currently the x-axisis set to encode date_sold and the y-axisis set of encode
selling_price.

Mapping transforms are most commonly used to encode data concepts and data attributes with graphical

objects and graphical properties. To create a new visualization, one or more mapping visualization techniques are
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required. Mapping techniques commonly operate on all the data conceptsin the data set and the input transformation
parameters (e.g. selling-price, neighborhood, date-sold and x-position, color, y-position) are predefined by the
visualization designer. |.e. object definition is achieved through designer default functional description. It is
however not necessary for all the mapping transform arguments to be predefined. For example the visualization in
Figure I1-6 has option menus attached to both the x-axis and y-axis of the visualization so that users may pick
different attributes to re-map to the two axes. Apart from mapping data to graphics, mapping transforms can also be
used to change the scope of existing data-to-graphical encodings. For example we could apply the object and
attribute mappings in Figure 11-6 to only the pink objects by using a scope mapping transform.
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Figurell-7: TableLens System [Rao, 1994] (borrowed from www.inxight.com)

Mapping transforms can also be used in more elaborate ways. The PAD++ [Bederson, 1994] and the TableLens
[Rao, 1994] systems use mapping transforms to achieve “semantic zooming”. In these systems, the graphical
representation classes (ewark, text, bar) used in the mapping transforms change based on available screen space.
When more screen space is available a more accurate graphical representation is used to show the data and when
less space is available a visually simpler but less accurate graphical representation is used instead. For example, the
TableLens system (shown in Figure II-7) ubass to represent the data concepts when less space is available and
text (in addition tobars) when the space gets magnified.

3. Graphical Transforms

Graphical transforms are commonly used to provide feedback or to increase the readability of a visualization.

The most common use of graphical transforms is for manipulating un-mapped graphical property values to improve
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the readability of a visual design (e.g. layout operations) or for providing simple feedback that reflect state changes
(e.0. feedback indicating that a set of objects have been selected). Graphical transforms may also be used as a
rhetorical device, e.g. enlarging the objects currently under discussion. Note, however, that graphical transforms are
not limited to un-mapped graphical property values. When used to change mapped graphical properties, however,
they may distort interpretation of the data set as was discussed in Chuah et al. [ Chuah, 1995], thus such techniques
should only be used with extreme caution and adequate user feedback.
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Figure11-8: Examplerendering visualization techniques

4. Rendering Transforms

Like graphical techniques, rendering techniques are also used to give users feedback or to improve the
readability of avisualization. Many interactive systems today use rendering transforms in interesting ways to distort
the graphical scene so that users may focus on particular parts of the scene while maintaining context of the
surrounding areas. Some examples include the Perspective Wall [ Mackinlay, 1991] (shown in Figure 11-8a), Fisheye
Lens distortion [Furnas, 1991] (shown in Figure 11-8a), and Table Lenses (shown in Figure 11-7). Such techniques
improve the readability of visualizations by reducing object occlusion and output density around the focus objects so
that their visibility is increased. Apart from distortion techniques, rendering transforms are aso used to achieve
more common navigation techniques such as zoom and pan. Appendix F discusses rendering transforms in greater
detail and show how they can be used to solve readability problems.

In summary, a primitive visualization technique consists of two components: an object definition component
and a transformation component (shown in Figure 11-3). The object definition component may be initiated by the
user or be set as a system default. There are two ways in which objects may be defined, either through enumeration
or functional description. Once defined, the selected visuaization elements may be transformed using data,
mapping, graphical, or rendering functions. These general transform classes can further be categorized based on
their goals or effects.
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We will build upon this object definition/transformation (ODT) model in this chapter and the next. In chapter V
we show how we apply this ODT model in our prototype automatic design system and how this model allows us to
create visualization designs that contain both data and mapping transform functions. The ODT model, however, is
useful beyond our automatic design system because it enhances our ability to create, and customize visualization

techniques, as well as enables us to explore and organize the visualization techniques design space (section [1-3).

-2 Composition

In the previous section we presented a simple ODT model which decomposes a visualization technique into a
single object definition operator and a single transformation operator. Many common visualization techniques,
however, are more complex and may combine multiple object definition and transformation functions. For example,
consider a simple aggregation tool. Aggregation or binning is commonly used for dealing with large data sets. When
there are many data concepts, it is difficult to assimilate and analyze all of the data simultaneously. To reduce the
data set to a more manageabl e size, we combine multiple data concepts together and represent them through asingle
“aggregate” object. There are a wide variety of aggregation meti@mldsfein, 1994; Chuah, 1998]. Here we
consider a simple aggregation technique that lets users select a set of objects from a visualization display through a
bounding-box, and then creates a new aggregate object (summary object) containing the selected set. This
aggregation process is shown in Figure 11-9. First the user sdertiston-100A, emerson-266, kipling-5454 and
morewood-508 using abounding-box (Figure 11-9a). These objects are then grouped to form an aggregate object

(aggregate-object-0) that appears at the top of Figure 11-9b.
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Figure11-9: Simple aggregation technique. Text encodes house_address. By using thistechnique users get to select a
set of house data concepts using a bounding-box and aggregate or group them together to form an aggregate object (e.g.
aggregate obj_0). Unlike techniquesin the previous section, this aggregation method utilizes multiple transformation
methods including a graphical transform to highlight the selected objectsand a data transform to summarize the
underlying data concepts of the selection.
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Object definition through a bounding-box fals into the user-enumeration object definition category. Once
selected the set of data concepts are summarized using the group-objects data transform that maps a set of data
concepts to one representative group object as is shown above. Note that in addition to the summarization (group-
data) data transform, it is useful to give users some feedback as to which objects are being summarized. This is
achieved by adding a graphical transform to highlight the selected objects, in addition to the summary data
transform. In Figure I1-9b, for example, the aggregated objects are highlighted red. Such multi-transform techniques
are made possible through composition operators that allow us to combine and generate many rich and interesting

interactive behaviors from simple two-operator techniques.

There are four main classes of composition: 1) object definition composition, 2) transformation composition 3)

producer-consumer composition, and 4) partition composition.

[I-2.1 Object Definition Compaosition

Object definition composition is used when we want to apply the same transformation methods to combinations
of multiple object definition sets. Object sets are combined using set-operator functions. Set operator functions such
as union, difference and intersection take in one or more object sets as input and produce a single output set based

on the membership of the input sets.

For example consider the multiple-constraint dynamic query slider technique shown in Figure I1-4. This
interface has two sliders, one constrains the selling_price attribute and the other the num_rooms attribute. These two
primitive techniques can be expressed using the object definition/transformation model (ODT model) asis shown in
Figure 11-10a. For a complete description of the diagrammatic notations used in these ODT diagrams refer to
appendix A-1.
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(a) Before composition (b) After composition

Figure11-10: Object definition composition for the multiple constraint dynamic query technique shown in Figure
I1-4. The diagrammatic conventions and notations used in the specificationsin this chapter and the next are described in
appendix A-1.
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Expressing the two constraint techniques separately as in Figure 11-10a, does not capture the relationship
between them that requires both selling_price and num_rooms constraints to be fulfilled simultaneously. To express
this relationship we must perform object definition composition and apply an intersection set-operator function to
combine the two constraint sets asin Figure I1-10b. This will cause only those objects that pass both constraints to
be graphicaly transformed. Set-operator functions are used to further refine selected object sets, thus they are
considered part of the object definition component.

Radio-buttons Sider Sider Sider

Figurell-11: HomeFinder system [Tweedie, 1994] (borrowed from http://infoeng.ee.ic.ac.uk/~lisat/LisaDir/att.html).
There arefive single-axis aligned chartsand a mark in each chart represents a house data concept. This system uses
object definition composition to integrate the object sets selected by thethree didersand the single set of radio buttons.
We then count the number of times a house appearsin the combined set, and use this count_attribute to set the color for a
given house concept.

The type of object definition composition shown in Figure 11-10 is quite common. It also occurs in the
HomeFinder system [ Tweedie, 1994] depicted in Figure 11-11. In the HomeFinder system each house is represented
by a mark in each of the charts. There are 5 charts, each with a different house attribute encoded on the y-axis. The
x-axis shows the number of houses that have a particular attribute value. Users get to place constraints on different
house attributes using sliders and radio buttons. The marks within each chart are then colored based on the number
of constraints passed by the house data concepts they represent. The specification for this method is shown in Figure
I1-12a. There are severa functional description operators in this diagram, each corresponding to a data attribute
constraint that is controlled by the sliders or radio buttons. Each of these constraints defines a set of objects and
these sets are combined together using the union-repeat set operator. The union-repeat operator is similar to the
union operator except that duplicate objects are not deleted. The combined set is then passed through a count data
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transform that calculates the number of times a house concept appears in the input set. The results of the count
function are then associated with each house data concept by using the assign data transform operator?.

Using a separate mapping specification (Figure 11-12b), we encode the count derived attribute with the mark
color property in each of the charts within the HomeFinder visualization (Figure I1-11). A separate specification is
used here because the mapping parameters do not change based on changes in the threshold constraints (i.e. the
count attribute is always mapped to color irrespective of changes in the threshold constraints). Combining the
mapping transform with Figure 11-12a would create a new mapping each time we change the house selection
congtraints, and thisis not the effect we desire.

:::BgdioButtq-[i:\,‘:
\\ Functional Desc.|
@
S||der Count derived
___|Functional Desc.| | attribute
»»»»»» 2
<_Slider @
Pttt - X Data Data . .
| Functlor;al Desc. Se_t-operatort Transform Transform Funct!or.]al R Mapping
(©) (union-repeat) (count) (assign) Description| | Transform
"= | Functional Desc.| | .
@ Count-derived-
attribute
Slider
“<_ |Functional Desc.| |
)

(a) In this specification we compute the count-derived-attribute which (b) In this specification we map the count-derived-
stores the number of times an element appearsin the selection set attribute data attribute, which we computed in

produced by the union-repeat operator Figurell-12ato the color graphical property in the
HomeFinder Visualization.

Figurel1-12: Functional specification for the HomeFinder system shown in Figurell-11.

We can also apply object definition composition to primitive techniques that have different object definition
methods. For example consider the dynamic query slider technique that uses functional description object definition
and the object selection method that uses enumeration object description. The ODT diagram for both these

2 We show the assign operator here so that we may illustrate how the count results change the color graphical mappings of the
marks within the visualization. In general however, we leave out assign operators in most of the other technique specifications in
this chapter because they do not play an important role in capturing the functional essence of a technique. In the next chapter
where we discuss the visualization technique instantiation level, we detail all the instances where assign operators are added.
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techniques are shown in Figure I1-13a. We compose both these techniques using the intersection set operator asis
shown in Figure 11-13b. The technique shown in Figure I1-13b only highlights objects that are both enumerated by
the user through bounding-box selection and that fall within the functional constraints of the dynamic query slider.

Bounding ot -
N O meration |- SraPhicd
Transform
Selection
+

Dynamic Query
1St Finiond Desc || SrePticd
Transform

Set-operator | | Graphical
(Intersection)| |Transform

_ (a) Before co_mposition. (b) After composition
The dynamic query technique allow usersto (the object setsfrom both techniques are combined using the
search for data elements by placing constraints intersection set-operator)

on a single data attribute by using a dider
input-device. The selection method allows users
to enumerate a set of graphical objectsusing a
bounding-box. The selected objectswill then be
color-highlighted to show that it has been
selected.

Figure11-13: Object definition composition on the object selection and dynamic query dider technique. The resulting
technigue ONLY colorsthose objectsthat are selected within the bounding-box as well as passes the constraint set on the
dider.

[I-2.2 Transformation Composition

Unlike object definition composition, which combines two or more object definition sets and applies the same
transformation(s) to the resulting set; transformation composition applies different transformation functions to the
same object definition set. For example, consider the object selection technique outlined above (Figure 11-133).
Suppose that in addition to highlighting the selected objects red, we also want to enlarge them. To achieve this effect
we apply two different graphical transforms to the selected object(s) asis shown in Figure 11-14b.

fffffff |

Boundlngbox ) T Graphical

e Graphical ‘Bounding-box: Transform
Transform

+

Graphica
(Bpunding-qu)- Graphical Transform
T s Transform

(b) After composition

(a) Before composition

Figurell-14: Transformation composition for two different selection techniqueswith different visual feedback effects.
Theresulting technique colors and enlarges the objects selected by the bounding-box.

We can also perform transformation composition on different classes of transform functions, e.g. a graphical
transform and a data transform. For example in the simple aggregation technique described in Figure 11-9, we
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indicate the objects that have been selected for aggregation by highlighting them, in addition to performing the data
grouping. In this technique, transformation composition is applied to the graphical transform for highlighting the
objects and the data transform for aggregating the objects asis shown in Figure 11-15b.

Grotica
Transform

Selection

+

Boundingbox:  Aggregation
Data Transform
(group-objects)

(a) Before composition

Enumeration

Graphical
Transform

Data Transform
(group-objects)

(b) After composition

Figurell-15: Transformation composition for the ssimple aggregation technique shown in Figure11-9.
Transformation composition isused here to combine a data transform for creating the aggregate object aswell asthe
graphical transform that highlightsthe objectswithin the aggregate, red.

[1-2.3 Produce-Consumer Composition

Producer-consumer (P-C) composition alows one technique (producer) to generate the arguments or
information needed by another technique (consumer). An example is the modified value-painting technique [Eick,
1992]. This query method allows users to select a set of objects with an input-device. Chosen data attributes of the
selected objects are then summarized and then used to functionally define and highlight another set of objects. The
result of such acomposition is shown in Figure I1-16b where a set of objectsis user enumerated through a bounding-
box. A chosen data attribute (e.g. selling_price) of the object set is then summarized using the mean data transform.
The calculated mean value is then passed to a subsequent functional description operator that selects all objectsin
the visualization with data attribute values less than the computed mean and then highlights them.

Bou nding- box

Selling_price

Data Transform
(Mean)

+

Functional
Description

Graphical
Transform

Before composition

>>>>>>>>>>>> - Data Transform
{ Enumeraton } -
(Mean)

Selling_price

Selling_price

Computed mean value

Functional Graphical
Description Transform

After composition

Figurell-16: P-C composition. The computed value from the producer technique (i.e. mean selling_price) is piped
into the object definition component of the consumer technique and isused to select other objectsin the visualization
based on the computed mean selling_price.

For example, Figure 11-17 shows the names of a set of house_owners. By using the modified value-painting

technique, we may select a set of house _owners (Ford-Harrison, Cosmatos-George-P, and Collins-Pauline). Once

selected, the technique computes the mean selling_price for the houses belonging to the selected house owvers.
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Finally the technique highlights all the selected house_owners as well as all other house_owners with houses costing
less than the computed mean selling_price. Note that unlike the previous two composition classes, PC-composition
techniques do not share common object definition sets nor transformation functions.

" Amurri—Franco” "Garcia—Andy" " Amurri-Franco” "Garcia-Andy”
"Corraface—George” "Figgis—Mike" "Corraface—George” "Figgis-Mike"
"Conti-Tom" "Funicello- Annette” "Conti-Tom" "Funicello- Annette”
"Clement-Dick" "Chelsom—Peter” "Clement-Dick” "Chelsom—Peter”
"Cornell-John" "Florea—John" "Cornell-John” "Florea—John"
"Cleese—John" "CGarr—Teri” "Cleese—John” "Garr—Teri”
"Fletcher—Suzanne” "Ford—Harrison” "Fletcher—Suzanne” "Ford—Harrison"
" Allen-Karen” "Cosmatos—George—P." " Allen—Karen” "Cosmatos—George—P."

" Alda- Alan” " Collins—Pauline” " Alda-Alan” "Collins—Pauline”

"Ganus—Paul” " Anderson—Melody” "Ganus—Paul” " Anderson—Melody”

" Akan-Tarik” "Chapman—Graham” " Akan-Tarik” "Chapman-Graham”
"Coolidge—Martha" " Annese—Frank” "Coolidge—Martha” " Annese—Frank”
"Christian—Claudia” “Fitzgerald—Tara" "Christian—Claudia” "Fitzgerald-Tara"

" Apted —Michael” "Fincher—David” " Apted—Michael” "Fincher—David”

"Garrett—Leif” "Gauthier—Vincent” "Garrett—Leif” "Gauthier—Vincent”

"Connery-Sean” " Abrahams-Jim" "Connery—Sean” " Abrahams—Jim”
& @
(a) Bounding-box used to select set of house_owners. In (b) Selected house_ownersaswell ashouse_ownerswith
this example, Ford-Harrison, Cosmatos-George-P, and houses costing less-than the computed mean

Collins-Pauline have been selected. selling_price of the selected house_owners get

highlighted red.

Figurell-17: P-C composition applied to the modified value-painting technique. Text here encodes house_owners.

[I-2.4 Partition Composition
The fina class of composition, partition composition, is applied when the object definition component of a

visualization technique generates more than one set of objects, and we want to transform each generated set

differently.

%)
=
Q
@
Q.
Q

RN —— Graphical | 1T :
k Functiond Traar‘1psform K Functional | Foausse | SraPhica
Description Descripti Transform

(Add) escription (Add)

{ Sider +
\ Functional Graphical Conte st | Craphical
Description Transform @—» Transform
(Subtract) (Subtract)
(a) Before composition (b) After composition

Figurel1-18: Partition composition applied to the dynamic query dlider technique. Here we use partition composition
so that we can enlarge the focus objects (i.e. the objectsthat passthe dider constraint) and ssmultaneously contract
objectsin the context-set (i.e. objectsthat did not passthe dider constraint).

For example we may alter the dynamic query technique slightly so that it enlarges objects that pass the slider

constraint and contracts objects that do not. In this case the object definition component generates two object sets,
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the focus set and the context set and each of these partition sets are transformed differently, i.e., the focus-set has its
size increased and the context-set has its size decreased (Figure 11-18). Other common ways for partitioning sets are
described in Goldstein et al.[ Goldstein, 1994].

[1-2.5 Summary

There are four ways in which primitive techniques may be composed. Each composition type is differentiated
by the number and occurrence order of the object definition (OD) and transformation (T) components. Object
definition composition, for example, can have multiple object definition components (n OD) followed by one
transformation component (T); transformation composition has one object definition component (OD) followed by
multiple transformation components (n T); P-C composition has multiple object definition/transformation
components concatenated serially (n [OD + T]); and finally partition composition has one object definition
component (OD), which generates n sets of objects which are subsequently transformed. This information is
summarized in Table I1-1 below.

Composition Type

Object Definition (nOD +T)
Transformation (OD + nT)
Producer-Consumer n(OD + T)
Partition (OD + n[set + T])

Tablell-1: Summarization of composition types

Even though the four different composition types are described separately in this section, we can apply
multiple composition methods simultaneously within the same visualization technique. For example, we may use
both object definition composition and transformation composition to apply different object sets to multiple
disparate transformation functions. We may subsequently combine the technique through pc-composition and

partition composition to additional object definition and transformation functions.

In some cases, the same visualization technique effects may be achieved both with and without composition.
For example, suppose we want to highlight objects red either by selecting a set of objects through abounding-box or
through a dynamic query slider. One way to achieve this is to use object definition composition to union up the
selected sets of both techniques and then highlight this combined set red (Figure 11-19a). Another possibility is to
leave both techniques separate asin Figure 11-19b. The more appropriate specification depends on our intentions and
our conceptualization of the technique. It is usually appropriate to compose two techniques if they are related in
some manner, for example, if they are updated by the same input-device event. For example, suppose we want color
highlighting to only occur on a bounding-box release event, then we would compose the two techniques because

they are both triggered by the same input-device and we want to capture this relationship. On the other hand if the
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two techniques are not conceptually related, then they should be expressed separately. Composing techniques that
are not conceptually related is a misrepresentation of their functionality.

(ColoD ‘Bounding-box’ (Colod
Gratica
Set-operator| | Graphical

Functiona (Union) Transform
Description [
/ ¢ Slider (Colo>
Grapica
Transform
~ (a) Composed technique. (b) Non-composed technique.
Techniques should be composed when they are Techniquesthat are not related should have separate
conceptually related. specifications.

Figurel1-19: Two different technique descriptionsthat achieve the same effect. Both techniques highlight
obj ects selected by the bounding-box or the dider, red.

This issue of multiple specification solutions extends beyond the simple choice of whether to compose
visualization primitives or not. More generaly we can sometimes arrive at identica technique
functionalities by using different combinations of primitive functions and composition operators. Which
design solution is most appropriate would depend on secondary goals such as:

«  How does each solution fit with our conceptual model of the technique.

e Which design is more general.

e Which design is more computationally efficient.

Theoretically, compositions allow us to generate an infinite number of designs because we can keep
adding more and more operators onto the visualization technique specification. Practically however, the
space we are exploring is not infinite. Techniques are only useful when we transform the visualization data
and graphical objectsin simple and fairly well understood ways. Users have alimited area of attention and
alimited amount of cognitive resources. If too much of a visualization is changed, users may miss out on
many of those changes; or if the changes are too complex, users may misunderstand or misinterpret the
results. In the next section we start exploring the visualization techniques design space using the ODT
model developed thus far. From this analysis we will see that many common visuaization techniques
contain very few composition operators and some have none at all. Note that the subsequent section may be
skipped if readers are only interested in the use of the ODT model with respect to automatic design. Section
I1-3 explores the generality and coverage of our visualization framework rather than it relates to automatic
design.

lI-3 Visualization Techniques Design Space

In this section we show the generality and applicability of our framework by using it to evaluate

current visualization designs as well as to make meaningful comparisons across techniques in different
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visualization systems. Specifically we use our framework to evaluate, compare and classify a set of
common visualization techniques, found in Card et al.'s compilation of current visualization systems
[Card, 1999] andIEEE’s Symposium on Information Visualizat{@@blel1-2, Tablell-4, Tablell-6, Table
[1-8). Some of these visualization systems (e.g. the TableLenssystem) utilize multiple visualization
methods, in which case, we represent each of the methods separately in our analysis. Certain other common
visualization methods (dynamic query sliderand painting) appear in multiple visualization systems, in
which case, we only describe these base methods once. It is also important to note that while some of the
systems analyzed have novel ways of representing and mapping data to graphics, we do not capture these
new graphical representation methods here. A representation framework for visualization has been
developed previously by Mackinlay and Roth [Mackinlay, 1986a; Mackinlay, 1986b; Roth 1920d our
framework defines functional operators that operate on the objects within these previous frameworks. To
capture new types of representations we need to focus on expanding the representation framework and that
is not the focus of this thesis. Thus only functional techniques and not systems with new graphical

representations are shown in our analysis tables.

User initiated or
Designer default Transformations Goal
, Data Derived
H Transform Summary
vy Meta-data
Object Definition Mapping Object
all Enumeration operational Transform Attribute
_ et > Scope ch.
Functional Desc. Graphical Feedback
Transform Readability
Rendering Feedback
Transform Readability
/
—~ ~
Phase 1: object definition Phase 2: transformation

Figure11-20: The two componentsthat form a primitive visualization technique — object definition and
transformation

In the following sections we organize visualization techniques according to their main transform
classes (i.e. data transform techniques are grouped together (Table I1-2), as are mapping (Table I1-4),
graphical (Table I1-6), and rendering (Table 11-8) techniques). Some techniques may contain multiple
transform classes in which case we repeat their specification in each group they belong to. Through this
analysis we show that there are some common ways in which visualization techniques are currently used
and combined. This knowledge will allow us to better understand visualization techniques and adapt them
to more effectively fulfill our tasks and preferences. In addition, we can identify unexplored areas in the
visualization techniques design space and start examining new forms of visualization methods. Finally, this
analysis aso illustrates that our framework is relatively general and is able to characterize a variety of

techniques.
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In these analysis tables each visualization method is represented by one or more rows. The specific
object definition and transformation types of each technique is shown on the table columns. The first two
columns represent the two object definition alternatives and the last four columns represent the four
transformation classes. A visualization technique is represented by a set of connected highlighted (gray)
cells. Highlighting occurs according to a technique’s object selection and transformation functions. For
example, the dynamic query slider technique has a functional description object definition component
followed by a graphical transform that changes the visibility of the objects. As such it has a highlighted cell
on the functional description column in Table II-6 that is connected to a highlighted cell in the graphical
transform column. The foreground tool, on the other hand, lets users enumerate objects through mouse
clicks, thus it has a highlighted cell in the enumeration column of Table II-6. This enumeration cell is
connected to a highlighted cell in the graphical transform column, which represents the foreground function
that brings selected objects up to the top of a graphical scene. Compositions are represented by double-
lined arrows, with a symbol next to it indicating the composition type (OD = object definition composition;
T = transformation composition, PC = producer/consumer composition; and PT = partition composition).
The dotted arrows in the analysis tables represedéate-links. Update-links indicate changes in a
technique that is brought on by changes made in a different technique. For example the HomeFinder system
in Table II-2 has an update link from its data transform function to a mapping function. This is because the
data transform function updates dueint-derived-attribute data values that are mapped to graphical objects
in the visualization. Thus any change in th@sent values will result in a subsequent update to its
graphical value mappings (refer to section 1I-2 for details). Note that this analysis simplifies the
visualization techniques and only includes important functional features, so as to reduce diagrammatic
complexity. As a result some of the techniques shown in Table 1I-2, Table 1I-4, Table 11-6, and Table 11-8
may not contain all of the visualization functions from their more complete specifications shown previously
in this chapter.

[I-3.1 Data Transforms

Data transform techniques are shown in Table II-2. It is perhaps not surprising to note that all these
techniques either compose their data transform function with another transformneddgged-val ue-
painting, generalized-fisheye, simple-aggregation) or have a subsequeunpdate effect (shown as dotted
lines) to another transform clagsomeFinder, TableLens-sort). Data transforms are commonly connected
to a transform function of a different class because data transforms only generate non-visual results, and
these results must somehow be shown to users. From Table II-2 we see that data transforms are commonly
linked with mapping transformsi (nple-aggregation, TableLens-sort, HomeFinder, generalized-fisheye).
While themodified-value-painting technique has a pc-composition link to a graphical transform, there are
no techniques with transformation composition links from a data transform to a graphical transform or a

rendering transform.
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Visualization Technique Enum. | FD Data Map. Gra Ren.

Simple Aggregation
(section 11-2)

TableLens Sort [Rao,
1994

Vv
! —
vV

HomeFinder System - > S
[Tweedie, 1994] (section >
11-2)

Generdlized Fisheye All —>
[Furnas, 1991] é’f/

Modified Value Painting
(section 11-2) >/

= -

Table|l-2: Data visualization techniques

An example technique that fills the data transform to graphical transform space, is a variation on the
selection technique, which we call the load-sensitive-selector. This technique allows usto pick a set of data
concepts, then highlights the graphical representations of those concepts according to the size (number of
concepts) of the selected set. For example, a larger selected set will result in a more saturated highlight
color while a smaller selected set will result in alighter, less saturated highlight color. In this case we have
a user-enumerated technique that is linked to a data transform for calculating the number of objects in the
set. This count-value is then fed into a color graphical transform for computing the new highlight color. Y et
another alternative is to use this count value to change the magnification factor of arendering transform so
that we automatically zoom in when we select a few objects and automatically zoom out when we select

many objects. This produces a data transform to rendering transform technique.

Thus by looking at areas not covered by current techniques, we can derive new methods that may be
useful for some task classes. The load selection technique for example can be used as a cue to indicate the
existence of occluded objects in the selected set. If the saturation is high even though the number of objects
that is selected appears to be small then there are probably some occluded objects that have been selected.
Note that the new techniques that we discuss in this section (section 11-3) are all manually designed based
on our analysis of the visualization techniques design space using our framework. In addition these
examples tend to be incremental in that they enhance an existing technique in fairly well understood ways.
This is so that the expansions can be more easily conveyed and the uses of the expanded techniques are
more readily apparent In appendix A-2.2 we present a more complex example of technique expansions that
are also based on our framework.

Data transform techniques can be divided into three classes based on the information type generated:

1) derived attributes, 2) summary values, or 3) meta-data. The generalized-fisheye technique computes a
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derived set of degree-of-interest (DOI) values based on the importance of adata concept to the current task
(data transform type-1). Objects with low DOI values are subsequently culled from the display with a
mapping transform. The modified-value-painting and simple-aggregation techniques, on the other hand,
both generate summary values from existing data (data transform type-2). The modified-value-painting
technique computes the mean for a set of values and uses that information through pc-composition for
querying other data. The simple-aggregation technique summarizes a set of objects into a single aggregate
object and then maps the aggregate object into the visualization. Finaly the TableLens-sort and
HomeFinder systems both use type-3 datatransforms. In TableLens-sort the datatransform function is used
to calculate the or der of elements (meta-data) based on an existing attribute. The HomeFinder system uses
a count data transform function to generate meta-data for capturing the number of query conditions passed
by a set of data concepts.

Note that there are interesting differences between the meta-data generated by the TablelLens-sort and
HomeFinder techniques. The former is generating meta-data based on the original data values while the
latter is generating meta-data based on a set of query results. A data transform that is attached to a user
controlled functional description function (like the HomeFinder system) usually falls into the latter
category. Query data transform techniques are commonly transient, because their purpose is to give users
onetime feedback on the current query results. As the query changes, new query information is
computed/summarized and the previous results are discarded. In addition, because we are using data
transforms to get an overview of a user initiated query, we only use summary and meta-data transform
functions (e.g. to calculate the size of query set, the number of duplicate elements within the query set, the
spatial dispersion of objects within the query set, etc). This separation between query and non-query data
transformsis shownin Table 11-3.

Visualization Techniques

Query (transient) Summary

(data transform connected to a user defined Meta-data HomeFinder

functional description object definition method)

Non-Query Final results (persistent) Derived
Summary Smple-aggregation
Meta-data TableLens-sort

Intermediate results (transient) Derived Generalized-fisheye

Summary Modified-val ue-painting
Meta-data

Tablell-3: Goal categories of data visualization techniques

Non-query related data transforms are divided into two groups: @) those that compute final results, and
b) those that compute intermediate results. Intermediate result techniques use data transforms to calculate

11-39



temporary values that are used in subsequent functions. Thus, intermediate-result techniques are always

linked either through pc-composition or transformation composition to other functions. An example is the

modified-val ue-painting technique that uses a summary data transform to get the mean of a value set. This

mean value is subsequently used in a functional description function. Another example is the generalized-

fisheye technique that computes a set of intermediate DOI values, which are subsequently filtered with a

functional description operator. Note that intermediate operations are also commonly used in complex

computations. For example, to get the result for (A — B) + (C — D), we must first calculate (A—B) and (C —

D), which are both intermediate results. These results are then fed into an addition data transform that

produces the final result.

Final-result techniques, on the other hand, have more persistent output values that are commonly

reused multiple times in several different tasks. In this case we are extending our database with new

information. In the other two cases (i.e. query and non-query-intermediate) we are not looking to extend

our database but rather just to summarize feedback results in a way that is easily assimilated by users or to

fulfill intermediate tasks. Table 11-3 show how the data transform techniques in Table 11-2 may be classified

based on these different classes of data transform goals.

In Table 11-3 we see that none of the techniques considered fall into the query-summary category. One

example techniqgue we manually designed that fills théeesps thaange-dynamic-query technique that

presents end-users with the spatial range of objects that fall within the query set.
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(a) The red bounding-box encapsulates all the
objectswithin the visualization because no
constraintsare currently set.

(b) Thered bounding-box now only encapsulates
objectsthat are on the top-mid portion of the
display because only objectsin that area passthe
two dider constraints.

Figurel1-21: Range dynamic query technique. In the example visualizations above, each mark represents a house data
concept. The x and y positions of the marks corresponds to the geographic location of their respective houses. Objectsare
selected here by setting constraints using the two diders at the bottom of the interface, which allow usersto set threshold
constraints on the selling_price data attribute and the num_rooms data attribute. The red bounding-box isthen drawn so
that it encapsulates all of the selected objects (i.e. all objectsthat passthe dider constraints).
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For example Figure I1-21 shows a range-dynamic-query interface that allows users to select objects based on
selling_price and num_rooms using two slider input-devices. The visualization encodes geographic location of the
houses on its x-axis and y-axis. In this interface we show summary information for the query objects by drawing an
annotation-box (red rectangle) around all houses that fall within the query set. Thisis achieved by using the get-max
and get-min summary data transforms to get the minimum and maximum longitude and latitude of the query objects.
These data transform functions are later connected to a graphical transform function for changing the size of the
annotation-box. From Figure 11-21 we see that there is a relationship between house selling_price and hum_rooms
with location. The more expensive larger houses seem to be located in the top middle portion of the area. This
technique is useful in cases where the visual display is large and it is difficult to focusin on the selected objects. By
using the range dynamic query slider, we can automatically zoom in on the display based on the range of the
selected set. This would work well in those cases where the query result is highly correlated with object positionsin

the visual display.

In Table I1-3, the non-query-final-derived and non-query-intermediate-meta-data categories are also empty.
However, all non-query data transform techniques (including the two empty ones in Table I1-3), can commonly be
performed in spreadsheet and data analysis systems which allow users to compute a wide range of non-query results

based on user input formulaic expressions.

[1-3.2 Mapping Transforms

Visualization Enum. | FD Data Map. Gra Ren.
Technique
Pure .
. Visage Drag and Drop >
mapping [Roth, 1996]
techniques
Dipstick [Beshers, >
1990]
Rendering igAga]Jr *+ [Bederson, /
-mapping T
techniques
(Semantic TableLens Distortion >
zooming) [Rao, 1994] BC
< I —
E——»
Simple aggregation T
Data- (section 11-2) - >
m N
tecaﬁﬁiqges Generalized Fisheye Al _
[Furnas, 1991] j
kﬁc
—>

Tablell-4: Mapping visualization techniques
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The mapping techniques we analyzed are shown in Table I11-4. Mapping transforms, as was discussed
previously, are commonly associated with data transforms (generalized-fisheye, aggregation, etc). While there are
several semantic zooming techniques (PAD++ and Tablelens-distortion) that compose mapping transforms with
rendering transforms, there are no techniques in Table 11-4 that combine mapping transforms and graphical
transforms. An example technique we designed that fills this space is the information-enhancer technique that
allows users to select a set of focus data concepts, and then increases the number of data attributes mapped (i.e. the
amount of information encoded) for those chosen concepts (mapping transform) (e.g. similar to semantic zooming
techniques). At the same time however, we also increase the size of those objects (graphical transform) so that the
additional information encoded can be viewed more clearly and accurately. The TableLens-distortion and simple-
aggregation techniques in Table I1-4 can also be expanded with a graphical transform for coloring the operational
set (i.e. the objects being transformed) so that they appear more salient to users.

Mapping transforms are used first and foremost to show end-users the information required for solving their
task(s). All visualizations use mapping transforms for this purpose. Some visualization techniques also use mapping
transforms to change the content of visualizations in order to improve readability®. The contents of a visualization
can be set or changed by 1) mapping data concepts to graphical objects, 2) mapping data attributes to graphical
properties, or 3) changing the scope of existing mapping functions. Table I1-5 shows how the mapping transform

techniques shown in Table 11-4 can be classified based on these goals.

Visualization Techniques
Show task data Object All visualization systems
Attribute All visualization systems
Scope Visage-drag-&-drop
Readability Object Tablelens-distortion,
(semantic PAD++
zooming)
Attribute TablelLens-distortion
(semantic
zooming)
Scope Visage-drag-&-drop,
Dipstick,
Generalized-fisheye,
Smple-aggregation

Tablel1-5: Goal categories of mapping visualization techniques

3 Readability refers to problems that arise due to constraints of the visualization output media and constraints of our perceptual
system. These problems reduce the effectiveness of a given visualization design because of object occlusion, ink density, lack of
information presence, and dwarfed encoding scales.
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Visualization readability can be improved through semantic zooming techniques as well as scope techniques.
Semantic zooming techniques improve the readability of a graphic by allowing users to view different pieces of
information at different degrees of detail. This is achieved by using different object and attribute mappings at
different instances. When data sets are large, it is not possible to show all the information in detail without
overwhelming the user and overcrowding the available display space. One way to solve this problem is to represent
the information with simple graphical objects that take up little space and only map the current focus information to
richer graphical objects. Usually a change in graphical object representation is coupled with one or more attribute
mapping changes as well. For example in the TableLens-distortion technique, we change the graphica
representation used from bar to text (and bar) when the space available for showing the data is expanded. We aso
use the label graphical property in addition to bar-lengths for showing the data values.

Scope techniques, on the other hand, use mapping transforms to change the data concept or graphical object set
being shown in the visualization but not the graphical representation class or graphical properties used, as was done
in semantic zooming. The visage drag and drop technique [Roth, 1996] is a scope technique that allows users to
select and transfer sets of objects from one visualization to another by changing the set of data concepts being
encoded within each visualization. Operations available inDaga“source” menu of aMicrosoft Excel chart uses
mapping transforms in much the same way. To add objects into a chart users select a set of data concepts from the
spreadsheet and then choose thdd” option in the ‘Data source” menu. Both of these scope changing techniques
can be used to improve visualization readability only showing the relevant data concepts at any given instance,
thereby reducing clutter and ink density. However, using mapping transforms in this way to solve readability goals
requires that we keep track of how we changed the contents of the visualization so that we can restore deleted
information that may be needed at some later point of our task. In contraggnéhaized-fisheye-lens technique
automatically changes the scope of visualizations baseddegr ee-of-interest (DOI) function and thus does not
require users to manually control the object scope, but automatically adds and deletes objects as necessary. As a
result, unlike thevisage-drag-and-drop technique, we do not have to keep track of scope changes made to the
visualization. However, it can be difficult to devise approprix@® functions for our task(s). Scope techniques are
also often combined with data summarization operators (e.g. in certain aggregate methods) to add in new summary
information and delete the original objects or values that have been summarized. This allows us to improve

visualization readability dcause the number of objects shown are reduced.

[1-3.3 Graphical Transforms

Graphical transforms (shown in Table II-6) are used to provide feedback or improve the readability of
visualizations. In Table 1I-6, we see that graphical techniques are not commonly combined with other transformation
classes. In the previous sections we had discussed several possible new design alternatives for combining data and
graphical transforms as well as mapping and graphical transforms. Here we discuss designs that combine graphical
and rendering transforms. Techniques do not usually combine graphical and rendering transforms because both of
these function classes serve similar purposes, i.e. to provide feedback or to improve readability. In addition,

rendering transforms may sometimes warp the effects of a graphical transform that operates on the same graphical
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property class (e.g. positional, retinal) making the resulting visual effect of the combined technique difficult to
interpret. Thus a design that attempted to combine both graphical and rendering functions through transformation
composition would do well to apply the graphical transform to different graphical property classes. For example, we
could augment the TableLens-distortion technique (which operates on positional graphical properties) with a
graphical transform that colors all objects within the lens red (i.e. operates on retinal graphical properties). This
highlights the selected cells so that users can more easily tell which objects are being expanded. The resulting
specification has mapping, graphical, and rendering functions combined together through transformation
composition. Another aternative is to combine graphical and rendering functions using pc-composition. For
example, to reduce occlusion, we could render all graphical objects that exceed a threshold area as wire-frame
objects instead of solids. This technique uses a graphical transform to compute the areas for al graphical objects
within the visualization. The area values are then piped into a functional description object definition function that

ultimately leads to awire-frame rendering transform.

