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Abstract

In this paper, we examine the problem of choosing discriminatory prices for customers with
probabilistic valuations and a seller with indistinguishable copies of a good. We show that
under certain assumptions this problem can be reduced to the continuous knapsack problem
(CKP). We present a new fast ε-optimal algorithm for solving CKP instances with asymmet-
ric concave reward functions. We also show that our algorithm can be extended beyond the
CKP setting to handle pricing problems with overlapping goods (e.g. goods with common
components or common resource requirements), rather than indistinguishable goods.
We provide a framework for learning distributions over customer valuations from historical
data that are accurate and compatible with our CKP algorithm, and we validate our tech-
niques with experiments on pricing instances derived from the Trading Agent Competition in
Supply Chain Management (TAC SCM). Our results confirm that our algorithm converges to
an ε-optimal solution more quickly in practice than an adaptation of a previously proposed
greedy heuristic.





1 Introduction

In this paper we study a ubiquitous pricing problem: a seller with finite, indistinguishable
copies of a good attempts to optimize profit in choosing discriminatory, take-it-or-leave-
it offers for a set of customers. Each customer draws a valuation from some probability
distribution known to the seller, and decides whether or not they will accept the seller’s offers
(we will refer to this as a probabilistic pricing problem for short). This setting characterizes
existing electronic markets built around supply chains for goods or services. In such markets,
sellers can build probabilistic valuation models for their customers, e.g.to capture uncertainty
about prices offered by competitors, or to reflect the demand of their own customers.

We show that this pricing problem is equivalent to a continuous knapsack problem (CKP)
(i. e. the pricing problem can be reduced to the knapsack problem and vice versa) under
two reasonable assumptions: i.) that probabilistic demand is equivalent to actual demand,
and ii.) that the seller does not wish to over promise goods in expectation. The CKP asks:
given a knapsack with a weight limit and a set of weighted items – each with its value defined
as a function of the fraction possessed – fill the knapsack with fractions of those items to
maximize the knapsack’s value. In the equivalent pricing problem, the items are the customer
demand curves. The weight limit is the supply of the seller. The value of a fraction of an
item is the expected value of that customer demand curve. The expected value is defined as
the probability with which the customer is expected to accept the corresponding offer times
the offer price.

Studies of CKPs in Artificial Intelligence (AI) and Operations Research (OR) most often
focus on classes involving only linear and quadratic reward functions [10]. We present a fast
algorithm for finding ε-optimal solutions to CKPs with arbitrary concave reward functions.
The class of pricing problems that reduce to CKPs with concave reward functions involve
customers with valuation distributions that satisfy the diminishing returns (DMR) property.
We further augment our CKP algorithm by providing a framework for learning accurate
customer valuation distributions that satisfy this property from historical pricing data.

We also discuss extending our algorithm to solve pricing problems that involve sellers
with distinguishable goods that require some indistinguishable shared resources (for example
common components or shared assembly capacity). Such problems more accurately repre-
sent the movement from make-to-stock production to assemble-to-order and make-to-order
production, but involve constraints that are too complex for traditional CKP algorithms.

The class of pricing problems that reduce to CKPs with concave reward functions involve
customers with valuation distributions that satisfy the diminishing returns (DMR) property.
Therefore, we augment our CKP algorithm by providing a framework for learning accurate
customer valuation distributions that satisfy this property from historical pricing data.

The rest of this paper is structured as follows: In Section 2 we discuss related work on
the probabilistic pricing and continuous knapsack problems. In Section 3 we present the
pricing problem and its equivalence to continuous knapsack. In Section 4 we present our
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ε-optimal binary search algorithm for concave CKPs. Section 5 presents the framework for
learning customer valuation functions. In Section 6 we validate our algorithm and frame-
work empirically on instances derived from the Trading Agent Competition in Supply Chain
Management (TAC SCM).

