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Abstract

How can we quickly find the number of triangles in a large graph, without actually counting them?Triangles
are important for real world social networks, lying at the heart of the clustering coefficient and of the tran-
sitivity ratio. However, straight-forward and even approximate counting algorithms can be slow, trying to
execute or approximate the equivalent of a 3-way database join. In this paper, we provide two algorithms,
the EIGENTRIANGLE for counting the total number of triangles in a graph, and the EIGENTRIANGLELO-
CAL algorithm that gives the count of triangles that contain a desired node. Additional contributions include
the following: (a) We show that both algorithms achieve excellent accuracy, with up to ≈ 1000x faster ex-
ecution time, on several, real graphs and (b) we discover two new power laws (DEGREE-TRIANGLE and
TRIANGLEPARTICIPATION laws) with surprising properties.
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1 Introduction

Finding patterns in large scale graphs, with millions and billions of edges is attracting increasing interest,
with numerous applications in computer network security (intrusion detection, spamming), in web applica-
tions (community detection, blog analysis) in social networks (facebook, linkedin, e.g.for link prediction),
and many more. One of the operations of interest in such a setting is the estimation of the clustering coef-
ficient and the transitivity ratio, which effectively translates to the number of triangles in the graph, or the
number of triangles that a node participates in.

It is known that in social networks there is a higher-than-random number of triangles ([27]). The reason
is that friends of friends are typically friends themselves. Thus, the number of triangles can help us spot
abnormal graphs and abnormal nodes (see, e.g. [4]).

More-than-expected number of triangles also appear in biological networks,such as protein-protein in-
teraction networks (see, e.g [28]).

A very recent work ([4]) shows that the distribution of the local number of triangles can be used to create
successful spam filters and also provide useful features to assess content quality in social networks. In [11]
the distribution of triangles is used to uncover hidden thematic structure in the World Wide Web. Therefore,
counting triangles is a significant problem in graph mining, with several important applications.

The asymptotically fastest existing methods (lowest time complexity) suffer from space complexity.
Specifically, they have Θ(n2) space complexity, where n is the number of nodes in the network. For large
or huge networks this is prohibitive. Therefore, in practice it is preferred to list the triangles ([20]). Other
approaches, instead of counting exactly the triangles, adopt the streaming model ([3],[5]) or even more
recently a semi-streaming model([4]).

The main contribution of this paper is the EIGENTRIANGLE algorithm, based on Theorem 1 saying that
the number of triangles is exactly one sixth of the sum of cubes of eigenvalues and the properties of “real-
world” network spectra. This is a completely novel view point, which opens the door to the vast machinery
of eigenvalue algorithms and fine-tunings. Eigenvalues can be easily computed for sparse graphs, and can be
applied on a map/reduce (’hadoop’) architecture, which is extremely promising for Peta-byte scale graphs.

The additional contributions are the following

• Fast total triangle count An algorithm for the fast estimation of the number of triangles, with excel-
lent accuracy: Figure 1 shows the performance of our algorithm for a web graph (Wikipedia, Nov. ’06)
with approximately ≈ 3.1M nodes and ≈ 37M edges. We achieve about 1000x faster performance
respectively than a straightforward, exact-counting competitor with more than 97% accuracy.

• Fast local triangle count A theorem and an algorithm for the fast estimation of local triangle count,
that is, the number of triangles ∆i that the i-th node participates in. Again, the speedups and the
accuracy are excellent, as we show in section 4.

• Extensive experimentation We used almost 160 real-world networks; the speed-ups were between
34x to 1075x, for accuracy at least 95%.

• Laws: New power laws in real networks with surprising properties.

The rest of the paper is organized as follows: Section 2, surveys earlier triangle-counting methods.
In Section 3 we present the EIGENTRIANGLE and EIGENTRIANGLELOCAL theorems and algorithms, for
global and local triangle counting, respectively. Section 4 gives the experimental results on several real data
sets. Section 5 lists some surprising laws that govern the count of triangles in real graphs. In Section 6 we
present some theoretical ramifications of the previous sections and we conclude in Section 7.
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Figure 1: Speed-up ratio versus accuracy for the Wikipedia web graph (≈ 3, 1M nodes, ≈ 37M edges
). Proposed method achieves 1021x faster time, for 97.4% accuracy, compared to a typical competitor, the
Node Iterator method.

