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Abstract

Array comparative genome hybridization (aCGH) data are often seriously confounded by exoge-
nous (e.g., experimental conditions) and endogenous (i.e., DNA contents) noises, and variations of
hybridization signal intensities even within each gene-dosage state. We propose a new statistical
method, Genome Imbalance Scanner (GIMscan), for automatically decoding the underlying DNA
dosage-states from aCGH data. GIMscan fits a hidden hybridization trajectory to each state. It em-
ploys a hidden switching process to stochastically select for each examined clone on the genome its
underlying trajectory (therefore the dosage state) that has generated the observed CGH data. Our
method captures both the intrinsic (nonrandom) spatial change of genome hybridization intensi-
ties, and the prevalent (random) measurement noise during data acquisition; and it simultaneously
segments the chromosome and assigns different states to the segmented DNA. We tested the pro-
posed method on both simulated data and real data measured from a colorectal cancer population,
and the results demonstrated superior performance of GIMscan in comparison with popular extant
methods. We applied GIMscan to a whole-genome aCGH assay of 125 primary colorectal tumors
reported in (1), and we report a high-quality genome-level gene dosage alteration map for colon
cancer. A software implementation of GIMscan is available from the authors.





1 Introduction

A hallmark of the defective cells in precancerous lesions, transformed tumors, and metastatic tis-

sues, is the abnormality of gene dosage caused by regional or whole chromosomal amplification

and deletion in these cells (2). Cytogenetic and molecular analysis of a wide range of cancers have

suggested that amplifications of proto-oncogenes and deletions or loss of heterozygosity (LOH) of

tumor suppressor genes can seriously compromise key growth-limiting functions (e.g., cell-cycle

checkpoints), cell-death programs (e.g., apoptotic pathways), and self-repair abilities (e.g., DNA

repair systems) of injured or transformed cells that are potentially tumorigenetic (3). Thus DNA

copy number aberrations are crucial biological markers for cancer and possibly other diseases.

The development of fast and reliable technology for detecting (the presence of) and pinpointing

(the location of) such aberrations has become an important subject in biomedical research, with

important applications to cancer diagnosis, drug development and molecular therapy.

Array comparative genomic hybridization (array CGH, or, aCGH) assay offers a high-throughput

approach to measure the DNA copy numbers across the whole genome (4). In an array CGH assay,

cDNAs from the test sample (e.g., tumor cells) and the control sample (e.g., normal cells) are la-

belled with different fluorescence, then they are hybridized to microchips coated with probes each

of which corresponding to a location-specific clone of the genome and overall covering uniformly

the entire genome. The outcome of an array CGH assay is a collection of log-ratio (LR) values

reflecting the relative DNA copy number of test versus control samples at all examined locations

in the genome. Ideally, for diploid cells, assuming no copy-number aberration in the control and

perfect measurement in the assay, the LRs of clones with k copies in the test sample can be ex-

actly computed. For example, when k equals to some integer such as one (reflecting an LOH),

two (normal copy number), three (reflecting a haploid duplication) and four (reflecting a diploid

duplication), in principle we expect to observe their corresponding LRs to be −1 (= log2(
1
2
)), 0

(= log2(
2
2
)), 0.58 (= log2(

3
2
)), and 1 (= log2(

4
2
)), respectively. A naive approach can directly use

these relations to infer the actual copy numbers along the genome from the measured LRs. It is

noteworthy that among all possible magnitudes of k, usually only a few need to be distinguished,

such as 0, 1, 2, 3, and collectively all integers that are greater (often significantly greater) than 3.
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These are the typical copy numbers that reflect distinct cytogenetic mechanisms of chromosome

alteration and rearrangements, and hence they are commonly referred to as gene dosage states,

namely, deletion (D), loss (L), normal (N), gain (G), and amplification (A).

Although by definition the gene dosage states are deterministically related to the LR values,

and appear to be trivial to infer, in practice the LR measurements from a real aCGH assay can

exhibit severe deviations from their theoretical values due to various reasons, such as impurity

of the test sample (e.g., mixture of normal and cancer cells), intrinsic inhomogeneity of copy

numbers among defective cells, variations of hybridization efficiency, and measurement noises

arising from the high-throughput method (5). These interferences can significantly complicate the

estimation of true gene dosage along the genome from the empirical LR measurements, making

manual annotation of gene dosage tedious and inaccurate. Numerous computational methods have

been developed for efficient and automated interpretation of array CGH data. Earlier methods

used value-windows defined by hard thresholds (e.g., according to the deterministic relationship

between copy number and LR value discussed above) to determine gene dosage state for each clone

based on noisy LR measurement (e.g. (1), see Figure 1). However, these methods suffer from high

false positive rate and low coverage because they often ignore, among many factors, the actual

value ranges of LR values in an aCGH assay, which can deviate significantly from their theoretical

values, as well as variations of signal intensities among clones, chromosomes, and individuals due

to reasons other than DNA copy numbers. (We will discuss these issues in detail in the sequel.)

Recent developments resort to more sophisticated statistical modeling and inference techniques

to interpret aCGH data. Based on the underlying statistical assumptions on signal distribution

(either explicitly or implicitly) adopted by these methods, they largely fall into the following four

categories.

Mixture models: This class of methods assume that the LR measurements of all the clones in an

aCGH assay are INDEPENDENT samples from an underlying distribution consisting of multiple

components, each corresponding to a specific gene dosage state. In the statistical literature, such

distributions are referred to as mixture models. Standard algorithms are available for estimating

the parameters (e.g., the mean and variance of each component) of a mixture model from the
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Figure 1: The LR values (blue dots) of genome X77 from Nakao et al. (1). The solid vertical lines delineate
the boundaries of each chromosome; and the dashed vertical lines indicate the positions of the centromere of each
chromosome. The red horizontal lines indicate the thresholds used by Nakao et al. (1) to classify clones into dosage
states. Clones within these two lines are predicted to be normal state.

observed LR measurements; and the estimated parameters can be used to define either thresholds

or classification boundaries for the LRs. For example, Hodgson et al. (6) used a Gaussian mixture

to fit the LRs measured over the entire genome of an individual, and then determined the gene

dosage state based on the upper and lower thresholds of the Gaussian component corresponding to

the normal copy number, which were set to be the ± 3 standard deviation (s.d.) with respect to the

mean of this component. This model can be easily extended to a Bayesian classifier of LR values

over multiple gene dosage states.

Regression models: Instead of resorting to a mixture model and estimating the plausible dosage-

state underlying the LR signal of each clone, regression models try to fit the noisy LRs with a

smooth intensity curve over the chromosome to facilitate detection of gene dosage change via

visual inspection. For example, Eilers and De Menezes (7) proposed a quantile regression method

that employs an L1 error for both of fitness measure and roughness penalty. Hsu et al. (8) used

wavelet regression to fit the data. Unlike the mixture models, these nonparametric techniques

impose no parametric assumption on the structure of the data. They can effectively capture the

spatial continuity of the LR signals along the chromosome; thereby effectively smooth highly

noisy LR signals and reveal the overall trend of the data. However, due to the continuous nature

of the regression approach, such methods are only suitable for data denoising and visualization,

rather than explicitly predicting the discrete dosage state underlying the LR signals.

3



Segmentation models: A number of recent models attempt to explicitly capture the property

that, clones that are consecutive on a chromosome tend to have similar dosage state, and changes

of dosage state along a sequence of clones tend to segment the sequence into internally uniform

stretches. Rather than focusing on dosage-state estimation, these approaches directly search for

breakpoints in sequentially ordered LR signals so that the resulting LR segments have the mini-

mum within-segment signal variations. Examples of this class of methods include ChARM (9),

DNACopy (10), aCGH-Smooth (11), CGHseg (12), GLAD (13), CLAC (14), and the algorithm

proposed in (15). With such segmentations, the problem of inferring the dosage state of each in-

dependent clone is replaced by an arguably more informative task of determining the dosage state

of the ”coupled clones” in each segments. A number of heuristic annotation algorithms have been

developed for this purpose, some of which appear to suffer from state ”over-representation”, in

which numerous spurious states without apparent biological meanings are uncovered from the seg-

ments. Various states-merging methods, such as GLADmerge (13) and MergedLevels (16), have

been developed as heuristic remedies.

