
AVID: AUTOMATIC VISUALIZATION

INTERFACE DESIGNER

Mei C. Chuah

CMU-CS-00-128

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee

Steve Roth, Co-chair
Jim Morris, Co-chair

Scott Fahlman
Jock Mackinlay

Dan Olsen

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) under Contract No DAA-1593K0005. The views and

conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed

or implied, of DARPA or the U.S. government.

To

Claude Fennema

�
who inspired me and made all this possible

�

© Copyright 2000
MEI C. CHUAH

ACKNOWLEDGEMENTS

This work was supported by DARPA. I thank my advisor Steve Roth for his friendship and steadfast

support throughout my entire graduate career. I also thank my committee members Scott Fahlman, Jock

Mackinlay, Jim Morris, and Dan Olsen, for their invaluable advice and help on my thesis research and

document. Last but not least I thank Richard Burton, Stu Card, Steve Eick, Claude Fennema, Sebastian

Grassia, Linda Horiuchi, Bonnie John, Stephan Kerpedjiev, John Kolojejchick, Joe Mattis, John Miller,

Stephen North, Poe, George Robertson and everyone in my family for their help, support, and

encouragement.

AVID: AUTOMATIC VISUALIZATION INTERFACE DESIGNER
MEI C. CHUAH, PH.D.

CARNEGIE MELLON UNIVERSITY 2000

Today’s widespread, cheap and fast communication makes a great variety and quantity of data

available to consumers. Information presentation addresses the important problem of packaging and

visualizing this data for users in a way that facilitates understanding and analysis. Information

presentations can be created by human designers or they can be automatically generated by expert

computer systems. Automatic generation offers great flexibility in performing data and information

analysis tasks, because new designs are generated on a case by case basis to suit current and changing

future needs. This is crucial in areas or domains where it is difficult to capture beforehand all combinations

of data and analysis goals desired by users, since pre-conceived human designs are then less feasible. The

focus of this thesis is to improve designs generated by automatic systems and to expand the range of tasks

that can be addressed by such systems. Previous work in this area dealt primarily with how data can be

mapped to graphics effectively, based on established design knowledge and perceptual rules. In this thesis

I expand automatic presentation design to include not only effective mapping rules but also rules describing

how data may be pre-processed before it is presented. I will show that expanding automatic design in this

way allows us to consider a much wider range of designs, improves the quality of automatically generated

designs, and enables automatic systems to deal with larger data sets and a wider range of tasks. The

addition of data pre-processing functions also allows us to include input devices in graphical presentations,

thus making them more active, engaging and flexible for users. Previous work did not consider input

devices because their use is limited when we consider only mapping functions in our designs. This thesis

develops a framework and design strategies for expanding the quality and breadth of automatically

generated information presentations. This will in turn improve the effectiveness with which computer

systems can communicate data to users, facilitating understanding and analysis of a large variety of data,

over a wide range of information goals.

 i

TABLE OF CONTENTS

CHAPTER I: INTRODUCTION ... I-1

I-1 METHODS: VISUALIZATION TECHNIQUES FRAMEWORK.. I-6
I-2 PRINCIPLES: DESIGN DIMENSIONS AND STRATEGIES FOR MEASURING THE GOODNESS OF

VISUALIZATION DESIGNS .. I-9
I-3 SYSTEMS: AVID – AUTOMATIC VISUALIZATION INTERFACE DESIGNER I-11
I-4 PREVIOUS WORK... I-13

I-4.1 Visualization Techniques Framework...I-13
I-4.2 Automatic Visualization Design..I-13

I-4.2.1 Automatic Visualization Systems ..I-14
I-4.2.2 Psychophysical Studies ...I-14
I-4.2.3 User Studies on Visualization Interfaces..I-15

I-5 SUMMARY ... I-15
I-6 WALKTHROUGH .. I-16

CHAPTER II: VISUALIZATION TECHNIQUES FRAMEWORK
A FUNCTIONAL DESCRIPTION... II-17

II-1 VISUALIZATIONS & V ISUALIZATION TECHNIQUES ...II-19
II-1.1 Object Definition Component ... II-22
II-1.2 Transformation Component .. II-24

II-2 COMPOSITION...II-27
II-2.1 Object Definition Composition ... II-28
II-2.2 Transformation Composition.. II-31
II-2.3 Produce-Consumer Composition.. II-32
II-2.4 Partition Composition... II-33
II-2.5 Summary ... II-34

II-3 VISUALIZATION TECHNIQUES DESIGN SPACE...II-35
II-3.1 Data Transforms... II-37
II-3.2 Mapping Transforms... II-41
II-3.3 Graphical Transforms... II-43
II-3.4 Rendering Transforms .. II-46
II-3.5 Summary ... II-48

II-4 CONCLUSION ..II-48

CHAPTER III: VISUALIZATION TECHNIQUES FRAMEWORK
A CONCRETE INSTANTIABLE DESCRIPTION.. III-50

III-1 REPRESENTATION LANGUAGE .. III-54
III-1.1 Visualization Elements or Properties .. III-55

III-1.1.1 Data Concepts.. III-55
III-1.1.2 Graphical Objects .. III-56

III-1.2 Visualization Functions ... III-59
III-1.2.1 Object Definition Functions ... III-59
III-1.2.2 Transformation Functions .. III-60

III-1.2.2.1 Mapping Transforms ... III-60
III-1.2.2.2 Data and Graphical Transforms... III-64
III-1.2.2.3 Rendering Transforms... III-69

III-1.3 Input & Output Translation Functions .. III-69
III-1.4 Input-devices.. III-72

 ii

III-1.5 Summary .. III-73
III-2 VISUALIZATION TECHNIQUES INSTANTIATION SPACE .. III-73
III-3 EVALUATION OF FRAMEWORK ... III-78

III-3.1 Completeness ... III-78
III-3.2 Coverage.. III-79
III-3.3 Practicality .. III-79

III-3.3.1 Reduces Cost of Task Tailoring ... III-79
III-3.3.2 Provides a New Design Methodology .. III-80
III-3.3.3 Allows Systematic Exploration of the Visualization Techniques Design Space III-80

III-4 CONCLUSION .. III-80

CHAPTER IV: DESIGN HEURISTICS
DATA COMPUTATION VS. PERCEPTUAL MAPPING ...IV-82

IV-1 AN AIRLINE-SCHEDULING EXAMPLE ILLUSTRATING THE USE OF DATA TRANSFORMS............ IV-82
IV-2 VISUALIZATION DESIGN DIMENSIONS .. IV-89

IV-2.1 Articulatory Distance... IV-91
IV-2.2 Expressive Distance... IV-93
IV-2.3 Observational Distance ... IV-96

IV-3 DATA TECHNIQUES VS. MAPPING TECHNIQUES DESIGN GUIDELINES IV-98
IV-3.1 Accuracy .. IV-99
IV-3.2 Intermediate Tasks... IV-102
IV-3.3 Availability of Perceptual Operations ... IV-104
IV-3.4 All to All Operations .. IV-106
IV-3.5 Task Variation on Attribute ... IV-109
IV-3.6 Task Specificity .. IV-111
IV-3.7 Summary .. IV-114

IV-4 CONCLUSION .. IV-115

CHAPTER V: IMPLEMENTATION
AUTOMATIC VISUALIZATION INTERFACE DESIGNER ... V-116

V-1 TASK INTERPRETER COMPONENT .. V-118
V-2 AUTOMATIC DESIGN COMPONENT .. V-122

V-2.1 Search Strategy..V-122
V-2.1.1 Task Processing .. V-124
V-2.1.2 Data Attribute Mapping .. V-130
V-2.1.3 Post Design Processing ... V-132
V-2.1.4 Summary .. V-132

V-2.2 Design Constraints ..V-134
V-2.2.1 Constraint Dimension 1: Softness ... V-134
V-2.2.2 Constraint Dimension 2: Scope ... V-137
V-2.2.3 Constraint Dimension 3: Constraint Condition .. V-137
V-2.2.4 Summary .. V-142

V-2.3 Design Costs ..V-145
V-2.3.1 Articulatory Cost Structure ... V-146
V-2.3.2 Observational Cost Structure... V-149

V-2.3.2.1 Task processing observational cost .. V-149
V-2.3.2.2 Data attribute mapping observational cost.. V-151

V-2.4 Summary ..V-153
V-3 VISUALIZATION REALIZER COMPONENT ... V-153
V-4 CONCLUSION ... V-154

 iii

CHAPTER VI: CONCLUSION & FUTURE WORK ...VI-156

VI-1 SUMMARY & RELEVANCY OF WORK..VI-156
VI-1.1 Methods: Framework of the Visualization Creation Process .. VI-156
VI-1.2 Principles: Metrics & Heuristics
for Measuring the Goodness of Visualization Designs.. VI-157
VI-1.3 Systems: AVID – Automatic Visualization Interface Designer VI-158

VI-2 SCOPE OF WORK...VI-159
VI-2.1 Limitations of the Framework.. VI-159
VI-2.2 Limitations of the Metrics & Heuristics... VI-160
VI-2.3 Limitations of the System Implementation ... VI-162

APPENDIX A: APPENDIX TO FUNCTIONAL VISUALIZATION TECHNIQUES
FRAMEWORK (CHAPTER II) ... A-164

A-1 ODT DIAGRAMMATIC NOTATION ... A-164
A-2 EXPLORING THE SPACE OF VISUALIZATION TECHNIQUES.. A-164

A-2.1 Highlight Object Selection & Dynamic Query...A-165
A-2.2 HomeFinder System & SDM Distance Operator...A-166

A-3 CONTROL FUNCTIONS.. A-173

APPENDIX B: APPENDIX TO INSTANTIABLE VISUALIZATION TECHNIQUES
FRAMEWORK (CHAPTER III) .. B-178

B-1 COMPARISON WITH PREVIOUS FRAMEWORKS ..B-178
B-2 DATA FLOW DIAGRAMS ...B-180
B-3 EXAMPLE: GENERATING AN INSTANTIATION SPECIFICATION FOR DYNAMIC QUERY SLIDERS .B-181
B-4 SYSTEMATIC EXPLORATION OF THE INSTANTIATION LEVEL OF THE DYNAMIC QUERY SLIDER

TECHNIQUE ..B-185
B-4.1 Changing the Specific Functions Used or Adding More Functions of the Same Type.....B-185
B-4.2 Changing the Translation Functions between
Object Definition and Transformation Functions..B-186
B-4.3 Changing How Control Arguments are Provided
as well as the Default Designer Values ...B-188
B-4.4 Changing the Type of Input Devices Used within the Design..B-189
B-4.5 Changing How Input Arguments are Provided to Input Devices.....................................B-190

B-5 EXPLORING THE SPACE OF VISUALIZATION TECHNIQUES...B-190
B-5.1 Aggregation ...B-190
B-5.2 Data Drag & Drop ..B-191
B-5.3 Table Lens Semantic Zoom..B-193
B-5.4 Summary ..B-194

B-6 OTHER VISUALIZATION TECHNIQUE ISSUES ...B-194
B-6.1 Repeating Visualization Techniques ..B-195
B-6.2 Integrating Visualization Techniques within a Common Workspace...............................B-196

APPENDIX C: APPENDIX TO DESIGN HEURISTICS (CHAPTER IV) C-198

C-1 GOMS EVALUATION FOR AIRLINE-SCHEDULING TASK IN CHAPTER IV-1...............................C-198
C-1.1 GOMS Evaluation for the Cognitive Solution of the Airline Scheduling Task.................. C-198
C-1.2 GOMS Evaluation for the Pure Perceptual Solution of the Airline Scheduling Task C-201
C-1.3 GOMS Evaluation for the Perceptual + Data Computation Solution of the Airline Scheduling
Task C-204

C-2 AIRLINE-SCHEDULING TASK DESIGN ALTERNATIVES ..C-204

 iv

C-3 TASK MODEL..C-208
C-3.1 Logical Tasks (Logical Operators) .. C-209

C-3.1.1 Lookup... C-209
C-3.1.2 Compute... C-210
C-3.1.3 Find.. C-210
C-3.1.4 Comparison.. C-212

C-3.2 Task Extensions... C-214
C-3.2.1 Task Embeddings ... C-214
C-3.2.2 Task iteration ... C-215
C-3.2.3 Task precision .. C-216

C-4 EXPLORING THE SPACE OF DATA TECHNIQUES AND MAPPING TECHNIQUES............................C-217
C-4.1 Task Structure Variation ... C-218

C-4.1.1 University Example.. C-218
C-4.1.2 Task Operator Variation ... C-220
C-4.1.3 Task Expansion .. C-222
C-4.1.4 Embedding Structure Variation .. C-225

C-4.2 Task Argument Variation .. C-227
C-4.2.1 Use of constants vs. data attribute value sets... C-227
C-4.2.2 Use of known vs. unknown arguments.. C-229
C-4.2.3 Change in attribute or value type .. C-230

C-4.3 Data Set Variation... C-234
C-4.4 Summary.. C-236

C-5 PURCHASING A CAR ...C-237

APPENDIX D: APPENDIX TO IMPLEMENTATION (CHAPTER V) D-246

D-1 STRUCTURAL & CONTENT MATCHING .. D-246
D-2 TRANSLATING A FUNCTIONAL DESIGN FROM AVID’ S DESIGN COMPONENT INTO A COMPLETE

SPECIFICATION .. D-247
D-3 VISUALIZATION REALIZER COMPONENT ... D-251

D-3.1 Graphical Object Realizer .. D-251
D-3.1.1 Single axis layout.. D-254
D-3.1.2 Non-unique positionals ... D-255

D-3.2 Functional Realizer... D-256
D-3.2.1 Primitive visualization functions ... D-256
D-3.2.2 Connectors.. D-257
D-3.2.3 Input devices... D-257
D-3.2.4 Composite visualization functions... D-258

D-3.3 Summary & Scope... D-259
D-4 INTERACTIVE FUNCTIONS EDITOR... D-259

APPENDIX E: USING GOMS TO EVALUATE OUR AUTOMATIC DESIGN SYSTEM......... E-262

E-1 TASK 1: FIND TASK FINDING A “GOOD” UNIVERSITY BASED ON GRADUATION RATES AND TEST

SCORES...E-265
E-1.1 Design 1...E-267
E-1.2 Design 2...E-269
E-1.3 Design 3...E-270
E-1.4 Design 4...E-273
E-1.5 Design 5...E-276
E-1.6 Design 6...E-279
E-1.7 Design 7...E-282
E-1.8 Summary ..E-285

E-2 TASK 2: COMPUTE TASK COMPUTE TOTAL NON-SALARY BENEFITS DISTRIBUTED BY A SET OF

UNIVERSITIES...E-287

 v

E-2.1 Design 1...E-289
E-2.2 Design 2...E-290
E-2.3 Design 3...E-291
E-2.4 Design 4...E-293
E-2.5 Design 5...E-299
E-2.6 Design 6...E-303
E-2.7 Design 7...E-306
E-2.8 Summary ..E-310

E-3 TASK 3: COMPARISON TASK + SIMPLE COMPUTATION EVALUATING THE RELATIONSHIP

BETWEEN STATE SIZE AND VOTING RESULTS...E-315
E-3.1 Design 1...E-316
E-3.2 Design 2...E-318
E-3.3 Design 3...E-320
E-3.4 Design 4...E-322
E-3.5 Design 5...E-323
E-3.6 Design 6...E-325
E-3.7 Design 7...E-329
E-3.8 Summary ..E-334

E-4 TASK REFINEMENT AND SORTING ..E-336
E-5 WHY GOMS?...E-340
E-6 CONCLUSION ..E-341

APPENDIX F: ENHANCING READABILITY WITH GRAPHICAL & RENDERING
TRANSFORMS .. F-343

F-1 READABILITY PROBLEMS ... F-343
F-1.1 Occlusion ...F-343
F-1.2 Density ...F-344
F-1.3 Dwarfing..F-345
F-1.4 Spatial separation..F-345

F-2 READABILITY SOLUTIONS .. F-345
F-2.1 Constant Graphical Methods...F-347
F-2.2 Additive Graphical Methods ..F-347
F-2.3 Multiplicative Graphical Methods...F-348
F-2.4 Linear Positional Rendering Methods (Point of View Navigation)F-348
F-2.5 Non-linear Positional Rendering Methods (Distortion) ..F-348

F-3 APPLYING GRAPHICAL AND RENDERING METHODS TO READABILITY PROBLEMS F-349
F-3.1 Occlusion ...F-350
F-3.2 Density ...F-350
F-3.3 Dwarfing..F-351
F-3.4 Spatial separation..F-351

F-4 GRAPHICAL AND RENDERING TRANSFORM GUIDELINES .. F-351
F-4.1 Relevance of Readability Problems with respect to Tasks...F-352
F-4.2 Continuity ..F-353
F-4.3 Individual vs. Group Readability...F-354
F-4.4 Object spatial proximity...F-354
F-4.5 Reversibility ...F-354
F-4.6 Learning...F-355

F-5 CONCLUSION .. F-356

REFERENCES ... 358

 vi

LIST OF FIGURES

CHAPTER I: INTRODUCTION ..I-1

Figure I-1: Cognitive design for the airline-scheduling task (Note that the flights are not all shown
here because the table is very large) ... I-2

Figure I-2: Perceptual design for the airline-scheduling task Each line represents a flight with
origin and destination city mapped onto the y-axis and arrival and departure time mapped
onto the x-axis. This is the best design that gets generated when ONLY mapping operations
are considered by the automatic system. I.e. this is the best possible design from current state
of the art systems. ... I-3

Figure I-3: Design generated when data processing operations are integrated into the automatic
visualization system. The full data set is considered here but data transforms are applied by
the automatic system to filter the data set so that only relevant flights are shown. The total
downtime before the meeting for the flights from LAX to ORD is shown on the left chart and
the total downtime after the meeting for the flights from ORD to BOS is shown on the right
chart. ... I-4

Figure I-4: GOMS estimated total time for solving the airline-scheduling task for a data set of 135
flights. Detailed GOMS sequences for each design are presented in appendix C-1. I-4

Figure I-5: The four phases of the visualization creation process .. I-6
Figure I-6: Highlight technique specification. The input-device bounding-box is used to select a

set of objects. These objects (selected-objects) are extracted from the bounding-box device
using the get-values function. We then get the color values from all of the selected objects
using a subsequent get-values function. Finally we change all of the color graphical values to
red using the assign function.. I-7

Figure I-7: Three components within AVID .. I-11

CHAPTER II: VISUALIZATION TECHNIQUES FRAMEWORK
A FUNCTIONAL DESCRIPTION... II-17

Figure II-1: Visualization generation process consisting of four transformation classes (data,
mapping, graphical, and rendering) across three different realms (data, graphical, output
media) ..II-20

Figure II-2: Example visualization with house data. Each mark represents a house data concept.
The x-axis shows date_sold; the y-axis shows selling_price; and color shows neighborhood..........II-20

Figure II-3: A visualization technique is defined in this work to contain two components (object
definition and transformation). Object definition can be achieved through enumeration or
functional description. Transformation can be achieved through data, mapping, graphical, or
rendering functions. The transformation functions can be further divided based on their goals.II-21

Figure II-4: Dynamic Query Sliders applied to house data. Each bar encodes a house data
concept; x-axis encodes date_on_market and date_sold; y-axis encodes house_address. There
are two dynamic query sliders [Ahlberg, 1992], one allows users to place constraints on the
num_rooms data attribute and the other allows users to place constraints on the selling_price
data attribute. Houses that do not fulfill constraints become non-visible as in (b).II-22

Figure II-5: Map showing the different parking lots at CMU (borrowed from
http://www.cmu.edu). Clicking the next-lot button will cause a predefined parking lot to get
highlighted red (e.g. morewood parking). Subsequent presses to the next-lot button will cause
subsequent parking lots to get highlighted...II-23

Figure II-6: Visualization system that allows re-mapping of data attributes to the two positional
axes. Each mark in the visualization represents a house data concept. Currently the x-axis is
set to encode date_sold and the y-axis is set of encode selling_price..II-24

Figure II-7: TableLens System [Rao, 1994] (borrowed from www.inxight.com)II-25
Figure II-8: Example rendering visualization techniques ..II-26

 vii

Figure II-9: Simple aggregation technique. Text encodes house_address. By using this technique
users get to select a set of house data concepts using a bounding-box and aggregate or group
them together to form an aggregate object (e.g. aggregate_obj_0). Unlike techniques in the
previous section, this aggregation method utilizes multiple transformation methods including
a graphical transform to highlight the selected objects and a data transform to summarize the
underlying data concepts of the selection. ...II-27

Figure II-10: Object definition composition for the multiple constraint dynamic query technique
shown in Figure II-4. The diagrammatic conventions and notations used in the specifications
in this chapter and the next are described in appendix A-1. ..II-28

Figure II-11: HomeFinder system [Tweedie, 1994] (borrowed from
http://infoeng.ee.ic.ac.uk/~lisat/LisaDir/att.html). There are five single-axis aligned charts
and a mark in each chart represents a house data concept. This system uses object definition
composition to integrate the object sets selected by the three sliders and the single set of radio
buttons. We then count the number of times a house appears in the combined set, and use this
count_attribute to set the color for a given house concept. ...II-29

Figure II-12: Functional specification for the HomeFinder system shown in Figure II-11.II-30
Figure II-13: Object definition composition on the object selection and dynamic query slider

technique. The resulting technique ONLY colors those objects that are selected within the
bounding-box as well as passes the constraint set on the slider...II-31

Figure II-14: Transformation composition for two different selection techniques with different
visual feedback effects. The resulting technique colors and enlarges the objects selected by
the bounding-box. ..II-31

Figure II-15: Transformation composition for the simple aggregation technique shown in Figure
II-9. Transformation composition is used here to combine a data transform for creating the
aggregate object as well as the graphical transform that highlights the objects within the
aggregate, red. ...II-32

Figure II-16: P-C composition. The computed value from the producer technique (i.e. mean
selling_price) is piped into the object definition component of the consumer technique and is
used to select other objects in the visualization based on the computed mean selling_price.II-32

Figure II-17: P-C composition applied to the modified value-painting technique. Text here encodes
house_owners. ...II-33

Figure II-18: Partition composition applied to the dynamic query slider technique. Here we use
partition composition so that we can enlarge the focus objects (i.e. the objects that pass the
slider constraint) and simultaneously contract objects in the context-set (i.e. objects that did
not pass the slider constraint). ...II-33

Figure II-19: Two different technique descriptions that achieve the same effect. Both techniques
highlight objects selected by the bounding-box or the slider, red. ..II-35

Figure II-20: The two components that form a primitive visualization technique – object definition
and transformation...II-36

Figure II-21: Range dynamic query technique. In the example visualizations above, each mark
represents a house data concept. The x and y positions of the marks corresponds to the
geographic location of their respective houses. Objects are selected here by setting constraints
using the two sliders at the bottom of the interface, which allow users to set threshold
constraints on the selling_price data attribute and the num_rooms data attribute. The red
bounding-box is then drawn so that it encapsulates all of the selected objects (i.e. all objects
that pass the slider constraints)..II-40

CHAPTER III: VISUALIZATION TECHNIQUES FRAMEWORK
A CONCRETE INSTANTIABLE DESCRIPTION.. III-50

Figure III-1: Diagrammatic representation of the five-step instantiation augmentation process for
the object highlight technique. Additions made in each step are shown in gray.............................. III-52

 viii

Figure III-2: Example visualization containing house data. Each mark represents a house data
concept. The x-axis shows the date-sold data attribute; the y-axis shows the selling-price data
attribute, and hue shows the neighborhood data attribute.. III-56

Figure III-3: Example visualization of house data. Hierarchical breakdown of graphical objects in
this visualization is shown in Figure III-4. X-axis in left-most chart shows selling-price; x-
axis in middle chart shows date-sold, shape shows neighborhood, and saturation shows
salary; text in right-most table shows house-owner. Y-axes for all three regions show house-
address data attribute... III-57

Figure III-4: Container hierarchy for visualization in Figure III-3 .. III-58
Figure III-5: Example region layout schemes (borrowed from [Chuah, 1995]) III-58
Figure III-6: House data-type to bar graphical-class mapping applied to the entire visualization.

Both chart regions within the visualization inherit this mapping relationship. The x-axis of
left chart shows selling-price; x-axis of right chart shows house-lot-size and y-axis of both
charts show house-address. ... III-61

Figure III-7: The same visualization design as Figure III-6 except that a house data-type to bar
graphical-class mapping is applied to the left region and a house data type to mark graphical-
class mapping is applied to the right region... III-62

Figure III-8: The same visualization design as Figure III-6 except that a house data-type to mark
graphical-class mapping transform is applied to particular graphical objects in the left chart
including Woodwell-6663, Ivy-704, Penham-6828, and Kipling-5454.. III-63

Figure III-9: SDM lift objects technique ... III-65
Figure III-10: SDM thin objects technique.. III-65
Figure III-11: Example of a dynamic query slider technique that allows users to select various

distributor data concepts based on the number of employees (num_people) working at each
site.. III-75

Figure III-12: Example dynamic query slider technique with selectable data attribute constraint III-76
Figure III-13: Example dynamic query slider technique with color and size feedback on the

selected objects .. III-77

CHAPTER IV: DESIGN HEURISTICS
DATA COMPUTATION VS. PERCEPTUAL MAPPING ...IV-82

Figure IV-1: Solving the airline-scheduling task fully perceptually (Casner’s solution). Each line
represents a flight with origin and destination city mapped onto the y-axis and arrival and
departure time mapped onto the x-axis. This is the best design that gets generated when
ONLY mapping operations are considered by the automatic system. I.e. this is the best
possible design from current state of the art systems... IV-83

Figure IV-2: Casner’s analysis of the perceptual procedure a user must perform with a
visualization to achieve the airline-scheduling task (Task IV-1)... IV-84

Figure IV-3: Our hybrid data transform and mapping transform design for solving airline-
scheduling task. Here only the flights that fulfill the city and meeting time constraints are
shown. Computation of the total downtime for the best flights is left to the user.
Time_before_meeting is mapped to the x-axis of the left chart and time_after_meeting is
mapped to the y-axis of the right chart. To perceptually compute the total downtime users add
the shortest bar length in the left chart with the shortest bar length in the right chart. IV-85

Figure IV-4: GOMS estimated total time for solving the airline-scheduling task using a pure
cognitive, pure mapping, and a hybrid data + mapping design.. IV-86

Figure IV-5: Visualization for finding flights with low total-downtime, low total-cost, and low
duration. Because there are trade-offs that must be made among the three attributes, this task
is best performed through perceptual perusal. ... IV-88

Figure IV-6: Interaction Framework model presented by Abowd and Beale [Abowd, 1991]. This
framework is used to measure the effectiveness of various visualization interfaces in this
work. .. IV-89

 ix

Figure IV-7: Breakdown of articulatory distance. Gray highlighted rectangles indicate the
dimensions that are taken into account in our prototype automatic presentation system
described in chapter V. .. IV-91

Figure IV-8: Input devices with different effectiveness properties ... IV-92
Figure IV-9: Breakdown of expressive distance. Gray highlighted rectangles indicate the

dimensions that are taken into account in our prototype automatic presentation system
described in chapter V. .. IV-93

Figure IV-10: Encoding house neighborhood with saturation, This encoding has low data
correctness because saturation is an ordered graphical property while neighborhood is not an
ordered data attribute. By using saturation to encode neighborhood we are falsely implying
an ordered set of neighborhood values when actually there is none.. IV-95

Figure IV-11: Breakdown of observational distance. Gray highlighted rectangles indicate the
dimensions that are taken into account in our prototype automatic presentation system
described in chapter V. .. IV-96

Figure IV-12: Graphic for determining the total benefits for associate professors by getting the
difference between total compensation (blue bar) and total salary (red bar) IV-99

Figure IV-13: Data computation design for accurately computing total benefits
for associate professors.. IV-100

Figure IV-14: Pure mapping design for accurately computing total benefits for associate
professors... IV-100

Figure IV-15: Data computation design for computing total benefits for associate professors and
full professors. In this case both total benefits have been pre-computed and are shown as
stacked
bars. ... IV-103

Figure IV-16: Pure mapping design for computing total benefits for associate professors and full
professors. In this case, we need to perform the entire task perceptually. Initially we must get
the bar differences of the first two bars (red and green) and the last two bars (blue and
purple). We must then sum up these differences to get the total benefits...................................... IV-103

Figure IV-17: Data computation design for computing average number of teaching staff per
university. In this case the average number of teaching staff has been pre-computed and the
results are shown on the x-axis. ... IV-105

Figure IV-18: Pure mapping design for computing average number of teaching staff per
university. In this case the average number of teaching staff must be perceptually estimated
by finding an average line across each cluster of bars. .. IV-105

Figure IV-19: Data computation design for computing total downtime and total cost for all pairs of
flights that fulfill our airline-scheduling criteria. Total downtime is pre-computed and
encoded on the x-axis while total cost is pre-computed and encoded as saturation. IV-107

Figure IV-20: Mapping design for computing total downtime and total cost for all pairs of flights
that fulfill our airline-scheduling criteria. Time_after_meeting is mapped on the x-axis of the
left chart, time_before_meeting is mapped on the x-axis of the right chart, and flight_price is
mapped to saturation in both charts... IV-108

Figure IV-21: Data computation design for computing total number of votes in each state and
ranking the three political parties based on the number of votes received.
Total_number_of_votes has been pre-computed and is shown on the x-axis of the left chart.
Party_ranking has also been pre-computed and is shown in the right table.................................. IV-110

Figure IV-22: Mapping design for computing total number of votes in each state and ranking the
three political parties based on the number of votes received. The
#_votes_for_Republican_party is mapped to the x-length of the red bar, the
#_votes_for_Democratic_party is mapped to the x-length of the green bar, and the
#_votes_for_Independant_party is mapped to the x-length of the purple bar. Total votes can
be derived by looking at the combined length of the stacked bar and party ranking can be
derived by comparing the three differently colored bar lengths for each state. IV-110

Figure IV-23: Data computation design for finding the best university based on out-of-state-
tuition, graduation-rate, and student-faculty-ratio. Thresholds for each condition can be
entered through the three sliders and those universities that fulfill the threshold conditions are
pre-computed and shown... IV-112

 x

Figure IV-24: Mapping design for finding the best university based on out-of-state-tuition,
graduation-rate, and student-faculty-ratio. Student-faculty-ratio is mapped to the x-axis,
graduation_rate is mapped to the y-axis, and out_of_state_tuition is mapped to saturation.
The best universities are those in the upper-left corner of the display, with low saturation. IV-112

Figure IV-25: Identical design as Figure IV-24 but applied to a larger data set. As a result there is
significantly more occlusion making it difficult for us to accurately view the saturation
values on the marks as well as read the university names. .. IV-114

CHAPTER V: IMPLEMENTATION
AUTOMATIC VISUALIZATION INTERFACE DESIGNER ... V-116

Figure V-1: Three components within AVID that correspond to the three stages in the automatic
design process: 1) Task interpretation, 2) Visualization design, and 3) Design Realization V-117

Figure V-2: Example task specification.. V-119
Figure V-3: Task argument structure.. V-121
Figure V-4: Task class structure ... V-122
Figure V-5: Flowchart of AVID search strategy. Consists of two main phases: 1) task processing

phase and 2) data attribute mapping phase ... V-124
Figure V-6: Task operators and their corresponding visualization functions ... V-125
Figure V-7: Partial search tree of house example task.. V-126
Figure V-8: Example designs generated corresponding to the 6 terminal nodes in the search tree in

Figure V-7... V-127
Figure V-9: Visualization design illustrating the different composition types. There is cluster

composition in the left chart between the labels and the marks. There is double-axis
composition in the right chart between the marks and the bars. There is single-axis alignment
between elements in the left-chart and those in the right-chart. These composition types were
first introduced by Mackinlay [Mackinlay, 1986a, 1986b]... V-131

Figure V-10: Perceptually inexpressive design of the house task in Figure V-2. This is because
date_on_market is mapped to the x-axis of the left chart and date_sold is mapped to
saturation on the left chart. This makes it difficult to compute the duration on market because
there is no perceptual operator for comparing the difference between positional and
saturation values... V-135

Figure V-11: Mapping transform designs for house search task on selling_price,
number_of_rooms and date_on_market ... V-136

Figure V-12: Design with neighborhood and selling_price mapped to integral properties (hue and
saturation). This makes combined search on both these data attributes easier because only a
single emergent property (i.e. color) needs to be attended to. .. V-139

Figure V-13: Mixed task processing methods for the AND operator in the house search task. The
date_on_market condition is pre-computed and mapped to the x-axis of the left chart, the
num_rooms condition is pre-computed and mapped to hue on the left chart, however, the
selling_price condition is performed perceptually by mapping selling_price to the x-axis on
the right chart.. V-140

Figure V-14: Using similar task processing methods for the AND task ... V-141
Figure V-15: Example graphical object class specification for interval bar grapheme V-144
Figure V-16: Visualization design with no “objectness” constraint. I.e. it is not possible to

associate which house mark in the bottom chart corresponds to which house bar in the top
chart. ... V-145

Figure V-17: Mapping costs ordered based on data attribute class and graphical property class........... V-151

 xi

APPENDIX A: APPENDIX TO FUNCTIONAL VISUALIZATION TECHNIQUES
FRAMEWORK (CHAPTER II) ... A-164

Figure A-1: Example ODT diagram for the dynamic query slider [Ahlberg, 1992] visualization
technique... A-164

Figure A-2: Highlight object selection and Dynamic query sliders.. A-165
Figure A-3: P-C composition of selection and Dynamic Query ... A-165
Figure A-4: Value painting specification.. A-165
Figure A-5: Combining the object selection and dynamic query techniques using object definition

composition .. A-166
Figure A-6: Combining the object selection and dynamic query techniques using transformation

composition .. A-166
Figure A-7: HomeFinder system specification ... A-167
Figure A-8: SDM distance operator components: distance-to attribute, point of reference, and line

of reference... A-167
Figure A-9: SDM distance operator specification .. A-168
Figure A-10: Sequence of images showing different multiplication factors being applied to the A-169
Figure A-11: Changes made to SDM and HomeFinder specifications... A-170
Figure A-12: Example house selection technique... A-172
Figure A-13: Extended HomeFinder + SDM distance technique ... A-173
Figure A-14: Effective way of placing 3 constraint points... A-173
Figure A-15: Dividing up house concepts into 3 groups based on selling_price.................................... A-174
Figure A-16: Dividing up house concepts into 3 groups using the foreach control operator A-174
Figure A-17: Partition selection.. A-175
Figure A-18: Using the switch control operator to channel the execution flow A-175

APPENDIX B: APPENDIX TO INSTANTIABLE VISUALIZATION TECHNIQUES
FRAMEWORK (CHAPTER III) .. B-178

Figure B-1: Tweedie’s description of the dynamic query and Table Lens techniquesB-179
Figure B-2: Data Flow diagram showing relationships between a visualization technique, the user

and the visualization designer..B-181
Figure B-3: Dynamic query functional specification...B-182
Figure B-4: Dynamic query specification with specific object-definition and transformation

functions ..B-182
Figure B-5: Dynamic query specification with input and output types for each object definition

and transformation function. The “?” boxes indicate areas where translation functions are
needed to convert from one argument type to another...B-182

Figure B-6: Dynamic query specification with intermediate functions for inputs and outputs (Note
that the visualization function classes are not shown in order to reduce the amount of
diagrammatic clutter)...B-183

Figure B-7: Dynamic query specification with all inputs required..B-183
Figure B-8: Adding a slider input device for specifying the threshold constraint in the dynamic

query technique..B-184
Figure B-9: Initializing the min and max properties of the slider input device added in Figure B-8.

The min and max values are derived by computing the min and max values of the house-
selling-price data attribute with data transform functions. ..B-184

Figure B-10: Alternative object definition and transformation functions for the dynamic query
slider technique..B-186

Figure B-11: Specification for the dynamic query slider technique including object definition,
transformation, as well as translation functions...B-187

Figure B-12: In this specification we change the translation functions leading into the intersect
operator so that the intersect operation is applied to data concepts instead of graphical objects
as was the case in Figure B-11. Here, only those data concepts that are both selected by the

 xii

slider and that are contained within related_visualization can be selected. Note that all the
changes made to the specification in Figure B-11 are shown in gray in Figure B-12.B-187

Figure B-13: This specification is similar to Figure B-11 except that here we have included all of
the input arguments that are required by the various functions that have yet to be provided.
Each missing argument value is indicated with a “?” symbol together with the argument type
that is required. In this example there are five missing function arguments....................................B-188

Figure B-14: Slider visualization technique with input devices ..B-189
Figure B-15: One possible instantiation specification of an aggregation technique. This technique

allows users to select a set of graphical objects using a bounding-box. It then summarizes the
underlying data concepts by using a group-objects data transform function, thereby creating a
new aggregate-data-type-1 data-type. In addition, one of the data attributes for the selected
objects is also chosen for mean summarization, and a new summary-attribute-1 is created to
store the mean values. This data attribute can then be mapped to a graphical property.B-191

Figure B-16: Instantiation specification for Visage drag-and-drop technique. This technique allows
users to pick a set of graphical objects in one visualization, and then add the underlying data
concepts of the selected objects to a different visualization. The switch and case statements
used above are to ensure that the user has indeed selected an origin set of graphical objects
and a destination visualization container. ..B-192

Figure B-17: Instantiation specification for the Table Lens semantic zoom operation . This
technique identifies the larger cells in the table (i.e. height > 20, width > 200) and adds a new
text-class mapping for those larger cells..B-193

APPENDIX C: APPENDIX TO DESIGN HEURISTICS (CHAPTER IV) C-198

Figure C-1: Cognitive design for the airline-scheduling task (Note that the flights are not all shown
here because the table is very large) ..C-198

Figure C-2: Perceptual design for the airline-scheduling task Each line represents a flight with
origin and destination city mapped onto the y-axis and arrival and departure time mapped
onto the x-axis. This is the best design that gets generated when ONLY mapping operations
are considered by the automatic system. I.e. this is the best possible design from current state
of the art systems. ..C-201

Figure C-3: Design generated when data processing operations are integrated into the automatic
visualization system. The full data set is considered here but data transforms are applied by
the automatic system to filter the data set so that only relevant flights are shown. The total
downtime before the meeting for the flights from LAX to ORD is shown on the left chart and
the total downtime after the meeting for the flights from ORD to BOS is shown on the right
chart. ..C-204

Figure C-4: Solving the airline schedule task with input devices. Here we assume that some of the
airline-scheduling task constraints are unknown (i.e. the layover-city is not known and the
beginning and ending meeting times are also not known). These constraints can be entered
into the system through sliders and option-buttons. ..C-205

Figure C-5: Design alternative for airline-scheduling task where flights are filtered based on
origin, destination, and layover city information. Arrival and departure times are shown
however to allow flexibility in our task meeting time constraint. Flight_arrival_time is
mapped to the x-axis of the left chart and flight_departure_time is mapped to the x-axis of the
right chart...C-206

Figure C-6: Solving the airline-scheduling task where all searches as well as the total-downtime
computations are performed with data transform techniques. Total_downtime is pre-
computed and mapped to the x-axis. Note that in this design there are many more graphical
elements than the other airline-scheduling task designs because all possible pairs of flights
must be considered and shown. [Note: the indented labels for this design was manually
generated] ..C-207

Figure C-7: This diagram shows how data analysis tasks can be broken down into perceptual
operators (mapping transforms) and system computation operators (data transforms) and how

 xiii

these operators ultimately combine to produce a visualization design (external
representation). ..C-208

Figure C-8: Increasing trend..C-212
Figure C-9: Design solutions for total cost computation task (Task C-2). ..C-219
Figure C-10: Encoding the same data as Figure C-9 but with bars instead of textC-219
Figure C-11: Computing the difference between out-of-state-tuition and room-&-board-costsC-221
Figure C-12: Computing the ratio between out-of-state-tuition-costs and room-&-board-costs.............C-222
Figure C-13: Design solutions for expanded total cost computation task (Task C-4)C-223
Figure C-14: Design solutions for expanded find task (Task C-5) ..C-224
Figure C-15: Data computation design for Task C-6 In this design the automatic design system is

able to utilize the embedding structure of the task to filter the design so that only those
universities with in-state-tuition less than room-&-board-costs are shown. This cuts down on
the number of elements that have to be shown significantly, producing a more easily
interpretable display. In-state-tuition values are then shown on the x-axis of the bar chart.C-226

Figure C-16: Design solutions for find task in Task C-7...C-228
Figure C-17: Design alternatives for Task C-8..C-229
Figure C-18: Finding universities where the department with the most faculty is also the

department with the most funding. The two mapping alternatives are less effective compared
to the data computation solution because in both the mapping designs the find task may not
be fully pre-attentive while in the data computation design it is very easy to identify the
universities with the same top faculty and funding departments. In addition, this information
is very well integrated into the design without increasing complexity by much.C-232

Figure C-19: Mapping design where out-of-state-tuition-cost is mapped to the blue bar x-lengths
and room-&-board-cost is mapped to the red bar x-lengths for a set of universities. In the data
set with Rich-University there are severe dwarfing problems on the bar lengths making it
difficult to accurately estimate cost values. ...C-234

Figure C-20: Same data set as Figure C-19 but showing the pre-processed difference values
between out-of-state-tuition-cost and room-&-board-cost instead of the original cost figures.
Note that in this case it does not matter whether Rich-university is included or not, the
difference distributions of the two data sets are comparable. I.e. the dwarfing problem is no
longer an issue in the data transform design. ...C-235

Figure C-21: Data computation design for car purchasing task A (Task C-10) The top cars are
shown for each car picking category. While this design is very simple and easy to interpret it
does not allow us to flexibly take all four car picking attributes into account simultaneously........C-238

Figure C-22: Designs for car purchasing task B (Task C-11). Design (b) is more effective than
design (a) because in design (b) it is easy to lookup the score sums and in addition, the
individual scores are also given so that we may examine each criteria separately.C-239

Figure C-23: Data computation design for car purchasing task 3 In this design users get the
flexibility to enter in filtering thresholds for each of the four car picking attributes through
slider input devices. The system then pre-computes all cars that fulfill those threshold
conditions and then only displays those cars. This produces a much cleaner and effective
design compared to the previous designs in Figure C-22. In addition, in this interface the user
may weigh each of the four car picking attributes differently (e.g. place more importance on
horsepower and less on price) by setting more or less stringent thresholds. In Figure C-22,
each of the four car picking attributes are weighed equally and users are not given the ability
to alter this weighting. ...C-241

Figure C-24: Mapping design-1 for car purchasing task 3 Mapping design that shows the original
four stock picking attributes to the user. Engine-size is mapped to the x-axis of the left chart
and min-price is mapped to the saturation; city-mpg is mapped to the x-axis of the right chart
and horsepower is mapped to saturation. Desirable cars are those with long (large engine-
size), unsaturated (low min-price) bars in the left chart and short (low city-mpg), saturated
(high horsepower) bars in the right chart. This design is significantly more complex in terms
of number of elements and difficulty of interpretation compared to Figure C-23. In addition
the saturation encodings does not allow for accurate value lookups or comparisonsC-243

Figure C-25: Mapping design-2 for car purchasing task 3 Mapping design that shows the original
four stock picking attributes to the user. min-price is mapped to the x-axis of chart 1 (left-

 xiv

most chart), city-mpg is mapped to the x-axis of chart 2, engine-size is mapped to the x-axis
of chart 3, and horsepower is mapped to the x-axis of chart 4 (right-most chart). Desirable
cars are those with short bars in chart 1 (low min-price), short bars in chart 2 (low city-mpg),
long bars in chart 3 (large engine-size), and long bars in chart 4 (high horsepower). This
design is more accurate than Figure C-24 because all values are encoded on the x-axis (i.e. no
saturation values are used). However this design is also less integrated and requires
significantly more eye movement, display space, and display navigation.......................................C-244

APPENDIX D: APPENDIX TO IMPLEMENTATION (CHAPTER V) D-246

Figure D-1: An example pair of visualizations that match based on both structure and content.
Structurally both designs have two charts, one of which is a bar chart and the other a
scatterplot. In terms of content, both designs contain the same data attributes (object-name,
selling_price, neighborhood, owner_salary) and graphical property classes (2 positionals,
and 2 retinals)... D-246

Figure D-2: Connecting all visualization functions within a node state from innermost task to
outermost .. D-247

Figure D-3: Making task class modifications depending on whether we want to show the find task
results either through object filtering or by mapping its results to a graphical property................. D-248

Figure D-4: Adding in any necessary translation functions.. D-249
Figure D-5: Adding in input arguments to the visualization functions... D-250
Figure D-6: Initialization functions for the slider input device... D-251
Figure D-7: Visualization graphical objects and their corresponding Inventor nodes............................ D-252
Figure D-8: Inventor scene graph of visual structure design .. D-254
Figure D-9: Single axis visualization design with and without realizer layout algorithm D-255
Figure D-10: Non-unique positional visualization design with and without realizer layout

algorithm... D-255
Figure D-11: An example description of a visualization function.. D-256
Figure D-12: An example description of a connector... D-257
Figure D-13: An example description of an input device... D-258
Figure D-14: An example description of a composite visualization function... D-258
Figure D-15: Functional specification editor.. D-260

APPENDIX E: USING GOMS TO EVALUATE OUR AUTOMATIC DESIGN SYSTEM......... E-262

Figure E-1: Representing search results using text labels with “Y” or “N”. Such results can be pre-
attentively searched on through pattern matching. ..E-284

Figure E-2: Representing search results using text labels with “distinguish” or “don’t_distinguish”.
Such results can be pre-attentively searched on through length matching.......................................E-284

Figure E-3: GOMS estimated total time for Task 1 (search task). The designs are ordered based on
increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All
pink bars indicate pure mapping designs (i.e. designs that can be generated with current state
of the art automatic design research). All other bars are designs made possible by work
outlined in this
thesis. ...E-285

Figure E-4: GOMS estimated total time for Task 2 (computation task). The designs are ordered
based on increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in
msec. All pink bars indicate pure mapping designs (i.e. designs that can be generated with
current state of the art automatic design research). All other bars are designs made possible
by work outlined in this
thesis. ...E-311

Figure E-5: Hybrid design where total benefits are pre-computed for full and associate professors
(left chart) but not for assistance professors (right chart) ..E-312

 xv

Figure E-6: Hybrid design where total benefits are pre-computed for only full professors (left
chart) and the computation for associate and assistance professors (right chart) as well as the
final summation task must be performed perceptually. ...E-313

Figure E-7: GOMS estimated total time for Task 3 (comparison task). The designs are ordered
based on increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in
msec. All pink bars indicate pure mapping designs (i.e. designs that can be generated with
current state of the art automatic design research). All other bars are designs made possible
by work outlined in this
thesis. ...E-335

Figure E-8: List of universities ranked based on their computed total-benefit values.............................E-337
Figure E-9: Visualization design where the total benefit values are sorted and the sorted rankings

are mapped to x-position... 338
Figure E-10: Visualization where the total benefit values are mapped to bar x-lengths 338
Figure E-11: Visualization where the universities are ordered on the y-axis based on total-benefits

and in addition the total-benefit values are mapped to bar-lengths. ... 339
Figure E-12: Visualization where the universities are ordered on the y-axis based on total-benefits

and in addition the total-benefit values are mapped to text labels. ... 339

APPENDIX F: ENHANCING READABILITY WITH GRAPHICAL & RENDERING
TRANSFORMS ...F-343

Figure F-1: Augmented search algorithm for our automatic design system AVID. Additional steps
take into account readability issues and how to solve them... F-357

 xvi

LIST OF TABLES

CHAPTER II: VISUALIZATION TECHNIQUES FRAMEWORK
A FUNCTIONAL DESCRIPTION... II-17

Table II-1: Summarization of composition types ..II-34
Table II-2: Data visualization techniques ..II-38
Table II-3: Goal categories of data visualization techniques...II-39
Table II-4: Mapping visualization techniques ...II-41
Table II-5: Goal categories of mapping visualization techniques..II-42
Table II-6: Graphical visualization techniques ..II-44
Table II-7: Goal categories of graphical visualization techniques...II-45
Table II-8: Rendering visualization techniques ...II-46
Table II-9: Goal categories of rendering visualization techniques ..II-47

CHAPTER III: VISUALIZATION TECHNIQUES FRAMEWORK
A CONCRETE INSTANTIABLE DESCRIPTION.. III-50

Table III-1: List of object definition functions .. III-59
Table III-2: List of mapping transformation functions .. III-61
Table III-3: List of data and graphical transformation functions... III-67
Table III-4: Input and output translation functions.. III-70
Table III-5: Input-device Query functions... III-72

CHAPTER IV: DESIGN HEURISTICS
DATA COMPUTATION VS. PERCEPTUAL MAPPING ...IV-82

Table IV-1: Semantic distance for computing the total benefits for associate professors IV-101
Table IV-2: Semantic distances for total benefits task (Task IV-2)... IV-104
Table IV-3: Semantic distance for finding average number of teaching staff for a set of universities.. IV-105
Table IV-4: Semantic distance for an airline-scheduling task which balances total downtime and

total cost... IV-109
Table IV-5: Semantic distance for finding the total and individual sales .. IV-111
Table IV-6: Semantic distance for finding a house based on price, size, and distance to workplace IV-113

CHAPTER V: IMPLEMENTATION
AUTOMATIC VISUALIZATION INTERFACE DESIGNER ... V-116

Table V-1: Task inputs and outputs...120
Table V-2: Summary of actions taken based on task output and embedding status129
Table V-3: How Information amplifies cognition (from Card et al.[Card, 1999])......................................133
Table V-4: Data transform constraints for each task class...142
Table V-5: Mapping design constraints for each task class...143
Table V-6: Input devices considered in AVID with their cost properties (* indicate no constraints on an

input device property)..147

APPENDIX C: APPENDIX TO DESIGN HEURISTICS (CHAPTER IV) C-198

Table C-1: Tasks and their input and output arguments ... C-209

 xvii

APPENDIX E: USING GOMS TO EVALUATE OUR AUTOMATIC DESIGN SYSTEM......... E-262

Table E-1: Summary of all GOMS operators used in the evaluation sequences listed in this
appendix ..E-264

APPENDIX F: ENHANCING READABILITY WITH GRAPHICAL & RENDERING
TRANSFORMS .. F-343

Table F-1: Expressiveness and effectiveness of graphical and rendering transforms with respect to
readability. + : Readability issue is supported reasonable well; - : Readability issue is not
supported well; “empty” : Readability issue is not supported;* indicates the transparency
property only.. F-349

 xviii

LIST OF TASKS

CHAPTER IV: DESIGN HEURISTICS
DATA COMPUTATION VS. PERCEPTUAL MAPPING ...IV-82

Task IV-1: Airline-scheduling task. The user is trying to find flights to enable a meeting to be held
in a layover airport en-route to a destination and to minimize time spent at the layover airport
before and after the meeting. ... IV-82

Task IV-2: Task for determining the total benefits given out to full professors and associate
professors... IV-102

APPENDIX C: APPENDIX TO DESIGN HEURISTICS (CHAPTER IV) C-198

Task C-1: Subtask extracted from Casner’s airline-scheduling task [Casner, 1991]C-214
Task C-2: Computing the total cost for attending a university ..C-218
Task C-3: Change in task operator from addition to difference...C-220
Task C-4: Expanded university total-cost task ..C-223
Task C-5: Expanded tuition-cost and room-&-board-cost find task..C-224
Task C-6: Change in task embedding structure from Task C-5 (Note that we represent the

university set with { … } here to make the task specification easier to read. However, the data
set used is the same as all previous examples in this section)..C-226

Task C-7: Find task with a constant argument...C-227
Task C-8: Find task with an unknown task argument..C-229
Task C-9: Finding the most prosperous department in each university based on funding and

faculty size...C-231
Task C-10: Car purchasing task A...C-237
Task C-11: Car purchasing task B (Note that in this task specification we assume that the min and

max values for each data attribute have been pre-calculated)..C-238
Task C-12: Car purchasing task C...C-241

APPENDIX E: USING GOMS TO EVALUATE OUR AUTOMATIC DESIGN SYSTEM......... E-262

Task E-1: Search for universities based on the average SAT and ACT scores of attending students
as well as graduation rates. ..E-265

Task E-2: View the total benefits given to faculty for a set of universities. ..E-287
Task E-3: Sort a set of universities by their total benefits ...E-314

 I-1

Chapter I: Introduction

�
����$XWRPDWLF�9LVXDOL]DWLRQ�'HVLJQ�

Automatic visualization systems have two primary goals: 1) to improve communication between the

computer system and users both in terms of effectiveness and breadth and 2) to serve as a design assistant

and help facilitate the creation of graphics for information presentation and analysis. To support the more

complex and heavy demands that are made of information analysis systems today it is necessary to expand

the effectiveness and flexibility with which computers can communicate with users. The range of tasks,

data, media types and user preferences that these information systems must accommodate make it

unfeasible to anticipate every possible output scenario. I.e. it is impossible to custom design graphics and

interfaces here because there are too many possible output alternatives. Automatic visualization systems

enable the flexible generation of information presentation graphics that are crafted on a case by case basis

to suit the wide range of communication goals that may arise. Design rules and theories of cognition and

perception are applied within these automatic systems to ensure the effectiveness and correctness of the

graphics generated. Automatic visualization systems can also help users create and design graphic

presentations. The SageBrush and SageBook interfaces [Roth, 1994] show that automatic visualization

research can be applied to help users complete partial designs or browse and adapt existing designs to show

new data. This helps users with the more straightforward design operations, leaving them free to quickly

explore many more design alternatives. It is important to stress that work in automatic visualization design

is not meant to remove the “human” aspect from design and neither is its goal to design a “better” graphic

than human designers. Instead, the power of automatic visualization systems is derived from the

cooperative process between user and automatic system. The advantage of such systems as a design tool is

that it can quickly generate a large range of possible design solutions and show them to the user who can

then decide between similarly effective designs based on their preferences. In this way an automatic design

system can aid a designer or less experienced user in creating graphics by performing the more mundane

and simple visualization design tasks as well as give design suggestions that are based on compiled

knowledge from graphic design and perceptual theory. Ultimately, the synergy between the user and the

expert design system will be able to generate good designs more effectively and easily.

Previous research in automatic visualization design [Mackinlay, 1986a, 1986b; Casner 1991; Roth

1994] focussed on developing rules for mapping data to graphical elements effectively so that the generated

designs support the desired user task(s) and can be clearly and correctly interpreted. However mapping data

to graphics is only one step in the visualization creation process. Before we map data to graphical

 I-2

representations it is commonly effective to first process the data either by summarizing, computing, or

culling out less relevant elements. By first massaging the data to a more appropriate form before

presentation, we can construct more effective graphical designs for expressing user goals. This thesis

expands the automatic design process to include these pre-processing data operations. This expansion

allows a significant improvement over previous automatic design systems because it enables us to:

1. Generate more effective designs.

2. Address a larger range of tasks.

3. Produce a larger range of interesting design alternatives.

4. Usefully integrate input-devices into the design process.

1. Generate more effective designs

The advantages of this work can be quickly seen in the following airline reservation task that was

used in a previous automatic visualization system [Casner, 1991]. In this task the user is interested in

finding flights from Los Angeles to Boston with a layover in Chicago where they will be a meeting from 2

p.m. to 4 p.m.. The user would like to schedule the flights such that the total downtime in Chicago before

and after the meeting is relatively small.

…

Figure I-1: Cognitive design for the airline-scheduling task
(Note that the flights are not all shown here because the table is very large)

Performing this task cognitively using the raw data arranged in a table format (Figure I-1) would take

up to approximately 4 minutes (based on a GOMS evaluation of the visualization). Previous automatic

systems explored how this cognitive design can be appropriately mapped to graphics (Figure I-2), which

 I-3

lowers the total task time to only 30 seconds (assuming no occlusion). In our work we allow automatic

preprocessing of data before presentation and the design generated by our system allows the task to be

quickly solved in 3 seconds (Figure I-3). A summary of the GOMS estimated time for all three designs is

shown in Figure I-4. We briefly describe the perceptual and cognitive steps for these displays in section I-

2. The detailed GOMS sequences for these three visualizations can also be found in appendix C-1.

(a) Full data set

This visualization shows all the elements in the
data set (i.e. all 135 flights).

(b) Truncated data set.

This example visualization shows the ideal case
where there is little occlusion among the different

flight lines. This data set was chosen so that it
contains some flights that fulfill the task

constraints as well as some other random flights
that do not occlude one another.

Figure I-2: Perceptual design for the airline-scheduling task
Each line represents a flight with origin and destination city mapped onto the y-axis and arrival and departure
time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping operations are
considered by the automatic system. I.e. this is the best possible design from current state of the art systems.

 I-4

Figure I-3: Design generated when data processing operations are integrated into the automatic visualization
system. The full data set is considered here but data transforms are applied by the automatic system to filter the
data set so that only relevant flights are shown. The total downtime before the meeting for the flights from LAX
to ORD is shown on the left chart and the total downtime after the meeting for the flights from ORD to BOS is

shown on the right chart.

0

50000

100000

150000

200000

250000

No automatic design
system

Previous automatic
design solution

Our automatic design
solution

T
o

ta
l G

O
M

S
 e

st
im

at
ed

 t
as

k
co

m
p

le
ti

o
n

 t
im

e
(i

n
 m

se
c)

Figure I-4: GOMS estimated total time for solving the airline-scheduling task for a data set of 135 flights.
Detailed GOMS sequences for each design are presented in appendix C-1.

2. Address a larger range of tasks

Adding data processing functions into the automatic design process also allows us to address a larger

range of tasks than was possible with previous systems. Some tasks do not have a purely perceptual

solution, including processing of large data sets, abstract mathematical operations (e.g. log, exp) or

complex calculations that contain multiple related mathematical operations (e.g. (a+b) / (c+d)). In this

thesis we enable automatic design systems to deal with these problems by automatically computing the

 I-5

tasks fully or partially so that users are presented with combined computation (data transforms) and

perceptual (mapping transforms) solutions. Note that while it is possible to always compute a task fully

before conveying it to the automatic designer it is also undesirable and restrictive to do so. As we will show

in chapter IV, pre-computing entire tasks may severely constrain the flexibility of users and may not

produce the most effective design solution. To generate “good” design solutions we must integrate data

processing with mapping decisions because design decisions made in the data processing phase affects the

mapping phase and vice versa. And just as we cannot anticipate all combinations of data and information

analysis tasks that may be demanded by users, we cannot anticipate all combinations of data processing and

mapping operations that are appropriate and useful in our designs.

3. Produce a larger range of interesting alternative designs

Expanding automatic design to include data processing operations also allows us to generate a larger

range of interesting alternative designs compared to previous systems. Designs generated may be purely

perceptual, purely computed, or hybrid computed and perceptual designs. This larger range of choices is

important because the data analysis process is an iterative process where users first construct mental models

of their current tasks and based on these mental models, pose design requests to an automatic system.

Depending on the results of the design request, users may then update their mental models and then repeat

the process. The ability of users to arrive at useful answer(s) to their data analysis problems depends on the

range and quality of design solutions returned by the automatic system as this will facilitate the next

iterative cycle. The wider range of design alternatives provided by our system enable users to better match

design solutions to their data analysis goals as well as personal preferences.

4. Usefully integrate the application of input-devices into the design process

Input-devices are very effective for allowing end-users to flexibly change a visualization design

interactively. This allows large data spaces to be represented because we can interactively focus in on

different subsets of data elements at different times. Previous automatic systems did not consider the use of

input-devices. This is primarily because these systems always showed all of the available data (i.e. there

was no data summarization, computation, or culling). As a result there was no need for users to navigate

through the visual representation by using input-devices. Unfortunately, the lack of interactivity and data

summarization operations also constrained these systems so that they can only address problems with

relatively small data sets (< 20 elements). This was clearly illustrated in Figure I-2b where showing the

entire data set of 135 flights produced a visual display that was too occluded to be of any use. In this thesis

we add input-devices and data transforms into the automatic design process so that our system can deal

with larger data sets (> 100 elements) through data culling, summarization, and interactivity.

 I-6

To integrate data processing functions into automatic design we develop three core technologies in this

thesis:

1. Methods: We develop a way to characterize data and mapping functions within a visualization design,

how these methods may be combined with each other, with the output media and with available input-

devices.

2. Principles: We also develop a set of design dimensions and strategies that can help us gauge the

quality of different design alternatives. These dimensions and strategies determine when and how data

and mapping methods should be used based on user tasks, data, and preferences.

3. Systems: We show that the methods and principles developed are complete and applicable by using

them to implement an automatic visualization design system. We then evaluate the system through a

series of GOMS analyses to show that the results generated by our prototype designer are correct (i.e.

they support the input tasks) and are ordered based on cognitive, perceptual, and motoric complexity.

I.e., the most effective or least complex design is generated first and the most complex design is

generated last.

I-1 Methods: Visualization Techniques Framework

In this thesis we develop a framework that characterizes the function and structure of visualization

techniques that are used to create and modify visual designs. This framework provides our automatic

design system with the necessary constructs to build visualization interfaces that may contain data

processing functions, mapping functions, as well as input-devices.

Each visualization technique within our framework is defined to have a selection component and a

transformation component. Selection can be achieved through enumeration or through a constraint function

(functional description). Transformation can be achieved using the four different functions within the

visualization creation process shown in Figure I-5. To build richer visualization techniques, we can

combine multiple techniques together through a set of composition functions.

Graphical Scene Output
Media

Data
Transforms

Graphical
Transforms

Rendering
Transforms

Mapping
Transforms

Data Set

1st Qtr 2nd Qtr
East 20.4 27.4
West 30.6 38.6
North 45.9 46.9

Figure I-5: The four phases of the visualization creation process

 I-7

The visualization creation process consists of four primary phases: data, mapping, graphical, and

rendering. Initially in the data phase the task data is processed and a portion of it is chosen for subsequent

mapping. In the mapping phase the chosen data elements from the previous phase are mapped onto

graphical properties (e.g. color, position, shape) and graphical objects (e.g. marks, bars, lines). In the

graphical phase, the graphical scene constructed from data mapping is further processed to accommodate

changes that may not be reflected in the data set. For example objects in dense areas may be made smaller

to avoid occlusion. Finally in the rendering phase the graphical scene is transferred onto an output media.

There are currently many different media types available (e.g. PalmPilot™, CRT screens, image projection

screens) with different constraints on visualization size, number of colors, resolution, mobility, etc. All

these constraints affect the way with which the visualization design may be displayed and explored.

Previous automatic design systems only considered the use of mapping functions. In this thesis we

expand automatic visualization design to include both data and mapping functions. Even though our

automatic design system only uses functions from the data and mapping phases we decided to lay out all

four transformation classes in Figure I-5 in our framework because it helps us better understand the roles

that data and mapping functions can play in the design process, it allows graphical and rendering functions

to be easily integrated into the automatic design process in the future, and it increases the applicability of

our framework, allowing us to categorize and analyze current visualization systems and techniques.

Below we show how a very simple visualization technique can be specified based on the primitives

and composition rules in our framework. The technique is a simple highlighting technique that allows users

to select a set of objects using a bounding-box and then subsequently highlights the selected objects red.

Get values

Selected
objects Color

AssignGet values

Red

Bounding-box

Input-
device Graphical

object set
Graphical
value set

Graphical
value

Graphical
property

Input-device
property

Figure I-6: Highlight technique specification. The input-device bounding-box is used to select a set of objects.
These objects (selected-objects) are extracted from the bounding-box device using the get-values function. We

then get the color values from all of the selected objects using a subsequent get-values function. Finally we
change all of the color graphical values to red using the assign function.

All function primitives are shown with normal Times-Roman font within rectangles and all inputs to

the primitive functions are shown as italicized bold text within ovals. Inputs provided by users are shown

with dotted ovals and those provided as designer defaults are shown with regular unbroken ovals. The

directed arrows (Å) connecting one primitive function to another indicate a flow of objects or values from

 I-8

a source function to a destination function. The italicized bold labels next to the connecting links indicate

the types of objects or values that are being passed through that link.

Aside from being a crucial component to our automatic design system, this framework also provides

multiple other contributions to the field:

1. Prototype and Tailor Visualization Interfaces

Our framework helps designers prototype and tailor visualization interfaces. For example, a

visualization designer can very easily adjust the technique in Figure I-6 so that it highlights objects blue

instead of red by changing the oval marked red to blue. Alternatively we can let end-users specify the

highlight color through an input-device by replacing the oval marked red with an input-device. The high-

level visualization techniques description language provided by our framework enables designers to create

and adjust visualization techniques without resorting to writing code.

We show more examples of our visualization techniques language and how they can be created and

varied in chapters II and III. For now however, it is important to stress that this visualization language is

not meant for end-use. A user-friendly interface should be built on top of the specification language before

it can be readily accessed by end users. For example the SAGE system [Roth, 1994] has an underlying

language for describing the data and graphical elements within a visualization as well as the mapping

relationships among them. However it is also attached to a graphical user interface, SageBrush, that

provides end users with simple drag and drop techniques for utilizing this language. The same situation

applies for the data, mapping, graphical, and rendering functions considered in this work. A friendlier

interface is needed for end-users but this interface must be based on an underlying language that captures

the functionality and structure of visualization techniques. Our framework can serve as this basis.

2. New Two-level Design Methodology

Our framework also presents a new design methodology for creating visualization techniques. This

methodology divides the design process into two different levels of abstraction: a functional level, and an

instantiation level. At the functional level designers focus on providing users with the proper operations to

serve their current goals. I.e. focus is on choosing appropriate functions from each of the four visualization

phases and combining these functions. The instantiation level, on the other hand, is more concerned with

the general appearance and usage of the visualization technique. At this level focus is on choosing

appropriate devices for input entry, choosing effective graphical attributes for visual feedback, as well as

general layout of the visualization interface. This division helps designers separate the two different aspects

of visualization techniques, function and form, so as to decrease the likelihood of falsely constraining

functionality based on appearance concerns. This two level methodology is an advance over previous work

 I-9

that only considers either the functional [Tweedie, 1997; Card, 1999] or instantiation [Brodlie, 1991] levels

in isolation.

3. Exploration of the Visualization Techniques Design Space

Finally the framework helps to scope out a large part of the visualization techniques design space, and

allows for more systematic exploration within that space. We show at the end of chapter II the space of

current visualization techniques and how they may be combined to form new methods. A description of the

current space of techniques is important because it shows us the areas we have explored and points to new

and future areas of exploration. For example we found that most visualization techniques that are used to

search for data objects utilize simple feedback methods to show their results. Feedback for these techniques

usually involve changing a single graphical property (e.g. color) to different constants (e.g. red). Thus one

new area of exploration could be in developing useful object search techniques with richer feedback

methods that change multiple graphical properties simultaneously in meaningful ways.

I-2 Principles: Design Dimensions and Strategies for

Measuring the Goodness of Visualization Designs

The visualization techniques framework described in the previous section provides an automatic design

system with the proper language for expressing a wide variety of visualization designs. However there are

many possible different alternative designs that fulfill a particular data analysis task. For example, the

airline-scheduling task presented earlier can be solved using any of the three alternative designs shown in

Figure I-1, Figure I-2 and Figure I-3. Thus in addition to a visualization techniques language, an automatic

system must also be equipped with design rules and strategies that help guide it down more promising

design paths and prevent it from generating ineffective designs. For this purpose we develop a set of design

dimensions for measuring the goodness of different design alternatives as well as a set of design strategies

that help our system first generate designs that are deemed more effective based on our design dimensions.

Our design dimensions are built upon previous work by Abowd and Beale for measuring the

effectiveness of user interfaces. This framework calculates the overall “goodness” of a visualization design

or its “semantic distance” by using four distances: articulatory distance, functional distance, expressive

distance, and observational distance. Semantic distance refers to the degree with which user goals are

fulfilled by the visualization. A large semantic distance means that the goals are not achieved well and a

small semantic distance means that the goals have been satisfied acceptably. Articulatory distance

measures the amount of input-device manipulation required from users. Functional distance refers to

whether the system possesses software functions or procedures capable of achieving user tasks. Expressive

 I-10

distance determines whether sufficient feedback or information is provided to users to solve the input tasks.

Finally, observational distance refers to the ease with which a user can interpret system feedback.

Specifically, observational distance measures the effectiveness of the visual objects, visual properties, and

visual compositions used to fulfill the input analysis tasks. Based on these dimensions we develop a set of

design strategies that help minimize the overall semantic distance of a visualization.

 The data processing operations added by this work can improve the semantic distance of a

visualization design by offloading difficult cognitive operations onto the computer system in addition to

offloading them onto the user’s perceptual system with mapping transforms as was done previously. For

example consider the airline-scheduling task presented at the start of this chapter. The pure mapping design

(Figure I-2) encodes each flight with a line graphical object. The origin and destination cities are mapped

to the y-axis and the arrival and departure times are mapped to the x-axis. To perform the task, users must

first search for all lines that originate from Los Angeles (LAX) and flies to Chicago (ORD) as well as

originate from Chicago (ORD) and flies to Boston (BOS). Next the set must also be narrowed down to only

those flights that arrive before the 2 p.m. meeting time in Chicago and leaves after 4 p.m. (i.e. end-point of

LAX-ORD flight is to the left of 2 p.m. on the x-axis and starting-point of ORD-BOS flight is to the right of

4 p.m.). In contrast, Figure I-3 uses data transforms to offload these cognitive search tasks to the computer

system instead of to the perceptual system. Specifically, the computer system performs the city and time

search and only presents those flights that fulfill both the city and time constraints in the task. As a result

the design is less cluttered and easier to interpret compared to the pure mapping design (Figure I-2).

However, a significant portion of the information from the original data set has been filtered out in

Figure I-3 so that if we changed our meeting time or our meeting venue the data transform design would no

longer be usable and we would have to generate a new visualization. In contrast the pure mapping design

(Figure I-2) is more flexible and can better accommodate changes in user goals (i.e. the mapping design can

still be used to solve the modified scheduling task). Thus depending on the demands of current tasks, an

automatic design system may choose to apply different blends of data and mapping transforms. In chapter

III we explore these issues and develop design strategies that can help our automatic system decide when it

is more appropriate to use data transforms to offload a task onto the computer system and when it is more

appropriate to use mapping transforms to offload a task onto the user’s perceptual system.

In appendix F we outline how graphical and rendering functions can also be integrated into automatic

design in the future. Specifically, graphical and rendering functions improve the semantic distance of a

visualization design by addressing readability issues. By readability we mean problems arising from

constraints of the output media and its interactions with our perceptual system that impede the optimal use

of a visual design (e.g. object occlusion). It is crucial to address these readability issues because they may

cause an otherwise valid design to become unusable because of extreme clutter, or overly small graphical

 I-11

representations. In appendix F we identify four important readability issues: occlusion, density, dwarfing

and information proximity and discuss how these issues can be addressed through the use of graphical and

rendering functions. Readability problems can sometimes also be avoided through judicious use of data

transform functions or by mapping the data to a larger graphical representation. We discuss some of these

data and mapping readability enhancements in chapter IV. Previous automatic systems did not consider

readability issues because it is difficult to address these issues with only mapping transform functions..

I-3 Systems: AVID – Automatic Visualization Interface

Designer

Finally to show that our theoretical concepts are sound, practical, and sufficiently complete, we

implement an automatic design system, called AVID, based on our framework as well as our design

dimensions and strategies. AVID accepts a task specification like the one shown in Figure I-7 as input.

Based on this task specification it will generate a series of design alternatives ranked based on their

effectiveness with respect to the input task(s).

Phase 1: Task interpretation

Phase 2: Visualization design

Visual structure design Functional design

Visualization interface

Phase 3: Design Realization

Functional
Realizer

Visual
Structure
Realizer

Task language:
(setf set1 (Find ‘(RELATIONSHIP . <)

 (Lookup `(OBJECT . NIL) ‘(VALUE . house_price))
 `(VALUE . 100k)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup (set1 `(VALUE . date_on_market))
(Lookup (set1 `(VALUE . date_sold)))

Task object and
task argument structures

Figure I-7: Three components within AVID

 I-12

AVID, consists of three components corresponding to the three stages of the automatic design process

(Figure I-7):

1. The task interpretation phase

Initially, a higher level agent (user or a domain specific system) that has a deeper understanding of the

problem domain generates a set of tasks for AVID. Tasks are expressed using a simple language based on

the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tuket, 1977] and later refined

by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purpose is to

capture important components of a task that may affect the visual design process. We do not expect typical

end users to specify tasks in this language; rather, specifications will most likely be generated by domain

specific systems that use graphics to present and summarize their results to users, such as automatic

planning systems, automatic information analysis systems, agent based information gatherers, etc. The task

interpreter within AVID evaluates the input task language and generates a set of task objects and argument

structures.

2. The design phase

 AVID’s design component parses the task objects and argument structures generated from the task

interpretation phase and converts them to design constraints and cost preferences. These design constraints

and cost preferences are generated based on the design dimensions and strategies we discussed in section I-

2 (detailed descriptions are in chapter IV). Based on these constraints, AVID explores the design space for

the input tasks and automatically generates a set of visualizations ordered from best to worst. These output

designs are expressed in a language that captures the visual structure of a visualization interface as well as

any underlying transform functions and active interactive components. Visual structure descriptions have

been developed in previous work [Mackinlay 1986a, 1986b; Roth, 1990]. As was discussed in section I-1,

this thesis develops a language for capturing the functions and active components within a visualization

(detailed descriptions are in chapters II and III).

3. The realization phase

AVID’s "realizer" component interprets design specifications generated by the design component and

renders an active visualization interface. This component makes layout decisions and assigns default values

to visual components that are left unspecified or unconstrained in the design specifications. Currently,

AVID’s realizer is capable of interpreting most of the visualization technique primitives described in this

thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can

generate a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple

semantic zoom, SDM graphical manipulation operations, navigation operations, etc.

In chapter V we provide details on how our visualization techniques framework as well as design

dimensions and strategies are codified within our automatic design system, AVID, and how the design

search space is explored. In appendix E we perform a series of GOMS evaluations on the designs generated

 I-13

by our automatic system to ensure that its design rankings conform to cognitive, perceptual, and motoric

complexity.

I-4 Previous Work

This thesis builds upon a wide variety of previous work. In the following sections we divide work related to

this thesis into two classes: 1) work that pertains to the visualization techniques framework, and 2) work

that pertains to automatic visualization design (including design dimensions and strategies, as well as

system implementations).

I-4.1 Visualization Techniques Framework

There are two classes of visualization frameworks: functional frameworks and instantiation

frameworks. Some example functional frameworks include Tweedie’s DIVA research [Tweedie, 1997] and

Card et al’s framework [Card, 1997, 1999]. These frameworks are high-level and are used to analyze and

classify existing techniques based on task, data, functionality, etc. Instantiation frameworks such as Data

Explorer, IRIS Explorer, and AVS [Brodlie, 1991], on the other hand, establishes a concrete language for

describing visualization techniques. Instantiation languages are very detailed and describe visualization

techniques completely. Because they are much lower-level compared to functional languages, they are also

less appropriate for the analyses and classification of techniques. However, instantiation descriptions,

unlike functional descriptions, are realizable or renderable (i.e. these descriptions can be easily translated

into an active visualization interface). Our framework differs from all previous frameworks because it

encapsulates both the functional and instantiation levels of descriptions. In appendix B-1 we compare our

framework to previous work.

The design of our framework is based on previous work in visual specification languages [Jacob,

1986], user interface languages [Foley, 1990; Card, 1990; Mackinlay, 1990] and visualization frameworks

[Card, 1997, 1999].

I-4.2 Automatic Visualization Design

There are hundreds of rules that graphic designers use to generate visualizations based on their

intended task and the data they represent. In addition, there are also a large number of rules that can be

derived from psychophysical literature and from user testing of visualization systems. In the next sections

we present some background on automatic visualization systems and their internal heuristics which

primarily consists of graphic design rules. In addition we will briefly describe some of the work performed

in perceptual theory and visualization system testing that can also be used to support automatic

visualization design.

 I-14

I-4.2.1 Automatic Visualization Systems
Tufte [Tufte, 1983] and Bertin [Bertin, 1983] started the initial work in laying out a set of useful

graphic design rules and in characterizing the structure of visualization displays. In his book, A Semiology

of Data Graphics[Bertin, 1983], Bertin identified some of the most important issues in visualization design

and exposed many of the important artifacts in their structure. Bertin’s work was later refined by Mackinlay

[Mackinlay, 1986a, 1986b] who developed a syntax for expressing the components of visualizations,

effectiveness criteria to decide when and how to use the different graphical components and rules of

composition that specify how and under what conditions graphical elements can be combined. Mackinlay

then used the expressiveness and effectiveness criteria that he developed to implement a system called APT

that could automatically design a well-defined set of visualizations. Casner [Casner, 1991] later continued

Mackinlay’s work by taking a task centered approach to creating visualizations. While Mackinlay

previously generated visualization designs solely based on the structure of the input data, Casner now also

considered user goals. Casner proposed decomposing a user task into a series of logical operators. These

logical operators were then replaced by more efficient perceptual operators where possible, and

visualizations were then created based on these perceptual operators. The SAGE system [Roth, 1990, 1994]

carried this area farther by developing a richer data representation for visualizations thus allowing a wider

and more complex set of abstract visualizations to be generated. The SAGE system also allowed users to

direct the automatic design system by entering in design preferences in the form of partial designs or a

previous favorite design.

Our work builds on these previous systems in two primary areas. First of all, these previous systems

only considered the issue of how data can be effectively mapped to graphics. In our work, we additionally

consider how the input data can be effectively processed before it is mapped and shown to users. Secondly,

these previous systems only generated static, non-manipulable visualizations. Our work allows automatic

design systems to generate interactive visualization interfaces so that users can navigate through the visual

representations and explore larger data sets than was previously possible.

I-4.2.2 Psychophysical Studies
Most of the previous work done on developing effectiveness and expressiveness criteria for automatic

design are based more on well established graphic design rules [Tufte, 1983, Bertin, 1983] rather than on

perceptual theory. This is because it is difficult to abstract from the low-level results contained in

perceptual literature and apply them to higher level perceptual operations that occur in visualization

analyses. A large cause of this complexity is due to the presence of a wide variety of graphical styles and

graphical properties that may be used. This makes it difficult to isolate the effects of each element and even

more difficult to determine the conflicts and relationships between the different graphical artifacts. Studies

of perceptual theory are further complicated by the external knowledge of graph reading that is assumed of

the user.

 I-15

Thus it is not feasible to define effectiveness and expressiveness criteria solely based on

psychophysical results. Doing so will produce an incomplete model of design and limit the generality of the

system. However that is not to say that psychophysical results cannot be used. Green [Green] showed

various instances in which psychophysical literature can be used to support some of Bertin’s design

strategies and other instances in which the literature showed errors in those strategies. Senay and Ignatius

[Senay, 1994] are also beginning to apply psychophysical results to design decisions. In this work we will

also use perceptual theory [Livingstone, 1988; Treisman, 1982, 1988] to enrich our design strategies.

I-4.2.3 User Studies on Visualization Interfaces
There have been many user tests conducted to show the effectiveness of new interactions and visual

techniques [Hollands, 1989; Ahlberg, 1992; Plaisant, 1996]. These tests are usually conducted over a small

set of specific tasks and are used to illustrate the usefulness of newly introduced techniques and visual

representations. While such experiments are effective for demonstrating the utility of new ideas, they are

usually not broad or general enough for us to derive general design rules and strategies.

I-5 Summary

The main contribution of our work is in adding data processing decisions into the automatic

visualization design process. This is in contrast to previous work in automatic design that only considered

mapping transforms. Our work expands the quality and breadth of designs that may be generated and

allows automatic systems to address a larger range of tasks as well as larger data sets. In addition, our work

also expands automatic design systems so that they may now begin to generate interactive interfaces. All of

this enhances human computer communication because a greater, improved, visual vocabulary allows

richer and more complex concepts to be conveyed. In addition, the effectiveness of AVID as a design

assistant is also increased because it is able to provide a larger range of “good” design alternatives and

choices to users. Our design system also culls out bad designs (i.e. task inexpressive designs or designs that

do not support the input task(s)) as well as duplicate designs. This saves users from having to devote

attention to these less appropriate visual representations while still having good coverage of the design

space.

In order to integrate data processing operations into automatic design, we developed three

technologies: 1) a visualization techniques framework, 2) design dimensions and strategies for measuring

the goodness of various visualization designs, and 3) an automatic design system (AVID) that is able to

automatically design visualizations based on a set of user input goals. Our visualization techniques

framework provides our design system with a set of primitives and composition rules from which it may

build and design visualization techniques. In addition to being a crucial component in our automatic design

work, our framework also stands as a contribution in its own right. First of all the framework simplifies the

creation and prototyping of visualization techniques by providing designers with a higher level API set.

 I-16

Secondly the framework provides a new design methodology that separates the design process into two

levels, functional and instantiation, and through these two levels promotes better functional design of

techniques. Finally our framework allows a designer to systematically explore the visualization techniques

design space and identify design holes within that space.

In addition to the framework, we also developed a set of design dimensions and strategies that help our

automatic design system pick the best or most effective design alternatives for the current task(s). These

dimensions and strategies can also be applied by human designers as a quick evaluation of their designs and

as yardsticks of comparison among multiple current designs. Finally we implement an automatic design

system based on our framework and design strategies. This automatic system shows that our theories are

sound and complete enough to be actualized.

Concurrent research is also underway for combining the graphics generated by automatic visualization

systems with text [Kerpedjiev, 1997]. Research in this area, while related, does not deal with the same

issues that are relevant to automatic visualization design. Rather, work in this area assumes the existence of

automatic text and visualization generation systems, and focuses instead on how best to integrate these two

communication media. Therefore, the advancements made by our research to automatic visualization

design will naturally feed into the combined text and graphical work as well.

I-6 Walkthrough

 This thesis is divided based on the three main technologies presented above. Chapters II and III

describes our visualization techniques framework including primitives, composition rules and how new

techniques may be created by combining previous methods. Chapter IV contains a set of design dimensions

for measuring the effectiveness of visualization designs as well as a set of guidelines that discuss when it is

appropriate to use data transforms and mapping transforms. Chapter V shows how we integrated our

framework and design rules into an automatic design system. Chapter VI presents some concluding

thoughts on the work, discusses its scope, and presents a summary on its impact and how it can be

expanded in future work. The first 4 appendix sections (appendix A, B, C, and D) are organized to provide

additional information and examples on the material in chapters II, II, IV, and V respectively. Appendix E

presents a series of GOMS evaluations on the designs generated by our automatic system and shows that

our design output does indeed conform to cognitive, perceptual and motoric complexity. Finally appendix F

discusses how we anticipate readability issues can be addressed using graphical and rendering functions.

 II-17

Chapter II:
Visualization Techniques Framework
�
����$���
������)XQFWLRQDO��
��������������'HVFULSWLRQ�
��

The goal of this thesis is to integrate data processing decisions into the design process of an automatic

visualization system. This work enhances the quality and breadth of visualization designs that can be automatically

generated as well as expands the range of tasks that can be addressed by an automatic system. In order to integrate

data processing operations into automatic design, we must first understand what data processing operations are

available, how they can be applied to data elements within a visualization, and how they may be combined together

with data-to-graphical mapping operations1. To achieve this, we analyze existing visualization systems, and develop

a framework or layer of abstraction for understanding current visualization techniques, the types of functions they

are composed of (including data and mapping functions), as well as how they are built, combined, and used.

Creating this framework, however, is a difficult task. The widespread development of new visualization

techniques in recent years, due to significant increases in information processing demands, have left them

fragmented, making it difficult and expensive to combine, customize, or generalize their functionality. Visualization

systems are often written for a variety of domains and exist at many different levels of granularity. In addition, they

provide a wide range of functions that operate on such disparate objects as inputs devices (scroll-list, bounding-box),

data concepts (houses, people), data attributes (selling_price, num_rooms), graphical objects (marks, interval-bars)

and graphical properties (color, shape). Techniques that appear to be physically identical may share very little

functional similarity and vice versa.

In this chapter and the next we present a visualization framework that models the functional operations

(including data and mapping operations) within various visualization techniques as well as the relationship of these

1 Mapping operations capture how data elements can be mapped to graphical elements, so that complex cognitive processing

tasks can be offloaded onto our perceptual system. Previous automatic systems only considered the use of mapping operations.

This thesis expands automatic design to include both mapping and data functions.

 II-18

functions to other visualization elements such as input-devices, data concepts and graphical objects. This framework

allows us to effectively create and customize visualization techniques as well as enables us to integrate a large set of

powerful functions into our automatic visualization design system, thereby increasing its communicative and design

effectiveness. Note that rather than only capturing data and mapping operations, as is needed by our automatic

designer, we decided to establish a wider framework that covers all visualization design functions (i.e. including

data, mapping, graphical and rendering functions). This broader framework is flexible, and provides us with a better

understanding of the role that data processing transforms may play in design, not only with mapping functions, but

also with graphical and rendering operations. This broader framework is also easily extensible so that graphical and

rendering visualization designs can be integrated into automatic systems in the future.

Our visualization techniques framework stands as a contribution of its own and can be used to characterize and

capture the state of visualization techniques today. Contributions of our framework include:

1. Visualization function primitives: Our framework presents a set of primitive functions that commonly

occur in visualization techniques. These primitives form the basic building blocks of our automatic design

system. In addition they give us a better understanding of the class of tasks that can be achieved by different

visualization methods and allow us to consider such methods at the same level of granularity (by decomposing

them down into the same set of primitives). We show in section II-3 that this set of primitives can express a

wide range of visualization methods. These functional primitives can also provide the basis for establishing a

visualization techniques library which will simplify the process of creating interactive visualization systems.

2. Composition rules for merging visualization primitives and exploring the design space: Once we have

defined a set of primitives, we specify rules that determine how these primitives can be combined to form more

complex behaviors. These composition rules are very powerful because they allow us to generate an infinite set

of visualization techniques from a small set of primitives. By combining together components of existing

visualization methods, we can adapt these methods to serve in new domains, devise interesting new ways of

achieving tasks, and begin exploring and expanding the design space of visualization techniques.

3. Visualization independent specification of visualization techniques: Our framework provides a general

language for specifying visualization techniques that is not tied to any particular visual representation. Once

specified, a visualization technique may be easily attached to a variety of visualization designs. Such flexibility

increases the effectiveness with which we are able to generate, prototype and test visualization techniques.

4. New design methodology for analyzing the interactive design space: Our framework presents a two-level

design methodology for creating visualization techniques: the functional level and the instantiation level. The

functional level is a more abstract level of characterization that allows us to group, categorize, and reason about

techniques based on their functionality and application to tasks. The instantiation level, on the other hand,

characterizes techniques based on a set of low-level primitives. At this level we capture all the specifics within a

 II-19

technique so that based on the instantiation description we can fully generate a visualization interface. Because

the instantiation description is detailed and low-level, it is difficult to make generalizations about the various

visualization techniques, unlike in the functional level. This low-level description, however, is necessary for our

automatic design system because it must be able to describe and generate instantiable or realizable designs. In

addition, primitives at the instantiation level form a useful visualization API set. Our framework describes both

the functional and instantiation levels as well as presents a systematic process of how to move from a functional

description into an instantiable description. This is an advance over previous frameworks that only considered

either one of these levels in isolation. Refer to appendix B-1 for a more complete discussion of the differences

between our framework and previous work.

In this chapter we describe the functional level of our design methodology. In particular we show how

visualization techniques can be functionally decomposed into two primary components, object definition and

transformation, as well as how these two-component techniques can be combined to create interesting behaviors.

