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Abstract
A large number of domains today require end users to compose various heterogeneous

computational entities to perform their professional activities. However, writing such end-
user compositions is hard and error-prone. Compared to the capabilities of modern program-
ming environments, end users have relatively few tools for things like composition analy-
sis, compilation into efficient deployments, interactive testing and debugging (e.g., setting
breakpoints, monitoring intermediate results, etc.), history tracking, and graceful handling of
run-time errors.

To overcome these limitations, we pose this thesis: "It is possible to build an end-user
composition framework that can be instantiated to provide high-quality composition environ-
ments at relatively low cost compared to existing hand-crafted environments for a broad class
of composition domains."

As a solution to this problem, we have designed a new technique called "end-user archi-
tecting" that associates end-user specifications in a particular domain as instances of architec-
tural styles. This allows cross-domain analyses, systematic support for reuse and adaptation,
powerful auxiliary services (e.g., mismatch repair), and support for execution, testing, and
debugging.

To allow a wider adoption of this technique, we have designed the "Halo framework"
that can be instantiated across a large number of domains, with composition models varying
from data flows, publish-subscribe, and workflows. The Halo framework supports most of the
common compositions tasks such as Search, Reuse, Construction, Analysis, Execution, and
Debugging support and provides general and reusable infrastructures with well-defined cus-
tomization points to build composition environments with these common features. Halo also
provides adapters that can be customized for different user interfaces, runtime environments,
and various analyses based on domain-specific constraints. This allows developers to sys-
tematically customize Halo and develop composition environments by using Halo’s building
blocks.

This approach can reduce the cost of development of end-user composition platforms
(compared to developing them from scratch) and improve the quality of end-user composi-
tions.
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We call them novices for being ignorant about software
engineering. They call us novices for being ignorant
about their domain. Perhaps, we both are novices...

—Reflections on a complex relationship

CHAPTER 1

Introduction
Increasingly, end users rely on computations to support their professional activities. In some cases, turnkey
applications and services are sufficient to carry out computational tasks. However, in many situations
users must adapt computing to their specific needs. These adaptations can take many forms: from setting
preferences in applications, to programming spreadsheets, to creating orchestrations of services in support
of some business process. This situation has given rise to an interest in end-user programming [Nar93],
and, more generally, end-user software engineering [KAB+11] or end-user computing [Goo97]. This
emerging field attempts to find ways to better support users who, unlike professional programmers, write
programs not as their primary job function, but to support the goals of their domain. Such end users may
be experts in their domains, but must find ways to harness the power of computation to support their tasks.

In these domains, professionals typically have access to a large number of existing applications and
data sets, which must be composed in novel ways to gain insight, carry out “what if” experiments, gen-
erate reports and research findings. Unfortunately, assembling such elements into coherent compositions
is not trivial. In many cases, users must have detailed low-level knowledge of aspects such as applica-
tion parameter settings, application invocation idiosyncrasies, file locations and naming conventions, data
formats and encodings, ordering restrictions, and scripting languages.

For example, in the field of brain imaging, scientists study samples of neural activity to diagnose dis-
ease patterns such as tumours and injuries. Research in this domain requires that scientists compose a large
number of tools and apply them to brain-imaging data sets to diagnose problems, such as malformations
and structural or functional deformities. There also exist a large number of brain image processing tools for
image recognition, image alignment, filtering, volumetric analytics, mapping, etc. Figure 1.1 illustrates a
popular neuroscience tool suite, called FSL, that is used to create scripts for analyzing FMRI [Pek06] data.
The figure illustrates part of a complex script composed of a collection of program calls to brain-imaging
libraries and with a number of input parameters. In such a scenario, end users (who are neuroscience
professionals) must create and execute detailed scripts, which is often hard and error-prone.

End users such as this have to address various concerns in such a scenario [GDRS12]. For example:
• Compatibility concerns: (1) Can the data produced by a component be consumed as an input

of another? (2) Are any input-output conversion tools required to assemble a set of mismatched
components?

• Reuse concerns: (1) How can the composition be packaged and shared with other users? (2) Where
can one find a component to reuse?

• Execution concerns: (1) Is it possible to execute a composition on a particular server? (2) How

1



A large script file

that contains 

program calls

Figure 1.1: End users in the neuroscience domain invoke a variety of programs and services.

much time will the execution take?

• Quality concerns: (1) Is the composition secure? (2) Is it possible to execute a composition faster
with a lower fidelity result?

• Reproducibility and data-provenance concerns: (1) Can an in-silico* experiment to be repeated
later? (2) What are the composition steps required to repeat a particular result?

Further, it may be difficult for such end users to determine whether a set of components can be
composed at all, and, if not, what to do about it. For example, differences in data encodings may make
direct component composition infeasible without the inclusion of one or more format converters. Even
when a valid composition can be achieved, it may not have the performance (or other quality attributes)
critical to the needs of the end users. And, even when a suitably performing composition can be created,
it may be difficult to share it with peers or reuse it in different settings.

Today there exist a large number of domains that depend on composing existing components but have
to rely on impoverished composition environments that make the task of end-user composition error-prone
and complex. Table 1.1 lists examples of some of these domains.

In most cases, end users are expected to either become programmers or live with impoverished support
(and sometimes both). Studies have shown that across many domains, end users are novices who are forced
to spend about 40% of their time doing programming activities [HH11], often resort to copy-paste, and in
the process make frequent mistakes [BGL+09].

Such end users today form large communities where their needs are not served by conventional soft-
ware composition tools. These communities could benefit from powerful domain-specific composition

*A scientific experiment conducted or produced by means of computer modeling or computer simulation.
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Domain Examples of compositions
Astronomy electromagnetic image processing tasks [DSS+05]
Bioinformatics biological data-analysis services [Let05]
Digital music production audio sequencing and editing [MH11]
Environmental Science spatio-temporal experiments [VAR09]
Film production scripting Maya and Adobe after-effects and Poser and Blender components [PKR06]
Gaming scriptable and composable 3D engines [KBK08]
Geospatial Analysis interactive visualization of geographical data [MCC11]
Home Automation control schedule for home devices [LNH03]
Neuroscience brain-image processing libraries [DEF+11]
Scientific computing transformational workflows [Seg07]
Socio-technical Analysis dynamic network creation, analysis, reporting and simulation [SGD+11]
Virtual Instrumentation experiment pipelines in LabView [Joh97]

Table 1.1: Domains involving end-user compositions.

environments where compositions are designed using high-level abstractions (or components) that can be
packaged, documented and reused through easily-accessible repositories. Additionally, such end users
would like to have intuitive interfaces that match the computational model of their domain and are natural
to their tasks [MPK04]. And furthermore, end users could benefit from analyses that can flag problems
and guide them to avoid or repair mistakes. These tools could provide feedback about software quali-
ties such as security, performance and fidelity, about which end users cannot easily reason on their own,
enabling them to meet requirements in a cost effective way [AGI98, SG98].

Indeed, a number of such platforms have been developed in recent years that have tried to achieve
the above goals. Examples include Taverna for life sciences [OGA+06], the Ozone Widget Framework
(OWF) [MCC11] for geospatial analysis, Loni Pipeline for brain imaging [RMT03], VisTrails for data
exploration and visualization [BCS+05], Steinberg’s Virtual Studio Technology (VST) for composing
music effects [MH11], etc.

While many of these platforms have been successful and several are in widespread use, they are
typically handcrafted specifically for each new end-user domain, often at a high cost. The designers
of such platforms are forced to engineer common capabilities from scratch such as component search,
access-control, type-checking and execution support. This leads to high cost in development time and
effort. As a consequence of this high development cost, we see many impoverished composition tools that
lack capabilities to support end-user composition.

In this thesis, we advocate an approach to these problems that exploits the similarity between such
compositions and software architecture, and attempts to leverage the considerable advances made within
that field over the past two decades. The key idea is to view end-user composition activities as analogous
to engaging in architectural design within a domain-specific style, and to represent those architectures
explicitly. We argue that such explicit representation can offer many benefits — it can (i) allow one to
compose components, rather than write code, (ii) provide criteria for evaluating the soundness and quality
of a composition, (iii) support reuse and parametrization, and (iv) establish a platform for a host of task-
enhancing services such as program synthesis, analysis, compilation, execution, and debugging.

By decomposing the problem in this way, we identify a new field of concern, which we term end-user
architecting. Similar to end-user programming [Nar93], we recognize up front that the key issue is bridg-
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ing the gap between available computational resources and the skill set of the users who must harness
them — users who typically have weak or non-existent programming skills. But unlike end-user program-
ming, end-user architecting seeks to find higher-level abstractions that leverage the considerable advances
in software architecture languages, methods, and tools to support component composition, analysis and
execution.

In this thesis, we argue that the key to doing this is to use an approach in which there is an explicit
architectural representation of the compositions created by end users. For a given domain the architectures
that could be created would be associated with a domain-specific architectural style corresponding to
natural computational models for the domain (such as some variant on workflow, publish-subscribe, or
data-centric styles) [SG96]. Furthermore, associated with the style and corresponding infrastructure, there
would be a set of architecture services that could support analysis, execution, etc. Finally, all of these
features would be made available to users through a graphical front end that supports access to component
repositories, architecture construction, system execution, and various additional support services.

(a)

UI
Execution Platform

Primitives
Architecture 

Style Conformance Analysis

Execution Compilation Repair

(b) (c)

Architecture 
Execution Platform

Primitives

UI

Figure 1.2: End-user Architecting Approach

This leads to a general framework of system organization in support of end-user architecting, as
illustrated in Figure 1.2. Part (a) of the figure shows the current state of affairs: users must translate
their tasks into the computational model of the execution platform, and become familiar with the low-
level details of that platform and the primitive computational elements (applications, services, files, etc.)
leading to the problems described in more detail in Chapter 3. Part (b) illustrates the new approach. Here,
end-user architectures are explicitly represented as architectural models defined in a domain- specific
architectural style. These models and the supporting infrastructure can then support a host of auxiliary
services, including checking for style conformance, quality attribute analysis, compilation into efficient
deployments, execution and debugging mechanisms, and automated repair — as shown in part (c).

In this thesis, we show that such an end-user architecting capabilities can be made available through
a customizable framework that can be instantiated across a large number of domains. Concretely, we
demonstrate a framework named Halo that implements this approach.

1.1 Thesis Statement

Specifically we investigate the following thesis:

It is possible to build an end-user composition framework that can be instantiated to
provide high-quality composition environments at relatively low cost compared to exist-
ing hand-crafted environments for a broad class of composition domains.

Next, we break down the thesis statement and elaborate the elements that compose it.
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It is possible to build an end-user composition framework that can be instantiated...

Software frameworks are powerful tools that provide significant reuse benefits to the software en-
gineering community [GS03]. By providing a general scaffolding infrastructure of libraries, their APIs,
and plugins, they reduce the development effort of the developers who can now develop richer tools by
plugging in into the framework functionality. Halo is one such framework that provides generic and
reusable building blocks that can be reused by platform developers to create quality end-user composition
environments without developing everything from scratch.

In particular, Halo provides the following capabilities:
• Reuse of existing components and compositions.

• Creation of a domain-specific vocabulary that conforms to a particular composition style (for e.g.,
dataflows, or publish-subscribe)

• Analyses that provide feedback for compatibility and correctness concerns (for e.g., QoS tradeoffs,
performance, etc.)

• Code generation plugins that map compositions to standard execution technologies (for e.g., gener-
ation of BPEL and other scripts)

• Execution support by compiling compositions into code, execution, and feedback about execution
status and results.

Platform developers can customize and reuse the building blocks provided by the Halo framework to
design their own custom composition environments without developing everything from scratch.

...to provide high quality composition environments...

In this thesis, we demonstrate that the Halo framework improves the quality of end-user composition
by allowing the end users to focus on assembly and configuration of computations rather than the low-level
application invocation idiosyncrasies that require programming expertise. Some of the quality-enhancing
features, which many composition environments lack today but that are supported by Halo include:

• Domain specificity: The ability to design a composition in its domain-specific vocabulary for com-
ponents and computations.

• Flexible modeling: The ability to design a composition at an abstract level with appropriate defaults
for various component properties.

• Interactivity and feedback: The ability to offer interactive feedback during the composition design
and reuse process, and help with debugging.

• Mismatch resolution: The ability to resolve mismatches based on domain-specific rules. Examples
include auto-correction for data mismatches, incorrect ordering of components, etc.

• Reuse and share: The ability to support reuse of pre-existing components and compositions and
share new compositions with other developers.

...at relatively low cost compared to existing hand-crafted environments...

Ideally, end users would like a composition environment that is tailored to their own composition
domain and has the qualities that we described above. However, supporting these quality requirements
comes at a cost, and more so when such capabilities need to be hand-crafted from scratch.
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We demonstrate that the Halo framework lowers this cost by providing building blocks that can be
customized for various composition environments. Composition environments can reuse a large part of the
framework, in many cases with only a few lines of code and implement capabilities such as conformance
checking, reuse support, execution support and various analyses. Furthermore, as opposed to handcrafting
composition environments from scratch, using Halo lowers the cost for many other reasons. First, the
design decisions and components necessary when starting development from scratch are already built into
the Halo framework, and can be reused. Second, working with standardized and reusable styles facilitates
automated error-checking as styles encode the rules for component compositions. Last but not least,
the framework addresses the needs of the larger ecosystem of stakeholders consisting of domain-experts,
component developers, platform developers, etc., who currently have to handcraft everything from scratch.
Having Halo’s reusable building blocks reduces the design costs for such stakeholders.

...for a broad class of composition domains.

Within an increasing number of domains, end-user composition environments are an emerging trend.
Even though they look very different in terms of their composition vocabulary, they often conform to
common computation models — such as (i) dataflow, (ii) publish-subscribe, or (iii) call-return. For ex-
ample, workflows composed in Taverna [HWS+06] in the e-science domain conform to dataflow style,
widgets interactions in Ozone [MCC11] for the geospatial analysis domain conform to a variant of a
publish-subscribe style, while scientific workflows in Kepler [LAB+06] correspond to a mix of data-flow
and call-return style. We demonstrate that the Halo framework is general enough to support such common
computation models for end-user compositions.

We demonstrate that we can associate architectural representations with end-user specifications [DEF+11]
and use them for analysis. Specifically, software architecture allows one to define architectural styles,
where each style denotes a family of systems that shares a common vocabulary and semantics of compo-
sition, conforms to rules for combining components, and identifies analyses that can be applied to systems
in that family [SG96]. Such styles can be defined using a declarative language like Acme, which (in many
cases) can be directly compiled for constructing systems in that style and for checking conformance with
the constraints of the style. The Halo framework associates end-user compositions as instances of architec-
ture styles and uses them as a basis for analysis, code generation and guidance to end users. This allows us
to build a generic framework that (a) is reusable across different domains, (b) can support different types
of computation models, and (c) support various potential analyses and quality requirements.

1.2 Thesis Evaluation

To evaluate this thesis, we applied our approach as exemplified by the Halo framework to a number of
systems, each belonging to one of three architectural styles, across very different domains. Together, these
example applications serve to demonstrate applicability across a breadth of styles. We then assessed the
cost-effectiveness of the framework using a task-based estimation of effort and informal user feedback.
Specifically, as we we will show in Chapter 6.3, Chapter 6.1, and Chapter 6.2 our approach satisfies the
three claims as follows.

To evaluate generality, we demonstrated that the Halo framework is general enough to be applied
across different domains withing common computation models such as dataflow, pub-sub and call-return.
We do this validation through the following steps:
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• End-User Architecting in 2 Computation Styles (Dataflow and Publish-Subscribe)

• End-User Architecting in 3 Domains (Arithmetic Expressions, Brain Imaging, and Widget frame-
work)

Besides these domain-specific instantiations, we also demonstrate generality by different instantia-
tions of the framework building blocks (which we will explain in detail in Chapter 3. Specifically, we
have the following demonstration steps:

• Demonstrate End-User Architecting with 3 User Interface Adapters (Arithmetic Expressions, Brain
Imaging, and Widget framework)

• Demonstrate End-User Architecting with 2 Execution Adapters (BPEL, SCA)

• Demonstrate End-User Architecting with 3 Analysis Adapters (Arithmetic Expressions, Brain Imag-
ing, and Widget framework)

• Demonstrate End-User Architecting with 2 Repository adapters (Arithmetic Expressions in SwiFT
and in Dyanamo)

To evaluate cost-effectiveness, we demonstrate that the Halo framework reduces the cost of devel-
opment of end-user composition platforms. We show that the Halo framework provides common and
reusable infrastructures, which are flexible to customize to develop end-user composition environments.
In effect, Halo saves engineers time and development effort to build end-user architecting environments.
To show effort savings, we characterize the end-user composition tasks and provide coarse-grained, task-
based estimation of effort, then qualitatively assess and evaluate savings with the Halo framework relative
to current practice. In particular, we perform this task analysis for three different environments.

To evaluate support for high-quality, we carried out a qualitative study [DHG17] where we identi-
fied the set of quality dimensions needed for end-user compositions across a number of domains, includ-
ing: (a) Search and Explore, (b) Reuse support, (c) Composition Construction, (d) Analysis Support, (e)
Execution support, and (f) Debugging. We demonstrated that the Halo framework improves the quality of
end-user composition by supporting all of these quality dimensions.

1.3 Thesis Contributions

This thesis advances the state-of-art in the field of end-user software engineering by providing an approach
that allows easier construction and analysis of end-user compositions. Specifically, this thesis makes the
following contributions:

• A novel technique for end-user architecting that dramatically reduces the time, cost and difficulty
of building a significant class of end-user composition environments. This technique benefits com-
position environment developers as they can rapidly and incrementally customize composition en-
vironments at significantly lower cost than the existing hand-crafted environments.

• A reusable framework for end-user architecting that provides interfaces, libraries, controls struc-
tures and the necessary plug-in points for developing high quality end-user composition environ-
ments.

• A set of analyses that improve the end-user composition experience. Examples include: ordering
analysis, security and privacy analysis, performance analysis, and analyzing composition deploy-
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ment while considering trade-offs such as performance vs. fidelity.

• A collection of styles that can be refined and specialized to model end-user compositions.

Additionally, the thesis contributes to the field of software architecture through extensions to archi-
tecture description languages to support:

• Generic and reusable analytic capabilities that are designed for end-user compositions, but are
also relevant for architecture modeling. Examples include automatic mismatch detection and reso-
lution, fidelity trade-offs, performance and security analysis based on styles.

• Support for additional user interface and execution mappings associated with the architecture
description. Today, most architecture tools allow representation of architecture vocabulary consist-
ing of properties and constraints and some minimal user-interface specifications describing how the
tools can visually display the vocabulary. Halo extends this representation with additional mappings
to user interface and run-time representations that could potentially be used for a number of other
use cases besides end-user architecting.

Some of the publications that have arisen from this work include:

• Vishal Dwivedi, James Herbsleb, and David Garlan. What ails end-user composition: A cross-
domain qualitative study. In End-User Development. IS-EUD 2017, volume 10303 of Lecture Notes
in Computer Science. Springer, 2017

• Vishal Dwivedi, David Garlan, Jürgen Pfeffer, and Bradley R. Schmerl. Model-based assistance
for making time/fidelity trade-offs in component compositions. In 11th International Conference
on Information Technology: New Generations, ITNG 2014, Las Vegas, NV, USA, April 7-9, 2014,
pages 235–240, 2014

• Perla Velasco Elizondo, Vishal Dwivedi, David Garlan, Bradley R. Schmerl, and José Maria Fer-
nandes. Resolving data mismatches in end-user compositions. In IS-EUD, pages 120–136, 2013

• David Garlan, Vishal Dwivedi, Ivan Ruchkin, and Bradley R. Schmerl. Foundations and tools for
end-user architecting. In Monterey Workshop, pages 157–182, 2012

• Vishal Dwivedi, Perla Velasco Elizondo, José Maria Fernandes, David Garlan, and Bradley R.
Schmerl. An architectural approach to end user orchestrations. In The European Conference on
Software Architecture (ECSA), pages 370–378, 2011

• Bradley R. Schmerl, David Garlan, Vishal Dwivedi, Michael W. Bigrigg, and Kathleen M. Carley.
Sorascs: a case study in soa-based platform design for socio-cultural analysis. In ICSE, pages 643–
652, 2011

1.4 Document Roadmap

In the remainder of this thesis, Chapter 2 describes the background of this work and discusses related
solutions and their limitations. Chapter 3 describes the overall end-user architecting approach, and sets
the context for introducing the Halo framework. In Chapter 4, I describe the technical architecture of
Halo with key customization points and how they facilitate reuse and low-effort customization towards
creating a target end-user composition environment. In Chapter 6, I discuss the evaluation of the thesis
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and how the Halo framework provides a general-purpose framework (Chapter 6.3) that allows building
high-quality (Chapter 6.1) composition environments at a low Cost (Chapter 6.2). Chapter 7 describes
the design trade-offs along with issues and limitations associated with end-user architecting and the Halo
framework. Chapter 8 concludes this thesis, highlighting future work that can build on the foundations
and tools developed in this dissertation.
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If I have seen further, it is by standing on the shoulders
of giants.

—Sir Isaac Newton

CHAPTER 2

Related Work

Software architecture emerged as a subfield of software engineering in the 1990s as a way to tackle the
increasing complexity of software systems design. As computing became more pervasive, the field of
end-user software engineering emerged in the early 2000’s. As use of computers and programming grew
across a number of domains, the field of end-user computing to study how we can realize the potential
for high-end computing to perform problem-solving in a trustworthy manner across these domains. While
the principle idea behind software architecture has been to allow software engineers to treat system design
at a high-level of abstraction, representing a system as a composition of interacting components. In this
thesis, we argue that these architectural abstractions can also be used to support end-user compositions.

The following areas have influenced the formulation and direction of this work:

2.1 End-user software engineering

End-user software engineering is a research area at the intersection of computer science and human-
computer interaction [KAB+11]. It aims to empower users who write programs, but not as their primary
job function. Such users may not have the skills of professional software developers and they often they
face many of the same software engineering challenges: understanding requirements, carrying out design
activities, supporting reuse, quality assurance, etc. As noted earlier, studies have shown that across many
domains, such end-users spend about 40% of their time doing programming-related activities, but employ
few of the tools and techniques used by modern software engineering [HH11]. As as result, creating
computations often leads to systems that are brittle, contain numerous bugs, have poor performance,
cannot be easily reused or shared, and lead to a proliferation of idiosyncratic solutions to similar problems
within a domain [BGL+09].

To date, most of the research in end-user software engineering has focused on end-user programming,
where novel forms of programming languages have been developed for enhanced usability within a do-
main. These include visual programming languages [Mye90], programming-by-demonstration [Cyp93],
direct manipulation programming languages [HHN85a], and domain-specific languages [Fow11]. The
most popular end-user development tool is the spreadsheet. Due to their unrestricted nature, spreadsheets
allow relatively unsophisticated computer users to write programs that represent complex data models,
while shielding them from the need to learn lower-level programming languages.

Furthermore, many end-user development activities are collaborative in nature, including collabora-
tion between professional developers and end-user developers and collaboration among end-user devel-
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opers. In addition, such end-user developers benefit from online and offline communities, where end-user
developers can collaboratively solve end-user development problems of shared interest or for mutual ben-
efit.

In contrast, this work focuses on domains in which component composition is the primary form of
end-user system construction, an activity that we have termed end-user architecting. For such domains,
we have argued, it makes sense to explore ways to adapt the tools and techniques of software architecture,
rather than software programming. However, similar to end-user development activities, this work looks
into the collaborative nature of composition environment development, where professional developers
collaborate with domain experts to build the architecture styles and other parts of the end-user architecting
environments.

2.2 Software architecture

There exists a large body of foundational work on software architecture that has paved the way for ar-
chitecture to be used as a model to reason about a software system. The landmark paper by Perry and
Wolf defined software architecture and established it as a discipline, drawing analogies from building
architectural styles and forming a basis for using architectures as system models [PW92]. Shaw and Gar-
lan characterized and codified many common styles of system architecture [SG96]. Bass, Clements, and
Kazman investigated the practical issues of applying software architecture through many case studies,
providing techniques for designing and analyzing architecture [BCK07].

In this work we build directly on that heritage. Key influences have been architecture descrip-
tion languages [MT97], the use of architectural styles [SG96, MKMG97], and architecture-based anal-
yses [GS06]. An architectural style [AAG93] defines the vocabulary of element types, properties com-
mon to the element types in theses systems, a set of constraints on the permitted composition, and the
associated analyses for reasoning about this class of systems. In essence, architectural style is useful for
capturing commonalities between systems of a particular class and, consequently, variability across differ-
ent classes of systems. In the past decade, there has been significant work on how styles can be formalized
and applied to design systems and provide analysis capabilities [AAG93, MKMG97]. The decoupling
of style from system during design makes it feasible to build generic infrastructure that can be tailored
to specific domains. Consequently, Architecture description languages (ADLs) have been developed for
various domains, for modeling systems, and even interchange, including Acme, C-2, Meta-H, Rapide,
SADL, UniCon, and Wright, to name a few [MT97].

The premise of the end-user architecting approach is to recognize that the computational design activi-
ties performed by many communities are fundamentally architectural in nature, and therefore architectural
techniques can be applied here. However, there also remain a number of gaps and challenges that require
additional research and adaptation of those techniques to the needs of end users. While the end-user ar-
chitecting approach builds on the rich literature of software architecture, it adds many contributions to this
field.

Today, there is limited support for export and effective reuse of architectural specifications. The end-
user architecting approach adds this capability through APIs that allow packaging, search and reuse of
compositions. Supporting generic and reusable analytic capabilities is an even harder problem in the field
of software architecture where the end-user architecting approach provides useful contributions. Further-
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more, there exists limited research on providing bridging mechanisms between architectural specifications
and user-interface or execution-infrastructure layers that makes end-user architecting a challenging prob-
lem. Even though, architecture definition languages like Acme provide a rich set of base styles (client-
server, publish-subscribe, etc.), it is often non-trivial to design end-user composition styles from these
— mainly because it requires both technical and domain-expertise to determine the rules of the domain.
The end-user architecting approach demonstrates how a collection of styles can be defined across various
domains through refinement and specialization of base styles [DEF+11].