Spatial dynamic models: Willenbrock and Fridlyand (16) pointed out that a more accurate and

robust interpretation of aCGH profiles can be expected when the problems of dosage-state annota-

tion and clone-sequence segmentation are solved jointly under a unified model for array CGH data,

rather than being treated as two separate problems as described above, because the quality of the

answer to one of the problems can critically affect the answer to the other problem. They proposed

a spatial dynamic framework that models the LR sequence as the output of a hidden Markov model

(HMM) that governs the distribution of the dosage-states along the chromosome (5). Using stan-

dard inference algorithms for HMMs, their methods can simultaneously learn the LR distributions

underlying each dosage-state (i.e., the emission models) and the coupling coefficients of spatially

adjacent clones (i.e., the transition model), according to which the hidden dosage-state of each

clone can be inferred based on a maximum a posteriori (MAP) principle from the observed LRs.

Later developments by, e.g., Marioni et al. (17) improved this model by considering the distances

between adjacent clones when modeling the transition matrix in HMM. Broet and Richardson (18)

developed a Bayesian HMM which takes into account the spatial dependence between genomic
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sequences by allowing the weights of the dosage-states to be correlated for neighboring genomic

sequences on a chromosome. More recently, Shah et al. (19) proposed a new Bayesian HMM

model that integrates prior knowledge of DNA copy number polymorphisms (CNPs). On simu-

lated data, their method was shown to be robust to outliers by leveraging prior knowledge about

the CNPs obtained from high quality cytogenetic experiments.

This progress notwithstanding, the computational methods for aCGH analysis developed so

far are still limited in their accuracy, robustness and flexibility for handling complex aCGH data,

and are inadequate for addressing some of the deep biological and experimental issues underlying

aCGH assay. Take the whole-genome aCGH data displayed in Figure 1 as an example. Overall,

the LR signals are highly fluctuating, but exhibit visible spatial auto-correlation patterns within the

chromosomes. A caveat of the mixture-model-based or threshold-based methods is that they are

very sensitive to such random fluctuations of the LR signals because they treat each measurement

as an independent sample and ignore spatial relationships among clones. This could lead to highly

frequent dosage-state switching (e.g., alternating back and forth between gain and loss, as we will

show in our results) within short genetic distances, which is biologically implausible as we discuss

below. Furthermore, due to variations of the length, base content, and other biophysical properties

of the clones, which can lead to different abilities of the aCGH probes in matching with their targets

on the chromosome, each clone may show a different relationship between the LR and the actual

copy number, and such variations of the LR values among clones with the same copy number can

become more serious when the copy number depart farther from the genome average (20). These

elevated variances could make threshold- or window-based state predictions for clones with high

copy numbers even more error-prone.

According to known cytogenetic mechanisms of chromosomal deletion and amplification, such

as the onion-skin model (21), chromosomal end breakage (22), or break-fusion-bridge cycle (23),

the copy numbers of sequence clones along a chromosome are often spatially correlated rather than

being independent. In particular, clones that are consecutive on chromosomes tend to have similar

copy numbers, and changes of the copy number along the chromosomes are usually interspersed

with sizable regions of stable copy numbers rather than being densely clustered within a short re-
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gion, as would be predicted by the simple threshold-based methods. A number of recent methods,

particularly the spatial dynamic models based on HMM, have offered various ways to address this

issue, which have significantly improved the performance of computational array CGH analysis.

Nevertheless, a key limitation of the HMM-based methods is that they all assume invariance of the

true hybridization signal intensity alone chromosome for each dosage state, which is not always

satisfied in real data. As shown in Figure 1, an outstanding feature of the spatial pattern of the

LR signals is that, within each chromosome, there exist both segmental patterns that are likely

due to change of the copy number of the corresponding region, and spatial drift of the overall

trend of the LR intensities along the chromosome. For example, in chromosome 4, the LR signals

along the sequence of clones are not fluctuating around a baseline (presumably corresponding to

a certain gene dosage state) that is invariant along the chromosome; instead, it is apparent that the

baseline itself first has an increasing trend from left to right on 4p and into 4q, and then turns to

a decreasing trend along the rest of 4q. Visually, there is not many abrupt breakage points that

would signal a dosage-state alteration alone this continuously evolving sequence of LRs. But an

HMM approach, which models spatially-dependent choices among different copy-number state,

each associated with an invariant distribution of LR values, can fail to capture the spatial drift

of LRs over chromosome region with the same copy number. It would have to make a trade-off

between allowing a high-variance dosage-specific LR distribution to accommodate the spatial drift

of the LR values in chromosome 4 whilst compromising the stringency of state-prediction along

other chromosomes with less LR drift, or maintaining low-variance dosage-specific LR distribu-

tions that would do well on other chromosomes but possibly fragment chromosome 4 with many

likely-faulty breakage points, mistakenly interpreting the spatial drift as copy-number changes.

Rather than reflecting the discrete change of copy numbers of the clones, the non-random spa-

tial trend of LR signals possibly reflects a continuous change of the biophysical properties and

hybridization quality along the chromosome. As discussed in (3), the intensity of the hybridiza-

tion signal of each clone is affected by a number of factors. First of all, the base compositions

of different probes can affect the signal intensity. For example, GC rich probes usually yield

higher intensities because of the increased binding affinity (three hydrogen bonds as opposed to
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2 hydrogen bonds in A and T ). Secondly, the proportion of repetitive content in sequence also

exerts an influence. The distribution of such intrinsic sequence patterns maybe nonrandom along

the chromosome, but bears a regular spatial trend. Although several methods (e.g., solution denat-

uration before hybridization and the use of repeat-blocking nucleic acids such as Cot − 1 DNA)

have been demonstrated to suppress the cross-hybridization of repetitive sequences in genomic

and expression arrays, the use of these methods will bring other side effects. For instance, when

added to target DNA, Cot−1 enhances hybridization (2.2- to 3-fold) to genomic probes containing

conserved repetitive elements (24). Other factors that may affect the signal intensity include, but

not limited to, the saturation of array, divergent sequence lengths of the clones, reassociation of

double-stranded nucleic acids during hybridization, and the amount of DNA in the array element

available for hybridization. These factors may further contribute random or correlated stochastic-

ity of the LR values on top of the content-derived spatial drift. Pinkel and Albertson (3) reported

that signal intensity may vary by a factor of 30 or more among array elements even if there are no

copy-number changes. These complexities present in real aCGH data render extant models based

on fixed state-specific LR distributions, such as an HMM, incapable of making accurate and robust

state prediction.

Another problem that affects all the approaches discussed above lies in the calibration of the

signals across chromosomes and across individuals. As observed from Figure 1, the mean and the

variance of the LRs, and their spatial trends vary significantly from chromosome to chromosome,

and more so from individual to individual (not displayed in the figure), due to reasons possibly

beyond (whole chromosome) copy number differences. This makes measurements from differ-

ent individuals and/or for different chromosomes difficult to compare. Engler et al. (25) recently

proposed a parameter sharing scheme for a Gaussian mixture model for genetic variability be-

tween chromosomes and within chromosomes. In the new statistical model for aCGH data we

present below, we introduce more careful treatments of this issue, which employ different param-

eter sharing scheme for effects shared among different chromosomes in the same individual (e.g.,

state baselines) and effects common to the same chromosomes in different individuals (e.g., signal

dynamics).
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In this paper, we introduce a new method—Genome Imbalance scanner, or GIMscan—for

computational analysis of aCGH data. GIMscan employs a more powerful spatial dynamic model,

known as switching Kalman filters (SKFs) (26), to jointly capture the spatial-trends of evolv-

ing LR signals along chromosomes, and spatially dependent configuration of gene dosage states

along chromosomes. Unlike an HMM, which captures all the stochasticities in LRs with invari-

ant dosage-specific distributions, an SKF breaks the accumulation of the stochasticities into two

stages: 1) the hybridization stage, which involves physical sensory of clone-copies from the di-

gested chromosomes, during which the spatial trend of DNA content and its biophysical proper-

ties, saturation effects, etc., can cause stochastic spatial drift of the mass of the hybridized material;

2) the measurement stage, which involves acquisition of the readings of fluorescence intensity of

each clone, during which errors from reagents, instruments, environment, personal effects, etc.,

can cause another layer of random noises on top of the hybridization signal. Under the SKF, we

model the variations in the hybridization stage using dosage-state-specific continuous dynamic

processes, akin to the regression approach discussed above. Specifically, for each specific gene

dosage, its resulting hybridization intensities along a chromosome are modeled by a unique linear

dynamic process that allows the intensities to change according to a spatially continuous trend,

with zero mean Gaussian noise. These hybridization intensities can be understood as the “true”

sensory signals in an aCGH assay, which are unobservable to the examiner. We refer the sequence

of hybridization intensities following such a linear dynamic model as a hybridization trajectory.