Our automatic design system later uses this object definition/transformation framework (ODT framework) to build

and generate visualization designs that utilize both data processing and mapping functions. To illustrate the

generality and applicability of our framework, we will also show how it can be used to map out part of the

visualization techniques design space, and give some interesting observations made from analyzing that space.

Readers who are only interested in the automatic design aspects of this thesis can skip section II-3 of this chapter as

it pertains to the generality and scope of the framework rather than to its use in our automatic system. By using our

framework to explore current and future techniques, however, we show that it is not only useful to our central thesis

in automatic design but also generally applicable to the analysis of a large range of techniques (some of which are

not currently captured by our automatic design system). The next chapter will explore visualization design at the

concrete instantiation level, as well as evaluate the entire framework based on completeness, coverage, and

practicality.

II-1 Visualizations & Visualization Techniques

A visualization is a graphical rendering of a set of data attributes. The process of creating a visualization begins

with the data transformation phase as is shown in Figure II-1. Data transforms are used to calculate derived results

or summarize attribute values within a data set. For example we can use a subtraction data transform to compute the

duration that a house stays on the market from the date_on_market and date_sold house attributes. Alternatively we

can use the mean data transform to summarize the selling price of all houses in the Shadyside area. Data transforms

can also be used to compute new meta-data from an existing data set such as the number of times a particular object

appears, or the alphabetical or numerical ordering of a set of values. Data transforms exist solely in the data realm

and are used to generate new data concepts and values based on the existing data set.

 II-20

Graphical Scene Output
Media

Data
Transforms

Graphical
Transforms

Rendering
Transforms

Mapping
Transforms

Data Set

1st Qtr 2nd Qtr
East 20.4 27.4
West 30.6 38.6
North 45.9 46.9

Figure II-1: Visualization generation process consisting of four transformation classes (data, mapping, graphical, and
rendering) across three different realms (data, graphical, output media)

Once we have processed all the necessary data, we proceed to the mapping phase where data concepts are

mapped to graphical objects and data attributes are mapped onto graphical properties. For example, the visualization

in Figure II-2a contains four mapping transforms. An object mapping transform represents all house concepts with

graphical marks, and a set of attribute mappings link different data attributes of the house data concepts such as

selling_price, neighborhood and date_sold to different graphical properties of the mark graphical objects such as x-

position, color, and y-position respectively. At the end of the mapping phase we would have constructed a graphical

scene representing the data we want to show in the visualization. A graphical scene is an abstract model of a

boundless space, capturing the position, relationships and appearance of all visual objects (e.g. marks, axes, legend,

labels) within a visualization.

(a) Several mapping transforms are used to show the

house data concepts and some of its attributes

(b) Same visualization as Figure II-2 but several house
objects have been enlarged with a graphical transform

Figure II-2: Example visualization with house data. Each mark represents a house data concept. The x-axis shows
date_sold; the y-axis shows selling_price; and color shows neighborhood.

 II-21

Graphical transforms are used to change the appearance of objects within a graphical scene. For example in

Figure II-2b graphical transforms are applied to several selected or focus graphical objects from Figure II-2a so that

they appear larger and more salient than the other objects in the visualization. Note that these size enlargements do

not correspond to any information in the data set and thus cannot be appropriately shown with mapping transforms.

Graphical transforms can also be used to change other graphical properties (e.g. color, shape, position) and other

graphical object classes such as legends, axes or even the entire chart region.

Finally in the rendering process, abstract graphical objects in the graphical scene are transferred onto a bounded

output media such as paper, a physical 3D model, or a CRT screen. Figure II-2 shows a rendering of a visualization

design on paper. Different media types constrain the classes of techniques that can be used as well as their

effectiveness. In this thesis we will only consider the use of CRT screens, thus in our work rendering transforms

describe for each screen pixel, the part of the graphical scene to which it corresponds. Note that rendering

transforms are the only transform class that operates on physical screen space. All other transformation classes

operate on abstract objects such as data concepts and data attributes or graphical objects and graphical properties.

The visualization generation process presented here is based on previous work by Card et al.[Card, 1999] and Chuah

& Roth [Chuah, 1996]. These four transform classes in the visualization generation process (Figure II-1) form the

basis of visualization techniques.

Transformations Goal
Derived

Summary
Data

Transform
Meta-data

Object
Attribute

Mapping
Transform

Scope ch.

FeedbackGraphical
Transform Readability

FeedbackRendering
Transform Readability

Object Definition

Enumeration

Functional Desc.

User initiated or
Designer default

Phase 1: object definition Phase 2: transformation

operational
set

all
objects

Figure II-3: A visualization technique is defined in this work to contain two components (object definition and
transformation). Object definition can be achieved through enumeration or functional description. Transformation can

be achieved through data, mapping, graphical, or rendering functions. The transformation functions can be further
divided based on their goals.

In this thesis, a visualization technique is defined as having two components, an object definition component

and a transformation component (Figure II-3). In the object definition component, we define a set of elements that

can be from any of the three realms (data, graphical or output media) in Figure II-1. For example, an interaction

may operate over a set of house records, a set of graphical marks and bars, or even a display space within the

visualization window. The resulting set of elements from the object definition component (operational set) is

subsequently processed in the transformation component according to our current goals. These transform functions

can be used in a multitude of ways to solve different tasks, thus, apart from specifying the transformation class it is

 II-22

also useful to capture the general goal(s) or effects of these visualization function primitives. The goals of data and

mapping transforms, which occur at the start of the visualization generation process, are usually to prepare and set

the contents of a visualization. The goals of graphical and rendering transforms, which occur at the end of the

visualization generation process, are to provide users with feedback on a visualization technique, or to enhance the

readability of the visualization content defined in the data and mapping transform stages.

Visualization techniques allow us to create new visualization designs or modify existing ones. A set of mapping

transforms and at least one rendering transform are requisites for creating a new visualization. These transforms are

necessary to convert a set of data values to a rendered visual representation of that data. On the other hand data

transforms are only necessary if the data set is not in the desired state to begin with and must be further processed.

Graphical transforms are needed only when there are readability, feedback or rhetorical requirements. While data

and graphical transforms operate within a single realm, mapping and rendering transforms operate across realms,

expressing relationships between different object classes. Mapping transforms relate data concepts to graphical

objects and rendering transforms relate the graphical objects within a graphical scene to an output media such as the

CRT screen. Apart from data, graphical, or media objects, a visualization technique may also be attached to input-

devices that allow end-users to interactively alter a technique’s functionality or results even if only in a limited way.

Techniques that are attached to input-devices are commonly referred to as interactive techniques. Subsequently we

describe the two visualization technique components: object definition and transformation.

II-1.1 Object Definition Component

(a) Before any data attribute constraints are set

(b) After data attribute constraints are set

Figure II-4: Dynamic Query Sliders applied to house data. Each bar encodes a house data concept; x-axis encodes
date_on_market and date_sold; y-axis encodes house_address. There are two dynamic query sliders [Ahlberg, 1992], one
allows users to place constraints on the num_rooms data attribute and the other allows users to place constraints on the

selling_price data attribute. Houses that do not fulfill constraints become non-visible as in (b).

 II-23

The object definition component may be initiated by a user or it may be preset as a system default by the

designer of the technique. For example, the dynamic query slider technique [Ahlberg, 1992] allow users to search

for data elements by placing constraints on their attributes. Constraints are placed by setting data attribute threshold

values through the use of input-devices such as sliders (e.g. as in Figure II-4). Once the constraints are set, only

those data concepts that fulfill the search constraints are shown. Thus the dynamic query slider technique lets users

manually initiate object definition by controlling a slider.

The visualization system shown in Figure II-5, on the other hand, uses system default objects. Figure II-5 shows

a campus map of Carnegie Mellon University with a “Next Lot” button. Pressing this button will cause one campus

parking lot to be shown in red. Pressing the button again will cause a different campus parking lot to get highlighted

and so on. The particular parking lot to highlight is preset by the system designer. Morewood Parking gets

highlighted first, followed by the Parking Garage, etc.

Next Lot

Figure II-5: Map showing the different parking lots at CMU (borrowed from http://www.cmu.edu). Clicking the
next-lot button will cause a predefined parking lot to get highlighted red (e.g. morewood parking). Subsequent presses to

the next-lot button will cause subsequent parking lots to get highlighted.

There are two primary object definition methods: 1) enumeration or 2) functional description as is shown in

Figure II-3. The highlighting technique used in Figure II-5 performs object definition through enumeration because

the designer of the graphic explicitly named each and every car park lot on the map. The dynamic query slider

technique on the other hand, defines the operational set through functional description. I.e. the object set is captured

through a mathematical function applied to object attributes rather than by explicit naming. For this technique, the

function used is a simple greater-than or less-than threshold operator.

 II-24

II-1.2 Transformation Component

After the operational set has been defined, we manipulate and modify it in the transformation component. There

are four classes of transformations, corresponding to the four phases of the visualization generation process: 1) data

transforms, 2) mapping transforms, 3) graphical transforms, and 4) rendering transforms. Previous automatic design

systems only considered the use of mapping transforms. In this thesis we expand the automatic design process to

consider data processing transforms as well. However we leave consideration of graphical and rendering transforms

in automatic design for future work. By capturing all four transformation classes in our framework, however, we can

more clearly and completely see the roles that data and mapping functions can play in visualization design and in

solving data analysis problems.

1. Data Transforms

 There are an infinite number of ways with which we can process the information within a data set. As a result a

data set may not always contain information that is of interest to us in a form that we desire. By using data

visualization techniques we may direct the system to generate derived data attributes that fit our task requirements.

Data visualization techniques can commonly be found in spreadsheet programs and data analysis software where a

set of different mathematical computations can be applied to selected values in the interface.

2. Mapping Transforms

Figure II-6: Visualization system that allows re-mapping of data attributes to the two positional axes. Each mark in the
visualization represents a house data concept. Currently the x-axis is set to encode date_sold and the y-axis is set of encode

selling_price.

Mapping transforms are most commonly used to encode data concepts and data attributes with graphical

objects and graphical properties. To create a new visualization, one or more mapping visualization techniques are

 II-25

required. Mapping techniques commonly operate on all the data concepts in the data set and the input transformation

parameters (e.g. selling-price, neighborhood, date-sold and x-position, color, y-position) are predefined by the

visualization designer. I.e. object definition is achieved through designer default functional description. It is

however not necessary for all the mapping transform arguments to be predefined. For example the visualization in

Figure II-6 has option menus attached to both the x-axis and y-axis of the visualization so that users may pick

different attributes to re-map to the two axes. Apart from mapping data to graphics, mapping transforms can also be

used to change the scope of existing data-to-graphical encodings. For example we could apply the object and

attribute mappings in Figure II-6 to only the pink objects by using a scope mapping transform.

Figure II-7: TableLens System [Rao, 1994] (borrowed from www.inxight.com)

Mapping transforms can also be used in more elaborate ways. The PAD++ [Bederson, 1994] and the TableLens

[Rao, 1994] systems use mapping transforms to achieve “semantic zooming”. In these systems, the graphical

representation classes (e.g. mark, text, bar) used in the mapping transforms change based on available screen space.

When more screen space is available a more accurate graphical representation is used to show the data and when

less space is available a visually simpler but less accurate graphical representation is used instead. For example, the

TableLens system (shown in Figure II-7) uses bars to represent the data concepts when less space is available and

text (in addition to bars) when the space gets magnified.

3. Graphical Transforms

Graphical transforms are commonly used to provide feedback or to increase the readability of a visualization.

The most common use of graphical transforms is for manipulating un-mapped graphical property values to improve

 II-26

the readability of a visual design (e.g. layout operations) or for providing simple feedback that reflect state changes

(e.g. feedback indicating that a set of objects have been selected). Graphical transforms may also be used as a

rhetorical device, e.g. enlarging the objects currently under discussion. Note, however, that graphical transforms are

not limited to un-mapped graphical property values. When used to change mapped graphical properties, however,

they may distort interpretation of the data set as was discussed in Chuah et al. [Chuah, 1995], thus such techniques

should only be used with extreme caution and adequate user feedback.

Perspective Wall
(borrowed from Xerox PARC
 User Interface Research Group page,
http://www.parc.xerox.com/istl/projects/uir/projects/Inform
ationVisualization.html)

Fisheye non-linear image magnification
(borrowed from
http://www.cs.indiana.edu/~tkeahey/research/fad/fad.html)

Figure II-8: Example rendering visualization techniques

4. Rendering Transforms

Like graphical techniques, rendering techniques are also used to give users feedback or to improve the

readability of a visualization. Many interactive systems today use rendering transforms in interesting ways to distort

the graphical scene so that users may focus on particular parts of the scene while maintaining context of the

surrounding areas. Some examples include the Perspective Wall [Mackinlay, 1991] (shown in Figure II-8a), Fisheye

Lens distortion [Furnas, 1991] (shown in Figure II-8a), and Table Lenses (shown in Figure II-7). Such techniques

improve the readability of visualizations by reducing object occlusion and output density around the focus objects so

that their visibility is increased. Apart from distortion techniques, rendering transforms are also used to achieve

more common navigation techniques such as zoom and pan. Appendix F discusses rendering transforms in greater

detail and show how they can be used to solve readability problems.

In summary, a primitive visualization technique consists of two components: an object definition component

and a transformation component (shown in Figure II-3). The object definition component may be initiated by the

user or be set as a system default. There are two ways in which objects may be defined, either through enumeration

or functional description. Once defined, the selected visualization elements may be transformed using data,

mapping, graphical, or rendering functions. These general transform classes can further be categorized based on

their goals or effects.

 II-27

We will build upon this object definition/transformation (ODT) model in this chapter and the next. In chapter V

we show how we apply this ODT model in our prototype automatic design system and how this model allows us to

create visualization designs that contain both data and mapping transform functions. The ODT model, however, is

useful beyond our automatic design system because it enhances our ability to create, and customize visualization

techniques, as well as enables us to explore and organize the visualization techniques design space (section II-3).

II-2 Composition

In the previous section we presented a simple ODT model which decomposes a visualization technique into a

single object definition operator and a single transformation operator. Many common visualization techniques,

however, are more complex and may combine multiple object definition and transformation functions. For example,

consider a simple aggregation tool. Aggregation or binning is commonly used for dealing with large data sets. When

there are many data concepts, it is difficult to assimilate and analyze all of the data simultaneously. To reduce the

data set to a more manageable size, we combine multiple data concepts together and represent them through a single

“aggregate” object. There are a wide variety of aggregation methods [Goldstein, 1994; Chuah, 1998]. Here we

consider a simple aggregation technique that lets users select a set of objects from a visualization display through a

bounding-box, and then creates a new aggregate object (summary object) containing the selected set. This

aggregation process is shown in Figure II-9. First the user selects denniston-100A, emerson-266, kipling-5454 and

morewood-508 using a bounding-box (Figure II-9a). These objects are then grouped to form an aggregate object

(aggregate-object-0) that appears at the top of Figure II-9b.

(a) Select the set of objects to aggregate

(b) Aggregate_obj_0, is generated. Aggregate_obj_0
contains objects denniston-100A, emerson-266, kipling-

5454 and morewood-508 that are highlighted in red

Figure II-9: Simple aggregation technique. Text encodes house_address. By using this technique users get to select a
set of house data concepts using a bounding-box and aggregate or group them together to form an aggregate object (e.g.

aggregate_obj_0). Unlike techniques in the previous section, this aggregation method utilizes multiple transformation
methods including a graphical transform to highlight the selected objects and a data transform to summarize the

underlying data concepts of the selection.

 II-28

Object definition through a bounding-box falls into the user-enumeration object definition category. Once

selected the set of data concepts are summarized using the group-objects data transform that maps a set of data

concepts to one representative group object as is shown above. Note that in addition to the summarization (group-

data) data transform, it is useful to give users some feedback as to which objects are being summarized. This is

achieved by adding a graphical transform to highlight the selected objects, in addition to the summary data

transform. In Figure II-9b, for example, the aggregated objects are highlighted red. Such multi-transform techniques

are made possible through composition operators that allow us to combine and generate many rich and interesting

interactive behaviors from simple two-operator techniques.

There are four main classes of composition: 1) object definition composition, 2) transformation composition 3)

producer-consumer composition, and 4) partition composition.

II-2.1 Object Definition Composition

Object definition composition is used when we want to apply the same transformation methods to combinations

of multiple object definition sets. Object sets are combined using set-operator functions. Set operator functions such

as union, difference and intersection take in one or more object sets as input and produce a single output set based

on the membership of the input sets.

For example consider the multiple-constraint dynamic query slider technique shown in Figure II-4. This

interface has two sliders, one constrains the selling_price attribute and the other the num_rooms attribute. These two

primitive techniques can be expressed using the object definition/transformation model (ODT model) as is shown in

Figure II-10a. For a complete description of the diagrammatic notations used in these ODT diagrams refer to

appendix A-1.

Functional
Description

Graphical
Transform

+
Functional
Description

Graphical
Transform

Num_rooms

Selling_price

>=

7

100k

<=

Functional
Description

Set-operator
(Intersection)

Graphical
Transform

Object definition composition
achieved with set-operator
function

Functional
Description

Object definition Transformation

Num_rooms

Selling_price

>=

7

100k

<=

(a) Before composition (b) After composition

Figure II-10: Object definition composition for the multiple constraint dynamic query technique shown in Figure
II-4. The diagrammatic conventions and notations used in the specifications in this chapter and the next are described in

appendix A-1.

 II-29

Expressing the two constraint techniques separately as in Figure II-10a, does not capture the relationship

between them that requires both selling_price and num_rooms constraints to be fulfilled simultaneously. To express

this relationship we must perform object definition composition and apply an intersection set-operator function to

combine the two constraint sets as in Figure II-10b. This will cause only those objects that pass both constraints to

be graphically transformed. Set-operator functions are used to further refine selected object sets, thus they are

considered part of the object definition component.

Radio-buttons Slider Slider Slider

Figure II-11: HomeFinder system [Tweedie, 1994] (borrowed from http://infoeng.ee.ic.ac.uk/~lisat/LisaDir/att.html).
There are five single-axis aligned charts and a mark in each chart represents a house data concept. This system uses

object definition composition to integrate the object sets selected by the three sliders and the single set of radio buttons.
We then count the number of times a house appears in the combined set, and use this count_attribute to set the color for a

given house concept.

The type of object definition composition shown in Figure II-10 is quite common. It also occurs in the

HomeFinder system [Tweedie, 1994] depicted in Figure II-11. In the HomeFinder system each house is represented

by a mark in each of the charts. There are 5 charts, each with a different house attribute encoded on the y-axis. The

x-axis shows the number of houses that have a particular attribute value. Users get to place constraints on different

house attributes using sliders and radio buttons. The marks within each chart are then colored based on the number

of constraints passed by the house data concepts they represent. The specification for this method is shown in Figure

II-12a. There are several functional description operators in this diagram, each corresponding to a data attribute

constraint that is controlled by the sliders or radio buttons. Each of these constraints defines a set of objects and

these sets are combined together using the union-repeat set operator. The union-repeat operator is similar to the

union operator except that duplicate objects are not deleted. The combined set is then passed through a count data

 II-30

transform that calculates the number of times a house concept appears in the input set. The results of the count

function are then associated with each house data concept by using the assign data transform operator2.

Using a separate mapping specification (Figure II-12b), we encode the count derived attribute with the mark

color property in each of the charts within the HomeFinder visualization (Figure II-11). A separate specification is

used here because the mapping parameters do not change based on changes in the threshold constraints (i.e. the

count attribute is always mapped to color irrespective of changes in the threshold constraints). Combining the

mapping transform with Figure II-12a would create a new mapping each time we change the house selection

constraints, and this is not the effect we desire.

2 We show the assign operator here so that we may illustrate how the count results change the color graphical mappings of the

marks within the visualization. In general however, we leave out assign operators in most of the other technique specifications in

this chapter because they do not play an important role in capturing the functional essence of a technique. In the next chapter

where we discuss the visualization technique instantiation level, we detail all the instances where assign operators are added.

Functional Desc.
(1)

Data
Transform

(count)

Functional Desc.
(2)

Functional Desc.
(5)

Set-operator
(union-repeat)

Data
Transform
(assign)

Count derived
attribute

Slider

Slider

RadioButton

Functional Desc.
(3)

Slider

Functional Desc.
(4)

Slider

(a) In this specification we compute the count-derived-attribute which
stores the number of times an element appears in the selection set

produced by the union-repeat operator

Mapping
Transform

HomeFinder
Visualization

Color Count-derived-
attribute

Functional
Description

Houses

ALL

 (b) In this specification we map the count-derived-
attribute data attribute, which we computed in

Figure II-12a to the color graphical property in the
HomeFinder Visualization.

Figure II-12: Functional specification for the HomeFinder system shown in Figure II-11.

We can also apply object definition composition to primitive techniques that have different object definition

methods. For example consider the dynamic query slider technique that uses functional description object definition

and the object selection method that uses enumeration object description. The ODT diagram for both these

 II-31

techniques are shown in Figure II-13a. We compose both these techniques using the intersection set operator as is

shown in Figure II-13b. The technique shown in Figure II-13b only highlights objects that are both enumerated by

the user through bounding-box selection and that fall within the functional constraints of the dynamic query slider.

Functional Desc.
Graphical
Transform

Selection
+

Dynamic Query

Enumeration
Graphical
Transform

Bounding-box

Slider

Color

Visibility

(a) Before composition.
The dynamic query technique allow users to

search for data elements by placing constraints
on a single data attribute by using a slider

input-device. The selection method allows users
to enumerate a set of graphical objects using a
bounding-box. The selected objects will then be

color-highlighted to show that it has been
selected.

Functional Desc

Graphical
Transform

Set-operator
(Intersection)

Enumeration
Bounding-box

Slider

Color

(b) After composition

(the object sets from both techniques are combined using the
intersection set-operator)

Figure II-13: Object definition composition on the object selection and dynamic query slider technique. The resulting
technique ONLY colors those objects that are selected within the bounding-box as well as passes the constraint set on the

slider.

II-2.2 Transformation Composition

Unlike object definition composition, which combines two or more object definition sets and applies the same

transformation(s) to the resulting set; transformation composition applies different transformation functions to the

same object definition set. For example, consider the object selection technique outlined above (Figure II-13a).

Suppose that in addition to highlighting the selected objects red, we also want to enlarge them. To achieve this effect

we apply two different graphical transforms to the selected object(s) as is shown in Figure II-14b.

Enumeration

Graphical
Transform

Graphical
Transform

Enumeration

+

Bounding-box

Bounding-box

Color

Size

(a) Before composition

Graphical
Transform

Enumeration

Graphical
TransformBounding-box

Color

Size

(b) After composition

Figure II-14: Transformation composition for two different selection techniques with different visual feedback effects.
The resulting technique colors and enlarges the objects selected by the bounding-box.

We can also perform transformation composition on different classes of transform functions, e.g. a graphical

transform and a data transform. For example in the simple aggregation technique described in Figure II-9, we

 II-32

indicate the objects that have been selected for aggregation by highlighting them, in addition to performing the data

grouping. In this technique, transformation composition is applied to the graphical transform for highlighting the

objects and the data transform for aggregating the objects as is shown in Figure II-15b.

Enumeration

Data Transform
(group-objects)

Graphical
Transform

Enumeration

+
Selection

Aggregation

Bounding-box Color

Bounding-box

(a) Before composition

Enumeration
Data Transform
(group-objects)

Graphical
Transform

Color

Bounding-box

(b) After composition

Figure II-15: Transformation composition for the simple aggregation technique shown in Figure II-9.
Transformation composition is used here to combine a data transform for creating the aggregate object as well as the

graphical transform that highlights the objects within the aggregate, red.

II-2.3 Produce-Consumer Composition

Producer-consumer (P-C) composition allows one technique (producer) to generate the arguments or

information needed by another technique (consumer). An example is the modified value-painting technique [Eick,

1992]. This query method allows users to select a set of objects with an input-device. Chosen data attributes of the

selected objects are then summarized and then used to functionally define and highlight another set of objects. The

result of such a composition is shown in Figure II-16b where a set of objects is user enumerated through a bounding-

box. A chosen data attribute (e.g. selling_price) of the object set is then summarized using the mean data transform.

The calculated mean value is then passed to a subsequent functional description operator that selects all objects in

the visualization with data attribute values less than the computed mean and then highlights them.

Enumeration
Data Transform

(Mean)

Graphical
Transform

Functional
Description

+

Bounding-box

Color
<

Selling_price

100k

Selling_price

Before composition

Graphical
Transform

Enumeration
Data Transform

(Mean)

Functional
Description

Bounding-box

Color
<

Selling_price

Selling_price

Computed mean value

After composition

Figure II-16: P-C composition. The computed value from the producer technique (i.e. mean selling_price) is piped
into the object definition component of the consumer technique and is used to select other objects in the visualization

based on the computed mean selling_price.

For example, Figure II-17 shows the names of a set of house_owners. By using the modified value-painting

technique, we may select a set of house_owners (Ford-Harrison, Cosmatos-George-P, and Collins-Pauline). Once

selected, the technique computes the mean selling_price for the houses belonging to the selected house_owvers.

 II-33

Finally the technique highlights all the selected house_owners as well as all other house_owners with houses costing

less than the computed mean selling_price. Note that unlike the previous two composition classes, PC-composition

techniques do not share common object definition sets nor transformation functions.

(a) Bounding-box used to select set of house_owners. In
this example, Ford-Harrison, Cosmatos-George-P, and

Collins-Pauline have been selected.

(b) Selected house_owners as well as house_owners with
houses costing less-than the computed mean
selling_price of the selected house_owners get

highlighted red.

Figure II-17: P-C composition applied to the modified value-painting technique. Text here encodes house_owners.

II-2.4 Partition Composition

The final class of composition, partition composition, is applied when the object definition component of a

visualization technique generates more than one set of objects, and we want to transform each generated set

differently.

Graphical
Transform

(Add)

Functional
Description

Slider
Size

Graphical
Transform
(Subtract)

Functional
Description

Slider
Size+

Graphical
Transform

(Add)

Functional
Description

Complement
Graphical
Transform
(Subtract)

Slider
Size

Focus set

Context set

Size

(a) Before composition (b) After composition

Figure II-18: Partition composition applied to the dynamic query slider technique. Here we use partition composition
so that we can enlarge the focus objects (i.e. the objects that pass the slider constraint) and simultaneously contract

objects in the context-set (i.e. objects that did not pass the slider constraint).

For example we may alter the dynamic query technique slightly so that it enlarges objects that pass the slider

constraint and contracts objects that do not. In this case the object definition component generates two object sets,

 II-34

the focus set and the context set and each of these partition sets are transformed differently, i.e., the focus-set has its

size increased and the context-set has its size decreased (Figure II-18). Other common ways for partitioning sets are

described in Goldstein et al.[Goldstein, 1994].

II-2.5 Summary

There are four ways in which primitive techniques may be composed. Each composition type is differentiated

by the number and occurrence order of the object definition (OD) and transformation (T) components. Object

definition composition, for example, can have multiple object definition components (n OD) followed by one

transformation component (T); transformation composition has one object definition component (OD) followed by

multiple transformation components (n T); P-C composition has multiple object definition/transformation

components concatenated serially (n [OD + T]); and finally partition composition has one object definition

component (OD), which generates n sets of objects which are subsequently transformed. This information is

summarized in Table II-1 below.

Composition Type

Object Definition (nOD + T)

Transformation (OD + nT)

Producer-Consumer n(OD + T)

Partition (OD + n[set + T])

Table II-1: Summarization of composition types

Even though the four different composition types are described separately in this section, we can apply

multiple composition methods simultaneously within the same visualization technique. For example, we may use

both object definition composition and transformation composition to apply different object sets to multiple

disparate transformation functions. We may subsequently combine the technique through pc-composition and

partition composition to additional object definition and transformation functions.

In some cases, the same visualization technique effects may be achieved both with and without composition.

For example, suppose we want to highlight objects red either by selecting a set of objects through a bounding-box or

through a dynamic query slider. One way to achieve this is to use object definition composition to union up the

selected sets of both techniques and then highlight this combined set red (Figure II-19a). Another possibility is to

leave both techniques separate as in Figure II-19b. The more appropriate specification depends on our intentions and

our conceptualization of the technique. It is usually appropriate to compose two techniques if they are related in

some manner, for example, if they are updated by the same input-device event. For example, suppose we want color

highlighting to only occur on a bounding-box release event, then we would compose the two techniques because

they are both triggered by the same input-device and we want to capture this relationship. On the other hand if the

 II-35

two techniques are not conceptually related, then they should be expressed separately. Composing techniques that

are not conceptually related is a misrepresentation of their functionality.

Functional
Description

Graphical
Transform

Set-operator
(Union)

Enumeration

Red
Bounding-box

Color

Slider

(a) Composed technique.
Techniques should be composed when they are

conceptually related.

Enumeration

Graphical
Transform

Functional Desc.

Graphical
Transform

RedBounding-box Color

RedColorSlider

(b) Non-composed technique.

Techniques that are not related should have separate
specifications.

Figure II-19: Two different technique descriptions that achieve the same effect. Both techniques highlight
objects selected by the bounding-box or the slider, red.

This issue of multiple specification solutions extends beyond the simple choice of whether to compose

visualization primitives or not. More generally we can sometimes arrive at identical technique

functionalities by using different combinations of primitive functions and composition operators. Which

design solution is most appropriate would depend on secondary goals such as:

• How does each solution fit with our conceptual model of the technique.

• Which design is more general.

• Which design is more computationally efficient.

Theoretically, compositions allow us to generate an infinite number of designs because we can keep

adding more and more operators onto the visualization technique specification. Practically however, the

space we are exploring is not infinite. Techniques are only useful when we transform the visualization data

and graphical objects in simple and fairly well understood ways. Users have a limited area of attention and

a limited amount of cognitive resources. If too much of a visualization is changed, users may miss out on

many of those changes; or if the changes are too complex, users may misunderstand or misinterpret the

results. In the next section we start exploring the visualization techniques design space using the ODT

model developed thus far. From this analysis we will see that many common visualization techniques

contain very few composition operators and some have none at all. Note that the subsequent section may be

skipped if readers are only interested in the use of the ODT model with respect to automatic design. Section

II-3 explores the generality and coverage of our visualization framework rather than it relates to automatic

design.

II-3 Visualization Techniques Design Space

In this section we show the generality and applicability of our framework by using it to evaluate

current visualization designs as well as to make meaningful comparisons across techniques in different

 II-36

visualization systems. Specifically we use our framework to evaluate, compare and classify a set of

common visualization techniques, found in Card et al.’s compilation of current visualization systems

[Card, 1999] and IEEE’s Symposium on Information Visualization (Table II-2, Table II-4, Table II-6, Table

II-8). Some of these visualization systems (e.g. the TableLens system) utilize multiple visualization

methods, in which case, we represent each of the methods separately in our analysis. Certain other common

visualization methods (dynamic query sliders and painting) appear in multiple visualization systems, in

which case, we only describe these base methods once. It is also important to note that while some of the

systems analyzed have novel ways of representing and mapping data to graphics, we do not capture these

new graphical representation methods here. A representation framework for visualization has been

developed previously by Mackinlay and Roth [Mackinlay, 1986a; Mackinlay, 1986b; Roth 1990] and our

framework defines functional operators that operate on the objects within these previous frameworks. To

capture new types of representations we need to focus on expanding the representation framework and that

is not the focus of this thesis. Thus only functional techniques and not systems with new graphical

representations are shown in our analysis tables.

Transformations Goal
Derived

Summary
Data

Transform
Meta-data

Object
Attribute

Mapping
Transform

Scope ch.

FeedbackGraphical
Transform Readability

FeedbackRendering
Transform Readability

Object Definition

Enumeration

Functional Desc.

User initiated or
Designer default

Phase 1: object definition Phase 2: transformation

operational
set

all
objects

Figure II-20: The two components that form a primitive visualization technique – object definition and
transformation

In the following sections we organize visualization techniques according to their main transform

classes (i.e. data transform techniques are grouped together (Table II-2), as are mapping (Table II-4),

graphical (Table II-6), and rendering (Table II-8) techniques). Some techniques may contain multiple

transform classes in which case we repeat their specification in each group they belong to. Through this

analysis we show that there are some common ways in which visualization techniques are currently used

and combined. This knowledge will allow us to better understand visualization techniques and adapt them

to more effectively fulfill our tasks and preferences. In addition, we can identify unexplored areas in the

visualization techniques design space and start examining new forms of visualization methods. Finally, this

analysis also illustrates that our framework is relatively general and is able to characterize a variety of

techniques.

 II-37

In these analysis tables each visualization method is represented by one or more rows. The specific

object definition and transformation types of each technique is shown on the table columns. The first two

columns represent the two object definition alternatives and the last four columns represent the four

transformation classes. A visualization technique is represented by a set of connected highlighted (gray)

cells. Highlighting occurs according to a technique’s object selection and transformation functions. For

example, the dynamic query slider technique has a functional description object definition component

followed by a graphical transform that changes the visibility of the objects. As such it has a highlighted cell

on the functional description column in Table II-6 that is connected to a highlighted cell in the graphical

transform column. The foreground tool, on the other hand, lets users enumerate objects through mouse

clicks, thus it has a highlighted cell in the enumeration column of Table II-6. This enumeration cell is

connected to a highlighted cell in the graphical transform column, which represents the foreground function

that brings selected objects up to the top of a graphical scene. Compositions are represented by double-

lined arrows, with a symbol next to it indicating the composition type (OD = object definition composition;

T = transformation composition, PC = producer/consumer composition; and PT = partition composition).

The dotted arrows in the analysis tables represent update-links. Update-links indicate changes in a

technique that is brought on by changes made in a different technique. For example the HomeFinder system

in Table II-2 has an update link from its data transform function to a mapping function. This is because the

data transform function updates the count-derived-attribute data values that are mapped to graphical objects

in the visualization. Thus any change in those count values will result in a subsequent update to its

graphical value mappings (refer to section II-2 for details). Note that this analysis simplifies the

visualization techniques and only includes important functional features, so as to reduce diagrammatic

complexity. As a result some of the techniques shown in Table II-2, Table II-4, Table II-6, and Table II-8

may not contain all of the visualization functions from their more complete specifications shown previously

in this chapter.

II-3.1 Data Transforms

Data transform techniques are shown in Table II-2. It is perhaps not surprising to note that all these

techniques either compose their data transform function with another transform class (modified-value-

painting, generalized-fisheye, simple-aggregation) or have a subsequent update effect (shown as dotted

lines) to another transform class (HomeFinder, TableLens-sort). Data transforms are commonly connected

to a transform function of a different class because data transforms only generate non-visual results, and

these results must somehow be shown to users. From Table II-2 we see that data transforms are commonly

linked with mapping transforms (simple-aggregation, TableLens-sort, HomeFinder, generalized-fisheye).

While the modified-value-painting technique has a pc-composition link to a graphical transform, there are

no techniques with transformation composition links from a data transform to a graphical transform or a

rendering transform.

 II-38

Visualization Technique Enum. FD Data Map. Gra. Ren.

Simple Aggregation
(section II-2)

TableLens Sort [Rao,
1994]

HomeFinder System
[Tweedie, 1994] (section
II-2)

Generalized Fisheye
[Furnas, 1991]

 All

Modified Value Painting
(section II-2)

Table II-2: Data visualization techniques

An example technique that fills the data transform to graphical transform space, is a variation on the

selection technique, which we call the load-sensitive-selector. This technique allows us to pick a set of data

concepts, then highlights the graphical representations of those concepts according to the size (number of

concepts) of the selected set. For example, a larger selected set will result in a more saturated highlight

color while a smaller selected set will result in a lighter, less saturated highlight color. In this case we have

a user-enumerated technique that is linked to a data transform for calculating the number of objects in the

set. This count-value is then fed into a color graphical transform for computing the new highlight color. Yet

another alternative is to use this count value to change the magnification factor of a rendering transform so

that we automatically zoom in when we select a few objects and automatically zoom out when we select

many objects. This produces a data transform to rendering transform technique.

Thus by looking at areas not covered by current techniques, we can derive new methods that may be

useful for some task classes. The load selection technique for example can be used as a cue to indicate the

existence of occluded objects in the selected set. If the saturation is high even though the number of objects

that is selected appears to be small then there are probably some occluded objects that have been selected.

Note that the new techniques that we discuss in this section (section II-3) are all manually designed based

on our analysis of the visualization techniques design space using our framework. In addition these

examples tend to be incremental in that they enhance an existing technique in fairly well understood ways.

This is so that the expansions can be more easily conveyed and the uses of the expanded techniques are

more readily apparent In appendix A-2.2 we present a more complex example of technique expansions that

are also based on our framework.

Data transform techniques can be divided into three classes based on the information type generated:

1) derived attributes, 2) summary values, or 3) meta-data. The generalized-fisheye technique computes a

PC

PC

T

 II-39

derived set of degree-of-interest (DOI) values based on the importance of a data concept to the current task

(data transform type-1). Objects with low DOI values are subsequently culled from the display with a

mapping transform. The modified-value-painting and simple-aggregation techniques, on the other hand,

both generate summary values from existing data (data transform type-2). The modified-value-painting

technique computes the mean for a set of values and uses that information through pc-composition for

querying other data. The simple-aggregation technique summarizes a set of objects into a single aggregate

object and then maps the aggregate object into the visualization. Finally the TableLens-sort and

HomeFinder systems both use type-3 data transforms. In TableLens-sort the data transform function is used

to calculate the order of elements (meta-data) based on an existing attribute. The HomeFinder system uses

a count data transform function to generate meta-data for capturing the number of query conditions passed

by a set of data concepts.

Note that there are interesting differences between the meta-data generated by the TableLens-sort and

HomeFinder techniques. The former is generating meta-data based on the original data values while the

latter is generating meta-data based on a set of query results. A data transform that is attached to a user

controlled functional description function (like the HomeFinder system) usually falls into the latter

category. Query data transform techniques are commonly transient, because their purpose is to give users

one-time feedback on the current query results. As the query changes, new query information is

computed/summarized and the previous results are discarded. In addition, because we are using data

transforms to get an overview of a user initiated query, we only use summary and meta-data transform

functions (e.g. to calculate the size of query set, the number of duplicate elements within the query set, the

spatial dispersion of objects within the query set, etc). This separation between query and non-query data

transforms is shown in Table II-3.

 Visualization Techniques

Summary Query (transient)

(data transform connected to a user defined
functional description object definition method)

Meta-data HomeFinder

Derived Non-Query Final results (persistent)

Summary Simple-aggregation

 Meta-data TableLens-sort

Derived Generalized-fisheye

Summary Modified-value-painting

Intermediate results (transient)

Meta-data

Table II-3: Goal categories of data visualization techniques

Non-query related data transforms are divided into two groups: a) those that compute final results, and

b) those that compute intermediate results. Intermediate result techniques use data transforms to calculate

 II-40

temporary values that are used in subsequent functions. Thus, intermediate-result techniques are always

linked either through pc-composition or transformation composition to other functions. An example is the

modified-value-painting technique that uses a summary data transform to get the mean of a value set. This

mean value is subsequently used in a functional description function. Another example is the generalized-

fisheye technique that computes a set of intermediate DOI values, which are subsequently filtered with a

functional description operator. Note that intermediate operations are also commonly used in complex

computations. For example, to get the result for (A – B) + (C – D), we must first calculate (A – B) and (C –

D), which are both intermediate results. These results are then fed into an addition data transform that

produces the final result.

Final-result techniques, on the other hand, have more persistent output values that are commonly

reused multiple times in several different tasks. In this case we are extending our database with new

information. In the other two cases (i.e. query and non-query-intermediate) we are not looking to extend

our database but rather just to summarize feedback results in a way that is easily assimilated by users or to

fulfill intermediate tasks. Table II-3 show how the data transform techniques in Table II-2 may be classified

based on these different classes of data transform goals.

In Table II-3 we see that none of the techniques considered fall into the query-summary category. One

example technique we manually designed that fills this space is the range-dynamic-query technique that

presents end-users with the spatial range of objects that fall within the query set.

(a) The red bounding-box encapsulates all the

objects within the visualization because no
constraints are currently set.

(b) The red bounding-box now only encapsulates

objects that are on the top-mid portion of the
display because only objects in that area pass the

two slider constraints.

Figure II-21: Range dynamic query technique. In the example visualizations above, each mark represents a house data
concept. The x and y positions of the marks corresponds to the geographic location of their respective houses. Objects are
selected here by setting constraints using the two sliders at the bottom of the interface, which allow users to set threshold
constraints on the selling_price data attribute and the num_rooms data attribute. The red bounding-box is then drawn so

that it encapsulates all of the selected objects (i.e. all objects that pass the slider constraints).

 II-41

For example Figure II-21 shows a range-dynamic-query interface that allows users to select objects based on

selling_price and num_rooms using two slider input-devices. The visualization encodes geographic location of the

houses on its x-axis and y-axis. In this interface we show summary information for the query objects by drawing an

annotation-box (red rectangle) around all houses that fall within the query set. This is achieved by using the get-max

and get-min summary data transforms to get the minimum and maximum longitude and latitude of the query objects.

These data transform functions are later connected to a graphical transform function for changing the size of the

annotation-box. From Figure II-21 we see that there is a relationship between house selling_price and num_rooms

with location. The more expensive larger houses seem to be located in the top middle portion of the area. This

technique is useful in cases where the visual display is large and it is difficult to focus in on the selected objects. By

using the range dynamic query slider, we can automatically zoom in on the display based on the range of the

selected set. This would work well in those cases where the query result is highly correlated with object positions in

the visual display.

In Table II-3, the non-query-final-derived and non-query-intermediate-meta-data categories are also empty.

However, all non-query data transform techniques (including the two empty ones in Table II-3), can commonly be

performed in spreadsheet and data analysis systems which allow users to compute a wide range of non-query results

based on user input formulaic expressions.

II-3.2 Mapping Transforms

Visualization
Technique

 Enum. FD Data Map. Gra. Ren.

Visage Drag and Drop
[Roth, 1996]

Dipstick [Beshers,
1990]

PAD++ [Bederson,
1994]

TableLens Distortion
[Rao, 1994]

Simple aggregation
(section II-2)

Generalized Fisheye
[Furnas, 1991]

 All

Table II-4: Mapping visualization techniques

T
Rendering
-mapping
techniques
(Semantic
zooming)

Data-
mapping
techniques

Pure
mapping
techniques

PC

T

PC

 II-42

The mapping techniques we analyzed are shown in Table II-4. Mapping transforms, as was discussed

previously, are commonly associated with data transforms (generalized-fisheye, aggregation, etc). While there are

several semantic zooming techniques (PAD++ and TableLens-distortion) that compose mapping transforms with

rendering transforms, there are no techniques in Table II-4 that combine mapping transforms and graphical

transforms. An example technique we designed that fills this space is the information-enhancer technique that

allows users to select a set of focus data concepts, and then increases the number of data attributes mapped (i.e. the

amount of information encoded) for those chosen concepts (mapping transform) (e.g. similar to semantic zooming

techniques). At the same time however, we also increase the size of those objects (graphical transform) so that the

additional information encoded can be viewed more clearly and accurately. The TableLens-distortion and simple-

aggregation techniques in Table II-4 can also be expanded with a graphical transform for coloring the operational

set (i.e. the objects being transformed) so that they appear more salient to users.

Mapping transforms are used first and foremost to show end-users the information required for solving their

task(s). All visualizations use mapping transforms for this purpose. Some visualization techniques also use mapping

transforms to change the content of visualizations in order to improve readability3. The contents of a visualization

can be set or changed by 1) mapping data concepts to graphical objects, 2) mapping data attributes to graphical

properties, or 3) changing the scope of existing mapping functions. Table II-5 shows how the mapping transform

techniques shown in Table II-4 can be classified based on these goals.

 Visualization Techniques

Object All visualization systems

Attribute All visualization systems

Show task data

Scope Visage-drag-&-drop

Object
(semantic
zooming)

TableLens-distortion,
PAD++

Attribute
(semantic
zooming)

TableLens-distortion

Readability

Scope Visage-drag-&-drop,
Dipstick,
 Generalized-fisheye,
Simple-aggregation

Table II-5: Goal categories of mapping visualization techniques

3 Readability refers to problems that arise due to constraints of the visualization output media and constraints of our perceptual

system. These problems reduce the effectiveness of a given visualization design because of object occlusion, ink density, lack of

information presence, and dwarfed encoding scales.

 II-43

 Visualization readability can be improved through semantic zooming techniques as well as scope techniques.

Semantic zooming techniques improve the readability of a graphic by allowing users to view different pieces of

information at different degrees of detail. This is achieved by using different object and attribute mappings at

different instances. When data sets are large, it is not possible to show all the information in detail without

overwhelming the user and overcrowding the available display space. One way to solve this problem is to represent

the information with simple graphical objects that take up little space and only map the current focus information to

richer graphical objects. Usually a change in graphical object representation is coupled with one or more attribute

mapping changes as well. For example in the TableLens-distortion technique, we change the graphical

representation used from bar to text (and bar) when the space available for showing the data is expanded. We also

use the label graphical property in addition to bar-lengths for showing the data values.

Scope techniques, on the other hand, use mapping transforms to change the data concept or graphical object set

being shown in the visualization but not the graphical representation class or graphical properties used, as was done

in semantic zooming. The visage drag and drop technique [Roth, 1996] is a scope technique that allows users to

select and transfer sets of objects from one visualization to another by changing the set of data concepts being

encoded within each visualization. Operations available in the “Data source” menu of a Microsoft Excel chart uses

mapping transforms in much the same way. To add objects into a chart users select a set of data concepts from the

spreadsheet and then choose the “Add” option in the “Data source” menu. Both of these scope changing techniques

can be used to improve visualization readability only showing the relevant data concepts at any given instance,

thereby reducing clutter and ink density. However, using mapping transforms in this way to solve readability goals

requires that we keep track of how we changed the contents of the visualization so that we can restore deleted

information that may be needed at some later point of our task. In contrast, the generalized-fisheye-lens technique

automatically changes the scope of visualizations based on a degree-of-interest (DOI) function and thus does not

require users to manually control the object scope, but automatically adds and deletes objects as necessary. As a

result, unlike the visage-drag-and-drop technique, we do not have to keep track of scope changes made to the

visualization. However, it can be difficult to devise appropriate DOI functions for our task(s). Scope techniques are

also often combined with data summarization operators (e.g. in certain aggregate methods) to add in new summary

information and delete the original objects or values that have been summarized. This allows us to improve

visualization readability because the number of objects shown are reduced.

II-3.3 Graphical Transforms

Graphical transforms (shown in Table II-6) are used to provide feedback or improve the readability of

visualizations. In Table II-6, we see that graphical techniques are not commonly combined with other transformation

classes. In the previous sections we had discussed several possible new design alternatives for combining data and

graphical transforms as well as mapping and graphical transforms. Here we discuss designs that combine graphical

and rendering transforms. Techniques do not usually combine graphical and rendering transforms because both of

these function classes serve similar purposes, i.e. to provide feedback or to improve readability. In addition,

rendering transforms may sometimes warp the effects of a graphical transform that operates on the same graphical

 II-44

property class (e.g. positional, retinal) making the resulting visual effect of the combined technique difficult to

interpret. Thus a design that attempted to combine both graphical and rendering functions through transformation

composition would do well to apply the graphical transform to different graphical property classes. For example, we

could augment the TableLens-distortion technique (which operates on positional graphical properties) with a

graphical transform that colors all objects within the lens red (i.e. operates on retinal graphical properties). This

highlights the selected cells so that users can more easily tell which objects are being expanded. The resulting

specification has mapping, graphical, and rendering functions combined together through transformation

composition. Another alternative is to combine graphical and rendering functions using pc-composition. For

example, to reduce occlusion, we could render all graphical objects that exceed a threshold area as wire-frame

objects instead of solids. This technique uses a graphical transform to compute the areas for all graphical objects

within the visualization. The area values are then piped into a functional description object definition function that

ultimately leads to a wire-frame rendering transform.

 Visualization
Technique

 Enum. FD Data Map. Gra. Ren.

Dynamic Query
[Ahlberg, 1992]

Value Painting
[Eick, 1992]

Modified Value

Painting (section II-2)

Simple selection
(section II-2)

Feedback

Painting
[Becker, 1987]

Foreground Tool

SDM general
[Chuah, 1994]

SDM distance
[Chuah, 1994]

Shrimp [Storey, 1997]

TableLens Column
Move [Rao, 1994]

Readability

Cone Trees
[Robertson, 1991]

Table II-6: Graphical visualization techniques

There are two types of graphical technique feedback as is shown in Table II-7: search feedback and internal

state feedback. Search-feedback techniques use graphical transforms to make the results of a query more salient so

that a user’s attention is drawn to those objects. Some example search techniques include dynamic-query-sliders,

PC

T

PT

PC

 II-45

and value-painting. All of these techniques allow users to specify a functional description of the data concepts they

are interested in. The appearance of the graphical objects representing the specified data concepts are then colored,

made visible, enlarged, etc, to give feedback to users on the results of their search. The graphical transforms used for

search and internal-state feedback are often simple such as setting a group of graphical values to a constant. This is

however not a requirement. In appendix A-2.2 we consider a hybrid search technique with complex feedback effects

involving many graphical transform operators.

 Visualization Techniques

Search feedback

(functional description object

definition)

Dynamic-query-sliders,

Value-painting

Feedback

(commonly simple

feedback)

 Internal state updates

(stored internal information

that is not readily apparent)

Object-selection,

Simple-painting

Occlusion Foregound-tool,

SDM-distance,

Shrimp

Ink density Shrimp

Information Presence TableLens-column-move,

SDM-distance

Readability

Dwarfed Encoding Scales SDM-size-general

Table II-7: Goal categories of graphical visualization techniques

Internal-state-feedback techniques use graphical transforms to encode internal state information and

relationships among objects that may not be apparent in the visualization. Object-selection and simple-painting are

some example internal-state-feedback techniques. For object selection, feedback is required to give users persistent

state information on the object set that he/she is currently controlling. This is especially important when we have

multiple object sets, or when we create an object set by slowly adding objects into it (many applications allow users

to do this by using shift-click). In both these cases it is difficult to keep track of the objects that are currently

selected, thus visual feedback is required to show users the current “selection state”. The simple-painting technique,

on the other hand, uses graphical transforms to reveal object relationship state-information. Specifically, graphical

feedback is used to show the mapping relationships between certain data concepts and graphical objects (i.e. which

graphical objects correspond to a given set of data concepts).

Readability graphical transform techniques change the effectiveness with which users can view the graphical

elements that are already contained within a visualization. This is in contrast to mapping techniques that change

visualization readability by altering visualization content. We focus on four primary readability problems: 1)

occlusion, 2) ink density, 3) information presence, and 4) dwarfed encoding scales. These readability issues are

 II-46

described in greater detail in appendix F. Unlike feedback techniques, readability enhancing techniques such as

Shrimp, foreground-tool, SDM-distance-operation, and TableLens-column-move tend to have an enumeration object

definition component. This is because readability problems are often the result of complex spatial relationships

among the objects and it is difficult to capture the set of objects involved, functionally. There are several different

ways in which readability may be improved. The foreground-tool improves visibility by reducing occlusion for a set

of interesting objects; the Shrimp system enhances the visibility of focus objects by making them larger in size, and

reducing the density of elements around the focus objects (this may sometimes remove occlusion problems as well).

The SDM-distance-operation and TableLens-column-move techniques address the information presence readability

issue. The SDM-distance-operation allows users to bring a set of objects closer together and facilitate comparisons

by transforming the objects spatially so that they fall on a straight vertical line perpendicular to the user’s point of

view. The TableLens-column-move technique, on the other hand, allows users to move table columns closer together

so that the values are more easily comparable. Note that the SDM-distance technique also has the side effect of

removing occlusion from the focus set, as well as enlarging the focus objects by bringing them closer to the user.

II-3.4 Rendering Transforms

Finally, like graphical techniques, rendering techniques (shown in Table II-8) are also used to provide feedback

and improve visualization readability.

Visualization Technique Enum. FD Data Map. Gra. Ren.

Zoom

Pan

Graphical Fisheye
[Furnas, 1991]

Stretching [Sarkar, 1993]

Bifocal Lens
[Leung, 1989, 1994]

TableLens Distortion
[Rao, 1994]

PAD++ (rendering effect
is similar to zoom)
[Bederson, 1994]

Table II-8: Rendering visualization techniques

Rendering techniques transform the way with which a visualization graphical scene is drawn on the CRT

display, so that users may focus their attention on different parts of the scene that are pertinent to their current task.

Because of the nature of such transforms, most rendering functions operate on the entire visualization window

PC

T

 II-47

[Furnas, 1991; Leung, 1989,1994]; transforming only sub-regions will cause discontinuities in the display space that

are often distracting, and result in a loss of information [Hollands, 1989]. Example techniques that do not operate on

the entire visualization window includes the lens distortion techniques [Bier, 1994; Rao, 1994].

As can be seen in Table II-9, rendering techniques are more commonly used to solve readability issues rather

than feedback. One reason is that feedback techniques usually only require simple visual stimuli whereas rendering

transforms tend to bring about more complex visual changes. There are two main classes of rendering techniques:

navigation techniques and distortion or “focus + context” techniques. Navigation techniques such as zoom, pan and

scrolling allow users to view different areas of the information space when the output media is not sufficiently large

to contain all the information simultaneously (i.e. information presence readability issue). Note that as is shown in

Table II-9, zoom techniques can be used to solve other readability problems as well. The main problem with

navigation techniques, however, is that users may easily lose track of where they are in the information space.

 Visualization Techniques

Feedback None analyzed

Occlusion

(only perspective occlusion)

zoom,

pan

Ink density zoom

Information Presence

(view different information)

zoom, pan, scrolling

Navigation

Dwarfed Encoding Scales zoom

Occlusion

(only perspective occlusion)

graphical-fisheye-lens,
bifocal-lens,
stretching

Ink density graphical-fisheye-lens,
bifocal-lens,
stretching

Information Presence

(more information to be

shown)

graphical-fisheye-lens,
TableLens-distortion,
bifocal-lens,
 stretching

Readability

Focus+context

Dwarfed Encoding Scales bifocal-lens,
TableLens-distortion

Table II-9: Goal categories of rendering visualization techniques

Focus + context techniques or spatial distortion techniques, such as the graphical-fisheye-lens, bifocal-lens,

stretching and TableLens-distortion techniques warp the visualization space so that less output space is given to the

information on the periphery and more output space is given to the focus objects. By reducing the contextual areas,

these techniques can be used to show more information at any one time compared to non-distorted displays (i.e.

greater information presence) and as a result it is less likely that users will get lost in the information space. In

 II-48

addition, the expanded focus area(s) help reduce ink density around focus objects so that they can be viewed more

clearly. In 3D-displays, these distortion techniques may also be used to remove perspective-occlusion. Note that

even though TableLens-distortion is a focus+context technique, it does not appear in the occlusion and ink-density

categories of Table II-9 because these two readability problems are not applicable to the table representation used in

the TableLens system. Finally, focus+context techniques may also be used to expand dwarfed encoding scales (i.e. a

positional axis that is too small in size to accurately represent all of the data values). However, their non-linear

magnification functions distort the encoding scales, making them difficult to interpret. The two exceptions are the

TableLens and Bifocal-lens techniques, which use very simple distortion functions. In these techniques the display

only has two different distortion scales, one for the focus area and one for the context area; unlike the other

techniques which apply a continuous distortion function. As a result any distorted axes will also only have a focus

and a context section, and as such are easier to interpret.

II-3.5 Summary

In this section we have classified a set of common visualization techniques using the object-

definition/transformation structure described in previous sections. Based on this classification we were able to draw

some interesting similarities among the different transformation techniques and categorize them based on their goals

as is shown in Table II-3, Table II-5, Table II-7, and Table II-9. We were also able to recognize the common ways in

which current visualization techniques are used, how they are commonly composed with other functions, and the

areas in the design space that have yet to be rigorously explored. In fact, in this section we presented some simple

adaptations of current techniques (e.g. load-sensitive-selector, range-dynamic-query, information-enhancer) that fall

within some of the less populated design areas. These techniques are interesting, if not in their end-use, then in

filling out the visualization design space and in illustrating the strengths and weakness of new technique classes that

have never been explored. Note that in this section we do not discuss how “good” a technique is at fulfilling its

intended task. The goodness of a technique with respect to a task is evaluated in chapter IV-2, using four different

measures: articulatory, functional, expressive, and observational distances. These four distances determine which

visualization techniques are most appropriate for a task by estimating the amount of motoric, cognitive, and

perceptual effort users must expend to solve their tasks.

II-4 Conclusion

In this section we decomposed visualization techniques into two components: an object definition component

and a transformation component. In the object definition component users pick a subset of data and graphical

elements from all the available elements in the visualization system. In the transformation component, different

transform functions are applied to the objects from the object definition component in order to bring about different

visualization effects. These simple two-component primitive visualization techniques may be composed with each

other using four different classes of compositions: object definition composition, transformation composition,

producer-consumer composition, and partition composition. Each of these composition types are characterized by

 II-49

different patterns of object definition and transformation chains. Based on the ODT model (object

definition/transformation) and composition functions, we get a better idea of what constitutes a visualization

technique, how they are built, combined and used. This is crucial to our automatic design system and we show how

the concepts set forth in this chapter are applied to our prototype design system in chapter V. In addition, we can

also use our framework to scope out the design space for common interactive techniques (Table II-2, Table II-4,

Table II-6, and Table II-8) and make comparisons across techniques from different visualization systems. These

tables show the flexibility of our framework in being able to represent a wide range of current visualization

techniques. It also reveals the ways in which common techniques are used and combined so that we are better aware

of current design boundaries and where the unexplored areas are within the visualization techniques design space.

This chapter focussed on examining visualization techniques at a higher, functional level of abstraction where

we are mostly concerned with the general class of object definition and transformation functions used, as well as

their goals. There is little discussion here of inputs and outputs to the functions, how these functions get their needed

input arguments, and how input-devices can be integrated into the design. These issues must be solved before we

can use our visualization techniques framework in our automatic design system to render or generate a working

visualization interface. We consider these instantiation issues in the next chapter.

 III-50

Chapter III:
Visualization Techniques Framework

$��
������&RQFUHWH�,QVWDQWLDEOH��
���������������������������'HVFULSWLRQ�
�

 In the previous chapter we discussed visualization techniques at an abstract, functional level. This

level of specification is useful because it captures the general purpose and capabilities of a technique. The

functional specification also allows comparisons of techniques without the added complexity of interface

and structural details. This level of specification however is insufficient to capture a technique in enough

detail for instantiation (i.e. rendering it as a visualization interface). In order to increase the applicability

and practicality of our framework, we must also describe how the functional specifications described in the

previous chapter can be augmented to an instantiable form.

 Other previous frameworks on visualization techniques either focussed on the functional level (e.g.

[Tweedie, 1997], [Card et al., 1997], [Card et al., 1999]) or the instantiation level (e.g. Data explorer, IRIS

Explorer, AVS [Brodlie, 1991]) in isolation. In this thesis it was crucial for us to describe a framework that

encapsulates both levels of description. The functional level informs our automatic design system of the

primary primitives within a visualization technique, their uses, and how these primitives may be combined

with each other. The instantiation level allows our designer to describe the structural details of a technique

(e.g. data and graphical elements, input-devices, etc) so that the technique can be rendered as an active

interface. By including both levels in the same framework as well as a method of transition from one level

to the other we provide the advantages of both types of description without requiring a change in the

conceptual model or descriptive language as we would with previous frameworks. In addition this two level

design methodology is also useful to visualization designers because it encourages them to initially focus

on the functional aspects of visualization techniques, free from structural constraints. Once the functionality

has been fully designed, a designer may enrich the technique with structural detail. As a result designers

will be less apt to falsely constrain functional capabilities as a result of structural concerns. For a more

complete discussion of how our framework differs from previous work refer to appendix B-1.

 III-51

 In this chapter we present a five step process, which we call the instantiation augmentation process,

that can convert any functional specification into an instantiable visualization technique (Figure III-11). A

functional specification (like the ones shown in the previous chapter) captures the “core” functionality2 of a

technique in as general and abstract terms as possible. An instantiation specification augments a functional

specification with specific input-devices and translation functions3 that are required to make the technique

operational. The five steps in the instantiation augmentation process dictate the general look or structure of

the technique but does not change its underlying functionality. For example, the topmost diagram in Figure

III-1 shows a functional specification for the object highlight technique, which graphically transforms a set

of user selected objects. The functional specification is very simple consisting of an enumeration selection

method followed by a graphical transform. The instantiation specification of this technique (shown at the

bottom of Figure III-1) is more complex, consisting of various input-devices (e.g. bounding-box) and

translation functions (e.g. get-values function) in addition to the object definition and transformation

functions used in the functional space.

Next, we describe the five steps of the instantiation augmentation process shown in Figure III-1. The gray

highlights in Figure III-1 indicate changes made to the specification at each step.

Step1. Pick specific object selection and transformation functions:

We must decide which specific object definition and transformation functions to use from the broad general

classes (e.g. enumeration, functional description, data transform, mapping transform, graphical transform,

rendering transform) described in the previous chapter. For example in Figure III-1 we use the assign

function which is a specific instance of the more general graphical transform class. There are no sub-class

functions to the enumeration object definition class so no further refinements are needed in that component.

We consider this first step as part of the instantiation augmentation process but it can sometimes be

included in the functional specification process if specific transform instances (e.g. assign) are required to

define the “core” functionality of a technique. I.e. a functional specification may consist of broad function

classes (e.g. enumeration, graphical transform) or of specific function instances (e.g. assign). However, a

functional specification should be stated in as general and abstract terms as possible. Thus, function

instances should only be used when absolutely necessary.

1 The specifications shown in Figure III-1 and in this chapter uses the same notation as the functional specifications

(i.e. ODT or object-definition-transformation diagrams) shown in the previous chapter. Details on the diagrammatic

notations used in these specifications can be found in appendix A-1.
2 In this work we assert that “core” functionality is captured by either object definition or transformation functions and

nothing else. Translation functions and input-devices are considered part of the structural (as opposed to functional)

aspect of a visualization technique.
3 Translation functions transform objects between the data and graphical realms and also among the different object

types within each realm. More detail on these functions is given in the following sections.

 III-52

Functional
Specification Enumeration

Graphical
transform

Step 1:
Pick specific object selection and transformation functions

Enumeration Assign

Step 2:
Match outputs with inputs through translation functions

AssignGet
values

Enumeration

Graphical
objects

Graphical
values

Step 3: Determine how function inputs are chosen

Assign
Get

values1.Graphical
objects

2.Graphical
property

3.Graphical
value

Color Red

Input device

Graphical
values

Step 4: Determine input-devices

Get
values

Assign
Get

values
Graphical

objects

Graphical
property

Graphical
value

Color Red

Bounding-box

Step 5:
Instantiation
Specification

Specify initialization arguments to the input-devices

Input-device initialization specification: Color property value of bounding-box input-device is set
to white.

Get-
values

Assign

Input device
property

Graphical
value

Color White

Bounding-box

Main technique specification: This is the complete specification from Step 4.

Get
values

Assign
Get

values
Graphical

objects

Graphical
property

Graphical
value

Color Red

Bounding-box

Graphical
values

Figure III-1: Diagrammatic representation of the five-step instantiation augmentation process for the object
highlight technique. Additions made in each step are shown in gray.

 III-53

Step2. Match outputs with inputs through translation functions:

A visualization consists of elements from three different realms, the data realm, the graphical realm and the

output media. The transformation and object definition functions within a visualization technique may

operate on objects, attributes, and values in any of these realms. Proper operation of a technique depends on

whether we apply its object definition and transformation functions to the correct realm and to the correct

element types within each realm. A set of translation functions is available to translate the outputs of

functions and devices between the realms. These translation functions are also used to explore object

relationships and query for object state so that we may obtain the correct element types within each realm.

At this point in the instantiation augmentation process, we decide which translation functions need to be

inserted between the object definition and transformation functions declared in step 1 to ensure that the

outputs of the object definition function match the inputs of the following transformation function. For

example in Figure III-1, step 2, the enumeration object definition step produces a set of graphical objects.

We use the get-values translation function to extract a set of color graphical values from these objects

because graphical values are needed in the subsequent assign graphical transform.

Step3. Determine how function inputs are chosen:

Object definition, transformation, and translation functions all have inputs and outputs. The input

arguments to these functions can be provided by other functions, such as a translation function (step 2), an

object definition function or a transformation function (as is outlined in chapter II-2). Input arguments that

are not provided by a function must be preset by a visualization designer or controlled by a user through an

input-device. Here we decide between these two alternatives. For example in Figure III-1, step 3, the object

highlighting technique has three unspecified input arguments after the first two steps. These arguments

include: 1) the set of graphical objects to feed into the get-values function, 2) a graphical property for the

get-values function, and 3) a property value for the assign transform. In this example, we provide the latter

two values through designer defaults. The graphical property is set to color and the property value is set to

red. The first input argument is obtained from the user through an input-device.

Step4. Determine input-devices:

In this step we determine the type of input-devices to use with the interactive system. An input-device is

needed for every user input value specified in step 3. We must decide whether to provide several input

values with a single device (composition of input-devices) or whether to use separate devices to provide

separate inputs. The types of devices that are appropriate would depend on effectiveness measures such as

the ones outlined by Card et. al. [Card, 1990, Mackinlay, 1990]. In Figure III-1 there is only one user input

argument and we use a bounding-box that allows users to enumerate the set of objects they want to

highlight. Note that a get-values translation function is used with all input-devices to extract relevant state

information from them.

 III-54

Step5. Specify initialization arguments to the input-devices:

Certain input-devices may require initialization values. For example, a slider input-device must be

initialized with the maximum and minimum slider range. On the other hand a scroll list is initialized with a

list of selectable entries. In the object highlight example, the bounding-box input-device does not require

any initialization, however, we decided to initialize its color property anyway for aesthetic reasons. Note

that the operations used for input-device initializations are visualization techniques themselves. In this case,

the object definition component defines a bounding-box input-device object that is a designer enumerated

object. Subsequently this object is passed to the assign graphical transform operator, which changes the

color property of the bounding-box to white. For a more detailed example of the structural augmentation

process refer to appendix B-3.

To perform the instantiation augmentation process outlined above, we must clearly define the specific

object definition, transformation, and translation functions available; the set of visualization elements from

the three realms (data, graphical, output media) that are manipulated by these functions; and the input-

devices that can be used with these functions. In section III-1 we give detailed descriptions of the

primitives within these three realms. Section III-1 is not meant as advancement to the field. Many of the

visualization elements and input-devices presented have been captured in previous work, and the

visualization function primitives recapitulates standard math theory that can be accomplished using any

current programming language. However, this level of detail is necessary for our automatic design system

because it requires a complete description of all primitives that are available for design. In addition, the

primitives also give specific examples of the types of functions we would find in each transformation class

and provides bounds on our framework, indicating the number of primitives that are required to capture the

various visualization techniques described in this work. Section III-1 may be skipped if the reader is not

interested in detailed descriptions of the primitives used by our automatic design system. In section III-2 we

show how changing the instantiation specification of a technique can change its effectiveness at solving

tasks and can sometimes lead to new and interesting design variations. Note that the design alternatives

generated by exploration at the instantiation level is different from that of the functional level (chapter II-3)

because here, we are keeping the semantics of a technique constant and only changing its structural content.

As a result the technique still fulfills the same goals even though the method of interaction or the visual

feedback may now be different. Finally we close the chapter by discussing the merits of our framework

based on three criteria, completeness, coverage, and practicality (section III-3). These last two sections

(sections III-2, III-3) are provided to validate and highlight the uses of our framework. They may be

skipped if the reader is only interested in the automatic design aspects of this work.

III-1 Representation Language

In this section we present the visualization elements, functions, and devices defined in our framework

for constructing visualization techniques. These primitives were picked based on common features

 III-55

available in current visualization methods. It is important to note that this is not a complete list, and it can

never be complete because as new techniques are developed the list must necessarily grow and change. The

primitives described in our framework, however, are flexible and can be used to attain a variety of

visualization effects. Also note that the primitive functions have low granularity (i.e. we use simple

mathematical functions). This level of granularity gives us greater flexibility in composition and allows us

to express many current visualization techniques with a relatively small set of primitive building blocks. In

the next sections we describe the three primary building block classes in our framework:

1) Visualization elements or properties which may be from the data realm, graphical realm, or

output media. These objects or object properties form the inputs and outputs of the primitive

functions within a visualization technique;

2) Visualization technique primitive functions which may come from the object definition,

transformation, or translation function classes.

3) Input-devices that provide users with physical (e.g. mouse clicks) and/or virtual (e.g. menus)

controls so that they may interact with a visualization technique.

III-1.1 Visualization Elements or Properties

Visualization techniques operate over the data concepts, graphical objects, or output media that form a

visualization. In the object definition component of a visualization technique a set of these visualization

objects is chosen and then transformed. In addition to the elements selected in the object definition

component, primitive visualization functions often require other object or value inputs as was illustrated in

Figure III-1. These other inputs provide designers with a limited means of controlling the behavior of the

functions so that they can achieve a wide range of effects with a relatively small set of functions. In this

section we present the representational structures used to describe abstract data concepts and graphical

objects within a visualization. Our representational structures are based on previous work [Mackinlay,

1986a, 1986b; Roth, 1990]. We do not characterize the output media here because the focus of this thesis is

only on data and mapping functions, which operate wholly in the data and graphical realms. We leave

characterization of the output media for future work.

III-1.1.1 Data Concepts

The primary element in the data realm is the data concept. A data concept is a database record, very

commonly represented as rows in spreadsheet programs. For example in Figure III-2 the data concepts

being represented are houses. Each data concept is attached to a data type that describes the attributes and

relational structure of the data concept. Data concepts having the same attributes and relational structure

will be attached to the same data type. Every house data concept or record, for example, belongs to the

house-data-type class. The house-data-type class describes the five data attributes that are attached to each

house data concept, namely house-selling-price, date-sold, neighborhood, date-on-market, and number-of-

rooms. Each data attribute commonly corresponds to a column of values in spreadsheet programs. The first

three attributes of the house concepts are mapped to graphics in Figure III-2.

 III-56

Figure III-2: Example visualization containing house data. Each mark represents a house data concept. The
x-axis shows the date-sold data attribute; the y-axis shows the selling-price data attribute, and hue shows the

neighborhood data attribute.

Although data concepts commonly represent “real-world” objects, e.g. a house, this need not be the

case. A data concept may also represent a conceptual object, consisting of a group of related data attributes

possibly originating from multiple different “real-world” objects. For example, we may have data concepts

that contain the house-selling-price attribute as well as the owner-salary attribute. In this case the house-

selling-price is an attribute of a house object whereas the owner-salary attribute is an attribute of a person.

Depending on the task, our automatic system may draw data attributes from multiple different data concept

classes to form new conceptual objects as required.

III-1.1.2 Graphical Objects

In a visualization, data concepts in a database are mapped to graphical objects in a graphical scene.

Graphical objects, also commonly referred to as glyphs, are symbols that represent information through

visual properties that are either spatial (position-x, position-y), retinal (color, size), or temporal (jittering).

Graphical objects may be simple (e.g. mark, bar) consisting of only a few properties or more complex (e.g.

Chernoff Faces[Chernoff, 1973], InfoBug[Chuah, 1998a]) consisting of many properties. Graphical objects

commonly live within container objects (e.g. chart, map). For example, Figure III-2 shows a house data

visualization. The house data concepts were encoded using mark graphical objects within a chart container.

Containers are used to structure graphical objects (e.g. marks), annotation objects (e.g. axes, axes-labels)

and other container objects. The chart in Figure III-2 for example is used to group the mark graphical

objects together based on a well-defined layout scheme.

 III-57

Based on previous frameworks [Mackinlay, 1986b; Chuah, 1995], we organize graphical containers

and objects into a hierarchy. At the top of the hierarchy is the visualization container. The visualization

container exists within a desktop window, i.e. all the contents of the window are considered part of the

visualization. For example, Figure III-3 shows a visualization of house data containing charts, tables,

marks, bars, axes, and axis-labels. Figure III-4 shows a hierarchical breakdown of the components within

the visualization in Figure III-3.

Below the visualization container are region containers. Regions are arranged based on very specific

data attribute constraints. Two regions can be aligned (i.e. laid out side by side either horizontally or

vertically) only if their common axes represent the same type of data attributes. Figure III-3, for example,

has three aligned regions. Horizontal alignment is allowed here because the common axis of the three

regions (y-axis) encodes the same data attribute (i.e. house-address) in all three charts.

 Region containers group graphical objects together and structure them according to a layout scheme.

Some example layout schemes are shown in Figure III-5. The grid layout, for example, constrains the

positions of graphical objects so that they fall on evenly spaced rows and columns. The chart layout on the

other hand does not have any positional constraints so that the positions of the graphical objects may be

used to encode data, as in Figure III-2.

Figure III-3: Example visualization of house data. Hierarchical breakdown of graphical objects in this
visualization is shown in Figure III-4. X-axis in left-most chart shows selling-price; x-axis in middle chart shows
date-sold, shape shows neighborhood, and saturation shows salary; text in right-most table shows house-owner. Y-

axes for all three regions show house-address data attribute.

 III-58

Annotation
Objects

abcd

abcd

Region

abcd

Visualization House-
addr

price

agent

House-
addr

price

date-
sold

date-
sold

agent

House-
addr

price date-
sold

agent

Graphical
Objects

Chart
layout

Chart
layout

Table
layout

y
length

x, y
shape

y
text

Graphical
Properties
(encoding data)

Figure III-4: Container hierarchy for visualization in Figure III-3

Figure III-5: Example region layout schemes (borrowed from [Chuah, 1995])

 Annotation objects are a specialized class of graphical objects that are not containers and that do not

represent data concepts. Some example annotation objects include chart axes, legends, and axis labels. For

example, the chart in Figure III-2 contains a set of annotation objects including two axes, a set of axis-

labels, and a legend indicating how the house neighborhoods relate to the color of the graphical marks.

Annotations are used to present clarification on aspects of the visualization that are not readily apparent to

users. For example, annotation objects are commonly used to show how data is encoded using graphics

(e.g. chart-axes and legends), so that we can better interpret the graphical representations and tie them back

 III-59

to relationships within the data set. Annotations are also very useful for drawing user attention to particular

graphical elements and thus are widely used for communicative purposes. For example, the red arrow in

Figure III-2 is an annotation object for bringing user attention to a particular house object.

III-1.2 Visualization Functions

 In the previous chapter we had described the general classes of visualization functions (object

definition and transformation). Apart from the object definition and transformation classes, there are also

translation functions that are used to convert input and output argument types. In this section we give

detailed descriptions of all function primitives available to our automatic design system. Remember that all

the functions described here can be accomplished with current programming languages. We enumerate the

primitives here because our automatic design system requires a complete characterization of the list of

functions that it can manipulate. Listing out these functions is also useful for illustrating the number and

type of operators that are sufficient for describing current visualization techniques.

III-1.2.1 Object Definition Functions

In the object definition component we select a set of visualization objects for subsequent

transformation. Object set definition can be performed by enumeration or through functional description.

Enumeration allows the user or designer to list/enumerate all the interesting visualization objects by name.

In contrast, functional description methods allow users or designers to specify an interesting set of

visualization objects by applying functional constraints on the objects’ attributes or properties.

Function class

Input Output

Functional description 1. Value set,
2. Threshold value,
3. Compare operator
 (>, <, =, >=, <=, <>)

Boolean value
set

Set operation 1. n object sets,
2. Set operator

(intersect, union,
repeat-union,
difference)

Object set

Table III-1: List of object definition functions

Functional description functions may be simple or complex depending on the task requirements. In

this thesis we use the threshold function as the primary functional description method. Table III-1 shows

the inputs and outputs of the threshold function including all the threshold compare operators available (<,

>, =, <=, >=). The threshold function has three inputs: 1) a set of input values on which to perform the

threshold operation, 2) a threshold value and 3) a compare operator. It then returns a set of boolean values

 III-60

indicating whether each value in the input set passed the threshold. For example, if we want to find all

houses whose price is above $100k, we would apply the threshold function to: 1) the set of house-price

values, 2) the $100k threshold value, and 3) the > compare operator. The output will be a set of boolean

values, indicating for each input house-price value whether the it exceeds 100k. Note that the threshold

function may be used to filter any of the elements within a visualization including: 1) data concept

attributes such as house-price or date-sold, 2) graphical object properties such as x-position or size, 3)

annotation object properties such as size-of-legend, thickness of axes, and 4) input-device properties such as

bounding-box-color or slider-minimum-value.

The other functions in the object definition component are set operators. Set operators compose two

or more objects sets together (object-definition transformation) to produce a single output set. Set operators

are crucial for object definition composition as was illustrated in the previous chapter. Some example set

operators include the intersect, union, repeat-union and difference operators. Below we apply each of these

operators to three example object sets and show how their results differ.

difference ({a, b}, {b, c}, {c, d}) = difference ({a, c}, {c, d}) = { a, d }

intersect ({a, b}, {b, c}, {c, d}) = {}

union ({a, b}, {b, c}, {c, d}) = { a, b, c, d }

repeat-union ({a, b}, {b, c}, {c, d}) = { a, b, b, c, c, d }

The repeat-union operator combines all the input object sets just like the union operator except that it

does not omit duplicate objects.

III-1.2.2 Transformation Functions

 There are four classes of transformation functions, data, mapping, graphical, and rendering

transforms. These four transformation classes correspond to the four main phases of the visualization

creation process described in the previous chapter.

III-1.2.2.1 Mapping Transforms

 Mapping transforms are the basis for visualizing data because they allow abstract data concepts to be

perceived by linking them to visual graphical elements. There are two primary mapping transforms in our

framework: object mapping and attribute mapping (shown in Table III-2).

 Object mappings relate a class of data concepts as defined by their data type to a class of graphical

objects as defined by their graphical class. Data types capture characteristics of similar data concepts that

contain the same data attributes and relationships. Graphical classes capture characteristics of similar

graphical objects that have a common visual appearance and contain the same graphical properties. Some

common graphical classes include bar-class, mark-class, node-class, and interval-bar-class. For example,

we can map all house data concepts to mark graphical objects by mapping the house-data-type class to the

 III-61

mark-graphical-class as in Figure III-2. As is shown in Table III-2, the first two input arguments to the

object mapping transform are the data-type and graphical class that we want to attach.

Function class

Input Output

Add object mapping
(Delete object mapping)

1. Data type,
2. Graphical class,
3. Container object or
graphical object(s)

Add attribute mapping
(Delete attribute
mapping)

1. Data attribute,
2. Graphical property,
3. Container object or
graphical object(s)
4. Mapping effect
(forward, backward, both)

Add object
(Delete object)

1. Data concept(s)
2. Container object

Table III-2: List of mapping transformation functions

 The third object mapping input specifies the scope of the mapping function. The scope is defined by

listing the container object (e.g. visualization container, graphical space, region) we want to attach the

mapping to. Applying a mapping transform to a container object will cause all other containers

encapsulated within it (based on the object hierarchy in Figure III-4) to inherit the mapping as well.

Figure III-6: House data-type to bar graphical-class mapping applied to the entire visualization. Both chart
regions within the visualization inherit this mapping relationship. The x-axis of left chart shows selling-price; x-

axis of right chart shows house-lot-size and y-axis of both charts show house-address.

 III-62

 For example, applying an object mapping function that maps house-data-type to the bar-graphical-

class onto a visualization container will cause all the region containers within the visualization container to

inherit that mapping (e.g. Figure III-6). I.e. all house data concepts associated with each region container in

Figure III-6 gets mapped to bar graphical objects based on the mapping transform attached to their parent

visualization container. Alternatively, we can apply separate object mappings to each of the regions in

Figure III-6 instead of just applying one object mapping to the entire visualization container. For example

in Figure III-7 we have applied a house-data-type::bar-graphical-class object mapping to the left region

and a house-data-type::mark-graphical-class object mapping to the right region.

Figure III-7: The same visualization design as Figure III-6 except that a house data-type to bar graphical-class
mapping is applied to the left region and a house data type to mark graphical-class mapping is applied to the

right region.

 Mappings very commonly get attached to container objects (e.g. visualization container, space

container or region container) as was just discussed. However, limiting object mapping transforms solely

to container objects, only allows us to control how data concepts are mapped to graphical objects on a

region by region basis (i.e. we cannot associate subsets of data concepts within a given region to different

mapping transforms). In the Table Lens [Rao, 1994] technique, the data concepts that appear within the

table lens are mapped to the text graphical class, and all other data concepts are mapped to the bar

graphical class. The objects within the lens may span multiple column regions and only include a subset of

objects within each region. This Table Lens operation therefore cannot be achieved with a region scope

mapping transform To enable Table Lens type mapping, we allow the mapping functions in our framework

to be applied to container objects as well as to particular graphical objects within those containers. Note

that in order for there to be graphical objects in the first place, we must begin by applying an object

mapping transform to a container object. We can then refine the appearance of particular graphical objects

within the container by remapping them to a new graphical class. For example in Figure III-8 we have

 III-63

remapped some of the graphical objects in the left-region container of Figure III-6 to the mark graphical

class.

Figure III-8: The same visualization design as Figure III-6 except that a house data-type to mark graphical-class
mapping transform is applied to particular graphical objects in the left chart including Woodwell-6663, Ivy-704,

Penham-6828, and Kipling-5454.

 The second primary mapping function is the attribute mapping function. Attribute mappings are used

to express data attribute values through the use of graphical properties. All visualizations contain a set of

data attribute (e.g. net-profit, number-of-rooms) to graphical property mappings (e.g. position, color) for

illustrating the trends and relationships of data values visually4. As is shown in Table III-2, attribute

mappings have four input arguments. The first two arguments are the data attribute and graphical property

we want to link. The third argument specifies the scope of the attribute mapping. The scope of an attribute

mapping is specified in the same way as the scope of an object mapping. I.e. attribute mappings can be

applied to container objects or to graphical objects. Finally the last argument (the mapping-effect

argument), indicates whether the mapping function allows subsequent changes in data values to affect their

related graphical values and vice versa. There are four types of mapping-effect operators: forward,

backward, both or none. Forward allows subsequent changes in data values to be reflected in their

corresponding graphical values. Backward allows subsequent changes in graphical values to be reflected in

4 Attribute mappings usually map data attribute values to graphical property values linearly. However, in some cases

we may need to use a non-linear function or a modified linear function to take into account peculiarities of the human

visual system. For example Teghtsoonian [Teghtsoonian, 1965] found that the perceived area is typically the actual

area raised to a power of .8. Similar discrepancies arise in length and diameter judgements. We currently do not deal

with capturing these different attribute mapping functions in our framework but such extensions would not be overly

difficult to implement.

 III-64

their corresponding data values. Both refer to a combination of forward and backward effects and finally

none does not allow updated data or graphical values to propagate either way. For example, we may use the

backward mapping-effect to link the size of a mark to the selling price data attribute. This allows us to

change the underlying data (i.e. the selling price attribute values) by controlling their corresponding

graphical representations (i.e. by changing the size of the mark graphical objects).

 In addition to object and attribute mapping functions, the mapping transform class also includes the

add-object and delete-object functions. These functions allow us to change the scope of preexisting object

and attribute mappings by changing the data concepts that a container object is associated with. The add-

object transform associates a given set of data concepts with a container object and the delete-object

transform disassociates a given set of data concepts from a container object. Associating new data concepts

to a container object will cause those data concepts to be added to each sub-container within the container

object. The added concepts will then be mapped according to the mapping transforms associated with the

lowest container class. For example attaching a new set of houses to the visualization container in Figure

III-7 would cause those new data concepts to be mapped to bars in the left region and marks in the right

region. Furthermore, the new data concepts will have their house-selling-price data attribute mapped to the

length graphical property in the left region, their date-sold data attribute mapped to the mark-x-position in

the right region, and their house-address data attribute mapped to the y-axis in both regions.

III-1.2.2.2 Data and Graphical Transforms

Unlike mapping transforms, which change elements of one class (i.e. data), to another (i.e. graphical),

data and graphical transforms change elements of a single class to different forms within that class. There

are five classes of data and graphical transforms in our framework (shown in Table III-3): unary-functions,

binary-functions, summary-functions, assign-function and specialized-functions. These data and graphical

transform functions are applied to change existing data and graphical values or to generate new values.

There are three primary ways in which these transforms are applied:

1. To change or summarize the values of a single data attribute or graphical property.

Gatt1 Å Gatt2

Datt1 Å Datt2

2. To convert one type of attribute or property to another.

Gatt1 Å Gatt2, att1 ≠ att2

Datt1 Å Datt2, att1 ≠ att2

3. To derive a new attribute or property based on multiple existing attributes and properties.

Gatt1, Gatt2, …, Gatt_nÅ Gatt_m

Datt1, Datt2, …, Datt_nÅ Datt_m

for any n and m , where n > 1, and att_m is a new attribute

 III-65

1. Change the values of a single data attribute or graphical property

 Example techniques that fall within this first class include most of the operations in the SDM [Chuah,

1995b] system that are used to improve the readability of a visualization.

Figure III-9: SDM lift objects technique

Figure III-10: SDM thin objects technique

 Some examples include the lift objects technique that allows users to lift selected objects over and

above the other objects in the graphical scene so that they are visually more salient and less occluded

(shown in Figure III-9). This lift objects technique is a Gz_position Å Gz_position graphical transform; it

changes a set of z-position graphical values by adding a constant to it. Another example SDM technique

that falls into this class is the thinning objects technique that allows users to change the width of contextual

graphical objects so that they do not occlude the focus objects (shown in Figure III-10). This example is a

Gwidth Å Gwidth graphical transform. Other examples include the feedback operations in the dynamic query

[Ahlberg, 1992] and painting techniques [Becker, 1987], which is a Gcolor Å Gcolor transform. Such

feedback operations commonly use the assign graphical transform to set color values of focus objects to a

salient constant value. All the transform functions described above change the values of a single graphical

property by adding or subtracting constants to/from the value set or by setting the value set to a constant.

2. Convert one type of attribute or property to another

A slightly more complex use of graphical and data transforms is to apply the values of one attribute or

property to determine the values of another. A common application of this class of functions is to do value

conversions. For example the data attribute temperature in Kelvins can be used to calculate the data

attribute temperature in Fahrenheit, e.g. DKelvins Å DFahrenheit.

Another application of this class of transforms is to link properties so that they will change in tandem.

For example we may want our rectangle-shaped marks to always appear as squares. In order to achieve this

we may map Gx_range Å Gy_range using the assign function. Once we have done this, any manipulation

function that causes the x-range property to change will cause a similar change in the y-range property.

 III-66

This class of transforms is also an integral part of expressing animation. Animation is achieved by linking

physical time (Gtime) to a graphical attribute. For example, in order to make the size of marks in a display

increase with time, we define a Gtime Å Gsize transform.

 Other example techniques that fall within this category include summarization techniques. These

techniques are used to summarize or aggregate data or graphical elements so that the visualization is

simplified and users can interpret the relationships shown by the graphic design more quickly and

effectively. For example, instead of representing all the house-selling-price values in our house database,

we can group the house concepts by neighborhood and show the average/mean house-prices by

neighborhood (Dhouse_price Å Dmean_house_price). In the PAD++ system, file objects are summarized or

aggregated together (i.e. summarized) when there is very little space allocated to them (Dfile Å

Daggregate_file). When users zoom in on an aggregated file object, it gets split up into its individual

components.