2.3 Software product lines and module systems

Software product lines is another related research approach where a program can be tailored to a specific
application scenario based on different user-selected features [CN02]. In the last decade several meth-
ods have been established to create product line architectures. Examples include, COPA, FAST, FORM,
KobrA and QADA [Mat04]. Recently, Norbert Siegmund et al. in their work [SRK+11, SKK+12]
demonstrated how to derive non-functional properties based on user-selected features. While end-user
compositions have similarities with product lines in terms of assembly of components, they differ in terms
of the computation model that defines the component assembly. For example, end-user compositions
could be in the form of dataflow or publish-subscribe where a configuration is not merely an assembly
of components, but also the connectors that facilitate the communication between them. Similarly, there
has been significant work towards designing module systems [KOE12] where developers can decompose
a large system into subsystems, or modules, which can be combined into meaningful configurations.

Modularization has been a well-known mechanism for improving the flexibility and comprehensi-
bility of a software system since the early 70s [Par72]. Today most languages use module systems in
some form. For instance, modules have been used as a collection of definitions of possibly heteroge-
neous components (such as, functions, variables, exceptions, objects and classes) that are made available
through an interface. Like product lines, module systems offer an efficient technique for packaging sys-
tems and hiding information about implementation. End-user compositions on the other hand, assemble
domain-specific functions (or components) that need to be mapped to code but are not necessarily code
blocks. The end-user architecting technique facilitates this mapping between end-user concepts (defined
in a visual specification) to code, using an intermediate architectural specification for analysis and code
generation.

2.4 Domain specific languages (DSL)

A domain-specific language (DSL) is a type of programming language or specification language that
offers expressive power focused on a particular problem domain. DSLs raise the level of abstraction
in software development by providing constructs to express high-level concepts from which lower-level
implementations can be generated. This abstraction has allowed DSLs to be used for software construc-
tion [VDKV00], data-processing (SQL), generating documents (tex), pictures (PIC), scripting (Unix shell
scripts) and other scenarios.

Architecture specifications can be considered as a form of domain-specific language. Therefore many
of the benefits of DSLs also apply to architecture specifications. The similarities between architecture
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specifications and DSLs could be best understood from Figure 2.1.

Figure 2.1: DSL based frameworks and Halo.

While both DSLs and architecture specifications allow abstraction over the concrete realization of
concepts, the differences are in what they encode and how. In a broad range of application domains,
DSLs are used as simple programming languages (or extensions to programming languages) via built-in
abstractions and notations that simplify writing code. Software architectures, on the other hand, represent
a system as a composition of interacting components independent of the programming language that
implements them. Properties and constraints on use of these components (and their compositions) can
then be specified in a style that allows designers to analyze systemic quality attributes and tradeoffs, such
as performance, reliability, security, availability, maintainability, and so on. DSLs, on the other hand,
provide similar analyses by type-checking and analyzing language grammars and rules.

Traditionally, DSLs have been used as special-purpose languages and therefore re-purposing (or re-
targeting) DSLs to different domains has been a difficult problem [HV10]. Although, there has been some
recent work towards DSL extension, restriction, unification, self-extension and composition [EGR12], but
it still remains a hard problem. Similarly, there has been some work towards style-based composition and
generalization [NA00, DEF+11, AAG93, MG96] and there exist many tools and approaches to address
this problem.

Furthermore, style-based composition has similarities with frameworks for creating DSLs —called
DSL workbenches — examples of which include Intentional programing [Sim95], Eclipse-based Xtext [EV06],
JetBrains’s Meta Programming System [VS10], Microsoft’s Software Factories [GS03] and SugarJ [ERKO11].
These workbenches allow language designers to define a DSL in three main parts: schema, editor(s), and
generator(s). These are used for type-checking and other analyses. Similar to these DSL workbenches,
the Halo framework provides the basic building blocks for code generation, analysis and feedback that
can be used for end-user composition.
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2.5 Tools and frameworks for end-user composition

A large number of domains require technically-naive users to compose computational elements into novel
configurations, such as workflows and scripts for experiments and analyses. Such users often form large
communities that share a common set of tasks, vocabulary, and computational needs. As I described in
Chapter 1, examples of these communities include astronomy [DSS+05], bioinformatics [Let05], envi-
ronmental sciences [VAR09], intelligence analysis [SGD+11], neuroscience [Neu], and scientific com-
puting [Seg07]. In such communities simple turnkey or parameterized implementations are inadequate,
since it is impossible to anticipate all possible configurations — hence the need for tools that can help
users in creating, executing, and sharing compositions.

As a consequence, a number of powerful composition environments have been created for par-
ticular problem domains. Examples include: Loni-pipeline [RMT03] for brain-imaging compositions;
Galaxy [GRH+05] for genomics; and Vistrails [BCS+05] for data-exploration and visualization for sci-
entific applications. Other more generic composition environments, such as Taverna [OGA+06], Ke-
pler [LAB+06], WINGS [GRD+07], and Ozone [MCC11], can be used across several domains, but typi-
cally only support a specific computation model — such as workflow or publish-subscribe.

In contrast to these efforts, the end-user architecting approach represents compositions as instances
of domain-specific architectural styles, which can be analyzed for correctness and quality. This thesis
attempts to lay the foundation for viewing this class of tools and frameworks as supporting a form of
architecture design, and argues that there are considerable benefits in taking this point of view. Among
those benefits are the ability to reuse compositions, create cross-domain analyses, provide systematic
support for reuse and adaptation, support powerful auxiliary services (e.g., mismatch repair), and support
execution, testing, and debugging.

2.6 Architecture-based code generation

There has been a lot of work towards code generation through the translation of architecture descriptions
specified in an ADL to a programming language, and association of architecture and code. Shaw and
Deline did some early work in modelling of architectures and associating them with their implementation
artifacts [SDK+95]. Similarly, Aldrich et. al. created ArchJava [ACN02], which combines software ar-
chitecture specifications to Java implementation in order to ensure conformance between architecture and
code, and thus, support the co-evolution of both architecture and implementation. Medvidovic et al built
an environment called Dradel that extended the C2 language to support architecture based evaluation of
code [MRT99]. Similarly, the Model driven architecture (MDA) framework by the OMG group [BCD+03]
used UML abstractions to generate code artifacts, which has been used across various domains. There have
many other similar systems that used the underlying technique of mapping architecture model to code
artifacts and generation of code. Examples include, generating code from design patterns [BFVY96],
generating code from event models [MS11], and various other model based techniqes [SGT20]. However,
the focus of many of these techniques has been to provide a generic code-generation approach rather than
targeting towards supporting a framework for building a composition or a development environment based
on architecture or other component models.

More recently, there has been a lot of practical work at NASA where architectural descriptions
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Figure 2.2: F’ architecture based analysis and code generation

have been used to generate code and test artifacts, which are used for various small satellite missions.
FPrime [BCW+18] is one such open-source flight software framework developed at JPL and tailored to
small-scale systems such as CubeSats, SmallSats, and instruments. As these NASA missions have modest
budgets, and tight schedules, having an architectural framework that allows building blocks such as ar-
chitecture, infrastructure, tools, and reusable software components reduces the overall development time
and improves the quality of software. FPrime, similar to our approach, uses (1) an architecture that de-
composes flight software into discrete components with well-defined interfaces; (2) a C++ framework that
provides core capabilities such as message queues and threads; (3) tools for specifying components and
connections and automatically generating code; (4) a collection of ready-to-use components; and (5) tools
for testing flight software at the unit and integration levels.

2.7 Limitations to State-of-the-Art Addressed

In this chapter, we presented an overview of the related work to show how the state-of-the-art partially
serves our thesis objective. Advances in software research provide the language, model, and analysis to
represent and reason about a system’s software architecture, giving us the powerful notion of architectural
style. Research in end-user software engineering domain, helps with techniques related to collaborative
aspects of software development in domains where end users and software professionals work together
for end-user development. Research in product lines and DSLs helps us with a better understanding
of supporting variability of the frameworks. Furthermore, the various end-user composition tools and
frameworks provide us a better understanding of the types of analyses supported (and often missing) in
such environments.

However, current approaches present a number of limitations and unresolved issues, which we address
in this thesis. In particular, traditional end-user computing approaches have focused on relatively unso-
phisticated computer users (rather than programmers with advanced skills). Segal refers to such advanced
programmers as “professional end-user developers" — people such as research scientists who work in
highly technical, knowledge-rich domains and who develop software in order to further their professional
goals [Seg07]. End-user architecting is a common activity for such end users. Naturally, while the tra-
ditional end-user software engineering research has focused on spreadsheets, visual programming, and
programming by example, this thesis primarily focuses on the needs of ‘professional end-user developers’
such as neuroscientists, intelligence analysts, financial mathematicians, planetary scientists, etc., that used
specialized end-user composition environments with complex analytic needs. Architecture-based analyses
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are not only useful to such end users and problem domains, but it also allows development of rich compo-
sition environments with advanced analytic features [DEF+11]. Our approach allows such capabilities to
be made available to a wide number of composition domains.

These areas of research has helped to clarify the key requirements and features of end-user composi-
tion tools that we detail in Chapter 3.
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An approach to support design and analyses of
compositions using high-level abstractions designed
using architectural styles...

—End-User Architecting

CHAPTER 3

End-User Architecting
The objective of this thesis is to empower platform developers with an approach and the tools to add
analytic capabilities to end-user composition environments. In this chapter, we outline the key features of
our approach, which consists of a generic framework called Halo that can be instantiated across various
domains, and discuss the technical challenges that must be addressed to make this approach work.

3.1 End-user architecting overview

Across many domains, the key design activity of end users comprises of composing various computa-
tional elements while satisfying different domain-specific constraints, and run various functional and non-
functional analyses. We argue that the computational design activities performed by end users in these
communities are fundamentally architectural in nature. Recognizing that, one can then explore how mod-
ern techniques and tools in support of software architecture can be applied to this new area of end-user
architecting, which we define as:

“End-user architecting is an approach that provides ways to incorporate software architecture
based techniques to design quality end-user composition platforms, which can be used by
end users to compose, analyze, and execute high-quality compositions in an efficient man-
ner." [GDRS12]

Software Architecture emerged in the 1990s as an important subfield in software engineering. End-user
architecting aims to build on the large body of work in Software Architecture. Since its emergence, there
has been a significant development of foundations, tools, and techniques to aid software architects. These
include formal and semi-formal architecture description languages (ADLs) [MT97], architecture-based
analyses [GS06], architecture reconstruction tools [SAG+06], architecture evaluation methods [CKK01],
architecture handbooks [BMR+96], architecture style definition and enforcement [GMW00], and many
others.

The principle idea behind software architecture is to allow software engineers to treat system design
at a high-level of abstraction, representing a system as a composition of interacting components. Prop-
erties of those components and their compositions can then be specified in a way that allows designers
to analyze systemic quality attributes and tradeoffs, such as performance, reliability, security, availability,
and maintainability [SG96].

We extend this to end-user compositions through an explicit architectural representation of the com-
positions. The approach relies on the fact that for a given domain, the end-user specifications could be
associated with a domain-specific architectural style corresponding to natural computational models for
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the domain (such as some variant on workflow, publish-subscribe, or data-centric styles). Further, associ-
ated with the style and corresponding infrastructure, there could be a set of architecture services that could
support analysis, execution, etc. Finally, all of these features could be made available to users through a
graphical front end that supports access to component repositories, architecture construction, system exe-
cution, and various additional support services. As we discussed earlier in Chapter 1, Figure 3.1 describes
the high-level idea behind this approach.

(a)

UI
Execution Platform

Primitives
Architecture 

Style Conformance Analysis

Execution Compilation Repair

(b) (c)

Architecture 
Execution Platform

Primitives

UI

Figure 3.1: End-user Architecting Approach

Part (a) of the figure shows the current state of affairs: users must translate their tasks into the compu-
tational model of the execution platform, and become familiar with the low-level details of that platform
and the primitive computational elements (applications, services, files, etc.). Part (b) illustrates the new
approach. Here, end-user architectures are explicitly represented as architectural models defined in a
domain-specific architectural style. These models and the supporting infrastructure can then support a
host of auxiliary services, including checking for style conformance, quality attribute analysis, compila-
tion into efficient deployments, execution and debugging mechanisms, and automated repair — as shown
in Part (c).

The following aspects of software architecture provide us the mechanisms to handle some of the
requirements for end-user composition:

• Component composition: Software architecture represents a system as a composition of compo-
nents, supporting a high-level view of the system and bringing to the forefront issues of assignment
of function to components, component compatibility, protocols of interaction between components,
and ways to package component compositions for reuse.

• Domain-specific computation models: Software architecture allows developers to represent a sys-
tem using compositional models that are not restricted by the implementation platform or pro-
gramming language, but can be chosen to match the intuition of designers. Specifically, software
architecture allows one to define architectural styles, where each style denotes a family of systems
that shares a common vocabulary of composition, conforms to rules for combining components,
and identifies analyses that can be applied to systems in that family [SG96]. Styles may represent
generic computational models such as publish-subscribe, pipe-filter, and client-server. Or, they may
be specialized for particular domains [Mon99a, MG96].

• Analysis: Software architecture allows developers to perform analysis of quality attributes at a
systems level. This is typically done by exposing key properties of the components and their inter-
actions, and then using those properties in support of calculations to determine expected component
compatibility, performance, reliability, security, and so on [GS06]. This in turn allows developers
to make engineering tradeoffs, for example balancing attributes like fidelity, performance, and cost
of deployment to match the particular business context. Additionally, in some cases it is possible to
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build analytic tools that not only detect problems, but also suggest possible solutions [SG03].

• Reuse: Software architecture supports several kinds of reuse. First, architectural styles provide a
basis for sharing components that fit within that style [Mon99a, MG96]. Modern examples of this
include platforms like J2EE and frameworks like Eclipse. Second, software architectures permit
the definition of reusable patterns that can be used to solve specific problems [BCK07, BMR+96].
Third, most architectural models support hierarchical description, whereby a component can be
treated as a primitive building block at one level of composition, but refined to reveal its own sub-
architecture.

• Execution support: For some architectural styles tools can generate implementations. Typically
this is done by using a repository of components that conform to the style, and then compiling
the system description into executable code [GRS+05]. Additionally, software architectures can be
used for run-time monitoring and debugging [YGS+04].

• Reducing implementation cost through architecting: Implementations supported by software ar-
chitecture may significantly reduce the time-consuming tasks for implementation. Robert Monroe
demonstrated in his thesis [Mon99b] that design of programming environments can be done in a
cost-effective manner by using architectural specification via styles, which can define both the com-
putation specific elements as well as domain-specific constraints. Furthermore, such an architecture
layer can be used to generate code, which can lower the overall cost of software development. Ex-
amples include, systems such as F’ ?? that allow generation of code for flight satellite systems at
NASA. Finally, styles can be designed by domain experts allowing the platform developers to reuse
the pre-designed domain-expertise and analytical capabilities.

3.2 Architecture-based component composition

In the subsequent part of this chapter we discuss an in-depth example of how the end-user architecting
approach is used to build an end-user composition environment in the Neuroscience domain. But before
we do that, we must discuss 3 key techniques for end-user architecting.

One of the first techniques is the explicit representation of a composition vocabulary in an architec-
tural style. Examples of such styles include: variations of dataflow, publish-subscribe, etc. This allows
us to define the various constraints and rules for compositions, and the analyses that can be run on them.
End-user architects who need to design such styles may need not start from scratch; they are provided
various base styles that can be extended and refined to define rules for composition in a particular do-
main. In Section 3.3 we describe in detail what such a style looks like in the Neuroscience domain, and a
general-purpose approach to build such styles.

The second technique, and the centerpiece of the end-user architecting approach, which is key to
building tooling for end-user architecting, is the explicit use of end-user architecture as a layer (as shown
in Figure 3.1) to drive end-user composition. While there may be low-level tools, programs or scripts, they
can be composed together as services, and an explicit architecture-based middleware can guide creating
the compositions, debugging and executing them. This end-user architecture layer can provide support for
guidance, analysis, reuse support, and execution without end users having to worry about implementation-
specific technical details. In Section 3.4, we describe an example of an end-user architecture layer for the
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Neuroscience domain.
This brings us to our third technique, where the instantiation of the end-user architecture layer is

supported by the Halo framework. While the end-user architecture layer can be purpose-built for each
environment, it is costly to do so and Halo provides a set of building blocks to reduce this cost. In
Section 3.5, we introduce the Halo framework for end-user achitecting and what the application of Halo
means in the domain of end-user architecting.

3.3 Using architecture style to define Neuroscience composition vocabu-
lary

The first major technique employed by the end-user architecting approach is the use of a stylized software
architecture model to represent software compositions. In one of our previous works, we demonstrated
how different architecture styles can be used for assembling computations in various domains [DEF+11].
Not only do such styles allow the definition of a domain-relevant vocabulary, but through refinements and
specializations these styles can be used to represent dataflows, publish-subscribe communications and a
mix of other computation models. The use of such styles gives us leverage to use existing architectural
analysis techniques to provide advice and guarantees to users about their compositions via various formal
analyses. Furthermore, architecture styles allow building domain-vocabularies that can support composi-
tion and debugging, which is critical to support various common end-user composition tasks.

Software architecture provides the high-level structure of a system, consisting of components, con-
nectors, and properties [SG96]. While it is possible to model the architecture of a system using such
generic high-level structures, it is crucial to use a more specialized architectural modeling vocabulary that
targets a family of architectures for a particular domain. This specialized modeling vocabulary is known
as an architectural style [SG96] and it defines the following elements:

• Component types: represent the primary computational elements and data stores.

• Connectors types: represent interactions among components.

• Properties: represent semantic information about the components and connectors.

• Constraints: represent restrictions on the usage of components or connectors, e.g. allowable values
of properties, topological restrictions.

Acme [GMW97b] is an architectural definition language (ADL) that provides support to define such
styles. Acme’s predicate-based type system allows styles to inherit characteristics from other styles. When
a style element (or the style itself) inherits other elements, not only does it inherit the properties, but
also the constraints defined on its usage. Acme allows definition of components and connect and their
composition constrains through styles, which allow compositions in a high-level visual language. Such
visual compositions can be compiled into code and executed. The constraints of the visual composition
are defined in styles, which can be inherited and refined based on various properties.

An example style for dataflow compositions,created as part of my research, is SCORE [DEF+11],
which provides a vocabulary for description of workflows architectures. It abstracts the specification of
workflows to only the core properties and constraints of concern that are relevant to the specific domain.
The SCORE style specifies rules that are evaluated at design time, enforcing restrictions on the kinds of
components users can compose. For example, a given domain can impose restriction on the types of data
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a component can consume and this can specified in a style that is used by the composition. Writing these
rules involves some degree of technical expertise, but these are associated with the architectural style,
which is written once by an end-user architect, and then used by end users for modeling workflows based
on the style.

Table 4.4 shows SCORE architectural types, functions and constraints that are used to specify work-
flows using SCORE. These constrants are based on Acme’s architecture constraint language, where con-
straints are expressed as first-order predicates over architecture structure and properties of the workflow
elements. The basic elements of the constraint language include constructs such as conjunction, disjunc-
tion, implication and quantification. Various domain-specific constraints can be defined based on Acme’s
constraint language. Such constrains not only prohibits end users from creating inappropriate service
compositions, but also promotes soundness by ensuring feedback mechanism via marking errors when a
component fails to satisfy these constraints. More details of how SCORE is refined and specialized with
multiple domain-specific constructs are explained later in this chapter.

Properties and constraints on architectural elements can be used to analyze systems defined using
SCORE. Table 3.2, for example, displays some analyses that are built using SCORE properties, such as
analyzing a workflow for correctness, and various domain-specific analyses based on workflow properties.
Some of the examples of such analyses written in Acme ADL are presented in [GS06]. The rules for these
analyses are written as predicates, which allow compositions to be analyzed for correctness while end
users design them.

3.3.1 Neuroscience example

Functional magnetic resonance imaging (fMRI) is a common form of analysis performed by neuroscien-
tists in the brain-imaging domain to understand the behavior of the human brain [Pek06]. A typical fMRI
analysis consists of sequences of computations over brain image data to support hypotheses or interpreta-
tions, such as assessing the evolution of cognitive deficits in neurodegenerative diseases [Eid09]. Figure
3.2 illustrates a typical image translation process.

(a) Raw Image (b) Aligned (c) Spatial Filtering (d) Registered

Figure 3.2: Brain image data viewed after individual pre-processing steps.

Neuroscientists today have at their disposal large repositories of brain imaging data, such as the
BIRN Data Repository [Bio] and the Portuguese Brain Imaging Network Project [BIN]. Neuroscientists
also have access to a large variety of processing tools, which perform functions such as those listed in
Table 3.3.

Today, while professional neuroscientists can easily identify the steps required for processing brain
imaging data, because of a proliferation of possible tool implementations for each step and their idiosyn-
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Components Description

DataStore Components for data-access (such as file/SQL data-access)

LogicComponent Components for conditional logic (such as join/split etc)
Service Components that are executed as a service call
Tool Components who’s functionality is implemented by tools
UIElement Special-purpose UI activity for human interaction
Connectors Description
DataFlowConnector Supports dataflow communication between the components.
DataReadConnector Read data from a DataStore Component
DataWriteConnector Write data to a DataStore Component
UIDataFlowConnector Provides capabilities to interact with UIElements
Ports Description
configPort Provides an interface to add configuration details to components
consumePort Represents data-input interface for a component.
providePort Represents data-output interface for a component.
readPort Provides data-read interface for DataStore component
writePort Provides data-write interface for DataStore component
Roles Description
consumerRole Defines input interface to DataFlow/UIDataflow connectors
providerRole Defines output interface to DataFlow/UIDataflow connectors
dataReaderRole Defines input interfaces for the DataRead/DataWrite connectors
dataWriterRole Defines output interfaces for the DataRead/DataWrite connectors
Acme Functions Description
Workflow.Connectors The set of connectors in a workflow
ConnectorName.Roles The set of the roles in a connector
self.PROPERTIES All the properties of a particular element
size( ) Size of a set of workflow elements
Invariant A constraint that can never be violated
Heuristic A constraint that should be observed but can be selectively violated
Constraint types Example
Structural Checking that connectors have only two roles attached

rule onlyTwoRoles = heuristic size(self.ROLES) = 2;

rule allValues = invariant forall p in self.PROPERTIES

| hasValue(p);

Membership Ensuring that a workflow contains only 2 types of components
rule membership-rule = invariant forall e: Component

in self.MEMBERS |declaresType(e,ComponentTypeA) OR

declaresType(e,ComponentTypeB);

Table 3.1: Illustrative example of composition elements in SCORE style.

cratic parameterization requirements, they find it difficult to choose and assemble tools to implement these
steps. Furthermore, while these experts can debug a processing script by examining the outputs, novices
are typically unable to do this. As an example of the complexity introduced by tool parameterization,
Figure 1.1 illustrates a part of a typical script in which a single logical processing step requires the speci-
fication of 9 parameters*.

Additional complexity arises because of implicit sequencing constraints. For example, a mandatory
step in fMRI analysis is to perform pre-processing operations on brain image data to remove or control

*In practice, the number of parameters ranges from 5 to 25.
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STRUCTURAL ANALYSIS TYPE
Data Integrity Data-format of the output port of the previous Predicate based

connector matches the format of the input port
Semantic correctness Membership constraints for having only limited Predicate based

component types are met
Structural soundness All Structural constraints are met, and there are:

- no dangling ports Predicate based
- no disconnected data elements
DOMAIN-SPECIFIC ANALYSES TYPE

Security/Privacy Identify potential security/privacy issues Program based
Analysis based on rules
Order Analysis Evaluate if ordering of two services makes sense Program based

Table 3.2: Illustrative examples of some architecture-based analyses

Operation Description Tool
name

Align Alignment of an fMRI sequence based on
a reference volume (i.e. motion correction,
direction correctness)

fslmaths,
fslroi,
mcflirt

Segmentation Segmentation of a brain mask from the
fMRI sequence

bet2,
fslmaths,
fslstats

Spatial Filter-
ing

Compute spatial density estimates for
Neuroscience images, and filter the vol-
umes accordingly

fslmaths,
susan

Temporal Fil-
tering

Blur the moving parts of images, while
leaving the static parts.

fslmaths

Normalize Translating, rotating, scaling, and may be
wrapping the image to match a standard
image template

flirt

Register Align one brain volume to another using
linear transformation operations (such as
rotation, translations, etc.) or non-linear
transformations (such as warping, local
distortions, etc.)

flirt, fnirt

Table 3.3: Some tools for brain-imaging processing.

some aspects that can affect the overall analysis [Str06] (such as aligning one brain volume to another
using linear transformations operations like rotation, translation, etc.). While experts may learn these
constraints through trial and error, there are no tools to guide less-expert end users.

There are many possible ways to encode image data and analysis results, and neuroscientists must
ensure that encodings match between steps. This further complicates composition because neuroscientists
must be aware of these formats and carefully select compatible steps or manually locate transducers that
can bridge mismatches.
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FSL

flirt −ref standard −in ${2} −out $
{input_in_standard} −omat ${input2standard}.mat$
−cost corratio −dof 12 −searchrx −90 90 −
searchry −90 90 −searchrz −90 90 −interp 
trilinear

hp=‘echo "scale=10;100/${3}" | bc‘
lp=‘echo "scale=10;3/${3}" | bc‘
fslmath ${2} −bptf ${lp} −1 −mas mask ${6}

fslmath ${2} −kernel gauss ${sigma} −fmean ${5}

bet2 ${2} ${4} −f ${3} −n −m

flirt

Service Implementation Components

fslroi

mcflirt

bet2

fslmath

 

Figure 3.3: A problematic Neuroscience workflow that misses ‘alignment’ of data before ‘temporal filter-
ing’.

Key features of our end-user architecting approach to this domain are:

1. Architecture representation: Architectures are explicitly represented in a system layer that stores
compositions as workflows and provides a repository of processing steps and transducers. The
main components made available in this prototype were derived from the FSL tool suite (e.g., bet2,
fslmath, flirt) [FMR].