Given the hybridization trajectory, we model the random noise from the measurement stage by a

conditional Gaussian distribution whose mean is set by the sensory signal which evolves over each

clone according to the trajectory. Overall, for each dosage state, we have a unique linear dynamic

model for the sensory signals and a Gaussian emission model for their corresponding noising mea-

surements. This model is known as a Kalman filter (or in the statistical community, a state-space

model). To model changes of dosage-state along the chromosome, we follow the HMM idea to

set up a hidden Markov state-transition process, but in our case not over state-specific distributions

of LRs with fixed means, but over state-specific Kalman filters over both the observed LR mea-

surements and the unobserved hybridization trajectories of the clones. For this reason the model
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is known as switching Kalman filter, which has been previously used successfully in predicting

moving objects and content from video streams or radar records (27, 28).

On both simulated and experimental aCGH data, GIMscan has shown superior performance

over other approaches such as HMM or mixture-model-based threshold methods, being able to

handle a number of complex LR patterns beyond the recognition power of the reference models.

We applied our methods to a whole-genome aCGH assay of 125 primary colorectal tumors reported

in (1), and constructed a high-quality genome-level gene dosage alteration map for colon cancer.

On average, 19% of the genome region of each individual have altered copy number. There is a sig-

nificant difference between the frequencies of loss in stage 1 and stage 4 tumors with p-value 0.033,

and between the frequencies of amplification of stage 2 and stage 3 tumors with p-value 0.025. A

number of significant dosage alteration hotspot were identified, in particular, the loss/deletion rate

in 8p, 17p and 18p and 18q are close to or above 50%, and the gain/amplification rates were found

to range from 41.6% to 65.65% in 8q and 20q. Many of these hotspot regions coincide with onco-

genes and tumor repressor genes, including BRCA1 and p53, which are previously known to be

highly relevant to tumorigenesis, and there is an apparent correlation between the dosage-state

with genes involved, in that the frequently gained regions tend to harbor oncogenes, whereas the

frequently lost regions tend to harbor tumor repressors.

2 Results

We first present results of GIMscan’s performance on simulated aCGH data and small-scale real

data with complex aCGH patterns to demonstrate the working principle and general trends of our

method in gene dosage prediction, and to evaluate our prediction quality under nontrivial genome

imbalance and hybridization scenarios. Then we describe results of a populational whole-genome

genetic instability analysis of 125 primary colorectal tumors published previously in (1) using

GIMscan, and discuss some new implications revealed in our results on the molecular alteration

spectrum of this cancer. The benefit of applying a sophisticated probabilistic model as in GIMscan

to capture both discrete changes of gene dosage state (i.e., DNA copy number) along the chro-

mosomes, and continuous spatially-correlated variations of the hybridization trajectory underlying
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Figure 2: Performance of DNA dosage-state prediction on simulated aCGH datasets. Each row corresponds to a
specific level of simulated measurement noise, and each column corresponds to specific level of simulated variability
of the hybridization signal. In each case, we report the results of threshold method (Thres.), HMM and GIMscan
(GIM). The red line represents the median, and the blue box indicates upper and lower quantiles. The black bars are
the range of the error rate. Outliers are plotted by “+”.

aCGH measurements along chromosomal regions with the same gene dosage, is evidenced in each

level of genetic scales (e.g., regional, whole-genome, and populational levels) we have analyzed.

2.1 Simulated aCGH Data

We first validate GIMscan on simulated aCGH datasets, which mimic typical spatial patterns of

LR sequences in real aCGH assays. This experiment allows a quantitative assessment of model

performance based on known underlying gene dosage states in the simulation.

In our simulation experiments, three methods—threshold, HMM as in (5), and GIMscan—were

tested on 12 datasets simulated with different settings of two parameters: the Gaussian emission

variance r, and the KF transitional variance b (see §4.1 for a rigorous definition and description
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Figure 3: Performance of GIMscan on simulated ”high-quality” aCGH data. (a) The simulated data (blue dots), from
two latent trajectories (green and pink) and a process (red) switching between them. The length of the simulated data
is 100 clones. (b) The inferred trajectory (green and pink) and switching process (red). (c) The confidence intervals of
the inferred trajectories.

of these parameters). Statistically, these two parameters represent the two sources of the overall

noise in the data: r reflects the quality the LR measurements in an aCGH experiment, whereas b

reflects the variability of the hybridization signal intensity along the chromosome. Our datasets

correspond to three different values of r, ranging from low, to medium, high; and four values of

b also spanning a significant range (Figure 2). For each combination of r and b, a total of 100

LR sequences, each containing 100 clones, were generated. For each sequence, we simulated a

random 5 × 5 stochastic matrix, T , for modeling transitions between gene dosage states, and T

was set to allow both short and long stretch of gene dosage alterations, but not high-frequency

oscillations between different states 1. All three methods were applied to each dataset to infer

the gene dosage-states underlying the simulated LRs, which was then compared against the true

dosage-states recorded during the sumilation. The experiments were repeated 100 times. Figure

2 summarizes the medians, quantiles and ranges of the prediction error rates by different methods

under various parameter settings. Consistently, GIMscan outperformed the other two methods by

a significant margin.

As an illustration of the advantage offered by the SKF model adopted by GIMscan, and the

effectiveness of our inference algorithm, Figure 3 and 4 show two examples of GIMscan’s perfor-

mance in the simulated datasets. The first example concerns “high-quality” aCGH records simu-

1Such presumably realistic genome imbalance patterns can be enforced by allowing only low transition probabili-
ties between the normal and aberrant states and/or between different aberrant states, and defining high self- transiting
probabilities for the normal states and/or the long-duration aberrant states.
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lated with low measurement noise (r = 0.001) over 100 clones switching between two gene dosage

states both with low spatial drift in their corresponding true hybridization intensities (b = 0.001)

(Figure 3a). Figure 3b presents the inferred gene dosage state and the inferred dosage-state-specific

“trajectories” (i.e., the latent dynamical trend captured by each KF) of the latent true hybridization

intensities underlying the observed LR sequence. As shown in this illustration, each inferred latent

trajectory indeed represents a smoothed and spatially changing baseline of the LR signals corre-

sponding to a particular dosage state. Both of the inferred trajectories agree well, in positions where

corresponding LRs are present, with the true trajectories (shown in Figure 3a) of hybridization in-

tensities used for simulating the observed LR signals. As a result, the inferred switching process

over these trajectories gives a highly accurate prediction of the gene dosage-states underlying the

LR sequence. GIMscan can also estimate the confidence intervals (i.e., standard deviation) of the

inferred hybridization trajectories, as shown in Figure 3c. As one can see, only in positions where

corresponding LRs are sparse or absent (e.g., for state 2 at position 60-100, where all but one LR

are belonging to the other state), the conference interval over the estimated trajectories become

large; otherwise, we can obtain a quite reliable estimate of the latent hybridization trajectory that

have generated the LR signals.

The second example shown in Figure 4 concerns low-quality, arguably more realistic aCGH

records simulated with high measurement noise (r = 0.01) and severer spatial change (b = 0.01)

in the true hybridization trajectories. The combined effects of high measurement noise and high

spatial variance of the hybridization trajectories are excepted to lead to misassignment of gene

dosage state due to inaccurate estimation of the dosage-state-specific hybridization intensities when

spatial trajectory of the hybridization intensities is ignored. Note that the ”true” trajectories (shown

in Figure 4a) of both dosage states are not flat, which reflect severe spatial drift of hybridization

signal intensities within each state. When assuming spatial invariance of dosage-state-specific

signal distribution, the unflatness of both trajectories can cause the estimated mean of LR signals

for each dosage-state to be highly biased (e.g., higher for state 1, and lower for state 2), and

their variances to be significantly greater than the actual fluctuation over the underlying trajectory.