Visualization Enum. | FD Data Map. Gra Ren.
Technique

Feedback Dynamic Query
[Ahlberg, 1992]

Value Painting
[Eick, 1992]

Modified Value
/ ‘
Painting (section [1-2) <=

Simple selection
(section 11-2)

|-
v

vV Vv v v

Painting
[Becker, 1987]
Readability | Foreground Tool

SDM generd
[Chuah, 1994]

SDM distance
[Chuah, 1994]

Shrimp [Sorey, 1997]

Y ¥V vy v ¥

o
—

Tablelens Column
Move [Rao, 1994]

|0

S

Cone Trees
[Robertson, 1991]

Tablel1-6: Graphical visualization techniques

There are two types of graphical technique feedback as is shown in Table 11-7: search feedback and internal
state feedback. Search-feedback techniques use graphical transforms to make the results of a query more salient so
that a user’s attention is drawn to those objects. Some example search techniqueslynatidequery-sliders,
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and value-painting. All of these techniques allow users to specify a functional description of the data concepts they
are interested in. The appearance of the graphical objects representing the specified data concepts are then colored,
made visible, enlarged, etc, to give feedback to users on the results of their search. The graphical transforms used for
search and internal-state feedback are often simple such as setting a group of graphical values to a constant. Thisis
however not arequirement. In appendix A-2.2 we consider a hybrid search technique with complex feedback effects

involving many graphical transform operators.

Visualization Techniques

Feedback Search feedback Dynamic-query-diders,
(commonly simple (functional description object | Value-painting
feedback) definition)

Internal state updates Object-selection,

(stored internal information Smple-painting
that is not readily apparent)

Readability Occlusion Foregound-tool,
SDM-distance,
Shrimp
Ink density Shrimp
Information Presence Tablelens-column-move,
SDM-distance
Dwarfed Encoding Scales SDM-size-general

Tablel1-7: Goal categories of graphical visualization techniques

Internal-state-feedback techniques use graphical transforms to encode internal state information and
relationships among objects that may not be apparent in the visualization. Object-selection and simple-painting are
some example internal-state-feedback techniques. For object selection, feedback is required to give users persistent
state information on the object set that he/she is currently controlling. This is especially important when we have
multiple object sets, or when we create an object set by slowly adding objects into it (many applications allow users
to do this by using shift-click). In both these cases it is difficult to keep track of the objects that are currently
selected, thus visual feedback is required to show users the cugatedti6n state”. The simple-painting technique,
on the other hand, uses graphical transforms to reveal object relationship state-information. Specifically, graphical
feedback is used to show the mapping relationships between certain data concepts and graphical objects (i.e. which

graphical objects correspond to a given set of data concepts).

Readability graphical transform techniques change the effectiveness with which users can view the graphical
elements that are already contained within a visualization. This is in contrast to mapping techniques that change
visualization readability by altering visualization content. We focus on four primary readability problems: 1)

occlusion, 2) ink density, 3) information presence, and 4) dwarfed encoding scales. These readability issues are

[1-45



described in greater detail in appendix F. Unlike feedback techniques, readability enhancing techniques such as
Shrimp, foreground-tool, SDM-distance-oper ation, and Tabl el.ens-column-move tend to have an enumeration object
definition component. This is because readability problems are often the result of complex spatial relationships
among the objects and it is difficult to capture the set of objects involved, functionally. There are several different

ways in which readability may be improved. The foreground-tool improves visibility by reducing occlusion for a set

of interesting objects; the Shrimp system enhances the visibility of focus objects by making them larger in size, and
reducing the density of elements around the focus objects (this may sometimes remove occlusion problems as well).

The SDM-distance-operation and TableLens-column-move techniques address the information presence readability

issue. The SDM-distance-operation allows users to bring a set of objects closer together and facilitate comparisons

by transforming the objects spatially so that they fall on a straight vertical line perpendicular to the user’s point of
view. TheTablelLens-column-move technique, on the other hand, allows users to move table columns closer together
so that the values are more easily comparable. Note th&DiWedistance technique also has the side effect of

removing occlusion from the focus set, as well as enlarging the focus objects by bringing them closer to the user.

[I-3.4 Rendering Transforms
Finally, like graphical techniques, rendering techniques (shown in Table 11-8) are also used to provide feedback

and improve visualization readability.

Visualization Technique Enum. | FD Data ‘Map. ‘Gra. Ren.

Zoom

Pan

Graphical Fisheye
[Furnas, 1991]

Stretching [Sarkar, 1993]

Bifoca Lens
[Leung, 1989, 1994]

TableLens Distortion
[Rao, 1994] PC

&vvvvvvv

PAD++ (rendering effect
is similar to zoom) >

[Bederson, 1994] /

Tablel1-8: Rendering visualization techniques

\

Rendering techniques transform the way with which a visualization graphical scene is drawn on the CRT
display, so that users may focus their attention on different parts of the scene that are pertinent to their current task.
Because of the nature of such transforms, most rendering functions operate on the entire visualization window
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[Furnas, 1991; Leung, 1989,1994]; transforming only sub-regionswill cause discontinuities in the display space that
are often distracting, and result in aloss of information [Hollands, 1989]. Example techniques that do not operate on
the entire visualization window includes the lens distortion techniques [Bier, 1994; Rao, 1994].

As can be seen in Table 11-9, rendering techniques are more commonly used to solve readability issues rather
than feedback. One reason is that feedback techniques usually only require simple visual stimuli whereas rendering
transforms tend to bring about more complex visual changes. There are two main classes of rendering techniques:
navigation techniques and distortion or “focus + context” techniques. Navigation techniques suchxasn, pan and
scrolling allow users to view different areas of the information space when the output media is not sufficiently large
to contain all the information simultaneously (i.e. information presence readability issue). Note that as is shown in
Table 11-9, zoom techniques can be used to solve other readability problems as well. The main problem with

navigation techniques, however, is that users may easily lose track of where they are in the information space.

Visualization Techniques

Feedback None analyzed
Readability Navigation Occlusion zoom,
(only perspective occlusion) pan
Ink density zoom
Information Presence zoom, pan, scrolling
(view different information)
Dwarfed Encoding Scales zoom
Focus+context Occlusion graphical-fisheye-lens,
(only perspective occlusion) bifocal-lens
stretching
Ink density graphical-fisheye-lens,
bifocal-lens,
stretching
Information Presence graphical-fisheye-lens,
(more information to be T_abl eLens-distortion,
bifocal-lens,
shown) stretching
Dwarfed Encoding Scales bifocal-lens,

TableLens-distortion

Tablell-9: Goal categories of rendering visualization techniques

Focus + context techniques or spatial distortion techniques, such gsaphical-fisheye-lens, bifocal-lens,
stretching and Tablelens-distortion techniquesvarp the visualization space so that less output space is given to the
information on the periphery and more output space is given to the focus objects. By reducing the contextual areas,
these techniques can be used to show more information at any one time compared to non-distorted displays (i.e.
greater information presence) and as a result it is less likely that users will get lost in the infornaatgorirsp
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addition, the expanded focus area(s) help reduce ink density around focus objects so that they can be viewed more
clearly. In 3D-displays, these distortion techniques may also be used to remove perspective-occlusion. Note that
even though TableLens-distortion is a focus+context technique, it does not appear in the occlusion and ink-density
categories of Table 11-9 because these two readability problems are not applicable to the table representation used in
the TableLens system. Finally, focus+context techniques may also be used to expand dwarfed encoding scales (i.e. a
positional axis that is too small in size to accurately represent al of the data values). However, their non-linear
magnification functions distort the encoding scales, making them difficult to interpret. The two exceptions are the
Tablelens and Bifocal -lens techniques, which use very simple distortion functions. In these techniques the display
only has two different distortion scales, one for the focus area and one for the context area; unlike the other
techniques which apply a continuous distortion function. As a result any distorted axes will also only have a focus

and a context section, and as such are easier to interpret.

[1-3.5 Summary

In this section we have classified a set of common visudization techniques using the object-
definition/transformation structure described in previous sections. Based on this classification we were able to draw
some interesting similarities among the different transformation techniques and categorize them based on their goals
asisshownin Tablell-3, Table11-5, Tablell-7, and Table11-9. We were also able to recognize the common waysin
which current visualization techniques are used, how they are commonly composed with other functions, and the
areas in the design space that have yet to be rigorously explored. In fact, in this section we presented some simple
adaptations of current techniques (e.g. |oad-sensitive-selector, range-dynamic-query, infor mation-enhancer) that fall
within some of the less populated design areas. These techniques are interesting, if not in their end-use, then in
filling out the visualization design space and in illustrating the strengths and weakness of new technique classes that
have never been explored. Note that in this section we do not discuss how “good” a technique is at fulfilling its
intended task. The goodness of a technique with respect to a task is evaluated in chapter 1V-2, using four different
measures: articulatory, functional, expressive, and observational distances. These four distances determine which
visualization techniques are most appropriate for a task by estimating the amount of motoric, cognitive, and
perceptual effort users must expend to solve their tasks.

[I-4 Conclusion

In this section we decomposed visualization techniques into two components: an object definition component
and a transformation component. In the object definition component users pick a subset of data and graphical
elements from all the available elements in the visualization system. In the transformation component, different
transform functions are applied to the objects from the object definition component in order to bring about different
visualization effects. These simple two-component primitive visualization techniques may be composadhwith
other using four different classes of compositions: object definition composition, transformation composition,
producer-consumer composition, and partition composition. Each of these composition types are characterized by
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different patterns of object definition and transformation chains. Based on the ODT model (object
definition/transformation) and composition functions, we get a better idea of what constitutes a visualization
technique, how they are built, combined and used. Thisis crucial to our automatic design system and we show how
the concepts set forth in this chapter are applied to our prototype design system in chapter V. In addition, we can
also use our framework to scope out the design space for common interactive techniques (Table I1-2, Table 11-4,
Table 11-6, and Table 11-8) and make comparisons across techniques from different visualization systems. These
tables show the flexibility of our framework in being able to represent a wide range of current visualization
techniques. It also reveal's the ways in which common techniques are used and combined so that we are better aware

of current design boundaries and where the unexplored areas are within the visualization techniques design space.

This chapter focussed on examining visualization techniques at a higher, functional level of abstraction where
we are mostly concerned with the general class of object definition and transformation functions used, as well as
their goals. Thereislittle discussion here of inputs and outputs to the functions, how these functions get their needed
input arguments, and how input-devices can be integrated into the design. These issues must be solved before we
can use our visualization techniques framework in our automatic design system to render or generate a working
visualization interface. We consider these instantiation issues in the next chapter.
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Chapter lll:
Visualization Techniques Framework

A
Concrete Instantiable
Description

In the previous chapter we discussed visualization techniques at an abstract, functional level. This
level of specification is useful because it captures the general purpose and capabilities of atechnique. The
functional specification also allows comparisons of techniques without the added complexity of interface
and structural details. This level of specification however is insufficient to capture a technique in enough
detail for instantiation (i.e. rendering it as a visualization interface). In order to increase the applicability
and practicality of our framework, we must also describe how the functional specifications described in the

previous chapter can be augmented to an instantiable form.

Other previous frameworks on visualization techniques either focussed on the functional level (e.g.
[Tweedie, 1997], [Card et al., 1997], [Card et al., 1999]) or the instantiation level (e.g. Data explorer, IRIS
Explorer, AVS[Brodlie, 1991]) inisolation. In thisthesisit was crucial for us to describe a framework that
encapsulates both levels of description. The functional level informs our automatic design system of the
primary primitives within a visualization technique, their uses, and how these primitives may be combined
with each other. The instantiation level allows our designer to describe the structural details of atechnique
(e.g. data and graphical elements, input-devices, etc) so that the technique can be rendered as an active
interface. By including both levels in the same framework as well as a method of transition from one level
to the other we provide the advantages of both types of description without requiring a change in the
conceptual model or descriptive language as we would with previous frameworks. In addition thistwo level
design methodology is also useful to visualization designers because it encourages them to initialy focus
on the functional aspects of visualization techniques, free from structural constraints. Once the functionality
has been fully designed, a designer may enrich the technique with structural detail. As a result designers
will be less apt to falsely constrain functional capabilities as a result of structural concerns. For a more
complete discussion of how our framework differs from previous work refer to appendix B-1.
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In this chapter we present a five step process, which we call the instantiation augmentation process,
that can convert any functional specification into an instantiable visualization technique (Figure 111-1Y). A
functional specification (like the ones shown in the previous chapter) captures the “core” functiarfiality
technique in as general and abstract terms as possibiestantiation specification augmentsfanctional
specification with specific input-devices and translation funclitimst are required to make the technique
operational. The five steps in the instantiation augmentation process dictate the general look or structure of
the technique but does not change its underlying functionality. For example, the topmost diagram in Figure
I11-1 shows a functional specification for the object highlight technique, which graphically transforms a set
of user selected objects. The functional specification is very simple consisting of an enumeration selection
method followed by a graphical transform. The instantiation specification of this technique (shown at the
bottom of Figure 1ll-1) is more complex, consisting of various input-devices ljeunding-box) and
translation functions (e.gget-values function) in addition to the object definition and transformation

functions used in the functional space.

Next, we describe the five steps of thetantiation augmentation process shown in Figure 1ll-1. The gray
highlights in Figure 1lI-1 indicate changes made to the specification at each step.

Sepl. Pick specific object selection and transformation functions:

We must decide which specific object definition and transformation functions to use from the broad general
classes (e.gnumeration, functional description, data transform, mapping transform, graphical transform,

rendering transform) described in the previous chapter. For example in Figure IlI-1 we uszsdige

function which is a specific instance of the more general graphical transform class. There are no sub-class
functions to the enumeration object definition class so no further refinements are needed in that component.
We consider this first step as part of the instantiation augmentation process but it can sometimes be
included in the functional specification process if specific transform instanceassgg) are required to

define the “core” functionality of a technique. I.e. a functional specification may consist of broad function
classes (e.gnumeration, graphical transform) or of specific function instances (eagsign ). However, a
functional specification should be stated in as general and abstract terms as possible. Thus, function

instances should only be used when absolutely necessary.

! The specifications shown in Figure 111-1 and in this chapter uses the same notation as the functional specifications

(i.e. ODT or object-definition-transformation diagrams) shown in the previous chapter. Details on the diagrammatic

notations used in these specifications can be found in appendix A-1.

2 In this work we assert that “core” functionality is captured by either object definition or transformation functions and
nothing else. Translation functions and input-devices are considered part of the structural (as opposed to functional)
aspect of a visualization technique.

% Translation functions transform objects between the data and graphical realms and also among the different object
types within each realm. More detail on these functions is given in the following sections.
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Figure 111-1: Diagrammatic representation of the five-step instantiation augmentation process for the object
highlight technique. Additions madein each step are shown in gray.
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Sep2. Match outputs with inputs through translation functions:

A visualization consists of elements from three different realms, the datarealm, the graphical realm and the
output media. The transformation and object definition functions within a visualization technique may
operate on objects, attributes, and valuesin any of these realms. Proper operation of atechnique depends on
whether we apply its object definition and transformation functions to the correct realm and to the correct
element types within each realm. A set of trandation functions is available to translate the outputs of
functions and devices between the realms. These trandation functions are also used to explore object
relationships and query for object state so that we may obtain the correct element types within each realm.
At this point in the instantiation augmentation process, we decide which translation functions need to be
inserted between the object definition and transformation functions declared in step 1 to ensure that the
outputs of the object definition function match the inputs of the following transformation function. For
example in Figure I11-1, step 2, the enumeration object definition step produces a set of graphical objects.
We use the get-values trandation function to extract a set of color graphical values from these objects

because graphical values are needed in the subsequent assign graphical transform.

Sep3. Determine how function inputs are chosen:

Object definition, transformation, and translation functions al have inputs and outputs. The input
arguments to these functions can be provided by other functions, such as a trandation function (step 2), an
object definition function or atransformation function (as is outlined in chapter 11-2). Input arguments that
are not provided by afunction must be preset by a visualization designer or controlled by a user through an
input-device. Here we decide between these two alternatives. For examplein Figure I11-1, step 3, the object
highlighting technique has three unspecified input arguments after the first two steps. These arguments
include: 1) the set of graphical objects to feed into the get-values function, 2) a graphical property for the
get-values function, and 3) a property value for the assign transform. In this example, we provide the latter
two values through designer defaults. The graphical property is set to color and the property value is set to
red. Thefirst input argument is obtained from the user through an input-device.

Sepd. Determine input-devices:

In this step we determine the type of input-devices to use with the interactive system. An input-device is
needed for every user input value specified in step 3. We must decide whether to provide severa input
values with a single device (composition of input-devices) or whether to use separate devices to provide
separate inputs. The types of devices that are appropriate would depend on effectiveness measures such as
the ones outlined by Card et. a. [Card, 1990, Mackinlay, 1990]. In Figure I11-1 there is only one user input
argument and we use a bounding-box that allows users to enumerate the set of objects they want to
highlight. Note that a get-values translation function is used with all input-devices to extract relevant state
information from them.
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Seps. Foecify initialization arguments to the input-devices:

Certain input-devices may require initialization values. For example, a slider input-device must be
initialized with the maximum and minimum slider range. On the other hand a scroll list isinitialized with a
list of selectable entries. In the object highlight example, the bounding-box input-device does not require
any initialization, however, we decided to initialize its color property anyway for aesthetic reasons. Note
that the operations used for input-device initializations are visualization techniques themselves. In this case,
the object definition component defines a bounding-box input-device object that is a designer enumerated
object. Subsequently this object is passed to the assign graphical transform operator, which changes the
color property of the bounding-box to white. For a more detailed example of the structural augmentation
process refer to appendix B-3.

To perform the instantiation augmentation process outlined above, we must clearly define the specific
object definition, transformation, and trandation functions available; the set of visualization elements from
the three reams (data, graphical, output media) that are manipulated by these functions,; and the input-
devices that can be used with these functions. In section I11-1 we give detailed descriptions of the
primitives within these three realms. Section 111-1 is not meant as advancement to the field. Many of the
visualization elements and input-devices presented have been captured in previous work, and the
visualization function primitives recapitulates standard math theory that can be accomplished using any
current programming language. However, this level of detall is necessary for our automatic design system
because it requires a complete description of al primitives that are available for design. In addition, the
primitives also give specific examples of the types of functions we would find in each transformation class
and provides bounds on our framework, indicating the number of primitives that are required to capture the
various visualization techniques described in this work. Section I11-1 may be skipped if the reader is not
interested in detailed descriptions of the primitives used by our automatic design system. In section 111-2 we
show how changing the instantiation specification of a technique can change its effectiveness at solving
tasks and can sometimes lead to new and interesting design variations. Note that the design alternatives
generated by exploration at the instantiation level is different from that of the functional level (chapter 11-3)
because here, we are keeping the semantics of atechnigue constant and only changing its structural content.
As a result the technique still fulfills the same goals even though the method of interaction or the visual
feedback may now be different. Finally we close the chapter by discussing the merits of our framework
based on three criteria, completeness, coverage, and practicality (section 111-3). These last two sections
(sections 111-2, 111-3) are provided to validate and highlight the uses of our framework. They may be
skipped if the reader is only interested in the automatic design aspects of this work.

-1 Representation Language

In this section we present the visualization elements, functions, and devices defined in our framework
for constructing visualization techniques. These primitives were picked based on common features
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available in current visualization methods. It is important to note that this is not a complete list, and it can
never be complete because as new techniques are developed the list must necessarily grow and change. The
primitives described in our framework, however, are flexible and can be used to attain a variety of
visualization effects. Also note that the primitive functions have low granularity (i.e. we use simple
mathematical functions). This level of granularity gives us greater flexibility in composition and allows us
to express many current visualization techniques with a relatively small set of primitive building blocks. In
the next sections we describe the three primary building block classes in our framework:

1) Visualization elements or properties which may be from the data realm, graphical ream, or
output media. These objects or object properties form the inputs and outputs of the primitive
functions within a visualization technique;

2) Visualization technique primitive functions which may come from the object definition,
transformation, or trandation function classes.

3) Input-devices that provide users with physical (e.g. mouse clicks) and/or virtual (e.g. menus)

controls so that they may interact with a visualization technique.

[1I-1.1 Visualization Elements or Properties

Visualization techniques operate over the data concepts, graphical objects, or output mediathat form a
visualization. In the object definition component of a visualization technique a set of these visualization
objects is chosen and then transformed. In addition to the elements selected in the object definition
component, primitive visualization functions often require other object or value inputs as wasiillustrated in
Figure 111-1. These other inputs provide designers with a limited means of controlling the behavior of the
functions so that they can achieve a wide range of effects with a relatively small set of functions. In this
section we present the representational structures used to describe abstract data concepts and graphical
objects within a visualization. Our representational structures are based on previous work [Mackinlay,
1986a, 1986b; Roth, 1990]. We do not characterize the output media here because the focus of thisthesisis
only on data and mapping functions, which operate wholly in the data and graphica realms. We leave

characterization of the output mediafor future work.

I1l-1.1.1 Data Concepts

The primary element in the data realm is the data concept. A data concept is a database record, very
commonly represented as rows in spreadsheet programs. For example in Figure 111-2 the data concepts
being represented are houses. Each data concept is attached to a data type that describes the attributes and
relational structure of the data concept. Data concepts having the same attributes and relational structure
will be attached to the same data type. Every house data concept or record, for example, belongs to the
house-data-type class. The house-data-type class describes the five data attributes that are attached to each
house data concept, namely house-selling-price, date-sold, neighborhood, date-on-market, and number -of-
rooms. Each data attribute commonly corresponds to a column of valuesin spreadsheet programs. The first

three attributes of the house concepts are mapped to graphicsin Figure I11-2.
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Figurelll-2: Example visualization containing house data. Each mark represents a house data concept. The
x-axis shows the date-sold data attribute; the y-axis shows the selling-price data attribute, and hue showsthe
neighborhood data attribute.

Although data concepts commonly represent “real-world” objects, e.g. a house, this need not be the
case. A data concept may also represent a conceptual object, consisting of a group dftelatteibutes
possibly originating from multiple different “real-world” objects. For example, we may have data concepts
that contain thénouse-selling-price attribute as well as thewner-salary attribute. In this case tH®use-
selling-priceis an attribute of a house object whereasothger-salary attribute is an attribute of a person.
Depending on the task, our automatic system may draw data attributes from multiple different data concept

classes to form new conceptual objects as required.

I11-1.1.2 Graphical Objects

In a visualization, data concepts in a database are mapped to graphical objects in a graphical scene.
Graphical objects, also commonly referred to as glyphs, are symbols that represent information through
visual properties that are either spat@dgtion-X, position-y), retinal €olor, size), or temporaljfttering).

Graphical objects may be simple (exgrk, bar) consisting of only a few properties or more complex (e.g.
Chernoff Faceg Chernoff, 1973], InfoBug[ Chuah, 1998a]) consisting of many properties. Graphical objects
commonly live within container objects (eahart, map). For example, Figure 11l-2 shows a house data
visualization. Théwouse data concepts were encoded usigk graphical objectsvithin achart container.
Containers are used to structure graphical objectsrfarggs ), annotation objects (e.gxes, axes-labels)

and other container objects. Thieart in Figure 11I-2 for example is used to group tmark graphical
objectstogether based on a well-defined layout scheme.
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Based on previous frameworks [Mackinlay, 1986b; Chuah, 1995], we organize graphical containers
and objects into a hierarchy. At the top of the hierarchy is the visualization container. The visualization
container exists within a desktop window, i.e. al the contents of the window are considered part of the
visualization. For example, Figure I11-3 shows a visualization of house data containing charts, tables,
marks, bars, axes, and axis-labels. Figure 111-4 shows a hierarchical breakdown of the components within

the visualization in Figure 111-3.

Below the visualization container are region containers. Regions are arranged based on very specific
data attribute constraints. Two regions can be aligned (i.e. laid out side by side either horizontally or
vertically) only if their common axes represent the same type of data attributes. Figure 111-3, for example,
has three aligned regions. Horizontal alignment is allowed here because the common axis of the three

regions (y-axis) encodes the same data attribute (i.e. house-address) in all three charts.

Region containers group graphical objects together and structure them according to a layout scheme.
Some example layout schemes are shown in Figure 111-5. The grid layout, for example, constrains the
positions of graphical objects so that they fall on evenly spaced rows and columns. The chart layout on the
other hand does not have any positional constraints so that the positions of the graphical objects may be

used to encode data, asin Figure 111-2.

House owmee
House address

CARRIAGE- 7373
GETTYEBURG- 626

COMMERCIAL-1
LE-BLATNC-220|
WOODWELL - fififi|
DENNISTON - 1251
MOREWOOD- 159
HAETINGE- 4244
CARRIAGE-T7516)
EMERSON - #6if
IV - T4y
EBEECHWOOD - 2237|
PENHAM -6

COLLEGE-fi37|
§-NEVILLE-211]
ALDERSON - 6330
LILAC-253
CATON-6272]

5

—Il

KIPLIN

"Funicello- Annette”
"Garme-Panl"
"Fincher-David"
"Florea-John"
"Clemnent-Dick”

"Chapman-{raham"
"Chelsomn-Peter"
"Fletcher-3uzanne”

"Christan-Clandia”
"Cleese-Tohn"
"Garcda-Andy”
"Figgis-Idike"

"Ford-Hardson"
"Fitzgerald-Tara"

b —

0000.00 10000000 12000000 260000.00  240000.00-5:20 a.m. -3:203a.m, -1:20am.
G0000.00 14000000 22000000  200000.00 -4:20 a.m. -2:20am. 0:20a.m.

Selling price [in §] Date sold [nurn days betore Jan 15t 1998]

HEIGHEORHOCD SALARY
= o 17000000000
.lspgmm}ﬂu £ 0000000000
& POINT-EREEZE 7 63000.000000

& BE000.000000
& 103000000000

Figurell1-3: Example visualization of house data. Hierarchical breakdown of graphical objectsin this
visualization isshown in Figurelll-4. X-axisin left-most chart shows selling-price; x-axisin middle chart shows
date-sold, shape shows neighborhood, and saturation shows salary; text in right-most table shows house-owner. Y-

axesfor all threeregions show house-address data attribute.
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Figurell1-5: Exampleregion layout schemes (borrowed from [Chuah, 1995])

Annotation objects are a speciaized class of graphical objects that are not containers and that do not
represent data concepts. Some example annotation objects include chart axes, legends, and axis labels. For
example, the chart in Figure 111-2 contains a set of annotation objects including two axes, a set of axis-
labels, and a legend indicating how the house neighborhoods relate to the color of the graphical marks.
Annotations are used to present clarification on aspects of the visualization that are not readily apparent to
users. For example, annotation objects are commonly used to show how data is encoded using graphics
(e.g. chart-axes and legends), so that we can better interpret the graphical representations and tie them back
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to relationships within the data set. Annotations are also very useful for drawing user attention to particular
graphical elements and thus are widely used for communicative purposes. For example, the red arrow in
Figure 111-2 is an annotation object for bringing user attention to a particular house object.

[1I-1.2 Visualization Functions

In the previous chapter we had described the general classes of visualization functions (object
definition and transformation). Apart from the object definition and transformation classes, there are also
trandation functions that are used to convert input and output argument types. In this section we give
detailed descriptions of al function primitives available to our automatic design system. Remember that all
the functions described here can be accomplished with current programming languages. We enumerate the
primitives here because our automatic design system requires a complete characterization of the list of
functions that it can manipulate. Listing out these functions is aso useful for illustrating the number and
type of operators that are sufficient for describing current visualization techniques.

I1I-1.2.1 Object Definition Functions

In the object definition component we select a set of visualization objects for subsequent
transformation. Object set definition can be performed by enumeration or through functional description.
Enumeration allows the user or designer to list/enumerate all the interesting visualization objects by name.
In contrast, functional description methods allow users or designers to specify an interesting set of
visualization objects by applying functional constraints on the objects’ attributes or properties.

Function class I nput Output
Functional description | 1. Value set, Boolean value
2. Threshold value, set

3. Compare operator
(>, <, =, >3, <=5, <)

Set operation 1. n object sets, Object set

2. Set operator
(intersect, union,
repeat-union,
difference)

Tablelll-1: List of object definition functions

Functional description functions may be simple or complex depending on the task requirements. In
this thesis we use threshold function as the primary functional description method. Table IlI-1 shows
the inputs and outputs of the threshold function including all the threshold compare operators available (<,
>, =, <=, >=). The threshold function has three inputs: 1) a set of input values on which to perform the
threshold operation, 2) a threshold value and 3) a compare operator. It then returns a set of boolean values
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indicating whether each value in the input set passed the threshold. For example, if we want to find al
houses whose price is above $100k, we would apply the threshold function to: 1) the set of house-price
values, 2) the $100k threshold value, and 3) the > compare operator. The output will be a set of boolean
values, indicating for each input house-price value whether the it exceeds 100k. Note that the threshold
function may be used to filter any of the elements within a visualization including: 1) data concept
attributes such as house-price or date-sold, 2) graphical object properties such as x-position or size, 3)
annotation object properties such as size-of-legend, thickness of axes, and 4) input-device properties such as

bounding-box-color or slider-minimum-value.

The other functions in the object definition component are set operators. Set operators compose two
or more objects sets together (object-definition transformation) to produce a single output set. Set operators
are crucia for object definition composition as was illustrated in the previous chapter. Some example set
operators include the intersect, union, repeat-union and difference operators. Below we apply each of these
operators to three example object sets and show how their results differ.

difference ({a, b}, {b, c},{c, d} ) difference ({a, c},{c,d} )= { a d}

intersect ({a, b}, {b, c}, {c, d} ) {}

union ({a b}, {b, c}, {c,d}) ={ab,cd}

repeat-union ({a, b}, {b, c},{c,d} )= {a b,b,c,c,d}

The repeat-union operator combines all the input object sets just like the union operator except that it

does not omit duplicate objects.

11l-1.2.2 Transformation Functions

There are four classes of transformation functions, data, mapping, graphical, and rendering
transforms. These four transformation classes correspond to the four main phases of the visuaization

creation process described in the previous chapter.

11I-1.2.2.1 Mapping Transforms

Mapping transforms are the basis for visualizing data because they allow abstract data concepts to be
perceived by linking them to visual graphical elements. There are two primary mapping transforms in our
framework: object mapping and attribute mapping (shown in Tablel11-2).

Object mappings relate a class of data concepts as defined by their data type to a class of graphical
objects as defined by their graphical class. Data types capture characteristics of similar data concepts that
contain the same data attributes and relationships. Graphical classes capture characteristics of similar
graphical objects that have a common visual appearance and contain the same graphical properties. Some
common graphical classes include bar-class, mark-class, node-class, and interval-bar-class. For example,
we can map all house data concepts to mark graphical objects by mapping the house-data-type class to the
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mark-graphical-class as in Figure 111-2. As is shown in Table I11-2, the first two input arguments to the
object mapping transform are the data-type and graphical classthat we want to attach.

Function class I nput Output

Add object mapping 1. Datatype,

(Delete object mapping) | 2. Graphical class,

3. Container object or
graphical object(s)

Add attribute mapping | 1. Dataattribute,
(Delete attribute 2. Graphical property,
mapping) 3. Container object or
graphical object(s)

4. Mapping effect
(forward, backward, both)

Add object 1. Data concept(s)
(Delete object) 2. Container object

Tablelll-2: List of mapping transformation functions

The third object mapping input specifies the scope of the mapping function. The scope is defined by
listing the container object (e.g. visualization container, graphical space, region) we want to attach the
mapping to. Applying a mapping transform to a container object will cause al other containers
encapsulated within it (based on the object hierarchy in Figure 111-4) to inherit the mapping as well.

House address
I¥¥-TO
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PENHAM- 3%
CARRIAGE-T75Z
GETTY¥SBURG- 62
COMMERCIAL- 1232
COLLEGE- 627}
LE-BLATC- 32
WOODWELL- 666
DENNISTON- 125
MOREWOOD- 159
HAETINGE- 42:
CARRIAGE-TAlt
S-NEVILLE-I1
ALDERSON- 633
LILAC-95:
CATON-637
EMEREOHN- 26
KIPLING- 345

2000000 100000 .00 12000000 26000000 240000.00 200.00 4200.00 8800.00 1280000 16200.00
60000.00 140000 .00 220000.00 20000000 280000 6E00.00 10300.00 1480000 1880000

Selling price [in5] House Lot size [fn squaze feet]

Figurell1-6: House data-typeto bar graphical-class mapping applied to the entire visualization. Both chart
regionswithin the visualization inherit this mapping relationship. The x-axis of left chart shows selling-price; x-
axis of right chart shows house-lot-size and y-axis of both charts show house-address.
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For example, applying an object mapping function that maps house-data-type to the bar-graphical-
class onto avisualization container will cause all the region containers within the visualization container to
inherit that mapping (e.g. Figure 111-6). |.e. all house data concepts associated with each region container in
Figure I11-6 gets mapped to bar graphical objects based on the mapping transform attached to their parent
visualization container. Alternatively, we can apply separate object mappings to each of the regions in
Figure 111-6 instead of just applying one object mapping to the entire visualization container. For example
in Figure I11-7 we have applied a house-data-type::bar-graphical-class object mapping to the left region
and a house-data-type::mark-graphical-class object mapping to the right region.
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Figurelll-7: The same visualization design as Figure |11-6 except that a house data-type to bar graphical-class
mapping is applied to the left region and a house data type to mark graphical-class mapping is applied to the
right region.

Mappings very commonly get attached to container objects (e.g. visualization container, space
container or region container) as was just discussed. However, limiting object mapping transforms solely
to container objects, only allows us to control how data concepts are mapped to graphical objects on a
region by region basis (i.e. we cannot associate subsets of data concepts within a given region to different
mapping transforms). In the Table Lens [Rao, 1994] technique, the data concepts that appear within the
table lens are mapped to the text graphical class, and all other data concepts are mapped to the bar
graphical class. The objects within the lens may span multiple column regions and only include a subset of
objects within each region. This Table Lens operation therefore cannot be achieved with a region scope
mapping transform To enable Table Lens type mapping, we allow the mapping functions in our framework
to be applied to container objects as well as to particular graphical objects within those containers. Note
that in order for there to be graphical objects in the first place, we must begin by applying an object
mapping transform to a container object. We can then refine the appearance of particular graphical objects

within the container by remapping them to a new graphical class. For example in Figure 111-8 we have
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remapped some of the graphical objects in the left-region container of Figure I11-6 to the mark graphical
class.

House address
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IV 70 .
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Figurell1-8: The same visualization design as Figure |11-6 except that a house data-type to mark graphical-class
mapping transform is applied to particular graphical objectsin theleft chart including Woodwell-6663, |vy-704,
Penham-6828, and Kipling-5454.

The second primary mapping function is the attribute mapping function. Attribute mappings are used
to express data attribute values through the use of graphical properties. All visualizations contain a set of
data attribute (e.g. net-profit, number-of-rooms) to graphical property mappings (e.g. position, color) for
illustrating the trends and relationships of data values visually®. As is shown in Table 111-2, attribute
mappings have four input arguments. The first two arguments are the data attribute and graphical property
we want to link. The third argument specifies the scope of the attribute mapping. The scope of an attribute
mapping is specified in the same way as the scope of an object mapping. |.e. attribute mappings can be
applied to container objects or to graphical objects. Finally the last argument (the mapping-effect
argument), indicates whether the mapping function allows subsequent changes in data values to affect their
related graphical values and vice versa. There are four types of mapping-effect operators. forward,
backward, both or none. Forward allows subsequent changes in data values to be reflected in their

corresponding graphical values. Backward allows subsequent changes in graphical values to be reflected in

4 Attribute mappings usually map data attribute values to graphical property values linearly. However, in some cases
we may need to use a non-linear function or a modified linear function to take into account peculiarities of the human
visual system. For example Teghtsoonian [Teghtsoonian, 1965] found that the perceived area is typically the actual
area raised to a power of .8. Similar discrepancies arise in length and diameter judgements. We currently do not deal
with capturing these different attribute mapping functions in our framework but such extensions would not be overly
difficult to implement.
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their corresponding data values. Both refer to a combination of forward and backward effects and finally
none does not allow updated data or graphical values to propagate either way. For example, we may use the
backward mapping-effect to link the size of a mark to the selling price data attribute. This allows us to
change the underlying data (i.e. the selling price attribute values) by controlling their corresponding
graphical representations (i.e. by changing the size of the mark graphical objects).

In addition to object and attribute mapping functions, the mapping transform class also includes the
add-object and delete-object functions. These functions allow us to change the scope of preexisting object
and attribute mappings by changing the data concepts that a container object is associated with. The add-
object transform associates a given set of data concepts with a container object and the delete-object
transform disassociates a given set of data concepts from acontainer object. Associating new data concepts
to a container object will cause those data concepts to be added to each sub-container within the container
object. The added concepts will then be mapped according to the mapping transforms associated with the
lowest container class. For example attaching a new set of houses to the visualization container in Figure
I11-7 would cause those new data concepts to be mapped to bars in the left region and marks in the right
region. Furthermore, the new data concepts will have their house-selling-price data attribute mapped to the
length graphical property in the left region, their date-sold data attribute mapped to the mark-x-position in
the right region, and their house-address data attribute mapped to the y-axis in both regions.

11l-1.2.2.2 Data and Graphical Transforms

Unlike mapping transforms, which change elements of one class (i.e. data), to another (i.e. graphical),
data and graphical transforms change elements of a single class to different forms within that class. There
are five classes of data and graphical transforms in our framework (shown in Table 111-3): unary-functions,
binary-functions, summary-functions, assign-function and specialized-functions. These data and graphical
transform functions are applied to change existing data and graphical values or to generate new values.
There are three primary ways in which these transforms are applied:

1. To change or summarize the values of a single data attribute or graphical property.

Gattl > Gattz
Dattl > Dattz

2. To convert one type of attribute or property to another.

G.n > Gup, attl # att2

Duu > Dap, attl # att2

3. Toderive anew attribute or property based on multiple existing attributes and properties.

Gattli GatlZl ---:(-;an_n9 Gatt_m
Dattli Dattzi ---:Dan_n9 Datl_m

for any n and m ,wheren > 1, and att_m isanew attribute
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1. Change the values of a single data attribute or graphical property

Example techniques that fall within thisfirst classinclude most of the operationsin the SDM [Chuah,
1995h] system that are used to improve the readability of a visualization.

Figurell1-9: SDM lift objectstechnique Figurel11-10: SDM thin objectstechnique

Some examples include the lift objects technique that allows users to lift selected objects over and

above the other objects in the graphical scene so that they are visualy more salient and less occluded
(shown in Figure 111-9). This lift objects technique is a G, postion = G postion graphical transform; it

changes a set of z-position graphical values by adding a constant to it. Another example SDM technique
that fallsinto this classis the thinning objects technique that allows users to change the width of contextual

graphical objects so that they do not occlude the focus objects (shown in Figure 111-10). This exampleis a
Guidan > Guian graphical transform. Other examples include the feedback operations in the dynamic query

[Ahlberg, 1992] and painting techniques [Becker, 1987], which is a Ggor 2 Geoor  transform. Such

feedback operations commonly use the assign graphical transform to set color values of focus objectsto a
salient constant value. All the transform functions described above change the values of a single graphical
property by adding or subtracting constants to/from the value set or by setting the value set to a constant.