The final operations that fall within this category are specialized functions that are used to extract

meta-data from a set of values. Some examples include determining the order of the values (e.g. sort

transform: Dattribute Å Dsort) or the number of times a particular value appears (e.g. count: Dattribute Å

Dcount). This meta-data allows users to analyze additional structural information about the existing data set.

3. Derive a new attribute or property based on multiple existing attributes and properties

Data and graphical transforms may also be used to calculate derived values from multiple attributes and

properties. For example we can determine the gross profit of various company data concepts by subtracting

their total-cost attribute values from their total-sales attribute values. In this case a new data attribute,

gross-profit is generated based on existing data attributes total-cost and total-sales (Dtotal_sales , Dtotal_cost Å

Dgross_profit). Another example is the SDM-distance technique where the x-position and y-position of objects

are used to calculate their distance to the user (Gx_position , Gy_position Å Gdistance). Note that this class of

functions is similar to the previous one except that we have multiple attributes resulting in only one

attribute (i.e. a many-to-one mapping in contrast to the one-to-one mapping of the previous section). Thus

similar to the previous category we can convert, link, and summarize attributes and properties, as well as

compute meta-data.

 III-67

In Table III-3 we list the data and graphical transform instances in our framework as well as their input and

output arguments.

Function
class

Function name Input Output

Unary
Function

 1. Unary operator,
(complement, absolute)

2. Single value set.

Single value
set

Binary
Function

 1. Binary operator,
(add, subtract, multiply, divide)

2. n value sets.

Single value
set

Group objects

1. Single object set,
2. Group object data type.

Group object Summary
Functions

Summarize values

1. Summary operator,
(sum, mean, median, std-deviation, min, max)

2. Single value set.

Single value

Assign
Functions

Assign

1. Single value set containing the destination
values,

2. Single value set containing the source values.

Sort

1. Sort operator,
(increasing, decreasing)

2. Single value set.

Single value
set

Specialized
Functions

Count

1. Single value set containing the values we
want to count,

2. Single value set that is being counted.

Single value
set

Table III-3: List of data and graphical transformation functions

1. Unary functions

 Unary functions take a value set as input and produce a transformed value set. We consider two types

of unary operators: complement and absolute.

The complement operator may be applied to:

1) numbers (i.e. quantitative and discrete

data attributes)

 (e.g. –10 Å 10, or 5.23 Å -5.23).

2) boolean values

(e.g. T Å F, F Å T)

3) strings

(e.g. abc Å cba, dracula Å alucard)

The absolute operator may be applied to:

1) numbers

 (e.g. –10 Å 10, or 5.23 Å 5.23).

 III-68

2. Binary functions

 Binary functions, unlike unary functions, take n sets of values (where n > 1) and a binary operator as

input. The binary operator is applied to each value set in turn, e.g. n1 + n2+ …+ nm, where n represents a

particular value set and + is the input binary operator. There are four binary operators in our framework:

add, subtract, multiply, divide. The effects of each operator are shown below.

The add operator may be applied to:

numbers

 (x, y) Å x + y

strings

(“abc”, “bc”) Å “abcbc”

The subtract operator may be applied to:

numbers

 (x, y) Å x - y

strings

(“abc”, “bc”) Å “a”

The multiply and divide operators may be applied

to:

numbers

 (x, y) Å x * y or (x, y) Å x / y

3. Summary functions

In addition to binary and unary compute operators, there is also a set of summary operators (third row

of Table III-3). Very often, especially in large data sets, we may want to summarize a set of data concepts

and represent the set as a single summary object in order to reduce clutter. This is done by the group

objects transform which creates a group data element from a set of data concepts. Like the group objects

operator, the summary compute operator is also used for summarization. However, it summarizes a set of

values instead of a set of objects. For example, the summary compute operator was used in the modified

value painting technique (chapter II-2.3) to calculate the mean house-price value which is then used in a

subsequent object definition threshold function.

4. Assignment function

 Unary, binary, and summary functions produce new data and graphical values. To update existing

data attribute or graphical property values with new values we use the assign function. The assign operator

takes two value sets as input and assigns the second value set to the first value set. For example suppose we

want to update the house selling-price data attribute in our database by adding in a new house sales tax

value. We can do this by first computing the new house-selling-prices using the addition and multiplication

binary operators and then assigning the new values to the old house price attribute values with the assign

operator.

 III-69

5. Specialized functions

Finally there are a set of specialized data and graphical transform functions. These functions

correspond to common statistical computation operators: sort and count. The sort transform is used to

produce a set of ranks based on the numerical, alphabetical or semantic ordering of the input value set. The

count transform determines the number of times a particular element occurs in an input set. We can either

count all the existing elements in the input set or only specific chosen elements.

It is important to note that even though data and graphical transforms use the same functions to

transform objects and values, their end goals are very different. Data transforms are used to prepare data

concepts and values in a way that is appropriate for our task(s). As described in the previous chapter, data

transforms are used for three primary purposes: 1) to calculate derived results, 2) to summarize existing

data, and 3) to compute meta-data based on existing information. Graphical transforms, however, are used

to provide feedback and to improve the readability of a visualization whose contents are already defined by

the data and mapping transform stages.

III-1.2.2.3 Rendering Transforms

 Rendering transforms are used to map a graphical scene onto an output media such as the CRT screen.

Currently the only primitive rendering function in our system allows us to access the camera in the

graphical scene and change the camera parameters such as position, rotation, focal length, etc. This allows

us to navigate (pan, zoom, rotate) within any visualization that is generated. We have left out detailed

descriptions of rendering functions because this thesis is only focussed on the use of data processing and

mapping functions. For information on distortion rendering techniques refer to Leung et al.’s taxonomy

[Leung, 1994].

III-1.3 Input & Output Translation Functions

Apart from picking specific object definition and transformation functions, we must ensure that the

arguments of a source function match the arguments of a destination function as was described in step 2 of

the instantiation augmentation process5 outlined earlier in this chapter. To achieve this, there are translation

functions that allow data and graphical elements to be queried for related attributes, properties, and

relationships. For example we may query a set of data concepts for the set of graphical objects that are used

to represent them, or we may query a visualization for the set of data concepts associated with it. Table

III-4 shows these translation functions.

5 The instantiation augmentation process is the five step process for converting functional specifications into

instantiable visualization techniques.

 III-70

Translation
function class

Function name Input Output

Get related graphics Single set of data concepts

Single set of graphical objects

Get data type Single set of data concepts Single set of data types6
Get data concepts A data type, or a container

object
Single set of data concepts

Get related data Single set of graphical objects Single set of data concepts
Get graphical class Single set of graphical objects Single set of graphical classes7

Data & Graphical
object translation
functions

Get graphical objects A graphical class, or a
container object

Single set of graphical objects

Get parent A graphical object or a
container object

A container object

Get children A container object A set of container objects
Get mapped data
attributes

A container object A set of data attributes that are
mapped to graphics within the
container

Get mapped data types A container object A set of data types that are
mapped to graphics within the
container

Get mapped graphical
properties

A container object A set of graphical properties
that are mapped to data within
the container

Container object
translation functions

Get mapped graphical
classes

A container object A set of graphical classes that
are mapped to data within the
container

Object attribute
translation functions

Get object attributes A visualization object
(e.g. a data concept, a
graphical object, a data type, a
graphical class, a container
object, or an annotation
object)

A set of attributes

Attribute value
translation functions

Get values 1. A set of visualization
objects

2. An object attribute

A set of values

Get objects A set of values A set of visualization objects
Get boolean objects 1. A set of visualization

objects
2. A set of boolean values

A set of visualization objects

Get named object 1. A string A visualization object

Value translation
functions

Get type A visualization object A string
System wide
translation functions

Get all objects Object type
(e.g. data concept, graphical
object, visualization, region,
etc)

A set of objects

Table III-4: Input and output translation functions

 Note that all translation relationships can be queried both ways. For example being able to query for

all the graphical objects associated with a set of data concepts (get-related-graphics) means that there is a

related translation function that allows us to query for all the data concepts associated with a set of

6 Data types capture characteristics of similar data concepts that contain the same data attributes and relationships.
7 Graphical classes capture characteristics of similar graphical objects that have a common visual appearance and

contain the same graphical properties. Some common graphical classes include bar-class, mark-class, node-class, and

interval-bar-class.

 III-71

graphical objects (get-related-data). Or being able to query a data concept for its related data type (get-

data-type) means that there is a related translation function for querying a data type to get all the data

concepts associated with it (get-data-concepts). This symmetry allows us to easily move back and forth

between the data and graphical realms as well as between different object types within each realm so that

we can flexibly build a wide range of visualization techniques using transformation functions that are in

any order.

Object translation functions allow us to query a set of data concepts for their related graphical objects

and vice versa. We may also query data concepts for their data type or for the attributes they contain (i.e.

get-attribute-values function). Similarly we may access the graphical class and properties of graphical

objects.

Container functions allow us to query a container for other container objects based on the hierarchical

relationships described in section III-1.1.2 (through the get-parent and get-child functions). In addition, the

get-graphical-objects and the get-data-concepts functions (listed in the data & graphical object translation

function class) allow us to access all the data or graphical objects associated with a container. We may also

query container objects for all the data attributes, data-types, graphical properties and graphical classes that

are currently involved in an object or attribute mapping (e.g. get-mapped-attributes, get-mapped-data-

types, get-mapped-properties and get-mapped-graphical-classes).

Object attribute and attribute value translation functions allow us to query data concepts, graphical

objects, and container objects (e.g. visualization, graphical space, region) for the set of attributes and

values associated with them. For example a house data concept may contain the house-price and date-sold

attributes, a mark graphical object may contain the x-position and color attributes, and a visualization

container may have the size, x-position and y-position attributes. These attributes and values can be

extracted from their corresponding objects by using the get-object-attributes and get-values translation

functions.

Value translation functions allow operations on value arguments. For example, values can be queried

using get-objects value translation functions to obtain the objects containing those values. The get-

boolean-objects function filters an input object set based on a set of boolean values. Specifically, only

those objects that have a corresponding True value in the boolean value set are included in the function

output. The get-named-object function returns the visualization object that corresponds to the input value

string. The get-type function returns the class to which an object belongs (e.g. data concept, graphical

object, visualization object, etc).

 III-72

Finally there is a set of global translation functions that allow us to query for system wide state such

as getting all the data concepts or graphical objects within the entire visualization system (e.g. get-all-data-

concepts, get-all-graphical-objects). Similarly we may also query for all existing data types, graphical

classes, regions, spaces, and visualization containers.

III-1.4 Input-devices

 To characterize input-devices, our framework uses Foley et al.’s [Foley, 1990] description of input-

devices, which consists of three levels of design: lexical design, syntactic design and semantic design.

Lexical design refers to how input primitives are derived from basic hardware functions. Input primitives

include all physical device signals such as mouse clicks, key presses, etc. Syntactic design consists of a set

of rules by which primitive input units can be composed or joined to form ordered sequences of inputs. For

example a series of mouse movements, mouse clicks, and mouse releases are required for specifying the

syntactic design for a bounding-box. Devices that are built from a well-defined sequence of physical device

signals are also referred to as virtual devices. Note that while syntactic constructs describe how a device

may be manipulated, they do not define its meaning (i.e. its semantics). Semantic design defines the

meaning of a syntactic construct. For example, mouse clicks, bounding-boxes and sliders can all be used to

define a selection of objects. In this case the semantics of the device is the selection of objects, while the

actions used to achieve this selection could take multiple syntactic forms (i.e. mouse clicks, bounding-boxes

or sliders). Similarly, a syntactic form can have several meanings. For example a bounding-box can be used

for selecting a set of objects or for defining a set of values, one at each of its vertices. The list of input-

devices considered in this thesis are listed in Table III-5.

Input-device

Input-device
trigger event
(syntactic)

Required initialization attributes
(semantic)

Output arguments
(semantic)

Bounding-box Mouse up Mouse button that activates the
device (either left, middle, or right)

Annotation objects,
Graphical objects, Region,
Vertex values

Mouse click Mouse up Mouse button Annotation objects,
Graphical object,
Region

Option menu,
Scroll list,
Radio buttons

Double click A set of strings to put into the
device

A single or set of strings

Text box

Enter key Label A string

Button Mouse up Label

A boolean value

Slider,
Dial

Mouse move Minimum and maximum range of
device

One or more values

Table III-5: Input-device Query functions

 III-73

 To define an input-device in our framework, we must define it in terms of the three levels of design

described above (physical, syntactic, and semantics). First of all, we define the types of input signals

available. In this thesis we only consider input from two physical devices, the mouse and the keyboard. At

the syntactic level, we define the input-device’s appearance (i.e. menu, slider, etc) and the input primitives

used to control it. This includes the trigger event, i.e. the physical event that triggers an update of the input-

device. For example double clicking would update a menu, or a mouse release event would update a

bounding-box. Finally at the semantic level, we define all the initialization arguments needed, and all the

output arguments the device is capable of producing. For example, in a slider device class there are two

important initialization attributes: the min and max values of the slider. The slider can then be queried for

the value(s) marked within it.

III-1.5 Summary

In this section we presented detailed lists of all the visualization objects, functions, and input-devices

our automatic system may operate on. We mainly focussed on characterizing data and mapping transforms

because the focus of this thesis is on integrating data processing and mapping functions. We also described

some graphical transforms because the primitive computations they use are identical to data processing

operations (section III-1.2.2.2). We left most of the rendering functions to be specified in future work. It is

important to reiterate that the list of argument types, functions, and input-devices provided in this section is

not complete. The functions included were chosen because we felt that they were effective for capturing the

functions of current information visualization techniques. Now that we have presented all the primitive

operators within our framework, we can also them to systematically explore the instantiation space of

interactive techniques (sections III-2 and III-3). These sections may be skipped if the reader is only

interested in the automatic design aspects of this work.

III-2 Visualization Techniques Instantiation Space

At the end of the previous chapter we show how our framework can help us explore new techniques

within the functional design space and improve on existing techniques by combining their functionality. In

this section we explore the instantiation design space. Unlike exploration in the functional space which may

change the semantics of a technique, exploration in the instantiation space only changes the structural

aspects of the technique such as how the technique gets manipulated, which aspects of the technique users

get to control, what type of feedback is used, etc. Changes to the instantiation description do not change the

semantics of a technique. In this section we present an example visualization technique and show how

making changes to its instantiation specification can improve its effectiveness. We explore the instantiation

space in greater detail in appendix B-4 where we systematically lay out all the alternative instantiation

designs for the dynamic query slider technique. In appendix B-5 we explore the instantiation design space

for a set of current visualization techniques.

 III-74

In this example we analyze data from a set of distributors for a hypothetical company in the United

States. Each mark on the maps in Figure III-11, Figure III-12, and Figure III-13, represents a distributor.

The location of a mark encodes the geographic location of a distributor and the size of a mark encodes the

total number of product-X units sold by that distributor.

At the bottom of the interface in Figure III-11a is a dynamic query slider technique that allows users to

highlight distributors based on number of employees (num_people). This is done by marking a num_people

threshold value on the slider. Subsequently, all distributors whose num_people exceed the marked

threshold will get highlighted red. The slider visualization technique described above can be defined by the

instantiation specification in Figure III-11b. In this specification, we query the slider input-device for the

threshold value marked within it. This value is piped into a threshold function that filters all of the

num_people data values. The threshold function returns a set of boolean values that we convert back to data

concepts using the get-boolean-objects translation function. At this point we have a set of distributor

concepts whose number of employees are below the threshold value. We query these distributor data

concepts for all the graphical objects used to represent them. These graphical objects are then intersected

with the graphical objects in the map visualization. The intersection operation is necessary to localize the

highlight effect to only the map visualization. Finally the intersected set of graphical objects are colored red

using the assign graphical transform operator.

(a) Each mark in the map encodes a distributor for a hypothetical company. The x-axis and y-axis encodes the
geographic location of the distributor. Size encodes the total number of units sold for product-X. The slider

at the bottom of the interface allows users to select distributors based on the number of employees
(num_people) there. Selected distributors are highlighted in red.

 III-75

Threshold
(<)

Get related
graphics

Intersect

Get graphical
objects

AssignGet values

Slider-value

Initial data
object setNum_people

Data
object set

Graphical
object set

Map-1

Graphical
object set

RedColor
Get values

Get boolean
objects

Get
values

Data
value set

Graphical
value set

Slider

Graphical
object set

Input
device

Input
device

property

Data
value

Data
value set

Data
object set

Data
attribute

Visualization
object

Graphical
property

Graphical
value

(b) Instantiation specification for the dynamic query slider technique in Figure III-11a

Figure III-11: Example of a dynamic query slider technique that allows users to select various distributor data
concepts based on the number of employees (num_people) working at each site.

A problem with the visualization technique in Figure III-11 is that users can only highlight distributors

based on their num_people attribute. In order to relax this constraint, we add a new input-device as shown

in Figure III-12.

(a) Similar interface to Figure III-11a except that here users get to control a scroll-menu in addition to the slider
in order to pick the current constraint data attribute. Currently, the product_Z_sales attribute has been picked

on the scroll-menu and therefore it appears as the constraint attribute next to the slider. Therefore the
highlighted objects are those distributors with product_Z_sales less then 3810051 units.

 III-76

Threshold
(<)

Get related
graphics

Intersect

Get graphical
objects

AssignGet values

Slider-value

Initial data
object set

Scroll-list

Data
object set

Graphical
object set

Map-1

Graphical
object set

RedColor
Get values

Get boolean
objects

Get
values

Data
value set

Graphical
value set

Slider

Graphical
object set

Input
device

Input
device

property

Data
value

Data
value set

Data
object setData

attribute

Visualization
object

Graphical
property

Graphical
value

Get values

Selected-entry

Input
device

Input device
property

(b) Instantiation specification for the visualization interface in Figure III-12a. This specification is similar to the

one in Figure III-11b except that a scroll-menu has been added to allow users to pick the constraint attribute.
Changes made to the specification in Figure III-11b are shown in gray here.

Figure III-12: Example dynamic query slider technique with selectable data attribute constraint

 In Figure III-12b we have added a scroll-menu input-device which allows users to supply the data

attribute on which to perform the threshold operation. Alterations made to the specification in Figure

III-11b are shown in light gray in Figure III-12b. The resulting interface (Figure III-12a) is identical to

Figure III-11a except that there is a scroll-menu below the slider, which contains all the distributor

attributes (e.g. location-n/s, location-e/w, product-X-sales, product-Y-sales, product-Z-sales, and

num_people). Through this interface users can not only pick the threshold value but also the threshold

attribute.

Another problem with the slider highlight technique in Figure III-11 is that occasionally, object

coloring alone does not provide sufficient feedback because the colored objects may be occluded, thereby

making them difficult to find in the visual display despite their coloring. One way to solve this problem is

to both enlarge the objects as well as color them. In this way, the highlighted objects become much more

salient. We do this simply by adding some new graphical transform operators to the technique specification

in Figure III-11b (changes are shown in light gray in Figure III-13b). This new specification will cause the

selected objects to be colored red as well as enlarged as is shown in Figure III-13a8.

8 Note that enlarging the selected objects is sometimes undesirable because they tend to occlude each other or the

objects around them. We can alleviate this problem somewhat by changing the draw order of the objects so that the

smaller elements are drawn last.

 III-77

(a) Similar interface to Figure III-11a except that here the selected objects are both colored red as well as
enlarged in order to increase saliency.

Threshold
(<)

Get related
graphics

Intersect

Get graphical
objects Assign

Get values

Slider-value

Initial data
object setNum_people

Data
object set

Graphical
object set

Map-1

Graphical
object set

RedColor

Get values

Get boolean
objects

Get
values

Data
value set

Graphical
value set

Slider

Graphical
object set

Input
device

Input
device

property

Data
value

Data
value set

Data
object set

Data
attribute

Visualization
object

Graphical
property

Graphical
value

Assign

Size

Get
values

Graphical
value set

Graphical
property

Binary
compute

(Add)

10

Graphical
value

(b) Instantiation specification for the visualization interface in Figure III-13a. This specification is similar to the
one in Figure III-11b except that some additional graphical transform functions are included to increase the size

of the selected objects. Changes made to the specification in Figure III-11b are shown in gray here.

Figure III-13: Example dynamic query slider technique with color and size feedback on the selected objects

The examples in this section show that refining a visualization technique at the instantiation level

allows us to improve the effectiveness with which a technique can be applied to the current task situation

and to our current preferences. This section also illustrates some of the design decisions that must be made

 III-78

by our automatic designer and by human designers when creating a visualization technique. We show in

appendix B-4 that by following the five steps in the instantiation augmentation process refinements to the

instantiation specification can be carried out systematically and effectively. In appendix B-5 we begin

analyzing the instantiation space for a set of current visualization techniques. These examples further

illustrate the differences between the functional and instantiation levels from a design standpoint and show

the applicability of our two level design methodology. Specifically, exploration in the functional space is

useful when we want to create new techniques that have unique or additional functions. On the other hand

exploration of the instantiation space is useful when we want to refine a technique to better suit the current

hardware, user preferences or task conventions, without altering its underlying functionality. Note that the

customization examples shown in this section (Figure III-11, Figure III-12, Figure III-13) do not alter the

general functionality of the slider technique. The function of the slider technique, which is to allow users to

select a set of data concepts, based on their attributes and then to highlight their corresponding graphical

objects, remains the same in all three specifications.

III-3 Evaluation of Framework

 We evaluate our framework based on three criteria: completeness, coverage, and practicality.

Completeness refers to whether the framework is capable of expressing all visualization techniques.

Coverage refers to whether the framework can be applied to a wide range of visualization types (e.g. bar

charts, scatter-plots, 3D-displays) and input-devices (e.g. menus, bounding-box, radio-buttons). And finally

we argue for practicality in three ways: 1) the framework reduces the cost of task tailoring; 2) the

framework provides a new design methodology; and 3) the framework allows systematic exploration of the

visualization techniques design space.

III-3.1 Completeness

 Completeness refers to whether the framework is capable of expressing all visualization techniques.

At the end of the previous chapter we showed that our framework can express many current visualization

techniques. The framework, however, is not complete, and can never be so because as new visualization

methods and metaphors are created the framework would need to grow to include these new techniques. It

is thus important for the framework to be flexible and easily extensible.

 Our framework supports both flexibility and extensibility because it splits the design into two

different levels (functional and instantiation). We anticipate that framework extensions will commonly

occur only at the instantiation design level because at that level, we are more concerned with input-device

specifics and visualization function inputs and outputs. In contrast, the functional level deals with abstract

function classes and composition operators, which tend to be less volatile. Changes made to the

instantiation design level would generally not affect the functional design level, so framework alterations

should be fairly localized. Secondly, the framework is based on a compositional language that allows us to

 III-79

generate a wide space of designs with relatively few primitives. Future extensions should be able to

capitalize on this compositional language and leverage off of pre-existing object definition and

transformation functions so that only a few primitives need to be added to increase the expressive

capability of the framework significantly. Finally, one of the design decisions was to use object definition

and transformation functions of lower granularity (i.e. just simple mathematical functions). This makes it

easier to reuse and compose these functions, even with new methods and metaphors. This lower granularity

level comes at the price of more specification; however we believe that much of the specification can be

automated. In addition partial specifications can always be saved and reused so that we only need to declare

them once.

III-3.2 Coverage

Our interactive framework can be applied to a wide range of traditional visualizations (e.g. charts,

maps, tables) and direct manipulation input-devices and widgets (e.g. mouse clicks, keyboard presses,

menus, radio-buttons, etc). The examples in this chapter and the previous chapter show the use of a fairly

wide range of visualization types including maps (Figure III-11), charts (Figure III-2), tables as well as

input-devices including sliders (Figure III-11), drag and drop, and menus (Figure III-12). This is achieved

by building our language based on previous work that have characterized a wide range of data [Mackinlay,

1986a, 1986b; Roth, 1990], visualization elements [Mackinlay, 1986a, 1986b; Roth, 1994; Chuah 1995],

and input-devices [Card, 1990]. We do not deal with more complex input-devices, such as two-handed

input-devices and speech; however such techniques can be relatively easily integrated into the framework

by specifying them according to the three input-device levels described in section III-1.4. Framework

generality provides flexibility in design, however, it also raises a big concern, namely how to pick the

“best” visualization objects or input-devices from the wide range of choices available. In order to make this

decision we must carefully consider our data, our media, and our task [Bertin, 1983; Tufte, 1983;

Mackinlay, 1986a, 1986b; Casner, 1991]. Choosing the “best” visualization design for our task and data is

the topic of discussion in the next chapter.

III-3.3 Practicality

Our framework is practical for the following three reasons.

III-3.3.1 Reduces Cost of Task Tailoring

Our framework provides designer with an easy means of combining common transformation functions

to form visualization techniques so that they can plug and play with different visualization effects to suit to

suit their design goals. The example shown in section III-2 illustrates this by showing how the dynamic

query slider technique can be easily expanded in several simple steps to solve some of the limitations found

in the original technique.

 III-80

III-3.3.2 Provides a New Design Methodology

Our design methodology is based on two different levels of abstraction. The functional level of

abstraction (outlined in the previous chapter) is concerned with the goals of a technique while the

instantiation level of abstraction (outlined in this chapter) is concerned with the form or look of the

technique. By dividing the design process into these two levels, designers can concentrate on functionality

first without having to worry about specifics like the color to use, whether to use a combined input-device,

or whether to use size instead of shape. At the functional level designers can focus on issues such as

whether the functions chosen are capable of solving the task(s) well, whether the functions combine well

together, and whether sufficient feedback is provided. Also by concentrating on functionality, designers

may notice similarities among techniques that they previously considered to be quite different due to

superficial differences. This will hopefully encourage more functional reuse among different techniques.

This two-tier design methodology allows designers to focus on different aspects of the design process

without complications from other unrelated parts. By doing so we are ensuring that their choice of function

is more driven by task concerns rather than by media and device restrictions, which should be dealt with

separately.

III-3.3.3 Allows Systematic Exploration of the Visualization Techniques Design Space

The visualization techniques design space can be explored based on the two design levels outlined

above: functional and instantiation. Exploration at the functional level involves developing new object

definition and transformation functions, as well as combining existing functions in new ways to derive new

behaviors. We did this in the previous chapter, which showed how techniques with different functionalities

can be combined. Exploration at the instantiation level, on the other hand, involves picking which input-

devices, graphical properties (color, shape, position), data attributes, or graphical elements to use for a

technique. In section III-2 we showed some example instantiation specifications and how these

specifications may be varied to produce interesting design alternatives. Note that design variations at the

instantiation level do not change the functional characteristics of a technique. The functional space for

visualization techniques is bound by the object definition, transformation, and composition classes

available. The instantiation space for a given technique is bound by the original functional design of the

technique and by the five classes of design changes in the instantiation augmentation process.

III-4 Conclusion

 In this chapter we describe the instantiation design of visualization techniques. We show how

instantiation details can be added onto functional visualization technique specifications so that they may be

rendered as an active visualization interface. Just like the functional level, the instantiation level may be

explored in a systematic fashion. Through a series of examples in sections III-2 we show some design

variations that may be derived from existing visualization techniques.

 III-81

 We also evaluated the entire framework based on three criteria: completeness, coverage and

practicality. In terms of completeness the framework is able to express many current techniques but

because of its nature can never be fully complete. It is however easily extensible. In terms of coverage the

framework allows various techniques to be integrated with a wide range of visualizations and physical and

virtual input-devices. Finally, we argued for the practicality of the framework by showing that it a) allowed

easy task tailoring b) provided a new design methodology based on two levels (functional and instantiation)

and c) allowed the systematic exploration of the visualization techniques design space. In appendix B-6 we

discuss more advanced visualization technique issues that occur when we integrate multiple visualization

techniques within a common workspace.

 Our analysis of the visualization techniques design space show us that there are many visualization

technique alternatives for achieving a single data analysis task or problem. Because of the enormous

number of design alternatives, it can sometimes be difficult and time-consuming to test out all the design

variations. An automatic design system would help designers create and generate their prototypes more

quickly and easily. Such a system however requires the framework, which we have laid out in this chapter

and the previous one. Our visualization technique framework provides an automatic design system with a

language for describing visualization techniques and a systematic methodology for creating and exploring

the visualization techniques design space.

 This chapter and the previous chapter described a framework of visualization techniques that had data,

mapping, graphical, and rendering transforms. We did not, however, explore the effectiveness of these

transform functions. Earlier work on automatic visualization design considered effectiveness criteria for

mapping transforms based on data and task requirements [Mackinlay, 1986a, 1986b; Casner, 1991]. In the

next chapter, we consider effectiveness criteria for making combined decisions about data transforms, and

mapping transforms. Specifically, we consider when it might be more useful to perform a task or subtask

perceptually by mapping it to graphics, and when it might be more advantageous to let the system

internally compute the task through data transforms and only visualize the pre-computed results. In

appendix F, we consider the role of graphical and rendering transforms in improving the readability of a

visualization. Specifically, we consider readability issues such as occlusion, display density, data dwarfing,

and information presence, and how these issues affect the usability of a visualization interface.

 IV-82

Chapter IV: Design Heuristics
�

'DWD�&RPSXWDWLRQ�YV��
3HUFHSWXDO�0DSSLQJ

The goal of this thesis is to enhance the breadth and quality of designs generated by an automatic

visualization system by adding data processing operations to the design process. The consideration of data

transforms extends previous automatic systems, which only considered mapping transforms (i.e. mapping

data to graphics). In the previous chapters we laid out a framework which divides the visualization design

process into four primary steps: data transforms, mapping transforms, graphical transforms, and rendering

transforms. In this chapter, we discuss integration of data transforms together with mapping transforms, the

issues that arise, and the design improvements that may be realized with this expansion. In appendix F, we

speculate about the integration of graphical and rendering transforms into the automatic design process.

We begin this chapter with an example that shows where previous work leaves off, and how

consideration of data transforms will improve the designs that can be produced.

IV-1 An Airline-Scheduling Example Illustrating the Use of Data

Transforms

This airline-scheduling example was used by Casner [Casner, 1991], to illustrate the importance of

considering a user’s task in mapping data to graphics (i.e. mapping transforms). We show that this “airline

reservations” task can be better supported if we consider ways to transform or reorganize the data in

addition to mapping it to graphics. The verbal description of the task that the visualizations must support is:

Given an origin and a destination city, the user “attempts to locate the two flights

arriving in and departing from a layover city that offer the minimum amount of `down time’

between the flight times and the beginning and ending time of a scheduled meeting (in the

layover city)”.

Task IV-1: Airline-scheduling task. The user is trying to find flights to enable a meeting to be held in
a layover airport en-route to a destination and to minimize time spent at the layover airport before

and after the meeting.

 IV-83

In the following example designs, suppose that the origin and destination cities are Los Angeles (LAX)

and Boston (BOS) and that the layover city is Chicago (ORD). Further, suppose that the meeting time is

from 2 p.m. to 4 p.m. Casner showed that this task can be achieved perceptually with the graphic design in

Figure IV-1. In Figure IV-1, the origin and destination cities are encoded on the y-axis and the departure

and arrival times are encoded on the x-axis. Each flight is represented by a line where the left-point of each

line encodes the origin city and the departure time of a flight and the right-point of each line encodes the

destination city and arrival time of a flight. For example in Figure IV-1b, the task solution is a flight

leaving Los Angeles (LAX) at 5:30 a.m. noon and arriving at Chicago (ORD) at 10:20 a.m. and another

leaving Chicago (ORD) at 7:00 p.m. and arriving at Boston (BOS) at 9:10 p.m.

(a) Full data set
This visualization shows all the elements in the

data set (i.e. all 135 flights).

(b) Truncated data set. This example visualization
shows the ideal case where there is little occlusion
among the different flight lines. This data set was
chosen so that it contains some flights that fulfill

the task constraints as well as some other random
flights that do not occlude one another.

Figure IV-1: Solving the airline-scheduling task fully perceptually (Casner’s solution). Each line
represents a flight with origin and destination city mapped onto the y-axis and arrival and departure

time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping
operations are considered by the automatic system. I.e. this is the best possible design from current

state of the art systems.

In Figure IV-2, we present Casner’s analysis of the perceptual procedure a user must perform using

the visualization in Figure IV-1 to achieve the airline-scheduling task (Task IV-1). Subsequently we show

in Figure IV-3 how transforming the data makes this procedure simpler.

 IV-84

Figure IV-2: Casner’s analysis of the perceptual procedure a user must perform with a visualization
to achieve the airline-scheduling task (Task IV-1).

The pure perceptual procedure for the airline-scheduling task (Task IV-1), while relatively complex,

is still more effective compared to a strictly cognitive procedure (i.e. looking at a spreadsheet table that

contains the raw data). We performed a GOMS analysis for a tabular presentation of the data for the airline-

scheduling task and estimated it to take approximately 4 minutes for task completion. In contrast, the

perceptual solution represented in Figure IV-1only took 30 seconds. The GOMS analysis tables for both the

cognitive and perceptual designs are presented in appendix C-1. However, we should point out that this

analysis assumes that all the data fits within a single CRT screen, and there is no occlusion in the designs.

Subtask-1 :Find all the origin flights that fulfill the first leg of the flight schedule

Visually search for all flights whose origin is Los Angeles (LAX) and whose

destination is Chicago (ORD), the layover-city.

Search for LAX on the y-axis and then look over to the right for all flights

that start from this origin-city.

For each of these flights, we find the end-point of the flight line and

determine whether it goes to ORD, the layover-city.

For all flights that fulfill the origin (LAX) and destination (ORD) city

constraints, check if they meet the meeting time constraints as well (arrives

at ORD before 2 p.m.).

Look down on the x-axis to determine the time of arrival in ORD. If the

time is after the scheduled meeting time, we discard the current flight as a

possible candidate and continue looking for other relevant flights.

If the arrival time is before the scheduled meeting, we determine whether

it has the smallest prior meeting downtime. If so we note the flight as the

current most promising candidate and continue the process for all other

flights.

Subtask-2 :Find all the destination flights that fulfill the second leg of the flight

schedule

Find the earliest flight after the meeting using an analogous procedure to

subtask-1.

At the end of subtask-1 and subtask-2 we would have determined the flights with the

smallest downtimes before and after the meeting. To get the total down time we

merely add the two downtimes

 IV-85

As can be seen from Figure IV-1a, when the data set size grows, the perceptual design quickly becomes

unusable without interactive navigation of the display. For the cognitive solution, larger data sets would not

fit within a single CRT screen thus interactive scrolling is required. Such navigation operations will add to

the overall task time of both designs.

Figure IV-3 shows an alternative design for solving the same airline-scheduling task using the same

data set as Figure IV-1b. The left chart shows all the flights that fulfill constraints for the first leg of the

journey (LAX to ORD with arrival time before 2 p.m.) while the right chart shows all the flights that fulfill

constraints for the second leg of the journey (ORD to BOS with departure time after 4 p.m.). The bar

lengths in the left chart encode the computed total downtime before the meeting and the bar lengths in the

right chart encode the computed total downtime after the meeting.

Figure IV-3: Our hybrid data transform and mapping transform design for solving airline-
scheduling task. Here only the flights that fulfill the city and meeting time constraints are shown.
Computation of the total downtime for the best flights is left to the user. Time_before_meeting is
mapped to the x-axis of the left chart and time_after_meeting is mapped to the y-axis of the right

chart. To perceptually compute the total downtime users add the shortest bar length in the left chart
with the shortest bar length in the right chart.

In Figure IV-3, we are able to significantly simplify the perceptual complexity of the earlier designs

as well as reduce visual clutter with data transform techniques. These techniques allow the automatic

system to summarize the task results and filter out irrelevant flights thereby significantly improving the

readability of the representation compared to Figure IV-1a. In addition, it also simplifies the perceptual

procedure for solving the task because in this design users need not visually search for flights that fulfill the

city and time constraints. Instead, all this information has been pre-calculated by the system with data

transform techniques. To solve the airline-scheduling task (Task IV-1) using Figure IV-3 we only need to

pick the shortest bar in the first chart (i.e. American_446 which has the least downtime before our meeting)

 IV-86

and the shortest bar in the second chart (i.e. AirTran_815 which has the least downtime after our meeting).

The total downtime can be estimated by perceptually adding the lengths of both these bars. The GOMS

analysis for Figure IV-3 showed an estimated task time of only 3 seconds.

 Figure IV-4 shows the GOMS time estimates for solving the airline-scheduling task using a purely

cognitive procedure, a purely perceptual procedure (i.e. only mapping transforms, Figure IV-1), and a

perceptual procedure (mapping transforms) combined with data transform techniques (Figure IV-3). We

can clearly see that using both mapping and data transform techniques together is significantly more

effective than using only mapping transform techniques which in turn is more effective than using only

cognitive operators.

0

50000

100000

150000

200000

250000

Cognitive solution Pure mapping solution
(purely perceptual)

Our hybrid data
transform and mapping

transform solutionT
o

ta
l G

O
M

S
 e

st
im

at
ed

 t
as

k
co

m
p

le
tio

n
 t

im
e

(in

m
se

c)

Figure IV-4: GOMS estimated total time for solving the airline-scheduling task using a pure
cognitive, pure mapping, and a hybrid data + mapping design.

Earlier work on automatic visualization design [Mackinlay, 1986a, 1986b; Casner, 1991, Roth, 1994]

centered purely on using mapping transform techniques (pure perceptual operators), preferring to address

those tasks that cannot be easily accomplished through statistical computation (data transform techniques).

This sentiment is well expressed by Tufte: “Why waste the power of data graphics on simple linear changes

which can usually be better summarized in one or two numbers? Instead, graphics should be reserved for

the richer, more complex, more difficult statistical material.” Thus, previous work on automatic

presentation systems have assumed that statistical processing has already occurred before the design

process. These systems have instead focussed on developing design heuristics for making data-to-graphical

mapping decisions based on both tasks and data. However, work on task analyses [Springmeyer, 1992]

indicates quantitative processing (data transform techniques) is an integral part of graphic design. As was

expressed by Springmeyer, “These results show that analyzing scientific data is a much more quantitative

and active process than the passive viewing of images.” Based on her analyses, Springmeyer was

convinced that a large shortcoming of current visualization systems was their lack of integration with

quantitative operations (i.e. data transforms). We believe that in order to design more effective

 IV-87

visualizations for analyzing data, we must make data transform decisions together with mapping transform

decisions. The brief GOMS comparison shown in Figure IV-4 supports this belief.

It is however erroneous to assume that data transforms will always be more effective than mapping

transforms. Sometimes, over-computing a task creates more graphics and more work for the user (appendix

C, Figure C-3). Other times, full pre-computation is just not possible. Commonly the most appropriate

design for a task will consist of a blend of data and mapping transforms, as we will show in the next

example. The most effective blend of data transforms and mapping transforms for a task sequence is

dependent upon many factors including the task (e.g. whether the task requires simple or complex

computation, whether the operation must be repeated many times, whether we know for sure what the task

parameters are), the preferences of the user (e.g. whether they are comfortable with using input devices,

whether they are familiar with particular input devices), and the availability of display and input resources

(e.g. whether the elements will fit within the output media, whether physical devices are available for

input). To make intelligent design decisions about how data computation and mapping techniques should

be combined, we need to include data processing decisions as part of the automatic design process and not

merely pre-compute the data beforehand. In the next example, we illustrate the weakness of over-

computing the airline-scheduling task (Task IV-1).

One possible solution for Task IV-1 is to calculate the entire task with data transform techniques. In

this case, the system would only present users with the two flights that produce the minimum total

downtime (i.e American_446 and AirTran_815). Having the system calculate the entire task with data

computations, however, is only appropriate if we can fully and accurately define all our data analysis goals

(e.g. meeting time constraint: >= 2 p.m. and <= 4 p.m.; origin = LosAngeles; layover = Chicago; and

destination = Boston). Suppose that in addition to total downtime we were also concerned with total cost

and flight duration (i.e. we want to choose flights with “generally low” total downtime, total cost, and flight

duration). In this case, it is not possible for the system to calculate the entire task with data computation

and only present users with one flight pair because we do not know what constitutes an acceptable balance

between “low” total downtime, “low” total cost and “low” flight duration. The best balance between these

three attributes can only be arrived at during the analysis process, after we have determined the number of

flights that fulfill our city and time constraints and the data distributions of the acceptable flights with

respect to our three attributes.

One way to solve this task is to use a design similar to the one in Figure IV-3 but augmented with

total cost and total duration data (Figure IV-5). The left chart in Figure IV-5 represents flights that fulfill

the first leg of our schedule and the right chart represents flights that fulfill the second leg of our schedule.

In each chart, the labeled marks represent different flights. The flight duration is pre-computed, and

encoded on the y-axis, total downtime is pre-computed and encoded on the x-axis, total cost is pre-

 IV-88

computed and encoded with saturation, and flight name is encoded with labels. To find the most relevant

flights, we look for marks on the left-bottom corner of each chart (low downtime and low flight duration)

with low saturation values (low total cost). In the left chart (flight before meeting) the choice is clear. The

best flight is American_446 that has the lowest flight duration and downtime_before_meeting. Its cost

(saturation) is also comparable with the other flights. In the right chart, some trade-offs must be made

between AirTran_815 that has the lowest downtime_after_meeting and cost and United_576 that has the

lowest flight duration. AirTran_815 seems to be the better choice from Figure IV-5 because it has very low

downtime_after_meeting and cost, as well as a flight duration that is not overly large whereas United_576

has a very large downtime_after_meeting. Thus, this airline-scheduling task cannot be solved with a pure

computation because the tradeoffs among the task attributes (downtime, flight duration, and cost) cannot be

captured in a simple function and needs to be considered by the user. At the same time however, using a

pure mapping design is also ineffective because of its high task complexity (in terms of both search and

computation) as well as the many different data attributes that it combines. Thus, a hybrid data and

mapping design (as in Figure IV-5) is the most appropriate here.

Figure IV-5: Visualization for finding flights with low total-downtime, low total-cost, and low
duration. Because there are trade-offs that must be made among the three attributes, this task is best

performed through perceptual perusal.

In appendix C-2 we present several other design alternatives for the airline scheduling task that have

different blends of data and mapping transforms and discuss their strengths and weaknesses. The examples

in this section and in appendix C-2 show us that there are many ways with which we can use data and

mapping transforms to solve user goals. To make intelligent design decisions about how data computation

 IV-89

and mapping techniques should be combined, we present a set of design dimensions for gauging the

goodness of different visualizations (section IV-2). Based on these design dimensions, we develop higher

level design rules for deciding when to use data transform techniques and when to use mapping techniques

to solve tasks (section IV-3). In appendix C-4 and C-5 we introduce some task examples and show how our

prototype automatic visualization designer addresses these tasks based our design dimensions and design

rules.

IV-2 Visualization Design Dimensions

 The airline-scheduling example presented in the previous section shows many different ways in which

data and mapping techniques may be combined. To decide on which combination is most appropriate for a

given task or set of tasks we need some standards of evaluation for the different designs (i.e. visualization

design dimensions). In this section we present a set of design dimensions upon which to evaluate

visualizations. Our dimensions are based on the interaction framework model presented by Abowd and

Beale [Abowd, 1991] (Figure IV-6).

S U

O

I
Articulatory
distance

Functional
distance

Expressive
distance

Observational
distance

Semantic
distance

Figure IV-6: Interaction Framework model presented by Abowd and Beale [Abowd, 1991]. This
framework is used to measure the effectiveness of various visualization interfaces in this work.

In this framework, there are four components: the user (U), the system (S), input (I), output (O); as

well as four translations between these components: articulation, performance, presentation, observation.

Users through articulation generate inputs for a system detailing the requirements of their current tasks.

The system performs a set of function operations on these inputs and generates a set of outputs. These

outputs present a possible solution of the users’ input queries. Users must finally observe and interpret

these system outputs, updating their task model as necessary. This cycle is iterated over as many times as

necessary until all task objectives have been satisfactorily met. Each translation step can be assessed for its

effectiveness with respect to the overall interaction. Effectiveness of the four translation steps is measured

by their articulatory distance, functional distance, expressive distance, and observational distance

respectively (Figure IV-6). The summation of these four distances measures the effectiveness of the overall

 IV-90

interaction or its “semantic distance”. Semantic distance refers to the degree which user goals are fulfilled

by the interaction. A large semantic distance means that the goals are not achieved well and a small

semantic distance means that the goals have been satisfied acceptably.

Articulatory distance measures the ease with which users can specify their desires to the system. For

visualization systems, articulatory distance measures the amount of input device manipulation required

from users. A visualization technique that requires a great deal of user input has high articulatory distance

and vice versa. Functional distance refers to whether the system possesses software functions or procedures

capable of achieving user tasks. In our case, functional distance refers to whether the object definition

functions (enumeration and functional description) and the transformation functions (data, mapping,

graphical, and rendering) presented in the previous two chapters are sufficient to support basic data

exploration tasks. Expressive distance determines whether sufficient feedback or information is provided to

users to solve the input tasks. “Sufficient feedback” may mean whether sufficient data concepts and

relationships are provided to solve the input tasks, whether the presentation reflects all facts contained

within the data set, whether false information is introduced, and/or whether all information contained

within the visualization is displayed at all times1. Finally, observational distance refers to the ease with

which a user can interpret system feedback. Specifically, observational distance measures the effectiveness

of the visual objects, visual properties, and visual compositions used to fulfill the input analysis tasks2.

Our design dimensions measure either articulatory, expressive or observational distance. As for

functional distance, we have supplied our system with all the necessary object definition (e.g. enumeration,

functional description, set operations) and transformation functions (e.g. addition, subtraction, assignment,

grouping, mapping data to graphics) needed to perform the basic set of data exploration tasks used in

previous automatic system research and which we find interesting on our own work. Thus, the functional

distance measure is not pertinent in our case. More generally, completeness of our object definition and

transformation functions with respect to existing visualization systems was discussed in the previous two

chapters. Completeness of our system in terms of task coverage is described in appendix C-3. We will now

describe the various dimensions that may be used to estimate articulatory, expressive or observational

distances as well as how these distances may be used to gauge the effectiveness of a design that favors data

transform techniques versus one that favors mapping techniques.

1 The expressive distance described here is an expansion of Mackinlay’s expressiveness criteria [Mackinlay, 1986a,

1986b].

2 Observational distance corresponds largely to Mackinlay’s effectiveness criteria [Mackinlay, 1986a, 1986b]. In his

dissertation Mackinlay presented a set of effectiveness heuristics that ranked different graphical properties (perceptual

operations) based on their perceptual accuracy.

 IV-91

IV-2.1 Articulatory Distance

Articulatory distance increases with the amount of user input required by a visualization interface.

When using visualizations to solve data analysis problems, user input is required for two primary purposes:

1) task clarification/alteration, and 2) data navigation as is shown in Figure IV-7.

Articulatory
distance

Task
alteration

Data
Navigation

#-of-objects
attended to

Readability
of objects

Expressiveness
of input device

#-of task
repetitions

#-of inputs
per task

Effectiveness
of input device

Figure IV-7: Breakdown of articulatory distance. Gray highlighted rectangles indicate the
dimensions that are taken into account in our prototype automatic presentation system described in

chapter V.

a) Task alteration/clarification load: To solve some data analysis tasks a user may need to provide task

arguments to the computer system interactively. The amount of articulatory load required depends on

the number of times a task needs to be repeated multiplied by the number of inputs per task. When a

task is repeated many times, it becomes very important to reduce the articulation load of each iteration,

even at the cost of losing flexibility.

b) Data navigation load: Data navigation operations are commonly required for larger data sets where

there is clutter and occlusion in the graphic design resulting in high observational distance. It is

possible to lower observational load by limiting the amount of information that is shown to the user at

any one time. The disadvantage, of course, is that users must navigate to different pertinent

information slices through input devices. Data navigation depends on the number of objects that must

be attended to and the readability of those objects (e.g. whether they are occluded, too small to

interpret, or surrounded by high ink density. Readability issues are explored in detail in appendix F).

The more objects we need to attend to, the greater the likelihood that we must perform more

navigation. In addition, the less visible or readable the objects are, the more effort we must expend to

get them to a readable state. In our prototype designer, we only estimate data navigation load by the

number of objects attended to, leaving the more complex readability issues for future work.

 IV-92

c) Expressiveness of an input device: An input device is considered expressive of a particular

visualization function if it can be used to generate all the inputs required by that function and only

those inputs. A menu for example, is only expressive of discrete values, i.e. it can only be used to pick

from a finite set of set of strings or numbers, but cannot be used to generate continuous input values. A

slider, on the other hand, can be used to generate both continuous and discrete input arguments. A text

window is very flexible and can be used to specify any input argument type. However, it is generally

not very expressive because it does not indicate to users what the acceptable input arguments are

unlike the slider and menu devices. I.e. users may very easily enter invalid input values when using

text-windows. Our design system only allows the use of input devices that are expressive of the input

data or arguments required. Unlike the previous two dimensions which are quantitative measures,

expressiveness of input devices is implemented as a binary measure in our system.

d) Effectiveness of an input device: The effectiveness of an input device measures how easily users can

manipulate an input device to generate the required task arguments. The effectiveness of an input

device is most commonly measured by the amount of motoric energy expended by users for each input

entry. Input devices such as buttons require very little motoric load because users only need to move

the mouse over the button and click. Menus have a higher motoric load because we need to scroll

down a list of choices in addition to choosing an entry with a mouse move and click. A text window

has the highest motoric load because we need to move our hands over to the keyboard and type out our

entries, which could take multiple keystrokes. Therefore, when the required input arguments can be

expressed by a button input device (i.e. the input value range must be small and discrete), it should be

chosen instead of menus and text windows because it is the most effective device.

-10 +10

 (a) Dial (b) SDM handles[Chuah, 1995b]

Figure IV-8: Input devices with different effectiveness properties

Input device effectiveness can also be measured by how easy they are to learn. Some input devices

provide good affordances (or cues) to users indicating how they may be manipulated. For example, a

dial or knob (Figure IV-8a) is an effective device for producing radial values because it provides good

affordances for showing users that it should be rotated. In contrast, the virtual object handles provided

in the SDM system (Figure IV-8b) are less effective because it is less clear how they should be

 IV-93

manipulated and what they control. In our system we only account for effectiveness based on ease of

use (level of effort) and not learnability. The input devices in our system are ordered in a list based on

fewest manipulations to most manipulations. The system then picks the first expressive device in the

list (i.e. the first expressive device that is most effective). Details of this process are described in

chapter V.

In general, performing a task with data techniques requires more articulatory load because the task

must be very explicitly stated (there can be no missing values). When there are unknown task arguments,

the data technique designs require that users provide these missing arguments to the system. Thus,

articulatory load is high because either we must provide several different initial task specifications, each

containing a different task argument alternative or we must provide task clarification/alteration parameters

during the data analysis process. The task specificity guideline in section IV-3.6 reflects this property of

data techniques.

IV-2.2 Expressive Distance

Expressive distance measures whether sufficient data or information is shown to the user. What

actually constitutes “sufficient data” may be interpreted in several ways: a) expressiveness of task, b)

expressiveness of data, c) data correctness, and d) data presence, as is shown in Figure IV-9.

Expressive
distance

Task
expressiveness

Data
completeness

Readability

Data
expressiveness

Readability

Mappings
used

Data
correctness

Summarization
of data

Mappings
used

Data
presence

Size of
display

Size of
visualization

design

Figure IV-9: Breakdown of expressive distance. Gray highlighted rectangles indicate the dimensions
that are taken into account in our prototype automatic presentation system described in chapter V.

a) Task expressiveness: In order for a visualization to be expressive of a data analysis task, there must be

a sequence of cognitive, perceptual, and motoric actions that users may perform on the visualization

design that will result in a solution to their task. These sequence of actions can only be generated if the

visualization design contains all the data concepts necessary for solving the task (data completeness)

and presents this information in a way that is accessible to users (readability). For example to solve the

 IV-94

desired airline-scheduling task (Task IV-1), the visualization may contain the origin-city, destination-

city, arrival-time and departure-time of all flights as in Figure IV-1. Alternatively, it may include only

those flights that fulfill our city and meeting time constraints as in Figure IV-3. Although these two

visualizations contain different data concepts and attributes, both contain enough information for

solving the airline-scheduling task. Thus, Figure IV-1 and Figure IV-3 both have data completeness.

On the other hand a visualization that only shows the origin and destination cities of all flights (leaving

out their arrival and departure times) is insufficient for picking flights with the minimum total-

downtime because no time information is provided to users. Such a design, therefore, is not expressive

of the airline-scheduling task.

To achieve task expressiveness, a visualization must not only contain all the task information, but

this information must be accessible to users. Sometimes, due to problems such as occlusion, dwarfed

objects3, or display density, some of the encoded information may not be visible or readable by users.

For example, Figure IV-1b is data complete but not task expressive because some of the encoded

information cannot be accessed due to object occlusion. We discuss readability issues in the appendix

F as well as outline how they can be addressed using graphical and rendering transforms. In this

chapter, we show how some readability problems may be avoided with appropriate combinations of

data and mapping techniques as in Figure IV-3.

b) Data expressiveness (Information loss wrt. original data set): A visualization is generated by

processing and mapping a set of data concepts and attributes to graphics. We call the set of original

data concepts and attributes the original data set. This data set is commonly attached to data

characterizations that describe the concepts and attributes contained within the set, as well as the

relationships among the data [Mackinlay, 1986a, 1986b; Roth, 1990]. These data characterizations help

us structure the data so that we can generate better design solutions. Generally however, not all of the

concepts or data characterizations contained within the original data set must be shown to solve a given

set of analysis task(s). That is why data expressiveness is different from task expressiveness.

For example, data transform techniques may cause information from the original data set to be lost

through data summarization or culling. In Figure IV-3 much of the flight data from the original data set

was filtered out, thus Figure IV-3 is task expressive but not data expressive. Data technique designs are

usually much less data expressive compared to mapping technique designs because they work by

simplifying or summarizing data and only showing the results of those simplifications.

c) Correctness of the visualization (Information integrity): The expressive distance of a visualization also

depends on its correctness4. Certain graphical languages may imply facts about the encoded data values

3 Problems with scale that prevent some values from being differentiated.
4 The concept of data correctness was first introduced by Mackinlay [Mackinlay, 1986a, 1986b].

 IV-95

that are untrue. For example using saturation to represent an unordered attribute (e.g. house

neighborhood) suggests a perceptual ordering when actually there is none. Figure IV-10 shows a set of

houses, represented as marks arranged in a grid representation. The saturation of the marks indicates

the house neighborhood attribute, which is an unordered attribute. However, because saturation is an

ordered perceptual property, the visualization falsely shows that the Pt.Breeze neighborhood (most

saturated) is ordered above the Squirrel Hill neighborhood (less saturated) which is ordered above the

Shadyside neighborhood (least saturated).

Figure IV-10: Encoding house neighborhood with saturation, This encoding has low data correctness
because saturation is an ordered graphical property while neighborhood is not an ordered data
attribute. By using saturation to encode neighborhood we are falsely implying an ordered set of

neighborhood values when actually there is none.

d) Data Presence: Sometimes a visualization design is too large to fit within the CRT screen. When this

occurs we must divide the visualization into segments and display sub-portions of it to users at

different times. The visualization design is therefore only expressive of a piece of information for a

limited time (i.e. temporary expressiveness). Data presence measures the ratio between the information

shown per instance on the CRT screen with respect to the information within the entire visualization.

Generally, a visualization with low data presence is also less expressive because only a small part of

the total information can be seen at any one time. There are two ways to measure data presence: by

calculating the ratio between average number of objects shown per instance and the total number of

objects, or by calculating the ratio between visualization space per instance with respect to the entire

visualization area. The lower the object or spatial ratios, the less data is shown and the greater the

probability that users may miss some of the information and misinterpret the data contained within the

visualization. When data presence is less than 1 (i.e. some information is hidden) users may find it

necessary to store some information in short term memory to maintain context between the different

information slices. This increases the cognitive load (observational distance) placed upon users.

 IV-96

Expressiveness criteria for visualizations was first introduced by Mackinlay [Mackinlay, 1986a,

1986b]. Mackinlay defined expressiveness as follows:

“A set of facts is expressible in a language if the language contains a sentence that encodes every fact

in the set and does not encode any additional facts”.

This definition covers data expressiveness (b) and visualization correctness (c). The expressive

distance dimensions presented in this section expand on Mackinlay’s expressiveness criteria to include two

other criteria: task expressiveness, and data presence. In our system, we account for all the expressiveness

dimensions in Figure IV-9 except for data presence. Task expressiveness and correctness are implemented

in our system as binary constraints (i.e. all designs generated by our system are task expressive and correct)

and data expressiveness is implemented as a quantitative constraint.

IV-2.3 Observational Distance

Observational distance consists of cognitive and perceptual loads placed upon users when interpreting

results from the visualization system. Perceptual load is determined by the number of perceptual operations

that must be performed, and the difficulty of those perceptual operations. Similarly, cognitive load is

determined by the number of cognitive operations that must be performed, and the difficulty of those

cognitive operations, as is shown in Figure IV-11.

Observational
distance

Perceptual
Load

Cognitive
Load

#-of-perceptual
operations

Difficulty
of perceptual

operations

#-of-cognitive
operations

Difficulty
of cognitive
operations

Pre-attentive
graphical properties

Spatial
locality

Graphical
mappings used

#-of graphical
objects

Readability of
graphical objects

Layout of
graphical objects

Availability of
perceptual
parallels

Availability of
data computation

functions

Logical task
operator

Task data values

Figure IV-11: Breakdown of observational distance. Gray highlighted rectangles indicate the
dimensions that are taken into account in our prototype automatic presentation system described in

chapter V.

 IV-97

a) Number of perceptual operations: The number of perceptual operations required depends primarily on

the effectiveness of the graphical mappings used to represent the data and the task. Certain graphical

mappings (e.g. color) enable pre-attentive perception, which allows us to see certain common facts

about a set of objects simultaneously (i.e. we need not attend to each object separately). Consequently,

the number of perceptual operations required is significantly reduced. Pre-attentive vision is also very

useful for quickly filtering out unrelated objects so that we only attend to the ones that are pertinent to

our task. For example to find the first flight in the airline-scheduling task presented at the start of this

chapter (Task IV-1) the user only needs to consider those flights whose arrival time is before the

meeting (i.e. in Figure IV-1 we only consider lines which end before a certain distance to the right).

All other flights may be perceptually filtered out. The number of perceptual operations can also be

lowered by reducing the number of eye-movements that must be performed. This can be achieved by

placing objects with related information together so we do not need to associate objects that are

separated over large spatial distances. In our system we give preference to designs that effectively uses

pre-attentive graphical properties and have good spatial locality (high level of graphical element

integration).

b) Difficulty of perceptual operations: The difficulty of perceptual operations depends on the graphical

representations and properties used to show the data as well as on the readability of those graphical

representations. Different graphical mappings can result in simpler or more complex perceptual

operations. For example, to solve an addition task, it is expeditious to map the task values to stacked-

bars because judging length or position (e.g. looking up a bar length) is easier than computing sums of

size or length (e.g. adding the length of two bars). Readability issues can also affect the difficulty of

perceptual operations as is discussed in appendix F.

The perceptual complexity of a visualization is also dependent on the overall layout of the design

and the number of graphical elements within it. To keep complexity low, we must ensure that the

graphical elements and input device controls within the visualization are well integrated. In addition,

we also want to ensure that there are not overly many graphical elements or controls, so that the visual

interface does not appear too cluttered or confusing to the user.

c) Difficulty of cognitive operations: The difficulty of cognitive operations depends on the task. Tasks

that require simpler mathematical operations, e.g. addition or subtraction or tasks that only require

simple value comparisons can be solved with lower load cognitive operators. Other tasks such as

computing ratios, integrals and derivatives, finding data trends, or identifying data relationships are

harder to perform cognitively. The difficulty of cognitive operators may also depend on the data values

involved in the operation. For example, it is more difficult to perform computation on numbers that

have a higher number of significant figures, e.g. (200 + 300) vs. (273 + 329).

 IV-98

d) Number of cognitive operations: The number of cognitive operations required depends on how easily

they can be offloaded onto our perceptual system. We usually want to keep the number of cognitive

operations to a minimum, because they are usually much harder to perform and more taxing on users

compared to perceptual operations. This is easy to accomplish when there are graphical objects capable

of expressing the desired task data and relationships. The addition task, for example, has a close

perceptual parallel - namely stacked bars. Thus, the cognitive load can be easily transferred onto the

perceptual system. However, this is less true for more abstract computations like log and exponent

which does not have a close perceptual parallel. However, because we consider data transform

techniques in our automatic design process, we can offload these more complex tasks onto the

computer system through data pre-processing operations. The advantage of data computation is that

they offload the entire cognitive operation onto the computer system and only incur a small perceptual

load from the user for interpreting the results. This is especially useful for cognitive tasks that cannot

be easily mapped to perceptual operations.

IV-3 Data Techniques vs. Mapping Techniques

Design Guidelines

The design dimensions given in the previous section provide useful guides for directing an automatic

design system to more promising paths in the design space. However, the design dimensions alone are

insufficient because some design dimensions are difficult to calculate or measure without additional

perceptual and design knowledge. For example using color often reduces the number of perceptual

operators and thus the observational distance of a design because it allows for pre-attentive perception. This

information however cannot be deduced from the design dimensions alone. The fact that color allows for

pre-attentive perception must be encoded into the designer as well. Thus in addition to the design

dimensions, we present a set of higher level knowledge guidelines that capture how particular design

decisions may affect the “goodness” dimensions of a design.

Previous work on automatic visualization design developed a set of mapping technique guidelines.

Mapping technique guidelines capture knowledge on how data attributes should be mapped to graphical

properties and objects. These guidelines describe the effectiveness of graphical properties for showing

different types of data attributes. This could be based on whether the graphical property reduces the number

of perceptual operations (e.g. because of pre-attentive perception) or the complexity of the perceptual

operations. Mapping heuristics may also include structural heuristics that describe how data attributes

should be mapped to objects and how new objects should be combined with existing ones. For example,

integration of graphical properties within the same object or cluster of objects is preferred over spreading

the properties over multiple regions, because integration reduces the number of eye movements that are

required. Chapter V contains more details on how these heuristics can be translated into concrete

 IV-99

constraints and design costs within an automatic design system. For more details refer to previous work on

automatic visualization design [Mackinlay, 1986a, 1986b; Roth, 1990].

In this section, we focus on defining a set of design guidelines for making decisions between using

data transform techniques versus mapping transform techniques to solve tasks. These guidelines were

derived using the three distances (articulatory, expressive, and observational) described in the previous

section. Each guideline helps reduce the semantic distance of a task by reducing one or more of these

translation distances. Note that these guidelines are not meant to be a complete list of design principles, nor

do we claim that they are applicable for all task situations. We do believe, however, that they are a

reasonable set of rules for the data analysis tasks that we consider in this thesis. It is important to recognize

that these design rules are not meant to replace the expertise of a graphic designer or an information

specialist. However, by integrating such design knowledge into an automatic system we hope to enhance

the computer system’s ability to convey more complex information as well as reduce the more mundane

and straight-forward design work that needs to be performed and free visualization designers to explore a

much wider range of design alternatives.

IV-3.1 Accuracy

Figure IV-12: Graphic for determining the total benefits for associate professors by getting the
difference between total compensation (blue bar) and total salary (red bar)

 IV-100

Different tasks require different degrees of accuracy. When tasks require a high degree of accuracy,

there is a preference for using data transform techniques. This is because to get the same level of accuracy

through mapping techniques (i.e. perceptual processing), we would need to encode the data as text and then

offload the computation process to the user’s cognitive system. For example, suppose we were considering

a group of universities for possible associate-professorship positions and we want to determine the total

benefits given out to associate professors in those universities. In order to get the total benefit values we

must determine the difference between the total_compensation_associate_professor and

total_salary_associate_professor attributes in our data set. One possible mapping design to achieve this

task is to represent the compensation and salary values with two sets of bar lengths as in Figure IV-12.

However, if we wanted to determine the total benefit figures with high accuracy Figure IV-12 is

inappropriate because bar lengths can only show the results with a limited amount of precision.

Figure IV-13: Data computation design for
accurately computing total benefits for

associate professors

Figure IV-14: Pure mapping design for
accurately computing total benefits for

associate professors

In order to perform the task more accurately with mapping techniques, we need to encode both value

sets as text as in Figure IV-14. The observational distance for such a design is very high because we need to

cognitively compute the compensation and salary differences for each university. It is much more effective,

in this situation, to perform the task with data transform techniques and only present the computed

differences to users as in Figure IV-13.

 IV-101

Table IV-1 compares the semantic distance between the pure mapping design (Figure IV-14) and the

data computation design (Figure IV-13) based on the dimensions presented in the previous section. Table

IV-1 shows that the mapping design has a much greater observational distance. This is because in the

mapping design, the user needs to look up each of the text values, thereby resulting in 2n perceptual

lookups where n represents the number of universities. Given that the perceptual difficulty of a lookup is p,

the perceptual load is 2np. Apart from the perceptual load, there is also a cognitive load (nc) for mentally

computing the difference between the total compensation and total salary values for each university (where

c represents the difficulty of the mental difference operation). Also note that mentally computing

differences is significantly more difficult than performing a perceptual lookup so c >> p. On the other hand

the data computation design only requires a single perceptual lookup for each university, so the

observational distance is np, which is substantially lower than the observational distance of the mapping

design which is 2np + nc. Thus when a task needs to be performed accurately, we assign a higher cost to

the mapping solution and a lower cost to the data computation solution.

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-13)

2ne np

Mapping
Design
(Figure IV-14)

2np nc

Table IV-1: Semantic distance for computing the total benefits for associate professors

Both visualizations do not require any user input (i.e. no articulatory distance). In addition, they are

expressive of the difference task and do not show any false information, so their task and correctness

expressive distance is nil. However, the data computation design has a greater data expressive distance

compared to the mapping design. In the data computation design, the original data has been summarized

and it is no longer possible to extract the total_compensation_associate_professor and

total_salary_associate_professor figures from each university. Thus, 2n facts have been lost.

There are other tasks that require ‘fuzzy’ accuracy. For example, a person looking for houses in the

Shadyside area may want to include some houses on the area boundaries even though they may technically

fall within other neighborhoods. It is difficult to model such ‘fuzzy’ accuracy within the computer, and thus

the articulatory distance for such tasks are large. Consequently, it is more appropriate to map the data to

graphics so users can perceptually determine the appropriate level of ‘fuzziness’ for the task. This issue

also relates to the task specificity issue, which we describe in section IV-3.6.

 IV-102

IV-3.2 Intermediate Tasks

When performing a complex task, we commonly need to break it down into several simpler tasks. For

example, suppose we want to determine the total benefits given to full professors as well as associate

professors for a set of universities. This operation can be decomposed into two difference operations

between total_compensation_full_professor and total_salary_full_professor, as well as

total_compensation_associate_professor and total_salary_associate_professor to get the total benefits for

each faculty type. An addition operation is then applied to the two total benefits results as is shown below.

(Compute Addition,

(Compute Difference,

total_compensation_full_professor,

total_salary_full_professor)

(Compute Difference,

total_compensation_associate_professor,

total_salary_associate_professor))

Task IV-2: Task for determining the total benefits given out to full professors and associate
professors.

In Task IV-2, the difference operation produces intermediate results that are subsequently used by the

addition task to produce the final result. As such, the difference tasks are not interesting in and of

themselves. Tasks whose results are further processed by other tasks are called intermediate tasks.

Intermediate tasks should be performed with data computation because they simplify the final graphic

design by summarizing part of the data and hiding information that does not directly pertain to the main

task. This reduces the amount of clutter within the graphic as well as the amount of perceptual

interpretation that must be performed, without removing any of the information pertinent to our primary

goal. Thus for intermediate tasks, the data solution is given a lower cost than the mapping solution which

gets a higher cost in addition to the cost of the extra data attributes that need to be mapped.

For example, consider Figure IV-16 and Figure IV-15, which shows two visualization designs for

solving the total benefits task (Task IV-2). In Figure IV-16 (pure mapping design) total compensation and

total salary of each faculty type are mapped to the heights of four bars for each university. To solve Task

IV-2 users must compare the lengths of the first two bars to get the total benefits for full professors and the

lengths of the next two bars to get the total benefits for associate professors. This generates a perceptual

load of 2p2, where p2 indicates the perceptual cost of each difference comparison. Apart from perceptually

estimating the length differences, users must also determine their combined lengths (i.e. the total benefits

from both faculty types). This results in an additional load of p3 where p3 is the cost of estimating the

combined length differences and then translating that back into a total benefit value. Thus the total

observational load for each university, using the mapping design (Figure IV-15), is 2p2+ p3. These

 IV-103

perceptual operations need to be performed for each university so the total perceptual load is n(2p2+ p3),

where n is the number of universities.

Figure IV-15: Data computation design for
computing total benefits for associate

professors and full professors. In this case
both total benefits have been pre-computed

and are shown as stacked bars.

Figure IV-16: Pure mapping design for
computing total benefits for associate

professors and full professors. In this case, we
need to perform the entire task perceptually.
Initially we must get the bar differences of the
first two bars (red and green) and the last two
bars (blue and purple). We must then sum up

these differences to get the total benefits.

In Figure IV-15, the difference intermediate tasks have been performed with data transform

techniques, and the total benefits for each faculty type are represented as stacked bars. The total benefits

from each university can be determined by simply looking at the height of each stacked bar. In this case,

the perceptual load is only np1, where p1 measures the cost of a perceptual look up (i.e. looking up the bar

length value from the x-axis). The cost of estimating total benefit values from two combined length

differences in Figure IV-16 (p3) is clearly more difficult compared to the axis value lookup (p1), thus p3 >>

p1. The observational load for the mapping design [n(2p2+ p3)] is therefore greater than that of the data

computation design (np1).

 IV-104

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-15)

4ne np1

Mapping
Design
(Figure IV-16)

n(2p2 +p3)

Table IV-2: Semantic distances for total benefits task (Task IV-2)

By performing the intermediate tasks (i.e. difference tasks) with data computation, we reduce the

number of values that need to be shown by at least half. Rather than having to show the

total_compensation_full_professor, total_salary_full_professor , total_compensation_associate_professor,

and total_salary_associate_professor data attributes (as was done in Figure IV-16), we only show

total_benefits_full_professor and total_benefits_associate_professor in the data computation design in

Figure IV-15. Therefore there is less clutter in the display and less output space is required. However, the

data expressive distance is also higher because of data filtering. Nevertheless, since the difference tasks are

intermediate tasks summarizing and hiding their origin data values is appropriate because the tasks are only

important for the results they generate in service of the main addition task.

IV-3.3 Availability of Perceptual Operations

Certain tasks can be easily offloaded onto the perceptual system without adding much, if any,

observational distance. Some examples are addition and subtraction, which can be mapped to stacked bars

and overlapping or interval bars respectively. In each of these cases, the task results are perceptually

summarized onto one graphical feature. The results of the addition task are summarized by the stacked bar

heights and the results of the subtraction task are summarized by the interval bar lengths. Certain abstract

mathematical tasks (e.g. logarithmic or exponential computation) do not have any perceptual parallels and

cannot be offloaded onto the perceptual system. Such tasks also tend to have high cognitive loads, which

results in large observational distances. For such tasks, data computation techniques can be used to offload

the expensive cognitive computation onto the computer system.

Other tasks such as summarization tasks (e.g. sums, mean, and median), or getting the minimum and

maximum values within a set, can be performed perceptually but require more perceptual effort from users

compared to the addition and subtraction tasks. For example to find the maximum data value from a bar

chart we would need to compare the heights of a set of bars and pick the tallest one. Unlike the addition

and subtraction cases, the task result is not captured in a single perceptual value but rather has to be derived

by considering a set of perceptual values.

 IV-105

Figure IV-17: Data computation design for
computing average number of teaching staff

per university. In this case the average
number of teaching staff has been pre-

computed and the results are shown on the x-
axis.

Figure IV-18: Pure mapping design for computing
average number of teaching staff per university.
In this case the average number of teaching staff

must be perceptually estimated by finding an
average line across each cluster of bars.

For example, suppose we want to determine the average number of teaching staff (including full

professors, associate professors, assistant professors, and instructors) within a set of universities.

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-17)

4ne np1

Mapping
Design
(Figure IV-18)

x(4np2 + p3)
+ np1

Table IV-3: Semantic distance for finding average number of teaching staff for a set of universities

The pure mapping design (Figure IV-18) maps the number of each faculty type to a differently

colored bar length. To estimate the average number of teaching staff, we pick a line that separates the four

bars in such a way that the sum of bar lengths above the line is equal to the sum of lengths below it. This

requires at least four bar difference estimations (to get the lengths above and below the average line) (4p2)

 IV-106

and several comparisons between the lengths on top and below to determine their equality (p3). When the

lengths above and below are not equal we must re-estimate a new average line and repeat the process

above (x). Once we get an acceptable average line we can look up the average value from the y-axis (p1).

The total perceptual load is therefore x(4np2 + p3) +np1.

On the other hand, the data computation design (Figure IV-17) pre-processes the average number of

teaching staff and only maps the results to bar lengths. Thus, users only need to perform n bar length

lookups resulting in a perceptual load of np1. The observational distance for Figure IV-18 (the mapping

design) is much larger because there are more visual artifacts that must be attended to (4 bars instead of just

1) and because of the perceptual load needed for estimating and re-estimating the mean number of teaching

staff (x). Thus for tasks that have good perceptual parallels (e.g. addition), the data and mapping designs

are rated equally by our automatic design system. On the other hand, for tasks that do not have any

perceptual parallels (e.g. exp, log) or for tasks that have high cost perceptual representations (e.g.

summarization tasks), preference is given to the data computation solution.

IV-3.4 All to All Operations

Thus far, we have been considering tasks that compute or compare pairs of values, e.g. computing the

difference between total compensation and total salary for each university faculty type. These pair-wise

(value-pair) comparisons occur very commonly in data analysis, but do not represent the only task class.

Another important class of tasks is all-to-all tasks. All-to-all tasks require each value in a set to be

processed with all values in the second set, e.g. processing the total compensation values for each

university with the total salary values of all other universities.

For a more realistic all-to-all task, consider an extended airline-scheduling task analogous to the one

described in the airline-scheduling task in section IV-1 (Task IV-1), except here we take both total-cost and

total-downtime into consideration.

“Given an origin and a destination city, the user “attempts to locate the two flights

arriving in and departing from a layover city that offer the minimum amount of cost and

`down time’ between the flight times and the beginning and ending time of a scheduled

meeting (in the layover city)”.

As before we assume that the origin city is Los Angeles, the layover city is Chicago, and the

destination city is Boston. In addition, the meeting in Chicago is from 2 p.m. to 4 p.m.

This is an all-to-all task because we must compare all flights before the meeting with all flights after

the meeting. To solve this task with data computation we pre-process the total downtime and total cost for

all flight pairs as in Figure IV-19 (total downtime is encoded with x-length and total cost is encoded with

saturation). If there are n1 flights before the meeting and n2 flights after the meeting, we must calculate and

show values for n1 * n2 flights (i.e. O(n2) flights, where n is the total number of flights in the data set).

 IV-107

Figure IV-19: Data computation design for computing total downtime and total cost for all pairs of
flights that fulfill our airline-scheduling criteria. Total downtime is pre-computed and encoded on

the x-axis while total cost is pre-computed and encoded as saturation.

Although Figure IV-19 only contains information on 20 different flights, (10 * 10) = 100 values must

be shown because of the all-to-all comparison and it is difficult to display all the information together

clearly on the CRT screen. Therefore, we may need to navigate around the visualization space during the

analysis session. Given that we have enough space on the CRT screen to show x elements, we need to scroll

the visualization O(n2)/x times in order to get to all the information (i.e. there are O(n2)/x information

slices). Each scroll requires moving the mouse over to the scroll bar (m), a mouse click on the scroll bar

control (k), moving the scroll control (m) and a mouse release (k). The articulatory load is therefore O(n2)/x

* 2(m+k) where m is the cost of a mouse move and k is the cost of a mouse click or release. To find the pair

 IV-108

of flights with the best balance between total downtime and total cost, we choose the shortest bar with the

lowest saturation in each information slice and compare these bars across slices to get the best one. This

results in a perceptual load of (O(n2)/x) * p1 where p1 indicates the perceptual cost of each bar search and

comparison and n represents the number of flights.

Figure IV-20: Mapping design for computing total downtime and total cost for all pairs of flights that
fulfill our airline-scheduling criteria. Time_after_meeting is mapped on the x-axis of the left chart,

time_before_meeting is mapped on the x-axis of the right chart, and flight_price is mapped to
saturation in both charts.

Figure IV-20 shows the mapping techniques solution for solving the same task. In this design, the

total cost and total downtime computations are not performed with data techniques. Instead, separate cost

and downtime information are shown on both legs of the flight. The downtime and cost for the first leg of

the flight is shown as x-length and saturation on the left chart in Figure IV-20 and similar information on

the second leg is shown on the right chart. In order to find flights with low cost and low total downtime, we

look for shortest, least saturated bar in each chart. Assuming that we can display x elements in the given

amount of space, the navigation load would only be (O(n)/x) * 2(m+k) because we only need to show at

most n1 + n2 flights compared to the O(n2) flights in the data computation design shown in Figure IV-19.

To find the best flights using Figure IV-20 we must look for two of the shortest and least saturated bars in

each information slice, thereby resulting in a load of 2p1 for each slice. Total perceptual load therefore,

comes to O(n)/x * 2p1 where n is the number of flights, x is the number of elements that can be displayed

on the CRT screen, and p1 measures the difficulty of locating the shortest, least saturated bar in each

information slice and comparing that bars across information slices

 IV-109

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-19)

O(n2)/x *
2(m+k)

O(n2)/x p1

Mapping
Design
(Figure IV-20)

O(n)/x *
2(m+k)

O(n)/x p1 +
3p2

Table IV-4: Semantic distance for an airline-scheduling task which balances total downtime and total
cost

Based on Table IV-4, we see that the mapping design is far superior because when we try to solve an

all-to-all task with data computation, we are forced to show many more data values, and this results in

greater navigation and perceptual loads. Although in the mapping design there is the additional cost of

having to process two charts, this cost is far outweighed by the processing needed for the large number of

objects in the data computation design. I.e. for larger n the O(n2)/x factor in the data computation design

far outstrips the O(n)/x * 2 factor in the mapping design. Although we have assumed that cognitive load is

negligible, it can be fairly significant here, because we must compare data sets across several separate

screens and as a result, we may need to maintain some context in short term memory across different

information slices. Since there are more data slices that we need to traverse in the data computation

solution, the related cognitive costs will probably be greater as well. Thus, for all-to-all tasks, our designer

assigns a lower cost to the mapping solution particularly if the data set is large and if there are effective

graphical representations for showing the task.

IV-3.5 Task Variation on Attribute

A big disadvantage of using data computation techniques to solve tasks is that they are limiting, i.e.,

they serve very specific purposes and cannot be adapted for a wide range of different goals. When

performing a task through data computation we only show the results of the computation and hide the

initial and intermediate values from users. Consequently, the resulting visualization design can only be

used to solve its original, intended goal. For example, if we used data computation to perform an addition

task we cannot also perform a difference task based on the computed results because the original values

have already been summarized. Data simplification comes at the cost of inflexibility.

People, however, are much more versatile, and by mapping the source data onto graphics, we give end

users greater flexibility in being able to solve a wider range of tasks with the same graphic. Thus when we

need to solve a set of different tasks that operate on the same data attributes, we often end up having a

higher observational distance if we use data computation operations. This is because a new set of values

must be computed and visualized for each task variation. When the data complexity added by the data

computation is greater than the cognitive load it subtracts, we should address the task by using mapping

techniques.

 IV-110

Suppose we are studying election data for three different political groups over multiple states. Our

task is to view the total number of votes in each state to determine its importance as well as to rank the

political groups based on their individual number of votes. To fulfill this task with data computation

(Figure IV-21) we process and represent the total number of votes by using the length of horizontal bars

and align each bar with a pre-computed ordered list of the three political parties. This ordered list is

represented by a series of dots, ordered from left to right, with each dot representing a different party. Color

is used to encode the party type. In order to solve the task we look up the total votes from the x-axis (np1)

and the ranking information from the series of aligned dots (np2).

Figure IV-21: Data computation design for
computing total number of votes in each state
and ranking the three political parties based

on the number of votes received.
Total_number_of_votes has been pre-

computed and is shown on the x-axis of the
left chart. Party_ranking has also been pre-
computed and is shown in the right table.

Figure IV-22: Mapping design for computing
total number of votes in each state and

ranking the three political parties based on
the number of votes received. The

#_votes_for_Republican_party is mapped to
the x-length of the red bar, the

#_votes_for_Democratic_party is mapped to
the x-length of the green bar, and the

#_votes_for_Independant_party is mapped to
the x-length of the purple bar. Total votes can
be derived by looking at the combined length
of the stacked bar and party ranking can be
derived by comparing the three differently

colored bar lengths for each state.

 IV-111

Alternatively we could represent the task with mapping techniques by combining the number of votes

received by each political party as a stacked bar (Figure IV-22). We can deduce the total number of votes

as well as the group ranking from the same graphical representation (i.e. both tasks can be performed using

the same graphical objects). We can look up the total number of votes from the combined height of the

stacked bar (np1) and determine the party ranking by comparing the lengths of the different divisions within

each stack (np3).

In this example, the mapping design (Figure IV-22) is preferable. Both designs have comparable

observational distances; however, the mapping visualization is much more expressive. As is shown in

Table IV-5, the data computation design has a data expressive distance of 3ne (where e represents the

expressive distance for each inaccessible number of votes figure) because we can no longer derive the

original number of votes for each political group from the summarized results.

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-21)

3ne np1 + np2

Mapping
Design
(Figure IV-22)

np1 + np3

Table IV-5: Semantic distance for finding the total and individual sales

The data computation design has more clutter and shows less information compared to the mapping

design without cutting down the observational distance of the task. This is because we were able to achieve

two different tasks using the same graphical objects in the latter case while in the former case we had to

encode the results of each task using two different sets of objects. Generally, when there are good

perceptual parallels and significant task variation over the same data attributes, our automatic design

system favors a mapping solution over a data computation design. When no effective perceptual parallels

are available however, then our system weighs the cost of having more clutter (i.e. more graphical objects)

and lower data expressiveness in the data computation design with the added cost to cognition and

perception from having to perform the task perceptually with mapping techniques.

IV-3.6 Task Specificity

Tasks can be stated at many different levels of specificity. The higher the level of specificity, the

cheaper it is to accomplish the task with data computation. When tasks cannot be fully specified at the

outset, users must supply the missing task arguments to the data computation functions during the analysis

process. Consequently, users are required to learn and use a set of input devices and interface artifacts,

which increases the articulatory distance of the design. For example, in the airline-scheduling task

 IV-112

presented earlier, we must know the origin, destination, and layover cities as well as the meeting time, in

order to use data computation to solve the task. If we are unsure of these task parameters, we must supply

then during analysis with input devices, causing a higher articulatory distance.

Sometimes, tasks cannot be described with high specificity because it is difficult to capture the task

requirements or constraints. For example, suppose we want to find a “good” university to attend. We would

like the university to have relatively low tuition cost, but a good record of accomplishment for graduating

its students, and a good student/faculty ratio (i.e. low ratio). We might be willing to pay more tuition

however if the university has an exceptionally high graduation rate or low student/faulty ratio. In general,

we want to pick a university based on a balance of all three factors. Note that for this task it is difficult to

specify the input parameters fully because there is no “correct” set of parameter values.

Figure IV-23: Data computation design for
finding the best university based on out-of-
state-tuition, graduation-rate, and student-

faculty-ratio. Thresholds for each condition
can be entered through the three sliders and

those universities that fulfill the threshold
conditions are pre-computed and shown.

Figure IV-24: Mapping design for finding the
best university based on out-of-state-tuition,
graduation-rate, and student-faculty-ratio.

Student-faculty-ratio is mapped to the x-axis,
graduation_rate is mapped to the y-axis, and
out_of_state_tuition is mapped to saturation.
The best universities are those in the upper-

left corner of the display, with low saturation.

In order to solve this task with data computation, we need to try out different parameter value

combinations by entering them into the system using input devices. Figure IV-23 shows such an interface.

It has three sliders for indicating the acceptable tuition, graduation rate, and student/faculty thresholds. The

 IV-113

articulatory distance for this design depends on the number of parameter entries we must make. At the very

least, we must perform three input device manipulations to feed in the initial threshold values. Each entry

requires the user to place the mouse over the slider, click on the slider controller, drag the controller to the

correct position, and release the mouse. This produces a load of 2(m + k) for each entry where m indicates

the load incurred for a mouse move and k indicates the load for a mouse click or release. The minimum

articulatory load for Figure IV-23 is then 6(m + k). Once we have entered these threshold values, all the

universities that fulfill our constraints are shown as labels. Suppose that for each category half the

universities pass our query, this would result in n/8 universities, thus the perceptual load for reading the

resulting university names is (n/8) p1.

Figure IV-24 shows how we can solve the same task with mapping techniques. In Figure IV-24, each

university is represented as a labeled mark. Student/faculty ratio is mapped to the x-axis, graduation rate is

mapped to the y-axis, tuition cost is mapped to the saturation of the marks, and the university name is

mapped to labels next to each mark. Universities that fulfill our task criteria can be found by looking to the

top-left corner of the chart (high graduation rate, low student/faculty ratio). We may slightly relax our

constraints and consider the adjacent areas which indicate universities that have either lower graduation

rates but good student/faculty ratios or high graduation rates but weaker student/faculty ratios. Within

each of these areas, we are only interested in the less saturated marks, which indicate universities with

lower tuition cost. Both the location and saturation lookups are perceptually pre-attentive and thus only two

perceptual operations are required to find the appropriate universities (perceptual load of 2p2). Once we

have identified the universities of interest, we lookup their names from the labels next to each mark.

Assuming a uniform distribution, a quarter of the objects will be in the area that we are considering (i.e.

n/4). In addition, we are only interested in the universities with lower tuition cost, i.e. the less saturated

marks. Assuming that half of the universities in our area of interest are less saturated, we must attend to n/8

university labels. Thus, the total perceptual load for this design is (n/8) p1+ 2p2.

Articulatory Expressive Observational

Task
Clarification

Navigation Task Data False Perceptual Cognitive

Data Design
(Figure IV-23)

6(m+k) 3ne n/8p1

Mapping
Design
(Figure IV-24)

n/8 p1 + 2p2

Table IV-6: Semantic distance for finding a house based on price, size, and distance to workplace

Based on Table IV-6, the mapping design is superior to the data computation design because the

mapping design has no articulatory load and the additional two perceptual lookups required do not add

much to the observational distance. For larger data sets, however, the mapping design could become

cluttered and objects may be occluded (Figure IV-24). In this case, we would need to use input devices for

 IV-114

navigation purposes, and semantic distance may end up being higher compared to the data computation

design.

Figure IV-25: Identical design as Figure IV-24 but applied to a larger data set. As a result there is
significantly more occlusion making it difficult for us to accurately view the saturation values on the

marks as well as read the university names.

IV-3.7 Summary

In this section, we presented a set of high-level design guidelines that can help us determine whether to

solve a task by mapping its data to graphics or by pre-processing it using data transforms. Details on how

these more abstract design rules can be translated into concrete heuristics for an automatic visualization

design system (AVID) are described in chapter V. Based on the guidelines presented here, we show how

these data and mapping designs may be ordered according to their effectiveness at solving current user

goals. In appendix C-4 we systematically explore the range of tasks available in our framework and

describe how changes to the task will affect the design choices made by our automatic design system based

on the design dimensions and guidelines presented in this chapter. In appendix C-5 we explore the possible

space of data and mapping designs for a car purchasing task. For a complete description of our task

language refer to appendix C-3.