Consequently, the estimated dosage-state-specific signal distributions can be seriously overlapping,
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Figure 4: A comparison of performances of GIMscan and HMM on simulated ”low-quality” aCGH data. (a) The
simulated data. (b) The dosage-states (red line) predicted by an HMM; and the Gaussian densities of LRs corre-
sponding to the two dosage-states (black curves left to the simulated data), as estimated by HMM. (c) The trajectories
estimated by GIMscan (green and pink curves) and the predicted gene dosage states (red).

causing the LR signals from two states hard to distinguish. Figure 4b shows exactly this effect, on

the quality of state estimation by an HMM model. in contrast, the SFK model underlying GIMscan

can readily mitigate this effect, and produces much more accurate estimation of the latent trajectory

and measurement noise (Figure 4c). 2.

2.2 Interpreting Real aCGH data with Diverse Spatial Patterns

Now we present case studies of selected real aCGH data with a diverse spectrum of spatial pat-

terns. Our dataset was obtained from an online repository of whole-genome aCGH profiles of 125

colorectal tumors originally studied in (1). This dataset was found to contain highly stochastic

LR measurements with severe spatial variance and drifts along the chromosomes, and bear rich

cohorts of genome imbalance patterns (as shown in the sequel). Such complications present a

great challenge to naive algorithms for gene dosage inference, and are thus particularly suitable for

evaluating our newly proposed method.

Given an aCGH profile, GIMscan first employs a k-nearest neighbor regression procedure (e.g.,

k = 3) to impute the missing values in the LR records. Then it fits the processed data with a Gaus-

sian mixture based on maximum likelihood estimation, and performs model selection based on

2Note that as shown in Figure 4c, although the latent trajectory of the second state is not inferred accurately in
GIMscan (i.e., it exhibit a flat rather than a curved trajectory) due to insufficient supporting signals from the data (i.e.,
no LR signals were generated from this state at the left and right ends of the sequence), it nevertheless still enables a
reasonable resolution of the two states.
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AIC (29) to determine the total number of gene dosage states, M (which is constrained between

1 to 5), for each individual. Afterwards, the number of component KFs (i.e., dosage-state-specific

hybridization trajectories) in GIMscan is set to be M , and the mean of the starting clone of each

KF takes on the mean of a component in the estimated Gaussian mixture as initial value. Note that

with this setup, we still need to establish the exact mapping between the KFs inferred by GIMscan

and the possible gene dosage states, namely deletion, loss, normal, gain, and amplification. Since

GIMscan provides estimations of the hybridization trajectories of each KF, we follow a straight-

forward statistical and biological argument and determine the corresponding dosage-state of each

trajectory based on the relative mean-values of the estimated true hybridization intensities of all

clones of each trajectory. (E.g., the trajectory having near-zero hybridization intensity at the ma-

jority of the clones is deemed to be corresponding to a normal state; other trajectories are then

labeled accordingly.)

For comparison, we re-implemented the HMM methods according to Fridlyand et al. (5), with

modest extension (i.e., parameter sharing) so that it can be applied to whole genome CGH profiles

covering multiple chromosomes. Following (5), AIC is also used for model selection for this

HMM.

The dataset we studied contains a total of ∼ 2.75 × 105 LR measurements from 23 × 125

chromosomes (i.e., 125 human genomes). In this subsection we present a small-scale case study of

four representative chromosomes, each containing a typical spatial pattern for the LR sequence that

was found to be difficult to analyze by conventional methods. For convenience, we refer to these

patterns as, flat-arch, shallow-step, deep-step, and spike, respectively, according to their shapes in

the LR intensity plots (Figure 5 - 8).

Pattern I: Flat-Arch As shown in Figure 5, which displays the LR measurements from chromo-

some 4 of individual X77, this pattern is marked by lower magnitudes of LRs at the two telomere

regions of the chromosome and elevated magnitudes in the central region. Locally (i.e., along

the plotted chromosomal region), there is a continuous trend of spatially evolving hybridization

intensity along the chromosome (but within a relatively-small intensity range well bellow the the-

oretical LR difference due to dosage-state change), and there are few abrupt breakage points that
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Figure 5: The Flat-Arch pattern, from chromosome 4 of individual X77. (a) The state sequence predicted by HMM
(red). (b) The inferred trajectories for loss (pick), normal (green) and gain (yellow) states, respectively, by GIMscan.
The Red solid line indicates states predicted by GIMscan. The centromere position is indicated by dashed vertical line
in these two plots.

would signal a dosage-state alteration. But due to the high dispersion of LR values as a result of

such a spatial drift, methods based on invariant state-specific hybridization intensity, such as the

HMM, would either fit the observed LR values with a single biased and high-variance Gaussian

distribution, or split the LRs with two highly overlapping Gaussians. These caveats could seriously

compromise the quality of gene dosage state estimation. Figure 5a shows the dosage estimation by

an HMM fitted on this chromosome. The outcome suggests heavy oscillations between two dosage

states throughout the chromosome, which is biologically implausible.

Figure 5b shows the dosage state sequence and dosage-state-specific trajectories underlying

chromosome 4 of individual X77 inferred by GIMscan. A whole-genome fitting resulted in three

estimated dosage-states. On this particular chromosome, the trajectories of the loss and gain states

(the pink and yellow curves, respectively) were not matched to any observations, and the entire

region is determined to be corresponding to a normal state whose hybridization intensity varies

along the chromosome (the green curve). Indeed, a more global visual inspection of these Flat-

Arch patterns in the context of whole aCGH profile revealed that the flat-arch shapes in the LR-

plots often merely reflect modest (but spatially correlated) change of the LR magnitude most likely

within a single dosage state.

15



0 20 40 60 80 100 120

0.5

0

−0.5

clone

lo
g−

ra
tio

Observed data
States predicted by HMM

L
N
G

0 20 40 60 80 100 120

−0.5

0

0.5

clone

lo
g−

ra
tio

Observed data
Inferred dynamics (gain)
Inferred dynamics (normal)
Inferred dynamics (loss)
States predicted by GIMscan

N
G

L

(a) (b)

Figure 6: The Short-Step pattern, from chromosome 1 of individual X232. (a) The state sequence predicted by
HMM (red). (b) The inferred trajectories for loss (pick), normal (green) and gain (yellow) states, respectively, by
GIMscan; and the state sequence predicted by GIMscan (red).

Pattern II: Short-Step As shown in Figure 6, this pattern is typical when there appears to be a

quantum change of LR magnitudes from one to the other end of the chromosome, but the boundary

of the change is not sharp and the overall sequence is moderately noisy. As shown in Figure 6a,

HMM interpreted this pattern reasonably well, predicting the state-switching position at a visually

apparent site, where the δ(LR), the difference of LRs of the clones immediately proximal and

distal to the site, is maximum. However, it also predicted additional point-gains at two other sites

with big δ(LR).

GIMscan predicted a gene dosage state-switching at the same site as the HMM did, but classi-

fied the two other sites with high δ(LR) as mere local fluctuation rather than dosage-gain (Figure

6b). A close inspection of the overall local distribution of LRs neighboring this two sites, which

display notable fluctuations, appears to support this conclusion. In particular, in both cases, the

δ(LR)’s between the ”gained clone” and the one immediately distal to it exhibit a much smaller

value, suggesting that they are unlikely to be a point gain between two normal clones. It would

be valuable to go back to the original sample to check the GIM status cytologically to verify our

results, but unfortunately at this stage this remains technically difficult for us.

Pattern III: Long-Step This pattern is marked by a prolonged region in which the LR signals

display a gradual change in their magnitude, and an overall large difference of overall LR mag-
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Figure 7: The Long-Step pattern, from chromosome 8 of individual X265. (a) The state sequence predicted by
HMM (red). (b) The inferred trajectories for loss (pick), normal (green), gain (yellow), and amplification (blue) states,
respectively, by GIMscan; and the state sequence predicted by GIMscan (red).

nitudes between the two sides of the step. Figure 7 shows such an example, which is taken from

chromosome 8 from individual X265. In addition to the long step, this sample also harbors a

number of local spikes and short regions potentially implying dosage-state alterations. Via AIC

model-selection, the HMM adopted four dosage states when processing this data. The states pre-

dicted by HMM are shown in Figure 7a. As can be seen, the results are reasonable, expect that

several positions near clone 100 contains highly frequent switching between states.