2. Architecture style: Compositions are defined using a formal workflow architectural style, which
defines computational elements specific to the Neuroscience domain, and (b) it provides additional
properties and domain-specific constraints (such as checking ports for different data encodings and
other content of brain-image data) that allow the correct construction of workflows within the Neu-
roscience domain.

3. Analysis: The properties of the style elements are used for designing various domain-specific anal-
yses for the brain imaging domain. An example is data mismatch analysis to support the detection
of data mismatches in the Neuroscience compositions and to suggest repairs that can resolve these
mismatches based on an end user’s quality of service requirements [VEDG+12].

4. Execution support: Workflows are compiled into BPEL scripts, which are executed on a service-
oriented platform, providing feedback and debugging capabilities to the end users.

5. Services: The brain imaging platform provides services to end users tracking the history of opera-
tions performed and access to brain imaging data sets.
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6. Reuse: Workflows are encapsulated as parameterized components for later reuse and adaptation.

7. User Interface: A web-based graphical interface is provided for workflow construction, analysis,
and execution.

3.3.2 Architecture vocabulary for Neuroscience compositions

As we briefly mentioned in the Section 3.3, domain-specific architecture styles for the composition vocab-
ulary can utilize incremental refinement and specialization of common architecture styles based on data
flow, publish-subscribe, etc. and this allows easier representation of various types of compositions. Fig-
ure 3.4 shows how a SCORE data flow style (defined in Acme) is refined to the domain of Neuroscience.

Figure 3.4: Style derivation by inheritance.

We introduced the SCORE data flow style in Section 3.3. For Neuroscience compositions, such a
base style can be extended and components can be further refined with additional properties. A snippet of
such style refinement in Acme is shown below. For instance, this snippet of Acme style definition defines
a brain-imaging component type VolumesData that extends the generic component DataStore from the
Score style with additional properties from the Neuroscience domain. Similarly, ports and roles can be
further specialized with additional properties and constraints relevant to the Neuroscience domain.

Such an incremental construction of domain-specific vocabulary allows a greater degree of reuse as
styles from one problem domain can be built based on the base styles from other domains. Acme currently
provides tooling to define such style in AcmeStudio where end-user architects can use drag-and-drop
interfaces on AcmeStudio to compose these and the tooling assists in debugging and fixes.
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Program 1 Example snippet of Score Acme style.

import f a m i l i e s / SCORE−FAM. acme ;
Family BING ex tends SCORE−Fam with {

Connector Type w r i t e D a t a ex tends D a t a W r i t e C o n n e c t o r with {
Role p r o v i d e r = {
}
Role d a t a W r i t e r = {
}

Component Type VolumesData ex tends D a t a S t o r e with {
Port r e a d D a t a = {
}
Port w r i t e D a t a = {
}
Property NumVolumes : i n t ;
Property numberOf Inpu t s : i n t ;
Property h i g h P a s s F i l t e r C u t o f f : f l o a t ;
Property TimeOfAquiringVolume : f l o a t ;
Property o u t p u t D i r e c t o r y : s t r i n g ;

}
Port Type VolumeReadPort ex tends readT with {

Property volumeListName : s t r i n g ;
Property d a t a : B r a i n I m a g i n g . da taType ;

}
. . .

}

3.4 Using end-user architectures to drive Neuroscience compositions

In section 3.3 we described how end-user composition vocabulary for Neuroscience compositions can be
defined with architectural styles in Acme. In this section we describe how we can make an explicit use of
an end-user architecture layer to drive end-user composition, support reuse and execution.

As an illustrative example of this, Figure 3.5 shows a typical implementation architecture of a Neu-
roscience workflow execution environment. At the lowest level of granularity are various Neuroscience
tools and scripts that end users must combine together, the user interface for this can be supported by an
intermediate architecture layer that not only makes this orchestration possible, but also supports various
domain-specific analyses that would otherwise not be possible if such a layer did not exist.

As a first step to build such an environment, individual programs and libraries need to be componen-
tized so they can be reused within the framework. While the execution model for such components may
vary, for our implementation we assumed a Service Oriented Architecture (SOA) and migrated the brain
imaging scripts and libraries to services. Each component in this model performs a key business function,
and we defined services with their input and output signatures. The service definition can use existing
frameworks like Apache SCA. For instance, the table below defines some key brain-imaging operations
and the fsl programs that implement them. Each of these operations is exposed as a service by wrapping
a script-execution as a web-service.

Once the key functions are identified, the individual scripts can be wrapped as components by using
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Figure 3.5: Using end-user architectures to drive Neuroscience compositions

Operation FSL Programs that implement this operation
Align fslmaths, fslroi, mcflirt
Segmentation bet2, fslmaths, fslstats
Spatial filtering fslmaths, susan
Temporal filtering fslmaths
Normalize flirt

Table 3.4: Mapping brain-imaging programs to functions

the framework interfaces and are exposed as services. For example, Figure 3.6 shows how we define
web-service components and their signatures by wrapping up low-level scripts. End users in this world
can build compositions using front-ends that use these individual services. The architecture layer then is
responsible for orchestration of these components and help with the execution, analysis and debugging.
While the individual visual composition, runtime and assembly of components can vary across environ-
ments, having a general-purpose framework that can assist in this construction helps with the overall
development and keeps the costs low. We will discuss on how this can be done in further detail in the next
few Sections.
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Figure 3.6: Componentization of scripts

3.5 Using a framework to build a composition environment in the Neuro-
science domain

While end-user architecting platforms described in Section 3.4 can be custom built for each domain, doing
so is costly. Such costs can be amortized across such developments if we had a framework that provided
much of these features as building blocks. Platform developers can then use these building blocks to
build composition environments for their domains. Not only can this lower the overall cost of platform
development, this approach could lead to better reuse and more analytic support that can potentially be
shared across different use-cases.

To fulfil this goal, we created a framework, called Halo, that provides generic and reusable infras-
tructure than can be tailored to particular system styles and further customized to specific composition
scenarios. This customizable end-user architecting framework has many advantages. Providing a sub-
stantial base of reusable infrastructure greatly reduces the cost of development. Providing separate cus-
tomization mechanisms allow developers to tailor the framework to different composition environments
with relatively small increments in effort.

This is enabled by a two-step approach: (i) a generic reusable infrastructure of libraries to represent
end-user architectures, and (ii) a collection of customizable parts to integrate the end-user architecture
layer with their user interfaces and runtime environment with the help of various adapters.

In particular, Halo provides the following mechanisms to support end-user composition:

1. Architecture representation: By having compositions explicitly represented in an architectural
layer, compositions can be formally represented and analyzed. Compositions can be defined using
a formal architectural style that defines the composition constraints and the overall vocabulary (as
described in Section 3.3).
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2. Analysis: The properties of the style elements can be used for designing various domain-specific
analyses for given domain. Examples include: data mismatch analysis [VEDG+12], privacy analy-
sis, etc.

3. Execution support: Compositions can be compiled into executable scripts that run on a execution
platform.

4. Reuse: Compositions can be encapsulated as parameterized components for later reuse and adapta-
tion.

5. Adapters: Extensible bridging components allow integration of the architecture layer with the UI,
runtime, and analysis plugins.

Figure 3.7: Halo framework with notional customization points

We will discuss the design of Halo in detail in Chapter 4. However, Figure 4.1 shows a high-level
view of the different layers and the customization points. At a high-level Halo as an end-user architecting
framework provides the following capabilities: (a) the ability to represent different types of composi-
tions and constraints in Acme, (b) an end-user architecture layer that can map visual compositions to the
corresponding architecture, and (c) a framework that provides a library of components, including vari-
ous adapters that allow integration of individual layers that can be independently customized to build the
composition environments.
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The next section provides an example application of the Halo framework in the Neuroscience domain,
and explains the tasks involved in such an instantiation.

3.5.1 The building blocks of Halo

The building blocks of the framework provide support for construction, reuse, advanced analysis, execu-
tion and sharing and are shown in Figure 4.1.

The centrepiece of Halo is the Architecture layer, which is customizable with style definitions to sup-
port different domain-specific composition vocabularies and constraints. This layer provides support for
architectural type-checking and architectural analysis. Furthermore, it mediates the translation between
visual specifications and their executable representations allowing end users to execute their compositions.

The User interface allows end users to compose visual components and the Execution platform sup-
ports their execution. While these are important elements of any end-user composition environment, the
Halo framework provides hooks to integrate UI and run times. A large number of UI technologies exist
today to build interfaces. Similarly, a large number of execution environments exist today that allow exe-
cution of compositions. The Halo framework provides generic adapters that can be customized to integrate
the UI and execution platforms.

Halo provides four types of Adapters: a UI Adapter, an Execution Adapter, an Analysis Adapter,
and a Repository Adapter. These adapters allow API calls to support integration of different building
blocks and bridging of vocabularies. The UI adapter for example, provides task support for common end-
user tasks such as drawing compositions, search, analysis, execution and reuse. The execution adapter
provides libraries for invoking execution runtimes. The Analysis adapter allows integration and invocation
of external analyses. Furthermore, the Repository Adapter allows integration of external compositions into
Halo by providing plugins for language translation and import functions.

Next, we show a simple example of how different stakeholders can instantiate different building
blocks of the framework to create a brain imaging composition environment.

3.5.2 Example: Building a Neuroscience environment using Halo

As an example of Halo instantiation, consider the domain of Neuroscience, for the problem scenario that
we defined in this previous section. Halo provides various building blocks that can be customized and
reused, instead of developing them from scratch.

Next, I describe how Halo supports the different stakeholders to build a Neuroscience composition
environment described in the above example.
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3.6 Summary

In this chapter, we argued that the computational activities of end users in many domains are analogous
to that of software architects, and that rather than forcing end users to become programmers, we could
instead provide architecture-based tools and techniques to support their tasks. Across various domains,
end users need to compose computational entities either via writing scripts or some visual tools. End-user
architecting can help such end users by providing frameworks and tools that can help with building pow-
erful analytical tools, at a lower cost than developing them from scratch. There are three core techniques
that can drive this: (1) the use of domain-specific architecture styles that define the properties and con-
straints for the compositions, (2) supporting the visual construction using end-user architectures that allow
component assembly, reuse and analysis, and finally (3) providing a framework that provides the building
blocks so that construction of such composition environments can be lowered as opposed to building ev-
erything from scratch. We illustrated how this approach can be applied to a Neuroscience domain where
neuroscientists need to use various tools for imaging analysis. Finally, we described what building a com-
position environment for such a domain entails and how an end-user architecting framework like Halo can
provide support for such development. Next, we describe the Halo framework and its building blocks.
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A framework that implements the end-user architecting
approach

—Halo

CHAPTER 4

The Halo Framework

In the previous Chapter, we argued for a generic approach that we termed “end-user architecting", which
provides ways to incorporate software architecture analytic techniques to design better quality end-user
environments. To fulfil the end-user architecting requirements outlined in the previous Chapter, we built
a framework, called Halo, that provides generic and reusable infrastructure that can be tailored to various
composition styles and domains.

Halo framework design is primarily based on the fact that, for most composition environments used
today, one of the common activities [HHN85b] is to combine computational elements and data sources
by drag-and-drop, analyze the composition for errors, and execute the composition. These composition
steps usually entail some common direct manipulation activities and a number of user commands, such
as adding composition elements, specifying their properties, and relationships between composition el-
ements. While the composition styles, UI technologies and domains for such a composition may vary,
most of the time the architectural style governing this composition is quite similar; usually a data-flow or
publish-subscribe.

In the previous section we identified the key features that end-user architecting must support: vi-
sual composition, reuse and import of existing components, analysis of the composition for errors, and
execution to produce an output. The Halo framework adopts a layered architecture, where modules or
components with similar functionalities are organized in horizontal layers, where each layer can be indi-
vidually customized by adapters that provide customization and integration points. For example, while
the user-interface may allow drag and drop composition support, a UI adapter layer would define general-
purpose libraries for common UX operations, which can be extended by an integrator. Similarly, an anal-
ysis adapter would define a generic set of functions to invoke an analysis, and a runtime adapter would
define the library of execution commands that would allow integration with various execution environ-
ments. These adapters provide a customizable mechanism to build composition environments based on
the requirements of the individual domains.

This customizable end-user architecting framework has many advantages. Providing a substantial
base of reusable infrastructure and plugins greatly reduces the cost of development. Providing a separate
customization mechanism allows developers to tailor the framework to different composition environ-
ments with relatively small increments in effort.

In this chapter, we describe the design and engineering of the Halo framework, focusing particularly
on the customization points and how the individual components and layers can be combined together
to facilitate the construction of composition environments. By providing a layered architecture that al-
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lows various customization points via the adapters, we enable a general-purpose framework that can be
instantiated for multiple domains. Instead of building everything for scratch, which is very expensive,
composition environment can be developed at a much cheaper cost.

Next, we present the architecture of the Halo framework and provide more details on how it can be
customized through the various adapters.

Figure 4.1: Halo architecture diagram

Halo provides UI adapters that allow integration of user interface and the business logic layer and
interpretation of user commands involved with construction of compositions. A similar scenario holds
true for execution, where a number of execution platforms are used by composition environments. Halo
provides Execution adapters to integrate these execution environments.

4.1 Architecture and Design of Halo

As we discussed earlier, Halo provides a general-purpose, reusable framework that can be tailored to
different composition styles. The architecture of the Halo framework, described in Acme and modeled
in a graphical architecture design environment called AcmeStudio [SG04], is diagrammed in Figure 4.1.
Table 4.1 lists the key architectural types with a brief description of the Halo architecture family. The
complete architectural description is available in Appendix A.

This architecture provides a natural decomposition that (a) logically separates the customization
points on individual components, (b) allows runtime separation of concerns across different components,
and (c) localizes the integration and vocabulary mappings in the adapters. The ports on the Adapters pro-
vide points of customization for the framework, the framework defines the high-level interface, and the
individual customization points are implemented by an instantiator.

While Table 4.1 describes the key Halo components and connectors, Figure 4.2 describes the overall
component interactions and the various customization points.
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Table 4.1: Halo Architectural style description — main family

Components Functional Description
UserInterfaceT Build compositions using an interface
UIAdapterT Mediates between UI and architecture. Provides general-purpose li-

braries to integrate UI environments.
ArchitectureRepT Provides architectural representation of compositions.
ExecutionAdapterT Mediates between execution platform and architecture. Provides

general-purpose libraries to integrate and invoke commands on execu-
tion environments.

RepositoryAdapterT Provides general-purpose libraries for import and export of composi-
tions.

AnalysisAdapterT Provides general-purpose libraries to invoke external analyses.
RepositoryComponentT A store for packaged compositions
AnalysisComponentT A self contained program that runs on a composition and performs var-

ious analyses
ExecutionEnvironmentT A platform that can execute a composition

Connectors Functional Description
RepositoryAccessConT An HTTP call to read external repository
AnalysisInvocationConT A call to invoke an analysis plugin
ExecutionCallConnT A call to the runtime
EventsConnT An event on a message bus

Table 4.2: Halo Artifacts: Who does what?

Artifact Component/Layer Who How?
Customized Style Architecture Domain Expert Define Type, rules, proper-

ties (in Acme Studio)
Services/Executable
components

Execution Layer Component Integrator Implementation (Wrapper
API)

UI-Command
modules

UI Adapter System Instantiator Implementation

Execution mod-
ules

Execution
Adapter

System Instantiator Implementation

Analyses Analysis adapter
and the Analysis
layer

System Instantiator Implementation

Imported Compo-
sition

Repository
adapter

System Instantiator Implementation
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Furthermore, a summary of who does what is shown in Table 4.2. The composition environment
development is performed by designer and developers who take on various roles. Starting with a domain
expert, who defines the architecture vocabulary consisting of composition rules, constraints and analysis;
to component integrator who uses framework provided wrappers to adapt existing components and make
them executable in Halo; to a system integrator who extends the various adapters to build the composition
environment.

Next, we describe how these individual components are integrated together to a build a feature rich
composition environment and the building blocks Halo assists in this development. We first define a
runtime view showing the various component interactions in Section 4.1.1. Next, in Section 4.1.2 we
walk through a module view focusing on extension mechanisms and code that developers have to write to
customize the Halo building blocks without writing everything from scratch.

4.1.1 Halo Runtime Architecture

Figure 4.2: Detailed Halo runtime architecture.

As shown in Figure 4.2, an instantiation of Halo consists of an integration of multiple layers. The
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layers in grey compose the core building blocks of Halo that provide components for end-user architect-
ing. The layers in white consist of components that are integrated to create a feature rich composition
environment. As we have mentioned before, while the framework gives example instances of UI, exe-
cution runtime, repositories and analyses (marked as components in the white layer), it doesn’t prescribe
any fixed set of technologies. Instead, it allows integration with a number of such UI and execution en-
vironments through generic and customizable adapters that allow cost-effective integration of end-user
architecting features. The key functionality of the framework is localized to individual layers so as to
maintain separation of concerns. Next, we describe some of the key components in this layout for an
illustrative composition environment.

Figure 4.3: An illustrative composition environment.

Figure 4.3 shows an instance of a composition interface that supports end-user composition tasks that
are supported through various API interactions. While the nature of compositions and the UI libraries used
varies (and implementing these libraries is beyond the scope of the framework), Halo allows integration of
such interfaces through generic adapters that can be customized for different user interfaces. An example
of the key runtime components are listed below:

• User Interface: The front-end of most composition environments consists of a drag and drop (or
other kinds of drawing) interface to end-users to drag and drop components and connect them in
meaningful combinations. The style and vocabulary of such end-user compositions may vary from
dataflows, to publish-subscribe widgets, to mix of composition styles. Halo provides customizable
APIs to translate these end-user compositions to architecture representation and execute them. An
example of such an end-user composition interface is shown in Figure 4.3 where three services,
two pieces of data and a UI visualization service are combined in the SWiFT composition envi-
ronment [GSD+11]. End-Users can use the instantiated composition environment to compose new
workflows, edit existing workflows, and save their workflows. They have access to not only their
own work, but also any shared workflows. Besides basic construction, most composition environ-
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ments also facilitate reuse and packaging and search for compositions in the repositories.

• UI Adapter: UI Adapter is the layer that provides translation from user vocabulary to architecture
vocabulary. While the specific implementations of UI adapters vary across composition environ-
ments, Halo provides a generic set of customizable APIs to build these UI adapters. An example of
such an adapter is shown in Figure 4.7, showing the high-level components that are responsible for
receiving requests from the User Interface and mediating between the UI and the architecture layer.

In this example, the adapter provides a generic Command handler with JavaScript functions that
translate the user-interface commands to architecture commands. Furthermore, each command is
processed by a task module that provides functionality to handle composition, build and save, de-
ployment, analysis and UI-Update functionality. Halo provides the high-level interfaces for each of
these modules that can be customized by a framework instantiator for a specific User interface.

• Architecture Representation: Architecture Layer provides the key functionality of architectural
representation, analysis and execution management. This layer provides the APIs to define compo-
sitions using domain-specific architecture styles, which specify the vocabulary of element types and
constraints on compositions [12]. Some example of constraints include prohibition of cycles, dan-
gling connectors, unattached interfaces, and mismatched communication channels (where the data
produced by one component is incompatible with the data consumed by a successor component).
Besides such end-user feedback, this layer also provides execution capabilities such as compilation
into executable code.

• Execution Adapter Execution Adapter is the layer that provides translation from architecture vo-
cabulary to execution semantics. Like the UI adapter, the implementations of execution adapter
vary across different runtime environments. Halo provides a generic set of runtime APIs that can be
further customized. An example of such execution adapter is discussed in Section 4.2.3, where we
describe an integration of SWiFT workflow environment with a BPEL runtime engine.

• Execution Layer: This Layer provides execution support for end-user compositions and consists
of basic execution infrastructure to execute a composition. Besides the execution infrastructure,
this layer provides the APIs for common execution and monitoring commands. Most common
capabilities of such runtime environments include execution, debugging, repositories, status queues,
and other auxiliary runtime capabilities.

• Analysis Adapter: Analysis Adapter is the layer that allows integration of external analysis into
Halo. Individual analysis can be based on different models or written with different assumptions,
but the analysis adapter provides a generic mechanism not only to invoke the analyses but it also
provides the necessary protocols to interface with the architecture layer allowing easier integration
with different environments.

• Repository Adapter: Repository Adapter is the layer that allows integration of external reposito-
ries into Halo. As Halo could be instantiated for multiple domains, the vocabulary of compositions
would vary not only in terms of language constructs but also computation style. The repository
adapter provides mechanisms to import a composition written into an external vocabulary to by
transforming it into an architecture based vocabulary used by Halo. This import and export mecha-
nism allows easier integration of a number of composition vocabularies through Halo.
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We will revisit the runtime architecture and the key decisions in Chapter ??. However, having given
an example of the runtime architecture we next describe the module view to illustrate how developers
build these layers in a modular fashion and the support the framework provides in creating a cost effective
and customizable manner instead of writing everything from scratch.

4.1.2 Halo Module View

The modular design and construction of software, as designed for Halo, is not new. In 1979, David
Parnas wrote about the advantages of extensible software and constraints around building extensible soft-
ware [Par79] such as:

• Adding simple features without significant code changes

• Building product variants by adding or removing functionality

• Delivering an early release with a subset of features

David Parnas further gave some examples of how reusable software artifacts could be developed by
engineers in a fast and reliable way. Since then, a significant number of extension and reuse mechanisms
have been proposed and are used in practice today. The Halo framework enables such modular decom-
position and reuse by breaking down the general architecture of composition environments as multiple
layers, and providing modules and packages to build these individual layers.

Figure 4.4 shows a simplified module view of the Halo framework. While the UI and the runtime
are key to any composition environment, the focus of the Halo framework is not to provide specific UI or
execution libraries, but ways to integrate such UI and execution runtimes through adapters. The Adapters
handle this integration by providing generic Command Handler packages that can be extended to integrate
different types of commands. The adapters also provide generic modules that implement the abstract
classes for individual composition method.

4.2 Customizing the Halo Framework

To fulfill the requirements for a general-purpose architecture as outlined in Chapter 3, and to support a
general-purpose architecture, Halo supports various customization points for the framework. The key
design approach is to divide the framework functionality in layers that enables separation of concerns. We
list some such customizations in Table 4.3.

This level of customization through different layers has a number of advantages. First, the adapters
and the other reusable infrastructure greatly reduce the cost of development. The adapters and the other
customization mechanisms allows engineers to tailor the framework to different systems with relatively
smaller development effort. This allows to satisfy the generality, cost effectiveness and quality require-
ments for the thesis.

Next, we describe some of the customization techniques as they are implemented by different layers
of the framework.
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Figure 4.4: A cross-section of Halo modules in an example instantiation.

4.2.1 User interface customization

Figure 4.3 shows an example end-user composition environment that is instantiated using the Halo frame-
work. A high-level control flow for such an environment instantiated through Halo is shown in Figure 4.5.
Common composition commands in such an environment consist of initializing a new composition, cre-
ating compositions, deleting, analyzing, executing, and saving a composition. Halo provides extensible
command modules that allows creation and customization of these commands so that they could be pro-
vided into the UI layer through the adapter. In this model, the user interface layer is responsible for
representation of end-user interactions, while the UI commands are interpreted into an architecture vo-
cabulary by the UI Adapter. While the UI layer and its interaction mechanisms with the architecture
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Table 4.3: Halo framework extensibility and reuse

Component/Layer Techniques Description
User Interface Modular/Extensible command library Command UI composition commands

wrapped as Javascript calls
Loosely coupled updates UI updates pushed in as messages

UI Adapter Loose-coupling through Abstract
classes and APIs

Customizable commands by extending
the common interface

Command Factories Extensible UI Commands
Architecture
Layer

Vocabulary Refinements and Extension Architecture vocabulary represented in
Acme can be refined by styles

Execution
Adapter

Loose-coupling through Abstract
classes and APIs

Customizable commands by extending
the common interface

Command Factories Extensible Runtime Commands
Execution Run-
time

Loosely coupled Message-notification Runtime messages pushed to a queue

Analysis Adapter Plugin extension Individual analysis plugins implement
a common interface

Repository
Adapter

Plugin extension Extensible common interface for com-
position import and export

System Wide Separation of concerns UI, Architecture, Adapters have con-
strained communication

Configuration Individual layer allows configuration
for independent customization

layer could vary significantly based on technologies used, the Halo framework supports general-purpose
adapters to plug in arbitrary user interfaces, provided that they implement the end-user commands defined
by the Halo framework.

An example instantiation of the UI adapter for this environment involves supporting various com-
mands that can be invoked from the user interface. The Command-Handler in the UI Adapter implements
a Java servlet that intercepts the UI commands and provides extensible interfaces for interpreting the indi-
vidual composition commands and compiling them into architecture vocabulary. The individual modules
provide interfaces that are extended to implement architecture commands.

The UI and Execution adapters implement a command factory pattern to encapsulate information
needed to trigger common actions. They provide a Handler that encapsulates the various commands.
The user interface adapter for example, provides a command handler that is commonly implemented as a
servlet than receives commands and makes callbacks to the user interface. The Analysis adapter provides
an events handler that works as a publisher for analysis events that are pushed to an events queue.

The UML model for this layer is shown in Figure 4.7. The UI Adapter provides the command handler
that intercepts the commands from the user interface and delegates it to the architecture layer, which
provides a generic facade for executing architecture commands. The Halo framework provides various
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Figure 4.5: High-level UI Adapter control flow

Figure 4.6: UI command delegation through an adapter.

hooks to intercept these commands. In the UI layer, an example of such a hook is various java-script calls
that invoke the commands. These javascript calls are intercepted by the adapter that implements a servlet
that receives the command and delegates it to the architecture layer. The communication between the user
interface and the adapter servlet is implemented through a Reverse Ajax design pattern that allows sending
data from client to server and pushing server data back to the browser.
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Figure 4.7: UI Adapter customization.

In this model, the individual layers promote separation of concerns, while allowing significant cus-
tomization and reuse of modules and interfaces across use cases. While the user interfaces and tech-
nologies may vary significantly, this technique allows some level of decoupling and reuse of the design
patterns, if not the code fragments directly where individual layer could be independently customized for
new technologies.