 IV-115

IV-4 Conclusion

In this chapter, we described a set of design guidelines (section IV-3) that can be applied in an

automatic design system for making decisions between using data transforms and mapping transforms.

These design guidelines reduce the semantic distance for solving a task by either reducing articulatory

distance, expressive distance, or observational distance. Designs that have many data computations usually

have a smaller observational distance because some of the perceptual and cognitive load of interpreting the

graphic has been offloaded onto the computer system and only the summarized task results are shown. On

the other hand, data computation designs require complete task specifications (i.e. no task unknowns),

which usually results in a greater articulatory distance. In addition, data computation designs also reduce

the expressive capabilities of a visual design by filtering out all data that is not absolutely pertinent to the

task. As a result, the range of perceptual tasks enabled by the design is reduced. Thus, when there is

significant task variability over the same data attributes a mapping design is preferred.

 High level user analysis goals generally consist of a mix of well specified subtasks (where it is clear

what the goals of the task are and what the task parameters are) and non specific subtasks. Thus an

effective design will most likely consist of a combination of data and mapping transforms. The blend of

data and mapping transforms that is most appropriate is based on the interaction among the input task, data

set, available graphical representations, as well as input and output hardware. Because the design decisions

are based on a wide range of factors, it can sometimes be difficult to decide which sections of a task are

more suitable for data computation and which are more suitable for mapping transforms. In this chapter we

present a set of design guidelines that can help guide designers in making these decisions. These guidelines

can also be translated into design heuristics and included into an automatic design system. We showed in

section IV-1 that including data computation operations into the automatic design process significantly

expands the visualization design space and the effectiveness of the system in being able to deal with data

analysis problems. In appendix D, we analyze three more example tasks and systematically show the new

set of designs that our work enables over previous research in this area. We also show that the rankings

made by our system based on the design guidelines presented in this chapter conform to GOMS estimated

performance time. Specifics on the architecture of our automatic design system are presented in chapter V.

 V-116

Chapter V: Implementation

$XWRPDWLF��
9LVXDOL]DWLRQ��
,QWHUIDFH��
'HVLJQHU�

In appendix E we evaluated a set of visualizations generated by our automatic design system, AVID

(Automatic Visualization Interface Designer). The evaluation results (appendix E) show that expanding our

understanding and vocabulary of visualization primitives to include data computation/transformation operators,

perceptual or mapping transform operators and input device components, can enhance our ability to generate visual

designs that are interesting and appropriate for our information tasks. This chapter describes how our automatic

design system, AVID, is implemented based on the visualization functions framework described in chapters II and

III and the visualization design heuristics and metrics described in chapter IV. The implementation of AVID shows

that the theoretical concepts we developed previously are complete and specific enough to be applied to a real

system. This chapter also highlights the system engineering issues that must be considered to capture the new

function classes and heuristics we introduce in our work. Note that all the visualizations shown in this document are

generated by AVID unless otherwise noted.

AVID, consists of three components corresponding to the three stages of the automatic design process (shown in

Figure V-1):

1. The task specification component: Initially, a higher level agent (user or a domain specific system) that has a

deeper understanding of the problem domain generates a set of tasks for AVID. Tasks are expressed using a simple

language based on the EDA (Exploratory Data Analysis) task model first developed by Tukey [Tukey, 1977] and

later refined by Casner [Casner, 1991] for automatic design. This language is relatively low-level and its purpose is

to capture important components of a task that may affect the visual design process. We do not expect typical end

users to specify tasks in this language; rather, specifications will most likely be generated by domain specific

systems that use graphics to present and summarize their results to users, such as automatic planning systems,

automatic information analysis systems, agent based information gatherers, etc. We described general concepts of

our task language in appendix C-3. In this chapter we discuss the implementation details of the language and how it

is interpreted by AVID. Specifically AVID deals with processing embedded tasks as well as accuracy and iterative

special task conditions that are not dealt with in previous automatic systems but are crucial in our work because of

their impact on data transform functions and input devices.

 V-117

Phase 1: Task interpretation

Phase 2: Visualization design

Visual structure design Functional design

Visualization interface

Phase 3: Design Realization

Functional
Realizer

Visual
Structure
Realizer

Task language:
(setf set1 (Find ‘(RELATIONSHIP . <)

 (Lookup `(OBJECT . NIL) ‘(VALUE . house_price))
 `(VALUE . 100k)))

(Compute ‘(VALUE . SUBTRACT)
(Lookup (set1 `(VALUE . date_on_market))
(Lookup (set1 `(VALUE . date_sold)))

Task object and
task argument structures

Figure V-1: Three components within AVID that correspond to the three stages in the automatic design process: 1) Task
interpretation, 2) Visualization design, and 3) Design Realization

2. The design component: In the design component, AVID parses task objects and argument structures generated

from the task interpretation component and converts them to design constraints and preferences. Based on these

constraints, AVID explores the design space for the input tasks and automatically generates a set of visualizations

ordered from best to worst. These output designs are expressed in a language that captures the visual structure of a

visualization interface as well as any underlying transform functions and active interactive components. Visual

structure descriptions have been developed in previous work [Mackinlay, 1986a, 1986b; Chuah, 1995]. This thesis

develops a language for capturing the functions and active components within a visualization (described in chapters

II and III).

One of the main contributions of our designer is in expanding the visualization design space to include data

transforms, mapping transforms, and interactive components (i.e. input devices). Our GOMS evaluation tests in

appendix E showed that this expansion allows us to more effectively address the class of analysis tasks considered in

this work compared to previous automatic designs that solely rely on mapping operators. The expanded design space

enhances human computer communication because a greater visual vocabulary allows more efficient communicative

 V-118

constructs to be generated. In addition, the effectiveness of AVID as a design assistant is also increased because it is

able to provide more design alternatives and choices to users. To enable this expansion in the visualization design

space, AVID incorporates new procedures in its search algorithm over what has been done in previous systems.

Specifically, previous systems only considered how data attributes can be effectively mapped to graphical properties

in a data attribute mapping procedure (section V-2.1.2). In AVID, we have an additional task processing procedure

(section V-2.1.1) that considers whether to apply data transforms or mapping transforms to solving tasks, what

hybrid data and mapping transforms are valid design alternatives, as well as how to address embedded tasks, object

filtering, and unknown task arguments. Our design system also culls out bad designs (i.e. task inexpressive designs

or designs that do not support the input task(s)) as well as duplicate designs (section V-2.1.3). This saves users from

having to devote attention to these less appropriate visual representations while still having good coverage of the

design space. This issue was also not considered in previous systems.

3. The realization component: The "realizer" component interprets design specifications generated by the design

component and renders an active visualization interface. This component makes layout decisions and assigns default

values to visual components that are left unspecified or unconstrained in the design specifications. Currently,

AVID’s realizer is capable of interpreting most of the selection, transformation, and translation functions described

in this thesis (e.g. computations, set-operations, threshold operations, etc). By combining these primitives it can

render a wide range of interactive behaviors such as aggregation, painting, dynamic queries, simple semantic zoom,

SDM graphical manipulation operations [Chuah, 1995], navigation operations, etc. Previous systems could not

render designs with data transform functions or designs that contain interactive components.

In the following sections of this chapter we describe how our automatic design system, AVID is implemented

and how the concepts laid forth in the previous chapters are captured within its three primary components.

V-1 Task Interpreter Component

The task interpreter component accepts task descriptions as input, analyzes the tasks and their arguments for

validity, and then produces a set of task-class (Figure V-4) and task-argument (Figure V-3) structures. These

structures are passed to the design component that uses the information to guide its design strategy. The task

interpreter accepts specifications that are in LISP form. An example task specification is shown in Figure V-2.

In this task we calculate the duration that houses under 100k in price, stay on the market. Each task within the

specification has three parts: the task class, the task input arguments, and any special task conditions. For example,

the top task in Figure V-2 can be decomposed into a find task class, a list of three task arguments, with no special

task conditions. The bottom task in Figure V-2 can be decomposed into a compute task class, a list of three task

arguments, and two task conditions. The embedded lookup tasks within the bottom compute can be decomposed in

the same way.

 V-119

(Compute ‘(VALUE . SUBTRACT)
(Lookup set1 ‘(VALUE . date_on_market))
(Lookup set1 ‘(VALUE . date_sold))) :loop-type one-to-one

:accuracy ‘neutral)

(setf set1 (Find ‘(RELATIONSHIP . <)
(Lookup ‘(OBJECT . NIL) ‘(VALUE . selling_price))
‘(VALUE . 100k)))

1. Task operator 2. Task arguments 3. Task conditions

1. Task operator 2. Task arguments

Figure V-2: Example task specification

The three task parts encapsulate the following information:

1. Task class: The task class captures the main goal of the current analysis operation. Different task classes require

different numbers and types of input arguments as is summarized in Table V-1. Currently AVID can interpret

five different task classes: lookup, find, AND, compare, and compute. These task classes can commonly be used

to describe problems that arise in data analysis [Casner, 1991; Senay, 1994].

2. Task arguments: Task arguments may specify single or sets of values. For example the arguments ‘(VALUE .

SUBTRACT), and ‘(VALUE . 100k) in Figure V-2 contain single values (subtract and 100k). On the other hand

the argument ‘(VALUE .`(1 2 3 4 5)) contain a set of five values. Task arguments may come in one of two

forms:

a) Associative value pairs: An associative pair has two elements (e.g. ‘(VALUE . SUBTRACT)), the first

describes the task argument type (e.g. value) and the second contains the actual argument value(s) (e.g.

subtract). Currently we have three types of arguments: value, object, and relationship. Value arguments

may be numbers or strings; object arguments refer to conceptual structures within the visualization such as

a data concept, a graphical object, or a chart region; and relationship arguments describe relations that

may exist among objects or values. Currently, we only consider simple value relationships such as >, <,

and =.

b) Output results from other tasks: Tasks may also accept output argument structures that are generated by

embedded tasks. The compute task in Figure V-2, for example, accepts results from two embedded lookup

tasks. Each of these lookup tasks produces a set of values corresponding to the date_on_market and

date_sold attributes of the house data concepts associated with the visualization.

3. Task conditions: Apart from the regular task input arguments, we may also specify special task conditions.

Currently, AVID can process two types of conditions, namely the task loop type and the task accuracy level.

Details on these two task conditions can be found in appendix C-3.2.

 V-120

The task loop type describes how the task input value sets should be iterated over. There are three iteration types

in our task framework:

a) One-to-one is the default iteration type. It specifies that each value in the first set is processed with the

corresponding values in all subsequent sets (e.g. the 1st value in each set are processed together, and so are

the 2nd, 3rd, 4th, and n-th values);

b) All-to-all tasks require each value in an input set to be processed with each and every value in the

subsequent sets.

c) Previous-pair tasks order the input value sets based on an ordering attribute, then applies each consecutive

pair of values within the ordered set to the task function.

 The task accuracy level describes the level of accuracy that is desirable for the task. Currently, there are three

accuracy levels, accurate, neutral and fuzzy.

AVID’s task interpreter possesses a LISP function corresponding to each task class (i.e. lookup, find, AND,

compare, and compute). When activated, each LISP function analyzes the task input arguments to ensure their

validity. This includes number-of-argument checks, argument-type checks, and argument-correspondence checks.

The number and type of arguments required for each task class is summarized in Table V-1.

 Input arguments Output argument types

Lookup • 1 object argument containing the set of objects
to perform the lookup on.

E.g. ‘(object .(house-1 house-2 house-3))
Note that an empty object set defaults to all objects
in the database.
E.g. ‘(object . nil)
• 1 value argument containing the lookup

attribute name.
E.g. ‘(value . date-on-market)

• 1 value argument

Compute • 1 value argument containing the compute
operator to apply (e.g. add, subtract, etc).

• n value arguments containing the data value
sets to compute.

• 1 value argument

Find • 1 relation argument containing the find
relationship to apply (>, <, =, >=, <=).

• 2 value arguments containing the data value
sets to search on.

• 1 object argument

AND

• n object arguments containing the object sets
involved in the AND relationship.

• 1 object argument

Compare • 2 value arguments containing the data value
sets to compare.

• 1 relation argument

Table V-1: Task inputs and outputs

 V-121

Argument-correspondence checks ensure that the input data types are consistent with the task. For example,

only arguments of the same type can be added or subtracted from each other. It is not possible to perform additions

and subtractions on a set of price data values and a set of weight data values. The same correspondence constraint

applies to find and compare task classes.

When a task is specified correctly (i.e. all its arguments are valid), the task LISP function generates:

1. Output argument structures: The output arguments generated have the same form as any input task argument

structure (an example is shown in Figure V-3). It captures properties of the task results that are derived from the

task class and the task input arguments. Association value pair arguments (e.g.‘(VALUE . SUBTRACT)) are

converted into task argument structures based on the pair values and the argument’s parent task. For example, a

value pair argument in a lookup task (e.g.‘(VALUE . selling_price)) implies that the second value in

the pair (selling_price) is an attribute name. On the other hand, a value pair in other task classes may imply a

data value (e.g.‘(VALUE . 100k)) or a relationship value (e.g.‘(VALUE . <)) depending on the

expected input arguments of the task class (as is shown in Table V-1). The output argument structure may be

passed on to other tasks as inputs, which is what occurs when we embed one task within another. Input

arguments from embedded tasks are already in the desired argument structure form (as was described above)

and thus need not be further processed. For example in Figure V-2, the find task generates a task argument

structure containing a set of data concepts and passes that on to the lookup tasks which extract the date-on-

market and date-sold values from those concepts. These two sets of values are subsequently passed on to the

compute task. Sometimes these output structures may contain newly generated derived or summarization

attributes (within its content slot) that are used to store the results of a data computation function. For example,

the find and AND tasks generate a boolean attribute (attribute containing T or F values), the compute task

generates a value summarization or derived attribute, and the compare task generates a relationship attribute

(attribute containing >, <, or = values).

(defclass task-argument (primitive-object)
 (class ;; Argument type: OBJECT | VALUE | RELATION

 parent ;; all tasks that contain this argument
 within ;; task which produces this task argument
 content ;; Data attribute or value(s) associated with argument
 viz-function ;; Internal function used to process results for this argument
))

Figure V-3: Task argument structure

2. A task class structure: An example task class structure is shown in Figure V-4. Each task within the input

specification is translated into a task class structure. All input argument structures associated with the task are

collected and placed within the arg-list field slot.

 V-122

(defclass task-class (primitive-object)
 (class ;; task class: either [LOOKUP, COMPUTE, COMPARE, FIND, AND]

 arg-list ;; input task arguments
 is-embedded ;; whether task is embedded within another [t | nil]
 accuracy ;; task result accuracy [t = accurate, nil = approximate]
 loop-type ;; Loop method on input objects[one-to-one|all-to-all|previous]
 num-times ;; task frequency: number of times a task is to be repeated
 output-arg ;; output task argument structure produced by task
))

Figure V-4: Task class structure

V-2 Automatic Design Component

Our automatic designer is implemented using Common LISP (Allegro version 4.0), and a constraint satisfaction

system called SCREAMER [Siskind]. The designer accepts a list of task class structures (shown in Figure V-4) and

task argument structures (shown in Figure V-3) as input and produces a set of design specifications as output,

ordered according to task effectiveness. Each design in the output set fulfills all the input task requirements. A

design specification consists of two components: a) a structural description of the graphical components within a

visualization and b) a description of the functional components within a visualization (this functional specification

corresponds to the framework language described in chapters II and III of this thesis).

In the following sections we outline our strategy for exploring the space of visual elements and visualization

techniques as well as describe how the heuristics provided in chapter IV can be encoded as design constraints and

design costs. The constraint and cost structure directs the search algorithm and allows the AVID design component

to generate an ordered list of designs that reflect cognitive, perceptual, and articulatory complexity with respect to

the input task(s).

V-2.1 Search Strategy

AVID’s search procedure has two primary phases: the task processing phase, and the data attribute mapping

phase. These two phases are indicated on the search strategy flowchart in Figure V-5. The section to the left

describes the task processing phase, the section to the right describes the data attribute mapping phase. The data

attribute mapping phase is what was performed in previous automatic systems. To enable the design of

visualizations that contain data transforms and input devices, we added the task processing phase. The task

processing phase begins with the first outermost task and then proceeds to all embedded tasks within it. Consider the

house task described previously (Figure V-2).

 V-123

In this task we are interested in seeing whether houses costing less than 100k stay on the market for relatively

short periods of time. The task specification is shown again below:

(Compute ‘(VALUE . SUBTRACT)
(Lookup set1 ‘(VALUE . date_on_market))
(Lookup set1 ‘(VALUE . date_sold))) :loop-type one-to-one

:accuracy nil)

(setf set1 (Find `(RELATIONSHIP . <)
(Lookup `(OBJECT . NIL) `(VALUE . selling_price))
`(VALUE . 100k)))

Before the task processing phase begins, AVID’s design component orders its input set of tasks according to

their embedding structure, from outermost to innermost. Based on this ordering method, the house task described

above would be organized as follows (the numbers in the angle brackets “[]”, indicate embedded tasks):

1. (Compute ‘(VALUE . SUBTRACT) [2] [3])
2. (Lookup [4] ‘(VALUE . date_on_market))
3. (Lookup [4] ‘(VALUE . date_sold))
4. (Find ‘(RELATIONSHIP . <) [5] ‘(VALUE . 100k))
5. (Lookup ‘(OBJECT . NIL) ‘(VALUE . selling_price))

Task processing starts with the compute task and proceeds until the lookup selling_price task. During the task

processing phase, the designer decides what data to pre-process, what data to show to users, and how to constrain

the mapping from data to graphics in order to facilitate perceptual processing. Once all the embedded tasks are

processed, the search algorithm proceeds to the data attribute mapping phase, where all data attributes deemed

necessary in the task processing phase are mapped to graphical properties. The mapping decisions are subject to the

perceptual constraints placed during task processing.

Branching in the search procedure occurs when there are alternative methods for achieving the same goal. In

Figure V-5, a black circle indicates these branching or alternative points. An important branching point, for

example, occurs after the “Process next task” node. One alternative is to process the task with data transforms (i.e.

have the system pre-compute the task results). Another alternative is to map the task data to graphical properties and

let users derive the task results perceptually. Each of these alternatives causes a new path to be created in the search

tree. To further differentiate these “branching points” in Figure V-5, we curve the arrows originating from them

while leaving all other arrows rectangular. In the next sections we describe the two search phases, task processing

and data attribute mapping. We will show how a search tree is constructed and what state information is stored

within its nodes during each of these phases.

 V-124

Begin

Process Next Task

Is object
task?

Is task
embedded?

Store task output
attribute for mapping

Are all embedded
tasks done?

Constrain all task
attributes

Pick input
devices for
unknowns

Are there
task

unknowns?

Add appropriate
functional operator

Constrain data object
membership

Are all
attributes
mapped?

Map attribute to
existing graphical

object

Map attribute to
new graphical

object

Compose new
graphical object

N

Data Transform
Tasks

Mapping
Transform Tasks

Y

Y

N

N

Y

Y

N

Y

N

Constrain all object
embedded tasks to be
Data Transform Tasks

Step 1

Step 2

Two alternative methods for
showing object task results

Step 4

Step 3

Step 5

Step 6

Step 7
Is task-list

empty?

N

End

Y

Task processing phase Data attribute mapping phase

Case 1a

Case 1b

Case 2a Case 2b

Figure V-5: Flowchart of AVID search strategy. Consists of two main phases: 1) task processing phase and 2) data
attribute mapping phase

V-2.1.1 Task Processing

At the start of the search procedure the search tree contains a single root node that has a list of all outstanding

tasks ordered from outermost to innermost. For example the partial search tree in Figure V-7 reflects the design

space of the house example task described earlier in this section. The root node of this search tree contains a list of

task structures related to the house example. Task processing begins with the first task in the root node, which is the

compute-subtract task. Each task may be performed through data summarization and manipulation operators or by

mapping data attributes of the task to appropriate graphics. As is shown in Figure V-7, each of these alternatives

generates a new path in the search tree (node-1 is the data transform alternative and node-8 is the mapping transform

alternative). New additions to the node state at each step are shown in bold red letters.

 V-125

Note that we have cut out some nodes from the search tree in Figure V-7 because of space constraints. In

particular, node-1 and node-8 are linked to the root node by dotted arrows to indicate that some intermediate node

states along these two paths have been culled out. Both nodes show the state of the design after processing the first

three tasks (i.e. the compute task and both of its embedded lookup tasks). We collapsed these two path segments

because in both cases, the embedded lookups are constrained to the same task processing method as their parent

compute task (i.e. both lookups are constrained to data transforms in node-1 and constrained to mapping transforms

in node-8). As a result there is no branching in the tree within these segments and collapsing them does not remove

any information.

In the following paragraphs we describe the steps associated with the data and mapping transform processing

alternatives (as is shown in Figure V-5) as well as the changes they make upon the node states in Figure V-7.

Alternative 1: Data Transform Processing

Step 1: Add functional operator

When we decide to perform a task through data computation (i.e. system computation), a data transform

operator corresponding to the task class is generated and stored within the node. For example in node-1 of Figure

V-7 the compute task is performed with data transforms, thus a BinaryCompute data transform operator is added to

the functional-operator-list slot of the node. Similarly each of the other data transform tasks also adds a data

transform operator to the node state. These transform functions are later connected and used to create a functional

design for processing the data contained within the visualization.

There is currently a one-to-one correspondence between our task classes and the data transform primitives

described in chapters II and III. Figure V-6 shows all our task classes and their corresponding data transform

operators.

Task operator Corresponding data transform primitive

Lookup GetAttributeValue

Compute
(mean, min, max)

UnaryCompute

Compute
(add, subtract,
divide, multiply)

BinaryCompute

Compare GetValueRelation

Find Threshold

And SetOperation

Figure V-6: Task operators and their corresponding visualization functions

 V-126

Compute (SUBTRACT, *, *)
Lookup (*, date_on_market)
Lookup (*, date_sold)
Find (<, *, 100k)
Lookup (ALL, selling_price)

Find (<, *, 100k)
Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)]

Data attribute list:
[Compute (SUBTRACT, *, *)]

Find (<, *, 100k)
Lookup (ALL,
selling_price)
State:
Functional constraint:
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Data attribute list:
[date_on_market, date_sold]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Object constraint:
$WWULEXWH <Compute(SUBTRACT, *, *)>
FRQVWUDLQHG�E\�< Find (<, *, 100k)>
Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)
 Threshold(<, *,100k)]

Data attribute list:
[Compute (SUBTRACT, *, *)]

Lookup (ALL, selling_price)
State:
Functional constraints:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)
 Threshold(<, *,100k)]

Data attribute list:
[Compute (SUBTRACT, *, *)
 Find (<, *, 100k)]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[Lookup (ALL, selling_price)]
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Functional operator list:
[Threshold(<, *,100k)]
Data attribute list:
[date_on_market, date_sold,
 Find (<, *, 100k)]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[Lookup (ALL, selling_price)]
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Object constraint:
$WWULEXWH <date_on_market, date_sold>
FRQVWUDLQHG�E\ < Find (<, *, 100k)>
Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Functional operator list:
[Threshold(<, *,100k)]

Data attribute list:
[date_on_market, date_sold]

Lookup (ALL,
selling_price)
State:
Functional constraint:
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Data attribute list:
[date_on_market, date_sold,
 selling_price]

State:
Functional constraint:
,QWHUQDO
[Lookup (ALL, selling_price)]
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Functional operator list:
[Threshold(<, *,100k)
 GetAttributeValue(selling_price)]

Data attribute list:
[date_on_market, date_sold,
 Find (<, *, 100k)]

State:
Functional constraint:
,QWHUQDO
[Lookup (ALL, selling_price)]
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]

Object constraint:
$WWULEXWH <date_on_market, date_sold>
FRQVWUDLQHG�E\ < Find (<, *, 100k)>

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Functional operator list:
[Threshold(<, *,100k)
 GetAttributeValue(selling_price)]

Data attribute list:
[date_on_market, date_sold]

State:
Functional constraint:
([WHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Perceptual constraint:
*UDSKLFDO�3URSHUW\�(TXLYDOHQFH
[date_on_market, date_sold]

Data attribute list:
[date_on_market, date_sold,
 selling_price]

State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Object constraint:
$WWULEXWH�<Compute (SUBTRACT, *, *)>
FRQVWUDLQHG�E\�< Find (<, *, 100k)>

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)
 Threshold(<, *,100k)
 GetAttributeValue(selling_price)
]

Data attributes:
[Compute (SUBTRACT, *, *)]

State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)
 Lookup (ALL, selling_price)]

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)
 Threshold(<, *,100k)
 GetAttributeValue(selling_price)
]

Data attribute list:
[Compute (SUBTRACT, *, *)
 Find (<, *, 100k)]

Lookup (ALL, selling_price)
State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]
([WHUQDO
[Lookup (ALL, selling_price)]

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)

Data attribute list:
[Compute (SUBTRACT, *, *)
 selling_price]

State:
Functional constraint:
,QWHUQDO
[Lookup (*, date_on_market)
 Lookup (*, date_sold)]
([WHUQDO
[Lookup (ALL, selling_price)]

Functional operator list:
[BinaryCompute,
 GetAttributeValue(date_on_market)
 GetAttributeValue(date_sold)

Data attributes:
[Compute (SUBTRACT, *, *)
 selling_price]

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Node 1

Node 2 Node 4 Node 6

Node 3 Node 5 Node 7

Node 8

Node 0 (Root)

Node 9 Node 11 Node 13

Node 10 Node 12 Node 14

Internal

Internal (object constrained) Internal (NOT object constrained)
External

External

Internal (object constrained)
Internal (NOT object constrained)

External

Figure V-7: Partial search tree of house example task

 V-127

Design 1: Pure data transform design with object filtering (node-3).
Duration on market is computed and mapped to the x-axis and only

houses costing less than 100k are shown

Design 2: Pure data transform design with NO object filtering

(node-5). Duration on market is computed and mapped to the x-
axis. Houses costing less then 100k are computed and shown in red.

Design 3: Hybrid design with duration on market computed and
mapped to the x-axis of the left chart. The find selling-price task

however is performed perceptually and selling-price is shown on the
x-axis in the right chart. (node-7)

 Design 4: Hybrid design with date_on_market and date_sold
mapped to the x-axis so that the duration on market can be

determined perceptually. The find selling-price task is computed
with data transforms and only those houses costing less than 100k

are shown (node-10)

Design 5: Hybrid design with date_on_market and date_sold
mapped to the x-axis so that the duration on market can be

determined perceptually. The find selling-price task is computed
with data transforms and shown using hue (node-12)

Design 6: Pure mapping transform design, i.e. all tasks are mapped

to graphics. Selling-price is mapped to the x-axis of the left chart
and date_on_market and date_sold are mapped to the x-axis of the

right chart (node-14)

Figure V-8: Example designs generated corresponding to the 6 terminal nodes in the search tree in Figure V-7

 V-128

Step 2: Constrain embedded tasks based on whether they have an object or non-object output argument

In this step we determine whether the tasks embedded within the current task are non-object or object tasks. In

the first case, a data transform task constrains all of its embedded non-object tasks (i.e. lookup, compute or

compare) to data transforms as well. For example node-1 in Figure V-7 performs the compute task with a data

transform. Since the two embedded lookups within the compute are value tasks (i.e. non-object) they are constrained

to data transform functions as can be seen in the functional-constraint list of the node. This constraint is in place

because to fulfill a task with data transform functions when its embedded tasks are performed through mapping

transforms, users must perform those embedded tasks perceptually and than convey their results to the parent data

transform task. Commonly this requires great precision in the mapping transform task and significant articulatory

costs in conveying its results. For example in the house task, if we were to perform the compute with data

computation but the embedded lookup’s with mapping transforms, the user must enter in two sets of values, one

corresponding to the date_on_market lookup and another corresponding to the date_sold lookup, resulting in very

significant articulatory costs.

In the second case, embedded object tasks (find, AND), do not have this data transform task constraint.

Consider node-6 in Figure V-7, the outer lookup task is performed with data transforms but its embedded find task

can be performed with a mapping transform because it is an object task. While articulatory costs tend to be large for

multi-value entry, they are significantly smaller for selecting a set of objects. Input devices such as lassos and

bounding-boxes allow multiple objects to be selected simultaneously, while value entry must be performed

individually, incurring a cost for each input value. Lassos and bounding-boxes are especially effective in the case

where the resulting object set is dependent on the objects’ positions. In addition input devices are often not even

needed for embedded object tasks because users can perceptually identify those objects of interest and then just

lookup their attributes. There is no need to convey to the system which objects fulfill the find task conditions unless

we want to filter the objects within the display. For example consider Design 3 which allows users to perceptually

search for houses under 100k in price by looking at the selling-price bar chart to the right. Once those houses are

identified, users may look up their computed duration on market. In this design, the find task is mapped to graphics,

while the compute, lookup date_on_market and lookup date_sold tasks are data transform computed, however, no

system input is required of the user.

Step 3: Process current task based on whether it is embedded and whether it has an object or non-object output

argument

Once we have added appropriate transform operators and constrained all non-object embedded tasks to data

transforms, we check whether the task itself is embedded and whether it is an object task. Table V-2 summarizes the

different actions that get carried out based on these two conditions.

 V-129

Task type Task embedding Action taken

(1a) Not-embedded Map to graphical property. Non-object

(1b) Embedded Do nothing.

Filter visualization objects. Object (2a)

 (2b) Map to graphical property.

Table V-2: Summary of actions taken based on task output and embedding status

First we consider non-object tasks (case 1). For non-object, non-embedded tasks (case 1a), (like the compute

task in the house example above) we assume that there is an implicit outer lookup task around it. This is because in

data analysis we perform tasks to gain insight from their results and not for the exercise of performing the task itself.

Thus for a non-embedded task, we need to map its resulting derived attribute to a graphical property. In node-1, for

example, we add the derived attribute for the compute-subtract task to the data-attribute-list of the node for future

mapping. In design 1, this compute attribute later gets mapped to x-position. Embedded tasks (case 1b), however,

pass their results onto higher level tasks for subsequent processing, thus it is less important to show their

intermediate results (refer to chapter IV-3.2). For embedded, non-object tasks we take no action and proceed to the

next task.

When the task being considered is an object task (case 2), we have two alternatives. Either we can filter the

graphical region(s) so that only those objects that fulfill the object constraints of the task are shown (case 2a) or we

map the task results (a boolean attribute) to a graphical property (case 2b). These two alternatives result in node-3

and node-5 of the search tree in Figure V-7. In node-3 an object constraint is applied while in node-5 the find task

result attribute is added to the attribute list of the node for subsequent mapping.

Choosing the filter alternative may significantly reduce the number of objects that need to be shown and thus

reduce clutter (as is shown in Design 1). On the other hand such a design makes it harder to maintain data context

because when we alter the conditions of the find task the data membership of that visualization changes and causes

objects to shift around to fill in empty spaces or to make new spaces for additional objects. The object filter decision

also constrains data membership for a set of graphical objects, and this may preclude the results of other related

tasks with different data membership requirements from being shown with the same graphical objects. As a result

object filtered visualizations usually tend to be less integrative, spreading the related data attributes over more

objects and possibly more regions.

The second object task alternative (case 2b) maps the task results to a graphical property. This does not create

context maintenance and integration problems, as is the case with filtering the objects in the previous case (case 2a).

 V-130

However, this design decision results in greater perceptual complexity because more graphical objects are shown

and an additional graphical property must be used to show the results of the search.

AVID takes the costs associated with these two alternatives into account during the design process. A cost is

associated with mapping the task results to a graphical property. Less integrated designs that result from different

object membership requirements also incur a design cost. AVID’s cost structure is described in greater detail in

section V-2.3.

Alternative 2: Mapping Transform Task Processing

Step 4: Add perceptual constraints

An alternative to performing a task with data transforms is to perform the task through mapping transforms

which encodes task related data attributes with graphical properties. Mapping transform tasks commonly impose

perceptual constraints on the data to graphical encodings to facilitate perceptual processing. To perform a compute-

add task with mapping transforms, for example, we constrain all input child attributes to be mapped to stackable

graphical objects and properties, the compute-subtract task, on the other hand, constrains all data attributes to be

mapped to the same graphical property so that value comparisons are facilitated. In Figure V-7, node-8, for example,

performing the compute-subtract task with mapping transforms causes a “simple graphical-property” constraint to

be added. This constraint restricts both the date_on_market and date_sold data attributes to be mapped to the same

graphical property. We see in designs 4, 5, and 6, that both attributes are mapped to the x-position graphical property

and this facilitates the perceptual subtraction task. More details on perceptual constraints are provided in section V-

2.2.

Step 5: Determine if all embedded tasks have been processed

 After we have finished processing a task we remove it from the task-list field of a node and continue to process

the next task in that list. Processing continues until all embedded tasks have been visited. Once this is done we

proceed to the data attribute mapping phase where we consider how the data attributes collected in the data-

attribute-list slot in the node state can be mapped to graphical objects and properties.

V-2.1.2 Data Attribute Mapping

In this phase we consider all the data attributes in the data-attribute-list slot of a node and explore the different

ways in which these attributes can be mapped to graphical properties. Preference in mapping is given to graphical

properties that allow parallel processing and integrated designs with low perceptual complexity.

Step 6: Add input devices for unknown task arguments

Before we begin mapping the data attributes we first populate the visualization design with input devices for all

unknown task arguments (i.e. task arguments that do not have associated data values because the user is unsure

which value(s) are most suitable for the task). Unknown arguments are specified in AVID by using a ‘?’ symbol in

 V-131

place of an object or data value set. For example if we were unsure of what selling_price threshold to use in the

house example, we would specify the task as follows:

(Compute ‘(VALUE . SUBTRACT)
(Lookup set1 ‘(VALUE . date_on_market))
(Lookup set1 ‘(VALUE . date_sold))) :loop-type one-to-one

:accuracy nil)

(setf set1 (Find `(RELATIONSHIP . <)
(Lookup `(OBJECT . NIL) `(VALUE . selling_price))
`(VALUE . ?)))

In this newly modified task, AVID will attach input devices to those design alternatives where the find task is

performed with data transforms so that users may change the selling_price filtering threshold similar to a dynamic

query interface [Ahlberg, 1994]. Input devices need not be added when tasks are mapped to graphics because unlike

the data transform case, all the data for the task is shown and users can just perceptually process the data differently

based on changing task conditions.

Step 7: Map all data attributes

The attribute mapping process is similar to the mapping process used by Casner and Mackinlay. Attributes are

mapped to properties of an existing graphical element or to properties of a new graphical element that is then

composed with current graphical objects. There are four types of composition methods, each of which produces a

new branch in the search tree: cluster, double axis, single axis alignment and no composition.

Figure V-9: Visualization design illustrating the different composition types. There is cluster composition in the left chart
between the labels and the marks. There is double-axis composition in the right chart between the marks and the bars.
There is single-axis alignment between elements in the left-chart and those in the right-chart. These composition types

were first introduced by Mackinlay [Mackinlay, 1986a, 1986b].

Clustering ties a new object positionally to an existing object in the partial design. For example in Figure V-9,

a label showing house neighborhood is clustered with a mark graphical object. Double axis composition adds a new

 V-132

object into an existing space but does not tie it positionally to any other object within that space. For example the

mark-grapheme and the horizontal-bar-grapheme in the right region of Figure V-9 are double axis composed

because even though they reside in the same region, they do not share the same x-position. Single axis alignment

adds a new object in a new region that shares at least one positional axis with an existing region. The two regions in

Figure V-9 are single axis composed, sharing their y-positional axis. It is important to note that to share a positional

axis both axes must have the same data type and the same min-max range. In Figure V-9, both regions are aligned

on the object-name data type. Finally no-composition shows the data within a new visualization window. Different

costs are associated with different graphical property mappings depending on the task and the data attribute being

mapped. Costs are also different for the various object composition methods. Cost details are discussed in section V-

2.3.

V-2.1.3 Post Design Processing

Once all tasks are processed and all data attributes are mapped, the visualization design is complete. During post

design processing, AVID’s designer performs two primary tasks:

1. Culls out similar designs that have been generated previously

A completed design is compared to all previous designs to determine whether there is similarity in its structure

and content. If there is a structural and content match1, then the newly completed design is culled from the design

space and a new design is generated. Otherwise, the new design is transformed into our design specification

language and sent to the realizer component for rendering.

2. Transforms the visualization design into a visual and functional specification language

Once a design is completed and determined to be unique (i.e. does not match based on structure or content to

any previous design), AVID’s designer translates the completed solution into a visual structure specification

language and a functional specification language (developed in chapters II and III of this thesis). The translated

design is then passed on to the realizer component. In appendix D-2 we describe the functional translation process,

i.e., how the visualization operators within the functional-operator-list slot of a node are connected together and

populated with sufficient information for subsequent rendering. The translation process from visual design to visual

structure specification language is fairly straightforward and has been explored previously [Mackinlay, 1986a,

1986b; Chuah 1995], thus we will not describe this process again here.

V-2.1.4 Summary

In this section we described the search procedure used in AVID’s design component. This procedure consists

of two main phases: task processing phase and data attribute mapping phase. The attribute mapping phase was

adopted from previous work on automatic systems. However, we created and added the task processing phase to

address data transform and input device issues. Specifically we describe how to address embedded tasks and utilize

1 Refer to appendix D-1 for details on structural and content matching.

 V-133

the task embedding structure to achieve more effective data transform designs, how to filter objects within a

visualization with data transforms and its impact on the graphical representation, how data transform functions are

combined and attached to task parameters, and how to address unknown task arguments by attaching input devices.

During the two search phases costs are assigned to the partial visualization designs within each node of the

search tree and constraints are placed on the various design elements (as is shown in Figure V-7). These costs and

constraints help guide the search so that inexpressive design paths (i.e. designs that are not appropriate for the input

tasks) are abandoned and promising design alternatives are explored first. Many of these cost and constraint

heuristics are based on previous research that explore how visualizations can be used to amplify cognition. Card et

al. [Card, 1999] summarizes these findings very well and we show them in Table V-3.

Increased Resources

1. High-bandwidth hierarchical
interaction

The human moving gaze system partitions limited channel capacity so that it combines high spatial
resolution and wide aperture in sensing visual environments (Resnikoff, 1987).

2. Parallel perceptual processing

Some attributes of visualizations can be processed in parallel compared to text, which is aerial.

3. Offload work from cognitive to
perceptual system

Some cognitive inferences done symbolically can be recoded into inferences done with simple
perceptual operations (Larkin and Simon, 1987)

4. Expanded working memory

Visualizations can expand the working memory available for solving a problem (Norman, 1993)

Reduced Search
5. Locality of processing

Visualizations group information used together reducing search (Larkin and Simon, 1987)

6. High data density

Visualizations can often represent a large amount of data in a small space (Tufte, 1983)

7. Spatially indexed addressing

By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon,
1997)

Enhanced Recognition of Patterns
8. Recognition instead of recall

Recognizing information generated by a visualization is easier than recalling that information by the
user.

9. Abstraction and aggregation

Visualizations simplify and organize information, supplying higher centers with aggregated forms of
information through abstraction and selective omission
(Card, Robertson, and Mackinlay, 1991; Resnikoff, 1987)

10. Visual schemata for organization

Visually organizing data by structural relationships (e.g. by time) enhances patterns.

11. Value, relationship, trend

Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981)

Perceptual Inference
12. Visual representations make some

problems obvious

Visualizations can support a large number of perceptual inferences that are extremely easy for
humans (Larkin and Simon, 1987)

13. Graphical computations

Visualization can enable complex specialized graphical computations (Hutchins, 1996)

14. Perceptual Monitoring

Visualizations can allow for the monitoring of a large number of potential events if the display is
organized so that these stand out by appearance or motion.

15. Manipulable Medium

Unlike static diagrams, visualizations can allow exploration of a space of parameters values and can
amplify user operations.

Table V-3: How Information amplifies cognition (from Card et al.[Card, 1999])

 V-134

In the following sections we describe the constraint and cost structures used in AVID as well as discuss their

use, limitations, and how they relate to Table V-3.

V-2.2 Design Constraints

We divide AVID’s design constraints into two classes according to the two primary design phases: task

processing and data attribute mapping. Task processing constraints ensure that the visualization can be effectively

controlled (small articulatory distance) and parsed (small observational distance) by the user. In addition, the visual

design must be capable of expressing or processing all the information required by the input task(s) (expressive and

functional distances = 0)2.

Data attribute mapping constraints, on the other hand, ensure that the structure of the visualization is valid. For

example, graphical objects within a map region must have their positions mapped to longitude and latitude while

objects within a grid have no positional mappings. In addition, regions may only be aligned if they share at least one

axis with the same data type. These data attribute mapping constraints follow established information design rules

and their application to automatic visualization design have been explored in previous work [Mackinlay, 1986a,

1986b; Casner, 1991; Roth, 1994]. Therefore, in this section we will focus only on task processing constraints.

Task processing constraints are characterized based on three dimensions: softness, scope, and constraint-

condition. We describe each of these dimensions next, as well as detail the primary areas in the task processing

phase where these constraints get imposed.

V-2.2.1 Constraint Dimension 1: Softness

Constraints may be applied as hard or soft constraints. Hard constraints cannot be violated. Any search path

that violates a hard constraint is considered a failure and abandoned. In AVID we use hard constraints to prevent the

designer from generating visual representations that are not functionally and/or visually expressive of the input

tasks.

Specifically, hard constraints are applied in AVID so that designs with positive task expressive or functional

distances are never generated because they do not provide users with sufficient information to solve the input tasks.

Note, however, that hard constraints are not applied to all the expressive distance measures. In chapter IV-1.2, we

listed four expressiveness measures: task expressiveness, data expressiveness, correctness, and data presence. Task

expressiveness and correctness are necessary conditions in any AVID generated design because they determine

whether a task can even be performed and if so whether it can be performed correctly. As a result these measures are

implemented as hard constraints. Data presence and data expressiveness restrictions, on the other hand, are not

crucial to completing a task, thus they are implemented as soft constraints. In fact, data summarization, which

2 Articulatory, functional, expressive, and observational distances were all described in the metrics framework in chapter IV-2.

 V-135

decreases data expressiveness, can be a powerful tool for reducing graphical complexity and improving perceptual

processing [No.9, Table V-3].

Hard constraints are also applied to prevent perceptually inexpressive designs from being generated. For

example in Figure V-10, the date_on_market and date_sold attributes are mapped to two different graphical

properties (x-position and saturation) making it very difficult to determine the duration on market without resorting

to cognitive calculation. In this case the perceptual mappings are a hindrance because they do not enable any

perceptual operators for performing the compute duration task (i.e. because the graphical properties used to represent

the data are inexpressive, it is not possible to offload the cognitive operations onto the perceptual system [No.3,

Table V-3]). As a result the graphical property values must first be converted back into data values and then the

computation task must be performed cognitively. To prevent this, we enforce a graphical-property constraint (which

restricts both date_on_market and date_sold to the same graphical property) as a hard constraint. Consider all the

designs resulting from the subtree at node-8 that has this graphical-property constraint (i.e. Design 3, Design 4,

Design 5). All these designs allow the compute duration task to be performed perceptually by mapping both

date_on_market and date_sold to the same graphical property class, namely x-position.

Figure V-10: Perceptually inexpressive design of the house task in Figure V-2. This is because date_on_market is mapped
to the x-axis of the left chart and date_sold is mapped to saturation on the left chart. This makes it difficult to compute the

duration on market because there is no perceptual operator for comparing the difference between positional and
saturation values.

Soft constraints, unlike hard constraints, may be violated, but they incur a violation cost. Soft constraints help

direct the designer to choose more effective designs (i.e. designs with smaller observational and articulatory

 V-136

distances) over less effective ones. For example there are soft integration constraints which try to direct the designer

to show all task related data within the same region [No.5, Table V-3]. Suppose we are searching for houses based

on three properties, selling_price, number_of_rooms and date_on_market. Figure V-11 shows mapping transform

solutions to the task in which all three find attributes are mapped to graphical properties. In Figure V-11a all the

information is displayed in the same chart area while in Figure V-11b the information is separated over three

different regions. Both visualizations can be used to solve the house search task however Figure V-11a is more

effective because it requires fewer eye movements due to the more integrated design. The soft integration constraint

reflects this preference.

(a) Integrated Design: Selling_price, number_of_rooms and date_on_market are all mapped onto a single region thereby

facilitating the house search task.

(b) Less Integrated Design: Selling_price, number_of_rooms and date_on_market are each mapped onto a different region
thereby making the house search task less efficient compared to design (a).

Figure V-11: Mapping transform designs for house search task on selling_price, number_of_rooms and date_on_market

 V-137

V-2.2.2 Constraint Dimension 2: Scope

Constraints may have local or global scope. Local constraints only affect the current design decision. Once the

decision is made, any related local constraints are discarded (i.e. local constraints are not propagated from one

decision point to another). For example, AVID’s designer has a local constraint that ensures a task can only be

graphically mapped if there are appropriate graphical representations for it. Some complex tasks such as log or

exponent have no appropriate mappings and thus cannot be achieved with mapping functions. This constraint only

has local scope because once we decide that the compute-log task must be performed with data computation, we

need not check this condition again later in the design process. I.e. the constraint only affects the current decision.

Global constraints, on the other hand, must be propagated through the design states because they may affect

multiple design decisions spanning different time periods. For example the graphical-property constraint applied at

node-8 is a global constraint, and it gets propagated to all child nodes. Even though this constraint is generated in

the task processing phase (i.e. during processing of the compute-duration task), it affects multiple mapping decisions

in the data attribute mapping phase.

Before a node is processed, all global constraints stored within it are instantiated to set the current constraint

context of the search path. Once we have finished processing a node (i.e. generated all of its children) we remove its

constraint context and replace it with the context of the next node.

V-2.2.3 Constraint Dimension 3: Constraint Condition

Each constraint has a test condition. Inability to pass the test condition causes a violation of the constraint. This

may result in the abandonment of the current design path (in the case of a hard constraint) or in a cost increment for

the current partial design (in the case of a soft constraint). Constraint conditions may be placed on various elements

of the visualization design or of the input task(s). The elements that may be used in a constraint differ based on the

scope of the constraint. Local constraints can only be applied to elements and properties that are locally accessible

while global constraints can be applied to any element.

There are three groups of constraint conditions that commonly appear in AVID: mapping constraints, task

constraints, and object membership constraints.

1. Mapping constraints

Mapping constraints are the most common type of constraint. These constraints restrict how data attributes may

be mapped onto graphical properties and graphical objects. There are two classes of mapping constraints, simple

constraints and complex constraints. Simple mapping constraints are equality constraints that restrict a single aspect

of a mapping to be identical with that of another. For example in node-8 of Figure V-7 a simple graphical-property

mapping constraint gets applied to the date_on_market and date_sold attributes. This constraint restricts the

date_on_market and date_sold mappings to have identical destination graphical properties. Simple mapping

constraints may also restrict a mapping property to a named constant value. For example we may constrain the

 V-138

date_on_market attribute so that it is mapped to the mark grapheme class or to a specific region in the visualization,

e.g. region_324.

AVID has seven different simple mapping constraints, the first five are object constraints while the last two are

property constraints:

a) Cluster constraint: data attribute constrained to a given cluster of graphical objects.

b) Graphical object constraint: data attribute constrained to a given graphical object.

c) Graphical object class constraint: data attribute constrained to a graphical object that is of a given class

(e.g. mark, horizontal bar or a line object class).

d) Region constraint: data attribute constrained to reside in a given graphical region.

e) Region discipline constraint: data attribute constrained to a particular region discipline (e.g. chart, table,

grid, map).

f) Segment constraint: data attribute constrained to a given graphical property segment. A graphical segment

links a set of data attributes to a graphical property and a graphical minimum and maximum for that

segment. For two data attributes to be encoded in the same segment they must be of the same data type

and they must share approximately equal data minimum and maximum ranges. Some example segments

include positional-axes and color, size or shape legends.

g) Graphical property constraint: data attribute constrained to a particular graphical property (e.g. position-x,

position-y, shape, size, hue, etc.).

 Complex mapping constraints, unlike the simple constraints may restrict multiple graphical properties

simultaneously and/or restrict the relationships between multiple graphical objects or properties. The primary

complex constraints in AVID are the graphical property relationship constraints: integral, conjoint and separable.

Integral properties refer to graphical properties that cannot be perceptually separated from one another. An example

is hue and saturation. Both these properties determine the color of an object and it is difficult to perceptually

separate out the saturation component and the hue component. Integral constraints are used to restrict the mapping

of data attributes to graphical properties that have integral relationships. For example we may constrain the

house_neighborhood and the selling_price data attributes to share integral graphical properties (such as hue and

saturation) as in Figure V-12. This constraint facilitates our ability to search for houses with the combined attributes

of low price and good neighborhood (e.g. Shadyside) because we only need to focus on one aspect of the graphical

object, its color (e.g. light pink).

 V-139

Figure V-12: Design with neighborhood and selling_price mapped to integral properties (hue and saturation). This makes
combined search on both these data attributes easier because only a single emergent property (i.e. color) needs to be

attended to.

Separable properties are the exact opposite of integral properties, in that they can only be perceived separately.

An example is size and hue. Both properties do not combine to form an emergent property as in the previous case

where hue and saturation combine to form color. As a result it is easy to view each of these properties

independently. By the same token it is more difficult to perform combined property searches (e.g. find objects that

are large and colored purple) compared to integral properties. Finally conjoint properties are both separable and

integral. I.e. they can be perceived separately but at the same time they combine to form an emergent property.

Examples of conjoint properties are width and height. Both properties can be perceived separately but at the same

time they combine to form an emergent property namely area. The same is true of x-position and y-position.

Another complex constraint in AVID is the stacking constraint. The stacking constraint restricts one or more

graphical objects to be positionally laid out one on top of each other. This stacking constraint is most commonly

applied by the add operator to facilitate performing the summation task perceptually.

Note that mapping constraints are also special in that they get propagated from parent to child tasks. For

example a simple graphical-property constraint that gets applied to the compute-add task shown next gets

propagated to its child tasks as well so that in the pure mapping solution, all embedded data attributes (i.e.

full_compensation, full_salary, assoc_compensation, assoc_salary, asst_compensation, asst_salary) are constrained

to the same graphical property (e.g. in appendix E-2.6)

 V-140

(Compute ‘(VALUE . ADD)
 (Compute ‘(VALUE . SUBTRACT)

 (Lookup (OBJECT . NIL) full_compensation)
 (Lookup (OBJECT . NIL) full_salary))

 (Compute ‘(VALUE . SUBTRACT),
 (Lookup (OBJECT . NIL) assoc_compensation)
 (Lookup (OBJECT . NIL) assoc_salary))

 (Compute ‘(VALUE . SUBTRACT),
 (Lookup (OBJECT . NIL) asst_compensation)
 (Lookup (OBJECT . NIL) asst_salary))

2. Task constraints

Task constraints may include conditions set upon task processing methods (either data transform processing or

mapping transform processing), task classes (lookup, compute, compare, find, AND), task operators (e.g. add,

subtract, multiply or mean), or task input data concepts and values.

Task processing constraints are often applied to prevent bad combinations of data transform/mapping transform

hybrid designs from getting generated. Step 2 of the search procedure places a task processing constraint on all

embedded non-object tasks of a parent data transform task so that they are computed through data transforms as well

(refer to section V-2.1.1 for details). Another interesting instance where task processing constraints are used is for

imposing similarity among embedded child tasks. A good example is the AND task, which searches for objects

fulfilling a set of data conditions. Even though it is possible to solve the task if we processed the AND child tasks

differently (i.e. some with data transforms and some with mapping transforms as in Figure V-13) such designs are

not effective.

Figure V-13: Mixed task processing methods for the AND operator in the house search task. The date_on_market
condition is pre-computed and mapped to the x-axis of the left chart, the num_rooms condition is pre-computed and

mapped to hue on the left chart, however, the selling_price condition is performed perceptually by mapping selling_price
to the x-axis on the right chart.

 V-141

For example suppose we want to search for houses based on their number_of_rooms, date_on_market, and

selling_price attributes. In Figure V-13 we must shift models from data computed conditions (the number_of_rooms

and date_on_market conditions are system computed and mapped to color and x-position) to mapping conditions

(selling_price is mapped to y-position). Pure designs such as the ones shown in Figure V-14 are much easier to

understand and interpret. In Figure V-14a, each mark object corresponds to a search condition and whether that

condition is fulfilled is indicated by its color. In Figure V-14b all of the raw data attributes are mapped to graphical

properties. In both cases there is no confusion as to which condition is summarized (data computed) and which is

not.

(a) Pure Data Transform Design. All three AND

conditions are pre-computed and mapped to hue in
each of the three clustered marks. The first mark
encodes the num_rooms condition, the second the

date_on_market condition, and the third the
selling_price condition

(b) Pure Mapping Transform Design. All three AND

conditions are represented perceptually.
Date_on_market is mapped to the y-axis, num_rooms is

mapped to the x-axis, and selling_price is mapped to
saturation,

Figure V-14: Using similar task processing methods for the AND task

Apart from constraining the task processing methods used, we may also set task property constraints on the task

class or operator so that addressing a task with mapping transforms fails if there are no appropriate graphical

representations for the task, as is the case with the log and exponent operators. Task property constraints may also be

applied to task arguments. For example, a mapping transform task constrains all embedded lookup tasks to be

mapped to graphics unless there are unknown arguments associated with those tasks. This is because the data

transform lookup function is only useful when it is connected to a subsequent processing function (i.e. when it is

embedded within a data transform parent task) or when it is used to limit or interactively change the value set we are

interested in (i.e. when it is attached to an unknown argument). Otherwise having a data transform lookup function

within a mapping transform parent task has no effect because the act of mapping a lookup attribute to a graphical

property implicitly extracts the data values needed from the data objects within the visualization (i.e. implicitly

performs the data transform lookup function). In node-8 both lookup date_on_market and lookup date_sold tasks are

 V-142

constrained to mapping transforms (in the functional-constraint list) because their parent compute task is mapped to

graphics and the lookup tasks have no unknown input arguments.

3. Object constraints

Object constraints restrict the data object content of different regions within a visualization. Object constraints

commonly get generated to encode the results of a data computed object task (e.g. find or AND task). For example,

node-2 and node-9 perform the find houses task with data transforms and show the results of the find to users by

placing an object constraint on the region containing the compute-duration or date_on_market and date_sold

attributes so that those regions can only contain houses that cost less than 100k. It is important to note that currently

AVID does not allow a region to have inconsistent object contents. For example a region cannot contain houses that

cost more than 100k as well as houses that cost less than 100k. In the future, we plan to reduce the granularity of this

restriction so that it only applies to graphical object sets and not to entire regions. Object constraints commonly

cause designs to be less integrated, but they have the advantage of reducing visual clutter or visual density because

fewer objects are shown within each region, as can be seen in design 1 and design 4.

V-2.2.4 Summary

In this section we defined task processing constraints (constraints generated during the task processing phase)

based on three dimensions: softness, scope and constraint-condition. Table V-4 summarizes the constraints applied

by each data transform task class and Table V-5 summarizes the constraints applied by each mapping transform task

class.

Task
(Data Transform
case)

Constraint Condition Soft/
Hard

Scope Description

All Task processing constraint:
Non-object child tasks MUST be
constrained to data transforms.

hard global This is to avoid the high articulatory costs
associated with value entries.

Lookup Task argument constraint:
Task MUST have unknowns or
Task processing constraint:
Task MUST be embedded within a
parent data transform task.

hard local If task does not have unknowns or is not an
intermediate operation then a data transform
lookup is unnecessary.

Compute, Compare,
Find, AND

None

Table V-4: Data transform constraints for each task class

 V-143

Task
(Mapping
transform case)

Constraint Type Soft/
Hard

Scope Description

All Mapping constraint:
Simple-region
or
Simple-visualization

soft global Preference towards integrating all data attributes related
to task within the same region or visualization window.
This reduces number of eye-movements required to
solve the task (locality of processing [No 5, Table
V-3]).

Lookup Task argument constraint:
Task MUST NOT have unknowns

hard local If task has unknowns, then mapped lookup fails
because the GetAttributeValue function must be used to
adapt the lookup results according to changes made to
the task inputs.
(manipulable medium [No 15, Table V-3]).

All Task operator
constraint:
Compute operator
MUST be simple

hard local If compute task operator does not have perceptual
parallel then mapped compute fails.
(offload to perceptual system [No 3, Table V-3])

All
(except
ratio)

Mapping constraint:
Simple-graphical-
property

hard global Ensures that data attributes are mapped to the same
graphical property to facilitate perceptual computation.
(offload to perceptual system [No 3, Table V-3])

Add Mapping constraint:
Complex-stack

soft global Preference for add-compute attributes to be mapped to
stacked objects.

Subtract Mapping constraint:
NOT Complex-stack

hard global Ensures that data attributes for subtract-compute are
NOT mapped to stacked objects.

Mapping constraint:
Simple-graphical-object

hard global Ensures that ratio-compute attributes are mapped to the
same graphical object.

Compute

Ratio

Mapping constraint:
Complex-conjoint

hard global Ratio values must be deducible from emergent conjoint
property, e.g. from combined x and y position.

Compare Mapping constraint:
Simple-graphical-property

hard global Ensures that data attributes are mapped to the same
graphical property to facilitate perceptual comparison.

Find Mapping constraint:
Simple-graphical-property

hard global Ensures that data attributes are mapped to the same
graphical property to facilitate perceptual comparison.

AND Task processing constraint:
Task processing equivalence

hard global Ensures that all child tasks uses the SAME task
processing methods (e.g. either all data transforms or
all mapping transforms).

Table V-5: Mapping design constraints for each task class

Apart from the constraints shown in Table V-4 and Table V-5, that get assigned based on the task processing

method used and the task-class, AVID also contains a small set of design-wide constraints that get enforced in all

visualization designs. Two important instances where design wide constraints are applied include:

1. Complex-type relationships

Mapping constraints may get imposed as a result of complex-type relationships within the data [Roth, 1990].

For example to express an interval complex type relationship between date_on_market and date_sold both data

attributes must be mapped to graphical properties and graphical objects that can reflect this interval relationship (as

 V-144

in design 4 and design 5). The designer in AVID has knowledge about the complex relationships that are expressible

by different classes of graphical objects. Figure V-15, for example, shows the description for the interval-bar

graphical object class within AVID’s designer. Included within this description is information on the types of

complex relationships that it can express. At the start of the data attribute mapping phase, the designer determines if

there are any complex-type relationships in the data-attribute-list. If so, the designer tries to find a graphical object

and graphical properties that are capable of expressing these relationships. Complex-type constraints are declared as

soft constraints.

(make-instance
’grapheme-class
’name "interval-bar-grapheme"

;; interval bars are capable of expressing the interval complex type with its position-x1 and position-x2
;; graphical properties
’complex-types

(list (make-instance ’complex-type
 ’type ’interval
 ’required t
 ’parameter-list (position-x1 position-x2)))

 ;; x-position can only be mapped to a quantitative data attribute

’position-x1
 (make-instance ’grapheme-class-parameter

’element-type ’QUANTITATIVE)
’member-parameters’(position-x1

 position-x2
 position-y1
 hue
 saturation)

)

Figure V-15: Example graphical object class specification for interval bar grapheme

2. “Objectness” constraint (spatially indexed addressing [No 7, Table V-3])

Figure V-16 shows an example visualization that is not expressive of the house task. In this visualization the

price and duration information are separated into different spaces and it is difficult to identify which selling_price

corresponds to which duration data. Our designer has a hard “objectness” constraint that restricts all task-related

information to an object cluster or constrains each task attribute to be clustered with an object-identifying attribute

(e.g. object-name, house-address). For example in design 6 the data attributes are all tied together through the

common house object-name attribute. It is also important to notice that object identification is more easily achieved

when the identifier attribute is mapped to a positional property (as in design 6), rather than to a label because in the

latter case we need to match text labels and this is en expensive perceptual operation.

 V-145

Figure V-16: Visualization design with no “objectness” constraint. I.e. it is not possible to associate which house mark in
the bottom chart corresponds to which house bar in the top chart.

In summary this section describes the task processing and design wide constraints that are applied by AVID’s

designer. AVID also has a set of data attribute mapping constraints that are adapted from previous work

[Mackinlay, 1986a, 1986b; Casner, 1991; Roth, 1994] and thus we do not describe them here. Based on the input

task and data set, AVID establishes a network of constraint conditions that limit the output designs that are

generated so that end users need not go through bad or inexpressive designs and can focus on a wider range of valid

design alternatives.

V-2.3 Design Costs

The designer in AVID is faced with the problem of a large design space and having to present design solutions

from that space to users in a timely and effective manner. In order to direct the search and generate design solutions

according on their effectiveness with respect to the task we assign costs to different design decisions based on their

effects to cognitive, perceptual, and articulatory complexity. The cost of each node within the search tree is the sum

of its current cost and its expected future costs. The current cost of a node is the accumulated costs of the partial

design at that node. The estimated cost for a node is based on the number of tasks that still needs to be processed and

the number of data attributes that still needs to be mapped. Based on this cost structure AVID uses the A* search

algorithm to explore the design search space.

AVID’s cost structure is based on the design metrics we presented in chapter IV-1. The design metrics

framework has four different goodness measures: articulatory distance, functional distance, expressive distance, and

 V-146

observational distance. As we stated in the previous section, functional and expressive distances are primarily

represented in AVID through the use of hard constraints. I.e. designs that have functional or expressiveness

discrepancies with respect to the input task(s) are culled out. Thus our cost structure is primarily based on

articulatory and observational distances.

V-2.3.1 Articulatory Cost Structure

Articulatory costs of a visualization interface come from the frequency and complexity of input device

manipulations that need to be performed by the user. Our AVID system adds input devices to data transform tasks in

two cases:

• when there are unknown arguments in the task(s), or

• when results from a mapping transform task need to be conveyed to a data transform parent task.

Input devices are added in these cases because data transform functions summarize the task data and only presents a

subset of the original data values to the user. When task conditions change, the data values of interest may change as

well. In order for the system to reflect these changes, users must convey the new task conditions to the system

through input devices. When a task is performed with mapping transforms, however, input devices are not needed

because all of the original values are displayed to the user. When task conditions change, a user perceptually filters

out segments of the display that are not pertinent and only processes the relevant elements. Changing task conditions

will cause a change in user focus towards different display elements, but requires no argument input.

According to the metrics framework, articulatory costs depend on the following conditions:

1. The complexity and appropriateness of each input device with respect to the task,

2. The number of input devices within the design, and

3. The number of times we expect each input device to be used.

In the following sections we describe how AVID takes each of these conditions into account in its design

component.

1. Complexity and appropriateness of input device with respect to task

AVID attaches input devices to visualization designs so that users may change the input data values or objects to

tasks. An appropriate input device is determined by analyzing properties of the data values or objects that must be

conveyed and then matching that with a device that can best provide those inputs. Specifically, input devices are

evaluated based on the following properties:

a) Continuous/Non-continuous outputs: Whether the input device is capable of expressing continuous data or

graphical values. Sliders, dials, bounding-boxes, lassos, and text windows can be used to define continuous

values while menus, and buttons are inherently discrete. Therefore, if we wanted to pick a reasonable

selling_price value for the task in Figure V-2, we must use a continuous device such as a slider because

selling_price is a continuous data attribute.

b) Visual representation: Whether the input device requires visual representations of particular data objects or data

attributes for it to operate. For example, devices such as the bounding-box, lassos, and mouse clicks are applied

 V-147

to visual representations of data within the visualization design. Before we can use such devices we must ensure

that visual representations of the data concepts or values we want to select are available. On the other hand,

devices such as the option-button, scroll-list, or text window, are not tied to objects within the visualization

design. For example, we may select a house by entering its address through a text window irrespective of

whether that house object is mapped to graphics. However, we can only select a house using a bounding-box if

that house is represented and visible in the visualization.

c) Number of objects: The number of values, objects, or relationships that can be specified with each invocation of

the device. Bounding-boxes, lassos, and double ended sliders for example can specify multiple objects or

values. On the other hand, text windows, option buttons, and dials can only be used to define one value or object

at any one time. Depending on the task we may only need to pick one value or one object per operation or we

may need to specify sets of values or objects. For example, to enumerate all houses costing more than 100k we

would need to define a set of objects thus a set input device such as a bounding-box would be appropriate here.

On the other hand, to pick a threshold price (e.g. 100k) for filtering houses we only need to specify a single

value to the system thus a dial or a slider would be sufficient here.

d) Spatial/Non-Spatial: Whether the input device is a spatially based device (i.e. the device defines a spatial region

within the visualization window). Bounding-boxes and lassos are examples of spatial devices because they

define a graphical region within the rendered visualization space. This property is important when we need to

apply rendering transforms that take graphical regions as input.

Table V-6 shows all the input devices we consider in AVID as well as their status for the evaluation properties listed

above. To pick an input device for a task argument, we consider the requirements of that task argument based on the

properties above and match that to the input devices within AVID. We then choose a device that has all the required

properties of the task argument.

 Continuity Vis. Rep. #-of- values Spatial

One-ended slider T * Singular F

Two-ended slider T * Plural F

Mouse click F T Singular F

Bounding-box T T Plural T

Option Menu F * Singular F

Scroll List F * * F

Table V-6: Input devices considered in AVID with their cost properties
(* indicate no constraints on an input device property)

For example, consider the house example presented earlier in this chapter. In this example, we were interested

in determining the period that less expensive houses stay on the market. Suppose due to changing economic

conditions, we are no longer sure what constitutes a good “expensive” house threshold. We would then alter the task

 V-148

specification so that instead of setting the price threshold at 100k we use an “unknown” argument (“?”). The new

task specification is as follows:

(setf set1 (Find ‘(RELATIONSHIP . <),
Lookup ‘(OBJECT . NIL), house_price),
‘(VALUE . ?)))

(Compute ‘(VALUE . SUBTRACT),
Lookup(set1, date_on_market),
Lookup(set1, date_sold)) :loop-type one-to-one

:accuracy nil)

One way to fulfill this task specification is to perform the find task with data transforms and link the

“unknown” threshold value for the find task to an input device. The input device properties required in this case is

based on the selling_price data attribute, and is shown below.

 Continuity Vis. Rep. #-of- values Spatial

Selling_price
threshold
properties

T F *Singular *F

The two important constraints in this case are that the selling_price attribute is continuous and that the

selling_price data attribute is not mapped to a graphical representation. The other requirements are soft requirements

(indicated with an “*”) because an input device that does not fulfill these conditions can still generate the types of

values required for this task. AVID infers this information from the data characterization of the selling_price

attribute and the task specification. Based on these requirements we pick the one-ended slider as the best match

because it fulfills all the input device constraints including the soft requirements. Note that the two-ended slider also

fulfills the two hard constraints (continuity and vis.rep), but it does not fulfill the #-of-values soft constraint and is

therefore only a second choice.

 Currently we pick the input device that fulfills all hard requirements and the greatest number of soft

requirements as the best match. In AVID, we only use this “best match” input device and do not consider alternative

designs that differ only in terms of the input devices used. This is because the focus of our work is not so much on

choosing between multiple input device alternatives but rather on the choice of visualization functions, and how they

can be used effectively in the visualization design process. By limiting our designs to only the best input device

match, we limit our design search tree and increase responsiveness of our system.

2. Number of input devices within the design

Once an appropriate input device is chosen based on the selection process described above, a constant input device

cost is added to the current design path. As a result, nodes or partial designs with a greater number of input devices

will have a higher cost. This is because the more devices there are in a visualization interface, the greater the

cognitive load placed upon users for understanding how to operate those devices. In addition, articulatory load is

also increased because the task specificity is low and a greater amount of information needs to be conveyed to the

 V-149

system each time we want to test out a different set of task conditions. The situation worsens when there are

constraints or relationships among the different input devices, i.e. changes in one input device cause state changes to

occur in other input devices. Currently, however, we do not deal with such input device relationships.

3. Number of times we expect each input device to be used.

The number of times input devices are used within a data analysis session depends on the number of times a

user wants to vary the current task conditions. This in turn could be affected by the task operator, the data associated

with the task, the importance of the task, user preferences, user experience, and the difficulty of using each input

device. Dealing with many of these issues is beyond the scope of this thesis. In AVID we only focus on the extreme

repetition cases. Specifically we identify tasks or task properties that will likely result in high input device use and

for those instances we either abandon the design path or add a commensurate cost to the design alternative. The data

transform non-object constraint described in step 2 of the search procedure in section V-2.1.1 is an example of high

articulatory cost resulting from highly repetitive input requirements.

In this section we described how input devices are chosen by AVID’s design component and how costs are

associated with different input device decisions. Our input device selection strategy and cost structure is simple, but

sufficient to capture the design differences and illustrate the design issues we are interested in pursuing in this thesis,

such as dealing with unknown task arguments, linking input devices to visualization function primitives, and

capturing how articulatory costs of input devices can affect the choice of using data transform vs. mapping

transform task processing strategies. A simplified input device selection strategy allows us to:

• Limit the design search procedure and simplify implementation of the system

• Focus on developing heuristics for functional operators like the ones described in chapters II and III rather than

on heuristics for choosing input devices.

• Not duplicate previous work that already deals with expressiveness and effectiveness of input devices [Card,

1990].

V-2.3.2 Observational Cost Structure

Observational costs reflect the ease with which users can interpret a visualization interface. There are two

classes of observational costs in AVID, corresponding to the two main phases of design: task processing

observational costs and data attribute mapping observational costs.

V-2.3.2.1 Task processing observational cost

 Task processing observational costs are accrued when tasks are mapped to graphics to account for the

perceptual load placed upon users compared to data transform processing where the load is transferred to the

computer system. Observational costs in this case are based on the task class, the task operator, the task input

arguments, and the task properties.

 V-150

1. Task class

Certain task classes are more difficult to perform perceptually than others. For example, for the task shown in

Figure V-2, it is more difficult to compute the difference between date_on_market and date_sold than it is to find the

houses costing more than 100k (assuming that we are using the best possible graphical properties for both tasks).

Thus when we process these tasks with mapping transforms a higher cost is associated with the compute task

compared to the find task. The task classes ordered according to decreasing perceptual difficulty are as follows:

Compute, Compare, AND, Find, Lookup.

2. Task operator

The costs associated with a mapping transform task class may also vary based on the specific task operator

used. This condition pertains mainly to the compute task that has a wide range of operators (e.g. add, subtract,

multiply, divide, mean, log, exponent). Based on the operator availability heuristic in chapter IV-3.3, a higher cost is

placed on compute operators that have less appropriate perceptual parallels (e.g. mean and divide) while a smaller

cost is placed on those that have very effective perceptual parallels (such as add and subtract). Compute operators

that have no perceptual parallels (such as log and exponent) have a hard constraint that only permits data

computation.

3. Task input data

The perceptual load of a task may also depend on the task input arguments. For example compute, compare and

find tasks are easier to perform with respect to constant input values (e.g. find all houses with selling_price greater

than 100k) than with multiple data attribute value sets (e.g. find all universities with avg_math_SAT scores greater

than avg_verbal_SAT scores). We illustrated this with the example visualizations in appendix C-4. Similarly we also

showed that enumerated input data attributes may simplify perceptual processing of a task. This is because

enumerated values can be represented both pre-attentively and accurately, unlike other attribute types. Thus lower

task processing costs are assigned to mapping transform tasks when they have constant input arguments or

enumerated input attributes.

4. Task conditions

As we described earlier in this chapter there are two task conditions: task accuracy level and task loop type.

• According to the accuracy heuristic in chapter IV-3.1, a higher cost is associated to mapping transform

tasks compared to data transform tasks when accuracy is required. When fuzzy accuracy is explicitly called

for, the data transform solution becomes invalid.

• According to the loop type heuristic in chapter IV-3.4, all-to-all tasks incur a heavy cost when we perform

them with data transforms because more objects need to be shown (n2 objects where n is the number of

objects in the input data set) compared to the mapping transform alternative which only requires 2n objects.

The cost added in this case is based on the number of data objects in the task input set.

 V-151

V-2.3.2.2 Data attribute mapping observational cost

 There are three classes of data attribute mapping observational costs: mapping costs, composition costs, and

perceptual complexity costs.

1. Mapping cost

The mapping cost structure used in AVID is similar to the cost structures used by Mackinlay and Casner.

Graphical properties are assigned costs based on how effective they are at showing different data attribute types.

Preference is given to graphical properties that allow parallel perceptual processing [No. 2, Table V-3]. Figure V-17

shows how different graphical property classes are ordered (from most effective to least effective) based on their

data attribute class (i.e. data type). For details on data characterization, refer to previous work by Roth [Roth, 1990]

and Mackinlay [Mackinlay, 1986a, 1986b].

Data attribute class properties Accuracy No-Accuracy

Enumerable 1. differential retinal,
2. position,
3. label

1. differential retinal,
2. position,
3. label

Nominal

Unenumerable 1. position,
2. label

1. position,
2. label

Enumerable 1. extent retinal, position,
2. label

1. extent retinal, position,
2. label

Ordinal

Unenumerable 1. position,
2. label,
3. extent retinal

1. position,
2. extent retinal,
3. label

Quantitative 1. label,
2. position,
3. extent retinal

1. position,
2. extent retinal,
3. label

Figure V-17: Mapping costs ordered based on data attribute class and graphical property class

The most favored graphical property is position because it allows pre-attentive (parallel) perceptual processing

as well as affords a relatively high degree of accuracy compared to retinal properties (such as saturation or size)

which are pre-attentive but less accurate or labels, which are not pre-attentive. The only exceptions are in the

nominal-enumerable and quantitative-accurate categories. Enumerable attributes commonly consist of only a few

different values, and retinal attributes such as hue or shape can represent such attributes accurately, and pre-

attentively, while requiring less display space compared to a positional. In the quantitative-accuracy category, labels

are preferred because it can express the data more accurately than positionals, especially when the data range

represented is large.

 V-152

In Figure V-17 there are two types of retinal properties, extent retinal describes retinal properties capable of

expressing ordered values (saturation and size) and differential retinal describe retinal properties that can only

express unordered values (hue, and shape) [Card et al.]. Of the extent retinal properties we prefer saturation over

size because size may result in occlusion problems or in expanding the display space required (less information

presence). Of the differential retinal properties, hue is preferred because it is easier to pre-attentively process hue

compared to shape. Note that the retinal property class is not present in the nominal-unenumerable category because

data attributes of this type have too many values that have to be differentiated and it is difficult for users to associate

these many values with an unordered retinal such as hue or shape.

2. Composition cost

 The composition costs in AVID are assigned based on spatial locality [No. 5, Table V-3]. Higher costs are

assigned to less integrated designs such as Figure V-11b and lower costs are assigned to more integrated designs

such as Figure V-11a. Integrated designs are preferred because they require less eye-movement and visual search by

the user. In addition less display space is required for the visualization, allowing more data to be shown at any one

time. This is especially important for larger data sets. Based on this graphical integration rule, composition costs are

ordered as follows from least cost to highest cost: use of existing graphical object, cluster composition, double axis

composition, single axis composition, no composition (i.e. use of separate visualization window). Details on each of

these composition types were discussed previously in section V-2.1.2.

3. Perceptual complexity cost

 Finally costs are also added for each new set of graphical objects used. A higher cost is applied if we add new

objects to a region that already contains many objects. Adding graphical objects into a visual design increases its

complexity, requiring a steeper initial processing cost to learn the design structure. In addition added graphical

objects may distract the user and cause perceptual interference, making it more difficult to find task related objects

or identify interesting perceptual patterns.

In this work we experimented with a cost structure that seems to order the designs in a meaningful way for the

classes of tasks we are interested in. We illustrated this in the GOMS analysis described in appendix E. This cost

structure is just one instance of all possible cost assignments; in the future we hope to determine the costs

statistically, as in a neural net. We suspect, however, that a single cost structure may not be applicable across

different problem spaces and domains. The solution may lie in identifying different classes of cost structures that

perform well with particular domains and tasks or letting users manipulate different cost classes manually. It is

important to stress that the contribution of this work lies not in the exact cost structure provided in the expert

designer but rather in identifying important aspects of the task data, task structure, and visualization design that we

should attend to while assigning costs and in developing heuristics that provide general guidelines for determining

which function operators and interactive devices to use, when to use them, where to use them, and what constitutes

an effective combination of data transform, mapping transform and input device primitives.

 V-153

V-2.4 Summary

The designer in AVID is driven by a search procedure consisting of two primary phases: the task processing

phase and the data attribute mapping phase. During these two phases, there are multiple branch points that create

alternate design paths in the search space. In order to direct the designer towards promising design alternatives and

away from bad designs, AVID has a constraint and cost structure.

Currently AVID uses an A* branch and bound method to explore the design search space. We have also

experimented with other search methods such as DFS, HILL, and BEAM. We found that although these methods

can generate designs more quickly, their design quality is significantly inferior to those generated using the branch

and bound method. Depending on the complexity of the task, AVID’s designer may take from minutes up to several

hours to come up with a design. Linear increases in the complexity of the tasks cause an exponential increase in the

search space and the generation time. Optimizing the search space is ancillary to testing the theoretical concepts in

this thesis, however, so we have decided not to focus on that particular aspect of the designer.

V-3 Visualization Realizer Component

The last component of the AVID system is the visualization interface realizer. The realizer accepts a

visualization design specification from the automatic design component, and based on this design, instantiates or

generates an active visualization interface. Each design specification has two parts:

a) Visual structure design specification: This specification captures the general look or structure of the graphical

components within the visualization. It contains the number of graphical objects of each type (e.g. grapheme,

region, axes, legend, etc), their object classes (e.g. mark, bars, and lines for grapheme objects or charts, tables,

grids and maps for region objects), the distribution of grapheme objects across various regions, containment

relationships among the graphical objects, etc.

b) Functional design specification: This specification describes which data, graphical, mapping, and rendering

transforms are used, how these various transforms are composed, which objects they are applied to, which input

devices they are linked to, etc.

The AVID realizer is divided into two components based on the two specification types described above: the

graphical object realizer and the functional realizer. The graphical object realizer accepts visual structure design

specifications and converts them into graphical element renderings. The functional realizer accepts functional design

specifications and converts them into visualization techniques (e.g. dynamic query sliders, painting). Input device

events and virtual input devices (e.g. scroll-lists, option-buttons, sliders) may be attached to the visualization

techniques as necessary. Every visualization window is divided into two sections as is shown in many of the

visualizations in this chapter (Figure V-13, Figure V-14). The top portion of the window contains graphical

renderings of the data, which is generated by the graphical object realizer, and the bottom portion of the window

contains all input devices that are generated by the functional realizer. Details on our AVID realizer are given in

appendix D-2.

 V-154

V-4 Conclusion

To showcase the applicability of our visualization framework and heuristics in “real” systems, we implemented

an automatic design system (AVID) consisting of the three components: the task interpreter, the automatic designer,

and the visualization realizer. The task interpreter accepts input tasks in LISP form and transforms them into a set of

task and argument structures. Our task interpreter is able to deal with task embedding structure and special task

conditions such as accuracy and task iteration, which was not taken into account in previous automatic visualization

research. Task structures generated by the task interpreter are used by the automatic design component to guide its

search of the visualization design space. In AVID we have expanded the visualization design search algorithm over

previous systems to include a task processing phase for addressing data transform and input device decisions as well

as a post processing design phase for culling out duplicate designs. The task processing phase deals with new issues

that are unique to creating data transform designs such as processing embedded task structure, object filtering,

addressing unknown task arguments, and pre-processing the input data set. In this search algorithm the task

information is translated into a set of design constraints and costs that stop the designer from going down

unpromising paths and direct the designer towards more effective design paths first. The translation of task

information into design constraints and costs is based on the guidelines and metrics laid out in chapter IV of this

thesis. Once the automatic design component finds an interesting unique solution to the input tasks, it transforms the

design into a visual structure specification and a functional specification. These specifications are taken as input by

the realizer component that translates the visual structure specification into a hierarchical scene graph of Inventor

nodes and the functional specification into a set of acyclic functional networks. The Inventor scene graph is rendered

onto the display using functions from the Inventor toolkit, and the functional networks are activated beginning with

their source functions. During activation the C++ procedures associated with each visualization function in the

network are executed on the input values of the functions. Functional networks may also get reactivated based on

trigger events from input devices associated with the visualization design.

 AVID and our interactive functional editor3 are used to generate most of the visualization designs shown in this

document. All visualizations not generated by our systems are annotated with their original sources. The wide range

of example visualization designs generated by our systems shows the flexibility and generality of our theoretical

framework and heuristics. Our ability to translate the theory into active systems indicates that our theory is relatively

complete. In addition, the previous evaluation chapter shows that AVID produces practical design results that do

indeed conform to cognitive, perceptual and articulatory complexity. The functional editor is also practical for

manually creating and prototyping visualization techniques because it takes less time compared to using low-level

code. Thus the implemented systems described in this chapter are good illustrations of the generality, completeness

and practicality of our visualization framework and heuristics presented in previous chapters.

3 Our interactive functional editor allows us to manually build visualization techniques by creating the node-link specification

diagrams shown in chapters II and III. Details on this editor are given in appendix D-3.

 V-155

 With AVID we have expanded the design space of automatic visualization design systems. Previously, only

mapping transformations were considered in the design process, but AVID is able to reason about many data

manipulation and summarization operators as well as composite hybrid designs that use both mapping and data

transformations to solve tasks. While we have expanded the functional design space from previous work, we can

augment AVID further. An important area that AVID currently does not address is in integrating graphical and

rendering transformation decisions into the design process. We will show in appendix F that graphical and

rendering transformations can be very useful for solving readability issues that may arise in visualization designs

and how our current system can be augmented with these graphical and rendering transforms. Readability refers to

problems arising from constraints of the output medium and its interactions with our perceptual system that impede

the optimal use of a visual design. Examples of readability impediments include occlusion among objects, display

space that is too limited to show all the necessary design objects, or overly high ink density, producing visual

interference.

 VI-156

Chapter VI: Conclusion & Future Work

In this thesis we extended automatic visualization design to include all four phases of the visualization

creation process: data, mapping, graphical, and rendering. Together with this expansion, we also enable

input devices to be added during design, thus enabling interactive visualization interfaces to be created

automatically. Previous automatic systems focussed only on the use of mapping operations. We show that

by including the full set of visualization functions we expand the range of designs that can be generated and

this allows us to address data analysis tasks more effectively. Specifically we can offload cognitive tasks

onto the computer system with data transform techniques as well as address readability issues such as

occlusion, display density, dwarfing, and spatial separation. We show in appendix E (the evaluation

section) that this added functionality can significantly decrease total task performance time. Such

improvements in the quality and breadth of designs will enable automatic visualization systems to better

communicate information to users as well as provide better assistance to designers for creating

visualizations. The focus of our work is on the domain of exploratory data analysis however many of the

theoretical concepts developed is applicable to visualization design in general.

VI-1 Summary & Relevancy of Work

We expand automatic design systems to include the four phases of the visualization creation process

by developing three core technologies:

1. A framework of the visualization creation process,

2. Metrics and heuristics for measuring the goodness of visualization designs,

3. An automatic visualization design system (AVID) that utilizes our theoretical framework and

heuristics to generate rendered visualization interfaces.

Our framework and heuristics are necessary for enhancing automatic visualization design research,

however, they are also applicable for aiding human designers in creating and prototyping visualizations.

Specifically they provide a structure and methodology for creating visualization techniques and

systematically exploring the design space.

VI-1.1 Methods: Framework of the Visualization Creation Process

In chapters II and III we developed a framework for characterizing commonly used functions in each

of the four visualization phases. We also show how these functions can be combined with each other, with

input devices and with visualization elements through a set of composition rules. This framework is

flexible so that as new techniques get developed, additional functions can be included with minimal effort.

In addition by composing the new functions with existing functions, we can leverage off of previous

operations to generate a wide range of new visualization techniques. The framework is also general in that

 VI-157

it encompasses a wide range of visualization techniques and can be integrated with a wide range of visual

representations. Throughout this document we have presented chart, map, table and grid visualizations.

These visualizations may contain marks, bars, lines or text. We have also presented many different

visualization techniques including dynamic query sliders, painting, aggregation, drag & drop, SDM

techniques, etc. Finally the framework is also practical for three primary reasons:

1. Tailoring visualization techniques: The framework provides designers with a visualization technique

toolkit. This allows designers to easily modify and tailor visualization techniques to suit different task

requirements. In addition it also simplifies the sharing and transfer of functionality across techniques.

2. Design methodology: Our framework divides the design of visualization techniques into two levels:

functional and instantiation. At the functional level of design we populate the technique with the

necessary functions to perform our desired tasks. At the instantiation level of design we expand the

functional design with input devices and visualization elements and properties, thereby establishing the

“look and feel” of the technique. This two tier design process allows functional decisions to be made

free from hardware and aesthetic constraints so that we do not falsely constrain function based on

form. It also allows us to identify functionally similar techniques that may have very different “look

and feel” so that we may more accurately compare and borrow design strategies across techniques.

3. Systematic exploration of visualization techniques design space: Our framework also allows us to

define and lay out the current explored areas in visualization technique design and identify areas that

are less populated. By using this “map” we can systematically expand the visualization techniques

design space by combining existing methods or by crafting new techniques in the less explored areas.

VI-1.2 Principles: Metrics & Heuristics for Measuring the Goodness of

Visualization Designs

Our visualization technique framework provides a language for describing and creating visualization

techniques. However, it does not tell us which techniques are the most effective or appropriate for solving

our data analysis tasks. For any particular task, there are commonly many alternative techniques that can be

used. Thus it is crucial that we have some way of measuring the goodness of these various alternatives and

some guidelines for directing us towards the more promising design paths. Earlier work on automatic

visualization design considered metrics and design rules for using mapping transforms based on data and

task requirements. In our work we expand on previous work and develop metrics and guidelines for

evaluating all phases of the visualization process including data, mapping, graphical, and rendering

transforms.

Our metrics framework determines the effectiveness of a visualization design based on the four

distances: articulatory, functional, expressive, and observational. This metrics framework is used by our

automatic system to evaluation the effectiveness of possible design alternatives. In addition, these metrics

can also be used by designers as general design yardsticks to help them create more effective visualizations

 VI-158

and avoid design mistakes. Note that it is also possible to evaluate the effectiveness of visualization designs

by using more procedural methods such as GOMS [Card, 1983]. This was attempted by Lohse [Lohse,

1993] who automatically decomposed each task and visualization design pair into a set of GOMS operators

(similar to the GOMS sequences shown in appendix E of this thesis). The problem with using GOMS in an

automatic design system, however, is that it is time consuming and difficult to apply to partial designs. It

can also be difficult to isolate from a GOMS evaluation which particular design decision resulted in the

ultimate high or low cost of a visualization.

Based on our metrics framework we also develop a set of design rules or heuristics that help direct our

automatic design system towards more promising design paths. It would be very time expensive and

unfeasible to explore and rate all possible design alternatives before presenting them to users. As a result it

is important that we have some guidelines to help focus our design efforts on the more promising design

possibilities while culling out design spaces that are ineffective or inexpressive of our tasks. In chapter IV

we presented design rules that help us determine when it might be more useful to perform a task or subtask

perceptually by mapping it to graphics, and when it might be more advantageous to let the system compute

the task through data transforms and only visualize the pre-computed results. In appendix F, we present

additional design rules that consider readability issues such as occlusion, display density, data dwarfing,

and information presence, and how graphical and rendering transforms can improve the readability of a

visualization design.

