
 

 

The “55M End-User Programmers” Estimate Revisited 
 

Christopher Scaffidi, Mary Shaw, Brad Myers
 

February 2005
 

CMU-ISRI-05-100 

CMU-HCII-05-100 

 
Institute for Software Research, International, Carnegie Mellon University 

Human-Computer Interaction Institute, Carnegie Mellon University 

 

School of Computer Science 

Carnegie Mellon University 

Pittsburgh, PA 15213-3890 

 

Abstract 
 

In 1995, Boehm predicted that by 2005, there would be “55 million performers” of “end-user programming” in the 

United States.  Examining the original context and method which generated this number reveals that it actually 

estimates the number of computer users in businesses—not programmers, per se—and it assumes constant computer 

usage rates.  This paper extends Boehm’s estimate using fresh Bureau of Labor Statistics (BLS) data, including the 

latest BLS occupational projections (which are for 2012), and a richer estimation method.   

 

We estimate that in 2012, there will be 90 million end-users in American workplaces.  Of these, we anticipate that 

over 55 million will use spreadsheets or databases (and therefore will be potential end-user programmers), while 

over 13 million will describe themselves as programmers.    Thus, the potential pool of end-user programmers will 

probably substantially exceed the population who view themselves as programmers.  Each of these estimates, in 

turn, substantially exceeds the latest BLS projections of fewer than 3 million professional programmers in 2012.   

 

Since not all end-users perform the same programming tasks, we surmise that the vast, heterogeneous pool of end-

users likely will benefit from a diversity of tools to support their programming activities.  Developing such tools 

efficiently requires a better characterization of what features are valued by each end-user sub-population.  To that 

end, this paper concludes by outlining plans for future research, including creating an abstraction-focused 

categorization of end-users. 
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1. Introduction 
 

1.1 Overview 

 
As first reported in 1995 [5] and widely disseminated as part of the Construction Cost Model (COCOMO) version 

2.0 [6], Boehm et al. estimate that the number of “end-user programming performers” will reach 55 million by 2005.  

This number originally functioned as an estimate of the number of people who would not benefit from COCOMO 

2.0, thereby bounding the applicability of that proposed model.   

 

Since 1995, numerous researchers have cited this estimate when writing about programming by scientists, 

secretaries, engineers, salespersons, and other non-professional programmers (for example, [10] [16] [21] [23] [26] 

and [27]).  Citing this number supports the argument that a vast reservoir of end-user needs and potentials exists and 

that researchers should not neglect the opportunity to serve this programmer community.  

 

Boehm’s estimation method depends on a 1989 survey by the US Bureau of Labor Statistics (BLS) that asked each 

respondent about personal computer usage at work.  His estimate relies on the approximation that those usage rates 

would not change, and it makes the simplification that all end-users would eventually perform programming-like 

tasks.  Based on these assumptions, Boehm’s estimation method multiplies these 1989 computer usage rates against 

BLS occupational growth projections for 2005, yielding the estimate of 55 million. 

 

Incorporating more recent BLS data allows us to relax some of Boehm’s simplifying assumptions and update the 

estimate.  Empirically, BLS data shows the rate of computer usage significantly rose through the 1990’s [17].  Using 

this information, we now estimate that the end-user population at workplaces in the United States will number 90 

million in 2012, compared to fewer than 3 million professional programmers. 

 

As the structure of this burgeoning population becomes clearer in this and future work, we anticipate that broad sub-

populations will emerge, each with characteristic needs and capabilities.  For example, while only 15% of end-users 

reported they “did programming” at work in 2001, 62% reported they used computers for spreadsheets or databases.  

Some, but not all, of these spreadsheet and database end-users utilized these tools for programming-like activities.  

Staking out the bounds of end-user programmer sub-populations will allow researchers to target further studies and 

tool-development efforts at large or interesting sub-populations, thereby helping to unlock their potential. 