2. Convert one type of attribute or property to another

A dlightly more complex use of graphical and datatransformsis to apply the values of one attribute or
property to determine the values of another. A common application of this class of functionsisto do value

conversions. For example the data attribute temperature in Kelvins can be used to calculate the data

attribute temperature in Fahrenheit, €.9. Davins =2 Dranennet-

Another application of this class of transformsisto link properties so that they will change in tandem.

For example we may want our rectangle-shaped marks to always appear as squares. In order to achieve this
we may map GX_range -> Gy_range using the assign function. Once we have done this, any manipulation

function that causes the x-range property to change will cause a similar change in the y-range property.
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This class of transforms is also an integral part of expressing animation. Animation is achieved by linking

physical time (Gime) to a graphical attribute. For example, in order to make the size of marks in a display

increase with time, we define a Gype > Ggse transform.

Other example techniques that fall within this category include summarization techniques. These
techniques are used to summarize or aggregate data or graphical elements so that the visualization is
simplified and users can interpret the relationships shown by the graphic design more quickly and
effectively. For example, instead of representing all the house-selling-price values in our house database,
we can group the house concepts by neighborhood and show the average/mean house-prices by

neighborhood (Dhouse price > Dimean house price)- 1N the PAD++ system, file objects are summarized or
aggregated together (i.e. summarized) when there is very little space allocated to them (Dje =

Daggregale_ﬁ,e). When users zoom in on an aggregated file object, it gets split up into its individual

components.

The final operations that fall within this category are specialized functions that are used to extract

meta-data from a set of values. Some examples include determining the order of the values (e.g. sort

transform: D agibwe 2 Do) OF the number of times a particular value appears (e.g. count: D aipwe =

D coun). This meta-data allows users to analyze additional structural information about the existing data set.

3. Derive anew attribute or property based on multiple existing attributes and properties

Data and graphical transforms may also be used to calculate derived values from multiple attributes and
properties. For example we can determine the gross profit of various company data concepts by subtracting
their total-cost attribute values from their total-sales attribute values. In this case a new data attribute,

gross-profit is generated based on existing data attributes total -cost and total-sales (Dtota,_%,,&, Dtota,_m ->
Dgross , praiit)- Another example is the SDM-distance technique where the x-position and y-position of objects

are used to calculate their distance to the user (G, postion » Gy postion > Guistance). Note that this class of
functions is similar to the previous one except that we have multiple attributes resulting in only one
attribute (i.e. a many-to-one mapping in contrast to the one-to-one mapping of the previous section). Thus
similar to the previous category we can convert, link, and summarize attributes and properties, as well as
compute meta-data.
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In Table111-3 we list the data and graphical transform instancesin our framework as well as their input and

output arguments.

Function Function name Input Output
class
Unary 1.  Unary operator, Single value
Function (complement, absolute) set
2. Singlevalue set.
Binary 1. Binary operator, Single vaue
Function (add, subtract, multiply, divide) set
2. nvauesets.
Summary Group objects 1. Single object set, Group object
Functions 2. Group object data type.
Summarize values 1.  Summary operator, Single value
(' sum, mean, median, std-deviation, min, max)
2. Singlevalue s&t.
Assign Assign 1. Single value set containing the destination
Functions values,
2. Single value set containing the source values.
Specialized Sort 1. Sort operator, Single vaue
Functions (increasing, decreasing) set
2. Singlevalue set.
Count 1. Single value set containing the values we Single value
want to count, set
2. Single value set that is being counted.

1. Unary functions

Tablelll-3: List of data and graphical transformation functions

Unary functions take a value set as input and produce a transformed value set. We consider two types

of unary operators: complement and absol ute.

The complement operator may be applied to:

1) numbers (i.e. quantitative and discrete 1) numbers
data attributes)
(e.g.—10-> 10, or 5.23> -5.23).

2) boolean values
(eg. T2 F F>T)

3) strings

(e.g. —16> 10, or 5.23> 5.23).

(e.g. abc> cba, dracule> alucard)

Theabsolute operator may be applied to:
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2. Binary functions

Binary functions, unlike unary functions, take n sets of values (where n > 1) and a binary operator as
input. The binary operator is applied to each value set in turn, e.g. n, + N+ ...+ ny,, Wheren represents a
particular value set and + is tivgput binary operatorThere are four binary operators in our framework:

add, subtract, multiply, divide. The effects of each operator are shown below.

Theadd operator may be applied to: The multiply and divide operators may be applied
numbers to:

(X,y) 2 x+y numbers

strings (x,y) 2 x*y or (x,y) 2 xly

(“abc”, “bc” ) > “abcbc”

The subtractoperator may be applied to:
numbers

(X,y) > x-y

strings

(“abc”, “bc” ) > “a”

3. Summary functions

In addition to binary and unary compute operators, thereis also a set of summary operators (third row
of Table 111-3). Very often, especialy in large data sets, we may want to summarize a set of data concepts
and represent the set as a single summary object in order to reduce clutter. This is done by the group
objectstransform which creates a group data element from a set of data concepts. Like the group objects
operator, the summary computeperator is also used for summarization. However, it summarizes a set of
values instead of a set of objects. For example, the summary compute operator was used in the modified
value paintingtechnique (chapter 11-2.3) to calculate the mean house-pricevalue which is then used in a
subsequent object definition threshold function.

4. Assignment_function

Unary, binary, and summary functions produce new data and graphical values. To update existing
data attribute or graphical property values with new values we use the assignfunction. The assignoperator
takes two value sets as input and assigns the second value set to the first value set. For example suppose we
want to update the house selling-pricelata attribute in our database by adding in a new house sales tax
value. We can do this by first computing the new house-selling-pricessing the additionand multiplication
binary operators and then assigning the new values to the old house price attribute values with the assign

operator.
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5. Soecialized functions

Finaly there are a set of specialized data and graphical transform functions. These functions
correspond to common statistical computation operators: sort and count. The sort transform is used to
produce a set of ranks based on the numerical, alphabetical or semantic ordering of the input value set. The
count transform determines the number of times a particular element occurs in an input set. We can either

count all the existing elements in the input set or only specific chosen elements.

It is important to note that even though data and graphical transforms use the same functions to
transform objects and values, their end goals are very different. Data transforms are used to prepare data
concepts and values in away that is appropriate for our task(s). As described in the previous chapter, data
transforms are used for three primary purposes: 1) to calculate derived results, 2) to summarize existing
data, and 3) to compute meta-data based on existing information. Graphical transforms, however, are used
to provide feedback and to improve the readability of a visualization whose contents are already defined by
the data and mapping transform stages.

11I-1.2.2.3 Rendering Transforms

Rendering transforms are used to map a graphical scene onto an output media such asthe CRT screen.
Currently the only primitive rendering function in our system allows us to access the camera in the
graphical scene and change the camera parameters such as position, rotation, focal length, etc. This allows
us to navigate (pan, zoom, rotate) within any visualization that is generated. We have left out detailed
descriptions of rendering functions because this thesis is only focussed on the use of data processing and
mapping functions. For information on distortion rendering techniques refer to Leung et al.’s taxonomy
[Leung, 1994].

[11-1.3 Input & Output Translation Functions

Apart from picking specific object definition and transformation functions, we must ensure that the
arguments of a source function match the arguments of a destination function as was described in step 2 of
the instantiation augmentation processtlined earlier in this chapter. To achieve this, there are translation
functions that allow data and graphical elements to be queried for related attributes, properties, and
relationships. For example we may query a set of data concepts for the set of graphical objects that are used
to represent them, or we may query a visualization for the set of data concepts associated with it. Table
I11-4 shows these translation functions.

® The ingtantiation augmentation process is the five step process for converting functional specifications into
instantiable visualization techniques.
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Trandation
function class
Data & Graphical
object trandation
functions

Function name Input Output

Get related graphics Single set of data concepts Single set of graphical objects
Get datatype Single set of data concepts Single set of data types®

Get data concepts A Qatatype, or acontainer Single set of data concepts
Get related data gbrjglcé set of graphical objects | Single set of data concepts

Get graphical class
Get graphical objects

Single set of graphical objects
A graphical class, or a
container object

Single set of graphical classes’
Single set of graphical objects

trandation functions

(e.g. data concept, graphical
object, visuaization, region,
€tc)

Container object Get parent A graphical object or a A container object
trandation functions container object
Get children A container object A set of container objects
Get mapped data A container object A set of data attributes that are
attributes mapped to graphics within the
container
Get mapped datatypes | A container object A set of datatypesthat are
mapped to graphics within the
container
Get mapped graphical | A container object A set of graphical properties
properties that are mapped to data within
the container
Get mapped graphical | A container object A set of graphical classes that
classes are mapped to data within the
container
Object attribute Get object attributes A visudlization object A set of attributes
trandation functions (e.g. adata concept, a
graphical object, adatatype, a
graphical class, a container
object, or an annotation
object)
Attribute value Get values 1. A setof visudization A set of values
trandation functions objects
2. Anobject attribute
Value trandation Get objects A set of values A set of visualization objects
functions Get boolean objects 1. A setof visualization A set of visualization objects
objects
2. A set of boolean values
Get named object 1. Astring A visudlization object
Get type A visudlization object A string
System wide Get all objects Object type A set of objects

Tablelll-4: Input and output trandation functions

Note that all translation relationships can be queried both ways. For example being able to query for
all the graphical objects associated with a set of data concepts (get-related-graphics) means that thereisa
related tranglation function that allows us to query for all the data concepts associated with a set of

® Data types capture characteristics of similar data concepts that contain the same data attributes and relationships.
" Graphical classes capture characteristics of similar graphical objects that have a common visual appearance and
contain the same graphical properties. Some common graphical classes include bar-class, mark-class, node-class, and

interval-bar-class.
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graphical objects (get-related-data). Or being able to query a data concept for its related data type (get-
data-type) means that there is a related translation function for querying a data type to get all the data
concepts associated with it (get-data-concepts). This symmetry alows us to easily move back and forth
between the data and graphical realms as well as between different object types within each realm so that
we can flexibly build a wide range of visualization techniques using transformation functions that are in

any order.

Object trandation functions allow us to query a set of data concepts for their related graphical objects
and vice versa. We may also query data concepts for their data type or for the attributes they contain (i.e.
get-attribute-values function). Similarly we may access the graphical class and properties of graphical
objects.

Container functions allow us to query a container for other container objects based on the hierarchical
relationships described in section 111-1.1.2 (through the get-parent and get-child functions). In addition, the
get-graphical-objects and the get-data-concepts functions (listed in the data & graphical object translation
function class) allow usto access all the data or graphical objects associated with a container. We may also
guery container objectsfor all the data attributes, data-types, graphical properties and graphical classes that
are currently involved in an object or attribute mapping (e.g. get-mapped-attributes, get-mapped-data-
types, get-mapped-properties and get-mapped-graphical -classes).

Object attribute and attribute value translation functions alow us to query data concepts, graphical
objects, and container objects (e.g. visualization, graphical space, region) for the set of attributes and
values associated with them. For example a house data concept may contain the house-price and date-sold
attributes, a mark graphical object may contain the x-position and color attributes, and a visualization
container may have the size, x-position and y-position attributes. These attributes and values can be
extracted from their corresponding objects by using the get-object-attributes and get-values translation

functions.

Value trandation functions allow operations on value arguments. For example, values can be queried
using get-objects value trandation functions to obtain the objects containing those values. The get-
boolean-objects function filters an input object set based on a set of boolean values. Specificaly, only
those objects that have a corresponding True value in the boolean value set are included in the function
output. The get-named-object function returns the visualization object that corresponds to the input value
string. The get-type function returns the class to which an object belongs (e.g. data concept, graphical
object, visualization object, etc).
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Finally thereis a set of global trandation functions that allow us to query for system wide state such
as getting all the data concepts or graphical objects within the entire visualization system (e.g. get-all-data-
concepts, get-all-graphical-objects). Similarly we may also query for all existing data types, graphical
classes, regions, spaces, and visualization containers.

[1I-1.4 Input-devices

To characterize input-devices, our framework uses Foley et alFslfy, 1990] description of input-
devices, which consists of three levels of desigrical design, syntactic design and semantic design.
Lexical design refers to how input primitives are derived from basic hardware functions. Input primitives
include all physical device signals such as mouse clicks, key press&ynectic design consists of a set
of rules by which primitive input units can be composed or joined to form ordered sequences of inputs. For
example a series of mouse movements, mouse clicks, and mouse releases are required for specifying the
syntactic design for hounding-box. Devices that are built from a well-defined sequence of physical device
signals are also referred to vstual devices. Note that while syntactic constructs describe how a device
may be manipulated, they do not define its meaning (i.e. its semais@osgntic design defines the
meaning of a syntactic construct. For exammiayse clicks, bounding-boxes andsliders can all be used to
define aselection of objects. In this case the semantics of the device is the selection of oljdletshe
actions used to achieve this selectionld take multiple syntactic forms (imouse clicks, bounding-boxes
or diders). Similarly, a syntactic form can have several meanings. For exarbpledng-box can be used
for selecting a set of objects or for defining a set of values, one at each of its vertices. The list of input-

devices considered in this thesis are listed in Table II-5.

Input-device Input-device Required initialization attributes | Output arguments
trigger event (semantic) (semantic)
(syntactic)
Bounding-box Mouse up Mouse button that activates the Annotation objects,
device (either left, middle, or right) | Graphical objects, Region,
Vertex values
M ouse click Mouse up Mouse button Annotation objects,
Graphical object,
Region
Option menu, Double click A set of stringsto put into the A single or set of strings
Scroll list, device
Radio buttons
Text box Enter key Label A string
Button Mouse up Label A boolean value
Slider, Mouse move Minimum and maximum range of One or more values
Dial device

Tablell1-5: Input-device Query functions
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To define an input-device in our framework, we must define it in terms of the three levels of design
described above (physical, syntactic, and semantics). First of all, we define the types of input signals
available. In this thesis we only consider input from two physical devices, the mouse and the keyboard. At
the syntactic level, we define the input-device’s appearance (i.e. menu, slider, etc) and the input primitives
used to control it. This includes ttrégger event, i.e. the physical event that triggers an update of the input-
device. For examplelouble clicking would update anenu, or amouse release event would update a
bounding-box. Finally at the semantic level, we define all the initialization arguments needed, and all the
output arguments the device is capable of producing. For example, in a slider device class there are two
important initialization attributes: the min and max values of the slider. The slider can then be queried for
the value(s) marked within it.

[11-1.5 Summary

In this section we presented detailed lists of all the visualization objects, functions, and input-devices
our automatic system may operate on. We mainly focussed on characterizing data and mapping transforms
because the focus of this thesis is on integrating data processing and mapping functions. We also described
some graphical transforms because thmifive computations they use are identical to data processing
operations (section 11-1.2.2.2). We left most of the rendering functions to be specified in future work. It is
important to reiterate that the list of argument types, functions, and input-devices provided in this section is
not complete. The functions included were chosen because we felt that they were effective for capturing the
functions of current information visualization techniques. Now that we have presented all the primitive
operators within our framework, we can also them to systematically explore the instantiation space of
interactive techniques (sections IlI-2 and IlI-3). These sections may be skipped if the reader is only

interested in the automatic design aspects of this work.

llI-2  Visualization Techniques Instantiation Space

At the end of the previous chapter we show how our framework can help us explore new techniques
within the functional design space and improve on existing techniques by combining their functionality. In
this section we explore the instantiation design space. Unlike exploration in the functional space which may
change the semantics of a technique, exploration in the instantiation space only changes the structural
aspects of the technique such as how the technique gets manipulated, which aspects of the technique users
get to control, what type of feedback is used, etc. Changes to the instantiation destwiptiochange the
semantics of a technique. In this section we present an example visualization technique and show how
making changes to its instantiation specification can improve its effectiveness. We explore the instantiation
space in greater detail in appendix B-4 where we systematically lay out all the alternative instantiation
designs for the dynamic query slider technique. In appendix B-5 we explore the instantiation design space

for a set of current visualization techniques.
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In this example we analyze data from a set of distributors for a hypothetical company in the United
Sates. Each mark on the maps in Figure 111-11, Figure 111-12, and Figure I11-13, represents a distributor.
The location of a mark encodes the geographic location of a distributor and the size of a mark encodes the
total number of product-X units sold by that distributor.

At the bottom of the interfacein Figure I11-11ais a dynamic query slider technique that allows usersto
highlight distributors based on number of employees (num_people). Thisis done by marking anum_people
threshold value on the slider. Subsequently, all distributors whose num people exceed the marked
threshold will get highlighted red. The dlider visualization technique described above can be defined by the
instantiation specification in Figure I11-11b. In this specification, we query the slider input-device for the
threshold value marked within it. This value is piped into a threshold function that filters all of the
num_people data values. The threshold function returns a set of boolean values that we convert back to data
concepts using the get-boolean-objects trandation function. At this point we have a set of distributor
concepts whose number of employees are below the threshold value. We query these distributor data
concepts for all the graphical objects used to represent them. These graphical objects are then intersected
with the graphical objects in the map visualization. The intersection operation is necessary to localize the
highlight effect to only the map visualization. Finally the intersected set of graphical objects are colored red
using the assign graphical transform operator.

LOCATION_E "W

Erestiact 3 sales [in mumber of units]
0000000
160000C.000000
3200000 GCC000
&BO0000. 000000
EANNDDACCO000

HUM_PEOPLE 803
=

(@) Each mark in the map encodes a distributor for a hypothetical company. The x-axis and y-axis encodesthe
geographic location of the distributor. Size encodes the total number of units sold for product-X. The dider
at the bottom of the interface allows usersto select distributors based on the number of employees
(num_people) there. Selected distributors are highlighted in red.
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Visualization
object

Get graphical
objects

Graphical Graphical
object set propey,

Threshold | | Get boolean | | Get related M Get
(<) objects graphics values
Data Data Graphical Graphical Graphical
value set object set object set object set value set

(b) Instantiation specification for the dynamic query slider techniquein Figurelll-11a
Figurelll-11: Example of a dynamic query dider techniquethat allows usersto select various distributor data

concepts based on the number of employees (num_people) working at each site.

A problem with the visualization technique in Figure I11-11 is that users can only highlight distributors
based on their num_people attribute. In order to relax this constraint, we add a new input-device as shown
in Figurel11-12.

LOCATION_N/S

440.00 520.00 600.00 680.00
480.00 560.00 440.00 720.00

LOCATION_E/W

Product X sales [in number of units]
@ 0.000000
1600000, 000000
3200000, 000000
4800000.000000

. £400000,000000

&

Product Z sales
3810051

&
5
=
B

(a) Similar interface to Figurelll-11a except that here users get to control a scroll-menu in addition to the dider
in order to pick the current constraint data attribute. Currently, the product_Z_sales attribute has been picked
on the scroll-menu and therefore it appearsasthe constraint attribute next to the dider. Thereforethe
highlighted objects are those distributors with product_Z_sales less then 3810051 units.
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nput device
device property

Visualization
Data object set object
attribute Get v th graphical
objects
Data
value set Graphical Graphical
object set propey
A4

Threshold | || Get boolean | | Get related Get
<) objects graphics values
Data Data Graphical Graphical Graphical
value set object set object set object set value set

(b) Instantiation specification for the visualization interface in Figure I11-12a. This specification issimilar to the
onein Figure I11-11b except that a scroll-menu has been added to allow usersto pick the constraint attribute.
Changes made to the specification in Figure 111-11b are shown in gray here.

Figurelll-12: Example dynamic query dider technique with selectable data attribute constraint

In Figure 111-12b we have added a scroll-menu input-device which allows users to supply the data
attribute on which to perform the threshold operation. Alterations made to the specification in Figure
I11-11b are shown in light gray in Figure I11-12b. The resulting interface (Figure 111-123) is identical to
Figure I11-11a except that there is a scroll-menu below the dlider, which contains al the distributor
attributes (e.g. location-n/s, location-e/w, product-X-sales, product-Y-sales, product-Z-sales, and
num_people). Through this interface users can not only pick the threshold value but also the threshold
attribute.

Another problem with the dlider highlight technique in Figure I11-11 is that occasionally, object
coloring alone does not provide sufficient feedback because the colored objects may be occluded, thereby
making them difficult to find in the visual display despite their coloring. One way to solve this problemis
to both enlarge the objects as well as color them. In this way, the highlighted objects become much more
salient. We do this simply by adding some new graphical transform operators to the technique specification
in Figure 111-11b (changes are shown in light gray in Figure I11-13b). This new specification will cause the
selected objects to be colored red as well as enlarged asis shown in Figure 111-13&%.

8 Note that enlarging the selected objects is sometimes undesirable because they tend to occlude each other or the
objects around them. We can alleviate this problem somewhat by changing the draw order of the objects so that the
smaller elements are drawn last.
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(@) Similar interfaceto Figurelll-11a except that herethe selected objects are both colored red aswell as

enlarged in order to increase saliency.

Visualization

Graphical Graphica
object propey valuyé
Get graphical
objects — Gt
values
Graphical
value set
Threshold | | Get boolean Get related
(<) objects graphics
Data Data Graphical Graphical Grapfical
value set object set object set object set valud set
Binary v
> \(/;:tua > compute *| Assign
(Add)
Graphical Graphical
property value

(b) Ingtantiation specification for the visualization interfacein Figure I11-13a. This specification issimilar to the
onein Figure l11-11b except that some additional graphical transform functions are included to increase the size
of the selected objects. Changes made to the specification in Figure l11-11b are shown in gray here.

Figurel11-13: Example dynamic query dider technique with color and size feedback on the selected objects

The examples in this section show that refining a visualization technique at the instantiation level

allows us to improve the effectiveness with which a technique can be applied to the current task situation

and to our current preferences. This section also illustrates some of the design decisions that must be made
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by our automatic designer and by human designers when creating a visualization technique. We show in
appendix B-4 that by following the five steps in the instantiation augmentation process refinements to the
instantiation specification can be carried out systematically and effectively. In appendix B-5 we begin
analyzing the instantiation space for a set of current visualization techniques. These examples further
illustrate the differences between the functional and instantiation levels from a design standpoint and show
the applicability of our two level design methodology. Specifically, exploration in the functional space is
useful when we want to create new techniques that have unique or additional functions. On the other hand
exploration of the instantiation space is useful when we want to refine a technique to better suit the current
hardware, user preferences or task conventions, without altering its underlying functionality. Note that the
customization examples shown in this section (Figure I11-11, Figure I11-12, Figure I11-13) do not alter the
general functionality of the slider technique. The function of the slider technique, which isto alow usersto
select a set of data concepts, based on their attributes and then to highlight their corresponding graphical
objects, remains the same in all three specifications.

[1I-3 Evaluation of Framework

We evaluate our framework based on three criteriaz completeness, coverage, and practicality.
Completeness refers to whether the framework is capable of expressing all visualization techniques.
Coverage refers to whether the framework can be applied to a wide range of visuaization types (e.g. bar
charts, scatter-plots, 3D-displays) and input-devices (e.g. menus, bounding-box, radio-buttons). And finally
we argue for practicality in three ways. 1) the framework reduces the cost of task tailoring; 2) the
framework provides a new design methodology; and 3) the framework allows systematic exploration of the

visualization techniques design space.

[11-3.1 Completeness

Completeness refers to whether the framework is capable of expressing all visualization techniques.
At the end of the previous chapter we showed that our framework can express many current visualization
techniques. The framework, however, is not complete, and can never be so because as new visualization
methods and metaphors are created the framework would need to grow to include these new techniques. It

is thusimportant for the framework to be flexible and easily extensible.

Our framework supports both flexibility and extensibility because it splits the design into two
different levels (functional and instantiation). We anticipate that framework extensions will commonly
occur only at the instantiation design level because at that level, we are more concerned with input-device
specifics and visualization function inputs and outputs. In contrast, the functional level deals with abstract
function classes and composition operators, which tend to be less volatile. Changes made to the
instantiation design level would generally not affect the functional design level, so framework alterations

should be fairly localized. Secondly, the framework is based on a compositional language that allows us to
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generate a wide space of designs with relatively few primitives. Future extensions should be able to
capitalize on this compositional language and leverage off of pre-existing object definition and
transformation functions so that only a few primitives need to be added to increase the expressive
capability of the framework significantly. Finally, one of the design decisions was to use object definition
and transformation functions of lower granularity (i.e. just simple mathematical functions). This makes it
easier to reuse and compose these functions, even with new methods and metaphors. Thislower granularity
level comes at the price of more specification; however we believe that much of the specification can be
automated. In addition partial specifications can always be saved and reused so that we only need to declare
them once.

[11-3.2 Coverage

Our interactive framework can be applied to a wide range of traditional visualizations (e.g. charts,
maps, tables) and direct manipulation input-devices and widgets (e.g. mouse clicks, keyboard presses,
menus, radio-buttons, etc). The examples in this chapter and the previous chapter show the use of afairly
wide range of visualization types including maps (Figure I11-11), charts (Figure I11-2), tables as well as
input-devices including sliders (Figure 111-11), drag and drop, and menus (Figure 111-12). Thisis achieved
by building our language based on previous work that have characterized a wide range of data[Mackinlay,
1986a, 1986b; Roth, 1990], visualization elements [Mackinlay, 1986a, 1986b; Roth, 1994; Chuah 1995],
and input-devices [Card, 1990]. We do not deal with more complex input-devices, such as two-handed
input-devices and speech; however such techniques can be relatively easily integrated into the framework
by specifying them according to the three input-device levels described in section 111-1.4. Framework
generality provides flexibility in design, however, it also raises a big concern, namely how to pick the
“best” visualization objects or input-devices from the wide range of choices available. In order to make this
decision we must carefully consider our data, our media, and our Baskn|[ 1983; Tufte, 1983;
Mackinlay, 1986a, 1986b; Casner, 1991]. Choosing the “best” visualization design for our task and data is

the topic of discussion in the next chapter.

[11-3.3 Practicality

Our framework is practical for the following three reasons.

111-3.3.1 Reduces Cost of Task Tailoring

Our framework provides designer with an easy means of combining common transformation functions
to form visualization techniques so that they can plug and play with different visualization effects to suit to
suit their design goals. The example shown in section illi€trates this by showing how the dynamic
query slider technique can be easily expanded in several simple steps to solve some of the limitations found
in the original technique.
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111-3.3.2 Provides a New Design Methodology

Our design methodology is based on two different levels of abstraction. The functional level of
abstraction (outlined in the previous chapter) is concerned with the goals of a technique while the
instantiation level of abstraction (outlined in this chapter) is concerned with the form or look of the
technique. By dividing the design process into these two levels, designers can concentrate on functionality
first without having to worry about specifics like the color to use, whether to use a combined input-device,
or whether to use size instead of shape. At the functiona level designers can focus on issues such as
whether the functions chosen are capable of solving the task(s) well, whether the functions combine well
together, and whether sufficient feedback is provided. Also by concentrating on functionality, designers
may notice similarities among techniques that they previously considered to be quite different due to
superficia differences. This will hopefully encourage more functional reuse among different techniques.
This two-tier design methodology allows designers to focus on different aspects of the design process
without complications from other unrelated parts. By doing so we are ensuring that their choice of function
is more driven by task concerns rather than by media and device restrictions, which should be dealt with
Separately.

111-3.3.3 Allows Systematic Exploration of the Visualization Techniques Design Space

The visualization techniques design space can be explored based on the two design levels outlined
above: functional and instantiation. Exploration at the functional level involves developing new object
definition and transformation functions, as well as combining existing functions in new ways to derive new
behaviors. We did this in the previous chapter, which showed how techniques with different functionalities
can be combined. Exploration at the instantiation level, on the other hand, involves picking which input-
devices, graphical properties (color, shape, position), data attributes, or graphical elements to use for a
technique. In section I11-2 we showed some example instantiation specifications and how these
specifications may be varied to produce interesting design aternatives. Note that design variations at the
instantiation level do not change the functional characteristics of a technique. The functional space for
visualization techniques is bound by the object definition, transformation, and composition classes
available. The instantiation space for a given technique is bound by the original functional design of the

technique and by the five classes of design changes in the instantiation augmentation process.

[1I-4 Conclusion

In this chapter we describe the instantiation design of visualization techniques. We show how
instantiation details can be added onto functional visualization technique specifications so that they may be
rendered as an active visualization interface. Just like the functional level, the instantiation level may be
explored in a systematic fashion. Through a series of examples in sections I11-2 we show some design

variations that may be derived from existing visualization techniques.
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We also evaluated the entire framework based on three criteriaz completeness, coverage and
practicality. In terms of completeness the framework is able to express many current techniques but
because of its nature can never be fully complete. It is however easily extensible. In terms of coverage the
framework allows various techniques to be integrated with awide range of visualizations and physical and
virtual input-devices. Finally, we argued for the practicality of the framework by showing that it a) allowed
easy task tailoring b) provided a new design methodology based on two levels (functional and instantiation)
and c) allowed the systematic exploration of the visualization techniques design space. In appendix B-6 we
discuss more advanced visualization technique issues that occur when we integrate multiple visualization

techniques within a common workspace.

Our analysis of the visualization techniques design space show us that there are many visualization
technique aternatives for achieving a single data analysis task or problem. Because of the enormous
number of design alternatives, it can sometimes be difficult and time-consuming to test out all the design
variations. An automatic design system would help designers create and generate their prototypes more
quickly and easily. Such a system however requires the framework, which we have laid out in this chapter
and the previous one. Our visualization technique framework provides an automatic design system with a
language for describing visualization techniques and a systematic methodology for creating and exploring

the visualization techniques design space.

This chapter and the previous chapter described aframework of visualization techniques that had data,
mapping, graphical, and rendering transforms. We did not, however, explore the effectiveness of these
transform functions. Earlier work on automatic visualization design considered effectiveness criteria for
mapping transforms based on data and task requirements [Mackinlay, 1986a, 1986b; Casner, 1991]. In the
next chapter, we consider effectiveness criteria for making combined decisions about data transforms, and
mapping transforms. Specifically, we consider when it might be more useful to perform atask or subtask
perceptually by mapping it to graphics, and when it might be more advantageous to let the system
internally compute the task through data transforms and only visualize the pre-computed results. In
appendix F, we consider the role of graphical and rendering transforms in improving the readability of a
visualization. Specifically, we consider readability issues such as occlusion, display density, data dwarfing,

and information presence, and how these issues affect the usability of a visualization interface.
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Chapter IV: Design Heuristics

Data Computation vs.
Perceptual Mapping

The goal of this thesis is to enhance the breadth and quality of designs generated by an automatic
visualization system by adding data processing operations to the design process. The consideration of data
transforms extends previous automatic systems, which only considered mapping transforms (i.e. mapping
data to graphics). In the previous chapters we laid out a framework which divides the visualization design
process into four primary steps: data transforms, mapping transforms, graphical transforms, and rendering
transforms. In this chapter, we discuss integration of data transforms together with mapping transforms, the
issues that arise, and the design improvements that may be realized with this expansion. In appendix F, we

speculate about the integration of graphical and rendering transforms into the automatic design process.

We begin this chapter with an example that shows where previous work leaves off, and how
consideration of data transforms will improve the designs that can be produced.

IV-1 An Airline-Scheduling Example Illustrating the Use of Data
Transforms

This airline-scheduling example was used by Casner [Casner, 1991], to illustrate the importance of
considering a user’s task in mapping data to graphics (i.e. mapping transforms). We show that this “airline
reservations” task can be better supported if we consider ways to transform or reorganize the data in

addition to mapping it to graphics. The verbal description of the task that the visualizations must support is:

Given an origin and a destination city, the user “attempts to locate the two flights
arriving in and departing from a layover city that offer the minimum amount of “"down time’
between the flight times and the beginning and ending time of a scheduled meeting (in the

layover city)”.

Task 1V-1: Airline-scheduling task. The user istrying to find flights to enable a meeting to be held in
alayover airport en-routeto a destination and to minimizetime spent at the layover airport before
and after the meeting.
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In the following example designs, suppose that the origin and destination cities are Los Angeles (LAX)

and Boston (BOS) and that the layover city is Chicago (ORD). Further, suppose that the meeting time is

from 2 p.m. to 4 p.m. Casner showed that this task can be achieved perceptually with the graphic designin

Figure IV-1. In Figure IV-1, the origin and destination cities are

encoded on the y-axis and the departure

and arrival times are encoded on the x-axis. Each flight is represented by aline where the left-point of each

line encodes the origin city and the departure time of a flight and the right-point of each line encodes the

destination city and arrival time of a flight. For example in Figure 1V-1b, the task solution is a flight
leaving Los Angeles (LAX) at 5:30 am. noon and arriving at Chicago (ORD) at 10:20 am. and another

leaving Chicago (ORD) at 7:00 p.m. and arriving at Boston (BOS)
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ncated data set. This example visualization
heideal case wherethereislittle occlusion
the different flight lines. Thisdata set was
so that it contains some flights that fulfill

thetask constraints as well as some other random
flightsthat do not occlude one another.

FigurelV-1: Solving the airline-scheduling task fully perce

ptually (Casner’s solution). Each line

represents a flight with origin and destination city mapped onto thg-axisand arrival and departure
time mapped onto thex-axis. This is the best design that gets generated when ONLY mapping
operations are considered by the automatic system. l.e. this is the best possible design from current
state of the art systems.

In Figure 1V-2, we present Casner’s analysis of the perceptual procedure a user must perform using

the visualization in Figure 1V-1 to achieve the airline-scheduling task (Task IV-1). Subsequently we show

in Figure 1V-3 how transforming the data makes this procedure simpler.
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Subtask-1 :Find all the origin flights that fulfill the first leg of the flight schedule

Visually search for all flights whose origin isLos Angeles (LAX) and whose
destination isChicago (ORD), the layover-city.
Search for LAX on the y-axis and then look over to the right for al flights
that start from this origin-city.
For each of these flights, we find the end-point of the flight line and
determine whether it goesto ORD, the layover-city.
For all flights that fulfill the origin (LAX) and destination (ORD) city
constraints, check if they meet the meeting time constraints as well (arrives
at ORD before 2 p.m.).
Look down on the x-axis to determine the time of arrival in ORD. If the
timeis after the scheduled meeting time, we discard the current flight as a
possible candidate and continue looking for other relevant flights.
If the arrival time is before the scheduled meeting, we determine whether
it has the smallest prior meeting downtime. If so we note the flight as the
current most promising candidate and continue the process for al other
flights.
Subtask-2 :Find all the destination flights that fulfill the second leg of the flight
schedule

Find the earliest flight after the meeting using an analogous procedure to
subtask-1.

At the end of subtask-1 and subtask-2 we would have determined the flights with the
smallest downtimes before and after the meeting. To get the total down time we

merely add the two downtimes

FigurelV-2: Casner’s analysis of the perceptual procedure a user must perform with a visualization
to achieve the airline-scheduling task (Task IV-1).

The pure perceptual procedure for the airline-scheduling task (Task 1V-1), while relatively complex,
is still more effective compared to a strictly cognitive procedure (i.e. looking at a spreadsheet table that
contains the raw data). We performed a GOM S analysis for atabular presentation of the datafor the airline-
scheduling task and estimated it to take approximately 4 minutes for task completion. In contrast, the
perceptual solution represented in Figure I V-1only took 30 seconds. The GOM S analysis tables for both the
cognitive and perceptual designs are presented in appendix C-1. However, we should point out that this

analysis assumes that all the data fits within a single CRT screen, and there is no occlusion in the designs.
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As can be seen from Figure 1V-1a, when the data set size grows, the perceptual design quickly becomes
unusable without interactive navigation of the display. For the cognitive solution, larger data sets would not
fit within a single CRT screen thus interactive scrolling is required. Such navigation operations will add to
the overall task time of both designs.

Figure 1V-3 shows an alternative design for solving the same airline-scheduling task using the same
data set as Figure IV-1b. The left chart shows all the flights that fulfill constraints for the first leg of the
journey (LAX to ORD with arrival time before 2 p.m.) while the right chart shows all the flights that fulfill
constraints for the second leg of the journey (ORD to BOS with departure time after 4 p.m.). The bar
lengths in the left chart encode the computed total downtime before the meeting and the bar lengths in the
right chart encode the computed total downtime after the meeting.

Flight nunber, Flight nurnber,

American_446 American_1092)
Drelta_1171 AdrTran_81
AmericaWest_4057) TWA_622
American_ 584 Unired_124
United_12 United_52
American_ 1847 Continental 30
United_11 Drelta_34
Unired_11 United_57
United_174 Unired_101
United_10 American_132

180.00 500.00 250.00
2000 340.00 110.00
Time before meeting [In minutes) Time after meeting [in minutes)

FigurelV-3: Our hybrid data transform and mapping transform design for solving airline-
scheduling task. Here only theflightsthat fulfill the city and meeting time constr aints are shown.
Computation of thetotal downtimefor the best flightsisleft to the user. Time_before meetingis
mapped to the x-axis of the left chart and time_after_meeting is mapped to the y-axis of theright

chart. To perceptually compute thetotal downtime usersadd the shortest bar length in theleft chart
with the shortest bar length in theright chart.

In Figure 1V-3, we are able to significantly simplify the perceptual complexity of the earlier designs
as well as reduce visual clutter with data transform techniques. These techniques alow the automatic
system to summarize the task results and filter out irrelevant flights thereby significantly improving the
readability of the representation compared to Figure 1V-1a. In addition, it also simplifies the perceptual
procedure for solving the task because in this design users need not visually search for flightsthat fulfill the
city and time constraints. Instead, al this information has been pre-calculated by the system with data
transform techniques. To solve the airline-scheduling task (Task 1V-1) using Figure IV-3 we only need to
pick the shortest bar in the first chart (i.e. American_446 which has the least downtime before our meeting)

V-85



and the shortest bar in the second chart (i.e. AirTran_815 which has the least downtime after our meeting).
The total downtime can be estimated by perceptually adding the lengths of both these bars. The GOMS
analysis for Figure I1VV-3 showed an estimated task time of only 3 seconds.

Figure IV-4 shows the GOMS time estimates for solving the airline-scheduling task using a purely
cognitive procedure, a purely perceptual procedure (i.e. only mapping transforms, Figure 1V-1), and a
perceptual procedure (mapping transforms) combined with data transform techniques (Figure 1V-3). We
can clearly see that using both mapping and data transform techniques together is significantly more
effective than using only mapping transform techniques which in turn is more effective than using only

cognitive operators.
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Cogpnitive solution Pure mapping solution Our hybrid data
(purely perceptual) transform and mapping
transform solution

Total GOMS estimated task completion time (in

FigurelV-4: GOM Sestimated total timefor solving the airline-scheduling task using a pure
cognitive, pure mapping, and a hybrid data + mapping design.