VI-1.3 Systems: AVID – Automatic Visualization Interface Designer

To showcase the applicability of our visualization framework and heuristics in “real” systems, we

implemented an automatic design system (AVID). AVID accepts one or more tasks as input and produces a

set of visualization designs as output, ranked according to effectiveness of the designs with respect to the

input task(s). Our AVID system was used to generate most of the visualization designs shown in this

document. The wide range of examples generated by our system shows the flexibility and generality of our

theoretical framework and heuristics. Our ability to translate the theory into active systems indicate that our

theory is relatively complete. And appendix E (GOMS evaluation) shows that AVID produces practical

design results that do indeed conform to cognitive, perceptual and articulatory complexity. Our evaluation

results also show that our work significantly expands the design space of automatic visualization systems

and enables more effective designs to be generated than was previously possible.

This design system can ultimately be integrated with a system like AutoBrief to enable higher level

analysis and planning systems to automatically communicate complex information and relationships to

users in the form of both text and graphics. Our work can also be integrated with editing and browsing

interfaces similar to SageBrush and SageBook [Roth, 1994] to help provide design assistance to users so

that the creation and prototyping of visualization interfaces can be performed more quickly, easily, and

with more effective results.

 VI-159

VI-2 Scope of Work

We describe the scope of our work based on the three components described above. For each

component we present its limitations and point to possible directions for future work.

VI-2.1 Limitations of the Framework

The visualization technique framework presented in this thesis covers many current visualization

techniques. Specifically, it focuses on those operators that can be applied to data concepts, graphical

objects, and the relationships between graphics and data. There are however several distinct areas that are

not addressed, namely:

1. Complex Mapping Transforms

The mapping transforms considered were limited to mapping data concepts to graphical objects and

mapping data attributes to graphical properties. We need not, however, limit ourselves to only graphical

objects. In the Worlds within Worlds system [Feiner, 1990], for example, three-dimensional charts can be

mapped within other three-dimensional charts. In this case data is not only mapped to the graphical objects

within each chart region but also to attributes of the chart region itself. Through multiple embeddings the

authors of the World within Worlds system were able to analyze a large multidimensional space.

2. Specialized transformation functions

The framework also does not explore specialized transformation functions in detail. An example class

of specialized functions are those used for animations such as fade in/outs. Other specialized

transformations not dealt with are space distortion techniques such as those used in the Fisheye lens

[Furnas, 1991], and the Hyperbolic space [Lamping, 1995]. These distortion techniques have been

analyzed to some degree by Leung et.al. [Leung, 1994]. Even though the framework does not provide a

characterization of these animation and distortion techniques, they can be integrated into the system as

additional transformation operators or as black-box operators, if need be. However, more work still needs

be performed within each of these specialized areas (e.g. animation, space distortion) to define the types of

functions that are common and useful.

3. Windowing operators

The framework also does not deal with windowing operators such as popping up windows, raising or

lowering windows, or changing the size of windows. Primarily, this is because such low-level operations

should or are already captured within the specification of the virtual input devices. While designing

visualization techniques, we should not have to concern ourselves with these low-level interface operations.

 VI-160

4. Workspace metaphors

The framework does not deal with the issue of designing a set of consistent visualization techniques

that fit within a common workspace metaphor (e.g. the Mac user interface metaphor or the Windows

metaphor). This as an important and significant area of study, but is beyond the scope of this thesis.

5. Conflict resolution

At the end of appendix B-6.2 we began to deal with conflicts that may occur between visualization

techniques. However we only considered conflicts along five different dimensions and between pairs of

primitive techniques. More conflicts will be revealed with a deeper study of this issue. In addition, our

framework does not deal with conflict resolution.

6. Usage information

We do not consider collecting or applying usage information in our visualization system. Some

example usage information includes which objects were selected most, which objects were last selected,

which objects were commonly grouped together, etc. Such information may be very useful for providing

good defaults to users, and may also be useful for informing the designer of work practices within a

domain.

7. Scientific Visualization vs Information Visualization

The visualization technique framework presented in this thesis only deals with information

visualization. Another large area of study is scientific visualization. Scientific data usually has a strong

physical correspondence and contains very spatially oriented information. Information visualizations,

however, represent abstract data that do not have a physical correspondence and are not inherently spatial.

It is therefore not surprising that the requirements for these two areas can be quite different. There are

several commercial frameworks available for describing scientific visualization techniques with limited

interactions [Brodlie, 1991]. In appendix B-1 we compare our framework to these other existing

frameworks.

8. Functions within functions

All of the object definition and transformation functions considered are applied to either data,

graphical or annotation objects. We do not consider functions that can be applied to other functions or that

generate new functions as output. Most common visualization techniques do not require such complex

functional interactions. This class of operations, however, are interesting to consider and may produce very

powerful visualization techniques.

VI-2.2 Limitations of the Metrics & Heuristics

In our work we identified two areas where the functional expansion enabled by our work can have the

most impact over previous systems:

 VI-161

1. By offloading task cognitive operations onto the computer system with data transform

techniques in addition to offloading them onto the user’s perceptual system using mapping

transform techniques.

2. By considering readability issues and examining when and how the four visualization

transformation classes can be used to solve these issues.

We therefore only consider design rules and heuristics for these two areas. Other interesting design

areas that we do not consider include:

1. Design heuristics that use graphical and rendering transforms to solve tasks rather than just

readability problems

In addition to solving readability issues, graphical and rendering transforms can also be used

manipulate the elements within a visualization to change the general goals addressed by that visualization

(i.e. to change what is expressed by that visualzation). Such techniques however tend to be difficult to use,

and specialized to the task domain. Therefore, to integrate such design techniques into an automatic design

system requires that we have a powerful model for understanding user knowledge and expertise as well as

capturing specific domain knowledge. The system would also need to provide better instructions to coach

users on how the techniques should be used. Because of these complexities we save consideration of these

issues for future work. In our work we focus on considering how graphical and rendering transforms can be

used to only solve readability problems.

2. Design heuristics for three and four dimensional visualizations

We mainly focus our work on generating two-dimensional visualizations. Our heuristics and

framework easily carries over to higher dimensional visualizations. However, if we are to effectively

design such visualizations we need additional sets of design guidelines that specifically deal with the issue

of when it is more expeditious to map data to the third positional dimension or the fourth time dimension,

rather than using aligned spaces or a retinal attribute.

3. Design heuristics that minimize learning time rather than task performance time

In our work we focus on developing heuristics that reduce total task performance time. As is shown in

appendix E, the design rankings generated based on our design guidelines conform in most part to the

GOMS estimated total task performance time, excluding learning time. To limit our problem space to a

reasonable size, we assume that the users of our system are expert users who are familiar with all the visual

and interactive design classes generated by our system. Thus learning time for each design is consistent and

negligible. In the future it would be interesting and useful to expand our set of heuristics to include rules

that take learning time into account as well as task performance time. For example we may want to give a

better ranking to designs that have a consistent look or interactive metaphor to a previous design because

then the learning time for that design would be much smaller than a totally new and different design. We

 VI-162

may also want to give preference to more conventional, well understood designs, because users would

already know how to interpret and use them.

4. Design heuristics for advanced tasks involving data patterns and trends

Appendix C-3 describes two task classes: simple tasks that involve processing pairs of values, or more

complex tasks that involve sensing gestalt patterns from a set of values, e.g. looking for data clusters,

patterns or trends. The heuristics developed in this work is more focussed on simple value pair processing

tasks, e.g. lookup, find, AND, compute and compare. This level of tasks is what was dealt with in previous

automatic visualization research and we decided to focus on the same task classes. The focus of our work is

on expanding the design space to include all the functions in the visualization creation process. Since we

are taking the first steps in exploring the use of several new transform classes in automatic design we

decided that it would better serve us to start with just the simpler tasks. Developing heuristics for the more

complex trend tasks however would be a very challenging and interesting problem for the future. Note that

heuristics for the complex tasks have no impact on our current heuristics for our simpler value pair

processing tasks.

VI-2.3 Limitations of the System Implementation

With AVID we have expanded the design space of automatic visualization design systems. Previously,

only mapping transformations were considered in the design process, but AVID is able to reason about

many data manipulation and summarization operators as well as composite hybrid designs that use both

mapping and data transformations to solve tasks. While we have expanded the functional design space from

previous work, we can augment AVID further in the following areas:

1. Integrating graphical and rendering techniques

An important area that AVID currently does not address is in integrating graphical and rendering

transformation decisions into the design process. Currently we only consider the use of data and mapping

functions to solve tasks. We show in appendix F that graphical and rendering transformations can be very

useful for solving readability issues that may arise in visualization designs and how our current system can

be augmented with these graphical and rendering transforms. Readability refers to problems arising from

constraints of the output medium and its interactions with our perceptual system that impede the optimal

use of a visual design. Examples of readability impediments include occlusion among objects, display

space that is too limited to show all the necessary design objects, or overly high ink density, producing

visual interference.

2. Translating high level tasks to lower level task operators

We also do not deal with the issue of how higher level domain systems can translate their tasks into the

task language required by AVID. Some discussion of this issue can be found in related research by

Kerpedjiev et. al.[Kerpedjiev, 1997].

 VI-163

3. Error checking

We do very little error checking in our systems. Specifically our system does not have mechanisms for

checking the syntax of the input task specifications. Error checking and reporting commonly get very

involved and bring their very own set of research challenges that is beyond the scope of our work.

4. Limited range of visualization representations

Our system can generate common visualization representations such as charts, maps, tables, and grids

as well as marks, bars, lines and text. Other common representation types that would be interesting to add

in future work include networks, pie charts and richer glyphs that can encode many different data attributes

simultaneously. Addition of specialized glyphs may require new heuristics and constraints to be added that

are specific to these new representation types.

5. Limited range of navigation techniques

Currently, each of our visualization designs support some point of view navigation techniques

including zoom, pan and rotate. In the future it would be interesting to integrate our automatic design

system with a richer front-end data navigation environment such as the Visage system. Related to this issue

it would be interesting to explore which visualization functions to include as default to all generated

visualization designs and which functions to include on a case by case bases.

6. Interface for specifying visualization techniques

In the implementation chapter of this thesis (chapter V) we presented an interface for manually

building visualization techniques by constructing data flow type diagrams similar to the specifications

shown in chapters II and III. To bring visualization technique construction to more mainstream use

however, a simpler, more intuitive interface will have to be designed that enables non-expert users to easily

access the functionality provided by our visualization technique framework.

 A-164

Appendix A
Appendix to Functional Visualization Techniques Framework (Chapter

II)

A-1 ODT Diagrammatic Notation

Assign
Threshold

(>)

Initial data
object set

Data
value set

Graphical
value set

Data
value setGet

values
Boolean to

object

Get related
graphical

objects

Get
values

Data
object set

Data
object set

Graphical
object set

Data
object set

Data
attribute

Data value
Graphical
property

Common
constant value

House-
selling-price

Slider Color Red

Figure A-1: Example ODT diagram for the dynamic query slider [Ahlberg, 1992] visualization technique

 All function primitives are shown with normal Times-Roman font within rectangles and all inputs

to the primitive functions are shown as italicized bold text within ovals. Inputs provided by users are shown

with dotted ovals and those provided as designer defaults are shown with regular unbroken ovals. The

directed arrows (Å) connecting one primitive function to another indicate a flow of objects or values from

a source function to a destination function. Arrows are sometimes also used to indicate temporal

sequencing (i.e. a given primitive has to be executed before another). Temporal sequencing connections are

different from regular connections because there is no information flow from the source to the destination

function. Compositions can be achieved with regular connections or temporal connections depending on

whether the operations have dependencies that require them to be ordered serially or whether they can be

performed in parallel. In this thesis we do not differentiate between regular and temporal links because their

differences do not have any significance or impact on our work.

A-2 Exploring the Space of Visualization Techniques

In chapter II-3, we outlined some simple visualization technique adaptations and expansions that can

be made to current techniques to fill in less populated areas in the visualization design space. In this section

we show two complete examples of how existing techniques may be combined and varied. Not all

 A-165

combinations will be interesting or useful and we can identify the bad cases through common sense,

general design goodness measures (chapter IV-2), or user testing.

For each of the two examples we will bring together a pair of techniques that serve different functions,

and the resulting composed technique will encapsulate functionalities from both of the base methods. The

first example (section A-2.1) combines: 1) the highlight object selection method, which allows users to

select a set of objects and then colors the objects to show that they have been selected, and 2) the dynamic

query slider method, which allows users to search for a set of objects based on specific data attributes. This

example is simple and meant to illustrate how we can go about combining different functional components

of existing techniques to form new behaviors.

The second example (section A-2.2) combines: 1) the SDM distance operator method, which improves

the legibility of objects by bringing them closer together to ease comparison, and 2) the HomeFinder

system, which allows users to search for a set of data concepts based on several constraints on their

attributes. The second example explores an uncommon area in the visualization techniques’ design space.

As was described in chapter II-3, it is commonly the case that search techniques have simple feedback

mechanisms, usually consisting of changing one graphical property in a straightforward manner (e.g.

setting all the property values to a constant). In this second example we explore search techniques (e.g.

HomeFinder system) that have more complex feedback methods, like the SDM distance operator.

A-2.1 Highlight Object Selection & Dynamic Query

Here we integrate the object selection and the dynamic query techniques using the composition rules

described in chapter II-2. The highlight object selection technique allows users to select a set of objects

through a bounding-box and then colors those selected objects red. The dynamic query technique allows

users to define a set of objects by setting constraints on their data attributes. Constraints are set by using

threshold functions (e.g. greater-than, less-than, equal-to) and the threshold value is determined by the user

through a slider input device. Specifications for both these techniques are shown in Figure A-2.

Enumeration
Graphical
Transform
(Assign)

Color
Bounding-box

Red

Functional
Description

Graphical
Transform
(Assign)

Visibility
Slider

True

Highlight object selection specification Dynamic query slider specification

Figure A-2: Highlight object selection and Dynamic query sliders

One way of combining the two techniques is to use pc-composition to pipe values acquired from the

graphical transform of the highlight selection technique into the dynamic query technique as is shown in

Figure A-3. Instead of using an assign graphical transform (assign sets the values of a data attribute or

 A-166

graphical property structure but does not produce any new results) as was done in the original highlight

selection technique we can use a compute graphical transform. For example, we could apply the multiply

graphical transform to the width and length of graphical marks (to calculate their area) and then feed these

values to a functional description operator as is shown in Figure A-3. This allows us to select one graphical

object and subsequently make all objects that are larger than the selected object invisible. This can be an

interesting method to interactively reduce occlusion in a display. Note that all functions and inputs that

have been changed or removed are indicated in Figure A-3 with a red cross and new functions and inputs

are highlighted in gray. The problem with culling out graphical elements based on graphical object size

rather than on task related data, however, is that we may accidentally remove data elements that are crucial

to our task.

Functional
Description

Graphical Transform
(Assign)

Enumeration
Graphical Transform

(Assign)
(Multiply)

Visibility

Width Length

(PC-composition)

Bounding-box

Slider
True

Computed area threshold

>

False

Figure A-3: P-C composition of selection and

Dynamic Query

Functional
Description

Enumeration

Selling_price
data values

Bounding-box Color

VisibilitySlider True

=

Graphical Transform
(Assign)

Graphical Transform
(Assign)

Selling_price

Red

Figure A-4: Value painting specification

An alternative design applies the transform method to data values instead of graphical values. This

produces a method like the value painting technique described by Eick et al.[Eick, 1992]. Value painting

allows users to select objects in one visualization with a bounding-box. We then search and highlight all

other objects that have the same attribute values as the chosen objects (Figure A-4). In the value painting

example, we bypass the graphical transform component and simply pass on the data values as is. The

modified value painting technique (described in chapter II-2.3) is another design alternative that can be

derived from applying pc-composition to the dynamic query and selection visualization techniques.

Another way of composing the two techniques is to use object definition composition (Figure A-5). In

Figure A-5 we combine both object sets from the selection technique and the dynamic query technique

together with the intersection set-operator so that only objects that are both selected with the bounding-box

as well as fulfill the constraint set by the threshold slider are highlighted red.

 A-167

Graphical Transform
(Assign)

Functional
Description

Enumeration
Set-operator

(Intersection)

Object definition
composition

Bounding-box
Color

Slider
VisibilityTrue

Graphical Transform
(Assign)

Red

Figure A-5: Combining the object selection and dynamic query techniques using object definition composition

Another variation is to combine the graphical transform effects of both techniques with a

transformation composition operator (Figure A-6). In this example, however, the two effects (color-assign

and visibility-assign) do not integrate well together. This is because making non-focus objects invisible (as

is done by the dynamic query slider technique) nullifies the use of the color highlighting graphical

transform used in object selection. Since only focus objects are made visible, the color highlight effect is

lost because all focus objects get highlighted in the same way.

Graphical Transform
(Assign)

Functional
Description

Enumeration

Bounding-box
Color

Slider VisibilityTrue

Graphical Transform
(Assign)

Red
Transformation
composition

Figure A-6: Combining the object selection and dynamic query techniques using transformation composition

In this section, we see that combining the two techniques (highlight object selection and dynamic

queries) allows us to integrate their different object definition and transformation methods.

A-2.2 HomeFinder System & SDM Distance Operator

In this example we explore a search technique that has more complex feedback mechanisms. Chapter

II-3 showed that search techniques commonly use very simple feedback methods to show their results. For

example, the HomeFinder system, the dynamic query slider technique, and the value painting technique all

use simple color or visibility highlights to show the results of a search. An interesting exploration path is to

see whether we could integrate a search technique with a richer graphical feedback technique that produced

more interesting visual changes to objects within a visualization.

 A-168

To pursue this path of exploration, we combine the HomeFinder search system with the SDM distance

operator, which has rich visual feedback. The HomeFinder system was described in chapter II-2.1. This

system allows users to set a number of functional description constraints on a set of data concept attributes.

The graphical objects representing the data concepts are then colored based on the number of constraints

passed by each concept (Figure A-7a). This is achieved through a count data transform that calculates for

each object, the number of times it appears in a given input set. These count values are then assigned to the

data concepts under consideration as a new attribute, i.e. the count-derived-attribute. This new attribute is

mapped in a separate specification to color as is shown on Figure A-7b.

Functional Desc.
(1)

Data
Transform

(count)

Functional Desc.
(2)

Functional Desc.
(n)

Set-operator
(union-repeat)

Data
Transform
(assign)

Count derived
attribute

Slider

Slider

Slider

(a)

Mapping
Transform

HomeFinder
Visualization

Color Count-derived-
attribute

Functional
Description

Houses

ALL

(b)

Figure A-7: HomeFinder system specification

The SDM distance operator improves the readability of a visualization by allowing users to move a set

of objects to a user defined line of reference (shown in red in Figure A-8). By setting the line of reference

to be close and orthogonal to our point of view, we improve our ability to compare object size or height,

and also increase their visibility. This SDM distance technique is achieved by calculating for each object,

the point on the reference line that is orthogonal to it (we refer to this point as the reference point) as is

shown in Figure A-8. We then derive the distance from the original object positions to their reference

points (i.e. distance-to attribute).

Line of reference

Distance-to attribute

Reference line
point

Figure A-8: SDM distance operator components: distance-to attribute, point of reference, and line of reference

 A-169

Graphical
Transforms
(compute

reference point)

Graphical
Transforms
(compute

distance-to)

Graphical
Transforms

(derive x-pos
component)

Graphical
Transforms

(derive y-pos
component)

Enumeration
Graphical
Transform
(multiply)

Translation Function
(GetAttributeValues)

y-pos

x-pos

Graphical
Transform
(Assign)

Object-
manipulator

Multiplication
factor

Translation Function
(GetAttributeValues)

Graphical
Transform
(Assign)

y-pos

x-pos

Bounding-box

Figure A-9: SDM distance operator specification

Figure A-9 shows the design specification for the SDM distance operator1. We start by defining the set

of objects we want to transform using the enumeration object definition operator. Multiple compute

graphical transforms are used to calculate the reference points for these objects based on their original xy-

positions and the position of the line of reference. Subsequently we compute the distances between the

original object positions and their reference points (distance-to derived attribute). Users may then

reposition objects anywhere along the orthogonal line between its original position and its reference point.

Object repositioning is achieved by scaling the distance-to derived attribute through an object-manipulation

input device that is tied to the multiply graphical transform that performs the distance-to scaling. Different

multiplication factors cause new distance-to values to be computed. These distance-to values are then

converted back into their x and y components and finally reassigned to update the objects’ x and y-

positions. Note that for simplicity, we represent certain sets of computation graphical transforms (compute-

reference-point, compute-distance-to, derive-x-pos-component and derive-y-pos-component) with a single

rectangle in Figure A-9 even though the actual operation consists of multiple simple graphical transform

operators (e.g. multiply, add, divide).

By tying the multiplication factor to an input device, the technique allows users to slide a set of objects

to and from the reference line. This enables users to maintain context of the objects’ original positions. The

sequence of images in Figure A-10 shows different distance-to multiplication factors and the virtual input

device used to control those factors in the SDM system. When the distance-to scale is reduced to zero, all

the objects get positioned along the line of reference as in Figure A-10c.

1 Note that there are several GetAttributeValue translation functions in Figure A-9 which we have not yet

described. We show these functions here however, to illustrate that the values being transformed are the x-position and

y-position values of the objects. Translation functions are described in detail in chapter III-1.3, which also shows how

and when such functions are added into the visualization technique specification.

 A-170

(a) (b)

 (c)

Figure A-10: Sequence of images showing different multiplication factors being applied to the
distance-to attribute

By combining the HomeFinder technique and the SDM distance technique, we get an interesting

synergy between their disparate goals. One way of combining these two techniques is to link the

appropriateness of an object with respect to our search criteria to the distance of that object with respect to

a reference element. I.e. we can interpret how good of a search match an object is by looking at its distance

to a reference object. To do this we use the count-derived-attribute determined in the HomeFinder

technique as multiplication factors for the distance-to computation in the SDM technique as in Figure A-11.

Other alterations include removing the object manipulation input device from the SDM distance technique

and applying the distance-to calculations to all the graphical objects in the HomeFinder visualization rather

than just to a user enumerated set as was the case previously. In this way, the count-derived-attribute

determines the percentage distance of every object to the reference line.

We can apply this technique to objects whose positions are already encoding values or to

representations where the object positions are fully determined by the search results. In the former case it is

important to note that the initial distance between each object and the reference line acts as an importance

weight. Objects that are close to the reference line assign less importance to the count multiplication factors

while objects that are farther away assign greater importance to them. For an object close to the reference

line, even a high percentage change from its original distance would translate to a relatively small absolute

position change. As a result objects that are far away from the reference line need to pass more selection

constraints than objects that are closer to get to the same distance-to value.

 A-171

Graphical
Transforms
(compute

reference point)

Graphical
Transforms
(compute

distance-to)

Graphical
Transforms

(derive x-pos
component)

Graphical
Transforms

(derive y-pos
component)

Enumeration

Graphical
Transform
(multiply)

Translation Function
(GetAttributeValues)

y-pos

x-pos

Graphical
Transform
(Assign)

Object-
manipulator

Multiplication
factors

Translation Function
(GetAttributeValues)

Graphical
Transform
(Assign)

y-pos

x-pos

Bounding-box

Functional
Description

HomeFinder
visualization

All

Count-derived-
attribute

Figure A-11: Changes made to SDM and HomeFinder specifications

A task that is particularly appropriate for this case is one where there are natural weighting data

attributes that can be easily mapped to spatial positions. For example consider the task of buying a house

and suppose that we want the house to be as close to our workplace as possible. Houses that are farther

away from our workplace will only be attractive if they fulfill many of our other house selection constraints

such as the num_rooms in the house, the selling_price, the crime-rate in the surrounding area, the

availability of schools and hospitals, etc. In this case, instead of using a reference line, we use a reference

point, situated at our workplace (Figure A-12).

The x and y positions of the marks within the map in Figure A-12 are used to encode the longitude and

latitude position of the houses that we might be interested in buying. This interface also has a set of sliders

that allow us to set different house selection constraints (i.e. greater-than selling_price, greater-than

lot_size, greater-than num_rooms) which will in turn change the percentage distance-to value of house

concepts to our workplace mark. We are ultimately interested in those houses that appear closest spatially

to the red mark. These are either the houses that are geographic neighbors of our workplace, or the houses

that are farther away geographically but fulfill many of our other house selection constraints. In Figure

A-12a, no workplace has been chosen, thus the position of the houses are their longitude and latitude

positions.

In Figure A-12b, a workplace has been selected and many of the house concepts gravitate significantly

towards the red mark because the constraint conditions are less stringent (i.e. lower thresholds) and as a

result most data concepts pass a significant number of the constraint conditions. In Figure A-12c, the

threshold constraints are set higher and as the result the houses gravitate less towards the workplace mark.

 A-172

No workplace chosen. Positions represent actual latitude and longitude values

(b) Low thresholds, greater proximity to workplace mark

Workplace mark

 A-173

(c) High thresholds, less proximity to workplace mark

Figure A-12: Example house selection technique

A problem with this new integrated technique, however, is that when a search is applied, the data

encoded in the x-position and y-position properties is no longer valid. I.e., the positions of the marks in the

map no longer indicate the geographic positions of the houses. One way to alleviate this problem is to

animate the movement of objects from their original positions to their new positions. This will allow users

to deduce useful information from the speed at which the objects are moving as well as provide users with

context information about the object origin. In particular we would look for clusters of objects that are

moving at relatively the same speed or outlier objects that are moving much faster than the other objects

initially around them.

We can further extend the hybrid technique described in this section by allowing users to add several

lines of reference that have different constraints attached to them (Figure A-13-left). In this case, each

constraint line will apply a force onto the objects and the final position of the object would be the result of

all these forces. Another variation of this technique is to use “constraint points” ((Figure A-13-right)

instead of “constraint lines”. This would simplify the visual representation to some degree and allow us to

put more constraints into the display. When we want to put in multiple constraint points it becomes very

important where we place these points so that we can derive useful information from the resulting object

positions. For example Figure A-14 shows an effective placement of three constraint points. Objects that

are in the middle of the display are the ones that pass all three constraints, objects that are on the “in-

Workplace mark

 A-174

between” points (indicated by 2’s in Figure A-14) pass two of the three constraints, and objects that are at

the vertices pass only one constraint. As it turns out, the display shown in Figure A-14 is very similar to the

InfoCrystal system [Spoerri, 1993]; however, we arrived at the same design from a very different starting-

point.

Line of reference-1Line of reference-2

Point of reference-1

Point of reference-2
Figure A-13: Extended HomeFinder + SDM distance technique

$ > 100K

Rooms > 3 Neighborhood
= Shadyside

All 3

2

22

Figure A-14: Effective way of placing 3 constraint points

This section presents two detailed examples of how we can combine existing visualization techniques

to form new and sometimes surprisingly novel behaviors that push the envelope of visualization technique

design. Even in those cases where the combined results do not appear to have any clear use, we learn the

strengths and weaknesses (new technique classes) and improve our ability to design future techniques.

A-3 Control Functions

One class of visualization functions that we did not consider in this chapter is control functions.

Control functions regulate the flow of execution within a visualization method so that we may easily repeat

operators, or choose between multiple different alternative functions. We did not include them in our

description because the current visualization techniques we considered and the initial techniques we plan to

automatically build with our design system do not require such functions. Future expansion of our design

system however will profit significantly from the use of control functions. In this section we discuss some

useful control functions and show how they may be integrated into our framework.

 A-175

Sometimes it is necessary to repeat a set of object definition and transformation functions several

times. Rather than having to declare the same specification over and over again, we can use control

operators, to regulate the flow of execution of the function set. For example suppose we wanted to divide

up a set of house concepts into three groups based on house price, and then color each set differently. In

order to do this we could use the specification in Figure A-15 to divide up the concepts into houses that

cost: 1) >= 100k and < 200k, 2) >= 200k and < 300k, and 3) >= 300k and < 400k. This can be achieved by

repeating a pair of functional description functions and a color graphical transform three times; once for

each house set.

Functional
Description

Graphical
Transform

Intersect

RedColor

100k>=

< 200k

Functional
Description

Functional
Description

Graphical
Transform

Intersect

GreenColor

200k>=

< 300k

Functional
Description

Functional
Description

Graphical
Transform

Intersect

BlueColor

300k>=

< 400k

Functional
Description

Figure A-15: Dividing up house concepts into 3 groups based on selling_price

 A more efficient way to specify this task is to use a control operator to repeat the functional

description functions and the color graphical transform so that we only need to specify them once. In

Figure A-16 we use the foreach control operator on sets of threshold values and color values. The foreach

operator is used to repeat a sequence of object definition and transformation functions for each member of

a given set of elements. In this case the >=, <, and color graphical transform functions are repeated three

times, once for each of the input arguments provided to the functions.

Functional
Description

Functional
Description

Graphical
Transform

Foreach

Red, Green, Blue

End ForeachIntersect

Color

100k, 200k, 300k

<

>=

200k, 300k, 400k

Figure A-16: Dividing up house concepts into 3 groups using the foreach control operator

 A-176

Control operators also allow us to repeat a set of functions an indeterminate number of times,

something that cannot be done through regular specification. For example, one interesting means of

selecting objects is to divide up the object set into multiple partitions, where each partition contains values

over particular ranges. This selection method is essentially a set of related threshold functions. We can

achieve this behavior by first calculating the threshold values for each partition and then P-C-composing2

that with a set of threshold functions. In the partition example shown in Figure A-17 we are calculating

equi-distant partitions and then creating each partition with a pair of threshold functions. In this example

the loop control operator is used to repeat the pair of threshold functions n times, where n is the number of

partitions desired. Because we are using the loop control operator, we need not determine the number of

partitions required during specification, and we can easily alter the number of partitions generated at any

time without having to change the specification.

Data Transform
(get-min)

End Loop

Num.
partitions

Enumeration

Further
transform

Loop counter

Loop counter + 1

Data Transform
(subtract)

Data Transform
(divide)

Data Transform
(multiply)

Data Transform
(multiply)

Functional
Description

>=

Functional
Description

<

Loop

Data Transform
(get-max)

Figure A-17: Partition selection

Graphical
Transform

Enumeration
Data Transform

(count-num-
elements)

Graphical
Transform

Switch

Switch Case

Switch Case

>=

<

20
Color

20 Size

Figure A-18: Using the switch control operator to channel the execution flow

2 PC-composition combines two primitive techniques by piping the outputs produced by one technique into the

input slots of the other.

 A-177

Finally there is the switch control operator that is used to choose among multiple different branches of

execution based on a specified condition. For example suppose we want to highlight a set of user chosen

house concepts differently depending on the number of concepts chosen. One way to do this is to use the

switch control operator to channel the execution of the technique through different graphical transforms

based on the size of the selected object set. In Figure A-18 we use the switch operator so that if the selected

set has < 20 objects then its elements will be color highlighted, and if it has >= 20 objects then its elements

will be enlarged (i.e. highlighted through a change in size).

 B-178

Appendix B
Appendix to Instantiable Visualization Techniques Framework

(Chapter III)

B-1 Comparison with Previous Frameworks

Part of our framework, namely the four transformation phases that correspond to the visualization

generation process (Figure II-1) is very similar to Card et al’s [Card, 1999] reference model of

visualization. Both works were developed in parallel. The main difference between our visualization

creation process and Card’s visualization reference model is that we have an additional step of graphical

transforms. This allows us to model changes in the visual structure of the visualization that is not based on

any underlying data concepts, e.g. showing state information such as selection highlighting. The three

classes of objects namely data, visual structure and views considered by Card also corresponds to our three

realms of data, graphical scene and output media.

The four transformation classes, however, only consist of a part of our framework. In our work we

define a visualization technique to have an object selection and transformation function (ODT model). This

model is different from any other previous frameworks. Our ODT model is flexible because it allows us to

build techniques that can create visualization interfaces from scratch or modify exiting visualizations. By

including an object definition phase before transformation, we allow any type of objects to be piped into

the transformation component and as a result we can build techniques that contain transformation functions

that come in any order (i.e. they do not need to follow the data Å mapping Å graphical Å rendering

phases in the visualization generation process). Visualization techniques in our framework also need not

contain functions from all four classes. In addition none of the previous frameworks include a

compositional syntax (chapter II-2).

Another related framework from visualization techniques was presented by Tweedie [Tweedie, 1997].

In her framework, Tweedie described the differences in visualization techniques by using four primary

criteria: data, representation, interactivity and input/output externalizations.

 B-179

For example the dynamic query technique and the Table Lens technique are described in Figure B-1:

Dynamic Queries
Purpose: Find useful sets of multivariate data
Data type: Values
Representation: A scatterplot is used to display two
of the attributes, the remainder are represented as
sliders.
Interactivity: Data is hidden (mechanized DM) or
filtered (mechanized IM) by selecting ranges on
sliders.
I=O representation: Input Å Output is represented

Permutation Matrices/Table Lens
Purpose: view relations in multivariate data
Data type: values
Representation: This is essentially a graphical
spreadsheet (value in each cell is encoded as height)
Interactivity: Reorder the cells (mechanized DM)
I-O Representation: Only output is represented

Figure B-1: Tweedie’s description of the dynamic query and Table Lens techniques

Tweedie’s framework was not very appropriate for our goals in automatic design, however, because

we needed a fully instantiable language of visualization techniques i.e. the descriptive language must be

complete and specific enough to generate an active visualization interface. Thus unlike Tweedie’s approach

we needed to describe the function and structure within each technique in much greater detail. This

however does not detract from our ability to analyze and categorize the various techniques as we showed in

chapter II-3.

A very desirable property of our instantiable language is that it provides a common level of primitives

for describing visualization techniques (as was laid out in chapter III-1). This allows us to break down

high-level visualization systems and compare their capabilities at the same level of granularity. This was

not true of previous frameworks [Tweedie, 1997], which sometimes compared visualization systems that

differ in their level of granularity. For example the Table Lens and dynamic query slider techniques shown

in Figure B-1 are both at two very different levels of granularity. The Table Lens system consists of

multiple different technique including an attribute value sorter, a lens technique that allows users to change

the size of cells, a semantic zoom technique that changes the level of detail on elements depending on their

cell size, and a column move technique. In contrast the dynamic query technique is a single technique in

itself. Our framework highlights such distinctions.

In our framework we have descriptions comparable to Tweedie’s data, representation and interaction

categories. We however, chose to separate out “goodness” measurements of input and output

externalizations from our framework because this category more pertains to the effectiveness of a design or

a technique rather than to describing the structure or components within a technique. Effectiveness

measurements was first introduced by Mackinlay [Mackinlay1986a, 1986b] and in this work we extend

effectiveness criteria to cover data processing and mapping designs as well as interactive methods (chapter

IV).

 B-180

Both Card’s and Tweedie’s frameworks are functional frameworks that try to capture the semantics of

visualization techniques. There are also a set of instantiation languages including the Data Explorer, Iris

Explorer, and AVS systems [Brodlie, 1991]. These systems provide an instantiable syntax and allow

designers to create visualization interfaces by building data flow diagrams that convert sets of data values

into visualization renderings and interface components on the computer system. These systems were also

not sufficient for the goals of this thesis for several reasons:

1) They are based on scientific visualizations.

2) They are based on the use of data flow diagrams are used to create visualization systems from

scratch. In our work we need to design techniques that generate new visualization interfaces from

scratch as well as modify existing visualization designs. Techniques from the latter category

cannot be described using any of the three instantiation packages (the Data Explorer, Iris Explorer,

and AVS systems). For a more complete description of how our framework syntax differs from

data flow diagrams refer to chapter II-4; 3).

3) They consist only of low-level primitives. In contrast our framework contains both a functional

description as well as an instantiable description. In our work it is necessary to group and

categorize techniques based on the higher more abstract functional level. This two-level

description (functional and instantiation) allows us to modularize our designer so that it can

initially only consider what functional primitives it needs to use to fulfill current goals. Specifics

that may affect the effectiveness of a technique but not the core functionality can be considered

later once we are sure that all the required function have been included. In addition, the category

of the various current visualization techniques informs our designer what roles data, mapping,

graphical and rendering transforms can play in the design process and how they may be usefully

combined.

By using the lower level instantiable language we allow our automatic designer system to describe a

visualization in sufficient detail so that it can ultimately render an active visualization interface. Unlike

previous frameworks our visualization techniques language described technique in both the functional and

instantiation levels using a compatible syntax as well as establishes a systematic process to move between

the two different levels of abstractions: the functional level and the instantiation level. Previous frameworks

either concentrate on one level or the other. We provide a common structure for representing both.

B-2 Data Flow Diagrams

It is important to note that even though our visualization technique specification may resemble data

flow diagrams, they are not strictly data flows. Data flow diagrams are commonly used to analyze and

understand complex systems consisting of multiple interacting processes. Our specification language, on

the other hand, is meant to describe a single process (i.e. the visualization technique process), more like a

high-level flow chart. The visualization technique process does interact with two other processes, namely

 B-181

the user and the system designer, as is shown in Figure B-2. In Figure B-2, the user provides task inputs to

the technique through the use of input devices. This input may cause system state to be updated and

ultimately produce feedback for users in the form of visual change. The graphic designer also interacts with

the visualization technique by providing default values to the functions within it. While our specification

language does capture these relationships, its primary purpose is to encapsulate the functionality of a

visualization technique in enough detail so that a working system may be generated from it. In contrast,

data flow diagrams are used primarily to understand the flows or exchange of information among different

processes.

User Designer

Visualization
Technique

task inputs

feedback
default inputs

Figure B-2: Data Flow diagram showing relationships between a visualization technique,
the user and the visualization designer

Other differences between our specification language and data flow diagrams include:

1. No system state changes: Unlike data flow diagrams we do not show system states in our specification

because even though state information is important for understanding the way visualization techniques

work, they are less important for capturing the functionalities that we want to perform using a

technique. Including them in the specification diagram may significantly increase clutter and

complexity. In any case, system state changes can be easily included in our specification diagrams as

additional boxes, without changing the existing structure of the technique.

2. Temporal links: We have links that show flows of data from one function to another, as well as

temporal links which indicate a temporal ordering between two functions (temporal links allow us to

express that certain functions have to be performed before others during execution of the visualization

technique). Data flow diagrams can only have data links.

B-3 Example: Generating an Instantiation Specification for

Dynamic Query Sliders

This example shows how the abstract functional dynamic query slider [Ahlberg, 1992] design

presented in chapter II can be augmented to form an instantiable visualization technique. Figure B-3 shows

the functional specification for the dynamic query technique. The technique starts with a user-controlled,

functional description, object definition function followed by a graphical transform. The first step of the

 B-182

instantiation augmentation process is to determine the exact functional description function and graphical

transform function to use. For the functional description we use the threshold function with the “greater-

than” (>) operator. Once the objects have been defined, we need to give feedback to the user on the results

of the operation. One way to do this is to attach a common identifying feature to all the selected objects.

This can be achieved by using the assign function to set a chosen graphical property of the selected object

set to a common value. Figure B-4 shows the functional specification of Figure B-3 augmented with

specific instances of object definition and transformation functions.

Graphical
Transform

Functional
description

Input device

Figure B-3: Dynamic query functional specification

Graphical
Transform
(Assign)

Functional
description

(Threshold, >)

Input device

Figure B-4: Dynamic query specification with
specific object-definition and transformation

functions

Once the functions are chosen, we ensure that they connect correctly with one another. Sometimes

translation functions must be inserted to ensure that the outputs of one function are appropriate as inputs for

the following function(s). Figure B-5 shows the inputs and outputs (highlighted in gray) of the object

definition and graphical transform functions that constitute the dynamic query technique. We start with the

set of all data objects. From these objects we extract a set of data values which are fed into the greater-than

threshold function. This function produces a set of boolean data values that are transformed into graphical

values for the assign graphical transform function.

Graphical
Transform
(Assign)

Functional
description

(Threshold, >)

Initial data
object set

Data
value set

Data
object set

Graphical
value set

? ?

Data
value set

Figure B-5: Dynamic query specification with input and output types for each object definition and
transformation function. The “ ?” boxes indicate areas where translation functions are needed to convert from

one argument type to another.

Figure B-6 shows the translation functions used in this example to convert the output type of a source

function to fit the input type of a destination function. The get-values function extracts a set of attribute

values from the initial data object set. These values are fed through the threshold function, which produces

a set of boolean values, indicating for each input value, whether it passed the chosen threshold. Based on

these boolean values and the set of data objects considered by the threshold function, we identify all of the

data concepts that passed the query (boolean-to-object). From these data concepts, we get all of the

 B-183

graphical objects that are used to represent them by using the get-related-graphical-objects function.

Finally we extract the property values that we want changed from the graphical objects. These values are

passed through the assign function that sets them to a common constant.

Assign
Threshold

(>)

Initial data
object set

Data
value set

Graphical
value set

Data
value setGet

values
Boolean to

object

Get related
graphical

objects

Get
values

Data
object set

Data
object set

Graphical
object set

First “?” in Figure B-10 Second “?” in Figure B-10

Data
object set

Figure B-6: Dynamic query specification with intermediate functions for inputs and outputs
(Note that the visualization function classes are not shown in order to reduce the amount of diagrammatic

clutter)

Figure B-7 shows the dynamic query specification with all currently unspecified function inputs in

bold italicized text with light-gray background.

Assign
Threshold

(>)

Initial data
object set

Data
value set

Graphical
value set

Data
value setGet

values
Boolean to

object

Get related
graphical

objects

Get
values

Data
object set

Data
object set

Graphical
object set

Data
object set

1.Data
attribute

2. Data value
3.Graphical

property
4. Common

constant value

House-
selling-price

Input device Color Red

Figure B-7: Dynamic query specification with all inputs required

There are basically four necessary inputs: 1) the data attribute used to extract values for the threshold

function, 2) the threshold value needed for the threshold object definition function, 3) the graphical

property of the resulting search objects that we want to change, and 4) the graphical value we want to use

as an identifying feature for all the search objects. For each of these inputs we must decide whether to

provide default values (i.e. designer defined values), or whether to hook them up to an input device to get

the needed values from the user. Hooking them up to a device will allow a user more flexibility in altering

the functionality of the technique. On the other hand, using input devices increases the motoric load1 of the

user. In this example we have decided to provide default values for all the required input arguments except

1 Motoric load (or articulatory load) refers to the physical effort expended by the user in manipulating physical devices

such as the mouse, keyboard, or electronic pen. Example operations that result in motoric or physical effort include

mouse clicks, mouse movement, key clicks, or gesturing with an electronic pen.

 B-184

for the threshold value (argument 2). The default arguments are as follows: house-selling-price is the

default search data attribute (argument 1), color is the feedback graphical property (argument 3), and, red is

the common identifying color (argument 4). These arguments are shown in Figure B-7 as normal ovals.

Assign
Threshold

(>)

Initial data
object set

Data
value set

Graphical
value set

Data
value setGet

values
Boolean to

object

Get related
graphical

objects

Get
values

Data
object set

Data
object set

Graphical
object set

Data
object set

Data
attribute

Data value
Graphical
property

Common
constant value

House-
selling-price

Slider Color Red

Figure B-8: Adding a slider input device for specifying the threshold constraint in the dynamic query technique

In the final steps we determine the input devices to use, and specify the initialization arguments for

those devices. In this example we only have one user input value, namely the threshold value for the

greater than object selection function. In the common dynamic query technique this input argument is

attached to a slider input device (as is shown in Figure B-8).

Translation
Function

(Get values)

Graphical
Transform
(Assign)

Data Transform
(Min)

Input-device
attribute

Data value

Slider

Translation
Function

(Get values)

Min

House-
selling-price

Initial data
object set

Data
object set

Data
attribute

Data value
set

(a) Specification for initializing the minimum range
of the slider input device

Translation
Function

(Get values)

Graphical
Transform
(Assign)

Data Transform
(Max)

Input-device
attribute

Data value

Slider

Translation
Function

(Get values)

Max

House-
selling-price

Initial data
object set

Data
object set

Data
attribute

Data value
set

(b) Specification for initializing the minimum range
of the slider input device

Figure B-9: Initializing the min and max properties of the slider input device added in Figure B-8. The min and
max values are derived by computing the min and max values of the house-selling-price data attribute with data

transform functions.

 B-185

A slider input device requires two initialization values, a minimum value and a maximum value, that

defines the range of the slider. We set these values to be the minimum and maximum values of the house-

selling-price attribute as is shown in Figure B-9. Initially we extract all the house-selling-price values from

the entire data set by using the get-values translation function. Subsequently, we compute the min value

using a data transformation function. This min value is then assigned to the min property of the slider input

device which determines the minimum value on the slider range. A similar specification is used for

assigning the maximum value on the slider range.

B-4 Systematic Exploration of the Instantiation Level of the

Dynamic Query Slider Technique

In this section we explore the instantiation space for the dynamic query slider technique [Ahlberg,

1994] and discuss some of the more interesting design variations. We explore the instantiation design space

by considering each of the five steps in the instantiation augmentation process (described at the beginning

of this chapter III) and seeing for each step how a visualization technique can be varied:

1. Changing the specific functions used or adding more functions of the same type.

2. Changing the translation functions between object definition and transformation functions.

3. Changing how function arguments are provided (either by user or designer) as well as the default

designer values.

4. Changing the type of input devices used within the design.

5. Changing how input arguments are provided to input devices.

B-4.1 Changing the Specific Functions Used or Adding More Functions of

the Same Type

The first step of the instantiation augmentation process determines which specific object definition and

transformation operators to use from the abstract classes described in the functional specification (e.g.

functional description, graphical transform). By picking different instances of object definition and

transformation functions we may generate a range of slider techniques. Figure B-10 shows the sets of

alternative operators that may be used for each function class in the abstract functional specification.

Different operator combinations affect the usefulness or effectiveness of the resulting technique. For

example, in the slider technique shown previously, the assign graphical transform is used as a feedback

mechanism to set the color for a group of selected or focus distributors to a perceptually salient value, e.g.

red. Another alternative is to use the addition graphical transform to provide feedback by adding a constant

value to the x-position of the focus objects thus shifting them to the right of the map. The first alternative

 B-186

allows users to pre-attentively see the selected objects without losing any positional context between the

focus objects and the other elements in the visualization, unlike second alternative. Nevertheless the first

alternative is also more susceptible to object occlusion. The second alternative like the SDM system

[Chuah, 1995], allows users to move a set of focus objects up to the front or up above so that they can be

clearly seen without occlusion and without the noise from surrounding objects.

Functional Description
(Threshold:
<,>, =, <=, >=, <>)

Set operation
(Intersect

Union
Difference

Union-repeat)

Graphical Transform
(Add/Subtract

Multiply/Divide
Assign)

Enumeration

Figure B-10: Alternative object definition and transformation functions for the dynamic query slider technique

 We can also experiment with expanding a function class by composing it with other functions from

the same class. I.e. using multiple functional description operators or graphical transforms instead of just

one. To ensure that the functional description of the technique remains unchanged however, we must only

add operators that share the same general goal (e.g. computation, summarization, feedback, or readability)

as the expanded operator. For example, in Figure II-13 we can use the addition graphical transform to alter

the size of objects as well as the assign graphical transform to alter the color of objects. This design

variation does not change the functional goal of the technique because both assign and addition functions

are graphical transforms, and both functions are used for the same general goal, which is to provide

feedback on a set of focus distributors.

B-4.2 Changing the Translation Functions between Object Definition and

Transformation Functions

The second step of the instantiation augmentation phase incorporates translation functions into the

design specification to ensure that the outputs of a function match the inputs of subsequent connecting

functions. By using different combinations of translation functions we can vary the visualization technique

design. In Figure B-11 we have enriched the dynamic query slider specification with object definition,

transformation and translation functions. One variation on this design is to change the translation functions

so that the intersect function is applied to data objects instead of graphical objects as in Figure B-12.

 B-187

Threshold
(<)

Get related
graphics

Intersect Assign
Get

boolean
objects

Get
values

Graphical
value set

 Boolean
value set

 Graphical
object set

 Data
object set

 Graphical
object set

 Graphical
object set

Get graphical
objects

Map
visualization

Figure B-11: Specification for the dynamic query slider technique including object definition, transformation, as
well as translation functions

Threshold
(<)

Get related
graphics

Intersect Assign
Get
boolean
objects

Get
values

 Boolean
value set

 Data
object set

 Data
object set

 Data
object set

 Graphical
value set

Get
related
graphics

 Graphical
object set

Related
Visualization

Get data
concepts

Figure B-12: In this specification we change the translation functions leading into the intersect operator so that
the intersect operation is applied to data concepts instead of graphical objects as was the case in Figure B-11.

Here, only those data concepts that are both selected by the slider and that are contained within
related_visualization can be selected. Note that all the changes made to the specification in Figure B-11 are shown

in gray in Figure B-12.

In Figure B-11 the intersect operator constrains the scope of the technique so that only graphical

objects in the map region container may be colored. In Figure B-12 we constrain the scope to particular

distributor data concepts instead. In this case, any graphical object may be colored as long as those objects

represent data concepts that are present in related_visualization. In this was we can combine the object

membership or query results across multiple visualization interfaces.

Translation functions may also be used to change the function arguments provided by users (through

input devices) or by designers (as default values). For example, in Figure B-11 the get-graphical-objects

translation functions is used so that the designer may enumerate the scope of the graphical object set based

on a container object (i.e. the map-visualization region). Alternatively we may remove get-graphical-

objects translation function and list out each individual graphical object of interest.

 B-188

B-4.3 Changing How Control Arguments are Provided as well as the

Default Designer Values

The third step in the instantiation augmentation process identifies the input arguments needed by the

functions within a specification and connects them to a user agent or a designer agent. The specification

shown in Figure B-11, for example, requires five input arguments: 1) the set of data values we want to

perform the threshold operation on, 2) a threshold value for the threshold function, 3) a set of graphical

objects for the intersect set operator, 4) a set of feedback graphical values, and 5) the feedback value used.

These five input arguments are shown in Figure B-13 as text with gray background.

Threshold
(<)

Get related
graphics

Intersect Assign
Get

boolean
objects

Get
values

1. Data
value set

Graphical
value set

 Boolean
value set

 Graphical
object set

 Data
object set

 Graphical
object set

 3. Graphical
object set

2. Data value
(Threshold
value)

?

?

?
 4. Graphical

property

? 5. Graphical
 value
(Feedback
value)

?

Figure B-13: This specification is similar to Figure B-11 except that here we have included all of the input
arguments that are required by the various functions that have yet to be provided. Each missing argument value

is indicated with a “?” symbol together with the argument type that is required. In this example there are five
missing function arguments.

We can generate a variety of designs for this technique by either setting the arguments to different

default values (i.e. designer defaults) or by letting users specify the arguments through input devices. One

possibility is to let users provide part of the input arguments while leaving the rest as designer defaults. For

example, in Figure III-12 the threshold value is provided by users through a slider input device and the set

of data values for the threshold function are from a data attribute that is provided through a menu input

device. All the other input arguments are provided through designer defaults. Another alternative is to give

users more flexibility and let them pick the feedback graphical property (e.g. size or shape instead of color)

and the feedback value (e.g. blue, or green instead of red). Note however that loading an interface with too

many input controls may significantly increase the motoric and cognitive complexity placed upon users

when manipulating the interface. We could also change the specification by experimenting with different

default values, for example instead of using red as the default highlight color, we can set the highlight color

to blue instead.

In addition to users and designers, function inputs can also be provided by other visualization

techniques through composition operators as was shown in chapter II-2. However, such changes alter the

 B-189

functionality of a visualization technique in significant ways, and as such their use is not encouraged during

instantiation specification.

B-4.4 Changing the Type of Input Devices Used within the Design

In this step we pick the input devices for each user-provided input argument (as specified in the

previous step). Suppose in the previous step we attached all the input arguments shown in Figure B-13 to

input devices except input argument 3 (which feeds into the intersect operator). This is shown in Figure

B-14 which replaces each “?” in Figure B-13 with an input device or a designer default value.

Threshold
(<)

Get related
graphics

Intersect Assign
Get

boolean
objects

Get
values

Data
value set

Graphical
value set

 Boolean
value set

 Graphical
object set

 Data
object set

 Graphical
object set

Graphical
object set

Data value
(Threshold
value)

Graphical
property

 Graphical
 value
(Feedback
value)

Get values

Input device-2

Input
device

Get values

Initial data
object set

 Data
object set

Get values

Input device-1
Input
device

Data
attribute Get graphical

objects

Map
visualization

Get values

Input device-4
Input
device

Get values

Input device-5
Input
device

Figure B-14: Slider visualization technique with input devices

Now let us consider the types of input devices we can use to provide each of these input arguments.

One way to select the threshold data attribute (i.e. input-device-1) is to use a mouse or bounding-box to pick

an annotation object (e.g. the x-axis) that represents a data to graphical mapping relationship in the

visualization. For example in ??, the x-axis annotation object represents a mapping of the longitude data

attribute to the x-position graphical property. By picking this annotation object we indicate to the system

that we want to perform the threshold operation on the longitude attribute. A weakness of this approach is

that only graphically encoded attributes may be selected. The mouse and bounding box cannot be used to

specify non-encoded data attributes because none of them are visually represented.

Other alternative input devices shown in Table III-5 include the text-box, different menu types (option

menu, scroll list, radio boxes), dial and slider. These input devices are general purpose and can be used to

select values, attributes, objects or containers. Menu input devices are especially appropriate for picking

data and graphical attributes because the list of attributes is usually relatively small (< 30 attributes) and the

attributes are discrete. Dials and sliders, on the other hand, are more appropriate for choosing continuous

values even though they are also capable of expressing non-continuous values (e.g. alpha sliders [Ahlberg,

1994]). Text boxes are very flexible because users can type in any input argument. However, they do not

 B-190

indicate which arguments are valid and which are not. More information on the expressiveness and

effectiveness of input devices can be found in Card et. al.’s work [Card, 1990].

B-4.5 Changing How Input Arguments are Provided to Input Devices

As was discussed in chapter III-1.4, input devices have attributes as well just like data and graphical

objects. Some input device attributes must be initialized before they can be used. For example the slider

input device must first be initialized with the min and max values for the slider range. To initialize an input

device attribute, we construct a visualization technique specification with the same object-

definition/transformation structure as all other visualization techniques we have been discussing thus far.

Therefore, we may vary an input device initialization specification by using any of the previous four steps.

In summary, we have presented five steps for systematically exploring the instantiation design space.

Changes in the instantiation design space allow us to expand or change the design of existing techniques

while still maintaining a common functional metaphor.

B-5 Exploring the Space of Visualization Techniques

In this section we analyze three interactive visualization techniques using the five steps in the

structural augmentation process (for details refer to appendix B-4). For each technique we present its

instantiation specification and describe some interesting alternative designs that can be derived from

varying that specification.

B-5.1 Aggregation

The aggregation technique deals with large data sets by summarizing multiple data concepts into an

aggregate concept. Aggregation may be achieved in several different ways [Goldstein, 1994]. In this

example, we examine the aggregation technique shown in Figure B-15. In Figure B-15 users may select a

set of objects using a bounding-box. The selected graphical objects are converted to the data concepts they

represent and these data concepts are aggregated (group objects). In addition we also summarize a user

selected attribute of the objects using the mean data transform function. Finally we map the new aggregate

object into the visualization where the bounding-box was invoked (add-object).

 B-191

Get
values

Group
objects

Mean

Aggregate-
data-type-1

Selected-
objects Get

values

Get parent

Get related
data

Summary-
attribute-1

Assign Add objectGet values

Bounding-box
Input
device

Input
device

attribute

Scroll-list Selected-
entry

Input
device

Input device
property

Get
values

 Data
attribute

Graphical
object set

Data
object set

Visualization
object

Data-type Data
attribute

 Data
value set

 Data
value

Aggregate
data object

 Data
value

Figure B-15: One possible instantiation specification of an aggregation technique. This technique allows users to
select a set of graphical objects using a bounding-box. It then summarizes the underlying data concepts by using
a group-objects data transform function, thereby creating a new aggregate-data-type-1 data-type. In addition, one

of the data attributes for the selected objects is also chosen for mean summarization, and a new summary-
attribute-1 is created to store the mean values. This data attribute can then be mapped to a graphical property.

An interesting design variation is to use different devices to pick the aggregation objects and the

visualization into which the group objects are added. This will allow us to pick objects in one visualization

and have the group object appear in another visualization. Another useful variation of the aggregation

technique is to remove the graphical objects that form the aggregate. Since we are adding a new group

object that summarizes information on a set of individual data concepts, it may no longer be necessary to

show those data concepts. Thus we add the remove-object mapping function that is used in tandem with the

add-object function to reduce clutter and increase readability. Other design alternatives include adding in

new input-devices for users to pick the summarization function (instead of always using mean), as well as

the summary data-type (aggregate-data-type-1) and summary attribute names (summary-attribute-1).

B-5.2 Data Drag & Drop

Drag-and-drop is a popular input-device metaphor for moving objects from one frame or window to

another. This method allows users to select an object or set of objects in an origin frame by mouse-clicking

on them. The selected object(s) may subsequently be moved to a destination frame by dragging them over

with the mouse. Dragging involves moving the mouse while having one or more of its buttons suppressed.

Upon reaching the destination frame, the mouse button is released. In this work, we encapsulate the drag-

and-drop technique as a virtual device method, just as a bounding-box. The bounding-box virtual device

manages drawing of the bounding-box, testing and capturing all the objects encapsulated by the bounding-

box, and erasing the box upon a mouse release event. Similarly, the drag-and-drop virtual device manages

 B-192

storing the origin frame where the initial mouse-click occurred (we call this object the click object), the

transition scenes when moving objects between frames as well as keeps track of the object where the mouse

release event occurred (we call this object the release object).

In Figure B-16 we show the instantiation specification for a drag and drop technique that is used to

transfer data concepts from one visualization to another. This data drag & drop technique is used

extensively in the Visage visualization system [Roth, 1996]. Upon the mouse release event of the drag-and-

drop virtual device, we query it for the click object and the release object. The drag-and-drop virtual

device in our system returns either the graphical object that was clicked on or a container object (e.g.

region, or visualization). If the mouse click occurred over a graphical object, then the graphical object is

returned, if not, the device will return the smallest container upon which the click occurred. Note that in

Figure B-16 we only add the click object into the release visualization if the click occurred over a graphical

object and not a container object. We check for this by using the switch function. The switch function is a

control operator (described in appendix A-5) that allows us to pick different streams of execution based on

its inputs. Similar to the click event, the release event may occur over a graphical object or over a container

object. Since we are only interested in the release visualization, we use the get-parent translation function

to query the release object for its parent visualization container.

Get values

Click
object

Get related
data

Get values

Release
object

Add object

Get
type

switch

Get
type

Drag-and-drop

Input
device

attribute

Input
device

attribute

Input
device

switch

Case

Case

Visualization

Get
parent

Other

String
value

Object

String
value

String
value

Case

Get named
object

String
value

String
value

Visualization
object

Object

Object
String
value

String
value

Graphical
object

String
value

Data
object

Figure B-16: Instantiation specification for Visage drag-and-drop technique. This technique allows users to pick
a set of graphical objects in one visualization, and then add the underlying data concepts of the selected objects

to a different visualization. The switch and case statements used above are to ensure that the user has indeed
selected an origin set of graphical objects and a destination visualization container.

An interesting alternative to this instantiation design is to use different devices to pick the source

graphical objects (click object) and the destination visualization (release object). For example we could use

a bounding-box to select the initial set of graphical objects and a mouse-click to select the destination

 B-193

visualization. This design variation illustrates that the drag-and-drop virtual input-device is not an integral

part of the functionality achieved by the technique. Another alternative is to use pre-specified source or

destination arguments. For example we could make it so that elements can be selected in any visualization

but they always get added into a fixed predefined visualization. Yet another alternative is to remove the

selected objects from their origin visualization (using the remove-object mapping operator) in addition to

adding them to the release visualization. We could also replace the add-object operator in Figure B-16 with

the remove-object operator so that instead of adding data concepts to the release visualization we are

removing data concepts from it.

B-5.3 Table Lens Semantic Zoom

One very useful operation in the Table Lens system allows users to interactively control the size of

table cells so that the interesting ones can be expanded and viewed in greater detail while the size of the

surrounding cells are contracted so that context from these surrounding cells can still be maintained. This

technique is achieved through rendering transforms that are described in detail in Rao et al.’s paper [Rao,

1994]. Changing the size of table cells also causes the graphical object mappings within those cells to be

remapped. In particular, the larger cells will have mappings to both the text-graphical-class and the bar-

graphical-class while the smaller cells will have mappings only to the bar-graphical-class. One way to

achieve this change in mapping is through the instantiation specification in Figure B-17.

Table
Region

Get
children

Get
values

Get
values

Width

Height

Threshold
(>)

20

200

Get boolean
objects

Intersect

Attribute
mapping

Get
mapped
attribute

Object
mapping

Text-class

Get
mapped

data-type

label

Get
graphical
objects

Threshold
(>)

Get boolean
objects

Region
object Cell object

set

Cell
property

Cell
property

Cell
property

value

Cell
property

value

Cell object
set

Cell
property
value set

Cell
property
value set

Cell object
set

Data
type

Data
attribute

Graphical
object set

Graphical
class

Graphical
property

Figure B-17: Instantiation specification for the Table Lens semantic zoom operation 2. This technique identifies
the larger cells in the table (i.e. height > 20, width > 200) and adds a new text-class mapping for those larger

cells.

2 Note that in this specification we have introduced the cell container object, which we did not present in chapter III-

1.1.2. This cell container however acts like any other container object and is placed below the region container in the

graphical object hierarchy.

 B-194

In this specification we query for all cells that have height greater than 20 pixels and width greater

than 200 pixels (these are the larger cells). We then add mappings for the text-class and label properties to

these larger cells. The other “small” cells are rendered according to the default mapping which in this case

encodes all data concepts using the bar-graphical-class.

We can augment the Table Lens semantic zoom technique by adding in input-devices for controlling

the height and width threshold values. This will allow users to interactively control what actually

constitutes a large cell based on their perceptual abilities and the hardware screen settings. Another

possibility is to add input-devices so that end-users may interactively choose the graphical property upon

which to threshold on. A problem with this change is that it may de-couple the semantic zoom operation

(Figure B-17) from the Table Lens size control operation because the semantic zoom will no longer be tied

to the size of the cells.

Another design possibility is to break up the cells into several different groups (i.e. more than 2 as is

the case in Figure B-17) and apply a different mapping to each group. For example instead of just having

large and small cells, we could have large, medium-large, medium, medium-small and small groups. In this

way the change in cell size will be more gradual and this may help users interpret the display changes when

the table lens focus is changed. We could also threshold on several different graphical properties

simultaneously, such as cell size and color, and have a large red colored cell group, a medium red colored

cell group, a medium blue colored cell group, etc. In order to be useful however, this perceptual

categorization must correspond to some meaningful data grouping.

B-5.4 Summary

These examples show some interesting design variations that can be achieved with current

visualization techniques by making changes at the instantiation level. Alterations to the instantiation

specification change the way with which the techniques are controlled, the amount of flexibility a user has

in manipulating the techniques, as well as the amount and quality of feedback that is received. This section

is provided as a contrast to chapter II-3 that explored the functional space of visualization techniques. In

chapter II we explore the visualization techniques space by changing their functional semantics. Here we

keep the semantics constant and explore the various structural forms that may be used to achieve the same

functional capabilities and how these changes may improve the usability of the techniques.

B-6 Other Visualization Technique Issues

In chapters II and III we considered building visualization techniques either from primitives or

through composition. However we only dealt with single techniques that are applied once to objects within

a visualization. In practical situations, visualization techniques are often repeated many times over different

 B-195

object sets. In addition, these techniques do not usually exist in isolation but are instead integrated with

other visualization techniques within a common workspace. In the next two sections we begin to study

these two issues and show some of the problems that may arise.

B-6.1 Repeating Visualization Techniques

Repeating interactions is a very important issue in designing interactive systems. Interactive

techniques are commonly not just executed once, but are applied repeatedly to the same or to different

object sets. For example throughout a data analysis session, we may want to filter and highlight different

object sets within a visualization. When this occurs we must decide what happens when a previously

transformed object is being transformed again. I.e. what happens when we color-highlight objects that have

already been color-highlighted. There are four possible repeat alternatives: forgetful repeat, additive repeat,

incremental repeat, and toggle.

A forgetful repeat interaction would return all previously affected values to their original state and

only show the results of the new operation. For example suppose the slider technique in Figure III-11,

Figure II-12, or Figure II-13 is a forgetful interaction. In this case, each time we change the slider threshold

value a new set of objects will get highlighted red. All previously highlighted objects that no longer pass

the new threshold will get reset back to their original color.

In contrast, an additive repeat interaction would add the new focus objects to the affected object set.

Thus the objects highlighted red not only include the objects currently within the threshold indicated by the

slider, but also those objects that have been previously selected by the slider. Newly defined objects that are

already under the influence of the interaction are not changed.

The incremental repeat option is similar to additive repeats except that the interaction is applied to all

input objects irrespective of whether they have already been altered. The effect of incremental repeats is the

same as additive repeats for the dynamic query slider technique (e.g. Figure III-11) because the object set

color is always assigned to a fixed constant value. However, incremental and additive effects are different

for the technique in that colors the selected objects as well as increases their size (e.g. Figure III-13). If we

used additive repeats, the selected objects are only enlarged once. However, if we used incremental repeats,

the size of objects will get larger and larger as they get selected more and more times.

Finally toggle repeat adds selected input objects that are not already in the applied set into the applied

set and removes input objects that are already in the applied set from it. For example suppose we selected a

range from 100k to 150k on the dynamic query slider interface and then we selected a range from 120k to

170k. At the end of these operations, the objects that are highlighted red are those objects that are between

100k and 120k as well as 150k and 170k. The objects between 120k to 150k get un-highlighted because

they fall within both of the chosen ranges.

 B-196

This issue of repeating operations has been dealt with by Wills [Wills, 1996], but he focused only on

object selection techniques. In order to deal with a wider range of techniques we added the incremental

repeat option that is missing from Wills’ framework. Wills did not consider this option because applying

multiple object selections with the additive repeat option or the incremental repeat option has the same

effect. This is because the selection technique only provides users with binary feedback (either an object is

colored to indicate that it has been selected or not colored to indicate that it is not selected). For techniques

that provide non-binary feedback (e.g. size increase, position shifts, etc), the additive repeat and the

incremental repeat options will have different effects as was discussed above.

B-6.2 Integrating Visualization Techniques within a Common Workspace

 When we integrate several techniques within the same environment, we must ensure that they are

consistent with each other. A consistent workspace such as the Mac or the Windows environment allows

users to access the techniques within it with greater ease because once users understand the metaphor or

“physics” of that workspace, they can easily pick up on how new techniques would work within that space.

Trying to develop a consistent set of rules for visualization technique design, however, is often a difficult

and protracted process. Some systems base their workspace upon physical metaphors from the real world.

The advantage of this approach is that most people understand the basic physical laws of the real world

very well and thus are able to apply that knowledge to the virtual workspace. The disadvantage is that if we

follow the “real world” too closely, we become constrained by its limitations and thus may not use the

flexibility afforded by the computer media to its fullest. That is why most visualization systems turn out to

be hybrid systems consisting of both “real world” and “virtual world” rules. Examining different

visualization technique and workspace metaphors and deciding on the right balance of “real world” and

“virtual world” rules is a very interesting but large area of study. Such considerations are beyond the scope

of this thesis and is left for future work.

 Another very important issue to consider when integrating a set of techniques into an environment is

whether they conflict with one another. As a first step towards dealing with visualization technique

conflicts, we consider all possible inconsistencies that may occur between any pair of primitive

visualization techniques by sensing for conflicts based on five important dimensions: the object definition

set, the transformation function used, the graphical property or data attribute used with the transform

function (if applicable), the graphical or data value(s) used with the transform function (if applicable), and

the input devices attached to the technique (if applicable). Based on these dimensions we identified the

following conflicts:

• Resource Ambiguity: This conflict arises for different techniques3 that use the same feedback value and

properties. For example, consider a system that allowed users to highlight objects red either by

3 Two techniques are considered different if they have different instantiation specifications.

 B-197

painting with a bounding box or querying with a slider. In such a system there is ambiguity as to

how/why a red object got highlighted. Problems arise because when the primitives are different, users

commonly also expect different feedback or results from them. By using the same feedback property

and value, users can easily get confused as to which technique caused a particular change in the

display.

• Resource Overload: This conflict arises when two different techniques change the same data attribute

or graphical property in different or opposing ways. For example, consider a system that used sliders to

highlight objects red and bounding boxes to highlight objects blue as in the painting systems. When an

object falls within the applied set of both techniques, there is uncertainty as to which color should be

used.

• Resource Adjacency: This conflict arises when two spatially adjacent visual components are changed

in the same way. For example, consider two spatially adjacent components within a mark graphical

object: 1) the mark outline and 2) the mark body. When both components are colored in the same way,

we lose our ability to perceive the boundary of separation between them. This raises complications

when the outline width is also used to represent a data attribute because we lose this data encoding

whenever the outline and body color of a mark object coincide.

• Resource Conjoins: This conflict arises when two resources are conjoint parameters. Conjoint

parameters combine together to produce emergent properties. Examples conjoint properties include the

width and height of a rectangle that produces the “area” emergent property. When one conjoint

parameter is changed without comparative changes in the other associated conjoint parameter(s), the

emergent property shown may no longer be correct and this may cause users to misinterpret the data.

• Resource Inconsistency: Resource inconsistency refers to all syntactic errors in a visualization

technique specification. Some example syntactic errors include using incorrect types of input

arguments, or trying to use an invalidated resource. For example, suppose a remove-objects

visualization function is used to delete certain graphical objects from a visualization. A resource

inconsistency error arises if a later visualization function tries to change those deleted objects.

Dealing with conflicts in a set of visualization techniques is a difficult process because it depends on

the visualization, the techniques used, and the task. If the task does not require persistence in the

visualization technique effects, then conflicts with that technique may not be as important. Otherwise, we

must find some way to resolve the collisions and this may get very complex when there are many

techniques within the environment. We therefore leave the problem of conflict resolution for future work.

 C-198

Appendix C
Appendix to Design Heuristics (Chapter IV)

C-1 GOMS Evaluation for Airline-Scheduling Task in Chapter

IV-1

Given an origin and a destination city, the user “attempts to locate the two flights

arriving in and departing from a layover city that offer the minimum amount of `down time’

between the flight times and the beginning and ending time of a scheduled meeting (in the

layover city)”.

In the following example designs, suppose that the origin and destination cities are Los Angeles (LAX)

and Boston (BOS) and that the layover city is Chicago (ORD). Further, suppose that the meeting time is

from 2 p.m. to 4 p.m. Our airline scheduling data set has a total of 135 flights. 47 flights originate from Los

Angeles (LAX) and 18 of those go to Boston (BOS). Of those 18 flights, only 10 fulfill the meeting time

constraints.

C-1.1 GOMS Evaluation for the Cognitive Solution of the Airline Scheduling
Task

…

Figure C-1: Cognitive design for the airline-scheduling task
(Note that the flights are not all shown here because the table is very large)

 C-199

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects
(data or graphics)

Attend find flight origin 50
Initiate eye movement 50
Eye movement 30
Read origin city name 290
Initiate comparison 50
Compare origin city name
with LAX

50

Verify comparison 50

Find flight originating from
Los Angeles (LAX) and point
left hand at flight

Sub-total 570

Attend find flight
destination

50

Initiate eye movement 50
Eye movement 30
Read destination city name 290
Initiate comparison 50
Compare destination city
name with ORD

50

Find destination of flight and
determine whether it is
Chicago (ORD)

Verify comparison 50

 Sub-total 570
Attend get flight arrival
time

50

Initiate eye movement 50
Eye movement 30
Read arrival time 290
Attend compare time with
start of meeting

50

Compare if time is before
meeting start time

50

Verify compare 50

Get flight arrival time

Sub-total 570
Attend compute time before
meeting

50

Subtract flight arrival time
from 4 p.m.
(3 significant figures)
150 + (n-1) * 100

350

Verify time before meeting 50

Compute time before meeting

Sub-total 450

Attend compare with
current min downtime

50

Compare with current min
downtime
(Assume an average to 2
significant figure
comparison = 50 msec * 2
= 100 msec)

100

Verify results 50

Determine if current prior
meeting downtime is the
minimum

Sub-total 200

 C-200

Time taken to move finger in the calculation below we estimate as follows:
We assume that the visualization is enlarged so that each label entry is at least the width of a finger. Or else, finger
pointing would be very difficult. Thus,
Height of widest finger = Height of each entry = 0.5 inches
For this particular design and data set, we assume that 5 out of the 10 flights that fulfill all time and city constraints
require min changes. If they are evenly spread out, the movement per min number is 135/5 steps = 27 * 0.5 inches =
13.5 inches
Thus using Fitts Law, the estimated time for movement is 100 * (log2 (13.5/0.5)+.5) = 525 msec

Note that for simplicity we assume that all the flights fit within 1 screen. This is highly unlikely since there are 135
flights. However even with this simplifying assumption the estimated time for this cognitive solution is still very
significant.

Attend change finger
positions

50

Initiate finger lift 50
Lift finger 60
Initiate finger move 50
Move finger
100 * (log2 (13.5/0.5)+.5)

525

Initiate finger drop 50
Drop finger 60

If so, point to current row
with right hand and keep
current min downtime in STM

Sub-total 845
Total time for processing all rows for flight before meeting include:

Time taken to process origin of all rows = 135 * 570 msec. = 76950 msec.
Time taken to process destination of all rows. This only applies to flights with origin from LAX of which
there are 18 = 18 * 570 msec. = 10260 msec.
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which
there are 18 = 18 * 570 msec. = 10260 msec.
Time taken to process min-downtime. This only applies to flights from LAX to ORD that arrive before the
meeting of which there are 10 = 10 * (450 + 200) msec = 6500 msec.
Time taken for finger movement. This depends on the number of times we have to change the min entry.
Since there are 10 flights which fulfills both city and time constraints, we assume half of these require min
changes thus total time = 5 * 845 msec. = 4225 msec.

Total time taken for
processing flight with
minimum total before meeting
downtime

76950 + 10260 + 10260 +
6500 + 4225

 108195

Repeat for getting total downtime after meeting. Total time for processing all rows for flight after meeting include:
Time taken to process origin of all rows = 135 * 570 msec. = 76950 msec.
Time taken to process destination of all rows. This only applies to flights with origin from ORD of which there
are 47 = 47 * 570 msec. = 26790 msec.
Time taken to process total downtime before meeting. This only applies to flights from ORD to BOS of which
there are 19 = 19 * 570 msec. = 10830 msec.
Time taken to process min-downtime. This only applies to flights from ORD to BOS that depart after the
meeting of which there are 10 = 10 * (450 + 200) msec = 6500 msec.
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since
there are 10 flights which fulfills both city and time constraints, we assume half of these require min changes
thus total time = 5 * 845 msec. = 4225 msec.

Total time taken for
processing flight with
minimum total after meeting
downtime

76950 + 26790 + 10830 +
6500 + 4225

 125295

Attend add downtimes 50
Mental add
(Assume 3 figures)
(150 + (n-1) * 100)

350

Verify results 50

Add both downtimes
(We assume that both
downtimes can be stored in
STM)

Sub-total 450
Total time 108195 + 125295 + 450 233940

 C-201

Total time taken to solve the airline-scheduling task using Figure C-1 is 234 seconds or

approximately 4 minutes.

C-1.2 GOMS Evaluation for the Pure Perceptual Solution of the Airline
Scheduling Task

(a) Full data set

This visualization shows all the elements in the
data set (i.e. all 135 flights).

(b) Truncated data set.

This example visualization shows the ideal case
where there is little occlusion among the different

flight lines. This data set was chosen so that it
contains some flights that fulfill the task

constraints as well as some other random flights
that do not occlude one another.

Figure C-2: Perceptual design for the airline-scheduling task
Each line represents a flight with origin and destination city mapped onto the y-axis and arrival and departure
time mapped onto the x-axis. This is the best design that gets generated when ONLY mapping operations are
considered by the automatic system. I.e. this is the best possible design from current state of the art systems.

 C-202

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total

(msec)

Total
time

(msec)

Target objects (data
or graphics)

Attend find origin city on y-
axis

50

Initiate eye movement 50
Eye movement 30
Read city name 290
Initiate comparison 50
Compare origin city name
with LAX

50

Verify comparison 50
Sub-total 570

Scan on y-axis to find origin
city (LAX). We assume that
cities are ordered
alphabetically, thus a binary
type search can be applied.
Since there are 29 cities, a
total of log2(29) = 5 searches
are necessary to get to the
desired city

Total time (5 * 570) 2850

Attend process line end-
point

50

Initiate eye movement 50
Eye movement to end of
line

30

Perceive point 100
Is point arriving at
destination city?

50

Verify point arriving at
destination city

50

Sub-total 330
Is point before meeting start
time?

50

Verify that point is before
meeting start time

50

Scan to the right from origin
city position and process next
line that start from this y-
position. Specifically scan to
end point of line and
determine if it is from ORD as
well as before the meeting
start time (we assume that the
start and end meeting times as
well as the origin, layover,
and destination cities are
marked on the display or
stored in STM by the user).

Sub-total 100
Attend compare x-distance 50
Is point after finger
position?

50

Verify results 50

Compare end-point with
current best candidate flight
(here we determine if the
current point is before or after
our finger position which is at
the current best flight
candidate).

Sub-total 150

The distance moved here depends on the x-distance between different flights before the meeting. This distance is
NOT dependent on number of elements as was in the previous example but is instead dependent upon the x-axis
scale. Assuming that the visualization fills the entire screen, the maximum x-axis length would be 14 inches in a 21
inch CRT display screen.
Since 5 moves are necessary, we assume an average of 2.8 inches per move
If so, point to current row
with left hand

Attend change finger
positions

50

 Initiate finger lift 50
 Lift finger 60
 Initiate finger move 50
 Move finger

100 * (log2 (2.8/0.5)+.5) =
299 = approx 300

300

 Initiate finger drop 50
 Drop finger 60
 Sub-total 620

 C-203

Total time for processing all rows include:
Time taken to get to the proper origin city position on the y-axis = 2850 msec.
Time taken to process destination of all lines that start from the origin city (LAX) of which there are 18 = 18 * 330
msec. = 5940 msec.
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which there
are 18 = 18 * 100 msec. = 1800 msec.
Time taken to determine if flight is best candidate. This only applies to flights from LAX to ORD that depart after
the meeting of which there are 10 = 10 * 100 msec = 1000 msec.
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since there
are 10 flights which fulfills both city and time constraints, we assume half of these require min changes thus total
time = 5 * 620 msec. = 3100 msec.

Total time taken for
processing flight with
minimum total before meeting
downtime

2850 + 5940 + 1800 + 1000
+ 3100

 14690

Repeat for getting total downtime after meeting. Total time for processing all rows for flight after meeting include:
Time taken to get to the proper origin city position on the y-axis = 2850 msec.
Time taken to process destination of all lines that start from the layover city (ORD) of which there are 47 = 47
* 330 msec. = 15510 msec.
Time taken to process total downtime before meeting. This only applies to flights from LAX to ORD of which
there are 19 = 19 * 100 msec. = 1900 msec.
Time taken to determine if flight is best candidate. This only applies to flights from LAX to ORD that depart
after the meeting of which there are 10 = 10 * 100 msec = 1000 msec.
Time taken for finger movement. This depends on the number of times we have to change the min entry. Since
there are 10 flights which fulfills both city and time constraints, we assume half of these require min changes
thus total time = 5 * 620 msec. = 3100 msec.

Total time taken for
processing flight with
minimum total after meeting
downtime

2850 + 15510 + 1900 +
1000 + 3100

 24360

Attend get exact downtime
Attend lookup arrival time
from x-axis

1135

Mental subtract arrival time
from meeting start time
(150 + (n-1) * 100)

350

Verify downtime 50

Get exact downtime before
meeting

Sub-total 1535
Get exact downtime after
meeting

 1535

Add both downtimes Attend add 50
 Mental add 350
 Verify results 50
 Sub-total 450
Total time 14690 + 24360 + 1535 +

1535 + 450
 42570

Total time taken to solve the airline-scheduling task using Figure C-2 is approximately 43 seconds.

 C-204

C-1.3 GOMS Evaluation for the Perceptual + Data Computation Solution of
the Airline Scheduling Task

Figure C-3: Design generated when data processing operations are integrated into the automatic visualization
system. The full data set is considered here but data transforms are applied by the automatic system to filter the
data set so that only relevant flights are shown. The total downtime before the meeting for the flights from LAX
to ORD is shown on the left chart and the total downtime after the meeting for the flights from ORD to BOS is

shown on the right chart.

General goal Cognitive, perceptual, or

articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Find shortest bar in first chart Attend find shortest bar 50
 Initiate eye movement 50
 Eye movement 30
 Perceive shortest bar 100
 Verify shortest bar 50
 Sub-total 280
Lookup total downtime for
that bar

This figure was computed
from Design 4, Task 2 in
appendix E-2.4

1135

Find shortest bar in second
chart

 280

Lookup total downtime for
that bar

 1135

Add both downtimes
(assume 3 significant figures)

150 + (n – 1) * 100 350

Total time 280 + 1135 + 280 + 1135 +
350

 3180

Total time taken to solve the airline-scheduling task using Figure C-3 is approximately 3 seconds.

C-2 Airline-Scheduling Task Design Alternatives

In chapter IV-1 we discussed several design alternatives for the airline-scheduling task that consists of

different blends of data and mapping transforms. In this section we present several more design alternatives

 C-205

and discuss their strengths and weaknesses to highlight some of the issues that arise when we are trying to

make decisions about whether to use data or mapping transforms to solve user goals. In particular we want

to illustrate that it is not always best to fully pre-compute all tasks and the best design often is one which

consists of a combination of both data computation and perceptual mapping operations.

In chapter IV-1 we focussed on design examples that assumed complete task specification (i.e. all the

task parameters, e.g. origin and destination cities, start and end meeting times, are known before the

analysis). In these cases, the data computation solution performs very well. However when tasks cannot be

fully captured at the outset, it becomes necessary to map more of the data to graphics (i.e. it becomes more

difficult to use data computation solutions) as was shown in Figure IV-5.Another way to deal with low task

specificity (particularly imprecise task parameters) is to add input devices into the design and let users

specify the task requirements during the data analysis process. In Figure C-4, we use the same data

computation design as in Figure IV-3, however here, we assume that specific knowledge of the task

parameters (e.g. the layover city and meeting time information) is unavailable. To enable data computation

we integrate the graphic design with an option button for specifying the layover city and two sliders for

specifying the start and end meeting times.

Figure C-4: Solving the airline schedule task with input devices. Here we assume that some of the airline-
scheduling task constraints are unknown (i.e. the layover-city is not known and the beginning and ending

meeting times are also not known). These constraints can be entered into the system through sliders and option-
buttons.

Through these input devices, users may test different sets of input task parameters. Each different test,

however, requires manipulation of some or all of the devices. In addition, only results from a single test are

shown at any one time, thus it is highly probable that users may forget results from previous tests and need

 C-206

to repeat a test several times. These factors increase the difficulty and time required for solving the task.

Therefore if the user is really unsure of the task parameters, or if the user foresees that the particular task

step may be repeated many times, it is more effective to encode the information by mapping all the data to

graphics so that the task can be performed perceptually rather than through data computations and

summarizations coupled with input devices. For example Figure IV-1 encodes all of the airline scheduling

data with mapping techniques, thus it does not require the system to know any of the task parameters (i.e.

no user input is required even if we are unsure of the task parameters). Figure C-5 filters out all the flights

based on origin, destination, and layover cities, but show the arrival and departure times of the relevant

flights, so that there is less clutter compared to Figure IV-1, but some flexibility in our task meeting time

constraints.

Figure C-5: Design alternative for airline-scheduling task where flights are filtered based on origin, destination,
and layover city information. Arrival and departure times are shown however to allow flexibility in our task

meeting time constraint. Flight_arrival_time is mapped to the x-axis of the left chart and flight_departure_time is
mapped to the x-axis of the right chart.

Another design alternative for our airline-scheduling task is to combine the results of both the flights

to and from the layover city and compute the total downtime for all flight pairs as in Figure C-6. The

advantages of this display are that users need not compute the total downtime perceptually and that the total

downtime can be determined with better accuracy compared to Figure IV-3. This is because in Figure C-6

the user only needs to look up the bar ends, whereas in Figure IV-3 the user is required to estimate the sum

lengths of two spatially separated bars.

 C-207

Figure C-6: Solving the airline-scheduling task where all searches as well as the total-downtime computations
are performed with data transform techniques. Total_downtime is pre-computed and mapped to the x-axis. Note

that in this design there are many more graphical elements than the other airline-scheduling task designs
because all possible pairs of flights must be considered and shown.
[Note: the indented labels for this design was manually generated]

 C-208

A weakness of Figure C-6 however, is that all flight pairs must be listed. Consequently if there are n

flights before the meeting and m flights after the meeting we would need to show n * m data points,

whereas in Figure IV-3 we would only need to show n + m data points. These extra data points make

Figure C-6 much larger than Figure IV-3 and thus it requires more screen space (Figure IV-3 only shows

20 bars while Figure C-6 shows 100 bars). For larger data sets, the visualization in Figure C-6 might not

even fit within a CRT screen. In such cases, we can only view a subsection of the visualization at a time

and must navigate, using input devices, to different sections of the visualization. The manipulation cost

involved in navigating and the cognitive cost involved in managing the different information slices make

finding the two shortest bars in Figure IV-3 more efficient than Figure C-6 for any reasonably sized data set

(i.e. > 30 elements).

C-3 Task Model

In this thesis, we focus on tasks in exploratory data analysis (EDA). EDA was first introduced by

Tukey in his book entitled Exploratory Data Analysis [Tukey, 1977], where he described a series of logical

and paper/pencil techniques for processing data. Since then several task models have been developed that

try to characterize and define the operations involved in EDA. Some of these task models break high-level

data analysis operations (e.g. cross-examine, discover shortage) down to simpler logical operators (e.g.

find, compute, look-up). A designer or an automatic visualization system can then offload some of these

logical operators onto the human perceptual system by generating a suitable external representation.

Another alternative is to off-load some of the logical operations onto the computer system by using data

computation functions (Figure C-7).

Data Analysis
Tasks

Logical
Operators

Perceptual
Operators

Partial External
Representation

Automatic
visualization

system

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

System
Computation

Summarized
Results

Complete
External

Representation

0

10

20

30

40

50

60

70

80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Figure C-7: This diagram shows how data analysis tasks can be broken down into perceptual operators
(mapping transforms) and system computation operators (data transforms) and how these operators ultimately

combine to produce a visualization design (external representation).

Our task model most closely resembles the task models presented by Casner and Senay et. Al

[Casner, 1991; Senay, 1994]. Casner presented two logical task classes: search and computation. Search

operators include search, lookup, search and lookup, as well as lookup and verify. Computation operators

include equal, less than, greater than, addition, difference, multiplication and quotient. Senay and Ignatius

 C-209

presented three basic logical operations: search, look-up, and compare that are very similar to Casner’s

logical tasks. However, they extended the task specification to deal with groups of objects.

Our task model has four logical task operators similar to the ones in Casner and Senay et al.’s task

language, look-up, compute, find and compare. We also expand our task language from previous

approaches in three primary areas: 1) allowing task embeddings, 2) introducing precision declarations

within the task, and 3) providing mechanisms for capturing task iterations.