2 Related work

Let G(V,E), n=|V |, m=|E| be an undirected graph without self-edges. A triangle is a set of three fully
connected nodes. In this section we briefly review the state-of-the-art work related to the problems of global
and local triangle counting. By global we refer to the problem of counting the total number of triangles in G
and by local to the problem of counting the number of triangles per each node. Two other problems related
to triangles are (i) deciding whetherG contains a triangle and (ii) for each triangle inG, list the participating
nodes. Before we make the overview, we state a few facts about the spectrum of a graph.

Eigenvalues Depending on whether the graph is represented as an adjacency or as a Laplacian matrix
([7]), the eigenvalues receive different meaning: in the former case, they indicate the path capacity of the
graph ([18]) whereas in the latter the connectivity of the graph ([7]). A classical method for finding the
eigenvalues of a matrix is the QR method ([17]). A huge literature, which is impossible to list here, exists
for the eigenvalue problem.

Non-streaming algorithms The brute-force approach enumerates all possible triples of nodes (O(n3)).
The algorithms with the lowest time complexity for counting triangles rely on fast matrix multiplication.
The asymptotically fastest algorithm to date is O(n2.376) [8]. In [2], an algorithm of O(m

2ω
ω+1 ) ⊂ O(m1.41)

time complexity and of Θ(n2) space complexity is proposed to find and count triangles in a graph. However,
these methods suffer from Θ(n2) space complexity. Listing methods ([26]) are preferred against matrix-
based methods. Even if these methods solve problem (ii) which is more general than the global and local
triangle counting, they are more efficient. Two straightforward listing methods are the Node Iterator and the
Edge Iterator algorithms. The Node Iterator considers each one of the n nodes and examines which pairs
of its neighbors are connected. The time complexity of the Node Iterator is O(nd2

max). This is a significant
improvement over the brute-force approach when the graph is sparse. The Edge Iterator algorithm computes
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for each edge the number of triangles that contain it. The time complexity of this algorithm is O(
∑

v∈V d
2
v).

Asymptotically, both methods have the same time complexity ([26]). In [2], a listing algorithm of time
complexity Θ(m

3
2 ) is proposed. However, the space complexity is Θ(n2). In [26] the forward algorithm

is proposed, which is an improvement of the Edge Iterator algorithm, with running time Θ(m
3
2 ). In [20], a

further improvement of the forward algorithm is proposed, called the compact-forward algorithm.

Streaming algorithms The memory restrictions when dealing with huge graphs lead us to the streaming
approach. In the streaming model, the goal is to find a randomized algorithm that outputs an ε-approximation
of the number of triangles with probability at least 1-δ with one pass access to the graph data stream. The
main advantage of this approach in comparison to the non-streaming scenario is that it requires a single pass
over the data. Representative work on the streaming case are [3] and [5]. In [3], rigorous theory supports
the algorithms making them attractive for practical applications. Recently, the semi-streaming model was
introduced by [4] to solve the local counting problem. This model relaxes the strict restriction of the single
pass over the data, and instead it uses an amount of main memory (O(n)) and performsO(log(n)) sequential
scans over the edge file.

3 Proposed Method

The goal of this work is to propose a new method for counting triangles approximately in large, real-
world networks while being accurate, fast, and easily parallelizable. The last goal is also of great impor-
tance, since it will provide a way to mine huge graphs using parallel architectures such as the map/reduce
(’Hadoop’) [10]. Furthermore,if all these goals are met at once, the “trade-off” described in section 2 will be
destroyed. The method we propose achieves all the above characteristics when the graph has some special
properties. Real-world networks appear to have them very frequently.

Table 1 gives a list of symbols and their definitions.

3.1 Theorems and proofs

Using simple linear algebra arguments, we prove two theorems on the top of which our methods are built.