Earlier work on automatic visualization design [Mackinlay, 1986a, 1986b; Casner, 1991, Roth, 1994]
centered purely on using mapping transform techniques (pure perceptual operators), preferring to address
those tasks that cannot be easily accomplished through statistical computation (data transform techniques).
This sentiment is well expressed by Tufte: “Why waste the power of data graphics on simple linear changes
which can usually be better summarized in one or two numbers? Instead, graphics should be reserved for
the richer, more complex, more difficult statistical material.” Thus, previous work on automatic
presentation systems have assumed that statistical processing has already occurred before the design
process. These systems have instead focussed on developing design heuristics for making data-to-graphical
mapping decisions based on both tasks and data. However, work on task aiSalyagsdyer, 1992]
indicates quantitative processing (data transform techniques) is an integral part of graphic design. As was
expressed by Springmeyer, “These results show that analyzing scientific data is a much more quantitative
and active process than the passive viewing of images.” Based on her analyses, Springmeyer was
convinced that a large shortcoming of current visualization systems was their lack of integration with
quantitative operations (i.e. data transforms). We believe that in order to design more effective
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visualizations for analyzing data, we must make data transform decisions together with mapping transform
decisions. The brief GOM S comparison shown in Figure 1V -4 supports this belief.

It is however erroneous to assume that data transforms will always be more effective than mapping
transforms. Sometimes, over-computing atask creates more graphics and more work for the user (appendix
C, Figure C-3). Other times, full pre-computation is just not possible. Commonly the most appropriate
design for a task will consist of a blend of data and mapping transforms, as we will show in the next
example. The most effective blend of data transforms and mapping transforms for a task sequence is
dependent upon many factors including the task (e.g. whether the task requires simple or complex
computation, whether the operation must be repeated many times, whether we know for sure what the task
parameters are), the preferences of the user (e.g. whether they are comfortable with using input devices,
whether they are familiar with particular input devices), and the availability of display and input resources
(e.g. whether the elements will fit within the output media, whether physical devices are available for
input). To make intelligent design decisions about how data computation and mapping techniques should
be combined, we need to include data processing decisions as part of the automatic design process and not
merely pre-compute the data beforehand. In the next example, we illustrate the weakness of over-
computing the airline-scheduling task (Task 1V-1).

One possible solution for Task V-1 is to calculate the entire task with data transform techniques. In
this case, the system would only present users with the two flights that produce the minimum total
downtime (i.e American_446 and AirTran_815). Having the system calculate the entire task with data
computations, however, is only appropriate if we can fully and accurately define all our data analysis goals
(e.g. meeting time constraint: >= 2 p.m. and <= 4 p.m.; origin = LosAngeles; layover = Chicago; and
destination = Boston). Suppose that in addition to total downtime we were also concerned with total cost
and flight duration (i.e. we want to choose flights with “generally lotetal downtime, total cost, andflight
duration). In this case, it is not possible for the system to calculate the entire task with data computation
and only present users with one flight pair because we do not know what constitutes an acceptable balance
between “low"total downtime, “low” total cost and “low” flight duration. The best balance between these
three attributes can only be arrived at during the analysis process, after we have determined the number of
flights that fulfill our city andtime constraints and the data distributions of the acceptable flights with

respect to our three attributes.

One way to solve this task is to use a design similar to the one in Figure 1V-3 but augmented with
total cost andtotal duration data (Figure IV-5). The left chart in Figure IV-5 represents flights that fulfill
the first leg of our schedule and the right chart represents flights that fulfill the second leg of our schedule.
In each chart, the labeled marks represent different flights.flTgte duration is pre-computed, and

encoded on thg-axis, total downtime is pre-computed and encoded on #iaxis, total cost is pre-
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computed and encoded with saturation, and flight name is encoded with labels. To find the most relevant
flights, we look for marks on the left-bottom corner of each chart (low downtime and low flight duration)
with low saturation values (low total cost). In the left chart (flight before meeting) the choice is clear. The
best flight is American 446 that has the lowest flight duration and downtime _before _meeting. Its cost
(saturation) is also comparable with the other flights. In the right chart, some trade-offs must be made
between AirTran_815 that has the lowest downtime_after_meeting and cost and United 576 that has the
lowest flight duration. AirTran_815 seems to be the better choice from Figure V-5 because it has very low
downtime_after_meeting and cost, as well as a flight duration that is not overly large whereas United 576
has a very large downtime_after_meeting. Thus, this airline-scheduling task cannot be solved with a pure
computation because the tradeoffs among the task attributes (downtime, flight duration, and cost) cannot be
captured in a simple function and needs to be considered by the user. At the same time however, using a
pure mapping design is also ineffective because of its high task complexity (in terms of both search and
computation) as well as the many different data attributes that it combines. Thus, a hybrid data and
mapping design (asin Figure IV-5) is the most appropriate here.
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FigurelV-5: Visualization for finding flightswith low total-downtime, low total-cost, and low
duration. Because ther e are trade-offsthat must be made among thethree attributes, thistask isbest
performed through perceptual perusal.

In appendix C-2 we present several other design aternatives for the airline scheduling task that have
different blends of data and mapping transforms and discuss their strengths and weaknesses. The examples
in this section and in appendix C-2 show us that there are many ways with which we can use data and

mapping transforms to solve user goals. To make intelligent design decisions about how data computation
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and mapping techniques should be combined, we present a set of design dimensions for gauging the
goodness of different visualizations (section 1V-2). Based on these design dimensions, we develop higher
level design rules for deciding when to use data transform techniques and when to use mapping techniques
to solve tasks (section 1V-3). In appendix C-4 and C-5 we introduce some task examples and show how our
prototype automatic visualization designer addresses these tasks based our design dimensions and design

rules.

IV-2 Visualization Design Dimensions

The airline-scheduling example presented in the previous section shows many different ways in which
data and mapping techniques may be combined. To decide on which combination is most appropriate for a
given task or set of tasks we need some standards of evaluation for the different designs (i.e. visualization
design dimensions). In this section we present a set of design dimensions upon which to evaluate
visualizations. Our dimensions are based on the interaction framework model presented by Abowd and
Beale [Abowd, 1991] (Figure IV-6).

pressive
distance

Semantic
distance

Articulatory
distance

FigurelV-6: Interaction Framework model presented by Abowd and Beale[Abowd, 1991]. This
framework isused to measur e the effectiveness of various visualization inter facesin thiswork.

In this framework, there are four components: the user (U), the system (S), input (1), output (O); as
well as four trandations between these components: articulation, performance, presentation, observation.
Users through articulation generate inputs for a system detailing the requirements of their current tasks.
The system performs a set of function operations on these inputs and generates a set of outputs. These
outputs present a possible solution of the users’ input queries. Users must fioladgyve and interpret
these system outputs, updating their task model as necessary. This cycle is iterated over as many times as
necessary until all task objectives have been satisfactorily met. Each translation step can be assessed for its
effectiveness with respect to the overall interaction. Effectiveness of the four translation steps is measured
by their articulatory distance, functional distance, expressive distance, and observational distance

respectively (Figure 1V-6). The summation of these four distances measures the effectiveness of the overall
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interaction or its $emantic distance’. Semantic distance refers to the degree which user goals are fulfilled
by the interaction. A large semantic distance means that the goals are not achieved well and a small
semantic distance means that the goals have been satisfied acceptably.

Articulatory distance measures the ease with which users can specify their desires to the system. For
visualization systems, articulatory distance measures the amount of input device manipulation required
from users. A visualization technique that requires a great deal of user input has high articulatory distance
and vice versa-unctional distancerefers to whether the system possesses software functions or procedures
capable of achieving user tasks. In our case, functional distance refers to whether the object definition
functions (enumeration and functional description) and the transformation functions (data, mapping,
graphical, and rendering) presented in the previous two chapters are sufficient to support basic data
exploration tasks=xpressive distance determines whether sufficient feedback or information is provided to
users to solve the input tasksufficient feedback” may mean whether sufficient data concepts and
relationships are provided to solve the input tasks, whether the presentation reflects all facts contained
within the data set, whether false information is introduced, and/or whether all information contained
within the visualization is displayed at all timeFinally, observational distance refers to the ease with
which a user can interpret system feedback. Specifichigvational distance measures the effectiveness

of the visual objects, visual properties, and visual compositions used to fulfill the input analy3is tasks

Our design dimensions measure either articulatory, expressive or observational distance. As for
functional distance, we have supplied our system with all the necessary object definitiemutaegation,
functional description, set operations) and transformation functions (eagldition, subtraction, assignment,
grouping, mapping data to graphics) needed to perform the basic set of data exploration tasks used in
previous automatic system research and which we find interesting on our own work. Thus, the functional
distance measure is not pertinent in our case. More generally, completeness of our object definition and
transformation functions with respect to existing visualization systems was discussed in the previous two
chapters. Completeness of our system in terms of task coverage is described in appendix C-3. We will now
describe the various dimensions that may be used to estimate articulatory, expressive or observational
distances as well as how these distances may be used to gauge the effectiveness of a design that favors data
transform techniques versus one that favors mapping techniques.

1 The expressive distance described here is an expansion of Mackinlay's expressiveness criMaekiplay, 1986a,

1986h].

2 Observational distance corresponds largely to Mackinlay's effectiveness chedkirfay, 1986a, 1986b]. In his
dissertation Mackinlay presented a set of effectiveness heuristics that ranked different graphical properties (perceptual
operations) based on their perceptual accuracy.
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IV-2.1 Articulatory Distance

Articulatory distance increases with the amount of user input required by a visualization interface.

When using visualizations to solve data analysis problems, user input is required for two primary purposes:

1) task clarification/alteration, and 2) data navigation asis shown in Figure [V-7.

Task | #-of task
alteration repetitions

#-of inputs
per task

Expressiveness
of input device

Articulatory
distance

Effectiveness
of input device

Data _| #-of-objects
Navigation attended to
Readability

of objects

FigurelV-7: Breakdown of articulatory distance. Gray highlighted rectanglesindicate the

dimensionsthat aretaken into account in our prototype automatic presentation system described in

a)

b)

chapter V.

Task alteration/clarification load: To solve some data analysis tasks a user may need to provide task
arguments to the computer system interactively. The amount of articulatory load required depends on
the number of times a task needs to be repeated multiplied by the number of inputs per task. When a
task is repeated many times, it becomes very important to reduce the articulation load of each iteration,

even at the cost of losing flexibility.

Data navigation load: Data navigation operations are commonly required for larger data sets where
there is clutter and occlusion in the graphic design resulting in high observational distance. It is
possible to lower observational load by limiting the amount of information that is shown to the user at
any one time. The disadvantage, of course, is that users must navigate to different pertinent
information slices through input devices. Data navigation depends on the number of objects that must
be attended to and the readability of those objects (e.g. whether they are occluded, too small to
interpret, or surrounded by high ink density. Readability issues are explored in detail in appendix F).
The more objects we need to attend to, the greater the likelihood that we must perform more
navigation. In addition, the less visible or readable the objects are, the more effort we must expend to
get them to a readable state. In our prototype designer, we only estimate data navigation load by the
number of objects attended to, leaving the more complex readability issues for future work.
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0)

d)

Expressiveness of an input device: An input device is considered expressive of a particular
visualization function if it can be used to generate all the inputs required by that function and only
those inputs. A menu for example, is only expressive of discrete values, i.e. it can only be used to pick
from afinite set of set of strings or numbers, but cannot be used to generate continuous input values. A
dlider, on the other hand, can be used to generate both continuous and discrete input arguments. A text
window is very flexible and can be used to specify any input argument type. However, it is generally
not very expressive because it does not indicate to users what the acceptable input arguments are
unlike the slider and menu devices. |.e. users may very easily enter invalid input values when using
text-windows. Our design system only allows the use of input devices that are expressive of the input
data or arguments required. Unlike the previous two dimensions which are quantitative measures,

expressiveness of input devicesis implemented as a binary measure in our system.

Effectiveness of an input device: The effectiveness of an input device measures how easily users can
manipulate an input device to generate the required task arguments. The effectiveness of an input
deviceis most commonly measured by the amount of motoric energy expended by users for each input
entry. Input devices such as buttons require very little motoric load because users only need to move
the mouse over the button and click. Menus have a higher motoric load because we need to scroll
down a list of choices in addition to choosing an entry with a mouse move and click. A text window
has the highest motoric load because we need to move our hands over to the keyboard and type out our
entries, which could take multiple keystrokes. Therefore, when the required input arguments can be
expressed by a button input device (i.e. the input value range must be small and discrete), it should be
chosen instead of menus and text windows because it is the most effective device.

-10 +10

(a) Dial (b) SDM handles]Chuah, 1995b]

FigurelV-8: Input deviceswith different effectiveness properties
Input device effectiveness can also be measured by how easy they are to learn. Some input devices
provide good affordances (or cues) to users indicating how they may be manipulated. For example, a
dial or knob (Figure IV-84) is an effective device for producing radial values because it provides good
affordances for showing users that it should be rotated. In contrast, the virtual object handles provided
in the SDM system (Figure IV-8b) are less effective because it is less clear how they should be
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manipulated and what they control. In our system we only account for effectiveness based on ease of
use (level of effort) and not learnability. The input devices in our system are ordered in alist based on
fewest manipulations to most manipulations. The system then picks the first expressive device in the
list (i.e. the first expressive device that is most effective). Details of this process are described in

chapter V.

In general, performing a task with data techniques requires more articulatory load because the task
must be very explicitly stated (there can be no missing values). When there are unknown task arguments,
the data technique designs require that users provide these missing arguments to the system. Thus,
articulatory load is high because either we must provide several different initial task specifications, each
containing a different task argument alternative or we must provide task clarification/alteration parameters
during the data analysis process. The task specificity guideline in section 1V-3.6 reflects this property of
data techniques.

IV-2.2 Expressive Distance
Expressive distance measures whether sufficient data or information is shown to the user. What
actually constitutes “sufficient data” may be interpreted in several ways: a) expressiveness of task, b)

expressiveness of data, ¢) data correctness, and d) data presence, as is shown in Figure 1V-9.

Data
completeness
Task
ol :
expressiveness Readability
Mappings
used
- Daa Reaabillty |
expressiveness
Expressive | | Summarization
distance of data
[N Data Mappings
correctness used
Size of
display
Data
—>
presence Sizeof
visualization
design

Figure1V-9: Breakdown of expressive distance. Gray highlighted rectanglesindicate the dimensions
that aretaken into account in our prototype automatic presentation system described in chapter V.

a) Task expressiveness. In order for a visualization to be expressive of a data analysis task, there must be
a sequence of cognitive, perceptual, and motoric actions that users may perform on the visualization
design that will result in a solution to their task. These sequence of actions can only be generated if the
visualization design contains all the data concepts necessary for solving the task (data completeness)
and presents this information in a way that is accessible to users (liggd&br example to solve the
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b)

0)

desired airline-scheduling task (Task IV-1), the visualization may contain the origin-city, destination-
city, arrival-time and departure-time of al flights asin Figure IV-1. Alternatively, it may include only
those flights that fulfill our city and meeting time constraints as in Figure 1V-3. Although these two
visualizations contain different data concepts and attributes, both contain enough information for
solving the airline-scheduling task. Thus, Figure 1V-1 and Figure 1V-3 both have data completeness.
On the other hand avisualization that only shows the origin and destination cities of al flights (leaving
out their arrival and departure times) is insufficient for picking flights with the minimum total-
downtime because no time information is provided to users. Such a design, therefore, is not expressive
of the airline-scheduling task.

To achieve task expressiveness, a visualization must not only contain all the task information, but
this information must be accessible to users. Sometimes, due to problems such as occlusion, dwarfed
objects’, or display density, some of the encoded information may not be visible or readable by users.
For example, Figure 1V-1b is data complete but not task expressive because some of the encoded
information cannot be accessed due to object occlusion. We discuss readability issues in the appendix
F as well as outline how they can be addressed using graphical and rendering transforms. In this
chapter, we show how some readability problems may be avoided with appropriate combinations of
data and mapping techniques asin Figure IV-3.

Data expressiveness (Information loss wrt. original data set): A visualization is generated by
processing and mapping a set of data concepts and attributes to graphics. We call the set of original
data concepts and attributes the original data set. This data set is commonly attached to data
characterizations that describe the concepts and attributes contained within the set, as well as the
relationships among the data[ Mackinlay, 1986a, 1986b; Roth, 1990]. These data characterizations help
us structure the data so that we can generate better design solutions. Generally however, not all of the
concepts or data characterizations contained within the original data set must be shown to solve agiven
set of analysistask(s). That iswhy data expressiveness is different from task expressiveness.

For example, data transform techniques may cause information from the original data set to be lost
through data summarization or culling. In Figure 1 V-3 much of the flight data from the original data set
was filtered out, thus Figure I V-3 is task expressive but not data expressive. Data technique designs are
usually much less data expressive compared to mapping technique designs because they work by

simplifying or summarizing data and only showing the results of those simplifications.

Correctness of the visualization (Information integrity): The expressive distance of avisualization also

depends on its correctness’. Certain graphical languages may imply facts about the encoded data values

® Problems with scale that prevent some values from being differentiated.
* The concept of data correctness was first introduced by Mackinlay [Mackinlay, 1986a, 1986b].
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that are untrue. For example using saturation to represent an unordered attribute (e.g. house
neighborhood) suggests a perceptua ordering when actually thereis none. Figure 1V-10 shows a set of
houses, represented as marks arranged in a grid representation. The saturation of the marks indicates
the house neighborhood attribute, which is an unordered attribute. However, because saturation is an
ordered perceptua property, the visualization falsely shows that the Pt.Breeze neighborhood (most
saturated) is ordered above the Squirrel Hill neighborhood (less saturated) which is ordered above the
Shadyside neighborhood (least saturated).
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FigureV-10: Encoding house neighborhood with saturation, Thisencoding haslow data correctness
because saturation isan ordered graphical property while neighborhood isnot an ordered data
attribute. By using saturation to encode neighborhood we ar e falsely implying an ordered set of

neighborhood values when actually thereisnone.

d) Data Presence: Sometimes a visualization design is too large to fit within the CRT screen. When this
occurs we must divide the visualization into segments and display sub-portions of it to users at
different times. The visualization design is therefore only expressive of a piece of information for a
limited time (i.e. temporary expressiveness). Data presence measures the ratio between the information
shown per instance on the CRT screen with respect to the information within the entire visualization.
Generally, a visualization with low data presence is also less expressive because only a small part of
the total information can be seen at any one time. There are two ways to measure data presence: by
calculating the ratio between average number of objects shown per instance and the total number of
objects, or by calculating the ratio between visualization space per instance with respect to the entire
visualization area. The lower the object or spatial ratios, the less data is shown and the greater the
probability that users may miss some of the information and misinterpret the data contained within the
visualization. When data presence is less than 1 (i.e. some information is hidden) users may find it
necessary to store some information in short term memory to maintain context between the different

information slices. Thisincreases the cognitive load (observational distance) placed upon users.
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Expressiveness criteria for visualizations was first introduced by Mackinlay [Mackinlay, 1986a,
1986b]. Mackinlay defined expressiveness as follows:

“A set of facts is expressible in a language if the language contains a sentence that encodes every fact

in the set and does not encode any additional facts”.

This definition covers data expressiveness (lhd visualization correctness (c)lhe expressive
distance dimensions presented in this section expand on Mackinlay's expressiveness criteria to include two
other criteriatask expressiveness, anddata presence. In our system, we account for all the expressiveness
dimensions in Figure 1V-9 except fdata presence. Task expressiveness and correctness are implemented
in our system as binary constraints (i.e. all designs generated by our system are task expressive and correct)
and data expressiveness is implemented as a quantitative constraint.

IV-2.3 Observational Distance

Observational distance consists of cognitive and perceptual loads placed upon users when interpreting
results from the visualization system. Perceptual load is determined by the number of perceptual operations
that must be performed, and the difficulty of those perceptual operaSongarly, cognitive load is
determined by the number of cognitive operatitimst must be performed, and the difficulty of those

cognitive operations, as is shown in Figure 1V-11.
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_Jiof- perceptu a | graphical properties|
operations L Spatial
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N #-of-cognitive| [ ™ perceptual
operations parallels
Availability of
—» datacomputation
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Load
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Difficulty operator
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FigurelV-11: Breakdown of observational distance. Gray highlighted rectanglesindicate the
dimensionsthat aretaken into account in our prototype automatic presentation system described in
chapter V.
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a)

b)

0)

Number of perceptual operations: The number of perceptual operations required depends primarily on
the effectiveness of the graphical mappings used to represent the data and the task. Certain graphical
mappings (e.g. color) enable pre-attentive perception, which allows us to see certain common facts
about a set of objects simultaneously (i.e. we need not attend to each object separately). Consequently,
the number of perceptual operations required is significantly reduced. Pre-attentive vision is also very
useful for quickly filtering out unrelated objects so that we only attend to the ones that are pertinent to
our task. For example to find the first flight in the airline-scheduling task presented at the start of this
chapter (Task 1V-1) the user only needs to consider those flights whose arrival time is before the
meeting (i.e. in Figure 1V-1 we only consider lines which end before a certain distance to the right).
All other flights may be perceptualy filtered out. The number of perceptual operations can also be
lowered by reducing the number of eye-movements that must be performed. This can be achieved by
placing objects with related information together so we do not need to associate objects that are
separated over large spatial distances. In our system we give preference to designsthat effectively uses
pre-attentive graphical properties and have good spatial locality (high level of graphical element
integration).

Difficulty of perceptual operations: The difficulty of perceptual operations depends on the graphical
representations and properties used to show the data as well as on the readability of those graphical
representations. Different graphical mappings can result in simpler or more complex perceptual
operations. For example, to solve an addition task, it is expeditious to map the task values to stacked-
bars because judging length or position (e.g. looking up a bar length) is easier than computing sums of
size or length (e.g. adding the length of two bars). Readability issues can aso affect the difficulty of
perceptual operations asis discussed in appendix F.

The perceptual complexity of a visualization is also dependent on the overall layout of the design
and the number of graphical elements within it. To keep complexity low, we must ensure that the
graphical elements and input device controls within the visualization are well integrated. In addition,
we also want to ensure that there are not overly many graphical elements or controls, so that the visual

interface does not appear too cluttered or confusing to the user.

Difficulty of cognitive operations: The difficulty of cognitive operations depends on the task. Tasks
that require simpler mathematical operations, e.g. addition or subtraction or tasks that only require
simple value comparisons can be solved with lower load cognitive operators. Other tasks such as
computing ratios, integrals and derivatives, finding data trends, or identifying data relationships are
harder to perform cognitively. The difficulty of cognitive operators may also depend on the data values
involved in the operation. For example, it is more difficult to perform computation on numbers that
have a higher number of significant figures, e.g. (200 + 300) vs. (273 + 329).
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d) Number of cognitive operations: The number of cognitive operations required depends on how easily
they can be offloaded onto our perceptua system. We usually want to keep the number of cognitive
operations to a minimum, because they are usually much harder to perform and more taxing on users
compared to perceptual operations. Thisis easy to accomplish when there are graphical objects capable
of expressing the desired task data and relationships. The addition task, for example, has a close
perceptual parallel - namely stacked bars. Thus, the cognitive load can be easily transferred onto the
perceptual system. However, this is less true for more abstract computations like log and exponent
which does not have a close perceptual paralel. However, because we consider data transform
techniques in our automatic design process, we can offload these more complex tasks onto the
computer system through data pre-processing operations. The advantage of data computation is that
they offload the entire cognitive operation onto the computer system and only incur a small perceptual
load from the user for interpreting the results. Thisis especially useful for cognitive tasks that cannot
be easily mapped to perceptual operations.

V-3 Data Techniques vs. Mapping Techniques
Design Guidelines

The design dimensions given in the previous section provide useful guides for directing an automatic
design system to more promising paths in the design space. However, the design dimensions aone are
insufficient because some design dimensions are difficult to calculate or measure without additional
perceptual and design knowledge. For example using color often reduces the number of perceptual
operators and thus the observational distance of a design because it allowsfor pre-attentive perception. This
information however cannot be deduced from the design dimensions alone. The fact that color allows for
pre-attentive perception must be encoded into the designer as well. Thus in addition to the design
dimensions, we present a set of higher level knowledge guidelines that capture how particular design

decisions may affect the “goodness” dimensions of a design.

Previous work on automatic visualization design developed a sesaging technique guidelines.
Mapping technique guidelines capture knowledge on how data attributes should be mapped to graphical
properties and objects. These guidelines describe the effectiveness of graphical properties for showing
different types of data attributes. This could be based on whether the graphical property reduces the number
of perceptual operations (e.g. because of pre-attentive perception) or the complexity of the perceptual
operations. Mapping heuristics may also include structural heuristics that describe how data attributes
should be mapped to objects and how new objects should be combined with existing ones. For example,
integration of graphical properties within the same object or cluster of objects is preferred over spreading
the properties over multiple regions, because integration reduces the number of eye movements that are

required. Chapter V contains more details on how these heuristics can be translated into concrete
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constraints and design costs within an automatic design system. For more details refer to previous work on
automatic visualization design [Mackinlay, 1986a, 1986b; Roth, 1990].

In this section, we focus on defining a set of design guidelines for making decisions between using
data transform techniques versus mapping transform techniques to solve tasks. These guidelines were
derived using the three distances (articulatory, expressive, and observational) described in the previous
section. Each guideline helps reduce the semantic distance of a task by reducing one or more of these
tranglation distances. Note that these guidelines are not meant to be acomplete list of design principles, nor
do we claim that they are applicable for all task situations. We do believe, however, that they are a
reasonable set of rules for the data analysis tasks that we consider in this thesis. It is important to recognize
that these design rules are not meant to replace the expertise of a graphic designer or an information
speciaist. However, by integrating such design knowledge into an automatic system we hope to enhance
the computer system’s ability to convey more complex information as well as reduce the more mundane
and straight-forward design work that needs to be performed and free visualization designers to explore a

much wider range of design alternatives.

IV-3.1 Accuracy
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FigurelV-12: Graphicfor determining thetotal benefits for associate professors by getting the
difference between total compensation (blue bar) and total salary (red bar)
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Different tasks require different degrees of accuracy. When tasks require a high degree of accuracy,
there is a preference for using data transform techniques. This is because to get the same level of accuracy
through mapping techniques (i.e. perceptual processing), we would need to encode the data as text and then
offload the computation process to the user’s cognitive system. For example, suppose we were considering
a group of universities for possible associate-professorship positions and we want to determine the total
benefits given out to associate professors in those universities. In order to get the total benefit values we
must determine the difference between thwotal_compensation associate professor and
total_salary associate professor attributes in our data set. One possible mapping design to achieve this
task is to represent tlempensation and salary values with two sets of bar lengths as in Figure 1V-12.
However, if we wanted to determine thetal benefit figures with high accuracy Figure 1V-12 is
inappropriate because bar lengths can only show the resultsliniited amount of precision.
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FigurelV-13: Data computation design for FigurelV-14: Pure mapping design for
accurately computing total benefits for accur ately computing total benefits for
associate professors associate professor s

In order to perform the task more accurately with mapping techniques, we need to encode both value
sets as text as in Figure 1V-14. The observational distance for such a design is very high because we need to
cognitively compute theompensation andsalary differences for each university. It is much more effective,
in this situation, to perform the task with data transform techniques and only present the computed

differences to users as in Figure IV-13.
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Table V-1 compares the semantic distance between the pure mapping design (Figure IV-14) and the
data computation design (Figure 1VV-13) based on the dimensions presented in the previous section. Table
V-1 shows that the mapping design has a much greater observational distance. This is because in the
mapping design, the user needs to look up each of the text values, thereby resulting in 2n perceptua
lookups where n represents the number of universities. Given that the perceptua difficulty of alookupisp,
the perceptual load is 2np. Apart from the perceptual load, there is also a cognitive load (nc) for mentally
computing the difference between the total compensation and total salary values for each university (where
¢ represents the difficulty of the mental difference operation). Also note that mentally computing
differencesis significantly more difficult than performing a perceptua lookup so ¢ >> p. On the other hand
the data computation design only requires a single perceptua lookup for each university, so the
observational distance is np, which is substantially lower than the observational distance of the mapping
design which is 2np + nc. Thus when a task needs to be performed accurately, we assign a higher cost to

the mapping solution and alower cost to the data computation solution.

Articulatory Expressive Observational
Task Navigation | Task Data False Perceptual | Cognitive
Clarification
Data Design 2ne np
(Figure IV-13)
Mapping 2np nc
Design

(Figure IV-14)

TablelV-1: Semantic distance for computing thetotal benefitsfor associate professors

Both visualizations do not require any user input (i.e. no articulatory distance). In addition, they are
expressive of the difference task and do not show any false information, so their task and correctness
expressive distance is nil. However, the data computation design has a greater data expressive distance
compared to the mapping design. In the data computation design, the original data has been summarized
and it is no longer possible to extract the total compensation associate professor and

total_salary associate professor figuresfrom each university. Thus, 2n facts have been lost.

There are other tasks that require ‘fuzzy’ accuracy. For example, a person looking for houses in the
Shadyside area may want to include some houses on the area boundaries even though they may technically
fall within other neighborhoods. It is difficult to model such ‘fuzzy’ accuracy within the computer, and thus
the articulatory distance for such tasks are large. Consequently, it is more appropriate to map the data to
graphics so users can perceptually determine the appropriate level of ‘fuzziness’ for the task. This issue

also relates to the task specificity issue, which we describe in section 1V-3.6.
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IV-3.2 Intermediate Tasks

When performing a complex task, we commonly need to break it down into several simpler tasks. For
example, suppose we want to determine the total benefits given to full professors as well as associate
professors for a set of universities. This operation can be decomposed into two difference operations
between  total compensation full professor and total salary full professor, as wel as
total_compensation associate professor and total_salary associate professor to get the total benefits for

each faculty type. An addition operation is then applied to the two total benefits results as is shown below.

(Conpute Addition,
(Compute Difference,
total conpensation full_professor,
total _salary full_professor )
(Conpute Difference,
total _conpensation_associ ate_professor,
total sal ary associ ate_professor ) )

Task I V-2: Task for determining thetotal benefits given out to full professorsand associate
professors.

In Task 1V-2, the difference operation produces intermediate results that are subsequently used by the
addition task to produce the fina result. As such, the difference tasks are not interesting in and of
themselves. Tasks whose results are further processed by other tasks are called intermediate tasks.
Intermediate tasks should be performed with data computation because they simplify the final graphic
design by summarizing part of the data and hiding information that does not directly pertain to the main
task. This reduces the amount of clutter within the graphic as well as the amount of perceptual
interpretation that must be performed, without removing any of the information pertinent to our primary
goal. Thus for intermediate tasks, the data solution is given a lower cost than the mapping solution which
gets ahigher cost in addition to the cost of the extra data attributes that need to be mapped.

For example, consider Figure 1V-16 and Figure IV-15, which shows two visualization designs for
solving the total benefits task (Task IV-2). In Figure 1V-16 (pure mapping design) total compensation and
total salary of each faculty type are mapped to the heights of four bars for each university. To solve Task
IV-2 users must compare the lengths of the first two bars to get the total benefits for full professors and the
lengths of the next two bars to get the total benefits for associate professors. This generates a perceptual
load of 2p,, where p, indicates the perceptual cost of each difference comparison. Apart from perceptually
estimating the length differences, users must also determine their combined lengths (i.e. the total benefits
from both faculty types). This results in an additional load of p; where ps is the cost of estimating the
combined length differences and then trandating that back into a total benefit value. Thus the total
observational load for each university, using the mapping design (Figure 1V-15), is 2p,+ ps These

1V-102



perceptual operations need to be performed for each university so the total perceptual load is n(2p,+ ps),
where n isthe number of universities.
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Figure1V-15: Data computation design for
computing total benefitsfor associate
professorsand full professors. In thiscase
both total benefits have been pre-computed
and are shown as stacked bars.

Figurel1V-16: Pure mapping design for
computing total benefits for associate
professorsand full professors. In this case, we
need to perform the entiretask perceptually.
Initially we must get the bar differencesof the
first two bars (red and green) and thelast two
bars (blueand purple). We must then sum up
these differencesto get thetotal benefits.

In Figure 1V-15, the difference intermediate tasks have been performed with data transform
techniques, and the total benefits for each faculty type are represented as stacked bars. The total benefits
from each university can be determined by simply looking at the height of each stacked bar. In this case,
the perceptual load is only np;, where p; measures the cost of a perceptua look up (i.e. looking up the bar
length value from the x-axis). The cost of estimating total benefit values from two combined length
differences in Figure IV-16 (ps) is clearly more difficult compared to the axis value lookup (p;), thus ps >>
p:. The observational load for the mapping design [n(2p.+ ps)] is therefore greater than that of the data
computation design (np,).
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Articulatory Expressive Observational

Task Navigation | Task Data False | Perceptual | Cognitive
Clarification
Data Design 4ne np;
(Figure IV-15)
Mapping n(2pz +ps)
Design
(Figure 1IV-16)

Table I V-2: Semantic distances for total benefitstask (Task 1V-2)

By performing the intermediate tasks (i.e. difference tasks) with data computation, we reduce the
number of values that need to be shown by at least half. Rather than having to show the
total_compensation_full_professor, total_salary_full_professor , total_compensation_associate professor,
and total_salary associate professor data attributes (as was done in Figure 1V-16), we only show
total_benefits full_professor and total benefits associate professor in the data computation design in
Figure IV-15. Therefore there is less clutter in the display and less output space is required. However, the
data expressive distance is also higher because of data filtering. Nevertheless, since the difference tasks are
intermediate tasks summarizing and hiding their origin data values is appropriate because the tasks are only

important for the results they generate in service of the main addition task.

IV-3.3 Availability of Perceptual Operations

Certain tasks can be easily offloaded onto the perceptual system without adding much, if any,
observational distance. Some examples are addition and subtraction, which can be mapped to stacked bars
and overlapping or interval bars respectively. In each of these cases, the task results are perceptualy
summarized onto one graphical feature. The results of the addition task are summarized by the stacked bar
heights and the results of the subtraction task are summarized by the interval bar lengths. Certain abstract
mathematical tasks (e.g. logarithmic or exponential computation) do not have any perceptual parallels and
cannot be offloaded onto the perceptual system. Such tasks also tend to have high cognitive loads, which
results in large observational distances. For such tasks, data computation techniques can be used to offload
the expensive cognitive computation onto the computer system.

Other tasks such as summarization tasks (e.g. sums, mean, and median), or getting the minimum and
maximum values within a set, can be performed perceptually but require more perceptual effort from users
compared to the addition and subtraction tasks. For example to find the maximum data value from a bar
chart we would need to compare the heights of a set of bars and pick the tallest one. Unlike the addition
and subtraction cases, the task result is not captured in asingle perceptual value but rather has to be derived

by considering a set of perceptual values.
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FigurelV-17: Data computation design for FigurelV-18: Puremapping design for computing

computing average number of teaching staff average number of teaching staff per university.
per university. In this casethe average In this case the aver age number of teaching staff
number of teaching staff has been pre- must be perceptually estimated by finding an
computed and theresults are shown on the x- aver age line across each cluster of bars.
axis.

For example, suppose we want to determine the average number of teaching staff (including full
professors, associate professors, assistant professors, and instructors) within a set of universities.

Articulatory Expressive Observational
Task Navigation | Task Data False | Perceptual | Cognitive
Clarification
Data Design 4ne np;
(Figure 1IV-17)
Mapping X(4npz + ps)
Design +Nnp;
(Figure 1IV-18)

TableV-3: Semantic distance for finding average number of teaching staff for a set of universities

The pure mapping design (Figure 1V-18) maps the number of each faculty type to a differently
colored bar length. To estimate the average number of teaching staff, we pick aline that separates the four
bars in such away that the sum of bar lengths above the line is equal to the sum of lengths below it. This
requires at least four bar difference estimations (to get the lengths above and below the average line) (4p,)
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and several comparisons between the lengths on top and below to determine their equality (ps). When the
lengths above and below are not equal we must re-estimate a new average line and repeat the process
above (x). Once we get an acceptable average line we can look up the average value from the y-axis (p,).
The total perceptual load is therefore x(4np, + ps) +np;.

On the other hand, the data computation design (Figure IV-17) pre-processes the average number of
teaching staff and only maps the results to bar lengths. Thus, users only need to perform n bar length
lookups resulting in a perceptual load of np;. The observational distance for Figure 1V-18 (the mapping
design) is much larger because there are more visual artifacts that must be attended to (4 barsinstead of just
1) and because of the perceptual load needed for estimating and re-estimating the mean number of teaching
staff (X). Thus for tasks that have good perceptual parallels (e.g. addition), the data and mapping designs
are rated equally by our automatic design system. On the other hand, for tasks that do not have any
perceptual paralels (e.g. exp, log) or for tasks that have high cost perceptua representations (e.g.

summarization tasks), preference is given to the data computation solution.

IV-3.4 All to All Operations

Thus far, we have been considering tasks that compute or compare pairs of values, e.g. computing the
difference between total compensation and total salary for each university faculty type. These pair-wise
(value-pair) comparisons occur very commonly in data analysis, but do not represent the only task class.
Another important class of tasks is all-to-all tasks. All-to-all tasks require each value in a set to be
processed with all values in the second set, e.g. processing the total compensation values for each

university with the total salary values of all other universities.

For a more redlistic all-to-all task, consider an extended airline-scheduling task analogous to the one
described in the airline-scheduling task in section V-1 (Task 1V-1), except here we take both total-cost and
total -downtime into consideration.

“Given an origin and a destination city, the user “attempts to locate the two flights
arriving in and departing from a layover city that offer the minimum amounobsbfand

“down time' between the flight times and the beginning and ending time of a scheduled

meeting (in the layover city)”

As before we assume that the origin city is Los Angeles, the layover city is Chicagq and the

destination city is Boston In addition, the meeting in Chicagois from 2 p.m. to 4 p.m.

Thisis an all-to-all task because we must compare all flights before the meeting with all flights after
the meeting. To solve this task with data computation we pre-process the total downtime and total cost for
all flight pairs as in Figure IV-19 (total downtime is encoded with x-lengthand total cost is encoded with
saturatior). If there are n; flights before the meeting and n; flights after the meeting, we must calculate and
show values for n; * n, flights (i.e. O(rP) flights, where n is the total number of flightsin the data set).
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FigureV-19: Data computation design for computing total downtime and total cost for all pairs of
flightsthat fulfill our airline-scheduling criteria. Total downtimeis pre-computed and encoded on
the x-axis while total cost is pre-computed and encoded as saturation.

Although Figure 1V-19 only contains information on 20 different flights, (10 * 10) = 100 values must
be shown because of the all-to-all comparison and it is difficult to display al the information together
clearly on the CRT screen. Therefore, we may need to navigate around the visualization space during the
analysis session. Given that we have enough space on the CRT screen to show x elements, we need to scroll
the visualization O(n?)/x times in order to get to all the information (i.e. there are O(n?)/x information
slices). Each scroll requires moving the mouse over to the scroll bar (m), a mouse click on the scroll bar
control (k), moving the scroll control (m) and a mouse release (k). The articulatory load is therefore O(n?)/x
* 2(m+K) where misthe cost of a mouse move and k is the cost of amouse click or release. To find the pair
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of flights with the best balance between total downtime and total cost, we choose the shortest bar with the
lowest saturation in each information slice and compare these bars across slices to get the best one. This
results in a perceptual load of (O(n?)/X) * p, where p, indicates the perceptual cost of each bar search and
comparison and n represents the number of flights.