C-3.1 Logical Tasks (Logical Operators)

Table C-1 summarizes our four simple logical operators: lookup, compute, compare, and find, and

shows their input and output arguments. These tasks can be applied to single data objects and values or to

sets of data objects and values. Tasks may also be applied to unknown arguments (indicated by a ‘?’) if the

user is unsure of an input argument during specification.

 Input arguments Output arguments
Lookup Data object(s),

Data Attribute

Data value(s) or
Data object(s)

Compute Compute operator
 (addition, difference,
etc),
Data value(s),
Data value(s).

Data value(s)

Find Relationship,
Data value(s),
Data value(s).

Data object(s)

Compare Compare operator
(>, <, =, >=, <=),
Data value(s),
Data value(s).

Relationship

Table C-1: Tasks and their input and output arguments

By basing our task model on previous work in exploratory data analysis, we ensure that our operators

are expressive of a relatively wide range of EDA goals. In the next sections we describe the four logical

operators in Table C-1 in greater detail.

C-3.1.1 Lookup

The lookup task gets attribute information on one or more data concepts. It has two input arguments:

the data concepts to perform the lookup on, and the data attribute of interest. For example, getting the

selling price of a house is a lookup task. In this scenario, the lookup object is house-1 and the lookup

attribute is selling-price. The result of this lookup task is a data value indicating the selling price of house-

1.

 C-210

(Lookup house-1, selling-price)

We can also look up attribute values for a set of data concepts. For example, in the task specification

given below we have applied the lookup task to a set of three houses. In this case, the lookup task will

return a set of three data values corresponding to the selling prices of the three input house concepts.

(Lookup {house-1, house-2, house-3}, selling-price)

In addition to data values, we may also look up data relationships. For example, we may look up the

owner relationship for a set of houses. This relationship points to a set of person concepts that represent the

people who own the input houses. In this case the lookup task returns a set of data concepts rather than a set

of data values as was in the previous two cases.

(Lookup { house-1, house-2, house-3 }, owner)

The lookup task is the most basic of all the logical operators. It is often embedded within one of the

other logical tasks because they operate on data values, which must first be extracted or looked-up from

data concepts.

C-3.1.2 Compute

The compute task generates new data values based on existing information. For example, the

difference compute operator can be used to derive gross-profit values from total-sales and total-cost, as is

shown below.

(Compute Difference, (Lookup company-1, total-sales),
 (Lookup company-1, total-cost))

A compute task was also used in the airline-scheduling example presented in chapter IV-1 to calculate

the total downtime in the layover city. In this case, the addition operator was applied to the time before

meeting and the time after meeting data values.

We can also use computes to summarize a set of data values by determining their minimum,

maximum, mean, or median. In this case the input arguments include the summarize operator and the set of

values to be summarized. The output will be one data value (irrespective of the input data set size). For

example we may use the specification below to determine the average selling price for a set of houses.

(Compute Mean,
(Lookup { house-1, house-2, house-3 },

 selling-price))

The type of computation operators we consider in our work include all the data transform techniques

presented in chapter III.

C-3.1.3 Find

Find refers to the task of looking for a set of data concepts that fulfills certain data constraints. Some

common constraints include upper and lower bound constraints (<, >), equality constraints (=) or both (<=,

 C-211

>=). For example we may want to find all houses whose selling price exceeds 100k (lower bound

constraint).

(Find > ,
(Lookup { house-1, house-2, house-3 } , selling-price),
100k)

Note that find is a logical task and it does not necessarily mean visual search. The find task can be

solved through visual search by mapping the find attribute, (e.g. selling price) to a visual property (e.g. x-

position). The find task can also be accomplished through data transform techniques (without the need for

any visual search), in which case it would take the form of a data query. In the airline-scheduling example

described earlier, there were several find tasks within the task sequence such as “finding all the flights

originating from Los Angeles”. To fulfill this task we can visually search for all such flights using Figure

IV-1. Alternatively in Figure IV-3, the find task is performed by the system and the user is only presented

with the flights that fulfill all of the find constraints.

Another common find task is to compare two sets of data values. For example, we may want to find

all the months in which the price of rice exceeded the price of wheat. In this case we are comparing pairs of

values for each month concept and returning all the concepts (i.e. months) whose value pair fulfills our

constraint.

(Find > ,
(Lookup { month-1, month-2, …, month-n } ,

rice-selling-price) ,
 (Lookup { month-1, month-2, …, month-n } ,

wheat-selling-price))

The find tasks that we have discussed so far are simple find tasks involving the comparison of value

pairs. More advanced find tasks may look for complex group relationships among a set of values. For

example, we may want to find all the months where the price of rice is increasing. In this case, we are

looking for a set of values, related so that each value is greater than the previous one. The increasing trend

is just one of many possible trends such as cycles, bell-curves, etc. Finding data trends is often difficult to

achieve with data computation functions because the rules for capturing trend behavior are complex (i.e.

low task specificity). For example, consider Figure C-8, which shows a linearly increasing trend with some

outliers. A strict greater-than rule would not work here because the outlier points do not fulfill that rule. To

capture this trend, we need a more complex rule allowing for outlier points and other similar exceptions. In

addition, just specifying the trend as increasing may be insufficient. We may need to specify other trend

properties such as its rate of increase, allowable error rate, number of outliers permitted, etc. Thus, there is

a great deal involved in conveying to the system the exact user requirements for finding trends, thereby

making them more appropriate for perceptual analysis (i.e. mapping techniques).

 C-212

Figure C-8: Increasing trend

Another advanced find task is identifying group similarity, i.e. identifying a set of “similar” objects.

The similarity attributes and the range of similarity, (i.e. what constitutes similar values) are often poorly

defined, domain dependent, and cannot be easily captured in a task specification. The high articulatory

distance therefore also makes these “find cluster” tasks more appropriate for perceptual processing.

In summary, advanced find tasks can be more effectively performed by mapping the source data to

graphics because of the high articulatory load involved when using data computation functions. The role of

data computation in this case is in directing the user’s attention to objects that may be relevant. The system

can make a best approximation of the find results and increase the saliency of those objects. Unlike the

other data computation examples, however, we need to show all of the source data as well. This allows

users to verify the system’s results and to perceptually solve the task if the system approximation is

incorrect or incomplete. For example in Figure C-8, the system may use data computation to approximate a

line to the scatter points but still show the original data points so that users have the flexibility of verifying

the system approximated line. Currently we do not deal with advanced find tasks in our work because of

the high level of reasoning involved. Our work however does provide a basis that can be later expanded to

deal with such tasks.

C-3.1.4 Comparison

Comparison tasks are used to determine relationships among data concepts. In this way, they are the

complement of find tasks. In find tasks, the user knows the relationship to look for and is interested in the

data concepts that participate in that relationship. On the other hand, in compare tasks, the user knows the

set of data concepts to compare, but is unsure of the relationship(s) that exist among them. By comparing or

analyzing different data attributes of the concepts, the user hopes to reveal the structure or relationships

within the data.

 C-213

We have found it useful to divide comparison tasks into three types: 1) comparing different data

attributes within a single object set, 2) comparing the same data attribute across multiple different object

sets, and 3) comparing different data attributes across different object sets. All three cases can be achieved

with different combinations of logical compare and lookup operators.

1. Comparing different data attributes within a single object set

An example task of this type is comparing the price-of-rice and the price-of-wheat for particular

month data concepts.

(Compare (Lookup { month-1, month-2, …, month-n } ,
rice-selling-price) ,

(Lookup { month-1, month-2, …, month-n } ,
wheat-selling-price))

In this compare task, we may be interested in several different aspects of the data. For example, we

may be interested in value pair comparisons, i.e. seeing if the rice-selling-price is greater than the wheat-

selling-price over n months or in a particular month. We may discover that “in April, the price of rice was

much lower than the price of wheat due to excess production”. Alternatively, we may be interested in group

or trend comparisons. For example, we may want to compare the trend of rice prices over time with the

trend of wheat prices over time. In this case we are more interested in gestalt results such as, “when the

price of rice is increasing, the price of wheat tends to increase as well”. Group comparisons are often used

in this context to determine correlations between different data value sets.

2. Comparing the same data attribute across multiple different object sets

The second type of compare task reasons about the same data attribute over different object sets. For

example we may want to compare the size of houses in the Shadyside area with the size of houses in the

Squirrel Hill area. In this case there are two object sets, one with a membership of all Shadyside houses and

the other with a membership of all Squirrel Hill houses. In the task specification below, these object sets

are determined using the find task. Both sets of objects are compared based on the same data attribute,

namely house-size.

(Compare (Lookup (Find =, Lookup (all-houses, neighborhood),
Shadyside) ,

 house-size),
(Lookup (Find =, Lookup (all-houses, neighborhood),

Squirrel Hill) ,
 house-size))

One of the main differences between type-2 compare tasks and type-1 compare tasks is that type-2

compare tasks may be used to compare value sets of different sizes. On the other hand, type-1 compare

tasks always operate on value sets that are of the same size because the values are extracted from the same

data concepts. In addition, type-1 compare tasks may be applied to attributes with different properties, for

example to house-price which is a quantitative attribute and to date-sold which is a temporal attribute.

This is however not true of type-2 comparisons that are by definition applied to the same data attribute.

 C-214

3. Comparing different data attributes across different object sets

The final type of comparison task involves the comparison of different data attributes across different

data sets based on a common shared attribute. For example we may want to determine whether the standard

of living (measured based on household income) in a particular neighborhood affects the selling price of

houses. In this case, we are comparing the income attribute of household data concepts with the selling-

price attribute of house data concepts based on a common attribute, neighborhood.

Type-3 comparisons can be transformed into type-1 comparisons with some data adjustment.

Specifically, we must reorganize the data so that the “data object” or data record represents the common

comparison attribute. In the example presented above, we want to structure the data so that each data

concept represents a different neighborhood (e.g. Shadyside, Squirrel Hill, Pt.Breeze) rather than an

individual house (e.g. 634 Maryland Av.). Each neighborhood data concept will then have an average-

household-income attribute and an average-house-price attribute. The type-3 comparison task will then

reduce to a type-1 comparison task as is shown below. These data restructuring operations always occur

through data transformation functions.

(Compare (Lookup { neighborhood-1, …, neighborhood-n } ,

average-household-income) ,
(Lookup { neighborhood-1, …, neighborhood-n } ,

average-house-price))

C-3.2 Task Extensions
The task model presented above is adapted from previous characterizations of data analysis tasks.

Unfortunately, this task model is not sufficient to capture all the information necessary to effectively reason

about data computation techniques and mapping techniques. In order to facilitate decision making between

these two design alternatives we enrich our data analysis task model from previous approaches in three

primary areas: task embeddings, task iteration, and task accuracy or precision.

C-3.2.1 Task Embeddings

Previous task models only allowed for `flat’ task specifications. Tasks are declared in isolation and

task dependencies can only be captured with conditionals (e.g. Task C-1). Below (Task C-1), we show how

Casner used if-then conditionals to specify that downTime should only be computed for the flight if the

arrival time of the flight (arrival1) is before the start of the meeting (beginMEETING). This level of task

dependency is insufficient for our work.

if (arrivesBeforeMeeting? arrival1 beginMEETING)

 then (computeDownTime beginMEETING arrival1 DOWNTIME)

Task C-1: Subtask extracted from Casner’s airline-scheduling task [Casner, 1991]

 C-215

In order to reason about data computation operations, we must identify intermediate tasks, which are

tasks used for generating intermediate results - useful in servicing the end goal but not useful in themselves.

For example, consider the task specification below:

(Ratio (Difference (Lookup ({ all-houses } , asking-price),

(Lookup ({ all-houses } , selling-price)),
(Difference (Lookup ({ all-houses } , date-sold),

(Lookup ({ all-houses } , date-on-market))
)

In this task, we are trying to determine how house prices change the longer they stay on the market.

The two difference tasks are intermediate tasks and they are related in this case because they are both

embedded within the same ratio task. This is an important relationship to capture, and it has implications

for both data computation as well as mapping decisions. Intermediate tasks, for example, are very

appropriate for data computation operations because their results need not be shown to users and this

allows for significant data simplification (refer to chapter IV-3.2). In addition, task embeddedness indicates

a closer relationship among all the data attributes involved and we can use this information to constrain all

the data attributes so that they are mapped in closer proximity (e.g. to the same graphical object).

A task can be embedded within another if its output argument class corresponds to the input argument

class of the other task. For example, we can embed a compute task within other compute tasks because the

compute operation both accepts and produces data values. Similarly, we could also embed a find task

within a lookup task, or a compare task within a find task. It is important to note that task `embeddedness’

is just one of many possible relationships that can exist among tasks. Tasks may also be related because one

is conditioned upon another (as in Task C-1), because they are applied to the same object sets or because

one task is generated based on the processing of another task. For example, if we want to compute the ratio

task shown above with data computation, we must generate a lookup task so users may view the results of

the computed ratio operation.

C-3.2.2 Task iteration

Previous work dealt with task repetitions by constructing loops around the task structures [Casner,

1991]. Unfortunately, these loop structures are not interpreted by the automatic visualization designer. It is

crucial to capture task iteration information in our work because it has significant implications for making

data computation and mapping decisions. For example as was shown in chapter IV-3.4, all-to-all task

repetitions (i.e. processing each and every value in a set with all values in a second set) behave very

differently from value-pair task repetitions (i.e. processing each value in a set with its corresponding value

in a second set). The first is usually more appropriately solved with mapping designs whereas the second is

more appropriately solved with data computation.

 C-216

We deal with task repetitions by applying a task to the entire set of objects that we want it to iterate

over and then specifying the type of task repetition that we desire. There are currently three classes of task

repetition options: value-pair (one-to-one), all-to-all, and previous-pair. To illustrate each repetition class

we apply them in turn to the two sets of values shown below.

{ A, B, C, D, E }

{ 1, 2, 3, 4, 5 }

Value-pair tasks are repeated over each pair of corresponding values in the two data value sets (i.e.

they are applied to (A, 1) , (B, 2), (C, 3), (D, 4), and (E, 5)). All-to-all tasks on the other hand require each

value in the first set to be paired with all values in the second set (i.e. they are applied to (A, 1), (A, 2), … ,

(A, 5), (B, 1), (B, 2), …, (B, 5), (C, 1), (C, 2), …). Finally, previous-pair operations ranks the input value

set based on an ordering attribute and an ordering function. The task is then applied to each consecutive

value pair in the ranked value set. For example, suppose the second value set is the ordering attribute for

the first value set. Further suppose that the ordering function is the greater-than (>) operator. In this case

the first value set will be ordered as follows { E, D, C, B, A } and the pairwise comparisons will be

between (E, D), (D, C), (C, B), and (B, A). Previous-pair iterations are commonly applied to determine

changes in a data attribute (e.g. amount-of-sales) with respect to changes in an independent ordered

attribute (e.g. time). For example, we can use the previous-pair iteration to determine how the sales of a

particular company are changing with time.

C-3.2.3 Task precision

Previous automatic visualization design systems use task accuracy as the most important effectiveness

criteria for making data to graphical mapping choices. However, accuracy or precision can sometimes only

be attained at the cost of significant cognitive load as we had shown in chapter IV-3.1. Depending on the

task, it is not always necessary to attain high accuracy levels. For example, in some cases it may be

sufficient that we know the net profit for month 1 is approximately 2 or 3 rather than exactly 1.6. If a

system knows how important accuracy is to the user, it can make better choices between the many possible

design alternatives.

For simplicity reasons we currently allow for three levels of accuracy: high-accuracy, normal-

accuracy, and fuzzy-accuracy. High accuracy requires exact precision. For example in the difference task

above, we want the differences calculated to all possible decimal values. Normal accuracy allows for an

approximate comparison judgement. Relative values may be compared with no guarantees on the

maximum amount of error. Finally fuzzy-accuracy refers to the case where we explicitly do not want

accuracy. Here, we are specifying to the system that the task constraints are not absolute and that they

should be relaxed. The default accuracy is normal-accuracy. There is a much wider range of accuracy

levels than the ones that we have provided. However, we believe that our three accuracy levels covers

many of the accuracy issues that arise when deciding between data computation and mapping operations. A

 C-217

deeper treatment of task accuracy is left for future work. The idea of attaching precision levels to tasks is

not entirely new. In AutoVisual [Feiner, 1990], the degree of precision may be specified for the object

selection task, which corresponds on some levels to our find task.

In the next section, we consider how variations in the tasks described in this section can influence

design choices between data computation and mapping operations. This analysis is accompanied with

designs generated by our prototype automatic visualization design system as well as discussions on why

certain designs were ranked higher based on the dimensions described in chapter IV-2.

C-4 Exploring the Space of Data Techniques and Mapping

Techniques

In this section, we describe how data computation vs. mapping design decisions are made in our

automatic design system for the range of goals in our task model. We generate the possible range of goals

by varying the task specification in three primary ways:

1. Task structure variation: In section C-3, we described four task classes in our framework, lookup,

compute, compare and find. We may change the task structure by using different task classes or

different task operators within each class. For example, for a compute task, we may be interested

in the addition, difference, multiplication, or quotient operators. The task structure can also be

changed by reordering the operators in the task or by changing their embedding structure.

2. Task input argument variation: In section C-3.1 we show that tasks may be applied to attributes,

objects, or values. Task arguments can also be left unspecified (“?”) to indicate that an argument is

unknown or that there are many possible argument alternatives.

3. Task data sets: Tasks may also be applied to different data sets. The data set size and distribution

of values can also affect design decisions between data and mapping techniques.

In the following examples, we systematically generate a set of visualization designs for each goal

using our automatic visualization design system (AVID). We then analyze the designs using the metrics in

chapter IV-2 and discuss how they are ranked and which design guidelines are used in their ranking. In

order to keep this section at a reasonable length, however, we will not present all of the visualization

designs that are generated by our system. Instead, we only show those designs that have interesting

differences. Note that the examples addressed in this section are purposely chosen for their simplicity so

that we may highlight important design decision points and show them in isolation. In section C-5, we

explore a more realistic task of purchasing a car.

 C-218

C-4.1 Task Structure Variation
In this section, we vary the task structure but keep the task arguments and the data sets constant.

There are three ways in which the task structure may be varied: 1) task class or operator variation, 2) task

expansion, and 3) embedding structure variation. We first present an example task, which we will

subsequently alter based on these three structural variations. For each variation, we consider its effects on

data computation and mapping design decisions.

C-4.1.1 University Example

We are considering attending a university for undergraduate study, but we are concerned about

financing issues. Thus, we want to view the combined tuition and room & board costs of our set of

candidate universities. The specification for this task is shown below.

(Compute Addition,
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

out-of-state-tuition),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory }} ,

room-&-board-costs))

Task C-2: Computing the total cost for attending a university

Figure C-9 shows a data computation design and a mapping design for solving Task C-2. The data

computation design (Figure C-9a) shows the pre-computed total costs (out-of-state-tuition + room-&-

board-cost) for each university in a single column of figures and the mapping design (Figure C-9b) shows

each of the cost figures separately in two different columns. In the data computation design users only need

to look up a single total cost figure for each university, however, with the mapping design users must look

up two cost figures and then perform the addition task cognitively. In this case, the data computation design

is clearly much more effective than the mapping design because while the mapping design requires 2n

perceptual lookups and n cognitive operations, the data computation design only requires n perceptual

lookups. Our designer ranks Figure C-9a above Figure C-9b because it recognizes that the addition task

cannot be effectively performed with text labels. Encoding the data with labels do not allow us off-load the

addition task onto our perceptual system and as a result we must perform the task performed cognitively

which has a high observational distance.

 C-219

(a) Data computation design

Out-of-state-tuition and room-&-board-costs are pre-
added with data computation operators and the

results are shown as text in the table.

(b) Mapping design

Room-&-board-costs is shown as text in the left table
and out-of-state-tuition is shown as text in the right

chart. This design solution is very inefficient because
users must perform the addition task cognitively.

Figure C-9: Design solutions for total cost computation task (Task C-2).

(a) Data computation design

Out-of-state-tuition and room-&-board-costs
are pre-added with data computation

operators and the results are encoded on
the x-axis of the bar-chart.

(b) Mapping design

Out-of-state-tuition is mapped to the x-length of the
red bars and room-&-board-costs is mapped to the x-

length of the blue bars. Total cost can be easily
determined perceptually by looking at the combined

lengths of the stacked bars.

Figure C-10: Encoding the same data as Figure C-9 but with bars instead of text

 C-220

A more effective mapping design, however, would offload the addition cognitive operation onto the

user’s perceptual system by mapping the two cost figures to bar lengths instead of text. Figure C-10 shows

the same data as Figure C-9 except that we use bars instead of text to encode the data. The data

computation design shows the total cost on the x-axis and the mapping design shows out-of-state-tuition-

cost and room-&-board-cost on the x-axis using two stacked bars. In this example, the mapping design is

significantly improved over the textual design in Figure C-9b. In fact both data and mapping designs in

Figure C-10 take the same number of perceptual lookups. I.e. Figure C-10b and Figure C-10a are ranked at

the same level by our automatic system. This example shows that the difference in effectiveness between a

mapping and data computation design can change significantly depending on the graphical properties used

to encode the data. In the subsequent examples, we will only compare data computation and mapping

designs that use the best possible graphical properties.

Our automatic visualization design system however must be able to reason about both graphical

property effectiveness together with functional effectiveness (i.e. data or mapping technique effectiveness)

and this can sometimes be difficult. For example it can be difficult to decide whether the textual data

computation design (Figure C-9a) is better than the bar mapping design (Figure C-10b) because both

designs utilize different graphical property encodings as well as different design functions (i.e. data

computation vs. mapping functions). The more appropriate design here can be based on task requirements,

user preferences, domain conventions, etc. Some of these issues (e.g. task requirements) are taken into

account in our system. The beauty of automatic visualization design however, is that it is a cooperative

process between the user and the system. The advantage of such systems as a design tool is that it can

quickly generate both Figure C-9a and Figure C-10b and show them to the user who can then decide

between similarly effective designs based on their preferences.

C-4.1.2 Task Operator Variation

Now suppose that instead of computing the total cost for each university, we also want to determine

whether the university charges (i.e. tuition) are in line with the living costs in the area. Specifically, we

want to view the differences between tuition-cost and room-&-board-cost for each university.

(Compute Difference,

(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },
out-of-state-tuition),

(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,
room-&-board-costs))

Task C-3: Change in task operator from addition to difference

 In this task, the observational distance for the data computation design (Figure C-11a) consists of n

perceptual bar length lookups. The mapping design (Figure C-11b) however requires a comparison between

the tuition-cost bar and the room-&-board-cost bar, which results in 2n perceptual lookups. Thus unlike the

 C-221

previous addition example, the data computation design is ranked above the mapping design in this

example. This is because the graphical language available for showing the difference task (bar pairs) is less

effective than the graphical language available for the addition task (stacked bars) (availability of

perceptual operators guideline in chapter IV-3.3).

(a) Data computation design

The difference between out-of-state-tuition-costs
and room-&-board-costs is pre-computed and

encoded on the x-axis of the bar chart

(b) Mapping design

Room-&-board-costs is mapped to the x-length of the
red bars and out-of-state-tuition is mapped to the x-
length of the blue bars. The cost differences can be

perceptually determined by looking at the difference
in lengths between each pair of bars. This

perceptual design is less effective than the data
computation design because the difference

estimation operation is non-trivial unlike the
addition operation in Figure C-10(b).

Figure C-11: Computing the difference between out-of-state-tuition and room-&-board-costs

Now suppose that instead of computing the difference between out-of-state-tuition-cost and room-&-

board-cost, we wanted to compute their ratio instead. Specifically, we want to see for each dollar spent on

room-&-board how many dollars are spent on tuition. Figure C-12 shows the design alternatives for this

task. In the data computation design the ratio values are pre-computed and mapped to the x-lengths of the

bars. In the mapping design, the ratio values must be perceptual derived from the position of the marks

which shows both out-of-state-tuition-cost on the y-axis and room-&-board-cost on the x-axis. To express

the ratio task in the mapping design, our designer constrained both cost attributes to be mapped to conjoint

properties on the same graphical object.

 C-222

(a) Data computation design

The ratio of out-of-state-tuition dollars spent per
room-&-board-costs dollar is pre-computed and
shown on the x-axis of the bar chart. University
of North Texas has a low ratio value while MIT,

Brown, Duke, CMU, and Antioch Universities
have high ratio values (i.e. tuition costs are high

wrt. living costs).

(b) Mapping design

Out-of-state-tuition is mapped to the y-axis and
room-&-board-costs is mapped to the x-axis. To
estimate the ratio values between out-of-state-
tuition and room-&-board-costs we look at the

distance of the points from the average ratio line
(shown in red). The points to the top that are

circled red (MIT, Brown, Duke, CMU, Antioch)
are the ones with high ratio values while the
points to the bottom are the ones with below

average ratio values (University of North Texas).

Figure C-12: Computing the ratio between out-of-state-tuition-costs and room-&-board-costs

The mapping design (Figure C-12b) is not very effective if we want to determine exact ratio values.

However, our intention is to find outlier universities, i.e. universities with either inordinately high or low

tuition-cost/room-&-board-cost ratios then Figure C-12b is a useful solution. For this task, high accuracy is

not required because we are only interested in relative ratio values. In fact, the perceptual load for both the

data computation and mapping designs are similar (ignoring the occlusion problem). For example in both

designs we can pre-attentively see that Antioch University, MIT, Brown, Duke, and CMU (circled in red)

have unusually high tuition/room-&-board-cost ratio while University of North Texas (circled in blue) has

an unusually low tuition/room-&-board-cost ratio. Our automatic designer ranked the data computation

design slightly above the mapping design because of the greater perceptual complexity (i.e. graphical

density) in the mapping design.

C-4.1.3 Task Expansion

In addition to being interested in the total cost for attending each university, suppose we are also

interested in the individual tuition-cost and room-&-board-cost figures.

 C-223

(Compute Addition,
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

out-of-state-tuition),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

room-&-board-costs))
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

out-of-state-tuition),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

room-&-board-costs)

Task C-4: Expanded university total-cost task

Specifically, we want to see if higher cost universities are a result of additional tuition-cost or room-

&-board costs. Thus, we have expanded the task specification from Task C-2 with additional lookup tasks.

Unlike the original task (Task C-2), our designer picked the mapping design (Figure C-13b) as the

most effective for this expanded task. The mapping design is chosen based on the task variation on

attribute design guideline in chapter IV-3.5 because it allows us to solve the addition and subsequent look

up tasks by using the same set of graphical objects. All the task information is presented in a space efficient

manner, and the observational distance for performing the addition task in the mapping design is negligible

because stacked bars are very effective for addressing addition operations. On the other hand, the data

computation design (Figure C-13a) has a greater number of graphical objects (two separate charts and three

bars) because we must show both the computed total cost results as well as the original tuition-cost and

room-&-board-cost attribute values.

(a) Data computation design

In this example we want to see both total costs (out-
of-state-tuition + room-&-board-costs) as well as the
individual costs. In this design total costs are pre-

computed and shown on the x-axis of the left chart.
The individual cost values are shown as blue and

red bars respectively in the right chart.

 (b) Mapping design

Out-of-state-tuition is mapped to the x-length of the
red bar and room-&-board-costs is mapped to the

x-length of the blue bar. This design is very
effective because it allows us to easily derive the

total cost values by looking at the combined lengths
of the stacked bars. However, the two individual

cost values are also readily accessible.

Figure C-13: Design solutions for expanded total cost computation task (Task C-4)

 C-224

Now, instead of computing the total cost for each university, suppose we are curious to see if there are

any universities with tuition-cost less than room-&-board-cost.

(Find <,
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

in-state-tuition),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

room-&-board-costs))
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

in-state-tuition)
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

room-&-board-costs)

Task C-5: Expanded tuition-cost and room-&-board-cost find task

Not surprisingly there are no universities with out-of-state-tuition-cost less than room-&-board-cost

however there are some universities with in-state-tuition-cost less than room-&-board-cost as is shown in

Figure C-14.

 (a) Data computation design

In this design universities with in-state-tuition less then
room-&-board-costs are shown in red. Not surprisingly

these tend to be state universities. The individual
room-&-board-costs (top bar) and in-state-tuition

(bottom bar) values are encoded on the x-axis. Unlike
Figure C-13a, the computed results can be more

effectively integrated into the design here, making it
more effective compared to the mapping design.

 (b) Mapping design

Room-&-board-costs is mapped to the x-length of
the red bars and in-state-tuition is mapped to the
x-length of the blue bars. To find the universities
with greater room-&-board-costs compared to in-
state-tuition we must compare the lengths of each

bar pair which is a fairly time consuming
operation.

Figure C-14: Design solutions for expanded find task (Task C-5)

 C-225

Unlike the previous expanded task (Task C-4), the most effective design here is the data computation

design (Figure C-14a). In Figure C-14a, the find task is performed with data computation functions and its

results are shown using color. The blue hue bars show all the universities with in-state-tuition-cost less than

room-&-board-costs. This design is effective because the find results can be introduced into the graphic

without adding much visual complexity and without cluttering up the display space (in contrast to the data

computation design in Figure C-13a). In addition, perceptual load has been reduced significantly because

the find results can be read in a single pre-attentive perceptual operation (i.e. perceptual load = p). The

mapping design, however, requires users to scan through all bars to visually search for all instances where

tuition-cost is less than room-&-board-cost (i.e. perceptual load = np where n is the number of

universities). The data computation design also presents the find results with great accuracy, leaving no

room for perceptual errors.

This example illustrates the interaction between two different design guidelines, the availability-of-

perceptual-operator guideline and the task-variation guideline. In this example, the available perceptual

operator for performing the find task is not as effective as using data computation operations (i.e.

preference for data computation design). However, there is task-variation on the find task and this usually

results in greater perceptual complexity for the data computation design (i.e. preference for mapping

design). While perceptual complexity in Figure C-14a is larger than in Figure C-14b because of the

additional color encoding, the added complexity here is relatively small. Only a single graphical property is

added here compared to the additional graphical object and region added in Figure C-13a. Consequently,

the perceptual savings enabled for the find task through data computation outweighs the small added

complexity from the use of color. Our automatic designer deals with interacting guidelines by adding costs

to each design alternative based on the guideline being violated, and the depth of the violation. Specifically,

a higher cost is added to Figure C-13a for the task-variation guideline violation compared to Figure C-14a,

because in the former case, the added perceptual complexity is more significant.

C-4.1.4 Embedding Structure Variation

Since universities with tuition-cost less than the room-&-board-cost are such anomalies, we might

want to examine the individual tuition-cost figures for only those universities to see which university has a

highest and lowest costs within the set. This task is very similar to Task C-5 except that the embedding

structure is changed. Specifically, the find task is now embedded within the two lookup tasks to indicate

that we only want to lookup the cost values for the anomalous universities.

 C-226

(Lookup (Find <,
(Lookup { … } , in-state-tuition),
(Lookup { … } , room-&-board-costs))

in-state-tuition)

Task C-6: Change in task embedding structure from Task C-5
(Note that we represent the university set with { … } here to make the task specification easier to read. However,

the data set used is the same as all previous examples in this section).

In this case, the most effective design (Figure C-15) performs the find task with data computation, and

only shows in-state-tuition-cost figures for those universities with greater room-&-board-cost compared to

in-state-tuition-cost. All other universities are culled from the display based on our intermediate task design

guideline (chapter IV-3.2) which calls for all intermediate results to be hidden in order to reduce display

complexity.

Figure C-15: Data computation design for Task C-6
In this design the automatic design system is able to utilize the embedding structure of the task to filter the
design so that only those universities with in-state-tuition less than room-&-board-costs are shown. This cuts
down on the number of elements that have to be shown significantly, producing a more easily interpretable

display. In-state-tuition values are then shown on the x-axis of the bar chart.

We can also solve Task C-6 using the designs in Figure C-14 (i.e. our automatic designer will also

generate those designs as alternatives for Task C-6). However, they are ranked lower because they both

have greater perceptual clutter (i.e. a greater number of graphical objects), require more display space, and

require more perceptual processing compared to Figure C-15. In particular, Figure C-14a requires an

additional perceptual operation for getting all the purple bars, and Figure C-14b requires n additional

perceptual operations for comparing each bar pair (where n = number of universities). In this example, our

automatic system is able to exploit the additional task information captured by the embedding structure of

the task to generate a more effective design than what was possible in Task C-5 which has a flat,

unembedded structure.

 C-227

C-4.2 Task Argument Variation
As was shown in section C-3.1, the data analysis tasks we consider in this thesis can be applied to

three argument types: values, attributes, and objects. Tasks may also accept additional input arguments

such as iteration type and task type as was described in section C-3.2. In this section, we consider how

different input task arguments may result in different data and mapping choices. Specifically, there are

three classes of input argument variations:

1. Use of a data attribute value set vs. use of constants: Tasks may be applied to single values or to sets

of values. When tasks are applied to sets of values, we may iterate over these values in a variety of

ways (value-pair, all-to-all, previous-pair).

2. Use of known vs. unknown arguments: According to the task model described in section C-3.1, task

arguments may be specified or left as an unknown (?). In the latter case, we are indicating that there are

many possible task arguments and the proper one(s) for the task can only be determined during

exploration.

3. Use of different classes of attribute types: Data attributes are associated with a set of characterizations

that describe their set ordering (quantitative, nominal, or ordinal), domain of membership (time, space,

temperature, or mass), and relational structure [Roth, 1990; Zhou, 1996]. Previous work on automatic

visualization has shown that these characterizations have significant impact on the choices made in

mapping data to graphics. Here we consider some of the implications that these characterizations have

on data vs. mapping decisions.

C-4.2.1 Use of constants vs. data attribute value sets

In this section, we continue our university-financing example. Suppose that we have received a

fellowship that covers up to 10k worth of tuition cost. We might only want to attend universities with

tuition costs below this figure so that we need not worry about paying any additional fees. The task

specification is similar to Task C-5 except that instead of comparing two sets of attribute values (i.e.

tuition-cost and room-&-board-cost), here we are comparing an attribute value set (tuition-cost) with a

constant value (10k).

(Find <,

(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },
out-of-state-tuition),

10k)

Task C-7: Find task with a constant argument

 228

(a) Data computation design

Universities with out-of-state-tuition less than 10k
are shown in red.

(b) Mapping design

Out-of-state-tuition is mapped to the x-axis. To find
universities with out-of-state-tuition less than 10k
we must look on the x-axis for the 10k point and
then compare the bar lengths to this point. Even

though this operation is more difficult than finding
the red labels in design (a), we still have access to
the actual tuition figures here, so we may compute

the amount saved from the 10k mark. This
information is lost in design (a).

Figure C-16: Design solutions for find task in Task C-7

 The data computation design (Figure C-16a) pre-computes the find task and maps the results to hue.

The red hued universities are the universities that pass the find task and the blue hued universities are the

ones that did not pass the find task. The mapping design (Figure C-16b) maps the out-of-state-tuition-cost

values to a set of bar-lengths and leaves it to the user to pick the bars that exceed 10k in value. The

mapping design for this example (Figure C-16b) is much more effective than the mapping design for Task

C-5 (Figure C-14b). This is because the perceptual operation for finding all bars less than a constant-value-

line (Figure C-16b) is pre-attentive while the operation for finding all bar pairs with tuition-cost less than

room-&-board-cost (Figure C-14b) is not. Thus, our automatic designer assigns a lower cost to the

mapping-find design when one of the find task arguments is a constant value.

In this task the observational distance for both the data computation and mapping designs are

comparable. Both solutions only require a single pre-attentive perceptual operation to find all universities

that have greater tuition-cost than 10k. However, our designer still ranks the data computation design ahead

 C-229

of the mapping design because it is more difficult to determine the find results with high accuracy using the

mapping design. This is consistent with our accuracy heuristic in chapter IV-3.1.

C-4.2.2 Use of known vs. unknown arguments

Now, suppose we are unsure of the amount covered by our fellowship because the figure is dependent

on our expected SAT and ACT test scores. One way to perform this task is to leave the fellowship constant

as an unknown (“?”) in the specification.

(Find <,
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

out-of-state-tuition),
?)

(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },
out-of-state-tuition)

Task C-8: Find task with an unknown task argument

(a) Data computation design

This design is similar to Figure C-16a except
that here we must enter in the out-of-state-
tuition threshold value we are interested in

through a slider input device. This increases
the overall load placed upon the user, making

the mapping design alternative more
attractive.

(b) Mapping design

Exactly the same design can be used here as was
used in Figure C-16b even though we do not know

the fellowship value in this case (i.e. task specificity
is lower). This is because all of the data is presented

to the user, thus there is greater flexibility in the
range and types of questions that may be answered

with this display.

Figure C-17: Design alternatives for Task C-8

 C-230

For tasks with unknown arguments, a mapping design is generally preferred over a data computed one

because the task specificity is low (task-specificity guideline in chapter IV-3.6) and the articulatory distance

is higher if we use data computation. The mapping design in Figure C-17b shows the tuition-cost figures as

bar lengths and leaves it up to the user to determine the fellowship threshold line perceptually. The

observational distance for this design is x2p to perform the find task, where x represents the number of

times the find task is repeated, and p represents the load of a simple perceptual operation. Each time the

find task is repeated, a total of 2p perceptual load is required; 1p load to determine the threshold line on the

x-axis and another 1p to pre-attentively identify all bars below or above that threshold.

The data computation design (Figure C-17a) provides a slider input device that allows users to

manually enter in different fellowship values. Universities with tuition-cost below this input value are then

highlighted pink. In this case, the perceptual load is slightly smaller. Only a single perceptual operation is

needed for each task iteration to pre-attentively identify all the pink university names (i.e. load = xp where

x represents the number of times the find task is repeated). However, in addition to the perceptual load there

is also an articulatory load. Each time the find task is repeated, the user must enter a new input value

through the slider. The load for a single input is 2(m+k) i.e. two mouse moves (2m) with one mouse click

and one mouse release (2k). Thus, the total articulatory load is 2x(m+k). This articulatory load outweighs

the additional perceptual load needed in the mapping design thus our designer ranks the mapping design

above the data computation design.

We want to point out however that accuracy is assumed to be less important for the find task here.

When high accuracy is required, the data computation design becomes more effective because it can be

difficult to get highly accurate find results from the mapping design. In particular, it may be difficult to

determine which point on the x-axis corresponds to a desired fellowship figure and it may be difficult to

perceptually project a straight line upwards from the x-axis to accurately process the bar-lengths especially

for tuition-cost figures that are close in value to the fellowship. This is consistent with our accuracy design

guideline in chapter IV-3.1.

C-4.2.3 Change in attribute or value type

In addition to financial costs constraints, suppose we are also only interested in finding out the

departments in each school which are most prosperous (i.e. has the most funding as well as the most

faculty). Of particular interest are the departments that top both the categories. Analyzing this data will help

us determine which areas of study are the most popular and financially rewarding. Note that this task is

identical to Task C-5 except that instead of comparing two quantitative attributes (tuition-cost and room-&-

board-cost) we are comparing two nominal attributes (department-with-most-funding and department-with-

most-faculty).

 C-231

(Find =,
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

department-with-most-funding),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

department-with-most-faculty))
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory },

department-with-most-funding),
(Lookup {Carnegie_Mellon_University,MIT, Duke, …, Emory } ,

department-with-most-faculty)

Task C-9: Finding the most prosperous department in each university based on funding and faculty size

(a) Data computation design

Each university (y-axis) is associated with two marks, one representing the department with the most funding
(left) and the other representing the department with the most faculty (right). The five main possible

departments are represented using hue. In addition, universities with the same department topping both
funding and faculty are pre-computed and shown in the left column.

 C-232

(b) Mapping design with position

Universities are mapped to the y-axis and the five
different departments are mapped to the x-axis.

The department with the most funding is indicated
with a red mark and the department with the most
faculty is indicated with a blue mark. Universities
with the same top department would have the two
red/blue marks together. Finding such universities

can be performed pre-attentively or semi pre-
attentively with this display.

(c) Mapping design with hue

Universities are mapped to the y-axis and the
different department types are mapped to hue.
Universities that have the same top faculty and
funding departments are those with pair-marks

that have the same color. This design is less
effective than design (b) because there is a lot of

hue noise here making it more difficult to identify
identically colored marks.

Figure C-18: Finding universities where the department with the most faculty is also the department with the
most funding. The two mapping alternatives are less effective compared to the data computation solution

because in both the mapping designs the find task may not be fully pre-attentive while in the data computation
design it is very easy to identify the universities with the same top faculty and funding departments. In addition,

this information is very well integrated into the design without increasing complexity by much.

 C-233

In the data computation design, the universities that pass the find task are shown on the left and the

universities that do not pass the find task are shown on the right. Each university is represented by a cluster

of two marks, with the first mark representing the department with the most funding and the second mark

representing the department with the most faculty. In this example, the data computation design is ranked

higher than the mapping solutions because it allows pre-attentive performance of the find task, and the

additional find results can be integrated with the two lookups very well, without significantly increasing

graphical complexity.

On the other hand, the mapping solution does not ensure pre-attentive performance of the find task.

Figure C-18b shows a mapping design where the department attribute is mapped to x-position and the

department with the most funding is represented by a pink mark while the department with the most faculty

is represented by a blue mark. We can find the universities that fulfill our task constraint by looking for

clusters of two marks (i.e. a two mark cluster indicates a university that has the same department topping

both faculty and funding). Figure C-18c shows a different mapping design alternative where the department

information is mapped to hue instead of x-position. The left marks in Figure C-18c represent the

departments with the most funding and the right marks represent the departments with the most faculty.

Unlike the data computation solution (Figure C-18a), pre-attentive perception is not possible here because

there are too many colors in the display and the noise from these colors make it difficult to pre-attentively

identify rows that have the same colored marks.

The important issue here, however, is that the mapping design for tasks with nominal attributes is

more effective than the mapping design for tasks with quantitative attributes (e.g. in Task C-5). In the

former case, the departments can be compared with 100% accuracy and the task can sometimes be

accomplished pre-attentively. In the latter case, the mapping design is much less accurate and cannot be

accomplished pre-attentively. Thus a lower cost should be assigned to mapping designs for tasks with

nominal or ordinal input arguments compared to tasks with quantitative input arguments.

Nominal and ordinal data attributes are probably the easiest to process perceptually especially when

they are well-bounded (i.e. they represent only a small number of different values or have a value

membership set that is relatively small). Attribute values that are discrete (i.e. not continuous) and well-

bounded can be to be encoded with a wide range of pre-attentive graphical properties that are maximally

differentiated in value, which makes perceptual processing significantly easier and more accurate. Discrete

attributes are less effective because although they are non-continuous, they are unbounded. Quantitative

 C-234

values are the most difficult to process perceptually because they are continuous and unbounded. This

makes it difficult to accurately translate the perceptual values back into data values1.

C-4.3 Data Set Variation
Variation in the data set mainly causes readability problems (e.g. occlusion, display density, dwarfing)

which increases both the expressive and observational distances of a graphic. Some of these problems may

be avoided using data computation designs that can hide and summarize data, consequently reducing

perceptual complexity and increasing readability. Two of the primary properties of a data set that can affect

readability include: 1) the distribution of values within the data set, and 2) the data set size.

1 This statement is true for all graphical property encodings except for when text-labeling is used. However, text is not

perceptually pre-attentive, thus it is not a very effective graphical property choice.

Data set with high cost Rich-University included

Data set with Rich-University removed

Figure C-19: Mapping design where out-of-state-tuition-cost is mapped to the blue bar x-lengths and room-&-
board-cost is mapped to the red bar x-lengths for a set of universities. In the data set with Rich-University there

are severe dwarfing problems on the bar lengths making it difficult to accurately estimate cost values.

 235

Data set with high cost Rich-University included

(In this case Rich-University does not cause
any dwarfing problems because we are only
looking at the value differences rather than

the actual cost values)

Data set with Rich-University removed

Figure C-20: Same data set as Figure C-19 but showing the pre-processed difference values between out-of-state-
tuition-cost and room-&-board-cost instead of the original cost figures. Note that in this case it does not matter
whether Rich-university is included or not, the difference distributions of the two data sets are comparable. I.e.

the dwarfing problem is no longer an issue in the data transform design.

The distribution of values within a data set mainly affects the accuracy and complexity of achieving

tasks. If a data set contains values that are widely set apart, then it is likely that the graphical scale used to

encode the data will be much smaller than the data scale. This may cause some data values to be minimized

or dwarfed so that it they are hard to access perceptually. For example, consider the difference task in Task

C-2. Suppose that the costs of a particular university far exceed the others, as in Figure C-19-left. The long

bars for Rich-University, cause the other cost bars to be greatly dwarfed. This makes perceptual judgements

of bar length differences very difficult. On the other hand, if the distribution of values are close together, as

in Figure C-19-right (which has the same data as the left figure but with the high cost university removed),

the length differences can be determined with greater accuracy and with less probability for error. In cases

where the data distribution results in intense data dwarfing, it is possible that using a data computation

design will reduce the dwarfing effects. For example, Figure C-20 shows the pre-processed difference

values of the data set in Figure C-19-left. In this design, the great dwarfing effect has been reduced because

we are only showing the difference values between each bar pair instead of the values themselves.

 C-236

(a) Smaller filtered airline data set that is
much easier to process compared to design (b)

because there is no occlusion here.

(b) Large unfiltered airline data set that is
difficult to analyze because of the high degree of

occlusion. With large data sets it is advantageous to
do some pre-processing and pre-filtering to

simplify the data set before mapping it to graphics
or the resulting display will be difficult to analyze

and process.

The size of the data set can also affect design choices. When data sets are large, data computation

operators are usually preferable (to mapping operators) because they can summarize the data set and fewer

elements need to be shown to users. For example, consider the airline-scheduling example shown below,

where each flight is represented by a line. This graphic is appropriate when the flight database is small.

However when there are many flights, we would quickly fill the visualization with so many lines that there

would be too much occlusion to read anything useful from it. The data computation solution (Figure IV-3)

however, does not have these problems because the data filtering possible significantly reduces the number

of flights that need to be shown. The only exception is for all-to-all tasks (chapter IV-3.4) which should be

performed with mapping techniques especially for larger data sets because the data computation solution

significantly expands the amount of data in the visualization.

C-4.4 Summary
In this section we presented a set of simple examples and showed how variations to the 1) task, 2) task

arguments, and 3) data sets, can result in different data computation and mapping designs. We intentionally

used simpler examples so that the variations in design and user goals can be more clearly illustrated. We

also briefly discussed how larger data sets and all-to-all task iterations can result in readability issues such

as visualizations that are too dense, graphical elements that are too small or graphical elements that get

dwarfed because of the wide distribution of values within the data set. As is shown in the examples here,

 C-237

some of these readability problems can be avoided through making careful choices between data and

mapping operators. However, this alone cannot solve all the readability problems that may arise. In

appendix F we discuss how interactivity, graphical, and rendering transforms can also be used to alleviate

many of these readability problems.

The designs shown in this section are all generated by our prototype automatic designer. Our designer

uses a cost structure that is based on the design guidelines described in chapter IV-2, chapter IV-3 and on

previous heuristics used in automatic data graphic design [Mackinlay, 1986a, 1986b; Casner, 1991]. This

cost structure is used to make choices between different graphical artifacts and data functions. Designs that

simplify the data or that have a lower semantic distance get a lower score, while designs with high

complexity or a great semantic distance get a higher score (i.e. a lower cost or score indicates a better

design). Designs are then generated according to increasing cost (i.e. decreasing effectiveness).

Implementation details on our designer are described in chapter V. In the next section, we explore a more

realistic task of purchasing a car and show how our designer may be used in an iterative data analysis

session.

C-5 Purchasing a Car

In this example, Bob is planning to purchase a car. In picking a car Bob is interested in the following

properties: 1) low fuel consumption (i.e. high miles per gallon), 2) cheap price, 3) high performance engine

(i.e. high engine capacity), 4) good speed and power (i.e. high horsepower). It is obvious that Bob cannot

get a car that has all of these properties because they conflict with one another. Higher performance cars are

usually more expensive and cars with good fuel consumption (high mpg) usually have lower performance.

Thus Bob would need to trade-off these properties with one another and pick the car with the “best”

balance between price and performance. There are several possible ways to accomplish this task. One way

is to simply determine the best car in each category, and pick the car that tops the most categories. The task

specification is shown below:

Find (= , Lookup ({all-cars}, price),

Compute (Min, Lookup ({all-cars}, price))

Find (= , Lookup ({all-cars}, mpg),

Compute (Max, Lookup ({all-cars}, mpg))

Find (= , Lookup ({all-cars}, engine-capacity),

Compute (Max, Lookup ({all-cars}, engine-capacity))

Find (= , Lookup ({all-cars}, horsepower),

Compute (Max, Lookup ({all-cars}, horsepower))

Task C-10: Car purchasing task A

 C-238

The most effective design chosen computes the max, min and find tasks internally and the user is only

shown the cars that top each category (Figure C-21). A problem with specifying the task in this manner

arises when each category is topped by a different car. When this occurs there is no way to pick the best

candidate. In addition, even though a car may top one or multiple categories (e.g. Metro in Figure C-21) it

may not necessarily be a good choice for Bob if its ranking is low in the other categories. This is because

Bob is looking for a balance between both price and performance.

Figure C-21: Data computation design for car purchasing task A (Task C-10)
The top cars are shown for each car picking category. While this design is very simple and easy to interpret it

does not allow us to flexibly take all four car picking attributes into account simultaneously.

A better way to solve the task is to weigh each car based on all four attributes, and rank the cars based

on the sum score of these weights (Task C-11). We will assume that all four categories are as important to

Bob, so the weight is even for each category. To calculate the rank for each car, we score it from 0 to 1 for

each attribute. The score for a particular attribute value is computed by determining where it falls between

the minimum and maximum values for that attribute. 1 indicates the best value in the current data set and 0

indicates the worst value. Note that for the price attribute we need to perform an additional difference

operation because the goodness of this attribute is inverse to its value size. The rank for a particular car is

the summation of each individual attribute score. Since there are 4 attributes, the maximum score is 4.0.

Compute (sum ,
Compute (Difference , 1.0,

Compute (ratio, Compute (Difference ,
Lookup ({all-cars}, price),
min-price)

 Compute (Difference , max-price, min-price))
)

Compute (ratio, Compute (Difference ,
Lookup ({all-cars}, mpg),

 min-mpg),
 Compute (Difference , max- mpg, min-mpg))

Compute (ratio, Compute (Difference ,
Lookup ({all-cars}, engine-capacity),

 min-engine-capacity)
 Compute (Difference ,

max-engine-capacity, min-engine-capacity)
)

Compute (ratio, Compute (Difference ,
Lookup ({all-cars}, horsepower),

 min-horsepower)
 Compute (Difference ,

max-horsepower, min-horsepower))
)

Task C-11: Car purchasing task B
(Note that in this task specification we assume that the min and max values for each data attribute have been

pre-calculated)

 C-239

(a) A normalized score is computed for each of the car
picking attributes and the sum scores are shown on the

x-axis of the bar chart.

(b) A normalized score is computed for each of the

car picking attributes and each score is
represented by the x-length of a differently

colored bar. The red bar represents the engine-
size score, the green bar represents the min-price
score, the blue bar represents the mpg score, and
the purple bar represents the horsepower score.
The sums can then be deduced by looking at the

combined length of the stacked bars.

Figure C-22: Designs for car purchasing task B (Task C-11). Design (b) is more effective than design (a) because
in design (b) it is easy to lookup the score sums and in addition, the individual scores are also given so that we

may examine each criteria separately.

 C-240

Because the task is computation intensive (i.e. many compute operators and task embeddings), the

most effective design generated is a data computation design (Figure C-22a). In Figure C-22a, all the

computations are pre-computed by the system and only the sum scores are shown for each car. While this

method is much more effective than car purchasing task A (Task C-10), it requires that the user know what

weightings to give to the different attributes. In addition, because the attributes are all rolled up into a

single score, it is difficult to determine for a particular car which attributes contributed most to its final

score. Figure C-22b shows an alternative hybrid design that is ranked second for this task. In this design,

the score computation for each car attribute category is pre-computed, but the addition task for the four

individual scores is achieved through a mapping transform. Each differently colored bar in Figure C-22b

represents the score of a different car attribute, and the bars are stacked to facilitate the four score

summations. This design solves the single score problem in Figure C-22a, however, the problem of

identifying appropriate task weightings remain. In addition, both designs also suffer from having to display

too many data elements, forcing users to navigate in the display to get to all the elements.

Note that a pure mapping design is much worse compared to the data computation designs in Figure

C-22 because there are many embedded computations here and it is very difficult to graphically integrate

all the information in a way that is consistent with the task constraints. In addition the added load from

having to do all the intermediate tasks perceptually (i.e. embedded tasks) significantly increases the

semantic distance of the design.

An issue related to task specificity is that of premature commitment. As we previously discussed, the

more fully a task can be specified, the lower the articulatory load for the data computation design.

However, the more that we need to commit at the outset of the task, the less flexibility we have later in the

data analysis process. The importance of premature commitment depends on the task, the domain, and the

user. We will show in the next section that our task specification language allows for less premature

commitment by using the (‘?’) wild card character. This character indicates that the task parameter is

unknown at the time of task specification. Building the task specifications themselves as well as deciding

when it is appropriate to use wild card characters (‘?’), however, is beyond the scope of this thesis.

Another way to perform the task is through a series of finds. We begin by finding a set of cars that

have high mpg, and from there, we narrow down the set to those that have relatively low price and so on as

in car purchasing task C (Task C-12), case-1. The problem with embedding tasks in this way is that it

suggests an ordering to the tasks while in reality there is none. Thus in car purchasing task C (Task C-12),

case-2, we use the and operator to group the find tasks together without embedding them.

 C-241

Case 1:

Lookup
(Find (> ,

 Lookup
 (Find (> ,

 Lookup
 (Find (< ,

Lookup (Find (< ,
Lookup (all, mpg), ?),

 price),
 ?)
 engine-capacity),

 ?),
 max-speed),
?)

 name)

Case 2:

Lookup (And (Find (< , Lookup ({all-cars}, mpg), ?),

 Find (< , Lookup ({all-cars}, price), ?)

Find (> , Lookup ({all-cars}, engine-capacity), ?)

Find (> , Lookup ({all-cars}, max-speed), ?)

)

)

Task C-12: Car purchasing task C

Figure C-23: Data computation design for car purchasing task 3
In this design users get the flexibility to enter in filtering thresholds for each of the four car picking attributes
through slider input devices. The system then pre-computes all cars that fulfill those threshold conditions and

then only displays those cars. This produces a much cleaner and effective design compared to the previous
designs in Figure C-22. In addition, in this interface the user may weigh each of the four car picking attributes

differently (e.g. place more importance on horsepower and less on price) by setting more or less stringent
thresholds. In Figure C-22, each of the four car picking attributes are weighed equally and users are not given

the ability to alter this weighting.

 C-242

The best ranked design for car purchasing task C (Task C-12) is a data computation design (Figure

C-23). In Figure C-23, four sliders are provided so that users may adjust the four car purchasing attribute

thresholds. Only cars that fulfill the slider thresholds are shown as text in the display. Because of this data

filtering, the number of cars shown at any one time is usually small. Even in the case where the original

data set is large, a user can alter the threshold values so that most of the car concepts are filtered out except

for the best choices. For this reason, the data computation design is ranked at the top even though car

purchasing task C (Task C-12) has low task specificity. The data computation design has much less

perceptual clutter compared to the mapping designs (Figure C-24 and Figure C-25) and it requires much

less display space, thereby making it unnecessary to navigate through the visualization. In the mapping

designs many more data concepts must be shown, and as a result users may need to scroll or zoom in and

out to get to all the elements.

The top mapping design is shown in Figure C-24. In Figure C-24, the left bar chart encodes engine-

size on the x-axis and car-price as bar saturation. The right chart encodes miles-per-gallon in the city on

the x-axis and horsepower as bar saturation. The car-names are mapped to the y-axis of both charts. To

perform car purchasing task C (Task C-12), we must identify bars in the first chart that are long (large

engine-size) and unsaturated (low car-price). They must be paired with bars in the second chart that are

long (high miles per gallon) and saturated (high horsepower). Compared to Figure C-23 many more

graphical elements need to be shown here, thus users will most likely need to navigate within the

visualization to get to all the elements. In addition, saturation does not allow value comparisons to be

performed accurately. For these reasons, the data computation design in Figure C-23 is ranked higher than

the pure mapping design in Figure C-24.

 C-243

Figure C-24: Mapping design-1 for car purchasing task 3
Mapping design that shows the original four stock picking attributes to the user. Engine-size is mapped to the x-

axis of the left chart and min-price is mapped to the saturation; city-mpg is mapped to the x-axis of the right
chart and horsepower is mapped to saturation. Desirable cars are those with long (large engine-size), unsaturated

(low min-price) bars in the left chart and short (low city-mpg), saturated (high horsepower) bars in the right
chart. This design is significantly more complex in terms of number of elements and difficulty of interpretation

compared to Figure C-23. In addition the saturation encodings does not allow for accurate value lookups or
comparisons

 C-244

An alternative design is to map each attribute to a set of aligned bars (Figure C-25). Figure C-25 is

deemed less effective compared to Figure C-24 because it requires users to scan across a wide spatial

distance to get to each aligned value. In addition, an even greater amount of navigation is probably needed

here due to the larger visualization size. However, by using position to encode all of the attributes, we can

perform value comparisons much more accurately than in Figure C-24.

Figure C-25: Mapping design-2 for car purchasing task 3
Mapping design that shows the original four stock picking attributes to the user. min-price is mapped to the x-
axis of chart 1 (left-most chart), city-mpg is mapped to the x-axis of chart 2, engine-size is mapped to the x-axis
of chart 3, and horsepower is mapped to the x-axis of chart 4 (right-most chart). Desirable cars are those with

short bars in chart 1 (low min-price), short bars in chart 2 (low city-mpg), long bars in chart 3 (large engine-size),
and long bars in chart 4 (high horsepower). This design is more accurate than Figure C-24 because all values are
encoded on the x-axis (i.e. no saturation values are used). However this design is also less integrated and requires

significantly more eye movement, display space, and display navigation.

 C-245

A better mapping alternative is to integrate the attributes together within a single graphical object so

that users need not read graphical properties across different objects across multiple spaces. In this case

however, none of the graphical objects available to the designer is capable of expressing five attributes

(name, mpg, price, engine-capacity, max-speed) in an integrated manner.

This example illustrates how a design that most suits the user’s needs can be derived through iterative

refinement between the user and the automatic design system. An automatic design system supports this

process, by enabling users to rapidly test out different design ideas, and by presenting design alternatives

that can serve as starting points for further refinements. As we had discussed previously, the ultimate goal

is not for users to learn and specify the task constructs shown here, but rather to attach the automatic

designer to a higher level domain specific system, that can generate these specifications based on verbal

descriptions by the user or based on the design alternatives that are favored by the user.

 D-246

Appendix D
Appendix to Implementation (Chapter V)

D-1 Structural & Content Matching

Structural matching is based on the graphical properties used, the number of graphical objects, and the number

of graphical regions in the design. For a structural match to occur, the number of graphical objects and the

distribution of those objects across the different regions must be identical for the two visualization designs. For

example Figure D-1a and Figure D-1b match structurally because both visualizations have two chart regions and a

set of mark graphical objects in one region and horizontal-bar graphical objects in the other. Note that the order of

the two regions is irrelevant in the structural match.

(a)

(b)

Figure D-1: An example pair of visualizations that match based on both structure and content. Structurally both designs
have two charts, one of which is a bar chart and the other a scatterplot. In terms of content, both designs contain the same
data attributes (object-name, selling_price, neighborhood, owner_salary) and graphical property classes (2 positionals, and

2 retinals).

Content matching, on the other hand, is based on the data contained within a visualization and how that data is

mapped to graphical properties. Two designs match in content if the data attributes and graphical property classes

contained within them are identical. There are three graphical property classes in AVID (based on Bertin’s [Bertin,

1983] graphical property categorization): positional, retinal, and labels. Positional properties include x-position, y-

position, and z-position, retinal properties include size, hue, saturation, shape, thickness, etc., and label properties

include the use of text labelling.

 D-247

Figure D-1a and Figure D-1b are also content matches because both visualizations have identical data content

(object-name, selling_price, neighborhood, owner_salary) and identical graphical property class content. Figure

D-1a uses y-position, size, hue and x-position respectively to encode its data attributes which translates to a

graphical property class content of [positional, retinal, retinal, positional]. Figure D-1b uses y-position, x-position,

shape and size to encode its data attributes which translates to a graphical property class content of [positional,

positional, retinal, retinal]. Note that the graphical property class content of Figure D-1a and Figure D-1b match

even though the actual graphical properties used may be different. Figure D-1b for example uses shape to encode

neighborhood while Figure D-1a uses hue to encode the same data attribute. A match still occurs because both hue

and shape belong to the retinal property class. Also note that the order in which data attributes are mapped to

graphical properties does not affect the content match result. For example in Figure D-1a, a retinal property (size) is

used to encode selling_price and a positional property (x-position) is used to encode owner_salary. On the other

hand in Figure D-1b a positional property (x-position) is used to encode selling_price and a retinal property (size) is

used to encode owner_salary. Even though the mappings are permuted in these two cases the graphical property

classes used and the data attribute content within the two visualization designs are identical, thus Figure D-1a and

Figure D-1b are considered content matches.

D-2 Translating a Functional Design from AVID’s Design Component

into a Complete Specification

The translation algorithm for AVID’s functional design follows the instantiation augmentation process for

interactive techniques described in chapter III. Initially we collect all functional operators in the functional-operator-

list of a node and connect them based on the embedding structure of their related tasks. For example consider the

design in node-3, which is a pure data transform design with five data transform operators corresponding to each of

the input tasks. These operators are connected from innermost task to outermost task. Thus the GetAttributeValue

selling_price operator for the innermost lookup task is connected to the Threshold operator of its parent find task.

The Threshold operator is in turn connected to the GetAttributeValue operators for the lookup-date_on_market and

lookup-date_sold tasks. Finally we end the functional design with the BinaryCompute operator related to the

outermost compute task. This initial design structure is shown in Figure D-2. All functional operators are

represented as rectangular boxes.

GetAttributeValue

GetAttributeValue

ComputeThreshold

Functional operators connected from innermost to outermost

GetAttributeValue

Figure D-2: Connecting all visualization functions within a node state from innermost task to outermost

 D-248

Once we have constructed the general functional structure, we perform task class related modifications, as is

shown in Figure D-3. Newly added function rectangles are highlighted to indicate changes made to the design

specification at the current step. Primarily, a find task can either show its results through object filtering or through

mapping its results to a graphical property. Depending on which of these alternatives is relevant to the current

design, we either filter objects within the appropriate region with an Add_object and a Delete_object operator

(alternative 1 in Figure D-3) or we store the Threshold results within the visually mapped find attribute with an

Assign operator (alternative 2 in Figure D-3)1. In Figure D-3, an Assign operator is also connected to the

BinaryCompute operator. This Assign operator stores processed time duration values within the compute task’s

related duration_on_market attribute that is subsequently mapped to graphics. Note that both find task design

alternatives are shown in Figure D-3 for pedagogical purposes. Any single design, however, would only contain

structures for one of these alternatives

GetAttributeValue

GetAttributeValue

Compute

Threshold

Assign AddObjects

DeleteObjects

SetOperator

GetDataConcepts

Complement

GetAttributeValue

Assign

UpdateObject

Alternative 1: Filtering objects
Alternative 2:
Mapping dervied results

Additions made to compute
derived results for the entire
data set

Figure D-3: Making task class modifications depending on whether we want to show the find task results either through
object filtering or by mapping its results to a graphical property

Depending on how the find task results are shown, it may be necessary to show the computed time duration

values only for the objects that fulfill the find task (design-1) or we may have to show the values for all house

1 In general all visualization functions that provide values to mapped data attributes must be linked to an Assign operator so

that newly computed values may be associated with their corresponding data attribute structure.

 D-249

concepts (design-2). For design simplicity, we always calculate derived attributes for the entire set of related data

concepts. To achieve this we disconnect all embedded object task operators from their parent task and connect them

to a GetDataConcepts function instead. In Figure D-2, for example, the Threshold function results (for the find task)

are piped into two date GetAttributeValue operators that limit the duration compute to only the threshold objects. To

generate duration values for the entire house data set we disconnect the out-links from the threshold operator, and

associate the two date GetAttributeValue operators to a GetDataConcepts operator. The GetDataConcepts operator

accepts a set of data classes and extracts all data concepts belonging to those classes from the entire house data set.

In this example derived values are calculated for all data concepts belonging to the house class2.

Finally we must update the visualization design so that any newly computed results or change in values are

reflected in the graphics. This is achieved by adding an UpdateObject operator at the end of the functional

specification. We connect to the UpdateObject operator last to ensure that all computations and assignments are

made before the object update occurs. The procedure thus far corresponds to step 1 of the instantiation

augmentation process described in chapter III. In this step we define the object selection and transformation

functions in the design3.

GetAttributeValue

GetAttributeValue

Compute

Threshold

Assign AddObjects

DeleteObjects

SetOperator

GetDataConcepts

Complement

GetAttributeValue

Assign

UpdateObject

GetBooleanObjects

Figure D-4: Adding in any necessary translation functions

2 Note that the GetDataConcepts operator also produces the input data concepts for the two Assign operators that are used

to store computed functional results within the duration_on_market attribute.
3 In Figure D-2 and Figure D-3 we include GetAttributeValue functions that are technically translation functions but since

they are related to the lookup tasks we found it useful to add them to the design at this initial step.

 D-250

In step 2 of the instantiation augmentation process we add in translation functions to ensure that the inputs to a

visualization function match the output of its source function. In this case only one translation function is added,

namely the GetBooleanValues function for converting boolean values from the Threshold function into an object set

so that it can subsequently be processed by the Add_object and Delete_object mapping functions (Figure D-4).

Next, we determine the input arguments to the visualization operators based on the tasks and task arguments

that they are associated with. This corresponds to steps 3 and 4 of the instantiation augmentation process. These

input values are represented in Figure D-5 with oval boxes and bold italicized text. Most of these values can be

directly extracted from the task arguments (e.g. selling_price, 100k, date_on_market, and date_sold). The two

derived attributes duration_on_market and houses_with_selling_price_less_than_100k can have their names

specified in the task description or automatically generated based on related task operators and arguments. The

region name(s) for the Add-object and Delete-object functions is derived from object constraint information stored

within the node state during the search procedure. In general all regions containing attributes from an object task

(e.g. find or AND) are constrained by the results of that object task and thus become inputs to its corresponding Add-

object and Delete-object functions. In design-1, for example, the interval-bar region contains the

duration_on_market derived attribute, which is a parent attribute to the find task. Thus the interval-bar region gets

assigned as the input region to the Add-object and Delete-object functions in Figure D-5. Finally the entire

visualization design (design-1) is updated using the UpdateObject function.

GetAttributeValue

GetAttributeValue

Compute

Threshold

Assign AddObjects

DeleteObjects

SetOperator

GetDataConcepts

Complement

GetAttributeValue

Assign

UpdateObject

GetBooleanObjects

Selling_price

Date_on_market

Date_sold

Duration_on_marketHouse_sale_dt

100k

Houses_with_selling_
price_less_than_100k

Interval-bar
region

Design-1

<=

Interval-bar
region

Figure D-5: Adding in input arguments to the visualization functions

 D-251

In step 5 of the instantiation augmentation process we add in all the input devices stored within the node state

and initialize them. The house purchasing task in chapter V, Figure V-2, does not require the use of any input

devices, thus all designs (design-1,2,3,4,5,6) generated have none. For illustration purposes however, suppose that

the find threshold value is tied to an input device instead of a pre-specified constant of 100k. In this case, a slider

input device would be associated with the find task and stored within the input-device-list of the node state. We

therefore add the device to our functional specification and augment it with any initialization functions necessary.

For each input device class, AVID contains knowledge on the set of device attributes that must be initialized

(this is based on the input device description in chapter IV). For a slider, we need to initialize three attributes: its

label name, as well as its min and max values. Figure D-6 shows the initialization specification for the slider input

device. To the right are the three device attributes that must be initialized. To the left we extract relevant values from

the task argument(s) related to the input device. In this example the related task argument is associated with the

selling_price attribute and the house object class. As shown in Figure D-6 (highlighted ovals), these values are piped

into the input device initialization specification. The rest of the functions and inputs within the initialization

structure are stored as design knowledge within AVID. Similar to the slider, other devices have initialization

structures associated with them as well, including entry point rules for connecting task argument information.

GetDataConcepts GetAttributeValue

selling_priceHouse_dt

GetAttributeValue

GetAttributeValue

GetAttributeValue

Label

Max

Min

Assign

Assign

Assign

selling_price

SummaryCompute

SummaryCompute

Max

Min

Slider-1

Slider-1

Slider-1

UpdateObject

Required input device valuesExtracting input device inputs from input argument data

Slider-1

Figure D-6: Initialization functions for the slider input device

D-3 Visualization Realizer Component

AVID’s realizer is divided into two components: 1) the graphical object realizer and 2) the functional realizer.

The graphical object realizer accepts visual structure design specifications and converts them into graphical element

renderings. The functional realizer accepts functional design specifications and converts them into visualization

techniques (e.g. dynamic query sliders, painting).

 D-252

D-3.1 Graphical Object Realizer

The graphical object realizer is implemented in C++, using SGI’s Inventor toolkit, which provides a

framework for organizing and rendering the graphical objects within the visual structure specification. Initially, C++

functions are in place to interpret the input design and convert it into one or more Inventor nodes. These Inventor

nodes can then be manipulated or rendered onto the display using a set of Inventor functions.

Visualization

graphical objects

Inventor Nodes

Visualization

Region
node

... Region
nodeSoTransform

SoGroup

Region

Axis
node(s)

...Legend
node (s)

Symbol
node

Symbol
node

SoTransform

SoGroup

SoCallb

Axis

SoTransform

SoGroup

SoCallback SoText ... SoText

Legend

SoTextGrapheme
node

...SoTransform

SoGroup

Grapheme
node

SoText

Symbol

Grapheme
node

...SoTransform

SoGroup

Grapheme
node

Grapheme

SoTransform

SoGroup

SoMaterial SoShape

Figure D-7: Visualization graphical objects and their corresponding Inventor nodes

Figure D-7 shows all the graphical object classes in our AVID system and their corresponding Inventor nodes

or sub-trees. Details on these object classes can be found in chapter III-1.1.2. Primitive Inventor nodes are

 D-253

represented in Figure D-7 as square boxes and their names are preceded with “So” . Oval boxes represent AVID

graphical object classes.

All graphical objects in the visual structure specification are converted into at least a SoGroup and a

SoTransform Inventor node. The SoGroup node is used to collect all other nodes associated with the graphical object

together under a single root node. This makes it easier to organize the objects within a visualization as well as to

access and manipulate their appearance. Every SoGroup node has a SoTransform node as its first child. This

SoTransform node allows the realizer to translate, rotate, or scale graphical objects. A change in the transformation

parameters of a SoTransform node not only changes the appearance of the current graphical object but also the

appearance for all its children. For example, increasing the scale of a SoTransform node for a region object increases

the region bounds as well as the size of the axes, legend, symbol, and grapheme objects within it. Changing the scale

of a SoTransform node for a symbol object will affect the size of the grapheme objects it contains but not have any

effect on the region, or visualization objects which contain the changed symbol.

In addition to the SoGroup and SoTransform nodes, graphical objects may also contain other graphical objects.

In fact the graphical object classes within AVID have a hierarchical relationship with visualization objects at the top

of the hierarchy followed by region objects, symbol objects and finally grapheme objects. Depending on the region

class (i.e. chart, map, table or grid) and the grapheme properties used, regions may also contain positional axis

objects and legend objects that capture how grapheme property values can be converted back into data values.

Grapheme objects form the leaves of the hierarchy, and as such they only contain primitive Inventor nodes, unlike

the other graphical objects. Grapheme objects have three Inventor nodes: a SoTransform node that determines the

position, orientation and size of the object, a SoMaterial node that determines the color of the objects, and a

SoShape node that determines the appearance of the grapheme object. The appearance of a grapheme object is based

on its class (mark, bar, text, interval-bar or line) and its shape graphical property.

Certain graphical objects also contain Inventor SoCallback nodes. SoCallback nodes are free-form nodes that

allow specialized drawing functions to be executed. In the region object, for example, this node is used to call

functions for texturing maps, drawing table columns, and other region rendering operations. Similarly the

SoCallback node for the axis object is used to draw the axis line, and the axis tick marks.

When we connect the Inventor nodes for the different graphical objects together, we get a hierarchical scene

graph of Inventor nodes, as in Figure D-8. This scene graph is rooted at the SoGroup node of a visualization object.

Every visualization object in a design gets converted into a separate hierarchy of objects. Once the realizer converts

all objects within the visual structure specification into a scene graph, Inventor functions are available to render the

scene onto a display screen and ensure that all object transforms are applied in proper order.

 D-254

SoTransform

SoGroup
(region)

SoTransform

SoGroup
(visualization)

SoCallback

SoGroup
(region)

SoTransform

SoGroup
(symbol)

SoTransform

SoGroup
(grapheme)

SoMaterial SoShape

SoTransform

SoGroup
(axis)

SoCallback SoText

...

...

...

SoTransform

SoGroup
(legend)

SoText ...
SoTransform

SoGroup
(grapheme)

SoMaterial SoShape

...

...

Figure D-8: Inventor scene graph of visual structure design

Another important function of the graphical object realizer is in making layout decisions. Note that the visual

structure specification provided to the realizer does not contain details on exact object positions. Instead, the

specification contains mapping information such as which data attribute should be mapped to which graphical

objects and properties, object information such as what objects should be in the visualization, and roughly how

objects should be laid out in relation to one another, as well as containment relationships. It is up to the realizer to

set the actual pixel or color ranges used for mapping, the actual object sizes and positions in pixels as well as default

object property values. To avoid certain occlusion problems among the graphical objects and to reduce perceptual

clutter, the realizer has a set of algorithms for arranging graphical objects. For example, white-space is added

between region objects, and regions are never placed on top of one another. Grapheme objects may also be subject

to special layout algorithms. This occurs in single-axis charts or when a chart maps non-unique, non-continuous

data attributes to positional axes.

D-3.1.1 Single axis layout

For single axis charts, occlusion may be significant because the objects are only distributed across a single

positional dimension. For example Figure D-9a shows a single axis visualization with selling_price mapped onto the

x-axis. Because of the great concentration of objects around particular ranges of values there is significant occlusion

in those areas which in turn reduces readability of the visual display. The AVID realizer reduces occlusion in this

case by utilizing the other, unmapped positional dimension (i.e. the y-positional axis) to spread out the high object

concentration areas. This is achieved by adding an offset value to the unmapped positional dimension of all

 D-255

occluding objects. We repeat this positional offset step until there is no longer any occlusion. This pushes occluded

objects up as far as necessary, as is shown in Figure D-9b which has the same data and design as Figure D-9a, but

with the single axis layout algorithm applied.

(a) without layout

(b) with layout

Figure D-9: Single axis visualization design with and without realizer layout algorithm

D-3.1.2 Non-unique positionals

Significant occlusion may also occur among grapheme objects when a chart only contains non-unique, non-

continuous positionals. For example, in Figure D-10a there is significant occlusion because two non-unique data

attributes, neighborhood and garage_availability are mapped to the y-axis and x-axis respectively. As a result all

houses that fall within the same neighborhood-garage_availability category will have exactly coincidental positions.

In such cases the graphical object realizer offsets the positions of objects within each category so that they do not

occlude one another as in Figure D-10b which contains the same data and design as Figure D-10a but with

significantly less occlusion.

(a) without layout

(b) with layout

Figure D-10: Non-unique positional visualization design with and without realizer layout algorithm

 D-256

D-3.2 Functional Realizer

The functional realizer takes a functional design from the automatic designer as input and produces active

visualization techniques for manipulating data or graphical objects. AVID’s functional realizer is implemented in

C++ and Motif. Initially C++ functions are used to transform the objects within the functional specification into

networks of data transform functional nodes. Each network is a directed acyclic graph, and may look like the

specifications in Figure D-5 or Figure D-6. The Motif toolkit is used to integrate virtual input devices and handle

events from physical devices such as keystrokes, mouse operations, etc. These Motif events serve as alerts and may

cause one or more functional networks to be executed. When a functional network is executed, we traverse down the

acyclic graph and execute the transform functions accordingly.

The functional network structures in the specification are based on the framework described in chapters II and

III of this thesis. There are four types of objects in this network:

D-3.2.1 Primitive visualization functions

A visualization function (VF) structure describes the primitive building blocks of a visualization technique.

Figure D-11 shows an example visualization function structure in our functional language.

(DEFSCHEMA visualization-function-741

(class BINARY_COMPUTE)

(defaults

 (0 0 0 0 0 VALUE IV_STRING SUBTRACT)

 (0 0 0 0 1 VALUE IV_STRING ONE-TO-ONE)

)

 (to con-743)

 (composite cvi-748)

)

Figure D-11: An example description of a visualization function

The class field captures the primary processing operations of the visualization function. As was described in

chapter II, visualization functions may belong to the object selection class (object-definition or enumeration) or the

transformation class (data, mapping, graphical, or rendering transforms). Tables III-1, III-2, III-3, and III-4 in

chapter III summarize all the visualization function classes defined in our AVID realizer. Each function class

definition contains the number and type of input arguments required, the number and type of output arguments

generated, and a functional description (in C++ code) of how the input arguments are processed. When a

visualization function is activated, its input arguments are processed using the functional description code defined

within its function class.

 D-257

 A system designer may provide input arguments to a visualization function as default values. For

example the visualization function in Figure D-11 has two default input value strings, subtract and one-to-one. Input

arguments may also be generated by other visualization functions. This is achieved by attaching both the source and

destination visualization functions together using a connector object. For example, in Figure D-11, visualization-

function-741 is connected to the connector object, con-743. Figure D-12 shows that this connector object routes the

output of visualization-function-741 to visualization-function-742.

D-3.2.2 Connectors

A connector routes output arguments from one visualization function as input arguments into another. Figure

D-12 shows an example connector object. A connector object contains a source and a destination visualization

function in its visualization-function slot. This information alone however, is insufficient to fully specify the

connection. A visualization function commonly has multiple input and output arguments, thus to fully specify a

connection, we must not only declare the source and destination functions, but also the specific output and input

argument positions. This information is stored in the connections field. In Figure D-12, con-743 links the first output

argument of visualization-function-741 to the second input position of visualization-function-742. The first number

in the connections field represents the number of connections there are in the field. The subsequent numbers in the

field are pairs of source argument and destination argument positions.

(DEFSCHEMA con-743

 (instance bvi-connection)

 (visualization-function visualization-function-741

visualization-function-742)

 (connections 1 1 2)

)

Figure D-12: An example description of a connector

 When the connections field of a connector object is left unspecified, the functional realizer will try to

infer which argument(s) of the source function best matches any unspecified input arguments in the destination

function based on the type and properties of those arguments.

D-3.2.3 Input devices

An example input device structure is shown in Figure D-13. The input device class describes the type of input

device to use, which could be a physical device, e.g. mouse, light-pen or a virtual device option-menu, scroll list or

slider. In addition to the input device class, we must also declare the trigger visualization functions. The trigger

visualization functions are the functions that get executed whenever certain trigger events are sensed by the device.

Trigger events commonly differ based on the input device class. For example the trigger event for a scroll list is a

double click on a menu choice, the trigger event for an option button is a mouse release on one of the button choices

and the trigger event for a bounding-box is a mouse release within the visualization window. The types of input

 D-258

devices available on our AVID system and their corresponding trigger events are shown in Table III-5, chapter III.

Finally, the input device structure also contains information on which visualization window the input device should

be attached to. In Figure D-13, the input device id-500 is attached to the visualization design-338.

 (DEFSCHEMA id-500

 (instance inputDevice)

 (class BOUNDING_BOX)

(trigger bvi-500)

 (operation-within design-338)

(composite cvi-501)

)

Figure D-13: An example description of an input device

For each input device class, AVID’s realizer contains information on its trigger event, its appearance, its

properties as well as a functional description of how the device’s properties and state change with respect to user

inputs.

D-3.2.4 Composite visualization functions

As is shown in Figure D-5 and Figure D-6, a set of visualization functions and input device objects may be

combined together through a set of connector objects to form a functional network (which is a directed acyclic

graph). Each functional network is called a composite visualization function. A visualization technique may consist

of a single composite or multiple interacting composites. In the example in section D-2 there are two composite

functions, one for providing the inputs to the slider input device and the other for describing how the visualization

graphical objects are altered when the user enters different values through the slider. Figure D-14 shows an example

composite visualization function (composite-501). This composite object contains all the source or origin

visualization functions within the functional network. Source visualization functions are operators that only contain

pre-defined input arguments, i.e. operators that do not accept inputs from other visualization functions. When a

composite visualization function is activated, processing begins with these source functions.

(DEFSCHEMA composite-501

(instance composite-function)

(source-nodes visualization-function-734

visualization-function-726

visualization-function-751)

)

Figure D-14: An example description of a composite visualization function

Based on the structural descriptions of these four object types within the input functional specification, the

functional realizer builds one or more networks of connected visualization functions and input device objects.

 D-259

Initially, all functional networks are activated once beginning with their source visualization functions. In addition to

this initial activation, functional networks may also get reactivated as a result of trigger events from input devices.

When a visualization function is activated its input arguments are transformed based on its function class. The newly

generated outputs are piped into subsequent visualization functions that in turn get activated. Note that a

visualization function can only be activated when all of its input functions (i.e. the functions that generate the inputs

to the current function) have also been activated. This ensures that all of the input data are up to date before

processing begins. If an error in the design specification results in un-updated or missing input arguments, then

processing of the error visualization function, as well as its parent composite function is halted.

D-3.3 Summary & Scope

This section describes the realizer component of AVID, which is divided into two parts, the graphical object

realizer and the functional realizer. The graphical object realizer deals with rendering the graphical components

within a visualization design while the functional realizer deals with constructing and executing the selection and

transform visualization functions associated with a design.

The selection and transformation functions captured within our functional realizer are merely a subset of the

wide range of possible useful data analysis operations. In fact as we discussed in earlier chapters, it is never possible

to guarantee complete coverage of the functional design space nor the visual design space. However, the designer

and realizer components within AVID are modular in their implementation, and it is not difficult to add in new

visualization function classes, input device classes, graphical object classes and region types.

D-4 Interactive Functions Editor

In the previous section we described AVID, our automatic visualization designer that can generate a set of

ordered visualization designs (consisting of both visual and functional components) based on input task

specifications. AVID makes design decisions about what graphical object and visualization function primitives to

use and how they should be combined. AVID’s designer component, however, does not utilize the entire

visualization techniques design space that is captured by our framework in chapters II and III. In AVID’s designer

component we mainly focussed on heuristics for integrating data manipulation, data summarization, and mapping

techniques. We chose to leave graphical and rendering heuristics for future work, as this area is both rich and

complex, making it difficult for us to give a complete or reasonable treatment of it in this dissertation. In appendix F

we discuss graphical and rendering techniques in greater detail and outline how they may be integrated into the

automatic design process in future work.

To more widely test the flexibility of our functional framework and its usability as a prototyping and

customization language we implemented an editor for manually constructing visualization techniques. This editor

allows users to build functional networks using the primitives described in chapters II and III. It is built upon two

graph packages developed at AT&T-Bell Labs: GraphViz and JavaApp [Ellson]. GraphViz is used to improve the

 D-260

readability of a graph by organizing it so that there is little or no occlusion among its nodes and links. Java App

allows visualization techniques to be constructed by adding visualization function nodes (indicated by rectangles),

default value nodes (indicated by ovals), and connector objects; changing visualization function properties (using

property sheets); deleting or moving existing nodes and other graph editing operations. We made some

modifications to the Java App interface to better suit our purposes, such as allowing group selection, group moves,

group deletes, as well as automatic resizing of the graph canvas depending on the current graph size. Figure D-15

shows a screen-shot of our functional specification editor. The top window allows us to load and save functional

specification files, remove or add cvi-components to the current design, or layout chosen function networks. The

bottom window shows the network diagram for a particular cvi-component (cvi-4) and a property sheet of one of the

visualization functions within it. Once a functional specification is completed, it is transformed into the functional

specification language that we described in section D-3.2. This specification may be saved as a file and/or piped into

AVID’s realizer component that instantiates the designs and combines them within a visualization interface.

Figure D-15: Functional specification editor

By using this editor we generated all the example visualization techniques shown in chapters II and III

including painting [Becker, 1987], dynamic queries [Ahlberg, 1992], aggregation, Visage drag-and-drop [Roth,

1996], semantic zooming [Bederson, 1994], etc. These examples illustrate the wide range of visualization techniques

that may be captured by our framework and created using our functional editor. In chapter III-2, we used this

 D-261

interface to customize the dynamic query slider interactive technique and change its behaviors and effects. Each

change is simple and time effective, showing how our visualization functions framework may simplify the

customization, and prototyping of interactive visualization interfaces. By building these examples with our editor we

show that our visualization functions framework is not merely a theoretical description of visualization techniques,

but is complete and specific enough to be implemented and realized as active systems for creating and prototyping

visualization behaviors and metaphors. Depending on the complexity of the design and the amount of structure

sharing that is possible with previous techniques, creating each of these examples may take from 20 minutes up to

several hours. In either case, the time taken is still insignificant compared to writing code from scratch. The editor

interface can be further improved by considering the specification by example methods suggested by Myers [Myers,

1991].

 E-262

Appendix E : Evaluation

Using GOMS to Evaluate our Automatic Design System

In chapters II and III we presented a framework for characterizing visualization techniques. This

framework presented four classes of visualization primitives: data, mapping, graphical and rendering. It has

been shown in many current hand-made visualization systems that utilizing all four classes of these

primitives can significantly improve our ability to solve tasks and communicate information with

visualizations. Previous work in automatic visualization design, however, only considered the use of

mapping techniques. In chapter IV we outlined a set of metrics and heuristics that enable data techniques to

be added into the automatic design process. These heuristics describe how data and mapping techniques

can be successfully combined and effectively traded-off to best solve tasks. In appendix F we describe how

graphical and rendering techniques might also be integrated into the automatic design process.

To evaluate the completeness, generality and practicality of our framework as well as the

effectiveness of our metrics and heuristics, we used the theories and concepts developed in chapter II, II,

and IV to implement an automatic design system (AVID – Automatic Visualization Interface Designer).

We describe the implementation of AVID in detail in chapter V. Here we evaluate the results of AVID

using GOMS [Card, 1980]. Specifically we want to test the following:

• Our theories can be implemented and they perform as expected. I.e. the design metrics and heuristics

used in the designer result in output designs that are ordered according to complexity of use (by

“complexity of use” we refer to cognitive, perceptual, and motoric complexity).

• Our work increases the breadth of designs that can be generated by automatic systems. I.e. our

automatic system should be able to produce designs that cannot be previously generated.

• Our work improves the effectiveness of visualizations generated. I.e. the expanded design space

contains visualizations that allow certain task classes to be solved more effectively.

To demonstrate the effectiveness of the expanded design space, we have chosen three tasks that span

the three major classes of Exploratory Data Analysis (EDA) tasks as captured by previous work, and which

we find interesting in our own work. Specifically, the three classes of tasks are: search, compute, and

comparison. For each of these tasks we used our automatic system (AVID) to generate up to about 20

designs, exploring a maximum of 15000 nodes in the design space (i.e. 15000 different design states). A

design state can be differentiated from all others either because the graphical elements used are different,

the data encoded within the design is different, or the constraints (graphical or data) placed on the design

are different.