 

1.2 Paper outline 
 

Section 2 of this paper examines Boehm’s original context and estimation method more closely.  Section 3 attempts 

to improve on the estimate by incorporating innovation diffusion theory [25] to take into account the rising rate of 

computer usage among American workers.  Finally, section 4 outlines our proposed future work beginning with an 

abstraction-focused categorization of end-user programming and a survey of end-user programming practices.  These 

initiatives will together allow the research community to speak more confidently and precisely about the nature of 

end-user programming currently taking place in American businesses.  This better understanding should, in turn, help 

researchers identify opportunities that address problems specific to particular user communities. 
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2. The “55 Million” estimate 
 

2.1 Original context 
 

In 1995, Boehm et al. introduced COCOMO version 2.0, an extension and elaboration of the earlier COCOMO cost-

estimation framework, in order to address various shortcomings in the earlier version [5].  Many of these 

shortcomings had arisen due to changes in the way professional programmers performed their trade (such as the 

increasing focus on producing reusable modules).  To accommodate these changes, COCOMO 2.0 incorporated a 

variety of new variables representing cost drivers ranging from “team cohesion” to “process maturity” in an attempt 

to better capture the details of the professional programming environment. 

 

Many variables in each version of COCOMO do not apply to end-user programmers.  These workers, who range 

from marketing specialists to business administrators, generally build small software.  They often develop their 

software on their own rather than in organized teams (making the “team cohesion” variable less meaningful), and 

they make little attempt to apply a disciplined software development process (making the “process maturity” variable 

less meaningful).  In the words of the original COCOMO 2.0 technical report, “The User Programming sector does 

not need a COCOMO 2.0 model. Its applications are typically developed in hours to days, so a simple activity-based 

estimate will generally be sufficient” [5]. 

 

Boehm not only recognized COCOMO 2.0’s limited applicability, but he also took pains to estimate how many 

future programmers would be end-users having little need for COCOMO 2.0.  Through the method discussed below, 

he projected 55 million end-user programmers by 2005.  This contrasted in his report with an estimate of fewer than 

3 million professional programmers (who could make use of COCOMO 2.0) in 2005.  This showed that while 

COCOMO 2.0 represented a great leap forward, it did not apply to a wide variety of situations, as summarized in 

Figure 1.    

 

2.2 Original method 
 

This section reviews Boehm’s method in enough detail to support re-estimation with newer data.  In the process, we 

note that that the estimate depends on the approximation that all end-users are programmers.   

Boehm’s original technical report [5] contains a footnote outlining the estimation method:  

 
These figures are judgement-based extensions of the Bureau of Labor Statistics moderate-growth labor distribution 

scenario for the year 2005 [CSTB 1993; Silvestri and Lukaseiwicz 1991]. The 55 million End-User programming figure 

was obtained by applying judgement based extrapolations of the 1989 Bureau of the Census data on computer usage 

fractions by occupation [Kominski 1991] to generate end-user programming fractions by occupation category. These were 

then applied to the 2005 occupation-category populations (e.g., 10% of the 25M people in “Service Occupations”; 40% of 

the 17M people in “Marketing and Sales Occupations) 

 

Figure 1:  
The original 55 Million 
estimate for 2005 (taken 
from [5]), accompanied 
by estimates of four 
professional programmer 
populations  



 3 

 

The starting point is Silvestri and Lukaseiwicz’s projection of the growth of the American worker population in each 

of nine occupational areas to 2005 [24].  They achieved this by combining a moderate-GDP-growth model of the 

economy (developed by BLS) with a variety of survey data (including BLS's Current Employment Statistics, 

Occupational Employment Statistics, and Current Population Survey).  This allowed them to predict the number of 

people working in each occupational category in 2005 (see the second column in Table 1). 

 

The next step is to estimate the rate of computer usage in the workplace.  This comes from Kominski’s analysis of 

the 1989 Current Population Survey (CPS) of households (discussed in [17]).  This survey, run by BLS, included 

items asking respondents whether they used a computer at work.  As the survey also included items that facilitated 

occupational categorization, it was possible to determine what fraction of each occupation’s workers actually used a 

computer at work (as shown in the third column of Table 1).  For example, roughly 10% of “Service Occupation” 

workers used a computer at work. 

 

The last step takes these 1989 usage fractions and multiplies them against the projected 2005 occupational 

population sizes, then adds up the results as shown in the fourth column of Table 1 below.  The result thus estimates 

the number of end-users in 2005.  

 

In passing, we note that Figure 1 also includes four estimates concerning subcategories of professional programmers 

totaling a projected 2.75 million for 2005.  As discussed later, this is broadly consistent with information from the 

government: BLS data indicate there were fewer than 3 million professional programmers in 2001, and BLS 

projections suggest this number will remain under 3 million in 2012. 

 

2.3 Discussion 
 

In short, the estimation method multiplies economists’ occupational population projections for 2005 against 

computer usage fractions from 1989.  This method depends on two approximations. 