2 Background

2.1 Related Work on Pricing Problems

The pricing problem we study captures many real world settings, it is also the basis of
interactions between customers and agents in the Trading Agent Competition in Supply
Chain Management. TAC SCM is an international competition that revolves around a game
featuring six competing agents each entered by a different team. In TAC SCM simulated
customers submit requests for quotes (RFQs) which include a PC type, a quantity, a delivery
date, a reserve price, and a tardiness penalty incurred for missing the requested delivery date.
Agents can respond to RFQs with price quotes, or bids, and the agent that offers the lowest
bid on an RFQ is rewarded with a contractual order (the reader is referred to [3] for the full
game specification).

Other entrants from TAC SCM have published techniques that can be adapted to the
setting we study. Pardoe and Stone proposed a heuristic algorithm with motivations similar
to ours [8]. The algorithm greedily allocates resources to customers with the largest increase
in price per additional unit sold. Benisch et. al. suggested discretizing the space of prices and
using Mixed Integer Programming to determine offers [1], however this technique requires a
fairly coarse discretization on large-scale problems.

Sandholm and Suri provide research on the closely related setting of demand curve pric-
ing. The work in [11] investigates the problem of a limited supply seller choosing discrim-
inatory prices with respect to a set of demand curves. Under the assumptions we make,
the optimal polynomial time pricing algorithm presented in [11] translates directly to the
case when all customers have uniform valuation distributions. Additionally, the result that
non-continuous demand functions are NP-Complete to price optimally in [11], implies the
same is true of non-continuous valuation distributions.

Additionally there have been several algorithms developed for solving certain classes of
continuous knapsack problems. When rewards are linear functions of the included fractions
of items, it is well known that a greedy algorithm provides an optimal solution in polynomial
time1. CKP instances with concave quadratic reward functions can be solved with standard
quadratic programming solvers [10], or the algorithm provided by Sandholm and Suri. The
only technique that generalizes beyond quadratic reward functions was presented by Mel-

1Linear reward functions for CKP would result from a pricing problem where all customers have fixed
valuations.
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man and Rabinowitz in [7]. The technique in that paper provides a numerical solution to
symmetric CKP instances where all reward functions are concave and identical2. However,
this technique involves solving a difficult root finding problem, and its computational costs
have not been fully explored.

2.2 Related Work on Learning Valuations

The second group of relevant work involves learning techniques for distributions over cus-
tomer valuations. Relevant work on automated valuation profiling has focused primarily on
first price sealed bid (FPSB) reverse auction settings. Reverse auctions refer to scenarios
where several sellers are bidding for the business of a single customer. In the FPSB variant
customers collect bids from all potential sellers and pay the price associated with the lowest
bid to the lowest bidder. Predicting the winning bid in a first price reverse auction amounts
to finding the largest price a seller could have offered the customer and still won. From the
point of view of a seller, this price is equivalent to the customer’s valuation for the good.

Pardoe and Stone provide a technique for learning distributions over FPSB reverse auc-
tions in TAC SCM [8]. The technique involves discretizing the range of possible customer
valuations, and training a regression from historical data at each discrete valuation. The
regression is used to predict the probability that a customer’s valuation is less than or equal
to the discrete point it is associated with. Similar techniques have been used to predict
FPSB auction prices for IBM PCs [6], PDA’s on eBay [5], and airline tickets [4].

3 Market Model

3.1 P3ID

We define the Probabilistic Pricing Problem with Indistinguishable Goods (P3ID) as follows:
A seller has k indistinguishable units of a good to sell. There are n customers that demand
different quantities of the good. Each customer has a private valuation for the entirety of
her demand, and the seller has a probabilistic model of this valuation. Formally the seller
has the following inputs:

• k: the number of indistinguishable goods available to sell.

• n: the number of customers that have expressed demand for the good.

• qi: the number of units demanded by the ith customer.