Theorem 1 (EIGENTRIANGLE). The total number of triangles in a graph is proportional to the sum of
cubes of its adjacency matrix eigenvalues, namely:

∆(G) =
1
6

n∑
i=1

λ3
i (1)

Proof. The diagonal element αii of the square matrix A3 contains the number of paths of length 3 that begin
and end at the same node i. The only way this can happen is to have a triangle in which node i participates.
Therefore the trace of A3 is three times the total number of triangles (since we are triple counting them
because each triangle has 3 participating nodes). Furthermore, since the graph is undirected and we are
counting each triangle as two (triangle ikj is counted as i → k → j and i → j → k). Therefore the
following equality holds: ∆(G) = 1

6 trace(A
3). Furthermore, if λ is an eigenvalue of A then λ3 is an

eigenvalue of A3 and vice versa. Finally, we know that
∑n

i=1 λi = trace(A). Combining the above
equations, we get that ∆(G) = 1

6

∑n
i=1 λ

3
i . Q.E.D

3



Sym. Definition
G Undirected graph (no self-edges)
dmax maximum node degree
∆ total number of triangles
∆′ EIGENTRIANGLE’s estimation of ∆
∆dm
avg average number of triangles over all

nodes with degree dm
~∆(G) = [∆i]i=1..n ∆i number of triangles

node i participates
~∆′(G) = [∆′i]i=1..n ∆′i EIGENTRIANGLELOCAL’s

estimation of ∆i

m, n Number of edges and nodes.
[n] = (1..n) Node ids
C′ (~x′) transpose of matrix C (vector ~x)
A Adjacency matrix
λi top-i-th eigenvalue (absolute value)
~ui=[uij ]

′
j=1..n i-th top eigenvector

(eigenvector corresponding to λi)
~Λi = [λi]i=1..k k top eigenvalues
Uk = [~ui]i=1..k k top eigenvectors
TPPL triangles per node power law
DTPL degree triangle power law

Table 1: Definitions of symbols and acronyms
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Algorithm 1 The EIGENTRIANGLE algorithm
Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Output: ∆′(G) global triangle estimation
λ1← LanczosMethod(A, 1)
~Λ← [λ1]
i← 2 {initialize i, ~Λ}
repeat
λi← LanczosMethod(A, i)
~Λ←

[
~Λ λi

]
i← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol

∆′(G)← 1
6

∑i−1
j=1 λ

3
j

return ∆′(G)

Theorem 2 (EIGENTRIANGLELOCAL). The number of triangles ∆i that node i participates in, can be
computed from the cubes of the eigenvalues of the adjacency matrix

∆i =

∑
j λ

3
ju

2
i,j

2
(2)

where ui,j is the j-th entry of the i-th eigenvector.

Proof. Easy extension of 1. It follows from the facts that since Anxn is symmetric, A = UnΣU′n, where
Σ is a diagonal matrix with diag(Σ) = ~Λn (all eigenvalues are real and Un is an orthogonal matrix and
therefore A3 = UnΣ3U′n according to [25]) and that each triangle is counted twice. Q.E.D

3.2 Proposed algorithms

We can see the pseudocode of the EIGENTRIANGLE and EIGENTRIANGLELOCAL algorithms. Both
take only a tolerance parameter: tol. The intuition behind the tolerance parameter is to stop looping when
the smallest eigenvalue contributes very little to the total number of triangles.

Both algorithms use the subroutine LanczosMethod as a black box1. The Lanczos method is a well
studied projection method for solving the symmetric eigenvalue problem using Krylov subspaces. Our
choice is due to the following reasons: a) It is based only on matrix-vector products, which are easy to
parallelize. b) “..with minimal memory requirements very large problems can be handled on not very large
computers, and huge problems can be handled on large computers” (quote from [9]). c) High quality soft-
ware is available (ARPACK,Parallel ARPACK etc.). More details about the Lanczos method can be found
in [17], [19].

The idea of both algorithms could not be more simple and clear: find the diagonal of a low rank approx-
imation of A3.