 

The first approximation is that all end-users are practitioners of programming.  Nardi defined “programming” as 

“behavior in which sequences of procedural instructions… are written in a language that is compiled or interpreted,” 

then broadened her definition to include any attempt “to create an application that serves some function” [19].  

Blackwell has noted [2] that a wide variety of software and consumer products do indeed allow end-users to engage 

in programming-like activities, such as recording behavior or algorithms for playback later.   

 

Clearly, not all end-users perform programming activities to the same extent.  For example, claiming that browsing 

or emailing constitutes programming requires a fairly abstract view of what programming entails.  One argument 

 

Occupational Category 

Projected Occupational 

Count in 2005 (in 

thousands) 

Actual Percentage Using 

Computers at Work in 1989 

Projected Computer Usage 

at Work in 2005 

(in thousands) 

 
Silvestri [24] 

(economist) 

CPS [17] 

(government) 
computed 

Managerial and Professional 36,773 56.2 % 20,666 

Technical, Sales, Administration 48,078 55.1 26,491 

Precision Production, Craft, Repair 15,909 15.3 2,434 

Service 24,806 10.2 2,530 

Operators, Laborers, Fabricators 17,961 9.5 1,706 

Farming, Forestry, Fishing 3,665 4.4 161 

Totals: 147,192  53,989 

 

Table 1:  
To arrive at the “55 Million” estimate, multiply occupational projection by computer usage statistics. 
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might be, “When you enter an email message, you are typing a series of commands and transmitting them to another 

machine, which then acts on those commands to decide what to display on the screen.  When you browse the web, 

you are clicking the mouse in a way that enters commands into the computer, which faithfully executes those 

instructions like any Turing machine.”   

 

There is something inherently unsatisfying about this argument.  Not all activities are equally programming-like.  

Lumping all end-users into one estimate misses an opportunity to add texture that could guide further research.  This 

will be addressed further in Section 4. 

 

The method’s second approximation is that computer usage rates within each occupational category remain constant.  

Section 3 develops an improved approximation by extending the method to use data collected more recently than 

1995. 

 

3. Improving the estimate 
 

In this section, we relax Boehm’s approximation of constant computer usage rates by incorporating innovation 

diffusion concepts and fresh BLS data.  This allows us to enhance and extend Boehm’s method forward to 2012.  We 

compare the resulting projection with other estimates of the end-user sub-populations performing programming-like 

activities. 

 

3.1 Empirically, the estimate is too low 
 

Boehm’s original estimate was derived from 1989 CPS data (plus other data).  In fact, BLS worked with the Bureau 

of the Census to collect these same CPS computer usage items on surveys in 1984, 1989, 1993, and 1997.
1 

These 

have been tabulated to show computer usage trends for each occupational category [17], as shown in Figure 2. 

 

BLS’s data reveal that a larger fraction of workers use a computer now than in 1989.  For example, technical-sales-

administration-support occupational workers reported a usage rate of almost 70% in 1997, compared to only 55% in 

1989.  As a result, using computer usage rates from 1989 under-estimates the total number of computer users in 

2005.  In fact, the CPS showed that in 1997, there were already 64 million Americans who used the computer at 

work, substantially higher than the 55 million estimated for 2005. 

                                                           
1
 Unfortunately, BLS’s 2001 CPS data cannot be used to add another data point.  The BLS changed the wording of 

the question from “Do you directly use a computer at work?” in 1997 and prior years to “Do you use a computer at 

your main job?” in 2001.  For some occupations, the proportion of respondents reporting at-work usage appeared to 

increase sharply under the new question, while for others it actually appeared to decrease slightly [12].  It is unclear 

whether these odd effects can be attributed to wording, or to changes in the underlying phenomena.  Hopefully future 

CPS questions will remain stable over the next few surveys so that the issue becomes clearer. 

Computer Usage by Occupational Category
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Figure 2:  
Computer usage grew 
significantly throughout 
the 1980’s and 1990’s. 
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3.2 Extending the estimate 

 

The key to extending Boehm’s estimate method is to model the salient S-shaped curve of some occupations’ 

computer usage, which is particularly apparent for the lower four curves.  (The top two curves resemble the right 

halves of S-curves, with the left halves occurring prior to the first survey in 1984.)  This “logistic curve” typifies 

many diffusion phenomena—ranging from the propagation of a virus through a human population to the adoption of 

technological innovations [25].  In such situations, some phenomenon of interest (such as infection) starts out with a 

low level of incidence, affecting only a small fraction of the population.  However, as those people interact with the 

population, they share the phenomenon, causing the incidence to increase until it affects virtually everybody.  The 

rate of increase is flat to start with (since there are few people promulgating it) and is flat to end with (since the 

population is nearly saturated).   