2Identical reward functions for CKP would result from a pricing problem where all customers draw
valuations from the same distribution.
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• Gi(vi): a cumulative density function indicating the probability that the ith customer
draws a valuation below vi. Consequently, 1 − Gi(p) is the probability that the
customer will be willing to purchase her demand at price p.

The seller wishes to make optimal discriminatory take-it-or-leave-it offers to all customers
simultaneously. We make the following two assumptions as part of the P3ID to simplify the
problem of choosing prices:

• Continuous Probabilistic Demand (CPD) Assumption: For markets involving
a large number of customers, we can assume that the customer cumulative probability
curves can be treated as continuous demand curves. In other words if a customer
draws a valuation greater than or equal to $1000 with probability 1

2
, we assume the

customer demands 1

2
of her actual demand at that price. This is formally modeled by

the probabilistic demand of customer i at price p, qi ∗ (1−Gi(p)).

• Expected Supply (ESY) Assumption: We assume that the seller maintains a strict
policy against over-offering supply in expectation by limiting the number of goods sold
to k (the supply). Note that k is not necessarily the entirety of the seller’s inventory.

Under these assumptions, the goal of the seller is to choose a price to offer each customer,
pi, that maximizes the expected total revenue function, F (p):

F (p) =
∑

i

(1−Gi(pi)) ∗ qi ∗ pi(1)

Subject to the ESY constraint that supply is not exceeded in expectation:

∑

i

(1−Gi(pi)) ∗ qi ≤ k(2)

3.2 P3ID and CKP Equivalence

To demonstrate the equivalence between the P3ID and CKP we will show that an instance
of either can easily be reduced to an instance of the other. CKP instances involve a knapsack
with a finite capacity, k, and a set of n items. Each item has a reward function, fi(x), and
a weight wi. Including a fraction xi of item i in the knapsack yields a reward of fi(xi) and
consumes wi ∗ xi of the capacity.

We can easily reduce a P3ID instance to a CKP instance using the following conversion:

• Set the knapsack capacity to the seller’s capacity in the P3ID instance.

kCKP = kP3ID
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• Include one item in the CKP instance for each of the n customers in the P3ID instance.

• Set the weight of the ith item to the customer’s demanded quantity in the P3ID
instances.

wi = qi

• Set the reward function of the ith item to be the inverse of the seller’s expected revenue
from customer i.

fi(x) = G−1

i (1− x) ∗ x ∗ qi

The fraction of each item included in the optimal solution to this CKP instance, x∗

i , can
be converted to an optimal price in the P3ID instance, p∗i , using the inverse of the CDF
function over customer valuations,

p∗i = G−1

i (1− x∗

i )

To reduce a CKP instance to a P3ID instance we can reverse this reduction. The CDF
function for the new P3ID instance is defined as,

Gi(p) = 1−
f−1

i (p)

p ∗ qi

Once found, the optimal price for a customer, p∗i , can be translated to the optimal fraction
to include, x∗

i , using this CDF function,

x∗

i = Gi(p
∗

i )

This equivalence does not hold if either the CDF over customer valuations in the P3ID
instance, or the reward function in the CKP instance is not invertible. However, if the inverse
exists but is difficult to compute numerically, it can be approximated to arbitrary precision
by precomputing a mapping from inputs to outputs.

3.3 Example Problem

We provide this simple example to illustrate the kind of pricing problem we address in this
paper, and its reduction to a CKP instance. Our example involves a PC Manufacturer with
k = 5 finished PCs of the same type. Two customers have submitted requests for prices on
different quantities of PCs. Customer A demands 3 PCs and Customer B demands 4 PCs.
Each customer has a private valuation, if the manufacturer’s offer price is less than or equal
to this valuation the customer will purchase the PCs.