The dosage-state sequence and dosage-state-specific trajectories inferred by GIMscan are shown

in Figure 7b. Note that there is a slightly decreasing trend in the hybridization trajectory corre-

sponding to the amplification state. While the trajectories of the gain and normal states correspond

to only a few clones on this chromosome, a genome-level parameter sharing scheme adopted by

GIMscan enables them to be reliably estimated, and thereby leads to plausible prediction of point

changes on isolated clones (e.g., clone 97 and 152).

Pattern IV: Spikes Spikes are a typical pattern often accompanying other patterns, such as steps.

It is marked by short sequences, sometimes singletons, of elevated or attenuated LR measurements

along the chromosomes. Figure 8 shows such an example from chromosome 8 of individual X318.

In this chromosome, the copy-number loss was apparent on 8p arm, while three spikes (around

clone 75, 110 and 140) were visible on 8q arm. These spikes correspond to the gain state with a

large measurement variance.

Figure 8a shows the states predicted by HMM. Although HMM correctly predicted the states
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Figure 8: The Spikes pattern: chromosome 8 from individual X318. (a) The state sequence predicted by HMM
(red). (b) The inferred trajectories for loss (pick), normal (green) and gain (yellow) states, respectively, by GIMscan;
and the state sequence predicted by GIMscan (red).

on 8p, it predicted more clones on 8q to be of gain state. However, by our visual check, some

clones (e.g. around clone 79, 96) are more likely to be classified as of normal state. The possibly

faulty predictions of gain states were resulted from the large variance of the spikes estimated by

the HMM.

GIMscan gives a more plausible interpretation of the spikes, as well as giving convincing pre-

dictions on other clones (Figure 8b). Compared to the case for the same chromosome (i.e., no.

8) from another individual (X265) shown in Figure 7, where four dosage-state-specific trajecto-

ries were determined, here we uncovered only three states for chromosome 8. This is because

model selection for SKF in this individual based on the whole-genome aCGH only identifies three

states—normal, loss and gain. Parameter-sharing was adopted by GIMscan for all chromosomes in

this individual, and leads to three common trajectories. Comparing Figure 7b with Figure 8b, one

can notice that the elevates of the trajectories corresponding to the same dosage state (e.g., normal)

can be quite different across individual, which is likely due to some unidentified systematic error or

difference in hybridization-efficiency across individuals. The parameter-sharing scheme adopted

by GIMscan (i.e., sharing dosage-state-specific trajectories across chromosomes within individual,

but not across individual) provides a reasonable strategy to tackle such variations.
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Figure 9: Whole-genome GIM patterns of three individuals: X31, X77 and X40. In each panel, row (a) shows the
LR values for the entire genome; row (b) shows the states assigned by threshold method; and row (c) shows the states
assigned by GIMscan. The solid vertical lines show the boundaries between chromosomes, and the dashed vertical
lines indicate the centromere of chromosomes. In the first panel, we highlight exemplary spike LR signals that were
determined to be true local change of dosage state, such as point loss (red arrow) or point amp (yellow arrow); or
merely an deviations within the same dosage state (black arrow).

2.3 Whole-Genome Analysis of Genetic Instability in Colorectal Tumors

In this section, we present a population analysis of whole-genome genetic imbalance in colorectal

tumors using GIMscan. Here we analyze the complete aCGH dataset by Nakao et al. (1) mentioned

before, which contains 125 primary colorectal tumors assayed by tiling arrays with 2463 bacterial

artificial chromosome (BAC) clones provided by the UCSF Cancer Center Array Core. Roughly,

these clones are 1.5 Mb apart from each other in the genome. In an early analysis of this data based

on the threshold method, Nakao et al. (1) reported presence of genetic imbalance in an average of

17.3% of the genome (8.5% gain and 8.8% loss) in this population.

Figure 9 shows three examples (individual X31, X77 and X40) of whole-genome GIM pat-

terns inferred by GIMscan, in comparison with the GIM patterns predicted by simple thresholding

method as reported in (1). Comparing to the thresholding results, for each individual, GIMscan

gives a more smoothed, arguably biologically more plausible prediction of the gene dosage aber-

ration spectrum of the genome. We found that the total number of copy-number breakage points

predicted by GIMscan in each genome is significantly reduced. The lengths of the chromosome

segments with abnormal copy numbers are much less dominated by point (i.e., single-clone) alter-

ations as predicted by thresholding (Fig 10), and exhibit a much higher frequency of long-range
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alterations. In particular, GIMscan detected a significantly greater number of occurrences of very

long-range alterations (i.e., longer than 50 clone-coverage) than the threshold method. The num-

ber of loss/deletion whose length is greater than 50 clones is 146 for GIMscan and only 21 for

threshold method; and the number of gain/amplification whose length is greater than 50 clones is

182 for GIMscan and 33 for threshold method. Interestingly, we found that the number of ampli-

fication/gain and that of deletion/losse are roughly comparable for short-range (e.g., < 30 clones)

alterations, whereas for long-range alterations, amplifications and gain appear to be slightly more

abundant. The longest chromosomal segments we found to be altered encamps 183, 290, 127,

and 265 clones, respectively, for amplifications, gain, deletions, losses. (The longest altered seg-

ments detected by threshold methods are significantly shorter, covering 54, 88, 89, and 131 clones,

respectively, for amplifications, gain, deletions, losses).

It is noteworthy that in different individuals, there may exist different number of detected gene-

dosage states, which is statistically determined by AIC-based model-selection. For example, X33

contains all five states (i.e., A, G, N, L, D); whereas only fours states (i.e., A, G, N, L) are present

in X77. For individual 40, GIMscan only finds two possible states by a genome-wide maximum

likelihood mixture model fitting, via AIC model-selection.

Furthermore, the baseline values (the mean trajectory) and the spreads (i.e., the variance) of

each state-specific intensity trajectory, according to which all clones are classified into different

gene-dosage states, can exhibit significant difference in different individuals. This suggests the

presence of categorical influences from possibly sample, environmental, and experimental condi-

tions on the LR measurements. For example, we found that the initial mean µ
(N)
0 of the normal

trajectory and the variance b(N) along the trajectory is -0.0397 and 0.0023, respectively, for indi-

vidual 77, whereas the value of this same pair of parameters in X40 is 0.0063 and 0.0016, respec-

tively. For the amplification state, we have 0.8792 and 0.0013 for (µ
(A)
0 , b(A)) in individual 77,

and 0.7934 and 0.0009 in individual 40. These systematic differences indicate the importance of

proper normalization and parameter sharing scheme during population-wide GIM analysis. The

inter- and intra-gnomic coupling scheme of different SKF parameters adopted by GIMscan offers

a reasonable empirical solution to this issue.
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Figure 10: (a) Stacked bar graph of the number of consecutive aberrations versus the log value of the number of
their appearances according to Nakao et al. (1). (b) Stacked bar graph of the number of consecutive aberrations versus
the log value of number of their appearances according to GIMscan. (c) same as (a), but frequency is in a log scale.
(d) same as (b), but frequency is in a log scale.
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Figure 11: Overall frequency of DNA dosage-state alteration over the entire genome of 125 individuals. The blue
bars represent the clones with DNA copy number loss or deletion. The red bars represent the clones with DNA copy
number gain or amplification. The solid vertical lines show the boundary between chromosomes. The dashed vertical
lines indicate the centromeres of chromosomes.

One of the most important information coming out of our GIM analysis is the spatial spectrum

of GIM occurrences of each individual and the spatial spectrum of GIM rates over the study popu-

lation. As shown in Figure 9, the spatial spectrum of GIM occurrences can be very different from

individual to individual, even though they all represent samples of colorectal cancer. In particular,

some individual (e.g., X31) exhibit highly prevalent GIM affecting many regions in the genome,

others (e.g., X40) merely have GIM in very restricted genomic regions. This phenomena suggests

that the molecular mechanisms underlying colorectal cancer can be highly heterogeneous across

the patient population.