 

Although there are only four CPS data points, it is interesting to fit each curve to the theoretical functional form of 

innovation diffusion phenomena in order to determine where the curves might be headed in the future.  (More 

complex functions exist for certain contexts, but it makes sense to use one of the simpler but successful forms when 

only four data points are available.  See [25] for a discussion of other possible functional forms.)  The S-shaped 

logistic form is 

 

A(t) =           K          _ 

  1 + e
( - m * t + b )

 

  

A(t) = adoption (usage) at time t 

 K = maximum adoption 

 m, b = fitting parameters (related to rate of 

                                adoption, and the “zero-point” of t) 

 

A least-squares fit of this equation for each occupation’s computer usage rates (see Appendix A for data) yields a 

function approximately describing how usage will develop in the future.   

 

As with Boehm’s original method, we can multiply these now-improved usage estimates against projected 

occupational head counts to estimate the total number of end-users in the future.  Unfortunately, BLS only issues 

projections for one year per decade; hence, the only projection available is for the year 2012 [13]. 

 

We insert t=2012 into the fitted functions to estimate computer usage rates for 2012, and then multiply each rate 

against the corresponding projected head count.  As shown in Table 2, this yields the estimate that approximately 90 

million American workers will use a computer at work in 2012. 

 

Occupational Category 

Projected Occupational 

Count in 2012 (in 

thousands) 

Projected Percentage Using 

Computer at Work in 2012 

Projected Computer Usage 

at Work in 2012  

(in thousands) 

 
Hecker [13] 

(economist) 

Fit to CPS [14]  

(govt data) 
computed 

Managerial and Professional 52,030 83.0 43,209 

Technical, Sales, Administration 42,695 72.1 30,804 

Precision Production, Craft, Repair 14,860 29.9 4,442 

Service 31,905 19.1 6,098 

Operators, Laborers, Fabricators 22,723 21.0 4,782 

Farming, Forestry, Fishing 1,107 11.1 123 

Totals: 165,320  89,459 

 

Table 2: Applying an improved “55 Million” method to estimate the number of people who will use 
computers at work in 2012 yields an estimate of approximately 90 million 
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This estimate illustrates an enhanced method for use in generating estimates of end-user populations.  It has removed 

the assumption that computer usage rates will remain constant; instead, this method assumes that computer usage 

rates can be modeled by a simple innovation diffusion curve.  Such an assumption is somewhat suspect, in part 

because it presumes that the innovation under discussion (here, the computer) does not change substantively during 

the course of diffusion.  This is, of course, not true: computers continually increase in power and utility.  Hence, 

computer usage rates of the future are likely to exceed those indicated by the foregoing model.  Therefore, 90 million 

should be viewed as a lower bound for the number of American end-users in workplaces in 2012, any of whom might 

be performing programming-like activities. 

 
3.3 Comparison to other population estimates 

 
BLS’s 2001 CPS asked about workers' occupation and software application usage [7].  These data provide additional 

dimensions of insight about the degree to which workers are programming. 

 

The occupational data reveal that about 2.4 million people fell into the categories of “computer scientists and 

systems analysts”, “computer programmers”, or “computer software engineers” in 2001 [7]. BLS projects this 

number will remain under 3 million through 2012 [13]. Both of these numbers are consistent with Boehm’s 

projection of 2.75 professional programmers in 2005 [5]. 

 

BLS’s software usage data (summarized in Table 3) reveal that 11 million workers in general reportedly “did 

programming” [7], which was 15% of all end-users.  Assuming that this percentage will not decline, we predict that 

over 13 million (15% of 90 million) American end-users will report that they program at work in 2012. Clearly, the 

number of people who perceive themselves as programmers substantially exceeds the number for whom 

programming forms their job (as determined by BLS occupational codes). 

 

Moreover, 45 million people “used spreadsheets or databases,” which was 62% of all end-users.  Assuming that this 

percentage will not decline, we predict that over 55 million (62% of 90 million) American end-users will report that 

they use spreadsheets or databases at work in 2012.   