Based on public attributes that the Customers have revealed, the seller is able to de-
termine that Customer A has a normal unit-valuation (price per unit) distribution with a
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mean of $1500 and a standard deviation of $300, gA = N (1500, 300), and Customer B has
a normal unit-valuation distribution with mean of $1200, and a standard deviation of $100,
gB = N (1200, 100). Figure 1(a) shows the expected revenue gained by the seller from each
customer as a function of the offer price according to these valuation distributions. Fig-
ure 1(b) shows the reward functions for the corresponding CKP instance as a function of the
fraction of the customer’s demand included in the knapsack.
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Figure 1: The expected customer revenue and corresponding reward for the example problem
in Section 3.3

Note that in this example, as the price offered to Customer A (or Customer B) increases
the probability (or Customer B) accepting it decreases, and hence so does the expected
number of PCs sold to that customer. The manufacturer wishes to choose prices to offer
each customer to maximize his overall expected revenue, and sell less than or equal to 5
PCs in expectation. In this example it can be shown that the optimal solution is for the
manufacturer to offer a unit price of $1413 to Customer A, which has about a 58% chance
of being accepted, and a price of $1112 to Customer B which has about an 81% chance of
being accepted. The total expected revenue of this solution is about $1212 per unit and it
sells exactly 5 units in expectation.
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4 Asymmetric Concave CKPs

4.1 Characterizing an Optimal Solution

The main idea behind our algorithm for solving asymmetric CKPs is to add items to the
knapsack according to the rate, or first derivative, of their reward functions. We will show
that, if all reward functions are concave3, they share a unique first derivative value in an
optimal solution. Finding the optimal solution amounts to searching for this first derivative
value. To formalize and prove this proposition we introduce the following notations,

• Let φi(x) = f ′

i
(x) 1

wi

, be the first derivative of the i’th item’s unit reward function.
Item i’s unit reward function is its reward per weight unit.

• Let φ
−1

i
(∆), be the inverse of the first derivative of i’th item’s unit reward function.

In other words, it returns the fraction of the i’th item where its unit reward is changing
at the rate ∆.

Proposition 1. Given a CKP instance, K, if all fi in K are concave over the interval [0, 1],
then there exists a unique ∆∗ such that, x∗

i = φ−1

i (∆∗), where x∗

i is the fraction of the i’th
item in an optimal solution to K.

Proof. First we will prove that φi(x) is invertible, and that φ−1

i (∆∗) is unique for all i.
The reward functions and unit reward functions (since these are simply scaled versions of
the originals) in the CKP instance are concave on the interval [0, 1], by the predicate of
our proposition. In other words, the first derivative of each unit reward function, φi(x),
is decreasing and unique on the interval [0, 1]. Because each unit reward function’s first
derivative is continuous, decreasing, and unique, it is invertible, and its inverse, φ−1

i (∆), is
unique4.

We will now prove that the unit reward functions of any two items, i and j, must share
the same first derivative value in the optimal solution. To do this we introduce the following
Lemma,

Lemma 1. If fi is concave over the interval [0, 1], φ−1

i (∆) increases as ∆ decreases from
φi(0) to 0.

Essentially the Lemma states that as the derivative of item i’s unit reward function
increases, the fraction of the item included in the knapsack shrinks. This is true because, as
we have shown, the derivative is decreasing and unique.

3Section 5.1 explains why we can reasonably restrict our consideration to concave reward functions in
reductions from P3ID instances.

4This inverse may be difficult to characterize numerically. However, the precomputation technique sug-
gested for approximating the inverse of Gi or fi applies to φi as well.
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Figure 2: Initial values for ∆+ and ∆− are computed from the even CKP solution for the
example problem in Section 3.3.

For the remainder of the proof there are two cases we must consider:
Case 1: the knapsack is not full in the optimal solution. In this case the unit reward

functions will all have derivatives of 0, since every item is included up to the point where its
reward begins to decrease5.