Overall, over the 125 genomes each examined at the 2463 clones roughly uniformly distributed

across the genome, on average each genome have 19.18% (or 407) of the clones suffered either

gain or loss (9.25% and 9.94%, respectively), and another 1.33% of the clones were hit by ampli-

fication or deletion (0.93% and 0.4%, respectively). The whole-genome spatial spectrum of GIM

rates over the entire study population is displayed in Figure 11. As can be seen, the population

rates of gain and amplification of clones in chromosome 7, 8q, 13q, 20q and 23 were significantly

higher than that of the other regions, suggesting possible presence of proto-oncogenes in these

regions. We refer to these regions as ”GA-hotspots”. Likewise, the population rates of loss and

deletion in chromosome 1p, the distal-end of 4q, 5q, 8p, 14, 15, 17p, 18, and 21, were significantly
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higher than that of the other regions, suggesting possible presence of tumor suppressor genes in

these regions. These regions are referred to as ”LD-hotspots”. Interestingly, the GA-hotspots

and the LD-hotspots are spatially complementary in the genome, meaning that a regions can not

have frequent gain/amplification (in a subset of the individuals) and at the same time suffer fre-

quent loss/deletion (in the remaining subset of the individuals) in the colorectal cancer population.

Among the GIM hotspots, no clone exhibited amplification or deletion in more than 35% of the

study population, whereas 18 clones (covering 0.85% of the genome) were gained and 74 clones

(covering 3.48% of the genome) were lost in more than 35% of the study population.

2.4 Analysis of selected GIM hotspots in Colorectal Tumor

In this section we take a close look of 4 of the GA/LD hotspot regions identified by GIMscan in

the Colorectal patient population, and explore their implication to the carcinogenic mechanisms of

this disease. We first examined the GIM patterns on chromosome 8 in the study population. As

shown in the high-resolution result reported in the appendix (Figure 14h), frequent losses occurred

on 8p arm, whereas frequent gains were detected on 8q arm. Overall, 52 individuals (41.6%)

have gains on their 8q arm, and 54 individuals (43.2%) have losses on their 8p arm. Interestingly,

the transition between the loss and the gain does not occur at the centromere (48Mb). Instead,

the frequency of loss began to drop and the frequency of gain began to rise around 41Mb (8p11-

8p12). The spatial distribution of clones subject to amplification and deletion has the same pattern,

although their coverage and frequency are much lower than gain and loss. To reveal the molecular

implications of this GIM hotspot region, in Figure 12a we show a literature-based rough annotation

of the cancer related genes on chromosome 8. DLC1, PDGFRL, LZTS1, MSR1 and TNFRSF10B

were found in 8p arm, where highly frequent loss occur. Although we did not find any minimal

loss region that can pinpoint exactly a particular target among these genes, they may be candidates

of tumor suppressors. Among these genes, DLC1 is Rho-GTPase-activating protein coding gene.

It was found to be frequently deleted in human liver cancer (30), and its expression is with rather

lower levels in prostate, testis, ovary, small intestine and colon. Indeed it has been validated as a

tumor suppressor gene in many cancers (31). RB1CC1 and TNFRSF11B was found in the GA-
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Figure 12: Detailed spectrum of GIM rates over 125 Colorectal cancer patients in 4 hotspot region. In each panels,
the upper half shows gain and amplification rates, and the lower half shows loss and deletion rates. The cancer related
genes in the vicinity of the study regions are annotated on all the graphs.

hotspot on 8q, which suggests that these two genes might be oncogenes related to cancer growth.

Indeed RB1CC1 is a DNA-binding transcription factor. It has been identified as a key regulator

of the tumor-suppressor gene RB1 (32), and its sequence spans a wide region on chromosome 8

(from 8p11 to 8q22), which begins at the loss-to-gain transition sites. This correspondence offers

a possible explanation to the fact that the loss-to-gain transition on chromosome 8 does not happen

at the centromere.

Figure 12b and 12c show the annotations of the cancer related genes on chromosome 17 and

chromosome 18, respectively, along with their GIM-rate spectrum. As reported in the previous

section, the 17p region was found to suffer high-frequency (i.e., (54.4%) lost/deletion. It is note-

worthy that this LD-hotspot coincides with the P53 and BCPR genes. P53 is a well-known tumor

suppressor related to many types of cancers, such as cancers of lung, breast, esophagus, and colon
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(33). BCPR is known as a breast cancer-related regulator of P53 (34). The loss of these two genes

as detected by GIMscan from aCGH profiles provide additional validation of their involvement

colorectal cancer. Chromosome 18 harbors large LD-hotspot regions spanning both 18p and 18q.

Loss or deletion were found in 70 out of 125 individuals on 18p, and 73 out of 125 individuals

on 18q. We also found three cancer-related genes mapping to this region (Figure ??), including

DCC, LCFS2 and TNFRSF11A. Among these genes, DCC was found to be deleted in colorectal

carcinoma, and it acts as a colorectal cancer suppressor (35). LCFS2 and TNFRSF11A were also

found to be deleted in gastric and esophageal adenocarcinoma (36).

Another high-frequency GIM hotspot we identified resides in chromosome 20, where dosage-

state alterations were found in 88 individuals representing 70.40% of all the study population.

Highly frequent gains (48.0%) or amplifications (17.6%) was observed on 20q. The regions on

20q that were gained or amplified were relatively contiguous except for one high magnitude am-

plification region centered at 30Mb (12c). The contiguous region from 35Mb to the telomere har-

bors three cancer-related genes, SRC, ZNF217 and CYP24, which are candidate oncogenes. SRC

encodes pp60c-Src (or c-Src), which is a 60 kDa nonreceptor tyrosine kinase and is the cellular

homologue to the potent transforming v-Src viral oncogene (37). ZNF217 encodes a Kruppel-like

transcription factor that has been demonstrated to promote the immortalization of human mam-

mary cells and to play a role in the suppression of apoptosis (38). Over-expression of CYP24

may abrogate growth control mediated by vitamin D or calcium (39). Centered at 30Mb, high-

magnitude amplification was observed with high frequency. This region harbors RPL12P3 (30Mb

- 33Mb), a ribosomal protein L12 pseudogene. Although the function of this gene is still unclear,

our high resolution analysis suggests that it may be over-expressed in tumor cell and is related with

cancer growth.

Table 1 summarizes the aforementioned candidate cancer-related genes and the average length-

fraction of their spanning regions on the genome that exhibits GIM.

To explore possible correlations between GIM and some phenotypic characteristics of the study

patient population, we test the extent of GIM (i.e., the genotype), as measured by the proportion of

genomic regions harboring GIM over the total length of the genome, against empirical frequencies
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Phenotype
Total number % Genome % Genome % Genome % Genome
of individuals gained lost amplified deleted

Stage

1 11 9.89 3.45 0.51 0.00
2 37 7.83 10.55 1.41 0.80
3 35 9.23 9.92 0.42 0.00
4 38 9.54 12.48 0.92 0.46

Location
Right 38 8.14 8.50 0.66 0.47
Left 85 9.11 10.91 0.97 0.38

Age
< 50 years 10 3.58 9.39 1.93 1.21
50-70 years 47 9.29 10.48 0.92 0.44
> 70 years 66 9.26 10.06 0.68 0.26

Sex
Male 64 10.18 10.03 1.03 0.59

Female 59 7.33 10.31 0.71 0.20

Bat26
Stable 102 9.22 10.54 0.99 0.49

Unstable 7 3.59 6.34 0.00 0.00

Table 2: Fractions of the genome altered by clinical phenotype.

Phenotype
p-value p-value p-value p-value
(gain) (loss) (amplification) (delete)

Stage

1
2 0.539 0.061 0.204 0.251
3 0.848 0.033 0.841 0.662
4 0.922 0.042 0.565 0.697

2
3 0.539 0.812 0.014 0.180
4 0.515 0.538 0.381 0.703

3 4 0.917 0.381 0.247 0.593
Tumor location Right Left 0.640 0.270 0.418 0.744

Age
< 50 years

50-70 years 0.059 0.812 0.194 0.266
> 70 years 0.111 0.837 0.044 0.143

50-70 years > 70 years 0.988 0.818 0.487 0.681
Sex Male Female 0.143 0.900 0.3740 0.302

Bat26 Stable Unstable 0.128 0.368 0.123 0.169

Table 3: P-values reflecting statistical significance of possible correlations between the phenotype and GIM. P-values
less than 0.1 are indicated by bold.
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of phenotypes of interest in the study population. We examined 5 phenotypes, cancer state, loca-

tion, patient age, sex, and Bat26. Table 2 summarizes the empirical frequencies of each phenotype,

and the average extent of GIM of the sub-population bearing the phenotype. To compute the statis-

tical significance of possible correlations between the phenotype and the genotype, we conducted

an unpaired student t-test followed by a MaxT test using permutation analysis to control family-

wise false positive error rates (40). The test scores were shown in Table 3. Overall, in most cases

there is no significant correlation between the phenotypes we tested and the GIM genotypes, which

is not surprising because the phenotypes available for our test are very generic and not particularly

informative from a pathological stand point. But there are some interesting exceptions that worth

further investigation. For example, while the extent of genome loss in cancer stage 2, 3 and 4 did

not exhibit significant difference, genome loss is significantly less severe in stage 1 than in other

states. Genome amplification is significantly more severs in stage 2, than in stage 3. There is not

a significant different in the GIM genotypes (i.e. the extend of all types of GIM) between stage 3

and 4, suggesting that chromosomal instability is an early event in colorectal carcinogenesis (41).