 

This dwarfs the number of professional programmers, though its significance is mitigated by the fact that not all end-

users perform “programming-like” activities.  For example, Hall’s study of spreadsheets created by well-educated 

Australian workers found that only 47% used the “if” function [12].  Also, Fisher and Rothermal’s survey of 

spreadsheets on the web revealed that only 44% contained any formulas at all [11].  In other words, although it is not 

entirely clear how well these two survey samples generalize to all spreadsheet and database end-users, perhaps 

around 45% of all spreadsheet and database users might be performing programming-like activities.  Yet even this 

educated guess suggests that in 2012, around 25 million spreadsheet and database end-users could be performing 

programming. 

 

 

Question Number of Users (thousands) Percent of  Computer Users 

Do you use a computer at your main job? 72,277 (100%) 

Do you connect to the Internet or use e-mail? 51,895 71.8% 

Do you do word processing or desktop publishing? 48,426 67.0 

Do you use spreadsheets or databases? 45,029 62.3 

Do you use a calendar or do scheduling on the computer? 38,235 52.9 

Do you do graphics and design? 20,816 28.8 

Do you do programming? 10,986 15.2 

 

Table 3: Summarizing CPS 2001 software application usage by workers [7] 
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To summarize, it is highly probable that the pool of end-users potentially performing programming-like practices is 

several times as large as both the population of professional programmers and the population of self-reported 

programmers.  Further, projections strongly suggest that this situation will persist for the foreseeable future. 

 

4. Studying the population’s structure  

 

The preceding discussion showed that 55 million underestimates of the number of end-users in American businesses, 

and the analysis extended the estimation method to suggest that they will number 90 million in 2012.  It seems likely, 

based on the numerous citations of the “55 million” estimate, that researchers would value a set of more refined 

estimates of the number of end-users who engage in various forms of programming.  This section lays the 

groundwork for developing a set of categories for programming-like activities and for estimating the number of 

people in each category. 

 

4.1 Existing taxonomies of programming 
 

Over the past twenty years, authors have described programming and related concepts in various ways, for example: 

 

• Programmers “utilize both command and procedural languages directly for their own personal information 

needs. They develop their own applications, some of which are used by other end-users” [22]. 

• “Development is the performance of any or all tasks of the system development process, whether traditional 

systems development life cycle or prototyping. It consists of the specification of system requirements, 

system design, programming, and/or system implementation and conversion” [9]. 

• “‘Program’ is defined as ‘a set of statements that can be submitted as a unit to some computer system and 

used to direct the behavior of that system’ [20]. While the ability to compute ‘everything’ is not required, 

the system must include the ability to handle conditionals and iteration, at least implicitly” [18]. 

• “Writing high level, declarative, textual program specifications also constitutes programming, as does 

creating diagrammatic representations of system behavior.  They demand the same basic activities and skills 

as conventional programming (even if the programmer is saved a considerable amount of time)…  to create 

an application that serves some function” [19].  

• “Programming may be defined as a procedure specification task by means of a computer language” [15].   

• “End-user programming environments are quite diverse, including educational simulation builders, web 

authoring systems, multimedia authoring systems, e-mail filtering rules, CAD systems and… spreadsheets” 

[23], as well as other “special-purpose scripting languages” [27]. 

• “Setting a video cassette recorder to tape an upcoming TV show is not programming….  Programming… is 

defined as the construction of a specification (sequence of instructions or program) for solving a problem by 

an agent other than the programmer” [8]. 

• “In a simple programming activity such as programming a VCR, the user is defining some abstract 

behaviour which is not directly observable because it will take place in the future… All computer users may 

now be regarded as programmers” [3]. 

 

These descriptions are not entirely consistent.  One possible reason is that it may be over-simplistic to label a user as 

a “programmer” or “non-programmer.”  Instead, it may be more accurate to say that a certain activity evidences 

certain programming-like traits, and that therefore end-users fall along a multi-dimensional continuum of practice. 