Case 2: the knapsack is full in the optimal solution. In this case we will assume that
fi and fj do not share the same derivative value, and show this assumption leads to a con-
tradiction. Specifically, we can assume, without loss of generality, that the reward function
of item i has a larger first derivative than j, i.e. φi(x

∗

i ) > φj(x
∗

j ). Therefore, there must
exist some ε, such that adding it to item j’s unit reward derivative maintains the inequality,
φi(x

∗

i ) > φj(x
∗

j ) + ε. We can then construct an alternative solution to K as follows:

• Set xj in our alternative solution to be the fraction of item j that provides its original
derivative plus ε,

x′

j = φ−1

j (φj(x
∗

j) + ε)

5We assume that all reward functions have derivatives ≤ 0 when an item is entirely included in the
knapsack, since the item cannot possibly provide any additional reward.
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• By Lemma 1 we know that x′

j < x∗

j , which provides some excess space, α, in the
knapsack, α = wj(x

∗

j − x′

j). We can fill the empty space with item i, up to the point
where the knapsack is full, or its derivative decreases by ε,

x′

i = min

(

x∗

i +
α

wi

, φ−1

i (φi(x
∗

i )− ε)

)

It must be that x′

i > x∗

i . Either all of the knapsack space from item j was added,
in which case the fraction of item i clearly increased. Otherwise, its derivative value
decreased by ε, which, by Lemma 1, must have increased its included fraction. If φi(x

′

i)
decreased by ε before the knapsack filled up, we can reallocate the excess space to j,

x′

j = (k − xi)
1

wj

Notice that we have constructed our alternate solution by moving the same number of
knapsack units from item j to item i. In our construction we guaranteed that item i was
gaining more reward per unit during the entire transfer. Therefore, the knapsack space is
more valuable in the alternate solution. This contradicts our assumption that x∗

i and x∗

j

were part of an optimal solution.
We have shown that any two unit reward functions must share the same derivative value,

∆∗, in an optimal solution. This implies that all unit reward functions must share the
derivative value in an optimal solution (since no two can differ).

4.2 Finding ∆∗

In our proof of Proposition 1 we showed that ∆∗ ≥ 0. We also showed that as ∆ increases,
the fraction of each item in the knapsack decreases. Thus, one method for finding ∆∗ would
be to begin with ∆ = 0 and increment by ε until the resulting solution is feasible (fits in
the knapsack). However, much of this search effort can be reduced by employing a binary
search technique.

Figure 3 presents pseudo-code for a binary search algorithm that finds solutions provably
within ε of an optimal reward value. The algorithm recursively refines its upper and lower
bounds on ∆∗, ∆+ and ∆−, until the reward difference between solutions defined by the
bounds is less than or equal to ε.

The initial bounds, shown in Figure 2, are derived from a simple feasible solution where
the same fraction of each item is included in the knapsack (see even CKP in Figure 3). The
largest derivative value in this solution provides the upper bound, ∆+. This is because we
can reduce the included fractions of each item to the point where all of their derivatives
equal ∆+, and guarantee the solution is still feasible. By the same reasoning, the smallest
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procedure ε-opt CKP(K)

x← even CKP(K)

∆+ ← maxi φ−1
i (xi)

∆− ← mini φ−1
i (xi)

return binary search(∆+, ∆−, K)

procedure binary search(∆+, ∆−, K)

if converged(∆+, ∆−, K) then

x+ ← {φ−1
1 (∆+), . . . , φ−1

n (∆+)}
return x+

end if

δ ← ∆+
−∆−

2

if feasible({φ−1
1 (δ), . . . , φ−1

n (δ)}, K) then

return binary search(δ, ∆−, K)

else

return binary search(∆+, δ, K)

end if

procedure even CKP(K)

ŵ ←
∑

i wi

return { k
ŵ

, . . . , k
ŵ
}

procedure feasible(x, K)

return
∑

i wixi ≤ k

procedure converged(∆+, ∆−, K)

x+ ← {φ−1
1 (∆+), . . . , φ−1

n (∆+)}
x− ← {φ−1

1 (∆−), . . . , φ−1
n (∆−)}

return
∑

i fi(x
+)− fi(x

−) ≤ ε

Figure 3: Pseudo-code for an ε-optimal concave CKP binary search algorithm.

derivative value in the simple solution provides a lower bound ∆−. Figure 2 shows how
initial values of ∆+ and ∆− are computed from the even solution on the Example problem
from Section 3.3.