1For simplifying presentation, depending on the number of output arguments, Lanczos returns either λi only or ~ui too. The
required time is the same in both cases.
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Algorithm 2 The EIGENTRIANGLELOCAL algorithm
Require: Adjacency matrix A (nxn)
Require: Tolerance tol
Output: ~∆′(G) per node triangle estimation
〈λ1, ~u1〉 ← LanczosMethod(A, 1)
~Λ← [λ1]
U← [ ~u1]
i← 2
{initialize i, ~Λ,U}
repeat
〈λi, ~ui〉 ← LanczosMethod(A, i)
~Λ←

[
~Λ λi

]
U← [U ~ui]
i← i + 1

until 0 ≤ |λ3
i |∑i

j=1 λ
3
j

≤ tol
for j = 1 to n do

∆′j =
∑i−1

k=1 u
2
jkλ

3
k

2
end for
~∆′(G)← [∆′1, ..,∆

′
n]

return ~∆′(G)

3.3 Why so successful?

Real-world networks have several special properties, such as small-worldness, scale-freeness and self-
similarity characteristics. Two among the many special properties are the reason that our EIGENTRIANGLE

and EIGENTRIANGLELOCAL algorithms achieve excellent accuracy, and excellent speedup at the same
time:

• (a) The absolute values of their eigenvalues are skewed, typically following a power law ([13],[24],[6]).

• (b) Moreover, the signs of the eigenvalues tend to alternate ([14])) and thus their cubes roughly cancel
out.

The combination of the two properties means that the first top strongest eigenvalues (experimentally
1-25, see 3(a) lead to an excellent approximation.

Figure 2 shows the typical spectrum of a real-world network. It plots the rank of the eigenvalue vs. its
value for the Political Blogs network ([1]). The two crucial properties described above are verified.

3.3.1 Justifying the convergence speed of the Lanczos method

Lanczos algorithm can run in general into convergence problems. However, in the experiments we con-
ducted, we never faced this problem. This interesting phenomenon happens because real-world networks
have usually have a big spectral gap, which makes Lanczos robust. In more detail, we use the Kaniel-Paige
convergence theory and the special properties of real-world networks. In particular, in [12] it is claimed that
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Figure 2: Typical spectrum of a real-world network (Polblogs dataset). Value λi versus rank i (highest
absolute value first). Notice that (1) the first few eigenvalues are much stronger than the rest, (2) which are
almost symmetric around zero and (3) cubing amplifies these effects.

real-world networks have a big gap λ1 - |λ2| 2. This claim was experimentally verified and is in accordance
with [13], [24], [6]. Also, according to Kaniel-Paige convergence theory ([17]) if θ1 ≥ ... ≥ θk are the
eigenvalues of the tridiagonal Tk (a small matrix internally constructed by Lanczos) obtained after k steps
of the Lanczos iteration, then the following inequality holds:

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn)tan(φ1)2

(ck−1(1 + 2ρ1))2
(3)

where cos(φ1) = |~q1′ ~u1| (where ~q1 is the first Lanczos vector), ρ1 = λ1−λ2
λ2−λn

, and ck−1 is the Chebyshev
polynomial of degree k − 1. Therefore, in our case ρ1 is larger than zero and since Chebyshev polynomials
grow very fast outside [-1,1] ([23]), Lanczos converges very fast.

4 Experimental Results

We do experiments to answer the following questions: for at least 95% accuracy what are the speedups we
can achieve for the triangle counting problem?

First we give the experimental setup, and then the results.

4.1 Experimental set up

Each graph was preprocessed by removing any self-edges, the direction of the edges and the weights when-
ever needed. The number of nodes and edges of the networks used after the preprocessing are summarized
in table 2. 3 As a competitor we chose the Node Iterator (see section 2) since it is much superior to
the naive O(n3), easy to implement and has asymptotically the same time and space complexity with the

2Absolute value is not needed for λ1 because according to the Perron-Frobenius theorem ([16]) it is always positive.
3Most of the datasets we used are publicly available. Indicative sources are : http://arxiv.org, http://www.cise.

ufl.edu/research/sparse/mat/, http://www-personal.umich.edu/˜mejn/netdata/
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(a) #Eigenvalues vs. Speedup (b) Edges vs. Speedup

Figure 3: Scatterplots of the results for 158 graphs. (a) Speedup vs. Eigenvalues: The mean required
approximation rank for ≥ 95% accuracy is 6.2. Speedups are between 33.7x and 1159x, with mean 250.(b)
Speedup vs. Edges: Notice the trend of increasing speedup as the network size grows (#edges).