4.2.2 Architecture Layer Customization

Figure 4.8: Architecture layer - key components

While user interfaces support the specification of the composition, the architecture layer implements
the End-user architecting approach. As we have emphasized before, the ability to associate represen-
tations for end-user compositions and using the architectural representations to enforce analysis, reuse
and execution, while ensuring this could be implemented in a generic, cost effective way is core to the
framework.
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These are some of the key components for the Halo Architecture layer:

• Halo Facade: is an entry point to the Halo architecture layer and implements a handler that is re-
sponsible for delegation of architecture commands to the individual components. While the frame-
work implements basic initialization, creation, update, delete and other basic functions on the ar-
chitecture layer, it allows extension of these commands. However, while architecture commands
can be independently customized, they do have some dependency on the user interface commands.
To reduce this dependency, the UI Adapter implements the mapping logic that bridges the UI and
architecture vocabulary and must be extended or modified to extend/modify the facade.

• Architecture Model Manager: manages access to the architecture model and evaluates the con-
formance of the architecture model to a predefined set of design rules, expressed in an ADL
called Acme [GMW97b]. This component leverages various tools and techniques built around
Acme for type checking and architectural analysis. Architecture styles are key to customization
of the models used for Halo compositions as they capture the dimensions of variability and rep-
resentation in architectural design. Style has been formalized and applied in many system de-
signs [AAG93, MKMG97]. This style-based refinement makes it feasible to build generic infras-
tructure that can be tailored to various domains.

The model manager registers compositions in Acme ADL and uses that for architecture analysis.
Acme, a generic ADL, supports the explicit notion of styles and provides a constraint language
similar to UML’s OCL to capture system design constraints [DEF+11] and domain-specific analysis
such as data-mismatches [EDG+13].

Table 4.4 shows a high-level example of architectural types, functions and constraints that are used
to specify compositions for Halo. The style represents the key components and some constraints that
are based on Acme’s first order predicate logic, where they are expressed as predicates over prop-
erties of the workflow elements. The basic elements of the constraint language include constructs
such as conjunction, disjunction, implication and quantification [GMW97b].

Not only do architecture styles allow representation of domain specific compositions, but they can
be specialized through refinement and inheritance as shown in Figure 4.9. This requires construction
of sub-styles that extend the base styles by adding additional properties, domain-specific constraints,
and rules that allow the correct construction of workflows within that domain.
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Figure 4.9: Style derivation by inheritance.
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Components Description

DataStore Components for data-access (such as file/SQL data-access)

LogicComponent Components for conditional logic (such as join/split etc)
Service Components that are executed as a service call
Tool Components who’s functionality is implemented by tools
UIElement Special-purpose UI activity for human interaction
Connectors Description
DataFlowConnector Supports dataflow communication between the components.
DataReadConnector Read data from a DataStore Component
DataWriteConnector Write data to a DataStore Component
UIDataFlowConnector Provides capabilities to interact with UIElements
Ports Description
configPort Provides an interface to add configuration details to components
consumePort Represents data-input interface for a component.
providePort Represents data-output interface for a component.
readPort Provides data-read interface for DataStore component
writePort Provides data-write interface for DataStore component
Roles Description
consumerRole Defines input interface to DataFlow/UIDataflow connectors
providerRole Defines output interface to DataFlow/UIDataflow connectors
dataReaderRole Defines input interfaces for the DataRead/DataWrite connectors
dataWriterRole Defines output interfaces for the DataRead/DataWrite connectors
Acme Functions Description
Workflow.Connectors The set of connectors in a workflow
ConnectorName.Roles The set of the roles in a connector
self.PROPERTIES All the properties of a particular element
size( ) Size of a set of workflow elements
Invariant A constraint that can never be violated
Heuristic A constraint that should be observed but can be selectively violated
Constraint types Example
Structural Checking that connectors have only two roles attached

rule onlyTwoRoles = heuristic size(self.ROLES) = 2;
Structural Checking if a specific method of the service called exists

rule MatchingCalls = invariant forall request:
!ServiceCallT in self.PORTS |exists response:
!ServiceResponseTin self.PORTS|
request.methodName == response.methodName;

Property Checking if all property values are filled in
rule allValues = invariant forall p in self.PROPERTIES
| hasValue(p);

Membership Ensuring that a workflow contains only 2 types of components
rule membership-rule = invariant forall e: Component
in self.MEMBERS |declaresType(e,ComponentTypeA) OR
declaresType(e,ComponentTypeB);

Table 4.4: An example of composition representation in Acme

The Model Manager not only supports common architectural checks, such as Check for Syntax,
rules and configuration, but it also allows checking for domain-specific vocabulary that is repre-
sented in Acme. Properties and constraints on architectural elements as defined in Acme, allow the
Model Manager to enforce the architectural checks.

• Architecture Runtime Manager: manages the mappings between architecture and execution, com-
pilation into runtime architecture and invocation of various execution commands. Having an archi-
tectural representation of the composition, the runtime manager enforces the execution of these
models when requested by the users. However, in order to do so, it needs to compile the architec-
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ture representation into a runtime model, and also maintain the runtime context to allow capabilities
such as debugging, status of currently executing components and mappings between architecture
components and executable instances.

The methods implemented by the Halo runtime manager are primitive execution, setting break-
points, stepping and termination. While these are methods over the architecture model, their run-
time implementation is left to the Execution adapter that implements each method based on the
runtime selected. Halo supports extension to the Model manager, which could be implemented by
changing the model manipulation logic or adding new methods.

The Architecture Context Manager manages the various mappings related to runtime context, de-
bugging and execution state. Currently, this is implemented by a generic set of APIs and the infor-
mation is stored in a SQL database. While the schema and the type of context could change, at the
very least the framework supports storing mappings with architectural components and its runtime
equivalent, and the execution ids for each composition to allow repeat executions and display of
intermediate execution status whenever possible through the user interface. The methods available
through the Context Manager are extendable to add more detailed information depending upon the
instantiation use-case.

• Architecture Events Manager: implements a light-weight publish-subscribe mechanism for ar-
chitecture and runtime events. It uses multiple channels for UI events, analysis events, runtime
events and architecture events that are consumed by different components. It provides a wrapper
for publish and subscribe of the events queue.

The Halo framework uses Active MQ as a messaging bus for the events manager. The framework
implements a generic client over the pub-sub message queue that provides a wrapper over ActiveMQ
messaging APIs. As an extension mechanism, the client provides interfaces for the client library
that can be extended depending on instantiation use case. A framework instantiator, for instance,
may chose to write its own custom handlers for onMessage() method that can support different
integration use cases.

• WorkObject Manager: manages import and export and transformation of compositions into a
format that can be read by Halo. While the nature of the compositions and their domain specific
representation may change across different environments, the work object manager enables import
from a custom DSL to Acme and vice verse. This import and export is enabled by a plugin frame-
work that allows framework instantiators to add new types of imports and exports. While Halo
supports only basic imports and exports, the design of the Work Object Manager can also support
more complex use cases, such as packaging of architecture specifications, user interface specs to
allow packaging of display elements, etc should the composition environment designers need to
implement this.

4.2.3 Execution Layer Customization

The execution layer follows a similar design pattern as the user interface and its adapter. Since a key goal
for Halo is to provide a general-purpose framework that could support a variety of composition styles and
technologies, Halo supports this via a general-purpose adapter design. Similar to the UI Adapter design,
the Execution Adapter too provides a generic Handler to intercept execution commands, which it delegates
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Figure 4.10: Execution layer - key components

to the runtime environment.

Halo provides extensible command modules that allows creation and customization of these com-
mands so that they could be executed. The commands that are delegated from the UI to the architec-
ture components, are interpreted into runtime commands by the Execution Adapter and implemented as
callbacks. As shown in Figure 4.10, Halo supports this through various modules. While the execution
runtimes can change from web-servers, to SCA to language CLIs, the Adapter allows mapping execution
calls into calls to the runtime APIs. Halo provides the interfaces that can be implemented by the Execution
Adapter to implement those calls.

4.2.4 Analysis and Repository Customization

Similar to the user interface and execution runtime, the types of composition languages and reusable
analyses can vary significantly. However, such third-party analyses and compositions can be quite useful
to the composition environment and Halo supports their integration through a generic adapter. As shown in
Figure 4.4, both these types of adapters provide interfaces that can be extended by framework instantiators
to integrate the third-party plugins and compositions. Halo provides a generic Facade for integration of
analysis plugins and compositions, providing methods for their import and export.

Besides implementing handlers and command factories, the framework allows a plugin mechanism
for adding external repositories and analyses. Figure 4.11, for example, shows an interface for the Analysis
plugins that each analysis must implement. This allows integration of third party libraries as they can be
invoked through a common invocation protocol. At this point the user interface and execution adapters
are not available as plugins because there is more effort required to map UI/execution commands into
architecture and therefore this needs a developer to write those mappings. But this is something that could
be extended further as pluggable modules through further automation.

48



Figure 4.11: Analysis Handler

4.3 Summary

In this chapter, we described the key Halo components. We reiterated how the modular and layered
breakdown of Halo supports the requirements of generality and cost-effectiveness to engineer end-user
architecting environments. We also described how individual Halo layers can be customized through
techniques like modularization, vocabulary refinement, plugin extensions and command factories and
handlers. While the architecture representation is key to the end-user architecting approach, we demon-
strated how the use of adapters enables integration of the architecture layer and can be enforced through
customization and extensions rather than a complete rewrite.
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CHAPTER 5

Examples and Supporting Evidence

In Section 1.2, we described the evaluation plan for three thesis claims: generality to a broad spectrum of
styles and composition environments that can be built using the framework; cost-effectiveness to engineer
and develop the composition environments using the Halo Framework; and improved quality of the end-
user composition in supporting major composition and analytic tasks. In this chapter we demonstrate how
the Halo framework supports those claims through various validation steps. Specifically, we present the
following evidence:

1. Demonstrate End-User Architecting in 2 Computation Styles (DF + Pub Sub)

2. Demonstrate End-User Architecting in 4 Domains (Arithmetic expressions, Dynamic Network Anal-
ysis, Neurosciences, and Widget compositions)

3. Demonstrate End-User Architecting with 2 UI Adapters

4. Demonstrate End-User Architecting with 2 Execution Adapters

5. Demonstrate End-User Architecting with 2 Analysis Adapters

6. Demonstrate End-User Architecting with 2 Repositories

In this chapter, we describe four instantiations of Halo, within the two computation styles of dataflow
and publish-subscribe along with adapters to integrate them. We also give examples of two analyses based
on end-user architectures. Together, these examples provide validation evidence for Halo. In Chapter 6,
we provide a recap of how the end-user architecting approach supports the thesis claims.

5.1 Arithmetic expression composition

As a simple hello-world example, we instantiated Halo to create an Arithmetic expression evaluator. The
key components for this application are operators and operands, which can be combined together to build
arithmetic expressions.

The key end-user architecture building blocks for this domain are as follows:

1. Architecture representation: The end-user architecture for this is a dataflow where operators and
operands are combined together to produce compositions, that produce an output. The arithmetic
operators include basic maths functions like add, subtract, multiply and divide that are wrapped
together and exposed as Halo services. The operands are float and integer inputs, which can be
combined with the operators.
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2. Architecture style: Compositions are defined using an Arithmetic Expression style, which is based
on the SCORE dataflow style (as defined in Chapter 3.3.2) and defines the rules for composing
operators and operands.

3. Adapters: The four adapters provide support to wrap the operators and operands, aid their compo-
sition, and execution on the Apache Tuscany runtime environment.

4. Analysis: Examples of analyses include checking for Divide By Zero, and Checking for Cycles.

5. Execution support: The compositions are compiled and executed on the Apache Tuscany runtime
environment.

6. Reuse: Arithmetic expressions can be saved as workflows in a repository and reused.

5.2 Dynamic Network Analysis

Dynamic Network Analysis (DNA) is a domain of computation that focuses on the analysis of network
models, which represent entities, relations, and their properties. DNA is increasingly being used in a vari-
ety of fields, including anthropology, sociology, business planning, law enforcement, and national security,
where networks capture the relationships between people, knowledge, tasks, locations, etc. [Car06].

End users in these fields are typically analysts who extract entities and relations from unstructured
text (such as web sites, blogs, twitter feeds, email, etc.) to create network models, and who then use
those models to gain insight into social, organizational, and cultural phenomena through analysis and
simulation.

For example, an analyst interested in understanding disaster relief after the Haiti earthquake in 2010 [ZGM11]
might build a network from open source news data provided through a source such as LexisNexis [Lex].
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This unstructured textual data needs to be processed into a usable form, or “cleaned,” to filter out headers,
remove noise, and normalize concepts. From this processed data a dynamic network can be generated
representing associations between people, places, resources, knowledge, tasks, and events. Using network
analysis algorithms, insights can then be gained. For example, analysis can determine things like the
primary organizations and people involved in the relief effort, how information about food and medical
supplies propagated through the network, and how these evolved over time.

Similar kinds of analyses are routinely carried out in law enforcement (where analysts use crime
reports and statistics to determine drug-related gang activities), healthcare and disease control (where ana-
lysts use medical reports from hospitals and pharmacies to understand disease vectors), and anthropology
(where social scientists can understand belief systems and how they relate to demographics).

Figure 5.1: Typical tools for socio-cultural analysis.

Within this broad domain of dynamic network analysis, analysts typically engage in a process of
composing a variety of existing tools to extract networks, analyze them, and display results. Figure 5.1
illustrates a typical toolset used for such analyses consisting of the following: AutoMap for extracting
networks from natural language texts, ORA for analyzing and visualizing networks, and Construct for
“what-if” reasoning about the networks using simulation [SGD+11].

Conceptually the computations that analysts create can be viewed as workflows, where each step
in the workflow requires the invocation of some data transformation step that consumes the data from
previous steps and produces results for the next step. However, traditionally, to achieve this kind of
composition analysts would need to understand the idiosyncracies of each of tool, manually invoke them
on data stored in various file locations using a variety of file naming schemes and data formats, and
preserve the results of the analysis in some location that they would have to keep track of, before invoking
another tool to carry out the next step.

To apply the end-user architecting approach to this domain, we adapted the end-user architecting
framework of Figure 3.1 by creating an environment, called SORASCS (Service ORiented Architecture
for Socio-Cultural Systems), for dynamic network analysis [GCS+09, SGD+11], and illustrated in Fig-
ure 5.2. Key features of this environment are as follows:

1. Architecture representation: Architectures are explicitly represented in an architecture layer,
called the socio-cultural analysis layer. This layer stores compositions as workflows. It also pro-
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Figure 5.2: SORASCS Organization.

vides a repository of data transformers, which act as component building blocks for creation of new
workflows.

2. Architecture style: Compositions are defined using a formal workflow architectural style based on
SCORE (see Section 3.3.2), which specifies the vocabulary of element types and constraints on com-
positions [DEF+11]. Element types include data transformers, data sources, and data sinks. Con-
straints of the workflow style prohibit the introduction of cycles, dangling connectors, unattached
interfaces, and mismatched communication channels (where the data produced by one component
is incompatible with the data consumed by a successor component).

3. Adapters: The four Adapters allow integration of the user interface with a BPEL-based runtime
and integration of analysis plugins and a storage repository.

4. Analysis: The SORASCS workflow style supports a number of analyses including (a) data privacy
analysis, which identifies potential privacy issues in the information flows, (b) a security analysis,
which identifies potential security issues based on workflow properties, (c) an ordering analysis,
which uses machine-learning to evaluate whether the ordering of transformation steps is consistent
with previously constructed workflows, and (d) performance analysis, which estimates the amount
of time that will be taken to complete an analysis of a specified data set.

5. Execution support: Workflows are compiled into BPEL scripts, which are run within the Ser-
vices Layer using standard SOA infrastructure. The compilation process attempts to optimize per-
formance by parallelizing workflow execution. Additionally, there is execution support for long-
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duration transformations and graceful error handling — typically not provided by baseline SOA
infrastructure. Further, it is possible for a user to set breakpoints, execute the workflow one trans-
formation at a time, and preserve intermediate data for later inspection.

6. Reuse: Workflows can be encapsulated as parameterized components for later reuse and adaptation.
These are stored in a repository of available data transformers, which may be used as primitives, or
“opened” to reveal their substructure and possibly edited for new usage contexts.

To illustrate how SORASCS works, Figure 5.5 shows a workflow that analyzes a user’s emails to
generate a social network of his/her contacts. Table 5.1 lists the computational elements that are used
for this workflow. The Mail Extractor workflow step acquires security credentials to connect to a
remote mail server in order to gain access to the user’s emails. The composition then transmits the user’s
email data to Filter Text, followed by Delete, which in combination remove irrelevant words and
symbols. This data is then passed to Generate Meta-Network, which generates a social-network of
the people and concepts referred to in the email text. HotTopics then creates a report listing important
keywords in this social network. The workflow also uses two data sources that provide the inputs to the
text processing steps.

Figure 5.3: A dynamic network analysis workflow with a security flaw.

When a security analysis is run on this workflow, SORASCS detects a security problem. In this case,
data security requirements mandate the use of ‘token-based authentication’ by all services. However the
above workflow includes the Mail Extractor service, which uses ‘password-based authentication’
— indicating a security violation. The analysis flags this as a problematic workflow by highlighting the
inappropriate service in red.

Once analysis is complete and the errors have been corrected, the user can compile the workflow
into the BPEL script illustrated in Figure 5.5, which can then be executed. Although not illustrated here,
as execution proceeds, the user is given feedback through the SORASCS user interface to show which
workflow step is currently being executed.

5.3 Widget composition environment

The Ozone Widget Framework (OWF) [Pot12] – or just Ozone – is a web platform for integrating web-
based widgets, which run on a distributed set of processors hosted by multiple organizations. Such web
applications widgets are lightweight visual applications, and OWF allows end users to open and com-
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Operation Description
Mail
Extractor

Extracts email from a server to a text file

Filter
Text

Removes undesirable information from
text files

Delete Removes a set of common keywords using
a standard dictionary (such as: a, an, the,
etc) from a text file

Generate
Meta-Network

Creates a dynamic network based on the
information in the text file

Hot Topics Creates a report about important keywords
in a social network

Table 5.1: DNA operations used in the workflow of Figure 5.5.

pose a set of widgets through a web “dashboard” in their browser. Users interact with widgets, which
communicate among each other using the OWF framework.

An example of an Ozone dashboard is shown in Figure 5.4. The right-most window is the launch
menu from which end users can add widgets to their dashboard. There are four widgets displayed on the
dashboard, displaying information of different types, some in chart form, others (in the background) on
maps. These widgets may pass information between each other to ensure that they are focused on the
same map region, for example, or to display updated information as it becomes available from a database
or data stream. This dashboard and the arrangement of widgets can be shared between developers by
exchanging textual configuration files.

Ozone widgets interact in a publish-subscribe style [CBB+10]: widgets can publish events to chan-
nels and subscribe to channels to receive events.* All widgets that have subscribed to a channel receive
data published to that channel by any other widget. Widget developers who wish to integrate with other
developers must agree on the names of channels to publish to, and the format of the data that is pub-
lished. To offer additional control over communication, Ozone also allows end users to restrict potential
communication between widgets by indicating pairs that are allowed to communicate, thereby implicitly
restricting other widgets from participating in those communications.

While end users are free to choose which widgets appear in their dashboard, considerable care must
be taken to ensure sensible configurations. In particular, it is important to make sure that widgets both
publish and subscribe to the appropriate channels, and that the type of data published is consistent with
that expected by subscribers.

The existence of complex interconnection rules and behavior lead naturally to the use of architec-
tural modeling of widget compositions, which could support the end-user architecting process through
automated constraint checking. For example, a widget topology can be checked to conform to a privacy
constraint that widgets containing private data do not communicate it to third-party untrusted widgets.
Another application is widget topology generation: a user would specify what pairs of widgets should and
should not interact, and a set of topologies would be generated. While developing a full-fledged widget

*Events in Ozone are plain-text strings or JSON objects.
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Figure 5.4: An Ozone dashboard example from [HV12].

environment was out of scope for this thesis, in our work we modeled Ozone widget compositions in
Acme [GMW97a] and used that for analysis.

Key features of our end-user architecting approach to this domain are:

1. Architecture Representation: Ozone widget configurations are represented as explicit architec-
tural models, that indicate which widgets are involved in a composition and the communication
topology.

2. Architectural Style: Compositions are defined using a variant of a publish-subscribe style that
takes into account restrictions on widget communications. Element types include Widgets, which
have publish and subscribe interfaces, and two types of connectors representing public channels and
private (restricted) channels.

3. Adapters: We built a simple UI-adapter that can accept a widget assembly, an execution adapter
than can evaluate the execution and analysis adapter than can execute an analysis displaying the
results in another widget

4. Analysis: The framework allows integration of various analysis plugins that could take a composi-
tion and provide analytic results that are displayed in another widget. Examples of analytic results
include displaying whether there are data mismatches over publish-subscribe channels, whether in-
formation is lost (e.g., because there is no widget subscribed to information on a particular channel),
etc.

56



5. Reuse: Dashboard setups (i.e., configurations) that are shared between analysts as textual configu-
ration files. Embellishing this with architectural representations allows end users to check whether
adaptations to existing compositions retain prior communication channels, and whether it is feasible
to substitute one widget for another.

5.4 Neuroscience workflow composition

We introduced the neuroscience workflow composition in Section 3. As described before, the end-user
compositions in this domain comprise of compositing various tools and libraries and construct workflows
consisting of a series of operations to process brain imaging data.

The Halo framework was applied to this domain to provide the following components:
1. Architecture representation: Similar to arithemtic expression environment, architectures are ex-

plicitly represented in a system layer that stores compositions as workflows and provides a repos-
itory of processing steps and transducers. The main components made available in this prototype
were derived from the FSL tool suite (e.g., bet2, fslmath, flirt) [FMR].

2. Architecture style: Compositions are defined using a formal workflow architectural style, which
is similar to the one used for arithmetic expression environment.† The neuroscience style differs
in two respects: (a) it defines computational elements specific to the neuroscience domain, and
(b) it provides additional properties and domain-specific constraints (such as checking ports for
different data encodings and other content of brain-image data) that allow the correct construction
of workflows within the neuroscience domain.

3. Adapters: The four adapters allow the integration of the user interface, execution runtime, analysis
plugins and the neuroscience component repository

4. Analyses: Similar to arithemtic expression environment, the properties of the style elements are
used for designing various domain-specific analyses for the brain imaging domain. An example is
data mismatch analysis (described in detail in Section 5.5.2) to support the detection of data mis-
matches in the neuroscience compositions and to suggest repairs that can resolve these mismatches
based on an end user’s quality of service requirements [VEDG+12].

5. Execution support: Workflows are compiled into BPEL scripts, which are executed on a service-
oriented platform, identical to SORASCS, providing similar feedback and debugging facilities.

6. Reuse: The workflows in this domain can be encapsulated as parameterized components for later
reuse and adaptation.

7. User Interface: A web-based graphical interface is provided for workflow construction, analysis,
and execution.

Not only did Halo provide the building blocks, which lowered the cost for constructing this envi-
ronment (as opposed to building everything from scratch), it also allowed capabilities to plug various
analyses. In the next section, we describe one such analysis that allows automated mismatch repair based
on utility theory.

†In fact, using the formal architectural description language of Acme[MKMG97], we have defined a common root style for
both the dynamic network analysis domain and the neuroscience domain [DEF+11].
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5.5 Examples of analyses based on end-user architectures

In the previous Section we described how compositions can be represented as architectures. Next, we
describe some example scenarios where such an end-user architecture can assist end users in their com-
position tasks using various architecture-based analyses.

5.5.1 Constraint analysis

An architecture model for compositions allows us expose system integrity constraints explicitly, that sup-
ports checking their validity during compositions. Consider, for example, a dataflow composition that is
implemented via refinement of the SCORE style. The style defines specific constraints on composition
of the components, which constrain how these can be combined together. Such constraint specification is
based on Acme, which facilitates the definition of logical expressions that capture such relationships as
connectedness, type conformance, and hierarchy. Halo supports building analyses that provide guidance
to the end users when such constraints are violated.

As an example of analyses based on constraints, see the figure 5.1, where the architecture vocabulary
provides constraints that define the permitted composition of components. For example, the vocabulary
may define constraints on component interfaces (or ports) based on some expected property value.

Listing 5.1 Illustration of a constraint on a property

Port Type In = {
. . .
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Port Type Out = {

. . .
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Component Type f l i r t ex tends R e g i s t r a t i o n = {

Port In : in ;
Port Out : o u t ;

}
. . .
f o r a l l c1 , c2 : S e r v i c e | c o n n e c t e d ( c1 , c2 ) −>

( c1 . o u t . s t r u c t u r e == c2 . in . s t r u c t u r e )

A large number of analyses can be expressed via such architectural constraints. Not only can such
constraints define legal ways of combining various components, more complex rules can be defined on
top of these constraints — for example, checking for cycles, checking for various structural properties,
etc. When such constraints are violated, these can be easily exposed via an interface that allows feedback
and guidance to an end user so that the user may correct the issues with the composition. Such nudges
improve the quality of end-user composition and make end users more efficient where they can focus on
the task at hand, instead of delving into code and scripts to figure out what was the problem.

Besides analysis based on architectural constraints (violations), Halo supports more advanced forms
of analyses where analyses are treated as plugins that act on the architectural vocabulary and can per-
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Figure 5.5: An example analysis based on constraint violation.

form more complex tasks – for example, checking for performance (based on related properties and their
analysis), automated mismatch repair, and so on.

In the next section, we describe one such analysis in the brain imaging domain that allows automated
repair of a compositions.

5.5.2 Data mismatch analysis

Many domains such as scientific computing and neuroscience require end users to compose heteroge-
neous computational entities to automate their professional tasks. However, an issue that frequently ham-
pers such composition is data-mismatches between computational entities. Although, many composition
frameworks today provide support for data mismatch resolution through special-purpose data converters,
end users still have to put significant effort to deal with data mismatches, e.g., identifying the available
converters and determining them, or combination of them, meet their QoS expectations. Often end users
have to compose computational entities that have conflicting assumptions about the data interchanged
among them (as shown in Table 5.2).