It is noteworthy that significantly more fraction of the genome has amplification in patients whose

ages are below 50 than those older than 70.

3 Discussion

Genetic instability represents an important type of biological markers for cancer and many other

diseases. However, experimental array CGH data currently available for examining genetic insta-

bility are often corrupted by severe noises resulted from both exogenous (e.g., experimental con-

ditions) and endogenous (i.e., DNA contents) origin. In particular the variations of hybridization

signal intensities even within one specific GIM state can seriously confound data interpretation.

Extant computer-aided methods for determining GIMs from raw aCGH data are limited in their

ability to interpret aCGH data compromised such noises and measured over the whole genome and

over different individuals. In this paper, we present a new statistical method, Genome Imbalance

Scanner, for automatically decoding the underlying DNA dosage-states from aCGH data. GIM-

scan fits a hidden hybridization trajectory to each state. It employs a hidden switching process to

28



stochastically select for each examined clone on the genome its underlying trajectory (therefore

the dosage state) that have generated the observed CGH data. Our method captures both the intrin-

sic (nonrandom) spatial change of genome hybridization intensities, and the prevalent (random)

measurement noise during data acquisition; and it simultaneously segments the chromosome and

assigns different states to the segmented DNA. We tested the proposed method on both simulated

data and real data measured from a colorectal cancer population, and we report competitive or

superior performance of GIMscan in comparison with popular extant methods.

Genome alterations can be classified into long range aberration in which consecutive clones

have same altered underlying state and short range aberration in which only single clone changes.

Empirically, we noticed that GIMscan yields much fewer predictions on point alteration of gene

dosage-state (i.e., copy number change in a single clone out of a sequence) compared to other

methods. As discussed in the introduction, while single clone copy number changes is non uncom-

mon in aberrant genomes, common genome rearrangement mechanisms tend to produce genome

imbalances over certain span on the chromosome. Therefore a reasonable balance between sen-

sitivity to these two types of abbreviations is crucial to the accuracy of GIM detection. Extend

algorithms, especially the threshold-based methods are very sensitive to local fluctuations of LR

signals, and tend to predict a large number of spurious point GIMs. GIMscan makes use of the spa-

tial dependency between adjacent clones, which smooths the spatial variations in the long-range

aberrations, nevertheless it remains sensitive to significant short range aberrations. For example, in

Figure 9a, the single amplified clone near the telomere of 11q (yellow circle) was significantly far

from its context clones. Therefore, GIMscan classified this clone into amplification state (yellow

arrow). Similarly, the clone near the centromere of chromosome 7 (purple circle) was also detected

by GIMscan to be loss state (purple circle), different from its context clones. In contrary, the clone

on chromosome 9 (black circle) was classified to be within the gain state, though they tended to be

higher than their neighboring clones. GIMscan determined these two clones as noises of the gain

state because their LR values are not significantly different from their context. Such a decision

is very hard to reach when using methods (such as an HMM) that model each dosage-state with

spatially invariant state-specific LR distributions.
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Specifying the underlying state (loss, gain, normal) for one clone is not a straightforward task,

not to mention discovering the exact dosage state for each clone. Although many method such as

HMM used ”gain state” or ”loss state” to refer to the different states, the true DNA dosage states,

strictly speaking, are unknown, a problem shared by all models simultaneously segmenting the

genome and annotating the DNA dosage state. This is because for the selected states we do not

have a ”reference state”, and the assigned states only have relative meaning (e.g. we can only say

state 1 has more copy number than state 2). In order to specify the exact DNA copy number to

each clone, further biological experiments, such as PCR, is necessary. In GIMscan, we require

the chromosomes of one individual to share the same number of trajectories and the means and

variances of the starting values of these trajectories because the normal cell contamination effect

within each experiment (individual) is expected to be similar and the observed LR values for the

same state in one individual should have the similar expected value. According to the learned

means and variances of the trajectories, we manually assign states to the trajectories for each

individual by human expertise.

We will make GIMscan available to interested users via a web-interface and maintain and up-

grade it regularly. We expect that with improved GIM screening of aberrant genomes related to

various disease of interest, it is possible to perform more comprehensive and reliable statistical

analysis of associations between dosage-state alterations and phenotype abnormalities. In par-

ticular, array CGH provides a powerful tool to analyze the DNA dosage-state of transcriptional

regulation regions, which make it possible to conjoin microarray-based high-throughput gene ex-

pression profiling with genome imbalance screening. Association studies of these two patterns

can offer a more complete picture of the (alteration of) gene regulation mechanisms underlying

interested biological processes such as carcinogenesis.

4 Materials and Methods

In this section we present the modeling, algorithmic and implementational choices that we made

in GIMscan.
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4.1 Switching Kalman Filters: Model and Adaptation to aCGH Analysis

For each specific gene dosage state, we model the spatial drift of its hybridization signal intensi-

ties using a hidden trajectory and model the uncertainty in LR measurements using a zero-mean

Gaussian noise. This corresponds to a standard dynamic model named Kalman filter (KF), or

state-space model (SSM). Observed LR values arise as a mixture of the outputs of state-specific

Kalman filters. The mixing proportion, modeled as latent variables indicating gene dosage states,

is also spatially dependent as captured by the HMM-based methods using a hidden Markov state-

transition process (or switching process). Now we have multiple linear Kalman filters controlled

by a dynamic switching process, which can be formulated as a factored switching Kalman filters

(SKF), also known as a switching state-space model (SSSM).

SKFs generalize HMMs and KFs by relaxing inherent assumptions made individually in both

models and allowing continuous, non-Gaussian posterior distributions over latent trajectory. How-

ever, exact inference of the posterior distribution over the hidden states in an SKF is no longer

tractable. Ghahramani and Hinton (42) approximated this intractable posterior by a tractable “vari-

ational” distribution over decoupled hidden trajectory processes and switching process, which is

parameterized by an additional set of “variational parameters”. Iterative updates of the varia-

tional parameters minimize the KL divergence between variational and true posterior distributions.

Dosage-state annotation and clone-sequence segmentation can be solved jointly by computing ex-

pectations of switching-state variables under the approximate posterior. Parameter estimation can

be derived from the EM algorithm which iteratively computes some expected values from the ap-

proximate posterior (E steps) and re-estimates the parameters of the model (M step).

SKFs have been applied to model regime-switching sequential data in multiple contexts: phys-

iological time series such as the chest volume of a patient with sleeping apnea characterized by

periods of normal breathing, gasping, and no-breathing (42), financial time series such as currency

exchange rate data for which the model not only uncovers underlying regimes but also provides

online prediction with confidence interval to facilitate risk estimation in financial engineering (43),

and time series in signal processing such as acoustic segmentation in speech recognition (44), mo-

bile robots localization using state and sensory data (45), on-line inference of hand-kinematics

31



from the firing rates of a population of motor cortical neurons (27).

Our proposed method, GIMscan (Genome IMbalance SCANner), adapts the SKF model to

whole-genome analysis of aCGH data by allowing a parameter sharing scheme among multiple

chromosomes and multiple individuals which makes best use of data. Model selection and further

extension of the model are also summarized or discussed briefly at the end of this section.