During each iteration, a new candidate bound, δ, is computed by halving the space
between the prior bounds. The process continues recursively: if the new bound defines a
feasible solution it replaces the old upper bound, otherwise (if it is not a valid upper bound),
it replaces the old lower bound.

When the algorithm converges the solution defined by ∆− is guaranteed to be feasible and
within ε of the optimal solution. Convergence is guaranteed since we have proved that ∆∗

exists, and the bounds get tighter after each iteration. It is difficult to provide theoretical
guarantees about the number of iterations, since convergence is defined in terms of the
instance-specific reward functions. However, the empirical results in Section 6 show that the
algorithm typically converges exponentially fast in the number of feasibility checks.

4.3 Shared Resource Extension

Our ε-optimal binary search algorithm can be extended to solve problems involving more
complex resource constraints than typically associated with CKPs. In particular, the algo-
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rithm can be generalized to solve reductions of Probabilistic Pricing Problems with Shared
Resources (P3SR). P3SR instances involve sellers with multiple distinguishable goods for sale.
Each good in a P3SR consumes some amount of finite shared resources, such as components
or assembly time. This model allows for techniques capable of supporting the movement
from make-to-stock practices to assemble-to-order or make-to-order practices.

By applying the reduction described in Section 3.2, a P3SR instance can be converted
to a problem similar to a CKP instance. However, the resource constraint in the resulting
problem is more complex than ensuring that a knapsack contains less than its weight limit.
It could involve determining the feasibility of a potentially NP-Hard scheduling problem, in
the case of a shared assembly line and customer demands with deadlines. Clearly, this would
require, among other things, changing the feasibility checking procedure (see feasible() in
Figure 3), and could make each check substantially more expensive.

5 Customer Valuations

5.1 Diminishing Returns Property

Our algorithm was designed to solve CKP reductions of P3ID instances. Recall that it
applies only when the reward functions are concave over the interval [0, 1]. This is not a
particularly restrictive requirement. In fact, this is what economists typically refer to as the
Diminishing Returns6 (DMR) property. This property is generally accepted as characteriz-
ing many real-world economic processes [2].

Definition: The DMR property is satisfied for a P3ID instance when, for a given increase
in any customer’s filled demand, the increase in the seller’s expected revenue is less per unit
than it was for any previous increase in satisfaction that customer’s demand.

Note that our market model also captures the setting where customer valuations are
determined by bids from competing sellers. In this setting normally distributed competing
bid prices can also be shown to result in concave reward functions. This situation is repre-
sentative of environments where market transparency leads sellers to submit bids that hover
around a common price.

5.2 Normal Distribution Trees

We consider a technique which a seller may use to model a customer’s valuation distribution.
It will use a normal distribution to ensure our model satisfies the desired DMR property.
We assume that customers have some public attributes, and the seller has historical data
associating attributes vectors with valuations.

6This is also occasionally referred to as the Decreasing Marginal Returns property.
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Our technique trains a regression tree to predict a customer’s valuation from the histor-
ical pricing data. A regression tree splits attributes at internal nodes, and builds a linear
regression that best fits the training data at each leaf. When a valuation distribution for a
new customer needs to be created, the customer is associated with a leaf node by traversing
the tree according to her attributes. The prediction from the linear model at the leaf node
is used as the mean of a normal valuation distribution, and the standard deviation of the
distribution is taken from training data that generated the leaf.

Formally the regression tree learning algorithm receives as input,

• n: the number of training examples.

• ai: the attribute vector of the i’th training example.

• vi: the valuation associated with the i’th training example.