As introduced earlier, consider the typical scenario in the neuroscience domain where scientists study
samples of human brain images and neural activity to diagnose disease patterns. This often entails analyz-
ing large brain-imaging datasets by processing and visualizing them. Such datasets typically contain 3D
volumes of binary data divided to voxels.‡ Across many such datasets, besides the geometrical represen-
tation, brain volumes also differ in their orientation. Therefore, when visualizing different brain volumes
a scientist must “align” them by performing registration. When two brain volumes A and B are registered,
the same anatomical features have the same position in a common brain reference system, i.e., the nose
position in A is in the same position in B (as shown in Figure 5.6 (a)). Thus, registration of brain volumes
allows integrated brain-imaging views.

Processing and visualizing data sets require scientists in this domain composing a number brain-
imaging tools and services provided by different vendors. The selection of tools and services is carried
out manually and often driven by analysis-dependent values of domain-specific QoS constraints, e.g.,
accuracy, data loss, distortion. In this context, the heterogeneous nature of services and tools often leads

‡A voxel is a unit volume with specific coordinates and dimensions, e.g. width, length and height.
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Type Description
DataType Results from conflicting assumptions on the signature of the data and the com-

ponents that consume it, e.g., a computation requires different data type.
Format Results from conflicting assumptions on the format of the data being inter-

changed among the composed parts, e.g., xml vs. csv (comma separated val-
ues).

Content Results from conflicting assumptions on the data scope of the data being in-
terchanged among components, e.g., the format of the output carries less data
content than is required by the format of the subsequent input.

Structural Results from conflicting assumptions on the internal organization of the data
being interchanged among the composed parts, e.g., different coordinates sys-
tem such as Polar vs. Cartesian data or different dimensions such as 3D vs. 4D.

Conceptual Results from conflicting assumptions on the semantics of the data being inter-
changed among the composed parts, e.g., brain structure vs. brain activity or
distance vs. temperature.

Table 5.2: Common types of data mismatches.

(a) (b)

Figure 5.6: (a) Registered volumes with same brain reference system and (b) Data mismatch detection
during composition

to have data mismatches; thus, scientists also need to select conversion tools and services to resolve them.
Consider that during workflow composition a scientist needs to visualize a set of brain-image vol-

umes. These volumes store brain images of the same person as 3D DICOM volumes. The volumes are not
registered, i.e., they are not aligned to the same brain reference system. To visualize this data, the scientist
tries to compose the Set of Volumes data service –which can read the actual store where the volumes are,
and the Visualize Volumes service –which enables their visualization. Table 5.3 shows an excerpt of the
specifications of the operations’ parameters of these two services. As can be seen, the Visualize Volumes
service requires data that is already registered and in ‘NIfTI’ format (see its registered=‘Yes’ and for-
mat=‘NIfTI’ input parameters). Thus, these two services cannot be composed as they have both a format
and a structural mismatch, i.e. the interchanged data has both a different format and internal organization.

Most impoverished environments would find it hard to even detect such mismatches, not to mention
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Table 5.3: An excerpt of the parameter specifications of the services in the example.

Service Operation Input parameters Output parameters
Set of read name=‘out’ type=‘files’

Volumes Volumes format=‘DICOM’ registered=‘No’
sameSubject=‘Yes’

Visualize view name=‘in’ type=‘files’
Volumes format=‘NIfTI’ registered=‘Yes’

sameSubject=‘Yes|No’
dinifti DICOM name=‘in’ type=‘files’ name=‘out’ type=‘files’

toNIfTI format=‘DICOM’ registered=‘No|Yes’ format=‘NIfTI’ registered=‘Yes|No’
dcm2nii dc2nii name=‘in’ type=‘files’ name=‘out’ type=‘files’

format=‘DICOM’ registered=’No|Yes’ format=‘NIfTI’ registered=‘Yes|No’
sameSubject=‘Yes|No’ sameSubject=‘Yes|No’

flirt register name=‘in’ type=‘files’ name=‘out’ type=‘files’
format=‘NIfTI’ registered=’No’ format=‘NIfTI’ registered=’Yes’
sameSubject=‘Yes|No’ sameSubject=‘Yes|No’

fnirt register name=‘in’ type=‘files’ name=‘out’ type=‘files’
format=‘NIfTI’ registered=’No’ format=‘NIfTI’ registered=’Yes’
sameSubject=‘Yes|No’ sameSubject=‘Yes|No’

fixing them. It is usually left to the scientists to discover why such a mismatch occurred and then manually
fix it. The ideal workflow, the scientists would have wanted that would fix this composition scenario is
shown in Figure 5.10. It is possible to build analyses that could automatically fix this composition, and
even suggest multiple alternatives when more than one option is possible.

Architecture-based data mismatch repair

In one of our prior works [EDG+13], we developed an approach to fix such mismatch analysis using
a utility-based analysis of architecture representations. The general idea behind the approach was to
build a mismatch repair evaluation engine, which when fed with architectural descriptions describing a
composition would generate alternative choices that could be ranked by a utility function and presented to
the end user. Figure 5.7 shows the high-level steps to such an analysis.
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Figure 5.7: The three main phases of the approach to data mismatch detection and resolution.

Program 2 shows a snippet of an Acme specification that illustrates specialization of the neuroscience
style where data format and data structure are represented as properties of the ports of the flirt service
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component. Such an architectural specification can be used to automatically check constraints to detect
various types of violations in compositions.

Program 2 Example of data ports with format and structural information.

Property Type l e g a l F o r m a t s = Enum { NIfTI , DICOM} ;
Property Type l e g a l I n t e r n a l S t r u c t u r e = Enum { Aligned , NotAl igned } ;
Port Type In = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Port Type Out = {

Property f o r m a t : s e t o f l e g a l F o r m a t s ;
Property s t r u c t u r e : l e g a l I n t e r n a l S t r u c t u r e ;

}
Component Type f l i r t ex tends R e g i s t r a t i o n = {

Port In : in ;
Port Out : o u t ;

}

For instance, this predicate can be used to detect a data mismatch involving both format and structural
aspects:
f o r a l l c1 , c2 : S e r v i c e | c o n n e c t e d ( c1 , c2 ) −>

s i z e ( i n t e r s e c t i o n ( c1 . o u t . fo rmat , c2 . in . f o r m a t ) ) > 0
AND ( c1 . o u t . s t r u c t u r e == c2 . in . s t r u c t u r e )

The predicate states that it is not enough for a pair of connected Services c1 and c2 to deal with data
with the same format (e.g., DICOM or NIfTI§), but also the data must have same structural properties
(e.g., Aligned or NotAligned). Once a mismatch is detected by the type checker, the Mismatch Detection
Engine can retrieve the architectural specification of the pair of mismatched components and outputs this
to the repair finding phase, which is shown in Figure 5.8.
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Figure 5.8: The Repair Finding Engine.

In this phase, the declarative specifications of the pair of mismatched composition elements are con-
verted into Alloy specifications, which generates a set of possible alternatives for the model. The Repair

§DICOM and NIfTI are data formats used to store volumetric brain-imaging data.
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Finding Engine thus finds all the valid instances of a repair alternative by having multiple runs of this
command. The Alloy Analyzer stores these instances as XML files. These files are then transformed to
architectural specifications to be processed in the next phase of the approach as shown in Figure 5.8.
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Figure 5.9: The Repair Evaluation Engine.

While there are number of ways one could prioritize the generated compositions (if there are more
than one), one way to handle this is through a utility based approach, where a QoS profile could be
associated with each possible component to decide the overall QoS values of repair alternatives.

Let’s assume that the scientist has specific QoS requirements for a repair. He would like to have no
distortion in the brain-image; he would like to have an optimal speed and accuracy, but would be OK with
their average values. However, low value of speed or accuracy, or distortion is not acceptable for this
composition. This information, specified in the QoS Profile, can be summarized as follows:

Accuracy: h(Optimal, 1.0), (Average, 0.5), (Low, 0.0)i,
Speed: h(Optimal, 1.0), (Average, 0.5), (Low, 0.0)i and
Distortion: h(Y, 0.0), (N, 1.0)i, with the 0.5, 0.1 and 0.4 weight values respectively.

Based on the QoS information, and using a set of built-in domain-specific functions, the Repair Evaluation
Engine calculates the following aggregated quality attribute values:¶

RA1: aggQADist = N, aggQASp = Ave, aggQAAcc = Opt.
RA2: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.
RA3: aggQADist = N, aggQASp = Opt, aggQAAcc = Opt.
RA4: aggQADist = Y, aggQASp = Ave, aggQAAcc = Opt.

With all this available information, the Repair Evaluation Engine can compute the overall utility of each
repair alternative via the utility function. The obtained results are ranked and presented to the scientist.

¶Dist = Distortion, Sp = Speed, Acc = Accuracy, Opt=Optimal, Ave=Average.
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Program 3 Illustrative QoS specification for FSL services.
-- dinifti
<QoSSpecification>
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>
</QoSSpecification>
-- dcm2nii
<QoSSpecification>
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>
</QoSSpecification>
-- flirt
<QoSSpecification>
<att><name>Distortion</name><val>N</val></att>
<att><name>Speed</name><val>Optimal</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>
</QoSSpecification>
-- fnirt
<QoSSpecification>
<att><name>Distortion</name><val>Y</val></att>
<att><name>Speed</name><val>Average</val></att>
<att><name>Accuracy</name><val>Optimal</val></att>
</QoSSpecification>

Figure 5.10 shows part of the workflow after resolving the mismatch. As can be observed, the alternative
that has the highest utility is selected.

Figure 5.10: The workflow after resolving the mismatch.

5.5.3 Fidelity vs. timeliness analysis

Another end-user architecting analysis is a common scenario in many scientific fields, where simulations
and analyses require computations with varying fidelity expectations. For example, scientists may perform
a quick approximation using lesser data, or perform computations with various fidelity trade-offs. In
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many such domains, composing heterogeneous computational entities, usually in the form of workflows
or component assemblies, allows scientists to execute their analyses. In these scenarios, often the fidelity
selection of datasets, components, and their configurations determines the timeliness of queries (and vice-
versa).

As an illustration, consider an example in the field of military intelligence where soldiers rely on
analysis and simulations to guide their operations. Today, such analytic capabilities are provided by tools
and mechanisms that can transform information sources captured as unstructured input (e.g., incident
reports, news sources, miscellaneous geo-spatial data) into complex network models that aid sophisticated
analysis such as situational awareness, key entities, fact identification, and what-if exploration [CP12].

A common querying scenario is when a soldier observes suspicious activity and sends an incident
report (see example below) to an operating base, where analysts and other experts can analyze the incident
and respond back with a report.

Incident Report: Lt. Col. Liz Abreams (Date: 2/16/2011) Set up sensor

alert at checkpoint zulu-1, border crossing between Talodi and Malakal.

Position sensor picked up 15 vehicles. Darfur escapees. Overcast. Positive

ID on LP 6VES512. Orange. Passengers were Hasim Makul, Hassan Sayid

Deng, Jon Deng, and Mary Okulo. Visible knifes. Possible narcotics."
Query: Should we detain? Will maintain position till 1800.

Figure 5.11: A simple UI to perform fidelity time trade-offs.

In order to assess the situation and to answer the soldier’s question, an analyst in a forward operating
base must decide whether the new information leads to any significant changes in the existing network
structures in that geographical area. Such an analyst may have user interfaces that may allow him/her
to perform various tradeoffs on the various input parameters to the query (as shown in Figure 5.11).
However, for each of these selected variations in input parameters the underlying computation may vary
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significantly. An illustrative computational workflow (shown in Figure 5.12) for this query involves: (i)
processing this incident report along with the network data, (ii) converting it into a graph-based model and
(iii) using network algorithms to create and visualize the impact of the new event.

In this domain, a typical network contains millions of nodes with information about people, events,
and locations. Therefore, it may save significant time to pre-process and cache this data at the expense
of using potentially stale information. Other fidelity variations include: (a) reducing the quantity of data
based on dimensions such as time (e.g., only consider this year, vs. consider all years), (b) space (e.g.,
only consider sources associated with Darfur and Sudan), (c) source (e.g., only consider sources from
local reports), and (d) using faster approximations vs. slower but accurate algorithms. These, and other
fidelity choices, may lead to different component assemblies with different execution times.

Control Parameters Expected TimeSoldier identifies
suspicious acticity
and prepares and 
incident report.

Report send to
forward operating base.

Query
Does observed information change importance of entiies? 

Network Data

......................

.....................

....................

.....................

Incident Report

Large size network

Data2Model Find Key 
Entities

Visualize

Multiple variations of this workflow 
Time range: ~2 mins to over 5 hrs 
(depending on fidelity choices)

Figure 5.12: Querying based on fidelity vs. timeliness.

A variation of the workflow from Figure 5.12 is illustrated in Figure 5.13 that has fidelity reductions
in terms of using cached data with a faster approximation algorithm for computing key-entities. The end
user (here, an analyst) provides the control parameters or fidelity expectations that can inform him about
the expected execution time and help in the generation of the right computation assembly that serves his
operational needs. While the workflow in Figure 5.12 takes more than 5 hours to execute, the one in
Figure 5.13 takes about 2 minutes. This dramatic time saving is achieved by approximating the results by
using a slightly older, cached network and a faster algorithm that uses a subset of the networks that deals
with relationships between people from the Sudan network data (instead of using a collection of other
relationships such as knowledge, resources, geospatial or temporal information, etc. that can provide a
detailed, but slower, analysis).

To perform an analysis like this, we could uses an architecture based approach where architectural
models can represent the composition vocabulary and the constraints (as shown in Figure 5.14) and can
be used to not only create the executable components, but also provide estimations of the execution time
for the overall computation. The execution time for such computation could vary extensively from a few
minutes to few hours, and the analyst could benefit from an estimation of the expected execution time.
If the analyst knew about the time estimations, he/she could vary the fidelity of the computation before
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Figure 5.13: A variation of the workflow in Figure 5.12.

actually submitting the request.
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Generate concrete instances

Resolve style constraints

Calculate approximate execution time

Figure 5.14: Generating concrete workflow and timing.
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We implemented a simple architecture based analysis, where the UI specification is represented in an
Acme, including the properties, constraints and functions. This Acme specification is converted into an
Alloy model that generates a number of concrete specifications that match the constraints for the model.
Of these concrete specifications, the specification that meets the time-fidelity criteria is further compiled
into an executable BPEL script and executed (if the analysts decides the timeliness and fidelity is a good
fit).

More details about the overall approach can be found in this paper [DGPS14]. While the architectural
representation and the types of analysis could vary significantly across domains and environments, we
wanted to emphasize that advanced analyses can be developed based on architectural specifications, which
could enrich end-user composition and aid the development of quality end-user architecting environments.

5.6 Summary

In this chapter, we demonstrated the application of end-user architecting across two styles (dataflow and
publish-subscribe), across four domains: Arithmetic expressions, Dynamic Network Analysis, Neuro-
sciences, and Widget compositions. In the next chapter, we evaluate the extent to which the end-user
architecting approach, supported by evidence from these instantiations, fulfills the thesis claims.
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CHAPTER 6

Thesis Evaluation

In the thesis statement, I claimed that it is possible to build an end-user composition framework that can be
instantiated to provide high-quality composition environments at relatively low cost compared to existing
hand-crafted environments for a broad class of composition domains. The discussion of the end-user
architecting approach and the Halo framework in Chapter 3, and Chapter 4 (respectively) demonstrates
the feasibility of this claim — that it is possible to do at all. In Chapter 4 we described the Halo building
blocks and how to customize them and in the previous chapter we demonstrated instantiations of Halo
across various dimensions. In this chapter, I further validate the claims around improved quality, low cost
and generality of the framework.

6.1 Claim: Quality assurance through Halo

For validating quality improvements with Halo, and getting a general understanding of what are the
quality dimensions associated with composition environments, we performed a qualitative study to un-
derstand how end-users use their composition environments across different domains and what are the
key aspects and features that indicate high quality for their composition environments. Our validation
approach relies on Halo supporting all the key quality features identified in our qualitative study.

Next, we describe the study and findings.

6.1.1 Research Question

In order to validate the claim that Halo framework allows development of high quality composition envi-
ronments, we address the following research question(s):

What are the common quality features that end users care about?

To what extent, and in what contexts, does Halo improve the quality of composition environ-
ments?

While quality is a subjective aspect, we hypothesized that there are a common set of quality features
for composition environments across domains. Feature-rich, quality environments support these quality
features to a greater extent, and the more impoverished ones don’t. We evaluated this via our qualitative
study, which we describe in the following sections.
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6.1.2 Research method: Qualitative Study

We chose an exploratory, qualitative research method that aims to understand how end-users used their
composition environments across different domains and problems faced by them. Our method consists of
three main phases:

• The case selection and protocol design phase, in which we developed the research protocol and iden-
tified a diverse set of composition environments with different composition styles and application
domains.

• The interview phase, wherein we elicited responses from the selected end-users

• The qualitative data analysis phase, in which we coded the interview transcripts and systematically
drew inferences from the data.

Next, we describe the 3 phases of our study.

Case Selection

As shown in Table 1.1, composition environments today use a wide variety of composition models, varying
from dataflows (e.g., Loni Pipeline and Taverna) to publish-subscribe (e.g., Ozone Widgets) to state-based
transitions (e.g., SimMan3G simulation) to mix of composition styles (e.g., Kepler). An important con-
sideration for our study was to explore the differences across these domains and composition models. For
instance, did end-users face the same problems while designing workflows as they did while composing
states? We selected 4 candidate environments that were quite different in their domain of application and
composition models. Besides this, we conducted a pilot study using an industrial composition environ-
ment called “Appian modeler", which is a dataflow based composition environment.

We provide a brief description of these composition environments below:

1. Loni Pipeline: is a dataflow-based composition environment for neuroscience workflows. The
compositions in the Loni Pipeline environment reference data, services and tools as components
that can be assembled together through a drag and drop interface. As per a software usage sur-
vey * conducted by NeuroDebian in 2011, Loni Pipeline was one of the top 20 environments in the
neuroscience domain.

2. Taverna: is a dataflow-based composition environment for designing and executing web-services
compositions. Initially designed for bioinformatics, Taverna is currently being used by users in
many domains, such as bioinformatics, cheminformatics, medicine, astronomy, social science, mu-
sic, and digital preservation.

3. SimMan3G: is a state-based patient simulation system that facilitates health-care training by sim-
ulating real-life medical scenarios such as a cardiac arrest, breathing complications and change of
vital signs on the high-fidelity manikins. Medical training professionals can combine a sequence of
such activities to create a medical scenario (such as an asthma attack) and the complications that
go along with it. These activities can be currently programmed in a composition and automatically
executed on a manikin or a simulator.

*http://neuro.debian.net/survey/2011/results.html
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Table 6.1: Study Participants.

Tool Participant Expertise Level
Appian modeler P0 (Pilot) Beginner
Taverna P1 Beginner
Taverna P3 Expert
Taverna P4 Expert
SimMan3G P5 Beginner
SimMan3G P6 Expert
SimMan3G P7 Beginner
Kepler P8 Beginner
Kepler P9 Expert
Loni Pipeline P10 Beginner
Loni Pipeline P11 Expert

4. Kepler: Kepler is a composition environment for designing and executing scientific workflows that
uses a mix of dataflow and control flow semantics. Using Kepler’s graphical user interface, users
can compose various analytic components and data sources to create a scientific workflow. The
Kepler software helps users share and reuse data, workflows, and components developed by the
scientific community to address common needs.

For the composition environments described above, we recruited 10 participants (plus one additional
for the pilot) who had a different degree of expertise in using the composition environment. The average
total interview time per participant for each interview was about 35 minutes. Our participants consist of
a mix of beginners (with less than a year experience) and experts (who had been using their composition
environment for many years). Table 6.1 shows the list of participants for the study. It is to be noted that
our “expertise level" criteria was fairly subjective and was reinforced during the interview through direct
questions about the participants background and the level of their experience and expertise using their
composition environments.

Semi-structured Interviews

For our qualitative study, we followed a semi-structured interviewing discipline [EH13], which means
that although the interviews were guided by an explicit interview protocol that defined the general topics
that the interviews would examine, we were free to devise new questions to further probe interviewees on
specific subjects.

All subjects were asked to either draw a composition (as a homework task), or reproduce an existing
composition they had previously drawn. During the interview, all participants were asked to open up
their composition and they were interviewed about their experience writing that composition. The general
technique used was to start with open-ended questions such as “What problems did you face in creating
this composition?", and then ask detailed questions about specific types of problems.

Our interviews consisted of an introductory script to secure informed consent followed by a series of
topics to be covered including the following:

• Questions about a participant’s role and background and expertise

• Questions about a recently drawn composition (before the interview) that participants needed to
open up and use as a recall mechanism
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Table 6.2: Sample (first-level) codes for the study.

1st Cycle Codes.

1. Composition motives (mot) 4. Resolution of problems (res)
• Simulation (mot:simulation) • Analysis tools (res: tools)
• Experimentation (mot:experiment) • Intuition (res: intuition)
• Teaching (mot:teaching) • Execution (res: execution)
• Automation (mot:automation) • Reference Documentation (res: docs)
• Other (mot:other) • Other (res: other)

2. Nature of Composition (nat) 5. Desired Feature (des)
• Computation model (nat: compModel) • General Purpose (des: general)
• Abstraction level (nat: abstractionLevel) • Tool-specific feature (des: specific)
• Other (nat: other)

3. Quality issues with composition environments (issue) 6. Skill level of end user (skill)
• Technical detail (issue: techDetail) • Beginner (skill: beginner)
• Reuse support (issue: reuseSup) • Expert (skill: expert)
• Execution support (issue: execSup) • Unknown (skill: Unknown)
• Analysis support (issue: analysis)
• Computation model mismatch (issue: compMismatch) 7. Rating (rating)
• Other (issue: oth) • Highly important (rating: highImp)

• Low importance (rating: lowImp)
• Unknown (rating: Unknown)

Other codes...

• Questions about features used to create that composition

• Questions about problems faced and quality issues of the environment

• Ratings of quality issues

• Suggestions: how can limitations be addressed?
We instructed participants to speak out loud and explain their actions while working with the compo-

sition environments. The recorded audio statements of participants were further transcribed and analyzed.

Data Analysis and Interpretation

Given the exploratory nature of our research questions, “Content Analysis" [MHS13] is the main analytic
method used in our study. The content analysis technique allows building an understanding of under-
lying reasons and motivations of participants while using unstructured or semi-structured data (such as
interviews).

We recorded all participant interviews and used Amazon Turks to transcribe the audio into text, which
needed some post processing. We used coding theory [Sal15] to link the findings about end-user prefer-
ences to the interview dataset and validate whether our observations were consistent. In particular, we
employed a two-cycle coding method: in the first cycle, we applied the “hypothesis coding” method to
our dataset using the predefined code list. In the second cycle, we applied axial/pattern coding to discover
patterns from the dataset [Sal15].

A selection of sample 1st cycle codes is listed in Table 6.2. As a second-cycle coding activity, we
identified patterns and selective heuristics that led to some of the key findings for the study that we discuss
in the Results section.
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Figure 6.1: Types of End-User tasks.

6.1.3 Results

To address ResearchQuestion (“What key quality features do end-users want in their composition envi-
ronments"), we evaluated the first-cycle attribute codes for the code (quality) issue. As a conclusion from
the study, we identified that the end-users primarily used their composition environments for following “6
types" of tasks:

1. Search and explore: Across many domains and environments, the first step for composition usually
starts with search of existing compositions on online forums, desktops or component repositories,
followed by some level of reuse, experimentation and debugging. In domains like bioinformatics,
brain imaging and e-sciences, there is an increasing trend to provide curated registries where users
can look up specific components and compositions and download them for their use. However,
searching through such repositories still remains a challenge.

2. Reuse: Self-reuse (using one’s own composition in a different context) and External reuse (using
someone else’s composition) is often a common problem scenario for many end-user composition
environments. Often professionals need to share their components and compositions with others.
For instance, brain researchers may want to replicate the analyses of others, or to adapt an existing
analysis to a different setting (e.g., executed on different data sets). Packaging such compositions
in a reusable and adaptable form is difficult, given the low-level nature of their encodings, and the
brittleness of the specifications.

3. Construction: Combining visual (and computational) elements by drag-and-drop is a common
activity across many composition environments. These composition steps usually entail some com-
mon direct manipulation activities and a number of user commands such as adding composition
elements, specifying their properties, and relationships between composition elements. While se-
mantically many of these composition commands look similar, the exact nature varies across com-
position styles, UI technologies and domains.

4. Analysis: End-user compositions often enforce restrictions on legal ways to combine elements, dic-
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tated by things like format compatibility, domain-specific processing requirements, ordering con-
straints, and access rights to data and applications. Discovering whether a composition satisfies
these restrictions is usually a matter of trial and error, since there are few tools to automate such
checks. Moreover, even when a composition does satisfy the composition constraints, its extra-
functional properties — or quality attributes — may be uncertain. For example, determining how
long a given computation will take to produce results on a given data set can often be determined
only by time-consuming experimentation.

5. Execution: End-users often need to interactively execute their compositions to learn about the do-
main or perform computation tasks. However, compared to the capabilities of modern programming
environments, end-users have relatively few tools for things like compilation into efficient deploy-
ments, interactive execution and monitoring intermediate results. This follows in part from the fact
that in many cases compositions are executed in a distributed environment using middleware that is
not geared towards interactive use and exploration by technically naive users.

6. Debugging: Debugging support is often the least mature capability across most composition envi-
ronments. Capabilities such as interactive testing and debugging by setting breakpoints, monitoring
intermediate results, history tracking, and graceful handling of run-time errors are challenging for
composition environments. Furthermore, the vocabulary of execution is often very different to the
vocabulary of construction and many naive end-users are not proficient in low-level computational
details. It is not surprising that support for debugging is missing in most environments.