Edge iterator. We ran the experiments in a machine with a quad-processor Intel Xeon 3GHz with 16GB of
RAM. We express the experimental results as the ratio of the clock-work times of the Node Iterator to the
EIGENTRIANGLE (speedup). All algorithms were implemented in MATLAB.

4.2 Global Triangle Count

The results of applying the EIGENTRIANGLE algorithm are summarized in figure 3. Figure 3(a) plots the
number of eigenvalues required to get at least 95% versus the achieved speedup, whereas figure 3(b) the
number of edges in the graph versus the speedup. The following facts are remarkable:

• The mean value of eigenvalues needed to achieve more than 95% is 6.2 with standard deviation 3.2.
The mean speedup is 250x with standard deviation 123. The maximum speedup is 1159x whereas the
minimum 33.7x.

• The speedup savings appear to increase as the size of the network grows. A possible explanation for
this, assuming that our degree distribution follows approximately a power law, could be that as the
network grows, the maximum degrees are getting more detached from the rest and according to [24],
so do the top eigenvalues. Therefore, with a handful of eigenvalues, we get extremely high accuracy.

Finishing this section, we provide the following “rule of thumb”: follow the default tol=0.05 which gave
the results reported here. Our experiments showed little sensitivity on the choice of tol. Alternatively an
even easier rule of thumb is to pick the top 30 eigenvalues (since we got all our results with less than 25
eigenvalues, see figure 3).
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Nodes Edges Description
Social Networks

75,877 405,740 Epinions network
404,733 2,110,078 Anonymous So-

cial Network (ASN)
Co-authorship networks

27,240 341,923 Arxiv Hep-Th
Information networks

1,222 16,714 Political blogs
13,332 148,038 Reuters news,

Sept 9-11,2001.
Web graphs
2,983,494 35,048,116 Wikipedia 2006-Sep-25
3,148,440 37,043,458 Wikipedia 2006-Nov-04
Internet networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)

Table 2: Summary of real-world networks used.

4.3 Local Triangle Count

To measure of the performance of the EIGENTRIANGLELOCAL algorithm, we use Pearson’s correlation
coefficient ρ and the relative reconstruction error (as in [4]).

RRE =
1
n

n∑
i=1

|∆i −∆′i|
∆i

In figure 4 we see how well ~∆′(G) approximates ~∆(G) with the top 10 eigenvalues and eigenvectors. The
RRE we obtain is 7 ∗ 10−4 and ρ almost 1.

Figure 5 explains why our proposed methods work well in practice. It plots the rank of the approximation
vs. ρ. We observe that after the second rank approximation, for all three networks the approximation is
excellent: ρ is greater than 99.9% whereas the RRE has always order of magnitude between 10−7 and 10−4.
Similar results hold for the rest of the datasets we experimented with.

5 Laws and patterns

5.1 TRIANGLEPARTICIPATION law

Figure 6 shows the PDF of the number of triangles that a node participates in. That is, for a given graph, it
plots the number of triangles (x-axis) versus the count of nodes participating in that many triangles. Both
scales are logarithmic. We show the results only for three of the datasets for brevity (Epinions, Anonymous
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Figure 4: Scatterplot of ∆′i (estimated #triangles of node i) vs. ∆i (actual number) for Polblogs using a
rank 10 approximation. Relative reconstruction error is 7 ∗ 10−4 and the Pearson’s correlation coefficient is
99.97%.

social network and HEP-TH) , because the rest have similar behavior. The over-arching observation is that
the number of participating triangles follows either a power law, or a lognormal-like distribution, with a
power-law tail. The important point is that generating these plots can be from 30x to 1000x faster with our
proposed algorithms with high accuracy.