Flight number, Flightnumber,

Amercan 1082

AirTran_815
TWA 6221

United_1243]

e

Unired_524)

Continental 303———)

American_44§
Delra_1171
AmericaWest_4057]
American_584]
United_120)

American_1847]

Delta_345— United_116fm—
United_576——) United 110
United 1018——) United 174/
Amerdcan_13205 United_105——
-870.00 -590.00 -310.00 -30.00 250.00 -780.00 -460.00 -140.00 180.00 500.00
-730.00 -450.00 -170.00 110.00 -620.00 -300.00 20.00 340.00
Time aftermeetng [in minures] Time before meetng [in minures]

Flightprice [in dollars]
250.000000
o 460000000
70, 000000
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@ 1080.000000

FigurelV-20: Mapping design for computing total downtime and total cost for all pairsof flightsthat
fulfill our airline-scheduling criteria. Time_after_meeting is mapped on the x-axis of the left chart,
time_before_meeting is mapped on the x-axis of theright chart, and flight_priceismapped to
saturation in both charts.

Figure 1V-20 shows the mapping techniques solution for solving the same task. In this design, the
total cost and total downtime computations are not performed with data techniques. Instead, separate cost
and downtime information are shown on both legs of the flight. The downtime and cost for the first leg of
the flight is shown as x-length and saturation on the left chart in Figure 1V-20 and similar information on
the second leg is shown on the right chart. In order to find flights with low cost and low total downtime, we
look for shortest, least saturated bar in each chart. Assuming that we can display x elements in the given
amount of space, the navigation load would only be (O(n)/x) * 2(m+k) because we only need to show at
most n, + N, flights compared to the O(n?) flights in the data computation design shown in Figure 1V-19.
To find the best flights using Figure IV-20 we must look for two of the shortest and least saturated barsin
each information glice, thereby resulting in a load of 2p, for each slice. Total perceptua load therefore,
comes to O(n)/x * 2p; where n is the number of flights, x is the number of elements that can be displayed
on the CRT screen, and p; measures the difficulty of locating the shortest, least saturated bar in each

information slice and comparing that bars across information slices
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Articulatory Expressive Observational

Task Navigation | Task Data False | Perceptual | Cognitive
Clarification

Data Design o()/x * o)/ ps
(Figure 1IV-19) 2(m+k)

Mapping Oo(n)/x * Oo(n)/x p1 +
Design 2(m+k) 3p2

(Figure 1IV-20)

TablelV-4: Semantic distancefor an airline-scheduling task which balancestotal downtimeand total
cost

Based on Table V-4, we see that the mapping design is far superior because when we try to solve an
al-to-all task with data computation, we are forced to show many more data values, and this results in
greater navigation and perceptual loads. Although in the mapping design there is the additional cost of
having to process two charts, this cost is far outweighed by the processing needed for the large number of
objects in the data computation design. |.e. for larger n the O(n)/x factor in the data computation design
far outstrips the O(n)/x * 2 factor in the mapping design. Although we have assumed that cognitive load is
negligible, it can be fairly significant here, because we must compare data sets across several separate
screens and as a result, we may need to maintain some context in short term memory across different
information dlices. Since there are more data dices that we need to traverse in the data computation
solution, the related cognitive costs will probably be greater as well. Thus, for all-to-all tasks, our designer
assigns a lower cost to the mapping solution particularly if the data set is large and if there are effective
graphical representations for showing the task.

IV-3.5 Task Variation on Attribute

A big disadvantage of using data computation techniques to solve tasks is that they are limiting, i.e.,
they serve very specific purposes and cannot be adapted for a wide range of different goals. When
performing a task through data computation we only show the results of the computation and hide the
initial and intermediate values from users. Consequently, the resulting visualization design can only be
used to solve its original, intended goal. For example, if we used data computation to perform an addition
task we cannot also perform a difference task based on the computed results because the origina values
have aready been summarized. Data simplification comes at the cost of inflexibility.

People, however, are much more versatile, and by mapping the source data onto graphics, we give end
users greater flexibility in being able to solve a wider range of tasks with the same graphic. Thus when we
need to solve a set of different tasks that operate on the same data attributes, we often end up having a
higher observational distance if we use data computation operations. This is because a new set of values
must be computed and visualized for each task variation. When the data complexity added by the data
computation is greater than the cognitive load it subtracts, we should address the task by using mapping
techniques.
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Suppose we are studying election data for three different political groups over multiple states. Our

task is to view the total number of votes in each state to determine its importance as well as to rank the

political groups based on their individual number of votes. To fulfill this task with data computation

(Figure 1V-21) we process and represent the total number of votes by using the length of horizontal bars

and align each bar with a pre-computed ordered list of the three political parties. This ordered list is

represented by a series of dots, ordered from left to right, with each dot representing a different party. Color

is used to encode the party type. In order to solve the task we look up the total votes from the x-axis (npy)

and the ranking information from the series of aigned dots (np,).

State name

200000 00 260000000 5000000 .00
140000000 3800000 00 6200000.00

Toral rumber of votes [per stare]

@ SORT-DEMOCRATIC-
) SORT-REPUELICAN-
& SORT-OTHER-

FigurelV-21: Data computation design for
computing total number of votesin each state
and ranking thethree political parties based
on the number of votesreceived.
Total_number_of_votes has been pre-
computed and is shown on the x-axis of the
left chart. Party_ranking has also been pre-
computed and is shown in theright table.

State name

0.00 3500000.00 7200000.00
1800000.00 5400000.00 9000000.00

#-wvotes for Republican party

#—wvores for Democratic party
#-votes for Independant party

FigurelV-22: Mapping design for computing
total number of votesin each state and
ranking thethree political partiesbased on
the number of votesreceived. The
# votes for_Republican_party is mapped to
the x-length of thered bar, the
# votes for_Democratic_party ismapped to
the x-length of the green bar, and the
# votes for_Independant_party is mapped to
the x-length of the purple bar. Total votes can
be derived by looking at the combined length
of the stacked bar and party ranking can be
derived by comparing the three differently
colored bar lengthsfor each state.
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Alternatively we could represent the task with mapping techniques by combining the number of votes
received by each political party as a stacked bar (Figure 1V-22). We can deduce the total number of votes
as well as the group ranking from the same graphical representation (i.e. both tasks can be performed using
the same graphical objects). We can look up the total number of votes from the combined height of the
stacked bar (np;) and determine the party ranking by comparing the lengths of the different divisions within
each stack (nps).

In this example, the mapping design (Figure 1V-22) is preferable. Both designs have comparable
observational distances;, however, the mapping visualization is much more expressive. As is shown in
Table V-5, the data computation design has a data expressive distance of 3ne (where e represents the
expressive distance for each inaccessible number of votes figure) because we can no longer derive the

original number of votes for each political group from the summarized results.

Articulatory Expressive Observational
Task Navigation | Task Data False Perceptual | Cognitive
Clarification
Data Design 3ne np; + npz
(Figure 1IV-21)
Mapping npz + npz
Design

(Figure 1IV-22)

TableV-5: Semantic distance for finding the total and individual sales

The data computation design has more clutter and shows less information compared to the mapping
design without cutting down the observational distance of the task. This is because we were able to achieve
two different tasks using the same graphical objects in the latter case while in the former case we had to
encode the results of each task using two different sets of objects. Generally, when there are good
perceptual parallels and significant task variation over the same data attributes, our automatic design
system favors a mapping solution over a data computation design. When no effective perceptua parallels
are available however, then our system weighs the cost of having more clutter (i.e. more graphical objects)
and lower data expressiveness in the data computation design with the added cost to cognition and
perception from having to perform the task perceptually with mapping techniques.

IV-3.6 Task Specificity

Tasks can be stated at many different levels of specificity. The higher the level of specificity, the
cheaper it is to accomplish the task with data computation. When tasks cannot be fully specified at the
outset, users must supply the missing task arguments to the data computation functions during the analysis
process. Consequently, users are required to learn and use a set of input devices and interface artifacts,
which increases the articulatory distance of the design. For example, in the airline-scheduling task
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presented earlier, we must know the origin, destination, and layover cities as well as the meeting time, in
order to use data computation to solve the task. If we are unsure of these task parameters, we must supply
then during analysis with input devices, causing a higher articulatory distance.

Sometimes, tasks cannot be described with high specificity because it is difficult to capture the task
requirements or constraints. For example, suppose we want to find a “good” university to attend. We would
like the university to have relatively low tuition cost, but a good record of accomplishment for graduating
its students, and a good student/faculty ratio (i.e. low ratio). We might be willing to pay more tuition
however if the university has an exceptionally high graduation rate or low student/faulty ratio. In general,
we want to pick a university based on a balance of all three factors. Note that for this task it is difficult to

specify the input parameters fully because there is no “correct” set of parameter values.

Graduaton rate
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FigureV-23: Data computation design for Figure1V-24: Mapping design for finding the
finding the best university based on out-of- best university based on out-of-state-tuition,
state-tuition, graduation-rate, and student- graduation-rate, and student-faculty-ratio.
faculty-ratio. Thresholdsfor each condition Student-faculty-ratio is mapped to the x-axis,
can beentered through thethree didersand graduation_rate is mapped to the y-axis, and
those universities that fulfill the threshold out_of state tuition is mapped to saturation.
conditions are pre-computed and shown. Thebest universities are those in the upper-

left corner of the display, with low saturation.

In order to solve this task with data computation, we need to try out different parameter value
combinations by entering them into the system using input devices. Figure 1V-23 shows such an interface.
It has three sliders for indicating the acceptahiieon, graduation rate, andstudent/faculty thresholds. The
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articulatory distance for this design depends on the number of parameter entries we must make. At the very
least, we must perform three input device manipulations to feed in the initial threshold values. Each entry
requires the user to place the mouse over the slider, click on the slider controller, drag the controller to the
correct position, and release the mouse. This produces aload of 2(m + k) for each entry where mindicates
the load incurred for a mouse move and Kk indicates the load for a mouse click or release. The minimum
articulatory load for Figure IV-23 is then 6( m + k). Once we have entered these threshold values, al the
universities that fulfill our constraints are shown as labels. Suppose that for each category half the
universities pass our query, this would result in n/8 universities, thus the perceptual load for reading the

resulting university namesis (n/8) p.

Figure 1V-24 shows how we can solve the same task with mapping techniques. In Figure IV-24, each
university is represented as alabeled mark. Student/faculty ratio is mapped to the x-axis, graduation rateis
mapped to the y-axis, tuition cost is mapped to the saturation of the marks, and the university name is
mapped to labels next to each mark. Universities that fulfill our task criteria can be found by looking to the
top-left corner of the chart (high graduation rate, low student/faculty ratio). We may slightly relax our
constraints and consider the adjacent areas which indicate universities that have either lower graduation
rates but good student/faculty ratios or high graduation rates but weaker student/faculty ratios. Within
each of these areas, we are only interested in the less saturated marks, which indicate universities with
lower tuition cost. Both the location and saturation lookups are perceptually pre-attentive and thus only two
perceptual operations are required to find the appropriate universities (perceptua load of 2p,). Once we
have identified the universities of interest, we lookup their names from the labels next to each mark.
Assuming a uniform distribution, a quarter of the objects will be in the area that we are considering (i.e.
n/4). In addition, we are only interested in the universities with lower tuition cost, i.e. the less saturated
marks. Assuming that half of the universitiesin our area of interest are less saturated, we must attend to n/8
university labels. Thus, the total perceptual load for this design is (n/8) pi+ 2p..

Articulatory Expressive Observational
Task Navigation | Task Data False | Perceptual | Cognitive
Clarification
Data Design 6(m+k) 3ne n/8p;
(Figure 1IV-23)
Mapping n/8 p; + 2pz
Design

(Figure 1IV-24)

TableV-6: Semantic distance for finding a house based on price, size, and distance to workplace

Based on Table V-6, the mapping design is superior to the data computation design because the
mapping design has no articulatory load and the additional two perceptual lookups required do not add
much to the observational distance. For larger data sets, however, the mapping design could become
cluttered and objects may be occluded (Figure 1V-24). In this case, we would need to use input devices for
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navigation purposes, and semantic distance may end up being higher compared to the data computation
design.
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FigurelV-25: |dentical design as Figure|V-24 but applied to alarger data set. Asaresult thereis
significantly more occlusion making it difficult for usto accurately view the saturation values on the
marks aswell asread the univer sity names.

IV-3.7 Summary

In this section, we presented a set of high-level design guidelinesthat can help us determine whether to
solve atask by mapping its data to graphics or by pre-processing it using data transforms. Details on how
these more abstract design rules can be translated into concrete heuristics for an automatic visualization
design system (AVID) are described in chapter V. Based on the guidelines presented here, we show how
these data and mapping designs may be ordered according to their effectiveness at solving current user
gods. In appendix C-4 we systematically explore the range of tasks available in our framework and
describe how changes to the task will affect the design choices made by our automatic design system based
on the design dimensions and guidelines presented in this chapter. In appendix C-5 we explore the possible
space of data and mapping designs for a car purchasing task. For a complete description of our task

language refer to appendix C-3.
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IV-4 Conclusion

In this chapter, we described a set of design guidelines (section 1V-3) that can be applied in an
automatic design system for making decisions between using data transforms and mapping transforms.
These design guidelines reduce the semantic distance for solving a task by either reducing articulatory
distance, expressive distance, or observational distance. Designs that have many data computations usually
have a smaller observational distance because some of the perceptual and cognitive load of interpreting the
graphic has been offloaded onto the computer system and only the summarized task results are shown. On
the other hand, data computation designs require complete task specifications (i.e. ho task unknowns),
which usually results in a greater articulatory distance. In addition, data computation designs also reduce
the expressive capabilities of a visual design by filtering out all data that is not absolutely pertinent to the
task. As a result, the range of perceptual tasks enabled by the design is reduced. Thus, when there is
significant task variability over the same data attributes a mapping design is preferred.

High level user analysis goals generally consist of a mix of well specified subtasks (whereit is clear
what the goals of the task are and what the task parameters are) and non specific subtasks. Thus an
effective design will most likely consist of a combination of data and mapping transforms. The blend of
data and mapping transforms that is most appropriate is based on the interaction among the input task, data
set, available graphical representations, as well asinput and output hardware. Because the design decisions
are based on a wide range of factors, it can sometimes be difficult to decide which sections of atask are
more suitable for data computation and which are more suitable for mapping transforms. In this chapter we
present a set of design guidelines that can help guide designers in making these decisions. These guidelines
can also be translated into design heuristics and included into an automatic design system. We showed in
section 1V-1 that including data computation operations into the automatic design process significantly
expands the visualization design space and the effectiveness of the system in being able to deal with data
analysis problems. In appendix D, we analyze three more example tasks and systematically show the new
set of designs that our work enables over previous research in this area. We also show that the rankings
made by our system based on the design guidelines presented in this chapter conform to GOMS estimated

performance time. Specifics on the architecture of our automatic design system are presented in chapter V.
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Chapter V: Implementation

Automatic
Visualization
Interface
Designer

In appendix E we evaluated a set of visualizations generated by our automatic design system, AVID
(Automatic Visualization Interface Designer). The evaluation results (appendix E) show that expanding our
understanding and vocabulary of visualization primitives to include data computation/transformation operators,
perceptual or mapping transform operators and input device components, can enhance our ability to generate visual
designs that are interesting and appropriate for our information tasks. This chapter describes how our automatic
design system, AVID, is implemented based on the visualization functions framework described in chapters 11 and
I11 and the visualization design heuristics and metrics described in chapter IV. The implementation of AVID shows
that the theoretical concepts we developed previously are complete and specific enough to be applied to a rea
system. This chapter also highlights the system engineering issues that must be considered to capture the new
function classes and heuristics we introduce in our work. Note that all the visualizations shown in this document are
generated by AVID unless otherwise noted.

AVID, consists of three components corresponding to the three stages of the automatic design process (shown in
Figure V-1):

1. The task specification component: Initially, a higher level agent (user or a domain specific system) that has a
deeper understanding of the problem domain generates a set of tasks for AVID. Tasks are expressed using asimple
language based on the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tukey, 1977] and
later refined by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purposeis
to capture important components of a task that may affect the visual design process. We do not expect typical end
users to specify tasks in this language; rather, specifications will most likely be generated by domain specific
systems that use graphics to present and summarize their results to users, such as automatic planning systems,
automatic information analysis systems, agent based information gatherers, etc. We described general concepts of
our task language in appendix C-3. In this chapter we discuss the implementation details of the language and how it
isinterpreted by AVID. Specifically AVID deals with processing embedded tasks as well as accuracy and iterative
special task conditions that are not dealt with in previous automatic systems but are crucial in our work because of

their impact on data transform functions and input devices.
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Task language:

(setf setl (Find ‘ (RELATIONSHIP . <)
(Lookup “(OBJECT . NIL) ‘(VALUE . house_price))
“(VALUE . 100Kk)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup ( set1 °(VALUE.date_on_market))
(Lookup (  set1 °(VALUE.date_sold)))

)

Phase 1. Task interpretation

Task object and
task argument structures

l

| Phase 2: Visualization design |

/\

Visual structure design Functional design
Phase 3: P&ign Realization
Visual Functional
Structure Realizer
Realizer

.

Visualization interface

Figure V-1: Three componentswithin AVID that correspond to the three stagesin the automatic design process. 1) Task
interpretation, 2) Visualization design, and 3) Design Realization

2. The design component: In the design component, AVID parses task objects and argument structures generated
from the task interpretation component and converts them to design constraints and preferences. Based on these
constraints, AVID explores the design space for the input tasks and automatically generates a set of visuaizations
ordered from best to worst. These output designs are expressed in a language that captures the visua structure of a
visualization interface as well as any underlying transform functions and active interactive components. Visual
structure descriptions have been developed in previous work [Mackinlay, 1986a, 1986b; Chuah, 1995]. This thesis
develops a language for capturing the functions and active components within a visualization (described in chapters
I and I11).

One of the main contributions of our designer is in expanding the visualization design space to include data
transforms, mapping transforms, and interactive components (i.e. input devices). Our GOMS evaluation tests in
appendix E showed that this expansion allows us to more effectively address the class of analysis tasks considered in
this work compared to previous automatic designs that solely rely on mapping operators. The expanded design space

enhances human computer communication because a greater visual vocabulary allows more efficient communicative
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constructs to be generated. In addition, the effectiveness of AVID as adesign assistant is also increased becauseit is
able to provide more design alternatives and choices to users. To enable this expansion in the visualization design
space, AVID incorporates new procedures in its search algorithm over what has been done in previous systems.
Specifically, previous systems only considered how data attributes can be effectively mapped to graphical properties
in a data attribute mapping procedure (section V-2.1.2). In AVID, we have an additional task processing procedure
(section V-2.1.1) that considers whether to apply data transforms or mapping transforms to solving tasks, what
hybrid data and mapping transforms are valid design alternatives, as well as how to address embedded tasks, object
filtering, and unknown task arguments. Our design system also culls out bad designs (i.e. task inexpressive designs
or designs that do not support the input task(s)) as well as duplicate designs (section V-2.1.3). This saves users from
having to devote attention to these less appropriate visual representations while still having good coverage of the

design space. Thisissue was also not considered in previous systems.

3. The realization component: The "realizer" component interprets design specifications generated by the design

component and renders an active visualization interface. This component makes layout decisions and assigns default

values to visual components that are left unspecified or unconstrained in the design specifications. Currently,

AVID’s realizer is capable of interpreting most of the selection, transformation, and translation functions described
in this thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can
render a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple semantic zoom,
SDM graphical manipulation operation€huah, 1995], navigation operations, etc. Previous systems could not

render designs with data transform functions or designs that contain interactive components.

In the following sections of this chapter we describe how our automatic design system, AVID is implemented

and how the concepts laid forth in the previous chapters are captured within its three primary components.

V-1 Task Interpreter Component

The task interpreter component accepts task descriptions as input, analyzes the tasks and their arguments for
validity, and then produces a set tabk-class (Figure V-4) andtask-argument (Figure V-3) structures. These
structures are passed to the design component that uses the information to guide its design strategy. The task

interpreter accepts specifications that are in LISP form. An example task specification is shown in Figure V-2.

In this task we calculate the duration that houses under 100Kk in price, stay on the market. Each task within the
specification has three parts: tiask class, thetask input arguments, and any speciaask conditions. For example,
the top task in Figure V-2 can be decomposed irftacatask class, a list of three task arguments, with no special
task conditions. The bottom task in Figure V-2 can be decomposed éotopate task class, a list of three task
arguments, and two task conditions. The embeditgdip tasks within the bottornompute can be decomposed in

the same way.
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(setf setl (Find ‘(RELATIONSHI P . <)
(Lookup ‘(OBJECT . NIL) ‘(VALUE . selling_price))
‘(VALUE . 100k)))

— = ~-

1. Task operator 2. Task arguments
(Comput e ‘ (VALUE . SUBTRACT)
(Lookup setl1 ‘(VALUE . date_on_market))
(Lookup set1 ‘(VALUE . date_sold)) ) ;1 oop-type one-to-one

raccuracy ‘neutral )
\W—/ %/—/ N )
YO

1. Task operator 2. Task arguments 3. Task conditions

Figure V-2: Exampletask specification

The three task parts encapsulate the following information:

1. Taskclass: Thetask class capturesthe main goa of the current analysis operation. Different task classes require
different numbers and types of input arguments as is summarized in Table V-1. Currently AVID can interpret
five different task classes: lookup, find, AND, compare, and compute. These task classes can commonly be used
to describe problems that arise in data analysis [ Casner, 1991; Senay, 1994].

2. Task arguments. Task arguments may specify single or sets of values. For example the arguments ‘(VALUE .
SUBTRACT) and ‘(VALUE . 100k)  in Figure V-2 contain single values (subtract and 100k). On the other hand
the argument ‘(VALUE .*(1 2 3 4 5)) contain a set of five values. Task arguments may come in one of two
forms:

a) Associative value pairs: An associative pair has two elements (e.g. ‘(VALUE . SUBTRACT) ), the first
describes the task argument type (e.g. value) and the second contains the actual argument value(s) (e.g.
subtract). Currently we have three types of arguments: value, object, and relationship. Value arguments
may be numbers or strings; object arguments refer to conceptual structures within the visualization such as
a data concept, a graphical object, or a chart region; and relationship arguments describe relations that
may exist among objects or values. Currently, we only consider simple value relationships such as >, <,
and =.

b) Output results from other tasks: Tasks may also accept output argument structures that are generated by
embedded tasks. The compute task in Figure V-2, for example, accepts results from two embedded |ookup
tasks. Each of these lookup tasks produces a set of values corresponding to the date_on market and
date_sold attributes of the house data concepts associated with the visualization.

3. Task conditions: Apart from the regular task input arguments, we may also specify special task conditions.

Currently, AVID can process two types of conditions, namely the task loop type and the task accuracy level.
Details on these two task conditions can be found in appendix C-3.2.
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Thetask loop type describes how the task input value sets should be iterated over. There are threeiteration types
in our task framework:

a) One-to-one is the default iteration type. It specifies that each value in the first set is processed with the
corresponding values in all subsequent sets (e.g. the 1¥ value in each set are processed together, and so are
the 2™, 3% 4™ and n-th values);

b) All-to-all tasks require each value in an input set to be processed with each and every value in the
subsequent sets.

¢) Previous-pair tasks order the input value sets based on an ordering attribute, then applies each consecutive
pair of values within the ordered set to the task function.

The task accuracy level describes the level of accuracy that is desirable for the task. Currently, there are three

accuracy levels, accurate, neutral and fuzzy.

AVID’s task interpreter possesses a LISP function corresponding to each task clésskpefind, AND,
compare, and compute). When activated, each LISP function analyzes the task input arguments to ensure their
validity. This includes number-of-argument checks, argument-type checks, and argument-correspondence checks.

The number and type of arguments required for each task class is summarized in Table V-1.

Input arguments Output argument types

Lookup » 1 object argument containing the set of objects 1 value argument

to perform the lookup on.

E.g. ‘(object .(house-1 house-2 house-3))

Note that an empty object set defaults to all objects

in the database.

E.g. ‘(object . nil)

» 1value argument containing the lookup
attribute name.

E.g. ‘(value . date-on-market)

Compute » 1 value argument containing the compute * 1value argument
operator to apply (e.g. add, subtract, etc).
* nvalue arguments containing the data value
sets to compute.

Find » 1relation argument containing the find * 1 object argument
relationship to apply (>, <, =, >=, <=).
e 2value arguments containing the data value
setsto search on.

AND * nobject arguments containing the object sets | « 1 object argument
involved in the AND relationship.

Compare »  2value arguments containing the data value o lrelation argument
sets to compare.

TableV-1: Task inputsand outputs
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Argument-correspondence checks ensure that the input data types are consistent with the task. For example,
only arguments of the same type can be added or subtracted from each other. It is not possible to perform additions
and subtractions on a set of price data values and a set of weight data values. The same correspondence constraint
applies to find and compare task classes.

When atask is specified correctly (i.e. al its arguments are valid), the task L1SP function generates:

1. Output argument structures: The output arguments generated have the same form as any input task argument
structure (an example is shown in Figure V-3). It captures properties of the task results that are derived from the
task class and the task input arguments. Association value pair arguments (e.g.'(VALUE . SUBTRACT) ) are
converted into task argument structures based on the pair values and the argument’s parent task. For example, a
value pair argument inlaokup task (e.d(VALUE . selling_price) ) impliesthat the second value in
the pair (selling_price) is an attribute name. On the other hand, a value pair in other task classes may imply a
data value (e.g.'(VALUE . 100k) ) or a relationship value (eg.(VALUE . <) ) depending on the
expected input arguments of the task class (as is shown in Table V-1). The output argument structure may be
passed on to other tasks as inputs, which is what occurs when we embed one task within another. Input
arguments from embedded tasks are already in the desired argument structure form (as was described above)
and thus need not be further processed. For example in Figure V-2, the find task generates a task argument
structure containing a set of data concepts and passes that on to the lookup tasks which extract the date-on-
market and date-sold values from those concepts. These two sets of values are subsequently passed on to the
compute task. Sometimes these output structures may contain newly generated derived or summarization
attributes (within its content slot) that are used to store the results of a data computation function. For example,
the find and AND tasks generate a boolean attribute (attribute containing T or F values), the compute task
generates a value summarization or derived attribute, and the compare task generates a relationship attribute

(attribute containing >, <, or = values).

(defcl ass task-argument (primtive-object)

( class ;5 Argument type: OBJECT | VALUE | RELATION
par ent ;; all tasks that contain this argument
within ;; task which produces this task argunent
cont ent ;; Data attribute or value(s) associated w th argument
viz-function ;; Internal function used to process results for this argunent

))

FigureV-3: Task argument structure
2. A task class structure: An example task class structure is shown in Figure V-4. Each task within the input

specification is translated into a task class structure. All input argument structures associated with the task are
collected and placed within the arg-list field dot.

V-121



(defclass task-class (primtive-object)

( class ;; task class: either [ LOOKUP, COWPUTE, COWPARE, FIND, AND ]
arg-1list ;; input task argunents
i s-enbedded ;; whether task is enbedded within another [ t | nil ]
accuracy ;; task result accuracy [t = accurate, nil = approximate]
| oop-type ;; Loop nmethod on input objects[one-to-one|all-to-all]|previous]
numti mes ;; task frequency: nunber of times a task is to be repeated
output-arg ;; output task argument structure produced by task

))

FigureV-4: Task classstructure
V-2 Automatic Design Component

Our automatic designer is implemented using Common LISP (Allegro version 4.0), and a constraint satisfaction
system called SCREAMER [Siskind]. The designer accepts alist of task class structures (shown in Figure V-4) and
task argument structures (shown in Figure V-3) as input and produces a set of design specifications as output,
ordered according to task effectiveness. Each design in the output set fulfills all the input task requirements. A
design specification consists of two components. a) a structural description of the graphical components within a
visualization and b) a description of the functional components within a visualization (this functional specification
corresponds to the framework language described in chapters 11 and 111 of thisthesis).

In the following sections we outline our strategy for exploring the space of visua elements and visualization
techniques as well as describe how the heuristics provided in chapter 1V can be encoded as design constraints and
design costs. The constraint and cost structure directs the search algorithm and allows the AVID design component

to generate an ordered list of designs that reflect cognitive, perceptual, and articulatory complexity with respect to
the input task(s).

V-2.1 Search Strategy
AVID’s search procedure has two primary phasestdHeprocessing phase, and thdata attribute mapping

phase. These two phases are indicated on the search strategy flowchart in Figure V-5. The section to the left
describes théask processing phase, the section to the right describesdtita attribute mapping phase. Thelata

attribute mapping phase is what was performed in previous automatic syst€émsenable the design of
visualizations that contain data transforms and input devices, we added the task processing phase. Thetask

processing phase begins with the first outermost task and then proceeds to all embedded tasks within it. Consider the
house task described previously (Figure V-2).
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In this task we are interested in seeing whether houses costing less than 100k stay on the market for relatively
short periods of time. The task specification is shown again below:

(setf  set1 (Find “(RELATIONSHIP . <)
(Lookup “(OBJECT . NIL) (VALUE . selling_price))
“(VALUE . 100Kk)))

(Conput e ‘(VALUE . SUBTRACT)
(Lookup setl1 ‘(VALUE.date_on_market))
(Lookup setl1 ‘(VALUE.date_sold))) :loop-type one-to-one

:accuracy nil )

Before the task processing phase begins, AVID’s design component orders its input set of tasks according to
their embedding structure, from outermost to innermost. Based on this ordering method, the house task described
above would be organized as follows (the numbers in the angle brackets “[]”, indicate embedded tasks):

1. (Conpute ‘(VALUE . SUBTRACT) [2] [3])

2. (Lookup [4] ‘(VALUE . date_on_nmarket))

3. (Lookup [4] ‘(VALUE . date_sold))

4, (Find ‘ (RELATIONSHIP . <) [5] ‘(VALUE . 100k))

5. (Lookup ‘(OBJECT . NIL) ‘(VALUE . selling price))

Task processing starts with tbempute task and proceeds until thaokup selling_price task. During the task
processing phase, the designer decides what data to pre-process, what data to show to users, and how to constrain
the mapping from data to graphics in order to facilitate perceptual processing. Once all the embedded tasks are
processed, the search algorithm proceeds to the data attribute mapping phase, where all data attributes deemed
necessary in the task processing phase are mapped to graphical properties. The mapping decisions are subject to the

perceptual constraints placed during task processing.

Branching in the search procedure occurs when there are alternative methods for achieving the same goal. In
Figure V-5, a black circle indicates theseanching or alternative points. An important branching point, for
example, occurs after th@r‘ocess next task” node. One alternative is to process the task with data transforms (i.e.
have the system pre-compute the task results). Another alternative is to map the task data to graphical properties and
let users derive the task results perceptually. Each of these alternatives causes a new path to be created in the search
tree. To further differentiate theseréanching points’ in Figure V-5, we curve the arrows originating from them
while leaving all other arrows rectangular. In the next sections we describe the two searctigskamsesessing
and data attribute mapping. We will show how a search tree is constructed and what state information is stored

within its nodes during each of these phases.
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Are all enbedded
tasks done?

Process Next TaskL
Y
Data Transform Mapping
Tasks Transform Tasks
Stqa 1 Step ) 4
Add appropriate Constrain all task Step 6
functional operator attributes Arethere Pick input
task devicesfor
Step 2 V unknowns? Y | unknowns
Constrain all object N
embedded tasks to be
Data Transform Tasks N
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Areal
attributes
mapped?
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Istask-list
task?

empty?

Case 1b
Y
Two alternati ) -

) . Map attribute to Map attribute to

showing object task results existing graphical new graphical

object object
Y

Case 2a Compose new

v graphical object
Constrain data object Store task output [

membership attribute for mapping

! 1

N RGN J
e Y

Task processing phase Data attribute mapping phase

Figure V-5: Flowchart of AVID search strategy. Consists of two main phases: 1) task processing phase and 2) data
attribute mapping phase

V-2.1.1 Task Processing

At the start of the search procedure the search tree contains a single root node that has alist of al outstanding
tasks ordered from outermost to innermost. For example the partial search tree in Figure V-7 reflects the design
space of the house example task described earlier in this section. The root node of this search tree contains alist of
task structures related to the house example. Task processing begins with the first task in the root node, which isthe
compute-subtract task. Each task may be performed through data summarization and manipulation operators or by
mapping data attributes of the task to appropriate graphics. As is shown in Figure V-7, each of these alternatives
generates anew path in the search tree (node-1 is the data transform alternative and node-8 is the mapping transform
aternative). New additions to the node state at each step are shown in bold red letters.
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Note that we have cut out some nodes from the search tree in Figure V-7 because of space constraints. In
particular, node-1 and node-8 are linked to the root node by dotted arrows to indicate that some intermediate node
states along these two paths have been culled out. Both nodes show the state of the design after processing the first
three tasks (i.e. the compute task and both of its embedded lookup tasks). We collapsed these two path segments
because in both cases, the embedded lookups are constrained to the same task processing method as their parent
compute task (i.e. both lookups are constrained to data transforms in node-1 and constrained to mapping transforms
in node-8). As aresult there is no branching in the tree within these segments and collapsing them does not remove

any information.

In the following paragraphs we describe the steps associated with the data and mapping transform processing
dternatives (asis shown in Figure V-5) as well as the changes they make upon the node statesin Figure V-7.

Alternative 1: Data Transform Processing
Sep 1. Add functional operator

When we decide to perform a task through data computation (i.e. system computation), a data transform

operator corresponding to the task class is generated and stored within the node. For example in node-1 of Figure
V-7 the compute task is performed with data transforms, thus a BinaryCompute data transform operator is added to
the functional-operator-list slot of the node. Smilarly each of the other data transform tasks also adds a data
transform operator to the node state. These transform functions are later connected and used to create a functional

design for processing the data contained within the visualization.

There is currently a one-to-one correspondence between our task classes and the data transform primitives

described in chapters Il and I1l. Figure V-6 shows all our task classes and their corresponding data transform

operators.
Task operator Corresponding data transform primitive
Lookup GetAttributeValue
Compute UnaryCompute

(mean, min, max)

Compute BinaryCompute
(add, subtract,

divide, multiply)

Compare GetValueRelation
Find Threshold

And SetOperation

Figure V-6: Task operatorsand their corresponding visualization functions
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Node 0 (Root)

Conmput e ( SUBTRACT, *, *)
Lookup (*, date_on_market)
Lookup (*, date_sold)

Find (<, * 100k)

Lookup (ALL, selling_price)

Node 1 I e — o ((- (1 N

o Node8 -
Find (<, *, 100k) - .
Lookup (ALL, selling_price) Find (<, * 100k)
State: Lookup (ALL,

§ ) sellin rice
Functional condtraint: Sate: 9_p )
Internal e
[ Lookup (*, date_on_narket) Functional constraint:

Lookup (*, date_sold) ] External
Functional operator list [ Lookup (*, date_on_market)
[ Binar yCorr?)?n e Lookup (*, date_sold) ]

Get At tributeVal ue(dat e_on_mar ket) Perceptual constraint:

Get At tributeVal ue(date_sol d)] Graphical -Property Equivalence
Data attribute list: [ date_on_narket, date_sold ]
[ Conmpute ( SUBTRACT, *, *) ] Data attribute list:

[ date_on_market, date_sold ]
External External

Internal (object constrain

Internal (object c

Internal (NOT [object constrained) Internal (NOT|object constrained)

Node 11

Node 6 Node 9 Node 13

Node 2 Node 4
Lookup (ALL, selling_price) Lookup (ALL, selling_price) Lookup (ALL, selling_price) Lookup (ALL, selling_price) Lookup (ALL, selling_price) Lookup (ALL,
State: State: State: State: State: sel ling_price)
Functional constraint: Functional constraints: Functional constraint: Functional constraint: Functional constraint: State:
Internal Internal Internal Internal Internal Functional constraint:
[ Lookup (*, date_on_market) [ Lookup (*, date_on_market) [ Lookup (*, date_on_narket) [ Lookup (ALL, selling_price) ] [ Lookup (ALL, selling_price) ] External
Lookup (*, date_sold) Lookup (*, date_sol d) Lookup (*, date_sold) ] External External [ Lookup (*, date_on_market)
Lookup (ALL, selling_price) ] Lookup (ALL, selling_price) ] External [ Lookup (*, date_on_market) [ Lookup (*, date_on_market) Lookup (*, date_sold)
Object constraint: Functional operator list: [ Lookup (ALL, selling_price) ] Lookup (*, date_sold) ] Lookup (*, date_sold) ] Lookup (ALL, selling_price)]
Attribute <Conput e(  SUBTRACT, *, *)> [ BinaryConput e, Functional operator list: Object constraint: Perceptual constraint: Perceptual constraint:
constrained by <Find (<, * 100k)> GetAttribut eval ue(dat e_on_nar ket ) [ BinaryConpute, Attribute <dat e_on_nar ket , dat e_sol d> Graphical-Property Equivalence Graphical-Property Equivalence
Functional operator list: Get At tribut eval ue(dat e_sol d) Get At tribut eVal ue(dat e_on_mar ket ) constrained by <Find (<, * 100k)> [ date_on_market, date_sold ] [ date_on_market, date_sold ]
[ BinaryConpute, Threshol d(<, *,100k) ] Get Attributeval ue(date_sol d) Perceptual constraint: Functional operator list: Data attribute list:
Get Attri but eval ue(date_on_nar ket ) Data attribute list: Data attribute list: Graphical-Property Equivalence [ Threshol d(<, *,100k) ] [ date_on_market, date_sold,
Get Att ri but eVal ue( dat e_sol d) [ Conpute ( SUBTRACT, *, *) [ Conpute ( SUBTRACT, *, *) [ date_on_market, date_sold ] Data attribute list: sel ling_price]
Threshol d(<, *, 100k) ] Find (<, * 100k) ] selling_price ] Functional operator list: [ date on market, date sold,
Data attribute list: [ Threshol d(<, *,100k) ] Find (<, %, 100k) ]
[ Conpute ( SUBTRACT, *, *) ] Data attribute list:
[date_on_mar ket, date_sol d]
Node 3 l Node 5 I Node 7 ! Node 10 ]! Node 12 . Nodel14 |
State: State: State: State: State: State:
Functional constraint: Functional constraint: Functional constraint: Functional constraint: Functional congtraint: Functional constraint:
Internal Internal Internal Internal Internal External
[ Lookup (* date_on_market) [ Lookup (*, date_on_market) [ Lookup (*, date_on_market) [ Lookup (ALL, selling_price) ] [ Lookup (ALL, selling_price) ] [ Lookup (*, date_on_narket)
Lookup (*, date_sol d) Lookup (*, date_sol d) Lookup (*, date_sold) ] External External Lookup (*, date_sol d)
Lookup (ALL, selling_price) ] Lookup (ALL, selling_price) ] External [ Lookup (*, date_on_market) [ Lookup (*, date_on_market) Lookup (ALL, selling_price)]
Object constraint: Functional operator list: [ Lookup (ALL, selling_price) ] Lookup (*, date_sold) ] Lookup (*, date_sold) ] Perceptual constraint:
Attribute <Conpute ( SUBTRACT, *, *)> [ BinaryConpute, Functional operator list: Object constraint: Perceptual congtraint: Graphical-Property Equivalence
constrained by <Find (<, * 100k)> Get Attribut eval ue(dat e_on_nar ket) [ BinaryConput e, Attribute <dat e_on_nar ket, dat e_sol d> Graphical-Property Equivalence [ date_on_market, date_sold ]
Functional operator list: Get Attribut eval ue(dat e_sol d) Cet AttributeVal ue(dat e_on_nmar ket) constrained by <Fi nd (<, *, 100k)> [ date_on_market, date_sold ] Data attribute list:
[ BinaryConpute, Threshol d(<, *,100k) Get AttributeVal ue(date_sol d) Perceptual constraint: Functional operator list: [ date_on_market, date_sold,
Get At tri but eval ue( date_on_mar ket ) Get AttributeVal ue(sel Iing_price) Data attributes: 6Graphical-Property Equivalence [ Threshol d(<, *,100k) sel ling_price]
Get At tri but eVal ue(date_sol d) ] [ Conpute ( SUBTRACT, *, *) [ date_on_market, date_sold ] Get At tributeVval ue(sel ling_price)]
Threshol d(<, *, 100k) Data attribute list: selling_price ] Functional operator list: Data attribute list:
Get Attributeval ue(selling_price) [ Conpute ( SUBTRACT, *, *) [ Threshol d(<, *,100k) [ date_on_market, date_sold,
] Find (<, * 100k) ] Get Attributeval ue(sel ling_price)] Find (<, * 100k) ]
Data attributes: Data attribute list:
[ Conpute ( SUBTRACT, *, *) ] [ date_on_market, date_sold ]
Design 1 Design 2 Design 3 Design4 Design 5 Design 6

Figure V-7: Partial search tree of house example task
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Design 1: Pure data transform design with object filtering (node-3).
Duration on market iscomputed and mapped to the x-axis and only
houses costing less than 100k are shown
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Design 2: Pure data transform design with NO object filtering
(node-5). Duration on market is computed and mapped to the x-
axis. Houses costing less then 100k are computed and shown in red.
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Design 3: Hybrid design with duration on market computed and
mapped to the x-axis of the left chart. The find selling-price task
however isperformed perceptually and selling-price is shown on the
x-axisin theright chart. (node-7)
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Design 4: Hybrid design with date_on_market and date_sold
mapped to the x-axis so that the duration on market can be
determined perceptually. Thefind selling-price task is computed
with data transformsand only those houses costing less than 100k
are shown (node-10)
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Design 5: Hybrid design with date_on_market and date_sold
mapped to the x-axis so that the duration on market can be
determined perceptually. The find selling-price task is computed
with data transforms and shown using hue (node-12)
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Design 6: Pure mapping transform design, i.e. all tasks are mapped
to graphics. Selling-price is mapped to the x-axis of the left chart
and date_on_market and date_sold are mapped to the x-axis of the
right chart (node-14)

Figure V-8: Example designs generated corresponding to the 6 terminal nodesin the search treein Figure V-7
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Sep 2: Constrain embedded tasks based on whether they have an object or non-object output argument

In this step we determine whether the tasks embedded within the current task are non-object or object tasks. In
the first case, a data transform task constrains all of its embedded non-object tasks (i.e. lookup, compute or
compare) to data transforms as well. For example node-1 in Figure V-7 performs the compute task with a data
transform. Since the two embedded lookups within the compute are value tasks (i.e. non-object) they are constrained
to data transform functions as can be seen in the functional-constraint list of the node. This constraint isin place
because to fulfill a task with data transform functions when its embedded tasks are performed through mapping
transforms, users must perform those embedded tasks perceptually and than convey their results to the parent data
transform task. Commonly this requires great precision in the mapping transform task and significant articulatory
costs in conveying its results. For example in the house task, if we were to perform the compute with data
computation but the embedded lookup’s with mapping transforms, the user must enter in two sets of values, one
corresponding to the date_on_markelookup and another corresponding to the date_soldookup, resulting in very

significant articulatory costs.