Figure 6.2: Halo support for the end-user tasks.
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In our findings, analysis and execution support were the most important features for end-users as they
not only helped in debugging but also interactive learning of compositions. Support for reuse was also
an important requirement to address composition problems. However, the form of reuse varied across
environments. “Self-reuse" was the primary form of reuse. “External reuse" via repositories was mainly
used for experimentation and learning. This was not a surprising result as prior studies have reported
similar observations [GCG+14].

Furthermore, by examining some of the successful composition platforms such as LoniPipeline [RMT03],
Taverna [HWS+06], Galaxy [GRH+05] and Wings [GRD+07], it was possible for us to identify the larger
ecosystem consisting of various domain-experts and developers. We identified various developer roles in
such ecosystems. Examples of such roles include † component developers, platform developers, domain
experts, etc. Even though impoverished composition environments are common today (where end users
perform many of these roles by themselves), rich compositions environments manage this synchronization
quite well‡. This allows them to develop higher quality of composition environments.

A quality framework not only supports most of the end user tasks, but it also needs to be able to
support all these developer roles. Here are some of the ways Halo supports these developer roles:

1. Component developer: implements components such as applications, services, libraries, scripts and
data elements, and makes them available in a repository. Halo defines the interfaces that these
components need to implement so that they could participate in end-user compositions.

2. Component integrator: wraps these components to provide Halo interfaces, which ensures that the
components provide the access protocols and the methods required by the framework.

3. Domain expert: identifies the composition vocabulary that consists of computational elements in the
domain, their properties, the composition constraints, and the high level classification schema that
will aid in browsing and search. A domain-expert uses his expertise to define the ground rules for
compositions in that domain. Furthermore, based on the quality objectives of a particular domain,
a domain expert also defines the types of analyses that may be performed over the compositions.
Domain experts communicate this information to a framework instantiator who formally encodes
the composition vocabulary in styles, and develops the analyses.

4. Framework instantiator: instantiates the Halo framework to create an end-user composition plat-
form. It is his responsibility to customize the Halo framework by using appropriate plugins for (i)
architectural representation, (ii) reuse support, (iii) component and data reference (iii) analyses, (iv)
component registry, and (v) execution-support. He creates the user interface, execution platform,
and the intermediate architecture layer and integrates them together to create a working environment
for composition construction, execution, and analysis.

5. End-user architects: use an end-user composition environment to create compositions and templates
for end-users. They design, analyze, and execute high quality compositions and package and register
their compositions as reusable templates for end-users to use for their specific composition tasks.

Not only does Halo provide support for each of these roles, it improves the quality of the developed
environments by supporting all the key end-user tasks. While, how these end-user tasks are presented

†Note that the roles that we identify for Halo closely correspond to these roles.
‡For example, composition environments such as WINGS and Taverna are built on an ecosystem of developers and domain-

experts who design components, ontologies and rules to promote easier composition

75



to the end user would vary across environments, supporting them through the framework allows easier
development of these qualitative features.

6.1.4 Discussion and limitations

One of the research questions we asked earlier was “To what extent, and in what contexts, does Halo
improve the quality of the composition environments”. Our qualitative study delved deeper into the types
of composition features that are “typically needed” across composition environments, the various roles that
are engaged in the development of composition environments, and how Halo can support both of these.
While these are common features that indicate quality, these are in no way exhaustive. Additionally, even
with these features, a buggy implementation or other discrepancies can make the composition platform
(and the associated user experience) undesirable. On the extreme end, there may exist domains where
the nature of composition construction may be completely ad-hoc, the nature of analysis may not be
architectural; or even if associated architectural composition and analysis constructs can be defined, their
utility may not justify the effort.

If we set aside these extreme cases, one way to think about the applicability criteria of Halo would
be to think of the common computational tasks associated with composition. As illustrated in Table 6.3,
even for some very diverse domains, if the composition modelling, execution and analysis activities rely
on fixed component types, with well-defined domain constraints, it is feasible to define an end-user archi-
tecture associated with such composition and drive composition and analysis through Halo. A framework
integrator would still need to customize the Halo building blocks; and the related costs would vary. How-
ever, by customizing and integrating Halo building blocks composition platform developers can get many
of these quality features in an off-the-shelf manner.

Table 6.3: Activities involved in end-user composition.

XXXXXXXXXTools
Activities Composition Execution Analysis

Conception Reuse Sup-
port

Modeling Model Anal-
ysis

Distribution Monitoring Visualization Query

Taverna (Bioin-
formatics)

Computational
pipelines

Search web-
service reg-
istry tags

Web-service
compositions

Correctness/
Availability

Remote
server

Client-side
display

Model com-
position and
execution

Execution
results

Ozone (Geospa-
tial analysis)

Widget
based inter-
active visu-
alization

Widget
lookup

Publish subscribe
messages

Message flow
control

Remote
server

Widget dis-
play

Widgets com-
position and
subscriptions

Execution
results

VST (Digital Mu-
sic Production)

Audio se-
quencing
affects

Audio filters Pipeline of au-
dio filters

Correctness /
Aesthetics

Local Music pro-
duction

Music filter
assembly

Execution
results

SWiFT (Dynamic
Network Analysis)

Pipeline of
DNA ser-
vices

Component
Registry

DNA workflows Correctness,
Security, Per-
formance etc

Workflow
server

Workflow ex-
ecution, anal-
ysis and in-
termediate
results

Views for
composition,
analysis and
execution

Specific
analyses/re-
sults

WINGS (Sci.
computing)

Computational
pipelines

Semantic
templates

Semantic com-
positions

AI-planning/
Semantic rea-
soning

Workflow
server

Client-side
display

Model, Results Workflow
execution
results
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6.2 Claim: Cost Improvements through Halo

For validating cost-effectiveness of Halo, we use a formal task analysis approach that compares the cost
of building key composition environment features with and without the framework. We assessed the over-
all engineering effort to build composition environments by reusing and customizing Halo components
instead of building everything from scratch.

Next, we describe our cost evaluation approach.

6.2.1 Research Question

In order to validate the claim that Halo framework reduces the costs of developing high-quality composi-
tion environments, we address the following research question:

To what extent, and in what contexts, does Halo reduce the cost of composition environments?

6.2.2 Research method: Task comparison framework

This section describes an analysis of the tasks required to design and construct a customized composition
environment comparing the cost of building an environment ground-up, using the end-user architecting
approach in which the Halo building blocks of the composition environment are incrementally customized
and integrated via adapters. This Task framework was proposed by Monroe et al. [Mon99b] and used by
Cheng et al. [Che08] for evaluation of framework instantiations.

Each of the tasks described in this analysis is given a time estimate that includes best-case, average
case, and worst case times for each stage along with the criteria that determines what makes these projects
fall into best case, worst case, or average case categories. The effort numbers assigned in these task
categories are rough estimates based on data from the various case study implementations conducted as
a part of this research, informal estimates from teams who have built similar tools, and estimates based
on lines of code and effort estimates from code repositories and published data. These estimates can, of
course, widely vary depending on the scope and complexity of composition environments and the various
conditions and the rigour of project execution. However, these should provide a ballpark estimate of the
likely amount of time needed for constructing these environments. In Section 6.2.3 I further explain how
each of these estimates were calculated.

Task evaluation for building composition environments

The Halo framework allows the developers to customize various APIs and use architectural styles to build
and analyze compositions. The previous chapters demonstrated how Halo allows various customization
mechanisms and supports creation of quality end-user composition environments. In this chapter, I further
discuss how Halo reduces the cost of this development.

As a first step to evaluate the cost effectiveness of using the Halo framework it is important to assess
the engineering effort required for overall design and implementation needed to instantiate Halo in a
particular domain. The Halo framework provides the building blocks to support end-user architecting,
including the adapters needed to assemble the architecture layer and other components (i.e., the user
interface, a repository, a set of analyses, and an execution platform). However, the complexity of this
assembly varies significantly based on these factors:
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Arithmetic Expression
Environment
(Best Case)

Brain-imaging composition
Environment
(Average Case)

Widget Composition
Environment
(Worst Case)

Complexity of
Architecture Vocabulary

Small, homogeneous
set of design elements

Larger, heterogeneous
set of design elements

Complex, poorly-understood,
heterogenous design elements

Ease of Customization

Limited customization
required
Easy reuse of adapters,
and UI

Some effort needed to
customize the adapters
Needed new components
for compilation, visualization
and display

Significant effort to integrate
all components
Lack of existing components
and adapters

Table 6.4: Criteria that impact cost of Halo instantiation.

1. Complexity of Architecture Vocabulary: The level of complexity of end-user architecting envi-
ronments can vary significantly based on level of documentation, familiarity of the designer with the
domain, homogeneity of design rules, and the number of design elements involved. For instance, a
simple arithmetic composition environment may have smaller number of design constructs, while
a full-fledged brain-imaging environment composition environment may have pose higher com-
plexity for a designer; or worse, a composition environment can have complex/poorly-understood,
heterogeneous design constructs that can make architecture modeling complex.

2. Ease of Customization: Another factor that greatly impacts the cost of Halo instantiation is the
level of effort required to customize existing components to put together an end-user architecting
environment. If the instantiation requires straight forward assembly without significant modifica-
tions, it lowers overall cost. On the other end, if the customization requires major changes, the costs
are much higher.

Table 6.4 summarizes the main criteria that determine the overall instantiation cost of Halo. In our
case studies demonstrating Halo instantiation, the arithmetic expression environment was the best case
scenario as it involved least development costs. While the Arithmetic expression environment was an
illustrative example, the Brain imaging environment is an average case scenario that involves significantly
more complex domain vocabulary, where although some components are provided for the framework
instantiators, they still need to customize the adapters and write some code to integrate all the pieces.
The Widget composition environment, on the other hand, is the worst case scenario where the framework
instantiator needs to spend some effort not only in modelling the complex vocabulary, but also they have
to spend some effort writing custom adapters and other integration pieces to instantiate Halo.

Cost estimation technique used and data gathering

For the time estimates presented in this thesis, mainly three data points were used:
1. Time estimates based on framework implementations by the author: One of the primary sources

of data for the time it took to perform various task categories was based on actual instantiations of
the framework by the author. For both best-case and average-case instantiations mentioned above,
we had full instantiations of Halo. This gave us a ballpark estimate of approximate time for such
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framework instantiations.

2. Time estimates based on similar environment implementation by external members: A second
source of data was how much time it took to build similar composition environments by external
teams. One of the candidates for this was a workflow environment developed as a part of SORASCS
project [SGD+11] by a Carnegie Mellon masters team. As a part of a PSP project, the team tracked
implementation effort and provided cost estimates for developing not only the entire platform but
also individual features. This data was extensively used to make estimates about time estimates
without the framework. A summary of breakdown of implementation costs is shown in Appendix-
B.

3. Time estimates based on lines of code and other heuristics: A third source of data was based on
estimation rather than actual implementation for all the features. Especially, in the case of worst-
case implementation, where it was not feasible to fully instantiate an entire composition platform. In
such cases, we could only implement partial features and make ballpark estimates about the overall
implementation effort for features that were not implemented.

Note that all three approaches provided a ballpark estimate for the overall implementation effort. We
explored more formal estimation approaches like COCOMO [BCH+95], but those seemed impractical for
a multiple of reasons. For one, building a regression based cost model based on historical execution and
consideration of various project and developer attributes would be challenging for my research validation
as that technique is probably suited better for a single instantiation over a longer time, as opposed to
multiple instantiations where the worst case implementation included a partial set of features. And even
this estimation would be imprecise. An informal task-estimate was therefore considered a better fit for
ballpark estimates.

6.2.3 Results

Using the above breakdown of the tasks, we compared three instantiations of Halo. Key to this approach
is breaking down the framework instantiation into tasks performed by the engineers, including: domain
analysis, model capture, design and implementation, and modifications and comparing the best-case,
average case and worst case effort required for those tasks.

The criteria for identifying best-case, average-case and worst case is as defined previously in Ta-
ble 6.4. We notice that while in best-case and average-case, the Halo framework reduces the cost of
implementation nearly by half; even in worst-case, Halo offers significant improvements to cost of devel-
opment as compared to building the environment from scratch. Table 6.5 shows the overall breakdown of
the costs for the best-case, average-case, and worst-case composition scenarios where the environment is
implemented from scratch and with the framework.

In Table 6.6 we further breakdown the cost of development of key Halo features. As listed in Sec-
tion 6.2.2, our estimation was based on three factors: (1) time estimates done via actual instantiations of
the framework (2) time estimates based on similar environment implementation by external teams (and
a comparison of features), and (3) estimation based on code and other heuristics, where the accuracy of
estimations would decrease from actual calculations to estimations. As shown in Table 6.6, we had full
instantiation of Halo to create an arithmetic expression and neuroscience environments. Moreover, even
for worst case scenarios, we had partial implementations to understand the complexity and aid the esti-
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Best Case
(Arithmetic
Expression)

Average Case
(Neuroscience
Composition)

Worst Case
(Widget

Composition)
Stage of Development Custom Halo Custom Halo Custom Halo

Domain Analysis 1 week 1 week 4 weeks 4 weeks 6 months 6 months
Model Capture N.A. 1 day N.A. 1 week N.A. 1 month
Design/Implementation 2.75 months 1.25 weeks 6 months 3 months 2 years 17 months
Development Total ⇠3 months ⇠1.5 months ⇠7 months ⇠4.25 months ⇠30 months ⇠24 months

Update & Modification ⇠1 week ⇠1 day ⇠2 weeks ⇠2 days ⇠8 weeks ⇠2 weeks

Table 6.5: Overall costs for Halo instantiation tasks.

mation exercise §. We could also estimate costs for what would have taken to build such an environment
from scratch by comparing data from a MSE project team that implemented a workflow tool for SO-
RASCS [SGD+11] ¶. We compare the development costs from Arithmetic expression and Neuroscience
composition examples, and do an analysis of custom solutions based on approximate effort it would take
to implement similar functionality. In doing this analysis, our findings indicate that the majority of savings
are towards implementing analysis support.

Best Case
(Arithmetic
Expression)

Average Case
(Neuroscience
Composition)

Worst Case
(Widget

Composition)
Key Feature Custom Halo Custom Halo Custom Halo
Repository Support 2 weeks 1 day 4 weeks 1 week 1.5 months 2 weeks § ||

Analysis Support 2 weeks 2 hours 5 weeks 1 day 2.5 months 1 week §
Domain modeling 2 weeks 1 day 5 weeks 5 days 3.5 months 1 month §
Execution 1 week 2 days 2.5 weeks 1 week 5.5 months 3 months
Mapping 1 week 1.5 weeks 2 weeks 3 weeks 2 months 4 months
Visualization 3 weeks 3 weeks 6 weeks 6 weeks 8 months 8 months

Total ⇠2.75 months ⇠1.25 months ⇠6 months ⇠3 months ⇠24 months ⇠17 months
Time estimates based on similar environment implementation by external members
Time estimates based on framework implementations by the author
Time Estimates based on lines of code and other heuristics

Table 6.6: Breakdown of design/implementation cost for key Halo features.

Although, while instantiating Halo, developers do need to incur some costs especially towards archi-
§Part of this partial instantiation involved implementing prototypes and domain modelling where Halo was instantiated par-

tially without fully implementing all the adapters. The goal of this exercise was to understand the domain and make informed
estimations of overall development costs.

¶More data for that is referenced in Appendix-B.
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tecture modelling and writing the mappings to map the architecture vocabulary and UI and runtime, these
costs are amortized by significant benefits in terms of lowering the costs to write analyses. Furthermore,
while user interface and execution runtime are not key to the end-user architecting approach (given the
wide range of design choices), Halo still reduces the cost of mappings that framework instantiators have
to write anyways, often from scratch. By providing customizable APIs where common end-user composi-
tion commands are implemented as API methods and are further customizable, Halo provides significant
benefits towards implementation of end-user composition execution functionality.

Overall, our experiments indicate that on an average, Halo reduces the cost of composition environ-
ment development by half. In the worst case, when the level of customization needs significant developer
effort, even then Halo allows significant reductions in the cost of development. We believe this is a signif-
icant improvement over writing composition environments from scratch, especially given the large scale
of functionality that is typically required for developing feature-rich, composition environments.

6.2.4 Limitations

One of the limitations of our approach is that the task framework provides an estimation but not exact
measurement of the amount of it would take for various design and development activities associated with
the composition environment development. Our estimates are based on multiple sources, including (i)
data from the various case study implementations conducted as a part of this research, (ii) from other
teams who have built similar tools, and (iii) based on lines of code based estimations. Not only can these
time estimates vary based on the level of customization a framework instantiation may involve, but also
the degree of reuse by a framework instantiator. For instance, reusing an existing adapter with limited
customizations would need significantly less work than if an instantiator had to develop a net new adapter
based on the modules provided.

Finally, another limitation of the validation approach is that the instantiations of the framework were
done by the author. In an ideal world, we could have extended the validation to a controlled experiment
where software developers with different roles instantiated Halo to their composition environments, and
this could have been compared with another set of developers who built the environments from scratch.
However, given the scope, budget and duration of the thesis research, such validation was not feasible.
Despite these limitations, a careful attempt was made by the author to capture the data based on a task-
based estimation model. While the composition environments vary considerably, the ball-park estimates
were made based on the overall effort and often the lines of code needed to perform individual tasks.
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6.3 Claim: General Purpose framework

To demonstrate generality of our approach, we performed a series of case-studies where we performed
in-depth investigations of end-user architecting by instantiating Halo and developing various composition
environments and their key components using the Halo framework. As described in the previous chapter,
we demonstrated four instantiations of Halo, within the two computation styles of data flow and publish
subscribe along with adapters to integrate them. We also gave examples of analyses based on end-user
architectures.

In this section, we argue that this case-based generalization approach helps us demonstrate generality
of the framework. Next, we describe the research question, our approach to demonstrate generality, and
the limitations of our approach.

6.3.1 Research Question

In order to validate the claim that Halo framework is general-purpose, we address the following research
question:

What is the evidence that Halo is a general-purpose framework?

To address this research question we use a case based generalization approach to demonstrate cus-
tomizability of the Halo framework across multiple dimensions: including different computation styles,
user domains, and various adapters needed to plug in different visual interfaces and execution environ-
ments. We described some of these instantiations in Chapter 5. In this section we describe how that
evidence supports our claims around generality.

Observe case phenomena.
Explain the phenomena architecturally.
Generalize the theory to architecturally similar cases.

Table 6.7: Building architectural theory of case phenomena in the field [WD15]

6.3.2 Research method: Case based generalization

Wieringa and Daneva, in one of their works, discussed strategies for generalizing software engineering
theories [WD15]. They argued that for the field of software engineering in general, it is often hard to define
controlled experiments that capture all aspects of design and development. In such domains, we can use
case-based generalization, where by studying individual cases, and generalizing about components and
mechanisms found in a case, we can identify similarities across those cases. Furthermore, in such case-
based research, variability is reduced by decomposing a single case into components with interactions,
for example: people and roles in a project, layers of architecture, or components that are part of the
architecture. These components and mechanisms may be recurrent across a large set of different cases,
and hence contribute to the overall generalization.

Our validation is guided by this approach. Table 6.7 shows the overall steps of the approach.
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Figure 6.3: Halo framework architecture and customization points

Revisiting the general Halo architecture of Halo, as shown in Figure 6.3, we make a case that this
general-purpose architecture can be instantiated in multiple domains, across multiple architecture styles,
and integrates different user interfaces, execution environments, and analyses while the framework allows
customizable plug in points to make this possible.

6.3.3 Results

In Chapter 5, we described various case studies that demonstrated multiple instantiations of Halo covering
various dimensions of variability. Specifically, we demonstrated variability along the following dimen-
sions:

1. Instantiations across 2 Computation Styles (Dataflow and Publish Subscribe)

2. Instantiations in 4 domains (Arithmetic expressions, Dynamic Network Analysis, Neurosciences,
and Widget compositions)

3. Instantiations with 2 UI Adapters

4. Instantiations with 2 Execution Adapters

5. Instantiations with 2 Analysis Adapters

6. Instantiations with 2 Repositories

As we have discussed before, while the nature of composition may vary, Halo provides a general-
purpose architecture that allows association of an architecture layer through the use of customizable
adapters. Considering some of the key adaptation points:

• User Interface: While Halo does not specifically target or provide features for visual composition,
it recognizes that a common model of composition consists of a drag and drop (or other kinds of
drawing) interface where end-users can compose components in meaningful combinations. The
style and vocabulary of such end-user compositions may vary from dataflows, to publish-subscribe
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widgets, to a mix of composition styles. Halo provides customizable APIs to translate these end-
user compositions to architecture representation and execute them. While Halo supports some of
the most common CRUD operations, it is possible to extend them if a specific interface calls for
new types of user interaction.

• UI Adapter: UI adapters provide translation from user vocabulary to architecture vocabulary.
While the specific implementations of UI adapters vary across composition environments, Halo
provides a generic set of customizable APIs and modules to build these UI adapters. As a part of
this research we implemented two example adapters. These can be adapted for new instantiations;
or in a completely new domain, framework instantiators can implement new adapters from scratch.

• Architecture Representation: The architecture layer provides the key functionality of architec-
tural representation, analysis and execution management. This layer provides the APIs to define
compositions using domain-specific architecture styles, which specify the vocabulary of element
types and constraints on compositions. Not only this layer is quite customizable, decades of aca-
demic research in software architecture have demonstrated how a variety of system architectures
can be represented in runtime architectures and analysed in various ways. Acme as an architecture
definition language and the associated tools and case studies provide significant support to model
different types of architecture in an expressive way.

• Execution Adapter Execution Adapter is the layer that provides translation from architecture vo-
cabulary to execution semantics. Like the UI adapter, the implementations of the execution adapter
vary across different runtime environments. Halo provides a generic set of runtime APIs that can be
further customized.

• Analysis Adapter: Analysis Adapter is the layer that allows integration of external analysis into
Halo. Individual analysis can be based on different models or written with different assumptions,
but the analysis adapter provides a generic mechanism to invoke the analyses.

• Repository Adapter: Repository Adapter is the layer that allows integration of external reposito-
ries into Halo. The repository adapter provides mechanisms to import a composition written into
an external vocabulary to by transforming it into an architecture based vocabulary used by Halo.
The degree to which such a layer can be customized, or is needed can vary. Some domains do not
have an established component library; others don’t have a need for it. But having such a repository
allows environment developers an easy way for both internal and external sharing. Also, the trans-
lation mechanism may be different across domains but it can be customized to support different
composition types.

6.3.4 Limitations

In the field of basic sciences, typically the studies aim to generalize the results from lab-to-lab, requiring
the researchers to eliminate much of the variability of the real world in the laboratory. To accomplish
this, often the research technique is based on idealized assumptions that may never be possible in practice
(for example, constructs like Turing machine, point mass, perfect vacuum, and so on). In contrast, in
the field of software engineering, such a generalization may not be practical. As an illustrative example,
the number of variables involved for building quality end-user architecting environments could be quite
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large (e.g., they can vary across user interfaces, runtime environments, architecture models, the developer
ecosystem, and so on). Also, given the complexity, there could be limitations on the amount of time
needed to actually instantiate an environment. Unlike the scope claims in basic sciences, where one could
limit variables via a controlled experiment, the scope claims for such an engineering field could be less
about idealizing assumptions, but more about making patterns of behavior visible. [Wie14, Lay95]

Figure 6.4: Trade-off between generality and practicality. [WD15]

Consequently, in the field of software engineering and information systems, where the main challenge
is to deal with a variety of uncontrolled conditions of practice, rather than aiming for universal theories, the
more practical approach is often to develop middle-range theories [Wie14]. Common examples of middle
range theories include theories like the COCOMO model [BCH+95], the software engineering principles
of Davis [Dav95] and some of the theories listed by Endres and Rombach [ER03]. Such theories are
therefore called middle-range theories, and shown in Figure 6.4.

Our research predominantly fits this category. As shown in Table 6.7, by observing a case phenomena,
and explaining the phenomena architecturally, we could generalize the theory to architecturally similar
cases. In our research for example, for validating the generalizability of the end-user architecting approach
I have considered multiple dimensions of variability. While these dimensions may not be exhaustive, or
even applicable to “all the possible domains”, such existential generalization is still valuable for a large
number of domains. Practitioners who want to apply such a middle-range theory to their particular case
could benefit from this technique and often adapt the research to their requirements.

6.4 Summary

In this chapter, we addressed how the examples and evidence collectively fulfil the thesis claims of gen-
erality, cost-effectiveness, and quality, summarized in the Table 6.8.
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Table 6.8: Summary of claims and evidence

Claim Evidence

Generality

Existential Generalization using a case-based approach, with instantiations across these dimensions:
* 2 Computation Styles (Data flow + Publish Subscribe)
* 4 Domains(Arithmetic expressions, Dynamic Network Analysis, Neurosciences,
and Widget compositions)
* 2 UI Adapters, 2 Execution Adapters, 2 Analysis Adapters and 2 Repositories

Quality Support Search, Reuse, Construction, Analysis, Execution, and Debugging support
Cost Cost reduction in the best-case, average-case, and worst-case for the example domains
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CHAPTER 7

Design Choices and Limitations

In this chapter, we discuss some of the key design choices of the Halo Framework and the tradeoffs and
limitations arising from those. In particular, we address the following design choices and limitations of
each:

• Restricted to End-User Architecting frameworks (Scope)

• Managing the open-world vs. close world model trade-offs (Scope and Design Choice)

• Composition environments are implemented as an MVC-style application, where user interface and
run-time adapters allow assembly and execution of the compositions (Design Choice)

• Separation of concerns across framework layers (Design Choice)

• Limitations to to using Extensible Adapters for bridging/integration (Limitations)

• Limitations to using a model for End-User Architecting (Limitation)

• Limitations to expressiveness of the model (architecture vocabulary) (Limitation)

• Limitations to framework reuse and cost-effectiveness (Limitation)

• Maturity of the domain (Limitation)

7.1 Focus on End-User Architecting

Our approach is centered on providing a generic architecture-based framework with reusable infrastruc-
tures than can be tailored to particular system styles and quality objectives, and further customized to
specific composition scenarios. While it is a generic approach, its application is limited to tools and
frameworks related to end-user architecting. Having an architecture model that represents the composi-
tion vocabulary and uses it for interesting analyses is key to the approach.