A regression tree learning algorithm, such as the M5 algorithm [9], can be used to learn
a tree, T , from the training examples. After the construction of T , the j’th leaf of the tree
contains a linear regression over attributes, yj(a). The regression is constructed to best fit
the training data associated with the leaf. The leaf also contains the average error over this
data, sj .

The regression tree, T , is converted to a distribution tree by replacing the regression
at each node with a normal distribution. The mean of the normal distribution at the j’th
leaf is set to the prediction of the regression, µj = yj(a). The standard deviation of the
distribution at the j’th leaf is set to the average error over training examples at the leaf,
σj = sj . Figure 4 shows an example of this kind of normal distribution tree.

5.3 Learning Customer Valuations in TAC

TAC SCM provides an ideal setting to evaluate the distribution tree technique described in
the previous section. Each customer request in TAC SCM can be associated with several
attributes. The attributes include characterizations of the request, such as its due date, PC
type, and quantity. The attributes also include high and low selling prices for the requested
PC type from previous simulation days. Upon the completion of a game, the price at which
each customer request was filled is made available to agents. This data can be used with
the technique described in the previous section to train a normal distribution tree. The
tree can then be used in subsequent games to construct valuation distributions from request
attributes.

Figure 5 shows the accuracy curve of a normal distribution tree trained on historical data
with an M5 learning algorithm. Training instances were drawn randomly from customer
requests in the 2005 Semi-Final round of TAC SCM and testing instances were drawn from
the Finals. The attributes selected to characterize each request included: the due date, PC
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Figure 4: An example Normal Distribution Tree

type, quantity, reserve price, penalty, day on which the request was placed, and the high and
low selling prices of the requested PC type from the previous 5 game days.

The error of the distribution was measured in the following way: starting at p = .1, and
increasing to p = .9, the trained distribution was asked to supply a price for all test instances
that would fall below the actual closing price (be a winning bid) with probability p. The
average absolute difference between p and the actual percentage of test instances won was
considered the error of the distribution. The experiments were repeated with 10 different
training and testing sets. The results show that normal distribution trees can be used to
predict distributions over customer valuations in TAC SCM with about 95%, accuracy after
about 25,000 training examples.

6 Empirical Evaluation

6.1 Empirical Setup

Our experiments were designed to investigate the convergence rate of the ε-optimal binary
search algorithm. We generated 100 CKP instances from P3ID instances based on the pricing
problem faced by agents in TAC SCM. The P3ID instances were generated by randomly
selecting customer requests from the final round of the 2005 TAC SCM. Each customer
request in TAC SCM has a quantity randomly chosen uniformly between 1 and 20 units.
Normal probability distributions were generated to approximate the customer valuations
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Figure 5: The accuracy curve of an M5 normal distribution tree as the number of training
instances increases.

of each customer using the technique described in Section 5 with an M5 Regression Tree
learning algorithm. The learning algorithm was given 50,000 training instances from the
2005 TAC SCM Semi-Final rounds.

We tested our algorithm against the even solution, which allocates equal resources to
each customer, and the greedy heuristic algorithm used by the first place agent, TacTex [8].
Figure 6 provides pseudo-code adapting the TacTex algorithm to solve the P3ID reductions.
It greedily adds fractions of items to the knapsack that result in the largest increases in
expected unit-revenue.

We performed three sets of experiments. The first set of experiments provided each
algorithm with 20 PCs to sell in expectation, and the same 200 customer requests (this
represents a pricing instance of a TAC SCM agent operating under a make-to-stock policy).
Figure 7(a) shows each algorithm’s percentage of an optimal expected revenue after each
feasibility check. For the second set of experiments, the algorithms were given 200 customer
requests, and their PC supply was varied by 10 from k = 10, to k = 100. Figure 7(b) shows
the number of feasibility checks needed by the binary search and greedy algorithms to reach
solutions within 1% of optimal. The last set of experiments fixed k = 20 and varied n by
100 from n = 200 to n = 1000. Figure 7(c) shows the number of feasibility checks needed
by each algorithm to reach a solution within 1% of optimal as n increased.
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procedure greedy CKP(K)