In the second case, embedded object tasks (find, AND), do not have this data transform task constraint.
Consider node-6in Figure V-7, the outer lookuptask is performed with data transforms but its embedded find task
can be performed with a mapping transform because it is an object task. While articulatory costs tend to be large for
multi-value entry, they are significantly smaller for selecting a set of objects. Input devices such as lassosand
bounding-boxesallow multiple objects to be selected simultaneously, while value entry must be performed
individually, incurring a cost for each input value. Lassosand bounding-boxesre especialy effective in the case
where the resulting object set is dependent on the objects’ positions. In addition input devices are often not even
needed for embedded object tasks because users can perceptually identify those objects of interest and then just
lookup their attributes. There is no need to convey to the system which objects fulliilttteesk conditions unless
we want to filter the objects within the display. For example confldsgn 3 which allows users to perceptually
search for houses under 100k in price by looking as¢hieng-price bar chart to the right. Once those houses are
identified, users may look up theiomputed duration on market. In this design, tied task is mapped to graphics,
while thecompute, lookup date_on_market andlookup date sold tasks are data transform computed, however, no

system input is required of the user.

Sep 3. Process current task based on whether it is embedded and whether it has an object or non-object output

argument
Once we have added appropriate transform operators and constraima @dj ect enbedded tasks to data

transforms, we check whether the task itself is embedded and whether it is an object task. Table V-2 summarizes the

different actions that get carried out based on these two conditions.
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Task type Task embedding Action taken

Non-object (1a) Not-embedded | Map to graphical property.
(1b) Embedded Do nothing.

Object (2a) Filter visualization objects.
(2b) Map to graphical property.

Table V-2: Summary of actionstaken based on task output and embedding status

First we consider non-object tasks (case 1). For non-object, non-embedded tasks (case 1a), (like the compute
task in the house example above) we assume that there is an implicit outer lookup task around it. Thisis because in
data analysis we perform tasks to gain insight from their results and not for the exercise of performing the task itself.
Thus for a non-embedded task, we need to map its resulting derived attribute to a graphical property. In node-1, for
example, we add the derived attribute for the compute-subtract task to the data-attribute-list of the node for future
mapping. In design 1, this compute attribute later gets mapped to x-position. Embedded tasks (case 1b), however,
pass their results onto higher level tasks for subsequent processing, thus it is less important to show their
intermediate results (refer to chapter 1V-3.2). For embedded, non-object tasks we take no action and proceed to the
next task.

When the task being considered is an object task (case 2), we have two aternatives. Either we can filter the
graphical region(s) so that only those objects that fulfill the object constraints of the task are shown (case 2a) or we
map the task results (a boolean attribute) to a graphical property (case 2b). These two alternatives result in node-3
and node-5 of the search tree in Figure V-7. In node-3 an object constraint is applied while in node-5 the find task
result attribute is added to the attribute list of the node for subsequent mapping.

Choosing the filter alternative may significantly reduce the number of objects that need to be shown and thus
reduce clutter (as is shown in Design 1). On the other hand such a design makes it harder to maintain data context
because when we alter the conditions of the find task the data membership of that visualization changes and causes
objects to shift around to fill in empty spaces or to make new spaces for additional objects. The object filter decision
also constrains data membership for a set of graphical objects, and this may preclude the results of other related
tasks with different data membership requirements from being shown with the same graphical objects. As a result
object filtered visualizations usually tend to be less integrative, spreading the related data attributes over more
objects and possibly more regions.

The second object task alternative (case 2b) maps the task results to a graphical property. This does not create

context maintenance and integration problems, as is the case with filtering the objects in the previous case (case 2a).
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However, this design decision results in greater perceptual complexity because more graphical objects are shown
and an additional graphical property must be used to show the results of the search.

AVID takes the costs associated with these two aternatives into account during the design process. A cost is
associated with mapping the task results to a graphical property. Less integrated designs that result from different
object membership requirements also incur a design cost. AVID’s cost structure is described in greater detail in
section V-2.3.

Alternative 2: Mapping Transform Task Processing
Sep 4: Add perceptual constraints

An alternative to performing a task with data transforms is to perform the task through mapping transforms
which encodes task related data attributes with graphical properties. Mapping transform tasks commonly impose
perceptual constraints on the data to graphical encodings to facilitate perceptual processing. To pemioute-a
add task with mapping transforms, for example, we constrain all input child attributes to be mapped to stackable
graphical objects and properties, twnpute-subtract task, on the other hand, constrains all data attributes to be
mapped to the same graphical property so that value comparisons are facilitated. In Figuyee\8,/for example,
performing thecompute-subtract task with mapping transforms causessianple graphical-property” constraint to
be added. This constraint restricts bothdate on _market anddate sold data attributes to be mapped to the same
graphical property. We seedasigns 4, 5, and6, that both attributes are mapped toshaosition graphical property
and this facilitates the perceptsabtraction task. More details on perceptual constraints are provided in section V-
2.2.

Sep 5: Determine if all embedded tasks have been processed

After we have finished processing a task we remove it frortatidist field of a node and continue to process

the next task in that list. Processing continues until all embedded tasks have been visited. Once this is done we
proceed to thalata attribute mapping phase where we consider how the data attributes collected nhatidre

attribute-list slot in the node state can be mapped to graphical objects and properties.

V-2.1.2 Data Attribute Mapping

In this phase we consider all the data attributes inldteeattribute-list slot of a node and explore the different
ways in which these attributes can be mapped to graphical properties. Preference in mapping is given to graphical

properties that allow parallel processing and integrated designs with low perceptual complexity.

Sep 6: Add input devices for unknown task arguments

Before we begin mapping the data attributes we first populate the visualization design with input devices for all
unknown task arguments (i.e. task arguments that do not have associated data values because the user is unsure
which value(s) are most suitable for the task). Unknown arguments are specified in AVID by u8imymbol in
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place of an object or data value set. For example if we were unsure of what selling_price threshold to use in the
house example, we would specify the task as follows:

(setf  set1 (Find "(RELATIONSHIP . <)
(Lookup “(OBJECT . NIL) *(VALUE . selling_price))
(VALUE . ?)))

(Conput e ‘(VALUE . SUBTRACT)
(Lookup set1 ‘(VALUE.date_on_market))
(Lookup setl1 ‘(VALUE. date_sold))) :loop-type one-to-one

:accuracy nil )

In this newly modified task, AVID will attach input devices to those design alternatives where the find task is
performed with data transforms so that users may change the selling_price filtering threshold similar to a dynamic
query interface [Ahlberg, 1994]. Input devices need not be added when tasks are mapped to graphics because unlike
the data transform case, al the data for the task is shown and users can just perceptually process the data differently
based on changing task conditions.

Sep 7: Map all data attributes
The attribute mapping process is similar to the mapping process used by Casner and Mackinlay. Attributes are

mapped to properties of an existing graphical element or to properties of a new graphical element that is then
composed with current graphical objects. There are four types of composition methods, each of which produces a

new branch in the search tree: cluster, double axis, single axis alignment and no composition.

CBIECT-NAME

SALE-COMMERCIAL-1335 SQUIREGY - HILL
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Figure V-9: Visualization design illustrating the different composition types. Thereis cluster composition in the left chart
between the labels and the marks. Thereis double-axis composition in theright chart between the marks and the bars.
Thereissingle-axis alignment between elementsin theleft-chart and those in theright-chart. These composition types

werefirst introduced by Mackinlay [Mackinlay, 1986a, 1986b].

Clustering ties a new object positionally to an existing object in the partial design. For example in Figure V-9,
alabel showing house neighborhood is clustered with amark graphical object. Double axis composition adds a new
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object into an existing space but does not tie it positionally to any other object within that space. For example the
mark-grapheme and the horizontal-bar-grapheme in the right region of Figure V-9 are double axis composed
because even though they reside in the same region, they do not share the same x-position. Sngle axis alignment
adds a new object in a new region that shares at least one positional axis with an existing region. The two regionsin
Figure V-9 are single axis composed, sharing their y-positional axis. It isimportant to note that to share a positional
axis both axes must have the same data type and the same min-max range. In Figure V-9, both regions are aligned
on the object-name data type. Finally no-composition shows the data within a new visualization window. Different
costs are associated with different graphical property mappings depending on the task and the data attribute being
mapped. Costs are also different for the various object composition methods. Cost details are discussed in section V-
2.3.

V-2.1.3 Post Design Processing

Once all tasks are processed and al data attributes are mapped, the visualization design is complete. During post

design processing, AVID'’s designer performs two primary tasks:

1. Cullsout similar designs that have been generated previously

A completed design is compared to all previous designs to determine whether there is similasgtsuiciute
andcontent. If there is a structural and content maj¢hen the newly completed design is culled from the design
space and a new design is generated. Otherwise, the new design is transformed into our design specification

language and sent to the realizer component for rendering.

2. Transformsthe visualization design into a visual and functional specification language

Once a design is completed and determined to be unique (i.e. does not match based on structure or content to
any previous design), AVID’s designer translates the completed solution into a visual structure specification
language and a functional specification language (developed in chapters Il and Il of this thesis). The translated
design is then passed on to the realizer component. In appendix D-2 we describe the functional translation process,
i.e., how the visualization operators within thuactional-operator-list slot of a node are connected together and
populated with sufficient information for subsequent rendering. The translation process from visual design to visual
structure specification language is fairly straightforward and has been explored previdadhinfay, 1986a,
1986b; Chuah 1995], thus we will not describe this process again here.

V-2.1.4 Summary

In this section we described the search procedure used in AVID'’s design component. This procedure consists
of two main phases: task processing phase and data attribute mapping phagéiitbe mapping phase was
adopted from previous work on automatic systems. However, we created and ad@eskl phecessing phase to
address data transform and input device issues. Specifically we describe how to address embedded tasks and utilize

! Refer to appendix D-1 for details on structural and content matching.
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the task embedding structure to achieve more effective data transform designs, how to filter objects within a
visualization with data transforms and its impact on the graphical representation, how data transform functions are
combined and attached to task parameters, and how to address unknown task arguments by attaching input devices.

During the two search phases costs are assigned to the partial visualization designs within each node of the
search tree and constraints are placed on the various design elements (as is shown in Figure V-7). These costs and
constraints help guide the search so that inexpressive design paths (i.e. designs that are not appropriate for the input
tasks) are abandoned and promising design alternatives are explored first. Many of these cost and constraint

heuristics are based on previous research that explore how visualizations can be used to amplify cognition. Card et

a. [Card, 1999] summarizes these findings very well and we show themin Table V-3.

Increased Resour ces

1. High-bandwidth hierarchical
interaction

The human moving gaze system partitions limited channel capacity so that it combines high spatial
resol ution and wide aperture in sensing visual environments (Resnikoff, 1987).

2. Paralle perceptual processing

3. Offload work from cognitive to
perceptual system

4.  Expanded working memory

Some attributes of visualizations can be processed in parallel compared to text, which is aerial.

Some cognitive inferences done symbolically can be recoded into inferences done with simple
perceptual operations (Larkin and Simon, 1987)

Visualizations can expand the working memory available for solving a problem (Norman, 1993)

Reduced Search

5. Locality of processing

6. High datadensity

Visualizations group information used together reducing search (Larkin and Simon, 1987)

Visualizations can often represent a large amount of datain a small space (Tufte, 1983)

7. Spatialy indexed addressing

By grouping data about an object, visualizations can avoid symboalic labels (Larkin and Simon,
1997)

Enhanced Recognition of Patterns

8. Recognition instead of recall

Recognizing information generated by a visualization is easier than recalling that information by the
user.

9.  Abstraction and aggregation

Visualizations simplify and organize information, supplying higher centers with aggregated forms of
information through abstraction and selective omission
(Card, Robertson, and Mackinlay, 1991; Resnikoff, 1987)

10. Visua schematafor organization

Visually organizing data by structural relationships (e.g. by time) enhances patterns.

11. Value, relationship, trend

Per ceptual Inference

Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981)

12. Visual representations make some
problems obvious

Visualizations can support a large number of perceptual inferences that are extremely easy for
humans (Larkin and Simon, 1987)

13. Graphical computations

Visualization can enable complex specialized graphical computations (Hutchins, 1996)

14. Perceptual Monitoring

Visualizations can allow for the monitoring of alarge number of potential eventsif the display is
organized so that these stand out by appearance or motion.

15. Manipulable M edium

Unlike static diagrams, visualizations can allow exploration of a space of parameters values and can
amplify user operations.

Table V-3: How Information amplifies cognition (from Card et al.[Card, 1999])
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In the following sections we describe the constraint and cost structures used in AVID as well as discuss their
use, limitations, and how they relate to Table V-3.

V-2.2 Design Constraints

We divide AVID'’s design constraints into two classes according to the two primary design phdses:
processing anddata attribute mapping. Task processing constraints ensure that the visualization can be effectively
controlled (smalbrticulatory distance) and parsed (smatiiservational distance) by the user. In addition, the visual
design must be capable of expressing or processing all the information required by the inpuexpségs)¢ and

functional distances = )

Data attribute mapping constraints, on the other hand, ensure that the structure of the visualization is valid. For
example, graphical objects withinnaap region must have thepositions mapped tdongitude andlatitude while
objects within ayrid have no positional mappings. In additioegions may only be aligned if they share at least one
axis with the samedata type. Thesedata attribute mapping constraints follow established information design rules
and their application to automatic visualization design have been explored in previousviaockinlay, 1986a,
1986b; Casner, 1991; Roth, 1994]. Therefore, in this section we will focus only @k processing constraints.

Task processing constraints are characterized based on three dimesstosss, scope, and constraint-
condition. We describe each of these dimensions next, as well as detail the primary areas in the task processing

phase where these constraints get imposed.

V-2.2.1 Constraint Dimension 1: Softness

Constraints may be applied bard or soft constraints. Hard constraints cannot be violated. Any search path
that violates a hard constraint is considered a failure and abandoned. In AVID we use hard constraints to prevent the
designer from generating visual representations that are not functionally and/or visually expressive of the input

tasks.

Specifically, hard constraints are applied in AVID so that designs with positive task expressive or functional
distances are never generated because they do not provide users with sufficient information to solve the input tasks.
Note, however, that hard constraints are not applied to all the expressive distance measures. In chapter 1V-1.2, we
listed four expressiveness measures: task expressiveness, data expressiveness, correctness, and data presence. Task
expressiveness and correctness are necessary conditions in any AVID generated design because they determine
whether a task can even be performed and if so whether it can be performed correctly. As a result these measures are
implemented as hard constraints. Data presence and data expressiveness restrictions, on the other hand, are not

crucial to completing a task, thus they are implemented as soft constraints. In fact, data summarization, which

2 Articulatory, functional, expressive, and observational distances were all described in the metrics framework in chapter 1V-2.
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decreases data expressiveness, can be a powerful tool for reducing graphical complexity and improving perceptua
processing [No.9, Table V-3].

Hard constraints are also applied to prevent perceptualy inexpressive designs from being generated. For
example in Figure V-10, the date on market and date sold attributes are mapped to two different graphical
properties (x-position and saturation) making it very difficult to determine the duration on market without resorting
to cognitive calculation. In this case the perceptua mappings are a hindrance because they do not enable any
perceptual operators for performing the compute duration task (i.e. because the graphical properties used to represent
the data are inexpressive, it is not possible to offload the cognitive operations onto the perceptual system [No.3,
Table V-3]). As a result the graphical property values must first be converted back into data values and then the
computation task must be performed cognitively. To prevent this, we enforce a graphical-property constraint (which
restricts both date_on_market and date sold to the same graphical property) as a hard constraint. Consider all the
designs resulting from the subtree at node-8 that has this graphical-property constraint (i.e. Design 3, Design 4,
Design 5). All these designs allow the compute duration task to be performed perceptually by mapping both

date_on_market and date_sold to the same graphical property class, namely x-position.
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Figure V-10: Perceptually inexpressive design of the house task in Figure V-2. Thisis because date_on_market is mapped
to the x-axis of the left chart and date_sold is mapped to saturation on theleft chart. This makesit difficult to computethe
duration on market because thereisno perceptual operator for comparing the difference between positional and
saturation values.

Soft constraints, unlike hard constraints, may be violated, but they incur a violation cost. Soft constraints help

direct the designer to choose more effective designs (i.e. designs with smaller observational and articulatory
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distances) over less effective ones. For example there are soft integration constraints which try to direct the designer
to show all task related data within the same region [No.5, Table V-3]. Suppose we are searching for houses based
on three properties, selling_price, number_of_rooms and date_on_market. Figure V-11 shows mapping transform
solutions to the task in which al three find attributes are mapped to graphical properties. In Figure V-11a al the
information is displayed in the same chart area while in Figure V-11b the information is separated over three
different regions. Both visualizations can be used to solve the house search task however Figure V-11a is more
effective because it requires fewer eye movements due to the more integrated design. The soft integration constraint
reflects this preference.
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(a) Integrated Design: Selling_price, number_of rooms and date_on_market are all mapped onto a single region thereby
facilitating the house search task.
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(b) LessIntegrated Design: Selling_price, number_of rooms and date_on_market are each mapped onto a different region
thereby making the house search task less efficient compared to design (a).

Figure V-11: Mapping transform designs for house search task on selling_price, number_of_rooms and date_on_market
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V-2.2.2 Constraint Dimension 2: Scope

Constraints may have local or global scope. Local constraints only affect the current design decision. Once the
decision is made, any related local constraints are discarded (i.e. local constraints are not propagated from one
decision point to another). For example, AVID’s designer has a local constraint that ensures a task can only be
graphically mapped if there are appropriate graphical representations for it. Some complex taskdaguoh as
exponent have no appropriate mappings and thus cannot be achieved with mapping functions. This constraint only
haslocal scope because once we decide thatctmpute-log task must be performed with data computation, we

need not check this condition again later in the design process. l.e. the constraint only affects the current decision.

Global constraints, on the other hand, must be propagated through the design states because they may affect
multiple design decisions spanning different time periods. For exampdeabie cal-property constraintapplied at
node-8 is aglobal constraint, and it gets propagated to all child nodes. Even though this constraint is generated in
the task processing phase (i.e. during processing ebthgute-duration task), it affects multiple mapping decisions
in the data attribute mapping phase.

Before a node is processed, all global constraints stored within it are instantiated to set the current constraint
context of the search path. Once we have finished processing a node (i.e. generated all of its children) we remove its

constraint context and replace it with the context of the next node.

V-2.2.3 Constraint Dimension 3: Constraint Condition

Each constraint has a test condition. Inability to pass the test condition causes a violation of the constraint. This
may result in the abandonment of the current design path (in the calardfcanstraint) or in a cost increment for
the current partial design (in the case sbft constraint). Constraint conditions may be placed on various elements
of the visualization design or of the input task(s). The elements that may be used in a constraint differ based on the
scope of the constrairtocal constraints can only be applied to elements and properties that are locally accessible

while global constraints can be applied to any element.

There are three groups of constraint conditions that commonly appear in AVID: mapping constraints, task
constraints, and object membership constraints.
1. Mapping constraints

Mapping constraints are the most common type of constraint. These constraints restrict how data attributes may
be mapped onto graphical properties and graphical objects. There are two classes of mapping cairspitaints,
constraints andcomplex constraints. Simple mapping constraints are equality constraints that restrict a single aspect
of a mapping to be identical with that of another. For exampteda-8 of Figure V-7 a simplgraphical-property
mapping constraint gets applied to ttate on_market and date sold attributes. This constraint restricts the
date on_market and date_sold mappings to have identical destination graphical properties. Simple mapping

constraints may also restrict a mapping property to a named constant value. For example we may constrain the
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date_on_market attribute so that it is mapped to the mark grapheme class or to a specific region in the visualization,
e.g. region_324.

AVID has seven different simple mapping constraints, the first five are object constraints while the last two are
property constraints:

a) Cluster constraint: data attribute constrained to a given cluster of graphical objects.

b) Graphical object constraint: data attribute constrained to a given graphical object.

¢) Graphical object class constraint: data attribute constrained to a graphical object that is of a given class
(e.g. mark, horizontal bar or aline object class).

d) Region constraint: data attribute constrained to reside in a given graphical region.

€) Region discipline constraint: data attribute constrained to a particular region discipline (e.g. chart, table,
grid, map).

f)  Segment constraint: data attribute constrained to a given graphical property segment. A graphical segment
links a set of data attributes to a graphical property and a graphical minimum and maximum for that
segment. For two data attributes to be encoded in the same segment they must be of the same data type
and they must share approximately equal data minimum and maximum ranges. Some example segments
include positional-axes and color, size or shape legends.

g) Graphical property constraint: data attribute constrained to aparticular graphical property (e.g. position-x,
position-y, shape, size, hue, €tc.).

Complex mapping constraints, unlike the simple constraints may restrict multiple graphical properties
simultaneously and/or restrict the relationships between multiple graphical objects or properties. The primary
complex constraints in AVID are the graphical property relationship constraints: integral, conjoint and separable.
Integral propertiesrefer to graphical properties that cannot be perceptually separated from one another. An example
is hue and saturation. Both these properties determine the color of an object and it is difficult to perceptually
separate out the saturation component and the hue component. Integral constraints are used to restrict the mapping
of data attributes to graphical properties that have integral relationships. For example we may constrain the
house neighborhood and the selling_price data attributes to share integral graphical properties (such as hue and
saturation) asin Figure V-12. This constraint facilitates our ability to search for houses with the combined attributes
of low price and good neighborhood (e.g. Shadyside) because we only need to focus on one aspect of the graphical
object, its color (e.g. light pink).
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Figure V-12: Design with neighborhood and selling_price mapped to integral properties (hue and saturation). This makes
combined search on both these data attributes easier because only a single emergent property (i.e. color) needsto be
attended to.

Separable properties are the exact opposite of integral properties, in that they can only be perceived separately.
An example is size and hue. Both properties do not combine to form an emergent property as in the previous case
where hue and saturation combine to form color. As a result it is easy to view each of these properties
independently. By the same token it is more difficult to perform combined property searches (e.g. find objects that
are large and colored purple) compared to integral properties. Finally conjoint properties are both separable and
integral. |.e. they can be perceived separately but at the same time they combine to form an emergent property.
Examples of conjoint properties are width and height. Both properties can be perceived separately but at the same
time they combine to form an emergent property namely area. The same s true of x-position and y-position.

Another complex constraint in AVID is the stacking constraint. The stacking constraint restricts one or more
graphical objects to be positionally laid out one on top of each other. This stacking constraint is most commonly

applied by the add operator to facilitate performing the summation task perceptually.

Note that mapping constraints are also special in that they get propagated from parent to child tasks. For
example a simple graphical-property constraint that gets applied to the compute-add task shown next gets
propagated to its child tasks as well so that in the pure mapping solution, all embedded data attributes (i.e.
full_compensation, full_salary, assoc_compensation, assoc_salary, asst_compensation, asst_salary) are constrained
to the same graphical property (e.g. in appendix E-2.6)
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(Conput e * (VALUE . ADD)
(Conpute * (VALUE . SUBTRACT)
(Lookup (OBJECT . NIL) full_conpensation)
(Lookup (OBJECT . NIL) full_salary) )
(Conpute * (VALUE . SUBTRACT),
(Lookup (OBJECT . NIL) assoc_conpensati on)
(Lookup (OBJECT . NIL) assoc_salary) )
(Conpute * (VALUE . SUBTRACT),
(Lookup (OBJECT . NIL) asst_conpensation)
(Lookup (OBJECT . NIL) asst_salary) )
2. Task constraints
Task constraints may include conditions set upon task processing methods (either data transform processing or
mapping transform processing), task classes (lookup, compute, compare, find, AND), task operators (e.g. add,

subtract, multiply or mean), or task input data concepts and values.

Task processing constraints are often applied to prevent bad combinations of data transform/mapping transform
hybrid designs from getting generated. Step 2 of the search procedure places a task processing constraint on all
embedded non-object tasks of a parent data transform task so that they are computed through data transforms as well
(refer to section V-2.1.1 for details). Another interesting instance where task processing constraints are used is for
imposing similarity among embedded child tasks. A good example is the AND task, which searches for objects
fulfilling a set of data conditions. Even though it is possible to solve the task if we processed the AND child tasks
differently (i.e. some with data transforms and some with mapping transforms as in Figure V-13) such designs are
not effective.

OBJECT- NAME

SALE-I¥¥-704) o
SALE- BEECHWOOD-3237] o
SALE- FENHAM- 633! @

SALE-CARRIAGE-74X o

SALE-GETTYSEURG- 62 o
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SALE-COLLEGE- 7] )
SALE-LE-BLANC-3X o
SALE-WOODWELL- 666 )

SALE-DENNISTON- 1251] )

SALE- MOREWOOD- 159) o
SALE- HASTINGS-424 o

SALE-CARRIAGE-73ls o
SALE-S-NEVILLE-211] @
SALE- ALDERSON-633 o
SALE-LILAC-95 )
SALE-CATON-6372 o
SALE-EMERSON- 26 o)

SALE-KIPLING-5454 @ ‘
No Ves 26000 120000 204000

JE000 162000 246000

Houses fulfilling the date on et constraid.
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Hises fulfilling the rammher of ToOmms constraiae.

@ Mo
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-
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o e | o o s |

Figure V-13: Mixed task processing methodsfor the AND operator in the house search task. The date_on_market
condition is pre-computed and mapped to the x-axis of the left chart, the num_rooms condition is pre-computed and
mapped to hue on theleft chart, however, the selling_price condition is performed perceptually by mapping selling_price
to the x-axis on theright chart.
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For example suppose we want to search for houses based on their number_of rooms, date on_market, and
selling_price attributes. In Figure V-13 we must shift models from data computed conditions (the number_of rooms
and date_on_market conditions are system computed and mapped to color and x-position) to mapping conditions
(selling_price is mapped to y-position). Pure designs such as the ones shown in Figure V-14 are much easier to
understand and interpret. In Figure V-14a, each mark object corresponds to a search condition and whether that
condition is fulfilled is indicated by its color. In Figure V-14b all of the raw data attributes are mapped to graphical

properties. In both cases there is no confusion as to which condition is summarized (data computed) and which is

not.
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FigureV-14: Using smilar task processing methods for the AND task

Apart from constraining the task processing methods used, we may also set task property constraints on the task
class or operator so that addressing a task with mapping transforms fails if there are no appropriate graphical
representations for the task, asis the case with the log and exponent operators. Task property constraints may also be
applied to task arguments. For example, a mapping transform task constrains all embedded |ookup tasks to be
mapped to graphics unless there are unknown arguments associated with those tasks. This is because the data
transform lookup function is only useful when it is connected to a subsequent processing function (i.e. when it is
embedded within a data transform parent task) or when it is used to limit or interactively change the value set we are
interested in (i.e. when it is attached to an unknown argument). Otherwise having a data transform lookup function
within a mapping transform parent task has no effect because the act of mapping a lookup attribute to a graphica
property implicitly extracts the data values needed from the data objects within the visualization (i.e. implicitly
performs the data transform lookup function). In node-8 both lookup date_on_market and lookup date_sold tasks are
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constrained to mapping transforms (in the functional-constraint list) because their parent compute task is mapped to
graphics and the lookup tasks have no unknown input arguments.

3. Object constraints

Object constraints restrict the data object content of different regions within a visualization. Object constraints
commonly get generated to encode the results of a data computed object task (e.g. find or AND task). For example,
node-2 and node-9 perform the find houses task with data transforms and show the results of the find to users by
placing an object constraint on the region containing the compute-duration or date on_market and date sold
attributes so that those regions can only contain houses that cost less than 100k. It isimportant to note that currently
AVID does not allow aregion to have inconsistent object contents. For example aregion cannot contain houses that
cost more than 100k as well as houses that cost less than 100k. In the future, we plan to reduce the granularity of this
restriction so that it only applies to graphical object sets and not to entire regions. Object constraints commonly
cause designs to be less integrated, but they have the advantage of reducing visual clutter or visual density because

fewer objects are shown within each region, as can be seen in design 1 and design 4.

V-2.2.4 Summary

In this section we defined task processing constraints (constraints generated during the task processing phase)
based on three dimensions: softness, scope and constraint-condition. Table V-4 summarizes the constraints applied

by each data transform task class and Table V-5 summarizes the constraints applied by each mapping transform task

class.

Task Constraint Condition Soft/ Scope Description

(Data Transform Hard

case)

All Task processing constraint: hard global Thisisto avoid the high articulatory costs
Non-object child tasks MUST be associated with value entries.
constrained to data transforms.

Lookup Task argument constraint: hard local If task does not have unknowns or is not an
Task MUST have unknowns or intermediate operation then a data transform
Task processing constraint: lookup is unnecessary.
Task MUST be embedded within a
parent data transform task.

Compute, Compare, None
Find, AND

Table V-4: Data transform constraintsfor each task class

V-142



Task Constraint Type Soft/ | Scope Description

(Mapping Hard

transform case)

All Mapping constraint: soft global Preference towards integrating all data attributes related
Simple-region to task within the same region or visualization window.
or This reduces number of eye-movements required to
Simple-visualization solve the task (locality of processing [No 5, Table

V-3)).

Lookup Task argument constraint: hard | local If task has unknowns, then mapped lookup fails

Task MUST NOT have unknowns because the GetAttributeVal ue function must be used to
adapt the lookup results according to changes made to
the task inputs.
(manipulable medium [No 15, Table V-3]).

Compute All Task operator hard | local If compute task operator does not have perceptual

constraint: parallel then mapped compute fails.
Compute operator (offload to perceptual system [No 3, Table V-3])
MUST besimple
All Mapping constraint: hard | global Ensures that data attributes are mapped to the same
(except Simple-graphical- graphical property to facilitate perceptual computation.
ratio) property (offload to perceptual system [No 3, Table V-3])
Add Mapping constraint: soft global Preference for add-compute attributes to be mapped to
Complex-stack stacked objects.
Subtract Mapping constraint: hard | global Ensures that data attributes for subtract-compute are
NOT Complex-stack NOT mapped to stacked objects.
Ratio Mapping constraint: hard | global Ensures that ratio-compute attributes are mapped to the
Simple-graphical-object same graphical object.
Mapping constraint: hard | global Ratio values must be deducible from emergent conjoint
Complex-conjoint property, e.g. from combined x and y position.

Compare Mapping constraint: hard | global Ensures that data attributes are mapped to the same
Simple-graphical -property graphical property to facilitate perceptual comparison.

Find Mapping constraint: hard | global Ensures that data attributes are mapped to the same
Simple-graphical -property graphical property to facilitate perceptual comparison.

AND Task processing constraint: hard | global Ensures that all child tasks uses the SAME task
Task processing equivalence processing methods (e.g. either all data transforms or

all mapping transforms).

Table V-5: Mapping design constraintsfor each task class

Apart from the constraints shown in Table V-4 and Table V-5, that get assigned based on the task processing
method used and the task-class, AVID also contains a small set of design-wide constraints that get enforced in all

visualization designs. Two important instances where design wide constraints are applied include:

1. Complex-type relationships
Mapping constraints may get imposed as a result of complex-type relationships within the data [ Roth, 1990].
For example to express an interval complex type relationship between date on_market and date sold both data

attributes must be mapped to graphical properties and graphical objects that can reflect this interval relationship (as
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in design 4 and design 5). The designer in AVID has knowledge about the complex relationships that are expressible

by different classes of graphical objects. Figure V-15, for example, shows the description for the interval-bar

graphical object class within AVID’s designer. Included within this description is information on the types of
complex relationships that it can express. At the start of the data attribute mapping phase, the designer determines if
there are any complex-type relationships indh-attribute-list. If so, the designer tries to find a graphical object

and graphical properties that are capable of expressing these relationships. Complex-type constraints are declared as
soft constraints.

(make-instance
' graphene-cl ass
"nane "interval - bar-graphene"

5y interval bars are capable of expressing the interval complex type with its position-x1 and position-x2
;; graphical properties
" conpl ex-types
(list (make-instance 'conpl ex-type
"type 'interval
"required t
"paraneter-list (position-x1 position-x2)))

;» X-position can only be mapped to a quantitative data attribute
" posi tion-x1
(make-instance ' graphemne-cl ass-paraneter
"el enent -t ype ' QUANTI TATI VE)
" menber - par anet ers’ (posi tion-x1
position-x2
position-yl
hue
saturation)

Figure V-15: Example graphical object class specification for interval bar grapheme

2. “Objectness” constrain{spatially indexed addressing [No 7, Table V-B

Figure V-16 shows an example visualization that is not expressive of the house task. In this visualization the
price and durationinformation are separated into different spaces and it is difficult to identify which selling_price
corresponds to which duration data. Our designer has a hard “objectness” constrainthat restricts all task-related
information to an object cluster or constrains each task attribute to be clustered with an object-identifyingattribute
(e.0. object-name, house-addrgsgor example in design 6the data attributes are al tied together through the
common house object-namesttribute. It is also important to notice that object identification is more easily achieved
when the identifier attribute is mapped to a positionalproperty (as in design 9, rather than to alabel because in the

latter case we need to match textlabels and thisis en expensive perceptual operation.
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Figure V-16: Visualization design with no “objectness” constraint. l.e. it is not possible to associate which houserk in
the bottom chart corresponds to which houséar in the top chart.

In summary this section describes the task processing and design wide constraints that are applied by AVID’s
designer. AVID also has a set data attribute mapping constraints that are adapted from previous work
[Mackinlay, 1986a, 1986b; Casner, 1991; Roth, 1994] and thus we do not describe them here. Based on the input
task and data set, AVID establishes a network of constraint conditions that limit the output designs that are

generated so that end users need not go through bad or inexpressive designs and can focus on a wider range of valid

design alternatives.

V-2.3 Design Costs

The designer in AVID is faced with the problem of a large design space and having to present design solutions
from that space to users in a timely and effective manner. In order to direct the search and generate design solutions
according on their effectiveness with respect to the task we assign costs to different design decisions based on their
effects to cognitive, perceptual, and articulatory complexity. The cost of each node within the search tree is the sum
of its current cost and its expected future costs. The current cost of a node is the accumulated costs of the partial
design at that node. The estimated cost for a node is based on the number of tasks that still needs to be processed and

the number of data attributes that still needs to be mapped. Based on this cost structure AVID uses the A* search

algorithm to explore the design search space.

AVID’s cost structure is based on the design metrics we presented in chapter 1V-1. The design metrics
framework has four different goodness measuagcul atory distance, functional distance, expressive distance, and
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observational distance. As we stated in the previous section, functional and expressive distances are primarily
represented in AVID through the use of hard constraints. |.e. designs that have functional or expressiveness
discrepancies with respect to the input task(s) are culled out. Thus our cost structure is primarily based on
articulatory and observational distances.

V-2.3.1 Articulatory Cost Structure

Articulatory costs of a visualization interface come from the frequency and complexity of input device
manipulations that need to be performed by the user. Our AVID system adds input devices to data transform tasksin
two cases:

* when there are unknown argumentsin the task(s), or

< when results from a mapping transform task need to be conveyed to a data transform parent task.

Input devices are added in these cases because data transform functions summarize the task data and only presents a
subset of the original data values to the user. When task conditions change, the data values of interest may change as
well. In order for the system to reflect these changes, users must convey the new task conditions to the system
through input devices. When atask is performed with mapping transforms, however, input devices are not needed
because all of the original values are displayed to the user. When task conditions change, a user perceptualy filters
out segments of the display that are not pertinent and only processes the relevant el ements. Changing task conditions

will cause a change in user focus towards different display elements, but requires no argument input.