 

One approach to identifying categories of end-users is to identify clusters of related activities.  That way, researchers 

could simply refer to the type of end-user programming of interest in an analysis, and statistics could be developed to 

characterize each type.   
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Researchers have long taken steps in this direction.  Nardi, for example, discusses various types of (somewhat 

overlapping) programming facilities [19]: 

 

• Textual programming languages, such as spreadsheet formula languages 

• Visual programming languages, such as LabView 

• Forms-based systems, such as the document style editor in FrameMaker 

• Programming by example, as in the Eager extensions to HyperCard 

• Automatic programming from informal programming specification, as with WorldBuilder 

 

One problem with this categorization and others like it (such as Cotterman and Kumar’s User Cube taxonomy [9]) is 

that it tends to focus on tools rather than concepts.  For example, it classifies tools for entering spreadsheet formulas 

as “textual” rather than highlighting the data propagation characteristics particular to spreadsheet computations; in 

this respect, it glosses over potentially significant cognitive differences between the programming of spreadsheet 

formulas and the programming of script modules in, say, a browser environment. 

 

Moreover, categorization frameworks like Nardi’s offer little guidance for the design and enhancement of specific 

tools under development, such as a hypothetical end-user environment for entering textual SQL statements.  For 

example, consider two example end-users.  The first manually types SQL to design and create table structures, 

complete with fancy foreign key relationships and triggers.  The other was emailed a SQL string by a co-worker so 

that he can copy and paste it into a query tool to retrieve the day’s sales statistics.  Each of these uses of SQL relies 

on a “textual programming language” and would fit into Nardi’s first category.  Yet the first person clearly utilizes 

more complex features of the language.  The second person may not comprehend the relation aspect embodied in a 

table, and may not even realize that tables exist at all.  It is conceivable that the first user does not understand these 

concepts, either, but that seems somewhat unlikely given such heavy usage of advanced programming-like features. 

 

In other words, end-users can be categorized, as Nardi does, solely on the basis of software usage.  Categorizing 

further by feature usage reveals another layer of structure within the end-user population.  Moreover, categorizing 

even further based on end-users’ understanding and intention reveals a third layer of structure within this population.  

Each of these layers provides additional insight into what programming-related features become widely used and 

why.  This deeper understanding of end-users practices, in turn, may help to guide research aimed at improving end-

user programming tools. 

 

4.2 Seeking abstraction-focused categorization 
 

Blackwell suggests that a fruitful line of analysis would be to consider the abstractions that a hardware or software 

system allows its users to create [2] [3].  Here, “abstraction” involves separating one aspect from another so that each 

can vary independently.  Programmers do it all the time.  Only some end-users do it.  And not all end-user 

programming environments support the use of all types of abstraction. 

 

Considering abstractions assists in making the term “programming” more precise, as demonstrated by the examples 

below.  (Blackwell described the first example in [3], and we have added the other three.) 

 

• The simplest level of abstraction involves simply recording actions so they can be replayed later in exactly 

the same way.  For example, one end-user might press a button on the good old VCR to record a movie; he 

is implicitly doing two things: selecting something to record and initiating the recording.  Another end-user 

might “program” the VCR to record at a point in the future.  Blackwell refers to this as “abstraction over 

time” [3] because the user has separated the algorithm’s instructions (for recording) from the time that those 

instructions will be executed. 

• Webmasters could copy-and-paste content (such as a navigation bar) from an old page into a new page.  

This requires little skill.  In contrast, another webmaster might put the navigation bar into a separate file, 

and then use “server-side includes” to incorporate it into multiple pages.  She has abstracted the navigation 

bar’s content itself from the references of that content. 



 9 

• If an end-user creates a spreadsheet, he can use the cells simply as boxes to store numbers.  If he needs to 

do calculations, he can do them manually and then enter the results into other boxes.  In contrast, another 

end-user might encode the calculations into formulas.  She might then reuse the file with different inputs 

later on.  In essence, she has abstracted the algorithm away from the data. 

• One end-user might need to diagram the parts in his car.  He could fire up Microsoft Visio and use lines to 

draw out boxes and other interesting polygons depicting various concepts such as “spark plug” and “belt.”  

He is engaging in a straightforward WYSIWYG mode of creating diagrams.  Another user might make use 

of Visio’s extensibility and define new shapes (from primitives) to represent spark plugs and belts; she 

might even define custom property editors with slots for entering “spark plug voltage” (a floating point 

number) and constraints that control other attributes of these entities, such as the form factor of spark plugs.  

Drawing her diagram, and future similar diagrams, would involve instantiating these custom shapes and 

filling in the relevant property sheets.  She has created a whole ontology, essentially abstracting the data 

structures (and their graphical depictions) from the actual data. 