converged← ⊥
while ¬converged and

∑

i xi < n do

i∗ ← argmaxi unit reward increase (i, xi, K)
δ∗ ← best increase(i∗, xi∗ , K)
if feasible({x1, . . . , xi∗ + δ∗, . . . , xn}, K) then

xi∗ ← xi∗ + δ∗

else

xi∗ ← xi∗ + 1
wi

(k −
∑

i xiwi)
converged← >

end if

end while

return {x1, . . . , xn}

procedure unit reward increase(i, xi, δ, K)

δ∗ ← best increase(i, xi, K)
return 1

wiδ∗
(fi(xi + δ∗)− fi(xi))

procedure best increase(i, xi, K)

return argmaxδ
fi(xi+δ)−fi(xi)

δ

Figure 6: Pseudo-code for the greedy heuristic algorithm used by the 2005 first placed agent,
TacTex.

6.2 Empirical Results

The results presented in Figure 7 compare the optimality of the CKP algorithms to the
number of feasibility checks performed. This comparison is important to investigate for two
reasons, i.) because it captures the convergence rate of the algorithms, and ii.) because these
algorithms are designed to be extended to shared resource settings discussed in Section 4.3
where each feasibility check involves solving (or approximating) an NP-Hard scheduling
problem.

The first set of results, shown in Figure 7(a), confirms that the ε-optimal binary search
algorithm converges exponentially fast in the number of consistency checks. In addition, the
results confirm the intuition of Pardoe and Stone in [8] that the greedy heuristic finds near
optimal solutions on CKP instances generated from TAC SCM. However, the results also
show that it has a linear, rather than exponential, convergence rate in terms of consistency
checks. This indicates that our binary search algorithm scales much better than the greedy
technique. Finally, the first set of results shows that the even solution, which does not use
consistency checks, provides solutions to TAC SCM instances that are about 80% optimal
on average.

Figures 7(b) and 7(c) investigate how the number of feasibility checks needed to find near
(within 99% of) optimal solutions changes as the supply and number of customers increase.
The even solution is not included in these results because it does not produce near optimal
solutions. The results shown in Figure 7(b) show that the number of consistency checks
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Figure 7: Performance of CKP algorithms on instances reduced from TAC SCM pricing
problems. Unless otherwise specified, results are averaged over 100 CKP instances with
n = 200 and k = 20.
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used by the greedy algorithm increases linearly with the size of the knapsack, whereas the
convergence rate of the binary search algorithm does not change. The results shown in
Figure 7(c) show that the number of consistency checks used by both algorithms does not
significantly increase with the number of customers.

7 Conclusion

In this paper we presented a model for the problems faced by sellers that have multiples copies
of an indistinguishable good to sell to multiple customers. We have modeled this problem as
a Probabilistic Pricing Problem with Indistinguishable Goods (P3ID) and formally shown its
equivalence the Continuous Knapsack Problem (CKP). We showed that P3ID instances with
customer valuation distributions that satisfy the DMR property reduce to CKP instances
with arbitrary concave reward functions. Prior work had not addressed CKP instances
with asymmetric nonlinear concave reward functions. To address this gap, we provided a
new ε-optimal algorithm for such CKP instances. We showed that this algorithm converges
exponentially fast in practice. We also provide a technique for learning normal distributions
of customer valuations from historical data, by extending existing regression tree learning
algorithms. We validated our distribution learning technique and our binary search technique
for the P3ID on data from 2005 TAC SCM. Our results showed that our learning technique
achieves about 95% accuracy in this setting, indicating that TAC SCM is a good environment
in which to apply our P3ID model. Our results further showed that our binary search
algorithm for the P3ID scales substantially better than a technique adapted from the winner
of the 2005 TAC SCM competition.
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