5.2 DEGREE-TRIANGLE law

Is there a correlation between the i-th largest degree di, and the number of triangles? This is the focus of
our exploration. The results are surprising, and shown in Figure 7. The Figure plots the degree di vs. the
mean number of triangles over all nodes with degree di for the specified networks (the rest of the networks
we used had similar behavior and are omitted for brevity). The Figure also has insets, showing the degree
distribution (PDF), in log-log scales. We performed least square fitting.

We have the following observations from there.

• DEGREE-TRIANGLE power law: ∆di
avg (see table 1 for notation) follows a power-law with respect to

the degree di.

• Slope-complement: it is surprising (at least to us) that the slope τ of the DEGREE-TRIANGLE power
law is extremely close to the negative of the slope of the degree distribution, whenever the latter fol-
lows a power law (figure 7(a),(b) and (d)) or lognormal-like distribution(figure 7(c)). For the later, we
performed a second least squares fitting, by fixing the slope of the fitted line to be the complementary
of the slope of the degree distribution’s fitted line. The result would have occured if we had done a
manual-visual fitting.

• High-degree deviation: high degree nodes tend to deviate from the earlier slope. This is probably
due to the phenomenon that high-degree nodes have a lot of degree-1 nodes, which, obviously, do not
contribute to triangles.
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Figure 5: Local triangle reconstruction for three real-world networks using rank 1 to 10 approximation of
the diagonal of A3. Pearson’s correlation coefficient ρ vs. approximation rank.Notice that after rank 2 ρ is
greater than 99.9% for all three networks.

6 Theoretical Ramifications

6.1 Kronecker graphs

Kronecker graphs ([22]) have attracted recent interest, because they can be made to mimick real graphs well
([21]). Here we give a closed formula that estimates the number of triangles for a Kronecker graph. Some
definitions first:

Let A be the nxn adjacency matrix of an n-node graph GA with ∆(GA) triangles, and let B = A[k] be
the k-th Kronecker power of it, that is, an nk × nk adjacency matrix (see [22] for the exact definition of the
Kronecker matrix multiplication). Let GB denote the corresponding graph.

Let ~λ = (λ1, .., λn) be the eigenvalues of matrix A. Then we have:

(a) HEP-TH (b) ASN (c) Epinions

Figure 6: PDF of participating triangles: Figure plots the count of nodes with ∆ triangles vs. ∆ in log-log
scale. We observe power laws or power law tails in the PDFs .
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(a) Epinions (b) ASN (c) Reuters

Figure 7: Figure plots degree ∆di
avg, the mean number of triangles over all nodes with degree di vs. di for

(a) Epinions (b) ASN (c) HEP-th and (d) Reuters networks. Two surprising observations: (i) A power law
emerges.(ii) The slope of the fitted line is the complementary of the slope of the fitted line of the degree
distribution in the insets (least squares fitting).

Theorem 3 (KRONECKERTRC). The number of triangles ∆(GB) of GB can be computed from the n
eigenvalues of A:

∆(GB) = 6k∆(GA)k+1k ≥ 0. (4)

Proof. We use induction on the depth of the recursion k. For k = 0, KRONECKERTRC trivially holds. So
the base case is true. Let KRONECKERTRC hold for some r ≥ 1. For notation simplicity, let C = A[r]

with eigenvalues [µi]i=1..s and D = A[r+1]. According to the induction assumption:

δ(GC) = 6rδ(GA)r+1

The eigenvalues of D are given by the Kronecker product ~λ⊗ ~µ. Using these two facts, we will now show
that KRONECKERTRC holds for r+1. By thrm. 1, we get that the number of triangles inGD is given by the

following equation: δ(GD) =
∑s

i=1

∑n
j=1 µ

3
i λ

3
j

6 =
∑s

i=1 µ
3
i

∑n
j=1 λ

3
j

6 =
∑s

i=1 µ
3
i 6δ(GA)
6 = 6δ(GA)

∑s
i=1 µ

3
i

6 =
6δ(GA)6rδ(GA)r+1 = 6r+1δ(GA)r+2 So, KRONECKERTRC holds for all k ≥ 0. Q.E.D

This results in tremendous speed savings, and perfect accuracy.