 E-263

For each task, we chose from the 20 designs, a set of about 7 or 8 that had interesting design

differences and performed a GOMS analysis on each of them to estimate the total time taken by experts to

perform the intended tasks. Specifically, for each task and each design we developed a procedure or an

algorithm that might be executed by an expert user to solve the task. Implicit in these procedures are many

assumptions about the cognitive, perceptual, and motoric steps executed by the user. There are obviously

many different correct algorithms that may be used and a complete analysis would try to model all of them.

For our purposes however, we chose a single straightforward efficient algorithm for each layout assuming

complete understanding of the graphic and task (i.e. no time to allocated for interpreting the graphic and

recalling the task). Taking the difficulty of representational interpretation into account during the automatic

design process would be an interesting area of study for future work. Based on this “complete

understanding” assumption, we presuppose the following rules in all of our GOMS evaluations:

Baseline Assumptions for ALL tasks and ALL designs

1. The user has the task committed to memory and the task does not change during the experiment.

2. The user has complete understanding of all graphic designs used and thus we do not account for

time taken to understand a graphic (i.e. time taken to parse what data attributes are shown, what

data attributes are mapped to which graphical properties, etc).

Generating a single procedure for each design is sufficient for our purposes because our goals are to

contrast the different visualizations produced by our system and get some general time estimates for

determining the correctness of its design ranking. For this purpose we do not need very accurate total task

time measurements. It is sufficient that we determine general design groups based on approximate total

time differences and based on these groups ensure that our system does indeed assign meaningful costs to

its output visualizations.

We expect that this simplification will cause our models to under predict average performance time

because not all users are likely to adopt efficient algorithms. It is also important to note that our procedures

are based on a single data set, i.e. the data set used to generate the visualization designs. Different data sets

will invariably cause different GOMS sequences and total times to be generated. Depending on how

important the data distributions are to the chosen procedure, a change in data set may cause a simple

multiplicative change to the total time based on number of data elements, or it may cause significant

changes to the actual procedure used to solve the task. We have discussed in appendix C-4.3, how our

automatic design system takes some of these data size and data distribution effects into account. A more

complete treatment of these issues however is left for future work.

 Most of the GOMS operators and estimated times used in our analysis are taken from Lohse et al.

[Lohse, 1993] and John et al.[John, 1990]. A summary of these operators are shown below in Table E-1.

 E-264

Lohse and John in turn based many of their operator times on previous empirical work as is shown in the

original source column of Table E-1.

GOMS operator Estimated
time
(msec)

Original
source

Explanation

Perceive simple binary
signal

100 Card et al.,
1983
[Card, 1983]

Perceive complex
visual signal
(word or code)

290 John &
Newell, 1989
[John, 1989]

As was done in John, 1990, we divide the 340 msec estimated
time by John & Newell, 1989 into a perceive component (290
msec) and a verify component (which is a cognition operation
taking 50 msec). This change makes a difference when
processing multi-word entries where only a single verification
is needed at the end of the entry. This 290 msec time also
conforms well to the time listed by Lohse, 1993.

Cognition
(mental step)

50 John &
Newell, 1989
[John, 1989]

As was listed by Lohse, 1993, Cavanaugh 1972, Olson, 1990,
and Welform, 1973, all measured various cognitive time
estimation to perform a mental step, or to compare various
types of objects in working memory. These empirical times
range from 33 msec to 92 msec. The average time of all these
operations came up to 55 msec. This figure is similar to the
50 msec time estimated by John & Newell 1989 which we
will adopt in our GOMS sequences.

Eye saccade
(travel time)

30 John &
Newell, 1990
[John, 1990]

Card 1983, estimated eye movement times to be 230 msec.
This figure was later refined in John & Newell 1990 and
divided up into smaller steps taking into account the time
needed to initiate the eye movement, the actual travel time,
and the fixation time. In our analysis we will use the latter
model for better time estimation accuracy.

Homing between
devices

350 Card et al.,
1983
[Card, 1983]

Hand movement
between numeric
keypad and mouse

132 derived from
Fitts Law
[Card, 1983]

In general, Card 1983 estimated that the time taken to move
between devices is 350 msec. In our analysis however, the
only devices that the user needs to move between include the
numeric keypad and the mouse. Since both these devices are
commonly placed in close spatial proximity (assuming right
handed mouse use), the time taken to move between the two
devices will likely be smaller. Using Fitts Law, we estimated
the time taken for the move to be approximately 132 msec (
assuming 6 inch distance between mouse and numeric
keypad, and 3 inch width for the numeric keypad).

Horizontal movement
within numeric keys

40 derived from
[John, 1988]

Upstroke 60 [John, 1988]
Down-stroke 60 [John, 1988]

Lohse, 1993 estimated a keypunch entry to take 372 msec,
however in our analysis we decided to break up keypunch
entries into smaller steps including upstrokes, downstrokes
and finger movements as was done in John, 1990. This will
allow us to more accurately model time savings for numbers
with many repetitious digits.

Table E-1: Summary of all GOMS operators used in the evaluation sequences listed in this appendix

The results of all the GOMS analyses for each of the three EDA tasks (search, computation,

comparison) are shown in subsequent sections. Essentially our evaluation test designs and GOMS

estimates show the following:

 E-265

• The output order of our automatic designer (i.e. our design heuristics used) does indeed conform

to cognitive, perceptual, and motoric complexity as computed by GOMS. I.e. the theoretical

concepts developed here for characterizing and expanding the visualization techniques design

space for automatic visualization generation can be implemented and the results are meaningful

(i.e. conforms to GOMS computed times).

• Adding data transform techniques into the automatic design process expands the visualization

design space and enables whole new sets of interactive and non-interactive visualizations to be

generated. Many of these designs are shown in the following sections.

• Some of the new designs generated as a result of work developed in this thesis (i.e. pure data

transform techniques and hybrid data + mapping designs) perform much better than the designs

that can be generated with current state of the art technology (i.e. pure mapping designs) for the

task classes we considered (computation, search, comparison); with the highest gain in

computation tasks.

In section E-5 we outline our reasons for using GOMS as an evaluation method and describe why it can be

appropriately applied for our purposes.

E-1 Task 1: Find Task
Finding a “Good” University based on Graduation Rates and Test Scores

Suppose we are looking for a “good” university to attend. Some of the attributes we may be interested

in include the quality of students attending the school (which can be deduced by looking at their ACT and

SAT scores) as well as whether the school has a good track record for graduating its students. The task

specification entered into our automatic designer is shown below:

 (lookup

 (and-obj

 (find-obj ’(VALUE . GREATER-THAN)

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_COMBINED_SAT))

 ’(VALUE . ?))

 (find-obj ’(VALUE . GREATER-THAN)

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_ACT))

 ’(VALUE . ?))

 (find-obj ’(VALUE . GREATER-THAN)

 (lookup ’(OBJECT . nil) ’(VALUE . GRADUATION_RATE))

 ’(VALUE . ?))

)

 ’(VALUE . OBJECT-NAME)

)

Task E-1: Search for universities based on the average SAT and ACT scores of attending students as well as
graduation rates.

 E-266

 From analyzing the set of visualization displays generated by our system, we were able to determine

the schools that performed well based on the three search attributes: Duke, Emory, Vanderbilt, University of

Pennsylvania, Massachusetts Institute of Technology, and Brown University. It is perhaps not too surprising

that all of these universities are private schools.

 The task specification entered into our designer provides for some amount of flexibility in the search

parameters. The wild card “?” symbols indicate to the designer that we are not sure of the exact scores and

graduation rate thresholds of interest in our search, so that the designs generated will allow users to

experiment with different search thresholds. In the interest of simplicity, however, we only estimate the

time for setting one set of thresholds in the GOMS sequences below. Increasing the number of different

threshold conditions tested will not change the general GOMS procedures used, but merely result in a

higher time multiplicative cost commensurate to the number of different threshold tests.

In the next sections we present a set of seven output designs generated by our designer, ordered from

best (least system assigned cost) to worst (highest system assigned cost). Each design is accompanied with

a description of the visualization as well as a GOMS evaluation showing the steps taken to complete the

above task and the total time taken. In the summary section we compare the GOMS estimated times for all

seven designs and provide an analysis of the results and its impact on our goals.

In all following GOMS analysis for this task we assume:

Baseline Assumptions for Task 1 (Search Task):

1. Only one set of threshold conditions is used. In tasks of this type it is common for users to experiment

with different search constraints until a satisfying number of universities are retrieved. Setting overly

high threshold values may cause no universities to fit the conditions of the search while setting

threshold values that are too low may cause too many universities to fulfill our search criteria.

However, to model the actual number of task conditions a user would actually try out in a session, we

would need to account for user preferences and experience, the difficulty of the interface, the

importance of the task, etc. Such modeling, if possible, is beyond the capabilities of the analysis

techniques used here. As a result, all the GOMS sequences for this task only accounts for one set of

search conditions. We will however show how experimenting with multiple search conditions can

change the total estimated time for each design.

2. Assume that the user’s hand is already on the mouse at the start of the task. We believe that this is a

reasonable assumption since the user is most likely already working or interacting with the computer

when the designs are shown to them.

3. We assume that the user has some approximate threshold values in mind for each of the three

attributes. To get to each of the threshold values, the user must either make multiple moves on a slider

 E-267

input device, or scan around the different encoding positional axes. In general we assume that three

adjustments are needed to get to the correct value on a slider or to find the desired value on a positional

axis. This figure is based on our own experiences in using the generated interfaces. We want to point

out, however, that since both operations have comparable time estimates (320 + 490n msec for

manipulating a slider and 470n for an axis lookup, where n is the number of adjustments needed), there

isn’t much of a time effect if this number (n) turns out to be slightly higher or lower. We anticipate that

this number may range from about 1 to 20 depending on the adeptness of the user in manipulating

devices (physical or virtual), the sensitivity of the slider, the length of the slider, the accuracy of

manipulating the slider, the task accuracy required, the task importance etc. Such variation however

does not cause significant time changes among the designs. When n = 20, the estimated time

difference is 400 msec. only.

E-1.1 Design 1

 In this design the search results are pre-computed by the system and only the universities that pass all

of the search constraints are shown. The visualization interface generated by our automatic designer

provides three sliders, each allowing the user to input a threshold constraint for each of the search attributes

(avg_combined_SAT, avg_ACT, and graduation_rate). A big advantage of this design is the reduction of

visual clutter due to the fact that the search data need not be shown to users, as their results have been pre-

processed by the system. The nature of the search task allows even greater visual benefits because we can

prune the number of objects in the display so that only the relevant ones are shown.

 To solve the task using this design users must set the sliders to the relevant threshold values and then

read off the university names. The time taken for this design is mostly attributed to the effort of

manipulating the sliders. We assume that to get the desired threshold value on a slider, the user needs to

adjust the slider an average of three times.

 E-268

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Attend alter slider 50
Initiate finger drop 50
Finger drop 60

Alter first slider to required
SAT threshold score

Sub-total 160

Attend hand move 50
Initiate hand move 50
Hand
move

Attend check
the correctness
of current
threshold

50

 Read threshold 290
 Verify results 50

Shift the slider until the
correct threshold value
appears. Note that here, the
process of performing the
finger moves necessary to
complete the task is
performed in tandem with
scanning the slider to
determine the current
threshold value. In this case
since the hand move required
is minute, the time is
dominated by the scan and
reading operation.

Sub-total 490

approx. 1180 for
SAT
approx. 26.5 for
ACT
approx. 76% for
graduation rate

As was previously noted, we
assume that three slider
moves are necessary to get to
the desired threshold value.

3 * 490 1470

Attend finger lift 50
Initiate finger lift 50
Finger lift 60

Finish manipulating slider

Sub-total 160

Total time for manipulating
ONE slider

160 + 1470 + 160 1790

Total time to manipulate all
sliders

3 * 1790 5370

Attend name read 50
Initiate eye movement 50
Eye movement 30
Read 3 university names
with info. verification
3 * (3 * (290 + 50))

3060

Initiate eye movement 50
Eye movement 30
Read 3 university names 3060

Read university names. Here
we assume that there are a
limited number of names
(six), thus the user can get to
them with a limited number
eye movements. We assume
the user can get to three
names with one eye
movement based on the
required font size for
reading.

Sub-total 6330 6330

1. Duke,
2. Emory,
3. Vanderbilt,
4. University of

Pennsylvania,
5. Massachusetts

Institute of
Technology,

6. Brown
University.

Total time 5370 + 6330 11700

 It is important to note that a major part of the total time in the design above (approximately half) can

be attributed to the time taken to manipulate the three sliders. This component increases the more sets of

search conditions we want to test. Each change in condition increases the total time by 1790 msec for

manipulating a slider and an additional 280 msec for a quick scan of the results to see whether we have the

approximate number of data concepts desired (as is shown below). Thus total time for each search

condition change is 2070 msec. Note that this figure assumes that three minute adjustments are needed to

get to the desired threshold value on the slider. As a user gets more familiar with the slider mappings and

 E-269

sensitivity, this figure may be reduced at which time the cost of each change may only take 810 msec + 280

msec = 1090 msec (assuming that no adjustments are needed). Also note that when scanning for the

number of elements retrieved, we assume that no counting is required because we are not interested in the

exact number of elements, just in whether the approximate number of elements retrieved falls within our

task requirements.

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target
objects (data
or graphics)

Attend see approximate
number of objects returned by
search

50

Initiate eye movement 30
Perceive results
(This is a pre-attentive
operation)

100

Compare general size with
desired size

50

Verify results 50

Quick scan of results

Sub-total 280

E-1.2 Design 2

 This design is very similar to the previous one in that the search results are pre-computed. However,

instead of filtering the visualization display to only show the universities that fulfill the search, we map the

search results to hue (color). Blue universities indicate those that pass the search and red universities

indicate those that don’t. Because more data concepts are shown in this design, and an additional graphical

property (color or hue) is used to show the search results, this design is rated lower than the previous one.

 E-270

 The GOMS procedure used for this design is identical to the previous one, except in the last portion

when we are reading the university names. Rather than just reading the names top down as in the previous

example we need to move our eye to each blue colored university before reading their names. This results

in a slightly higher time cost for processing the end results.

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects
(data or graphics)

Total time taken for
slider manipulation
(taken from time
calculated in Design
1)

 5370 5370 approx. 1180 for
SAT
approx. 26.5 for
ACT
approx. 76% for
graduation rate

Attend get next blue label 50
Initiate eye movement 50
Eye movement 30
Perceive label 100
Verify label is blue 50

Scan to first blue
label

Sub-total 280

Attend label read 50
Read university name 870
Verify results 50

Read label name

Sub-total 970

1. Duke,
2. Emory,
3. Vanderbilt,
4. University of

Pennsylvania,
5. Massachusetts

Institute of
Technology,

6. Brown
University.

Total time to process
each blue label

970 + 280 1250

Repeat for each blue
colored label

6 * 1250 7500

Total time 5370 + 7500 12870

 An advantage of this design is that all of the universities are shown, thus users will not get disoriented

from changes in the number and positions of the universities caused by changing search conditions as in the

previous case. In most cases however, the effect of such disorientation is minimal, and it can only become

significant when we are trying to track particular data concepts across many different search conditions.

Because the slider manipulation portion of this design is identical to the previous one, the cost of

experimenting with different search conditions is also identical at 1790 msec or 1090 msec. for experts.

E-1.3 Design 3

 This design unlike the two previous ones has a completely perceptual design, i.e. all of the task data

are mapped to graphics and it is up to the user to perform the search perceptually. Each mark cluster

represents a university. Avg_combined_SAT score is mapped to mark saturation, avg_ACT score is mapped

 E-271

to y-position, graduation_rate is mapped to mark x-position, and university_name is mapped to a text label

next to each mark. An advantage of this design is that no input device manipulation is required. A

weakness is the additional load of performing the search perceptually. In addition, more data has to be

mapped and this might sometimes cause readability problems, as is the case below where some of the

objects are occluded. Currently our automatic designer is unable to provide solutions to such readability

issues but refer to appendix F to see how such additions might be integrated into our automatic design

system in the future. Our designer assigned a higher cost to this visualization because of the two reasons

stated above: additional perceptual load and additional visual clutter.

 To solve the search task using this design, we first refer to the saturation legend to determine the

appropriate saturation color for our desired avg_combined_SAT threshold. Since there are only 5 gradations

to the saturation legend, we can zero in on the last two values in the legend and interpolate between them

(i.e. only two values need to be processed). After processing the saturation legend we look to each of the

positional axes to determine the position of the avg_ACT score and graduation_rate thresholds that we are

interested in for the search. As with the case of the slider adjustments, we assume that the user will not be

able to get to the exact position on an axis with the desired threshold value on the first try, but an average of

three eye movements are required. Once the positions are determined, we can perceptually demarcate an

area containing all the universities that fit our avg_ACT score and graduation_rate criteria. Based on our

task we are interested in high avg_ACT score and graduation_rate and this is captured by objects in the

upper-right hand corner of the chart. From all the marks in this area we choose the ones with greater

saturation values than our desired threshold (which we determined at the start of the procedure). When we

have identified the relevant marks, we read off the associated university name that is encoded next to it.

 E-272

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Attend legend lookup 50
Initiate eye movement 50
Eye movement 30
Read last value 290
Verify value 50
Read previous value 290
Verify value 50
Attend perform saturation
interpolation based on
values

50

Perceive saturation values 100
Interpolate 50
Verify saturation 50

Lookup saturation legend for
desired SAT score saturation
value.

Sub-total 1060 1060
Note that in this legend lookup step we assume that the user is able to keep the determined saturation value and use
it when it is required later. Also note that since the saturation legend scale only has five gradations, it is probably
sufficient for the user to zero in on the last mark (most saturated mark) and do some slight interpolation estimate of
saturation value with the previous mark to get the general saturation level required. As a result no adjustments are
needed to get to the desired saturation threshold, as is the case with the two axis positions next.

Attend scan 50
Initiate eye movement 50
Eye movement 30
Read value 290
Verify value 50

Scan to desired graduation rate
on x-axis

Sub-total 470

Repeat 3 times to get to desired
value

(3 * 470) 1410 1410

Scan to desired ACT score on y-
axis with 3 repetitions to get
desired value

 1410 1410

Attend scan 50
Initiate eye movement 50
Eye movement 30
Perceive general area 100

Scan to xy-position which
corresponds to desired
graduation rate and ACT score

Sub-total 230 230

Attend scan for marks
with requisite saturation

50

Initiate eye movement 50
Eye movement 30
Perceive mark saturation 100
Verify mark saturation 50
Attend university name
read

50

Read university name
(3 * 290)

870

Verify university name 50

Scan for marks with the requisite
saturation values as determined
in a previous step. This is a pre-
attentive operation thus users
should be able to zero in on the
relevant saturation without
having to attend to each mark

 1250

MIT, Illinois,
Pennsylvania, Duke
(Emory, Vanderbilt,
and Brown are
occluded)

Repeat 7 times for each relevant
university. Note that in actuality
there are only 6 universities that
pass all search conditions but
because of saturation
inaccuracies 7 are found instead.
(assume for here that there is no

(7 * 1250) 8750 8750 1. Duke,
2. Illinois,
3. Emory,
4. Vanderbilt,
5. University of

Pennsylvania,
6. MIT,

 E-273

occlusion so all labels can be
read)

7. Brown
University.

Total time 1060 + 1410 + 1410 +

230 + 8750
 12860

 It is interesting to note that this design actually has a very slightly lower GOMS estimated total time

compared to Design 2. However it should be pointed out that the GOMS estimation does not take into

account the fact that there is occlusion in the display and the task cannot be fully completed using the

given design. In particular Emory, Vanderbilt and Brown are occluded and cannot be extracted from the

visualization display. A better label placement algorithm would improve this situation. With interactive

enhancements, it is also possible to solve this problem as with labels on demand [Plaisant, 1996], however,

these enhancements will require input device manipulation and this will result in increases in the total time

taken. Another important issue here is the fact that saturation is not a very accurate encoding property and

as a result mistakes may be made in identifying universities with the required avg_combined_SAT score

(which is the data attribute encoded with saturation). An example in this design is University of Illinois

which passes both the avg_ACT and graduation_rate conditions but not the avg_combined_SAT condition.

However because of the lack of accuracy in saturation, it is incorrectly chosen as an acceptable search

candidate.

 It should be noted however that the time taken for task condition adjustments here are negligible. This

is because once the general search area (i.e. upper right hand corner) is located and the general required

saturation values are noted, minor adjustments in the search would only involve some small adjustments to

the current search area or acceptable saturation values and we do not even need to consult the axes or

legends. In contrast, even small changes in search conditions require the same slider movements in the

previous designs. Thus in cases where the data set is small (not high probability of readability problems)

but the search conditions need to be changed often, a purely perceptual design is probably superior to the

pre-computed ones. In fact as was shown in appendix C-4.2.2, in search tasks that require less information

to be shown or fewer search attributes, our designer picked the perceptual design over the data computed

design because of the additional input device manipulation load associated with the latter.

E-1.4 Design 4

 This design is a hybrid design where each of the search conditions in the task are computed by the

system, but the AND task is left to be performed perceptually by the user. Each university concept therefore

has three marks associated with it, indicating whether it passed each of the search conditions. A blue mark

indicates that a search condition was fulfilled while a red mark indicates that a search condition was not

fulfilled. Similar to Design 1 and Design 2, the interface has a set of sliders through which users may use to

set the current search condition thresholds. This design is ranked lower than the previous designs because

unlike Design 1 and Design 2 which only shows the university names, this design shows four objects, the

 E-274

university names together with a cluster of three marks representing each of the search conditions. The left-

most mark represents the graduation_rate search condition, the middle mark represents the

avg_combined_SAT score search condition, and finally the right-most mark represents the avg_ACT score

condition. In addition to the increase in perceptual complexity of the graphic, the perceptual load is also

increased because now users must deduce the results of the AND task perceptually. However, the advantage

of this design is that each of the search conditions are shown, and in cases where the user must trade off

one condition against another, it is useful to have each of the search condition results available for perusal.

If we compare Design 3 and Design 4, our system gave preference to Design 3 because while there is

slightly less perceptual complexity here (.i.e. fewer different graphical properties are used and the results

are accurate), there is the added cost of slider manipulation.

To solve the search task using this design, we must initially put the sliders to the desired threshold

values (similar to Design 1 and Design 2). Once we have done this, we can find all relevant universities by

scanning down the table and picking universities that have a three-mark cluster that is all blue. While

scanning for blue objects is pre-attentive, scan for rows with all blue objects is not. Therefore we assume

that the user must visit each row that contains at least one blue object. In the example above, this only

increases the number of rows visited by two. However, depending on changing task conditions and the data

distribution, this figure may increase.

 E-275

General goal Cognitive, perceptual,
or articulatory step
taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Total time taken for slider
manipulation

 5370 approx. 1180 for
SAT
approx. 26.5 for ACT
approx. 76% for
graduation rate

Attend get next row
with blue objects

50

Initiate eye movement 50
Eye movement 30
Perceive results 100
Verify all three marks
are blue

50

Scan to next row with blue in it,
and verify that all three marks
are blue

Sub-total 280
Repeat for each row with blue in
it

8 * 280 2240 2240

1. Duke,
2. CMU,
3. Illinois,
4. Emory,
5. Vanderbilt,
6. University of

Pennsylvania,
7. Massachusetts

Institute of
Technology,

8. Brown
University.

Attend read university
name

50

Initiate eye movement 50
Eye movement 30
Read university name
(3 * 290)

870

Verify results 50

If row contains all blue marks,
scan to left to read university
name.

Sub-total 1050

There are 6 rows with three blue
marks

6 * 1050 6300 6300

Total time 5370 + 2240 + 6300 13910

 We would like to point out that although the total estimated time for this design is fairly close to those

of previous designs, there is a significantly higher cost associated with changing the search conditions. This

is because with this design, it is more difficult to quickly determine the number of universities that actually

pass all search conditions. In all previous cases this operation is fully pre-attentive, and users can get a

general feel for the size of the search results by just looking once at the visualization display as a whole. In

contrast, this design requires users to attend to each row with blue objects in it to determine whether it

actually passes all search conditions. Specifically, even though there may be a lot of blue dots in the display

(which we can determine pre-attentively) it does not mean that many universities passed all search

conditions (i.e. there may be many rows with one or two blue marks but not three). To determine the actual

number of objects that fulfill the search, we need to attend to each row containing blue objects. Thus the

cost of each search condition change is 1790 msec for the slider manipulation + 280n msec for processing

each blue row (where n represents the number of rows with blue in them). For larger n, the time taken

could become very significant. We also want to point out that when there are many blue dots in the display,

an effective alternative for finding concepts that fulfill all search conditions might be to look for rows with

red in them, and then just subtract the total number of rows from the number of rows with red dots (i.e.

concepts that did not pass at least one search condition). Thus n is bounded by half the size of the entire

 E-276

data set. Another alternative strategy is to only visually process the column of marks that correspond to the

changing condition, and then only attend to those rows where there are changes. This strategy however

results in approximately the same time estimation because each candidate row has to be attended to

individually.

E-1.5 Design 5

 This design is a purely perceptual design similar to Design 3. Unlike Design 3 however, the three

search attributes are spread over two different charts. University name is mapped on the y-axis,

avg_combined_SAT score is mapped to bar saturation on the left chart, avg_ACT score is mapped to x-

length on the left chart and graduation_rate is mapped to x-length on the right chart. One notable

difference between this design and Design 3 is that here, there is no occlusion among the elements because

now the information is separated over a greater number of spaces. While not having occlusion problems is

a big plus, this less integrated design also increases the perceptual load and subsequently the total time

taken to complete the task.

 The GOMS procedure for this design begins with a lookup on the saturation legend to determine the

saturation value corresponding to our desired avg_combined_SAT threshold, similar to what was done in

Design 3. Next, we begin with the left chart (assuming the Western convention of reading from left to

right) and lookup the appropriate avg_ACT threshold value on the x-axis and then proceed to the right chart

to lookup the appropriate graduation_rate threshold there as well. Once we have determined the x-positions

of our desired threshold values, we begin scanning up the display, and processing any bar that intersects our

scan line. For each of these bars, we first check their saturation value to ensure that they do indeed pass our

avg_combined_SAT threshold value. If they do, we scan to the right chart and determine whether the

 E-277

associated graduation_rate passes our desired threshold x-position. We do this by looking to the rightmost

end of the bar and then comparing that with our remembered threshold position for graduation_rate.

Note that an important consideration for the GOMS procedure of this task is the number of times the

axes of the two charts must be consulted to get the proper avg_ACT and graduation_rate search threshold

positions. In Design 3, we assumed that the axes only had to be referred to once in the entire data analysis

process and the user is able to maintain the general search area and saturation in STM (short term

memory). However, this assumption no longer holds true here because the information is separated over

multiple spaces, and when processing each space we lose our positional context in the other space. Since

we must switch from space to space when processing each university row it is difficult to accurately

maintain the search threshold positions in either of the spaces. As a result several references may need to be

made to the axes as a reminder of the search threshold positions. In the GOMS procedure below we assume

that references are made to the axes for those bars that are relatively close to the desired threshold

positions. This is because when bars greatly exceed or do not meet the positional thresholds, users can tell

whether a search condition was met without having to accurately remember the exact search positions.

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Lookup saturation legend
for desired SAT score
saturation value. (computed
in Design 3)

 1060 1060

Scan to desired
graduation_rate on x-axis of
right chart with 3 repetitions
to get desired value.
(computed in Design 3)

 1410 1410

Scan to desired ACT score
on x-axis with 3 repetitions
to get desired value.
(computed in Design 3)

 1410 1410

Attend determine if left bar
length passes threshold
position

50

Initiate eye movement 50
Eye movement 30
Perceive rightmost edge 100
Verify if greater than
threshold avg_ACT score
position

50

Scan in left chart and
determine the next bar
above the avg_ACT
threshold value (assume that
approximate threshold
position can be kept in
STM)

Sub-total 280

Attend check saturation 50
Compare saturation 50
Verify results 50

Check that saturation value
passes desired
avg_combined_SAT
threshold. Sub-total 150

 E-278

Attend determine if right
bar length passes threshold
position

50

Initiate eye movement 50
Eye movement 30
Perceive rightmost edge 100
Verify if greater than
threshold graduation_rate
position

50

Scan to rightmost edge of
bar on the right chart in the
current row

Sub-total 280

Total time to process one
bar row (assuming no
references to axes)

(280 + 150 + 280) 710

Repeat for each candidate
bar row

8 * 710 5680 5680 1. Duke,
2. CMU,
3. Illinois,
4. Emory,
5. Vanderbilt,
6. University of

Pennsylvania,
7. Massachusetts

Institute of
Technology,

8. Brown
University.

Time taken for axes references:
Note that axes references are needed for bars in the first and second charts that are considered in the above process,
and that fall close to the x-position threshold positions of their respective charts.

Attend axis reference 50
Initiate eye movement 50
Eye movement 30
Read closest label 290
Compare label with desired
search threshold

50

Verify if axis passes the
desired search threshold.

50

Time taken for each axis
reference

Sub-total

 520

Three axis references are
required in the left chart

3 * 520 1560 Brown,
Vanderbilt,
Illinois

Three axis references are
required in the right chart

3 * 520 1560 Vanderbilt,
Illinois,
CMU

Total time for axes
references

1560 + 1560 3120

For each university row that fulfills all search conditions, scan left and read the relevant university name. There are
in actuality 6 universities that pass all search conditions, however in this design 7 universities are found, including
University of Illinois because of inaccuracies in the saturation encoding.

Attend get university name 50
Initiate eye movement 50
Eye movement 30
Read university name
(3 * 290)

870

Verify name 50

Scan to left to get single
university name

Sub-total 1050

Repeat for each university
that passed all conditions

7 * 1050 7350 1. Duke,
2. Illinois,
3. Emory,

 E-279

4. Vanderbilt,
5. University of

Pennsylvania,
6. Massachusetts

Institute of
Technology,

7. Brown
University.

Total time 1060 + 1410 + 1410 + 5680

+ 3120 + 7350
 20030

 As can be seen from the GOMS procedure, the lack of integration in this design, in addition to the loss

in accuracy from the saturation encoding resulted in a greater total processing time compared to the

previous examples. The cost of changing the search conditions in this design is also relatively large. This is

because any change in condition requires new candidate rows to be processed for acceptability or current

rows to be re-processed for possible rejection. As was calculated in the GOMS table above, processing

each row takes approximately 710 msec without including time for the positional axes reference. Each

change in condition may require any number of rows to be processed depending on the size of the change.

Even with a processing cost as low as two to three rows per change, the time taken exceeds that of previous

designs. This is because unlike Design 1, Design 2, and Design 3, we cannot pre-attentively get a feel for

the change in number of universities that fulfill our search conditions with each alteration. Also note that,

as with Design 3 there are some inaccuracies here due to the saturation encoding of the

avg_combined_SAT attribute. Specifically University of Illinois was chosen as an acceptable search

candidate even though it failed to pass the required avg_combined_SAT threshold of 1180.

E-1.6 Design 6

 Like the previous design, this visualization requires that the task be performed completely

perceptually. However, the design separates out the search attributes into three charts, with each chart

showing a single search attribute as bar lengths. The left-most chart shows avg_combined_SAT scores, the

middle chart shows avg_ACT scores, and the right-most chart show graduation_rate. All three charts are

aligned on their y-axis which encodes the university names. This design is rated lower by our designer

specifically because of its extreme lack of data integration. As we have shown in the previous GOMS

estimation, lack of integration can often cause significant additional perceptual loads from having to switch

our attention from space to space, and keeping perceptual context during these switches. As we will show

below this design is no exception. An interesting difference between this design and the previous one

however is that saturation is no longer used to encode any attribute. As a result there are no errors

stemming from our inability to interpret saturation values with great enough precision, as was the case

previously.

 E-280

 The GOMS procedure for this design is very similar to the previous one except that here, instead of

processing saturation we process an additional graphical chart. Processing again begins with getting the

general threshold positions in each of the three charts. Once we have determined the threshold positions we

process bars in each of the three charts, determining in each case whether the length is greater than our

threshold position. Initially we look for a bar that passes the avg_combined_SAT condition in the first chart,

then we proceed to subsequent charts to determine whether the other bars for the current university pass the

other two conditions (avg_ACT and graduation_rate) as well. As was done previously, we will assume that

axes references are only needed in those cases where the bar lengths are close to the search threshold

positions.

General goal Cognitive, perceptual,
or articulatory step
taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Scan to desired
avg_combined_SAT on x-axis of
left-most chart with 3 repetitions
to get desired value.
(computed in Design 3)

 1410 1410

Scan to desired ACT score on x-
axis of the middle chart with 3
repetitions to get desired value.
(computed in Design 3)

 1410 1410

Scan to desired graduation_rate
on x-axis of right-most chart with
3 repetitions to get desired value.
(computed in Design 3)

 1410 1410

 E-281

Now we begin processing each candidate bar row:

Attend get next bar that
passes the avg_ACT
threshold

50

Initiate eye movement 50
Eye movement 30
Perceive results 100
Verify results 50

Scan in left-most chart and
determine the next bar above the
avg_SAT threshold value
(assume that approximate
threshold position can be kept in
STM)

Sub-total 280

Attend determine if bar
passes avg_ACT
threshold

50

Initiate eye movement 50
Eye movement 30
Perceive rightmost edge 100
Verify if greater than
threshold avg_ACT
position

50

Scan to rightmost edge of bar on
the middle chart in the current
row and determine whether it
passes the avg_ACT threshold
value.

Sub-total 280

Attend determine if bar
passes graduation_rate
threshold

50

Initiate eye movement 50
Eye movement 30
Perceive rightmost edge 100
Verify if greater than
threshold
graduation_rate
position

50

Scan to rightmost edge of bar on
the right-most chart in the
current row and determine
whether it passes the
graduation_rate threshold value.

Sub-total 280

Total time to process one bar
row (assuming no references to
axes)

(280 + 280 + 280) 840

Repeat for each candidate bar
row. Note that University of
Illinois is considered a candidate
in the first chart, but rejected
right off, thus this additional
processing adds 280 msec to the
total processing time.

(7 * 840) + 280 6160 6160 1. Duke,
2. CMU,
3. Emory,
4. Vanderbilt,
5. University of

Pennsylvania,
6. Massachusetts

Institute of
Technology,

7. Brown
University.

Time taken for axes references:
Note that axes references are needed for bars in any of the three charts that are considered in the above process, and
that fall close to the x-position threshold positions of their respective charts.

Time taken for a single axis
reference

Time taken from
computed value in
Design 5.

520

Three axis references are
required in the left-most chart
(Note that Illinois is rejected as a
candidate here)

3 * 520 1560 Illinois,
Emory,
Vanderbilt

Two axis references are required
in the left chart

2 * 520 1040 Brown,
Vanderbilt

Two axis references are required
in the right chart

2 * 520 1040 Vanderbilt,
CMU

 E-282

Total time for axes references

1560 + 1040 +1040 3640

For each university row that fulfills all search conditions, scan left and read the relevant university name. There are
6 universities that pass all search conditions.
Get university name Attend get university

name
50

 Initiate eye movement 50
 Eye movement 30
 Read university name

(3 * 290)
870

 Verify name 50
 Sub-total 1050

Repeat for each university that
passed all conditions

6 * 1050 6300 1. Duke,
2. Emory,
3. Vanderbilt,
4. University of

Pennsylvania,
5. Massachusetts

Institute of
Technology,

6. Brown
University.

Total time 1410 + 1410 +1410 +
6160 + 3640 + 6300

 20330

 It is very interesting to note that the total time estimated for this design is very close to that of the

previous design. This is because whatever additional time required for processing the additional chart space

is made up for in terms of the added accuracy from having all the search attributes mapped to position. As a

result we do not need to process the University of Illinois element which was wrongly added as a search

candidate in all previous perceptual designs that mapped avg_combined_SAT to saturation.

 As with the previous case however, the cost of changing search conditions is high because it is

difficult to estimate, for each set of conditions, the number of universities that are added to or rejected from

the search. Any change in condition requires new candidate rows processed and as was calculated in the

GOMS table above, processing each row takes approximately 840 msec (without including time for axes

reference). This is a higher figure than even in the previous design.

E-1.7 Design 7

 This design is interesting because it is a purely pre-computed design, that is ordered after a number of

different purely perceptual and hybrid perceptual + pre-processed designs. The interface has a set of sliders

for setting the three search threshold values and the results of the search are shown as text labels next to the

university names. Universities that pass the search have the phrase "accepted in search” while universities

that do not pass the search have the phrase "rejected in search” next to them. The reason this design is

ranked so low by our designer is because the search results are shown as labels. This may make processing

the search results extremely ineffective because now the operation is not clearly pre-attentive and users

may need to process each university separately to determine whether it passed the search or not.

 E-283

The GOMS procedure for this design includes all the slider manipulation operations that are identical

to those required in Design 1 and Design 2. Once the search conditions are properly entered in, users must

attend to each label to see whether a particular university passed the search or not.

General goal Cognitive, perceptual,
or articulatory step
taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Total time taken for slider
manipulation

Time estimation taken
from Design 1

 5370 approx. 1180 for
SAT
approx. 26.5 for
ACT
approx. 76% for
graduation rate

Now process each text entry:

Attend determine if next
entry passed search

50

Initiate eye movement 50
Eye movement 30
Read first word in
phrase

290

Verify results 50

Scan to next entry and determine
whether it is an “accepted” or
“rejected” concept. Note that
since the last two words of the
two different phrases (“in
search”) are identical, it is only
necessary to read the first word
in the phrase. Sub-total 470
Repeat for all entries

(25 * 470) 11750

 E-284

Attend get university
name

50

Initiate eye movement 50
Eye movement 30
Read university name
(3 * 290)

870

Verify name 50

If entry is “accepted”, scan to left
and read university name

Sub-total 1050
Repeat for each “accepted”
university

6 * 1050 6300

1. Duke,
2. Emory,
3. Vanderbilt,
4. University of

Pennsylvania,
5. Massachusetts

Institute of
Technology,

6. Brown
University.

Total time 5370 + 11750 + 6300 23420

 Note that depending on the phrase used to express the results of the search, it can be possible to view

the results pre-attentively through pattern/shape matching or through word length matching.

Figure E-1: Representing search results using text
labels with “Y” or “N”. Such results can be pre-

attentively searched on through pattern matching.

Figure E-2: Representing search results using text
labels with “distinguish” or “don’t_distinguish”.
Such results can be pre-attentively searched on

through length matching.

For example in Figure E-1 the results of the search are shown with a simple “Y” or “N” symbol. In

this case, even though technically the results are shown as labels, the labels used are so simple (a single

letter) that it is similar to performing shape matching on glyphs which is a pre-attentive operation. Another

possibility is to show the results using single words that have clearly different lengths (Figure E-2). In this

way, users may also pre-attentively view the search results by filtering based on label length. As a result,

this design can, with appropriate result phrases, be elevated to a much higher ranking. Currently however

our automatic designer does not have this knowledge encoded within it. It is however not difficult for us to

 E-285

make this addition in the future. Without this additional knowledge, the processing time for changing

search conditions is also very significant. For each change, we must peruse through the entire data set to

determine the general size of the search concepts and this operation costs an estimated 11750 msec. This

time does not include the slider manipulation time which adds another 1790 msec to the operation.

E-1.8 Summary

 Figure E-3 shows the estimated GOMS total time for all the designs analyzed in this section. The

designs are ordered on the x-axis according to the costs assigned by our automatic system and the y-axis

encodes the estimated total time taken to complete the given search task in msec. From Figure E-3 we see

that there is an increasing trend from left to right. Designs that are higher ranked by our designer (to the

left) also have lower estimated total times and those that are ranked lower (to the right) have higher

estimated total times. Thus the GOMS estimations conform to the orderings assigned by our automatic

designer.

Total GOMS estimated time for Search Task

0

5000

10000

15000

20000

25000

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

G
O

M
S

 e
st

im
at

ed
 t

o
ta

l t
im

e
(m

se
c)

Occlusion
of

elements

Figure E-3: GOMS estimated total time for Task 1 (search task). The designs are ordered based on increasing
cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate pure

mapping designs (i.e. designs that can be generated with current state of the art automatic design research). All
other bars are designs made possible by work outlined in this thesis.

The green bars in Figure E-3 are designs with data transforms techniques (i.e. they are designs that are

made possible by work explored in this thesis) and the pink bars are designs that only contain mapping

transform techniques (i.e. they are designs that can be generated with current state of the art automatic

design technology). We see from Figure E-3 that a significant number of new designs are now possible that

previously could not be generated (all of the green bars). More accurately, out of the twenty designs

generated for this task, 4 were pure data transform designs, 6 were hybrid designs and 10 were pure

 E-286

mapping designs. Thus 50% of the designs in the top twenty are new designs from the expanded data

transform design space. We will see in the next two tasks analyzed that the percentage of new designs made

possible by our work is even higher. This is not surprising since search tasks lend themselves very well to

perceptual processing (i.e. there are many effective perceptual operators for performing search) but this is

not true of computation tasks that are commonly difficult to perform perceptually. While the time gains of

the expanded design space is less significant in this example compared to the next computation task, our

examples show that the variety added in addition to the interactive components provide very interesting

design alternatives to the user.

The contributions of our work can be further seen by comparing Design 1 which is the best design

generated by our expanded designer and Design 3 which is the best design that can be generated by

previous automatic systems. Design 1 computes the search results for the user based on the three

constraints placed on avg_combined_SAT, avg_ACT, and graduation rate. Only universities that fulfill all

three constraints are shown. The advantage of this display is that the filtering significantly reduces clutter

and the number of data concepts (i.e. universities) and attributes that need to be shown. As a result, less

display space is required for the visualization and there are no readability problems such as overly high

object density or occlusion.

Design 3 on the other hand shows all of the data to the user (i.e. avg_combined_SAT scores on

saturation, avg_ACT scores on y-axis, graduation rate on x-axis and university name on labels). Four data

attributes are shown here compared to the one (university name) in Design 1. To find a university that has

high values on the three search properties we need to look for marks that are to the upper right of the

display with high saturation. While this is not a difficult perceptual operation, a large problem with this

design is the occlusion that occurs among some of the elements which makes it impossible to read some of

the relevant university names. The problem worsens for a larger data set. In addition, saturation, which is

used in Design 3 to encode avg_combined_SAT score, cannot show the values with very high accuracy and

as a result errors may occur (as we saw in our analysis with University of Illinois). In contrast the search

results in Design 1 are highly accurate because they are pre-computed by the system. For these reasons, our

automatic designer ranked Design 1 over Design 3.

Another interesting aspect of our analysis concerns the estimated added cost for changing the

conditions of a search. In most part, the time required is approximately in line with the ranking of our

designer as well. This is because the time taken for each condition change is dependent on a user’s ability

to quickly scan the visualization for a general change in size of the search object set. This operation is more

difficult for the later (lower ranked) designs because the search results cannot be viewed pre-attentively

unlike the earlier (higher ranked) designs. And it is exactly this pre-attentiveness that cause the designs to

perform better in the first place and also score better in our design system. An exception is Design 3, which

 E-287

as we noted can have negligible costs to changing search conditions because no input device manipulation

is required and processing of the search results can be performed pre-attentively. Occlusion however is a

problem and we discuss in appendix F how further additions to the automatic design process with graphical

and rendering transforms may solve such readability problems and further expand the richness and quality

of designs that can be automatically generated.

E-2 Task 2: Compute Task
Compute Total Non-salary Benefits Distributed by a Set of Universities

In this section we want to determine the results of a fairly complex computation. The task we chose is

to determine the total benefits package given out by a set of universities to their faculty body. "Total

benefits" refers to non-salary compensation. The size of the total benefits package given out by a university

will indicate the general prosperity and quality of the university in terms of faculty size and general faculty

incentives. The university data set used here was taken from USNews. This data set has three different

faculty groups (full, associate and assistant professor) and two pieces of information for each group,

namely the total salary and total compensation given out to each faculty type. To compute the total benefits

given out by any particular university, we need to sum the differences between compensation and salary for

each faculty group. The task specification entered into our automatic designer is shown below:

(compute ’(VALUE . ADD)
(compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)
’(VALUE . AVG_FULL_COMPENSATION))

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_FULL_SALARY))

)

 (compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASSOC_COMPENSATION))

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASSOC_SALARY))

)

 (compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASST_COMPENSATION))

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_ASST_SALARY))

)

)

Task E-2: View the total benefits given to faculty for a set of universities.

 From analyzing the data set using the visualization displays generated by our system, we were able to

group the universities into four categories based on total benefits: 1) large, well-known state schools; 2)

 E-288

relatively large second tier state schools & large private schools; 3) small, but very prestigious private

schools; 4) smaller, less known state and private schools. The large, well-known state schools including

University of Austin Texas, University of Michigan, and University of Illinois are the universities that have

the largest total benefits package. This is because they have very large faculty bodies, in addition to

providing good benefit incentives to their faculty members. The second group of universities are a mix

between the large private schools (Northeastern University, Southern University of California, MIT, and

University of Pennsylvania) and the mid-sized state schools (Texas A&M University, University of Utah).

Universities in this group have relatively large faculty bodies and good faculty incentives. The third group

of schools (Brown, Duke, Emory, CMU) are the very prestigious private universities that provide large

incentives to their faculty members, but have a much smaller faculty size compared to the prior two groups.

Finally, the last group of universities include the smaller private schools (Hofstra University) and state

schools (University of North Dakota Main, and Northern Arizona University) with a small faculty and

fewer benefits.

Since the task entered into our automatic designer is relatively general with respect to what can be

done with the total benefit numbers, there are a set of different tasks that we could perform based on the

output designs. For example we could try to categorize the universities based on total benefits as was done

above, we could only find the top few universities giving out the most total benefits, we could compare the

benefits from particular universities that we are interested in attending, etc. In the interest of simplicity, we

chose a fairly small task for our GOMS evaluation:

Find the top four universities with the largest total benefits given to faculty.

As with the previous task we analyze a set of seven output designs, ordered from best (least cost) to

worst (highest cost) based on the costs assigned to each design by our automatic system.

In all following GOMS procedures for this task we assume:

Baseline Assumptions for Task 2 (Computation Task):

1. Reading a university name is sufficient to commit it to memory until the end of the task, at which time

the user is able to recall the top four university names read during the data analysis process. This may

not be an accurate assumption because the ability of users to remember the university names depend on

the length of the data analysis process. A longer analysis process would degrade short term recall and

reduce the probability that users are able to remember the university names read. However, since we

make this assumption for all designs, any recall failure can only have a negative bias towards the

designs that already have a longer processing time (i.e. make processing time for a less efficient design

even longer). This additional time therefore would not affect the initial time ordering/ranking of the

evaluated designs.

 E-289

E-2.1 Design 1

 In this design, the entire total benefits computation is pre-processed with an internal data visualization

technique. I.e. all the computation required is done internally by the system. The computed total benefit

results for each university are then shown as horizontal bar lengths with the university_names on the y-

axis.

Using this design, we can easily pick the four universities with the highest total benefits package by

choosing the four longest bars. This is a pre-attentive operation, which means that we do not need to attend

to each bar to get the four longest. Instead we can simply scan from top to bottom and pick the bars that we

see in order.

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub-
total
(msec)

Total-
time
(msec)

Target objects (data or graphics)

Attend picking next long
bar

50

Initiate eye movement 50

Eye movement 30
Perceive next longest bar

100

Pick next long
bar

Sub-total 230

bar 15,
bar 4,
bar 5,
bar 1

 E-290

Attend get university
name

50

Initiate eye movement 50

Eye movement 30

Read university name
(3 word name) = 3 * 290

870

Verify name 50

Scan to the left
of chosen bar to
read the
university name.
(Assume that on
average a
university name
has three words,
which is the
general case in
our data set)

Sub-total 1050

1. Michigan State University,
2. University of Texas at

Austin,
3. University of Minnesota

Twin Cities,
4. University of Southern

California

Total time to
process each bar

1050 + 230 1280

Repeat 4 times
for each of the
top universities

4 * 1280 5120

Total time 5120

 This design is very uncluttered and simple with most of the data summarized. We can perform our

task very quickly and with high accuracy.

E-2.2 Design 2

 This visualization is a hybrid design. Part of the total benefits computation (i.e. the subtraction of

total_salary from total_compensation for each faculty type) is performed internally, and the other part (i.e.

the summation of total_benefits for each faculty type) is left to the user to perform perceptually.

 E-291

Specifically, the total_benefits for each faculty type are shown using the x-lengths of three differently

colored bars. The green bars represent total_benefits for full professors, the red bars represent total_benefits

for associate professors, and the purple bars represent total_benefits for assistant professors. In addition,

the bars are stacked to facilitate perceptual computation of the summation task. In this design, we can use

the same procedure as Design 1. There is more perceptual complexity here compared to Design 1 (i.e. a

separate bar is used to represent the total_benefits for each faculty type), but the stacking technique is so

effective at grouping the objects and helping users perceptually perform the summation task, that the

additional perceptual load for this design is negligible. For these reasons, our automatic system ranked this

design second best. We would like to point out, however, that because of the greater design complexity

compared to Design 1, it would initially take the user a longer time to understand this graphic. However, as

was noted in our base assumptions, we do not take initial graphic understanding costs into account but

instead assume that the user is an expert and already has great familiarity with the visualization designs

generated. On the other hand, once understood this design includes more details that may be useful for

subsequent tasks.

E-2.3 Design 3

 In this design, the entire total benefits computation is pre-processed as in Design 1. However unlike

Design 1, we map the results to label saturation instead of to x-length (position) as was done previously.

The labels themselves show the university_names. Saturation while pre-attentive like position, is

significantly less accurate for making quantitative value judgements. This is because our eye can only

differentiate relatively large differences in saturation values. Because of the lower encoding accuracy, this

design is ordered below both Design 1 and Design 2.

 E-292

Using this design, we can find the four universities with the highest total benefits package by going to

the four most highly saturated university names. This is a pre-attentive operation, thus we do not need to

attend to each label. However, in the design above, we found seven universities with high saturation values

and it is difficult to pick the four most saturated out of this set of seven because of the difficulty in making

saturation judgements. As a result the GOMS estimated time is higher, because of the additional three

university concepts that must be processed. In addition, the error rate is also higher, however that is not

taken into account in the GOMS estimation.

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub-
total
(msec)

Total-
time
(msec)

Target objects (data or
graphics)

Attend picking next
saturated label

50

Initiate eye movement 50

Eye movement 30
Perceive saturated label 100

Scan and pick next
highly saturated label

Sub-total 230

Label 1, 3, 7, 8, 15, 23, 24

Attend read university
name

50

Read university name
(3 word name)

870

Verify name 50

Read university name

Sub-total 970

1. University of Southern
California,

2. University of
Minnesota Twin Cities,

3. Texas A&M University
Main,

4. Michigan State
University,

5. University of Texas at
Austin,

6. University of
Pennsylvania,

7. Massachusetts Institute
of Technology

Time taken to process
each saturated label

(230 + 970) 1200

Repeat process 7
times for each
saturated label

7 * 1200 8400

Total time 8400

 In the design above, there is an error rate of 43% (3/7). This error rate will increase the closer the total

benefit numbers are to each other. As the error rate increases, so does the total time taken because there are

more universities that need to be processed than necessary for the task. The one advantage of this design

over the two previous examples is that no eye movement is necessary to get from the total benefits object to

the university name because both university_name and total_benefit is encoded within the same label

glyph.

 E-293

E-2.4 Design 4

 This design is similar to Design 2 in that it is a hybrid design with the total_benefits for each faculty

type computed internally, and with the summation task left to be performed perceptually by the user.

Unlike Design 2 however, this design splits the information over two chart spaces, the left space shows the

total_benefits for full professors on the x-lengths of the bars and the right chart shows the total_benefits for

the other two faculty categories. Because there is less integration in the visualization (i.e. two spaces are

used instead of just one as in all the previous designs) our designer recognizes that it would be more

difficult to perform the summation task and as a result this design is given a higher cost (assigned a lower

ordering).

To find the four universities with the highest total benefits package with this design, we need to scan

across the two chart spaces and combine results from both charts. An important issue in determining the

GOMS procedure here is the consistency of the axis scales in the two charts. Our system by default scales

the axes of the charts according to the min and max values within each chart. This is so that the encoded

values can be determined with the greatest amount of accuracy given the available space. If we were to

scale all of the charts to a single consistent scale, some of the bar sets could get significantly dwarfed,

thereby making it difficult for users to lookup their values if needed. However for the computation task

here it is advantageous to make all of the x-axis intervals consistent because that can significantly facilitate

the comparison of bar lengths across charts and this will allow for more effective task performance. Thus

we start our GOMS procedure for this design by having the user determine the axes intervals in each chart

and then re-scaling the axes through interactive operations if the intervals are not identical. In this design,

the axis intervals are identical to begin with at 20k, thus no additional re-scaling is required.

 E-294

Once we have scaled all charts to consistent axis intervals, we start processing the left-most chart

based on the assumption that in Western convention, reading is from left to right, top to bottom. In the first

chart we attend to, we scan for all the longer bars. Note that in this case, we may need to scan for more than

just the four longest bars depending on the corresponding bar lengths on the related chart to the right. In

this design we found 9 candidate universities with relatively long bars in the first chart. Out of these nine

candidate bars, three are clear winners, Michigan State University, University of Texas at Austin, and

University of Minnesota Twin Cities, all have the top longest bars in both charts. The fourth position

however is less clear with several close possibilities including University of Cincinnati Main Campus,

Texas A&M university Main, University of Pennsylvania, and University of Southern California. There are

several ways in which we can process these four candidates. We describe two alternative methods here:

Case 1: Comparison of bar length differences

The most effective way, is to get the difference in bar lengths between pairs of candidate bars in both charts

and then pick the university with the larger difference. For example, initially, we get the difference in

length between the Texas A&M University Main bar with the University of Cincinnati Main Campus bar on

the left chart. We then repeat this for the chart to the right. In this case, both Texas A&M University Main

bars exceed the University of Cincinnati Main Campus bars in length, thus the Texas A&M University Main

concept is chosen as the current fourth possibility. When processing the University of Pennsylvania concept

however we find that the University of Pennsylvania bar is greater than the Texas A&M University Main

bar in the left chart, but less in the right chart. In this case, we actually need to compare the two length

differences and determine which is larger. For this design and data set the difference is larger in the left

chart, thus University of Pennsylvania replaces Texas A&M university Main as the fourth choice. We then

repeat this process for University of Pennsylvania and University of Southern California. Note that for this

method to work, we first need to ensure that the axis intervals in both charts are identical, which we did at

the start of the GOMS procedure.

Case 2: Comparison of total_benefit values

Another alternative method for processing the four candidate bars is to read-off their total benefit

values from the x-axis, mentally combine the benefit values for both charts, and then compare these

combined values, picking the highest one. Note that translating an x-position into a total_benefit value is a

somewhat complex operation. This is because there are only labeled tick marks on the x-axis every so often

and if an x-position falls in between two tick marks, we must estimate where it falls within the tick-mark

interval before we can convert the x-position into a total_benefit value. In the GOMS sequence below, we

estimate inter-interval positions by dividing up an interval into quarters and then estimating which quarter

the x-position falls into. This method should be effective in most cases unless dwarfing occurs on the

graphical property we are attempting to translate (refer to appendix F on details on dwarfing).

 E-295

General goal Cognitive, perceptual, or
articulatory step taken
by user

Time
taken
(msec)

Sub
total
(msec)

Total
time

(msec)

Target objects (data or
graphics)

Attend scan first x-axis
label

50

Initiate eye movement 50
Eye movement 30
Read number 290
Verify number 50
Attend scan second x-
axis label

50

Initiate movement 50
Eye movement 30
Read number 290
Verify number 50
Mental subtract number
1 from number 2
(assume 2 significant
figures)

250

Compute size of tick-
interval on the left chart

Sub total 1190 1190

20k interval

Compute size of each tick
on the right chart.

 1190 1190 20k interval

Since both charts have consistent axis intervals (20k) no additional load is required for re-scaling.

Attend picking next long
bar

50

Initiate eye movement 50

Eye movement 30
Perceive longest bar

100

Pick next long bar in left-
most chart.

Sub-total 230
Attend scan to right
chart

50

Initiate eye movement 50
Eye movement 30
Perceive bar 100

Scan to same row on
chart to the right

Sub-total 230

Attend compare bar
length

50

Compare 50

Verify result 50

Determine whether
current bar length is long
wrt. other bars in chart.
(note that comparison
here is pre-attentive)

Sub-total 150

If bars are long, store bar
position in STM as a
potential candidate.

1. Michigan State
University,

2. University of Texas
at Austin,

3. University of
Minnesota Twin
Cities,

4. Massachusetts
Institute of
Technology,

5. University of
Pennsylvania,

6. Texas A&M
University Main,

7. University of
Southern California,

8. University of
Cincinnati Main
Campus,

9. University of Illinois

Time taken to process
each bar pair

230 + 230 + 150 610

Repeat for each long bar
on first chart

9 * 610 5490 9 bars on left chart which
are potential candidates.

 E-296

There are then 4 bars that seem to have approximately the same combined lengths.
1. University of Cincinnati Main Campus,
2. Texas A&M university Main,
3. University of Pennsylvania,
4. University of Southern California
In the next steps we ascertain which of these candidates has the largest total benefit value by comparing bar
length differences (case 1) or converting the bar lengths into total benefit values and then comparing those
values.

CASE 1: Comparing bar length differences

Attend scan to right
chart

50

Initiate eye movement 50

Eye movement 30

Perceive right edge of
bar

100

Scan to first unclear bar

Sub-total 230

Attend compare 50

Attend process previous
candidate bar

50

Initiate eye movement 50

Eye movement 30

Perceive right edge of
bar

100

Compare 50

Verify results 50

Compare current bar
length with previous
candidate bar length.
Assume that the user can
then store this length in
STM.

Sub-total 380

1. Texas A&M
University Main with
University of
Cincinnati Main
Campus,

2. Texas A&M
University Main with
University of
Pennsylvania,

3. University of
Pennsylvania with
University of
Southern California

Repeat this process in the
chart to the right

Attend compare 50

Compare 50

Verify results 50

Compare the two length
differences when the
longer bar concept is
different for each of the
two charts Sub-total 150

1. Texas A&M
University Main with
University of
Pennsylvania,

2. University of
Pennsylvania with
University of
Southern California

Total time taken for CASE 1 includes:
1. Time taken to scan for the lengths of all the candidate bars. There are 4 candidates, and two bars per

candidate thus total time = 4 * 2 * 230 msec. = 1840 msec.
2. Time taken to compare the current candidate bar with the previous candidate bar. We need to perform this

comparison 3 times because there are four candidates (for the first candidate no comparison is required).
Since there are two charts, the total time here = 3 * 2 * 380 msec. = 2280 msec.

3. Time taken to compare the two length differences. This operation has to be performed twice for the two
cases where the longer bar concept is different in each of the two charts. Total time = 2 * 150 msec. = 300
msec.

Total time for CASE 1 1190 + 1190 + 5490 +

1840 + 2280 + 300
 12290

 E-297

CASE 2: Comparing the converted total benefit values

Attend scan to right
chart

50

Initiate eye movement 50

Eye movement 30

Perceive right edge of
bar

100

Scan to first unclear bar

Sub-total 230

Attend determine benefit 50

Initiate eye movement 50

Eye movement down
(assume there is no
difficulty with length
from actual axis)

30

Scan to axis to read bar
length

Sub-total 130

Note bar length pos. on
current tick interval

100

Determine in quarters
the position of the bar
length within the current
interval tick.

50

Estimate tick interval
position of bar (i.e. where
within a tick interval the
end point of the bar is
situated)

Sub-total 150

Convert distance to
benefit based on length of
1 axis step

Convert to total benefit
value (** refer to
division by halving
description below).
Conversion can be either
on: no interval, quarter
interval, half interval, or
three-quarter internal.

375

Add with last interval tick Mental add
(2 significant numbers)

250

Total time taken to
lookup the total benefits
of the first bar from the
axis.

(230 + 130 + 150 + 375
+ 250)

1135

Total time taken to
lookup the total benefits
of the bar on the right
chart

 1135

Add benefits from both
charts

Mental add
(We assume that the
numbers have 2
significant figures based
on the axis labels in the
design)

250 Texas A&M university
Main = approx 100k +
89k = 189k
University of
Pennsylvania = approx
110k + 89k = 199k;
University of Southern
California = approx. 105k
+ 104k = 209k

Total time taken to
process each unclear row

Subtotal for unclear bars
(1135 + 1135 + 250)

2520

Repeat for each unclear
bar pair

4 * 2520 10080

Total time for CASE 2 1190 + 1190 + 5490 +
10080

 17950

 E-298

 Not surprisingly case 1 results in a much lower total estimated time than case 2. This is because in

case 1, no mental computations are necessary, nor do we need to convert from bar length to total benefit

values. However, we should point out that in cases where the bar length differences in both charts are very

close, it may be difficult to perform accurate comparisons across different charts (i.e. it may not be possible

to remember the bar length difference in the first chart with enough accuracy that we can correctly compare

it in the second chart.). In this design the bar length differences are large enough that this does not become

a problem. If such a problem does arise however, we may need to resort to the case 2 method.

Note that the further processing required for the four universities in the GOMS algorithm above (as

represented by the case 1or case 2 methods) is a result of the lack of integration in the graphic. The

additional steps taken show some of the problems associated with dividing up related computation data

into multiple different spaces. Interestingly enough whichever method is used does not alter the time

ranking of this design. All subsequent designs have higher estimated total time compared to both case 1

and case 2 estimation of Design 4.

Mental Add and Subtract

In the above GOMS sequence, there were several mental addition and subtraction operations. Each of

these operations are performed on numbers with 2 significant figures. The detailed breakdown of these

operations are as follows:

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data

or graphics)

Attend computation 50

Add first digit 50

Carryover 50

Add second digit 50

Verify results 50

Mental add or subtract

Sub-total 250

Note that to perform mental computations on numbers with more significant figures, we just add in

100 msec. for each significant figure. Essentially the time taken for a mental add or subtract is 150 + (n-1)

* 100 where n is the number of significant digits in the numbers to be computed.

Mental Division

 In the GOMS sequence above there is also a mental division operation. Specifically, it occurs when

we need to convert a position that falls in between two tick marks back into its total_benefit value. Since in

this case we only ever divide inter tick mark positions into quarters (i.e. quarter of a tick, half of a tick, or

three quarters of a tick), we may simplify the mental division operation by simply halving the interval value

as is shown below:

 E-299

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Attend computation 50

Halve first digit 50

Halve second digit 50

Add both numbers 50

Verify results 50

Mental division by
halving

Sub-total 250

 This allows us to compute the required division when the x-position is exactly in the middle of a tick

mark. To perform the other cases, we can combine both mental subtraction and “division by halving” as is

shown below. The table below lists all the inter-interval cases and the total times required. Since each of

the cases is equally likely, we compute the time of any one case by taking the average time of all the cases,

i.e. (0 + 250 + 500 + 750) / 4 = 375.

Possible cases

How to convert to total benefit value Total time

(msec)

No interval No operation 0

Half interval division by halving 250

Quarter interval perform division by halving twice 500

Three quarter interval Perform quarter interval and subtract

that from a tick interval

500 + 250

E-2.5 Design 5

 This design is a pure internal design, where the computation has been processed internally and only

the final results are shown. Unlike previous cases however, where position (Design 1) and saturation

(Design 3) are used, this design uses labels to show the total benefit values. Labels are not very effective

for this task because they cannot be searched on pre-attentively. As a result, we must attend to each label

individually and mentally compare the numbers with each other. This is a cognitively intensive operation

and as a result this design is ranked much lower by our automatic designer. In addition, there is also

significant state that the user has to keep track of and it is difficult to keep them all in STM (it is difficult to

remember numbers). As a result, in our GOMS procedure, the user tracks state information by using their

fingers as pointers.

 E-300

 In our GOMS procedure the user utilizes four fingers to keep track of the current four highest total

benefit numbers. At the start of the procedure, the user picks the first four numbers as the current four

highest, thus fingers are placed next to each of these numbers. In addition, the user also determines which

finger points to the lowest of these four numbers (i.e. the lowest max) and generally what its total benefit

value is (e.g. approx 74k). Subsequently, the user processes the following numbers, comparing them to the

lowest max value. When a total benefit figure is found that is higher than the current lowest max, the user

updates the current state by changing a finger position from the current lowest max position to the new

number position. Note that we assume this only requires a finger move. It may sometimes, however, be

necessary to move several fingers on these updates to keep our fingers from getting tangled up. However in

such cases, the different finger moves would usually happen in tandem (simultaneously) thus the total time

for the operation will be approximately equal to that of a single finger move. In addition to changing finger

positions, we must also compute a new lowest max figure and keep its position and value in short term

memory. We continue this process until we have processed all numbers in the table. At the end of the

process our four fingers should be pointing to the four universities with the four highest total benefit values.

 E-301

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects
(data or graphics)

Attend point to first four
numbers

50

Initiate hand move 50
Move hand from lap to first
four entries on screen

350

Place fingers on first four
numbers indicating that
they are currently the four
largest numbers.

Sub-total 450 450

209920,
101040,
74240,
265209

Attend read next number 50
Initiate eye movement 50
Eye movement 30
Read number 290
Verify number 50

Scan next number

Sub-total

 470

Attend number > current
lowest max

50

Compare number with
lowest max

50

Verify result 50

Compare if number is more
than lowest max pointed to
by fingers

Sub-total

 150

Minimum total time taken
to attend to each number

470 + 150 620

Attend change finger
positions

50

Initiate finger lift 50
Lift finger 60
Initiate finger move 50
Move finger
100 * (log2 (1.5/0.5)+.5)

181

Initiate finger drop 50
Drop finger 60

If number is greater than
lowest max, point finger to
current number and remove
finger from the previous
lowest max.

 501

245474 Å 74240
(max = 1 step)
169492Å101040
(max = 2 steps)
188679 Å 169492
(max = 7 steps)
320788 Å 188679
(max = 2 steps)

Total move = 12
steps
Average move =
12/4 = 3 steps

Time taken to move finger in the calculation above we estimate as follows:
We assume that the visualization is enlarged so that each label entry is at least the width of a finger. Or else,
finger pointing would be very difficult. Thus,
Height of widest finger = Height of each entry = 0.5 inches
For this particular design and data set, we calculated 4 necessary finger moves, with an average total distance
move of 3 steps = 3 * 0.5 inches = 1.5 inches
Thus using Fitts Law, the estimated time for movement is 100 * (log2 (1.5/0.5)+.5) = 181 msec

In the general case, we can assume that any single move will be less than ¼ of the total distance because we
are looking for four of the largest numbers, and on average each of these numbers should be spread out one in
each quartile. Since there are 25 elements in the data set, each move should on average be 24/4 = 6.25 steps =
3.125 inches
 Thus using Fitts Law, the estimated time for movement is 100 * (log2 (3.125/0.5)+.5) = 275 msec

 E-302

Compare numbers pointed to by four fingers to get the new lowest max value and store in STM.

Compare result on finger 1
and finger 2

50

Attend read number on
finger 1

50

Initiate eye movement 50
Eye movement 30
Read number 1 290
Verify number 1 50
Attend read number on
finger 2

50

Initiate eye movement 50
Eye movement 30
Read number 2 290
Verify number 2 50
Attend compare 50
Compare #-1 and #-2 50
Verify result 50

Compare a single pair of
numbers

Sub-total 1140

Up to three pairs of
numbers need to be
compared to get the lowest
max value. However note
that only two numbers
need to be read on the first
comparison, on subsequent
comparisons, only one
number needs to be read
because the other number
is carried over from the
previous computation.

1140 + (2 * 670) 2480

Total time taken include time to process each number and the additional time of updating and computing new
lowest max figures as necessary.
Process all label entries in
table. There are 25
numbers -4 of the first
numbers = 21 numbers

21 * 620 13020 13020

We need to perform four
lowest max replacements in
this particular visualization

4 * (501 + 2480) 11924 11924

Total time 450 + 13020 + 11924 25394

 Note that this procedure requires significant cognitive and STM loads. The additional fatigue caused

by these operations (compared to perceptual operations) are not taken into account in the GOMS procedure.

This additional fatigue can potentially reduce the length of time a user is able to perform tasks effectively

and with low error rates.

 E-303

E-2.6 Design 6

This design uses only mapping techniques, i.e. all of the task data are mapped to graphics and it is up

to the user to perform the entire computation task perceptually. There are six bars shown per university.

Each pair of bars represent the total_compensation and total_salary for each of the three faculty types

(full_professor, associate_professor, and assistant_professor). Under normal circumstances, this graphic

would be very difficult to use because the computation involved in this task is very complex. Specifically,

users would need to perceptually determine the difference in bar lengths between each pair of bars (of

which there are 3 per university) and then sum up the bar length differences for each of the three bar pairs.

This operation would require significant finger pointing etc, if not help from using measurement tools (i.e.

a ruler). Once computed, the total benefit lengths would need to be marked on the paper so that at the end

 E-304

of all the processing, the user can compare all the perceptually computed lengths together. Because of the

high computation load and the additional perceptual clutter from having to show six bars, the design is

given a significantly high cost by our automatic design system.

Although normally such a design would be close to being unusable, in this example we are able to

exploit patterns in the data distribution and realize significant perceptual shortcuts. Specifically, from

looking at the bars, it becomes apparent that a significant portion of total benefits given out by a university

goes to full professors (represented by the two purple bars). I.e. the difference in length between the two

purple bars are comparably much higher than the difference in lengths of the other bar pairs. In addition, it

is the universities with medium to long bars (greater total salaries and compensation) also have greater pair-

wise bar length differences. In summary to perform our task we only need to process the universities with

longer bars and for each of those, we only need to get the difference in lengths between the two purple bars.

Since there are more than four possible candidate long bar sets, we must compare each perceptually

determined bar length difference with all other previous bar length differences to choose the purple bars

with the greatest length disparity. In this design, it is difficult to pre-attentively determine the cases where

the length differences between the two purple bars are largest. Thus we process all university concepts with

medium to long bars, where there are noticeable differences between the two purple bars (i.e. we need to

process more university bars then in the previous designs).

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data
or graphics)

Attend scan 50
Initiate eye movement 50
Eye movement 30
Perceive bar set 100

Scan to first set of longer
purple bars

Sub-total 230

Attend get length
difference

50

Perceive difference 100
Verify results 50

Get length difference
between full_professor
total_compensation bar
and full_professor
total_salary bar Sub-total 200

Compare bar length difference with all previous bar length differences and discard the one with the least
difference. Here we assume that the user can remember the positions of the current set of four universities with
the greatest bar length differences. We make this assumption here, and not in the previous case because here,
the user can use the bar lengths as a general tag for the relevant bar objects. And since length searching is pre-
attentive, it would not be difficult to get to the desired bars.

Attend compare with
current largest bar length
difference

50

Attend scan to one of the
largest difference bars

50

Initiate eye movement 50
Eye movement 30
Perceive difference 100
Attend compare 50
Compare 50
Verify results 50

Time taken to make a
single comparison between
the current bar length
difference with one of the
current largest bar length
differences

Sub-total 430

 E-305

There are 4 comparisons
that need to be performed

4 * 430 1720

Total time for this task includes processing each of the long bar sets, of which there are 13, and performing the
comparison with the current 4 largest differences, of which we need to perform (13 – 4) = 9 times.
The 13 bars processed include:
1. Louisiana State University and A&M C.
2. University of Texas at Austin,
3. University of Illinois,
4. Michigan State University,
5. University of Tennessee Knoxville,
6. Massachusetts Institute of Technology,
7. University of Minnesota Twin Cities,
8. University of Cincinnati Main Campus,
9. Texas A&M University Main,
10. University of Pennsylvania,
11. University of Utah,
12. University of Southern California,
13. Duke University

Repeat 13 times for 13 of
the tallest bars

13 * (230 + 200) 5590

Repeat 9 times 9 * 1720 15480

Total time 5590 + 15480 21070 1. University of

Texas at
Austin,

2. Michigan State
University,

3. Massachusetts
Institute of
Technology,

4. University of
Minnesota
Twin Cities

It is important to note that in the GOMS procedure above we do not take into account the time taken

to notice the perceptual patterns in the display nor the time needed to come up with a plan on how to

exploit those patterns. We should also recognize that because we are taking significant perceptual shortcuts,

we may derive erroneous results in some cases. For example in the design above Massachusetts Institute of

Technology is chosen instead of University of Southern California as one of the universities with the

greatest total benefits even though that is incorrect. This is because Massachusetts Institute of Technology

has very large total benefits given to full professors and very small benefits for all other groups whereas in

University of Southern California the total benefits are more evenly distributed to all three faculty groups.

Because we are only using total benefits for full professors as a yardstick for total benefits for all faculty,

errors similar to this will arise for data concepts that do not fit the general perceptual pattern we used to

reduce task complexity. Finally, the perceptual shortcuts used in the GOMS procedure here may not be

utilized in all cases. We were able to exploit them here only because of the particular data distribution we

are examining.

 E-306

Our automatic designer placed this design below Design 5 even though the GOMS procedures show

that this design is more time efficient than Design 5 because our system cannot take into account the

specialized perceptual shortcuts that may be exploited in this particular case. Automatically identifying

such patterns and taking them into account in the automatic design process, is a difficult but certainly

interesting problem that is left for future work.

E-2.7 Design 7

 This design is a hybrid data + mapping visualization. The total benefits for each faculty is computed

internally, and their results are shown in three separate charts. Each chart represents the total benefit

numbers for each faculty group. The GOMS procedure used here is similar to Design 4, except that in

Design 4 the information is separated over two charts instead of three. Because the information is not well

integrated, the design gets a higher cost compared to all previous visualizations.

The GOMS procedure used for this design is similar to the one used in Design 4, the only difference

being that there is an additional chart space that we must process. As was the case previously, we begin by

determining the axis intervals for the three charts. Unlike Design 4, the axis ranges for the three charts are

different. The left-most chart has an axis interval of 20k, the middle chart has an axis interval of 4k and the

right-most chart has an axis interval of 7k. As a result the user must re-scale the x-axes of the three charts to

equalize their axis intervals. The most efficient and direct interactive method to achieve this would be for

the user to type in the desired min-max values in each chart. First of all, the user must determine the min

and max values to use. This is achieved by comparing and min and max x-axis values in each of the three

charts. Once the proper values are determined, users need to select the two min and two max axis values

 E-307

that must be changed and enter in the newly computed min-max values so that all chart ranges are identical.

We assume that the numeric keypad is used for the number entries so that once the user’s hand is over the

keypad no further hand movements are necessary. Between each number entry however users must move

their hand between the keypad and the mouse because before an entry can be made the user must first

choose which axis number they are altering by clicking on it.

Once the axis intervals are all consistent, we start processing the left-most chart and find all long bars

within it. For each long bar we scan to the right and determine whether the respective bars in the other

charts are relatively long as well. Many of the operations in the GOMS sequence below utilize operation

times that have already been computed in Design 4. As was also the case in Design 4, three universities

stand out as having very high total benefit values (Michigan State University, University of Texas Austin,

University of Minnesota Twin Cities), however, there are four candidate universities (i.e. four rows) that

could fill the fourth position. As in Design 4, we outline the two alternate methods here for determining

which of these four candidate rows has the highest total benefit value.

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub
total
(msec)

Total
time
(msec)

Target objects (data or
graphics)

Compute size of tick
interval on the left-
most chart.

Total time taken from Design 4 1190 1190 20k interval

Compute size of tick
interval on the middle
chart.

 1190 1190 4k interval

Compute size of tick
interval on the right-
most chart.

 1190 1190 7k interval

Re-scale all axes so that they have similar ranges:

Attend get min value 50
Initiate eye movement 50
Eye movement 30
Read number 290
Verify number 50

Read single min
value

Sub-total 470

15000

Read next min value 470 min(15000, 13000)
Attend compare 50
Compare numbers 50
Compare second digit 50
Verify results 50

Compare two mins
and pick the smaller
one. Since the
numbers only have 2
or 3 significant
figures we assume a
simple mental
comparison is
sufficient here.

Sub-total 200

13000

Read next min value 470 12000
Compare min values 200 min(12000, 13000)

 E-308

Total time to get min
value

(470 * 3) + (200 * 2) 1810

Total time to get max
value

 1810

Attend get min-max-values 50
Get min value 1810 12000
Get max value 1810 155000

Determine min-max
values to use

Sub-total 3670 3670

Now we determine the total time for interactively re-scaling the axes.

Attend click 50
Initiate mouse move 50
Mouse move 100
Initiate click 50
Upstroke 60
Down-stroke 60

Click on first min or
max value to change

Sub-total 370
Attend input in the min value 50
Initiate move hand to numeric
keypad

50

Move from mouse to numeric
keypad

132

Attend type value 50
Type in value:
Number with move required takes
40 + 60 + 60 = 160 msec.
(move, upstroke, downstroke)

Number with no move required
takes 60 + 60 = 120 msec.
(upstroke, downstroke)

Value 12 000 takes
(3 * 160) + (2 * 120) = 720 msec.
Value 155 000 takes
(3 * 160) + (3 * 120) = 840 msec.

720/
840

Verify results 50
Sub-total for min entry 1082

Type in min/max
value

Sub-total for max entry 1202

Attend move hand to mouse 50
Move from numeric keypad to
mouse

132
Move hand back to
mouse

Sub-total 182

Total time to actually enter in the proper min-max values includes:
1. Time taken to enter in the min values = 2 * (370 + 1082 + 182) = 3268 msec.
2. Time taken to enter in the max values = 2 * (370 + 1202 + 182) = 3508 msec.
Total time for entry = 6776 msec.

 E-309

Now that we have re-scaled the three charts, we proceed to processing the bars.

Attend picking next long bar 50
Initiate eye movement 50
Eye movement 30
Perceive next long bar

100

Pick next
long/medium bar on
leftmost chart

Sub-total 230

1. Michigan State
University,

2. University of Texas
Austin,

3. University of
Minnesota Twin
Cities,

4. MIT,
5. University of

Pennsylvania,
6. Texas A&M

University Main,
7. University of

Southern California,
8. University of

Illinois,
9. University of

Cincinnati Main
Attend scan 50
Initiate eye movement 50
Eye movement 30
Perceive bar 100

Scan to bar on same
row to the right
chart

Sub-total 230

Attend compare 50
Compare 50
Verify results 50

Compare bar length
with other bars in
chart to see if bar
has comparatively
long length

Sub-total 150

Scan to bar on the
same row to the last
chart and perform
similar comparisons

230 + 150 380

Total time for
processing each row
of bars

(230 + 230 + 150 +380) 990

Repeat 9 times for 9
longest bars in
leftmost chart

(9 * 1090) 8910 8910

There are then 4 bars that seem to have approximately the same combined lengths.
5. University of Cincinnati Main Campus,
6. Texas A&M university Main,
7. University of Pennsylvania,
8. University of Southern California
In the next steps we ascertain which of these candidates has the largest total benefit value by comparing bar length
differences (case 1) or converting the bar lengths into total benefit values and then comparing those values. Note that
the following time estimates are all taken from Design 4 and adapted to suit this design which has 3 charts instead of
2.

Total time taken for CASE 1 includes:
1. Time taken to scan for the lengths of all the candidate bars. There are 4 candidates, and three bars per candidate

thus total time = 4 * 3 * 230 msec. = 2760 msec.
2. Time taken to compare the current candidate bar with the previous candidate bar. We need to perform this

comparison 3 times because there are four candidates (for the first candidate no comparison is required). Since
there are three charts, the total time here = 3 * 3 * 380 msec. = 3420 msec.

3. Time taken to compare the three length differences across three charts. This operation has to be performed for
all three comparison pairs and two comparisons are needed per pair. Total time = 2 * 3 * 150 msec. = 900 msec.

 E-310

Total time for task assuming CASE 1 =
Time to determine axes intervals + Time to determine min-max values + Time to re-scale axes + Time to process all
9 candidate elements + Time to perform CASE 1 processing =
(3 * 1190) + 3670 + 6776 + 8910 + (2760 + 3420 + 900) = 30006 msec

Total time taken for CASE 2 includes:
1. Time taken to convert the lengths to benefit values and then add those values

= left chart conversion (1135) + middle chart conversion and addition (1135 + 250) + right chart conversion
and addition (1135 + 250) = 3905 msec.
We have to repeat this for each unclear bar, thus total time = 4 * 3905 = 15620 msec.

Total time for task assuming CASE 2 =
Time to determine axes intervals + Time to determine min-max values + Time to re-scale axes + Time to process all
9 candidate elements + Time to perform CASE 2 processing =
(3 * 1190) + 3670 + 6776 + 8910 + 15620 = 38546 msec

 We want to mention that case 1 computation for this design can be difficult because unlike Design 4

there are three charts here, thus users must compare length differences between pairs of bars across three

charts, and it may be difficult to accurately maintain the bar length differences across this many graphical

regions. It is also interesting to note that the time taken to re-scale the axes is fairly large, taking about 10

seconds (10000 msec), and as a result the percentage difference in time between case 1 and case 2 is less

pronounced here compared to Design 4.

E-2.8 Summary

As can be seen in Figure E-4 the estimated GOMS time for the various designs analyzed for this

computation task conform to the orderings assigned by our automatic designer. Also note that a significant

number of new designs are now possible that previously could not be generated (all of the green bars). In

this compute task there are far fewer mapping designs that make it to the top design spaces compared to the

search task. Given our design space limit size of 15000 nodes, we generated 15 designs for this task. Out of

these 15 designs 4 were purely data designs, 10 were hybrid data + mapping designs, and only 1 was a pure

mapping design. In addition as can be seen from the chart below, many of the most effective designs all

contain data transformation techniques (i.e. they are designs that could not previously be generated). This is

not surprising, since computation tasks are difficult to perform perceptually, thus there are naturally

significant gains to pre-computing the task results. The estimated time taken to process the task using the

best design generated by our system (Design 1) compared to previous systems (Design 6) show significant

timesavings with the latter time exceeding the former by approximately 4 times. The results from this task

show that there are very clear gains that can be realized from considering data transforms in the automatic

design process.

 E-311

Total GOMS estimated time for Computation Task

0

5000

10000

15000

20000

25000

30000

35000

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

G
O

M
S

 e
st

im
at

ed
 t

o
ta

l t
im

e
(m

se
c)

Lower time result of
perceptual shortcuts.
Error rate however is
increased.

Figure E-4: GOMS estimated total time for Task 2 (computation task). The designs are ordered based on
increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate

pure mapping designs (i.e. designs that can be generated with current state of the art automatic design
research). All other bars are designs made possible by work outlined in this thesis.

The advantages of data transform techniques can be further seen by comparing Design 1 which is the

best design generated by our expanded designer and Design 6 which is the best design that can be

generated by previous automatic designers. Design 1 is perceptually cleaner than Design 6, showing only

the required computed results. Design 6 has six bars per university concept compared to the single bars per

concept in Design 1. Our automatic design system chose Design 1 over Design 6 precisely because Design

1 utilizes fewer perceptual components (i.e. has less perceptual complexity), needs less display space, and

requires no perceptual load to perform the task computation. On the other hand, in Design 6, the automatic

system recognizes that significant perceptual processing is needed (to perform the subtraction and then the

summation), in addition to the added complexity of showing 6 bars.

Other designs generated by our system for this compute task (not included in our GOMS analysis)

internally process the task results to varying degrees of completeness. For example in Figure E-5, the total

benefits are computed for the full and associate professor categories but not for the assistant professor

category that must be computed perceptually. The summation task must also be performed perceptually.

 E-312

Figure E-5: Hybrid design where total benefits are pre-computed for full and associate professors (left chart)
but not for assistance professors (right chart)

In Figure E-6, only the total benefits for full professors are pre-computed and all other operations

must be performed perceptually. Note that to facilitate processing, there is a constraint in the designer that

ensures all of the data attributes are mapped to the same graphical property class so that the subtraction and

addition tasks can be performed more easily. In many of the examples here, the data attributes are all

mapped to x-position. In chapter V we describe the constraint and cost structure in our automatic design

system in greater detail.

 E-313

Figure E-6: Hybrid design where total benefits are pre-computed for only full professors (left chart) and the
computation for associate and assistance professors (right chart) as well as the final summation task must be

performed perceptually.

 E-314

 One may notice that if we had sorted or ordered the bars in the designs presented in this section based

on total_benefit values, we would have been able to perform the given search task that we had set out for

ourselves very easily. Specifically, we may augment our task specification with an additional sort task that

encapsulates the total_benefits computation task as is shown below:

(compute ’(VALUE . SORT)
(compute ’(VALUE . ADD)

(compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)
’(VALUE . AVG_FULL_COMPENSATION))

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_FULL_SALARY))

)

 (compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASSOC_COMPENSATION))

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASSOC_SALARY))

)

 (compute ’(VALUE . SUBTRACT)

 (lookup ’(OBJECT . nil)

’(VALUE . AVG_ASST_COMPENSATION))

 (lookup ’(OBJECT . nil) ’(VALUE . AVG_ASST_SALARY))

)

)

)

Task E-3: Sort a set of universities by their total benefits
 This addition causes some new designs to be generated, i.e. designs where the sort task is computed

internally and only its results are shown (i.e. the total_benefit values are culled out). The designs that we

analyzed and discussed above, however, will still all be candidates because they support the expanded task

as well. It is important to note that this sort addition will only help us when we are searching for elements

based on their ranking. If we were instead interested in comparing the relative total benefit values of two or

more universities or in looking up the total_benefit values of particular universities, the sort task would be

of no help. We expect that such additions or refinements to tasks will be a very common user operation.

Users often do not have a clear enough idea of the tasks they want to perform that they are able to zero in

on the correct and complete specification on first try. The same goes for communication. Users are rarely

able to describe the exact information needed at the beginning of an information session. Realistically users

will arrive at the information after having a series of conversations with the system where refinements and

changes are made to the initial request. We discuss task refinement and its associated issues in section E-4.

 E-315

E-3 Task 3: Comparison Task + Simple Computation
Evaluating the Relationship between State Size and Voting Results

 In this final section we wanted to explore a comparison task. Upon further analysis, however, we

found that a comparison task alone does not result in many more interesting designs or design issues over

what has been previously discussed in the first two tasks. To make this example a bit more interesting and

to start exploring task combinations, we included a simple computation task in addition to the comparison.

In this example we compare the number of votes for three different political parties (democratic,

republican, and other) in different states so that we may see how they rank with respect to each other. In

addition to the ranking, we also want to see the total number of votes in each state so that we may

determine the importance of a given victory. Larger states presumably carry a greater political gain.

The task specification entered into our automatic designer is shown below:

 (compute ’(VALUE . SORT)

 (lookup ’(OBJECT . NIL) ’(VALUE . DEMOCRATIC))

 (lookup ’(OBJECT . NIL) ’(VALUE . REPUBLICAN))

 (lookup ’(OBJECT . NIL) ’(VALUE . OTHER)))

 (compute ’(VALUE . ADD)

 (lookup ’(OBJECT . NIL) ’(VALUE . DEMOCRATIC))

 (lookup ’(OBJECT . NIL) ’(VALUE . REPUBLICAN))

 (lookup ’(OBJECT . NIL) ’(VALUE . OTHER)))

Compare the number of votes received by each of three political parties and

determine their ranking. Also determine the total number of votes per state to ascertain

the significance of any particular political victory.