4.2 The dosage-state-specific Kalman filter

The dosage-state-specific Kalman filter is a linear chain graphical model with a backbone of hidden

real-valued variables (trajectory) emitting a series of real-valued observation (Figure 13(a)). The

transition model is linear and subject to Gaussian noise which reflect the evolving hybridization

densities. The observation model imposes a Gaussian noise arising in the measurement stage to

generate the LR ratio at each position (clone). This model for dosage state m can be formulated

as:

P (X
(m)
t |X(m)

t−1 ) ∼ N (a(m)X
(m)
t−1 , b(m))

P (Y
(m)
t |X(m)

t ) ∼ N (X
(m)
t , r)

where X
(m)
t is the hidden real-valued variable at position t (tth clone) on the trajectory, Y

(m)
t is

the observed real-valued variable emitted by X
(m)
t . The parameters a(m), b(m), r are all position-

invariant; r determines the degree of uncertainty in observation measurements. We also assume the

initial value of the hidden trajectory, X
(m)
1 , has a Gaussian distribution P (X

(m)
1 ) ∼ N (µ(m), σ(m)).

All the variables and parameters are univariate. Computing the online (filtering) and offline (smooth-

ing) versions of the posterior probabilities of the hidden state variable at position t, P (X
(m)
t |Y (m)

1:t )

and P (X
(m)
t |Y (m)

1:T ), where Y
(m)
1:t denotes the observed variables up to position t and Y

(m)
1:T denotes

all the observed variables, are the most important operations associated with the model. The prob-

abilities are all normal-distributed and the computation is tractable because of the conjugacy of the

normal distribution to itself. Computation of the offline probabilities for all possible t will be part

of the variational inference discussed in Section 4.4 in which we decouple the model to a number
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Figure 13: (a) Graphical structure of dosage-state-specific Kalman filter for dosage state m. X
(m)
t is the hidden

variable at clone t on the trajectory, and Y
(m)
t representing the corresponding observed variable of the Kalman filter.

(b) Graphical structure of the switching Kalman filter (SKF) model. The model consists of M linear chains of Kalman
filters (X(1:M)

1:T ), a Markov chain of switching processes (S1:T ) and a series of observed variables (Y1:T ). (c) Graphical
structure of the uncoupled model which represents the tractable subfamily of distributions to approximate the posterior
distribution of the SKF model.

of tractable linear chains.

4.3 SKF formulation for aCGH analysis

Given the dosage-state-specific Kalman filter for M dosage states, a switching Kalman filter gen-

erates the LR value at each position from one of the outputs. The choices are spatial-dependent

and are determined by a discrete switching process which evolves according to Markov dynamics.

The generation of the observed LR values in SKF can be formulated as:

P (S
(m)
t = 1|S(n)

t−1 = 1) = φmn

Yt =
M∑

m=1

Y
(m)
t S

(m)
t

where St is the M -dimensional multinomial switching variables for clone t following 1×M binary

coding scheme, Yt is the observed variable representing LR value of clone t. Φ = {φmn} is the

transition matrix for the hidden Markov dynamics. The initial switching state follows a multino-

mial distribution parameterized by π: S1 ∼ Multinomial(1, π). The observation Yt is a mixture
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of individual KF outputs Y
(1:M)
t , and is deterministic given Y

(1:M)
t and the mixing proportion St.

Alternatively, we could save the variables Y
(1:M)
t and generate the observation from the M hidden

linear Gaussian trajectories as:

P (Yt|X(1:M)
t , St) ∼ N (

M∑
m=1

X
(m)
t S

(m)
t , r)

The graphical structure of the SKF model is shown in Figure 13 (b). The joint probability of SKF

can be written as:

P (Y1:T , X
(1:M)
1:T , S1:T ) = P (S1)

T∏
t=2

P (St|St−1)
M∏

m=1

P (X
(m)
1 )

T∏
t=2

P (X
(m)
t |X(m)

t−1 )
T∏

t=1

P (Yt|X(1:M)
t , St)

4.4 Variational inference and Parameter Estimation

To facilitate dosage state annotation and clone-sequence segmentation, the posterior probabilities

P (St|Y1:T ) need to be computed for t = 1, . . . , T . However, exact inference of this posterior

probability is intractable (42). We employed a variational algorithm (42) which approximates the

posterior probabilities P with a parameterized distributionQ(v) from some tractable subfamily of

distributions. It iteratively updates the values of the variational parameters v to minimize a measure

of “distance” between the approximate posterior distribution and the true posterior distribution:

the Kullback-Leibler divergence KL(Q ‖ P). The choice of the tractable subfamily for the SKF

model is a discrete Markov chain and M uncoupled KFs (Figure 13 (c)). Two sets of variational

parameters are introduced for the Markov chain and KFs respectively. Their updates can be carried

out using fix-point equations (42), which include terms of expectations under the approximate

posterior. They can be computed using the forward-backward algorithm (for the Markov chain)

and Kalman filtering and smoothing algorithms (for the M KFs) in polynomial time. These updates

maintain or increase a lower bound of the log likelihood of the model and converge in a few

iterations empirically. The fast rate of convergence is mainly due to low data dimension: LR ratios

are univariate.

Parameter estimation is performed under the EM framework. The E step employs the varia-
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tional inference algorithm to find the best approximate posterior via iterative updates of the vari-

ational parameters. The M step reestimates the model parameters Θ to maximize the same lower

bound of log-likelihood in variational inference. This reestimation can be performed exactly by

zeroing the derivatives with respect to the model parameters, which also involve computing ex-

pectations under the approximate posterior as we discussed above. Parameter estimation is imple-

mented by a coordinate ascent procedure which maximize the lower bound B(v,Θ) by iteratively

updating variational parameters v (E steps) and model parameters Θ (M steps).

4.5 Parameter sharing: adapting SKF to whole-genome analysis

We introduce the model framework of GIMscan (Genome IMbalance SCANner). We first describe

the settings for a whole-genome analysis. The aCGH dataset are collected from experimental data

of J individuals, the genome of which consists of K chromosomes, and chromosome k contains

Tk clones. The LR values Y1:T,j,k on individual j, chromosome k are generated by a SKF model

with hidden trajectory X1:T,j,k and switching states S1:T,j,k.

As we described in Section 4.3, the model parameters of SKF include µ(m), σ(m), a(m), b(m), r, π

and φ. Each of these parameters in the SKF model delineates one property behind the aCGH data.

µ(m) and σ(m) are the mean and variance of Gaussian distribution of the starting clone on hidden

trajectory for dosage state m. a(m) and b(m) determine the transition model of that trajectory which

dictate the spatial drift of the signal intensities. r is the variance of the Gaussian accounting for the

noise introduced in the experiment stage, and is independent of the hidden dosage-state. Lastly, π

and Φ are initial state parameters and transition matrix for the discrete switching process between

different dosage states.

We are now ready to describe the parameter sharing scheme used in GIMscan for the analysis

of whole genome aCGH data. We consider two groups of parameters. Firstly, we let µ(m), σ(m),

r, π and Φ be shared across all chromosomes of one particular individuals. Mainly due to the

normal cell contamination, the magnitude of starting value for the trajectory of one particular state

varies across different individuals. Different µ(m) and σ(m) for different individuals can account

for this “un-normalized” starting value of the trajectory of one state. r is also shared by chromo-
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somes from one individual because one individual corresponds to one experiment, and different

experiments may have different noise levels. π and Φ are shared by one individual because the

number of dosage states are individual-specific: different individuals may have different number

of dosage states. The second group of parameters, a(1:M) and b(1:M), is assumed to be shared by

one particular chromosome of all individuals, because the physical-chemical properties (e.g. the

base composition) of one particular chromosome of different individuals (the same tumor cell line

of the same species) are very similar. This similarity leads to similar hybridization signal inten-

sity across one chromosome. The parameter sharing scheme we introduced does not change the

approximate inference algorithm which only updates the variational parameters. Reestimate of the

model parameters under the EM framework is similar and it is straightforward to derive the update

equations.

The maximum number of hidden trajectories or dosage states (M in the model specification)

one individual can have remains to be determined. we employ Gaussian mixture model using

penalized likelihood criteria such as AIC to select the number of states for each individual.

The SKF model can be naturally extended by considering multiple switching chains which

simultaneously determine the functioning parents for the observed variables. We can also add more

variables in each slice in order to make use of the information of the distance between adjacent

clones and the sequence length of each clone. For simplicity, we do not consider these extensions

in this paper.
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Figure 14: Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom, red
square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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Figure 14: (cont’d) Fraction of gain (top, red square), loss (top, blue circle), amplification (bottom,
red square) and deletion (bottom, blue circle) on human chromosomes.
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