Timing results, and stochastic Kronecker graphs Experimenting on a small deterministic Kronecker
graph with 6,561 nodes and 839,808 edges coming from the 3-clique initiator with depth of recursion equal
to 7, we get 106 faster performance. As the size of the Kronecker graph increases, we obtain arbitrarily huge
speedups.

What is interesting is that the KRONECKERTRC theorem also leads to fast estimation of triangles, even
for stochastic Kronecker graphs (see [21] for the definitions). Stochastic Kronecker graphs have been shown
to mimick real graphs very well. Intuitively, a stochastic Kronecker graph is like a deterministic one, with
a few random edge deletions and additions. Our experiments with a stochastic Kronecker graphs show
that these random edge manipulations have little effect on the accuracy. Specifically, our experiments with
n=6,561 and m=2,202,8084, show that we obtain 1.5 ∗ 106x faster execution, while maintaining 99.34%
accuracy. Similar results hold for other experiments we conducted as well. Proving bounds for the accuracy
for stochastic Kronecker graphs is an interesting research direction.

4Initiator matrix (using MATLAB’s notation): [.99 .9 .9;.9 .99 .1;.9 .1 .99],depth of recursion: 7
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6.2 Erdős-Rényi graphs

It is interesting to notice that our algorithm is guaranteed to give high accuracy and speedup performance
for random Erdős-Rényi graphs. This is due to Wigner’s semi-circle law for all but the first eigenvalue [15].
For example, for a graph with n = 20, 000 and p = 0.6, using EIGENTRIANGLELOCAL with 0.05 tolerance
parameter, we get 1600 faster performance compared to the Node Iterator with relative error 5 ∗ 10−5 and
Pearson’s correlation coefficient almost equal to 15.

7 Conclusions and Future Research

The main contribution of this work is the EIGENTRIANGLE algorithm. It uses a link between the number
of triangles and the eigenvalues (Theorem 1) of the adjacency matrix and the observation that just the
top eigenvalues contribute significantly to the total number of the triangles. This is a major observation
opening the door to the vast machinery of readily available, highly fine-tuned eigenvalue algorithms and
implementations. These algorithms are not only fast, but, most of them have been parallelized, or can be
easily parallelized on the emerging map/reduce (’Hadoop’) architecture. Thus, our method can be trivially
applied on huge, peta-byte scale graphs, as long as there is an eigenvalue implementation available, like
Lanczos.

The main contributions of this work are the following:

• We give the EIGENTRIANGLE algorithm, which gives excellent accuracy, for huge speedups: over
95% accuracy, for 30x to 1000x speedups, for all the 158 real networks we tried.

• We give the EIGENTRIANGLELOCAL algorithm based on Theorem 2, which can quickly estimate
the number of triangles that a given node participates in. Again, the accuracy/speedup results are
excellent, for all the datasets we tried.

• Both algorithms, as Figure 3(b) implies, appear to have a trend of increasing speedup savings as the
network size grows. Furthermore in all datasets we experimented with, 30 eigenvalues are always
enough to obtain high accuracy, no matter the size of the network. Figure 3(a) indicates strongly this
fact.

• We were able to discover two new laws with certain surprising properties (at least to us): the TRI-
ANGLEPARTICIPATION and the DEGREE-TRIANGLE laws. Thanks to our fast triangle-counting
methods these laws can be found fast with high accuracy.

A very promising direction is mining huge graphs, using a map/reduce (‘Hadoop’) architecture ([10]).
Our algorithms are steps towards this direction. This entails comparison with the streaming and semi-
streaming algorithms. Finally, another important research direction is to derive theoretical results for the
quality of the approximation using a specific number of eigenvalues. An approach for this direction would
be to adapt a model for power-law degree graphs and prove certain properties of the adjacency spectrum.
These directions will be addressed in future work.

5It makes no sense to apply EIGENTRIANGLE on Erdős-Rényi since the total number of triangles is approximately (
n
3

)p3.
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