Today, composition environments support paradigms varying from free-form drawings to various
specialized constraints. The user interfaces and runtime environments for these composition environments
may vary so much that implementing them would be infeasible and therefore not the target of this thesis.
There is significant work done by other researchers towards improving the quality of end-user composition
and the performance of execution environments. This thesis instead focuses on how the user interfaces
and execution environments can be integrated with an architecture layer in a cost effective manner, where
interesting analyses can augment the composition activity.
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7.2 Open world vs. closed world models

An important concern for end-user architecting is what types of composition vocabularies, design lan-
guages, and constraint systems can it address? Is it open to allowing new forms of composition technolo-
gies and libraries (that are developed in thousands every year)? How about handling computation models
and compositions that we haven’t seen yet (open world assumption)? Our approach to addressing these
design issues is to split the design representations in two parts. At its core, Halo implements an architec-
ture vocabulary, which is generic and rich enough to represent complex domain-specific constraints. We
have designed approaches to specialize and extend architecture vocabulary to write complex vocabularies.
In a way, at its core the rich architecture vocabulary follows a closed-world model using styles to represent
the design elements and constraints.

However, Halo makes it possible to have external vocabularies and languages for compositions that
are mapped to this architecture vocabulary through adapters. We understand that new user interfaces,
runtimes, analyses or compositions may come up based on instantiation requirements. The design of
adapters allows for this open-world assumption. This does come at a cost as framework instantiators may
have to build their own adapters to suit their language or framework choices, but Halo provides templates
and extension mechanisms to build these adapters at a low cost. In some cases, this reuse of adapters
might be cheaper, while some other instantiations may require more development effort. Nevertheless, the
total cost of building the composition environments is still lesser in comparison to developing everything
from scratch.

7.3 Framework instances as an MVC-style application

While Halo can support various composition vocabularies, the environments instantiated using Halo fol-
low a Model-View-Controller style architecture.

• Model: At it’s core is the central architecture layer, which forms the model that defines the data-
structure consisting of architecture styles and their refinements and specializations. These styles
allow capturing of compositions and their constraints.

• View: While compositions are modelled in an architectural vocabulary, to an end user these are
presented via different visual interfaces, where they can assemble them. Halo allows integration of
various such interfaces, which form the view layer.

• Controller: While users interact with the user interfaces to assemble and execute compositions,
Halo implements various controllers in the form of adapters that respond to the user input and per-
form interactions on the data model objects. This layer is responsible for various actions including
type-checking, validations, import and export of compositions, and providing feedback to the user
interfaces based on the execution status.

While the exact implementation of the model-view-controller pattern varies across composition en-
vironments and architecture styles, MVC-pattern defines the mode of interaction for all composition
environments built using Halo.
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7.4 Separation of Concerns across framework layers

A frequent tradeoff for frameworks is deciding between generality versus power. A framework could
be powerful but restricted to a specific domain or a task, or it could be quite generic and lose some of its
power. At its core, Halo tries to address this tradeoff by using a generic architecture vocabulary that can be
customized and refined using styles, but restricting the construction and manipulation of the architecture
vocabulary through adapters. Halo used the principle of separation of concerns by creating a framework
stack where individual components handle separate concern and the framework imposes reasonable limi-
tations on how these components should or should not interact. For instance, the architecture layer builds
and manipulates the vocabulary in an ADL. The UI and execution layer are responsible for representation
of composition drawing and execution, respectively. While the Analysis and Reuse layers help with the
reuse of analysis plugins and import and export of compositions. All these are integrated through adapters
that provide the mapping and glue code for integration. As with most abstractions, interfaces must be
added that define the intents for each layer. These interfaces can be extended and refined and thus allow
framework instantiators easier integration by providing ready-made templates.

This separation of concerns allow independent reuse and modification of various framework com-
ponents. In practice, however, there is some level of dependence across the components. For instance,
what must be shown on the UI depends on how the execution runtime decides exposes those functional-
ity. However, a clear separation of concerns allows the framework instantiators to avoid hardcoding those
interactions. In the long run, not only it saves costs, but it also leads to better designed platforms.

7.5 Limitations to using Adapters as bridging/integration mechanism

As per Pree [Pre94], software frameworks consist of frozen spots and hot spots. Frozen spots define
the overall architecture of a software system, which constitute its basic components and the relationships
between them. These remain unchanged in any instantiation of the application framework. Hot spots
represent those parts where the programmers using the framework add their own code to add the function-
ality specific to their own project. In Halo, the adapters and the architecture layer provides abstraction and
sub-classing as mechanisms to implement the hot and cold spots. Instantiation of Halo involves extending
the adapters by implementing the abstract classes, sub-classing and composing them when necessary to
extend the interfaces, thus allowing integration of all the layers.

While the design of these adapters is fairly generic, there are limits to how much the hot spots of the
framework can be extended or refined. For one, instantiator defined sub-classes must extend the abstract
methods as defined in the framework. The inversion of control and the specific interaction pattern between
the individual layers is fixed. While Halo provides some example adapters, if the instantiators need to de-
viate significantly from those framework-provided adapters, or the user-interface/runt-time technologies,
they may need to develop their own adapters taking the current adapters as templates or examples.

7.6 Limitations to using (architecture) models

The end-user architecting approach uses architecture models to mediate design, analysis, verification,
execution and reuse of compositions. This is based on assumption that architectural abstractions (and their
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manipulations) can capture the structures, relationships and constraints for end-user compositions. Halo
uses the Acme ADL, which is well suited to capture design constraints in an architectural vocabulary. As
long as compositions can be represented in a component-connector model, a model like Acme is a good
fit to define the composing vocabulary and extend and refine it with properties, design constraints and
rules. Furthermore, there have been been multiple case studies that have also augmented Acme to involve
state-based and probabilistic specifications. However, while this holds true for a broad set of end-user
architecting domains, it may be possible that there exist domains where a component-connector model
may not be a good fit. If the inherent style for the target domain is something quite different or if it is hard
to define a vocabulary (for any reason), Halo may not be suitable for such domains. While most of the
common end-user architecting environments have vocabularies that can be represented as component and
connector styles, one can imagine scenarios such as those involving free form compositions (with limited
constraints), state-based compositions where components and connectors are not clearly defined, or some
widget scenarios where connectors are adhoc. Using architecture models for such composition styles may
not be an inappropriate model, and therefore, not a good fit for such use-cases.

7.7 Limitations to expressiveness of the model

Halo targets a general purpose ADL like Acme as its core building block, because it’s generic and allows
refinement and specialization through styles. As long as the modeling scenarios can be represented in
component-connector models, Acme can be used to not only specify the vocabularies with the element
properties, constraints and other rules around composition. While a generic ADL like Acme is a pow-
erful tool to express a wide range of vocabularies, we can imagine that there may be some cases where
the expressiveness of the Acme vocabulary can be limiting. As we discussed earlier, Acme makes it
easy to define styles that can be represented in component-connector models. It is possible to represent
other types of behavioral, probabilistic and state-based models by overlaying them with an Acme vocab-
ulary, but the more we shift away from structural component-connector models, the expressiveness may
get limited to the types of constraints and analyses that can be specified. We could potentially imag-
ine domains where the major emphases are behaviors, state-based or even mathematical models where a
component-connector vocabulary would be limited by its expressiveness. Halo may not be a good fit for
those domains.

7.8 Limitations to framework reuse and cost effectiveness

Halo is helpful in saving costs and effort towards building end-user architecting environments. Because
it’s a generic framework, investment to develop generic infrastructure involving adapters and styles may
initially be expensive, but costs to build such generic infrastructure is often amortized across many instan-
tiations and would be much lower overall.

There are two types of reuse that are common for most frameworks:
1. First-order reuse of the generic framework components and APIs

2. Second order reuse via customizing artifacts used from one instantiation to next
Halo, like most frameworks, targets to strive a balance between power and generality. For the first or-

der reuse, the architecture layer is extensible through style refinements, and the adapters can be customized
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by the framework instantiators. The second order reuse depends on the similarity of the instantiation do-
main to the previous one. For instance, if the styles are similar, it may be possible to reuse the base style.
If the computation model and runtimes are similar, it may be possible to reuse the adapters to a greater de-
gree. In our case-studies, we realized that for dataflow based computation models, it was possible to reuse
much of the UI, analysis and storage adapters, with minor modifications to execution adapters when the
runtime changes from BPEL to SCA. The greater the similarities exists across instantiations, the higher
could be the second order reuse, and lower the cost.

There could be some small code-bloat because of using Halo to support this level of generality, but the
added benefits of ease of reuse, saved costs from reduced development time, and efficiency derived from
integration of analyses and reuse are worth this cost. Halo explicitly lowers this reuse cost by allowing
easier extension mechanisms such as support for extensible interfaces, well-defined and flexible APIs, and
an architecture layer that can be customized by styles that can be easily refined and specialized.

7.9 Maturity of the domain

Finally, another important factor that could potentially limit the adoption of an end-user architecting
framework like Halo is the maturity of the domain itself. In domains that are new, complex or fast evolv-
ing, there may not be enough consensus among its domain experts about the architecture style for the
domain and its computational constructs. If there is not much agreement to what are the key computa-
tional elements, their properties, and the constraints that guide their composition it may be hard for an
end-user architect to define architecture styles that guide composition and analysis. Not only is a well-
designed composition environment is hard for such domains, but it would be even harder is to reuse any
artifacts that were previously designed by one user but may need significant modifications if the design
rules or even the vocabulary has since changed. It would be challenging to use Halo in such domains as
given the unknowns, the modification and integration costs would be much higher.

7.10 Summary

As we discussed in this Section, while end-user architecting as an approach is quite relevant to many
domains where end users need analytic support for their compositions, there could exist domains where the
very nature of compositions is free-form drawings without much constraints on how these visual elements
must be composed together. For such domains not only it would be hard for an end-user architect to
define a vocabulary but it could be hard to reuse any existing composition artefacts that were previously
designed. Such unconstrained compositions are beyond the scope for Halo. However, for many mature
domains where there is a common pattern of end-user composition, Halo can reduce the overall cost of
creating composition environments through framework reuse and cost amortization through capabilities
such as support for reuse, analysis and execution that don’t need to be built from scratch.
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CHAPTER 8

Conclusions and Future Work

In this chapter, we enumerate the thesis contributions and discuss research issues and future work to
improve the capabilities of Halo in particular, and end-user architecting in general. We conclude with a
summary of this thesis.

8.1 Thesis Contributions

This thesis advances the state-of-art in the field of end-user software engineering by providing an ap-
proach that supports easier construction and analysis of end-user compositions. We demonstrate that
across a large number of domains, end-user composition and analysis is not only similar to architecture
composition, but architecture-based tooling can support composition, debugging and execution for end
users. Most importantly, all these capabilities can be provided through a framework that end-user compo-
sition platform developers can use to build high-quality composition environments at low cost for a wide
variety of composition styles and domains.

Specifically, this thesis makes the following contributions:

• A novel technique for end-user architecting that reduces the time, cost and difficulty of building a
significant class of end-user composition environments. This technique benefits composition envi-
ronment developers as they can rapidly and incrementally customize composition environments at
significantly lower cost than the existing hand-crafted environments.

• A reusable framework for end-user architecting that provides interfaces, libraries, controls struc-
tures and the necessary plug-in points for developing high quality end-user composition environ-
ments.

• A set of analyses that improve end-user composition experience. Examples include: ordering anal-
ysis, security and privacy analysis, performance analysis, and analyzing composition deployment
while considering trade-offs such as performance vs. fidelity.

• A collection of styles that can be refined and specialized to model end-user compositions.

• A qualitative study that establishes some of the core composition requirements for end-user archi-
tecting in a few domains.

• A demonstration of the techniques to implement end-user architecting environments, across a few
domains.
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8.2 Future Work

In this section, we discuss few capabilities that are not currently realized by Halo, but that are logical next
steps. We also discuss a few important research issues to further enrich our understanding of end-user
architecting and advance the body of knowledge in software engineering. Specifically, we discuss:

• Short-term framework improvements, including tool support

• Medium-term framework improvements,

• Research issues beyond end-user architecting

8.2.1 Short-term Framework Improvements

For future work representing work that could be accomplished in several months, we can make these
framework improvements:

• Providing an enhanced library of architecture styles across various domains

• Extending the error declaration model to define the standard error types and error codes

• Optimize the performance for the event processing within the Halo framework

• Extending the framework documentation to include further instantiations across more domains

• Improvements to the types of supported analysis, to include not only the data type and format based
analyses but also support various other ad hoc analysis

• Support services that aid different modes of composition (editing, executing, debugging)

Most of the above enhancements would improve the adoption of the Halo framework by composition
environment developers and ease of use of the existing APIs. By providing an enhanced library of archi-
tecture styles and analyses, the developers and end user architects could further reduce their development
effort.

Finally, there are certain assumptions baked into the existing Halo framework, and while the adapters
provide a general approach to framework instantiation, there is still scope to further improve the frame-
work by providing generalized error codes, error feedback mechanisms, and support services that devel-
opers could integrate for much easier editing, execution and debugging.

8.2.2 Medium-term end-user architecture research issues

For future work from six months to a year, we can address a number of research issues that will enhance
the Halo framework.

Supporting greater degree of automated corrections and design assistance and synthesis

Although, many composition frameworks today provide support for data mismatch resolution through
special-purpose data converters, end users still have to put significant effort in dealing with data mis-
matches, e.g., identifying the available converters and determining which of them meet their QoS expec-
tations is a hard problem. In our previous work we addressed this problem by automating the detection and
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resolution of data mismatches. Specifically, our approach uses architectural abstractions to automatically
detect different types of data mismatches, model-generation techniques to fix those mismatches, and util-
ity theory to decide the best fix based on QoS constraints. We applied this technique in the neuroscience
domain, where we created a prototype composition environment to detect mismatches. Other tools like
Taverna have taken a similar approach where the repositories provide shims to resolve mismatches, but the
composition of those along with other components remains a fairly manual approach. We could extend
and generalize our automated approach so that such design assistance and synthesis is easily available
across multiple domains and it is easier to build tooling for such synthesis.

Improvements to the deployment architecture

Currently, Halo supports a Model-View-Controller style architecture where the environment is hosted lo-
cally on a Tomcat server, and where individual components need to be customized and deployed together.
Instead of a monolithic application architecture, we could potentially break the deployment into a cloud
based architecture where parts of the Halo platform could be available as a service. Parts of the platform
could then be individually customized and offer more avenues for integration with web-applications.

8.2.3 Long-term research problems

Next, we discuss some of the long-term research projects in context of end-user architecting.

Systems with architecture + other models

For our current research, end-user architecting primarily focused on architecture models. However, the
end-user architecting research can be further extended to domains and tasks that involve other kinds of
modelling activities where architecture models can be combined with other types of domain models.
Examples include:

• Security: Systems with architecture + other models (e.g., Attacker model) to analyze security prop-
erties

• Cyber-Physical systems: Various physical and control system models for domains such as industrial
control systems, water systems, robotics systems, smart grid, etc. where there is a need for analysis

• Cloud systems: where various logical models define layers of functionality that can be analyzed for
completeness, deployment and other use-cases

For end-user architecting domains we used architecture styles to guide such compositions. For many
of these other domains additional models can be combined with architecture styles for analysis. Halo
could be extended to support such domain-specific analyses.

Human-in-the-loop systems

Human-in-the-loop is a modelling technique that combines computing and human decision making for
machine learning and other domains. In such domains, a human becomes part of the system where human
activity represents a component of the overall system architecture. Not only does human activity influence
the behaviour of the system, it is key to attaining the overall objectives.
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An example of such a human-in-the-loop system for fraud detection would be a scenario where while
automated techniques like ML-based algorithms, graph-based analysis and other tools can automate data
generation and analysis, the human expert may be needed to interpret the data generated by various al-
gorithms. While algorithms can be trained to continually improve their accuracy over time, the accuracy
and bias of automated techniques is not guaranteed, where a human expert can mitigate those gaps by
combining the human knowledge and experience with the computational speed of the AI and ML-based
algorithms.

An example of this was from our work in resolving data-mismatches, where we defined an automated
way for fixing the data mismatch (as shown in Figure 8.1). In our approach, we used (i) architectural
descriptions for components and compositions to automatically detect different types of data mismatches
in the composition, (ii) model-generation techniques to support the automatic generation of repair alter-
natives, and (iii) utility theory to automatically check for satisfaction of multiple QoS constraints in repair
alternatives.

Output Port

(1) Mismatch Detection Phase

C1

R4

...
C2C1

Ranking of
...

Repair

Engine
Detection
Mismatch

Engine

Repair
Finding
Engine

Evaluation

Components Repair Alternatives

(2) Repair Finding Phase

R1

C1
C1

R4

C2

Alternatives

...

Repair

R2

R1

Quality Profile

(3) Repair Evaluation Phase

Architectural
Specifications

Mismatched Components

Conversion Components Process Data Flow

Connector Java ProgramInput Port

C2

C2

R3

Figure 8.1: Automated Data mismatches with potential human interventions

While humans making end-user architecting decisions is common to compositions, where a human-
in-the-loop kind of scenario may emerge is when a human expert may still be needed to define utility
functions and various domain-specific tradeoffs that affect the automated selection of the components.
For instance, a certain type of brain imaging analysis may only work with a given type of data. Or certain
component compositions, while structurally feasible, may be incompatible because of the quality of the
output they produce. Human activity in such cases then forms the part of the architecture itself. However,
further research is needed to better understand how the end-user architecting approach can be extended in
these domains to account for human-in-the-loop and build tooling to support various types of analyses.

Using machine learning for model generation

Further ahead, the end-user architecting approach advocated in this dissertation might benefit from vari-
ous machine learning techniques for model generation and assistance. Machine learning is a widely used
technique today that builds a model based on sample training data in order to make predictions or deci-
sions without explicit programming for each of them. Across various domains, such data analysis can
assist in a number of end-user composition tasks, including data pre-processing, component evaluation
and automated compositions and fixes based on various properties. The key aspect of machine learning
algorithms to perform accurately on new, unseen examples/tasks after having experienced a learning data
set can be used for a wide class of end-user composition cases, for example:

• Design-assistance and synthesis based on user-selections
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• Automatically identifying quality of service expectations for various components to make decisions
about which much be composed together

• Identifying metrics to improve compositions that are customized for individual users

8.3 Summary

This dissertation demonstrates the effectiveness of end-user architecting and the Halo framework to sup-
port end-user compositions. We have argued that the computational activities of end users in many
domains are analogous to that of software architects, and that rather than forcing end users to become
programmers, we should instead provide architecture-based tools and techniques to support their tasks.
Halo not only makes the development of composition environments cost-effective across these domains,
it provides various analysis capabilities that can be leveraged by composition environment developers to
improve the quality of composition environments.

In Chapter 1, we claimed the thesis that It is possible to build an end-user composition framework
that can be instantiated to provide high-quality composition environments at relatively low cost compared
to the existing hand-crafted environments for a broad class of composition domains. This thesis led to
claims of generality, cost-effectiveness, and quality assurance through Halo.

In Chapter 2, we surveyed areas of related work and identified contributing disciplines, including
end-user software engineering, software architecture, software product lines and DSL, and references to
the end-user composition tools where composition activity can be guided by end-user architecting.

In Chapter 3 we described the end-user architecting approach followed by a description of Halo in
Chapter 4 and the customization points in Chapter 5. In Chapter 6 and 7 we described how Halo meets
the claims around generality, quality assurance and cost-effectiveness. In Chapter 8 we discussed the
limitations of Halo and concluded with the future work.

In summary, this thesis fulfills the requirements as follows:

Generality Halo leverages architecture styles to characterize and define customization points to build
and define various types of composition environments. It provides extensible adapters that help with the
integration of various UI, execution environments and repositories. This provides a generic framework
that allows a great degrees of reuse. The evidence for this reuse includes multiple prototype instantiations,
which together demonstrate coverage using:

• 2 Computation Styles (Data flow + Publish-Subscribe)

• 2 UI Adapters

• 2 Execution Adapters

• 2 Analysis Adapters

• 2 Repositories

Quality Assurance through Halo In this dissertation, we identified that the end-users primarily used
their composition environments for following "6 types" of tasks: (1) Search and explore, (2) Reuse, (3)
Construction, (4) Analysis, (5) Execution, and (6) Debugging. Not only does Halo provide support for
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each of these roles, it improves the quality of the developed environments by supporting all the key end
user tasks.

Cost Effectiveness Halo significantly reduces the cost of building end-user composition environ-
ments from scratch, through incremental customization of general-purpose components that can be ex-
tended by adapters. The evidence for this includes:

• Instantiations in 4 Domains (Arithmetic expressions, Dynamic Network Analysis, Neurosciences,
and widget compositions)

• Task-based estimation of engineering effort for building end-architecting environments using Halo

Closing Remarks In this thesis we presented the Halo framework that supports all the key tasks per-
formed by end-users using their composition environments. We presented evidence in support of Halo’s
generality to architecture styles, cost-effectiveness via reusable artifacts and adapters that allow develop-
ment composition environments that support analysis, reuse and execution. However, such architecture
based composition, analysis, and reuse could be further augmented and more tooling can be built to make
this easier for end users across different domains. Further research can help not only to extend this ap-
proach but also incorporate other types of models besides architecture-based models.
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CHAPTER 9

Appendix A: SCORE architectural style
refined for Brain imaging compositions

9.1 SCORE Style

1 Family SCORE−Fam = {
2
3 Connector Type DataF lowConnec to r = {
4 Role p r o v i d e r : p r o v i d e r T = new p r o v i d e r T extended with {
5 }
6 Role consumer : consumerT = new consumerT extended with {
7 }
8 r u l e onlyTwoRoles = h e u r i s t i c ! s i z e ( s e l f . ROLES) > 2 ;
9 }

10 Component Type S e r v i c e = {
11 Port p r o v i d e : p r o v i d e T = new p r o v i d e T extended with {
12 }
13 Port consume : consumeT = new consumeT extended with {
14 }
15 Port c o n f i g : c o n f i g T = new c o n f i g T extended with {
16 }
17
18 Property opera t ionName : SCORE−Fam . Operat ionName ;
19 Property l o c a t i o n : SCORE−Fam . L o c a t i o n ;
20 Property f u n c t i o n : SCORE−Fam . F u n c t i o n ;
21 Property owner : SCORE−Fam . Owner ;
22 Property t o o l O r i g i n : SCORE−Fam . T o o l O r i g i n ;
23 }
24 Property Type DataType = s t r i n g ;
25 Role Type d a t a W r i t e r T = {
26
27 }
28 Component Type Tool = {
29 Port p r o v i d e : p r o v i d e T = new p r o v i d e T extended with {
30 }
31 Port consume : consumeT = new consumeT extended with {
32 }
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33 Port c o n f i g : c o n f i g T = new c o n f i g T extended with {
34 }
35
36 Property opera t ionName : SCORE−Fam . Operat ionName ;
37 Property f u n c t i o n : SCORE−Fam . F u n c t i o n ;
38 Property owner : SCORE−Fam . Owner ;
39 }
40 Role Type consumerT = {
41 }
42 Port Type p r o v i d e T = {
43 Property methodName : s t r i n g ;
44 r u l e a l l V a l u e s = i n v a r i a n t f o r a l l p in s e l f . PROPERTIES |
45 hasVa lue ( p ) ;
46 }
47 Property Type Operat ionName = s t r i n g ;
48 Port Type c o n f i g T = {
49 Property c o n f i g F i l e N a m e : s t r i n g ;
50 }
51 Property Type T o o l O r i g i n = Enum { n o t S p e c i f i e d , Automap , C o n s t r u c t ,ORA, P y t h i a , O the r

} ;
52 Port Type readT = {
53 }
54 Connector Type UIDataFlowConnec tor = {
55 Role p r o v i d e r : p r o v i d e r T = new p r o v i d e r T extended with {
56 }
57 Role consumer : consumerT = new consumerT extended with {
58 }
59
60 Property m e s s a g i n g P r o t o c o l : SCORE−Fam . M e s s a g i n g P r o t o c o l P r o p T ;
61 r u l e twoRoles = i n v a r i a n t s i z e ( s e l f . ROLES) >= 2 ;
62 r u l e onlyTwoRoles = h e u r i s t i c ! s i z e ( s e l f . ROLES) > 2 ;
63 }
64 Component Type D a t a S t o r e = {
65 Port r e a d D a t a : readT = new readT extended with {
66 }
67 Port w r i t e D a t a : w r i t e T = new w r i t e T extended with {
68 }
69
70 Property d a t a t y p e : SCORE−Fam . DataType ;
71 Property l o c a t i o n : SCORE−Fam . L o c a t i o n ;
72 }
73 Component Type UIElement = {
74 Port p r o v i d e : p r o v i d e T = new p r o v i d e T extended with {
75 }
76 Port U I c o n f i g : UIconf igT = new UIconf igT extended with {
77 }
78
79 Property d a t a t y p e : SCORE−Fam . DataType ;
80 Property l o c a t i o n : SCORE−Fam . L o c a t i o n ;
81 }
82 Port Type consumeT = {
83 Property methodName : s t r i n g ;
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84 r u l e a l l V a l u e s = i n v a r i a n t f o r a l l p in s e l f . PROPERTIES |
85 hasVa lue ( p ) ;
86 r u l e s o m e t h i n g A t t a c h e d = h e u r i s t i c s i z e ( s e l f .ATTACHEDROLES) >= 1 ;
87
88 }
89 Property Type Owner = s t r i n g ;
90 Connector Type D a t a W r i t e C o n n e c t o r = {
91 Role p r o v i d e r : p r o v i d e r T = new p r o v i d e r T extended with {
92 }
93 Role d a t a W r i t e r : d a t a W r i t e r T = new d a t a W r i t e r T extended with {
94 }
95 }
96 Property Type F u n c t i o n = s t r i n g ;
97 Port Type UIconf igT = {
98 Property c o n f i g F i l e N a m e : s t r i n g ;
99 }