 

Blackwell has argued that from a cognitive standpoint, usage of abstractions like these is a hallmark trait of 

“programming” [2] [3].  That is, creating numerous and diverse abstractions is a sufficient condition for meriting the 

label “programmer.”  This argument seems consistent with most of the aforementioned definitions of 

“programming,” which focus on representing a plan in code, since defining an abstraction (as in the examples above) 

appears to involve conceptualizing a generalized plan and then representing it in a form the computer comprehends. 

 

Therefore, one line of research may be to identify the types of abstraction that widely occur in software, and then to 

attempt organizing them into a semi-hierarchical categorization.  For each type abstraction, it would be feasible to 

identify a list of software features which support the usage of that abstraction, then survey what percentage of people 

use each feature and abstraction.   

 

Note that these abstractions are supported differently in various environments.  For example, abstracting a data 

structure (the fourth bullet above) involves defining a class in object-oriented programming, involves defining a table 

in SQL/database programming, and involves defining prototype objects in ActionScript/Flash.  In all three cases, the 

programmer is using a feature of the language (classes, tables, or prototypes) to represent an abstraction over items 

that share the same data structure.  The type of abstraction (data structure) is the same in each case, but the feature 

through which that abstraction is supported varies from environment to environment. 

 

In practice, a given environment may support the usage of some abstractions but not all.  Likewise, an end user may 

be a “programmer” in some respects but not all.  Insisting on a binary categorization of “end-user programmer” 

versus “end-user non-programmer” gets in the way of characterizing the population of end-user programmers.  

Instead, the research community could look to establish an estimate of the numbers of end-user programmers of 

certain types, and then delve into those types further to identify their needs. 

 

4.3 Characterizing the sub-populations 
 

Our next step will be to field a survey inspired by the BLS’s CPS items, which indicated how many users used tools 

like browsers, word processors, spreadsheet software, and so forth.  Enhancing this to account for feature usage (in 

addition to software usage) will facilitate segmenting the population into smaller subgroups, according to what 

abstractions they appear to be using. 

 

Of course, it may be complained that an abstraction user may not understand the abstraction itself, or even be aware 

of the nitty-gritty details deep beneath the feature’s surface.  This would not be surprising, since even professional 

programmers exhibit varying levels of understanding about the deeper details of a computer’s operation as it 

executes code, and we anticipate a similar pattern among end-user programmers.   

 

Consequently, sub-categorizing end-user programmers not merely according to abstraction usage but also according 

to abstraction understanding may offer additional insight into the capabilities and needs of end-user programmers.  
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We have tentatively identified Bloom’s taxonomy [4] of levels of understanding as a potentially useful framework 

for classifying users of various abstractions.
2
 

 

Hence, our succeeding step will be to interview some of the subgroups formed from the survey data in order to 

characterize the knowledge and objectives present within each subgroup.  These targeted studies will examine how 

the end-users think about their problems (which could, conceivably, vary by occupational type), what computational 

strategies they employ to solve those problems, and how the tools could be enhanced to further those aims. 

 

It may turn out that although 90 million American workers will be using computers at work in 2012, only a fraction 

of them understand a certain abstraction and use it to program.  The question would then become, are so few end-

users doing this because it is too hard or because it is not useful for their work, or some other reason?  Interviews, 

case studies, or contextual inquiries [1] will likely prove valuable in uncovering the answers and providing guidance 

for future development of tools and techniques to help end-users achieve their programming goals. 

 

4.4 Closing 
 

This report has extended the “55 million” estimation method to account for rising computer usage rates.  We 

estimate that 90 million American workers will use computers in 2012, significantly exceeding the 3 million 

anticipated professional programmers.  We project that in 2012, over 13 million American workers will “do 

programming” in a self-reporting sense, but based on spreadsheet and database usage, it seems likely that the number 

of end-user programmers will be much higher.  

 

We have laid out the beginnings of a framework which we will use for conducting abstraction-focused studies to 

better characterize the end-user programmer population.  Together, improved estimates and more precise 

characterizations of end-user practices will help researchers to target further work in developing tools to assist end-

users in programming tasks.  
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2
 Bloom and other educators produced this taxonomy to help teachers tailor curricula to their students’ needs [4]: 

 

• Knowledge—“Knowledge as defined here includes those behaviors and test situations which emphasize the 

remembering, either by recognition or recall, of ideas, material, or phenomena.” 

• Comprehension—“Here we are using the term “comprehension” to include those objectives, behaviors, or 

responses which represent an understanding of the literal message contained in a communication.” 