 From analyzing the displays generated by our system we were able to categorize the states into three

groups. The larger states are generally carried by the democratic party, the medium to small sized states are

generally carried by the republican party and finally the smallest states have an about equal mix between

republican and democratic victories. The other party did not gain a victory in any of the states and in most

cases ranked last. There is only one exception in “AK” where the other party ranked above the democratic

party, and the republican party came in first.

 As with the previous cases there are several different types of tasks that we may perform based on the

general directions entered into our designer. We may for example be interested in the number of

democratic victories compared to republican victories, we may be interested in finding abnormalities in

ranking such as in the case of “AK” described above, we may be interested in examining the ranking of

particular states that are of interest, etc. In the GOMS analysis below we wanted to examine a task that

 E-316

utilized both the ranking and total number of votes information in tandem, so we chose the task of

determining whether there is a relationship between ranking and total number of votes.

Ascertain whether there is a relationship between the party rankings and the total

number of votes in a particular state.

The following assumptions are made for all the GOMS procedures of this task:

Baseline Assumptions for Task 3 (Cmparison Task):

1. In this task there are three parties and in our task specification we stated our interest to see their

respective rankings. Thus in all the graphics generated, all three parties are represented. In all the

graphics generated, it is necessary to differentiate each of the parties so that we may identify a

particular rank with a party name. Sometimes the encoding scheme used for the parties may be

different from one design to the next. This is because our designer assumes each output design is

separate and does not try to use similar encoding schemes across multiple alternative designs. In all of

the GOMS procedures for this task we assume that the user is familiar with any encoding scheme used

for the three parties. This assumption is reasonable since we are modeling an expert user. In addition,

adding such information into the GOMS estimation does not change the rankings of the different

designs because it adds a commensurate amount of time to each and every design.

E-3.1 Design 1

 The first design generated is a purely computed design. Both total number of votes and party rankings

are determined by the system and only the computed results are shown to the user. In the design below,

each state is represented by a cluster of three marks. Each mark represents a different party, red represents

the democratic party, green the republican party, and purple the other party. Total number of votes is

mapped to the y-axis and the marks are ordered from left to right depending on the computed rankings of

the different parties. The left-most mark is the party with the most votes and the right-most mark is the

party with the least votes. The x-axis of this design does not encode any data. Clusters are however shifted

to the right to improve layout and avoid occlusion problems. This graphic is especially efficient for

performing the desired task because we can pre-attentively see the relationship between ranking and total

number of votes within each x-column without having to attend to each state concept. Clusters high on the

y-axis start off with a red dot (i.e. larger states are won by the democratic party), clusters in the mid to

lower portion of the y-axis start off with a green dot (i.e. mid to small states are won by the republican

party), and finally clusters at the bottom-most areas start off with either a red or green dot (i.e. the very

small states are won by a mix of both democratic and republican parties).

 E-317

 The GOMS procedure for this design is simple, requiring three perceptual groupings at the top, mid-

to-low, and very low portions of the y-axis. Since the patterns can be viewed pre-attentively users can

deduce the relevant information with just three perceptual scans.

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub total
(msec)

Total
time
(msec)

Target objects
(data or
graphics)

Attend scan top 50
Initiate eye movement 50
Eye movement 30
Perceive information 100
Verify results 50

Scan top of y-axis to see
which color mark is to the
right of the clusters there.

Sub-total 280

Red or
democratic party
to the left.

This is pre-attentive for
each x-column and there
are 4 x-columns at the top
so 4 * 280 msec are
needed.

4 * 280 1120

Scan to middle of y-axis to
see which color mark is to
the right of the clusters
there.

This operation is similar to the
one above, and there are 4 x-
columns in the middle area so 4
* 280 msec are needed,

 1120 Green or
republican party
to the left.

Scan to the lower y-axis to
see which color mark is to
the right of the clusters
there.

This operation is similar to the
one above, and there are 6 x-
columns in the middle area so 6
* 280 msec are needed,

 1680 Purple or other
party to the left.

Total time 3920

 As can be seen from the GOMS sequence the design is simple and allows significant time savings

because most of the data has been summarized due to the internal computation. In addition the visualization

 E-318

design allows the relationship between total number of votes and party ranking to be viewed pre-attentively

for each x-column, requiring only 14 perceptual processing steps. Note however that the visual design

generated for this graphic is not a standard representation and as such the learning curve of using the design

may be relatively high. However, since we assume expert users in our GOMS evaluation this issue has no

effect on the total time. Also note that ranking of the three different parties is from left to right. This is

based on the Western convention of reading which is from left to right. Users from other cultures may

misinterpret this encoding scheme.

E-3.2 Design 2

We found it quite interesting and somewhat surprising that the second design generated in this task is

a purely perceptual design. This is because the task entered is fairly complex one including a computation

task which usually does not fare well with perceptual designs. However because the two tasks here (i.e.

summation and sort) operate on the same set of data attributes (i.e. number of votes for democratic,

republican and other party) a perceptual design that is effectively executed, can show the required data in

an integrated fashion that supports both tasks as is the case below. In this design, the number of votes for

each party type is mapped to the x-length of a different colored bar. The green bars show the number of

 E-319

votes for the democratic party, the red bars show the number of votes for the republican party, and the

purple bars show the number of votes for the other party. By mapping the number of votes information to

the same graphical property class (i.e. x-length) we are able to facilitate both comparison and computation.

By further stacking the bars, we greatly simplify performing the summation task perceptually. This design,

however, is still only ordered second because more information must be perceptually mapped here

including state-name and number of votes for each party (four attributes). This is in contrast to the two

attributes (total number of votes and party ranking) that are mapped in the first design. In addition, despite

the perceptual mapping choices used in the design that help facilitate the task, there is still some perceptual

load that need to be expended to determine the task results especially for the comparison or ranking task

which can be somewhat difficult because the bars are stacked.

 The GOMS procedure for this design begins with a scan for the longer bars in the design (i.e. the

larger states) and for each long bar, we determine which color bar has the greatest length (i.e. which party

is ranked first). Note that because of the data distribution, specifically the number of votes for the

democratic and republican parties are usually very close in value resulting in almost equal bar lengths, it

can sometimes be difficult to determine the ranking of the two parties. For better data distributions, it is

possible to determine the rankings for groups of bars pre-attentively. However, in this case we at least need

to attend to each bar and compare the red with the green lengths. In some states, where the values are

especially close, we may not even be able to determine the ranking results accurately.

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub total
(msec)

Total time
(msec)

Target objects
(data or
graphics)

Attend scan 50
Initiate eye movement 50
Eye movement 30
Perceive results 100

Scan for longest bars
(pre-attentive)
(then subsequently mid,
and then short bars)

 230

For each bar cluster, determine which color segment is the longest. This may be a pre-attentive operation but because
the republican and democratic votes are so close in value, it is difficult to make pre-attentive comparisons. As a result
we assume that each bar must be attended to individually here.

Attend compare 50
Initiate eye movement 50
Eye movement 30
Compare bar lengths 50
Verify results 50

Compare the length of
one colored bar with
another

 230

Note that since the other party usually has a very low number of votes we assume that the user is able to pre-attentively
note this pattern initially, and thus only one pair of bar comparison is needed for each state. Thus the comparison cost
for each state is 230 msec.

 E-320

In this procedure we need to scan for long, mid, and short bars, thus the estimated time for that is:
3 * 230 msec.
In each of these operations we need to attend each bar in the set and determine the ranking of the parties. Since there
are a total of 33 bars, the total time for determine the rankings of all bars in all three long, mid, and short bar categories
is:
33 * 230 msec

Total time

(3 * 230) + (33 * 230) 7820

 We want to point out that in the ideal case, where the data distribution allows pre-attentive

(simultaneously) ranking of a set of bars, the total estimated time taken for this design would be

significantly reduced at: (3 * 280) msec for perceiving each long, mid, and short bar category, and then

another (3 * 280) msec for pre-attentively ranking each set of bars. The total time in this case is therefore

only 1680 msec., which is much closer to the time taken in the first design.

E-3.3 Design 3

This design is a pure pre-computed design similar to Design 1. However, the data is separated over

two different spaces and aligned based on state-name. The total number of votes within a state is mapped to

the x-lengths of bars in the left chart and the party rankings are shown with a three mark cluster in the table

to the right. As in Design 1 the marks are ordered from left to right (most votes on the left, least votes to the

 E-321

right) and each party is represented by a different colored mark (red = democratic, green = republican,

purple = other).

 To solve the task using this design we first look for the states with a large number of votes on the left

chart and then scan over to the right chart to lookup their rankings. We repeat these steps for the mid-sized

and small states. Note that the ranking lookups are not pre-attentive and requires each of the relevant states

in the large, mid, or small-sized categories to be visited.

General goal Cognitive, perceptual,
or articulatory step
taken by user

Time
taken
(msec)

Sub
total
(msec)

Total time
(msec)

Target objects (data
or graphics)

Attend scan to next bar 50
Initiate eye movement 50
Eye movement 30
Perceive bar 100

Scan to next longest bar

Sub-total 230

Attend scan to right 50
Initiate eye movement 50
Eye movement 30
Perceive marks 100
Verify results 50

Scan to the right and lookup
ranking information and
verify which party is ranked
first.

Sub-total 280

Total time to process a
single row

230 + 280 510

Total time 33 * 510 16830

 Note that the time taken to process this design can be reduced very significantly if we were to sort the

elements on the y-axis based on total number of votes in each state. In doing this the design becomes very

similar to Design 1 where the y-axis is used to encode total number of votes and as a result we are able to

view the ranking results pre-attentively unlike the individual attention required in the GOMS sequence

above. In this case, this design would take the same amount of time to use compared to Design 1. To

automatically generate such a design however, requires the automatic system to recognize that the y-axis is

used to encode and un-ordered (nominal) attribute, and since position allows ordering information to be

shown, it is possible to add more information into the display without increasing perceptual complexity.

Thus the designer must automatically transform a nominal data attribute into an ordinal attribute by adding

ranking information into the element values. Such data characterization altering operations are beyond the

scope of our work. Secondly, as was pointed out in the summary section of the previous task, this sorting

operation requires an expansion to the current task specification that may cloud the main task(s) and

associated design issues we are interested in exploring. We will however discuss the sort alternative in

greater detail in section E-4.

 E-322

E-3.4 Design 4

 This design pre-computes the two task results as in Design 3, however, less effective graphical

properties are used and it is for this reason that the design is ranked lower by our system. Specifically,

saturation is used to show total number of votes, shape is used to show the three different parties, and x-

ordering in each cluster is used to show ranking. Even though the previous design is less integrated, the

results can be viewed with much greater accuracy and the additional time needed for the scan between the

two spaces is not too significant. As with the previous case, ordering the y-axis based on total number of

votes (i.e. saturation) can improve our ability to perform the task. We discuss this sorting issue in greater

detail in section E-4.

 The GOMS procedure for this graphic is very similar to that of the previous design. The difference is

that instead of choosing elements based on bar lengths, here we are choosing elements based on their

saturation. Initially we find all the saturated clusters, we then examine each cluster to determine how the

parties ranked. We then repeat this process for the mid and low saturated clusters.

 E-323

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub total
(msec)

Total time
(msec)

Target objects
(data or
graphics)

Attend scan 50
Initiate eye movement 50
Eye movement 30
Perceive cluster 100

Scan to next most saturated
cluster.

Sub-total 230

Attend get shape 50
Perceive shape 100
Verify results 50

Determine and verify shape
of leftmost mark in cluster.
(here we assume that the
expert user does not need to
refer to legend but are able to
associate shape with party
because of regular use of
such graphics)

Sub-total 200

Total time 33 * (230 + 200) 14190

 Note that the time taken for this task is slightly less than that of the previous design (2.5 seconds less).

This is because the previous design requires additional eye-movements to scan from the left chart to the

right table. However, the accuracy with which the task can be performed is not captured in the GOMS time

estimation. However, since accuracy in grouping is less important to the task here, it has less of an effect

than in the previous tasks where inaccuracies resulted in additional processing and inclusion of concepts

that do not fulfill task requirements.

E-3.5 Design 5

 This design is also fully pre-computed, it is interesting however, for the way in which it shows the

computed results. State is shown on the y-axis and each state is associated with a cluster of three bars, one

for each party starting with democratic on the top, followed by republican in the middle and other at the

bottom. The x-length of all the bars encode the total number of votes within the state. The saturation of each

bar represents the current ranking of the bar. Highly saturated bars are ranked higher compared to lower

saturated bars. A primary weakness of this graphic is that we need to process each set of bars separately to

get the most saturated bar (most highly ranked party) and then there is an additional step where we

determine the position of that bar and associate its position to the relevant party. This is in contrast to the

previous pre-computed designs where users can simply get to the highest ranked party by scanning to the

left-most mark without having to even process any of the other marks in the cluster. Because of this the

design is ranked lower by our system. Note that unlike the previous designs, even if we ordered the states

on the y-axis based on number of votes we would still need to attend to each bar cluster individually.

In addition, unlike the mark clusters this graphic requires much more display area, due to the fact that

a bar cluster expands the width needed to show each state concept three-fold. Also note that currently it is

difficult to get the saturation values for bar clusters with small length (i.e. it is difficult to determine the

party rankings for states with comparatively few total number of votes). For example consider “DE” and

 E-324

“AK” where it is not possible to perceive the saturation values given the current x-axis scale. This problem

however is not serious as it can be easily fixed by lowering the minimum range on the x-axis.

 The GOMS procedure for this design begins with a search for all long bars (i.e. states with a large

number of votes). For each of these bar clusters, we locate the most saturated object and determine whether

it is on the top, middle, or lower position of the cluster. This will tell us which party was ranked first in the

state. Subsequently we repeat this process for the mid-sized and short bar groups.

 E-325

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub total
(msec)

Total time
(msec)

Target objects
(data or
graphics)

Attend scan to next longest 50
Initiate eye movement 50
Eye movement 30
Perceive bar set 100

Scan to next longest bar

Sub-total 230

Attend get most saturated 50
Compare all saturations and
get most saturated bar
(pre-attentive)

50

Verify results 50

Determine most
saturated bar

Sub-total 150

Attend get most saturated bar
cluster position

50

Count
Since the bar could be on the
top, middle, or bottom
positions the count could be
anywhere from 1 to 3. On
average we therefore assume a
count of 2. Thus total count
time is
(2 * 50 msec) = 100 msec

100

Verify results 50

Get most saturated bar
position within cluster

Sub-total 200

Total time to process a
single bar cluster

230 + 150 + 200 580

Total time 33 * 580 19140

 As was expected, the time taken for this design is greater than other previous similar designs (i.e.

Design 3 and Design 4). This is because additional steps are needed to compare the saturation values within

each cluster and to subsequently identify the party associated with the most saturated bar. I.e. mapping

party ranking to saturation is less efficient than mapping party ranking to position. The general structure of

this design is also less traditional, thus learning time may also be greater.

E-3.6 Design 6

This design is also fully pre-computed, but it uses labels to represent the total number of votes in each

state. In the design state is encoded on the y-axis and each state has a cluster of two marks and a label

associated with it. The red label represents the democratic party, the green mark represents the republican

party and the purple mark represents the other party. Ranking is shown based on the ordering of these three

objects. The left-most object is the most highly ranked party, followed by the middle object, and finally the

right-most object represents the party with the least ranking. While this label encoding provides accurate

total number of votes figures, it is a very ineffective graphical property for grouping the states based on

total votes because unlike all of the previous designs we need to attend to the label of each state concept.

 E-326

Even worse yet, we need to first scan through all of the labels to get the range of values before we can

begin the categorization process.

 At the start of this GOMS procedure, we quickly scan through all of the labels to get the min and max

total number of votes. During this process we assume that the working min and max numbers can be kept in

STM (short term memory). Since we do not need to get exact min and max values here, it is reasonable to

assume that users will round up or down the total number of votes figures to fewer significant digits to

simplify comparisons as well as storage and recall from STM. Here we assume a general rounding to a

single significant digit. Once we get the min and max numbers we go through the set of states again and

only process those total number of votes entries that fall within the upper range of the min-max values

extracted. When we are done, we repeat this process for the mid and lower range values. Thus we end up

having to go through the table four times, once to determine the min-max values, and the next three times to

process our three desired value groups namely high values, mid values and low values.

 E-327

General goal Cognitive, perceptual, or
articulatory step taken by user

Time
taken
(msec)

Sub total
(msec)

Total time
(msec)

Target objects
(data or
graphics)

Scan down all numbers and get general min and max values to determine the range for the total benefit values.

Attend check element to see if
it is min or max candidate

50

Initiate eye movement 50
Eye movement 30
Count digits in number in
chunks of 3 digits to get
general scale. Most of the
numbers can be calculated in
2 chunks thus total time to
count is:
 (2 * 50 msec) = 100 msec

100

Verify that digit chunks are
consistent with scale of either
current min or max (50 msec +
50 msec)

100

If chunks match, read left-
most digit

290

Compare with min or max
depending on digit chunks

50

Verify results and update min
or max as necessary

50

Time taken to process a
single element. We
assume that the min and
max values can be
stored in STM.

Sub-total when chunks match 720

max =
200k Å 500k Å
2mil Å 4 mil Å
5mil

min = 200k

Note that since all the numbers either fall within the 2 chunk (hundred thousand) or 2+ chunk (million) categories, we
must always read the most significant digits to make the comparison with the current min and max values.
Total time for
processing all elements
to get approx. min and
max

33 * 720 23760

Now we examine the time taken to process the ranking for each total number of votes category.
Three categories:
1. States with > 1.5 mil. votes.
2. States with high hundred thousands of votes to 1.5 mil.
3. States with low hundred thousands of votes.
Note that we do not charge any time for determining the bounds of these three categories because the time taken is
difficult to estimate and we do not believe that it is significant because only approximate bounds are needed and no
computation is necessary.

Step 1:
Process bars in each
state size category
beginning with the
largest states followed
by the mid and then
small states.

Attend process states that are
in current category

50

 E-328

Attend determine next state
that falls into current total
benefits category

50

Initiate eye movement 50
Eye movement 30
Count chunks 100
Compare if number is within
current desired category range
based on chunk count

50

Sub-total 280
If so, read one or two most
significant figures

290

Compare if number is within
current desired category range

50

Verify results 50

Step 2:
Scan next number and
determine whether it
falls within the current
category.

Sub-total for entire step 2 670
Attend left-most mark color 50
Perceive color 100
Verify results 50

Step 3:
If number is within
current category
bounds, then process
ranking information.
Specifically get the
color of the left-most
mark or label. The three
objects are close enough
in the display that an
eye movement is not
needed to get to the left-
most mark.

Sub-total 200

Total time computation:
There are three categories thus Step 1 has to be performed 3 times = 3 * 50 msec. = 150 msec.
Step 2 has to be performed on all elements in the table three times (once for each total number of votes category). Some
elements require reading of the most significant figure while others do not as they can be discarded with just the chunk
count. In this particular data set, there are 13 numbers with 2 chunks and 20 numbers with 2+ chunks.
Thus for category 1, we can discard 13 numbers based on just chunk comparison, and we have to fully process the
other 20 numbers. Total time for category 1 = (13 * 280) + (20 * 670) = 17040 msec.
For the second category we need to full process all numbers but we do not need to perform the chunk comparisons.
Thus total time = 33 * 620 = 20460 msec.
For the third category we discard 20 numbers and only fully process 13. Thus total time = (20 * 280) + (13 * 670) msec
= 14310 msec.
Total time to verify whether a state falls within its category for all three categories = 17040 + 20460 + 14310 msec =
51810 msec.
Step 3 is only performed once for each state because we assume that a state only ever belongs to at most one of the
categories. Thus time taken = 33 * 200 msec. = 6600 msec.

Total time 23760 + 150 + 51810 + 6600 82320

Note that the time taken using this design is much higher than that of previous designs. This is

because it is difficult to perform groupings of elements based on the total number of votes data attribute

when it is mapped to labels. The same situation arose in Task 2, Design 5, where the estimated total time

was higher than a subsequent lower ranked design (Task 2, Design 6). Higher costs are not assigned to

labels because our automatic designer tries to balance the accuracy goal with the perceptual goal of being

able to quickly identify patterns. While labels are not very effective for the latter goal, it does provide very

accurate results. Since there is no preference in the current task specification one way or the other, our

 E-329

designer balances both conflicting goals, with a stronger preference for the pattern identification goal.

Refining the task with more complete accuracy preferences will help the designer adjust the weights

between these two goals as necessary.

 Another weakness of the design presented here with respect to the task is that it is difficult to

determine where to set the category bounds based on state size. This is because the category bounds to

some degree is based on the pattern in the party ranking data and we cannot process that information until

after we have set up some temporary category bound values for grouping the elements. Thus we may have

to readjust the category bounds as necessary mid-way in the analysis, and this will further lengthen the

required time.

E-3.7 Design 7

This design is a hybrid design, with total number of votes pre-computed and mapped to saturation.

The ranking is left to be performed perceptually by the user. Specifically number of democratic votes is

mapped on the x-lengths of the left-most chart, number of republican votes is mapped on the x-lengths of

the middle chart, and number of other votes is mapped on the x-lengths of the right-most chart. This design

is ranked low for several reasons. The primary reason is because the information is spread out over many

different spaces and this lack of integration as we have shown previously increases perceptual load and

forces users to perform comparisons of values across different charts which can be difficult. Secondly,

more data attributes are shown here compared to most of the previous designs. In this design five data

attributes are mapped including total number of votes, number of democratic votes, number of republican

 E-330

votes, number of other votes, and state-name. Finally, the computed total number of votes is mapped to

saturation, and saturation is not a very accurate graphical property for showing continuous values.

 As was the case in Task 2, Design 4 and Design 7, having consistent axis scales here for the three

charts can facilitate the comparison task. Thus we start our GOMS procedure with getting the combined

min and max values for the three charts (0.0, and 300000) and then altering the required axis ranges so that

all three charts share identical min and max values. This altered chart design is shown below.

Before we begin the task, we note that all of the bars in the rightmost chart are very short compared to the

two other charts and as a result they can be discounted from our subsequent comparison operations. To

perform this task, we start processing the left-most chart and search for bars that are highly saturated. For

each highly saturated bar, we scan to its rightmost edge and note its length. We then scan to the right and

compare its length with the corresponding bar on the middle chart. Note that for bars that have similar

lengths, it may be difficult to accurately compared their lengths especially across different graphical spaces.

For such cases, we can estimate the length of a bar using two fingers, and then move our hand over to the

related chart and compare our finger interval with the corresponding bar in the chart. This allows us to

more accurately maintain perceptual state (i.e. bar length) across charts and as a result helps us perform

more accurate length comparisons. Another alternative would be to lookup the actual number of votes of

the bars from their respective axes in order to get an accurate comparison result. This technique is even

more accurate than the finger interval processing method, but it is cognitively taxing and requires much

more processing time. Below we estimate the time taken for both these cases.

 E-331

General goal Cognitive, perceptual, or
articulatory step taken by
user

Time
taken
(msec)

Sub total
(msec)

Total time
(msec)

Target objects
(data or
graphics)

Total time taken to get
consistent axis min-max
values for the three charts.

Time taken from Task 2,
Design 7

3670 0.0,
300000

Click on first min or max
value to change

Time taken from Task 2,
Design 7

370

Attend input in the min
value

50

Initiate move hand to
numeric keypad

50

Move from mouse to
numeric keypad

132

Attend type value 50
Type in value:
Number with move
required takes 40 + 60 +
60 = 160 msec.
(move, upstroke,
downstroke)

Number with no move
required takes 60 + 60 =
120 msec.
(upstroke, downstroke)

Value 0 takes
(1 * 160) = 160 msec.
Value 300 000 takes
(2 * 160) + (4 * 120) =
800 msec.

160/
800

Verify results 50
Sub-total for min entry 492

Type in min/max value

Sub-total for max entry 1132

Move hand back to mouse Time taken from Task 2,
Design 7

182

Total time to actually enter in the proper min-max values includes:
3. Time taken to enter in the min values = 2 * (370 + 492 + 182) = 2088 msec.
4. Time taken to enter in the max values = 2 * (370 + 1132 + 182) = 3368 msec.
Total time for entry = 5456 msec.

Now that we have re-scaled the three charts, we proceed to processing the bars.

Attend get next most
saturated bar

50

Initiate eye movement 50
Eye movement 30
Attend get bar length 50
Perceive bar length 100

Process bars based on
decreasing saturation

Sub-total 280
Attend get length of bar to
the right

50

Initiate eye movement 50
Eye movement 30
Perceive bar length 100

Scan to same row over to
the right and get length of
bar there

Sub-total 230

 E-332

Attend compare 50
Compare 50
Verify results 50

Compare the two bar
lengths

Sub-total 150
Time taken to process one
bar row

280 + 230 + 150 660

As was noted previously, in some cases the bar lengths may be too close in value, and it is difficult to compare their
lengths accurately across different graphic spaces. In this case, we have two alternatives:
Case 1: We use our fingers to mark off the length of the first bar on the left chart and then move our hand over to the
 bar on the right, comparing the length between our fingers with the bar length.
Case 2: We lookup the number of votes corresponding to the given lengths from the x-axis and then compare these
 values.

CASE 1:
Time taken to process a single row of bars for Case 1:
In this case we assume that the user increases accuracy of comparison across charts by using their fingers to
approximately capture the bar lengths and to transfer this state across charts. To facilitate finger pointing etc, we
assume that the chart height takes up approximately an entire 21 inch display screen, with a height of approximately 11
inches. Since there are 33 bars, each bar height is approximately 0.33 inches. We also observe that the data distribution
results in an average move of about 6 steps from one bar to another which approximates to 6 * 0.33 = 2 inches.

We will also assume that the width of the visualization takes up the entire width of the display screen, measuring at
approximately 14 inches. Each chart is therefore approximately 4.5 inches. Average length of a bar is approximately a
third of the chart width thus average bar length = 4.5 /3 = 1.5 inches.

Attend move hand to
current bar being
processed

50

Initiate hand move 50
Hand move 271

Move hand to appropriate
bar.
Total time to move hand
based on Fitts Law =
100 * (log2 (2.0/0.33)+.5) =
271 msec. Sub-total 371

Attend fingers to begin
and end of bar

50

Initiate move 50
Move fingers 395

Move fingers
simultaneously to the
beginning and end of bar.
Assume that the range of
area at bar end-points =
0.05 inches
Total time to move fingers
using Fitts Law =
100 * (log2 (0.75/0.05)+.5)
= 395 msec.

Note that perceiving the end
points of the bar is taken
into account in Fitts Law.

Sub-total 495

Attend hand move 50
Initiate hand move 50
Hand move 382

Move hand to left chart
exactly over the relevant
bar.
Total time to move hand
using Fitts Law =
100 * (log2 (4.5/0.33)+.5) =
382 msec.

Sub-total 482

Attend compare 50
Compare 50
Verify results 50

Compare width indicated by
finger with width of current
bar

Sub-total 150
Total time taken to process
a single row for CASE 1

371 + 495 + 482 + 150 1498

 E-333

CASE 1:
Total time includes:
Time taken to initially process all bar pairs = 33 * 660 msec. = 21780
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total

time for this operation = 17 * 1498 msec. = 25466 msec.
Total time taken for entire task assuming CASE 1 =
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time
taken to process bars (21780 + 25466)
Total time taken for task
assuming CASE 1

3670 + 5456 + (21780 +
25466)

 56372

CASE 2:
Time taken to process a single row of bars for Case 2:

Lookup number of
democratic votes for current
bar row

This time value was taken
from the computed time to
lookup values on axis in
Design 4, Task 1

1135

Lookup number of
republican votes for current
bar row.

This time value was taken
from the computed time to
lookup values on axis in
Design 4, Task 1

1135

Attend compare 50
Compare first digit 50
Compare second digit 50
Verify results 50

Compare the two vote
numbers to see which is
higher. Here we assume that
in the previous lookups the
numbers are rounded up to
two significant figures. This
is because it is difficult to
keep longer numbers in
STM and it is difficult to
compare such numbers as
well. In this example it is
sufficient in all cases to
process the numbers up to
two significant figures.

 200

Total time taken to process
a single row

1135 + 1135 + 200 2470

CASE 2:
Total time includes:
Time taken to initially process all bar pairs = 33 * 660 msec. = 21780
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total

time for this operation = 17 * 2470 msec. = 41990 msec.
Total time taken for entire task assuming CASE 2 =
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time
taken to process bars (21780 + 41990)
Total time taken for task
assuming CASE 2

3670 + 5456 + 21780 +
41990

 72896

 Not surprisingly the time taken for case 2, which only requires perceptual and motoric loads is lower

than the time taken for case 1, which requires cognitive computation and comparison. It is also interesting

to note that the time estimated here for both cases is less than the estimated time for the previous design.

This is made possible by the nature of the data distribution and the specific nature of the task we chose for

our GOMS evaluation. Specifically, significant time savings were realized here due to the fact that we did

not need to process information from the third chart at all.

 E-334

Note that in the general case where all the information must be processed, the total time taken for both

cases becomes significantly higher and exceeds that of Design 6. We show the modified computations for

complete processing of all chart data below. The time taken to initially process the bars are increased by

230 msec + 150 msec per row from having to scan to and make comparisons with bars in the third chart. In

addition, the time taken to process bar pairs with similar lengths is also increased based on additional

processing with the right-most chart. We assume that the data distribution is similar to that of the previous

charts, thereby requiring double the number of similar length comparisons.

CASE 1:
Total time includes:
Time taken to initially process all bar pairs = 33 * (660 + 230 + 150) msec. = 34320 msec.
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total

time for this operation = 17 * (1498 + 495 + 482 + 150) msec. = 44625 msec.
Total time taken for entire task assuming CASE 1 =
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time
taken to process bars (34320 + 44625)
Total time taken for task
assuming CASE 1 and full
processing of ALL data

3670 + 5456 + (34320 +
44625)

 88071

CASE 2:
Total time includes:
Time taken to initially process all bar pairs = 33 * (660 + 230 + 150) msec. = 34320 msec.
Time taken to process all the bar pairs with similar lengths. In the design above we found 17 such bars thus the total

time for this operation = 17 * (2470 + 1135 + 200) msec. = 64685 msec.
Total time taken for entire task assuming CASE 2 =
Time taken to determine min-max values for 3 charts (3670) + Time taken to re-scale all chart axes (5456) + Time
taken to process bars (21780 + 43690)
Total time taken for task
assuming CASE 2 and full
processing of ALL data

3670 + 5456 + (34320 +
64685)

 108131

E-3.8 Summary

 As with the previous two tasks, Figure E-7 shows that in most part the ranking assigned by our

automatic design system is consistent with the GOMS estimated total times. In Figure E-7 there are two

bars shown for Design 7, and one of these bars (purple bar) has a lower estimated total time compared to

Design 6. However as was discussed previously this was only made possible because in Design 7 we were

able to solve the task without considering any of the information in the right-most chart. In this example the

data distribution is such that the information in the right-most chart has no effect on the results of the party-

ranking task. When we estimate the time taken to process all of the information, the total time for Design 7

exceeds that of Design 6 as is shown by the second (right, green) bar. It would be very challenging and

 E-335

interesting to characterize this class of perceptual shortcuts and encode that information as heuristics into

our automatic design system. However, this issue is complex and we leave it for future work.

Like the previous computation task, most of the top designs for this comparison + simple compute

task are pure data technique designs or hybrid data + mapping designs. Out of the 19 visualization

alternatives generated, 5 were pure data technique designs, 12 were hybrid data + mapping designs, and

only 2 were pure mapping designs. Thus most of the top designs for this task (89.5 %) are only made

possible because of the design space expansion from adding data techniques into the automatic design

process.

Total GOMS estimated time for Comparison+Compute Task

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7

G
O

M
S

 e
st

im
at

ed
 t

o
ta

l t
im

e
(m

se
c)

Using
perceptual
short-cuts

Complete
computation
of all data

Figure E-7: GOMS estimated total time for Task 3 (comparison task). The designs are ordered based on
increasing cost on the x-axis. The y-axis shows the GOMS estimated total time in msec. All pink bars indicate

pure mapping designs (i.e. designs that can be generated with current state of the art automatic design
research). All other bars are designs made possible by work outlined in this thesis.

An interesting feature in Figure E-7 is that the design ranked second is a pure mapping visualization.

This is in contrast with the previous computation task where the best pure mapping design was ranked 6th.

There are several reasons why the pure mapping design (Design 2) performs well here. First of all, the two

sub-tasks in the specification, i.e. the summation and sort tasks, both operate on exactly the same data

attributes (i.e. number of votes for each of the three parties). In addition, both tasks are facilitated by

similar mapping constraints (e.g. mapping all the data attributes to the same graphical properties, in this

case, x-position). Because of their shared data attributes and task constraints we are able to use the same

graphical objects to solve both tasks as in Design 2. In addition, the computation task in this example is just

a simple summation that can be effectively represented by using stacked bars. Thus the nature of the two

 E-336

tasks allows for an effective perceptual mapping to be achieved. However, these perceptual requirements

are so tight that there are few designs that are able to fulfill all of them. Hence other than Design 2, there

are no other pure mapping designs in the top spots.

Despite the ability of Design 2 to combine the perceptual goals of both the tasks so well, the top

design in this example is still a data transform design with both total number of votes and party-ranking

pre-computed. While both Design 1and Design 2 have the same number of objects, the former requires

fewer data attributes to be mapped (i.e. only 3, namely total number of votes, party ranking and party type)

compared to the five attributes in Design 2 (number of votes for democratic party, number of votes for

republican party, number of votes for other party, state-name and party-type). In addition the comparison

task may sometimes be difficult to perform on Design 2 because of the bar stacking and the narrow

differences in values between the number of democratic and republican votes. In contrast the ranking

results in Design 1 require very little perceptual effort and are accurate. For these reasons our automatic

designer chose Design 1 over Design 2.

 As with the previous task, some of the designs here can be made more effective by refining the task so

that we sort the states based on their total number of votes. This sorting makes it unnecessary or very

simple to perform search and categorization tasks. We discuss task refinements in the next section and how

it relates to the automatic visualization design process.

E-4 Task Refinement and Sorting
As was discussed previously it is rarely the case that a task is completely and accurately specified at

the start of a data analysis or communication session. Users often refine their task or communication goals

through an iterative process where they consider output from the computer system, integrate that output

with their current task model, change that model as necessary, and finally convey those changes to the

computer system. At the end of this cycle, the iterative process begins anew. For example, consider Task 2

(computation of total benefits) and Task 3 (comparison of party votes and computation of total votes). In

both these cases, once we analyzed the initial output designs, we recognize that our ability to solve the

tasks can be enhanced by refining our original specification to include a sort operation. This is because in

both these cases we were interested in finding or grouping objects based on a single attribute (total benefits

attribute in Task 2 and total number of votes attribute in Task 3). By sorting the objects in the display

based on the relevant attribute we can quickly perform the task with less perceptual load.

In the original tasks (before the sort addition) it was not made clear to the design system what the user

intended to do with the total benefit values in Task 2 or the total number of votes values in Task 3. The

user’s intention could have been to compare the total benefit ratios among several universities, find

universities with particular total benefit values, lookup the total benefits for given universities, group

universities based on total benefits, etc. According to Bertin [Bertin, 1981], tasks can be divided into three

 E-337

levels of reading: elementary, intermediate, and global. For elementary tasks it is more important to be able

lookup single values clearly and accurately, while for the intermediate and global tasks it is more important

to be able to get a sense for general gestalt patterns or trends in the data set. When no information is given

with respect to the level of reading desired (e.g. what to do with the total benefit values in Task 2 once

computed), our designer tries to make design decisions that balance between the three different levels, as

was done in previous systems. Essentially the higher levels of reading (e.g. finding data patterns) are given

preference over elementary readings, unless the user explicitly specifies a desire for the latter.

In these Task 2 and Task 3, the big win with expanding the specification with a sort operation is not

necessarily the pre-computation of the sort but rather the ability to integrate the sort results into the graphic

effectively while reducing perceptual complexity. This can be achieved by recognizing that when a nominal

attribute (e.g. university name or state name) is mapped to position we are not utilizing all the expressive

power of the positional graphical property. Specifically positionals can capture order or ranking

information as well. Thus it is possible to show the ranking results by integrating it into an originally

nominal, unique attribute (e.g. university name or state name) and turning that nominal attribute into an

ordinal. In this way, additional information is included into the graphic without increasing the number of

graphical properties or objects in the visualization.

Figure E-8: List of universities ranked based on their computed total-benefit values

 E-338

For example Figure E-8 shows a visualization design which lists the university names based on their

total-benefit values. This design fully pre-computes the sort augmented, total benefits computation task and

adds the ranking information to the university names, which are mapped to y-position.

This design is more effective than the best design in Task 2 because no perceptual load is required to

identify the four longest bars as was the case in Design 1, Task 2. Instead users can just read off the first

four names on the sorted list. Note that mapping the sort results in any way other than the nominal-to-

ordinal method described above does not result in any clear processing benefits. This is because the sort

results are a quantitative attribute very similar to the total benefits attribute. By computing and showing the

sort results instead of the total benefit results we are essentially replacing a quantitative attribute with

another. For example in Figure E-9 ranking information is mapped to mark x-position while in Figure E-10

total benefit values are mapped to bar x-lengths as in Design 1, Task 2. Both the designs take

approximately the same amount of time to process and their GOMS procedures are almost identical. The

only time when Figure E-9 is possibly superior is when there is data dwarfing.

Figure E-9: Visualization design where the total
benefit values are sorted and the sorted rankings

are mapped to x-position

Figure E-10: Visualization where the total benefit
values are mapped to bar x-lengths

Another interesting aspect of this example is that sorting can help highlight certain types of data

trends and patterns. I.e. sorting can support certain tasks with intermediate and global reading level

requirements. In such cases it becomes less important to encode the sorted attribute values with graphical

properties that facilitate these higher levels of reading. Instead we can give a greater preference to the

elementary reading levels and encode the attribute to facilitate lookup accuracy. For example, rather than

 E-339

ordering the universities top down based on benefit values and at the same time showing the total benefit

attribute using position (as in Figure E-11), it may be more beneficial to map total benefits to text instead

(as in Figure E-12). This is because sorting supports some of the higher level reading tasks and text labels

are a good complement for providing support to the lower reading levels.

Figure E-11: Visualization where the universities
are ordered on the y-axis based on total-benefits

and in addition the total-benefit values are mapped
to bar-lengths.

Figure E-12: Visualization where the universities
are ordered on the y-axis based on total-benefits

and in addition the total-benefit values are mapped
to text labels.

We want to point out that the sorted designs (e.g. Figure E-8, Figure E-11, and Figure E-12) cannot be

generated with current state of the art automatic systems because no pre-processing (i.e. data

transformation) operators are considered in their design process. Thus, this example further underscores the

importance of integrating data operations into automatic design because as we saw in Figure E-8, Figure

E-11, and Figure E-12 pre-processed sorts can improve design effectiveness in interesting ways. In our

system we are able to pre-compute the sort task but we currently do not allow operations that can alter the

basic characterization of data attributes. I.e. we do not allow the ranking information to be added into

university name by converting it into an ordinal. We suspect that there is a whole class of data alteration

opportunities and thus we leave fuller treatment of this issue for future work.

In the sort example above, we present a simple task refinement operation, where a new task is added,

encapsulating one of the previous tasks. Recall that in appendix C-5, we presented a car purchasing

example where more extensive and complex task refinements were made. Currently our designer does not

 E-340

explicitly support the task refinement process. Each design requested is assumed to be unrelated and thus

the designer does not strive to maintain any visual consistency between one request to the next. This visual

consistency issue is an important one and it is currently being explored by other researchers in the field. We

hope to integrate such work into our designer in the future. Of course the automatic design process

implicitly supports the task refinement process by presenting users with a set of alternative visual designs

for solving the same tasks. By analyzing and comparing these designs, the important elements of the user’s

task may become clearer and this would in turn help in subsequent task refinements.

E-5 Why GOMS?
The primary reason why we chose GOMS as an evaluation method for our work is because it would

take a significantly longer amount of time to perform the same tests with users. In addition by mapping out

the minute cognitive, perceptual and motoric steps required in a GOMS analysis we are able to better

analyze the particular strengths and weaknesses of visualization designs and identify where most of the

processing time is being spent. Some of the weaknesses of the GOMS analysis method used here, however,

is that we only model the performance of experts and it is difficult in many cases to account for task

accuracy problems, readability problems (such as occlusion, graphic density, and dwarfing) as well as more

complex usability issues such as user experience, user fatigue, number of errors performed by users, task

solution formulation (time taken to come up with a solution on how to solve the task with the graphic at

hand), etc. While it would be interesting and useful to collect this type of information, they are not

required for testing the three major issues we want to evaluate in our system. Specifically we want to

determine the following:

• Our theories can be implemented and they perform as expected. I.e. the design metrics and heuristics

used in the designer result in output designs that are ordered according to complexity of use (by

“complexity of use” we refer to cognitive, perceptual, and motoric complexity).

• Our work increases the breadth of designs that can be generated by automatic systems. I.e. our

automatic system should be able to produce designs that cannot be previously generated.

• Our work improves the effectiveness of visualizations generated. I.e. the expanded design space

contains visualizations that allow certain task classes to be solved more effectively.

As was previously specified these goals can be adequately evaluated using GOMS because first of all

we are only interested in testing the quality of our design with designs that can be generated by current state

of the art automatic systems. We do not make any claims with respect to the quality of designs generated

by our system and those that are generated by a human designer. Secondly all of the GOMS evaluations are

generated based on the same set of assumptions and estimate time measurements. All procedures are also

modeled based on expert performance and this consistency in the evaluation method makes the time

comparisons among the different GOMS analyzed designs more equitable because any change in

assumptions will affect all of the GOMS procedures in consistent ways. Finally and most importantly we

 E-341

do not require accurate time estimates for this evaluation. To ensure the correctness of our system it is only

necessary for us to identify groups of designs that have similar time estimates and ensure that these groups

are ordered properly by our design system. I.e. the absolute time estimates are less important, what is more

important are the large time differences between the different design groups and our analysis of what are

causing these differences.

We also stress that while it is possible to evaluate designs in our automatic system by generating

GOMS sequences, this is a very expensive process and can cause many complex issues to arise when

applied to partial designs. Single small changes to partial designs may cause a significant change in the

GOMS sequence used and may invalidate a previously forecasted sequence. This would in turn result in

great swings in the time estimations. In addition as we have discussed in this section GOMS does not take

into account certain important issues such as accuracy and readability problems. Thus we have opted to use

a higher level more abstract cost system in our designer based on the heuristics and metrics presented in

chapter IV. Details of this cost structure are presented in chapter V. In this appendix however, we proved

the correctness and feasibility of our higher level cost structure by showing that our designer orders its

output designs consistently with GOMS time estimations.

E-6 Conclusion
In summary the GOMS analyses in this section validates the three evaluation goals we set out to test.

Specifically, we showed that:

• The output order of our automatic designer (i.e. our design heuristics used) does indeed conform

to cognitive, perceptual, and motoric complexity as computed by GOMS. I.e. the theoretical

concepts developed here for characterizing and expanding the visualization techniques design

space for automatic visualization generation can be implemented and the results are meaningful

(i.e. conforms to GOMS computed times).

• Adding data transform techniques into the automatic design process expands the visualization

design space and enables whole new sets of interactive and non-interactive visualizations to be

generated. Many of these designs are shown in the following sections.

• Some of the new designs generated as a result of work developed in this thesis (i.e. pure data

transform techniques and hybrid data + mapping designs) perform much better than the designs

that can be generated with current state of the art technology (i.e. pure mapping designs) for the

task classes we considered (computation, search, comparison); with the highest gain in

computation tasks.

Demonstrating these three goals with GOMS validates the thesis statement set out in this document. This

GOMS evaluation also attests to the generality and usefulness of the rules employed in our automatic

design system and places our cost structure on a concrete, proven, empirical basis of cognitive, perceptual,

 E-342

and motoric steps. The analyses and design examples presented here also underscore the importance and

richness introduced by data transform techniques to the visualization design process.

Throughout this appendix we have also highlighted important issues and analyzed why our design

system ranks certain visualizations over others. More details are given on our designer ranking algorithms

in the chapter V where we describe the implementation details of our system. Some of the important issues

brought forth in this evaluation appendix help scope out the areas that we deal with in our work and the

areas that we don’t. Some of the interesting challenges that we leave for future work include the problem of

ensuring visual consistency for task refinements, readability issues (appendix F), and operations that alter

the general structure and type of data attributes (e.g. in the sorting example where university name is

converted from a nominal to an ordinal).

 F-343

Appendix F
Enhancing Readability with Graphical & Rendering Transforms

The American Heritage Dictionary defines readable as “capable of being read easily”. This is a broad

definition and can refer to any factor that affects the ease of interpreting a visualization (this corresponds to

the observational distance of a visualization). In this thesis however, we use readability in a narrower sense

to refer to

problems arising from constraints of the output media and its interactions with our

perceptual system that impede optimal use of a visual design1.

F-1 Readability Problems

Different readability problems arise due to our choice of output media. In our work, we are interested

in the CRT screen, which has two main restrictions, limited space and limited resolution. Readability

problems are also affected by limitations of our perceptual system when interacting with the output media.

Three primary limitations of our perceptual system include: 1) Single point of focus (we can only focus on

one spatial area at a time), 2) Limited area of focus (our eye is only sensitive to a limited amount of space

and is unable to capture visual elements beyond this area of sensitivity), and 3) Limited resolution (our eye

can only pick up objects or features at a certain minimum resolution).Based on these limitations we identify

four commonly occurring readability problems:

F-1.1 Occlusion

Occlusion occurs when one or more graphical objects in the display visually hinder access to other

objects that are important to our task. Occlusion is one of the most commonly recognized readability

problem and has been dealt with in many spatial layout algorithms for a variety of visual structures. This is

because occlusion problems arise very frequently (especially with the large data sets that we have to deal

with today) and cannot be easily avoided. We identify three principal occlusion classes: line-of-sight

occlusion, overlap occlusion, and overplotting.

1. Line of sight occlusion: Line of sight occlusion occurs when we try to view a three dimensional scene

or a three-dimensional glyph. It is difficult for us to access objects within a three dimensional scene

when there are other objects are in front of them in our line of sight because we only have a single

point of focus and we cannot see through opaque objects. Line of sight occlusion may occur as a result

of: a) self-occlusion or b) inter-object occlusion.

1 By “optimal use of a visual design” we mean the most effective perceptual, cognitive, and articulatory strategy that
may be used with a visual design given a non-problematic or “good” data distribution and data set size.

 F-344

2. Overlap occlusion: Overlap occlusion may occur in both three-dimensional and two-dimensional

spaces. Unlike line of sight occlusion which occurs for objects along the same line of sight, overlap

occlusion occur for objects that are very close to each other spatially. Objects may be partially or fully

occluded. It is obvious when and where partial occlusion occurs but for fully occluded objects, we

must supply strong cues indicating that there is hidden information. For example, we may provide

users with an occlusion map overlay where color in the map represents the amount of occlusion at a

spatial region. Another possibility is to move the occluded objects to the front and back automatically.

Note that because overlap occlusion is not caused by viewing location but rather by object positions, it

cannot be solved by changing the scene viewpoint as was done for line of sight occlusion.

3. Overplotting: We use overplotting here to refer to the extreme case of overlap occlusion where two

objects occupy the exact same position2. Unlike overlap occlusion, overplotting cannot be addressed

with spatial distortion techniques. Stretching the space between objects (i.e. allocating more space

between objects) will not help in this case because the objects are on the exact same location. Thus, the

only techniques that can be used in this situation are the object based graphical transform techniques.

F-1.2 Density

When designing visualization displays it is not only important that we avoid occlusion, but also that

we reduce visual clutter, i.e. high ink density. High ink density can be distracting to users making it

difficult to identify graphical patterns and trends. In general, visual elements should only be introduced if

they help facilitate the task so that display density is not unnecessarily increased.

Display density was very carefully studied by Tufte in his book “The Visual Display of Quantitative

Information” [Tufte, 1983]. Tufte presented the idea of data ink, which represents the non-erasable core of

a graphic. Ink that did not express information required by the task (i.e. chartjunk) was wasted ink and only

served to clutter up the display. Some example artifacts that commonly result in chartjunk include

unintentional optical art (e.g. introducing hash marks and textures that are not needed), overly gridded

displays, and art that may beautify the display but does not add to its effectiveness or information content.

Note, however, that removing chartjunk does not mean that we should only show the bare minimum

amount of data required by the task. If a visual element increases the overall effectiveness of the visual

design with respect to the current task(s) then it is not chartjunk. Well-rendered grids for example can help

direct a user’s eye to the positional axes so that value lookups can be performed more accurately. In

addition, it may sometimes be advantageous to emboss objects with texture to make them more salient so

that we can direct a user’s attention to chosen objects in the display. Depending on the task, it may also be

2 Note that we can reduce the amount of overplotting by using better layout and rendering schemes such as drawing the
larger objects behind the smaller objects so that both are visible to the user. However, in those cases where good layout
is insufficient to solve the problem, graphical and rendering transforms can be used as well.

 F-345

effective to multiply encode data attributes (i.e. represent the same data attributes using different graphical

properties). Different graphical properties and graphical representations are effective for different data

types and tasks. For example, suppose we want to search for houses worth more than 100k as well as be

able to accurately look up those sales figures once we find them. For the search task, it is much more

effective to encode the values using position because then we can pre-attentively find the houses costing

more than 100k. However, text allows for more accurate lookups. By multiply encoding the house selling-

price attribute as text and bar length, we enable users to perform both the search and lookup tasks

effectively.

F-1.3 Dwarfing

Dwarfed encoding scales arise when we have a small range of graphical values representing a large

range of data values. As a result different data values may be mapped to similar or non-distinguishable

graphical values. Because our perceptual system can only differentiate between graphical values at a certain

minimum level of resolution, dwarfed scales often produce highly inaccurate information.

F-1.4 Spatial separation

Our eyes are only sensitive to a limited spatial area. When related data concepts are placed in spatially

distant locations, we must not only perform more eye, head, or body movement, but also store information

in short term memory from one eye fixation to the next. Thus while it is important to reduce occlusion and

display density by separating out the visualization objects, we must balance that with the additional

processing required for finding related objects over large spatially distinct locations.

Spatial separation problems arise because of representation constraints (e.g. a bar in a bar chart can

only have two other bars next to it), spatial constraints (there is limited adjacent space around a two-

dimensional object), and density constraints (areas that are too dense or cluttered are difficult to interpret)

that force graphical objects to be spread farther apart.

F-2 Readability Solutions

Readability problems may be addressed in three ways:

1. Changing the data to graphical mappings within the visualization: Readability problems can often be

avoided by changing the graphical properties and objects used to show the data. However, we must be

careful that these changes do not reduce our ability to solve our target tasks (i.e. force a less effective

perceptual strategy to be used) or lead to other readability problems.

2. Changing the balance between data transforms and mapping transforms: We can also solve readability

problems by using data transforms to summarize our data so that fewer data values need to be shown.

 F-346

Although this method produces visual displays that are less cluttered due to object filtering, the

articulatory cost tends to be higher due to the need for user input in directing the filtering process.

3. Using graphical and rendering transform methods: Finally, we may also use graphical and rendering

transforms to change the appearance of objects in a visualization to solve readability problems in the

design. For example, we can allow users to interactively change the transparency of the occluding

objects with graphical transform methods. Another possibility is to stretch the display with rendering

transforms so that there is more white-space between the objects and less likelihood that they will

occlude one another.

Which of the three methods described above is most appropriate for addressing current readability

issues depends on how they change the overall semantic distance3 of our visual designs with respect to our

task(s). Solution 1 may increase observational distance because less effective data to graphical mappings

may need to be used to avoid readability problems. Solution 2 generally increases articulatory load because

users need to specify more task parameters when using a highly computed visual design. In addition,

expressive distance may also increase because data transform operations often summarize or cull out

portions of the source data. Finally, solution 3 adds to articulatory and observational distances because

users must interact with the graphical and rendering transform methods as well as interpret their feedback.

Nevertheless, solution 3 also allows for more flexibility in picking effective data to graphical mappings.

In chapter IV we considered how readability problems can be avoided by making good mapping and

data transform choices (i.e. corresponds to solution 1 and solution 2 above). In this section, we focus on

solution 3 and consider how a subset of the graphical and rendering functions described in chapters II and

III can be used to solve readability problems. Specifically we consider five basic visualization functions:

three graphical and two rendering. These methods were chosen because of their simplicity, and their ability

to generate interesting and useful behaviors for addressing readability issues.

In general, rendering techniques differ from graphical techniques because they do not change the

graphical objects within a visualization. Instead, they change the way in which these graphical objects are

mapped onto an output media. Unlike rendering techniques, graphical techniques are constrained by the

graphical class of their input objects. A graphical class description defines the visual appearance of

graphical objects as well as their graphical properties. For example, in our framework, objects belonging to

the horizontal-bar graphical class has properties x-length, y-position, color and thickness. Graphical

techniques can only operate on these properties and none other. For example, graphical techniques cannot

alter the rectangular shape of horizontal-bar objects because the horizontal-bar graphical class constrains

the objects to be rectangular and do not provide any properties for changing the bars in a non-rectangular

3 Semantic distance measures the goodness of a design with respect to a set of tasks. We described semantic distance in
detail in chapter 4 and we expand our semantic distance model in this chapter, in section 2.

 F-347

way. Thus graphical techniques guarantee perseverance of “object design” as defined by their graphical

class (i.e. a horizontal bar will always appear as a horizontal bar before and after the graphical transform

method). Rendering techniques on the other hand are not constrained by graphical class properties, as a

result they may not preserve object appearance. For example rendering methods such as fisheye-lenses and

bifocal lenses may distort horizontal-bars so they are no longer rectangular.

F-2.1 Constant Graphical Methods

Constant methods set the values of particular graphical properties to a user or designer declared

constant. This is achieved with an assign graphical transform that takes a set of graphical property values

and a constant as input.

Constant methods are often used to attach a common identifying feature to a set of objects so that users

can recognize them as a group. A common application is in providing feedback for search tasks. For

example in the dynamic query slider technique we search for a set of objects that fulfill certain data

attribute constraints by marking that constraint on a slider input device. Objects that fulfill the search

constraints will then have their color or transparency values changed to a common constant for easy

perceptual identification. Constant methods can also be used to support occlusion problems by setting the

visibility or transparency property of graphical objects.

F-2.2 Additive Graphical Methods

Additive methods add or subtract a constant to or from a set of graphical values. Additive graphical

methods use a binary graphical transform4 with the addition operator (+) as input. As with constant

methods, additive methods can be used to provide feedback (e.g. used to change an encoding graphical

parameter in a consistent way so that we can identify the objects as a set) or to address readability problems

such as removing objects from occlusion or enlarging them so that they can be easily perceived.

The most important difference between additive methods and constant methods is that additive

methods maintain the relative ordering among the transformed values while constant methods do not. I.e. if

height a is less than height b before the transform, then this relationship will still hold after an additive

transform but not after a constant transform. Therefore, when transforming data encoding graphical

properties, it is preferable to use either additive or multiplicative methods because they both maintain

relative ordering. If we use constant methods we lose all of the encoded data information. On the other

hand, constant methods are more effective at perceptually grouping a set of objects because they only

require users to detect absolute feature similarity while additive and multiplicative methods require users to

identify trend similarity (i.e., have the objects changed in a similar way?) which is more difficult to

perform.

4 Binary graphical transforms are described in chapter III-1.2.2.2

 F-348

F-2.3 Multiplicative Graphical Methods

Multiplicative methods change a set of data values by multiplying them with a constant. Like additive

methods we use a binary graphical transform but with the multiplication (*) operator as input.

Multiplicative methods primarily allow us to stretch or contract the encoding range for the set of chosen

graphical values (i.e. representing the same data values with more/fewer graphical values).

As with additive methods, multiplicative methods maintain relative ordering among the transformed

values, however, multiplicative methods also maintain ratio relationships. This means that if height a is two

times greater than height b before transformation, it will still be two times greater after a multiplicative

transform. Additive methods do not preserve such ratio relationships. For example, once we transform both

heights a and b by adding a constant c (where c �0), the ratio relationship between the two values no

longer holds true, i.e. a + c does not equal 2(b + c). An exception is when we apply additive methods to

positional properties, for example, in the SDM positional shift operations [Chuah, 1995].

F-2.4 Linear Positional Rendering Methods (Point of View Navigation)

Linear rendering functions translate the graphical scene verbatim onto the output media. I.e. the

relative position and surface properties of objects in the graphical scene remains the same on the output

media. In this appendix section, we only consider rendering methods that are applied to positional

properties (e.g. x-position, y-position) because they are most effective for solving the readability problems

that we are interested in. We leave the treatment of non-spatial rendering techniques (e.g. lighting effects,

wire-frame rendering) for future work.

Linear positional rendering techniques (Point of view navigation) allow users to view different sections

of a visualization scene. This can be achieved by controlling the camera viewpoint on the scene or

controlling the scene itself (i.e. moving or rotating the scene). Both classes of techniques transform desired

portions of the graphical scene onto an output media and allow users to explore subsets of the graphical

scene without introducing any spatial distortions.

F-2.5 Non-linear Positional Rendering Methods (Distortion)

Non-linear functions distort the graphical scene by changing/distorting the positional and/or surface

property relationships among objects. Distortion methods unlike point of view methods do not change the

viewpoint on the scene (i.e. the portion of the graphical scene being translated onto the output media

remains constant). Instead, distortion techniques stretch certain sections of the graphical space while

contracting other surrounding areas. This allows users to focus on particular sections of the visualization

while maintaining surrounding context unlike the linear rendering methods described above.

 F-349

F-3 Applying Graphical and Rendering Methods to Readability

Problems

Table F-1 summarizes the expressiveness and effectiveness of the graphical and rendering methods

described in section F-2 with respect to the four readability issues (occlusion, density, dwarfing, and spatial

separation) discussed in section F-1.

Occlusion
line of
sight

overlap overplot
Density Dwarfing Spatial

separation

Graphical transforms:

positional - - - - +
spatial
retinal

- - - -
constant

non-spatial
retinal

+*

+*

+*

-*

positional + + + + +
spatial
retinal

+ + + +
additive

non-spatial
retinal

+*

+*

+*

positional - - - - + +
spatial
retinal

- - - - +
multiplicative

non-spatial
retinal

-* -* -* +

Rendering transforms:

Point of view

positional + + - +

Distortion

positional - - + - +

Table F-1: Expressiveness and effectiveness of graphical and rendering transforms with respect to readability.

+ : Readability issue is supported reasonable well; - : Readability issue is not supported well;

“ empty” : Readability issue is not supported;* indicates the transparency property only.

Each graphical transform class in Table F-1 is divided into the three classes of graphical properties

that may be altered: 1. positional properties (x-position, y-position), 2. spatial retinal properties

(orientation, size), and 3. Non-spatial retinal properties (color, shape))5. It is important to consider the

range of graphical property classes because they affect the effectiveness of the graphical and rendering

functions with respect to readability problems. For example, changing the color property is effective for

drawing a user’s attention but it is not too helpful for solving occlusion problems, which require a change

in the visibility property. Note from Table F-1 that non-spatial retinal properties are not very effective for

dealing with most of the readability issues (occlusion, density, and spatial separation) considered here

 F-350

except for the transparency retinal property that can be useful for addressing occlusion problems. Non

spatial properties are less effective because the readability issues we address are inherently spatial in nature

and cannot be easily resolved by changing non-spatial properties.

F-3.1 Occlusion

The expressiveness of the five graphical and rendering methods discussed in section F-2 with respect

to the line of sight occlusion problem is summarized in column 2 of Table F-1. In this case all the

techniques can be used to address the line of sight occlusion problem6 however some methods are more

effective (i.e. have a lower expressive or observational distance) than others. In particular, constant

methods are not as effective as some of the other methods because it results in the greatest loss of

information (i.e. both relative and ratio relationships are lost). Multiplicative methods are also not too

effective here because they only allow us to control the positional scale for a set of objects and it is easier to

remove occlusion when we have control of the absolute objects positions as is the case with additive

transforms. Transparency graphical methods can also be used to address occlusion problems. A possible

weakness here is that it is more difficult for us to access information from transparent or translucent objects

(higher observational distance). However, if the objects we transform are not pertinent to the task then this

has no effect on the overall task semantic distance. Of the two rendering methods, the point of view

methods are rated higher here because they allows us to solve line-of-sight occlusion problems with less

visual distortion than the distortion methods (lower observational distance).

From Table F-1 we see that the two rendering techniques, point of view navigation and distortion

techniques can be used to solve line of sight occlusion and overlap occlusion. However, these rendering

techniques are not expressive of the overplotting problem because they can only change the spatial distance

between differently positioned objects, while overplotting is caused by identically positioned objects.

F-3.2 Density

Graphical transforms can be used to reduce ink density by creating context sensitive displays. Context

sensitive displays allow users to make portions of data ink visible or non-visible depending on the current

focus objects. In this way, we may turn on the axis grid lines when we need them for accurate lookups and

then turn them off otherwise using a transparency constant graphical transform. Graphical transforms can

also be used to move ancillary objects away from the focus regions or to minimize the size of those objects

to reduce area density. Note that unlike occlusion problems, additive and multiplicative transparency

techniques are not expressive of the density problem because simply making a set of objects more or less

translucent does not change object density of an area.

5 Note that another possible graphical property class is the temporal (time) dimension. Temporal techniques are not
shown here because they are always paired with either a positional or a retinal property, and their expressiveness is
dependent on the expressiveness of the paired/linked property.

 F-351

Apart from the total number of graphical elements within the display, density is also dependent upon

the total amount of display space available. Thus another alternative to lowering display density is to render

a smaller portion of the graphical scene onto the given output space by dividing the scene into multiple

segments and using point of view rendering techniques to view each of the scene segments separately.

However, this lowers the expressiveness of the visualization (not all the information can be shown

simultaneously) and may increase the spatial separation among related data concepts. We can also reduce

the density of an area by stretching out the area using distortion rendering techniques.

F-3.3 Dwarfing

Dwarfing problems may be avoided if we use data transform techniques to summarize the results of

our tasks as was shown in chapter IV. Another alternative is to use multiplicative graphical transforms on

certain ranges of the dwarfed graphical property to expand the graphical value differences among the

objects that are of current interest. Constant and additive graphical transform methods are not expressive of

the dwarfing problem because they do not have any effect on graphical value encoding scales. When

dwarfing occurs on positional graphical properties, we can also address the problem with either of the

positional rendering methods. For example, we can divide our data set into several information segments

and navigate from one segment to another using point of view navigation. This allows us to encode a

smaller data range in each segment, and thus dwarfing is reduced. However, this separation makes it

difficult for us to compare values that are in different segments and requires additional articulatory load for

navigation. Distortion rendering techniques can also be used to expand the dwarfed areas. However,

distortion techniques are less appropriate for the dwarfing problem because they may distort the positional

encoding scale, making it difficult to accurately translate the distorted positions back to data values.

F-3.4 Spatial separation

A solution to the spatial separation problem is to use graphical transform methods to move graphical

objects to different positions in the display so that the objects that must be compared are never too far from

one another. Another alternative is to use rendering distortion techniques to map portions of the graphical

scene onto a smaller vertical space, thereby reducing the vertical distance between graphical objects. We

can also apply point of view rendering to map the different graphical scene segments we want to consider

next to each other. When using these graphical and rendering techniques, however, we must be careful not

to overly increase display density or cause occlusion among the elements of interest.

F-4 Graphical and Rendering Transform Guidelines

Design guidelines for selecting mapping transforms (i.e. selecting data to graphical mappings) were

set forth in previous work on automatic visualization design. Design guidelines for selecting data

transforms and contrasting their use with mapping transforms was discussed in chapter IV. Here we

6 The only exception is that positional methods cannot be used to solve self-occlusion problems.

 F-352

consider guidelines for using the last two transformation classes: graphical and rendering transforms. We

focus on rules for selecting effective graphical and rendering methods for solving the four readability issues

that commonly arise in visualization displays (occlusion, density, dwarfing, and spatial separation). These

design guidelines are aimed at reducing the semantic distance measures described in chapter IV-2.

F-4.1 Relevance of Readability Problems with respect to Tasks

Many readability problems may arise within a visualization design, however, not all of these

readability problems are as important or relevant to the current data analysis tasks. Solving all readability

problems will require introducing many visualization techniques into the design and this will invariably

result in resource conflicts (graphical property and input device conflicts) among the techniques. Thus the

first step in choosing appropriate graphical and rendering techniques is to determine which readability

problems are most relevant and important. The readability problems that are most important and relevant

are those that most affect the end user’s ability in solving their goals. Readability issues that do not affect

the task or occur over objects that are unrelated to the task need not be addressed. Whether a readability

problem significantly affects our task solution depends on the following three factors:

1. Task specification (task operators and task arguments): The relevance of readability problems depend

first and foremost on whether the data concepts they affect are important to our current task(s). Both

the task operator and the task arguments affect the relevance of readability problems within a visual

display. To effectively address readability problems we must first identify which ones are most

relevant based on our task and task input arguments.

2. Distribution of data values: The relevance of readability problems also depends largely on the

distribution of data values that are related to the task. For example finding the max value within a

dwarfed data set that only has one clear high value is much easier than finding the max value within a

dwarfed data set with many high almost equal values.

3. The accuracy required of the task results: Task accuracy is also an important factor in determining the

relevance of readability problems. Readability problems often lower the accuracy of task results, thus

depending on the level of accuracy required by the current task, different readability issues may take

precedence. Accuracy also affects the effectiveness of graphical and rendering techniques. Some of

these techniques distort or change the graphical representations in the visualization display so that it no

longer shows the exact data values and relationships in the original data set. Depending on the task

accuracy required, these distortions may affect task expressive and observational distance to different

degrees.

In summary to design an effective visualization system, we must identify and order existing

readability problems based on their importance and relevance to our current data analysis tasks. We then

 F-353

attend to the readability issues according to their order of importance, assigning better feedback properties

and input controls to the problems that have greater significance on the overall semantic distance.

F-4.2 Continuity

Continuity in this context refers to gradual visual transformation. For a change to occur gradually we

divide it into multiple smaller changes all occurring within an acceptable time period of the other as to give

the appearance of animation or movement. Animated or continuous techniques provide users with better

context on how a visualization technique changes the display and which objects are affected (i.e. improves

technique observational semantic distance). Only continuous graphical properties (e.g. position, saturation,

size, length) can be animated. Non continuous graphical properties (e.g. shape, texture) can only be

changed discretely. It is however possible, although not desirable, to change continuous properties in a

discrete way by making the entire change in a single non-animated step.

An example discrete technique is the painting technique [Becker, 1987], which changes the hue of

objects discretely so that they appear more salient. Another example is the bifocal lens technique, which

commonly changes the size and position of objects in a single visual step that can be quite jarring to users.

Some example continuous techniques include the techniques within the SDM system that allows users to

manually and continuously change particular graphical properties of objects by selecting and dragging on

object handles. Some other examples of continuous techniques include the node rotations within a

ConeTree [Robertson, 1991], the stretching techniques presented by Sarkar et. al. [Sarkar, 1993], or the

tree reorganization operation in Hyperbolic trees [Lamping, 1995].

Continuous techniques reduce technique expressive distance because they provide users with good

constant updates of the state and progress of a visualization technique. Continuous feedback of intermediate

states also enables users to more easily detect technique errors and bugs. Continuous techniques also reduce

technique observational distance because they provide users with better context on how a visual

representation has changed from its initial state as a result of the visual transformation. In addition they also

give users with more time to focus on the interesting objects while a change is occurring. On the other

hand, continuous feedback is less useful when the visual changes are small and well understood (i.e. when

the observational distance of the design is small to begin with) or if the time addition due to the continuous

change is very significant (e.g. when the visual transform is repeated many number of times).

Another related issue is that of spatial continuity. This refers to whether the changes brought about by

the graphical and rendering techniques create a spatial discontinuity in the display. The bifocal lens

technique [Leung, 1989] for example creates a spatial discontinuity because the display is divided into two

disjoint sections that are rendered at different levels of magnification. The same effect arises in the magic

lens, and table lens techniques. Such spatial discontinuity may be jarring to users as was shown by

Hollands et al. in a user test comparing bifocal lenses to fisheye lenses.

 F-354

F-4.3 Individual vs. Group Readability

As was discussed in appendix C-3, there are two general tasks classes: simple value pair tasks or more

complex group tasks. For value-pair tasks we must address readability issues for individual task related

objects. Usually, single objects are selected for transformation many times, thus the frequency of executing

the readability technique is high. Consequently, we want to keep the cost of each readability operation to a

minimum even at the cost of greater initial learning time.

For group tasks we solve readability issues for an entire group of objects (not single objects as was in

the previous case). For example when solving group occlusion issues we are more concerned with showing

the general shape of the group, (i.e., we are more concerned with occlusion at the group edges) rather than

with internal occlusion among individual objects within the group. Unlike value-pair tasks, group tasks

require a readability technique to be repeated less frequently because operations are applied to groups

rather than individual objects. Thus it is less important that we keep the input load (i.e., technique semantic

distance) low and more important that we keep task semantic distance to a minimum.

F-4.4 Object spatial proximity

Rendering techniques are effective for addressing readability problems that occur among spatially

proximal objects because rendering transforms operate on spatially contiguous regions and applying a

single transform may remove readability problems from several objects simultaneously. To address the

same readability problems using graphical transforms would require a higher articulatory distance because

each of the task related object must be enumerated by the user7. In addition, more visual feedback must be

provided to indicate the location and extent of changes introduced by the graphical transforms. This results

in a higher observational distance.

However, if the target readability objects were spatially distant from one another, we would need to

apply multiple rendering distortions to spatially disjoint areas thereby increasing the feedback complexity

and the amount of distortion introduced into the display. Articulatory distance is also higher because now

users must specify multiple focal points. On the other hand, graphical transforms become more effective in

this case because they introduce less visual distortion compared to rendering transforms that are applied

over multiple separate focal points.

F-4.5 Reversibility

Reversibility refers to how easily the changes made by a graphical or rendering transform may be

removed from a visual display. Reversibility of graphical and rendering transforms is important for three

reasons:

7 The articulatory load may be reduced by using functional definition selections, (e.g. using a bounding box to set
constraints on the position of the objects desired).

 F-355

1. Reduces conflict among different transformation techniques: Some graphical and rendering techniques

may introduce new readability problems into the visual display. For example, the fisheye technique

increases density of the contextual areas and distorts the position of objects within the display. As a

result, we may want to remove the effects of the fisheye transformation once we perform our

immediate task so that the display distortions it introduced will not influence other tasks that need to be

performed. The ability to reverse the transformation allows us to deal with the readability issues on a

task by task basis and not have to worry about conflicts in readability operations across different tasks.

This reduces the task expressive and observational distances of a visualization technique.

2. Enables users to easily repeat visual changes that were missed: Reversible transformations are also

useful for repeating a graphical or rendering transform. Sometimes, we may not catch all the visual

changes made by a technique. Being able to reverse and reapply the technique gives us the ability to

peruse the effects of the technique repeatedly and more effectively capture the visual alterations that

have occurred. I.e. this lowers technique observational distance.

3. Reduces the cost of input and operation sequence errors: Interactive visualization techniques allow

users to control or manipulate part of its operation and effects through input devices. Sometimes

however, users may make input errors and it is important to allow the effects of those error(s) to be

reversed. User errors may also occur when we need to perform a series of graphical and rendering

operations in sequence to get combined effects on a set of objects. In such an instance if we

accidentally perform an operation out of sequence, we must be able to reverse it so that we need not

repeat the entire sequence again from scratch. Reversible techniques reduce the articulatory cost of

making input errors or operation sequence errors.

F-4.6 Learning

The effectiveness and usability of a technique is increased if it can be easily learned and if it is easy to

use and remember once learnt. Some important learning issues include:

1. Consistency : Techniques within the same visualization should share consistent interfaces and controls.

This helps users remember the techniques and enables them to transfer knowledge from one technique

to another. To ensure technique consistency we can decompose the techniques based on the interactive

framework presented in chapters II and III, and then give preference to techniques with similar

structures.

2. Vocabulary size: The more techniques there are in a visualization system (i.e. the greater the technique

vocabulary size), the harder it is for users to master and utilize these disparate techniques. Thus we

should try to keep the number of controls and number of different techniques to a minimum.

3. Affordances: This refers to whether affordances or cues are provided to users for indicating how a

visualization technique should be used and manipulated and what problems it can address. Such cues

can take many forms. We can provide instructional support by integrating the automatic visualization

 F-356

designer with an explanation system like AutoBrief, which can provide textual instructions. Effective

affordances can also be derived by picking input devices whose appearance suggests the inputs it can

generate and the way it should be manipulated.

Note that the three factors presented here are obviously not a complete list of factors that affect

learning a technique. Because of the breadth and complexity of learning issues however, we leave a more

complete treatment of it for future work.

F-5 Conclusion

In this section we identified four important readability issues (occlusion, density, dwarfing and spatial

separation) by examining constraints of the CRT screen and out perceptual system. We then considered

how the graphical and rendering transform techniques captured within our framework in chapter III can be

used to address these four problems.

To add these readability decisions into our automatic design system, we must add several additional

steps in our search algorithm as is shown in gray in Figure F-1. In particular, once we have finished

constructing a design, we check to see if that design has any readability problems. If so, we consider all

available graphical and rendering techniques and pick one that is most appropriate given the current task,

data set size, data value distribution, and according to the guidelines and metrics discussed in chapter IV-2

and section F-4.

 F-357

Begin

Process Next Task

Is object
task?

Is task
embedded?

Store task output
attribute for mapping

Are all embedded
tasks done?

Constrain all task
attributes

Pick input
devices for
unknowns

Are there
task

unknowns?

Add appropriate
functional operator

Constrain data object
membership

Are all
attributes
mapped?

Map attribute to
existing graphical

object

Map attribute to
new graphical

object

Compose new
graphical object

N

Internal
External

Y

Y

N

N

Y

Y

N

Y

N

Constrain all object
embedded tasks to be

internal

Step 1

Step 2

Two alternative methods for
showing object task results

Step 4

Step 3

Step 5

Step 6

Step 7
Is task-list

empty?

N

End

Y

Task processing phase Data attribute mapping phase

Case 1a

Case 1b

Case 2a Case 2b

Detect and order
readability

problems based on
task and data set.

Store all readability
problems in

readability-list of
node

Is
readability-
list empty?

Y

Use graphical
transform

Use rendering
transform

Use positional
property

Use spatial-
retinal

property

Use
transparency

N

Use linear
positional
transform

Use non-linear
positional
transform

Figure F-1: Augmented search algorithm for our automatic design system AVID. Additional steps take into
account readability issues and how to solve them.

 358

References
Abowd, G., and Beale, R., (1991). Users, Systems and Interfaces: A Unifying Framework for

Interaction. People and Computers VI, Proceedings of the HCI’91 conference, editors Diaper D., and

Hammond N., p.73–87.

Ahlberg, C., Williamson, C. and Shneiderman, B., (1992). Dynamic queries for information

exploration: An implementation and evaluation. Proceedings of CHI’92 Human Factors in Computing

Systems, ACM, Monterey, CA, p. 619-626.

Ahlberg, C., Shneiderman, B., (1994). The Alphaslider: A Compact and Rapid Selector. Proceedings

of CHI’94 Human Factors in Computing Systems, ACM, p. 365-371.

Becker, A., and Cleveland, W. S., (1987). Brushing Scatterplots. Technometrics, vol. 29, no. 2, p.

127-142.

Bederson, B.B., and Hollan, J.D., (1994). PAD++: A zooming graphical interface for exploring

alternate interface physics. UIST ‘94, Proceedings of the ACM Symposium on User Interface Software and

Technology, ACM, p. 17-27.

Bertin, J., (1983). Semiology of Graphics, The University of Wisconsin Press, London, England.

Bertin, J., (1981). Graphics and Graphic Information Processing, Walter de Gruyter, Berlin, New

York.

Bier, E. A., Stone, M.C., Baudel, T., Buxton, W., and Fishkin, K., (1994). A Taxonomy of See-

Through Tools, Proceedings of CHI'94 Human Factors in Computing Systems, ACM, Boston, MA, p. 358-

364.

Brodlie, K. W., Gallop, J. R., Grant, A. J., Haswell, J., Hewitt, W. T., Larkin, S., Lilley, C. C.,

Morphet, H., Townend, A., Wood, J., Wright, H. (1991). Evaluation of Visualization Software, AGOCG

Technical Report 9.

Card, S.K., Mackinlay, J., Shneiderman, (1999). Readings in Information Visualization: Using Vision

to Think, Card, S.K., Mackinlay, J., Shneiderman (Eds), Morgan Kaufman Publishers Inc., San Francisco.

 359

Card, S.K., Mackinlay, J., (1997). The Structure of the Information Visualization Design Space,

Proceedings of the Symposium on Information Visualization, IEEE, Phoenix, AZ, pp. 92-99.

Card, S.K., Mackinlay, J., Robertson, G., (1990). The Design Space of Input Devices, Proceedings of

CHI’90 Human Factors in Computing Systems, ACM, p. 117-124

Card, S.K., Moran, T.P., and Newell A., (1983). The Psychology of Human-Computer Interaction,

Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Casner, S.M., (1991). A Task-Analytic Approach to the Automated Design of Graphic Presentations,

Transactions on Graphics, ACM, Vol. 10, No. 2, p. 111-151.

Cavanaugh, J.P., (1972). Relation between the intermediate memory span and the memory search rate,

Psychological Review, Vol 79, p. 525-530.

Chernoff, H., (1973). The Use of Faces to Represent Points in k-Dimensional Space Graphically,

Journal of the American Statistical Association, p. 361-368.

Chuah, M., Eick, S.G., (1998a). Information Rich Glyphs for Software Management Data, IEEE

Computer Graphics and Applications, IEEE, p. 24-29.

Chuah, M., Roth, S.F., (1998b). Dynamic Aggregation with Circular Visual Designs, Proceedings of

the Symposium on Information Visualization, IEEE, North Carolina, p. 35-43.

Chuah, M., Roth, S.F., (1996). On the Semantics of Interactive Visualizations, Proceedings of the

Symposium on Information Visualization, IEEE, San Francisco, CA, p. 29-36.

Chuah, M., Roth, S.F., Mattis, J., Kolojejchick, J., and Juarez, O., (1995). SageBook: Searching data

graphics by content, Proceedings of CHI’95 Human Factors in Computing Systems, Denver, CO, p. 338-

345.

Chuah, M.C., Roth, S.F., Mattis,J., and Kolojejchick, J., (1994). SDM: Selective Dynamic

Manipulation of Visualizations, UIST'95 Proceedings of the ACM Symposium on User Interface Software

and Technology, ACM, Pittsburgh, PA, p. 61-70.

Eick, S. G., Steffen, J. L., Sumner, E., (1992). Seesoft – A Tool for Visualizing Line Oriented

Software Statistics, IEEE Transactions on Software Engineering, Vol 18, IEEE, p. 957-968.

 360

Feiner, S., and Beshers, C., (1990). Worlds within worlds: Metaphors for exploring n-dimensional

virtual worlds, UIST’90 Proceedings of the ACM Symposium on User Interface Software and Technology,

ACM, p. 76-83.

Foley, J.D., vanDam, A., Feiner, S.K., and Hughes, J.F., (1990). Computer Graphics: Principles and

Practice, Addison Wesley Publishing Company.

Furnas, G.W., (1991). Generalized fisheye views. Proceedings of CHI `91 Human Factors in

Computing Systems, ACM, p. 16-23.

Goldstein, J., Roth, S.F., Kolojejchick, J., and Mattis, J., (1994). A framework for knowledge-based

interactive data exploration, Journal of Visual Languages and Computing, p. 339-363.

Ellson, J., Gansner, E., Koutsofios, E., Mocenigo, J., North, S., Woodhull, G., Dobkin, D., Alexiev,

V., GraphViz, http://www.research.att.com/sw/tools/graphviz/.

Green, M., Visual search, visual stream, and visual architectures, Perception and Psychophysics, in

press.

Hollands, J.G., Carey, T.T., Matthews, M.L., and McCann, C.A., (1989). Presenting a Graphical

Network: A Comparison of Performance Using Fisheye and Scrolling Views, Designing and Using

Human-Computer Interfaces and Knowledge Based Systems, Elsevier Science B.V., Amsterdam, p. 313-

320.

Jacob, R., (1986). A Specification Language for Direct Manipulation User Interfaces, Transactions on

Graphics, Vol. 5, No. 4, ACM, p. 283-317.

John B.E., (1988). Contributions to engineering models of human-computer interaction. Doctoral

dissertation, Carnegie Mellon University.

John, B.E. & Newell, A., (1989). Cumulating the science of HCI: From S-R compatibility to

transcription typing. Proceedings of CHI’89 Human Factors in Computing Systems, Austin, Texas, ACM,

p 109-114.

 361

John, B., (1990). Extensions of GOMS analyses to expert performance requiring perception of

dynamic visual and auditory information. Proceedings of CHI’90 Human Factors in Computing Systems,

Seattle, WA, ACM, p. 107-115.

John, B.E., & Newell, A., (1990). Toward an engineering model of stimulus response compatibility,

Stimulus-response compatibility: An integrated approach, R.W. Gilmore & T.G. Reeve (Eds), New

York:North-Holland, p. 107-115.

Kerpedjiev, S., Carenini, G., Roth, S. F., Moore, J. D., (1997). AutoBrief: a multimedia presentation

system for assisting data analysis, Computer Standards and Interfaces, Volume 18, p. 583-593.

Lamping, J., Rao, R., Pirolli, P., (1995). A focus+context technique based on hyperbolic geometry for

visualizing large hierarchies. Proceedings of CHI '95 Human Factors in Computing Systems, ACM, p. 401-

408.

Leung, Y.K., (1989). Human-Computer Interface Techniques for Map Based Diagrams, Designing

and Using Human-Computer Interfaces and Knowledge-Based Systems, Elsevier Science B.v.,

Amsterdam, p. 361-368.

Leung, Y.K., and Apperley, M. D., (1994). A review and Taxonomy of Distortion-Orientation

Presentation Techniques, Transactions of Computer-Human Interaction, ACM, Vol. 1, No. 2, p. 126-160.

Livingstone, Margaret S., (1988). Art, Illusion and the Visual System, Scientific American, Vol. 256,

pp. 78-85.

Lohse, G.L., (1993). A Cognitive Model for Understanding Graphical Perception, Human Computer

Interaction, Vol 8, p. 353-388.

Lohse, G. L., Biolsi, K., Walker, N., and Reuter, H.H., (1994). A Classification of Visual

Representations, Communications of the ACM, Vol. 37, No. 12, p. 36-49.

Mackinlay, J.D., Card, S.K., Robertson, G.G., (1991). The Perspective Wall: Detail and Cotext

Smoothly Integrated. Proceedings of CHI’91 Human Factors in Computing Systems, ACM, New York,

173-180.

Mackinlay, J.D., Card, S.K., Robertson, G.G., (1990). A Semantic Analysis of the Design Space of

Input Devices, Human Computer Interaction, Vol. 5, Lawrence Erlbaum Associates, Inc., 145-190.

 362

Mackinlay, J.D., (1986a). Automatic Design of Graphical Presentations, Ph.D. Thesis, Stanford

University.

Mackinlay, J.D., (1986b). Automating the design of graphical presentations of relational information,

Transactions on Graphics, ACM, Vol. 5, No. 2, pp. 110-141.

Myers, B.A., (1991). Using AI Techniques to Create User Interfaces by Example, Intelligent User

Interfaces, Sullivan, J.W. (Ed), Reading, MA: Addison-Wesley/ACM Press, p. 385-401.

Olson, J.R., & Olson, G.M., (1990). The growth of cognitive modeling in human-computer interaction

since GOMS, Human-Computer Interaction, Vol 5, p. 221-265.

Plaisant, C., Milash, B., Rose, A., Widoff, S., and Shneiderman, B., (1996). LifeLines: Visualizing

Personal Histories, Proceedings of CHI’96 Human Factors in Computing Systems, ACM, Vancouver, BC,

Canada, p.221-227.

Rao, R., Card, S.K., (1994). The table lens: Merging graphical and symbolic representations in an

interactive focus+context visualization for tabular information, Proceedings of CHI '94 Human Factors in

Computing Systems, ACM, p. 318-322.

Robertson, G., Mackinlay J.D., Card, S.K., (1991). Cone Trees: Animated 3D Visualizations of

Hierarchical Information. Proceedings of CHI '91 Human Factors in Computing Systems, ACM, p. 189-

194.

Roth, S., Lucas, P., Senm, J., Gomberg, C.C., Burks, M.B., Stroffolino, P.J., Kolojejchick, J.A.,

(1996). Visage: A user interface environment for exploring information, Proceedings of the Symposium on

Information Visualization, IEEE.

Roth, S.F., Kolojejchick J., Mattis J., Goldstein J., (1994). Interactive Graphic Design Using

Automatic Presentation Knowledge, Proceedings of CHI'94 Human Factors in Computing Systems, ACM,

Boston, p. 112-117.

Roth, S.F., Mattis, J.A., (1990). Data Characterization for Intelligent Graphics Presentation,

Proceedings of CHI'90 Human Factors in Computing Systems, ACM, Seattle, WA, p. 193-200.

 363

Sarkar, M., Snibbe, S.S. (1993). Stretching the rubber sheet: A metaphor for viewing large layouts on

small screens. UIST ‘93 Proceedings of the ACM Symposium on User Interface Software and Technology,

p. 81-91.

Senay, H., Ignatius, E., (1994). A Knowledge Based System for Visualization Design, IEEE

Computer Graphics and Applications, p. 36-47.

Siskind, J.M., Screaming Yellow Zonkers, http://www.csd.abdn.ac.uk/~swhite/zonkers.html

Spoerri, A., (1993). InfoCrystal: A Visual Tool for Information Retrieval, Proceedings of IEEE

Visualization’93 Conference, Los Alamitos, CA., p.150-157.

Springmeyer, R.R., (1992). Designing for Scientific Data Analysis: From Practice to Prototype, Ph.D.

Thesis, Lawrence Livermore National Laboratory.

Teghtsoonian, J., (1965). The judgement of size, American Journal of Psychology, p. 392-402.

Treisman, A., Schmidt, H., (1982). Illusory Conjunctions in the Perception of Objects, Cognitive

Psychology, Vol 14, p. 107-141.

Treisman, A., (1988). Features and Objects: The Fourteenth Bartlett Memorial Lecture, The Quarterly

Journal of Experimental Psychology, Lawrence Erlbaum Associates Ltd, The Distribution Center,

Blackrose Road, Letchworth Herts SG6 IHN, U.K., p. 201-237.

Tufte, E. R., (1983). The Visual Display of Quantitative Information, Graphic Press, Cheshire, CT.

Tukey, J.W., (1977). Exploratory Data Analysis, Addison-Wesley Publication Co.

Tweedie, L., (1997). Characterizing Interactive Externalizations, Proceedings of CHI’97 Conference

on Human Factors in Computing Systems, Atlanta, p. 375-382.

Tweedie, L., Spence, R., Williams, D., Bhogal, R., (1994). The Attribute Explorer, Conference

Companion of CHI’94 Conference on Human Factors in Computing Systems, p. 435-436.

Welford, A.T., (1973). Attention, strategy, and reaction time: A tentative metric, Attention and

performance IV, S.Kornblum (Ed.), New York: Academic, p 37-54.

 364

Wills, G., (1996). 524,288 Ways to Say “This is Interesting”, Proceedings of the Symposium on

Information Visualization, IEEE.