According to the metrics framework, articulatory costs depend on the following conditions:
1. The complexity and appropriateness of each input device with respect to the task,
2. The number of input devices within the design, and
3. The number of times we expect each input device to be used.

In the following sections we describe how AVID takes each of these conditions into account in its design

component.

1. Complexity and appropriateness of input device with respect to task

AVID attaches input devices to visualization designs so that users may change the input data values or objects to

tasks. An appropriate input device is determined by analyzing properties of the data values or objects that must be

conveyed and then matching that with a device that can best provide those inputs. Specifically, input devices are
evaluated based on the following properties:

a) Continuous/Non-continuous outputs: Whether the input device is capable of expressing continuous data or
graphical values. Sliders, dials, bounding-boxes, lassos, and text windows can be used to define continuous
values while menus, and buttons are inherently discrete. Therefore, if we wanted to pick a reasonable
selling_price value for the task in Figure V-2, we must use a continuous device such as a dider because
selling_price is a continuous data attribute.

b) Visual representation: Whether the input device requires visual representations of particular data objects or data

attributes for it to operate. For example, devices such as the bounding-box, lassos, and mouse clicks are applied
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to visual representations of data within the visualization design. Before we can use such devices we must ensure
that visual representations of the data concepts or values we want to select are available. On the other hand,
devices such as the option-button, scroll-list, or text window, are not tied to objects within the visualization
design. For example, we may select a house by entering its address through a text window irrespective of
whether that house object is mapped to graphics. However, we can only select a house using a bounding-box if
that house is represented and visible in the visualization.

¢) Number of objects: The number of values, objects, or relationships that can be specified with each invocation of
the device. Bounding-boxes, lassos, and double ended sliders for example can specify multiple objects or
values. On the other hand, text windows, option buttons, and dials can only be used to define one value or object
at any one time. Depending on the task we may only need to pick one value or one object per operation or we
may need to specify sets of values or objects. For example, to enumerate all houses costing more than 100k we
would need to define a set of objects thus a set input device such as a bounding-box would be appropriate here.
On the other hand, to pick athreshold price (e.g. 100k) for filtering houses we only need to specify a single
value to the system thus adial or a slider would be sufficient here.

d) Spatial/Non-Spatial: Whether the input device is a spatially based device (i.e. the device defines a spatial region
within the visualization window). Bounding-boxes and lassos are examples of spatial devices because they
define a graphical region within the rendered visualization space. This property is important when we need to

apply rendering transforms that take graphical regions as input.

Table V-6 shows al the input devices we consider in AVID as well astheir status for the evaluation properties listed
above. To pick an input device for atask argument, we consider the requirements of that task argument based on the
properties above and match that to the input devices within AVID. We then choose a device that has al the required
properties of the task argument.

Continuity Vis. Rep. #-of - values Spatial
One-ended slider T * Singular
Two-ended slider T * Plural F
Mouse click F T Singular F
Bounding-box T T Plural T
Option Menu F * Singular F
Scroll List F * * F

Table V-6: Input devices considered in AVID with their cost properties
(* indicate no constraints on an input device property)

For example, consider the house example presented earlier in this chapter. In this example, we were interested

in determining the period that less expensive houses stay on the market. Suppose due to changing economic

conditions, we are no longer sure what constitutes a good “expensive” house threshold. We would then alter the task
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specification so that instead of setting the price threshold at 100k we use an “unknown” argument (“?”). The new
task specification is as follows:

(setf setl (Find ‘ (RELATIONSHI P . <),
Lookup ‘ (OBJECT . NI L), house_price),
‘“(VALLE . ?)))

(Compute ‘ (VALUE . SUBTRACT),
Lookup( setl1, date_on_narket),
Lookup( setl1, date_sold) ) ;1 oop-type one-to-one
saccuracy nil)

One way to fulfill this task specification is to perform tfiad task with data transforms and link the
“unknown” threshold value for thiénd task to an input device. The input device properties required in this case is

based on thedlling_price data attribute, and is shown below.

Continuity Vis. Rep. #-of- values Spatial
Slling_price T F *Singular *F
threshold
properties

The two important constraints in this case are thatsthéeng_price attribute is continuous and that the
selling_price data attribute is not mapped to a graphical representation. The other requirements are soft requirements
(indicated with an “*") because an input device that does natl filnése conditions can still generate the types of
values required for this task. AVID infers this information from the data characterization efllilmg_price
attribute and the task specification. Based on these requirements we pick the one-ended slider as the best match
because it fulfls all the input device constraints including the soft requirements. Note that the two-ended slider also
fulfills the two hard constraintg¢ntinuity andvis.rep), but it does not fulfill the#-of-values soft constraint and is
therefore only a second choice.

Currently we pick the input device that fulfills all hard requirements and the greatest number of soft
requirements as the best match. In AVID, we only use this “best match” input device and do not consider alternative
designs that differ only in terms of the input devices used. This is because the focus of our work is not so much on
choosing between multiple input device alternatives but rather on the choice of visualization functions, and how they
can be used effectively in the visualization design process. By limiting our designs to only the best input device

match, we limit our design search tree and increase responsiveness of our system.

2. Number of input devices within the design

Once an appropriate input device is chosen based on the selection process described above, a constant input device
cost is added to the current design path. As a result, nodes or partial designs with a greater number of input devices
will have a higher cost. This isebause the more devices there are in a visualization interface, the greater the
cognitive load placed upon users for understanding how to operate those devices. In addition, articulatory load is

also increased because thsk specificity is low and a greater amount of information needs to be conveyed to the
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system each time we want to test out a different set of task conditions. The situation worsens when there are
constraints or relationships among the different input devices, i.e. changesin one input device cause state changes to
occur in other input devices. Currently, however, we do not deal with such input device relationships.

3. Number of times we expect each input device to be used.

The number of times input devices are used within a data analysis session depends on the number of times a
user wants to vary the current task conditions. Thisin turn could be affected by the task operator, the data associated
with the task, the importance of the task, user preferences, user experience, and the difficulty of using each input
device. Dealing with many of these issues is beyond the scope of thisthesis. In AVID we only focus on the extreme
repetition cases. Specifically we identify tasks or task properties that will likely result in high input device use and
for those instances we either abandon the design path or add a commensurate cost to the design alternative. The data
transform non-object constraint described in step 2 of the search procedure in section V-2.1.1 is an example of high

articulatory cost resulting from highly repetitive input requirements.

In this section we described how input devices are chosen by AVID's design component and how costs are
associated with different input device decisions. Our input device selection strategy and cost structure is simple, but
sufficient to capture the design differences and illustrate the design issues we are interested in pursuing in this thesis,
such as dealing with unknown task arguments, linking input devices to visualization function primitives, and
capturing how articulatory costs of input devices can affect the choice of daiagransform vs. mapping
transform task processing strategies. A simplified input device selection strategy allows us to:

« Limit the design search procedure and simplify implementation of the system

* Focus on developing heuristics for functional operators like the ones described in chapters Il and Il rather than
on heuristics for choosing input devices.

* Not duplicate previous work that already deals with expressiveness and effectiveness of input Gandces [
1990].

V-2.3.2 Observational Cost Structure

Observational costs reflect the ease with which users can interpret a visualization interface. There are two
classes of observational costs in AVID, corresponding to the two main phases of design: task processing
observational costs and data attribute mapping observational costs.

V-2.3.2.1 Task processing observational cost

Task processing observational costs are accrued when tasks are mapped to graphics to account for the
perceptual load placed upon users compared to data transform processing where the load is transferred to the
computer system. Observational costs in this case are based on the task class, the task operator, the task input

arguments, and the task properties.
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1. Taskclass

Certain task classes are more difficult to perform perceptually than others. For example, for the task shown in
Figure V-2, it ismore difficult to compute the difference between date_on_market and date_sold than it isto find the
houses costing more than 100k (assuming that we are using the best possible graphical properties for both tasks).
Thus when we process these tasks with mapping transforms a higher cost is associated with the compute task
compared to the find task. The task classes ordered according to decreasing perceptual difficulty are as follows:

Compute, Compare, AND, Find, Lookup.

2. Task operator

The costs associated with a mapping transform task class may also vary based on the specific task operator
used. This condition pertains mainly to the compute task that has a wide range of operators (e.g. add, subtract,
multiply, divide, mean, log, exponent). Based on the operator availability heuristic in chapter 1V-3.3, ahigher cost is
placed on compute operators that have less appropriate perceptual parallels (e.g. mean and divide) while a smaller
cost is placed on those that have very effective perceptual parallels (such as add and subtract). Compute operators
that have no perceptual paralels (such as log and exponent) have a hard constraint that only permits data

computation.

3. Taskinput data

The perceptual load of atask may also depend on the task input arguments. For example compute, compare and
find tasks are easier to perform with respect to constant input values (e.g. find al houses with selling_price greater
than 100k) than with multiple data attribute value sets (e.g. find al universities with avg_math_SAT scores greater
than avg_verbal _SAT scores). Weillustrated this with the example visualizations in appendix C-4. Similarly we also
showed that enumerated input data attributes may simplify perceptual processing of a task. This is because
enumerated values can be represented both pre-attentively and accurately, unlike other attribute types. Thus lower
task processing costs are assigned to mapping transform tasks when they have constant input arguments or
enumerated input attributes.

4. Task conditions
As we described earlier in this chapter there are two task conditions: task accuracy level and task loop type.

e According to the accuracy heuristic in chapter 1V-3.1, a higher cost is associated to mapping transform
tasks compared to data transform tasks when accuracy is required. When fuzzy accuracy is explicitly called
for, the data transform solution becomesinvalid.

e According to the loop type heuristic in chapter 1V-3.4, all-to-all tasks incur a heavy cost when we perform
them with data transforms because more objects need to be shown (n* objects where n is the number of
objectsin the input data set) compared to the mapping transform alternative which only requires 2n objects.
The cost added in this case is based on the number of data objects in the task input set.
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V-2.3.2.2 Data attribute mapping observational cost

There are three classes of data attribute mapping observational costs. mapping costs, composition costs, and
perceptual complexity costs.
1. Mapping cost

The mapping cost structure used in AVID is similar to the cost structures used by Mackinlay and Casner.
Graphical properties are assigned costs based on how effective they are at showing different data attribute types.
Preference is given to graphical properties that allow parallel perceptual processing [No. 2, Table V-3]. Figure V-17
shows how different graphical property classes are ordered (from most effective to least effective) based on their
data attribute class (i.e. data type). For details on data characterization, refer to previous work by Roth [ Roth, 1990]
and Mackinlay [Mackinlay, 1986a, 1986b].

Data attribute class properties | Accuracy No-Accuracy
Nominal Enumerable 1. differential retinal, 1. differentia retinal,
2. position, 2. position,
3. labe 3. labe
Unenumerable 1. position, 1. position,
2. label 2. labe
Ordinal Enumerable 1. extentretinal, position, 1. extentretinal, position,
2. labe 2. labe
Unenumerable 1. position, 1. position,
2. labd, 2. extent retinad,
3. extent retind 3. labd
Quantitative 1. labd, 1. position,
2. position, 2. extentretinal,
3. extent retinal 3. labd

Figure V-17: Mapping costs ordered based on data attribute class and graphical property class

The most favored graphical property is position because it allows pre-attentive (parallel) perceptual processing
as well as affords a relatively high degree of accuracy compared to retinal properties (such as saturation or size)
which are pre-attentive but less accurate or labels, which are not pre-attentive. The only exceptions are in the
nominal-enumerable and quantitative-accurate categories. Enumerable attributes commonly consist of only a few
different values, and retina attributes such as hue or shape can represent such attributes accurately, and pre-
attentively, while requiring less display space compared to a positional. In the quantitative-accuracy category, labels
are preferred because it can express the data more accurately than positionals, especially when the data range

represented is large.
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In Figure V-17 there are two types of retinal properties, extent retinal describes retinal properties capable of
expressing ordered values (saturation and size) and differential retinal describe retinal properties that can only
express unordered values (hue, and shape) [Card et a.]. Of the extent retinal properties we prefer saturation over
size because size may result in occlusion problems or in expanding the display space required (less information
presence). Of the differential retinal properties, hue is preferred because it is easier to pre-attentively process hue
compared to shape. Note that the retinal property classis not present in the nominal-unenumerable category because
data attributes of this type have too many values that have to be differentiated and it is difficult for usersto associate

these many values with an unordered retina such as hue or shape.

2. Composition cost

The composition costs in AVID are assigned based on spatia locality [No. 5, Table V-3]. Higher costs are
assigned to less integrated designs such as Figure V-11b and lower costs are assigned to more integrated designs
such as Figure V-11a. Integrated designs are preferred because they require less eye-movement and visual search by
the user. In addition less display space is required for the visualization, allowing more data to be shown at any one
time. Thisis especially important for larger data sets. Based on this graphical integration rule, composition costs are
ordered as follows from least cost to highest cost: use of existing graphical object, cluster composition, double axis
composition, single axis composition, no composition (i.e. use of separate visualization window). Details on each of

these composition types were discussed previously in section V-2.1.2.

3. Perceptual complexity cost

Finaly costs are also added for each new set of graphical objects used. A higher cost is applied if we add new
objects to a region that already contains many objects. Adding graphical objects into a visual design increases its
complexity, requiring a steeper initial processing cost to learn the design structure. In addition added graphical
objects may distract the user and cause perceptual interference, making it more difficult to find task related objects
or identify interesting perceptual patterns.

In this work we experimented with a cost structure that seems to order the designs in a meaningful way for the
classes of tasks we are interested in. We illustrated this in the GOMS analysis described in appendix E. This cost
structure is just one instance of al possible cost assignments; in the future we hope to determine the costs
statistically, as in a neural net. We suspect, however, that a single cost structure may not be applicable across
different problem spaces and domains. The solution may lie in identifying different classes of cost structures that
perform well with particular domains and tasks or letting users manipulate different cost classes manualy. It is
important to stress that the contribution of this work lies not in the exact cost structure provided in the expert
designer but rather in identifying important aspects of the task data, task structure, and visualization design that we
should attend to while assigning costs and in developing heuristics that provide general guidelines for determining
which function operators and interactive devices to use, when to use them, where to use them, and what constitutes

an effective combination of data transform, mapping transform and input device primitives.
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V-2.4 Summary

The designer in AVID is driven by a search procedure consisting of two primary phases: the task processing
phase and the data attribute mapping phase. During these two phases, there are multiple branch points that create
aternate design paths in the search space. In order to direct the designer towards promising design alternatives and
away from bad designs, AVID has a constraint and cost structure.

Currently AVID uses an A* branch and bound method to explore the design search space. We have also
experimented with other search methods such as DFS, HILL, and BEAM. We found that although these methods
can generate designs more quickly, their design quality is significantly inferior to those generated using the branch
and bound method. Depending on the complexity of the task, AVID’s designer may take from minutes up to several
hours to come up with a design. Linear increases in the complexity of the tasks cause an exponential increase in the
search space and the generation timein@phg the search e is andlary to testing the theoretical concepts in

this thesis, however, so we have decided not to focus on that particular aspect of the designer.

V-3 Visualization Realizer Component

The last component of the AVID system is the visualization interface realizer. The realizer accepts a
visualization design specification from the automatic design component, and based on this design, instantiates or
generates an active visualization interface. Each design specification has two parts:

a) Visual structure design specification: This specification captures the general look or structure of the graphical
components within the visualization. It contains the number of graphical objects of each typeabee,

region, axes, legend, etc), their object classes (emgark, bars, andlines for grapheme objectsor charts, tables,

grids and maps for region objects), the distribution afrapheme objects across variouggions, containment

relationships among the graphical objects, etc.

b) Functional design specification: This specification describes which data, graphical, mapping, and rendering
transforms are used, how these various transforms are composed, which objects they are applied to, which input

devices they are linked to, etc.

The AVID realizer is divided into two components based on the two specification types described above: the
graphical object realizer and the functional realizer. The graphical object realizer accepts visual structure design
specifications and converts them into graphical element renderings. The functional realizer accepts functional design
specifications and converts them into visualization techniques (e.g. dynamic query sliders, painting). Input device
events and virtual input devices (esggroll-lists, option-buttons, sliders) may be attached to the visualization
techniques as necessary. Every visualization window is divided into two sections as is shown in many of the
visualizations in this chapter (Figure V-13, Figure V-14). The top portion of the window contains graphical
renderings of the data, which is generated bygtlaghical object realizer, and the bottom portion of the window
contains all input devices that are generated byuhetional realizer. Details on our AVID realizer are given in
appendix D-2.
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V-4 Conclusion

To showcase the applicability of our visualization framework and heuristics in “real” systems, we implemented
an automatic design system (AVID) consisting of the three componentaskieter preter, the automatic designer,
and thevisualization realizer. The task interpreter accepts input tasks in LISP form and transforms them into a set of
task and argument structures. Our task interpreter is able to deal with task embedding structure and special task
conditions such as accuracy and task iteration, which was not taken into account in previous automatic visualization
research. Task structures generated by the task interpreter are used by the automatic design component to guide its
search of the visualization design space. In AVID we have expanded the visualization design search algorithm over
previous systems to include a task processing phase for addressing data transform and input device decisions as well
as a post processing design phase for culling out duplicate designs. The task processing phase deals with new issues
that are unique to creating data transform designs such as processing embedded task structure, object filtering,
addressing unknown task arguments, and pre-processing the input data set. In this search algorithm the task
information is translated into a set of design constraints and costs that stop the designer from going down
unpromising paths and direct the designer towards more effective design paths first. The translation of task
information into design constraints and costs is based on the guidelines and metrics laid out in chapter IV of this
thesis. Once the automatic design component finds an interesting unique solution to the input tasks, it transforms the
design into a visual structure specification and a functional specification. These specifications are taken as input by
the realizer component that translates the visual structure specification into a hierarchical scene graph of Inventor
nodes and the functional specification into a set of acyclic functional networks. The Inventor scene graph is rendered
onto the display using functions from the Inventor toolkit, and the functional networks are activated beginning with
their source functions. During activation the C++ procedures associated with each visualization function in the
network are executed on the input values of the functions. Functional networks may also get reactivated based on

trigger events from input devices associated with the visualization design.

AVID and our interactive functional edifbare used to generate most of the visualization designs shown in this
document. All visualizations not generated by our systems are annotated with their original sources. The wide range
of example visualization designs generated by our systems shows the flexibility and generality of our theoretical
framework and heuristics. Our ability to translate the theory into active systems indicates that our theory is relatively
complete. In addition, the previous evaluation chapter shows that AVID produces practical design results that do
indeed conform to cognitive, perceptual and articulatory complexity. The functional editor is also practical for
manually creating and prototyping visualization techniques because it takes less time compared to using low-level
code. Thus the implemented systems described in this chapter are good illustratiogera thidy, completeness
andpracticality of our visualization framework and heuristics presented in previous chapters.

% Our interactive functional editor allows us to manually build visualization techniques by creating the node-link specification
diagrams shown in chapters |1 and I11. Details on this editor are given in appendix D-3.
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With AVID we have expanded the design space of automatic visualization design systems. Previously, only
mapping transformations were considered in the design process, but AVID is able to reason about many data
manipulation and summarization operators as well as composite hybrid designs that use both mapping and data
transformations to solve tasks. While we have expanded the functional design space from previous work, we can
augment AVID further. An important area that AVID currently does not address is in integrating graphical and
rendering transformation decisions into the design process. We will show in appendix F that graphical and
rendering transformations can be very useful for solving readability issues that may arise in visualization designs
and how our current system can be augmented with these graphical and rendering transforms. Readability refers to
problems arising from constraints of the output medium and its interactions with our perceptual system that impede
the optimal use of a visual design. Examples of readability impediments include occlusion among objects, display
space that is too limited to show all the necessary design objects, or overly high ink density, producing visual
interference.
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Chapter VI: Conclusion & Future Work

In thisthesis we extended automatic visualization design to include all four phases of the visualization
creation process. data, mapping, graphical, and rendering. Together with this expansion, we aso enable
input devices to be added during design, thus enabling interactive visualization interfaces to be created
automatically. Previous automatic systems focussed only on the use of mapping operations. We show that
by including the full set of visualization functions we expand the range of designs that can be generated and
this allows us to address data analysis tasks more effectively. Specifically we can offload cognitive tasks
onto the computer system with data transform techniques as well as address readability issues such as
occlusion, display density, dwarfing, and spatial separation. We show in appendix E (the evaluation
section) that this added functionality can significantly decrease total task performance time. Such
improvements in the quality and breadth of designs will enable automatic visualization systems to better
communicate information to users as well as provide better assistance to designers for cresting
visualizations. The focus of our work is on the domain of exploratory data analysis however many of the
theoretical concepts developed is applicable to visualization design in general.

VI-1 Summary & Relevancy of Work

We expand automatic design systems to include the four phases of the visualization creation process
by devel oping three core technologies:
1. A framework of the visualization creation process,
2. Maericsand heuristics for measuring the goodness of visualization designs,
3. Anautomatic visualization design system (AVID) that utilizes our theoretical framework and
heuristics to generate rendered visualization interfaces.

Our framework and heuristics are necessary for enhancing automatic visualization design research,
however, they are aso applicable for aiding human designers in creating and prototyping visualizations.
Specifically they provide a structure and methodology for creating visualization techniques and
systematically exploring the design space.

VI-1.1 Methods: Framework of the Visualization Creation Process

In chapters Il and 111 we developed a framework for characterizing commonly used functions in each
of the four visualization phases. We also show how these functions can be combined with each other, with
input devices and with visualization elements through a set of composition rules. This framework is
flexible so that as new techniques get developed, additional functions can be included with minimal effort.
In addition by composing the new functions with existing functions, we can leverage off of previous
operations to generate a wide range of new visualization techniques. The framework is also general in that
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it encompasses a wide range of visualization techniques and can be integrated with a wide range of visual

representations. Throughout this document we have presented chart, map, table and grid visualizations.

These visualizations may contain marks, bars, lines or text. We have also presented many different

visualization techniques including dynamic query dliders, painting, aggregation, drag & drop, SDM

techniques, etc. Finally the framework is also practical for three primary reasons:

1. Tailoring visualization techniques: The framework provides designers with a visualization technique
toolkit. This allows designers to easily modify and tailor visualization techniques to suit different task
requirements. In addition it also simplifies the sharing and transfer of functionality across techniques.

2. Design methodology: Our framework divides the design of visuaization techniques into two levels:
functional and instantiation. At the functional level of design we populate the technique with the
necessary functions to perform our desired tasks. At the instantiation level of design we expand the
functional design with input devices and visualization elements and properties, thereby establishing the
“look and feel” of the technique. This two tier design process allows functional decisions to be made
free from hardware and aesthetic constraints so that we do not falsely constrain function based on
form. It also allows us to identify functionally similar techniques that may have very different “look
and feel” so that we may more accurately compare and borrow design strategies across techniques.

3. Systematic exploration of visualization techniques design space: Our framework also allows us to
define and lay out the current explored areas in visualization technique design and identify areas that
are less populated. By using this “map” we can systematically expand the visualization techniques

design space by combining existing methods or by crafting new techniques in the less explored areas.

VI-1.2 Principles: Metrics & Heuristics for Measuring the Goodness of
Visualization Designs

Our visualization technique framework provides a language for describing and creating visualization
techniques. However, it does not tell us which techniques are the most effective or appropriate for solving
our data analysis tasks. For any particular task, there are commonly many alternative techniques that can be
used. Thus it is crucial that we have some way of measuring the goodness of these various alternatives and
some guidelines for directing us towards the more promising design paths. Earlier work on automatic
visualization design considered metrics and design rules for using mapping transforms based on data and
task requirements. In our work we expand on previous work and develop metrics and guidelines for
evaluating all phases of the visualization process including data, mapping, graphical, and rendering
transforms.

Our metrics framework determines the effectiveness of a visualization design based on the four
distances: articulatory, functional, expressive, and observational. This metrics framework is used by our
automatic system to evaluation the effectiveness of possible design alternatives. In addition, these metrics

can also be used by designers as general design yardsticks to help them create more effective visualizations
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and avoid design mistakes. Note that it is also possible to evaluate the effectiveness of visualization designs
by using more procedural methods such as GOMS [Card, 1983]. This was attempted by Lohse [Lohse,
1993] who automatically decomposed each task and visualization design pair into a set of GOM S operators
(similar to the GOM S sequences shown in appendix E of this thesis). The problem with using GOMSin an
automatic design system, however, is that it is time consuming and difficult to apply to partial designs. It
can also be difficult to isolate from a GOMS evaluation which particular design decision resulted in the

ultimate high or low cost of avisualization.

Based on our metrics framework we also develop a set of design rules or heuritics that help direct our
automatic design system towards more promising design paths. It would be very time expensive and
unfeasible to explore and rate all possible design alternatives before presenting them to users. As aresult it
is important that we have some guidelines to help focus our design efforts on the more promising design
possibilities while culling out design spaces that are ineffective or inexpressive of our tasks. In chapter IV
we presented design rules that help us determine when it might be more useful to perform atask or subtask
perceptually by mapping it to graphics, and when it might be more advantageous to let the system compute
the task through data transforms and only visualize the pre-computed results. In appendix F, we present
additional design rules that consider readability issues such as occlusion, display density, data dwarfing,
and information presence, and how graphical and rendering transforms can improve the readability of a

visualization design.

VI-1.3 Systems: AVID — Automatic Visualization Interface Designer

To showcase the applicability of our visualization framework and heuristics in “real” systems, we
implemented an automatic design system (AVID). AVID accepts one or more tasks as input and produces a
set of visualization designs as output, ranked according to effectiveness of the designs with respect to the
input task(s). Our AVID system was used to generate most of the visualization designs shown in this
document. The wide range of examples generated by our system shows the flexibility and generality of our
theoretical framework and heuristics. Our ability to translate the theory into active systems indicate that our
theory is relatively complete. And appendix E (GOMS evaluation) shows that AVID produces practical
design results that do indeed conform to cognitive, perceptual and articulatory complexity. Our evaluation
results also show that our work significantly expands the design space of automatic visualization systems

and enables more effective designs to be generated than was previously possible.

This design system can ultimately be integrated with a system like AutoBrief to enable higher level
analysis and planning systems to automatically communicate complex information and relationships to
users in the form of both text and graphics. Our work can also be integrated with editing and browsing
interfaces similar to SageBrush and SageBduth, 1994] to help provide design assistance to users so
that the creation and prototyping of visualization interfaces can be performed more quickly, easily, and

with more effective results.
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VI-2 Scope of Work

We describe the scope of our work based on the three components described above. For each

component we present its limitations and point to possible directions for future work.

VI-2.1 Limitations of the Framework

The visualization technique framework presented in this thesis covers many current visualization
techniques. Specifically, it focuses on those operators that can be applied to data concepts, graphical
objects, and the relationships between graphics and data. There are however severa distinct areas that are
not addressed, namely:

1. Complex Mapping Transforms

The mapping transforms considered were limited to mapping data concepts to graphical objects and
mapping data attributes to graphical properties. We need not, however, limit ourselves to only graphical
objects. In the Worlds within Worlds system [Feiner, 1990], for example, three-dimensional charts can be
mapped within other three-dimensional charts. In this case datais not only mapped to the graphical objects
within each chart region but also to attributes of the chart region itself. Through multiple embeddings the

authors of the World within Worlds system were able to analyze a large multidimensional space.

2.  Specialized transformation functions

The framework also does not explore specialized transformation functions in detail. An example class
of specialized functions are those used for animations such as fade in/outs. Other speciaized
transformations not dealt with are space distortion techniques such as those used in the Fisheye lens
[Furnas, 1991], and the Hyperbolic space [Lamping, 1995]. These distortion techniques have been
analyzed to some degree by Leung et.al. [Leung, 1994]. Even though the framework does not provide a
characterization of these animation and distortion techniques, they can be integrated into the system as
additional transformation operators or as black-box operators, if need be. However, more work still needs
be performed within each of these specialized areas (e.g. animation, space distortion) to define the types of
functions that are common and useful.

3. Windowing operators

The framework also does not deal with windowing operators such as popping up windows, raising or
lowering windows, or changing the size of windows. Primarily, this is because such low-level operations
should or are aready captured within the specification of the virtual input devices. While designing

visualization techniques, we should not have to concern ourselves with these low-level interface operations.
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4. Workspace metaphors
The framework does not deal with the issue of designing a set of consistent visualization techniques
that fit within a common workspace metaphor (e.g. the Mac user interface metaphor or the Windows

metaphor). Thisas an important and significant area of study, but is beyond the scope of this thesis.

5. Conflict resolution

At the end of appendix B-6.2 we began to deal with conflicts that may occur between visualization
techniques. However we only considered conflicts along five different dimensions and between pairs of
primitive techniques. More conflicts will be revealed with a deeper study of this issue. In addition, our
framework does not deal with conflict resolution.

6. Usageinformation

We do not consider collecting or applying usage information in our visualization system. Some
example usage information includes which objects were selected most, which objects were last selected,
which objects were commonly grouped together, etc. Such information may be very useful for providing
good defaults to users, and may also be useful for informing the designer of work practices within a

domain.

7. Scientific Visualization vs Information Visualization

The visualization technique framework presented in this thesis only deals with information
visualization. Another large area of study is scientific visualization. Scientific data usualy has a strong
physical correspondence and contains very spatially oriented information. Information visualizations,
however, represent abstract data that do not have a physical correspondence and are not inherently spatial.
It is therefore not surprising that the requirements for these two areas can be quite different. There are
several commercial frameworks available for describing scientific visualization techniques with limited
interactions [Brodlie, 1991]. In appendix B-1 we compare our framework to these other existing
frameworks.

8. Functionswithin functions

All of the object definition and transformation functions considered are applied to either data,
graphical or annotation objects. We do not consider functions that can be applied to other functions or that
generate new functions as output. Most common visualization techniques do not reguire such complex
functional interactions. This class of operations, however, are interesting to consider and may produce very

powerful visualization techniques.

VI-2.2 Limitations of the Metrics & Heuristics

In our work we identified two areas where the functional expansion enabled by our work can have the
most impact over previous systems:
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1. By offloading task cognitive operations onto the computer system with data transform
techniques in addition to offloading them onto the user’s perceptual system using mapping
transform techniques.

2. By considering readability issues and examining when and how the four visualization
transformation classes can be used to solve these issues.

We therefore only consider design rules and heuristics for these two areas. Other interesting design
areas that we do not consider include:

1. Design heuristics that use graphical and rendering transforms to solve tasks rather than just

readability problems

In addition to solving readability issues, graphical and rendering transforms can also be used
manipulate the elements within a visualization to change the general goals addressed by that visualization
(i.e. to change what is expressed by that visualzation). Such techniques however tend to be difficult to use,
and specialized to the task domain. Therefore, to integrate such design techniques into an automatic design
system requires that we have a powerful model for understanding user knowledge and expertise as well as
capturing specific domain knowledge. The system would also need to provide better instructions to coach
users on how the techniques should be used. Because of these complexities we save consideration of these
issues for future work. In our work we focus on considering how graphical and rendering transforms can be

used to only solve readability problems.

2. Design heuristics for three and four dimensional visualizations

We mainly focus our work on generating two-dimensional visualizations. Our heuristics and
framework easily carries over to higher dimensional visualizations. However, if we are to effectively
design such visualizations we need additional sets of design guidelines that specifically deal with the issue
of when it is more expeditious to map data to the third positional dimension or the fourth time dimension,
rather than using aligned spaces ogteal attribute.

3. Design heuristics that minimize learning time rather than task performance time

In our work we focus on developing heuristics that reduce total task performance time. As is shown in
appendix E, the design rankings generated based on our design guidelines conform in most part to the
GOMS estimated total task performance time, excluding learning time. To limit our problem space to a
reasonable size, we assume that the users of our system are expert users who are familiar with all the visual
and interactive design classes generated by our system. Thus learning time for each design is consistent and
negligible. In the future it would be interesting and useful to expand our set of heuristics to include rules
that take learning time into account as well as task performance time. For example we may want to give a
better ranking to designs that have a consistent look or interactive metaphor to a previous design because

then the learning time for that design would be much smaller than a totally new and different design. We
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may also want to give preference to more conventional, well understood designs, because users would
already know how to interpret and use them.

4. Design heuristics for advanced tasks involving data patterns and trends

Appendix C-3 describes two task classes: simple tasks that involve processing pairs of values, or more
complex tasks that involve sensing gestalt patterns from a set of values, e.g. looking for data clusters,
patterns or trends. The heuristics developed in this work is more focussed on simple value pair processing
tasks, e.g. lookup, find, AND, compute and compare. This level of tasks is what was dealt with in previous
automatic visualization research and we decided to focus on the same task classes. The focus of our work is
on expanding the design space to include all the functions in the visualization creation process. Since we
are taking the first steps in exploring the use of several new transform classes in automatic design we
decided that it would better serve us to start with just the simpler tasks. Developing heuristics for the more
complex trend tasks however would be a very challenging and interesting problem for the future. Note that
heuristics for the complex tasks have no impact on our current heuristics for our simpler value pair

processing tasks.

VI-2.3 Limitations of the System Implementation

With AVID we have expanded the design space of automatic visualization design systems. Previously,
only mapping transformations were considered in the design process, but AVID is able to reason about
many data manipulation and summarization operators as well as composite hybrid designs that use both
mapping and data transformations to solve tasks. While we have expanded the functional design space from
previous work, we can augment AVID further in the following areas:

1. Integrating graphical and rendering techniques

An important area that AVID currently does not address is in integrating graphical and rendering
transformation decisions into the design process. Currently we only consider the use of data and mapping
functions to solve tasks. We show in appendix F that graphical and rendering transformations can be very
useful for solving readability issues that may arise in visualization designs and how our current system can
be augmented with these graphical and rendering transforms. Readability refers to problems arising from
congtraints of the output medium and its interactions with our perceptual system that impede the optimal
use of a visua design. Examples of readability impediments include occlusion among objects, display
space that is too limited to show all the necessary design objects, or overly high ink density, producing
visual interference.

2. Trandating high level tasksto lower level task operators

We also do not deal with the issue of how higher level domain systems can translate their tasks into the
task language required by AVID. Some discussion of this issue can be found in related research by
Kerpedjiev et. a.[Kerpedjiev, 1997].
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3. Error checking
We do very little error checking in our systems. Specifically our system does not have mechanisms for
checking the syntax of the input task specifications. Error checking and reporting commonly get very

involved and bring their very own set of research challenges that is beyond the scope of our work.

4. Limited range of visualization representations

Our system can generate common visualization representations such as charts, maps, tables, and grids
as well as marks, bars, lines and text. Other common representation types that would be interesting to add
in future work include networks, pie charts and richer glyphs that can encode many different data attributes
simultaneously. Addition of specialized glyphs may require new heuristics and constraints to be added that
are specific to these new representation types.

5. Limited range of navigation techniques

Currently, each of our visualization designs support some point of view navigation techniques
including zoom, pan and rotate. In the future it would be interesting to integrate our automatic design
system with aricher front-end data navigation environment such as the Visage system. Related to this issue
it would be interesting to explore which visualization functions to include as default to al generated

visualization designs and which functions to include on a case by case bases.

6. Interface for specifying visualization techniques

In the implementation chapter of this thesis (chapter V) we presented an interface for manually
building visualization techniques by constructing data flow type diagrams similar to the specifications
shown in chapters 11 and 111. To bring visualization technique construction to more mainstream use
however, asimpler, more intuitive interface will have to be designed that enables non-expert usersto easily
access the functionality provided by our visualization technique framework.
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Appendix A

Appendix to Functional Visualization Techniques Framework (Chapter

)

A-1 ODT Diagrammatic Notation

Initial data
object set
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Figure A-1: Example ODT diagram for the dynamic query dider [Ahlberg, 1992] visualization technique

All function primitives are shown with normal Times-Roman font within rectangles and all inputs
to the primitive functions are shown asitalicized bold text within ovals. Inputs provided by users are shown
with dotted ovals and those provided as designer defaults are shown with regular unbroken ovals. The
directed arrows ( = ) connecting one primitive function to another indicate aflow of objects or values from
a source function to a destination function. Arrows are sometimes also used to indicate temporal
seguencing (i.e. a given primitive has to be executed before another). Temporal sequencing connections are
different from regular connections because there is no information flow from the source to the destination
function. Compositions can be achieved with regular connections or temporal connections depending on
whether the operations have dependencies that require them to be ordered serialy or whether they can be
performed in paralldl. In thisthesis we do not differentiate between regular and temporal links because their

differences do not have any significance or impact on our work.

A-2 Exploring the Space of Visualization Techniques

In chapter 11-3, we outlined some simple visualization technique adaptations and expansions that can
be made to current techniques to fill in less populated areas in the visualization design space. In this section

we show two complete examples of how existing techniques may be combined and varied. Not all
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combinations will be interesting or useful and we can identify the bad cases through common sense,
general design goodness measures (chapter 1V-2), or user testing.

For each of the two examples we will bring together a pair of techniques that serve different functions,
and the resulting composed technique will encapsulate functionalities from both of the base methods. The
first example (section A-2.1) combines: 1) the highlight object selection method, which allows users to
select a set of objects and then colors the objects to show that they have been selected, and 2) the dynamic
query slider method, which allows users to search for a set of objects based on specific data attributes. This
example is simple and meant to illustrate how we can go about combining different functional components

of existing techniques to form new behaviors.

The second example (section A-2.2) combines: 1) the SDM distance operator method, which improves
the legibility of objects by bringing them closer together to ease comparison, and 2) the HomeFinder
system, which allows users to search for a set of data concepts based on several constraints on their
attributes. The second example explores an uncommon area in the visualization techniques’ design space.
As was described in chapter 1I-3, it is commonly the case that search techniques have simple feedback
mechanisms, usually consisting of changing one graphical property in a straightforward manner (e.g.
setting all the property values to a constant). In this second example we explore search techniques (e.g.

HomeFinder system that have more complex feedback methods, likeSe distance operator.

A-2.1 Highlight Object Selection & Dynamic Query

Here we integrate the object selection and the dynamic query techniques using the composition rules
described in chapter 1I-2. The highlight object selection technique allows users to select a set of objects
through abounding-box and then colors those selected objeets The dynamic query technique allows
users to define a set of objects by setting constraints on their data attributes. Constraints are set by using
threshold functions (e.greater-than, less-than, equal-to) and the threshold value is determined by the user
through a slider input device. Specifications for both these techniques are shown in Figure A-2.

------------- (Color> _

: Graphical \__[ Functiona Graphica
Transform Description » Transform

(Assign) (Assign)

Highlight object selection specification Dynamic query slider specification
Figure A-2: Highlight object selection and Dynamic query diders

One way of combining the two techniques is to use pc-compositipipe values acquired from the
graphical transform of the highlight selection technique into the dynamic query technique as is shown in

Figure A-3. Instead of using assign graphical transformagsign sets the values of a data attribute or
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graphical property structure but does not produce any new results) as was done in the original highlight
selection technique we can use a compute graphical transform. For example, we could apply the multiply
graphical transform to the width and length of graphical marks (to calculate their area) and then feed these
values to afunctional description operator asis shown in Figure A-3. This allows usto select one graphical
object and subsequently make all objects that are larger than the selected object invisible. This can be an
interesting method to interactively reduce occlusion in a display. Note that all functions and inputs that
have been changed or removed are indicated in Figure A-3 with a red cross and new functions and inputs
are highlighted in gray. The problem with culling out graphical elements based on graphical object size
rather than on task related data, however, is that we may accidentally remove data elements that are crucial
to our task.