• Application—“Given a problem new to the student, he will apply the appropriate abstraction without having to 

be prompted as to which abstraction is correct or without having to be shown how to use it in that situation.” 

• Analysis—“Analysis emphasizes the breakdown of the material into its constituent parts and detection of the 

relationships of the parts and of the way they are organized.” 

• Synthesis—“Synthesis is here defined as the putting together of elements and parts so as to form a whole.” 

• Evaluation—“Evaluation is defined as the making of judgments about the value, for some purpose, of ideas, 

works, solutions, methods, material, etc.” 
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Appendix A 
 

This appendix summarizes the key data sources used in this technical report and addresses the categorization issues 

to be addressed when linking data sources with one another. 

 

Data sources 
 

In 1991, the Bureau of Labor Statistics (BLS) published projections of occupational growth patterns to 2005.  These 

were summarized in [24] using the table shown below. 

 

 
 

 

In 1999, BLS presented a summary of computer usage to a conference.  This summary covered CPS data collected in 

1984, 1989, 1993, and 1997, as summarized in the following table taken from [17] (irrelevant portions have been 

excised).  The proportion using computers clearly grew throughout the covered period. 
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Finally, in 2004, BLS published projections of occupational growth patterns to 2012.  These were summarized in 

[13] using the tables shown below (irrelevant portions have been excised); the lower table represents a partial “drill-

down” of occupations in the “Professional and related occupations” line within the upper table. 

 

 
 

 

 

 
 

Additional CPS data may be downloaded from BLS servers via the free DataFerrett utility available at 

http://dataferrett.census.gov/TheDataWeb/index.html. 

 

Linkage issues 
 

The main challenge involved in linking data sources is to establish a uniform categorization scheme for occupations.  

For example, the first table shown in this appendix (the one published in 1991) organizes occupations into 9 

categories; the second table (published in 1999) organizes occupations into 6 categories; the third table (published in 

2004) organizes occupations into 10 categories. 
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The key to understanding the relationship among these tables and other BLS data is the concept of a “standard 

occupation code” (SOC).  Each worker is assigned a six-digit SOC to identify his main job.  For example, 15-1031 

represents “Computer software engineers, applications.”  These SOCs are grouped into categories during analysis. 

 

It seems that the 6-category scheme is fairly common among BLS publications, though some of the categories may 

be broken down into pieces to highlight particular sub-categories of occupations.  The main sources of help for 

putting the sub-category pieces back together into 6 top-level categories are http://www.bls.gov/soc/soc_majo.htm, 

http://factfinder.census.gov/metadoc/occupation.pdf, and http://www.psc.isr.umich.edu/census2000/faq.html.  

 

Coalescing the information from those documents yields the occupational categorization tree below, which served as 

a guide when we linked data sources.  Rows with a gray background show the 6 top-level categories, while others 

show sub-categories.  Note that not all codes are used (for example, there are no 14-#### codes). 

 
2000 SOCs Category Label Also known as 

11-0000 through 29-0000 Management, professional and related occupations  

11-0000 and 13-0000 
Management, business and financial operations 

occupations 
Executive, administrative, and managerial 

15-0000 through 29-0000 Professional and related occupations Professional specialty 

15-1021 Computer Programmers  

15-1030 Computer Software Engineers  

15-10XX Computer Scientists and Systems Analysts 

[This is an odd sub-category, where the 

government has expressly defined the symbol 

“15-10XX” to cover only the 3 SOCs shown .] 

15-1011 
Computer and information scientists, 

research 
 

15-1051 Computer Systems Analysts  

15-1099 All other computer specialists  

Other 15-0000 

through 29-0000 
Other professional and related occupations  

31-0000 through 39-0000 Service occupations  

41-0000 and 43-0000 Sales and office occupations Tech., Sales, Admin 

41-0000 Sales and related occupations Marketing and sales 

43-0000 Office and administrative support occupations 
[43-0000 appears to include Technicians and 

related support] 

45-0000 Farming, fishing, and forestry occupations Agricultural, forestry, fishing, and related occupations 

47-0000 and 49-0000 Construction, extraction and maintenance occupations Precision production, craft, and repair 

47-0000 Construction and extraction occupations  

49-0000 Installation, maintenance, and repair occupations  

51-0000 and 53-0000 
Production, transportation and material moving 

occupations 
Operators, fabricators, and laborers 

51-0000 Production occupations  

53-0000 Transportation and material moving occupations  

 