100 Property Type L o c a t i o n = Enum { N o t S p e c i f i e d , l oc a l Ne tw or k , e x t e r n a l N e t w o r k } ;
101 Connector Type DataReadConnec to r = {
102 Role d a t a R e a d e r : da t aReade rT = new da t aRe ade r T extended with {
103 }
104 Role consumer : consumerT = new consumerT extended with {
105 }
106 }
107 Role Type da t aReade rT = {
108 }
109 Component Type LogicComponent = {
110 }
111 Role Type p r o v i d e r T = {
112 }
113 Port Type w r i t e T = {
114 }
115 }

9.2 Score style refined for Brain imaging

116 \ b e g i n { l s t l i s t i n g } [ l a n g u a g e =acme ]
117 import f a m i l i e s / SCORE−FAM. acme ;
118 Family B r a i n I m a g i n g ex tends SCORE−Fam with {
119 Property Type r e f e r e n t i a l = Enum {RAW, MNI , ICBM, T a l a i r a c h , NotKnown } ;
120 Property Type a l i g n e d T o = Enum {NULL, MNI , ICBM, T a l a i r a c h , NotKnown } ;
121 Property Type d imens ion = Enum { Three , Four , NotKnown } ;
122 Property Type o r d e r i n g = b o o l e a n ;
123 Property Type f o r m a t = Enum {NIFTI , SPM, DICOM, NotKnown } ;
124 Property Type m o d a l i t y = Enum {FMRI , MRI , NotKnown } ;
125 Property Type c a r d i n a l i t y = i n t ;
126
127 Property Type S t r u c t u r e = Record [
128 d imens ion : Enum { Three , Four , NotKnown } ;
129 n e s t i n g : b o o l e a n ;
130 ] ;
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131
132 Property Type C o n c e p t u a l = Record [
133 b r a i n A c t i v i t y : b o o l e a n ;
134 s t r u c t u r e : b o o l e a n ;
135 ] ;
136
137
138 a n a l y s i s mustBeOfType ( e : Element , t y p e s : S e t { type } ) : b o o l e a n =
139 e x i s t s t in t y p e s | d e c l a r e s T y p e ( e , t ) ;
140
141 a n a l y s i s mustHaveValue ( e : Element , v : s t r i n g ) : b o o l e a n =
142 hasVa lue ( e ) ;
143
144 a n a l y s i s po r t sOfType ( c : Component , t : type ) : S e t {} =
145 { s e l e c t p : Port in c . PORTS | d e c l a r e s T y p e ( p , t ) } ;
146
147 a n a l y s i s numberOfPor t s ( c : Component , t : type ) : i n t =
148 s i z e ( po r t sOfType ( c , t ) ) ;
149
150 a n a l y s i s on lyConnec tedTo ( e : component , t : type ) : b o o l e a n {
151 f o r a l l c : component in connec tedComponents ( e ) | d e c l a r e s T y p e ( c , t )
152 }
153
154 a n a l y s i s matched −Types ( p1 : Port , p2 : Port ) : b o o l e a n {
155 / *
156 I t e r a t e a c r o s s p o r t p r o p e r t i e s and check i f p1 i s a s u p e r s e t o f p2 ( o r v i c e v e r s a )
157 * /
158 }
159
160
161 a n a l y s i s connec tedComponents ( e : e l e m e n t ) : Component =
162 / * I t e r a t e a c r o s s components ( p o r t t o c o n n e c t o r s t o components ) and e x t r a c t a l l

c o n n e c t e d components
163 * /
164 ;
165 Component Type A c q u i s i t i o n ex tends D a t a S t o r e with {
166 Port readBIVolumes : readT = new readT extended with {
167 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o << d e f a u l t = NULL; > >;
168 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
169 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l << d e f a u l t = RAW; > >;
170 Property d imens ion : B r a i n I m a g i n g . d imens ion << d e f a u l t = Four ; > >;
171 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g << d e f a u l t = t r u e ; > >;
172 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
173 }
174 }
175 Component Type ReferenceVolume ex tends D a t a S t o r e with {
176 Port readBIVolumes : readT = new readT extended with {
177 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o << d e f a u l t = MNI ; > >;
178 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
179 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l << d e f a u l t = MNI ; > >;
180 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
181 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
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182 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
183
184 Rule C h e c k R e f e r e n t i a l = h e u r i s t i c s e l f . r e f e r e n t i a l != RAW;
185
186 }
187 }
188 Component Type SaveBIVolume ex tends D a t a S t o r e with {
189 Port wri teBIVolumes : w r i t e T = new w r i t e T extended with {
190 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o << d e f a u l t = MNI ; > >;
191 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
192 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l << d e f a u l t = MNI ; > >;
193 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
194 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
195 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
196 }
197 }
198
199 Component Type Al ign ex tends Tool with {
200 Port InputBIVolumes : consumeT = new consumeT extended with {
201 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o << d e f a u l t = MNI ; > >;
202 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
203 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l << d e f a u l t = MNI ; > >;
204 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
205 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
206 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
207 }
208 Port r e f e r e n c e V o l u m e : consumeT = new consumeT extended with {
209 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
210 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
211 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
212 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
213 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
214 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
215 }
216 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
217 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
218 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
219 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
220 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
221 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
222 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
223 }
224 Port m o t i o n C o r r e c t n e s s : p r o v i d e T = new p r o v i d e T extended with {
225 Property X C o o r d i n a t e s : s t r i n g ;
226 Property Y C o o r d i n a t e s : s t r i n g ;
227 Property Z C o o r d i n a t e s : s t r i n g ;
228 }
229 }
230
231 Component Type C o r e g i s t e r ex tends Tool with {
232 Port InputBIVolumes : consumeT = new consumeT extended with {
233 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
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234 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
235 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
236 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
237 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
238 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
239 }
240 Port r e f e r e n c e V o l u m e : consumeT = new consumeT extended with {
241 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
242 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
243 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
244 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
245 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
246 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
247 }
248 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
249 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
250 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
251 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
252 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
253 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
254 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
255 }
256 }
257 Component Type Tempora lAdjus tmen t ex tends Tool with {
258 Port InputBIVolumes : consumeT = new consumeT extended with {
259 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
260 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
261 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
262 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
263 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
264 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
265 }
266 Port p a r a m e t e r s : c o n f i g T = new c o n f i g T extended with {
267
268 }
269 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
270 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
271 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
272 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
273 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
274 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
275 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
276 }
277 }
278 Component Type Smooth ex tends Tool with {
279 Port InputBIVolumes : consumeT = new consumeT extended with {
280 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
281 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
282 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
283 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
284 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
285 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
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286 }
287 Port p a r a m e t e r s : c o n f i g T = new c o n f i g T extended with {
288
289 }
290 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
291 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
292 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
293 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
294 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
295 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
296 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
297 }
298 }
299
300 Component Type Normal i ze ex tends Tool with {
301 Port InputBIVolumes : consumeT = new consumeT extended with {
302 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
303 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
304 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
305 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
306 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
307 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
308 }
309 Port r e f e r e n c e V o l u m e : consumeT = new consumeT extended with {
310 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
311 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
312 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
313 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
314 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
315 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
316 }
317 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
318 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
319 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
320 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
321 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
322 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
323 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
324 }
325 Port T r a n f o r m a t i o n O u t p u t : p r o v i d e T = new p r o v i d e T extended with {
326 }
327 }
328
329 Component Type SPM− F u n c t i o n ex tends Tool with {
330 Port InputBIVolumes : consumeT = new consumeT extended with {
331 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
332 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
333 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
334 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
335 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
336 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
337 }
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338 Port c o n d i t i o n s : consumeT = new consumeT extended with {
339 Property c o n d i t i o n s F i l e N a m e : s t r i n g ;
340 }
341 Port p a r a m e t e r s : c o n f i g T = new c o n f i g T extended with {
342
343 }
344 Port OutputBIVolume : p r o v i d e T = new p r o v i d e T extended with {
345 Property a l i g n e d : B r a i n I m a g i n g . a l i g n e d T o ;
346 Property f o r m a t : B r a i n I m a g i n g . f o r m a t ;
347 Property r e f e r e n t i a l : B r a i n I m a g i n g . r e f e r e n t i a l ;
348 Property d imens ion : B r a i n I m a g i n g . d imens ion ;
349 Property o r d e r i n g : B r a i n I m a g i n g . o r d e r i n g ;
350 Property m o d a l i t y : B r a i n I m a g i n g . m o d a l i t y ;
351 }
352 Port E r r o r : p r o v i d e T = new p r o v i d e T extended with {
353 }
354 }
355 Connector Type readBIVoumeFromFile ex tends DataReadConnec to r with {
356 Role consumer = {
357 }
358 Role d a t a R e a d e r = {
359 }
360 }
361 Connector Type w r i t e B I V o u m e t o F i l e ex tends D a t a W r i t e C o n n e c t o r with {
362 Role p r o v i d e r = {
363 }
364 Role d a t a W r i t e r = {
365 }
366 }
367 Connector Type t r a n s f e r B I V o l u m e ex tends DataFlowConnec to r with {
368 Role p r o v i d e r = {
369 }
370 Role consumer = {
371 }
372 }
373
374
375 }

9.3 FSL Neurosocience tool style

1 import f a m i l i e s / BING . acme ;
2 import f a m i l i e s / SCORE−FAM. acme ;
3
4 Family FSL−FAM ex tends BING , SCORE−Fam with {
5
6 Component Type m c f l i r t ex tends Tool with {
7 Port p r o v i d e = {
8 }
9 Port consume = {
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10 }
11 Port c o n f i g = {
12 }
13 }
14 Component Type s l i c e r ex tends Tool with {
15 Port p r o v i d e = {
16 }
17 Port consume = {
18 }
19 Port c o n f i g = {
20 }
21 }
22
23 Component Type f s l s t a t s ex tends Tool with {
24 Port p r o v i d e = {
25 }
26 Port consume = {
27 }
28 Port c o n f i g = {
29 }
30 }
31 Component Type f s l r o i ex tends Tool with {
32 Port p r o v i d e = {
33 }
34 Port consume = {
35 }
36 Port c o n f i g = {
37 }
38 }
39 Component Type f s l m a t h s ex tends Tool with {
40 Port p r o v i d e = {
41 }
42 Port consume = {
43 }
44 Port c o n f i g = {
45 }
46 }
47 Component Type s u s a n ex tends Tool with {
48 . . .
49 }
50 . . .
51 }

9.4 Example composition using Brain-imaging style

1 import f a m i l i e s / B r a i n I m a g i n g . acme ;
2 import f a m i l i e s / FSL . acme ;
3
4 System BINGWorkflow : B r a i n I m a g i n g = new B r a i n I m a g i n g extended with {
5
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6 Component A q u i s i t i o n 0 : A q u i s i t i o n = new A q u i s i t i o n extended with {
7 Port w r i t e D a t a = {
8 Property d a t a = FMRI ;
9 Property s r c D i r e c t o r y = "C : / / d a t a / " ;

10 Property volumeListName = " s u b j e c t A " ;
11 }
12
13 Property d a t a t y p e = " v o l u m e L i s t " ;
14 Property d a t a = FMRI ;
15 }
16 Component Al ign0 : Al ign = new Al ign extended with {
17 Port consume = {
18 Property d a t a = FMRI ;
19 Property methodName = " a l i g n ( ) " ;
20 Property volumeListName = " s u b j e c t A " ;
21 }
22 Port c o n f i g = {
23 Property c o n f i g F i l e N a m e = " c o n f i g A l i g n " ;
24 }
25 Port p r o v i d e = {
26 Property d a t a = FMRI ;
27 Property methodName = " n o r m a l i z e ( ) " ;
28 Property volumeListName = " s u b j e c t A " ;
29 }
30
31 Property f u n c t i o n = " AlignVolumes " ;
32 Property opera t ionName = " a l i g n ( ) " ;
33 Property owner = " NotKnown " ;
34 Property d a t a = FMRI ;
35 }
36 Component N o r m a l i z a t i o n 0 : N o r m a l i z a t i o n = new N o r m a l i z a t i o n extended with {
37 Port consume = {
38 Property d a t a = FMRI ;
39 Property methodName = " n o r m a l i z e ( ) " ;
40 Property volumeListName = " s u b j e c t A " ;
41 }
42 Port p r o v i d e = {
43
44 Property d a t a = FMRI ;
45 Property methodName = " spm ( ) " ;
46 Property volumeListName = " s u b j e c t A " ;
47 }
48 Port c o n f i g = {
49 Property c o n f i g F i l e N a m e = " N o r m a l i z e C o n f i g F i l e " ;
50 }
51
52 Property f u n c t i o n = " normal izeVolume " ;
53 Property opera t ionName = " n o r m a l i z e ( ) " ;
54 Property owner = " NotKnown " ;
55 Property d a t a = FMRI ;
56 }
57
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58 Component SPM0 : SPM = new SPM extended with {
59 Port consume = {
60 Property d a t a = FMRI ;
61 Property methodName = " spm ( ) " ;
62 Property volumeListName = " s u b j e c t A " ;
63 }
64 Port p r o v i d e = {
65 Property d a t a = FMRI ;
66 Property methodName = " v i s u a l i z e ( ) " ;
67 Property volumeListName = " s u b j e c t A " ;
68 }
69
70 Property f u n c t i o n = " spmAna lys i s " ;
71 Property opera t ionName = " spm ( ) " ;
72 Property owner = " NotKnown " ;
73 Property d a t a = FMRI ;
74 }
75
76 Component V i s u a l i z a t i o n 0 : V i s u a l i z a t i o n = new V i s u a l i z a t i o n extended with {
77 Port consume = {
78 Property d a t a = FMRI ;
79 Property methodName = " v i s u a l i z e ( ) " ;
80 Property volumeListName = " s u b j e c t A " ;
81 }
82 Port p r o v i d e = {
83 Property d a t a = FMRI ;
84 Property methodName = " s t o r e ( ) " ;
85 Property volumeListName = " s u b j e c t A " ;
86 }
87 Property f u n c t i o n = " V i s u a l i z e D a t a " ;
88 Property opera t ionName = " v i s u a l i z e ( ) " ;
89 Property owner = " NotKnown " ;
90 Property d a t a = FMRI ;
91 }
92
93 . . .
94
95 Connector da taF low0 : da taF low = new da taF low extended with {
96 }
97 Connector da taF low1 : da taF low = new da taF low extended with {
98 }
99 Connector da taF low2 : da taF low = new da taF low extended with {

100 }
101 Connector w r i t e D a t a 1 : w r i t e D a t a = new w r i t e D a t a extended with {
102 Property e n c r y p t i o n = e n c r y p t e d ;
103 }
104 At t achmen t A q u i s i t i o n 0 . w r i t e D a t a t o w r i t e D a t a 0 . d a t a W r i t e r ;
105 At t achmen t Al ign0 . consume t o w r i t e D a t a 0 . p r o v i d e r ;
106 At t achmen t Al ign0 . p r o v i d e t o da taF low0 . p r o v i d e r ;
107 At t achmen t N o r m a l i z a t i o n 0 . consume t o da taF low0 . consumer ;
108 At t achmen t N o r m a l i z a t i o n 0 . p r o v i d e t o da taF low1 . consumer ;
109 At t achmen t SPM0 . consume t o da taF low1 . p r o v i d e r ;
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110 At t achmen t SPM0 . p r o v i d e t o da taF low2 . consumer ;
111 At t achmen t V i s u a l i z a t i o n 0 . consume t o da taF low2 . p r o v i d e r ;
112 At t achmen t V i s u a l i z a t i o n 0 . p r o v i d e t o w r i t e D a t a 1 . d a t a W r i t e r ;
113 At t achmen t S t o r e D a t a 0 . r e a d D a t a t o w r i t e D a t a 1 . p r o v i d e r ;
114 }
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Appendix B: Cost estimates for a workflow composition
environment (for SORASCS).

Feature Id Feature Description
Point
s Hours

FR01.01
The software shall support basic graphical editing capabilities - add, delete, connect, undo, redo, add
text description for services

See
break
down

Hour
s

FR01.01.a Add delete and connect 5 11.68

FR01.01.b undo/redo 8 19.54

FR01.01.c Text description is about changing the description of the service on the canvas. 3 6.37

FR01.01.d Layout auto organize 13 33.13

FR01.01.e The software shall allow the user to "snap" components on the canvas to a grid. 8 19.54

FR01.02
The software shall support orchestration of a workflow using services (thick and thin). The actual style
of orchestration is to connect services' port to port using a single connection. 2 3.39

FR01.03
The software shall allow analysts to “drill down” a service[4/19/2010] workflow which is a nested
workflow within the parent workflow. 13 33.13

FR01.04 The software shall show TBD[6] meta-information for each service. 3 6.37

FR01.05 The software shall allow analysts to add/append and delete meta-information for their own workflows. 5 11.68

FR01.06 The software shall provide searching/locating capabilities to organize the services 40

FR01.06.a The software shall categorize the services in the palette based on their meta-data. 13 33.13

FR01.06.b The software shall provide search capabilities to find services on the palette based on their meta-data. 13 33.13

FR01.06.c
The software shall provide a filter capability (by name) on the palette that updates which services are
currently displayed. 8 19.54

FR01.06.d
The software shall provide reorganization capabilities for the palette services that change their
categorization hierarchy. 8 19.54

FR01.06.e
The software shall provide a framework for plug-ins to provide organization of the services on the
palette.

FR01.07
The software shall support replacing of the services within the workflow with the analogous services if
available and if the analyst does not have permission to use existing services within the workflow 100

276.1
1

FR01.08 Software shall provide TBD[1] repair operations. 40
108.7

4

FR01.09 The software shall allow an analyst to add workflow repair operation plug-ins. 20 52.67

FR01.10 Software shall performTBD[1] syntactic checks for workflow validation 20 52.67

FR01.11 The software shall provide one TBD[1]example syntactic check 5 11.68

FR01.12 Software shall allow analysts to save the data at every connection or step of the workflow construction. 8 19.54
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FR01.13 Software shall allow analysts to save and open a workflow regardless of its syntactic correctness. 3 6.37

FR01.14 Software shall allow analysts to set the value of parameters in services during workflow construction. 20 52.67

FR01.14.a
The software shall use default values for the service parameters and let the user manually set them
using a configuration interface. 19.54

FR01.14.b
The software shall allow a service (including a "user interaction" service) to be connected to provide a
value for a parameter. 19.54

FR01.14.c
The software shall provide an interface for complicated parameter types (e.g. records) as needed by
the SORASCS services. 11.68

FR01.15
Software shall allow analysts to set the value of parameters in connectors during workflow
construction. 5 11.68

FR01.16 Software shall allow analyst to show TBD[6]meta-information for each connector. 3 6.37

FR01.17 * Data service configuration (Revisit)

See
break
down

FR01.17.a The software shall retrieve data services from SORASCS. 5 11.68

FR01.17.b The software shall allow the analyst to upload local data to SORASCS. 8 19.54

FR01.18

The software shall facilitate the transformation of compatible data types. When the user tries to connect
ports with different but compatible data types, the tool shall provide a transformation solution if it exists
on SORASCS. 20 52.67

FR02.01 The software shall I/F with SORASCS for TBD[2] execution modes

See
break
down

FR02.01.a End to end, this also include defining the UI perspective (change from composition to execution) 8 19.54

FR02.01.b Debug (breakpoints) 20 52.67

FR02.01.c Step by steps execution 3 6.37

FR02.03 The software shall support execution of both thick and thin services

See
break
down

FR02.03.a The software shall support execution of thin clients. 1 1.06

FR02.03.b The software shall support execution of thick clients through the SORASCS Client interface. 8 19.54

FR02.03.c
The software shall support execution of a "user interaction" dialog service that can be connected to
parameters or ports to provide their value during execution-time of the workflow. 13 33.13

FR02.04
The software shall I/F with SORASCS to display TBD[2] the execution progress of the workflow.
graphically on the canvas.

See
break
down

FR02.04.a The software shall display the execution progress of the workflow. (UI) 13 33.13

FR02.04.b
The software shall interface with SORASCS to retrieve the progress information of an executing
workflow. (Backend) 13 33.13

FR02.05
Before workflow can be executed it must first be deployed. The software shall deploy the workflow
automatically if the analyst does not explicitly. 40

108.7
4

FR02.07 The software shall allow the user to view intermediate results of a workflow during execution. 13 33.13

119



FR02.08 The software shall allow the user to stop a workflow's execution while it is in progress. 5 11.68

FR02.06
The software shall allow analyst to “drill down” a service which is a nested workflow within the parent
workflow.

FR03.01 The software shall I/F with SORASCS to play back an already executed workflow on demand. 13 33.13

FR03.02
The software shall I/F with SORASCS to locate and display the executed workflows and the data
associated with those execution histories. 5 11.68

FR03.03
The software shall access those services the analyst used through SORASCS in the past (the history
service), and be able to import them onto the construction canvas as a new workflow. 13 33.13

FR04.01 The Software shall I/F with SORASCS to provide TBD[3]workflow analysis.

See
break
down

FR04.01a The software shall allow an Analyst to add additional semantic validation plug-ins. 40
108.7

4

FR04.01b The software shall provide one TBD[1] example semantic validation. 5 11.68

FR05.01 The software shall allow analysts to package workflow to use it as a new service. 20 52.67

FR05.02
The software shall allow analysts to reuse their workflows. Deploying the parent workflow will also
recursively deploy child workflows. 13 33.13

FR05.03 The software shall allow the analyst to do a “save as” option for saving the workflow. 2 63.39

F6R05.04 Workflow-to-Service Traceability 13 33.13

FR07.01 The software shall list the available services and workflows to the analyst. 8 19.54

FR07.05
The software shall validate user login through the I/F with SORASCS server. Actual authentication
mechanism will be provided by SORASCS.

See
break
down

FR07.05.a
Includes the user representation (classes)
The software shall provide a class facade interface to SORASCS's authentication system. 8 19.54

FR07.05.b

The actual login
The software shall authenticate the users through a login interface that uses the SORASCS
authentication mechanism. 5 11.68

FR08.01 Error handling

FR08.01a The software shall provide an error framework to handle errors consistently application-wide. 3 6.37

FR08.01b The software shall interface with SORASCS to display error results if the workflow execution fails. 2 3.39

FR08.01c
The software shall display an error message if a connection to SORASCS is required but not present.
Operations that do not require a SORASCS connection should continue. 6.37
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Plan Code

Release 1 2 3

Week 1 2 3 4 5 6 7 8 9

Start date
17-Ma

y
24-Ma

y
31-M

ay 7-Jun
14-Ju

n
21-Ju

n
28-Ju

n 5-Jul
12-J

ul

FR01.01
Basic Graphical Editing
Capabilities

FR01.01a Drag and Drop 30% 70%

FR01.01b Undo/Redo 10% 90%

FR01.01c Add Service Description 100%

FR01.01d Canvas Zooming 100%

FR01.01e Canvas Auto-Layout

FR01.01f Grid Snapping

FR01.02 Workflow Orchestration 100%

FR01.03 Construction Drilldown 100%

FR01.04 Show Service Meta-Info 100%

FR01.05 Edit Workflow Meta-Info 40% 60%

FR01.06 Palette Capabilities

FR01.06a Palette Categorization 60% 40%

FR01.06b Palette Search 60% 40%

FR01.06c Palette Filtering 80% 20%

FR01.06d Palette Reorganization 60% 40%

FR01.06e Palette Plugin 100%

FR01.07 Analogous Services

FR01.08 Repair Operations

FR01.09 Repair Plugins

FR01.10 Syntactic Checking 50% 50%

FR01.11 Syntactic Check Example 100%

FR01.12 Persistent Intermediate Results 40% 60%

FR01.13 Save/Open Workflow 100%

FR01.14 Service Parameterization

FR01.14a Set Manual Value 50% 50%

FR01.14b Connect Parameters 80% 20%

FR01.14c Complicated Parameters 100%

FR01.15 Connector Parameterization

FR01.16 Show Connector Meta-Info

FR01.17 Data Service Configuration
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FR01.17a SORASCS Data 30% 5% 65%

FR01.17b Local Data 30% 70%

FR01.17c View Data

FR01.18 Data transformation

FR01.19 Project Management

FR01.20 Multiply-Typed Ports 100%

FR02.01 Workflow Execution

FR02.01a End-to-End Execution 90% 10%

FR02.01b Breakpoint Execution 60% 40%

FR02.01c Step-by-Step Execution 100%

FR02.03 Service Execution

FR02.03a Thin Services 100%

FR02.03b Thick Services 70% 30%

FR02.03c UI Interaction Services 100%

FR02.04 Execution Progress

FR02.04a Execution Progress UI 93% 7%

FR02.04b Execution Progress Backend 60% 40%

FR02.05 Workflow Deployment 30% 50% 20%

FR02.07 View Intermediate Results 100%

FR02.08 Stop execution 100%

FR03.01 History Playback 100%

FR03.02 Inspect History 100%

FR03.03 Implicit Construction

FR04.01 Semantic Analysis

FR04.01a Semantic Analysis Plugin 30% 60%

FR04.01b Semantic Analysis Example 100%

FR05.01 Workflow Packaging 50% 50%

FR05.02 Workflow Reuse 40% 60%

FR05.03 Workflow Save As 20% 80%

FR05.04 Workflow-to-Service Traceability 100%

FR07.01 List Services

FR07.05 User Login

FR07.05a Authentication Infrastructure 30% 70%

FR07.05b SORASCS Authentication 0%

FR08.01 Error Handling

FR08.01a Error Framework 100%
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FR08.01b Execution Errors 100%

FR08.01c SORASCS Connection Error 100%

QA01 Easy to Learn

QA02 Offer Suggestions

QA03 Easy Re-Execution

QA05 Local SORASCS

QA06 Easy to Install 100%

QA07 Sensible Organization

QA09 Analysis Extension Framework

QA10 Fast Load

QA11 Palette Extension Framework 60% 40%

QA12 Unavailability Feedback

QA13 Easy Packaging and Sharing

QA14 Secured Communication

QA15 Backend Interaction

QA16 Workflow Language Modification

QA17 Non-Blocking execution 66% 34%

Project Stage Date
SRS Scope
Version 6-Jun

Release1 6-Jun

Release2 4-Jul

Release3 18-Jun
Delivery
Release 2-Aug
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