......... (wich) Cength
Boundlng box

Graphical Transform PR
) W Bounding-box)

(Multiply) Grophical T o
(PC-composition) ig
Cormuted area threshold Salling_price
Functional .| Graphical Transform Functional | | Graphical Transform
Description (Assign) Description (Assign)
Figure A-3: P-C composition of selection and Figure A-4: Value painting specification

Dynamic Query

An aternative design applies the transform method to data values instead of graphical values. This
produces a method like the value painting technique described by Eick et al.[Eick, 1992]. Value painting
allows users to select objects in one visualization with a bounding-box. We then search and highlight all
other objects that have the same attribute values as the chosen objects (Figure A-4). In the value painting
example, we bypass the graphical transform component and simply pass on the data values as is. The
modified value painting technique (described in chapter 11-2.3) is another design aternative that can be

derived from applying pc-composition to the dynamic query and selection visualization techniques.

Another way of composing the two techniques is to use object definition composition (Figure A-5). In
Figure A-5 we combine both object sets from the selection technique and the dynamic query technique
together with the inter section set-operator so that only objects that are both selected with the bounding-box
aswell asfulfill the constraint set by the threshold slider are highlighted red.
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Description

Figure A-5: Combining the object selection and dynamic query techniques using object definition composition

Another variation is to combine the graphical transform effects of both techniques with a
transformation composition operator (Figure A-6). In this example, however, the two effects (color-assign
and visibility-assign) do not integrate well together. This is because making non-focus objects invisible (as
is done by the dynamic query dlider technique) nullifies the use of the color highlighting graphical
transform used in object selection. Since only focus objects are made visible, the color highlight effect is
lost because all focus objects get highlighted in the same way.

Transformation

e composition (Colo

{Bounding-box
E .| Graphical Transform
Enumeration :

(Assign)
& ierial .| Graphical Transform
ripti (Assign)

Figure A-6: Combining the object selection and dynamic query techniques using transformation composition

In this section, we see that combining the two techniques (highlight object selection and dynamic

queries) allows usto integrate their different object definition and transformation methods.

A-2.2 HomeFinder System & SDM Distance Operator

In this example we explore a search technique that has more complex feedback mechanisms. Chapter
I1-3 showed that search techniques commonly use very simple feedback methods to show their results. For
example, the HomeFinder system, the dynamic query slider technique, and the value painting technique all
use simple color or visibility highlights to show the results of a search. An interesting exploration path isto
see whether we could integrate a search technique with aricher graphical feedback technique that produced
more interesting visual changes to objects within a visualization.
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To pursue this path of exploration, we combine the HomeFinder search system with the SDM distance
operator, which has rich visual feedback. The HomeFinder system was described in chapter 11-2.1. This
system allows users to set a number of functional description constraints on a set of data concept attributes.
The graphical objects representing the data concepts are then colored based on the number of constraints
passed by each concept (Figure A-7a). This is achieved through a count data transform that calculates for
each object, the number of timesit appearsin a given input set. These count values are then assigned to the
data concepts under consideration as a new attribute, i.e. the count-derived-attribute. This new attribute is

mapped in a separate specification to color asis shown on Figure A-7b.

Count derived
attribute

\ Functional Desc.|
@

<_Slider > Ep— HomeFinder
| Functional Desc.|__ Data Data Visualizatio
@ Set-operator
g (union-repeat) Transform —* Transform @
° P (count) (assign) Functional | || Mapping

P : Description| | Transform
| Functional Desc.| | @ Count-derived:
(n) attribute
(@ (b)

Figure A-7: HomeFinder system specification

The SDM distance operator improves the readability of avisualization by allowing users to move a set
of objectsto a user defined line of reference (shown in red in Figure A-8). By setting the line of reference
to be close and orthogonal to our point of view, we improve our ability to compare object size or height,
and also increase their visibility. This SDM distance technique is achieved by calculating for each object,
the point on the reference line that is orthogonal to it (we refer to this point as the reference point) as is

shown in Figure A-8. We then derive the distance from the original object positions to their reference

i o0

8 Distance:to attribute

points (i.e. distance-to attribute).

Reference line
point

Line of reference

Figure A-8: SDM distance operator components. distance-to attribute, point of reference, and line of reference
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Figure A-9: SDM distance operator specification

Figure A-9 shows the design specification for the SDM distance operator*. We start by defining the set
of objects we want to transform using the enumeration object definition operator. Multiple compute
graphical transforms are used to calculate the reference points for these objects based on their original xy-
positions and the position of the line of reference. Subsequently we compute the distances between the
origina object positions and their reference points (distance-to derived attribute). Users may then
reposition objects anywhere aong the orthogonal line between its original position and its reference point.
Object repositioning is achieved by scaling the distance-to derived attribute through an object-manipulation
input device that istied to the multiply graphical transform that performs the distance-to scaling. Different
multiplication factors cause new distance-to values to be computed. These distance-to values are then
converted back into their x and y components and finally reassigned to update the objgcasid y-
positions. Note that for simplicity, we represent certain sets of computation graphical transfonmpaté-
reference-point, compute-distance-to, derive-x-pos-component and derive-y-pos-component) with a single
rectangle in Figure A-9 even though the actual operation consists of multiple simple graphical transform
operators (e.gnultiply, add, divide).

By tying the multiplication factor to an input device, the technique allows users to slide a set of objects
to and from the reference line. This enables users to maintain context of the objects’ original positions. The
sequence of images in Figure A-10 shows diffedestance-to multiplication factors and the virtual input
device used to control those factors in the SDM system. Wheatidhace-to scale is reduced to zero, all

the objects get positioned along the line of reference as in Figure A-10c.

1 Note that there are severa GetAttributeValue trandation functions in Figure A-9 which we have not yet
described. We show these functions here however, to illustrate that the values being transformed are the x-position and
y-position values of the objects. Trandation functions are described in detail in chapter 111-1.3, which also shows how
and when such functions are added into the visualization technique specification.
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Figure A-10: Sequence of images showing different multiplication factors being applied to the
distance-to attribute

By combining the HomeFinder technique and the SDM distance technique, we get an interesting
synergy between their disparate goals. One way of combining these two techniques is to link the
appropriateness of an object with respect to our search criteriato the distance of that object with respect to
areference element. |.e. we can interpret how good of a search match an object is by looking at its distance
to a reference object. To do this we use the count-derived-attribute determined in the HomeFinder
technique as multiplication factors for the distance-to computation in the SDM technique asin Figure A-11.
Other aterations include removing the object manipulation input device from the SDM distance technique
and applying the distance-to calculations to all the graphical objectsin the HomeFinder visualization rather
than just to a user enumerated set as was the case previoudly. In this way, the count-derived-attribute
determines the percentage distance of every object to the referenceline.

We can apply this technique to objects whose positions are aready encoding values or to
representations where the object positions are fully determined by the search results. In the former caseitis
important to note that the initial distance between each object and the reference line acts as an importance
weight. Objects that are close to the reference line assign less importance to the count multiplication factors
while objects that are farther away assign greater importance to them. For an object close to the reference
line, even a high percentage change from its original distance would translate to a relatively small absolute
position change. As a result objects that are far away from the reference line need to pass more selection

constraints than objects that are closer to get to the same distance-to value.
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Figure A-11: Changes madeto SDM and HomeFinder specifications

A task that is particularly appropriate for this case is one where there are natural weighting data
attributes that can be easily mapped to spatial positions. For example consider the task of buying a house
and suppose that we want the house to be as close to our workplace as possible. Houses that are farther
away from our workplace will only be attractive if they fulfill many of our other house selection constraints
such as the num rooms in the house, the selling_price, the crime-rate in the surrounding area, the
availability of schools and hospitals, etc. In this case, instead of using areference line, we use areference
point, situated at our workplace (Figure A-12).

The x and y positions of the marks within the map in Figure A-12 are used to encode the longitude and
latitude position of the houses that we might be interested in buying. This interface also has a set of dliders
that allow us to set different house selection constraints (i.e. greater-than selling_price, greater-than
lot_size, greater-than num_rooms) which will in turn change the percentage distance-to value of house
concepts to our workplace mark. We are ultimately interested in those houses that appear closest spatially
to the red mark. These are either the houses that are geographic neighbors of our workplace, or the houses
that are farther away geographically but fulfill many of our other house selection constraints. In Figure
A-12a, no workplace has been chosen, thus the position of the houses are their longitude and latitude

positions.

In Figure A-12b, a workplace has been selected and many of the house concepts gravitate significantly
towards the red mark because the constraint conditions are less stringent (i.e. lower thresholds) and as a
result most data concepts pass a significant number of the constraint conditions. In Figure A-12c, the

threshold constraints are set higher and as the result the houses gravitate less towards the workplace mark.
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Figure A-12: Example house selection technique

A problem with this new integrated technique, however, is that when a search is applied, the data
encoded in the x-position and y-position properties is no longer valid. |.e., the positions of the marksin the
map no longer indicate the geographic positions of the houses. One way to aleviate this problem is to
animate the movement of objects from their original positions to their new positions. This will allow users
to deduce useful information from the speed at which the objects are moving as well as provide users with
context information about the object origin. In particular we would look for clusters of objects that are
moving at relatively the same speed or outlier objects that are moving much faster than the other objects
initially around them.

We can further extend the hybrid technique described in this section by alowing users to add several
lines of reference that have different constraints attached to them (Figure A-13-left). In this case, each
constraint line will apply aforce onto the objects and the final position of the object would be the result of
all these forces. Another variation of this technique is to use “constraint points” ((Figure A-13-right)
instead of “constraint lines”. This would simplify the visual representation to some degree and allow us to
put more constraints into the display. When we want to put in multiple constraint points it becomes very
importantwhere we place these points so that we can derive useful information from the resulting object
positions. For example Figure A-14 shows an effective placement of three constraint points. Objects that
are in the middle of the display are the ones that pass all three constraints, objects that are on the “in-
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between” points (indicated by 2’s in Figure A-14) pass two of the three constraints, and objects that are at
the vertices pass only one constraint. As it turns out, the display shown in Figure A-14 is very similar to the
InfoCrystal systemJpoerri, 1993]; however, we arrived at the same design from a very different starting-

point.

Line of reference-1
Point of reference-2

Figure A-13: Extended HomeFinder + SDM distance technique

$ > 100K

\g/

Neighborhood

_
= Shadyside

Figure A-14: Effective way of placing 3 constraint points

This section presents two detailed examples of how we can combine existing visualization techniques
to form new and sometimes surprisingly novel behaviors that push the envelope of visualization technique
design. Even in those cases where the combined results do not appear to have any clear use, we learn the
strengths and weaknesses (new technique classes) and improve our ability to design future techniques.

A-3 Control Functions

One class of visualization functions that we did not consider in this chaptenti®l functions.
Control functions regulate the flow of execution within a visualization method so that we may easily repeat
operators, or choose between multiple different alternative functions. We did not include them in our
description because the current visualization techniques we considered and the initial techniques we plan to
automatically build with our design system do not require such functions. Future expansion of our design
system however will profit significantly from the use of control functions. In this section we discuss some

useful control functions and show how they may be integrated into our framework.
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Sometimes it is necessary to repeat a set of object definition and transformation functions severa
times. Rather than having to declare the same specification over and over again, we can use control
operators, to regulate the flow of execution of the function set. For example suppose we wanted to divide
up a set of house concepts into three groups based on house price, and then color each set differently. In
order to do this we could use the specification in Figure A-15 to divide up the concepts into houses that
cost: 1) >= 100k and < 200k, 2) >= 200k and < 300k, and 3) >= 300k and < 400k. This can be achieved by
repeating a pair of functional description functions and a color graphical transform three times; once for
each house set.

6
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i Graphical
Transform
Functional
Description
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Description - Description -
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- Transform - Transform
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Description Description

;
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Figure A-15: Dividing up house conceptsinto 3 groups based on sdlling_price

A more efficient way to specify this task is to use a control operator to repeat the functiona
description functions and the color graphical transform so that we only need to specify them once. In
Figure A-16 we use the foreach control operator on sets of threshold values and color values. The foreach
operator is used to repeat a sequence of object definition and transformation functions for each member of
a given set of elements. In this case the >=, <, and color graphical transform functions are repeated three
times, once for each of the input arguments provided to the functions.

e 100k, 200k, 300k
@ Red, Green, Blue
Functiona

Foreach Despen Intersect Graphical End Foreach
Transform
Functional

Description

(<) 200k, 300k, 400K

Figure A-16: Dividing up house conceptsinto 3 groups using the foreach control operator
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Control operators also allow us to repeat a set of functions an indeterminate number of times,
something that cannot be done through regular specification. For example, one interesting means of
selecting objectsis to divide up the object set into multiple partitions, where each partition contains values
over particular ranges. This selection method is essentially a set of related threshold functions. We can
achieve this behavior by first calculating the threshold values for each partition and then P-C-composing?
that with a set of threshold functions. In the partition example shown in Figure A-17 we are calculating
equi-distant partitions and then creating each partition with a pair of threshold functions. In this example
the loop control operator is used to repeat the pair of threshold functions n times, where n is the number of
partitions desired. Because we are using the loop control operator, we need not determine the number of
partitions required during specification, and we can easily alter the number of partitions generated at any
time without having to change the specification.

Data Transform
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Enumeration Data Transform| || Data Transform Loo
(subtract) (divide) P | e
Data Transform \go0° 2
(get-min) DataTransform| | Functional
_ (multiply) Description
oa\"“\d e ‘.
Loo® ,| DataTransform| | Functional
multipl Description
( ply) S Further
transform
End Loop
Figure A-17: Partition selection
Graphical
Transform
Data Transform
(councrum
elements)
Graphical
Transform

Figure A-18: Using the switch control operator to channel the execution flow

2 pPC-composition combines two primitive techniques by piping the outputs produced by one technique into the
input dots of the other.
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Finally there is the switch control operator that is used to choose among multiple different branches of
execution based on a specified condition. For example suppose we want to highlight a set of user chosen
house concepts differently depending on the number of concepts chosen. One way to do this is to use the
switch control operator to channel the execution of the technique through different graphical transforms
based on the size of the selected object set. In Figure A-18 we use the switch operator so that if the selected
set has < 20 objects then its elements will be color highlighted, and if it has >= 20 objects then its elements
will be enlarged (i.e. highlighted through a changein size).
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Appendix B

Appendix to Instantiable Visualization Techniques Framework

(Chapter I111)

B-1 Comparison with Previous Frameworks

Part of our framework, namely the four transformation phases that correspond to the visualization
generation process (Figure 11-1) is very similar to Card et al's Qard, 1999] reference model of
visualization. Both works were developed in parallel. The main difference between our visualization
creation process and Card’s visualization reference model is that we have an additional step of graphical
transforms. This allows us to model changes in the visual structure of the visualization that is not based on
any underlying data concepts, e.g. showing state information such as selection highlighting. The three
classes of objects namely data, visual structure and views considered by Card also corresponds to our three

realms of data, graphical scene and output media.

The four transformation classes, however, only consist of a part of our framework. In our work we
define a visualization technigue to have an object selection and transformation fuBEtiomgdel). This
model is different from any other previous frameworks. ODT model is flexible because it allowss to
build techniques that can create visualization interfaces from scratch or modify exiting visualizations. By
including an object definition phase before transformation, we allow any type of objects to be piped into
the transformation component and as a result we can build techniques that contain transformation functions
that come in any order (i.e. they do not need to follow the @ataapping—> graphical-> rendering
phases in the visualization generation process). Visualization techniques in our framework also need not
contain functions from all four classes. In addition none of the previous frameworks include a

compositional syntax (chapter 11-2).
Another related framework from visualization techniques was presented by TwBeebdi§, 1997].

In her framework, Tweedie described the differences in visualization techniques by using four primary

criteria: data, representation, interactivity and input/output externalizations.
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For example the dynamic query technique and the Table Lens technique are described in Figure B-1:

Dynamic Queries Permutation MatricesTable Lens

Purpose: Find useful sets of multivariate data Purpose: view relations in multivariate data

Data type: Values Data type: values

Representation: A scatterplot is used to display two Representation: This is essentialy a graphica
of the attributes, the remainder are represented as spreadsheet (value in each cell is encoded as height)
diders. Interactivity: Reorder the cells (mechanized DM)
Interactivity: Data is hidden (mechanized DM) or I-O Representation: Only output is represented
filtered (mechanized IM) by selecting ranges on

diders.

I=0 representation: Input > Output is represented

Figure B-1: Tweedie’s description of the dynamic query and Table Lens techniques

Tweedie's framework was not very appropriate for our goals in automatic design, however, because
we needed a fully instantiable language of visualization techniques i.e. the descriptive language must be
complete and specific enough to generate an active visualization interface. Thus unlike Tweedie’s approach
we needed to describe the function and structure within each technique in much greater detail. This
however does not detract from our ability to analyze and categorize the various techniques as we showed in

chapter II-3.

A very desirable property of our instantiable language is that it provides a common level of primitives
for describing visualization techniques (as was laid out in chapter IlI-1). This allows us to break down
high-level visualization systems and compare their capabilities at the same level of granularity. This was
not true of previous framework3\jeedie, 1997], which sometimes compared visualization systems that
differ in their level of granularity. For example the Table Lens and dynamic query slider techniques shown
in Figure B-1 are both at two very different levels of granularity. The Table Lens system consists of
multiple different technique including an attribute value sorter, a lens technique that allows users to change
the size of cells, a semantic zoom technique that changes the level of detail on elements depending on their
cell size, and a column move technique. In contrast the dynamic query technique is a single technique in
itself. Our framework highlights such distinctions.

In our framework we have descriptions comparable to Tweedie’s data, representation and interaction
categories. We however, chose to separate out “goodness” measurements of input and output
externalizations from our framework because this category more pertains to the effectiveness of a design or
a technique rather than to describing the structure or components within a technique. Effectiveness
measurements was first introduced by Mackinlshagkinlay1986a, 1986b] and in this work we extend
effectiveness criteria to cover data processing and mapping designs as well as interactive methods (chapter
V).
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Both Card’'s and Tweedie’s frameworks are functional frameworks that try to capture the semantics of
visualization techniques. There are also a set of instantiation languages including the Data Explorer, Iris
Explorer, and AVS system®jodlie, 1991]. These systems provide an instantiable syntax and allow
designers to create visualization interfaces by building data flow diagrams that convert sets of data values
into visualization renderings and interface components on the computer system. These systems were also
not sufficient for the goals of this thesis for several reasons:

1) They are based on scientific visualizations.

2) They are based on the use of data flow diagrams are used to create visualization systems from
scratch. In our work we need to design techniques that generate new visualization interfaces from
scratch as well as modify existing visualization designs. Technigques from the latter category
cannot be described using any of the three instantiation packages (the Data Explorer, Iris Explorer,
and AVS systems). For a more complete description of how our framework syntax differs from
data flow diagrams refer to chapter 11-4; 3).

3) They consist only of low-level primitives. In contrast our framework contains both a functional
description as well as an instantiable description. In our work it is necessary to group and
categorize techniques based on the higher more abstract functional level. This two-level
description (functional and instantiation) allows us to modularize our designer so that it can
initially only consider what functional primitives it needs to use to fulfill current goals. Specifics
that may affect the effectiveness of a technique but not the core functionality can be considered
later once we are sure that all the required function have been included. In addition, the category
of the various current visualization techniques informs our designer what roles data, mapping,
graphical and rendering transforms can play in the design process and how they may be usefully
combined.

By using the lower level instantiable language we allow our automatic designer system to describe a
visualization in sufficient detail so that it can ultimately render an active visualization interface. Unlike
previous frameworks our visualization techniques language described technique in both the functional and
instantiation levels using a compatible syntax as well as establishes a systematic process to move between
the two different levels of abstractions: the functional level and the instantiation level. Previous frameworks

either concentrate on one level or the other. We provide a common structure for representing both.

B-2 Data Flow Diagrams

It is important to note that even though our visualization technique specification may resemble data
flow diagrams, they are not strictly data flows. Data flow diagrams are commonly used to analyze and
understand complex systems consisting of multiple interacting processes. Our specification language, on
the other hand, is meant to describe a single process (i.e. the visualization technique process), more like a
high-level flow chart. The visualization technique proa#@ss interact with two other processes, namely
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the user and the system designer, asis shown in Figure B-2. In Figure B-2, the user provides task inputs to
the technique through the use of input devices. This input may cause system state to be updated and
ultimately produce feedback for usersin the form of visual change. The graphic designer aso interacts with
the visualization technique by providing default values to the functions within it. While our specification
language does capture these relationships, its primary purpose is to encapsulate the functionality of a
visualization technique in enough detail so that a working system may be generated from it. In contrast,
data flow diagrams are used primarily to understand the flows or exchange of information among different

processes.

.
Skdnputs

default inputs

Visualization
Technique

feedback

Figure B-2: Data Flow diagram showing relationships between a visualization technique,
the user and the visualization designer

Other differences between our specification language and data flow diagrams include:

1. No system state changes: Unlike data flow diagrams we do not show system states in our specification
because even though state information is important for understanding the way visualization techniques
work, they are less important for capturing the functionalities that we want to perform using a
technique. Including them in the specification diagram may significantly increase clutter and
complexity. In any case, system state changes can be easily included in our specification diagrams as

additional boxes, without changing the existing structure of the technique.

2. Temporal links: We have links that show flows of data from one function to another, as well as
temporal links which indicate a temporal ordering between two functions (temporal links alow us to
express that certain functions have to be performed before others during execution of the visualization

technique). Data flow diagrams can only have data links.

B-3 Example: Generating an Instantiation Specification for

Dynamic Query Sliders

This example shows how the abstract functional dynamic query dlider [Ahlberg, 1992] design
presented in chapter 11 can be augmented to form an instantiable visualization technique. Figure B-3 shows
the functional specification for the dynamic query technique. The technique starts with a user-controlled,
functional description, object definition function followed by a graphical transform. The first step of the
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instantiation augmentation process is to determine the exact functional description function and graphical

transform function to use. For the functional description we use the threshold function with the “greater-

than” (>) operator. Once the objects have been defined, we need to give feedback to the user on the results
of the operation. One way to do this is to attach a common identifying feature to all the selected objects.
This can be achieved by using #msign function to set a chosen graphical property of the selected object

set to a common value. Figure B-4 shows the functional specification of Figure B-3 augmented with

specific instances of object definition and transformation functions.

Input devlce (! Input devlce
\ Functional Graphical K Functional Graphical
description Transform description | Transform
(Threshold, >) (Assign)
Figure B-3: Dynamic query functional specification Figure B-4: Dynamic query specification with
specific object-definition and transformation
functions

Once the functions are chosen, we ensure that they connect correctly with one another. Sometimes
translation functions must be inserted to ensure that the outputs of one function are appropriate as inputs for
the following function(s). Figure B-5 shows the inputs and outputs (highlighted in gray) of the object
definition and graphical transform functions that constitutedyimamic query technique. We start with the
set of all data objects. From these objects we extract a set of data values which are fedrigdtetFtban
threshold function. This function produces a set of boolean data values that are transformed into graphical

values for theassign graphical transform function.

Initial data
object set

Data Data Graphical
valueset| rnctiona | Valueset valueset: [ Graphical
? > description o ? » Transform
(Threshold, >) (Assign)

Figure B-5: Dynamic query specification with input and output types for each object definition and
transformation function. The “ 7?7’ boxes indicate areas where translation functions are needed to convert from
one argument type to another.

Figure B-6 shows the translation functions used in this example to convert the output type of a source
function to fit the input type of a destination function. The get-values function extracts a set of attribute
values from the initial data object set. These values are fed through the threshold function, which produces
a set of boolean values, indicating for each input value, whether it passed the chosen threshold. Based on
these boolean values and the set of data objects considered by the threshold function, we identify all of the
data concepts that passed the query (boolean-to-object). From these data concepts, we get al of the
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graphical objects that are used to represent them by using the get-related-graphical-objects function.
Finally we extract the property values that we want changed from the graphical objects. These values are

passed through the assign function that sets them to a common constant.

Initial data
object set

Data raphical Graphical
object sl Get |valueset | Threshold | value set| Boolean to [Object set Get re!ated object set| Get | valueset ]
values Te) 1 object g CEEE | values P Ason
! objects
H—/ - ~
—~
First “?” in Figure B-10 Second?” in Figure B-10

Figure B-6: Dynamic query specification with intermediate functions for inputs and outputs
(Notethat the visualization function classes are not shown in order to reduce the amount of diagrammatic
clutter)

Figure B-7 shows the dynamic query specification with all currently unspecified function inputs in

bold italicized text with light-gray background.

Data raphical Graphical
objectset\ | Get |valuese! Threshold | valueset| Boolean to [Object set Ge“ﬁ"é‘:d objectset| et | valueset A
values ] >) 1 object grapn! " values 7| AsSon
objects
1.Data 3.Graphical 4. Commol
attribute male proper, constant value

Cinpindoes” G
Figure B-7: Dynamic query specification with all inputsrequired

There are basically four necessary inputs: 1) the data attribute used to extract values for the threshold
function, 2) the threshold value needed for the threshold object definition function, 3) the graphica
property of the resulting search objects that we want to change, and 4) the graphical value we want to use
as an identifying feature for all the search objects. For each of these inputs we must decide whether to
provide default values (i.e. designer defined values), or whether to hook them up to an input device to get
the needed values from the user. Hooking them up to a device will allow a user more flexibility in altering
the functionality of the technique. On the other hand, using input devices increases the motoric load" of the
user. In this example we have decided to provide default values for al the required input arguments except

! Motoric load (or articulatory load) refers to the physical effort expended by the user in manipulating physical devices
such as the mouse, keyboard, or electronic pen. Example operations that result in motoric or physical effort include
mouse clicks, mouse movement, key clicks, or gesturing with an electronic pen.
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for the threshold value (argument 2). The default arguments are as follows: house-selling-price is the
default search data attribute (argument 1), color isthe feedback graphical property (argument 3), and, red is

the common identifying color (argument 4). These arguments are shown in Figure B-7 as normal ovals.

Initial data
object set

Data raphical Graphical
object s Get |valuesetl Threshold | valueset| Boolean to [Object set Get re!ated object sef| gt | valueset .
values o) object graphica values > Assign
objects
Data Graphical Common
attribute Data value propey, constant vélue

. Sider > CColor>

House-
selling-price

Figure B-8: Adding a dider input device for specifying the threshold constraint in the dynamic query technique

In the final steps we determine the input devices to use, and specify the initialization arguments for
those devices. In this example we only have one user input value, namely the threshold value for the

greater than object selection function. In the common dynamic query technique this input argument is

attached to a slider input device (asis shown in Figure B-8).
Initial data
object set

House- Initial data House-
slling-price object set selling-price

Data Data Data Data
attribute object set attribute object set
Trandlation M o e | Translation
Function ————— DataT'\;Ignsform Function » Data TMransform
(Get values) | Data value (Min) (Get values) | Datavalue (Max)
st set
Input-device ~ Data value Input-device ~ Datavalue
atribute ! attribute I
P - Translation Graphical T - Translation Graphical
{_Slider >—» Function » Transform {_Slider >—» Function » Transform
"""" (Get values) (Assign) (Get values) (Assign)
(a) Specification for initializing the minimum range (b) Specification for initializing the minimum range
of the dider input device of the dider input device

Figure B-9: Initializing the min and max properties of the dider input device added in Figure B-8. Themin and
max values are derived by computing the min and max values of the house-selling-price data attribute with data
transform functions.
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A dlider input device requires two initialization values, a minimum value and a maximum value, that
defines the range of the slider. We set these values to be the minimum and maximum values of the house-
selling-price attribute asis shown in Figure B-9. Initially we extract all the house-selling-price values from
the entire data set by using the get-values trandation function. Subsequently, we compute the min value
using a data transformation function. This min value is then assigned to the min property of the slider input
device which determines the minimum value on the dlider range. A similar specification is used for

assigning the maximum value on the slider range.

B-4 Systematic Exploration of the Instantiation Level of the

Dynamic Query Slider Technique

In this section we explore the instantiation space for the dynamic query dlider technique [Ahlberg,
1994] and discuss some of the moreinteresting design variations. We explore the instantiation design space
by considering each of the five steps in the instantiation augmentation process (described at the beginning
of this chapter I11) and seeing for each step how a visualization technique can be varied:

1. Changing the specific functions used or adding more functions of the same type.

2. Changing the translation functions between object definition and transformation functions.

3. Changing how function arguments are provided (either by user or designer) as well as the default
designer vaues.

Changing the type of input devices used within the design.

5. Changing how input arguments are provided to input devices.

B-4.1 Changing the Specific Functions Used or Adding More Functions of
the Same Type

Thefirst step of the instantiation augmentation process determines which specific object definition and
transformation operators to use from the abstract classes described in the functional specification (e.g.
functional description, graphical transform). By picking different instances of object definition and
transformation functions we may generate a range of dider techniques. Figure B-10 shows the sets of
aternative operators that may be used for each function class in the abstract functional specification.
Different operator combinations affect the usefulness or effectiveness of the resulting technique. For
example, in the slider technique shown previously, the assign graphical transform is used as a feedback
mechanism to set the color for a group of selected or focus distributors to a perceptually salient value, e.g.
red. Another aternative is to use the addition graphical transform to provide feedback by adding a constant
value to the x-position of the focus objects thus shifting them to the right of the map. The first aternative
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allows users to pre-attentively see the selected objects without losing any positional context between the
focus objects and the other elements in the visualization, unlike second aternative. Nevertheless the first
aternative is also more susceptible to object occlusion. The second alternative like the SDM system
[Chuah, 1995], allows users to move a set of focus objects up to the front or up above so that they can be
clearly seen without occlusion and without the noise from surrounding objects.

Set operation .

Functional Description (Intersect Gra?:(lj(c:jf;\lsl'tr)?rnascftorm
(Threshold: " Union Multiply/Divide
<>, =,<=,>=,<>) Difference Assign)

Union-repeat) 9

Figure B-10: Alternative object definition and transformation functions for the dynamic query dider technique

We can also experiment with expanding a function class by composing it with other functions from
the same class. |.e. using multiple functional description operators or graphical transforms instead of just
one. To ensure that the functional description of the technique remains unchanged however, we must only
add operators that share the same general goal (e.g. computation, summarization, feedback, or readability)
as the expanded operator. For example, in Figure 11-13 we can use the addition graphical transform to alter
the size of abjects as well as the assign graphical transform to alter the color of objects. This design
variation does not change the functional goal of the technique because both assign and addition functions
are graphical transforms, and both functions are used for the same general goal, which is to provide
feedback on a set of focus distributors.

B-4.2 Changing the Translation Functions between Object Definition and

Transformation Functions

The second step of the instantiation augmentation phase incorporates translation functions into the
design specification to ensure that the outputs of a function match the inputs of subsequent connecting
functions. By using different combinations of translation functions we can vary the visualization technique
design. In Figure B-11 we have enriched the dynamic query slider specification with object definition,
transformation and trandation functions. One variation on this design is to change the translation functions

so that the intersect function is applied to data objects instead of graphical objects asin Figure B-12.
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Figure B-11: Specification for the dynamic query dider technique including object definition, transformation, as
well astrandation functions

Related
Visualization

Get data
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Data
object set

Get

Get 3
Threshold |} o)y [ [Osugadil ooy ooy Ll o
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Figure B-12: In this specification we change the trandation functionsleading into the intersect operator so that
the intersect operation isapplied to data conceptsinstead of graphical objects aswasthe casein Figure B-11.
Here, only those data conceptsthat are both selected by the dider and that are contained within
related visualization can be selected. Note that all the changes made to the specification in Figure B-11 are shown
ingray in Figure B-12.

In Figure B-11 the intersect operator constrains the scope of the technique so that only graphical
objects in the map region container may be colored. In Figure B-12 we constrain the scope to particular
distributor data concepts instead. In this case, any graphical object may be colored as long as those objects
represent data concepts that are present in related visualization. In this was we can combine the object

membership or query results across multiple visualization interfaces.

Tranglation functions may also be used to change the function arguments provided by users (through
input devices) or by designers (as default values). For example, in Figure B-11 the get-graphical-objects
tranglation functionsis used so that the designer may enumerate the scope of the graphical object set based
on a container object (i.e. the map-visualization region). Alternatively we may remove get-graphical-

objects tranglation function and list out each individual graphical object of interest.
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B-4.3 Changing How Control Arguments are Provided as well as the

Default Designer Values

The third step in the instantiation augmentation process identifies the input arguments needed by the
functions within a specification and connects them to a user agent or a designer agent. The specification
shown in Figure B-11, for example, requires five input arguments. 1) the set of data values we want to
perform the threshold operation on, 2) a threshold value for the threshold function, 3) a set of graphical
objects for the intersect set operator, 4) a set of feedback graphical values, and 5) the feedback value used.
These five input arguments are shown in Figure B-13 as text with gray background.

1. Data
~_valueset ? ? 2
/ ' . " 5. Graphical
3. Graphical 4. Graphical | value
object set property (Feedback
il ot value)
o 0] i | fG g
objects grap
2. Data value Boolean Data Graphical Graphical Graphical
(;hre)ﬂ‘dd value set object set object set object set value set
value

Figure B-13: This specification issimilar to Figure B-11 except that here we haveincluded all of the input
argumentsthat are required by the various functionsthat have yet to be provided. Each missing argument value
is indicated with a “?” symbol together with the argument type that is required. In this example there are five
missing function arguments.

We can generate a variety of designs for this technique by either setting the arguments to different
default values (i.e. designer defaults) or by letting users specify the arguments through input devices. One
possibility isto let users provide part of the input arguments while leaving the rest as designer defaults. For
example, in Figure 111-12 the threshold value is provided by users through a slider input device and the set
of data values for the threshold function are from a data attribute that is provided through a menu input
device. All the other input arguments are provided through designer defaults. Another alternative isto give
users more flexibility and let them pick the feedback graphical property (e.g. size or shapeinstead of color)
and the feedback value (e.g. blue, or green instead of red). Note however that loading an interface with too
many input controls may significantly increase the motoric and cognitive complexity placed upon users
when manipulating the interface. We could also change the specification by experimenting with different
default values, for example instead of using red as the default highlight color, we can set the highlight color
to blue instead.

In addition to users and designers, function inputs can also be provided by other visualization

techniques through composition operators as was shown in chapter 11-2. However, such changes alter the

B-188



functionality of a visualization technique in significant ways, and as such their use is not encouraged during
instantiation specification.

B-4.4 Changing the Type of Input Devices Used within the Design

In this step we pick the input devices for each user-provided input argument (as specified in the
previous step). Suppose in the previous step we attached all the input arguments shown in Figure B-13 to
input devices except input argument 3 (which feeds into the intersect operator). This is shown in Figure

B-14 which replaces each “?” in Figure B-13 with an input device or a designer default value.

:’:—I—nput device 1
we T Calme ) e
devi ap . T
L {_Inputdevice-4 * < Input device5
visualization TAPUE--- ---=---""  Input- e
] RIS ol
Data Get graphical
attribute objects | Get values | | Get values |
Get values Data Graphical
value set value
Graphical Graphical (Feedback
V object set property alue)
Get v
|| ey | f O G Ly
< obiects graphics values
Input )
de"" S Data value Boolean Data Graphical Graphical Graphical
< Input device2 (Threshold value set object set object set object set value set

Z value)

Figure B-14: Slider visualization technique with input devices

Now let us consider the types of input devices we can use to provide each of these input arguments.
One way to select the threshold data attributei(ipeit-device-1) is to use anouse or bounding-box to pick
an annotation object (e.g. theaxis) that represents a data to graphical mapping relationship in the
visualization. For example in ??, tkeaxis annotation object represents a mapping oflthgitude data
attribute to thex-position graphical property. By picking this annotation object we indicate to the system
that we want to perform théreshold operation on théongitude attribute. A weakness of this approach is
that only graphically encoded attributes may be selectedmbbse andbounding box cannot be used to

specify non-encoded data attributes because none of them are visually represented.

Other alternative input devices shown in Table 111-5 includeékiebox, different menu types (option
menu, scroll list, radio boxes), dial andslider. These input devices are general purpose and can be used to
select values, attributes, objects or containgisiu input devices are especially appropriate for picking
data and graphical attributes because the list of attributes is usually relatively small (< 30 attributes) and the
attributes are discret®ials andsliders, on the other hand, are more appropriate for choosing continuous
values even though they are also capable of expressing non-continuous values (e.g. alph@hitieteys [

1994]). Text boxes are very flexible because users can type in any input argument. However, they do not
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indicate which arguments are valid and which are not. More information on the expressiveness and
effectiveness of input devices can be found in Card et. al.’s @anid] 1990].

B-4.5 Changing How Input Arguments are Provided to Input Devices

As was discussed in chapter IlI-1.4, input devices have attributes as well just like data and graphical
objects. Some input device attributes must be initialized before they can be used. For exagipler the
input device must first be initialized with tih@n andmax values for the slider range. To initialize an input
device attribute, we construct a visualization technique specification with the same object-
definition/transformation structure as all other visualization techniques we have been discussing thus far.

Therefore, we may vary an input device initialization specification by using any of the previous four steps.

In summary, we have presented five steps for systematically exploring the instantiation design space.
Changes in the instantiation design space allow us to expand or change the design of existing techniques

while still maintaining a common functional metaphor.

B-5 Exploring the Space of Visualization Techniques

In this section we analyze three interactive visualization techniques using the five steps in the
structural augmentation process (for details refer to appendix B-4). For each technique we present its
instantiation specification and describe some interesting alternative designs that can be derived from

varying that specification.

B-5.1 Aggregation

The aggregation technique deals with large data sets by summarizing multiple data concepts into an
aggregate concept. Aggregation may be achieved in several different Galgstdin, 1994]. In this
example, we examine the aggregation technique shown in Figure B-15. In Figure B-15 users may select a
set of objects usinglagounding-box. The selected graphical objects are converted to the data concepts they
represent and these data concepts are aggregmteg pbjects). In addition we also summarize a user
selected attribute of the objects usingitean data transform function. Finally we map the new aggregate

object into the visualization where theunding-box was invoked gdd-object).
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Figure B-15: One possibleinstantiation specification of an aggregation technique. Thistechnique allows usersto
select a set of graphical objects using a bounding-box. It then summarizesthe underlying data concepts by using
a group-objects data transform function, thereby creating a new aggregate-data-type-1 data-type. In addition, one
of the data attributes for the selected objectsis also chosen for mean summarization, and a new summary-
attribute-1 iscreated to store the mean values. Thisdata attribute can then be mapped to a graphical property.

An interesting design variation is to use different devices to pick the aggregation objects and the
visualization into which the group objects are added. This will allow us to pick objects in one visualization
and have the group object appear in another visualization. Another useful variation of the aggregation
technique is to remove the graphical objects that form the aggregate. Since we are adding a new group
object that summarizes information on a set of individual data concepts, it may no longer be necessary to
show those data concepts. Thus we add the remove-object mapping function that i